├── README.md ├── src ├── Algorithm9.py ├── GridData9.py ├── Network9.py ├── georgia.py ├── grid_K.py ├── grid_gen.py ├── grid_reg.py ├── grid_stab.py └── kinghouse.py └── synthetic ├── grid_0h.txt ├── grid_0l.txt ├── grid_0m.txt ├── grid_100h.txt ├── grid_100l.txt ├── grid_100m.txt ├── grid_101h.txt ├── grid_101l.txt ├── grid_101m.txt ├── grid_102h.txt ├── grid_102l.txt ├── grid_102m.txt ├── grid_103h.txt ├── grid_103l.txt ├── grid_103m.txt ├── grid_104h.txt ├── grid_104l.txt ├── grid_104m.txt ├── grid_105h.txt ├── grid_105l.txt ├── grid_105m.txt ├── grid_106h.txt ├── grid_106l.txt ├── grid_106m.txt ├── grid_107h.txt ├── grid_107l.txt ├── grid_107m.txt ├── grid_108h.txt ├── grid_108l.txt ├── grid_108m.txt ├── grid_109h.txt ├── grid_109l.txt ├── grid_109m.txt ├── grid_10h.txt ├── grid_10l.txt ├── grid_10m.txt ├── grid_110h.txt ├── grid_110l.txt ├── grid_110m.txt ├── grid_111h.txt ├── grid_111l.txt ├── grid_111m.txt ├── grid_112h.txt ├── grid_112l.txt ├── grid_112m.txt ├── grid_113h.txt ├── grid_113l.txt ├── grid_113m.txt ├── grid_114h.txt ├── grid_114l.txt ├── grid_114m.txt ├── grid_115h.txt ├── grid_115l.txt ├── grid_115m.txt ├── grid_116h.txt ├── grid_116l.txt ├── grid_116m.txt ├── grid_117h.txt ├── grid_117l.txt ├── grid_117m.txt ├── grid_118h.txt ├── grid_118l.txt ├── grid_118m.txt ├── grid_119h.txt ├── grid_119l.txt ├── grid_119m.txt ├── grid_11h.txt ├── grid_11l.txt ├── grid_11m.txt ├── grid_120h.txt ├── grid_120l.txt ├── grid_120m.txt ├── grid_121h.txt ├── grid_121l.txt ├── grid_121m.txt ├── grid_122h.txt ├── grid_122l.txt ├── grid_122m.txt ├── grid_123h.txt ├── grid_123l.txt ├── grid_123m.txt ├── grid_124h.txt ├── grid_124l.txt ├── grid_124m.txt ├── grid_125h.txt ├── grid_125l.txt ├── grid_125m.txt ├── grid_126h.txt ├── grid_126l.txt ├── grid_126m.txt ├── grid_127h.txt ├── grid_127l.txt ├── grid_127m.txt ├── grid_128h.txt ├── grid_128l.txt ├── grid_128m.txt ├── grid_129h.txt ├── grid_129l.txt ├── grid_129m.txt ├── grid_12h.txt ├── grid_12l.txt ├── grid_12m.txt ├── grid_130h.txt ├── grid_130l.txt ├── grid_130m.txt ├── grid_131h.txt ├── grid_131l.txt ├── grid_131m.txt ├── grid_132h.txt ├── grid_132l.txt ├── grid_132m.txt ├── grid_133h.txt ├── grid_133l.txt ├── grid_133m.txt ├── grid_134h.txt ├── grid_134l.txt ├── grid_134m.txt ├── grid_135h.txt ├── grid_135l.txt ├── grid_135m.txt ├── grid_136h.txt ├── grid_136l.txt ├── grid_136m.txt ├── grid_137h.txt ├── grid_137l.txt ├── grid_137m.txt ├── grid_138h.txt ├── grid_138l.txt ├── grid_138m.txt ├── grid_139h.txt ├── grid_139l.txt ├── grid_139m.txt ├── grid_13h.txt ├── grid_13l.txt ├── grid_13m.txt ├── grid_140h.txt ├── grid_140l.txt ├── grid_140m.txt ├── grid_141h.txt ├── grid_141l.txt ├── grid_141m.txt ├── grid_142h.txt ├── grid_142l.txt ├── grid_142m.txt ├── grid_143h.txt ├── grid_143l.txt ├── grid_143m.txt ├── grid_144h.txt ├── grid_144l.txt ├── grid_144m.txt ├── grid_145h.txt ├── grid_145l.txt ├── grid_145m.txt ├── grid_146h.txt ├── grid_146l.txt ├── grid_146m.txt ├── grid_147h.txt ├── grid_147l.txt ├── grid_147m.txt ├── grid_148h.txt ├── grid_148l.txt ├── grid_148m.txt ├── grid_149h.txt ├── grid_149l.txt ├── grid_149m.txt ├── grid_14h.txt ├── grid_14l.txt ├── grid_14m.txt ├── grid_15h.txt ├── grid_15l.txt ├── grid_15m.txt ├── grid_16h.txt ├── grid_16l.txt ├── grid_16m.txt ├── grid_17h.txt ├── grid_17l.txt ├── grid_17m.txt ├── grid_18h.txt ├── grid_18l.txt ├── grid_18m.txt ├── grid_19h.txt ├── grid_19l.txt ├── grid_19m.txt ├── grid_1h.txt ├── grid_1l.txt ├── grid_1m.txt ├── grid_20h.txt ├── grid_20l.txt ├── grid_20m.txt ├── grid_21h.txt ├── grid_21l.txt ├── grid_21m.txt ├── grid_22h.txt ├── grid_22l.txt ├── grid_22m.txt ├── grid_23h.txt ├── grid_23l.txt ├── grid_23m.txt ├── grid_24h.txt ├── grid_24l.txt ├── grid_24m.txt ├── grid_25h.txt ├── grid_25l.txt ├── grid_25m.txt ├── grid_26h.txt ├── grid_26l.txt ├── grid_26m.txt ├── grid_27h.txt ├── grid_27l.txt ├── grid_27m.txt ├── grid_28h.txt ├── grid_28l.txt ├── grid_28m.txt ├── grid_29h.txt ├── grid_29l.txt ├── grid_29m.txt ├── grid_2h.txt ├── grid_2l.txt ├── grid_2m.txt ├── grid_30h.txt ├── grid_30l.txt ├── grid_30m.txt ├── grid_31h.txt ├── grid_31l.txt ├── grid_31m.txt ├── grid_32h.txt ├── grid_32l.txt ├── grid_32m.txt ├── grid_33h.txt ├── grid_33l.txt ├── grid_33m.txt ├── grid_34h.txt ├── grid_34l.txt ├── grid_34m.txt ├── grid_35h.txt ├── grid_35l.txt ├── grid_35m.txt ├── grid_36h.txt ├── grid_36l.txt ├── grid_36m.txt ├── grid_37h.txt ├── grid_37l.txt ├── grid_37m.txt ├── grid_38h.txt ├── grid_38l.txt ├── grid_38m.txt ├── grid_39h.txt ├── grid_39l.txt ├── grid_39m.txt ├── grid_3h.txt ├── grid_3l.txt ├── grid_3m.txt ├── grid_40h.txt ├── grid_40l.txt ├── grid_40m.txt ├── grid_41h.txt ├── grid_41l.txt ├── grid_41m.txt ├── grid_42h.txt ├── grid_42l.txt ├── grid_42m.txt ├── grid_43h.txt ├── grid_43l.txt ├── grid_43m.txt ├── grid_44h.txt ├── grid_44l.txt ├── grid_44m.txt ├── grid_45h.txt ├── grid_45l.txt ├── grid_45m.txt ├── grid_46h.txt ├── grid_46l.txt ├── grid_46m.txt ├── grid_47h.txt ├── grid_47l.txt ├── grid_47m.txt ├── grid_48h.txt ├── grid_48l.txt ├── grid_48m.txt ├── grid_49h.txt ├── grid_49l.txt ├── grid_49m.txt ├── grid_4h.txt ├── grid_4l.txt ├── grid_4m.txt ├── grid_50h.txt ├── grid_50l.txt ├── grid_50m.txt ├── grid_51h.txt ├── grid_51l.txt ├── grid_51m.txt ├── grid_52h.txt ├── grid_52l.txt ├── grid_52m.txt ├── grid_53h.txt ├── grid_53l.txt ├── grid_53m.txt ├── grid_54h.txt ├── grid_54l.txt ├── grid_54m.txt ├── grid_55h.txt ├── grid_55l.txt ├── grid_55m.txt ├── grid_56h.txt ├── grid_56l.txt ├── grid_56m.txt ├── grid_57h.txt ├── grid_57l.txt ├── grid_57m.txt ├── grid_58h.txt ├── grid_58l.txt ├── grid_58m.txt ├── grid_59h.txt ├── grid_59l.txt ├── grid_59m.txt ├── grid_5h.txt ├── grid_5l.txt ├── grid_5m.txt ├── grid_60h.txt ├── grid_60l.txt ├── grid_60m.txt ├── grid_61h.txt ├── grid_61l.txt ├── grid_61m.txt ├── grid_62h.txt ├── grid_62l.txt ├── grid_62m.txt ├── grid_63h.txt ├── grid_63l.txt ├── grid_63m.txt ├── grid_64h.txt ├── grid_64l.txt ├── grid_64m.txt ├── grid_65h.txt ├── grid_65l.txt ├── grid_65m.txt ├── grid_66h.txt ├── grid_66l.txt ├── grid_66m.txt ├── grid_67h.txt ├── grid_67l.txt ├── grid_67m.txt ├── grid_68h.txt ├── grid_68l.txt ├── grid_68m.txt ├── grid_69h.txt ├── grid_69l.txt ├── grid_69m.txt ├── grid_6h.txt ├── grid_6l.txt ├── grid_6m.txt ├── grid_70h.txt ├── grid_70l.txt ├── grid_70m.txt ├── grid_71h.txt ├── grid_71l.txt ├── grid_71m.txt ├── grid_72h.txt ├── grid_72l.txt ├── grid_72m.txt ├── grid_73h.txt ├── grid_73l.txt ├── grid_73m.txt ├── grid_74h.txt ├── grid_74l.txt ├── grid_74m.txt ├── grid_75h.txt ├── grid_75l.txt ├── grid_75m.txt ├── grid_76h.txt ├── grid_76l.txt ├── grid_76m.txt ├── grid_77h.txt ├── grid_77l.txt ├── grid_77m.txt ├── grid_78h.txt ├── grid_78l.txt ├── grid_78m.txt ├── grid_79h.txt ├── grid_79l.txt ├── grid_79m.txt ├── grid_7h.txt ├── grid_7l.txt ├── grid_7m.txt ├── grid_80h.txt ├── grid_80l.txt ├── grid_80m.txt ├── grid_81h.txt ├── grid_81l.txt ├── grid_81m.txt ├── grid_82h.txt ├── grid_82l.txt ├── grid_82m.txt ├── grid_83h.txt ├── grid_83l.txt ├── grid_83m.txt ├── grid_84h.txt ├── grid_84l.txt ├── grid_84m.txt ├── grid_85h.txt ├── grid_85l.txt ├── grid_85m.txt ├── grid_86h.txt ├── grid_86l.txt ├── grid_86m.txt ├── grid_87h.txt ├── grid_87l.txt ├── grid_87m.txt ├── grid_88h.txt ├── grid_88l.txt ├── grid_88m.txt ├── grid_89h.txt ├── grid_89l.txt ├── grid_89m.txt ├── grid_8h.txt ├── grid_8l.txt ├── grid_8m.txt ├── grid_90h.txt ├── grid_90l.txt ├── grid_90m.txt ├── grid_91h.txt ├── grid_91l.txt ├── grid_91m.txt ├── grid_92h.txt ├── grid_92l.txt ├── grid_92m.txt ├── grid_93h.txt ├── grid_93l.txt ├── grid_93m.txt ├── grid_94h.txt ├── grid_94l.txt ├── grid_94m.txt ├── grid_95h.txt ├── grid_95l.txt ├── grid_95m.txt ├── grid_96h.txt ├── grid_96l.txt ├── grid_96m.txt ├── grid_97h.txt ├── grid_97l.txt ├── grid_97m.txt ├── grid_98h.txt ├── grid_98l.txt ├── grid_98m.txt ├── grid_99h.txt ├── grid_99l.txt ├── grid_99m.txt ├── grid_9h.txt ├── grid_9l.txt ├── grid_9m.txt ├── gridtest_0h.txt ├── gridtest_0l.txt ├── gridtest_0m.txt ├── gridtest_0n.txt ├── gridtest_1h.txt ├── gridtest_1l.txt ├── gridtest_1m.txt ├── gridtest_1n.txt ├── gridtest_2h.txt ├── gridtest_2l.txt ├── gridtest_2m.txt ├── gridtest_2n.txt ├── gridtest_3h.txt ├── gridtest_3l.txt ├── gridtest_3m.txt ├── gridtest_3n.txt ├── gridtest_4h.txt ├── gridtest_4l.txt ├── gridtest_4m.txt ├── gridtest_4n.txt ├── gridtest_5h.txt ├── gridtest_5l.txt ├── gridtest_5m.txt ├── gridtest_5n.txt ├── gridtest_6h.txt ├── gridtest_6l.txt ├── gridtest_6m.txt ├── gridtest_6n.txt ├── gridtest_7h.txt ├── gridtest_7l.txt ├── gridtest_7m.txt ├── gridtest_7n.txt ├── gridtest_8h.txt ├── gridtest_8l.txt ├── gridtest_8m.txt └── gridtest_8n.txt /README.md: -------------------------------------------------------------------------------- 1 | # Overview 2 | 3 | This software aims to delineate spatial regimes (geographically connected regions with varying coefficients across regions) in the context of linear regression models. Please refer to our paper for more details: 4 | Hao Guo, Andre Python & Yu Liu (2023) Extending regionalization algorithms to explore spatial process heterogeneity, International Journal of Geographical Information Science, 37:11, 2319-2344, DOI: 10.1080/13658816.2023.2266493 5 | 6 | # Errata and Notes 7 | - p.2321 Although the objective in Equation 1 does make sense, we mean to write $$\mathcal{L}(\mathcal{R})=\sum_{j=1}^p \sum_{1\le i_1 0 and iters < max_iter: 26 | # make move and update assignments, coeffs, closest, candidates 27 | for u in moves: 28 | donor_region = units[label == label[u]].tolist() 29 | if len(donor_region) <= min_size: 30 | continue 31 | label[u] = closest[u] 32 | regions = [units[label == r].tolist() for r in range(K)] 33 | coeffs = fit_equations(Xarr, Yarr, regions) 34 | closest = np.array(closest_equation(Xarr, Yarr, coeffs)) 35 | candidate_moves = units[closest != label] 36 | moves = [] 37 | for u in candidate_moves: 38 | donor_region = units[label == label[u]].tolist() 39 | if len(donor_region) > min_size: 40 | moves.append(u) 41 | iters += 1 42 | if verbose and iters%10 == 0: 43 | print(iters, len(moves), regression_error(regions,Xarr,Yarr), moves) 44 | return label, iters 45 | 46 | 47 | def split_components(w, clabel): 48 | g = weights_to_graph(w) 49 | units = np.arange(w.n).astype(int) 50 | clusters = [units[clabel == r].tolist() for r in set(clabel)] 51 | rid = 0 52 | rlabel = np.array([-1] * w.n).astype(int) 53 | 54 | for c in clusters: 55 | clus = g.subgraph(c) 56 | regs = networkx.connected_components(clus) 57 | for r in regs: 58 | for u in r: 59 | rlabel[u] = rid 60 | rid += 1 61 | return rlabel 62 | 63 | 64 | def greedy_merge(Xarr, Yarr, n_regions, w, label, min_size=None, verbose=False): 65 | if min_size is None: 66 | min_size = Xarr.shape[1] 67 | units = np.arange(w.n).astype(int) 68 | reg_label = list(set(label)) 69 | reg_label.sort() 70 | regions = [units[label == r].tolist() for r in reg_label] 71 | regtree = dict() 72 | 73 | for rid in range(len(regions)): 74 | curnode = Node(reg_label[rid],regions[rid]) 75 | curnode.err = region_error(Xarr,Yarr,curnode.units) 76 | regtree[reg_label[rid]] = curnode 77 | for cid in regtree.keys(): 78 | regtree[cid].links = set([label[u] for u in region_neighbors(regtree[cid].units, w)]) 79 | 80 | merges = 0 81 | # merge segment regions first, to enforce minimum size constraint 82 | fragments = [p for p in regtree.keys() if len(regtree[p].units) < min_size] 83 | while len(fragments) > 0: 84 | p = np.random.choice(fragments) 85 | min_derr = inf # min increase of error 86 | minq = -1 87 | for q in regtree[p].links: 88 | derr = delta_err(regtree, p, q, Xarr, Yarr) 89 | if derr < min_derr: 90 | min_derr = derr 91 | minq = q 92 | merge_node(regtree,p,minq,Xarr,Yarr) 93 | merges += 1 94 | fragments = [p for p in regtree.keys() if len(regtree[p].units) < min_size] 95 | if verbose and len(regtree.keys()) % 10 == 0: 96 | print(len(regtree.keys()), minq, min_derr) 97 | if len(regtree.keys()) < n_regions: 98 | raise RuntimeError("Failed to achieve required number of regions.") 99 | 100 | while len(regtree.keys()) > n_regions: 101 | min_derr = inf 102 | minp,minq = -1,-1 103 | for p in regtree.keys(): 104 | for q in regtree[p].links: 105 | if q <= p: 106 | continue 107 | derr = delta_err(regtree, p, q, Xarr, Yarr) 108 | if derr < min_derr: 109 | min_derr = derr 110 | minp = p 111 | minq = q 112 | merge_node(regtree,minp,minq,Xarr,Yarr) 113 | merges += 1 114 | if verbose and len(regtree.keys()) % 10 == 0: 115 | print(len(regtree.keys()), minp, minq, min_derr) 116 | 117 | regions = [regtree[k].units for k in regtree.keys()] 118 | rlabel = region_to_label(w.n,regions) 119 | coeffs = fit_equations(Xarr, Yarr, regions) 120 | return rlabel, coeffs, merges 121 | 122 | 123 | def azp(Xarr, Yarr, n_regions, w, max_iter=10000, min_size=None, init_stoc_step=True): 124 | # w: pysal.weights.W object 125 | # min_size: lower bound for region size, default: #params 126 | if min_size is None: 127 | min_size = Xarr.shape[1] 128 | k = n_regions 129 | units = np.arange(w.n).astype(int) 130 | label = init_zones(w, k, min_size, init_stoc_step) 131 | regions = [units[label == r].tolist() for r in range(k)] 132 | xtxinvs = init_xtxinv(Xarr, regions) 133 | 134 | # iteration 135 | g = weights_to_graph(w) 136 | iters = 0 137 | 138 | while True: 139 | stable = True 140 | region_list = list(range(k)) 141 | while len(region_list) > 0 and iters < max_iter: 142 | r = np.random.choice(region_list) 143 | region_list.remove(r) 144 | moves = region_neighbors(regions[r], w) 145 | valid_moves = batch_check_AZP(moves, units, label, r, g, w, Xarr, Yarr, xtxinvs, min_size) 146 | if len(valid_moves) == 0: 147 | continue 148 | stable = False 149 | u = np.random.choice(valid_moves) 150 | xtxinvs[label[u]] = sherman_morrison(xtxinvs[label[u]], Xarr[u].reshape(-1), add=False) 151 | xtxinvs[r] = sherman_morrison(xtxinvs[r], Xarr[u].reshape(-1), add=True) 152 | label[u] = r 153 | regions = [units[label == r].tolist() for r in range(k)] 154 | # print(iters,evaluation_func(regions,Xarr,Yarr,0)) 155 | iters += 1 156 | if stable or iters >= max_iter: 157 | break 158 | coeffs = fit_equations(Xarr, Yarr, regions) 159 | return label, coeffs, iters 160 | 161 | 162 | def region_k_models(Xarr, Yarr, n_regions, w, max_iter=10000, min_size=None, init_stoc_step=True): 163 | # w: pysal.weights.W object 164 | if min_size is None: 165 | min_size = Xarr.shape[1] 166 | k = n_regions 167 | units = np.arange(w.n).astype(int) 168 | label = init_zones(w, k, min_size, init_stoc_step) 169 | 170 | # iteration 171 | g = weights_to_graph(w) 172 | iters = 0 173 | regions = [units[label == r].tolist() for r in range(k)] 174 | coeffs = fit_equations(Xarr, Yarr, regions) 175 | closest = np.array(closest_equation(Xarr, Yarr, coeffs)) 176 | moves = units[closest != label] 177 | valid_moves = batch_check_RKM(moves, units, label, closest, g, w, min_size) 178 | while valid_moves and iters < max_iter: 179 | # make move and update assignments, coeffs, closest, candidates 180 | u = np.random.choice(valid_moves) 181 | label[u] = closest[u] 182 | regions = [units[label == r].tolist() for r in range(k)] 183 | coeffs = fit_equations(Xarr, Yarr, regions) 184 | closest = np.array(closest_equation(Xarr, Yarr, coeffs)) 185 | moves = units[closest != label] 186 | valid_moves = batch_check_RKM(moves, units, label, closest, g, w, min_size) 187 | iters += 1 188 | coeffs = fit_equations(Xarr, Yarr, regions) 189 | return label, coeffs, iters 190 | 191 | 192 | def gwr_skater(Xarr, Yarr, n_regions, w, coord, min_size=None): 193 | # Initialization 194 | nobs = Xarr.shape[0] 195 | nvar = Xarr.shape[1] - 1 196 | 197 | # gwr 198 | coeff = [None for u in range(nobs)] 199 | Xprm = np.asarray([Xarr[u,1:] for u in range(nobs)]) 200 | Xprm = Xprm.reshape((nobs, nvar)) 201 | Yprm = np.asarray([Yarr[u] for u in range(nobs)]) 202 | Yprm = Yprm.reshape((nobs,1)) 203 | bw = Sel_BW(coord, Yprm, Xprm, fixed=False, kernel='bisquare').search(criterion='AICc') 204 | # for debug 205 | # print(f"bw:{bw}") 206 | 207 | coord = np.array(coord) 208 | model = gwr.GWR(coord, Yprm, Xprm, bw=bw, fixed=False, kernel='bisquare') 209 | results = model.fit() 210 | for u in range(nobs): 211 | coeff[u] = results.params[u] 212 | # for debug 213 | # print("GWR finished") 214 | 215 | # pre-processing 216 | X = np.asarray([coeff[u] for u in range(nobs)]) 217 | X1 = preprocessing.StandardScaler().fit_transform(X) 218 | 219 | # SKATER regionalization 220 | fields = ['intercept']+[f'slope{v}' for v in range(nvar)] 221 | pd = geopandas.GeoDataFrame(X1, columns=fields, dtype=float) 222 | # Use default configurations 223 | spconfig = dict(dissimilarity=metrics.pairwise.manhattan_distances, affinity=None, reduction=np.sum, center=np.mean) 224 | model = Skater(pd, w, attrs_name=fields, n_clusters=n_regions, floor=min_size, trace=False, spanning_forest_kwds=spconfig) 225 | model.solve() 226 | 227 | label = model.labels_ 228 | units = np.arange(w.n).astype(int) 229 | regions = [units[label == r].tolist() for r in range(n_regions)] 230 | coeffs = fit_equations(Xarr, Yarr, regions) 231 | return label, coeffs 232 | 233 | 234 | def skater_reg(Xarr, Yarr, n_regions, w, min_size=None): 235 | nobs = Xarr.shape[0] 236 | nvar = Xarr.shape[1] - 1 237 | 238 | Xreg = np.asarray([Xarr[u, 1:] for u in range(nobs)]) 239 | Xreg = Xreg.reshape((nobs, nvar)) 240 | Yreg = np.asarray([Yarr[u] for u in range(nobs)]) 241 | Yreg = Yreg.reshape((nobs, 1)) 242 | results = Skater_reg().fit(n_clusters=n_regions, W=w, data=Xreg, 243 | data_reg={'reg': spreg.OLS, 'y': Yreg, 'x': Xreg}, quorum=min_size) 244 | 245 | label = results.current_labels_ 246 | units = np.arange(w.n).astype(int) 247 | regions = [units[label == r].tolist() for r in range(n_regions)] 248 | coeffs = fit_equations(Xarr, Yarr, regions) 249 | return label, coeffs 250 | 251 | -------------------------------------------------------------------------------- /src/GridData9.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import math 3 | from Network9 import weights_to_graph, regression_error, region_neighbors 4 | from libpysal import weights 5 | from sklearn.metrics import mean_absolute_error 6 | import networkx 7 | 8 | # General 9 | 10 | def Pos_Encode(r,c,side): 11 | return r*side+c 12 | 13 | 14 | def Pos_Decode(code,side): 15 | return code//side, code%side 16 | 17 | 18 | def GetNeighbors(pos,side): 19 | nlist = [] 20 | if pos+side < side*side: 21 | nlist.append(pos + side) 22 | if pos-side >= 0: 23 | nlist.append(pos - side) 24 | if pos % side != side - 1: 25 | nlist.append(pos + 1) 26 | if pos % side != 0: 27 | nlist.append(pos - 1) 28 | return nlist 29 | 30 | 31 | def GetAllNeighbors(side): 32 | neighbors =[] 33 | for pos in range(side*side): 34 | neighbors.append(GetNeighbors(pos,side)) 35 | return neighbors 36 | 37 | 38 | def GetCoord(side): 39 | return [(pos // side, pos % side) for pos in range(side * side)] 40 | 41 | 42 | # Grid Regionlization Evaluation 43 | # Xarr (Side*Side, Variables(including constant)); Yarr (Side*Side) 44 | # Label (Side*Side); Coeff (Side*Side, Variables(including constant)) 45 | class Grid_Region_Metrics: 46 | def __init__(self, Xarr, Yarr, true_label, pred_label, true_coeff, pred_coeff): 47 | self.X = Xarr 48 | self.Y = Yarr 49 | self.N = len(self.X) 50 | self.label = true_label 51 | self.rlabel = np.asarray(pred_label, dtype=int) 52 | units = np.arange(self.N).astype(int) 53 | self.reg = [units[self.label == r].tolist() for r in set(self.label)] 54 | self.rreg = [units[self.rlabel == r].tolist() for r in set(self.rlabel)] 55 | self.coeff = true_coeff 56 | self.rcoeff = pred_coeff 57 | 58 | self.SSR() 59 | self.Rand() 60 | self.Mutual_Info() 61 | self.Coeff_MAE() 62 | return 63 | 64 | def SSR(self): 65 | self.ssr = regression_error(self.rreg, self.X, self.Y) 66 | return 67 | 68 | def Rand(self): 69 | tp = fn = fp = tn = 0 70 | for i in range(self.N): 71 | for j in range(i + 1, self.N): 72 | if self.label[i] == self.label[j]: 73 | if self.rlabel[i] == self.rlabel[j]: 74 | tp += 1 75 | else: 76 | fn += 1 77 | else: 78 | if self.rlabel[i] == self.rlabel[j]: 79 | fp += 1 80 | else: 81 | tn += 1 82 | npair = self.N * (self.N - 1) // 2 83 | assert npair == tp + fn + fp + tn 84 | self.tp, self.fn, self.fp, self.tn = tp, fn, fp, tn 85 | self.randi = (tp + tn) / npair 86 | return 87 | 88 | def Mutual_Info(self): 89 | n = sum([len(r) for r in self.reg]) 90 | assert n == sum([len(r) for r in self.rreg]) 91 | h = -sum([(len(r) / n) * math.log2(len(r) / n) for r in self.reg]) 92 | hr = -sum([(len(r) / n) * math.log2(len(r) / n) for r in self.rreg]) 93 | reg_set = [set(r) for r in self.reg] 94 | rreg_set = [set(r) for r in self.rreg] 95 | mi = 0 96 | for r in reg_set: 97 | for rr in rreg_set: 98 | n_int = len(r.intersection(rr)) 99 | if n_int == 0: 100 | continue 101 | mi += (n_int / n) * math.log2(n * n_int / (len(r) * len(rr))) 102 | nmi = 2 * mi / (h + hr) 103 | self.h, self.hr, self.mi, self.nmi = h, hr, mi, nmi 104 | return 105 | 106 | def Coeff_MAE(self): 107 | self.coeff_mae=[] 108 | for v in range(self.X.shape[1]): 109 | coeffv = [self.coeff[u][v] for u in range(self.N)] 110 | rcoeffv = [self.rcoeff[self.rlabel[u]][v] for u in range(self.N)] 111 | self.coeff_mae.append(mean_absolute_error(coeffv,rcoeffv)) 112 | return 113 | 114 | def result_full_str(self): 115 | str = f'{self.ssr:.4f} ' 116 | str += f'{self.tp:d} {self.fn:d} {self.fp:d} {self.tn:d} {self.randi:.4f} ' 117 | str += f'{self.h:.4f} {self.hr:.4f} {self.mi:.4f} {self.nmi:.4f} ' 118 | str += ' '.join([f'{mae:.4f}' for mae in self.coeff_mae]) 119 | return str 120 | 121 | def result_str(self): 122 | str = f'{self.ssr:.4f} {self.randi:.4f} {self.nmi:.4f} ' 123 | str += ' '.join([f'{mae:.4f}' for mae in self.coeff_mae]) 124 | return str 125 | 126 | # Grid Data Simulation 127 | 128 | # data[0] Xarr (Side*Side)*Variables 129 | # data[1] Yarr (Side*Side) 130 | # data[2] Coeff (Side*Side)*Variables 131 | 132 | 133 | def dist(r1,c1,r2,c2): 134 | return math.sqrt((r1-r2)*(r1-r2)+(c1-c2)*(c1-c2)) 135 | 136 | 137 | def simulate_zone(side, zonemap, valarr, bias): 138 | # zonemap: side*side; valarr: d*zones 139 | Xarr = np.asarray([[1]+[np.random.rand() for d in range(len(valarr)-1)] 140 | for u in range(side*side)]) 141 | coeff = np.asarray([[valarr[d][zonemap[u//side][u % side]] 142 | for d in range(len(valarr))] for u in range(side*side)]) 143 | Yarr = np.asarray([np.inner(coeff[u], Xarr[u])+bias*np.random.randn() 144 | for u in range(side*side)]) 145 | return Xarr, Yarr, coeff 146 | 147 | 148 | def generate_regular_zones(side,zones): 149 | width = int(round(side/zones)) 150 | zonemap = [[r//width for c in range(side)] for r in range(side)] 151 | return zonemap 152 | 153 | 154 | def generate_voronoi_zones(side,zones,min_size): 155 | zonemap = [[-1 for c in range(side)] for r in range(side)] 156 | w = weights.lat2W(side,side) 157 | g = weights_to_graph(w) 158 | while True: 159 | seeds = np.random.choice(range(side*side),zones,replace=False) 160 | for r in range(side): 161 | for c in range(side): 162 | dists = [dist(r, c, seeds[i]//side, seeds[i]%side) for i in range(zones)] 163 | zonemap[r][c] = dists.index(min(dists)) 164 | valid = True 165 | for i in range(zones): 166 | zone = [p for p in range(side*side) if zonemap[p//side][p%side]==i] 167 | if not networkx.is_connected(g.subgraph(zone)): 168 | valid = False 169 | if len(zone) < min_size: 170 | valid = False 171 | if valid: 172 | break 173 | return zonemap 174 | 175 | 176 | def generate_random_zones(side, zones, min_size): 177 | w = weights.lat2W(side, side) 178 | units = np.arange(w.n).astype(int) 179 | while True: 180 | seeds = np.random.choice(units, size=zones, replace=False) 181 | label = np.array([-1] * w.n).astype(int) 182 | for i, seed in enumerate(seeds): 183 | label[seed] = i 184 | to_assign = units[label == -1] 185 | 186 | while to_assign.size > 0: 187 | for rid in range(zones): 188 | region = units[label == rid] 189 | neighbors = region_neighbors(region, w) 190 | neighbors = [j for j in neighbors if j in to_assign] 191 | if len(neighbors) > 0: 192 | u = np.random.choice(neighbors) 193 | label[u] = rid 194 | to_assign = units[label == -1] 195 | 196 | regions = [units[label == r].tolist() for r in range(zones)] 197 | if min([len(region) for region in regions]) >= min_size: 198 | break 199 | 200 | zonemap = [[label[Pos_Encode(r, c, side)] for c in range(side)] for r in range(side)] 201 | return zonemap 202 | 203 | # Input/Output 204 | 205 | def reg_pic(side, label, coeffs=None,dim=-1): 206 | if dim == -1: 207 | arr = np.asarray([[-1 for c in range(side)] for r in range(side)]) 208 | # Show shape of zones 209 | for u in range(len(label)): 210 | r,c = Pos_Decode(u,side) 211 | arr[r][c] = label[u] 212 | else: 213 | # Show coefficients 214 | arr = np.asarray([[-1.0 for c in range(side)] for r in range(side)]) 215 | for u in range(len(label)): 216 | r,c = Pos_Decode(u,side) 217 | arr[r][c] = coeffs[label[u]][dim] 218 | return arr 219 | 220 | 221 | def input_data(i, side, nvar): 222 | Xarr = np.asarray([[1.0]+[0.0]*nvar for u in range(side*side)]) 223 | Yarr = np.asarray([-1.0 for u in range(side*side)]) 224 | label = np.asarray([-1 for u in range(side*side)]) 225 | coeff = np.asarray([[0.0]*(nvar+1) for u in range(side * side)]) 226 | # Read Xarr 227 | for v in range(nvar): 228 | for r in range(side): 229 | line = i.readline().split() 230 | for c in range(side): 231 | Xarr[Pos_Encode(r,c,side)][v+1] = float(line[c]) 232 | line = i.readline() 233 | # Read Yarr 234 | for r in range(side): 235 | line = i.readline().split() 236 | for c in range(side): 237 | Yarr[Pos_Encode(r, c, side)] = float(line[c]) 238 | line = i.readline() 239 | # Read label 240 | for r in range(side): 241 | line = i.readline().split() 242 | for c in range(side): 243 | label[Pos_Encode(r, c, side)] = int(line[c]) 244 | line = i.readline() 245 | # Read Coeff 246 | for v in range(nvar): 247 | for r in range(side): 248 | line = i.readline().split() 249 | for c in range(side): 250 | coeff[Pos_Encode(r,c,side)][v+1] = float(line[c]) 251 | line = i.readline() 252 | return Xarr, Yarr, label, coeff 253 | 254 | 255 | def output_data(o, side, Xarr, Yarr, coeff=None, regmap=None): 256 | variables = Xarr.shape[1] 257 | 258 | # X 259 | for v in range(1,variables): 260 | for r in range(side): 261 | for c in range(side): 262 | u = Pos_Encode(r,c,side) 263 | o.write('%.6f' % Xarr[u][v]+" ") 264 | o.write("\n") 265 | o.write("\n") 266 | # Y 267 | for r in range(side): 268 | for c in range(side): 269 | u = Pos_Encode(r, c, side) 270 | o.write('%.6f' % Yarr[u]+" ") 271 | o.write("\n") 272 | o.write("\n") 273 | # regmap 274 | if regmap is not None: 275 | for r in range(side): 276 | for c in range(side): 277 | o.write(str(regmap[r][c]) + " ") 278 | o.write("\n") 279 | o.write("\n") 280 | # coeff 281 | if coeff is not None: 282 | for v in range(1, variables): 283 | for r in range(side): 284 | for c in range(side): 285 | u = Pos_Encode(r, c, side) 286 | o.write('%.1f' % coeff[u][v] + " ") 287 | o.write("\n") 288 | o.write("\n") 289 | return 290 | 291 | 292 | def output_result(o, side, rlabel, coeffs, method): 293 | o.write(method + "\n") 294 | regmap = reg_pic(side, rlabel) 295 | for r in range(side): 296 | for c in range(side): 297 | o.write(str(regmap[r][c])+" ") 298 | o.write("\n") 299 | o.write("\n") 300 | for z in range(len(coeffs)): 301 | for entry in range(len(coeffs[z])): 302 | o.write('%.4f' % coeffs[z][entry]+" ") 303 | o.write("\n") 304 | o.write("\n") 305 | return 306 | 307 | 308 | def output_coeff(o, coeffs): 309 | for z in range(len(coeffs)): 310 | for entry in range(len(coeffs[z])): 311 | o.write('%.4f' % coeffs[z][entry]+" ") 312 | o.write("\n") 313 | o.write("\n") 314 | return 315 | -------------------------------------------------------------------------------- /src/Network9.