├── Makefile ├── Pictures ├── heh.chk ├── q.png ├── fig.1.1.pdf ├── MPn-energy.pdf ├── heh2.gjf ├── wolniewicz.dat ├── heh.gjf ├── h2-exact-kolos.dat ├── W-heh.dat ├── MPn-energy.tex ├── h2-6-31gdp-fci.dat ├── h2-6-31gdp-mp2.dat ├── h2-6-31gdp-mp3.dat ├── h2-6-31gdp-uhf.dat ├── h2-sto-3g-fci.dat ├── h2-sto-3g-mp2.dat ├── h2-sto-3g-mp3.dat ├── h2-sto-3g-uhf.dat ├── heh-tot-ener.txt ├── heh_tot_ener.txt └── h2.dat ├── Chaps ├── preface.tex ├── AppendixD.tex ├── progess.tex ├── AppendixA.tex ├── AppendixC.tex └── Chap5.tex ├── NOTICE ├── .gitignore ├── .github └── workflows │ ├── texlive.profile │ ├── build.yml │ └── release.yml ├── README.md ├── bib.bib ├── main.tex ├── dev_guide.md ├── structure.tex ├── code ├── out └── AppendixBcode.f90 └── bookszabo.cls /Makefile: -------------------------------------------------------------------------------- 1 | 2 | main: 3 | latexmk -xelatex -halt-on-error -shell-escape main 4 | -------------------------------------------------------------------------------- /Pictures/heh.chk: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NominHanggai/szaboqc/HEAD/Pictures/heh.chk -------------------------------------------------------------------------------- /Pictures/q.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NominHanggai/szaboqc/HEAD/Pictures/q.png -------------------------------------------------------------------------------- /Chaps/preface.tex: -------------------------------------------------------------------------------- 1 | \chapter*{修订版前言} 2 | 修订版与第一版相比, 有三处变化较大. 一是增加了附录. 3 | \chapter*{第一版前言} 4 | -------------------------------------------------------------------------------- /Pictures/fig.1.1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NominHanggai/szaboqc/HEAD/Pictures/fig.1.1.pdf -------------------------------------------------------------------------------- /Pictures/MPn-energy.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NominHanggai/szaboqc/HEAD/Pictures/MPn-energy.pdf -------------------------------------------------------------------------------- /Pictures/heh2.gjf: -------------------------------------------------------------------------------- 1 | %mem=1gb 2 | %cpu=0-7 3 | % chk=heh.chk 4 | # pop=none scan hf/sto-3g units=au Geom=nocrowd 5 | 6 | we 7 | 8 | 1 1 9 | H 10 | He 1 R 11 | 12 | R 0.5 301 0.01 13 | -------------------------------------------------------------------------------- /Pictures/wolniewicz.dat: -------------------------------------------------------------------------------- 1 | 1.0 -.12453881 2 | 1.2 -.16493435 3 | 1.3 -.17234623 4 | 1.39 -.17445199 5 | 1.4 -.17447477 6 | 1.4011 -.17447498 7 | 1.41 -.17446041 8 | 1.5 -.17285408 9 | 1.6 -.16858212 10 | 1.8 -.15506752 11 | 2.0 -.13813155 12 | 2.2 -.12013035 13 | 2.4 -.10242011 14 | 2.6 -.08578740 15 | 2.8 -.07067758 16 | 3.0 -.05731738 17 | 3.2 -.04578647 18 | -------------------------------------------------------------------------------- /NOTICE: -------------------------------------------------------------------------------- 1 | Contributors 2 | 3 | @Mulliken: Most chapters 4 | Shirong Wang @hebrewsnabla: chap 4.5, various fixes, github actions 5 | @shenyi97: chap 3.6.2, various fixes 6 | @AllanChain: various fixes 7 | @PramSin: fixes in chap 1, improvement of autoref 8 | Mengyuan Wu @SeptemberMy: appendix A,B,C,D, various fixes 9 | @maki49: chap 3.8, 4.2, 5.2, various fixes 10 | @Usu171: various fixes 11 | @Bessgendre: fixes in chap 2 12 | YI Zeping @yizeyi18: revision and fixes in chap 1, 2 13 | 14 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # LaTeX temporary files 2 | *.aux 3 | *.log 4 | *.toc 5 | *.ent 6 | *.fls 7 | *.xdv 8 | 9 | # PDF output - usually a bad idea to keep this in Git 10 | *.pdf 11 | 12 | # Latexmk 13 | *.fdb_latexmk 14 | 15 | # SyncTeX 16 | *.synctex.gz 17 | *.synctex(busy) 18 | 19 | # LaTeX Beamer 20 | *.snm 21 | *.vrb 22 | *.nav 23 | *.out 24 | 25 | # BibTeX 26 | *.bbl 27 | *.blg 28 | 29 | # 'tikz/external' library files 30 | *.dpth 31 | *.dep 32 | *.log 33 | *.ent 34 | *.auxlock 35 | 36 | *.sh 37 | -------------------------------------------------------------------------------- /.github/workflows/texlive.profile: -------------------------------------------------------------------------------- 1 | # From latex3 2 | # https://github.com/latex3/latex3/blob/main/support/texlive.profile 3 | 4 | selected_scheme scheme-infraonly 5 | TEXDIR /tmp/texlive 6 | TEXMFSYSCONFIG /tmp/texlive/texmf-config 7 | TEXMFSYSVAR /tmp/texlive/texmf-var 8 | TEXMFLOCAL /tmp/texlive/texmf-local 9 | TEXMFHOME ~/texmf 10 | TEXMFCONFIG ~/.texlive/texmf-config 11 | TEXMFVAR ~/.texlive/texmf-var 12 | option_doc 0 13 | option_src 0 14 | tlpdbopt_autobackup 0 15 | 16 | -------------------------------------------------------------------------------- /Pictures/heh.gjf: -------------------------------------------------------------------------------- 1 | %mem=1gb 2 | %cpu=0-7 3 | % chk=heh.chk 4 | # pop=none scan hf/gen units=au Geom=nocrowd 5 | 6 | we 7 | 8 | 1 1 9 | H 10 | He 1 R 11 | 12 | R 0.5 301 0.01 13 | 14 | He 0 15 | S 3 1.24 16 | 6.36242139 0.15432897 17 | 1.15892300 0.53532814 18 | 0.31364979 0.44463454 19 | **** 20 | H 0 21 | S 3 1.0 22 | 3.42525091 0.15432897 23 | 0.62391373 0.53532814 24 | 0.16885540 0.44463454 25 | **** 26 | 27 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Modern Quantum Chemistry 现代量子化学 汉化版 2 | 3 | Attila Szabo & Neil Ostlund *Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory* 中文翻译。重新绘制了所有插图。 4 | 5 | pdf请到Release下载,最新版本:[0.2.7](https://github.com/Mulliken/szaboqc/releases/download/v0.2.7/szabo_zh-v0.2.7.pdf)。 6 | 7 | ## 手动编译 8 | 9 | Tex Live >=2021 下 XeLaTeX 编译。 10 | 11 | 如果编译后引用失效则可能需要使用xelatex再编译一次。 12 | 13 | 或者使用`make`. 14 | 15 | ## 关于贡献 16 | 17 | See [Contributing guide and tips](https://github.com/Mulliken/szaboqc/issues/11) and [dev guide](./dev_guide.md). 18 | -------------------------------------------------------------------------------- /Pictures/h2-exact-kolos.dat: -------------------------------------------------------------------------------- 1 | 0.9 -.083643176 2 | 1.0 -.124539660 3 | 1.1 -.150057312 4 | 1.2 -.164935191 5 | 1.3 -.172347100 6 | 1.35 -.173963679 7 | 1.4 -.174475668 8 | 1.45 -.174057026 9 | 1.5 -.172855034 10 | 1.6 -.168583330 11 | 1.7 -.162458684 12 | 1.8 -.155068695 13 | 2.0 -.138132913 14 | 2.2 -.120132069 15 | 2.4 -.102422553 16 | 2.6 -.085791176 17 | 2.8 -.070683159 18 | 3.0 -.057326175 19 | 3.2 -.045799543 20 | 3.4 -.036075238 21 | 3.6 -.028046110 22 | 3.8 -.021549547 23 | 4.0 -.016389951 24 | 4.2 -.012359608 25 | 4.4 -.009256107 26 | 4.6 -.006894750 27 | 4.8 -.005115473 28 | -------------------------------------------------------------------------------- /bib.bib: -------------------------------------------------------------------------------- 1 | @incollection{sutcliffe1975fundamentals, 2 | title={Fundamentals of computational quantum chemistry}, 3 | author={Sutcliffe, BT}, 4 | booktitle={Computational Techniques in Quantum Chemistry and Molecular Physics}, 5 | pages={1--105}, 6 | year={1975}, 7 | publisher={Springer} 8 | } 9 | 10 | 11 | 12 | 13 | 14 | @incollection{shavitt1963gaussian, 15 | title={The Gaussian function in calculations of statistical mechanics and quantum mechanics}, 16 | author={Shavitt, Isaiah}, 17 | booktitle={Methods of computational physics}, 18 | volume={2}, 19 | pages={1--45}, 20 | year={1963}, 21 | publisher={Academic Press}, 22 | editor={B. Alder, S. Fernbach, and M. Rotenberg}, 23 | adress={New York} 24 | } 25 | 26 | 27 | 28 | -------------------------------------------------------------------------------- /Pictures/W-heh.dat: -------------------------------------------------------------------------------- 1 | 1.1 1.24 0.7 2.9408985 8158.8 1.0515650 2 | 1.2 1.33 0.75 2.9620088 12792.0 1.0313685 3 | 1.3 1.42 0.80 2.9732408 15257.1 1.0164542 4 | 1.4 1.5168 0.8582 2.9779726 16295.6 1.0054215 5 | 1.42 1.5351 0.8674 2.9783531 16379.1 1.0035902 6 | 1.44 1.5534 0.8766 2.9785796 16428.8 1.0018681 7 | 1.46 1.5717 0.8858 2.9786667 16447.9 1.0002507 8 | 1.4632 1.5779 0.8886 2.9786686 16448.3 1.0000019 9 | 1.4633 1.5779 0.8886 2.9786686 16448.3 0.9999940 10 | 1.48 1.5903 0.8953 2.9786250 16438.8 0.9987308 11 | 1.5 1.6089 0.9048 2.9784660 16403.9 0.9973042 12 | 1.6 1.70 0.95 2.9762475 15917.0 0.9914107 13 | 1.7 1.79 1.00 2.9723602 15063.8 0.9872358 14 | 1.8 1.88 1.05 2.9675157 14000.6 0.9843976 15 | -------------------------------------------------------------------------------- /main.tex: -------------------------------------------------------------------------------- 1 | %!TEX TS-program = xelatex 2 | %!TEX encoding = UTF-8 Unicode 3 | 4 | \documentclass[UTF8,scheme=chinese,heading]{ctexbook} 5 | 6 | %\linespread{1.2} 7 | 8 | \input{structure} 9 | 10 | \date{\today} 11 | 12 | 13 | \begin{document} 14 | %\include{./Chaps/preface} 15 | 16 | \include{./Chaps/progess} 17 | \tableofcontents % Print the table of contents itself 18 | \setcounter{page}{0} 19 | 20 | %注意替换\ts -> \mathscr{S}, \cs _> a^\dagger, \sch -> Schr\''odinger, \hs 为\mathscr{H}, \vs -> \mathscr{V}, 算子 -> 算符. \ht 21 | % 22 | \include{./Chaps/Chap1} 23 | \include{./Chaps/Chap2} 24 | \include{./Chaps/Chap3} 25 | \include{./Chaps/Chap4} 26 | \include{./Chaps/Chap5} 27 | \include{./Chaps/Chap6} 28 | \include{./Chaps/Chap7} 29 | 30 | \appendix 31 | \include{./Chaps/AppendixA} 32 | \include{./Chaps/AppendixB} 33 | \include{./Chaps/AppendixC} 34 | \include{./Chaps/AppendixD} 35 | 36 | \end{document} 37 | -------------------------------------------------------------------------------- /dev_guide.md: -------------------------------------------------------------------------------- 1 | 2 | ## mathscr 3 | 4 | 目前默认的`\mathscr`是`mathalpha`提供的 boondoxo 字体。要使用 rsfs 的话可以用 `\mathrsfs`. ([pr56](https://github.com/NominHanggai/szaboqc/pull/56)) 5 | 6 | ## autoref 7 | 8 | 尽量用 `\autoref` 来引用图表和公式,其引用章节、方程、图、表时自动写成“第……章(节)”、“式(x.y)”、“图x.y”、“表x.y”这样的样式。 9 | 详见[pr21](https://github.com/NominHanggai/szaboqc/pull/21). 10 | 11 | ## 公式编号 12 | 13 | (2.3a)(2.3b) 之类的编号用 `subequations` 实现。参见[pr17](https://github.com/NominHanggai/szaboqc/pull/17). 14 | 15 | 我们希望翻译版的公式编号和原书一一对应。 16 | 17 | ## 上波浪线 18 | 19 | 在书写带有上波浪线的符号时,使用 `\widetilde{}` $\widetilde{\Psi}$ 而不是 `\tilde{}` $\tilde{\Psi}$,以获得更好的显示效果。 20 | 21 | ## 希腊字母加粗 22 | 23 | **在数学环境下**,如果要加粗希腊字母,避免使用 `\boldsymbol{}`,应当使用 `\mathbf{}` 或者便捷方式 `\mbf{}`。由于字体原因,LaTeX 会自动将希腊字母的 `\boldsymbol{}` 转为 `\mathbf{}` 字体。 24 | 25 | ## 带有数学环境的章节名(书签) 26 | 27 | 如果章节名中有数学环境,为了在生成的 PDF 书签中正确显示章节名,需要使用 `\texorpdfstring{}{}`,其中 `` 是纯文本内容,不含数学环境。例如 H₂ 应写为 `\texorpdfstring{H$_2$}{H₂}`。 28 | -------------------------------------------------------------------------------- /Chaps/AppendixD.tex: -------------------------------------------------------------------------------- 1 | \chapter{$\hd$的分子积分作为键长的函数} 2 | \label{appendix:d} 3 | 所有的物理量都使用原子单位。这些积分是由正文\autoref{sec:3.5.2}中所述, 4 | 使用极小基组$STO-3G$在Slater指数$\zeta=1.24$下计算得到的。 5 | \begin{table}[h!] 6 | \centering 7 | \begin{tabular}{lllllll} 8 | \hline 9 | $\bm{R}$ & $\varepsilon_1 $& $\varepsilon_2 $ 10 | & $J_{11}$ & $J_{12}$& $J_{22}$& $K_{12}$ 11 | \\ \hline 12 | 0.6&$-0.7927$&1.3327&0.7469&0.7392&0.7817&0.1614 13 | \\0.8&$-0.7321$&1.1233&0.7330&0.7212&0.7607&0.1655 14 | \\1.0&$-0.6758$&0.9418&0.7144&0.7019&0.7388&0.1702 15 | \\1.2&$-0.6245$&0.7919&0.6947&0.6824&0.7176&0.1755 16 | \\1.4&$-0.5782$&0.6703&0.6746&0.6636&0.6975&0.1813 17 | \\1.6&$-0.5368$&0.5715&0.6545&0.6457&0.6786&0.1874 18 | \\1.8&$-0.4998$&0.4898&0.6349&0.6289&0.6608&0.1938 19 | \\2.0&$-0.4665$&0.4209&0.6162&0.6131&0.6439&0.2005 20 | \\2.5&$-0.3954$&0.2889&0.5751&0.5789&0.6057&0.2179 21 | \\3.0&$-0.3377$&0.1981&0.5432&0.5512&0.5734&0.2351 22 | \\4.0&$-0.2542$&0.0916&0.5026&0.5121&0.5259&0.2651 23 | \\5.0&$-0.2028$&0.0387&0.4808&0.4873&0.4947&0.2877 24 | \\7.5&$-0.1478$&$-0.0114$&0.4533&0.4540&0.4547&0.3206 25 | \\10.0&$-0.1293$&$-0.0292$&0.4373&0.4373&0.4373&0.3373 26 | \\20.0&$-0.1043$&$-0.0543$&0.4123&0.4123&0.4123&0.3623 27 | \\100.0&$-0.0843$&$-0.0743$&0.3923&0.3923&0.3923&0.3823 28 | \\$\infty$&$-0.0793$&$-0.0793$&0.3873&0.3873&0.3873&0.3873 29 | \\ \hline 30 | \end{tabular} 31 | \label{tD.1} 32 | \end{table} -------------------------------------------------------------------------------- /Pictures/MPn-energy.tex: -------------------------------------------------------------------------------- 1 | %!TEX TS-program = lualatex 2 | %!TEX encoding = UTF-8 Unicode 3 | \documentclass[]{book} 4 | \usepackage{amsmath,tikz,braket} 5 | \usepackage{pgfplots} 6 | \pgfplotsset{compat=newest} 7 | \begin{document} 8 | \begin{tikzpicture} 9 | \begin{axis}[ 10 | %standard, 11 | %ticks=none, 12 | axis y line=center, 13 | axis x line=middle, 14 | axis x line shift=-.55, 15 | every axis x label/.style={at={(axis description cs:1.02,.57)}}, 16 | xlabel={$M$}, 17 | every axis y label/.style={rotate=90,at={(axis description cs:-0.13,.54)}}, 18 | ylabel={$\displaystyle\sum_{n=2}^{M}E_0^{(n)}/\beta$}, 19 | % axis on top=true, 20 | xmin=1, 21 | xmax=19, 22 | xtick={10,16}, 23 | extra x ticks={2,4,6,8,12,18,14}, 24 | extra x tick style={ 25 | xticklabel style={yshift=0.5ex, anchor=south} 26 | }, 27 | ymin=1.45, 28 | ymax=2.45, 29 | ytick distance=.1, 30 | height=.66\textwidth, 31 | width=\textwidth, 32 | %restrict y to domain*=0:3, 33 | ] 34 | \addplot [domain=1:18 mark=none, dashed, thick, blue] table{gegenbauer.dat}; 35 | \addplot [only marks,blue,every mark/.append style={scale=1.3}]coordinates 36 | {(2,1.5) (3,2.25) (4,2.34375) (5,2.10938) (6,1.88672) (7,1.8457) (8,1.95154) (9,2.06708) (10,2.0912) (11,2.02801) (12,1.95462) (13,1.93831) (14,1.98141) (15,2.03325) (16,2.04521) (17,2.01342) (18,1.97432)}; 37 | %\node [left, blue] at (axis cs: 0,120) {$ \scr{E}_{\rm tot}(\{\bo{R}_A\})$}; 38 | %\node [above, blue] at (axis cs: .8,0) {$\{\bo{R}_A\}$}; 39 | \end{axis} 40 | \end{tikzpicture} 41 | %\tikzset{every mark/.append style={scale=2}} 42 | \end{document} 43 | -------------------------------------------------------------------------------- /.github/workflows/build.yml: -------------------------------------------------------------------------------- 1 | name: Build 2 | 3 | on: 4 | push: 5 | branches: 6 | - master 7 | 8 | pull_request: 9 | branches: 10 | - master 11 | 12 | env: 13 | CTAN_URL: https://mirrors.rit.edu/CTAN 14 | TL_PACKAGES: amscls amsmath anyfontsize blkarray booktabs braket caption chemformula ctex endnotes enumitem fancyhdr float graphics hyperref latexmk luatex85 l3packages mathtools metafont multirow needspace newfloat pgfplots scalerel siunitx stackengine threeparttable tools ulem xcolor xecjk xfrac 15 | TL_FONT_PCK: boondox fandol libertinus-fonts mathalpha psnfss collection-fontsrecommended 16 | 17 | jobs: 18 | build-on-ubuntu: 19 | runs-on: ubuntu-latest 20 | if: "!startsWith(github.ref, 'refs/tags/v')" 21 | env: 22 | SET_PATH: | 23 | export PATH=/tmp/texlive/bin/x86_64-linux:$PATH 24 | steps: 25 | - name: Set up Git repository 26 | uses: actions/checkout@v4 27 | 28 | - name: Install TeX Live 29 | run: | 30 | ${{ env.SET_PATH }} 31 | wget ${{ env.CTAN_URL }}/systems/texlive/tlnet/install-tl-unx.tar.gz 32 | tar -xzf install-tl-unx.tar.gz 33 | cd install-tl-20* && ./install-tl --profile ../.github/workflows/texlive.profile 34 | tlmgr install ${{ env.TL_PACKAGES }} ${{ env.TL_FONT_PCK }} 35 | tlmgr update --self --all --no-auto-install --repository=${{ env.CTAN_URL }}/systems/texlive/tlnet/ 36 | - name: Compile test file 37 | run: | 38 | ${{ env.SET_PATH }} 39 | make 40 | - name: Upload PDF 41 | uses: actions/upload-artifact@v4 42 | with: 43 | name: generated-pdf 44 | path: 45 | ./*.pdf 46 | -------------------------------------------------------------------------------- /.github/workflows/release.yml: -------------------------------------------------------------------------------- 1 | name: Release 2 | 3 | on: 4 | push: 5 | branches: 6 | - master 7 | 8 | tags: 9 | - v* 10 | 11 | env: 12 | CTAN_URL: https://mirrors.rit.edu/CTAN 13 | TL_PACKAGES: amscls amsmath anyfontsize blkarray booktabs braket caption chemformula ctex endnotes enumitem fancyhdr float graphics hyperref latexmk luatex85 l3packages mathtools metafont multirow needspace newfloat pgfplots scalerel siunitx stackengine threeparttable tools ulem xcolor xecjk xfrac 14 | TL_FONT_PCK: boondox fandol libertinus-fonts mathalpha psnfss collection-fontsrecommended 15 | 16 | jobs: 17 | release: 18 | runs-on: ubuntu-latest 19 | if: startsWith(github.ref, 'refs/tags/v') 20 | env: 21 | SET_PATH: | 22 | export PATH=/tmp/texlive/bin/x86_64-linux:$PATH 23 | steps: 24 | - name: Set up Git repository 25 | uses: actions/checkout@v4 26 | 27 | - name: Set Version 28 | run: echo "VERSION=${GITHUB_REF##*/}" >> $GITHUB_ENV 29 | 30 | - name: Install TeX Live 31 | run: | 32 | ${{ env.SET_PATH }} 33 | wget ${{ env.CTAN_URL }}/systems/texlive/tlnet/install-tl-unx.tar.gz 34 | tar -xzf install-tl-unx.tar.gz 35 | cd install-tl-20* && ./install-tl --profile ../.github/workflows/texlive.profile 36 | tlmgr install ${{ env.TL_PACKAGES }} ${{ env.TL_FONT_PCK }} 37 | tlmgr update --self --all --no-auto-install --repository=${{ env.CTAN_URL }}/systems/texlive/tlnet/ 38 | - name: Compile test file 39 | run: | 40 | ${{ env.SET_PATH }} 41 | make 42 | mv main.pdf szabo_zh-$VERSION.pdf 43 | - name: Create release 44 | uses: "marvinpinto/action-automatic-releases@latest" 45 | with: 46 | repo_token: "${{ secrets.GITHUB_TOKEN }}" 47 | prerelease: false 48 | files: | 49 | szabo_zh-v*.pdf 50 | -------------------------------------------------------------------------------- /Chaps/progess.tex: -------------------------------------------------------------------------------- 1 | \chapter*{进度表} 2 | 3 | \makeatletter 4 | \@date 5 | \makeatother 6 | 7 | \begin{itemize} 8 | \item[\CheckedBox] 第一章 数学预备 9 | \item[\CheckedBox] 第二章 多电子波函数与多电子算符 10 | \item[\DSquare] 第三章 Hatree-Fock近似 11 | \begin{itemize} 12 | \item[\CheckedBox] 3.1-3.5 13 | \item[\CheckedBox] 3.6 14 | % \begin{itemize} 15 | % \item[\CheckedBox] 3.6.1,3.6.2 16 | % \item[\Square] 3.6.3, 3.6.4 17 | % \end{itemize} 18 | \item[\DSquare] 3.7 19 | \begin{itemize} 20 | \item [\DSquare] 3.7.1-3.7.2 21 | \item [\Square] 3.7.3-3.7.4 22 | \end{itemize} 23 | \item[\DSquare] 3.8 24 | \begin{itemize} 25 | \item[\CheckedBox] 3.8.1-3.8.5 26 | \item[\Square] 3.8.6 27 | \item[\DSquare] 3.8.7 28 | \end{itemize} 29 | \end{itemize} 30 | \item[\DSquare] 31 | 第四章 组态相互作用 32 | \begin{itemize} 33 | \item[\DSquare] 4.1 34 | \item[\CheckedBox] 4.2 35 | \item[\Square] 4.3 36 | \item[\CheckedBox] 4.4 37 | \item[\DSquare] 4.5 38 | \item[\Square] 4.6 39 | \end{itemize} 40 | \item[\DSquare] 第五章 对理论与耦合对理论 41 | \begin{itemize} 42 | \item[\DSquare] 5.1 43 | \item[\DSquare] 5.2 44 | \begin{itemize} 45 | \item [\CheckedBox] 5.2.1 46 | \item [\CheckedBox] 5.2.2 47 | \item [\Square] 5.2.3-5.2.4 48 | \end{itemize} 49 | \item[\Square] 5.3 50 | \end{itemize} 51 | \item[\CheckedBox] 第六章 多体微扰论 52 | % \begin{itemize} 53 | % \item[\CheckedBox] 6.1-6.8 54 | % \item[\CheckedBox] 6.8 55 | % \end{itemize} 56 | \item[\DSquare] 单粒子多体格林函数 57 | \begin{itemize} 58 | \item[\CheckedBox] 7.1-7.2 59 | \item[\DSquare] 7.3 60 | \item[\Square] 7.4-7.5 61 | \end{itemize} 62 | \item[\DSquare] 附录 \begin{itemize} 63 | \item[\CheckedBox] 附录A 64 | \item[\CheckedBox] 附录B 65 | \item[\DSquare] 附录C 66 | \begin{itemize} 67 | \item[\CheckedBox] C.1-C.4 68 | \item[\Square] C.5-C.7 69 | \end{itemize} 70 | \item[\CheckedBox] 附录D 71 | \end{itemize} 72 | \end{itemize} 73 | -------------------------------------------------------------------------------- /Pictures/h2-6-31gdp-fci.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.247817 2 | 0.625000 0.201661 3 | 0.650000 0.160461 4 | 0.675000 0.123628 5 | 0.700000 0.090656 6 | 0.725000 0.061110 7 | 0.750000 0.034615 8 | 0.775000 0.010843 9 | 0.800000 -0.010491 10 | 0.825000 -0.029637 11 | 0.850000 -0.046816 12 | 0.875000 -0.062222 13 | 0.900000 -0.076028 14 | 0.925000 -0.088386 15 | 0.950000 -0.099433 16 | 0.975000 -0.109291 17 | 1.000000 -0.118068 18 | 1.025000 -0.125863 19 | 1.050000 -0.132763 20 | 1.075000 -0.138847 21 | 1.100000 -0.144187 22 | 1.125000 -0.148847 23 | 1.150000 -0.152885 24 | 1.175000 -0.156355 25 | 1.200000 -0.159305 26 | 1.225000 -0.161777 27 | 1.250000 -0.163813 28 | 1.275000 -0.165448 29 | 1.300000 -0.166716 30 | 1.325000 -0.167647 31 | 1.350000 -0.168270 32 | 1.375000 -0.168609 33 | 1.400000 -0.168688 34 | 1.425000 -0.168529 35 | 1.450000 -0.168151 36 | 1.475000 -0.167574 37 | 1.500000 -0.166814 38 | 1.525000 -0.165887 39 | 1.550000 -0.164807 40 | 1.575000 -0.163588 41 | 1.600000 -0.162241 42 | 1.625000 -0.160779 43 | 1.650000 -0.159212 44 | 1.675000 -0.157550 45 | 1.700000 -0.155802 46 | 1.725000 -0.153977 47 | 1.750000 -0.152081 48 | 1.775000 -0.150124 49 | 1.800000 -0.148110 50 | 1.825000 -0.146047 51 | 1.850000 -0.143940 52 | 1.875000 -0.141795 53 | 1.900000 -0.139617 54 | 1.925000 -0.137410 55 | 1.950000 -0.135179 56 | 1.975000 -0.132928 57 | 2.000000 -0.130661 58 | 2.025000 -0.128381 59 | 2.050000 -0.126092 60 | 2.075000 -0.123796 61 | 2.100000 -0.121497 62 | 2.125000 -0.119197 63 | 2.150000 -0.116899 64 | 2.175000 -0.114606 65 | 2.200000 -0.112318 66 | 2.225000 -0.110040 67 | 2.250000 -0.107771 68 | 2.275000 -0.105515 69 | 2.300000 -0.103274 70 | 2.325000 -0.101050 71 | 2.350000 -0.098841 72 | 2.375000 -0.096650 73 | 2.400000 -0.094480 74 | 2.425000 -0.092331 75 | 2.450000 -0.090205 76 | 2.475000 -0.088102 77 | 2.500000 -0.086024 78 | 2.525000 -0.083972 79 | 2.550000 -0.081945 80 | 2.575000 -0.079944 81 | 2.600000 -0.077972 82 | 2.625000 -0.076028 83 | 2.650000 -0.074113 84 | 2.675000 -0.072227 85 | 2.700000 -0.070371 86 | 2.725000 -0.068545 87 | 2.750000 -0.066750 88 | 2.775000 -0.064985 89 | 2.800000 -0.063251 90 | 2.825000 -0.061547 91 | 2.850000 -0.059876 92 | 2.875000 -0.058236 93 | 2.900000 -0.056628 94 | 2.925000 -0.055050 95 | 2.950000 -0.053504 96 | 2.975000 -0.051988 97 | 3.000000 -0.050505 98 | 3.025000 -0.049052 99 | 3.050000 -0.047630 100 | 3.075000 -0.046239 101 | 3.100000 -0.044878 102 | 3.125000 -0.043548 103 | 3.150000 -0.042249 104 | 3.175000 -0.040976 105 | 3.200000 -0.039735 106 | 3.225000 -0.038523 107 | 3.250000 -0.037340 108 | 3.275000 -0.036187 109 | 3.300000 -0.035060 110 | 3.325000 -0.033963 111 | 3.350000 -0.032889 112 | 3.375000 -0.031847 113 | 3.400000 -0.030830 114 | 3.425000 -0.029839 115 | 3.450000 -0.028875 116 | 3.475000 -0.027937 117 | 3.500000 -0.027023 118 | 3.525000 -0.026134 119 | 3.550000 -0.025270 120 | 3.575000 -0.024430 121 | 3.600000 -0.023612 122 | 3.625000 -0.022819 123 | 3.650000 -0.022049 124 | 3.675000 -0.021300 125 | 3.700000 -0.020573 126 | 3.725000 -0.019867 127 | 3.750000 -0.019183 128 | 3.775000 -0.018520 129 | 3.800000 -0.017876 130 | 3.825000 -0.017251 131 | 3.850000 -0.016646 132 | 3.875000 -0.016059 133 | 3.900000 -0.015492 134 | 3.925000 -0.014941 135 | 3.950000 -0.014409 136 | 3.975000 -0.013893 137 | 4.000000 -0.013394 138 | 4.025000 -0.012912 139 | 4.050000 -0.012445 140 | 4.075000 -0.011993 141 | 4.100000 -0.011556 142 | 4.125000 -0.011135 143 | 4.150000 -0.010727 144 | 4.175000 -0.010333 145 | 4.200000 -0.009951 146 | 4.225000 -0.009584 147 | 4.250000 -0.009228 148 | 4.275000 -0.008885 149 | 4.300000 -0.008554 150 | 4.325000 -0.008236 151 | 4.350000 -0.007928 152 | 4.375000 -0.007632 153 | 4.400000 -0.007346 154 | 4.425000 -0.007069 155 | 4.450000 -0.006802 156 | -------------------------------------------------------------------------------- /Pictures/h2-6-31gdp-mp2.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.253605 2 | 0.625000 0.207499 3 | 0.650000 0.166349 4 | 0.675000 0.129564 5 | 0.700000 0.096639 6 | 0.725000 0.067140 7 | 0.750000 0.040691 8 | 0.775000 0.016965 9 | 0.800000 -0.004324 10 | 0.825000 -0.023426 11 | 0.850000 -0.040561 12 | 0.875000 -0.055923 13 | 0.900000 -0.069685 14 | 0.925000 -0.081999 15 | 0.950000 -0.093002 16 | 0.975000 -0.102815 17 | 1.000000 -0.111547 18 | 1.025000 -0.119295 19 | 1.050000 -0.126147 20 | 1.075000 -0.132182 21 | 1.100000 -0.137471 22 | 1.125000 -0.142078 23 | 1.150000 -0.146061 24 | 1.175000 -0.149474 25 | 1.200000 -0.152364 26 | 1.225000 -0.154774 27 | 1.250000 -0.156745 28 | 1.275000 -0.158312 29 | 1.300000 -0.159509 30 | 1.325000 -0.160366 31 | 1.350000 -0.160910 32 | 1.375000 -0.161167 33 | 1.400000 -0.161160 34 | 1.425000 -0.160911 35 | 1.450000 -0.160440 36 | 1.475000 -0.159765 37 | 1.500000 -0.158902 38 | 1.525000 -0.157867 39 | 1.550000 -0.156674 40 | 1.575000 -0.155337 41 | 1.600000 -0.153867 42 | 1.625000 -0.152276 43 | 1.650000 -0.150575 44 | 1.675000 -0.148773 45 | 1.700000 -0.146878 46 | 1.725000 -0.144900 47 | 1.750000 -0.142846 48 | 1.775000 -0.140723 49 | 1.800000 -0.138537 50 | 1.825000 -0.136295 51 | 1.850000 -0.134002 52 | 1.875000 -0.131664 53 | 1.900000 -0.129286 54 | 1.925000 -0.126871 55 | 1.950000 -0.124425 56 | 1.975000 -0.121950 57 | 2.000000 -0.119452 58 | 2.025000 -0.116933 59 | 2.050000 -0.114396 60 | 2.075000 -0.111845 61 | 2.100000 -0.109282 62 | 2.125000 -0.106710 63 | 2.150000 -0.104131 64 | 2.175000 -0.101547 65 | 2.200000 -0.098961 66 | 2.225000 -0.096375 67 | 2.250000 -0.093790 68 | 2.275000 -0.091208 69 | 2.300000 -0.087153 70 | 2.325000 -0.082971 71 | 2.350000 -0.078995 72 | 2.375000 -0.075215 73 | 2.400000 -0.071622 74 | 2.425000 -0.068206 75 | 2.450000 -0.064958 76 | 2.475000 -0.061870 77 | 2.500000 -0.058934 78 | 2.525000 -0.056141 79 | 2.550000 -0.053486 80 | 2.575000 -0.050960 81 | 2.600000 -0.048558 82 | 2.625000 -0.046273 83 | 2.650000 -0.044100 84 | 2.675000 -0.042033 85 | 2.700000 -0.040066 86 | 2.725000 -0.038195 87 | 2.750000 -0.036415 88 | 2.775000 -0.034720 89 | 2.800000 -0.033108 90 | 2.825000 -0.031574 91 | 2.850000 -0.030114 92 | 2.875000 -0.028724 93 | 2.900000 -0.027401 94 | 2.925000 -0.026141 95 | 2.950000 -0.024942 96 | 2.975000 -0.023800 97 | 3.000000 -0.022713 98 | 3.025000 -0.021677 99 | 3.050000 -0.020690 100 | 3.075000 -0.019751 101 | 3.100000 -0.018855 102 | 3.125000 -0.018002 103 | 3.150000 -0.017189 104 | 3.175000 -0.016415 105 | 3.200000 -0.015676 106 | 3.225000 -0.014972 107 | 3.250000 -0.014302 108 | 3.275000 -0.013662 109 | 3.300000 -0.013052 110 | 3.325000 -0.012470 111 | 3.350000 -0.011916 112 | 3.375000 -0.011386 113 | 3.400000 -0.010882 114 | 3.425000 -0.010400 115 | 3.450000 -0.009941 116 | 3.475000 -0.009502 117 | 3.500000 -0.009084 118 | 3.525000 -0.008685 119 | 3.550000 -0.008304 120 | 3.575000 -0.007940 121 | 3.600000 -0.007593 122 | 3.625000 -0.007261 123 | 3.650000 -0.006944 124 | 3.675000 -0.006642 125 | 3.700000 -0.006353 126 | 3.725000 -0.006078 127 | 3.750000 -0.005814 128 | 3.775000 -0.005563 129 | 3.800000 -0.005322 130 | 3.825000 -0.005093 131 | 3.850000 -0.004873 132 | 3.875000 -0.004664 133 | 3.900000 -0.004464 134 | 3.925000 -0.004272 135 | 3.950000 -0.004089 136 | 3.975000 -0.003915 137 | 4.000000 -0.003748 138 | 4.025000 -0.003588 139 | 4.050000 -0.003435 140 | 4.075000 -0.003290 141 | 4.100000 -0.003150 142 | 4.125000 -0.003017 143 | 4.150000 -0.002889 144 | 4.175000 -0.002768 145 | 4.200000 -0.002651 146 | 4.225000 -0.002540 147 | 4.250000 -0.002433 148 | 4.275000 -0.002332 149 | 4.300000 -0.002234 150 | 4.325000 -0.002141 151 | 4.350000 -0.002052 152 | 4.375000 -0.001967 153 | 4.400000 -0.001886 154 | 4.425000 -0.001808 155 | 4.450000 -0.001734 156 | -------------------------------------------------------------------------------- /Pictures/h2-6-31gdp-mp3.