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from sklearn import linear_model 3 | import statsmodels.api as sm 4 | import networkx 5 | import copy 6 | 7 | inf = 1e10 8 | 9 | 10 | # General 11 | def region_error(Xarr,Yarr,region): 12 | variables = Xarr.shape[1] - 1 13 | reg = linear_model.LinearRegression() 14 | nsize = len(region) 15 | if nsize == 0: 16 | return 0 17 | Xreg = np.asarray([Xarr[u, 1:] for u in region]) 18 | Xreg = Xreg.reshape((nsize, variables)) 19 | Yreg = np.asarray([Yarr[u] for u in region]) 20 | Yreg = Yreg.reshape(nsize) 21 | 22 | reg.fit(Xreg, Yreg) 23 | coeff = [reg.intercept_] + list(reg.coef_) 24 | 25 | err = 0 26 | for u in region: 27 | err += (np.inner(coeff, Xarr[u, :])-Yarr[u])**2 28 | return err 29 | 30 | 31 | def regression_error(regions, Xarr, Yarr): 32 | ssr = 0 33 | for r in regions: 34 | ssr += region_error(Xarr,Yarr,r) 35 | return ssr 36 | 37 | 38 | def init_zones(w, n_regions, min_size, stoc_step=True, max_attempt=50): 39 | units = np.arange(w.n).astype(int) 40 | trial = 0 41 | while trial < max_attempt: 42 | label = init_zones_generation(w, n_regions, stoc_step) 43 | regions = [units[label == r].tolist() for r in range(n_regions)] 44 | if min([len(region) for region in regions]) >= min_size: 45 | break 46 | trial += 1 47 | if trial == max_attempt: 48 | raise RuntimeError("Initial zoning failed. Please check minimum size constraint.") 49 | return label 50 | 51 | 52 | def init_zones_generation(w, n_regions, stoc_step): 53 | # w: libpysal.weights.W 54 | units = np.arange(w.n).astype(int) 55 | k = n_regions 56 | 57 | seeds = np.random.choice(units, size=k, replace=False) 58 | label = np.array([-1] * w.n).astype(int) 59 | for i, seed in enumerate(seeds): 60 | label[seed] = i 61 | to_assign = units[label == -1] 62 | 63 | while to_assign.size > 0: 64 | for rid in range(k): 65 | region = units[label == rid] 66 | neighbors = region_neighbors(region, w) 67 | neighbors = [j for j in neighbors if j in to_assign] 68 | if len(neighbors) > 0: 69 | if stoc_step: 70 | u = np.random.choice(neighbors) 71 | label[u] = rid 72 | else: 73 | for u in neighbors: 74 | label[u] = rid 75 | to_assign = units[label == -1] 76 | return label 77 | 78 | 79 | def is_neighbor(unit, region, w): 80 | if unit in region: 81 | return False 82 | for member in region: 83 | if unit in w[member]: 84 | return True 85 | return False 86 | 87 | 88 | def region_neighbors(region, w): 89 | # Get neighboring units for members of a region. 90 | n_list = [] 91 | for member in region: 92 | n_list.extend(w[member]) 93 | n_set = set(n_list).difference(set(region)) 94 | return n_set 95 | 96 | 97 | def weights_to_graph(w): 98 | # transform a PySAL W to a networkx graph 99 | g = networkx.Graph() 100 | for ego, alters in w.neighbors.items(): 101 | for alter in alters: 102 | g.add_edge(ego, alter) 103 | return g 104 | 105 | 106 | def fit_equations(Xarr,Yarr,regions): 107 | # Xarr: (n_samples, n_units, n_variables) 108 | variables = Xarr.shape[1] - 1 109 | reg = linear_model.LinearRegression() 110 | coeffs = [] 111 | for region in regions: 112 | if len(region) == 0: 113 | coeffs.append([inf]+[0 for i in range(variables)]) 114 | continue 115 | nsize = len(region) 116 | 117 | Xreg = np.asarray([Xarr[u, 1:] for u in region]) 118 | Xreg = Xreg.reshape((nsize, variables)) 119 | Yreg = np.asarray([Yarr[u] for u in region]) 120 | Yreg = Yreg.reshape(nsize) 121 | 122 | reg.fit(Xreg, Yreg) 123 | coeffs.append([reg.intercept_] + list(reg.coef_)) 124 | return np.array(coeffs) 125 | 126 | 127 | def closest_equation(Xarr, Yarr, coeffs): 128 | units = Xarr.shape[0] 129 | closest = [] 130 | for u in range(units): 131 | reg_err = [np.abs(Yarr[u] - np.inner(coeffs[z], Xarr[u, :])) for z in range(len(coeffs))] 132 | closest.append(reg_err.index(min(reg_err))) 133 | return closest 134 | 135 | 136 | def region_to_label(N, regions): 137 | label = np.array([-1] * N).astype(int) 138 | for r in range(len(regions)): 139 | for u in regions[r]: 140 | label[u] = r 141 | return label 142 | 143 | 144 | # Explicit Methods 145 | def contiguity_check(unit, from_region, to_region, g, w): 146 | # first check if area has a neighbor in destination 147 | if not is_neighbor(unit, to_region, w): 148 | return False 149 | # check if moving area would break source connectivity 150 | new_source = [j for j in from_region if j != unit] 151 | if len(new_source) == 0 or networkx.is_connected(g.subgraph(new_source)): 152 | return True 153 | else: 154 | return False 155 | 156 | 157 | def accuracy_check(u, from_region, to_region, inv_source, inv_target, Xarr, Yarr): 158 | ps, pd = from_region, to_region 159 | ns = copy.copy(from_region) 160 | ns.remove(u) 161 | nd = copy.copy(to_region) 162 | nd.append(u) 163 | psinv, pdinv = inv_source, inv_target 164 | v = Xarr[u].reshape((-1)) 165 | nsinv = sherman_morrison(psinv, v, add=False) 166 | ndinv = sherman_morrison(pdinv, v, add=True) 167 | err_prev = linreg_err(Xarr, Yarr, ps, psinv) + linreg_err(Xarr, Yarr, pd, pdinv) 168 | err_new = linreg_err(Xarr, Yarr, ns, nsinv) + linreg_err(Xarr, Yarr, nd, ndinv) 169 | return err_new <= err_prev 170 | 171 | 172 | def batch_check_RKM(moves, units, label, closest, g, w, min_size): 173 | valid_moves = [] 174 | for u in moves: 175 | from_region = units[label == label[u]] 176 | if len(from_region) <= min_size: 177 | continue 178 | to_region = units[label == closest[u]] 179 | if contiguity_check(u, from_region, to_region, g, w): 180 | valid_moves.append(u) 181 | return valid_moves 182 | 183 | 184 | def batch_check_AZP(moves, units, label, target, g, w, Xarr, Yarr, xtxinvs, min_size): 185 | valid_moves = [] 186 | for u in moves: 187 | from_region = units[label == label[u]].tolist() 188 | if len(from_region) <= min_size: 189 | continue 190 | to_region = units[label == target].tolist() 191 | # connectivity O(kn); sherman-morrison update O(kn) 192 | if accuracy_check(u, from_region, to_region, xtxinvs[label[u]], 193 | xtxinvs[target], Xarr, Yarr): 194 | if contiguity_check(u, from_region, to_region, g, w): 195 | valid_moves.append(u) 196 | return valid_moves 197 | 198 | 199 | def linreg_err(Xarr,Yarr,region,xtxinv=None): 200 | variables = Xarr.shape[1] 201 | nsize = len(region) 202 | if nsize == 0: 203 | return 0 204 | Xreg = np.asarray([Xarr[u] for u in region]) 205 | Xreg = Xreg.reshape((nsize, variables)) 206 | Xreg_t = np.transpose(Xreg) 207 | Yreg = np.asarray([Yarr[u] for u in region]) 208 | Yreg = Yreg.reshape(nsize) 209 | if xtxinv is None: 210 | xtxinv = np.linalg.inv(np.matmul(Xreg_t, Xreg)) 211 | lin_coeff = np.matmul(xtxinv,np.matmul(Xreg_t, Yreg)) 212 | err = 0 213 | for u in region: 214 | err += (np.inner(lin_coeff, Xarr[u, :]) - Yarr[u]) ** 2 215 | return err 216 | 217 | 218 | def sherman_morrison(xtxinv, v, add=True): 219 | m = v.shape[0] 220 | w = np.matmul(xtxinv, v) 221 | k = np.matmul(v, w) 222 | w = w.reshape((m,1)) 223 | if add: 224 | res = xtxinv - np.matmul(w, np.transpose(w))/(1 + k) 225 | else: 226 | res = xtxinv + np.matmul(w, np.transpose(w))/(1 - k) 227 | return res 228 | 229 | 230 | def init_xtxinv(Xarr, regions): 231 | xtxinvs = [] 232 | for region in regions: 233 | Xreg = np.asarray([Xarr[u] for u in region]) 234 | Xreg_t = np.transpose(Xreg) 235 | xtxinv = np.linalg.inv(np.matmul(Xreg_t, Xreg)) 236 | xtxinvs.append(xtxinv) 237 | return xtxinvs 238 | 239 | 240 | 241 | # Implicit Methods 242 | class Node: 243 | def __init__ (self, id_: int , units_:list): 244 | self.id = id_ 245 | self.units = units_ # index in Xarr,Yarr,coord,Neighbors 246 | self.links = set() # id in graph 247 | self.err = 0 248 | 249 | def __str__(self): 250 | return str(self.id)+" "+str(self.units)+" "+str(self.links)+" "+str(self.err) 251 | 252 | 253 | def merge_node(g:dict, k1, k2, Xarr, Yarr): 254 | assert k2 in g[k1].links and k1 in g[k2].links 255 | g[k1].units += g[k2].units 256 | g[k1].err = region_error(Xarr,Yarr,g[k1].units) 257 | g[k1].links = g[k1].links.union(g[k2].links).difference({k1,k2}) 258 | g.pop(k2) 259 | for k in g[k1].links: 260 | if k2 in g[k].links: 261 | g[k].links.remove(k2) 262 | g[k].links.add(k1) 263 | return g 264 | 265 | 266 | def delta_err(g:dict, k1, k2, Xarr, Yarr): 267 | virnode = Node(-1,g[k1].units + g[k2].units) 268 | virnode.err = region_error(Xarr, Yarr, virnode.units) 269 | return virnode.err - g[k1].err - g[k2].err 270 | 271 | 272 | def Test_Equations(regions,Xarr,Yarr,log): 273 | zone_id = 0 274 | for zone in regions: 275 | zone_id += 1 276 | variables = Xarr.shape[1] - 1 277 | zsize = len(zone) 278 | if zsize <= 4: 279 | log.write(str(zone_id) + " " + str(zsize) + '\n') 280 | continue 281 | 282 | X = np.asarray([Xarr[u, 1:] for u in zone]) 283 | X = X.reshape((zsize, variables)) 284 | X = sm.add_constant(X) 285 | Y = np.asarray([Yarr[u] for u in zone]) 286 | Y = Y.reshape(zsize) 287 | 288 | results = sm.OLS(Y, X).fit() 289 | # print(results.summary()) 290 | f_test = results.f_test(np.identity(len(results.params))[1:, :]) 291 | log.write(str(zone_id) + " " + str(zsize) + " " + str(results.params) 292 | + " " + str(f_test.fvalue) + " " + str(f_test.pvalue)+'\n') 293 | log.write('\n') 294 | return 295 | 296 | 297 | -------------------------------------------------------------------------------- /src/georgia.py: -------------------------------------------------------------------------------- 1 | from Algorithm9 import * 2 | import copy 3 | import datetime 4 | import xlrd 5 | import xlwt 6 | import libpysal 7 | 8 | cmp = "bwr" 9 | pmin = 2 10 | pmax = 10 11 | Kfac = 2 12 | runs = 10 13 | numid = 7 14 | min_region = 5 15 | 16 | log = open("Georgia_"+str(numid)+".txt", 'w') 17 | log.write(str(datetime.datetime.now().ctime())+'\n') 18 | log.write("Method: KModels AZP RegKModels GWRSkater SkaterReg \n") 19 | log.write(f"pmin: {pmin} pmax: {pmax} Kfac: {Kfac} repeat: {runs}\n") 20 | 21 | data = xlrd.open_workbook("../georgia/GData_utm.xls") 22 | table = data.sheets()[1] 23 | NCounty = table.nrows - 1 24 | NVar = 3 25 | print(NCounty) 26 | AreaIndex = {} 27 | IndexArea = [] 28 | X = [] 29 | Y = [] 30 | coord = [] 31 | 32 | for r in range(1, NCounty+1): 33 | Areaid = table.cell_value(r, 0) 34 | PerBach = table.cell_value(r, 1) 35 | PerRural = table.cell_value(r, 2) 36 | PerFB = table.cell_value(r, 3) 37 | PerBlack = table.cell_value(r, 4) 38 | coordX = table.cell_value(r, 5) 39 | coordY = table.cell_value(r, 6) 40 | AreaIndex[Areaid] = r-1 41 | IndexArea.append(Areaid) 42 | X.append([PerRural,PerFB,PerBlack]) 43 | Y.append([PerBach]) 44 | coord.append((coordX,coordY)) 45 | 46 | Xarr = preprocessing.StandardScaler().fit_transform(np.array(X)) 47 | Yarr = preprocessing.StandardScaler().fit_transform(np.array(Y)) 48 | Xarr = np.array([[1]+list(datapoint) for datapoint in Xarr]) 49 | Xarr = Xarr.reshape((NCounty, NVar+1)) 50 | Yarr = Yarr.reshape(NCounty) 51 | 52 | w = libpysal.weights.Rook.from_shapefile("../Georgia/Aggre.shp",idVariable="AreaId") 53 | units = np.arange(w.n).astype(int) 54 | 55 | outxls = xlwt.Workbook(encoding='utf-8') 56 | 57 | for n_regions in range(pmin, pmax+1): 58 | micro_clusters = Kfac*n_regions 59 | print(f"{n_regions} Regions") 60 | 61 | params = outxls.add_sheet(f'R{n_regions}') 62 | params.write(0, 0, label='Area_Key') 63 | params.write(0, 1, label='Const_GWR') 64 | params.write(0, 2, label='Rural_GWR') 65 | params.write(0, 3, label='FB_GWR') 66 | params.write(0, 4, label='Black_GWR') 67 | params.write(0, 5, label='Zone_KM') 68 | params.write(0, 6, label='Const_KM') 69 | params.write(0, 7, label='Rural_KM') 70 | params.write(0, 8, label='FB_KM') 71 | params.write(0, 9, label='Black_KM') 72 | params.write(0, 10, label='Zone_AZP') 73 | params.write(0, 11, label='Const_AZP') 74 | params.write(0, 12, label='Rural_AZP') 75 | params.write(0, 13, label='FB_AZP') 76 | params.write(0, 14, label='Black_AZP') 77 | params.write(0, 15, label='Zone_RKM') 78 | params.write(0, 16, label='Const_RKM') 79 | params.write(0, 17, label='Rural_RKM') 80 | params.write(0, 18, label='FB_RKM') 81 | params.write(0, 19, label='Black_RKM') 82 | params.write(0, 20, label='Zone_GSK') 83 | params.write(0, 21, label='Const_GSK') 84 | params.write(0, 22, label='Rural_GSK') 85 | params.write(0, 23, label='FB_GSK') 86 | params.write(0, 24, label='Black_GSK') 87 | params.write(0, 25, label='Zone_SKR') 88 | params.write(0, 26, label='Const_SKR') 89 | params.write(0, 27, label='Rural_SKR') 90 | params.write(0, 28, label='FB_SKR') 91 | params.write(0, 29, label='Black_SKR') 92 | 93 | for u in range(NCounty): 94 | params.write(u + 1, 0, label=int(IndexArea[u])) 95 | 96 | # GWR_coeff 97 | Xprm = np.asarray([Xarr[u, 1:] for u in range(NCounty)]) 98 | Yprm = np.asarray([Yarr[u] for u in range(NCounty)]) 99 | Xprm = Xprm.reshape((NCounty, NVar)) 100 | Yprm = Yprm.reshape((NCounty, 1)) 101 | bw = Sel_BW(coord, Yprm, Xprm, fixed=False, kernel='bisquare').search(criterion='AICc') 102 | coord = np.array(coord) 103 | model = gwr.GWR(coord, Yprm, Xprm, bw=bw, fixed=False, kernel='bisquare') 104 | results = model.fit() 105 | for u in range(NCounty): 106 | for v in range(NVar + 1): 107 | params.write(u + 1, 1 + v, label=results.params[u][v]) 108 | 109 | # KModels 110 | bestres = None 111 | bestssr = 1e10 112 | for run in range(runs): 113 | st = datetime.datetime.now() 114 | clabel, iters = kmodels(Xarr, Yarr, micro_clusters, w) 115 | slabel = split_components(w, clabel) 116 | rlabel, rcoeff, merges = greedy_merge(Xarr, Yarr, n_regions, w, slabel, min_size=min_region) 117 | ed = datetime.datetime.now() 118 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 119 | ssr = regression_error(regions, Xarr, Yarr) 120 | log.write(f'{ssr} {ed - st} {iters} {merges}\n') 121 | if ssr < bestssr: 122 | bestres = (copy.copy(regions), copy.copy(rcoeff)) 123 | bestssr = ssr 124 | print(f'{bestssr}') 125 | log.write('\n') 126 | breg, bcoeff = bestres 127 | for zoneid in range(len(breg)): 128 | z = breg[zoneid] 129 | for u in z: 130 | params.write(u + 1, 5, label=zoneid) 131 | for v in range(NVar + 1): 132 | params.write(u + 1, 6 + v, label=bcoeff[zoneid][v]) 133 | Test_Equations(breg, Xarr, Yarr, log) 134 | 135 | # AZP 136 | bestres = None 137 | bestssr = 1e10 138 | for run in range(runs): 139 | st = datetime.datetime.now() 140 | rlabel, rcoeff, iters = azp(Xarr, Yarr, n_regions, w, min_size=min_region) 141 | ed = datetime.datetime.now() 142 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 143 | ssr = regression_error(regions, Xarr, Yarr) 144 | log.write(f'{ssr} {ed - st} {iters}\n') 145 | if ssr < bestssr: 146 | bestres = (copy.copy(regions), copy.copy(rcoeff)) 147 | bestssr = ssr 148 | print(f'{bestssr}') 149 | log.write('\n') 150 | breg, bcoeff = bestres 151 | for zoneid in range(len(breg)): 152 | z = breg[zoneid] 153 | for u in z: 154 | params.write(u + 1, 10, label=zoneid) 155 | for v in range(NVar + 1): 156 | params.write(u + 1, 11 + v, label=bcoeff[zoneid][v]) 157 | Test_Equations(breg, Xarr, Yarr, log) 158 | 159 | # Region-K-Models 160 | bestres = None 161 | bestssr = 1e10 162 | for run in range(runs): 163 | st = datetime.datetime.now() 164 | rlabel, rcoeff, iters = region_k_models(Xarr, Yarr, n_regions, w, min_size=min_region) 165 | ed = datetime.datetime.now() 166 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 167 | ssr = regression_error(regions, Xarr, Yarr) 168 | log.write(f'{ssr} {ed - st} {iters}\n') 169 | if ssr < bestssr: 170 | bestres = (copy.copy(regions), copy.copy(rcoeff)) 171 | bestssr = ssr 172 | 173 | print(f'{bestssr}') 174 | log.write('\n') 175 | breg, bcoeff = bestres 176 | for zoneid in range(len(breg)): 177 | z = breg[zoneid] 178 | for u in z: 179 | params.write(u + 1, 15, label=zoneid) 180 | for v in range(NVar + 1): 181 | params.write(u + 1, 16 + v, label=bcoeff[zoneid][v]) 182 | Test_Equations(breg, Xarr, Yarr, log) 183 | 184 | # GWR_Skater 185 | st = datetime.datetime.now() 186 | rlabel, rcoeff = gwr_skater(Xarr, Yarr, n_regions, w, coord, min_size=min_region) 187 | ed = datetime.datetime.now() 188 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 189 | ssr = regression_error(regions, Xarr, Yarr) 190 | print(f'{ssr}') 191 | log.write(f'{ssr} {ed - st}\n\n') 192 | for zoneid in range(len(regions)): 193 | z = regions[zoneid] 194 | for u in z: 195 | params.write(u + 1, 20, label=zoneid) 196 | for v in range(NVar + 1): 197 | params.write(u + 1, 21 + v, label=rcoeff[zoneid][v]) 198 | Test_Equations(regions, Xarr, Yarr, log) 199 | 200 | # SkaterReg 201 | st = datetime.datetime.now() 202 | rlabel, rcoeff = skater_reg(Xarr, Yarr, n_regions, w, min_size=min_region) 203 | ed = datetime.datetime.now() 204 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 205 | ssr = regression_error(regions, Xarr, Yarr) 206 | print(f'{ssr}') 207 | log.write(f'{ssr} {ed - st}\n\n') 208 | for zoneid in range(len(regions)): 209 | z = regions[zoneid] 210 | for u in z: 211 | params.write(u + 1, 25, label=zoneid) 212 | for v in range(NVar + 1): 213 | params.write(u + 1, 26 + v, label=rcoeff[zoneid][v]) 214 | Test_Equations(regions, Xarr, Yarr, log) 215 | 216 | log.close() 217 | outxls.save(f'Georgia_{numid}.xls') 218 | -------------------------------------------------------------------------------- /src/grid_K.py: -------------------------------------------------------------------------------- 1 | from GridData9 import * 2 | from Algorithm9 import * 3 | import datetime 4 | from matplotlib import pyplot as plt 5 | import libpysal 6 | 7 | # Test Mode 8 | #Side = 10 9 | #idlist = [0,3,6] 10 | #n_regions = 5 11 | #prefix = 'gridtest_' 12 | #mclist = range(n_regions, 15) 13 | #min_region = 5 14 | 15 | # Run Mode 16 | Side = 25 17 | idlist = range(150) 18 | n_regions = 5 19 | prefix = 'grid_' 20 | min_region = 10 21 | mclist = range(10, 31) 22 | 23 | recordnum = 66 24 | # Zones params 25 | nvar = 2 26 | plt.rcParams['figure.figsize'] = (10.0, 8.0) # inches; 3 row: 10,10 5 row: 10,14 27 | shrink_ratio = 1 # 3 row:0.81 5 row: 0.98 28 | title = ['low noise', 'medium noise', 'high noise'] 29 | noiselevel = ['l', 'm', 'h'] 30 | 31 | log = open("RG"+str(recordnum)+".txt", 'w') 32 | log.write(str(datetime.datetime.now().ctime())+'\n') 33 | log.write("Hyper\n") 34 | log.write("Side: "+str(Side)+" Data: "+str(idlist)+"\n") 35 | log.write("Regions:"+str(n_regions)+" Micro_clusters:"+str(mclist)+"\n") 36 | log.write("Method: KModels\n") 37 | 38 | for dataid in idlist: 39 | for micro_clusters in mclist: 40 | ofile = open(f"result_{recordnum}_{dataid}_{micro_clusters}.txt", "w") 41 | fig, axes = plt.subplots(2, len(noiselevel), figsize=(10, 8)) 42 | for noi in range(len(noiselevel)): 43 | print(f"Data {dataid}{noiselevel[noi]} {micro_clusters}") 44 | simdata = open("../synthetic/" + prefix + str(dataid) + noiselevel[noi]+".txt") 45 | Xarr, Yarr, label, coeff = input_data(simdata, Side, nvar) 46 | coord = GetCoord(Side) 47 | w = libpysal.weights.lat2W(Side, Side) 48 | 49 | axes[0, noi].set_xticks([]) 50 | axes[0, noi].set_yticks([]) 51 | axes[0, noi].set_title(title[noi]) 52 | regmap = label.reshape((Side, Side)) 53 | axes[0, noi].imshow(regmap) 54 | 55 | # KModels 56 | st = datetime.datetime.now() 57 | clabel, iters = kmodels(Xarr, Yarr, micro_clusters, w) 58 | slabel = split_components(w, clabel) 59 | rlabel, rcoeff, merges = greedy_merge(Xarr, Yarr, n_regions, w, slabel, min_size=min_region) 60 | ed = datetime.datetime.now() 61 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 62 | print(metrics.result_str() + " " + str(ed - st) + " " + str(iters) + " " + str(merges)) 63 | log.write(metrics.result_full_str() + " " + str(ed - st) + " " + str(iters) + " " + str(merges) + '\n') 64 | output_result(ofile, Side, rlabel, rcoeff, "KModels") 65 | axes[1, noi].set_title("KModels "+title[noi]) 66 | axes[1, noi].set_xticks([]) # 去掉x轴 67 | axes[1, noi].set_yticks([]) # 去掉y轴 68 | axes[1, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 69 | 70 | plt.tight_layout() 71 | fig.savefig('RG'+str(recordnum) + '-' + str(dataid) + '-' + str(micro_clusters) +'-'+ 72 | str(datetime.datetime.now().strftime('%y%m%d%H%M%S')) + '.png') 73 | plt.close() 74 | ofile.close() 75 | log.write("\n") 76 | 77 | log.close() 78 | -------------------------------------------------------------------------------- /src/grid_gen.py: -------------------------------------------------------------------------------- 1 | import random 2 | from GridData9 import * 3 | from matplotlib import pyplot as plt 4 | from matplotlib.colors import LinearSegmentedColormap 5 | 6 | Side = 25 7 | repeat = 1 8 | bias_y = [0, 0.1, 0.2, 0.3] 9 | shape_label = ["r","v","a"] 10 | noise_label = ["n","l","m","h"] 11 | zonenum = 5 12 | min_region = 10 13 | prefix = 'gridtest_' 14 | colors = ["#aec7e8", "#ffbb78", "#98df8a", "#ff9896", "#c5b0d5"] 15 | cmp = LinearSegmentedColormap.from_list("newcmp", colors) 16 | 17 | fig, axes = plt.subplots(1, 3, figsize=(12, 6)) 18 | 19 | for shapeid in range(len(shape_label)): 20 | shape = shape_label[shapeid] 21 | print("Shape:" + shape) 22 | for r in range(repeat): 23 | print("Run " + str(r)) 24 | 25 | if shape == 'r': 26 | zonemap = generate_regular_zones(Side, zonenum) 27 | elif shape == 'v': 28 | zonemap = generate_voronoi_zones(Side, zonenum, min_size=min_region) 29 | elif shape == 'a': 30 | zonemap = generate_random_zones(Side, zonenum, min_size=min_region) 31 | else: 32 | raise KeyError("Generation approach not supported.") 33 | if r == 0: 34 | axes[shapeid].set_xticks([]) 35 | axes[shapeid].set_yticks([]) 36 | im = axes[shapeid].imshow(zonemap, cmap=cmp) 37 | 38 | valarr = [[0, 0, 0, 0, 0],[-2, -1, 0, 1, 2],[-2, -1, 0, 1, 2]] 39 | random.shuffle(valarr[1]) 40 | random.shuffle(valarr[2]) 41 | 42 | for noi in range(len(bias_y)): 43 | data = simulate_zone(Side, zonemap, valarr, bias_y[noi]) 44 | Xarr, Yarr, coeff = data[0], data[1], data[2] 45 | ofile = open(f'{prefix}{repeat*shapeid+r:d}{noise_label[noi]}.txt', "w") 46 | output_data(ofile,Side,Xarr,Yarr,coeff,zonemap) 47 | ofile.close() 48 | 49 | plt.show() 50 | 51 | 52 | -------------------------------------------------------------------------------- /src/grid_reg.py: -------------------------------------------------------------------------------- 1 | from GridData9 import * 2 | from Algorithm9 import * 3 | import datetime 4 | from matplotlib import pyplot as plt 5 | import libpysal 6 | 7 | # Test Mode 8 | #Side = 10 9 | #ids, idt = 0, 9 10 | #n_regions = 5 11 | #prefix = 'gridtest_' 12 | #micro_clusters = 10 13 | #min_region = 5 14 | 15 | # Run Mode 16 | Side = 25 17 | ids, idt = 0, 150 18 | n_regions = 5 19 | prefix = 'grid_' 20 | micro_clusters = 20 21 | min_region = 10 22 | 23 | recordnum = 70 24 | 25 | # Zones params 26 | nvar = 2 27 | plt.rcParams['figure.figsize'] = (10.0, 16.0) # inches; 3 row: 10,10 5 row: 10,14 28 | shrink_ratio = 1 # 3 row:0.81 5 row: 0.98 29 | title = ['low noise', 'medium noise', 'high noise'] 30 | noiselevel = ['l', 'm', 'h'] 31 | 32 | log = open("RG"+str(recordnum)+".txt", 'w') 33 | log.write(str(datetime.datetime.now().ctime())+'\n') 34 | log.write("Rebuild\n") 35 | log.write("Side: "+str(Side)+" Data: "+str(ids)+"-"+str(idt-1)+"\n") 36 | log.write("Regions:"+str(n_regions)+" Micro_clusters:"+str(micro_clusters)+"\n") 37 | log.write("Method: KModels AZP Reg_KModels GWR_Skater Skater_Reg\n") 38 | 39 | for dataid in range(ids, idt): 40 | ofile = open("result_" + str(recordnum) + "_" + str(dataid) + ".txt", "w") 41 | fig, axes = plt.subplots(6, len(noiselevel), figsize=(10, 16)) 42 | for noi in range(len(noiselevel)): 43 | print("Data " + str(dataid) + str(noiselevel[noi])) 44 | simdata = open("../synthetic/" + prefix + str(dataid) + noiselevel[noi]+".txt") 45 | Xarr, Yarr, label, coeff = input_data(simdata, Side, nvar) 46 | coord = GetCoord(Side) 47 | w = libpysal.weights.lat2W(Side, Side) 48 | 49 | axes[0, noi].set_xticks([]) 50 | axes[0, noi].set_yticks([]) 51 | axes[0, noi].set_title(title[noi]) 52 | regmap = label.reshape((Side, Side)) 53 | axes[0, noi].imshow(regmap) 54 | 55 | # KModels 56 | st = datetime.datetime.now() 57 | clabel, iters = kmodels(Xarr, Yarr, micro_clusters, w) 58 | slabel = split_components(w, clabel) 59 | rlabel, rcoeff, merges = greedy_merge(Xarr, Yarr, n_regions, w, slabel, min_size=min_region) 60 | ed = datetime.datetime.now() 61 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 62 | print(metrics.result_str() + " " + str(ed - st) + " " + str(iters) + " " + str(merges)) 63 | log.write(metrics.result_full_str() + " " + str(ed - st) + " " + str(iters) + " " + str(merges) + '\n') 64 | output_result(ofile, Side, rlabel, rcoeff, "KModels") 65 | axes[1, noi].set_title("KModels "+title[noi]) 66 | axes[1, noi].set_xticks([]) # 去掉x轴 67 | axes[1, noi].set_yticks([]) # 去掉y轴 68 | axes[1, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 69 | 70 | # AZP 71 | st = datetime.datetime.now() 72 | rlabel, rcoeff, iters = azp(Xarr, Yarr, n_regions, w, min_size=min_region) 73 | ed = datetime.datetime.now() 74 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 75 | print(metrics.result_str() + " " + str(ed - st) + " " + str(iters)) 76 | log.write(metrics.result_full_str() + " " + str(ed - st) + " " + str(iters) + '\n') 77 | output_result(ofile, Side, rlabel, rcoeff, "AZP") 78 | axes[2, noi].set_title("AZP " + title[noi]) 79 | axes[2, noi].set_xticks([]) # 去掉x轴 80 | axes[2, noi].set_yticks([]) # 去掉y轴 81 | axes[2, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 82 | 83 | # Region-K-Models 84 | st = datetime.datetime.now() 85 | rlabel, rcoeff, iters = region_k_models(Xarr, Yarr, n_regions, w, min_size=min_region) 86 | ed = datetime.datetime.now() 87 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 88 | print(metrics.result_str() + " " + str(ed - st) + " " + str(iters)) 89 | log.write(metrics.result_full_str() + " " + str(ed - st) + " " + str(iters) + '\n') 90 | output_result(ofile, Side, rlabel, rcoeff, "RegionKModels") 91 | axes[3, noi].set_title("RegKModels "+title[noi]) 92 | axes[3, noi].set_xticks([]) # 去掉x轴 93 | axes[3, noi].set_yticks([]) # 去掉y轴 94 | axes[3, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 95 | 96 | # GWR_Skater 97 | st = datetime.datetime.now() 98 | rlabel, rcoeff = gwr_skater(Xarr, Yarr, n_regions, w, coord, min_size=min_region) 99 | ed = datetime.datetime.now() 100 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 101 | print(metrics.result_str() + " " + str(ed - st)) 102 | log.write(metrics.result_full_str() + " " + str(ed - st) + '\n') 103 | output_result(ofile, Side, rlabel, rcoeff, "GWR_Skater") 104 | axes[4, noi].set_title("GSK "+title[noi]) 105 | axes[4, noi].set_xticks([]) # 去掉x轴 106 | axes[4, noi].set_yticks([]) # 去掉y轴 107 | axes[4, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 108 | 109 | # Skater_reg 110 | st = datetime.datetime.now() 111 | rlabel, rcoeff = skater_reg(Xarr, Yarr, n_regions, w, min_size=min_region) 112 | ed = datetime.datetime.now() 113 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 114 | print(metrics.result_str() + " " + str(ed - st)) 115 | log.write(metrics.result_full_str() + " " + str(ed - st) +'\n') 116 | output_result(ofile, Side, rlabel, rcoeff, "Skater_Reg") 117 | axes[5, noi].set_title("SKR " + title[noi]) 118 | axes[5, noi].set_xticks([]) # 去掉x轴 119 | axes[5, noi].set_yticks([]) # 去掉y轴 120 | axes[5, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 121 | log.write("\n") 122 | 123 | plt.tight_layout() 124 | fig.savefig('RG'+str(recordnum) + '-' + str(dataid) + '-' + 125 | str(datetime.datetime.now().strftime('%y%m%d%H%M%S')) + '.png') 126 | plt.clf() 127 | ofile.close() 128 | 129 | log.close() 130 | -------------------------------------------------------------------------------- /src/grid_stab.py: -------------------------------------------------------------------------------- 1 | from GridData9 import * 2 | from Algorithm9 import * 3 | import datetime 4 | from matplotlib import pyplot as plt 5 | import libpysal 6 | 7 | # Test Mode 8 | # Side = 10 9 | # dataid = 0 10 | # n_regions = 5 11 | # prefix = 'gridtest_' 12 | # micro_clusters = 10 13 | # min_region = 5 14 | # repeat = 3 15 | 16 | # Run Mode 17 | Side = 25 18 | dataid = 4 19 | n_regions = 5 20 | prefix = 'grid_' 21 | micro_clusters = 20 22 | min_region = 10 23 | repeat = 50 24 | 25 | recordnum = 67 26 | 27 | # Zones params 28 | nvar = 2 29 | plt.rcParams['figure.figsize'] = (10.0, 10.0) # inches; 3 row: 10,10 5 row: 10,14 30 | shrink_ratio = 1 # 3 row:0.81 5 row: 0.98 31 | title = ['low noise', 'medium noise', 'high noise'] 32 | noiselevel = ['l', 'm', 'h'] 33 | 34 | log = open("RG"+str(recordnum)+".txt", 'w') 35 | log.write(str(datetime.datetime.now().ctime())+'\n') 36 | log.write("Stability\n") 37 | log.write(f"Side: {Side} Data: {dataid} Repeat: {repeat}\n") 38 | log.write("Regions:"+str(n_regions)+" Micro_clusters:"+str(micro_clusters)+"\n") 39 | log.write("Method: KModels AZP Reg_KModels\n") 40 | 41 | for rep in range(repeat): 42 | ofile = open(f"result_{recordnum}_{dataid}_R{rep}.txt", "w") 43 | fig, axes = plt.subplots(4, len(noiselevel), figsize=(10, 10)) 44 | for noi in range(len(noiselevel)): 45 | print(f"Data {dataid}{noiselevel[noi]} R{rep}") 46 | simdata = open("../synthetic/" + prefix + str(dataid) + noiselevel[noi]+".txt") 47 | Xarr, Yarr, label, coeff = input_data(simdata, Side, nvar) 48 | coord = GetCoord(Side) 49 | w = libpysal.weights.lat2W(Side, Side) 50 | 51 | axes[0, noi].set_xticks([]) 52 | axes[0, noi].set_yticks([]) 53 | axes[0, noi].set_title(title[noi]) 54 | regmap = label.reshape((Side, Side)) 55 | axes[0, noi].imshow(regmap) 56 | 57 | # KModels 58 | st = datetime.datetime.now() 59 | clabel, iters = kmodels(Xarr, Yarr, micro_clusters, w) 60 | slabel = split_components(w, clabel) 61 | rlabel, rcoeff, merges = greedy_merge(Xarr, Yarr, n_regions, w, slabel, min_size=min_region) 62 | ed = datetime.datetime.now() 63 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 64 | print(metrics.result_str() + " " + str(ed - st) + " " + str(iters) + " " + str(merges)) 65 | log.write(metrics.result_full_str() + " " + str(ed - st) + " " + str(iters) + " " + str(merges) + '\n') 66 | output_result(ofile, Side, rlabel, rcoeff, "KModels") 67 | axes[1, noi].set_title("KModels "+title[noi]) 68 | axes[1, noi].set_xticks([]) # 去掉x轴 69 | axes[1, noi].set_yticks([]) # 去掉y轴 70 | axes[1, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 71 | 72 | # AZP 73 | st = datetime.datetime.now() 74 | rlabel, rcoeff, iters = azp(Xarr, Yarr, n_regions, w, min_size=min_region) 75 | ed = datetime.datetime.now() 76 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 77 | print(metrics.result_str() + " " + str(ed - st) + " " + str(iters)) 78 | log.write(metrics.result_full_str() + " " + str(ed - st) + " " + str(iters) + '\n') 79 | output_result(ofile, Side, rlabel, rcoeff, "AZP") 80 | axes[2, noi].set_title("AZP " + title[noi]) 81 | axes[2, noi].set_xticks([]) # 去掉x轴 82 | axes[2, noi].set_yticks([]) # 去掉y轴 83 | axes[2, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 84 | 85 | # Region-K-Models 86 | st = datetime.datetime.now() 87 | rlabel, rcoeff, iters = region_k_models(Xarr, Yarr, n_regions, w, min_size=min_region) 88 | ed = datetime.datetime.now() 89 | metrics = Grid_Region_Metrics(Xarr, Yarr, label, rlabel, coeff, rcoeff) 90 | print(metrics.result_str() + " " + str(ed - st) + " " + str(iters)) 91 | log.write(metrics.result_full_str() + " " + str(ed - st) + " " + str(iters) + '\n') 92 | output_result(ofile, Side, rlabel, rcoeff, "RegionKModels") 93 | axes[3, noi].set_title("RegKModels "+title[noi]) 94 | axes[3, noi].set_xticks([]) # 去掉x轴 95 | axes[3, noi].set_yticks([]) # 去掉y轴 96 | axes[3, noi].imshow(reg_pic(Side, rlabel, dim=-1)) 97 | 98 | log.write("\n") 99 | 100 | plt.tight_layout() 101 | fig.savefig(f'RG{recordnum}-{dataid}-R{rep}-'+ 102 | str(datetime.datetime.now().strftime('%y%m%d%H%M%S')) + '.png') 103 | plt.clf() 104 | ofile.close() 105 | 106 | log.close() -------------------------------------------------------------------------------- /src/kinghouse.py: -------------------------------------------------------------------------------- 1 | from Algorithm9 import * 2 | from GridData9 import output_coeff 3 | import networkx 4 | import datetime 5 | import xlrd 6 | import xlwt 7 | import libpysal 8 | 9 | cmp = "bwr" 10 | pmin = 5 11 | pmax = 5 12 | Kfac = 2 13 | numid = 1 14 | min_region = 20 15 | 16 | log = open("Kinghouse_"+str(numid)+".txt", 'w') 17 | log.write(str(datetime.datetime.now().ctime())+'\n') 18 | log.write("Method: KModels SkaterReg \n") 19 | log.write(f"pmin: {pmin} pmax: {pmax} Kfac: {Kfac}\n") 20 | 21 | data = xlrd.open_workbook("../hedonic/kc_house_r5.xls") 22 | table = data.sheets()[0] 23 | nobs = table.nrows - 1 24 | nvar = 16 25 | print(nobs, nvar) 26 | AreaIndex = {} 27 | IndexArea = [] 28 | X = [] 29 | Y = [] 30 | coord = [] 31 | 32 | for r in range(1, nobs+1): 33 | Areaid = table.cell_value(r, 0) 34 | logprice = table.cell_value(r, 2) 35 | bedroom = table.cell_value(r, 3) 36 | bathroom = table.cell_value(r, 4) 37 | sqft_liv = table.cell_value(r, 5) 38 | sqft_lot = table.cell_value(r, 6) 39 | floors = table.cell_value(r, 7) 40 | renovated = table.cell_value(r, 8) 41 | age = table.cell_value(r, 9) 42 | age2 = table.cell_value(r, 10) 43 | sqft_liv15 = table.cell_value(r, 11) 44 | sqft_lot15 = table.cell_value(r, 12) 45 | viewd = table.cell_value(r, 13) 46 | condn = table.cell_value(r, 14) 47 | avggrade = table.cell_value(r, 15) 48 | abvavgrd = table.cell_value(r, 16) 49 | greatgrd = table.cell_value(r, 17) 50 | distnn = table.cell_value(r, 18) 51 | coordX = table.cell_value(r, 19) 52 | coordY = table.cell_value(r, 20) 53 | AreaIndex[Areaid] = r-1 54 | IndexArea.append(Areaid) 55 | X.append([bedroom, bathroom, sqft_liv, sqft_lot, floors, renovated, age, age2, 56 | sqft_liv15, sqft_lot15, viewd, condn, avggrade, abvavgrd, greatgrd, distnn]) 57 | Y.append([logprice]) 58 | coord.append((coordX,coordY)) 59 | 60 | Xarr = preprocessing.StandardScaler().fit_transform(np.array(X)) 61 | Yarr = preprocessing.StandardScaler().fit_transform(np.array(Y)) 62 | Xarr = np.array([[1]+list(datapoint) for datapoint in Xarr]) 63 | Xarr = Xarr.reshape((nobs, nvar+1)) 64 | Yarr = Yarr.reshape(nobs) 65 | 66 | knn = libpysal.weights.KNN.from_shapefile("../hedonic/kc_house_utm_r5.shp", k=18) 67 | w = knn.symmetrize() 68 | print(networkx.is_connected(weights_to_graph(w))) 69 | units = np.arange(w.n).astype(int) 70 | 71 | outxls = xlwt.Workbook(encoding='utf-8') 72 | 73 | for n_regions in range(pmin, pmax+1): 74 | micro_clusters = Kfac*n_regions 75 | print(f"{n_regions} Regions") 76 | 77 | params = outxls.add_sheet(f'R{n_regions}') 78 | params.write(0, 0, label='Area_Key') 79 | params.write(0, 1, label='Zone_KM') 80 | params.write(0, 2, label='Zone_SKR') 81 | for u in range(nobs): 82 | params.write(u + 1, 0, label=int(IndexArea[u])) 83 | 84 | # KModels 85 | st = datetime.datetime.now() 86 | clabel, iters = kmodels(Xarr, Yarr, micro_clusters, w, init_stoc_step=False, verbose=True) 87 | print(f"km_finish {datetime.datetime.now()-st}") 88 | slabel = split_components(w, clabel) 89 | print(f"sl_finish {datetime.datetime.now()-st}") 90 | rlabel, rcoeff, merges = greedy_merge(Xarr, Yarr, n_regions, w, slabel, min_size=min_region, verbose=True) 91 | ed = datetime.datetime.now() 92 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 93 | ssr = regression_error(regions, Xarr, Yarr) 94 | log.write(f'{ssr} {ed - st} {iters} {merges}\n') 95 | print(f'{ssr} {ed - st} {iters} {merges}') 96 | for zoneid in range(len(regions)): 97 | z = regions[zoneid] 98 | for u in z: 99 | params.write(u + 1, 1, label=zoneid) 100 | output_coeff(log, rcoeff) 101 | Test_Equations(regions, Xarr, Yarr, log) 102 | 103 | ''' 104 | # GWR_Skater 105 | st = datetime.datetime.now() 106 | rlabel, rcoeff = gwr_skater(Xarr, Yarr, n_regions, w, coord, min_size=min_region) 107 | ed = datetime.datetime.now() 108 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 109 | ssr = regression_error(regions, Xarr, Yarr) 110 | print(f'{ssr}') 111 | log.write(f'{ssr} {ed - st}\n') 112 | for zoneid in range(len(regions)): 113 | z = regions[zoneid] 114 | for u in z: 115 | params.write(u + 1, 20, label=zoneid) 116 | for v in range(nvar + 1): 117 | params.write(u + 1, 21 + v, label=rcoeff[zoneid][v]) 118 | output_coeff(log, rcoeff) 119 | Test_Equations(regions, Xarr, Yarr, log) 120 | 121 | DNF in 30 min 122 | ''' 123 | 124 | # SkaterReg 125 | st = datetime.datetime.now() 126 | rlabel, rcoeff = skater_reg(Xarr, Yarr, n_regions, w, min_size=min_region) 127 | ed = datetime.datetime.now() 128 | regions = [units[rlabel == r].tolist() for r in set(rlabel)] 129 | ssr = regression_error(regions, Xarr, Yarr) 130 | print(f'{ssr}') 131 | log.write(f'{ssr} {ed - st}\n\n') 132 | for zoneid in range(len(regions)): 133 | z = regions[zoneid] 134 | for u in z: 135 | params.write(u + 1, 2, label=zoneid) 136 | output_coeff(log, rcoeff) 137 | Test_Equations(regions, Xarr, Yarr, log) 138 | 139 | log.close() 140 | outxls.save(f'kc_house_{numid}.xls') -------------------------------------------------------------------------------- /synthetic/gridtest_0h.txt: -------------------------------------------------------------------------------- 1 | 0.513779 0.809392 0.206208 0.117965 0.810811 0.800774 0.446916 0.628059 0.970805 0.418974 2 | 0.630016 0.272677 0.724966 0.604589 0.737761 0.553525 0.940133 0.119075 0.899666 0.520357 3 | 0.540103 0.156567 0.353946 0.152132 0.777149 0.673309 0.591285 0.413465 0.351616 0.972849 4 | 0.943271 0.931344 0.869882 0.619933 0.413012 0.216956 0.869478 0.306785 0.701634 0.478613 5 | 0.045289 0.315545 0.305932 0.728173 0.011997 0.513763 0.003605 0.211351 0.063995 0.998458 6 | 0.937413 0.307395 0.028939 0.181711 0.927429 0.668097 0.615688 0.901988 0.887100 0.702140 7 | 0.558434 0.655746 0.507911 0.084475 0.596083 0.183209 0.614087 0.695977 0.334613 0.731355 8 | 0.792059 0.641835 0.955856 0.706767 0.931670 0.482119 0.864267 0.082036 0.876541 0.209772 9 | 0.618958 0.231046 0.967656 0.880558 0.281131 0.729467 0.357436 0.663434 0.684779 0.424216 10 | 0.768187 0.335849 0.321030 0.010283 0.964144 0.121142 0.178237 0.299631 0.165040 0.479819 11 | 12 | 0.631887 0.259515 0.770093 0.523926 0.854872 0.384034 0.409522 0.445691 0.323287 0.245081 13 | 0.716895 0.656977 0.503010 0.772517 0.982942 0.235374 0.808552 0.444130 0.430420 0.024143 14 | 0.200153 0.630433 0.077077 0.747454 0.347177 0.004538 0.892227 0.774413 0.512056 0.054031 15 | 0.409257 0.841360 0.412991 0.470967 0.457104 0.222908 0.312359 0.515664 0.828513 0.842827 16 | 0.368964 0.647081 0.649278 0.832482 0.776184 0.103601 0.822498 0.952391 0.534084 0.282021 17 | 0.288949 0.435061 0.316751 0.939977 0.356245 0.049115 0.703765 0.585404 0.771766 0.175919 18 | 0.932183 0.586575 0.082762 0.523645 0.004339 0.475281 0.880968 0.291936 0.783159 0.197005 19 | 0.873746 0.817069 0.824274 0.952584 0.915314 0.909849 0.957056 0.848742 0.671097 0.167549 20 | 0.479156 0.316489 0.063634 0.406277 0.792499 0.137233 0.828374 0.140366 0.470347 0.969531 21 | 0.110810 0.844691 0.828859 0.001272 0.364066 0.369802 0.662028 0.480847 0.731607 0.253199 22 | 23 | -0.880918 0.444687 -1.516925 -1.420479 -1.320190 -0.343646 -0.313069 -0.038961 0.681197 0.308289 24 | -1.000327 -0.980397 -0.253091 -1.165014 -1.415399 -0.143196 -1.211573 -0.513534 0.343468 0.287617 25 | -0.692602 -0.042890 -0.459724 -0.355423 -1.167953 -0.823642 -0.472771 -0.199139 -0.782324 -0.982109 26 | -0.739370 -1.112212 -0.961894 -0.837528 -0.675432 0.202885 -1.041851 -0.311313 -0.384622 -0.652741 27 | 0.447863 -0.050158 -0.040533 -0.689409 0.843130 -0.683648 0.537195 0.477209 0.452019 -1.619458 28 | -1.706390 -0.056010 0.782671 0.507462 -1.635231 -1.429401 -0.840029 -1.143135 -0.874346 -0.588250 29 | 0.173363 0.441050 1.036690 -0.452444 0.396778 -0.036004 0.163319 1.038300 0.112727 0.698984 30 | 0.658270 0.775856 1.011994 0.484138 1.219434 -0.412849 0.707937 -1.169626 0.858749 0.372973 31 | 0.912175 0.483207 0.171303 0.194265 1.129427 0.725961 1.646019 0.781742 1.037729 2.314961 32 | 0.234614 1.584147 1.447469 -0.270281 0.403365 1.030551 1.166352 0.923538 1.397712 0.226153 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 50 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 51 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 52 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 53 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_0l.txt: -------------------------------------------------------------------------------- 1 | 0.708862 0.859950 0.212070 0.552091 0.762532 0.681456 0.026965 0.322686 0.665737 0.162918 2 | 0.873542 0.381843 0.980948 0.110765 0.384853 0.389311 0.418297 0.299341 0.969775 0.941478 3 | 0.767742 0.297549 0.929789 0.263320 0.476337 0.901324 0.340002 0.015684 0.138584 0.701809 4 | 0.477940 0.821565 0.749109 0.823840 0.931205 0.256630 0.696665 0.209148 0.770601 0.302994 5 | 0.569937 0.510557 0.186067 0.771730 0.748405 0.158722 0.471154 0.193854 0.060833 0.561209 6 | 0.179216 0.157969 0.959688 0.345315 0.776213 0.702174 0.745319 0.550347 0.952733 0.086654 7 | 0.673948 0.327601 0.223445 0.324337 0.984514 0.684072 0.194618 0.190413 0.725292 0.089283 8 | 0.399064 0.347932 0.658267 0.132353 0.495103 0.438592 0.550836 0.377098 0.938897 0.132420 9 | 0.052736 0.864505 0.724242 0.975063 0.379771 0.073506 0.741692 0.095042 0.408956 0.501165 10 | 0.358530 0.078833 0.210375 0.884168 0.090526 0.638670 0.890105 0.968707 0.353703 0.770031 11 | 12 | 0.030680 0.532877 0.666625 0.482949 0.661736 0.553333 0.767283 0.291082 0.843495 0.521412 13 | 0.196929 0.600514 0.075297 0.699472 0.961155 0.747203 0.619768 0.747554 0.250491 0.337066 14 | 0.987807 0.215361 0.098854 0.278856 0.938561 0.062840 0.220016 0.171829 0.787537 0.506552 15 | 0.832929 0.674076 0.501338 0.458013 0.497788 0.920087 0.153353 0.512893 0.877085 0.146905 16 | 0.997307 0.434037 0.319443 0.769504 0.035933 0.734356 0.835901 0.944251 0.672748 0.941634 17 | 0.909477 0.812857 0.428602 0.472561 0.153806 0.082091 0.701680 0.943710 0.632183 0.516678 18 | 0.967934 0.810984 0.781888 0.702642 0.290173 0.745240 0.291658 0.520221 0.415261 0.980917 19 | 0.632050 0.593861 0.391160 0.733391 0.079130 0.676483 0.833012 0.672350 0.077855 0.257503 20 | 0.183183 0.998131 0.639726 0.309077 0.652552 0.881292 0.777910 0.632338 0.566688 0.478673 21 | 0.932210 0.833847 0.415248 0.200342 0.769351 0.730779 0.137082 0.604296 0.070912 0.728476 22 | 23 | 0.657639 -0.070370 -1.066866 -0.485684 -0.711627 -0.415973 -1.481483 -0.259134 -0.955540 -0.933613 24 | 0.387900 -0.790889 0.935749 -1.398421 -1.534792 -1.111045 -0.912640 -1.099813 0.446538 0.331296 25 | -0.867200 -0.276445 -0.969260 -0.424905 -0.476838 -1.020571 -0.392097 -0.028552 -0.238239 -0.750056 26 | -0.544568 -0.900576 -0.791586 -0.799760 -0.797780 -0.285537 -0.812849 -0.083209 -0.661185 -0.267841 27 | -0.072916 -0.546971 0.041399 -0.681894 -1.579972 0.460646 -0.037525 0.447875 0.590928 -0.318715 28 | 0.646774 0.629618 -1.399026 -0.253427 -1.213436 -1.375664 -0.974810 -0.227710 -1.285008 0.305743 29 | 0.313408 0.084603 -0.302173 0.010778 1.734990 0.836116 -0.011575 -0.034345 1.037763 -0.755892 30 | 0.056166 0.064627 0.736467 -0.285321 0.907252 0.040469 0.247855 -0.011985 1.758874 -0.234709 31 | 0.395757 1.973524 1.425392 0.593221 1.094356 1.850775 1.548055 1.267615 1.271381 0.967892 32 | 1.787321 1.645005 0.913465 0.351341 1.504968 1.462705 0.202416 1.223153 0.127131 1.446301 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 50 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 51 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 52 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 53 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_0m.txt: -------------------------------------------------------------------------------- 1 | 0.664202 0.060151 0.767985 0.617831 0.907988 0.912119 0.545040 0.506095 0.757303 0.594484 2 | 0.755126 0.663675 0.200336 0.057615 0.367959 0.577706 0.141362 0.610647 0.169689 0.130049 3 | 0.453390 0.101050 0.331314 0.781272 0.240594 0.703693 0.518031 0.064885 0.169269 0.906925 4 | 0.847436 0.281028 0.387578 0.846359 0.779905 0.984043 0.252904 0.056612 0.712472 0.740648 5 | 0.158719 0.216090 0.235949 0.551484 0.284754 0.987187 0.169640 0.633117 0.418473 0.808141 6 | 0.202204 0.320217 0.304743 0.137613 0.734949 0.626027 0.696662 0.095233 0.532877 0.695151 7 | 0.364630 0.363031 0.731528 0.571893 0.946442 0.282650 0.814954 0.829472 0.554217 0.360017 8 | 0.700757 0.696794 0.197425 0.954178 0.378481 0.704266 0.616347 0.894136 0.106123 0.444347 9 | 0.664260 0.569073 0.718638 0.431428 0.407343 0.801764 0.830864 0.700177 0.726185 0.834980 10 | 0.665059 0.568759 0.852018 0.634605 0.524762 0.718304 0.706466 0.705156 0.270932 0.479362 11 | 12 | 0.352041 0.676797 0.685430 0.894430 0.240345 0.783637 0.069790 0.685380 0.724111 0.344743 13 | 0.734630 0.888201 0.089888 0.257310 0.587424 0.022737 0.991469 0.307749 0.640766 0.875418 14 | 0.522419 0.296468 0.031135 0.722653 0.727515 0.087292 0.204356 0.317522 0.029247 0.279170 15 | 0.070616 0.440140 0.680511 0.160446 0.051739 0.647822 0.237983 0.577038 0.887464 0.337170 16 | 0.346202 0.729451 0.859943 0.876204 0.730135 0.696292 0.089601 0.236781 0.332401 0.973882 17 | 0.237890 0.316560 0.721522 0.451940 0.165668 0.633767 0.931931 0.726465 0.584268 0.481306 18 | 0.878795 0.056872 0.464803 0.516199 0.773272 0.483737 0.447121 0.092933 0.377318 0.859069 19 | 0.458620 0.765405 0.800901 0.454655 0.022790 0.345610 0.541205 0.166033 0.623901 0.333164 20 | 0.699360 0.223655 0.869894 0.850000 0.936970 0.938837 0.301804 0.576172 0.814512 0.296896 21 | 0.041654 0.450852 0.448247 0.263676 0.703569 0.156730 0.173260 0.693190 0.588707 0.653428 22 | 23 | 0.122266 -1.228676 -0.811915 -0.890950 0.728146 -0.509634 0.470697 -0.880527 -0.785223 -0.386043 24 | -0.613795 -1.153416 0.079296 -0.370140 -1.069124 0.720681 -1.770700 -0.208311 -1.161741 -1.832353 25 | -0.383547 -0.091966 -0.100133 -0.625185 -0.189148 -0.468631 -0.736390 -0.052622 -0.038203 -0.944541 26 | -0.491607 0.139647 -0.646135 -0.713924 -1.021596 -1.149316 0.034383 -0.101096 -1.069921 -0.893857 27 | 0.187008 0.268538 0.261626 -0.361941 0.105201 -1.340494 -0.680815 -0.626288 -0.583010 -0.860188 28 | -0.106568 -0.394171 0.248181 -0.123915 -1.367955 -1.078698 -0.472849 0.639401 -0.179402 -1.468456 29 | 0.000342 0.699007 0.862338 0.774974 1.390601 0.286036 1.058522 1.758127 0.691083 -0.212197 30 | 0.699485 0.618126 -0.516336 1.883671 0.565306 1.232068 0.402488 1.695128 -0.526052 0.714279 31 | 1.226556 0.715628 1.712165 1.850741 1.827565 2.028936 0.563454 0.887332 1.598002 0.401469 32 | 0.080170 0.778885 0.869795 0.832563 1.240891 0.362155 0.156554 1.424203 1.373771 1.056434 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 50 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 51 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 52 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 53 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_0n.txt: -------------------------------------------------------------------------------- 1 | 0.707509 0.455632 0.404357 0.874732 0.626675 0.612625 0.029512 0.969659 0.486899 0.665607 2 | 0.565035 0.993057 0.952355 0.009327 0.409753 0.565369 0.716988 0.998687 0.850748 0.920761 3 | 0.057329 0.012041 0.903702 0.408576 0.647961 0.801997 0.275986 0.987029 0.719120 0.261318 4 | 0.776395 0.139832 0.343337 0.006584 0.458998 0.712175 0.133870 0.393707 0.195639 0.740155 5 | 0.189603 0.899051 0.967181 0.078376 0.682792 0.552785 0.569291 0.448254 0.785678 0.875815 6 | 0.000626 0.370330 0.314242 0.138177 0.335223 0.896683 0.435339 0.160004 0.211648 0.529943 7 | 0.780978 0.753106 0.673573 0.439301 0.585879 0.993873 0.593563 0.358321 0.643531 0.955206 8 | 0.528656 0.661835 0.185885 0.673956 0.683056 0.745702 0.658550 0.942577 0.652369 0.226573 9 | 0.338025 0.693900 0.667453 0.865219 0.907282 0.510824 0.402380 0.380799 0.417811 0.452378 10 | 0.453372 0.702017 0.825302 0.640252 0.663854 0.243677 0.878877 0.910207 0.855591 0.511098 11 | 12 | 0.678449 0.552847 0.024764 0.751312 0.266411 0.082058 0.091061 0.577391 0.204175 0.111551 13 | 0.646933 0.491493 0.374354 0.768436 0.558430 0.723330 0.168445 0.711173 0.905511 0.518110 14 | 0.956043 0.418276 0.524216 0.444539 0.881797 0.570823 0.748947 0.272955 0.654740 0.813516 15 | 0.842932 0.130055 0.800598 0.889120 0.962923 0.260060 0.223260 0.541793 0.846644 0.188515 16 | 0.011319 0.360645 0.922785 0.495327 0.274077 0.719510 0.277619 0.485111 0.549398 0.866357 17 | 0.170853 0.352284 0.729443 0.725825 0.012976 0.943555 0.256741 0.063024 0.331171 0.147026 18 | 0.689466 0.728235 0.861325 0.917098 0.627560 0.365171 0.153990 0.049738 0.401077 0.004012 19 | 0.287738 0.738492 0.538057 0.036843 0.183430 0.262530 0.806220 0.577931 0.633396 0.873351 20 | 0.279240 0.234591 0.340807 0.358639 0.778412 0.783127 0.022761 0.985127 0.282808 0.230462 21 | 0.772629 0.992146 0.215050 0.080776 0.369054 0.328236 0.019340 0.867319 0.176006 0.638509 22 | 23 | -0.649390 -0.650063 0.354829 -0.627892 0.093854 0.448510 -0.152610 -0.185123 0.078550 0.442504 24 | -0.728830 0.010072 0.203646 -1.527545 -0.707107 -0.881291 0.380097 -0.423659 -0.960273 -0.115460 25 | -0.057329 -0.012041 -0.903702 -0.408576 -0.647961 -0.801997 -0.275986 -0.987029 -0.719120 -0.261318 26 | -0.776395 -0.139832 -0.343337 -0.006584 -0.458998 -0.712175 -0.133870 -0.393707 -0.195639 -0.740155 27 | -0.367888 -1.437458 -1.011577 0.338575 -1.091507 -0.386061 -0.860963 -0.411398 -1.021958 -0.885272 28 | 0.169601 -0.388376 0.100960 0.449471 -0.657469 -0.849812 -0.613936 -0.256983 -0.092124 -0.912860 29 | 0.872491 0.777978 0.485821 -0.038496 0.544198 1.622575 1.033136 0.666904 0.885985 1.906401 30 | 0.769574 0.585178 -0.166286 1.311069 1.182682 1.228874 0.510881 1.307222 0.671341 -0.420205 31 | 0.558481 0.469182 0.681614 0.717277 1.556824 1.566253 0.045522 1.970254 0.565616 0.460924 32 | 1.545259 1.984293 0.430099 0.161553 0.738109 0.656472 0.038680 1.734638 0.352012 1.277017 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 50 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 51 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 52 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 53 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_1h.txt: -------------------------------------------------------------------------------- 1 | 0.473445 0.151897 0.031031 0.757350 0.788227 0.973607 0.348036 0.651894 0.472485 0.389897 2 | 0.741674 0.358455 0.345463 0.053117 0.005246 0.659544 0.094531 0.566478 0.291798 0.595782 3 | 0.373039 0.394089 0.696938 0.029298 0.349557 0.137940 0.384753 0.955699 0.197074 0.019321 4 | 0.093161 0.930699 0.692830 0.973025 0.441592 0.216492 0.022330 0.714921 0.812233 0.000920 5 | 0.018935 0.697834 0.514853 0.219556 0.177855 0.505366 0.981979 0.820568 0.235083 0.658711 6 | 0.419303 0.854792 0.148037 0.656621 0.911307 0.213355 0.441204 0.014300 0.901464 0.683746 7 | 0.727083 0.753417 0.684222 0.872575 0.319421 0.190754 0.510945 0.203899 0.552479 0.490680 8 | 0.877739 0.604175 0.015068 0.770329 0.274979 0.140444 0.999582 0.591065 0.522366 0.997042 9 | 0.608933 0.134302 0.587695 0.589940 0.428741 0.327224 0.725320 0.585694 0.115997 0.593136 10 | 0.026961 0.430523 0.398542 0.775492 0.971790 0.306009 0.667604 0.557624 0.919717 0.653103 11 | 12 | 0.496023 0.625676 0.432991 0.483219 0.116105 0.570000 0.219051 0.998687 0.418355 0.545785 13 | 0.966985 0.230062 0.767061 0.761725 0.019821 0.610519 0.698694 0.364631 0.712291 0.675442 14 | 0.872297 0.173077 0.945920 0.594864 0.646330 0.180572 0.941184 0.963953 0.152960 0.725292 15 | 0.486506 0.637736 0.730257 0.384469 0.593459 0.419636 0.244722 0.276018 0.072000 0.057680 16 | 0.890697 0.112248 0.924884 0.488202 0.164000 0.036732 0.131130 0.407613 0.830379 0.823597 17 | 0.462442 0.274631 0.360993 0.894517 0.739634 0.605729 0.608962 0.981705 0.570987 0.863279 18 | 0.185329 0.876623 0.336746 0.330172 0.816307 0.073556 0.891693 0.657355 0.676166 0.495379 19 | 0.917373 0.506304 0.013428 0.336706 0.956993 0.793194 0.536151 0.052997 0.337335 0.443852 20 | 0.379777 0.886176 0.705333 0.373322 0.883157 0.693741 0.160845 0.800942 0.263570 0.751112 21 | 0.235397 0.167450 0.914888 0.952719 0.445468 0.869217 0.533980 0.211679 0.661427 0.559810 22 | 23 | 0.531815 1.480108 0.466975 1.238323 0.689075 1.626495 0.117509 1.759913 0.672238 1.356143 24 | 2.003484 0.919229 1.214137 0.746272 -0.408321 1.719803 1.011802 1.107265 1.252300 1.675211 25 | 0.886223 0.817515 1.250691 -0.211345 1.053212 0.361811 0.218548 1.732241 0.767457 0.411193 26 | 0.543505 1.747554 1.435652 2.312299 0.711863 0.371567 0.013312 1.146183 1.444130 -0.012013 27 | -0.874719 -1.143220 -0.992359 -0.851043 -0.848533 -0.409607 -1.009028 -1.018738 -0.807468 -1.489019 28 | -0.940326 -1.055378 -0.459810 -1.462062 -1.985183 -0.974366 -0.727236 -1.174645 -1.158381 -1.607030 29 | -0.499604 -1.604642 -0.447552 -0.861447 -1.864248 -0.050263 -1.982861 -0.483176 -1.759307 -1.040345 30 | -2.091397 -0.965941 -0.512091 -0.582409 -2.113850 -1.199532 -1.048829 0.514856 -0.738112 -0.842941 31 | -0.248186 1.821963 0.401485 -0.250462 1.344227 0.723120 -1.339400 0.340977 0.378608 0.165752 32 | -0.098668 -1.153532 1.486349 0.203885 -1.370060 0.667777 -0.818222 -0.619482 -0.693824 -0.266833 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 48 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 55 | 56 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 57 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 61 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 63 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_1l.txt: -------------------------------------------------------------------------------- 1 | 0.774215 0.145939 0.124120 0.321055 0.555585 0.308118 0.939961 0.062750 0.131453 0.349918 2 | 0.828357 0.448600 0.824732 0.290004 0.894343 0.378092 0.252085 0.796734 0.013514 0.957504 3 | 0.953392 0.543525 0.523632 0.191338 0.933360 0.234664 0.281852 0.317305 0.955209 0.976922 4 | 0.999065 0.207832 0.892025 0.130676 0.467845 0.268267 0.118604 0.489324 0.035889 0.003440 5 | 0.874234 0.780798 0.354221 0.573311 0.848818 0.692236 0.123262 0.379768 0.422859 0.753819 6 | 0.347438 0.849198 0.257110 0.956521 0.561788 0.897341 0.432454 0.148665 0.670008 0.464586 7 | 0.483606 0.088822 0.661975 0.570658 0.804623 0.614713 0.530157 0.655335 0.129472 0.428190 8 | 0.081567 0.132670 0.485595 0.124768 0.296098 0.170538 0.994412 0.510938 0.247716 0.525119 9 | 0.245981 0.881562 0.902549 0.203855 0.351407 0.792944 0.823352 0.293514 0.240686 0.744248 10 | 0.054772 0.741960 0.425771 0.620913 0.781736 0.331053 0.303178 0.228244 0.258473 0.153139 11 | 12 | 0.088197 0.683231 0.325451 0.672643 0.775438 0.968823 0.005563 0.588349 0.419561 0.132908 13 | 0.329106 0.046942 0.328460 0.873980 0.337615 0.723600 0.565203 0.473697 0.019502 0.006947 14 | 0.736171 0.971757 0.082556 0.394729 0.800223 0.840749 0.670746 0.350769 0.011199 0.210084 15 | 0.655396 0.913267 0.781936 0.569448 0.153986 0.377125 0.517347 0.049446 0.701935 0.404022 16 | 0.867829 0.651353 0.651529 0.524961 0.482537 0.617106 0.056997 0.826515 0.084005 0.608181 17 | 0.863174 0.397492 0.305609 0.264744 0.520543 0.109639 0.900457 0.283518 0.300551 0.751549 18 | 0.423339 0.773189 0.942742 0.030708 0.077039 0.043984 0.460744 0.812692 0.727651 0.439078 19 | 0.548953 0.308105 0.902142 0.849613 0.173508 0.087099 0.471714 0.124264 0.091492 0.744746 20 | 0.581550 0.394928 0.143844 0.377435 0.568371 0.677685 0.208907 0.456142 0.165398 0.718938 21 | 0.245818 0.866515 0.576135 0.004805 0.562489 0.461686 0.683820 0.731720 0.718841 0.654271 22 | 23 | 0.722882 0.825339 0.517289 0.970004 1.157313 1.429938 0.917956 0.681954 0.480411 0.585057 24 | 1.103233 0.515428 1.101185 0.852270 1.344475 1.133111 0.884341 1.151366 0.194309 1.062509 25 | 1.943132 1.186071 0.964529 0.473168 1.905321 0.562103 0.545010 0.736253 1.726274 1.905494 26 | 2.152678 0.442376 1.891524 0.305025 1.124736 0.587727 0.302601 1.225724 0.089632 -0.063571 27 | -1.732728 -1.318939 -1.047917 -1.004278 -1.022357 -1.381807 -0.163241 -1.222836 -0.581804 -1.409855 28 | -1.157637 -1.242936 -0.499584 -1.151445 -1.136211 -0.975912 -1.214695 -0.374016 -0.978013 -1.087612 29 | -0.790834 -1.573852 -1.962704 -0.012726 -0.061089 -0.267528 -0.885796 -1.867647 -1.363782 -0.801371 30 | -1.037593 -0.725168 -1.622493 -1.911781 -0.122829 -0.082383 -0.775871 -0.310792 -0.126812 -1.518354 31 | 0.802215 -1.007642 -1.481247 0.070662 0.380217 -0.214596 -1.121358 0.323336 -0.081252 0.141090 32 | 0.377543 0.169463 0.320648 -1.267722 -0.328788 0.366830 0.872647 1.023441 0.778873 0.952119 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 48 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 55 | 56 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 57 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 61 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 63 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_1m.txt: -------------------------------------------------------------------------------- 1 | 0.208135 0.191636 0.736291 0.638868 0.549883 0.946099 0.049373 0.473370 0.898262 0.720004 2 | 0.149190 0.361596 0.280280 0.811725 0.011668 0.599170 0.486738 0.907867 0.851931 0.487684 3 | 0.204665 0.917965 0.104303 0.511265 0.560764 0.439924 0.736765 0.541473 0.033217 0.079742 4 | 0.022466 0.968141 0.154924 0.201584 0.391153 0.759234 0.441843 0.891908 0.994943 0.269405 5 | 0.819795 0.070266 0.409677 0.724502 0.789421 0.380765 0.266553 0.366779 0.461955 0.872631 6 | 0.250788 0.585304 0.403173 0.611201 0.026768 0.248705 0.136530 0.666667 0.963270 0.217535 7 | 0.812386 0.688616 0.498006 0.757784 0.522941 0.369709 0.031992 0.470335 0.445118 0.289185 8 | 0.007362 0.798145 0.856649 0.071421 0.793449 0.658945 0.215209 0.020313 0.488157 0.897008 9 | 0.547170 0.868697 0.439013 0.437646 0.206428 0.572570 0.064815 0.241121 0.597569 0.510186 10 | 0.221672 0.455772 0.022420 0.342068 0.455439 0.376643 0.560333 0.756168 0.771082 0.847224 11 | 12 | 0.228548 0.158861 0.352726 0.956883 0.371731 0.578616 0.222583 0.464048 0.242021 0.404608 13 | 0.763881 0.821053 0.456129 0.782969 0.079036 0.491022 0.419784 0.470172 0.707279 0.758139 14 | 0.729379 0.709981 0.399103 0.875136 0.642273 0.764640 0.913175 0.133985 0.977795 0.345962 15 | 0.369126 0.714375 0.778872 0.726021 0.312874 0.403725 0.195549 0.239651 0.414145 0.007021 16 | 0.808937 0.288261 0.016090 0.220768 0.370772 0.089339 0.276657 0.839388 0.456143 0.753930 17 | 0.552453 0.232311 0.846877 0.130101 0.179806 0.190320 0.558399 0.840697 0.420728 0.826897 18 | 0.592240 0.664408 0.439640 0.457765 0.109506 0.449591 0.837245 0.031947 0.703467 0.672737 19 | 0.702477 0.829039 0.551549 0.051037 0.215026 0.316947 0.510823 0.479820 0.387099 0.872423 20 | 0.981114 0.943658 0.271144 0.428227 0.871754 0.477852 0.583449 0.372858 0.415913 0.799144 21 | 0.315259 0.781346 0.457629 0.506025 0.456869 0.294472 0.217082 0.992776 0.577845 0.146824 22 | 23 | 0.196308 0.093094 0.909257 1.824203 1.204770 1.800045 0.211173 0.695770 1.087615 0.762090 24 | 1.272713 1.199949 0.598134 1.459968 0.334971 0.904977 0.968176 1.488660 1.543115 1.449649 25 | 0.239590 1.665651 0.333692 0.743634 1.152817 0.772734 1.612506 1.137949 -0.306281 -0.250393 26 | 0.103682 2.075168 0.254971 0.373884 0.822711 1.394001 0.807735 2.086790 2.192941 0.539164 27 | -1.659472 -0.385293 -0.278021 -0.907900 -1.314811 -0.521410 -0.673490 -1.160340 -1.256126 -1.375908 28 | -0.528724 -0.725638 -1.344747 -0.924095 -0.321206 -0.764262 -1.048749 -1.840622 -1.217551 -0.723053 29 | -1.329008 -1.287380 -0.855719 -0.907809 -0.242219 -0.852777 -1.211411 0.228183 -1.361050 -1.057566 30 | -1.367478 -1.589949 -0.907742 -0.489109 -0.479537 -0.691223 -1.210042 -1.264427 -0.562023 -1.876708 31 | 0.560471 -0.014925 -0.315026 0.118836 1.109346 -0.433525 0.943616 0.245115 -0.431398 0.611486 32 | 0.287414 0.732479 0.952343 0.288662 -0.088887 -0.362575 -0.820012 0.541459 -0.517082 -1.314910 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 48 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 55 | 56 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 57 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 61 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 63 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_1n.txt: -------------------------------------------------------------------------------- 1 | 0.197559 0.304962 0.714359 0.090654 0.968611 0.608721 0.427198 0.644422 0.292007 0.964240 2 | 0.396334 0.932144 0.851455 0.793392 0.203958 0.734259 0.803572 0.598491 0.604099 0.947167 3 | 0.938423 0.836953 0.752161 0.422229 0.725002 0.117408 0.328912 0.407148 0.529623 0.794625 4 | 0.033770 0.486793 0.259088 0.485927 0.867190 0.730375 0.677324 0.147427 0.142101 0.490502 5 | 0.194334 0.023884 0.711281 0.840841 0.544462 0.528794 0.045583 0.764574 0.056624 0.914159 6 | 0.128046 0.104099 0.919220 0.088073 0.626339 0.405039 0.557259 0.778344 0.492041 0.175234 7 | 0.185541 0.534614 0.754140 0.032964 0.474014 0.475200 0.166358 0.950117 0.958772 0.391745 8 | 0.488780 0.095820 0.286606 0.643621 0.328065 0.946727 0.990872 0.527092 0.830972 0.169224 9 | 0.771922 0.447814 0.904410 0.551609 0.996125 0.929256 0.805447 0.294677 0.616133 0.169704 10 | 0.657723 0.768519 0.158891 0.994026 0.336936 0.469694 0.212372 0.186754 0.367276 0.693161 11 | 12 | 0.462374 0.487113 0.898347 0.097724 0.993628 0.228191 0.373712 0.272276 0.029834 0.070170 13 | 0.264227 0.771700 0.959660 0.904809 0.547454 0.633096 0.808982 0.868018 0.286905 0.791507 14 | 0.428514 0.196533 0.861818 0.358241 0.273964 0.804310 0.859047 0.047044 0.088144 0.763361 15 | 0.329216 0.261651 0.015574 0.786415 0.055505 0.908549 0.990062 0.796052 0.531832 0.222817 16 | 0.161219 0.230999 0.959570 0.251965 0.878263 0.822118 0.163071 0.026686 0.090260 0.255745 17 | 0.548202 0.586903 0.069754 0.567368 0.115894 0.626534 0.722267 0.699475 0.342863 0.375437 18 | 0.289500 0.918185 0.214720 0.772352 0.783956 0.488623 0.815085 0.337219 0.181030 0.667953 19 | 0.520002 0.399580 0.624265 0.530924 0.280580 0.262556 0.774668 0.233754 0.372596 0.962278 20 | 0.183898 0.076107 0.526139 0.965645 0.628582 0.997431 0.265313 0.179815 0.842910 0.393888 21 | 0.153479 0.933781 0.835882 0.965423 0.155719 0.778219 0.205694 0.562194 0.065372 0.358369 22 | 23 | 0.659933 0.792075 1.612706 0.188377 1.962239 0.836912 0.800910 0.916699 0.321841 1.034410 24 | 0.660561 1.703844 1.811115 1.698201 0.751413 1.367355 1.612555 1.466509 0.891004 1.738674 25 | 1.876845 1.673906 1.504321 0.844458 1.450005 0.234816 0.657824 0.814296 1.059246 1.589249 26 | 0.067540 0.973587 0.518176 0.971854 1.734380 1.460751 1.354647 0.294855 0.284203 0.981005 27 | -0.355553 -0.254883 -1.670851 -1.092806 -1.422725 -1.350912 -0.208655 -0.791260 -0.146884 -1.169905 28 | -0.676248 -0.691003 -0.988974 -0.655441 -0.742233 -1.031573 -1.279526 -1.477819 -0.834904 -0.550671 29 | -0.579000 -1.836370 -0.429440 -1.544703 -1.567913 -0.977247 -1.630169 -0.674437 -0.362059 -1.335906 30 | -1.040004 -0.799160 -1.248530 -1.061849 -0.561159 -0.525112 -1.549336 -0.467508 -0.745193 -1.924556 31 | -1.176047 -0.743413 -0.756543 0.828072 -0.735086 0.136350 -1.080269 -0.229723 0.453553 0.448368 32 | -1.008488 0.330523 1.353982 -0.057206 -0.362433 0.617051 -0.013356 0.750881 -0.603807 -0.669584 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 46 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 47 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 48 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 55 | 56 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 57 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 61 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 63 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_2h.txt: -------------------------------------------------------------------------------- 1 | 0.876083 0.186146 0.945371 0.514102 0.309468 0.142057 0.379302 0.633159 0.316727 0.440985 2 | 0.247177 0.441158 0.882976 0.927986 0.484746 0.469614 0.658234 0.678885 0.152757 0.781696 3 | 0.289477 0.931340 0.508184 0.872901 0.867328 0.682737 0.639323 0.355099 0.290834 0.609844 4 | 0.512569 0.290098 0.590599 0.567560 0.678616 0.189020 0.208914 0.848473 0.524897 0.980787 5 | 0.828869 0.384245 0.263085 0.263455 0.288476 0.701152 0.560040 0.186293 0.696018 0.692712 6 | 0.419932 0.554138 0.898370 0.407821 0.025192 0.126697 0.181717 0.916692 0.241765 0.078490 7 | 0.933113 0.673015 0.744153 0.981022 0.076025 0.368836 0.654540 0.675039 0.041645 0.468013 8 | 0.773584 0.856313 0.436658 0.322452 0.920874 0.362115 0.629000 0.417419 0.523503 0.145854 9 | 0.160042 0.720910 0.049122 0.781614 0.537668 0.593656 0.891321 0.439879 0.746572 0.982746 10 | 0.885906 0.191629 0.141277 0.943630 0.748411 0.034883 0.120043 0.249488 0.733876 0.331062 11 | 12 | 0.399645 0.292054 0.946646 0.465417 0.255037 0.183432 0.596886 0.654492 0.465973 0.298426 13 | 0.771016 0.429121 0.099642 0.474684 0.971175 0.336777 0.913791 0.070853 0.439527 0.039993 14 | 0.724112 0.425468 0.940615 0.933412 0.602157 0.876577 0.172441 0.111448 0.151508 0.834764 15 | 0.483501 0.289357 0.426977 0.125120 0.328369 0.954919 0.374334 0.749283 0.235684 0.495329 16 | 0.678252 0.101487 0.781000 0.475872 0.404230 0.383830 0.803043 0.112373 0.730676 0.683569 17 | 0.319036 0.830575 0.445808 0.977153 0.154060 0.729352 0.246851 0.915765 0.500401 0.993202 18 | 0.135902 0.579577 0.735111 0.546007 0.212076 0.804704 0.501411 0.476903 0.752918 0.840004 19 | 0.541408 0.687184 0.578490 0.399266 0.642574 0.175127 0.757047 0.404029 0.224764 0.214410 20 | 0.070476 0.694547 0.617800 0.119610 0.846271 0.346904 0.124082 0.149735 0.111281 0.569106 21 | 0.693353 0.122758 0.607200 0.660137 0.276823 0.519041 0.957657 0.267349 0.324004 0.218418 22 | 23 | -0.754841 0.349455 0.492818 0.349676 -0.329784 0.515697 0.203363 0.087342 0.420213 -0.192724 24 | 0.649160 -0.359521 -1.796655 -0.677847 1.227873 -0.444899 0.627079 -1.645031 0.736066 -1.648631 25 | -1.890197 -1.507979 -2.635372 -2.918023 -1.961546 -2.411276 -1.340148 -0.738867 -0.655247 -2.453849 26 | -1.427154 -0.839735 -1.294994 -1.083543 -1.425495 -1.915036 -0.523175 -2.395687 -0.719919 -2.585162 27 | 1.852139 1.263369 0.869672 0.935913 0.888129 1.938647 1.790792 0.911049 2.675190 2.035097 28 | 1.095136 1.994373 2.575240 1.900850 -0.110011 1.492025 1.008798 2.348879 0.607753 0.970313 29 | 0.550325 -0.164324 0.185308 0.205229 -0.011055 0.434253 -0.101073 -0.204847 -0.132759 0.138550 30 | -0.068555 -0.011060 -0.063097 -0.097824 0.064761 0.066700 0.133438 0.023934 -0.378538 0.094537 31 | 0.084267 0.434607 -0.871890 0.944111 -0.617783 0.417005 1.110527 0.586597 0.627218 -0.127459 32 | 0.575369 -0.021414 -0.008328 0.455066 0.683873 -0.366130 -1.327366 0.301745 0.047691 0.097038 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 46 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 50 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_2l.txt: -------------------------------------------------------------------------------- 1 | 0.411976 0.309438 0.035855 0.212980 0.010545 0.189601 0.364251 0.243318 0.287430 0.046052 2 | 0.408184 0.705273 0.775116 0.500916 0.091504 0.748798 0.395494 0.590512 0.164732 0.623015 3 | 0.088288 0.153016 0.987479 0.481527 0.866913 0.929062 0.326798 0.503125 0.899347 0.195823 4 | 0.943922 0.918644 0.108415 0.905025 0.950539 0.415545 0.875125 0.697023 0.125140 0.835015 5 | 0.707294 0.026826 0.610853 0.190886 0.966933 0.624501 0.858877 0.100865 0.284384 0.380071 6 | 0.189446 0.232361 0.422588 0.465123 0.827788 0.746280 0.535990 0.768325 0.569061 0.763396 7 | 0.087439 0.982796 0.153427 0.603780 0.140439 0.822898 0.536039 0.921843 0.444655 0.912084 8 | 0.664491 0.528525 0.536150 0.766629 0.643804 0.696781 0.984134 0.001587 0.497765 0.145608 9 | 0.551393 0.432620 0.510812 0.603629 0.857238 0.734339 0.402746 0.896385 0.281842 0.524577 10 | 0.498821 0.924426 0.910804 0.248884 0.645271 0.907662 0.945903 0.498886 0.428734 0.866191 11 | 12 | 0.619735 0.971368 0.204330 0.877430 0.238494 0.720087 0.647009 0.403384 0.944455 0.826755 13 | 0.489558 0.124452 0.230555 0.780001 0.354701 0.961424 0.883710 0.900862 0.113205 0.004815 14 | 0.602137 0.250216 0.772349 0.187589 0.575361 0.335465 0.212294 0.469349 0.394989 0.351885 15 | 0.302099 0.129683 0.568392 0.392975 0.832611 0.629671 0.540555 0.606775 0.102665 0.310781 16 | 0.248397 0.465376 0.896853 0.367346 0.649743 0.656562 0.136795 0.156774 0.733559 0.842708 17 | 0.762524 0.813073 0.385202 0.362691 0.531671 0.538783 0.259374 0.627115 0.832140 0.580926 18 | 0.321524 0.290752 0.781732 0.099324 0.270991 0.874418 0.598504 0.922804 0.051803 0.690068 19 | 0.909563 0.766441 0.157220 0.365594 0.068942 0.971392 0.619350 0.602439 0.785024 0.929563 20 | 0.368236 0.442240 0.782507 0.869254 0.453627 0.316309 0.836220 0.416981 0.068855 0.733866 21 | 0.223814 0.804876 0.872583 0.507167 0.813834 0.286706 0.751816 0.329645 0.547360 0.456315 22 | 23 | 0.255924 1.265215 0.550173 1.124316 0.471438 1.111457 0.642997 0.489303 1.214975 1.661705 24 | 0.167810 -1.204756 -1.180195 0.666529 0.448992 0.472386 0.917748 0.639212 0.039619 -1.180524 25 | -1.302043 -0.659263 -2.689438 -0.900218 -2.091572 -1.525805 -0.805589 -1.417387 -1.724669 -0.982633 26 | -1.314653 -1.063727 -1.180854 -1.618077 -2.602719 -1.730321 -1.710704 -1.937177 -0.471665 -1.609731 27 | 1.561893 0.470664 2.073708 0.799556 2.660537 1.973577 1.759352 0.288975 1.293730 1.557716 28 | 1.263017 1.178855 1.305801 1.276721 2.135885 2.191916 1.161365 2.275643 2.094426 2.166972 29 | -0.036364 0.096017 -0.083912 -0.054158 0.154531 -0.172165 0.023997 -0.129540 -0.065346 0.037287 30 | -0.132571 -0.030940 -0.071289 0.086089 -0.040382 -0.094368 0.005923 0.062174 0.148775 0.004639 31 | 0.040059 0.020994 -0.100754 -0.285460 0.337055 0.536724 -0.469007 0.583105 0.096815 -0.174151 32 | 0.208419 0.136507 -0.119474 -0.177936 -0.276783 0.664803 0.173156 0.197172 -0.087562 0.590171 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 46 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 50 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_2m.txt: -------------------------------------------------------------------------------- 1 | 0.105733 0.432191 0.924292 0.755202 0.120959 0.383939 0.748933 0.782457 0.491399 0.598024 2 | 0.574679 0.910416 0.153615 0.457463 0.258575 0.325870 0.136812 0.862130 0.660507 0.173406 3 | 0.837288 0.812336 0.083685 0.360516 0.435786 0.073244 0.674190 0.459065 0.074586 0.381354 4 | 0.495822 0.602938 0.352463 0.594818 0.923410 0.755310 0.075502 0.515786 0.064100 0.332823 5 | 0.990813 0.903905 0.516156 0.338073 0.980196 0.528483 0.151041 0.736711 0.790039 0.139396 6 | 0.997987 0.458166 0.267527 0.846762 0.998824 0.421244 0.718940 0.481702 0.400387 0.211933 7 | 0.616368 0.445631 0.824310 0.226737 0.485331 0.921331 0.833841 0.114048 0.338026 0.976331 8 | 0.539057 0.624869 0.687009 0.622443 0.675225 0.086710 0.595216 0.945528 0.043155 0.460746 9 | 0.095205 0.556948 0.494375 0.372169 0.587419 0.186161 0.823223 0.281284 0.333786 0.197734 10 | 0.365139 0.332564 0.869425 0.183391 0.881812 0.851078 0.923723 0.223201 0.295320 0.126908 11 | 12 | 0.345952 0.433013 0.168679 0.018340 0.378070 0.095418 0.018726 0.840307 0.386597 0.116616 13 | 0.257272 0.957368 0.469942 0.796441 0.964571 0.629251 0.340497 0.346300 0.693109 0.549756 14 | 0.275879 0.542439 0.253057 0.502862 0.432710 0.835071 0.351787 0.496663 0.128674 0.983148 15 | 0.724394 0.543278 0.319675 0.285389 0.134713 0.333866 0.839709 0.158466 0.299141 0.129017 16 | 0.204436 0.162964 0.082811 0.345366 0.934956 0.279722 0.379877 0.346106 0.656077 0.837670 17 | 0.089248 0.260067 0.472879 0.759347 0.120037 0.456445 0.210925 0.757790 0.553625 0.650343 18 | 0.639651 0.505611 0.912604 0.916784 0.554488 0.439891 0.199633 0.409261 0.469897 0.046282 19 | 0.103387 0.378373 0.475135 0.431079 0.149880 0.955719 0.528638 0.739546 0.040345 0.272939 20 | 0.190638 0.748432 0.510957 0.874665 0.515066 0.980787 0.498452 0.470103 0.753800 0.461953 21 | 0.234394 0.898990 0.727874 0.714167 0.094129 0.267698 0.105790 0.535085 0.032017 0.204673 22 | 23 | 0.346143 -0.304779 -1.522770 -1.748590 0.455614 -0.536574 -1.249972 -0.106963 -0.331337 -0.988440 24 | -0.863089 0.227303 0.702561 0.847458 1.343171 0.897093 0.312341 -1.253273 0.118546 0.912605 25 | -1.455220 -1.900035 -0.499341 -1.524538 -1.266174 -1.520421 -1.633213 -1.680992 -0.096114 -2.508816 26 | -1.843255 -1.716369 -0.831932 -1.242396 -1.047016 -1.343930 -1.568224 -0.755922 -0.522317 -0.630851 27 | 1.937147 2.154187 0.831360 1.092988 2.982835 1.349656 0.891883 1.523887 2.406306 0.884232 28 | 1.639136 1.201590 1.183264 2.409988 1.765157 1.305844 1.630991 1.791687 1.182246 1.149366 29 | 0.299006 -0.116967 0.103174 -0.415160 -0.043377 -0.295314 0.043568 -0.232906 -0.031990 -0.140345 30 | -0.096090 0.122125 0.256591 -0.087862 0.544558 0.183188 -0.028826 0.101043 -0.499437 0.011817 31 | 0.151166 0.039074 -0.049900 -0.648420 0.331939 -0.234940 0.354150 -0.248913 -0.348224 0.167830 32 | 0.122239 -0.516585 0.206276 -0.480617 0.736733 0.302913 0.548288 -0.041850 0.073719 0.140358 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 46 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 50 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_2n.txt: -------------------------------------------------------------------------------- 1 | 0.298771 0.534816 0.495742 0.931730 0.902147 0.990540 0.930113 0.523775 0.591828 0.692993 2 | 0.725422 0.507597 0.118845 0.218397 0.272960 0.718804 0.134171 0.000790 0.755557 0.636678 3 | 0.840666 0.331534 0.455097 0.876633 0.384413 0.921464 0.623664 0.724193 0.787350 0.109572 4 | 0.627300 0.388073 0.596033 0.174063 0.427125 0.977244 0.774589 0.706261 0.455841 0.011611 5 | 0.148819 0.699530 0.337631 0.033551 0.671652 0.334829 0.342330 0.086492 0.567035 0.919906 6 | 0.523299 0.229053 0.512313 0.456722 0.568560 0.926639 0.879640 0.316222 0.490681 0.330901 7 | 0.227569 0.508657 0.315485 0.010124 0.354123 0.124709 0.257629 0.923138 0.190783 0.978683 8 | 0.120943 0.119678 0.294916 0.887268 0.437034 0.949041 0.409952 0.024568 0.599444 0.245468 9 | 0.012138 0.076929 0.907365 0.677466 0.883392 0.368196 0.682524 0.540459 0.816775 0.080191 10 | 0.200936 0.187764 0.731969 0.188202 0.410951 0.186860 0.768826 0.862702 0.598963 0.408320 11 | 12 | 0.947671 0.323685 0.819179 0.918178 0.266781 0.070512 0.136432 0.410196 0.838708 0.005272 13 | 0.947621 0.967656 0.273310 0.439779 0.846904 0.769326 0.304228 0.390582 0.777720 0.675657 14 | 0.431298 0.473459 0.954921 0.986065 0.684829 0.301918 0.134286 0.458781 0.208359 0.416029 15 | 0.806179 0.620056 0.892067 0.427166 0.615360 0.169217 0.152493 0.331286 0.406233 0.203261 16 | 0.897034 0.969707 0.135219 0.778526 0.073487 0.394674 0.241754 0.944143 0.784947 0.947553 17 | 0.204830 0.734659 0.612908 0.326059 0.775099 0.320455 0.183585 0.784506 0.445413 0.069155 18 | 0.418795 0.112694 0.440649 0.342062 0.473856 0.974652 0.897138 0.604931 0.055471 0.967084 19 | 0.554337 0.446248 0.157673 0.681794 0.186240 0.330076 0.818897 0.346245 0.981575 0.067759 20 | 0.471478 0.366982 0.409137 0.630693 0.666786 0.098586 0.233891 0.612144 0.616820 0.322759 21 | 0.582238 0.859017 0.887090 0.495854 0.607841 0.578917 0.692655 0.354582 0.833476 0.811206 22 | 23 | 1.297800 -0.422262 0.646875 -0.027104 -1.270732 -1.840057 -1.587362 -0.227158 0.493760 -1.375442 24 | 0.444398 0.920118 0.308930 0.442765 1.147887 0.101044 0.340115 0.779583 0.044326 0.077957 25 | -1.703261 -1.278452 -2.364940 -2.848763 -1.754071 -1.525300 -0.892236 -1.641754 -1.204068 -0.941629 26 | -2.239659 -1.628185 -2.380167 -1.028396 -1.657845 -1.315679 -1.079576 -1.368833 -1.268307 -0.418133 27 | 1.194671 2.368767 0.810481 0.845628 1.416791 1.064333 0.926414 1.117126 1.919016 2.787366 28 | 1.251428 1.192765 1.637535 1.239503 1.912220 2.173734 1.942865 1.416951 