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.248888 2 | 0.625000 0.202749 3 | 0.650000 0.161566 4 | 0.675000 0.124749 5 | 0.700000 0.091794 6 | 0.725000 0.062266 7 | 0.750000 0.035789 8 | 0.775000 0.012036 9 | 0.800000 -0.009279 10 | 0.825000 -0.028406 11 | 0.850000 -0.045565 12 | 0.875000 -0.060951 13 | 0.900000 -0.074735 14 | 0.925000 -0.087071 15 | 0.950000 -0.098095 16 | 0.975000 -0.107929 17 | 1.000000 -0.116681 18 | 1.025000 -0.124449 19 | 1.050000 -0.131322 20 | 1.075000 -0.137377 21 | 1.100000 -0.142687 22 | 1.125000 -0.147315 23 | 1.150000 -0.151320 24 | 1.175000 -0.154755 25 | 1.200000 -0.157667 26 | 1.225000 -0.160101 27 | 1.250000 -0.162096 28 | 1.275000 -0.163688 29 | 1.300000 -0.164910 30 | 1.325000 -0.165794 31 | 1.350000 -0.166366 32 | 1.375000 -0.166652 33 | 1.400000 -0.166676 34 | 1.425000 -0.166459 35 | 1.450000 -0.166021 36 | 1.475000 -0.165381 37 | 1.500000 -0.164554 38 | 1.525000 -0.163558 39 | 1.550000 -0.162405 40 | 1.575000 -0.161109 41 | 1.600000 -0.159684 42 | 1.625000 -0.158139 43 | 1.650000 -0.156486 44 | 1.675000 -0.154734 45 | 1.700000 -0.152892 46 | 1.725000 -0.150969 47 | 1.750000 -0.148971 48 | 1.775000 -0.146908 49 | 1.800000 -0.144784 50 | 1.825000 -0.142607 51 | 1.850000 -0.140382 52 | 1.875000 -0.138114 53 | 1.900000 -0.135809 54 | 1.925000 -0.133470 55 | 1.950000 -0.131103 56 | 1.975000 -0.128710 57 | 2.000000 -0.126297 58 | 2.025000 -0.123865 59 | 2.050000 -0.121420 60 | 2.075000 -0.118963 61 | 2.100000 -0.116497 62 | 2.125000 -0.114025 63 | 2.150000 -0.111550 64 | 2.175000 -0.109074 65 | 2.200000 -0.106599 66 | 2.225000 -0.104127 67 | 2.250000 -0.101660 68 | 2.275000 -0.099199 69 | 2.300000 -0.094935 70 | 2.325000 -0.090463 71 | 2.350000 -0.086194 72 | 2.375000 -0.082121 73 | 2.400000 -0.078235 74 | 2.425000 -0.074530 75 | 2.450000 -0.070997 76 | 2.475000 -0.067629 77 | 2.500000 -0.064420 78 | 2.525000 -0.061363 79 | 2.550000 -0.058451 80 | 2.575000 -0.055677 81 | 2.600000 -0.053035 82 | 2.625000 -0.050520 83 | 2.650000 -0.048126 84 | 2.675000 -0.045847 85 | 2.700000 -0.043677 86 | 2.725000 -0.041612 87 | 2.750000 -0.039647 88 | 2.775000 -0.037776 89 | 2.800000 -0.035996 90 | 2.825000 -0.034302 91 | 2.850000 -0.032691 92 | 2.875000 -0.031157 93 | 2.900000 -0.029697 94 | 2.925000 -0.028308 95 | 2.950000 -0.026986 96 | 2.975000 -0.025727 97 | 3.000000 -0.024530 98 | 3.025000 -0.023390 99 | 3.050000 -0.022305 100 | 3.075000 -0.021273 101 | 3.100000 -0.020290 102 | 3.125000 -0.019354 103 | 3.150000 -0.018463 104 | 3.175000 -0.017614 105 | 3.200000 -0.016806 106 | 3.225000 -0.016037 107 | 3.250000 -0.015304 108 | 3.275000 -0.014606 109 | 3.300000 -0.013941 110 | 3.325000 -0.013308 111 | 3.350000 -0.012704 112 | 3.375000 -0.012129 113 | 3.400000 -0.011581 114 | 3.425000 -0.011059 115 | 3.450000 -0.010561 116 | 3.475000 -0.010087 117 | 3.500000 -0.009634 118 | 3.525000 -0.009203 119 | 3.550000 -0.008792 120 | 3.575000 -0.008400 121 | 3.600000 -0.008026 122 | 3.625000 -0.007669 123 | 3.650000 -0.007329 124 | 3.675000 -0.007004 125 | 3.700000 -0.006694 126 | 3.725000 -0.006399 127 | 3.750000 -0.006117 128 | 3.775000 -0.005848 129 | 3.800000 -0.005591 130 | 3.825000 -0.005346 131 | 3.850000 -0.005112 132 | 3.875000 -0.004889 133 | 3.900000 -0.004676 134 | 3.925000 -0.004472 135 | 3.950000 -0.004278 136 | 3.975000 -0.004092 137 | 4.000000 -0.003915 138 | 4.025000 -0.003746 139 | 4.050000 -0.003585 140 | 4.075000 -0.003430 141 | 4.100000 -0.003283 142 | 4.125000 -0.003142 143 | 4.150000 -0.003008 144 | 4.175000 -0.002879 145 | 4.200000 -0.002756 146 | 4.225000 -0.002639 147 | 4.250000 -0.002527 148 | 4.275000 -0.002420 149 | 4.300000 -0.002318 150 | 4.325000 -0.002220 151 | 4.350000 -0.002127 152 | 4.375000 -0.002038 153 | 4.400000 -0.001952 154 | 4.425000 -0.001871 155 | 4.450000 -0.001793 156 | -------------------------------------------------------------------------------- /Pictures/h2-6-31gdp-uhf.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.278479 2 | 0.625000 0.232471 3 | 0.650000 0.191412 4 | 0.675000 0.154714 5 | 0.700000 0.121873 6 | 0.725000 0.092452 7 | 0.750000 0.066077 8 | 0.775000 0.042420 9 | 0.800000 0.021196 10 | 0.825000 0.002156 11 | 0.850000 -0.014922 12 | 0.875000 -0.030230 13 | 0.900000 -0.043942 14 | 0.925000 -0.056209 15 | 0.950000 -0.067168 16 | 0.975000 -0.076939 17 | 1.000000 -0.085632 18 | 1.025000 -0.093344 19 | 1.050000 -0.100162 20 | 1.075000 -0.106165 21 | 1.100000 -0.111424 22 | 1.125000 -0.116002 23 | 1.150000 -0.119959 24 | 1.175000 -0.123346 25 | 1.200000 -0.126211 26 | 1.225000 -0.128597 27 | 1.250000 -0.130544 28 | 1.275000 -0.132088 29 | 1.300000 -0.133262 30 | 1.325000 -0.134096 31 | 1.350000 -0.134616 32 | 1.375000 -0.134850 33 | 1.400000 -0.134819 34 | 1.425000 -0.134544 35 | 1.450000 -0.134046 36 | 1.475000 -0.133343 37 | 1.500000 -0.132451 38 | 1.525000 -0.131384 39 | 1.550000 -0.130158 40 | 1.575000 -0.128786 41 | 1.600000 -0.127278 42 | 1.625000 -0.125648 43 | 1.650000 -0.123903 44 | 1.675000 -0.122055 45 | 1.700000 -0.120112 46 | 1.725000 -0.118081 47 | 1.750000 -0.115971 48 | 1.775000 -0.113788 49 | 1.800000 -0.111540 50 | 1.825000 -0.109231 51 | 1.850000 -0.106867 52 | 1.875000 -0.104454 53 | 1.900000 -0.101996 54 | 1.925000 -0.099498 55 | 1.950000 -0.096964 56 | 1.975000 -0.094397 57 | 2.000000 -0.091801 58 | 2.025000 -0.089180 59 | 2.050000 -0.086537 60 | 2.075000 -0.083874 61 | 2.100000 -0.081194 62 | 2.125000 -0.078500 63 | 2.150000 -0.075794 64 | 2.175000 -0.073078 65 | 2.200000 -0.070354 66 | 2.225000 -0.067625 67 | 2.250000 -0.064892 68 | 2.275000 -0.062156 69 | 2.300000 -0.059460 70 | 2.325000 -0.056877 71 | 2.350000 -0.054405 72 | 2.375000 -0.052040 73 | 2.400000 -0.049777 74 | 2.425000 -0.047612 75 | 2.450000 -0.045542 76 | 2.475000 -0.043561 77 | 2.500000 -0.041667 78 | 2.525000 -0.039855 79 | 2.550000 -0.038123 80 | 2.575000 -0.036466 81 | 2.600000 -0.034883 82 | 2.625000 -0.033368 83 | 2.650000 -0.031921 84 | 2.675000 -0.030537 85 | 2.700000 -0.029214 86 | 2.725000 -0.027949 87 | 2.750000 -0.026740 88 | 2.775000 -0.025584 89 | 2.800000 -0.024479 90 | 2.825000 -0.023423 91 | 2.850000 -0.022413 92 | 2.875000 -0.021448 93 | 2.900000 -0.020525 94 | 2.925000 -0.019643 95 | 2.950000 -0.018800 96 | 2.975000 -0.017993 97 | 3.000000 -0.017222 98 | 3.025000 -0.016485 99 | 3.050000 -0.015781 100 | 3.075000 -0.015107 101 | 3.100000 -0.014462 102 | 3.125000 -0.013846 103 | 3.150000 -0.013256 104 | 3.175000 -0.012693 105 | 3.200000 -0.012154 106 | 3.225000 -0.011638 107 | 3.250000 -0.011145 108 | 3.275000 -0.010673 109 | 3.300000 -0.010221 110 | 3.325000 -0.009789 111 | 3.350000 -0.009376 112 | 3.375000 -0.008981 113 | 3.400000 -0.008603 114 | 3.425000 -0.008241 115 | 3.450000 -0.007894 116 | 3.475000 -0.007563 117 | 3.500000 -0.007245 118 | 3.525000 -0.006942 119 | 3.550000 -0.006651 120 | 3.575000 -0.006373 121 | 3.600000 -0.006106 122 | 3.625000 -0.005852 123 | 3.650000 -0.005607 124 | 3.675000 -0.005374 125 | 3.700000 -0.005150 126 | 3.725000 -0.004936 127 | 3.750000 -0.004731 128 | 3.775000 -0.004535 129 | 3.800000 -0.004347 130 | 3.825000 -0.004167 131 | 3.850000 -0.003994 132 | 3.875000 -0.003829 133 | 3.900000 -0.003671 134 | 3.925000 -0.003520 135 | 3.950000 -0.003375 136 | 3.975000 -0.003236 137 | 4.000000 -0.003103 138 | 4.025000 -0.002976 139 | 4.050000 -0.002854 140 | 4.075000 -0.002737 141 | 4.100000 -0.002625 142 | 4.125000 -0.002518 143 | 4.150000 -0.002416 144 | 4.175000 -0.002318 145 | 4.200000 -0.002224 146 | 4.225000 -0.002133 147 | 4.250000 -0.002047 148 | 4.275000 -0.001965 149 | 4.300000 -0.001885 150 | 4.325000 -0.001810 151 | 4.350000 -0.001737 152 | 4.375000 -0.001668 153 | 4.400000 -0.001601 154 | 4.425000 -0.001537 155 | 4.450000 -0.001476 156 | -------------------------------------------------------------------------------- /Pictures/h2-sto-3g-fci.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.256653 2 | 0.625000 0.207074 3 | 0.650000 0.162629 4 | 0.675000 0.122721 5 | 0.700000 0.086838 6 | 0.725000 0.054538 7 | 0.750000 0.025441 8 | 0.775000 -0.000787 9 | 0.800000 -0.024435 10 | 0.825000 -0.045757 11 | 0.850000 -0.064977 12 | 0.875000 -0.082293 13 | 0.900000 -0.097879 14 | 0.925000 -0.111892 15 | 0.950000 -0.124470 16 | 0.975000 -0.135737 17 | 1.000000 -0.145806 18 | 1.025000 -0.154777 19 | 1.050000 -0.162742 20 | 1.075000 -0.169782 21 | 1.100000 -0.175973 22 | 1.125000 -0.181385 23 | 1.150000 -0.186078 24 | 1.175000 -0.190110 25 | 1.200000 -0.193535 26 | 1.225000 -0.196400 27 | 1.250000 -0.198750 28 | 1.275000 -0.200625 29 | 1.300000 -0.202064 30 | 1.325000 -0.203101 31 | 1.350000 -0.203769 32 | 1.375000 -0.204097 33 | 1.400000 -0.204112 34 | 1.425000 -0.203840 35 | 1.450000 -0.203305 36 | 1.475000 -0.202527 37 | 1.500000 -0.201527 38 | 1.525000 -0.200323 39 | 1.550000 -0.198932 40 | 1.575000 -0.197370 41 | 1.600000 -0.195652 42 | 1.625000 -0.193790 43 | 1.650000 -0.191798 44 | 1.675000 -0.189686 45 | 1.700000 -0.187465 46 | 1.725000 -0.185145 47 | 1.750000 -0.182736 48 | 1.775000 -0.180246 49 | 1.800000 -0.177682 50 | 1.825000 -0.175053 51 | 1.850000 -0.172364 52 | 1.875000 -0.169623 53 | 1.900000 -0.166836 54 | 1.925000 -0.164008 55 | 1.950000 -0.161145 56 | 1.975000 -0.158251 57 | 2.000000 -0.155333 58 | 2.025000 -0.152393 59 | 2.050000 -0.149437 60 | 2.075000 -0.146469 61 | 2.100000 -0.143493 62 | 2.125000 -0.140512 63 | 2.150000 -0.137529 64 | 2.175000 -0.134550 65 | 2.200000 -0.131576 66 | 2.225000 -0.128610 67 | 2.250000 -0.125656 68 | 2.275000 -0.122717 69 | 2.300000 -0.119795 70 | 2.325000 -0.116892 71 | 2.350000 -0.114012 72 | 2.375000 -0.111155 73 | 2.400000 -0.108326 74 | 2.425000 -0.105524 75 | 2.450000 -0.102753 76 | 2.475000 -0.100015 77 | 2.500000 -0.097310 78 | 2.525000 -0.094641 79 | 2.550000 -0.092009 80 | 2.575000 -0.089415 81 | 2.600000 -0.086860 82 | 2.625000 -0.084346 83 | 2.650000 -0.081874 84 | 2.675000 -0.079444 85 | 2.700000 -0.077058 86 | 2.725000 -0.074716 87 | 2.750000 -0.072419 88 | 2.775000 -0.070167 89 | 2.800000 -0.067961 90 | 2.825000 -0.065802 91 | 2.850000 -0.063688 92 | 2.875000 -0.061622 93 | 2.900000 -0.059602 94 | 2.925000 -0.057630 95 | 2.950000 -0.055704 96 | 2.975000 -0.053825 97 | 3.000000 -0.051993 98 | 3.025000 -0.050207 99 | 3.050000 -0.048468 100 | 3.075000 -0.046775 101 | 3.100000 -0.045127 102 | 3.125000 -0.043525 103 | 3.150000 -0.041967 104 | 3.175000 -0.040453 105 | 3.200000 -0.038984 106 | 3.225000 -0.037557 107 | 3.250000 -0.036173 108 | 3.275000 -0.034830 109 | 3.300000 -0.033529 110 | 3.325000 -0.032268 111 | 3.350000 -0.031047 112 | 3.375000 -0.029865 113 | 3.400000 -0.028721 114 | 3.425000 -0.027615 115 | 3.450000 -0.026545 116 | 3.475000 -0.025511 117 | 3.500000 -0.024512 118 | 3.525000 -0.023547 119 | 3.550000 -0.022615 120 | 3.575000 -0.021716 121 | 3.600000 -0.020849 122 | 3.625000 -0.020012 123 | 3.650000 -0.019206 124 | 3.675000 -0.018428 125 | 3.700000 -0.017679 126 | 3.725000 -0.016957 127 | 3.750000 -0.016263 128 | 3.775000 -0.015594 129 | 3.800000 -0.014950 130 | 3.825000 -0.014331 131 | 3.850000 -0.013735 132 | 3.875000 -0.013162 133 | 3.900000 -0.012611 134 | 3.925000 -0.012082 135 | 3.950000 -0.011573 136 | 3.975000 -0.011084 137 | 4.000000 -0.010615 138 | 4.025000 -0.010164 139 | 4.050000 -0.009731 140 | 4.075000 -0.009315 141 | 4.100000 -0.008916 142 | 4.125000 -0.008533 143 | 4.150000 -0.008166 144 | 4.175000 -0.007814 145 | 4.200000 -0.007476 146 | 4.225000 -0.007152 147 | 4.250000 -0.006841 148 | 4.275000 -0.006543 149 | 4.300000 -0.006257 150 | 4.325000 -0.005984 151 | 4.350000 -0.005721 152 | 4.375000 -0.005470 153 | 4.400000 -0.005229 154 | 4.425000 -0.004998 155 | 4.450000 -0.004777 156 | -------------------------------------------------------------------------------- /Pictures/h2-sto-3g-mp2.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.258778 2 | 0.625000 0.209282 3 | 0.650000 0.164925 4 | 0.675000 0.125108 5 | 0.700000 0.089320 6 | 0.725000 0.057121 7 | 0.750000 0.028128 8 | 0.775000 0.002010 9 | 0.800000 -0.021523 10 | 0.825000 -0.042726 11 | 0.850000 -0.061822 12 | 0.875000 -0.079009 13 | 0.900000 -0.094461 14 | 0.925000 -0.108333 15 | 0.950000 -0.120766 16 | 0.975000 -0.131882 17 | 1.000000 -0.141794 18 | 1.025000 -0.150603 19 | 1.050000 -0.158398 20 | 1.075000 -0.165264 21 | 1.100000 -0.171275 22 | 1.125000 -0.176498 23 | 1.150000 -0.180998 24 | 1.175000 -0.184830 25 | 1.200000 -0.188048 26 | 1.225000 -0.190698 27 | 1.250000 -0.192827 28 | 1.275000 -0.194474 29 | 1.300000 -0.195678 30 | 1.325000 -0.196472 31 | 1.350000 -0.196889 32 | 1.375000 -0.196959 33 | 1.400000 -0.196708 34 | 1.425000 -0.196162 35 | 1.450000 -0.195345 36 | 1.475000 -0.194276 37 | 1.500000 -0.192977 38 | 1.525000 -0.191465 39 | 1.550000 -0.189757 40 | 1.575000 -0.187869 41 | 1.600000 -0.185815 42 | 1.625000 -0.183608 43 | 1.650000 -0.181261 44 | 1.675000 -0.178784 45 | 1.700000 -0.176188 46 | 1.725000 -0.173483 47 | 1.750000 -0.170677 48 | 1.775000 -0.167779 49 | 1.800000 -0.164797 50 | 1.825000 -0.161737 51 | 1.850000 -0.158606 52 | 1.875000 -0.155411 53 | 1.900000 -0.152158 54 | 1.925000 -0.148851 55 | 1.950000 -0.145496 56 | 1.975000 -0.142099 57 | 2.000000 -0.138663 58 | 2.025000 -0.135193 59 | 2.050000 -0.131692 60 | 2.075000 -0.128166 61 | 2.100000 -0.124618 62 | 2.125000 -0.121051 63 | 2.150000 -0.117469 64 | 2.175000 -0.113875 65 | 2.200000 -0.108128 66 | 2.225000 -0.102215 67 | 2.250000 -0.096645 68 | 2.275000 -0.091396 69 | 2.300000 -0.086450 70 | 2.325000 -0.081786 71 | 2.350000 -0.077388 72 | 2.375000 -0.073240 73 | 2.400000 -0.069327 74 | 2.425000 -0.065635 75 | 2.450000 -0.062150 76 | 2.475000 -0.058860 77 | 2.500000 -0.055753 78 | 2.525000 -0.052820 79 | 2.550000 -0.050049 80 | 2.575000 -0.047431 81 | 2.600000 -0.044957 82 | 2.625000 -0.042619 83 | 2.650000 -0.040408 84 | 2.675000 -0.038319 85 | 2.700000 -0.036342 86 | 2.725000 -0.034473 87 | 2.750000 -0.032705 88 | 2.775000 -0.031032 89 | 2.800000 -0.029449 90 | 2.825000 -0.027951 91 | 2.850000 -0.026532 92 | 2.875000 -0.025189 93 | 2.900000 -0.023917 94 | 2.925000 -0.022713 95 | 2.950000 -0.021571 96 | 2.975000 -0.020490 97 | 3.000000 -0.019466 98 | 3.025000 -0.018495 99 | 3.050000 -0.017574 100 | 3.075000 -0.016702 101 | 3.100000 -0.015874 102 | 3.125000 -0.015090 103 | 3.150000 -0.014346 104 | 3.175000 -0.013640 105 | 3.200000 -0.012970 106 | 3.225000 -0.012334 107 | 3.250000 -0.011731 108 | 3.275000 -0.011159 109 | 3.300000 -0.010616 110 | 3.325000 -0.010100 111 | 3.350000 -0.009610 112 | 3.375000 -0.009145 113 | 3.400000 -0.008703 114 | 3.425000 -0.008284 115 | 3.450000 -0.007885 116 | 3.475000 -0.007506 117 | 3.500000 -0.007146 118 | 3.525000 -0.006804 119 | 3.550000 -0.006479 120 | 3.575000 -0.006171 121 | 3.600000 -0.005877 122 | 3.625000 -0.005598 123 | 3.650000 -0.005332 124 | 3.675000 -0.005080 125 | 3.700000 -0.004840 126 | 3.725000 -0.004612 127 | 3.750000 -0.004395 128 | 3.775000 -0.004188 129 | 3.800000 -0.003991 130 | 3.825000 -0.003804 131 | 3.850000 -0.003627 132 | 3.875000 -0.003457 133 | 3.900000 -0.003296 134 | 3.925000 -0.003143 135 | 3.950000 -0.002997 136 | 3.975000 -0.002858 137 | 4.000000 -0.002725 138 | 4.025000 -0.002599 139 | 4.050000 -0.002479 140 | 4.075000 -0.002365 141 | 4.100000 -0.002256 142 | 4.125000 -0.002152 143 | 4.150000 -0.002053 144 | 4.175000 -0.001959 145 | 4.200000 -0.001869 146 | 4.225000 -0.001784 147 | 4.250000 -0.001702 148 | 4.275000 -0.001625 149 | 4.300000 -0.001551 150 | 4.325000 -0.001480 151 | 4.350000 -0.001413 152 | 4.375000 -0.001348 153 | 4.400000 -0.001287 154 | 4.425000 -0.001229 155 | 4.450000 -0.001173 156 | -------------------------------------------------------------------------------- /Pictures/h2-sto-3g-mp3.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.257188 2 | 0.625000 0.207637 3 | 0.650000 0.163221 4 | 0.675000 0.123343 5 | 0.700000 0.087492 6 | 0.725000 0.055227 7 | 0.750000 0.026166 8 | 0.775000 -0.000024 9 | 0.800000 -0.023632 10 | 0.825000 -0.044912 11 | 0.850000 -0.064087 12 | 0.875000 -0.081357 13 | 0.900000 -0.096894 14 | 0.925000 -0.110855 15 | 0.950000 -0.123380 16 | 0.975000 -0.134591 17 | 1.000000 -0.144601 18 | 1.025000 -0.153511 19 | 1.050000 -0.161411 20 | 1.075000 -0.168384 21 | 1.100000 -0.174506 22 | 1.125000 -0.179844 23 | 1.150000 -0.184462 24 | 1.175000 -0.188415 25 | 1.200000 -0.191758 26 | 1.225000 -0.194537 27 | 1.250000 -0.196798 28 | 1.275000 -0.198582 29 | 1.300000 -0.199925 30 | 1.325000 -0.200863 31 | 1.350000 -0.201428 32 | 1.375000 -0.201649 33 | 1.400000 -0.201555 34 | 1.425000 -0.201169 35 | 1.450000 -0.200515 36 | 1.475000 -0.199615 37 | 1.500000 -0.198489 38 | 1.525000 -0.197155 39 | 1.550000 -0.195629 40 | 1.575000 -0.193929 41 | 1.600000 -0.192067 42 | 1.625000 -0.190057 43 | 1.650000 -0.187912 44 | 1.675000 -0.185642 45 | 1.700000 -0.183259 46 | 1.725000 -0.180773 47 | 1.750000 -0.178191 48 | 1.775000 -0.175523 49 | 1.800000 -0.172777 50 | 1.825000 -0.169959 51 | 1.850000 -0.167077 52 | 1.875000 -0.164138 53 | 1.900000 -0.161146 54 | 1.925000 -0.158108 55 | 1.950000 -0.155029 56 | 1.975000 -0.151914 57 | 2.000000 -0.148768 58 | 2.025000 -0.145596 59 | 2.050000 -0.142401 60 | 2.075000 -0.139188 61 | 2.100000 -0.135961 62 | 2.125000 -0.132724 63 | 2.150000 -0.129480 64 | 2.175000 -0.126232 65 | 2.200000 -0.120158 66 | 2.225000 -0.113740 67 | 2.250000 -0.107650 68 | 2.275000 -0.101875 69 | 2.300000 -0.096402 70 | 2.325000 -0.091216 71 | 2.350000 -0.086304 72 | 2.375000 -0.081654 73 | 2.400000 -0.077253 74 | 2.425000 -0.073089 75 | 2.450000 -0.069150 76 | 2.475000 -0.065425 77 | 2.500000 -0.061902 78 | 2.525000 -0.058571 79 | 2.550000 -0.055423 80 | 2.575000 -0.052447 81 | 2.600000 -0.049635 82 | 2.625000 -0.046977 83 | 2.650000 -0.044466 84 | 2.675000 -0.042093 85 | 2.700000 -0.039850 86 | 2.725000 -0.037731 87 | 2.750000 -0.035729 88 | 2.775000 -0.033837 89 | 2.800000 -0.032049 90 | 2.825000 -0.030359 91 | 2.850000 -0.028762 92 | 2.875000 -0.027253 93 | 2.900000 -0.025826 94 | 2.925000 -0.024477 95 | 2.950000 -0.023202 96 | 2.975000 -0.021996 97 | 3.000000 -0.020856 98 | 3.025000 -0.019778 99 | 3.050000 -0.018758 100 | 3.075000 -0.017794 101 | 3.100000 -0.016881 102 | 3.125000 -0.016018 103 | 3.150000 -0.015200 104 | 3.175000 -0.014427 105 | 3.200000 -0.013695 106 | 3.225000 -0.013001 107 | 3.250000 -0.012345 108 | 3.275000 -0.011723 109 | 3.300000 -0.011135 110 | 3.325000 -0.010577 111 | 3.350000 -0.010049 112 | 3.375000 -0.009548 113 | 3.400000 -0.009073 114 | 3.425000 -0.008624 115 | 3.450000 -0.008197 116 | 3.475000 -0.007793 117 | 3.500000 -0.007409 118 | 3.525000 -0.007046 119 | 3.550000 -0.006701 120 | 3.575000 -0.006374 121 | 3.600000 -0.006063 122 | 3.625000 -0.005769 123 | 3.650000 -0.005489 124 | 3.675000 -0.005223 125 | 3.700000 -0.004971 126 | 3.725000 -0.004732 127 | 3.750000 -0.004505 128 | 3.775000 -0.004289 129 | 3.800000 -0.004084 130 | 3.825000 -0.003889 131 | 3.850000 -0.003704 132 | 3.875000 -0.003528 133 | 3.900000 -0.003361 134 | 3.925000 -0.003202 135 | 3.950000 -0.003051 136 | 3.975000 -0.002907 137 | 4.000000 -0.002771 138 | 4.025000 -0.002641 139 | 4.050000 -0.002517 140 | 4.075000 -0.002399 141 | 4.100000 -0.002288 142 | 4.125000 -0.002181 143 | 4.150000 -0.002080 144 | 4.175000 -0.001983 145 | 4.200000 -0.001891 146 | 4.225000 -0.001804 147 | 4.250000 -0.001721 148 | 4.275000 -0.001641 149 | 4.300000 -0.001566 150 | 4.325000 -0.001494 151 | 4.350000 -0.001425 152 | 4.375000 -0.001360 153 | 4.400000 -0.001298 154 | 4.425000 -0.001238 155 | 4.450000 -0.001182 156 | -------------------------------------------------------------------------------- /Pictures/h2-sto-3g-uhf.dat: -------------------------------------------------------------------------------- 1 | 0.600000 0.264907 2 | 0.625000 0.215550 3 | 0.650000 0.171335 4 | 0.675000 0.131667 5 | 0.700000 0.096034 6 | 0.725000 0.063993 7 | 0.750000 0.035164 8 | 0.775000 0.009215 9 | 0.800000 -0.014144 10 | 0.825000 -0.035168 11 | 0.850000 -0.054079 12 | 0.875000 -0.071076 13 | 0.900000 -0.086333 14 | 0.925000 -0.100006 15 | 0.950000 -0.112233 16 | 0.975000 -0.123139 17 | 1.000000 -0.132836 18 | 1.025000 -0.141423 19 | 1.050000 -0.148993 20 | 1.075000 -0.155627 21 | 1.100000 -0.161400 22 | 1.125000 -0.166382 23 | 1.150000 -0.170633 24 | 1.175000 -0.174212 25 | 1.200000 -0.177170 26 | 1.225000 -0.179556 27 | 1.250000 -0.181415 28 | 1.275000 -0.182786 29 | 1.300000 -0.183707 30 | 1.325000 -0.184214 31 | 1.350000 -0.184337 32 | 1.375000 -0.184107 33 | 1.400000 -0.183551 34 | 1.425000 -0.182692 35 | 1.450000 -0.181556 36 | 1.475000 -0.180163 37 | 1.500000 -0.178532 38 | 1.525000 -0.176682 39 | 1.550000 -0.174630 40 | 1.575000 -0.172390 41 | 1.600000 -0.169977 42 | 1.625000 -0.167404 43 | 1.650000 -0.164684 44 | 1.675000 -0.161826 45 | 1.700000 -0.158842 46 | 1.725000 -0.155741 47 | 1.750000 -0.152531 48 | 1.775000 -0.149221 49 | 1.800000 -0.145818 50 | 1.825000 -0.142330 51 | 1.850000 -0.138762 52 | 1.875000 -0.135121 53 | 1.900000 -0.131413 54 | 1.925000 -0.127643 55 | 1.950000 -0.123815 56 | 1.975000 -0.119935 57 | 2.000000 -0.116007 58 | 2.025000 -0.112035 59 | 2.050000 -0.108024 60 | 2.075000 -0.103977 61 | 2.100000 -0.099897 62 | 2.125000 -0.095789 63 | 2.150000 -0.091654 64 | 2.175000 -0.087498 65 | 2.200000 -0.083393 66 | 2.225000 -0.079476 67 | 2.250000 -0.075742 68 | 2.275000 -0.072183 69 | 2.300000 -0.068790 70 | 2.325000 -0.065556 71 | 2.350000 -0.062473 72 | 2.375000 -0.059534 73 | 2.400000 -0.056734 74 | 2.425000 -0.054064 75 | 2.450000 -0.051520 76 | 2.475000 -0.049095 77 | 2.500000 -0.046784 78 | 2.525000 -0.044581 79 | 2.550000 -0.042483 80 | 2.575000 -0.040482 81 | 2.600000 -0.038577 82 | 2.625000 -0.036761 83 | 2.650000 -0.035030 84 | 2.675000 -0.033381 85 | 2.700000 -0.031810 86 | 2.725000 -0.030313 87 | 2.750000 -0.028887 88 | 2.775000 -0.027528 89 | 2.800000 -0.026234 90 | 2.825000 -0.025000 91 | 2.850000 -0.023825 92 | 2.875000 -0.022706 93 | 2.900000 -0.021639 94 | 2.925000 -0.020623 95 | 2.950000 -0.019655 96 | 2.975000 -0.018733 97 | 3.000000 -0.017854 98 | 3.025000 -0.017017 99 | 3.050000 -0.016220 100 | 3.075000 -0.015460 101 | 3.100000 -0.014736 102 | 3.125000 -0.014046 103 | 3.150000 -0.013389 104 | 3.175000 -0.012763 105 | 3.200000 -0.012167 106 | 3.225000 -0.011599 107 | 3.250000 -0.011057 108 | 3.275000 -0.010541 109 | 3.300000 -0.010050 110 | 3.325000 -0.009582 111 | 3.350000 -0.009135 112 | 3.375000 -0.008710 113 | 3.400000 -0.008305 114 | 3.425000 -0.007919 115 | 3.450000 -0.007551 116 | 3.475000 -0.007201 117 | 3.500000 -0.006867 118 | 3.525000 -0.006549 119 | 3.550000 -0.006245 120 | 3.575000 -0.005956 121 | 3.600000 -0.005681 122 | 3.625000 -0.005419 123 | 3.650000 -0.005168 124 | 3.675000 -0.004930 125 | 3.700000 -0.004703 126 | 3.725000 -0.004486 127 | 3.750000 -0.004280 128 | 3.775000 -0.004083 129 | 3.800000 -0.003896 130 | 3.825000 -0.003717 131 | 3.850000 -0.003546 132 | 3.875000 -0.003384 133 | 3.900000 -0.003229 134 | 3.925000 -0.003081 135 | 3.950000 -0.002941 136 | 3.975000 -0.002806 137 | 4.000000 -0.002679 138 | 4.025000 -0.002557 139 | 4.050000 -0.002440 140 | 4.075000 -0.002329 141 | 4.100000 -0.002223 142 | 4.125000 -0.002122 143 | 4.150000 -0.002026 144 | 4.175000 -0.001934 145 | 4.200000 -0.001847 146 | 4.225000 -0.001763 147 | 4.250000 -0.001684 148 | 4.275000 -0.001607 149 | 4.300000 -0.001535 150 | 4.325000 -0.001466 151 | 4.350000 -0.001400 152 | 4.375000 -0.001337 153 | 4.400000 -0.001276 154 | 4.425000 -0.001219 155 | 4.450000 -0.001164 156 | -------------------------------------------------------------------------------- /structure.tex: -------------------------------------------------------------------------------- 1 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 | % The Szabo Book 3 | % Structural Definitions File 4 | % Version 0.1 (5/4/20) 5 | % 6 | \RequirePackage{luatex85,shellesc} 7 | \usepackage[top=1.7cm,bottom=1.5cm,left=1.7cm,right=1.7cm,headsep=18pt,papersize={13.8176cm,21.6cm} 8 | ]{geometry} 9 | \usepackage{indentfirst} 10 | \usepackage{graphicx} % Required for including pictures 11 | \graphicspath{{Pictures/}} 12 | \usepackage{multirow} 13 | \usepackage{tikz,pgfplots} % Required for drawing custom shapes 14 | %\pgfplotsset{compat=newest} 15 | \usepackage{booktabs,threeparttable 16 | } % Booktabs required for nicer horizontal rules in tables 17 | \usepackage[shortlabels]{enumitem} 18 | \setenumerate{leftmargin=*} 19 | \usepackage{xcolor} % Required for specifying colors by name 20 | %\definecolor{ocre}{RGB}{0,0,0} % Define the favorite color used for highlighting throughout the book 21 | \bibliographystyle{alpha} 22 | 23 | 24 | %------------------------------------------------------------------- 25 | % Chinese Settings 26 | %------------------------------------------------------------------- 27 | \usepackage[format=hang,labelfont=bf]{caption} 28 | %\captionsetup{font={scriptsize}} 29 | \captionsetup{figurename={图}, tablename={表}} 30 | %\addto{\captionsenglish}{\renewcommand{\contentsname}{目\quad录}} 31 | \def\chntoday{\the\year~年~\the\month~月~\the\day~日} 32 | % adjust the width of tables to adapt it to the textwidth 33 | \usepackage{tabularx} 34 | \newcolumntype{Y}{>{\centering\arraybackslash}X} % New flag to centering the width-adapted columns 35 | 36 | \usepackage{amsmath} 37 | \usepackage{anyfontsize} 38 | \usepackage{amssymb} 39 | \usepackage{bm} 40 | 41 | \usepackage{mathtools} % For *rcases* environment 42 | \usepackage[scr=boondoxo, scrscaled=1]{mathalfa} 43 | \DeclareMathAlphabet{\mathrsfs}{U}{rsfs}{m}{n} 44 | \DeclareFontFamily{U}{rsfs}{\skewchar\font127 } 45 | \DeclareFontShape{U}{rsfs}{m}{n}{% 46 | <-6> rsfs5 47 | <6-8> rsfs7 48 | <8-> rsfs10 49 | }{} 50 | %\usepackage{mathrsfs} 51 | %\usepackage{mathptmx} 52 | \usepackage{mathpazo} 53 | %\usepackage{old-arrows} % 54 | \usepackage[T1]{fontenc} 55 | %\usepackage{newpxtext,newpxmath} 56 | %\usepackage{newtxtext} 57 | %\usepackage{newtxmath,} %A systematic solution to Roman fonts, including math fonts. 58 | \usepackage{braket,ulem} 59 | \renewcommand{\braket}[1]{\Braket{#1}} 60 | \renewcommand{\ket}[1]{\Ket{#1}} 61 | \renewcommand{\bra}[1]{\Bra{#1}} 62 | \ctexset{ 63 | chapter={ 64 | name = {第,章}, 65 | format = \Large\bfseries\raggedright, 66 | aftername = \par\bigskip}, 67 | section/format = \fontsize{8.5pt}{\baselineskip}\selectfont\bfseries\raggedright, 68 | subsection/format = \fontsize{8pt}{\baselineskip}\selectfont\bfseries\raggedright 69 | } 70 | 71 | %----------------------------------------------------------------- 72 | % Page Headers 73 | %----------------------------------------------------------------- 74 | 75 | \usepackage{fancyhdr} % Required for header and footer configuration 76 | \renewcommand{\chaptermark}[1]{\markboth{\sffamily\normalsize\CTEXthechapter\ #1}{}} % Chapter text font settings 77 | \renewcommand{\sectionmark}[1]{\markright{\normalfont\kaishu\normalsize\CTEXthesection\hspace{5pt}#1}{}} 78 | 79 | %---------------------------------------------------------------------------------------- 80 | \let\bar\undifined 81 | \newcommand{\bar}[1]{\overline{#1}} 82 | \newcommand{\scr}[1]{\mathscr{#1}} 83 | \newcommand{\bo}[1]{\mathbf{#1}} 84 | \renewcommand{\epsilon}{\varepsilon} 85 | \newcommand{\sch}{Schr\"odinger} 86 | \newcommand{\ha}{Hamiltonian} 87 | %\newcommand{\dd}{\text{d}} 88 | \usepackage{xparse} 89 | \newcommand{\dd}[1]{\mathrm{d}\mathbf{#1}} 90 | \let\dd\undefined 91 | \NewDocumentCommand{\dd}{ g }{% 92 | \IfValueTF{#1} 93 | {% https://tex.stackexchange.com/q/53068/5764 94 | \if\relax\detokenize{#1}\relax 95 | \mathrm{d} % 96 | \else 97 | \mathrm{d}\mathbf{#1}% 98 | \fi} 99 | {\mathrm{d}}% 100 | } 101 | \newcommand{\ddx}{\dd\mathbf{x}} 102 | 103 | \newcommand{\db}[1]{\dd\bo{#1}} 104 | \newcommand{\hs}{\mathscr{H}} 105 | \newcommand{\vs}{\mathscr{V}} 106 | \newcommand{\es}{\mathscr{E}} 107 | \renewcommand{\emph}[1]{\textbf{#1}} 108 | 109 | 110 | \usepackage{calc} 111 | %use \settowidth, \widthof 112 | 113 | \usepackage{endnotes} 114 | \renewcommand{\makeenmark}{\hbox{$^\theenmark$}} 115 | \renewcommand{\notesname}{\bf 注释} 116 | \makeatletter 117 | \@addtoreset{endnote}{chapter} 118 | \makeatother 119 | 120 | %----------------------------------------------------------------- 121 | % the command to generate two lines between which are excerise content, using amsthm to number the exercise. 