1.426774 0.730957 29 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 30 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 31 | -0.459340 -0.290053 0.498228 0.046773 0.216606 0.269610 0.448633 -0.071685 0.199955 -0.242567 32 | -0.381302 -0.671253 -0.155121 -0.307652 -0.196890 -0.392057 0.076171 0.508120 -0.234512 -0.402886 33 | 34 | 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 36 | 1 1 1 1 1 1 1 1 1 1 37 | 1 1 1 1 1 1 1 1 1 1 38 | 2 2 2 2 2 2 2 2 2 2 39 | 2 2 2 2 2 2 2 2 2 2 40 | 3 3 3 3 3 3 3 3 3 3 41 | 3 3 3 3 3 3 3 3 3 3 42 | 4 4 4 4 4 4 4 4 4 4 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 46 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 49 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 50 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 51 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 60 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 62 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_3h.txt: -------------------------------------------------------------------------------- 1 | 0.911423 0.551251 0.116624 0.125386 0.626914 0.016793 0.671938 0.372160 0.098997 0.000767 2 | 0.320518 0.440364 0.038474 0.396103 0.930827 0.360011 0.257684 0.551214 0.843519 0.641971 3 | 0.895374 0.675347 0.223048 0.458308 0.314696 0.650886 0.403278 0.851003 0.981578 0.779111 4 | 0.622367 0.340694 0.573062 0.559459 0.986826 0.005331 0.169870 0.987659 0.931112 0.509275 5 | 0.989188 0.865992 0.821816 0.898679 0.365332 0.230637 0.195630 0.669100 0.480514 0.871977 6 | 0.684973 0.468560 0.982860 0.455540 0.829036 0.768163 0.244592 0.846634 0.822816 0.858909 7 | 0.465134 0.953385 0.064427 0.503876 0.144636 0.160906 0.415777 0.703128 0.821617 0.402242 8 | 0.401150 0.130475 0.310517 0.335458 0.866812 0.232972 0.211110 0.213848 0.020197 0.794479 9 | 0.747691 0.702287 0.828419 0.824905 0.003654 0.489213 0.658088 0.006861 0.290927 0.434293 10 | 0.438599 0.341570 0.411959 0.274320 0.893207 0.668917 0.460840 0.472194 0.196929 0.985040 11 | 12 | 0.779649 0.835374 0.596620 0.506629 0.104007 0.280230 0.084779 0.870717 0.288253 0.746448 13 | 0.387771 0.282733 0.119150 0.228690 0.936908 0.443682 0.738316 0.639580 0.256904 0.675126 14 | 0.391505 0.911236 0.223555 0.837322 0.990636 0.513993 0.172190 0.984204 0.449776 0.878318 15 | 0.433502 0.045337 0.796228 0.139617 0.732255 0.011297 0.469358 0.262515 0.794353 0.640030 16 | 0.265309 0.419443 0.043776 0.664859 0.397710 0.169116 0.232079 0.169454 0.360212 0.920243 17 | 0.220442 0.134944 0.515611 0.095556 0.955974 0.458825 0.913453 0.556177 0.970326 0.878225 18 | 0.415905 0.863284 0.381104 0.541973 0.071947 0.236566 0.186930 0.626338 0.364438 0.409809 19 | 0.647832 0.234986 0.700272 0.504492 0.442625 0.899564 0.702754 0.860259 0.728060 0.827225 20 | 0.070898 0.871044 0.402856 0.943536 0.817596 0.912508 0.104994 0.923561 0.487567 0.245280 21 | 0.186265 0.620379 0.551999 0.183635 0.755057 0.881700 0.800909 0.849841 0.947230 0.225003 22 | 23 | -0.330975 0.039695 -0.469386 -0.225218 0.272051 -0.500559 0.869255 -0.928705 -0.432927 -1.597637 24 | -0.080211 -0.100197 -0.155224 0.214984 -0.495567 -0.188377 -1.479529 -0.149546 1.585433 -0.509275 25 | 0.304041 -0.221338 -0.358652 0.164592 -1.660220 0.460347 0.765366 -0.249870 0.052546 0.421970 26 | -0.012468 -0.220147 -0.300970 0.129792 0.491260 0.416971 -0.583520 -0.121867 0.110044 -0.448714 27 | 0.623675 0.556770 0.618621 0.141643 0.116336 -0.034581 0.423464 0.036634 -0.336761 -0.381406 28 | 0.784150 0.504605 -0.536224 0.830459 0.407659 -0.749047 -0.205381 0.074028 -0.004974 -0.422587 29 | 0.051670 -0.772821 0.213983 -0.549818 -0.468847 1.022588 -0.129944 -0.335620 0.083541 0.036190 30 | 0.422045 0.038696 0.797182 0.404361 -1.090229 -0.558725 -0.110836 -0.289464 1.264804 -0.427527 31 | -1.017903 0.155976 -0.761900 0.118354 1.774194 0.384768 0.110032 0.856963 0.510846 -0.310200 32 | -0.686521 0.789918 0.527928 -0.043174 -0.365313 0.510562 0.345321 0.546127 0.605851 -1.333473 33 | 34 | 2 2 2 2 2 3 3 3 3 3 35 | 2 2 2 2 2 3 3 3 3 0 36 | 2 2 2 2 3 3 3 3 0 0 37 | 2 2 2 2 3 3 3 0 0 0 38 | 2 2 2 3 3 3 0 0 0 0 39 | 2 2 4 3 3 0 0 0 0 0 40 | 4 4 4 4 0 0 0 0 0 1 41 | 4 4 4 4 4 0 0 0 1 1 42 | 4 4 4 4 4 4 0 1 1 1 43 | 4 4 4 4 4 4 1 1 1 1 44 | 45 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 46 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 47 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 0.0 48 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 49 | 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 50 | 1.0 1.0 -2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 51 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 -1.0 52 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 -1.0 -1.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 -1.0 -1.0 -1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 58 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 59 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 61 | -1.0 -1.0 2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 62 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 63 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 0.0 1.0 1.0 1.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_3l.txt: -------------------------------------------------------------------------------- 1 | 0.613801 0.744157 0.567106 0.680480 0.542481 0.857936 0.353706 0.997195 0.919195 0.101564 2 | 0.337759 0.824527 0.038073 0.902470 0.669558 0.323881 0.413435 0.977872 0.469168 0.944186 3 | 0.348136 0.348394 0.506627 0.663298 0.834083 0.644501 0.141544 0.686581 0.346751 0.470832 4 | 0.245202 0.816519 0.853761 0.488708 0.095563 0.017310 0.103096 0.280909 0.322753 0.324857 5 | 0.509472 0.035711 0.800906 0.255741 0.589016 0.530432 0.645357 0.480556 0.695228 0.335107 6 | 0.741911 0.299846 0.628955 0.438385 0.926540 0.683717 0.905604 0.175268 0.179709 0.665550 7 | 0.113892 0.726785 0.058296 0.976442 0.468561 0.219345 0.358131 0.178230 0.554934 0.237567 8 | 0.133170 0.828647 0.759892 0.619403 0.139477 0.153939 0.435538 0.330134 0.685382 0.413926 9 | 0.904785 0.161810 0.404556 0.587989 0.082717 0.046327 0.935242 0.880227 0.433610 0.772534 10 | 0.154678 0.432639 0.191702 0.368925 0.575315 0.933896 0.178629 0.697756 0.937281 0.214643 11 | 12 | 0.300615 0.327206 0.551441 0.288580 0.622363 0.238151 0.775406 0.449957 0.119410 0.791537 13 | 0.493021 0.409696 0.470084 0.059579 0.141146 0.239143 0.448705 0.884057 0.683354 0.162258 14 | 0.381261 0.921344 0.429820 0.864494 0.275946 0.199028 0.073435 0.419423 0.489824 0.386994 15 | 0.470922 0.720839 0.510045 0.394279 0.823367 0.299738 0.207793 0.538299 0.706427 0.171859 16 | 0.889152 0.471537 0.132281 0.902881 0.941020 0.691733 0.242268 0.971133 0.747936 0.820220 17 | 0.070067 0.297263 0.411747 0.362735 0.565295 0.799200 0.614315 0.624325 0.956954 0.274176 18 | 0.838206 0.538305 0.931006 0.282419 0.781439 0.256222 0.649831 0.414698 0.419680 0.042481 19 | 0.995105 0.755937 0.279118 0.117297 0.408083 0.706832 0.581391 0.628567 0.131898 0.033695 20 | 0.097757 0.298970 0.095102 0.597865 0.387418 0.013194 0.823863 0.978422 0.637766 0.852605 21 | 0.182661 0.857127 0.709668 0.841200 0.001499 0.729028 0.173599 0.594014 0.788987 0.425198 22 | 23 | 0.383408 0.382844 0.135149 0.565042 -0.171095 1.144921 -0.776346 1.179007 1.624555 -1.470777 24 | -0.120783 0.524449 -0.682682 0.814024 0.502006 0.164654 -0.125257 -0.060715 -0.479279 0.102988 25 | -0.052465 -0.543447 0.106457 -0.248257 1.008268 0.823397 0.166983 0.561982 0.054422 0.033813 26 | -0.212022 0.097517 0.327575 -0.020550 -1.707314 -0.511298 -0.058236 -0.128878 0.079916 0.132338 27 | -0.471948 -0.472591 0.478728 -1.269285 -0.766006 -0.313032 -0.015613 -0.205481 0.035132 0.055020 28 | 0.544955 -0.008947 -0.328524 0.078777 0.655870 -0.057937 -0.155041 0.130766 0.069073 0.183097 29 | 1.565973 -0.154677 1.651710 -1.323381 0.014920 -0.146572 -0.078009 0.104360 0.110951 -0.215030 30 | 1.638586 -0.021217 -0.946970 -1.007210 0.378643 0.044937 0.037557 -0.042884 -0.461056 -0.432893 31 | -1.803356 0.278520 -0.782288 -0.056741 0.554938 -0.198464 -0.085535 0.144487 0.195166 -0.006450 32 | 0.049389 0.818366 0.935308 1.003633 -1.141418 -0.263633 -0.112897 -0.189897 -0.199367 0.182478 33 | 34 | 2 2 2 2 2 3 3 3 3 3 35 | 2 2 2 2 2 3 3 3 3 0 36 | 2 2 2 2 3 3 3 3 0 0 37 | 2 2 2 2 3 3 3 0 0 0 38 | 2 2 2 3 3 3 0 0 0 0 39 | 2 2 4 3 3 0 0 0 0 0 40 | 4 4 4 4 0 0 0 0 0 1 41 | 4 4 4 4 4 0 0 0 1 1 42 | 4 4 4 4 4 4 0 1 1 1 43 | 4 4 4 4 4 4 1 1 1 1 44 | 45 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 46 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 47 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 0.0 48 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 49 | 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 50 | 1.0 1.0 -2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 51 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 -1.0 52 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 -1.0 -1.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 -1.0 -1.0 -1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 58 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 59 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 61 | -1.0 -1.0 2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 62 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 63 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 0.0 1.0 1.0 1.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_3m.txt: -------------------------------------------------------------------------------- 1 | 0.601352 0.424198 0.955131 0.737238 0.531151 0.764792 0.373839 0.729140 0.456638 0.728006 2 | 0.552122 0.945603 0.569651 0.512799 0.305855 0.213449 0.646936 0.658258 0.003854 0.968419 3 | 0.613868 0.034777 0.757028 0.994673 0.063139 0.911703 0.683176 0.092333 0.790567 0.462538 4 | 0.588508 0.953297 0.819433 0.136370 0.474082 0.852767 0.358226 0.034532 0.254974 0.409081 5 | 0.594634 0.625670 0.713662 0.551026 0.524472 0.392053 0.189006 0.921594 0.044120 0.616349 6 | 0.436799 0.915755 0.590914 0.674076 0.096182 0.799791 0.825884 0.365561 0.856457 0.633374 7 | 0.631333 0.076634 0.047317 0.488062 0.686763 0.925829 0.197102 0.114772 0.965210 0.820570 8 | 0.773869 0.430912 0.689300 0.229768 0.719546 0.381588 0.506143 0.391142 0.874509 0.560310 9 | 0.867278 0.396572 0.706862 0.823297 0.203288 0.926030 0.492525 0.454333 0.778495 0.861872 10 | 0.302742 0.816557 0.801593 0.904950 0.199300 0.813929 0.509457 0.822480 0.322330 0.560025 11 | 12 | 0.524697 0.090680 0.095812 0.919728 0.101993 0.718980 0.389474 0.353220 0.097618 0.598738 13 | 0.426926 0.263499 0.379516 0.469828 0.154822 0.103229 0.242870 0.652003 0.226778 0.113773 14 | 0.475690 0.842726 0.068215 0.507253 0.896481 0.942119 0.363267 0.585672 0.524013 0.597787 15 | 0.019546 0.711299 0.271607 0.304338 0.588906 0.714318 0.924354 0.026672 0.215817 0.070696 16 | 0.390003 0.528221 0.735127 0.059061 0.483528 0.436097 0.770310 0.626265 0.083424 0.343814 17 | 0.027096 0.877329 0.415890 0.618916 0.212224 0.786450 0.822110 0.633371 0.494347 0.239118 18 | 0.168492 0.769659 0.014612 0.331032 0.302113 0.860613 0.411097 0.588122 0.780992 0.163000 19 | 0.349371 0.724881 0.008812 0.663868 0.814471 0.107319 0.837878 0.322965 0.098522 0.220758 20 | 0.416297 0.317107 0.666167 0.230611 0.697067 0.278759 0.835056 0.979374 0.463152 0.238144 21 | 0.276717 0.120217 0.149830 0.175006 0.096052 0.665463 0.084102 0.905548 0.278626 0.533884 22 | 23 | -0.277360 0.350630 1.150188 -0.125030 0.470598 0.301792 -0.129856 0.590443 0.952173 0.189389 24 | 0.228026 0.711640 0.299490 0.277430 0.073267 0.437327 0.896806 0.235690 -0.225801 0.233530 25 | 0.209800 -1.098766 0.988439 0.540872 -1.620874 -0.048552 0.556293 -0.777401 0.049012 -0.200250 26 | 0.462091 -0.117173 0.540800 0.050783 -0.230259 0.594429 -1.151459 0.238927 0.639893 -0.047554 27 | 0.059572 -0.161087 0.040451 0.484937 -0.230543 0.339043 -0.171452 0.098911 -0.093011 0.191662 28 | 0.316715 0.300789 -0.478117 0.068044 -0.402389 -0.090648 0.000495 -0.082803 -0.205399 0.134905 29 | -0.635576 1.425294 -0.035684 -0.336759 0.385831 -0.152447 -0.266507 -0.195462 0.227777 -0.488053 30 | -0.984873 0.977287 -1.371262 1.267407 0.096223 -0.100168 -0.152021 -0.112928 -0.973547 -0.305370 31 | -1.128372 -0.316790 -0.116955 -1.232709 0.866662 -1.535332 0.112366 0.286809 -0.424014 -0.453546 32 | 0.074408 -1.274924 -1.751140 -1.601485 -0.044099 -0.346052 -0.355135 0.045420 -0.341102 0.130285 33 | 34 | 2 2 2 2 2 3 3 3 3 3 35 | 2 2 2 2 2 3 3 3 3 0 36 | 2 2 2 2 3 3 3 3 0 0 37 | 2 2 2 2 3 3 3 0 0 0 38 | 2 2 2 3 3 3 0 0 0 0 39 | 2 2 4 3 3 0 0 0 0 0 40 | 4 4 4 4 0 0 0 0 0 1 41 | 4 4 4 4 4 0 0 0 1 1 42 | 4 4 4 4 4 4 0 1 1 1 43 | 4 4 4 4 4 4 1 1 1 1 44 | 45 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 46 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 47 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 0.0 48 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 49 | 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 50 | 1.0 1.0 -2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 51 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 -1.0 52 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 -1.0 -1.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 -1.0 -1.0 -1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 58 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 59 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 61 | -1.0 -1.0 2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 62 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 63 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 0.0 1.0 1.0 1.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_3n.txt: -------------------------------------------------------------------------------- 1 | 0.810212 0.411306 0.761949 0.432318 0.080810 0.209411 0.072215 0.895528 0.650736 0.561076 2 | 0.347900 0.121670 0.130250 0.469317 0.335476 0.852355 0.050308 0.280990 0.352684 0.111828 3 | 0.647541 0.106172 0.079301 0.032754 0.583649 0.389333 0.797566 0.490666 0.495148 0.804609 4 | 0.125156 0.180440 0.901157 0.491630 0.808647 0.606633 0.053490 0.184005 0.822509 0.512119 5 | 0.449740 0.013710 0.850182 0.725773 0.440446 0.041511 0.268580 0.847135 0.494882 0.343334 6 | 0.478289 0.201525 0.453598 0.382964 0.184165 0.226411 0.998600 0.903039 0.192341 0.681292 7 | 0.949850 0.800844 0.479443 0.942018 0.909644 0.612700 0.839003 0.962420 0.679972 0.430761 8 | 0.445574 0.076641 0.821705 0.205935 0.754881 0.409815 0.759750 0.066929 0.117693 0.289600 9 | 0.895146 0.557830 0.679324 0.635288 0.243736 0.527352 0.678285 0.342100 0.255738 0.637763 10 | 0.300206 0.794364 0.592745 0.329940 0.327024 0.455345 0.636543 0.485579 0.022468 0.092325 11 | 12 | 0.045777 0.720386 0.292533 0.125001 0.535518 0.788778 0.413116 0.047350 0.387500 0.351283 13 | 0.780279 0.816204 0.122466 0.627196 0.884906 0.246485 0.865785 0.913326 0.528708 0.089574 14 | 0.952567 0.883376 0.897911 0.826263 0.578038 0.006662 0.747565 0.211556 0.360544 0.582640 15 | 0.641354 0.472402 0.055540 0.209859 0.977267 0.113347 0.119731 0.259419 0.652772 0.452416 16 | 0.169630 0.261864 0.365773 0.112132 0.621086 0.357488 0.276369 0.613045 0.125817 0.852626 17 | 0.954005 0.275993 0.859399 0.272997 0.822728 0.687609 0.628882 0.823058 0.701413 0.664638 18 | 0.888774 0.885752 0.257988 0.527542 0.490180 0.198852 0.078088 0.101513 0.367698 0.197048 19 | 0.637751 0.868753 0.486074 0.087229 0.413563 0.904113 0.401242 0.255556 0.382186 0.169651 20 | 0.791941 0.488630 0.116564 0.180873 0.929467 0.165876 0.526290 0.083788 0.911835 0.333897 21 | 0.659403 0.240830 0.729157 0.604115 0.716877 0.679130 0.258358 0.708258 0.305798 0.604343 22 | 23 | 0.764435 -0.309079 0.469415 0.307317 -0.454708 -1.158734 -0.681803 1.696355 0.526472 0.419587 24 | -0.432379 -0.694534 0.007785 -0.157879 -0.549430 1.211740 -1.630954 -1.264670 -0.352048 0.000000 25 | -0.305026 -0.777203 -0.818610 -0.793509 0.011223 0.765341 0.100002 0.558222 0.000000 0.000000 26 | -0.516198 -0.291962 0.845617 0.281771 -0.337240 0.986572 -0.132482 0.000000 0.000000 0.000000 27 | 0.280110 -0.248153 0.484410 1.227283 -0.361282 -0.631956 0.000000 0.000000 0.000000 0.000000 28 | -0.475716 -0.074468 0.811602 0.219935 -1.277127 0.000000 0.000000 0.000000 0.000000 0.000000 29 | -0.122152 0.169815 -0.442910 -0.828951 0.000000 0.000000 0.000000 0.000000 0.000000 -0.233712 30 | 0.384353 1.584223 -0.671263 -0.237411 -0.682636 0.000000 0.000000 0.000000 0.264494 -0.119948 31 | -0.206410 -0.138401 -1.125520 -0.908830 1.371462 -0.722952 0.000000 -0.258312 0.656097 -0.303866 32 | 0.718394 -1.107068 0.272824 0.548350 0.779704 0.447570 -0.378185 0.222679 0.283330 0.512018 33 | 34 | 2 2 2 2 2 3 3 3 3 3 35 | 2 2 2 2 2 3 3 3 3 0 36 | 2 2 2 2 3 3 3 3 0 0 37 | 2 2 2 2 3 3 3 0 0 0 38 | 2 2 2 3 3 3 0 0 0 0 39 | 2 2 4 3 3 0 0 0 0 0 40 | 4 4 4 4 0 0 0 0 0 1 41 | 4 4 4 4 4 0 0 0 1 1 42 | 4 4 4 4 4 4 0 1 1 1 43 | 4 4 4 4 4 4 1 1 1 1 44 | 45 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 46 | 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 47 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 0.0 48 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 49 | 1.0 1.0 1.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 50 | 1.0 1.0 -2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 51 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 -1.0 52 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 -1.0 -1.0 53 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 -1.0 -1.0 -1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 57 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 58 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 59 | -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 60 | -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 61 | -1.0 -1.0 2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 62 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 63 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 64 | 2.0 2.0 2.0 2.0 2.0 2.0 0.0 1.0 1.0 1.0 65 | 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_4h.txt: -------------------------------------------------------------------------------- 1 | 0.647651 0.288104 0.232674 0.395852 0.103877 0.714444 0.478575 0.676312 0.023342 0.474802 2 | 0.100681 0.264091 0.606519 0.120659 0.698956 0.392290 0.938439 0.226810 0.302736 0.291185 3 | 0.616990 0.695619 0.423119 0.268309 0.447956 0.572032 0.816964 0.486576 0.718391 0.430899 4 | 0.318462 0.772628 0.247821 0.374896 0.907541 0.209194 0.896013 0.148015 0.904448 0.565128 5 | 0.206550 0.450712 0.879770 0.517179 0.135169 0.153304 0.885891 0.103792 0.506945 0.873918 6 | 0.271892 0.054381 0.420021 0.504011 0.790956 0.801900 0.321672 0.207308 0.755556 0.182301 7 | 0.399756 0.719599 0.937958 0.013382 0.017908 0.917085 0.508049 0.223268 0.846676 0.991768 8 | 0.160096 0.653189 0.394205 0.105055 0.110021 0.194738 0.605334 0.658483 0.121536 0.216912 9 | 0.948897 0.609126 0.700482 0.539767 0.157110 0.841658 0.288251 0.223691 0.452055 0.302566 10 | 0.325783 0.218430 0.734318 0.646016 0.523485 0.606155 0.057161 0.550764 0.977687 0.613262 11 | 12 | 0.858913 0.913492 0.727866 0.873630 0.783306 0.553160 0.902447 0.257446 0.300836 0.652890 13 | 0.875431 0.729871 0.394557 0.075838 0.412957 0.821117 0.231987 0.006016 0.274586 0.297509 14 | 0.464728 0.304162 0.203525 0.839170 0.644902 0.644344 0.378993 0.223125 0.946699 0.460760 15 | 0.998612 0.143016 0.759604 0.026735 0.752104 0.908810 0.197112 0.207538 0.489578 0.681509 16 | 0.689220 0.742237 0.955247 0.125380 0.116368 0.251110 0.824617 0.190380 0.731168 0.278219 17 | 0.644569 0.803471 0.336306 0.853183 0.001825 0.721687 0.621645 0.670811 0.462540 0.374254 18 | 0.487595 0.707267 0.766433 0.728692 0.778784 0.572754 0.579515 0.296223 0.198005 0.700198 19 | 0.478770 0.085024 0.614601 0.931109 0.727638 0.396618 0.135882 0.710792 0.417606 0.784857 20 | 0.809990 0.548691 0.952256 0.769618 0.083202 0.707473 0.817686 0.016740 0.456425 0.083920 21 | 0.748309 0.665025 0.766366 0.785273 0.890923 0.639181 0.560675 0.307437 0.700895 0.638245 22 | 23 | -1.924348 -1.715403 -1.670723 -1.153535 -1.255550 -0.982660 -1.506909 -1.160453 -0.840532 -1.417526 24 | 1.542830 -0.809297 -1.495322 -0.267964 -1.499213 -1.718384 -0.339910 0.034370 -0.989648 -0.773537 25 | -0.135849 -0.625019 -0.394464 0.803273 -0.873250 -1.282974 -1.174327 -0.638672 -2.002002 -1.211398 26 | 1.066993 -1.119895 0.659148 -0.465849 -0.914947 1.332643 -1.565750 -0.554708 -1.562729 0.722597 27 | 0.954270 1.445467 -0.101735 -0.340828 0.016641 0.418942 -0.262904 -0.198322 1.487273 1.527376 28 | 1.334023 1.829683 -0.662614 0.491144 -1.805882 -0.216606 -1.629689 -0.772895 1.395393 0.430274 29 | 1.230368 1.599111 2.131485 1.960375 1.614069 -1.558393 -1.049027 -0.286913 1.827115 1.411744 30 | 0.440596 0.525665 0.942431 1.270239 0.541876 -1.024533 -0.385800 -1.502363 -0.048846 0.186295 31 | 1.716369 0.602515 1.669620 1.259718 0.585242 1.135187 -1.441869 -0.218448 0.809643 0.583528 32 | 1.678823 0.843943 1.639043 1.202250 1.547603 1.172688 0.280009 -0.588519 2.097607 1.080413 33 | 34 | 1 1 1 1 1 1 1 1 1 1 35 | 3 1 1 1 1 1 1 1 1 1 36 | 3 3 3 3 1 1 1 1 1 1 37 | 3 3 3 3 3 3 3 1 1 4 38 | 3 3 3 3 3 3 3 0 4 4 39 | 2 3 3 3 3 3 0 0 4 4 40 | 2 2 2 3 3 0 0 0 4 4 41 | 2 2 2 2 2 0 0 0 4 4 42 | 2 2 2 2 2 2 0 0 4 4 43 | 2 2 2 2 2 2 2 0 4 4 44 | 45 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 46 | -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 47 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 2.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 50 | 1.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 51 | 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 0.0 2.0 2.0 52 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 2.0 2.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 2.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 2.0 2.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 57 | 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 58 | 2.0 2.0 2.0 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 59 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -1.0 -1.0 0.0 60 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 0.0 0.0 61 | 1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 0.0 0.0 62 | 1.0 1.0 1.0 2.0 2.0 -2.0 -2.0 -2.0 0.0 0.0 63 | 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 -2.0 0.0 0.0 64 | 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 65 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_4l.txt: -------------------------------------------------------------------------------- 1 | 0.827826 0.177203 0.607803 0.647910 0.082336 0.716030 0.844867 0.213972 0.913910 0.574020 2 | 0.871472 0.200424 0.943931 0.153926 0.091089 0.044189 0.415204 0.196483 0.755049 0.898461 3 | 0.244341 0.353171 0.705722 0.770206 0.788942 0.688314 0.763157 0.951896 0.464413 0.686949 4 | 0.725407 0.559697 0.970484 0.681962 0.457358 0.488022 0.137483 0.014114 0.547052 0.545960 5 | 0.883285 0.951473 0.987530 0.532355 0.266002 0.072823 0.345042 0.685331 0.745732 0.578171 6 | 0.207758 0.371639 0.713766 0.351986 0.957800 0.176948 0.834575 0.029584 0.537588 0.460549 7 | 0.920086 0.419633 0.761915 0.502695 0.705423 0.899258 0.130621 0.907825 0.850515 0.160292 8 | 0.995238 0.712484 0.977712 0.755463 0.726990 0.214289 0.673979 0.878225 0.427392 0.422878 9 | 0.052314 0.108654 0.534556 0.674108 0.133612 0.231482 0.839818 0.910578 0.585930 0.083639 10 | 0.057701 0.237072 0.784755 0.030229 0.176402 0.321125 0.742355 0.633256 0.147707 0.785073 11 | 12 | 0.708220 0.195311 0.500979 0.694511 0.472827 0.679423 0.177785 0.054720 0.064497 0.739832 13 | 0.485385 0.112569 0.360913 0.336957 0.926388 0.860651 0.615785 0.943640 0.636661 0.655129 14 | 0.943724 0.331667 0.334936 0.975715 0.856385 0.636737 0.794187 0.894744 0.601381 0.378214 15 | 0.627944 0.917420 0.577671 0.432160 0.409033 0.195759 0.289110 0.625547 0.442012 0.322183 16 | 0.462788 0.762308 0.893589 0.967858 0.856518 0.595034 0.372545 0.740940 0.311576 0.959838 17 | 0.820766 0.269173 0.985308 0.116614 0.860519 0.543968 0.149217 0.442427 0.793701 0.320269 18 | 0.114024 0.649270 0.720609 0.527585 0.645179 0.977907 0.459635 0.507274 0.584037 0.277560 19 | 0.383981 0.153894 0.714317 0.372142 0.440793 0.025332 0.556462 0.499656 0.677432 0.141910 20 | 0.697857 0.425729 0.296785 0.549054 0.950065 0.843518 0.980276 0.444504 0.073952 0.745846 21 | 0.945240 0.472277 0.749130 0.998669 0.745297 0.186253 0.235196 0.870230 0.252118 0.968346 22 | 23 | -1.512247 -0.312951 -1.219270 -1.305147 -0.325356 -1.289802 -0.964029 -0.166691 -0.942517 -1.292250 24 | -0.813861 -0.426305 -1.312122 -0.440688 -0.975490 -0.811650 -0.991336 -1.263272 -1.445008 -1.523755 25 | 1.380542 -0.166107 -0.862240 0.599916 -1.624007 -1.324438 -1.651208 -1.743281 -0.923023 -1.048436 26 | -0.354591 0.926726 -0.775289 -0.524993 -0.062506 -0.741514 0.193829 -0.512313 -0.767946 1.050301 27 | -0.828073 -0.490769 -0.093472 0.889290 1.159468 1.052791 -0.039765 -1.709766 1.578270 1.200289 28 | 1.116315 -0.206157 0.607178 -0.440086 -0.306451 0.697310 -0.458674 -0.916483 1.151913 0.989332 29 | 1.054852 1.089264 1.448894 -0.010620 -0.251398 -1.886660 -0.913819 -1.125843 1.470658 0.158394 30 | 1.404699 0.681424 1.816925 0.979745 1.234810 -0.266047 -1.198482 -1.057715 0.751721 0.764369 31 | 0.499342 0.477442 0.772922 0.996587 1.263257 1.104041 -1.914175 -0.858875 1.002033 0.208663 32 | 0.992705 0.787571 1.623085 0.967680 0.903542 0.358755 0.938373 -1.729432 0.380775 1.586578 33 | 34 | 1 1 1 1 1 1 1 1 1 1 35 | 3 1 1 1 1 1 1 1 1 1 36 | 3 3 3 3 1 1 1 1 1 1 37 | 3 3 3 3 3 3 3 1 1 4 38 | 3 3 3 3 3 3 3 0 4 4 39 | 2 3 3 3 3 3 0 0 4 4 40 | 2 2 2 3 3 0 0 0 4 4 41 | 2 2 2 2 2 0 0 0 4 4 42 | 2 2 2 2 2 2 0 0 4 4 43 | 2 2 2 2 2 2 2 0 4 4 44 | 45 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 46 | -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 47 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 2.