122 | \let\openbox\undefined 123 | \usepackage{amsthm} 124 | \usepackage{needspace} 125 | \newtheoremstyle{nx}{}{}{\normalfont}{}{\bfseries}{}{1em}{} 126 | \theoremstyle{nx} 127 | \newtheorem{Xercise}{$\quad$练习}[chapter] 128 | \newenvironment{xercise}{\Needspace{2\baselineskip}\par\vspace{\baselineskip}\noindent\hrule\vspace{0\baselineskip}\Xercise\label{ex:\theXercise} 129 | } 130 | {\vspace{.5\baselineskip}\noindent\hrule\par\endXercise} 131 | 132 | \newcommand\Next{\endXercise\hrule\Xercise\label{ex:\theXercise}} 133 | \newcommand{\exercise}[1]{\begin{xercise}#1\end{xercise}} 134 | %---------------------------------------------------------------------------------------- 135 | 136 | % 引用章节、方程、图、表时自动写成“第……章(节)”、“式(x.y)”、“图x.y”、“表x.y”这样的型式: 137 | \def\chapterautorefname~#1\null{第#1章\null} 138 | \def\sectionautorefname~#1\null{小节#1\null} 139 | \def\subsectionautorefname~#1\null{小节#1\null} 140 | \def\subsubsectionautorefname~#1\null{小节#1\null} 141 | \def\equationautorefname~#1\null{式(#1)\null} 142 | \def\tableautorefname~#1\null{表#1\null} 143 | \def\figureautorefname~#1\null{图#1\null} 144 | \def\appendixautorefname~#1\null{附录#1\null} 145 | \def\Xerciseautorefname~#1\null{练习#1\null} 146 | 147 | %======================================================== 148 | 149 | \newcommand{\tu}{\begin{figure}[h] 150 | \includegraphics[width=.5\textwidth]{q.png} 151 | \end{figure}} 152 | % Feynman Diagram Setting 153 | \usetikzlibrary{arrows.meta} 154 | \newcommand{\midarrow}{\tikz \draw[-triangle 45] (0,0) -- +(.05,0);} 155 | \tikzset{> = latex, color=blue} 156 | \usetikzlibrary{decorations.markings,decorations.pathreplacing} 157 | \tikzset{ 158 | % style to apply some styles to each segment of a path 159 | on each segment/.style={draw=blue, 160 | decorate, 161 | decoration={ 162 | show path construction, 163 | moveto code={}, 164 | lineto code={ 165 | \path [#1] 166 | (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast); 167 | }, 168 | curveto code={ 169 | \path [#1] (\tikzinputsegmentfirst) 170 | .. controls 171 | (\tikzinputsegmentsupporta) and (\tikzinputsegmentsupportb) 172 | .. 173 | (\tikzinputsegmentlast); 174 | }, 175 | closepath code={ 176 | \path [#1] 177 | (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast); 178 | }, 179 | }, 180 | }, 181 | % style to add an arrow in the middle of a path 182 | mid arrow/.style={postaction={decorate,decoration={ 183 | markings, 184 | mark=at position #1 with {\draw[arrows = {-Latex[width=0pt 7, length=5pt]}] (0pt,.0pt) -- (1.8pt,0pt);} 185 | }}}, 186 | mid arrow/.default={.55}, 187 | mid arrow seg/.style={postaction={on each segment={decorate,decoration={ 188 | markings, 189 | mark=at position #1 with {\draw[arrows = {-Latex[width=0pt 7, length=5pt]}] (0pt,.0pt) -- (1.8pt,0pt);}} 190 | }}}, 191 | mid arrow seg/.default={.55}, 192 | % style to add an reverse arrow in the middle of a path 193 | mid reverse arrow/.style={postaction={decorate,decoration={ 194 | markings, 195 | mark=at position .45 with {\draw[arrows = {-Latex[width=0pt 7, length=5pt]}] (1.8pt,.0pt) -- (0pt,0pt);} 196 | }}}, 197 | mid reverse arrow seg/.style={postaction={on each segment={decorate,decoration={ 198 | markings, 199 | mark=at position #1 with {\draw[arrows = {-Latex[width=0pt 7, length=5pt]}] (1.8pt,.0pt) -- (0pt,0pt);}} 200 | }}}, 201 | above arrow/.style={to path={-- ++(0, .2) -| (\tikztotarget)},arrows = {-Latex[width=0pt 7, length=5pt]}}, 202 | below arrow/.style={to path={-- ++(0,-.2) -| (\tikztotarget)}} 203 | } 204 | \newlength{\wletter} 205 | \newlength{\hletter} 206 | \newcommand{\tikzmark}[1]{ 207 | \settowidth{\wletter}{\text{$\mathsurround=0pt i$}} 208 | \settoheight{\hletter}{\text{$\mathsurround=0pt i$}} 209 | \tikz[overlay,remember picture,inner sep=0,minimum height=\hletter] \node[shift={(-.4\wletter,.45\hletter)}] (#1) {};} 210 | \newcommand{\dian}{\tikz{\filldraw[blue](0,0)circle(1pt);}} 211 | 212 | \usetikzlibrary{calc} 213 | %\usepackage[compat=1.1.0]{tikz-feynman} 214 | \usepackage{float} 215 | \renewcommand{\thefootnote}{\roman{footnote}} % Change the marks of footnotes to numbers 216 | \usepackage{blkarray} %分块矩阵 217 | \definecolor{darkred}{HTML}{990000} 218 | \usepackage[bookmarksnumbered=true, colorlinks=true, linkcolor=darkred, urlcolor=darkred]{hyperref} 219 | \usepackage{chemformula} 220 | 221 | 222 | \usepackage{wasysym} 223 | %For the symbol \CheckedBox 224 | \usepackage{stackengine,scalerel} 225 | \newcommand\DSquare{\ThisStyle{\ensurestackMath{% 226 | \stackinset{c}{}{c}{}{\scalebox{.5}{$\SavedStyle\blacksquare$}} 227 | {\SavedStyle\square}}}} 228 | %For a filled box. 229 | %CR: https://tex.stackexchange.com/questions/553834/is-there-a-intermediate-checkedbox-symbol-in-latex 230 | 231 | %----------------------------------------------------------------- 232 | % Convinent abbreviations 233 | %----------------------------------------------------------------- 234 | \renewcommand{\normalsize}{\fontsize{8pt}{9.6pt}\selectfont} 235 | \newcommand{\diagsize}{\fontsize{5pt}{6.6pt}\selectfont} 236 | \newcommand{\cs}{a^\dagger} 237 | \newcommand{\hd}{\mathrm{H}_2} 238 | \newcommand{\hft}{Hartree-Fock} 239 | \newcommand{\twoe}{r_{12}^{-1}} 240 | \newcommand{\tp}{\tilde{\Phi}} 241 | %\usepackage[symbol]{footmisc} 242 | \newcommand{\bfr}{\mathbf{r}} 243 | \newcommand{\heh}{\mathrm{HeH}^+} 244 | \newcommand{\au}{\,\mathrm{a.u.}} 245 | %\newcommand{\ts}{\mathscr{S}} %总自旋算符 246 | \newcommand{\ts}{\mathrsfs{S}} 247 | \usepackage{xeCJKfntef} % the package containing the command \CJKuderline*{} for the \mci command 248 | \newcommand{\mci}[1]{\CJKunderline{#1}} 249 | \newcommand{\phrase}[1]{\CJKunderline{#1}} 250 | %%为方便而定义的简单代替, 最后要全部换回来. 251 | \newcommand{\jt}{\ket{\Phi_0}} 252 | \newcommand{\hjt}{\ket{\Psi_0}} 253 | \newcommand{\jtn}{\Phi_0} 254 | \newcommand{\hjtn}{\Psi_0} 255 | 256 | %Convenience commands defined by Hao 257 | \newcommand{\mrm}{\mathrm} 258 | \newcommand{\mbf}{\mathbf} 259 | \newcommand{\mcr}{\mathscr} 260 | \newcommand{\op}{\mathscr} 261 | \newcommand{\bs}[2]{\ensuremath\left\{ \vec{#1}_{#2} \right\}} 262 | \newcommand{\kbs}[1]{\ensuremath\left\{ \ket{#1} \right\}} 263 | \newcommand{\bbs}[1]{\ensuremath\left\{ \bra{#1} \right\}} 264 | \newcommand{\madj}[1]{\ensuremath{\mbf #1}^\dagger} 265 | \newcommand{\oadj}[1]{\ensuremath{\op #1}^\dagger} 266 | \newcommand{\tr}[1]{\ensuremath{\mrm{tr}}\,#1} 267 | %\newcommand{\ket}[1]{\ensuremath\left\vert #1\right\rangle} 268 | %\newcommand{\bra}[1]{\ensuremath\left\langle #1\right\vert} 269 | \newcommand{\Langle}{\ensuremath\Big\langle} 270 | \newcommand{\Rangle}{\ensuremath\Big\rangle} 271 | \newcommand{\Lvert}{\ensuremath\Big\vert} 272 | \newcommand{\olp}[2]{\ensuremath\langle #1 \vert #2 \rangle} 273 | \newcommand{\Olp}[2]{\ensuremath\left\langle #1 \middle\vert #2 \right\rangle} 274 | \newcommand{\oup}[2]{\ensuremath\left\vert #1 \right\rangle \left\langle #2 \right\vert} 275 | \newcommand{\mele}[3]{\ensuremath\langle #1\vert \op{#2} \vert #3\rangle} 276 | \newcommand{\Mele}[3]{\ensuremath\left\langle #1\middle\vert \op{#2} \middle\vert #3\right\rangle} 277 | \newcommand\bigzero{\makebox(0,0){\text{\huge0}}} 278 | %=============END=================== 279 | 280 | -------------------------------------------------------------------------------- /code/out: -------------------------------------------------------------------------------- 1 | STO-3G FOR ATOMIC NUMBERS 2.00 AND 1.00 2 | 3 | 4 | R ZETA1 ZETA2 S12 T11 5 | 6 | 1.463200 2.092500 1.240000 0.450770 2.164313 7 | 8 | 9 | T12 T22 V11A V12A V22A 10 | 11 | 0.167013 0.760033 -4.139827 -1.102912 -1.265246 12 | 13 | 14 | V11B V12B V22B V1111 V2111 15 | 16 | -0.677230 -0.411305 -1.226615 1.307152 0.437279 17 | 18 | 19 | V2121 V2211 V2221 V2222 20 | 21 | 0.177267 0.605703 0.311795 0.774608 22 | 23 | 24 | 25 | THE S ARRAY 26 | 1 2 27 | 1 0.1000000000E+01 0.4507704116E+00 28 | 2 0.4507704116E+00 0.1000000000E+01 29 | 30 | 31 | 32 | THE X ARRAY 33 | 1 2 34 | 1 0.5870642812E+00 0.9541310722E+00 35 | 2 0.5870642812E+00 -0.9541310722E+00 36 | 37 | 38 | 39 | THE H ARRAY 40 | 1 2 41 | 1 -0.2652744703E+01 -0.1347205024E+01 42 | 2 -0.1347205024E+01 -0.1731828436E+01 43 | 44 | 45 | 46 | ( 1 1 1 1 ) 1.307152 47 | ( 1 1 1 2 ) 0.437279 48 | ( 1 1 2 1 ) 0.437279 49 | ( 1 1 2 2 ) 0.605703 50 | ( 1 2 1 1 ) 0.437279 51 | ( 1 2 1 2 ) 0.177267 52 | ( 1 2 2 1 ) 0.177267 53 | ( 1 2 2 2 ) 0.311795 54 | ( 2 1 1 1 ) 0.437279 55 | ( 2 1 1 2 ) 0.177267 56 | ( 2 1 2 1 ) 0.177267 57 | ( 2 1 2 2 ) 0.311795 58 | ( 2 2 1 1 ) 0.605703 59 | ( 2 2 1 2 ) 0.311795 60 | ( 2 2 2 1 ) 0.311795 61 | ( 2 2 2 2 ) 0.774608 62 | 63 | 64 | 65 | THE P ARRAY 66 | 1 2 67 | 1 0.0000000000E+00 0.0000000000E+00 68 | 2 0.0000000000E+00 0.0000000000E+00 69 | 70 | START OF ITERATION NUMBER = 1 71 | 72 | 73 | 74 | THE G ARRAY 75 | 1 2 76 | 1 0.0000000000E+00 0.0000000000E+00 77 | 2 0.0000000000E+00 0.0000000000E+00 78 | 79 | 80 | 81 | THE F ARRAY 82 | 1 2 83 | 1 -0.2652744703E+01 -0.1347205024E+01 84 | 2 -0.1347205024E+01 -0.1731828436E+01 85 | 86 | 87 | 88 | ELECTRONIC ENERGY = 0.000000000000E+00 89 | 90 | 91 | 92 | THE F' ARRAY 93 | 1 2 94 | 1 -0.2439732411E+01 -0.5158386047E+00 95 | 2 -0.5158386047E+00 -0.1538667186E+01 96 | 97 | 98 | 99 | THE C' ARRAY 100 | 1 2 101 | 1 0.9104452570E+00 0.4136295856E+00 102 | 2 0.4136295856E+00 -0.9104452570E+00 103 | 104 | 105 | 106 | THE E ARRAY 107 | 1 2 108 | 1 -0.2674085994E+01 0.0000000000E+00 109 | 2 0.0000000000E+00 -0.1304313603E+01 110 | 111 | 112 | 113 | THE C ARRAY 114 | 1 2 115 | 1 0.9291467304E+00 -0.6258569539E+00 116 | 2 0.1398330503E+00 0.1111511265E+01 117 | 118 | 119 | 120 | THE P ARRAY 121 | 1 2 122 | 1 0.1726627293E+01 0.2598508430E+00 123 | 2 0.2598508430E+00 0.3910656393E-01 124 | 125 | DELTA(CONVERGENCE OF DENSITY MATRIX) = 0.882867 126 | 127 | 128 | START OF ITERATION NUMBER = 2 129 | 130 | 131 | 132 | THE G ARRAY 133 | 1 2 134 | 1 0.1262330044E+01 0.3740040563E+00 135 | 2 0.3740040563E+00 0.9889530699E+00 136 | 137 | 138 | 139 | THE F ARRAY 140 | 1 2 141 | 1 -0.1390414659E+01 -0.9732009679E+00 142 | 2 -0.9732009679E+00 -0.7428753661E+00 143 | 144 | 145 | 146 | ELECTRONIC ENERGY = -0.414186268681E+01 147 | 148 | 149 | 150 | THE F' ARRAY 151 | 1 2 152 | 1 -0.1406043275E+01 -0.3627102456E+00 153 | 2 -0.3627102456E+00 -0.1701365815E+00 154 | 155 | 156 | 157 | THE C' ARRAY 158 | 1 2 159 | 1 0.9649913726E+00 0.2622816249E+00 160 | 2 0.2622816249E+00 -0.9649913726E+00 161 | 162 | 163 | 164 | THE E ARRAY 165 | 1 2 166 | 1 -0.1504626781E+01 0.0000000000E+00 167 | 2 0.0000000000E+00 -0.7155307568E-01 168 | 169 | 170 | 171 | THE C ARRAY 172 | 1 2 173 | 1 0.8167630145E+00 -0.7667520795E+00 174 | 2 0.3162609186E+00 0.1074704427E+01 175 | 176 | 177 | 178 | THE P ARRAY 179 | 1 2 180 | 1 0.1334203644E+01 0.5166204425E+00 181 | 2 0.5166204425E+00 0.2000419373E+00 182 | 183 | DELTA(CONVERGENCE OF DENSITY MATRIX) = 0.279176 184 | 185 | 186 | START OF ITERATION NUMBER = 3 187 | 188 | 189 | 190 | THE G ARRAY 191 | 1 2 192 | 1 0.1201346300E+01 0.3038061741E+00 193 | 2 0.3038061741E+00 0.9284329600E+00 194 | 195 | 196 | 197 | THE F ARRAY 198 | 1 2 199 | 1 -0.1451398403E+01 -0.1043398850E+01 200 | 2 -0.1043398850E+01 -0.8033954759E+00 201 | 202 | 203 | 204 | ELECTRONIC ENERGY = -0.422649172562E+01 205 | 206 | 207 | 208 | THE F' ARRAY 209 | 1 2 210 | 1 -0.1496305530E+01 -0.3629699437E+00 211 | 2 -0.3629699437E+00 -0.1529380263E+00 212 | 213 | 214 | 215 | THE C' ARRAY 216 | 1 2 217 | 1 0.9694747516E+00 0.2451911622E+00 218 | 2 0.2451911622E+00 -0.9694747516E+00 219 | 220 | 221 | 222 | THE E ARRAY 223 | 1 2 224 | 1 -0.1588104746E+01 0.0000000000E+00 225 | 2 0.0000000000E+00 -0.6113881008E-01 226 | 227 | 228 | 229 | THE C ARRAY 230 | 1 2 231 | 1 0.8030885047E+00 -0.7810630108E+00 232 | 2 0.3351994916E+00 0.1068948958E+01 233 | 234 | 235 | 236 | THE P ARRAY 237 | 1 2 238 | 1 0.1289902293E+01 0.5383897171E+00 239 | 2 0.5383897171E+00 0.2247173984E+00 240 | 241 | DELTA(CONVERGENCE OF DENSITY MATRIX) = 0.029662 242 | 243 | 244 | START OF ITERATION NUMBER = 4 245 | 246 | 247 | 248 | THE G ARRAY 249 | 1 2 250 | 1 0.1194670199E+01 0.2971625826E+00 251 | 2 0.2971625826E+00 0.9218705199E+00 252 | 253 | 254 | 255 | THE F ARRAY 256 | 1 2 257 | 1 -0.1458074504E+01 -0.1050042442E+01 258 | 2 -0.1050042442E+01 -0.8099579160E+00 259 | 260 | 261 | 262 | ELECTRONIC ENERGY = -0.422752275334E+01 263 | 264 | 265 | 266 | THE F' ARRAY 267 | 1 2 268 | 1 -0.1505447474E+01 -0.3630336096E+00 269 | 2 -0.3630336096E+00 -0.1528937446E+00 270 | 271 | 272 | 273 | THE C' ARRAY 274 | 1 2 275 | 1 0.9698136474E+00 0.2438472663E+00 276 | 2 0.2438472663E+00 -0.9698136474E+00 277 | 278 | 279 | 280 | THE E ARRAY 281 | 1 2 282 | 1 -0.1596727643E+01 0.0000000000E+00 283 | 2 0.0000000000E+00 -0.6161357601E-01 284 | 285 | 286 | 287 | THE C ARRAY 288 | 1 2 289 | 1 0.8020052055E+00 -0.7821753152E+00 290 | 2 0.3366806982E+00 0.1068483355E+01 291 | 292 | 293 | 294 | THE P ARRAY 295 | 1 2 296 | 1 0.1286424699E+01 0.5400393450E+00 297 | 2 0.5400393450E+00 0.2267077850E+00 298 | 299 | DELTA(CONVERGENCE OF DENSITY MATRIX) = 0.002318 300 | 301 | 302 | START OF ITERATION NUMBER = 5 303 | 304 | 305 | 306 | THE G ARRAY 307 | 1 2 308 | 1 0.1194147845E+01 0.2966515832E+00 309 | 2 0.2966515832E+00 0.9213575914E+00 310 | 311 | 312 | 313 | THE F ARRAY 314 | 1 2 315 | 1 -0.1458596858E+01 -0.1050553441E+01 316 | 2 -0.1050553441E+01 -0.8104708445E+00 317 | 318 | 319 | 320 | ELECTRONIC ENERGY = -0.422752909612E+01 321 | 322 | 323 | 324 | THE F' ARRAY 325 | 1 2 326 | 1 -0.1506156505E+01 -0.3630388891E+00 327 | 2 -0.3630388891E+00 -0.1529058377E+00 328 | 329 | 330 | 331 | THE C' ARRAY 332 | 1 2 333 | 1 0.9698390734E+00 0.2437461212E+00 334 | 2 0.2437461212E+00 -0.9698390734E+00 335 | 336 | 337 | 338 | THE E ARRAY 339 | 1 2 340 | 1 -0.1597397746E+01 0.0000000000E+00 341 | 2 0.0000000000E+00 -0.6166459619E-01 342 | 343 | 344 | 345 | THE C ARRAY 346 | 1 2 347 | 1 0.8019236265E+00 -0.7822589536E+00 348 | 2 0.3367921305E+00 0.1068448236E+01 349 | 350 | 351 | 352 | THE P ARRAY 