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 50 | 1.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 51 | 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 0.0 2.0 2.0 52 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 2.0 2.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 2.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 2.0 2.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 57 | 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 58 | 2.0 2.0 2.0 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 59 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -1.0 -1.0 0.0 60 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 0.0 0.0 61 | 1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 0.0 0.0 62 | 1.0 1.0 1.0 2.0 2.0 -2.0 -2.0 -2.0 0.0 0.0 63 | 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 -2.0 0.0 0.0 64 | 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 65 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_4m.txt: -------------------------------------------------------------------------------- 1 | 0.275290 0.156036 0.298461 0.177910 0.096264 0.175871 0.248355 0.104086 0.010686 0.476735 2 | 0.996719 0.456376 0.094668 0.797353 0.959969 0.020013 0.649320 0.590626 0.835329 0.260322 3 | 0.429588 0.699756 0.946887 0.018214 0.172898 0.337531 0.144345 0.842353 0.088630 0.915682 4 | 0.013647 0.720174 0.661169 0.284187 0.725646 0.050208 0.168461 0.959183 0.679251 0.414071 5 | 0.996182 0.416080 0.460284 0.293355 0.993640 0.129474 0.251837 0.112507 0.259913 0.303065 6 | 0.279067 0.592071 0.833584 0.588059 0.416418 0.371042 0.177209 0.250254 0.632198 0.392511 7 | 0.138525 0.805941 0.920804 0.109778 0.174873 0.272880 0.090684 0.214658 0.822594 0.388449 8 | 0.048104 0.252756 0.722536 0.544355 0.621524 0.131192 0.739886 0.468035 0.911992 0.353699 9 | 0.720020 0.314685 0.402129 0.464870 0.055222 0.074381 0.285076 0.754078 0.182778 0.141059 10 | 0.820636 0.174394 0.358135 0.460257 0.239362 0.664099 0.692429 0.666369 0.395323 0.444789 11 | 12 | 0.196245 0.077173 0.377178 0.988190 0.123788 0.716348 0.262901 0.491597 0.918981 0.616926 13 | 0.412419 0.647333 0.831008 0.403780 0.301732 0.810208 0.337070 0.156173 0.241281 0.696245 14 | 0.580266 0.257422 0.307086 0.223422 0.489098 0.329529 0.640106 0.521451 0.275798 0.292742 15 | 0.643602 0.938970 0.279842 0.380822 0.615143 0.260040 0.135653 0.712144 0.019402 0.881646 16 | 0.333257 0.407546 0.155685 0.796189 0.415207 0.527562 0.502271 0.297529 0.185752 0.626979 17 | 0.345669 0.338377 0.177570 0.178790 0.332859 0.919123 0.075453 0.466905 0.019091 0.697732 18 | 0.799190 0.071881 0.825711 0.115467 0.518117 0.293336 0.473349 0.078631 0.127634 0.899737 19 | 0.434600 0.701289 0.873423 0.420809 0.889966 0.557014 0.014225 0.054746 0.431335 0.327705 20 | 0.624578 0.988872 0.962642 0.048027 0.272606 0.025128 0.342294 0.575672 0.421953 0.098084 21 | 0.431081 0.766772 0.219796 0.768503 0.381185 0.887085 0.315971 0.746951 0.057041 0.989171 22 | 23 | 0.046522 -0.188741 -0.401831 -1.334421 -0.061693 -0.694152 -0.262300 -0.783196 -0.840390 -0.918966 24 | -1.367878 -0.746379 -0.936933 -1.091484 -0.959121 -1.056958 -0.943762 -0.910069 -0.902772 -1.037150 25 | 0.270103 -1.088951 -1.175080 0.273066 -0.940271 -0.678518 -0.688897 -1.193561 -0.716260 -1.533395 26 | 1.327345 0.445513 -0.612671 0.332491 0.030418 0.317366 -0.068611 -1.918551 -0.591141 0.513784 27 | -1.107555 -0.074933 -0.595023 1.055227 -1.191194 1.025447 0.644098 -0.825584 0.332651 0.706330 28 | 0.389208 -0.445886 -1.291386 -0.797605 -0.389936 0.814467 -0.325271 -0.763450 1.401275 0.771827 29 | 0.999234 0.547259 1.776269 -0.352839 0.825310 -0.411913 -0.897171 -0.101172 1.429028 1.057506 30 | 0.453747 0.685510 1.603748 1.210132 1.845544 -1.109099 -0.159089 0.049827 1.400611 0.535862 31 | 0.971737 1.174242 1.285269 0.593151 0.629653 -0.242554 -0.834219 -1.189240 0.488572 0.586390 32 | 1.207891 1.037429 0.529470 1.427369 0.784673 1.452251 1.152704 -1.513460 0.965180 1.205230 33 | 34 | 1 1 1 1 1 1 1 1 1 1 35 | 3 1 1 1 1 1 1 1 1 1 36 | 3 3 3 3 1 1 1 1 1 1 37 | 3 3 3 3 3 3 3 1 1 4 38 | 3 3 3 3 3 3 3 0 4 4 39 | 2 3 3 3 3 3 0 0 4 4 40 | 2 2 2 3 3 0 0 0 4 4 41 | 2 2 2 2 2 0 0 0 4 4 42 | 2 2 2 2 2 2 0 0 4 4 43 | 2 2 2 2 2 2 2 0 4 4 44 | 45 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 46 | -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 47 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 2.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 50 | 1.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 51 | 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 0.0 2.0 2.0 52 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 2.0 2.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 2.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 2.0 2.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 57 | 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 58 | 2.0 2.0 2.0 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 59 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -1.0 -1.0 0.0 60 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 0.0 0.0 61 | 1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 0.0 0.0 62 | 1.0 1.0 1.0 2.0 2.0 -2.0 -2.0 -2.0 0.0 0.0 63 | 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 -2.0 0.0 0.0 64 | 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 65 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_4n.txt: -------------------------------------------------------------------------------- 1 | 0.147459 0.703573 0.380370 0.282048 0.353885 0.423528 0.137751 0.346786 0.928054 0.769553 2 | 0.891157 0.767308 0.278946 0.000242 0.210904 0.115488 0.198477 0.286863 0.481351 0.019921 3 | 0.823222 0.738897 0.432670 0.407549 0.083641 0.924006 0.616018 0.797723 0.574092 0.564615 4 | 0.781983 0.432630 0.142930 0.093747 0.481660 0.510990 0.646458 0.890775 0.231236 0.415576 5 | 0.343016 0.114436 0.161103 0.955779 0.278157 0.906544 0.387289 0.224707 0.189926 0.654958 6 | 0.417980 0.828210 0.547959 0.291814 0.548793 0.612069 0.477147 0.784123 0.387867 0.287521 7 | 0.022523 0.392906 0.516538 0.506974 0.717147 0.663611 0.286302 0.100208 0.345683 0.406134 8 | 0.924738 0.601592 0.091990 0.814663 0.744106 0.390320 0.954243 0.335963 0.497501 0.187795 9 | 0.740007 0.852862 0.346703 0.167199 0.154842 0.931972 0.584068 0.871057 0.170203 0.409270 10 | 0.282367 0.394497 0.104599 0.760880 0.394538 0.341927 0.131289 0.033096 0.449323 0.531381 11 | 12 | 0.385661 0.652863 0.646739 0.946480 0.180738 0.687999 0.440312 0.764022 0.002990 0.221535 13 | 0.823528 0.422380 0.312869 0.371859 0.389242 0.038552 0.849402 0.836866 0.882517 0.648558 14 | 0.737629 0.170492 0.547895 0.443460 0.917890 0.689793 0.102392 0.020141 0.742848 0.432786 15 | 0.409183 0.148369 0.901902 0.179930 0.149495 0.429811 0.890680 0.314702 0.081494 0.152844 16 | 0.808258 0.099858 0.931254 0.375089 0.805229 0.134819 0.822270 0.192587 0.430396 0.576134 17 | 0.604928 0.741705 0.758371 0.835454 0.362155 0.599339 0.534606 0.361254 0.953848 0.568098 18 | 0.924222 0.938037 0.245686 0.962122 0.523716 0.925576 0.813232 0.479304 0.790268 0.313105 19 | 0.150458 0.239047 0.063166 0.094937 0.331943 0.003089 0.631297 0.044287 0.109184 0.163667 20 | 0.392336 0.256164 0.920208 0.069024 0.095247 0.632728 0.726269 0.606785 0.982070 0.584522 21 | 0.491064 0.921491 0.441424 0.261967 0.911789 0.065382 0.714949 0.976670 0.035841 0.812691 22 | 23 | -0.533121 -1.356436 -1.027109 -1.228528 -0.534623 -1.111527 -0.578063 -1.110808 -0.931043 -0.991088 24 | -0.135256 -1.189687 -0.591815 -0.372102 -0.600145 -0.154040 -1.047879 -1.123729 -1.363868 -0.668479 25 | -0.171186 -1.136810 0.230450 0.071821 -1.001532 -1.613799 -0.718410 -0.817864 -1.316939 -0.997401 26 | -0.745601 -0.568521 1.517943 0.172367 -0.664330 -0.162358 0.488444 -1.205477 -0.312730 0.831153 27 | 0.930484 -0.029154 1.540303 -1.161379 1.054143 -1.543448 0.869962 -0.385174 0.379853 1.309916 28 | 1.022908 -0.173009 0.420825 1.087279 -0.373276 -0.025462 -1.069211 -0.722508 0.775733 0.575041 29 | 0.946745 1.330943 0.762224 0.910296 -0.386863 -1.851152 -1.626465 -0.958608 0.691367 0.812269 30 | 1.075196 0.840639 0.155156 0.909601 1.076049 -0.006178 -1.262593 -0.088575 0.995002 0.375591 31 | 1.132343 1.109026 1.266911 0.236223 0.250088 1.564699 -1.452537 -1.213570 0.340406 0.818540 32 | 0.773431 1.315988 0.546022 1.022847 1.306327 0.407310 0.846239 -1.953341 0.898646 1.062762 33 | 34 | 1 1 1 1 1 1 1 1 1 1 35 | 3 1 1 1 1 1 1 1 1 1 36 | 3 3 3 3 1 1 1 1 1 1 37 | 3 3 3 3 3 3 3 1 1 4 38 | 3 3 3 3 3 3 3 0 4 4 39 | 2 3 3 3 3 3 0 0 4 4 40 | 2 2 2 3 3 0 0 0 4 4 41 | 2 2 2 2 2 0 0 0 4 4 42 | 2 2 2 2 2 2 0 0 4 4 43 | 2 2 2 2 2 2 2 0 4 4 44 | 45 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 46 | -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 47 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 48 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 2.0 49 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 50 | 1.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 51 | 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 0.0 2.0 2.0 52 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 2.0 2.0 53 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 2.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 2.0 2.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 57 | 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 58 | 2.0 2.0 2.0 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 59 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -1.0 -1.0 0.0 60 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 0.0 0.0 61 | 1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 0.0 0.0 62 | 1.0 1.0 1.0 2.0 2.0 -2.0 -2.0 -2.0 0.0 0.0 63 | 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 -2.0 0.0 0.0 64 | 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 -2.0 0.0 0.0 65 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -2.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_5h.txt: -------------------------------------------------------------------------------- 1 | 0.057458 0.539643 0.015440 0.512341 0.539770 0.112846 0.745823 0.736305 0.321549 0.964658 2 | 0.870558 0.655548 0.557170 0.657797 0.571386 0.694397 0.350233 0.235573 0.715617 0.970249 3 | 0.964508 0.409181 0.395236 0.417556 0.849599 0.531939 0.606097 0.773783 0.043903 0.148771 4 | 0.708000 0.207302 0.042266 0.787011 0.914640 0.657414 0.062529 0.757643 0.854750 0.058398 5 | 0.970101 0.657577 0.836193 0.764797 0.970535 0.216909 0.030873 0.498672 0.822244 0.705254 6 | 0.733418 0.834820 0.464061 0.408673 0.874067 0.600269 0.335970 0.181442 0.875927 0.268387 7 | 0.774850 0.986690 0.169378 0.506629 0.289212 0.896426 0.040121 0.480335 0.270125 0.948477 8 | 0.585308 0.292036 0.106127 0.024306 0.280134 0.760942 0.405581 0.919908 0.291828 0.556175 9 | 0.204854 0.671114 0.294414 0.579274 0.910375 0.117768 0.416995 0.910190 0.608061 0.355595 10 | 0.138689 0.316821 0.331372 0.331790 0.431696 0.360145 0.311965 0.489640 0.851763 0.836826 11 | 12 | 0.981636 0.168564 0.053173 0.645876 0.955200 0.847213 0.320253 0.732287 0.180902 0.534791 13 | 0.297735 0.689983 0.011706 0.566613 0.116250 0.216436 0.726977 0.792047 0.115135 0.365562 14 | 0.958950 0.803245 0.607492 0.468164 0.906418 0.000834 0.110421 0.266423 0.211934 0.225086 15 | 0.707426 0.528219 0.934618 0.942666 0.607370 0.868240 0.384212 0.014319 0.614704 0.888553 16 | 0.124653 0.514662 0.841422 0.555203 0.241709 0.306344 0.128897 0.702849 0.759336 0.407244 17 | 0.532570 0.105035 0.312950 0.796324 0.396795 0.715721 0.340751 0.042016 0.389227 0.313242 18 | 0.477487 0.133244 0.792718 0.636643 0.292225 0.532308 0.379958 0.654235 0.344007 0.938881 19 | 0.003142 0.591128 0.892521 0.217936 0.333349 0.741610 0.423043 0.799611 0.775082 0.358118 20 | 0.102159 0.003108 0.824430 0.881079 0.793112 0.303246 0.124590 0.383611 0.468532 0.687325 21 | 0.494105 0.469205 0.986859 0.498143 0.351820 0.715051 0.178990 0.951943 0.165801 0.346580 22 | 23 | -1.948447 0.147521 0.070269 -1.377938 -1.681884 -0.052053 -1.144953 -0.432802 -0.325976 -1.134805 24 | -0.319804 -0.378022 1.047004 -0.683514 0.256800 0.373877 0.324791 1.066326 -0.793598 -1.201626 25 | -0.903062 -0.538223 -0.364606 -0.909630 -0.012138 -0.597086 -0.055708 0.112951 0.595831 -0.024877 26 | -0.945016 -0.506967 -1.605334 0.257464 0.282481 -0.134634 0.005659 -0.276997 1.534945 1.868905 27 | -0.703588 -0.146374 -0.015729 0.100993 -0.972722 0.102720 -0.042563 0.365103 0.698144 0.862043 28 | 0.020364 -0.905801 -0.171873 0.235388 -0.641797 -0.050839 0.488438 0.181731 1.434821 0.088703 29 | -0.134383 -0.665288 -0.019560 0.234298 0.333257 1.565540 -0.507975 0.505240 0.410776 1.324320 30 | -0.084616 0.661202 0.368948 0.393559 -0.199447 0.573113 0.077676 1.064849 -0.167636 1.104801 31 | -0.046556 -0.669864 0.814030 0.418953 -0.391430 0.116149 0.873568 1.302440 0.795699 -0.181407 32 | 0.772002 0.440750 0.550184 -0.272246 -0.204876 -0.266678 0.138797 -0.008135 1.396184 1.721675 33 | 34 | 4 4 4 4 4 3 0 0 0 0 35 | 4 4 4 4 4 3 3 0 0 0 36 | 4 4 4 4 3 3 3 3 0 0 37 | 4 4 4 1 3 3 3 3 2 0 38 | 1 1 1 1 1 3 2 2 2 2 39 | 1 1 1 1 1 2 2 2 2 2 40 | 1 1 1 1 1 2 2 2 2 2 41 | 1 1 1 1 1 2 2 2 2 2 42 | 1 1 1 1 1 2 2 2 2 2 43 | 1 1 1 1 1 2 2 2 2 2 44 | 45 | 1.0 1.0 1.0 1.0 1.0 0.0 -2.0 -2.0 -2.0 -2.0 46 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 47 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 -2.0 48 | 1.0 1.0 1.0 -1.0 0.0 0.0 0.0 0.0 2.0 -2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 2.0 2.0 2.0 2.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 53 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 54 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 2.0 2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 2.0 2.0 59 | -2.0 -2.0 -2.0 1.0 0.0 0.0 0.0 0.0 -1.0 2.0 60 | 1.0 1.0 1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0 -1.0 61 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_5l.txt: -------------------------------------------------------------------------------- 1 | 0.432777 0.313756 0.711043 0.455108 0.945869 0.621160 0.124275 0.056396 0.419519 0.108260 2 | 0.519242 0.421607 0.509055 0.489959 0.071101 0.301552 0.814184 0.596772 0.371171 0.708314 3 | 0.334076 0.620165 0.555218 0.301352 0.969512 0.491548 0.506879 0.352995 0.124041 0.557164 4 | 0.909722 0.027851 0.358551 0.767345 0.425305 0.404105 0.390128 0.608353 0.418207 0.290026 5 | 0.028800 0.089755 0.696021 0.230301 0.313915 0.644825 0.704793 0.284833 0.745750 0.864318 6 | 0.039072 0.862114 0.473942 0.730043 0.302025 0.775215 0.447190 0.912327 0.421798 0.730910 7 | 0.739060 0.515223 0.701011 0.278045 0.329260 0.505074 0.210598 0.326934 0.157894 0.872312 8 | 0.916296 0.682146 0.764551 0.127732 0.935731 0.859121 0.299562 0.667160 0.593069 0.899961 9 | 0.789012 0.489935 0.248238 0.289642 0.286706 0.383153 0.754987 0.801295 0.977357 0.700879 10 | 0.525044 0.229702 0.140054 0.116343 0.502590 0.134944 0.927325 0.746048 0.218982 0.440817 11 | 12 | 0.180217 0.269353 0.845241 0.093897 0.572742 0.970210 0.465621 0.196691 0.838351 0.559272 13 | 0.709588 0.247726 0.379731 0.310346 0.954493 0.108641 0.564456 0.657699 0.158043 0.509340 14 | 0.609145 0.416920 0.857142 0.264607 0.311745 0.324964 0.342131 0.850928 0.969126 0.565187 15 | 0.943276 0.651004 0.519780 0.212274 0.025127 0.942598 0.006855 0.639695 0.751474 0.624033 16 | 0.692644 0.859149 0.680724 0.013869 0.479037 0.366754 0.506111 0.754484 0.739172 0.655897 17 | 0.245469 0.836983 0.618425 0.125020 0.588217 0.417419 0.742827 0.919805 0.588266 0.473573 18 | 0.771962 0.417737 0.668318 0.774606 0.212084 0.183513 0.937804 0.109877 0.153233 0.959591 19 | 0.134250 0.092903 0.999590 0.925666 0.091183 0.035475 0.569095 0.536405 0.305008 0.866689 20 | 0.660471 0.006005 0.041245 0.070751 0.374155 0.115750 0.103959 0.409782 0.232754 0.208627 21 | 0.780644 0.073868 0.147700 0.463470 0.964094 0.747259 0.393450 0.858266 0.572230 0.607034 22 | 23 | 0.087317 -0.269234 -0.787958 0.135290 -0.149534 -0.131718 0.562897 0.192573 0.879982 0.850409 24 | -0.850547 -0.064188 -0.259261 -0.213623 -1.681552 0.076261 -0.147487 0.137550 -0.449845 -0.420238 25 | -0.895783 -0.103542 -1.249031 -0.255985 -0.048264 0.018603 -0.044820 -0.231003 1.691915 0.023668 26 | -1.292693 -1.224744 -0.569754 -0.617665 0.032278 0.163707 -0.089445 0.052036 0.082985 0.710961 27 | 0.458477 0.635394 -0.055914 -0.316192 0.214039 -0.015256 0.838315 -0.372206 0.743476 1.036613 28 | 0.296171 0.045404 0.221382 -0.595997 0.182782 1.037729 0.140994 0.742449 0.229729 0.891502 29 | 0.129142 -0.093370 0.056555 0.495395 -0.135050 0.751239 -0.371857 0.424454 0.163402 0.518711 30 | -0.626401 -0.577518 0.164683 0.868712 -0.799914 1.808519 0.079969 0.604340 0.822346 0.865694 31 | -0.214898 -0.564571 -0.087273 0.003818 -0.054402 0.814880 1.343415 1.095096 1.801944 1.269250 32 | 0.150076 -0.161299 0.049568 0.414641 0.571064 -0.434186 1.360604 0.718315 -0.176834 0.207132 33 | 34 | 4 4 4 4 4 3 0 0 0 0 35 | 4 4 4 4 4 3 3 0 0 0 36 | 4 4 4 4 3 3 3 3 0 0 37 | 4 4 4 1 3 3 3 3 2 0 38 | 1 1 1 1 1 3 2 2 2 2 39 | 1 1 1 1 1 2 2 2 2 2 40 | 1 1 1 1 1 2 2 2 2 2 41 | 1 1 1 1 1 2 2 2 2 2 42 | 1 1 1 1 1 2 2 2 2 2 43 | 1 1 1 1 1 2 2 2 2 2 44 | 45 | 1.0 1.0 1.0 1.0 1.0 0.0 -2.0 -2.0 -2.0 -2.0 46 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 47 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 -2.0 48 | 1.0 1.0 1.0 -1.0 0.0 0.0 0.0 0.0 2.0 -2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 2.0 2.0 2.0 2.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 53 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 54 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 2.0 2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 2.0 2.0 59 | -2.0 -2.0 -2.0 1.0 0.0 0.0 0.0 0.0 -1.0 2.0 60 | 1.0 1.0 1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0 -1.0 61 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_5m.txt: -------------------------------------------------------------------------------- 1 | 0.865829 0.966406 0.128998 0.192592 0.772297 0.624195 0.440634 0.254781 0.097124 0.664304 2 | 0.557040 0.876499 0.780241 0.868843 0.544621 0.437677 0.069076 0.611063 0.305755 0.565570 3 | 0.394256 0.210029 0.242069 0.433665 0.413029 0.402390 0.059441 0.260856 0.581993 0.981201 4 | 0.136799 0.500525 0.298247 0.763590 0.146943 0.583502 0.262035 0.065179 0.808611 0.736965 5 | 0.592761 0.951248 0.989475 0.257922 0.129990 0.441655 0.513612 0.151377 0.446232 0.361556 6 | 0.734087 0.093356 0.005047 0.141247 0.670206 0.212659 0.513438 0.565514 0.763519 0.788929 7 | 0.597463 0.709617 0.128740 0.045325 0.246992 0.600123 0.685487 0.258230 0.381038 0.654313 8 | 0.279923 0.883747 0.673382 0.509537 0.184063 0.810945 0.997035 0.408734 0.918512 0.152567 9 | 0.304353 0.357997 0.773449 0.200366 0.826214 0.497918 0.214579 0.641810 0.326458 0.824188 10 | 0.489276 0.357887 0.458318 0.089892 0.542525 0.924028 0.643705 0.401697 0.620824 0.499020 11 | 12 | 0.241156 0.697822 0.998895 0.882853 0.348439 0.440438 0.527540 0.321269 0.529683 0.751226 13 | 0.596645 0.284220 0.803820 0.147148 0.707670 0.623661 0.811648 0.095930 0.248796 0.089043 14 | 0.659493 0.288254 0.062372 0.931210 0.704358 0.610005 0.085373 0.849445 0.995621 0.924524 15 | 0.622359 0.226658 0.551814 0.307972 0.203106 0.118051 0.097376 0.572990 0.465568 0.537193 16 | 0.174511 0.581815 0.372413 0.385880 0.087691 0.021148 0.574760 0.977985 0.425269 0.716327 17 | 0.205308 0.480248 0.110034 0.722304 0.344640 0.715604 0.544224 0.747472 0.241671 0.241978 18 | 0.100186 0.152505 0.552838 0.695338 0.681608 0.489915 0.544465 0.964812 0.565558 0.075262 19 | 0.905770 0.107921 0.854520 0.912345 0.954908 0.449365 0.926976 0.955902 0.478231 0.143513 20 | 0.761810 0.095199 0.378282 0.440243 0.022009 0.434007 0.298414 0.361670 0.768045 0.263025 21 | 0.701503 0.119274 0.913902 0.006199 0.944034 0.013049 0.746340 0.348921 0.039456 0.619511 22 | 23 | 0.239374 -0.622819 -1.704765 -1.487319 0.228833 0.035697 0.087171 -0.073336 0.711579 0.293663 24 | -0.431120 0.295512 -1.146323 0.609630 -0.522538 0.047850 0.432103 -0.951582 -0.129309 -0.789244 25 | -0.948660 -0.463193 0.358234 -1.387407 0.066634 0.380252 -0.016829 0.223210 0.850295 0.089831 26 | -1.229361 -0.069811 -0.647727 -0.609467 0.084717 0.236070 0.141284 0.224476 1.002202 0.007038 27 | -0.436931 -0.522995 -0.402353 -0.011397 0.337224 -0.073326 0.333598 -0.614062 0.270834 0.328140 28 | -0.477710 0.349082 0.652261 0.341864 -0.145136 -0.458559 0.521389 0.248087 1.549419 1.275165 29 | -0.392058 -0.526363 0.439528 0.531427 0.609261 0.701386 0.705251 -0.434511 0.453065 1.100117 30 | 0.243626 -0.905656 0.342934 0.205775 0.587798 1.068976 1.071848 -0.268711 1.125199 0.000458 31 | 0.395727 -0.634590 -0.391805 0.326074 -0.758431 0.424576 0.134586 0.925707 -0.117755 1.301578 32 | 0.405129 -0.454182 0.180803 0.159619 0.053541 2.092095 0.500851 0.307414 1.544092 0.617735 33 | 34 | 4 4 4 4 4 3 0 0 0 0 35 | 4 4 4 4 4 3 3 0 0 0 36 | 4 4 4 4 3 3 3 3 0 0 37 | 4 4 4 1 3 3 3 3 2 0 38 | 1 1 1 1 1 3 2 2 2 2 39 | 1 1 1 1 1 2 2 2 2 2 40 | 1 1 1 1 1 2 2 2 2 2 41 | 1 1 1 1 1 2 2 2 2 2 42 | 1 1 1 1 1 2 2 2 2 2 43 | 1 1 1 1 1 2 2 2 2 2 44 | 45 | 1.0 1.0 1.0 1.0 1.0 0.0 -2.0 -2.0 -2.0 -2.0 46 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 47 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 -2.0 48 | 1.0 1.0 1.0 -1.0 0.0 0.0 0.0 0.0 2.0 -2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 2.0 2.0 2.0 2.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 53 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 54 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 2.0 2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 2.0 2.0 59 | -2.0 -2.0 -2.0 1.0 0.0 0.0 0.0 0.0 -1.0 2.0 60 | 1.0 1.0 1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0 -1.0 61 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_5n.txt: -------------------------------------------------------------------------------- 1 | 0.216260 0.051076 0.853016 0.606490 0.286009 0.521279 0.456836 0.359431 0.063134 0.384015 2 | 0.465298 0.597853 0.338659 0.486004 0.667946 0.751929 0.412402 0.422602 0.512833 0.929338 3 | 0.121606 0.248634 0.169583 0.958747 0.447020 0.805699 0.438779 0.771229 0.376815 0.706066 4 | 0.111728 0.818053 0.005112 0.252371 0.933203 0.216420 0.047003 0.043865 0.553776 0.753421 5 | 0.928182 0.221205 0.349004 0.349966 0.378194 0.339911 0.703459 0.019253 0.049612 0.442132 6 | 0.436298 0.550240 0.399043 0.943630 0.113043 0.813904 0.640160 0.204545 0.059588 0.554373 7 | 0.900931 0.190239 0.543822 0.440008 0.044543 0.424097 0.994311 0.640961 0.856722 0.823912 8 | 0.932466 0.707388 0.513518 0.669287 0.933914 0.100222 0.107851 0.074764 0.896345 0.726826 9 | 0.332364 0.872620 0.348105 0.435993 0.177966 0.302498 0.130955 0.595927 0.669070 0.123148 10 | 0.738859 0.179986 0.990849 0.123394 0.319153 0.544936 0.923355 0.612745 0.718255 0.531145 11 | 12 | 0.370129 0.266051 0.391156 0.301886 0.251672 0.954026 0.398977 0.747493 0.372182 0.716693 13 | 0.281894 0.570424 0.105181 0.970306 0.687307 0.265296 0.593241 0.097312 0.791895 0.148323 14 | 0.180322 0.046192 0.691880 0.955861 0.781447 0.900073 0.007519 0.890135 0.646390 0.568735 15 | 0.761438 0.415729 0.801510 0.263263 0.900747 0.480775 0.986857 0.047174 0.769923 0.124226 16 | 0.438990 0.261600 0.241155 0.068292 0.948376 0.835314 0.574288 0.139380 0.434147 0.120680 17 | 0.411756 0.669265 0.714252 0.533449 0.129437 0.559571 0.055138 0.275873 0.328155 0.666556 18 | 0.398332 0.223850 0.537929 0.666826 0.755738 0.313912 0.990648 0.638372 0.880051 0.179252 19 | 0.935753 0.813058 0.989239 0.043069 0.263337 0.178245 0.898443 0.061001 0.575176 0.599593 20 | 0.619536 0.198424 0.188581 0.692883 0.337992 0.744705 0.143537 0.941810 0.554087 0.319507 21 | 0.166649 0.805075 0.250323 0.001102 0.544408 0.901553 0.898907 0.407755 0.351523 0.895929 22 | 23 | -0.523999 -0.481026 0.070705 0.002718 -0.217336 0.000000 -0.115718 0.776124 0.618097 0.665354 24 | -0.098491 -0.542995 0.128297 -1.454607 -0.706668 0.000000 0.000000 -0.650581 0.558123 -1.562031 25 | -0.239038 0.156251 -1.214176 -0.952976 0.000000 0.000000 0.000000 0.000000 0.539151 -0.274661 26 | -1.411149 -0.013406 -1.597908 0.010891 0.000000 0.000000 0.000000 0.000000 0.337628 -1.258390 27 | -0.489192 0.040396 -0.107849 -0.281674 0.570183 0.000000 0.832631 -0.100875 -0.334923 0.763585 28 | -0.024542 0.119025 0.315209 -0.410181 0.016395 1.068238 1.225181 0.133218 -0.208980 0.442189 29 | -0.502600 0.033611 -0.005893 0.226818 0.711195 0.534282 0.997975 0.643550 0.833393 1.468573 30 | 0.003287 0.105670 0.475721 -0.626218 -0.670577 0.022199 -0.682741 0.088528 1.217514 0.854058 31 | 0.287171 -0.674196 -0.159524 0.256890 0.160026 -0.139708 0.118373 0.250044 0.784052 -0.073211 32 | -0.572210 0.625090 -0.740527 -0.122292 0.225254 0.188319 0.947804 0.817735 1.084987 0.166362 33 | 34 | 4 4 4 4 4 3 0 0 0 0 35 | 4 4 4 4 4 3 3 0 0 0 36 | 4 4 4 4 3 3 3 3 0 0 37 | 4 4 4 1 3 3 3 3 2 0 38 | 1 1 1 1 1 3 2 2 2 2 39 | 1 1 1 1 1 2 2 2 2 2 40 | 1 1 1 1 1 2 2 2 2 2 41 | 1 1 1 1 1 2 2 2 2 2 42 | 1 1 1 1 1 2 2 2 2 2 43 | 1 1 1 1 1 2 2 2 2 2 44 | 45 | 1.0 1.0 1.0 1.0 1.0 0.0 -2.0 -2.0 -2.0 -2.0 46 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 47 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 -2.0 48 | 1.0 1.0 1.0 -1.0 0.0 0.0 0.0 0.0 2.0 -2.0 49 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 2.0 2.0 2.0 2.0 50 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 53 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 54 | -1.0 -1.0 -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 2.0 2.0 2.0 2.0 57 | -2.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 2.0 2.0 2.0 58 | -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 2.0 2.0 59 | -2.0 -2.0 -2.0 1.0 0.0 0.0 0.0 0.0 -1.0 2.0 60 | 1.0 1.0 1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0 -1.0 61 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 62 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 63 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 64 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 65 | 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_6h.txt: -------------------------------------------------------------------------------- 1 | 0.160260 0.213169 0.902474 0.220238 0.635601 0.916422 0.098416 0.525126 0.192629 0.585927 2 | 0.180484 0.559161 0.697005 0.124483 0.867494 0.106143 0.941673 0.722149 0.921662 0.776100 3 | 0.660313 0.225604 0.326993 0.133998 0.166391 0.573423 0.799928 0.270690 0.636693 0.432711 4 | 0.410486 0.210852 0.843802 0.366343 0.455239 0.555487 0.277169 0.092521 0.614703 0.796913 5 | 0.942894 0.668152 0.014338 0.793389 0.515089 0.507518 0.885700 0.915729 0.002626 0.096739 6 | 0.982783 0.153091 0.916055 0.078152 0.975957 0.185088 0.530878 0.945789 0.633203 0.935457 7 | 0.421445 0.491857 0.178149 0.434866 0.881710 0.570950 0.141993 0.787756 0.842291 0.292930 8 | 0.644965 0.920856 0.058190 0.122086 0.336469 0.383733 0.374803 0.288680 0.568073 0.971732 9 | 0.647851 0.802236 0.476627 0.350195 0.204972 0.739231 0.974114 0.998940 0.860401 0.410375 10 | 0.341538 0.778551 0.772496 0.180758 0.998807 0.269918 0.164032 0.165359 0.205564 0.598410 11 | 12 | 0.003392 0.981764 0.456077 0.630161 0.962999 0.728702 0.304846 0.831420 0.607554 0.825183 13 | 0.894604 0.760228 0.592493 0.164939 0.366864 0.396279 0.510331 0.481252 0.362401 0.732267 14 | 0.284596 0.921412 0.131041 0.255067 0.366427 0.667434 0.469487 0.426474 0.243115 0.506550 15 | 0.532000 0.553966 0.048599 0.980210 0.114414 0.090428 0.388153 0.872229 0.880277 0.765594 16 | 0.234896 0.771356 0.245799 0.110966 0.467710 0.160440 0.818667 0.248157 0.866508 0.676336 17 | 0.086977 0.583123 0.447839 0.655190 0.214969 0.438435 0.220194 0.827384 0.136926 0.680033 18 | 0.192286 0.275663 0.134045 0.860029 0.195309 0.903179 0.061848 0.918160 0.628825 0.846142 19 | 0.883697 0.051301 0.788422 0.702813 0.512174 0.733950 0.886313 0.590706 0.723832 0.924215 20 | 0.104776 0.489100 0.885022 0.934105 0.750900 0.935826 0.022931 0.736843 0.674617 0.271424 21 | 0.626006 0.475468 0.824892 0.608044 0.942333 0.078495 0.589633 0.815618 0.266096 0.403043 22 | 23 | -0.200404 -1.934713 -1.191334 -1.793202 0.242076 0.172020 0.022723 0.951929 -0.206642 0.016844 24 | -2.385808 -0.745264 0.381038 -0.021602 0.242442 -0.270338 0.330019 0.088692 -0.291921 -0.361112 25 | -0.851789 -1.990036 -0.264174 -0.013133 -0.336530 0.360740 -0.152159 0.103527 -0.228379 -0.577686 26 | -1.480829 -1.443929 0.580626 -0.745852 -0.339841 -0.251354 0.198581 0.260656 0.026635 -1.032995 27 | -1.278025 -2.141247 -0.095315 0.554364 0.169419 -0.344296 -0.111442 -0.106485 0.326139 0.429496 28 | -1.370535 -1.587976 0.483214 0.027664 0.143945 -0.236421 -0.205520 -1.090346 -1.508866 -0.799942 29 | -0.507115 1.199582 0.044878 -0.740036 0.940766 -0.188302 0.118239 -0.680397 -1.270977 0.017064 30 | -2.171985 2.110885 1.146561 1.389379 1.343723 -0.118080 0.426385 -0.302092 0.012667 -1.015714 31 | -0.620691 2.468461 3.143442 2.904939 1.774975 3.642313 -2.355004 -1.089548 -1.120037 -0.334468 32 | -1.412984 2.206698 3.424503 2.303248 4.201265 1.334220 1.235188 0.860124 -0.287545 -0.340906 33 | 34 | 2 2 2 2 4 4 4 3 3 3 35 | 2 4 4 4 4 3 4 3 3 3 36 | 2 2 4 4 4 3 3 3 3 3 37 | 2 2 4 4 3 3 3 3 3 0 38 | 2 2 4 4 4 3 3 3 3 0 39 | 2 2 4 3 3 3 0 0 0 0 40 | 2 1 4 4 4 3 3 0 0 0 41 | 2 1 1 1 1 0 0 0 0 0 42 | 2 1 1 1 1 1 0 0 0 0 43 | 2 1 1 1 1 1 1 0 0 0 44 | 45 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 46 | -1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 47 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 -2.0 49 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 50 | -1.0 -1.0 1.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 -2.0 51 | -1.0 2.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 52 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 -2.0 53 | -1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 54 | -1.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 57 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 58 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 59 | -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 60 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 1.0 61 | -2.0 -2.0 -1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 62 | -2.0 2.0 -1.0 -1.0 -1.0 0.0 0.0 1.0 1.0 1.0 63 | -2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 64 | -2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 65 | -2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_6l.txt: -------------------------------------------------------------------------------- 1 | 0.183717 0.268986 0.075931 0.798335 0.495500 0.620131 0.415772 0.642890 0.475814 0.870782 2 | 0.032562 0.272116 0.152382 0.749093 0.372516 0.547132 0.679044 0.372464 0.777598 0.949172 3 | 0.664643 0.731888 0.150577 0.981024 0.607362 0.024010 0.975488 0.526487 0.550407 0.898789 4 | 0.805684 0.890373 0.423181 0.316890 0.958792 0.915364 0.445176 0.485245 0.321646 0.335449 5 | 0.655466 0.715813 0.495137 0.029313 0.502910 0.670367 0.042960 0.109611 0.734254 0.448084 6 | 0.761013 0.351005 0.921772 0.605846 0.858047 0.536395 0.702062 0.460571 0.627321 0.158184 7 | 0.229754 0.494363 0.930603 0.718512 0.663628 0.359462 0.232965 0.741123 0.167700 0.420399 8 | 0.972594 0.706037 0.829429 0.031048 0.355072 0.710970 0.104121 0.651266 0.219975 0.739546 9 | 0.434654 0.011839 0.161329 0.007515 0.925663 0.133584 0.108190 0.333068 0.810618 0.430112 10 | 0.027255 0.860549 0.927447 0.772170 0.518106 0.698593 0.932846 0.130374 0.282808 0.231463 11 | 12 | 0.343513 0.247267 0.106319 0.013126 0.820879 0.552444 0.099864 0.119368 0.576920 0.522661 13 | 0.416718 0.136638 0.161376 0.964779 0.762492 0.312210 0.807861 0.973455 0.847106 0.804896 14 | 0.131422 0.057971 0.566109 0.329464 0.881742 0.509368 0.266413 0.229667 0.744853 0.443735 15 | 0.038683 0.610181 0.049169 0.638929 0.421073 0.195304 0.710765 0.047678 0.555419 0.497192 16 | 0.510729 0.584230 0.390802 0.901440 0.372408 0.442694 0.046333 0.067709 0.310472 0.529241 17 | 0.239349 0.918162 0.968068 0.113864 0.503846 0.187747 0.609318 0.090592 0.463931 0.685942 18 | 0.936541 0.373669 0.530746 0.680594 0.454945 0.174149 0.156492 0.435623 0.869917 0.108754 19 | 0.890796 0.720925 0.153517 0.465397 0.778112 0.806207 0.969653 0.081593 0.053955 0.175063 20 | 0.016594 0.831055 0.977308 0.208214 0.599973 0.417016 0.444579 0.856724 0.255544 0.110444 21 | 0.335161 0.297457 0.438769 0.424944 0.117314 0.881681 0.512882 0.426936 0.282716 0.672010 22 | 23 | -0.884498 -0.716017 -0.349545 -0.925398 -0.364847 0.201930 0.189556 -0.007011 -0.122963 -0.134871 24 | -0.759359 0.108961 0.023108 -0.346177 -0.290671 -0.022355 -0.098530 0.050415 0.076189 -0.225188 25 | -0.825305 -0.974673 -0.405821 0.639538 -0.274934 -0.115385 -0.099081 0.095641 -0.009841 0.030289 26 | -0.877451 -2.082120 0.320838 -0.425914 -0.061882 -0.125674 0.126142 0.176259 0.071971 -0.140167 27 | -1.692029 -1.819780 0.158792 -0.850288 -0.018421 0.146751 -0.191355 0.090185 -0.029456 -0.492267 28 | -1.243490 -2.101084 -0.000606 0.021084 -0.133118 -0.027048 -0.695239 -0.634810 -0.803245 0.561732 29 | -1.892330 1.752172 0.506975 0.022276 0.227188 -0.058750 -0.081129 -1.026720 0.459859 -0.641994 30 | -2.760681 2.963535 1.844074 1.090749 2.238113 -0.763122 0.730764 -1.168708 -0.377172 -1.281405 31 | -0.357265 1.728596 2.261208 0.395315 2.977044 1.133315 0.241510 0.215046 -1.392243 -0.843189 32 | -0.554272 2.362673 2.772273 2.207355 1.231811 3.064620 2.778485 0.075349 -0.258108 0.134226 33 | 34 | 2 2 2 2 4 4 4 3 3 3 35 | 2 4 4 4 4 3 4 3 3 3 36 | 2 2 4 4 4 3 3 3 3 3 37 | 2 2 4 4 3 3 3 3 3 0 38 | 2 2 4 4 4 3 3 3 3 0 39 | 2 2 4 3 3 3 0 0 0 0 40 | 2 1 4 4 4 3 3 0 0 0 41 | 2 1 1 1 1 0 0 0 0 0 42 | 2 1 1 1 1 1 0 0 0 0 43 | 2 1 1 1 1 1 1 0 0 0 44 | 45 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 46 | -1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 47 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 -2.0 49 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 50 | -1.0 -1.0 1.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 -2.0 51 | -1.0 2.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 52 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 -2.0 53 | -1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 54 | -1.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 57 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 58 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 59 | -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 60 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 1.0 61 | -2.0 -2.0 -1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 62 | -2.0 2.0 -1.0 -1.0 -1.0 0.0 0.0 1.0 1.0 1.0 63 | -2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 64 | -2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 65 | -2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_6m.txt: -------------------------------------------------------------------------------- 1 | 0.819323 0.549744 0.252434 0.792436 0.812244 0.456814 0.310782 0.086702 0.309334 0.736849 2 | 0.230966 0.521943 0.898476 0.792452 0.131714 0.195035 0.670538 0.317694 0.006241 0.597776 3 | 0.552255 0.082245 0.180263 0.310178 0.664573 0.772199 0.350099 0.602943 0.011422 0.654531 4 | 0.957027 0.530909 0.274021 0.681137 0.954748 0.694173 0.211672 0.243272 0.865338 0.108443 5 | 0.948014 0.062378 0.754361 0.680846 0.415261 0.618609 0.628264 0.957431 0.740074 0.112685 6 | 0.302192 0.312645 0.871412 0.122307 0.983909 0.421239 0.578567 0.455931 0.576518 0.125147 7 | 0.775072 0.167677 0.075986 0.578337 0.565249 0.962712 0.826819 0.292927 0.851704 0.368132 8 | 0.798750 0.677743 0.438612 0.555677 0.486408 0.233901 0.306615 0.937384 0.219168 0.611280 9 | 0.484280 0.458058 0.557114 0.822622 0.888769 0.051644 0.817770 0.653335 0.933757 0.657829 10 | 0.907783 0.324808 0.138691 0.244561 0.581713 0.593470 0.450782 0.552190 0.511780 0.786638 11 | 12 | 0.098773 0.239816 0.752393 0.196116 0.914223 0.295461 0.278825 0.045782 0.493223 0.024282 13 | 0.276513 0.659593 0.182331 0.148605 0.838135 0.110729 0.773345 0.041811 0.805823 0.862289 14 | 0.474371 0.236954 0.359937 0.037775 0.941519 0.946417 0.901362 0.928295 0.095191 0.664175 15 | 0.725468 0.637616 0.748961 0.120792 0.243341 0.374948 0.665898 0.388372 0.684247 0.891697 16 | 0.345888 0.731736 0.335467 0.121999 0.200387 0.761705 0.693466 0.307080 0.887919 0.817877 17 | 0.175753 0.609470 0.715147 0.397949 0.809335 0.579365 0.771659 0.628371 0.159004 0.667343 18 | 0.483878 0.443128 0.679060 0.371861 0.362612 0.364856 0.078270 0.892889 0.681222 0.445976 19 | 0.608644 0.278337 0.299665 0.638150 0.718228 0.160858 0.672196 0.074997 0.255929 0.710240 20 | 0.256229 0.946294 0.650312 0.393859 0.832330 0.559547 0.302995 0.277660 0.182519 0.999666 21 | 0.894839 0.753977 0.257646 0.752170 0.646769 0.519377 0.622040 0.669023 0.434538 0.211911 22 | 23 | -1.080520 -1.079178 -1.570684 -1.287823 0.263363 -0.135681 0.100600 -0.092421 0.328648 -0.311350 24 | -0.362644 -0.153343 0.637501 0.485306 -0.421734 -0.552438 0.088697 -0.005174 0.053109 -0.224697 25 | -1.407972 -0.764838 0.044992 0.071961 -0.074093 -0.140324 0.200916 -0.064518 -0.121249 -0.035263 26 | -2.516265 -1.948377 -0.653609 0.394707 -0.020996 0.078412 0.367387 -0.090503 -0.348487 0.774585 27 | -1.819569 -1.547285 0.225588 0.651725 0.078998 0.048167 -0.157122 0.124778 -0.098536 0.369426 28 | -0.302898 -1.149566 0.330866 -0.080351 0.111317 0.202923 -0.533234 -0.535026 -0.943694 0.634185 29 | -1.449532 1.312403 -0.876734 0.246073 -0.138902 0.129407 0.165340 0.694085 -0.850173 -0.425583 30 | -1.837771 1.816233 1.534179 2.298902 2.331917 -0.339146 0.023107 -1.880181 -0.191398 -0.386183 31 | -0.908263 2.701629 2.176081 2.603978 3.539196 1.119525 -1.346492 -0.857081 -1.434115 -0.241947 32 | -2.691359 2.048056 1.059796 2.243653 2.432514 2.332112 1.829591 -0.403312 -0.624239 -1.275131 33 | 34 | 2 2 2 2 4 4 4 3 3 3 35 | 2 4 4 4 4 3 4 3 3 3 36 | 2 2 4 4 4 3 3 3 3 3 37 | 2 2 4 4 3 3 3 3 3 0 38 | 2 2 4 4 4 3 3 3 3 0 39 | 2 2 4 3 3 3 0 0 0 0 40 | 2 1 4 4 4 3 3 0 0 0 41 | 2 1 1 1 1 0 0 0 0 0 42 | 2 1 1 1 1 1 0 0 0 0 43 | 2 1 1 1 1 1 1 0 0 0 44 | 45 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 46 | -1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 47 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 -2.0 49 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 50 | -1.0 -1.0 1.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 -2.0 51 | -1.0 2.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 52 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 -2.0 53 | -1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 54 | -1.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 57 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 58 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 59 | -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 60 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 1.0 61 | -2.0 -2.0 -1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 62 | -2.0 2.0 -1.0 -1.0 -1.0 0.0 0.0 1.0 1.0 1.0 63 | -2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 64 | -2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 65 | -2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_6n.txt: -------------------------------------------------------------------------------- 1 | 0.109353 0.919624 0.411863 0.540163 0.198901 0.872028 0.240974 0.608726 0.584121 0.810882 2 | 0.713960 0.187353 0.430272 0.165867 0.532633 0.715826 0.458126 0.687567 0.370415 0.144083 3 | 0.254063 0.204713 0.190149 0.393492 0.597699 0.151490 0.260802 0.101225 0.886084 0.413397 4 | 0.653511 0.653479 0.271408 0.545883 0.488178 0.176527 0.460888 0.698403 0.631553 0.442464 5 | 0.281343 0.237111 0.362524 0.030036 0.057032 0.117835 0.227462 0.581336 0.224639 0.826283 6 | 0.355711 0.294940 0.043046 0.097155 0.936401 0.041658 0.040778 0.830598 0.452531 0.978393 7 | 0.722996 0.835924 0.207041 0.830287 0.372206 0.237231 0.082702 0.773219 0.210049 0.663021 8 | 0.921677 0.345142 0.644548 0.766522 0.091305 0.428421 0.904037 0.947281 0.360041 0.423141 9 | 0.665757 0.522275 0.054660 0.189573 0.233090 0.983462 0.049610 0.653491 0.811907 0.912241 10 | 0.234846 0.592385 0.172731 0.870834 0.096617 0.309692 0.950653 0.864985 0.046944 0.095184 11 | 12 | 0.535898 0.683018 0.627729 0.179253 0.265237 0.287888 0.209649 0.000110 0.551496 0.929228 13 | 0.467473 0.117106 0.986354 0.286761 0.244336 0.130191 0.101267 0.329847 0.427456 0.767746 14 | 0.312088 0.222012 0.370315 0.209278 0.603116 0.077456 0.930195 0.569770 0.095620 0.730704 15 | 0.271807 0.762202 0.912533 0.773159 0.805139 0.767673 0.573854 0.309414 0.982768 0.642357 16 | 0.239983 0.169702 0.693075 0.170490 0.790889 0.211549 0.147284 0.854223 0.789369 0.081376 17 | 0.102900 0.312147 0.078966 0.101737 0.374550 0.781264 0.247040 0.683543 0.693847 0.313180 18 | 0.492930 0.472875 0.034655 0.097732 0.313557 0.450865 0.481679 0.857053 0.923759 0.899693 19 | 0.209564 0.992458 0.397930 0.953456 0.391841 0.825678 0.984210 0.240834 0.435947 0.452815 20 | 0.325457 0.451537 0.674423 0.439690 0.882399 0.643664 0.379330 0.855791 0.906073 0.214835 21 | 0.554442 0.114351 0.929763 0.697925 0.827794 0.059322 0.153552 0.315564 0.824016 0.177298 22 | 23 | -1.181149 -2.285661 -1.667322 -0.898668 -0.066335 0.584140 0.031325 0.000000 0.000000 0.000000 24 | -1.648905 0.070246 -0.556082 -0.120893 0.288297 0.000000 0.356859 0.000000 0.000000 0.000000 25 | -0.878240 -0.648736 -0.180165 0.184214 -0.005417 0.000000 0.000000 0.000000 0.000000 0.000000 26 | -1.197125 -2.177882 -0.641125 -0.227276 0.000000 0.000000 0.000000 0.000000 0.000000 -0.242571 27 | -0.761309 -0.576514 -0.330551 -0.140454 -0.733858 0.000000 0.000000 0.000000 0.000000 -1.571189 28 | -0.561512 -0.919233 -0.035920 0.000000 0.000000 0.000000 0.165484 -0.977653 -0.211215 -1.643606 29 | -1.708856 2.617599 0.172385 0.732556 0.058648 0.000000 0.000000 -0.689385 0.503660 -0.426348 30 | -1.340805 2.675199 2.084955 3.439956 0.966291 -0.031163 -0.823864 -1.653728 -0.284136 -0.393468 31 | -1.316671 1.947624 1.458166 1.258526 2.230979 3.254252 0.280110 -0.451191 -0.717741 -1.609647 32 | -1.343729 1.413472 2.204987 3.137518 1.848823 0.738028 2.208409 -1.414406 0.730128 -0.013071 33 | 34 | 2 2 2 2 4 4 4 3 3 3 35 | 2 4 4 4 4 3 4 3 3 3 36 | 2 2 4 4 4 3 3 3 3 3 37 | 2 2 4 4 3 3 3 3 3 0 38 | 2 2 4 4 4 3 3 3 3 0 39 | 2 2 4 3 3 3 0 0 0 0 40 | 2 1 4 4 4 3 3 0 0 0 41 | 2 1 1 1 1 0 0 0 0 0 42 | 2 1 1 1 1 1 0 0 0 0 43 | 2 1 1 1 1 1 1 0 0 0 44 | 45 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 46 | -1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 47 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 -2.0 49 | -1.0 -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 -2.0 50 | -1.0 -1.0 1.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 -2.0 51 | -1.0 2.0 1.0 1.0 1.0 0.0 0.0 -2.0 -2.0 -2.0 52 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 -2.0 53 | -1.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 -2.0 54 | -1.0 2.0 2.0 2.0 2.0 2.0 2.0 -2.0 -2.0 -2.0 55 | 56 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 57 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 0.0 58 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 59 | -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 60 | -2.0 -2.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 1.0 61 | -2.0 -2.0 -1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 62 | -2.0 2.0 -1.0 -1.0 -1.0 0.0 0.0 1.0 1.0 1.0 63 | -2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 64 | -2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 65 | -2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_7h.txt: -------------------------------------------------------------------------------- 1 | 0.365798 0.451266 0.340408 0.705555 0.286748 0.609897 0.463627 0.060956 0.831352 0.918223 2 | 0.618816 0.612237 0.339117 0.244799 0.134202 0.901004 0.797713 0.134079 0.142317 0.301861 3 | 0.777232 0.354638 0.164860 0.515916 0.419461 0.876901 0.550611 0.309747 0.001588 0.661509 4 | 0.979909 0.823152 0.721171 0.414730 0.557351 0.049024 0.081489 0.774453 0.041127 0.938114 5 | 0.625956 0.191410 0.700730 0.063087 0.437437 0.668867 0.182530 0.976854 0.195570 0.747154 6 | 0.382807 0.340131 0.225175 0.019344 0.604834 0.469570 0.374425 0.810368 0.038658 0.414279 7 | 0.472492 0.490965 0.277926 0.732784 0.848841 0.588084 0.318415 0.580829 0.883301 0.955163 8 | 0.042978 0.907368 0.999270 0.455890 0.464349 0.934579 0.276249 0.031096 0.012434 0.689179 9 | 0.023508 0.131672 0.017594 0.745307 0.115597 0.998334 0.476707 0.053117 0.440576 0.850350 10 | 0.606375 0.964110 0.929011 0.064168 0.018092 0.570047 0.129536 0.560138 0.111745 0.490919 11 | 12 | 0.768917 0.052341 0.811197 0.251629 0.555217 0.274168 0.623532 0.274836 0.038264 0.313597 13 | 0.757453 0.718082 0.265636 0.600881 0.309060 0.801594 0.781955 0.498969 0.178981 0.219535 14 | 0.064783 0.223339 0.265438 0.541059 0.351233 0.062003 0.799301 0.805117 0.834425 0.541008 15 | 0.962570 0.368179 0.600551 0.849812 0.612448 0.124473 0.170306 0.156934 0.433922 0.553410 16 | 0.592616 0.839289 0.662562 0.586167 0.422436 0.849470 0.507466 0.825845 0.018308 0.419905 17 | 0.890475 0.786230 0.691770 0.451722 0.547857 0.651463 0.085747 0.670476 0.537775 0.547200 18 | 0.146933 0.811135 0.380125 0.735712 0.653919 0.452713 0.191776 0.157773 0.884545 0.898643 19 | 0.229153 0.109872 0.462321 0.022859 0.851588 0.371734 0.122780 0.133367 0.891928 0.053826 20 | 0.963483 0.653989 0.979742 0.546999 0.169933 0.260119 0.030973 0.292494 0.769211 0.608654 21 | 0.341807 0.068362 0.921455 0.305448 0.029340 0.107886 0.480251 0.583273 0.315102 0.384313 22 | 23 | 0.984707 -0.211005 1.074904 -0.049541 0.354576 1.042407 1.355981 0.741309 -0.093884 0.687655 24 | 0.327059 0.338255 0.187496 -0.003956 0.543279 0.940857 2.022834 1.822365 0.166598 0.303313 25 | -0.927191 -0.197835 0.144148 0.061147 -0.041089 -1.388558 1.487307 1.905189 2.146099 1.082896 26 | 0.013898 -1.142123 0.357493 0.434332 0.185493 -0.497980 0.345000 0.703135 0.830921 1.241074 27 | -0.475095 0.949229 -0.744417 -0.963339 0.246702 -2.236797 0.158980 1.100355 1.052060 0.646219 28 | 0.582493 -1.422217 -1.268200 -0.676741 0.139832 -1.363200 -1.082944 0.837496 0.133220 0.589843 29 | 0.706003 -0.428485 -0.731683 -0.167010 -2.297012 -1.706022 0.239712 0.303845 0.846286 0.863752 30 | -0.281306 1.400668 1.287640 1.089881 -1.262870 0.928812 0.367240 -0.288440 0.631298 0.592336 31 | -2.211765 -0.788808 -1.172268 -2.041719 -0.647269 0.486274 0.926414 0.038755 0.301773 0.380485 32 | -1.769974 -1.898859 -2.754013 -0.915249 -0.347323 0.162567 0.341003 0.982901 0.303340 0.693847 33 | 34 | 2 2 2 2 0 0 0 0 0 0 35 | 2 2 2 2 0 0 0 0 0 0 36 | 2 2 2 2 2 3 0 0 0 0 37 | 2 2 2 2 2 3 0 1 0 0 38 | 2 2 2 4 4 3 1 1 1 1 39 | 2 4 4 4 4 3 3 1 1 1 40 | 4 4 4 4 3 3 1 1 1 1 41 | 4 4 4 4 3 1 1 1 1 1 42 | 4 3 3 3 3 1 1 1 1 1 43 | 3 3 3 3 3 1 1 1 1 1 44 | 45 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 46 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 1.0 0.0 0.0 49 | -1.0 -1.0 -1.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 50 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 51 | 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 52 | 2.0 2.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 1.0 53 | 2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 2.0 2.0 2.0 59 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 0.0 2.0 2.0 60 | 1.0 1.0 1.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 61 | 1.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 62 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 63 | -2.0 -2.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 0.0 64 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_7l.txt: -------------------------------------------------------------------------------- 1 | 0.878646 0.426216 0.580833 0.736168 0.728194 0.052402 0.474528 0.836901 0.988627 0.098065 2 | 0.864806 0.069241 0.005279 0.784801 0.827307 0.151907 0.994476 0.756926 0.540747 0.586085 3 | 0.456008 0.311351 0.492734 0.802731 0.282466 0.733522 0.839766 0.588030 0.516955 0.665259 4 | 0.351469 0.596744 0.789112 0.370935 0.252461 0.326148 0.317709 0.337936 0.910313 0.841614 5 | 0.521283 0.676161 0.249618 0.218393 0.957576 0.519727 0.224193 0.071448 0.031842 0.804336 6 | 0.739779 0.144108 0.334636 0.056458 0.159186 0.511150 0.333157 0.918040 0.289155 0.257754 7 | 0.063620 0.462895 0.003960 0.337266 0.733714 0.609687 0.340005 0.090020 0.528196 0.772984 8 | 0.368614 0.804503 0.633648 0.886491 0.961338 0.710597 0.397266 0.064521 0.557901 0.815485 9 | 0.616739 0.877517 0.130317 0.249533 0.033004 0.872927 0.085727 0.057359 0.477728 0.495904 10 | 0.666880 0.571301 0.892718 0.756431 0.678994 0.574127 0.905915 0.827094 0.198548 0.187919 11 | 12 | 0.884870 0.741652 0.653793 0.941143 0.164074 0.822308 0.117634 0.943268 0.044625 0.295523 13 | 0.290250 0.536873 0.939664 0.894464 0.762874 0.656377 0.157997 0.926686 0.454769 0.749257 14 | 0.236961 0.330153 0.243938 0.756736 0.247720 0.601238 0.149107 0.589968 0.968759 0.451399 15 | 0.860892 0.697864 0.470538 0.182623 0.687014 0.106310 0.247683 0.097383 0.777115 0.880129 16 | 0.358204 0.661244 0.370660 0.302067 0.238673 0.191779 0.762050 0.664538 0.027948 0.364507 17 | 0.931381 0.779696 0.910681 0.443212 0.330085 0.050670 0.926630 0.935722 0.317501 0.848016 18 | 0.995075 0.328781 0.122687 0.473677 0.845005 0.173296 0.600681 0.995497 0.959495 0.342706 19 | 0.633943 0.917192 0.637207 0.275054 0.386988 0.638054 0.178440 0.437558 0.355910 0.561775 20 | 0.478952 0.779988 0.859574 0.253949 0.821812 0.030977 0.146801 0.919791 0.683920 0.533853 21 | 0.871732 0.918737 0.919508 0.681664 0.794264 0.777687 0.780162 0.476310 0.436922 0.328907 22 | 23 | -0.077239 0.326220 0.007670 0.178921 0.227702 1.624801 0.082087 1.956090 0.080612 0.554138 24 | -0.516420 0.298715 0.881168 0.266429 1.496426 1.230844 0.373896 1.683975 0.693748 1.565107 25 | -0.258345 0.186888 -0.240552 -0.170105 -0.244316 -1.924733 0.079660 1.215669 2.053288 0.957836 26 | 0.439954 0.091180 -0.320462 -0.022663 0.300723 -0.729559 0.393247 0.205168 1.451061 1.742053 27 | -0.216487 -0.218150 0.100498 -0.215006 1.346429 -1.149189 0.222633 0.107485 0.030479 0.997888 28 | 0.179382 -1.202699 -1.038280 -0.713752 -0.508525 -0.977318 -1.662854 0.930460 0.393302 0.121947 29 | -2.025168 0.203904 -0.204085 -0.297118 -2.326014 -1.258112 0.302637 -0.041505 0.590057 0.628708 30 | -0.453150 -0.262586 -0.084117 1.274579 -2.204743 0.630997 0.467286 0.288739 0.317336 0.808610 31 | 0.465157 -2.509523 -1.154453 -0.929108 -0.956777 0.985999 0.079165 0.077580 0.406469 0.505629 32 | -2.224123 -2.263783 -2.732747 -2.237102 -2.025819 0.517167 1.189707 0.883158 0.326308 0.277593 33 | 34 | 2 2 2 2 0 0 0 0 0 0 35 | 2 2 2 2 0 0 0 0 0 0 36 | 2 2 2 2 2 3 0 0 0 0 37 | 2 2 2 2 2 3 0 1 0 0 38 | 2 2 2 4 4 3 1 1 1 1 39 | 2 4 4 4 4 3 3 1 1 1 40 | 4 4 4 4 3 3 1 1 1 1 41 | 4 4 4 4 3 1 1 1 1 1 42 | 4 3 3 3 3 1 1 1 1 1 43 | 3 3 3 3 3 1 1 1 1 1 44 | 45 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 46 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 1.0 0.0 0.0 49 | -1.0 -1.0 -1.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 50 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 51 | 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 52 | 2.0 2.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 1.0 53 | 2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 2.0 2.0 2.0 59 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 0.0 2.0 2.0 60 | 1.0 1.0 1.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 61 | 1.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 62 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 63 | -2.0 -2.