353 | 1 2 354 | 1 0.1286163006E+01 0.5401631334E+00 355 | 2 0.5401631334E+00 0.2268578784E+00 356 | 357 | DELTA(CONVERGENCE OF DENSITY MATRIX) = 0.000174 358 | 359 | 360 | START OF ITERATION NUMBER = 6 361 | 362 | 363 | 364 | THE G ARRAY 365 | 1 2 366 | 1 0.1194108547E+01 0.2966131916E+00 367 | 2 0.2966131916E+00 0.9213190058E+00 368 | 369 | 370 | 371 | THE F ARRAY 372 | 1 2 373 | 1 -0.1458636156E+01 -0.1050591833E+01 374 | 2 -0.1050591833E+01 -0.8105094301E+00 375 | 376 | 377 | 378 | ELECTRONIC ENERGY = -0.422752913203E+01 379 | 380 | 381 | 382 | THE F' ARRAY 383 | 1 2 384 | 1 -0.1506209810E+01 -0.3630392881E+00 385 | 2 -0.3630392881E+00 -0.1529068392E+00 386 | 387 | 388 | 389 | THE C' ARRAY 390 | 1 2 391 | 1 0.9698409800E+00 0.2437385353E+00 392 | 2 0.2437385353E+00 -0.9698409800E+00 393 | 394 | 395 | 396 | THE E ARRAY 397 | 1 2 398 | 1 -0.1597448132E+01 0.0000000000E+00 399 | 2 0.0000000000E+00 -0.6166851652E-01 400 | 401 | 402 | 403 | THE C ARRAY 404 | 1 2 405 | 1 0.8019175078E+00 -0.7822652261E+00 406 | 2 0.3368004878E+00 0.1068445602E+01 407 | 408 | 409 | 410 | THE P ARRAY 411 | 1 2 412 | 1 0.1286143379E+01 0.5401724156E+00 413 | 2 0.5401724156E+00 0.2268691372E+00 414 | 415 | DELTA(CONVERGENCE OF DENSITY MATRIX) = 0.000013 416 | 417 | 418 | 419 | CALCULATION CONVERGED 420 | 421 | ELECTRONIC ENERGY = -0.422752913203E+01 422 | 423 | TOTAL ENERGY = -0.286066199152E+01 424 | 425 | 426 | 427 | THE PS ARRAY 428 | 1 2 429 | 1 0.1529637121E+01 0.1119927796E+01 430 | 2 0.6424383099E+00 0.4703628793E+00 -------------------------------------------------------------------------------- /Pictures/heh-tot-ener.txt: -------------------------------------------------------------------------------- 1 | 0.5000000000 -1.6894184057 2 | 0.5100000000 -1.7447916214 3 | 0.5200000000 -1.7974358803 4 | 0.5300000000 -1.8475134873 5 | 0.5400000000 -1.8951743299 6 | 0.5500000000 -1.9405570506 7 | 0.5600000000 -1.9837900907 8 | 0.5700000000 -2.0249926215 9 | 0.5800000000 -2.0642753760 10 | 0.5900000000 -2.1017413937 11 | 0.6000000000 -2.1374866881 12 | 0.6100000000 -2.1716008467 13 | 0.6200000000 -2.2041675703 14 | 0.6300000000 -2.2352651591 15 | 0.6400000000 -2.2649669514 16 | 0.6500000000 -2.2933417198 17 | 0.6600000000 -2.3204540302 18 | 0.6700000000 -2.3463645662 19 | 0.6800000000 -2.3711304246 20 | 0.6900000000 -2.3948053830 21 | 0.7000000000 -2.4174401435 22 | 0.7100000000 -2.4390825551 23 | 0.7200000000 -2.4597778158 24 | 0.7300000000 -2.4795686577 25 | 0.7400000000 -2.4984955162 26 | 0.7500000000 -2.5165966843 27 | 0.7600000000 -2.5339084551 28 | 0.7700000000 -2.5504652516 29 | 0.7800000000 -2.5662997464 30 | 0.7900000000 -2.5814429717 31 | 0.8000000000 -2.5959244209 32 | 0.8100000000 -2.6097721419 33 | 0.8200000000 -2.6230128234 34 | 0.8300000000 -2.6356718752 35 | 0.8400000000 -2.6477735015 36 | 0.8500000000 -2.6593407701 37 | 0.8600000000 -2.6703956753 38 | 0.8700000000 -2.6809591980 39 | 0.8800000000 -2.6910513599 40 | 0.8900000000 -2.7006912753 41 | 0.9000000000 -2.7098971988 42 | 0.9100000000 -2.7186865703 43 | 0.9200000000 -2.7270760564 44 | 0.9300000000 -2.7350815900 45 | 0.9400000000 -2.7427184072 46 | 0.9500000000 -2.7500010814 47 | 0.9600000000 -2.7569435561 48 | 0.9700000000 -2.7635591754 49 | 0.9800000000 -2.7698607127 50 | 0.9900000000 -2.7758603982 51 | 1.0000000000 -2.7815699442 52 | 1.0100000000 -2.7870005694 53 | 1.0200000000 -2.7921630223 54 | 1.0300000000 -2.7970676023 55 | 1.0400000000 -2.8017241808 56 | 1.0500000000 -2.8061422205 57 | 1.0600000000 -2.8103307942 58 | 1.0700000000 -2.8142986020 59 | 1.0800000000 -2.8180539886 60 | 1.0900000000 -2.8216049591 61 | 1.1000000000 -2.8249591938 62 | 1.1100000000 -2.8281240633 63 | 1.1200000000 -2.8311066417 64 | 1.1300000000 -2.8339137204 65 | 1.1400000000 -2.8365518198 66 | 1.1500000000 -2.8390272021 67 | 1.1600000000 -2.8413458820 68 | 1.1700000000 -2.8435136383 69 | 1.1800000000 -2.8455360237 70 | 1.1900000000 -2.8474183750 71 | 1.2000000000 -2.8491658225 72 | 1.2100000000 -2.8507832993 73 | 1.2200000000 -2.8522755497 74 | 1.2300000000 -2.8536471374 75 | 1.2400000000 -2.8549024538 76 | 1.2500000000 -2.8560457251 77 | 1.2600000000 -2.8570810199 78 | 1.2700000000 -2.8580122555 79 | 1.2800000000 -2.8588432052 80 | 1.2900000000 -2.8595775042 81 | 1.3000000000 -2.8602186553 82 | 1.3100000000 -2.8607700352 83 | 1.3200000000 -2.8612348996 84 | 1.3300000000 -2.8616163885 85 | 1.3400000000 -2.8619175308 86 | 1.3500000000 -2.8621412498 87 | 1.3600000000 -2.8622903670 88 | 1.3700000000 -2.8623676066 89 | 1.3800000000 -2.8623755996 90 | 1.3900000000 -2.8623168880 91 | 1.4000000000 -2.8621939278 92 | 1.4100000000 -2.8620090932 93 | 1.4200000000 -2.8617646796 94 | 1.4300000000 -2.8614629069 95 | 1.4400000000 -2.8611059226 96 | 1.4500000000 -2.8606958045 97 | 1.4600000000 -2.8602345635 98 | 1.4700000000 -2.8597241463 99 | 1.4800000000 -2.8591664378 100 | 1.4900000000 -2.8585632636 101 | 1.5000000000 -2.8579163920 102 | 1.5100000000 -2.8572275361 103 | 1.5200000000 -2.8564983562 104 | 1.5300000000 -2.8557304613 105 | 1.5400000000 -2.8549254112 106 | 1.5500000000 -2.8540847181 107 | 1.5600000000 -2.8532098480 108 | 1.5700000000 -2.8523022229 109 | 1.5800000000 -2.8513632218 110 | 1.5900000000 -2.8503941821 111 | 1.6000000000 -2.8493964013 112 | 1.6100000000 -2.8483711378 113 | 1.6200000000 -2.8473196127 114 | 1.6300000000 -2.8462430103 115 | 1.6400000000 -2.8451424799 116 | 1.6500000000 -2.8440191365 117 | 1.6600000000 -2.8428740616 118 | 1.6700000000 -2.8417083047 119 | 1.6800000000 -2.8405228839 120 | 1.6900000000 -2.8393187868 121 | 1.7000000000 -2.8380969716 122 | 1.7100000000 -2.8368583674 123 | 1.7200000000 -2.8356038758 124 | 1.7300000000 -2.8343343710 125 | 1.7400000000 -2.8330507006 126 | 1.7500000000 -2.8317536869 127 | 1.7600000000 -2.8304441267 128 | 1.7700000000 -2.8291227929 129 | 1.7800000000 -2.8277904342 130 | 1.7900000000 -2.8264477766 131 | 1.8000000000 -2.8250955236 132 | 1.8100000000 -2.8237343566 133 | 1.8200000000 -2.8223649359 134 | 1.8300000000 -2.8209879010 135 | 1.8400000000 -2.8196038712 136 | 1.8500000000 -2.8182134462 137 | 1.8600000000 -2.8168172067 138 | 1.8700000000 -2.8154157146 139 | 1.8800000000 -2.8140095138 140 | 1.8900000000 -2.8125991306 141 | 1.9000000000 -2.8111850740 142 | 1.9100000000 -2.8097678367 143 | 1.9200000000 -2.8083478949 144 | 1.9300000000 -2.8069257091 145 | 1.9400000000 -2.8055017245 146 | 1.9500000000 -2.8040763715 147 | 1.9600000000 -2.8026500661 148 | 1.9700000000 -2.8012232100 149 | 1.9800000000 -2.7997961916 150 | 1.9900000000 -2.7983693857 151 | 2.0000000000 -2.7969431547 152 | 2.0100000000 -2.7955178481 153 | 2.0200000000 -2.7940938036 154 | 2.0300000000 -2.7926713470 155 | 2.0400000000 -2.7912507930 156 | 2.0500000000 -2.7898324449 157 | 2.0600000000 -2.7884165956 158 | 2.0700000000 -2.7870035275 159 | 2.0800000000 -2.7855935131 160 | 2.0900000000 -2.7841868151 161 | 2.1000000000 -2.7827836869 162 | 2.1100000000 -2.7813843727 163 | 2.1200000000 -2.7799891078 164 | 2.1300000000 -2.7785981191 165 | 2.1400000000 -2.7772116253 166 | 2.1500000000 -2.7758298371 167 | 2.1600000000 -2.7744529572 168 | 2.1700000000 -2.7730811812 169 | 2.1800000000 -2.7717146973 170 | 2.1900000000 -2.7703536866 171 | 2.2000000000 -2.7689983237 172 | 2.2100000000 -2.7676487763 173 | 2.2200000000 -2.7663052062 174 | 2.2300000000 -2.7649677686 175 | 2.2400000000 -2.7636366131 176 | 2.2500000000 -2.7623118834 177 | 2.2600000000 -2.7609937179 178 | 2.2700000000 -2.7596822492 179 | 2.2800000000 -2.7583776051 180 | 2.2900000000 -2.7570799082 181 | 2.3000000000 -2.7557892760 182 | 2.3100000000 -2.7545058218 183 | 2.3200000000 -2.7532296537 184 | 2.3300000000 -2.7519608759 185 | 2.3400000000 -2.7506995878 186 | 2.3500000000 -2.7494458851 187 | 2.3600000000 -2.7481998591 188 | 2.3700000000 -2.7469615972 189 | 2.3800000000 -2.7457311831 190 | 2.3900000000 -2.7445086966 191 | 2.4000000000 -2.7432942142 192 | 2.4100000000 -2.7420878084 193 | 2.4200000000 -2.7408895488 194 | 2.4300000000 -2.7396995012 195 | 2.4400000000 -2.7385177283 196 | 2.4500000000 -2.7373442899 197 | 2.4600000000 -2.7361792423 198 | 2.4700000000 -2.7350226390 199 | 2.4800000000 -2.7338745306 200 | 2.4900000000 -2.7327349646 201 | 2.5000000000 -2.7316039858 202 | 2.5100000000 -2.7304816364 203 | 2.5200000000 -2.7293679557 204 | 2.5300000000 -2.7282629805 205 | 2.5400000000 -2.7271667448 206 | 2.5500000000 -2.7260792804 207 | 2.5600000000 -2.7250006164 208 | 2.5700000000 -2.7239307795 209 | 2.5800000000 -2.7228697940 210 | 2.5900000000 -2.7218176819 211 | 2.6000000000 -2.7207744630 212 | 2.6100000000 -2.7197401548 213 | 2.6200000000 -2.7187147723 214 | 2.6300000000 -2.7176983289 215 | 2.6400000000 -2.7166908353 216 | 2.6500000000 -2.7156923004 217 | 2.6600000000 -2.7147027310 218 | 2.6700000000 -2.7137221319 219 | 2.6800000000 -2.7127505058 220 | 2.6900000000 -2.7117878537 221 | 2.7000000000 -2.7108341743 222 | 2.7100000000 -2.7098894647 223 | 2.7200000000 -2.7089537201 224 | 2.7300000000 -2.7080269338 225 | 2.7400000000 -2.7071090974 226 | 2.7500000000 -2.7062002006 227 | 2.7600000000 -2.7053002315 228 | 2.7700000000 -2.7044091766 229 | 2.7800000000 -2.7035270204 230 | 2.7900000000 -2.7026537462 231 | 2.8000000000 -2.7017893353 232 | 2.8100000000 -2.7009337677 233 | 2.8200000000 -2.7000870217 234 | 2.8300000000 -2.6992490742 235 | 2.8400000000 -2.6984199006 236 | 2.8500000000 -2.6975994747 237 | 2.8600000000 -2.6967877692 238 | 2.8700000000 -2.6959847551 239 | 2.8800000000 -2.6951904022 240 | 2.8900000000 -2.6944046788 241 | 2.9000000000 -2.6936275523 242 | 2.9100000000 -2.6928589884 243 | 2.9200000000 -2.6920989518 244 | 2.9300000000 -2.6913474060 245 | 2.9400000000 -2.6906043131 246 | 2.9500000000 -2.6898696344 247 | 2.9600000000 -2.6891433299 248 | 2.9700000000 -2.6884253584 249 | 2.9800000000 -2.6877156780 250 | 2.9900000000 -2.6870142454 251 | 3.0000000000 -2.6863210166 252 | 3.0100000000 -2.6856359464 253 | 3.0200000000 -2.6849589890 254 | 3.0300000000 -2.6842900973 255 | 3.0400000000 -2.6836292237 256 | 3.0500000000 -2.6829763195 257 | 3.0600000000 -2.6823313354 258 | 3.0700000000 -2.6816942211 259 | 3.0800000000 -2.6810649258 260 | 3.0900000000 -2.6804433978 261 | 3.1000000000 -2.6798295848 262 | 3.1100000000 -2.6792234339 263 | 3.1200000000 -2.6786248913 264 | 3.1300000000 -2.6780339030 265 | 3.1400000000 -2.6774504140 266 | 3.1500000000 -2.6768743692 267 | 3.1600000000 -2.6763057126 268 | 3.1700000000 -2.6757443880 269 | 3.1800000000 -2.6751903385 270 | 3.1900000000 -2.6746435069 271 | 3.2000000000 -2.6741038356 272 | 3.2100000000 -2.6735712666 273 | 3.2200000000 -2.6730457415 274 | 3.2300000000 -2.6725272015 275 | 3.2400000000 -2.6720155878 276 | 3.2500000000 -2.6715108410 277 | 3.2600000000 -2.6710129015 278 | 3.2700000000 -2.6705217096 279 | 3.2800000000 -2.6700372053 280 | 3.2900000000 -2.6695593284 281 | 3.3000000000 -2.6690880186 282 | 3.3100000000 -2.6686232154 283 | 3.3200000000 -2.6681648581 284 | 3.3300000000 -2.6677128861 285 | 3.3400000000 -2.6672672386 286 | 3.3500000000 -2.6668278548 287 | 3.3600000000 -2.6663946736 288 | 3.3700000000 -2.6659676343 289 | 3.3800000000 -2.6655466759 290 | 3.3900000000 -2.6651317376 291 | 3.4000000000 -2.6647227584 292 | 3.4100000000 -2.6643196776 293 | 3.4200000000 -2.6639224344 294 | 3.4300000000 -2.6635309682 295 | 3.4400000000 -2.6631452183 296 | 3.4500000000 -2.6627651244 297 | 3.4600000000 -2.6623906261 298 | 3.4700000000 -2.6620216633 299 | 3.4800000000 -2.6616581759 300 | 3.4900000000 -2.6613001042 301 | 3.5000000000 -2.6609473884 302 | 3.5100000000 -2.6605999692 303 | -------------------------------------------------------------------------------- /Pictures/heh_tot_ener.txt: -------------------------------------------------------------------------------- 1 | 2 | 0.5000000000 -1.6894184057 3 | 0.5100000000 -1.7447916214 4 | 0.5200000000 -1.7974358803 5 | 0.5300000000 -1.8475134873 6 | 0.5400000000 -1.8951743299 7 | 0.5500000000 -1.9405570506 8 | 0.5600000000 -1.9837900907 9 | 0.5700000000 -2.0249926215 10 | 0.5800000000 -2.0642753760 11 | 0.5900000000 -2.1017413937 12 | 0.6000000000 -2.1374866881 13 | 0.6100000000 -2.1716008467 14 | 0.6200000000 -2.2041675703 15 | 0.6300000000 -2.2352651591 16 | 0.6400000000 -2.2649669514 17 | 0.6500000000 -2.2933417198 18 | 0.6600000000 -2.3204540302 19 | 0.6700000000 -2.3463645662 20 | 0.6800000000 -2.3711304246 21 | 0.6900000000 -2.3948053830 22 | 0.7000000000 -2.4174401435 23 | 0.7100000000 -2.4390825551 24 | 0.7200000000 -2.4597778158 25 | 0.7300000000 -2.4795686577 26 | 0.7400000000 -2.4984955162 27 | 0.7500000000 -2.5165966843 28 | 0.7600000000 -2.5339084551 29 | 0.7700000000 -2.5504652516 30 | 0.7800000000 -2.5662997464 31 | 0.7900000000 -2.5814429717 32 | 0.8000000000 -2.5959244209 33 | 0.8100000000 -2.6097721419 34 | 0.8200000000 -2.6230128234 35 | 0.8300000000 -2.6356718752 36 | 0.8400000000 -2.6477735015 37 | 0.8500000000 -2.6593407701 38 | 0.8600000000 -2.6703956753 39 | 0.8700000000 -2.6809591980 40 | 0.8800000000 -2.6910513599 41 | 0.8900000000 -2.7006912753 42 | 0.9000000000 -2.7098971988 43 | 0.9100000000 -2.7186865703 44 | 0.9200000000 -2.7270760564 45 | 0.9300000000 -2.7350815900 46 | 0.9400000000 -2.7427184072 47 | 0.9500000000 -2.7500010814 48 | 0.9600000000 -2.7569435561 49 | 0.9700000000 -2.7635591754 50 | 0.9800000000 -2.7698607127 51 | 0.9900000000 -2.7758603982 52 | 1.0000000000 -2.7815699442 53 | 1.0100000000 -2.7870005694 54 | 1.0200000000 -2.7921630223 55 | 1.0300000000 -2.7970676023 56 | 1.0400000000 -2.8017241808 57 | 1.0500000000 -2.8061422205 58 | 1.0600000000 -2.8103307942 59 | 1.0700000000 -2.8142986020 60 | 1.0800000000 -2.8180539886 61 | 1.0900000000 -2.8216049591 62 | 1.1000000000 -2.8249591938 63 | 1.1100000000 -2.8281240633 64 | 1.1200000000 -2.8311066417 65 | 1.1300000000 -2.8339137204 66 | 1.1400000000 -2.8365518198 67 | 1.1500000000 -2.8390272021 68 | 1.1600000000 -2.8413458820 69 | 