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 0.0 64 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_7m.txt: -------------------------------------------------------------------------------- 1 | 0.429380 0.234861 0.026142 0.297395 0.672330 0.367869 0.375267 0.054707 0.087045 0.256253 2 | 0.882681 0.025696 0.698595 0.006497 0.372329 0.908188 0.158694 0.810045 0.547025 0.577168 3 | 0.637351 0.682767 0.657805 0.383761 0.789361 0.127513 0.826568 0.819440 0.615969 0.856964 4 | 0.725731 0.329794 0.735444 0.235373 0.445560 0.362102 0.195688 0.291282 0.121429 0.656735 5 | 0.161965 0.012987 0.004376 0.980396 0.207035 0.524886 0.205745 0.161191 0.033474 0.895232 6 | 0.685844 0.515081 0.879226 0.324154 0.955994 0.859779 0.024345 0.679781 0.452237 0.723063 7 | 0.856716 0.657131 0.694060 0.935484 0.055689 0.437002 0.041908 0.992591 0.689579 0.183414 8 | 0.306053 0.007537 0.478727 0.207563 0.765213 0.957216 0.570518 0.331902 0.629192 0.533523 9 | 0.842906 0.384546 0.475688 0.806969 0.604928 0.046385 0.034608 0.227284 0.270502 0.313071 10 | 0.244762 0.005957 0.295086 0.286189 0.289009 0.552581 0.744265 0.569632 0.561946 0.961751 11 | 12 | 0.716914 0.146695 0.112579 0.103189 0.721740 0.084663 0.870434 0.031869 0.144649 0.133577 13 | 0.116617 0.549813 0.705896 0.415940 0.148349 0.834773 0.931106 0.795384 0.130831 0.292769 14 | 0.171595 0.234442 0.283311 0.365823 0.435973 0.457402 0.399887 0.838934 0.542230 0.545533 15 | 0.170741 0.819672 0.677578 0.504368 0.079249 0.949261 0.574201 0.602808 0.908149 0.848619 16 | 0.365014 0.868606 0.879859 0.406246 0.559060 0.110540 0.004382 0.944530 0.365494 0.545314 17 | 0.732397 0.065357 0.182183 0.042929 0.126028 0.108275 0.436624 0.028255 0.690510 0.151747 18 | 0.161388 0.891975 0.530102 0.248141 0.395935 0.062764 0.783821 0.707550 0.093115 0.691898 19 | 0.231157 0.054911 0.472161 0.114023 0.150132 0.633709 0.487052 0.123144 0.129725 0.090950 20 | 0.958915 0.980713 0.807519 0.680708 0.219046 0.453097 0.197534 0.265843 0.908148 0.790178 21 | 0.325834 0.620512 0.163425 0.244850 0.867680 0.776957 0.847600 0.010350 0.221766 0.365159 22 | 23 | 0.052346 0.092561 0.084609 -0.384076 1.727577 0.392242 1.798509 0.015725 0.498683 0.437773 24 | -0.633928 0.649126 -0.077228 0.037784 0.355254 1.656976 1.669364 1.728434 0.359310 0.242244 25 | -0.594384 -0.482744 -0.302846 0.306602 -0.410346 -0.589477 0.683558 1.694390 0.921783 1.300002 26 | -0.786298 0.530633 0.084165 0.333220 -0.419867 -1.449545 1.293709 0.394188 1.850929 1.835321 27 | 0.311120 1.097086 0.556627 1.085218 -0.706931 -1.114734 0.171632 0.254775 -0.050569 0.730828 28 | 0.073368 0.928426 1.578704 0.688108 1.546143 -1.688084 -0.557278 0.592123 0.354949 0.794178 29 | 1.305329 -0.892073 0.570118 1.273887 -0.469199 -1.141326 0.060268 1.157823 0.498054 -0.018497 30 | -0.028190 -0.157992 0.255621 0.494050 -1.764423 0.975477 0.666610 0.653347 0.841406 0.957615 31 | -0.538264 -1.169723 -1.634697 -2.361489 -1.235635 0.342633 0.049624 -0.031477 0.136501 0.330786 32 | -0.716090 -0.579140 -0.925433 -0.878921 -1.769114 0.557538 0.517664 0.431086 0.613516 1.078157 33 | 34 | 2 2 2 2 0 0 0 0 0 0 35 | 2 2 2 2 0 0 0 0 0 0 36 | 2 2 2 2 2 3 0 0 0 0 37 | 2 2 2 2 2 3 0 1 0 0 38 | 2 2 2 4 4 3 1 1 1 1 39 | 2 4 4 4 4 3 3 1 1 1 40 | 4 4 4 4 3 3 1 1 1 1 41 | 4 4 4 4 3 1 1 1 1 1 42 | 4 3 3 3 3 1 1 1 1 1 43 | 3 3 3 3 3 1 1 1 1 1 44 | 45 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 46 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 1.0 0.0 0.0 49 | -1.0 -1.0 -1.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 50 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 51 | 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 52 | 2.0 2.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 1.0 53 | 2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 2.0 2.0 2.0 59 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 0.0 2.0 2.0 60 | 1.0 1.0 1.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 61 | 1.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 62 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 63 | -2.0 -2.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 0.0 64 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_7n.txt: -------------------------------------------------------------------------------- 1 | 0.185801 0.893281 0.736792 0.885494 0.363296 0.062411 0.655345 0.266038 0.403705 0.214962 2 | 0.844217 0.445090 0.959466 0.115405 0.942066 0.782242 0.014871 0.070336 0.893126 0.472191 3 | 0.875180 0.807781 0.587470 0.023007 0.633803 0.457856 0.655354 0.042767 0.707713 0.032940 4 | 0.723906 0.621752 0.661417 0.415175 0.622568 0.337496 0.321640 0.639236 0.440717 0.046271 5 | 0.314121 0.418864 0.819099 0.864432 0.298075 0.392476 0.302082 0.853738 0.576234 0.732885 6 | 0.421709 0.480215 0.637789 0.729212 0.797428 0.476473 0.437741 0.315657 0.965206 0.853790 7 | 0.980032 0.822844 0.561549 0.581278 0.210818 0.107225 0.232031 0.976235 0.345613 0.459653 8 | 0.778115 0.572044 0.341080 0.275032 0.613934 0.949427 0.262886 0.931733 0.185644 0.857800 9 | 0.809949 0.703317 0.738688 0.194910 0.416123 0.033183 0.648859 0.571435 0.583472 0.186493 10 | 0.120033 0.258014 0.957205 0.021682 0.482567 0.500999 0.116097 0.103430 0.097426 0.208207 11 | 12 | 0.478725 0.226650 0.422151 0.483565 0.298598 0.226105 0.078362 0.294247 0.115190 0.339469 13 | 0.080709 0.642481 0.221863 0.412356 0.500971 0.549148 0.837408 0.536874 0.921763 0.931414 14 | 0.319628 0.913330 0.278635 0.550168 0.851215 0.319234 0.642728 0.684314 0.010657 0.209888 15 | 0.876518 0.655525 0.794921 0.623660 0.747043 0.225569 0.599579 0.408520 0.603298 0.788693 16 | 0.506256 0.941946 0.985420 0.149762 0.775611 0.371095 0.279189 0.359700 0.801675 0.422932 17 | 0.684292 0.191794 0.658217 0.133384 0.672714 0.211945 0.872280 0.847574 0.239320 0.486862 18 | 0.309499 0.670258 0.340894 0.214010 0.829481 0.459780 0.183610 0.028735 0.905335 0.873323 19 | 0.206885 0.223399 0.636744 0.199795 0.575266 0.827277 0.287089 0.683433 0.463893 0.893262 20 | 0.992514 0.206269 0.661667 0.708296 0.651691 0.599533 0.105498 0.856025 0.304781 0.992695 21 | 0.024086 0.291379 0.874488 0.818596 0.024802 0.524692 0.869362 0.211032 0.741875 0.715774 22 | 23 | 0.292924 -0.666631 -0.314640 -0.401929 0.597196 0.452210 0.156724 0.588495 0.230379 0.678938 24 | -0.763509 0.197391 -0.737602 0.296951 1.001942 1.098296 1.674816 1.073749 1.843526 1.862829 25 | -0.555552 0.105549 -0.308835 0.527161 0.217412 -1.234946 1.285457 1.368628 0.021315 0.419777 26 | 0.152612 0.033773 0.133505 0.208484 0.124475 -0.900561 1.199159 0.639236 1.206596 1.577386 27 | 0.192135 0.523082 0.166321 1.429340 -0.955072 -1.156046 0.302082 0.853738 0.576234 0.732885 28 | 0.262583 0.576842 -0.040856 1.191657 0.249427 -1.164890 -1.747762 0.315657 0.965206 0.853790 29 | 1.341066 0.305173 0.441312 0.734535 -1.251116 -0.674231 0.232031 0.976235 0.345613 0.459653 30 | 1.142461 0.697288 -0.591326 0.150474 -1.803135 0.949427 0.262886 0.931733 0.185644 0.857800 31 | -0.365131 -1.612902 -2.139042 -1.098116 -1.483936 0.033183 0.648859 0.571435 0.583472 0.186493 32 | -0.264152 -0.807408 -2.788899 -0.861960 -0.989935 0.500999 0.116097 0.103430 0.097426 0.208207 33 | 34 | 2 2 2 2 0 0 0 0 0 0 35 | 2 2 2 2 0 0 0 0 0 0 36 | 2 2 2 2 2 3 0 0 0 0 37 | 2 2 2 2 2 3 0 1 0 0 38 | 2 2 2 4 4 3 1 1 1 1 39 | 2 4 4 4 4 3 3 1 1 1 40 | 4 4 4 4 3 3 1 1 1 1 41 | 4 4 4 4 3 1 1 1 1 1 42 | 4 3 3 3 3 1 1 1 1 1 43 | 3 3 3 3 3 1 1 1 1 1 44 | 45 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 46 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 47 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 0.0 0.0 0.0 48 | -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 0.0 1.0 0.0 0.0 49 | -1.0 -1.0 -1.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 50 | -1.0 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 51 | 2.0 2.0 2.0 2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 52 | 2.0 2.0 2.0 2.0 -2.0 1.0 1.0 1.0 1.0 1.0 53 | 2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 54 | -2.0 -2.0 -2.0 -2.0 -2.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 57 | 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 58 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 2.0 2.0 2.0 59 | 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 0.0 2.0 2.0 60 | 1.0 1.0 1.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 61 | 1.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 62 | -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 0.0 0.0 0.0 63 | -2.0 -2.0 -2.0 -2.0 -1.0 0.0 0.0 0.0 0.0 0.0 64 | -2.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 65 | -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_8h.txt: -------------------------------------------------------------------------------- 1 | 0.892392 0.039619 0.561827 0.702318 0.126076 0.546668 0.727974 0.310856 0.147106 0.475644 2 | 0.376162 0.000191 0.736548 0.122347 0.693905 0.261648 0.921732 0.590400 0.106894 0.143762 3 | 0.834377 0.279759 0.390111 0.279724 0.337079 0.920507 0.909780 0.706628 0.404716 0.674197 4 | 0.546508 0.755363 0.439964 0.787029 0.683945 0.958721 0.810946 0.351027 0.591478 0.700278 5 | 0.476039 0.597173 0.180226 0.527021 0.365732 0.956576 0.228907 0.031008 0.707048 0.410398 6 | 0.400194 0.257630 0.917133 0.020733 0.574434 0.569262 0.475753 0.031667 0.273270 0.257580 7 | 0.735873 0.005194 0.662884 0.528395 0.566505 0.452972 0.242211 0.299215 0.534549 0.450144 8 | 0.054336 0.864311 0.112795 0.999278 0.154396 0.298722 0.632742 0.227564 0.462362 0.016834 9 | 0.757548 0.504222 0.522216 0.278276 0.216171 0.957690 0.812201 0.459491 0.945435 0.428031 10 | 0.957374 0.246014 0.088025 0.739422 0.498889 0.194983 0.665220 0.950980 0.602346 0.056440 11 | 12 | 0.663372 0.675023 0.051601 0.273710 0.148336 0.942145 0.433950 0.227531 0.295468 0.962804 13 | 0.888262 0.017381 0.031419 0.089858 0.952251 0.574626 0.442575 0.315540 0.812552 0.416851 14 | 0.487608 0.741958 0.427729 0.440384 0.398348 0.759284 0.760075 0.969975 0.205891 0.858071 15 | 0.488660 0.824412 0.164929 0.216605 0.359518 0.956815 0.764405 0.123607 0.260509 0.715052 16 | 0.934519 0.915135 0.813654 0.572910 0.029882 0.881639 0.086202 0.406202 0.421519 0.946225 17 | 0.269025 0.859367 0.238124 0.554956 0.795296 0.088200 0.193044 0.896328 0.610792 0.371807 18 | 0.714475 0.901942 0.175786 0.589480 0.398767 0.296691 0.761204 0.909452 0.000848 0.834266 19 | 0.185709 0.086580 0.270046 0.138049 0.893308 0.290089 0.296734 0.189949 0.541486 0.436788 20 | 0.830621 0.931018 0.842495 0.221734 0.132282 0.390039 0.370899 0.826186 0.479471 0.695051 21 | 0.532340 0.224013 0.487317 0.834321 0.417178 0.663808 0.580016 0.477839 0.481286 0.805075 22 | 23 | -1.670841 -0.706706 -1.031880 -1.552459 0.236159 -2.342905 1.615460 0.745004 0.397664 1.624203 24 | -1.278765 -0.350927 -0.205022 -0.091862 -2.484987 -1.774739 2.398608 1.512098 0.460528 0.793782 25 | -1.710016 -1.470752 -1.578974 -0.681387 -0.893165 -2.644621 -2.639033 2.655826 0.924456 2.332525 26 | -0.761345 -1.392095 -0.372700 -0.724140 -0.523453 -2.253343 2.424488 0.861995 1.373083 1.723371 27 | -1.874479 -1.128445 -1.778358 -0.892952 0.117685 -3.112198 -1.004393 -0.621726 1.646031 1.284515 28 | -0.710178 1.142013 -0.942820 1.330564 0.945755 1.068106 0.609224 0.275435 1.357878 1.019084 29 | 0.363732 1.873739 -0.602532 0.514684 0.747787 0.479782 -0.351623 1.122925 1.225873 1.965084 30 | 0.592942 -0.607647 0.306052 -0.980456 0.061736 -0.022578 0.833337 0.586344 0.326524 0.523393 31 | 0.621682 0.875505 1.082973 0.669677 0.538419 0.649112 1.192080 0.207633 0.818989 1.169242 32 | 0.530812 0.153280 -0.106422 1.183407 0.632204 0.450991 0.750402 0.483307 0.672195 0.094361 33 | 34 | 1 1 1 1 1 1 2 2 2 2 35 | 1 1 3 3 3 1 2 2 2 2 36 | 1 1 3 3 3 1 1 2 2 2 37 | 3 3 3 3 3 1 2 2 2 2 38 | 3 3 3 3 3 1 1 1 2 2 39 | 3 0 3 0 0 4 4 4 2 2 40 | 0 0 0 0 0 4 4 2 2 2 41 | 0 0 0 0 4 4 4 4 4 2 42 | 0 0 0 4 4 4 4 4 4 2 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 2.0 2.0 2.0 2.0 46 | -2.0 -2.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 47 | -2.0 -2.0 0.0 0.0 0.0 -2.0 -2.0 2.0 2.0 2.0 48 | 0.0 0.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 49 | 0.0 0.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 2.0 2.0 50 | 0.0 -1.0 0.0 -1.0 -1.0 1.0 1.0 1.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 2.0 53 | -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 57 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 58 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 -1.0 1.0 1.0 1.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 60 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 1.0 1.0 61 | -2.0 2.0 -2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 62 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 1.0 1.0 1.0 63 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 64 | 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 65 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_8l.txt: -------------------------------------------------------------------------------- 1 | 0.873730 0.038469 0.623745 0.628325 0.143759 0.932439 0.839341 0.244758 0.558846 0.681577 2 | 0.351831 0.959476 0.749290 0.423778 0.741357 0.727244 0.237488 0.833407 0.001861 0.775595 3 | 0.870134 0.262862 0.125476 0.015130 0.679708 0.567810 0.020909 0.542983 0.894474 0.861152 4 | 0.013190 0.708506 0.578354 0.654014 0.823136 0.301176 0.503519 0.481494 0.695832 0.611330 5 | 0.376744 0.820808 0.423376 0.916363 0.503842 0.019160 0.791963 0.023738 0.725447 0.038318 6 | 0.548859 0.917081 0.684274 0.058948 0.753272 0.427701 0.226100 0.241385 0.087833 0.431846 7 | 0.489389 0.125688 0.499152 0.937683 0.227907 0.298576 0.630855 0.522689 0.543117 0.095252 8 | 0.671116 0.767900 0.097638 0.201565 0.452453 0.771117 0.125202 0.995079 0.006785 0.440862 9 | 0.908719 0.330512 0.029888 0.387689 0.532294 0.037117 0.135500 0.644217 0.078680 0.921877 10 | 0.336417 0.682116 0.023491 0.200972 0.555739 0.705437 0.952762 0.075668 0.530548 0.224270 11 | 12 | 0.970467 0.086517 0.828196 0.491752 0.086033 0.354147 0.021429 0.682797 0.371188 0.618881 13 | 0.318945 0.986510 0.775565 0.212507 0.436727 0.248106 0.922176 0.329620 0.924493 0.670185 14 | 0.654251 0.928209 0.482852 0.757633 0.633927 0.282956 0.742198 0.725244 0.937762 0.329553 15 | 0.050779 0.852853 0.053979 0.501946 0.073974 0.344517 0.617673 0.069328 0.047569 0.631909 16 | 0.415899 0.890546 0.268882 0.551929 0.619178 0.373341 0.304564 0.742597 0.120590 0.050560 17 | 0.884219 0.068236 0.932819 0.363591 0.219167 0.589683 0.298293 0.557048 0.643007 0.306479 18 | 0.300345 0.592251 0.886475 0.497539 0.516457 0.066271 0.455706 0.330931 0.564608 0.699509 19 | 0.406004 0.634099 0.255311 0.589903 0.587821 0.235125 0.882063 0.022983 0.651300 0.609197 20 | 0.871764 0.164796 0.206550 0.681640 0.594236 0.598803 0.683185 0.670613 0.372797 0.380929 21 | 0.123664 0.080631 0.405840 0.910594 0.449245 0.033864 0.770277 0.102336 0.417158 0.352134 22 | 23 | -2.886870 -0.177707 -2.063831 -1.729781 -0.313074 -2.119772 1.771301 1.151150 1.289579 2.163668 24 | -1.066638 -2.848062 -1.520142 -0.336918 -0.870249 -1.715389 1.344793 2.028712 0.866837 2.331909 25 | -2.450438 -1.566065 -1.015357 -1.530120 -1.221066 -1.517259 -0.834886 1.798018 2.825084 1.968706 26 | -0.270998 -1.834451 -0.091058 -0.756410 -0.252278 -0.895039 1.690393 0.976990 1.425419 1.867219 27 | -1.022544 -1.774958 -0.731437 -1.139369 -1.313038 -0.462379 -1.870633 -0.709783 1.364622 -0.038292 28 | -1.853809 -0.986315 -1.823335 0.472355 -0.346357 0.398116 0.393126 0.354362 0.841790 1.178987 29 | 0.209016 1.142076 1.426831 -0.022542 0.591740 0.262561 0.663692 1.374977 1.565260 0.903817 30 | 0.076547 0.464169 0.255188 1.038074 0.361878 0.864647 0.028361 0.860310 0.073090 1.663757 31 | 0.664856 -0.009343 0.387471 0.558498 0.536823 0.098389 -0.044692 0.639287 -0.049333 2.100139 32 | 0.306105 0.618632 0.231703 0.102270 0.760789 0.698685 1.091937 -0.006366 0.634472 0.193668 33 | 34 | 1 1 1 1 1 1 2 2 2 2 35 | 1 1 3 3 3 1 2 2 2 2 36 | 1 1 3 3 3 1 1 2 2 2 37 | 3 3 3 3 3 1 2 2 2 2 38 | 3 3 3 3 3 1 1 1 2 2 39 | 3 0 3 0 0 4 4 4 2 2 40 | 0 0 0 0 0 4 4 2 2 2 41 | 0 0 0 0 4 4 4 4 4 2 42 | 0 0 0 4 4 4 4 4 4 2 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 2.0 2.0 2.0 2.0 46 | -2.0 -2.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 47 | -2.0 -2.0 0.0 0.0 0.0 -2.0 -2.0 2.0 2.0 2.0 48 | 0.0 0.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 49 | 0.0 0.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 2.0 2.0 50 | 0.0 -1.0 0.0 -1.0 -1.0 1.0 1.0 1.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 2.0 53 | -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 57 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 58 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 -1.0 1.0 1.0 1.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 60 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 1.0 1.0 61 | -2.0 2.0 -2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 62 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 1.0 1.0 1.0 63 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 64 | 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 65 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_8m.txt: -------------------------------------------------------------------------------- 1 | 0.415475 0.516665 0.594621 0.657451 0.732753 0.860094 0.851586 0.677889 0.333272 0.201648 2 | 0.356168 0.516842 0.720543 0.402317 0.523893 0.954617 0.470477 0.922429 0.126311 0.758836 3 | 0.103391 0.066540 0.038209 0.809940 0.351090 0.611297 0.904523 0.552133 0.538939 0.201110 4 | 0.264897 0.312322 0.407993 0.652759 0.572809 0.037545 0.194594 0.088367 0.838180 0.551204 5 | 0.378057 0.330237 0.081916 0.926408 0.662806 0.825512 0.846147 0.135565 0.941916 0.528366 6 | 0.821461 0.413985 0.060622 0.740700 0.649747 0.455979 0.550063 0.500490 0.436974 0.817003 7 | 0.919368 0.515761 0.679827 0.259095 0.403545 0.619856 0.332357 0.818765 0.208820 0.621694 8 | 0.730362 0.432875 0.839929 0.711724 0.879183 0.227055 0.065568 0.308257 0.163014 0.895340 9 | 0.376351 0.000273 0.073197 0.534560 0.838344 0.569204 0.430809 0.955530 0.389629 0.436682 10 | 0.305603 0.664602 0.844190 0.790397 0.523152 0.068740 0.867646 0.419977 0.429741 0.685830 11 | 12 | 0.029464 0.364890 0.365335 0.355285 0.815670 0.654734 0.105385 0.580447 0.807533 0.244915 13 | 0.482535 0.611414 0.689180 0.089972 0.119747 0.111352 0.470480 0.939775 0.387181 0.848367 14 | 0.433612 0.529258 0.004596 0.087597 0.242304 0.813871 0.026692 0.177232 0.060149 0.106511 15 | 0.339509 0.938443 0.232266 0.224941 0.105794 0.354346 0.301792 0.338156 0.256400 0.227053 16 | 0.053916 0.116630 0.999822 0.881924 0.801429 0.584871 0.767014 0.795606 0.338583 0.439317 17 | 0.197125 0.458918 0.573011 0.356566 0.469410 0.006263 0.058691 0.460140 0.847486 0.042163 18 | 0.566456 0.095928 0.982763 0.344745 0.776714 0.986484 0.619630 0.491486 0.678986 0.017509 19 | 0.700696 0.533654 0.052970 0.504071 0.473881 0.728404 0.112829 0.181966 0.558404 0.986014 20 | 0.165265 0.942596 0.273387 0.944641 0.904765 0.455023 0.649482 0.298242 0.430811 0.348385 21 | 0.244001 0.776280 0.006498 0.278335 0.581175 0.829443 0.745993 0.725846 0.842197 0.201212 22 | 23 | -0.980619 -1.471762 -1.682954 -1.912465 -2.168541 -2.241119 2.024512 2.274388 1.237709 0.777156 24 | -1.332526 -1.898419 -1.371146 -0.283023 -0.245937 -1.849300 1.460916 2.769661 0.711946 2.572386 25 | -0.634798 -0.614532 -0.503726 0.043418 -0.365067 -2.211371 -1.613886 0.964275 1.291451 0.672330 26 | -0.608462 -1.833957 -0.591570 -0.631738 0.013077 -0.419371 0.653518 0.402341 2.133145 1.461136 27 | -0.236498 -0.469391 -1.961481 -1.588710 -1.570101 -2.319722 -2.348765 -1.170521 2.508682 1.415385 28 | -0.521736 0.595381 -0.985581 -0.190704 0.132431 0.329979 0.364935 0.473321 1.644417 1.800886 29 | 0.557219 -0.522094 1.353573 0.082872 1.116439 0.462182 0.534495 1.743564 0.859382 1.218529 30 | 0.802221 0.558603 -0.710835 0.027455 0.890119 -0.059101 -0.340798 0.162826 0.347744 2.680431 31 | 0.357771 1.697884 0.073324 0.517901 0.712660 0.471653 0.345654 1.011578 0.566813 1.250350 32 | 0.215904 0.718840 0.698565 0.797901 0.301617 -0.245355 0.479580 0.348767 0.596166 0.767453 33 | 34 | 1 1 1 1 1 1 2 2 2 2 35 | 1 1 3 3 3 1 2 2 2 2 36 | 1 1 3 3 3 1 1 2 2 2 37 | 3 3 3 3 3 1 2 2 2 2 38 | 3 3 3 3 3 1 1 1 2 2 39 | 3 0 3 0 0 4 4 4 2 2 40 | 0 0 0 0 0 4 4 2 2 2 41 | 0 0 0 0 4 4 4 4 4 2 42 | 0 0 0 4 4 4 4 4 4 2 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 2.0 2.0 2.0 2.0 46 | -2.0 -2.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 47 | -2.0 -2.0 0.0 0.0 0.0 -2.0 -2.0 2.0 2.0 2.0 48 | 0.0 0.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 49 | 0.0 0.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 2.0 2.0 50 | 0.0 -1.0 0.0 -1.0 -1.0 1.0 1.0 1.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 2.0 53 | -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 57 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 58 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 -1.0 1.0 1.0 1.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 60 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 1.0 1.0 61 | -2.0 2.0 -2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 62 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 1.0 1.0 1.0 63 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 64 | 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 65 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | -------------------------------------------------------------------------------- /synthetic/gridtest_8n.txt: -------------------------------------------------------------------------------- 1 | 0.761869 0.885580 0.250887 0.599395 0.007077 0.266319 0.450233 0.693652 0.451610 0.478567 2 | 0.229342 0.264011 0.472135 0.222472 0.401623 0.315255 0.315952 0.040081 0.998217 0.934218 3 | 0.467790 0.410736 0.900516 0.132366 0.724854 0.843791 0.793594 0.965850 0.268015 0.511307 4 | 0.896749 0.814845 0.262069 0.357728 0.171811 0.538908 0.785899 0.459304 0.452817 0.224343 5 | 0.323924 0.065914 0.262380 0.447688 0.377559 0.167095 0.259520 0.646478 0.432367 0.559570 6 | 0.181805 0.015468 0.009678 0.889331 0.955621 0.430231 0.968845 0.413834 0.013315 0.497656 7 | 0.790276 0.078793 0.859545 0.849013 0.010463 0.038315 0.504791 0.599647 0.775380 0.195860 8 | 0.505674 0.023766 0.739120 0.595180 0.052822 0.235562 0.829378 0.307611 0.853499 0.229238 9 | 0.140535 0.366484 0.085675 0.190219 0.162441 0.630890 0.804844 0.379912 0.262877 0.491527 10 | 0.030187 0.703671 0.975636 0.156939 0.093301 0.329019 0.352048 0.542696 0.956103 0.914777 11 | 12 | 0.389415 0.376961 0.968623 0.470952 0.008983 0.088046 0.344297 0.123720 0.217276 0.601876 13 | 0.079922 0.598184 0.248089 0.530009 0.010677 0.330039 0.612889 0.781526 0.640680 0.354885 14 | 0.698868 0.182063 0.530993 0.195725 0.464466 0.689002 0.758868 0.579881 0.801988 0.160832 15 | 0.107502 0.852724 0.562359 0.278219 0.379754 0.533926 0.030191 0.041608 0.366145 0.158315 16 | 0.832448 0.667751 0.856002 0.143448 0.690407 0.386408 0.002688 0.337316 0.036101 0.036314 17 | 0.485894 0.220681 0.515190 0.401785 0.151044 0.929538 0.950021 0.032859 0.941586 0.415697 18 | 0.824120 0.740633 0.938524 0.462515 0.516176 0.440860 0.321708 0.440869 0.895012 0.044499 19 | 0.718496 0.578633 0.773906 0.135592 0.196111 0.771926 0.956217 0.184296 0.462474 0.620939 20 | 0.409555 0.182868 0.204805 0.615040 0.993404 0.228362 0.303578 0.393180 0.143702 0.947385 21 | 0.537652 0.782028 0.993274 0.256678 0.523263 0.572544 0.643679 0.624509 0.356555 0.982399 22 | 23 | -1.913153 -2.148120 -1.470396 -1.669741 -0.023138 -0.620683 1.244763 1.511024 1.120497 1.559010 24 | -0.538605 -1.126206 -0.496179 -1.060018 -0.021354 -0.960549 1.244794 0.861687 2.637113 2.223321 25 | -1.634448 -1.003535 -1.061986 -0.391449 -0.928932 -2.376585 -2.346056 2.511581 1.338018 1.183445 26 | -0.215003 -1.705448 -1.124719 -0.556439 -0.759508 -1.611742 1.601989 0.960216 1.271779 0.607000 27 | -1.664896 -1.335502 -1.712004 -0.286896 -1.380814 -0.720598 -0.521727 -1.630273 0.900834 1.155454 28 | -0.971788 0.425894 -1.030379 -0.085760 -0.653534 0.430231 0.968845 0.413834 0.968216 1.411010 29 | 0.857965 1.402472 1.017504 0.076018 1.021889 0.038315 0.504791 1.640163 2.445773 0.436219 30 | 0.931318 1.133500 0.808692 -0.323995 0.052822 0.235562 0.829378 0.307611 0.853499 1.079415 31 | 0.678575 -0.000747 0.323936 0.190219 0.162441 0.630890 0.804844 0.379912 0.262877 1.930439 32 | 0.030187 0.703671 0.975636 0.156939 0.093301 0.329019 0.352048 0.542696 0.956103 0.914777 33 | 34 | 1 1 1 1 1 1 2 2 2 2 35 | 1 1 3 3 3 1 2 2 2 2 36 | 1 1 3 3 3 1 1 2 2 2 37 | 3 3 3 3 3 1 2 2 2 2 38 | 3 3 3 3 3 1 1 1 2 2 39 | 3 0 3 0 0 4 4 4 2 2 40 | 0 0 0 0 0 4 4 2 2 2 41 | 0 0 0 0 4 4 4 4 4 2 42 | 0 0 0 4 4 4 4 4 4 2 43 | 4 4 4 4 4 4 4 4 4 4 44 | 45 | -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 2.0 2.0 2.0 2.0 46 | -2.0 -2.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 47 | -2.0 -2.0 0.0 0.0 0.0 -2.0 -2.0 2.0 2.0 2.0 48 | 0.0 0.0 0.0 0.0 0.0 -2.0 2.0 2.0 2.0 2.0 49 | 0.0 0.0 0.0 0.0 0.0 -2.0 -2.0 -2.0 2.0 2.0 50 | 0.0 -1.0 0.0 -1.0 -1.0 1.0 1.0 1.0 2.0 2.0 51 | -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 2.0 2.0 2.0 52 | -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 2.0 53 | -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 54 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55 | 56 | -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 57 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 58 | -1.0 -1.0 -2.0 -2.0 -2.0 -1.0 -1.0 1.0 1.0 1.0 59 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 1.0 1.0 1.0 1.0 60 | -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 1.0 1.0 61 | -2.0 2.0 -2.0 2.0 2.0 0.0 0.0 0.0 1.0 1.0 62 | 2.0 2.0 2.0 2.0 2.0 0.0 0.0 1.0 1.0 1.0 63 | 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 64 | 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 65 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66 | 67 | --------------------------------------------------------------------------------