1.1700000000 -2.8435136383 70 | 1.1800000000 -2.8455360237 71 | 1.1900000000 -2.8474183750 72 | 1.2000000000 -2.8491658225 73 | 1.2100000000 -2.8507832993 74 | 1.2200000000 -2.8522755497 75 | 1.2300000000 -2.8536471374 76 | 1.2400000000 -2.8549024538 77 | 1.2500000000 -2.8560457251 78 | 1.2600000000 -2.8570810199 79 | 1.2700000000 -2.8580122555 80 | 1.2800000000 -2.8588432052 81 | 1.2900000000 -2.8595775042 82 | 1.3000000000 -2.8602186553 83 | 1.3100000000 -2.8607700352 84 | 1.3200000000 -2.8612348996 85 | 1.3300000000 -2.8616163885 86 | 1.3400000000 -2.8619175308 87 | 1.3500000000 -2.8621412498 88 | 1.3600000000 -2.8622903670 89 | 1.3700000000 -2.8623676066 90 | 1.3800000000 -2.8623755996 91 | 1.3900000000 -2.8623168880 92 | 1.4000000000 -2.8621939278 93 | 1.4100000000 -2.8620090932 94 | 1.4200000000 -2.8617646796 95 | 1.4300000000 -2.8614629069 96 | 1.4400000000 -2.8611059226 97 | 1.4500000000 -2.8606958045 98 | 1.4600000000 -2.8602345635 99 | 1.4700000000 -2.8597241463 100 | 1.4800000000 -2.8591664378 101 | 1.4900000000 -2.8585632636 102 | 1.5000000000 -2.8579163920 103 | 1.5100000000 -2.8572275361 104 | 1.5200000000 -2.8564983562 105 | 1.5300000000 -2.8557304613 106 | 1.5400000000 -2.8549254112 107 | 1.5500000000 -2.8540847181 108 | 1.5600000000 -2.8532098480 109 | 1.5700000000 -2.8523022229 110 | 1.5800000000 -2.8513632218 111 | 1.5900000000 -2.8503941821 112 | 1.6000000000 -2.8493964013 113 | 1.6100000000 -2.8483711378 114 | 1.6200000000 -2.8473196127 115 | 1.6300000000 -2.8462430103 116 | 1.6400000000 -2.8451424799 117 | 1.6500000000 -2.8440191365 118 | 1.6600000000 -2.8428740616 119 | 1.6700000000 -2.8417083047 120 | 1.6800000000 -2.8405228839 121 | 1.6900000000 -2.8393187868 122 | 1.7000000000 -2.8380969716 123 | 1.7100000000 -2.8368583674 124 | 1.7200000000 -2.8356038758 125 | 1.7300000000 -2.8343343710 126 | 1.7400000000 -2.8330507006 127 | 1.7500000000 -2.8317536869 128 | 1.7600000000 -2.8304441267 129 | 1.7700000000 -2.8291227929 130 | 1.7800000000 -2.8277904342 131 | 1.7900000000 -2.8264477766 132 | 1.8000000000 -2.8250955236 133 | 1.8100000000 -2.8237343566 134 | 1.8200000000 -2.8223649359 135 | 1.8300000000 -2.8209879010 136 | 1.8400000000 -2.8196038712 137 | 1.8500000000 -2.8182134462 138 | 1.8600000000 -2.8168172067 139 | 1.8700000000 -2.8154157146 140 | 1.8800000000 -2.8140095138 141 | 1.8900000000 -2.8125991306 142 | 1.9000000000 -2.8111850740 143 | 1.9100000000 -2.8097678367 144 | 1.9200000000 -2.8083478949 145 | 1.9300000000 -2.8069257091 146 | 1.9400000000 -2.8055017245 147 | 1.9500000000 -2.8040763715 148 | 1.9600000000 -2.8026500661 149 | 1.9700000000 -2.8012232100 150 | 1.9800000000 -2.7997961916 151 | 1.9900000000 -2.7983693857 152 | 2.0000000000 -2.7969431547 153 | 2.0100000000 -2.7955178481 154 | 2.0200000000 -2.7940938036 155 | 2.0300000000 -2.7926713470 156 | 2.0400000000 -2.7912507930 157 | 2.0500000000 -2.7898324449 158 | 2.0600000000 -2.7884165956 159 | 2.0700000000 -2.7870035275 160 | 2.0800000000 -2.7855935131 161 | 2.0900000000 -2.7841868151 162 | 2.1000000000 -2.7827836869 163 | 2.1100000000 -2.7813843727 164 | 2.1200000000 -2.7799891078 165 | 2.1300000000 -2.7785981191 166 | 2.1400000000 -2.7772116253 167 | 2.1500000000 -2.7758298371 168 | 2.1600000000 -2.7744529572 169 | 2.1700000000 -2.7730811812 170 | 2.1800000000 -2.7717146973 171 | 2.1900000000 -2.7703536866 172 | 2.2000000000 -2.7689983237 173 | 2.2100000000 -2.7676487763 174 | 2.2200000000 -2.7663052062 175 | 2.2300000000 -2.7649677686 176 | 2.2400000000 -2.7636366131 177 | 2.2500000000 -2.7623118834 178 | 2.2600000000 -2.7609937179 179 | 2.2700000000 -2.7596822492 180 | 2.2800000000 -2.7583776051 181 | 2.2900000000 -2.7570799082 182 | 2.3000000000 -2.7557892760 183 | 2.3100000000 -2.7545058218 184 | 2.3200000000 -2.7532296537 185 | 2.3300000000 -2.7519608759 186 | 2.3400000000 -2.7506995878 187 | 2.3500000000 -2.7494458851 188 | 2.3600000000 -2.7481998591 189 | 2.3700000000 -2.7469615972 190 | 2.3800000000 -2.7457311831 191 | 2.3900000000 -2.7445086966 192 | 2.4000000000 -2.7432942142 193 | 2.4100000000 -2.7420878084 194 | 2.4200000000 -2.7408895488 195 | 2.4300000000 -2.7396995012 196 | 2.4400000000 -2.7385177283 197 | 2.4500000000 -2.7373442899 198 | 2.4600000000 -2.7361792423 199 | 2.4700000000 -2.7350226390 200 | 2.4800000000 -2.7338745306 201 | 2.4900000000 -2.7327349646 202 | 2.5000000000 -2.7316039858 203 | 2.5100000000 -2.7304816364 204 | 2.5200000000 -2.7293679557 205 | 2.5300000000 -2.7282629805 206 | 2.5400000000 -2.7271667448 207 | 2.5500000000 -2.7260792804 208 | 2.5600000000 -2.7250006164 209 | 2.5700000000 -2.7239307795 210 | 2.5800000000 -2.7228697940 211 | 2.5900000000 -2.7218176819 212 | 2.6000000000 -2.7207744630 213 | 2.6100000000 -2.7197401548 214 | 2.6200000000 -2.7187147723 215 | 2.6300000000 -2.7176983289 216 | 2.6400000000 -2.7166908353 217 | 2.6500000000 -2.7156923004 218 | 2.6600000000 -2.7147027310 219 | 2.6700000000 -2.7137221319 220 | 2.6800000000 -2.7127505058 221 | 2.6900000000 -2.7117878537 222 | 2.7000000000 -2.7108341743 223 | 2.7100000000 -2.7098894647 224 | 2.7200000000 -2.7089537201 225 | 2.7300000000 -2.7080269338 226 | 2.7400000000 -2.7071090974 227 | 2.7500000000 -2.7062002006 228 | 2.7600000000 -2.7053002315 229 | 2.7700000000 -2.7044091766 230 | 2.7800000000 -2.7035270204 231 | 2.7900000000 -2.7026537462 232 | 2.8000000000 -2.7017893353 233 | 2.8100000000 -2.7009337677 234 | 2.8200000000 -2.7000870217 235 | 2.8300000000 -2.6992490742 236 | 2.8400000000 -2.6984199006 237 | 2.8500000000 -2.6975994747 238 | 2.8600000000 -2.6967877692 239 | 2.8700000000 -2.6959847551 240 | 2.8800000000 -2.6951904022 241 | 2.8900000000 -2.6944046788 242 | 2.9000000000 -2.6936275523 243 | 2.9100000000 -2.6928589884 244 | 2.9200000000 -2.6920989518 245 | 2.9300000000 -2.6913474060 246 | 2.9400000000 -2.6906043131 247 | 2.9500000000 -2.6898696344 248 | 2.9600000000 -2.6891433299 249 | 2.9700000000 -2.6884253584 250 | 2.9800000000 -2.6877156780 251 | 2.9900000000 -2.6870142454 252 | 3.0000000000 -2.6863210166 253 | 3.0100000000 -2.6856359464 254 | 3.0200000000 -2.6849589890 255 | 3.0300000000 -2.6842900973 256 | 3.0400000000 -2.6836292237 257 | 3.0500000000 -2.6829763195 258 | 3.0600000000 -2.6823313354 259 | 3.0700000000 -2.6816942211 260 | 3.0800000000 -2.6810649258 261 | 3.0900000000 -2.6804433978 262 | 3.1000000000 -2.6798295848 263 | 3.1100000000 -2.6792234339 264 | 3.1200000000 -2.6786248913 265 | 3.1300000000 -2.6780339030 266 | 3.1400000000 -2.6774504140 267 | 3.1500000000 -2.6768743692 268 | 3.1600000000 -2.6763057126 269 | 3.1700000000 -2.6757443880 270 | 3.1800000000 -2.6751903385 271 | 3.1900000000 -2.6746435069 272 | 3.2000000000 -2.6741038356 273 | 3.2100000000 -2.6735712666 274 | 3.2200000000 -2.6730457415 275 | 3.2300000000 -2.6725272015 276 | 3.2400000000 -2.6720155878 277 | 3.2500000000 -2.6715108410 278 | 3.2600000000 -2.6710129015 279 | 3.2700000000 -2.6705217096 280 | 3.2800000000 -2.6700372053 281 | 3.2900000000 -2.6695593284 282 | 3.3000000000 -2.6690880186 283 | 3.3100000000 -2.6686232154 284 | 3.3200000000 -2.6681648581 285 | 3.3300000000 -2.6677128861 286 | 3.3400000000 -2.6672672386 287 | 3.3500000000 -2.6668278548 288 | 3.3600000000 -2.6663946736 289 | 3.3700000000 -2.6659676343 290 | 3.3800000000 -2.6655466759 291 | 3.3900000000 -2.6651317376 292 | 3.4000000000 -2.6647227584 293 | 3.4100000000 -2.6643196776 294 | 3.4200000000 -2.6639224344 295 | 3.4300000000 -2.6635309682 296 | 3.4400000000 -2.6631452183 297 | 3.4500000000 -2.6627651244 298 | 3.4600000000 -2.6623906261 299 | 3.4700000000 -2.6620216633 300 | 3.4800000000 -2.6616581759 301 | 3.4900000000 -2.6613001042 302 | 3.5000000000 -2.6609473884 303 | 3.5100000000 -2.6605999692 304 | -------------------------------------------------------------------------------- /Chaps/AppendixA.tex: -------------------------------------------------------------------------------- 1 | \chapter{$1s$原初高斯函数的积分计算方法} 2 | \label{appendix:a} 3 | 4 | 5 | 大多数分子计算使用固定的分子坐标系,使得基函数以该坐标系中的位置矢量 6 | $\bo{R}_A$为中心,如\autoref{figA.1}所示。一个以$\bo{R}_A$为中心的 7 | 位置矢量$\bo{r}$的值将会依赖于$\bo{r}-\bo{R}_A$,因此我们可以写一个一般化的基函数 8 | $\phi_\mu(\bo{r}-\bo{R}_A)$来代表它是以$\bo{R}_A$为中心的。在一个分子计算的过程中 9 | 我们需要计算数量庞大的包含不同中心$\phi_\mu(\bo{r}-\bo{R}_A)$的单电子和双电子积分。 10 | 如果我们使用的基函数包括四个或者更多的中心,那么我们的双电子积分将会包含$1-$、$2-$、$3-$和 11 | $4-$中心积分。核吸引势积分最多只能处理到三中心。这些多中心(超过$2$)的积分对于Slater型函数 12 | 来说非常难以处理,但是对于Gaussian型函数来说处理起来相对简单。因此许多多原子计算使用Gaussian函数。 13 | \begin{figure}[h] 14 | \begin{tikzpicture}[scale=2,inner sep=0,arrows=-latex] 15 | \draw (0,0)--(0,2); 16 | \draw (0,0)--(-1.2,-1.2); 17 | \draw (0,0)--(2,0); 18 | \draw (2,1) circle[radius=0.3]; 19 | \node (A) at (2,1) {\bf A}; 20 | \node (i) at (.7,1.8) {} ; 21 | \fill (i) circle(1pt) ; 22 | \draw (0,0)--node[right=13pt]{$\mathbf{R_A}$}(A); 23 | \draw (0,0)--node[right=5pt]{$\mathbf{r}$}(i); 24 | \draw (A)--node[right=.2cm]{$\mathbf{r-R_A}$}(i); 25 | \end{tikzpicture} 26 | \caption{分子坐标系} 27 | \label{figA.1} 28 | \end{figure} 29 | 30 | 在高斯函数的计算中,收缩型的高斯基函数$\phi_\mu^{CGF}$一般由一系列的原初高斯函数 31 | $g\equiv\phi_p^{GF}$(见\autoref{3.283}或\autoref{3.212}) 展开,因此我们只需要考虑 32 | 计算这些原初函数之间的积分即可。收缩函数$\phi_\mu^{CGF}$的积分只需要通过对原初函数的积分 33 | 用恰当的收缩系数进行求和就能得到。一般常用$1s$、$2p$、$3d$等原初高斯函数,因为任何$s$、$p$、 34 | $d$的函数能够类似的用这些高斯函数展开。这里我们仅考虑$1s$原初高斯函数积分的计算。 35 | Shavitt 36 | \endnote{I.Shavitt,The Gaussian function in calculations of statistical mechanics and quantummechanics,in \textit{Methods in Computational Physics} 37 | ,B.Aledr,S.Fernbach,and M.Rotenberg (Eds.),Academic Press,New York,1963.} 38 | 已经给出了一个相似的但是可以互通有无的关于高斯函数积分计算的讨论。包含$p$、$d$等类似函数的积分 39 | 可以通过把我们结果对中心$\bo{R}_A$、$\bo{R}_B$等在笛卡尔坐标系中的坐标进行微分得到。但是, 40 | 高角量子数的积分计算通过基于Rys多项式的新方法更高效的实现。\endnote{ 41 | M. Dupuis,J. Rys,and H. King,Evaluation of molecular integrals over Gaussian basis functions,\textit{J. Chem. Phys.} \textbf{65}:111 (1976).} 42 | 43 | 以$\bo{R}_A$未归一化的$1s$原初高斯函数为 44 | \begin{align} 45 | \label{A.1} 46 | \tilde{g}_{1s}(\bo{r}-\bo{R}_A)=e^{-\alpha\lvert \bo{r}-\bo{R}_A \rvert ^2} 47 | \end{align} 48 | 我们将用$\alpha$、$\beta$、$\gamma$和$\delta$分别表示$\bo{R}_A$、 49 | $\bo{R}_B$、$\bo{R}_C$、$\bo{R}_D$的轨道指数。高斯函数能够简化多中心电子积分的原因是 50 | 两个不同中心的$1s$高斯函数的乘积可以成比例的化成1个在第三个中心的$1s$高斯函数。因此 51 | \begin{align} 52 | \label{A.2} 53 | \tilde{g}_{1s}(\bo{r}-\bo{R}_A)\tilde{g}_{1s}(\bo{r}-\bo{R}_B) 54 | =\tilde{K}\tilde{g}_{1s}(\bo{r}-\bo{R}_P) 55 | \end{align} 56 | 其中,比例系数$\tilde{K}$为 57 | \begin{align} 58 | \label{A.3} 59 | \tilde{K}=\exp[-\alpha\beta/(\alpha+\beta)\lvert \bo{R}_A-\bo{R}_B \rvert ^2] 60 | \end{align} 61 | 第三个中心$P$落在中心$A$和$B$的连线上, 62 | \begin{align} 63 | \label{A.4} 64 | \bo{R}_P=(\alpha\bo{R}_A+\beta \bo{R}_B)/(\alpha+\beta) 65 | \end{align} 66 | 中心在$\bo{R}_P$的新高斯函数的指数为 67 | \begin{align} 68 | \label{A.5} 69 | p=\alpha+\beta 70 | \end{align} 71 | 因此对于$1s$高斯函数的任何2-中心分布,例如,两个不同中心的函数的乘积,能够马上转化成一个单中心 72 | 分布的高斯函数。我们现在计算任何从头算计算过程都需要的仅收缩$1s$原初高斯函数的基本积分。我们将 73 | 计算未归一化的函数的积分,并且如果我们需要归一化的函数的积分,我们可以简单的乘一个合适的归一化 74 | 常数来得到它。 75 | 76 | 首先考虑2-中心的重叠积分 77 | \begin{align} 78 | \label{A.6} 79 | (A|B)=\int \emph{d}\bo{r}_1\,\tilde{g}_{1s}(\bo{r}_1-\bo{R}_A)\tilde{g}_{1s}(\bo{r}_1-\bo{R}_B) 80 | \end{align} 81 | 通过\autoref{A.2},我们马上得到 82 | \begin{align} 83 | \label{A.7} 84 | (A|B)=\tilde{K}\int \emph{d}\bo{r}_1\,\tilde{g}_{1s}(\bo{r}_1-\bo{R}_P) 85 | =\tilde{K}\int \emph{d}\bo{r}_1\, \exp[-p\lvert \bo{r}_1-\bo{R}_P \rvert ^2] 86 | \end{align} 87 | 如果我们使$\bo{r}=\bo{r}_1-\bo{R}_p$并且$\emph{d}\bo{r}\,=\emph{d}\bo{r}_1\,$,则 88 | \begin{align} 89 | \label{A.8} 90 | (A|B)=\tilde{K}\int \emph{d}\bo{r}\,\,e^{-p\bo{r}^2}=4\pi\tilde{K}\int_0^{\infty} \emph{d}r\,r^2e^{-pr^2} 91 | \end{align} 92 | 最后一个积分的值恰好是$(\pi/p)^{\frac{3}{2}}/{4\pi}$,所以 93 | \begin{align} 94 | \label{A.9} 95 | (A|B)=[\pi/(\alpha+\beta)]^{\frac{3}{2}}\exp[-\alpha\beta/(\alpha+\beta)\lvert \bo{R}_A-\bo{R}_B \rvert ^2] 96 | \end{align} 97 | 98 | 动能积分为 99 | \begin{align} 100 | \label{A.10} 101 | (A|-\frac{1}{2}\nabla^2|B)=\int \emph{d}\bo{r}_1\,\tilde{g}_{1s}(\bo{r}_1-\bo{R}_A)(-\frac{1}{2}\nabla_1^2)\tilde{g}_{1s}(\bo{r}_1-\bo{R}_B) 102 | \end{align} 103 | 在算符$\nabla_1^2$作用完成后,上式能够通过非常类似的方式进行计算,得到 104 | \begin{align} 105 | \label{A.11} 106 | (A|-\frac{1}{2}\nabla^2|B)=&\alpha\beta/(\alpha+\beta)[3-2\alpha\beta/(\alpha+\beta)\lvert \bo{R}_A-\bo{R}_B \rvert ^2][\pi/(\alpha+\beta)]^{\frac{3}{2}}\nonumber\\ 107 | &\times\exp[-\alpha\beta/(\alpha+\beta)\lvert \bo{R}_A-\bo{R}_B \rvert ^2] 108 | \end{align} 109 | 110 | 为了计算核吸引势能积分和双电子排斥积分,现在我们在这里介绍一种强力的并常用的,对于计算积分 111 | 尤其是我们将要讨论的类型的积分往往有效的方法。这种方法是将每一个我们需要积分的变量替换为它的 112 | 傅里叶变换的形式。如果我们给定了一个矢量$\bo{r}$的函数$f(\bo{r})$,那么它的三维坐标傅里叶变换 113 | $F(\bo{k})$定义为 114 | \begin{align} 115 | \label{A.12} 116 | F(\bo{k})=\int \emph{d}\bo{r}\,f(\bo{r})e^{-i\bo{k}\bo{r}} 117 | \end{align} 118 | 其中矢量$\bo{k}$是变换变量。傅里叶积分定理说明 119 | \begin{align} 120 | \label{A.13} 121 | f(\bo{r})=(2\pi)^{-3}\int \emph{d}\bo{k}\,F(\bo{k})e^{i\bo{k}\bo{r}} 122 | \end{align} 123 | \begin{table}[h!] 124 | 125 | \caption{Fourier transform pairs} 126 | \centering 127 | \begin{tabular}{lll} 128 | \hline 129 | $f(\bm{r})$ & ~~~~ ~~~~& $F(\bm{k})$ \\ \hline \\ 130 | $\frac{1}{r}$& ~~~~ ~~~~& $\frac{4\pi}{k^2}$ \\ 131 | \\ 132 | $e^{-\alpha^2}$ & ~~~~ ~~~~ & $(\frac{\pi}{\alpha})^{\frac{3}{2}}e^{-k^2/{4\alpha}}$\\ 133 | \\ 134 | $\delta(\bo{r})$& ~~~~ ~~~~ &1 135 | \\ \hline 136 | \end{tabular} 137 | \label{tA.1} 138 | \end{table} 139 | $F(\bo{k})$和$f(\bo{r})$被称为一个傅里叶变换对。所有的我们将要用到的傅里叶变换对都在 140 | \autoref{tA.1}给出。特别的,傅里叶表示下的三维坐标狄拉克$delta$函数是 141 | \begin{align} 142 | \label{A.14} 143 | \delta(\bo{r}_1-\bo{r}_2)=(2\pi)^{-3}\int \emph{d}\bo{k}\,F(\bo{k})e^{i\bo{k}(\bo{r}_1-\bo{r_2})} 144 | \end{align} 145 | 146 | 正如之前提到的,狄拉克$\delta$函数有以下性质 147 | \begin{align} 148 | \label{A.15} 149 | \int \emph{d}\bo{r}_1\,\delta(\bo{r}_1-\bo{r}_2)h(\bo{r}_1)=h(\bo{r}_2) 150 | \end{align} 151 | 上式对于任意一个函数$h(\bo{r})$都成立。 152 | 153 | 让我们现在考虑$1s$原初高斯函数的核吸引势积分, 154 | \begin{align} 155 | \label{A.16} 156 | (A|-Z_C/r_{1C}|B)=&\int\emph{d}\bo{r}_1\,\tilde{g}_{1s}(\bo{r}_1-\bo{R}_A) 157 | [-Z_C/|\bo{r}_1-\bo{R}_C|^{-1}]\tilde{g}_{1s}(\bo{r}_1-\bo{R}_B) \nonumber\\ 158 | =&-Z_C\int\emph{d}\bo{r}_1\,e^{-\alpha\lvert \bo{r}-\bo{R}_A \rvert ^2}|\bo{r}_1-\bo{R}_C|^{-1} 159 | e^{-\beta\lvert \bo{r}-\bo{R}_B \rvert ^2} 160 | \end{align} 161 | 我们首先把两个高斯函数结合,得到一个中心在$\bo{R}_P$的高斯函数, 162 | \begin{align} 163 | \label{A.17} 164 | (A|-Z_C/r_{1C}|B)=-Z_C\tilde{K}\int\emph{d}\bo{r}_1\,e^{-p\lvert \bo{r}-\bo{R}_P \rvert ^2}|\bo{r}_1-\bo{R}_C|^{-1} 165 | \end{align} 166 | 然后,我们用\autoref{A.13}和\autoref{tA.1}中的变换形式替换上面的两项, 167 | \begin{align} 168 | \label{A.18} 169 | (A|-Z_C/r_{1C}|B)=&-Z_C\tilde{K}(2\pi)^{-6}(\pi/p)^{3/2} 170 | \int\emph{d}\bo{r}_1\emph{d}\bo{k}_1\emph{d}\bo{k}_2\,e^{-\bo{k}_1^2/4p}\nonumber\\ 171 | &\times e^{i\bo{k}_1\cdot(\bo{r}_1-\bo{R}_P)}4\pi k_2^{-2}e^{i\bo{k}_2\cdot(\bo{r}_1-\bo{R}_C)} 172 | \end{align} 173 | 如果我们合并所有含有原来积分变量$\bo{r}_1$的指数项,我们得到 174 | \begin{align} 175 | \label{A.19} 176 | (A|-Z_C/r_{1C}|B)=&-4\pi Z_C\tilde{K}(2\pi)^{-6}(\pi/p)^{3/2} 177 | \int\emph{d}\bo{r}_1\emph{d}\bo{k}_1\emph{d}\bo{k}_2\,k_2^{-2}e^{-\bo{k}_1^2/4p}\nonumber\\ 178 | &\times e^{-i\bo{k}_1\cdot\bo{R}_P}e^{-i\bo{k}_2\cdot\bo{R}_C}e^{i\bo{r}_1\cdot(\bo{k}_1+\bo{k}_2)} 179 | \end{align} 180 | 我们现在可以用\autoref{A.14}定义的$\delta$函数处理$\bo{r}_1$的积分,得到 181 | \begin{align} 182 | \label{A.20} 183 | (A|-Z_C/r_{1C}|B)=&-4\pi Z_C\tilde{K}(2\pi)^{-3}(\pi/p)^{3/2} 184 | \int\emph{d}\bo{k}_1\emph{d}\bo{k}_2\,e^{-\bo{k}_1^2/4p}k_2^{-2}\nonumber\\ 185 | &\times e^{i\bo{k}_1\cdot\bo{R}_P}e^{-i\bo{k}_2\cdot\bo{R}_C}\delta(\bo{k}_1+\bo{k}_2)\nonumber\\ 186 | &=-Z_C\tilde{K}(2\pi^{2})(\pi/p)^{3/2}\int\emph{d}\bo{k}\,e^{-\bo{k}^2/4p}k^{-2} e^{-i\bo{k}\cdot(\bo{R}_P-\bo{R}_C)} 187 | \end{align} 188 | 由于$\delta$函数的存在,这里我们令$\bo{k}_2=-\bo{k}_1$,并且重新把变量记为$\bo{k}$。如果我们 189 | 令$\bo{R}_P-\bo{R}_C$落在$z$轴上,那么$\bo{k}\cdot(\bo{R}_P-\bo{R}_C)=k|\bo{R}_P-\bo{R}_C|\cos(\theta)$, 190 | 之后我们可以简单的处理角度部分在$\bo{k}$上的积分, 191 | \begin{align} 192 | \label{A.21} 193 | (A|-Z_C/r_{1C}|B)=&N\int^{\infty}_0\emph{d}k\,e^{-\bo{k}^2/4p}k^{-1}\sin{(k|\bo{R}_P-\bo{R}_C|)} 194 | \end{align} 195 | \begin{align} 196 | \label{A.22} 197 | N=-2Z_C\tilde{K}(\pi |\bo{R}_P-\bo{R}_C|)^{-1}(\pi/p)^{3/2} 198 | \end{align} 199 | 为了计算\autoref{A.21}中的积分,我们考虑下列一般化的积分: 200 | \begin{align} 201 | \label{A.23} 202 | I(x)=\int^{\infty}_0\emph{d}k\,e^{-a k^2}k^{-1}\sin{kx} 203 | \end{align} 204 | 上式对$x$的导数为 205 | \begin{align} 206 | \label{A.24} 207 | I`(x)=\int^{\infty}_0\emph{d}k\,e^{-a k^2}\cos{kx} 208 | \end{align} 209 | 注意\autoref{A.24}是$k$的偶函数。由于$I(0)=0$,我们得到 210 | \begin{align} 211 | \label{A.25} 212 | \int^{x}_0 \emph{d}yI`(y)=I(x)-I(0)=I(x) 213 | \end{align} 214 | 注意到$\cos(\theta)$是$e^{i\theta}$的实数部分(例如,$\cos(\theta)=\Re e[e^{i\theta}]$), 215 | \autoref{A.24}中的积分可以这样来计算 216 | \begin{align} 217 | \label{A.26} 218 | I`(x)=\frac{1}{2}\int^{\infty}_{-\infty}\emph{d}k\,e^{-a k^2}\cos{kx}=\frac{1}{2}\Re e\biggl[\int^{\infty}_{-\infty}\emph{d}k\,e^{-a k^2}e^{ikx}\biggr] 219 | \end{align} 220 | 通过凑平方,我们得到 221 | \begin{align} 222 | \label{A.27} 223 | I`(x)=\frac{1}{2}e^{-x^2/4a}\Re e\biggl[\int^{\infty}_{-\infty}\emph{d}k\,e^{-(a^{1/2}k-1/2i a^{-1/2}x)^2}\biggr] 224 | \end{align} 225 | 令$u=a^{1/2}k-1/2i a^{-1/2}x$,我们得到 226 | \begin{align} 227 | \label{A.28} 228 | I`(x)=\frac{1}{2}e^{-x^2/4a}a^{-1/2}\int^{\infty}_{-\infty}\emph{d}u\,e^{-u^2}=\frac{1}{2}(\pi /a)^{1/2}e^{-x^2/4a} 229 | \end{align} 230 | 故 231 | \begin{align} 232 | \label{A.29} 233 | I(x)=\frac{1}{2}(\pi /a)^{1/2}\int^{x}_{0}\emph{d}ye^{-y^2/4a} 234 | \end{align} 235 | 因此 236 | \begin{align} 237 | \label{A.30} 238 | (A|-Z_C/r_{1C}|B)=&-2\pi Z_C\tilde{K}(p|\bo{R}_P-\bo{R}_C|)^{-1}\int^{|\bo{R}_P-\bo{R}_C|}_{0}\emph{d}y\,e^{-py^2} 239 | \nonumber\\ 240 | =&-2\pi Z_C\tilde{K}p^{-1}(p^{1/2}|\bo{R}_P-\bo{R}_C|)^{-1}\int^{p^{1/2}|\bo{R}_P-\bo{R}_C|}_{0}\emph{d}y\,e^{-y^2} 241 | \end{align} 242 | 我们现在引入$F_0$函数,定义为 243 | \begin{align} 244 | \label{A.31} 245 | F_0(t)=t^{-1/2}\int_0^{t^{1/2}}\emph{d}y\,e^{-y^2} 246 | \end{align} 247 | 它可以通过下式与误差函数关联起来 248 | \begin{align} 249 | \label{A.32} 250 | F_0(t)=\frac{1}{2}(\pi/t)^{1/2}erf(t^{1/2}) 251 | \end{align} 252 | 因此,我们的核吸引势积分可以写成包含$F_0$的形式 253 | \begin{align} 254 | \label{A.33} 255 | (A|-Z_C/r_{1C}|B)=&-2\pi/(\alpha+\beta) Z_C\exp[-\alpha\beta/(\alpha+\beta)|\bo{R}_A-\bo{R}_B|^2] 256 | \nonumber\\ 257 | \times&F_0[(\alpha+\beta)|\bo{R}_P-\bo{R}_C|^2] 258 | \end{align} 259 | 误差函数(在这里是$F_0$)是一个IBM FORTRAN编译器里的内置函数。 260 | 261 | 我们现在开始考虑双电子积分 262 | \begin{align} 263 | \label{A.34} 264 | (AB|CD)=\int\emph{d}\bo{r}_1\emph{d}\bo{r}_2\,\tilde{g}_{1s}(\bo{r}_1-\bo{R}_A) 265 | \tilde{g}_{1s}(\bo{r}_1-\bo{R}_B)r_{12}^{-1}\tilde{g}_{1s}(\bo{r}_2-\bo{R}_C)\tilde{g}_{1s}(\bo{r}_2-\bo{R}_D) 266 | \end{align} 267 | 第一步是将中心在$\bo{R}_A$和$\bo{R}_B$的高斯函数合并成一个新的、中心在$\bo{R}_P$高斯函数, 268 | 以及将中心在$\bo{R}_C$和$\bo{R}_D$的高斯函数合并成一个新的、中心在$\bo{R}_Q$高斯函数,如 269 | \autoref{figA.2}所示,则\autoref{A.34}化为 270 | \begin{align} 271 | \label{A.35} 272 | (AB|CD)=&\exp[-\alpha\beta/(\alpha+\beta)|\bo{R}_A-\bo{R}_B|^2-\gamma\delta/(\gamma+\delta)|\bo{R}_C-\bo{R}_D|^2] 273 | \nonumber\\ 274 | \times&\int\emph{d}\bo{r}_1\emph{d}\bo{r}_2\,e^{-p\lvert \bo{r}_1-\bo{R}_P \rvert ^2}r_{12}^{-1}e^{-q\lvert \bo{r}_2-\bo{R}_Q \rvert ^2} 275 | \end{align} 276 | 277 | \begin{figure}[h] 278 | \begin{tikzpicture}[scale=2,inner sep=0,arrows=-latex] 279 | \draw (0,0)--(0,2); 280 | \draw (0,0)--(-1.2,-1.2); 281 | \draw (0,0)--(2,0); 282 | \coordinate(a) at(0.9,1.4); 283 | \coordinate(b) at(0.5,0.3); 284 | \coordinate(c) at(1.4,1.4); 285 | \coordinate(d) at(1.9,0.25); 286 | \node (A) at (1,1.5) {\bf A}; 287 | \node (B) at (0.6,0.2) {\bf B}; 288 | \node (C) at (1.5,1.5) {\bf C}; 289 | \node (D) at (2,0.15) {\bf D}; 290 | \fill (a) circle(1pt) ; 291 | \fill (b) circle(1pt) ; 292 | \fill (c) circle(1pt) ; 293 | \fill (d) circle(1pt) ; 294 | \draw (a) -- (b); 295 | \draw (c) -- (d); 296 | \coordinate(p) at(0.6,0.575); 297 | \node (P) at (0.47,0.6) {\bf P}; 298 | \fill (p) circle(1pt) ; 299 | \coordinate(q) at(1.5,1.17); 300 | \node (Q) at (1.6,1.2) {\bf Q}; 301 | \fill (q) circle(1pt) ; 302 | \draw (p)--node[below=0.4cm]{$\mathbf{R_Q-R_P}$}(q); 303 | \end{tikzpicture} 304 | \caption{双电子积分中包含的六个中心} 305 | \label{figA.2} 306 | \end{figure} 307 | 把积分中的三项替换为它们的傅里叶变换形式,得 308 | \begin{align} 309 | \label{A.36} 310 | (AB|CD)=&M(2\pi)^{-9}\int\emph{d}\bo{r}_1\emph{d}\bo{r}_2\emph{d}\bo{k}_1\emph{d}\bo{k}_2\emph{d}\bo{k}_3\, 311 | (\pi/p)^{3/2}e^{-k_1^2/{4p}}e^{i\bo{k}_1\cdot(\bo{r}_1-\bo{R}_P)} 312 | \nonumber\\ 313 | \times&4\pi k_2^{-2}e^{i\bo{k}_2\cdot(\bo{r}_1-\bo{r}_2)} 314 | (\pi/q)^{3/2}e^{-k_3^2/{4q}}e^{i\bo{k}_3\cdot(\bo{r}_2-\bo{R}_Q)} 315 | \end{align} 316 | 其中 317 | \begin{align} 318 | \label{A.37} 319 | M=\exp[-\alpha\beta/(\alpha+\beta)|\bo{R}_A-\bo{R}_B|^2-\gamma\delta/(\gamma+\delta)|\bo{R}_C-\bo{R}_D|^2] 320 | \end{align} 321 | 把初始变量$\bo{r}_1$和$\bo{r}_2$的指数项合并,得到 322 | \begin{align} 323 | \label{A.38} 324 | (AB|CD)=&4\pi M(2\pi)^{-9}(\pi^2/p)q^{3/2}\int\emph{d}\bo{r}_1\emph{d}\bo{r}_2\emph{d}\bo{k}_1\emph{d}\bo{k}_2\emph{d}\bo{k}_3\, 325 | e^{-k_1^2/{4p}}e^{-k_3^2/{4q}} 326 | \nonumber\\ 327 | \times&k_2^{-2}e^{-i\bo{k}_1\cdot\bo{R}_P}e^{-i\bo{k}_3\cdot\bo{R}_Q}e^{i\bo{r}_1\cdot(k_1+k_2)} 328 | e^{i\bo{r}_2\cdot(k_3-k_2)} 329 | \end{align} 330 | 现在对在$\bo{r}_1$和$\bo{r}_2$上的积分引入两个delta函数\autoref{A.14} 331 | \begin{align} 332 | \label{A.39} 333 | (AB|CD)=&4\pi M(2\pi)^{-9}(\pi^2/p)q^{3/2}\int\emph{d}\bo{k}_1\emph{d}\bo{k}_2\emph{d}\bo{k}_3\, 334 | e^{-k_1^2/{4p}}e^{-k_3^2/{4q}} 335 | \nonumber\\ 336 | \times&k_2^{-2}e^{-i\bo{k}_1\cdot\bo{R}_P}e^{-i\bo{k}_3\cdot\bo{R}_Q} 337 | \delta(k_1+k_2)\delta(k_3-k_2) 338 | \end{align} 339 | 现在我们令$k_1=-k_2$和$k_3=k_2$,并重新把$k_2$记为$k$,得 340 | \begin{align} 341 | \label{A.40} 342 | (AB|CD)=&4\pi M(2\pi)^{-9}(\pi^2/p)q^{3/2}\int\emph{d}\bo{k}\, 343 | k^{-2}e^{-(p+q)k^2/4pq}e^{i\bo{k}\cdot(\bo{R}_P-\bo{R}_Q)} 344 | \end{align} 345 | 这个积分等同于我们在计算核吸引势积分时遇到的\autoref{A.20}的形式。进行剩余的代数过程 346 | 我们最终得到 347 | \begin{align} 348 | \label{A.41} 349 | (AB|CD)=&2\pi ^{5/2}/[(\alpha+\beta)(\gamma+\delta)(\alpha+\beta+\gamma+\delta)^{1/2}] 350 | \nonumber\\ 351 | \times&\exp[-\alpha\beta/(\alpha+\beta)|\bo{R}_A-\bo{R}_B|^2-\gamma\delta/(\gamma+\delta)|\bo{R}_C-\bo{R}_D|^2] 352 | \nonumber\\ 353 | \times&F_0[(\alpha+\beta)(\gamma+\delta)(\alpha+\beta+\gamma+\delta)|\bo{R}_P-\bo{R}_Q|^2] 354 | \end{align} 355 | 以上这些就是我们仅用$1s$类型的原初高斯函数进行Hartree-Fock计算所需要的所有积分的精确方程。 356 | 它们被用在附录B中计算机程序中。 357 | 358 | \newpage 359 | \theendnotes 360 | \addcontentsline{toc}{section}{注释} 361 | -------------------------------------------------------------------------------- /Chaps/AppendixC.tex: -------------------------------------------------------------------------------- 1 | \chapter{几何结构优化与解析导数法} 2 | 3 | Michael C.Zerner 4 | 5 | 量子理论项目 6 | 7 | 佛罗里达大学 8 | 9 | \section{引言} 10 | 11 | 分子构象的再现和预测是分子量子力学的最成功的应用之一。 12 | 许多情况下,对于很多简单的分子轨道模型或者最小基组的从头算方法,键长可以重现到$\pm 0.02$\r A, 13 | 键角可以重现到$5^{\circ}$。 14 | 对于大一点的基组,尤其是那些双$\zeta$加极化的基组;和包含电子相关能的方法,现在生成的几何构型已经 15 | 可以达到晶体学精度了。 16 | 随着构象计算的日益成功,人们甚至可以选择孤立分子的计算结果,而不是在凝聚介质中获得的实验结果,因为前者可能更适合气相。 17 | 18 | 除了产生关于势能面全局最小点的信息外,量子力学计算还可以产生局域最小点的信息,这些局域最小点可能不会被直接观测到,但是 19 | 很可能会被包含在反应路径中。类似的,关于过渡态和能垒的信息也可以得到,这些信息一般很难甚至不可能通过其他方式获得。 20 | 21 | 收集一个势能面上这些所有的信息是很困难的。对于N个原子的体系,它的能量是一个具有$3N-6$(或者$3N-5$)个自由度的函数。 22 | 为了进行详细的统计计算,人们可能不得不面对这个“3N”问题,并访问势能面上所有热力学可得的区域。 23 | 然而,本附录只涉及势能面的一小部分:那些对应于极小值的点,代表稳态或亚稳态的构象,以及对应于过渡态的点。 24 | %%%%%%% 25 | \section{概论} 26 | \label{secC.2} 27 | 在Born-Oppenheimer近似下得到的分子体系的能量$E$是一个以核坐标为参数的函数,记核坐标为 28 | $\mathbf{X}^{\dagger}=(X_1,X_2,\dots,X_{3N})$。 29 | 我们希望从$E(\mathbf{X})$进而得到$E(\mathbf{X_1})$,$\mathbf{q=(X_1-X)}$。 30 | 我们将能量对$\mathbf{X}$进行泰勒展开: 31 | \begin{align} 32 | \label{C.1} 33 | E(\mathbf{X_1})=E(\mathbf{X})+\mathbf{q}^{\dagger}\mathbf{f(X)} 34 | +\frac{1}{2}\mathbf{q}^{\dagger}\mathbf{H(X)}\mathbf{q}+\dots 35 | \end{align} 36 | 式中梯度为 37 | \begin{align} 38 | f_i=\frac{\partial E(\mathbf{X})}{\partial X_i} 39 | \nonumber 40 | \end{align} 41 | Hessian矩阵元为 42 | \begin{align} 43 | H_{ij}=\frac{\partial E(\mathbf{X})}{\partial X_i\partial X_j} 44 | \nonumber 45 | \end{align} 46 | 注意,列矩阵的下标表示不同的矩阵,如$\mathbf{X_1}$、$\mathbf{X_2}$等等;而$X_i$表示矩阵$\mathbf{X}$第i个元素。 47 | 虽然泰勒展开是无穷项的,但是接近极值时,我们希望二阶展开是足够的;例如,对于$\mathbf{X}=\mathbf{X_e}$,其中$\mathbf{X_e}$ 48 | 表示一个驻点,根据定义$\mathbf{f(X_e)=0}$,则 49 | \begin{align} 50 | \nonumber 51 | E(\mathbf{X_1})=E(\mathbf{X_e})+\frac{1}{2}\mathbf{q}^{\dagger}\mathbf{H(X_e)}\mathbf{q} 52 | \end{align} 53 | 类似的, 54 | \begin{align} 55 | \label{C.2} 56 | \mathbf{f(X_1)}=\mathbf{f(X)}+\mathbf{H(X)}\mathbf{q} 57 | \end{align} 58 | 对点$\mathbf{X_1}=\mathbf{X_e}$ 59 | \begin{align} 60 | \label{C.3} 61 | \mathbf{f(X)}=-\mathbf{H(X)}\mathbf{q} 62 | \end{align} 63 | 64 | \autoref{C.3}的解是不显含$\mathbf{X}$的$E(\mathbf{X})$泛函寻找多变量函数极值的最高效方法的初始点。 65 | 如果$\mathbf{H}$是非奇异的,则有 66 | \begin{align} 67 | \label{C.4} 68 | \mathbf{q}=-\mathbf{H^{-1}(X)}\mathbf{f(X)} 69 | \end{align} 70 | 这能够从任意一点$\mathbf{X}$解得$\mathbf{X_e}$,从而使能量函数接近二阶展开。同样的,一个预测的能量$\mathbf{E(H_e)}$ 71 | \footnote{译者注:原文如此,此处可能是笔误,结合上下文来看,应为$\mathbf{E(X_e)}$} 72 | 可以从下式得到 73 | \begin{align} 74 | \label{C.5} 75 | \mathbf{E(X_e)}&=\mathbf{E(X)}-\frac{1}{2}\mathbf{f(X)}^{\dagger}\mathbf{H^{-1}(X)}\mathbf{f(X)} 76 | \nonumber\\ 77 | &=\mathbf{E(X)}-\frac{1}{2}\mathbf{q}^{\dagger}\mathbf{H(X_e)}\mathbf{q} 78 | \end{align} 79 | 对于特殊的势能面寻找极值的问题,我们必须要指出:除非将代表$\mathbf{H}$的零特征值的旋转和平移移除, 80 | 否则$\mathbf{H^{-1}(X)}$将不存在。这个工作可以通过Wilson和Eliashevich提出的$\mathbf{B}$矩阵实现: 81 | \endnote{See,for example,E.B.Wilson,J.C.Decius,and P.C.Cross,$Molecular Vibrations$, 82 | McGraw-Hill,New York,1955.} 83 | \begin{align} 84 | \label{C.6} 85 | \mathbf{Y}^{\dagger}=\mathbf{X}^{\dagger}\mathbf{B} 86 | \end{align} 87 | 式中$\mathbf{X}$是$3N$维,$\mathbf{B}$是$3N\times 3(N-6)$维,关联内坐标和原本的笛卡尔坐标$\mathbf{X}$。 88 | 揭示这些新坐标下的Taylor级数结构的最简单的方法是考虑功$w$,因为它与坐标系的选择是独立的。 89 | 功是力和距离的乘积,能够在任何坐标系下表示为 90 | \begin{align} 91 | \nonumber 92 | w=\mathbf{f}^{\dagger}\mathbf{q}=\mathbf{f_y}^{\dagger}\mathbf{q_y}=\mathbf{f_y}^{\dagger}\mathbf{B}^{\dagger}\mathbf{q} 93 | \end{align} 94 | \begin{align} 95 | \nonumber 96 | \mathbf{f}^{\dagger}=\mathbf{f_y}^{\dagger}\mathbf{B}^{\dagger} 97 | \end{align} 98 | 或者 99 | \begin{align} 100 | \label{C.7} 101 | \mathbf{f_y}=\mathbf{f}^{\dagger}(\mathbf{B}^{\dagger})^{-1} 102 | \end{align} 103 | 式中$(\mathbf{B}^{\dagger})^{-1}$满足 104 | \begin{align} 105 | \nonumber 106 | \mathbf{B}^{\dagger}(\mathbf{B}^{\dagger})^{-1}=\mathbf{1} 107 | \end{align} 108 | 下面给出上述方程的一般解为 109 | \begin{align} 110 | \nonumber 111 | (\mathbf{B}^{\dagger})^{-1}=\mathbf{mB}(\mathbf{B^{\dagger}mB})^{-1} 112 | \end{align} 113 | 式中$\mathbf{m}$是一个任意的$3N\times 3N$矩阵,经常选择一个对角矩阵, 114 | 矩阵元素是每一个对应位置上原子的原子质量的倒数的三倍。 115 | 也可以选择一个单位矩阵,其中6(或5)个元素选择为0去阻止平动和转动。 116 | 这种类型一个简单的选择是将原子1放在原点,原子2在z轴上,原子3在xz平面上。 117 | 于是这被移除的6(或5)个坐标为$x_1=y_1=z_1=0$,$x_2=y_2=0$,$y_3=0$。 118 | 如果$y_3=0$对于任意选择的第三个原子来说都意味着$x_3=0$,那么这个分子是线性的并且只有5个自由度被选择。 119 | 实际操作中,求$\mathbf{H}$的逆矩阵被证明有一点困难。 120 | 接下来要讨论的更新的方法直接构建$\mathbf{H}^{-1}$,并且从不更新平动和转动。 121 | 在解析求解$\mathbf{H}$的时候,平动和转动可以像之前讨论的那样被移除,或者,如果通过对角化求逆的话, 122 | $\mathbf{H}$的6(或5)个为0的特征值会被一个任意的大数替换掉,本质上在求逆中解耦这些状态。 123 | %%%%% 124 | \section{解析导数} 125 | 我们现在来考虑量子化学中$\mathbf{f}$和$\mathbf{H}$的计算。一个直接的方式是简单的数值微分能量。 126 | 取而代之的是,我们可以通过解析求导的方式得到这些导数。让我们来举例说明Hartree-Fock计算框架中的 127 | 一些基本思想。 128 | 129 | Hartree-Fock能量显示的依赖占据轨道系数$\mathbf{C}$和$\mathbf{X}$。它的导数由下式给出 130 | \begin{align} 131 | \label{C.8} 132 | \frac{\partial E}{\partial X_A}=\frac{\partial {\tilde{E} }}{\partial X_A} 133 | +\sum_{\mu a}\frac{\partial E}{\partial C_{\mu a}}\frac{\partial C_{\mu a}}{\partial X_A} 134 | \end{align} 135 | 式中,$\frac{\partial {\tilde{E} }}{\partial X_A}$表示所有显式依赖核坐标$X_A$的项的导数, 136 | 并且其中链式规则项源于分子轨道系数对几何结构的隐含依赖性。因为$\frac{\partial E}{\partial C_{\mu a}}=0$ 137 | 是Hartree-Fock解的条件(\autoref{sec3.2.1}), 138 | \begin{align} 139 | \label{C.9} 140 | \frac{\partial E}{\partial X_A}=\frac{\partial {\tilde{E} }}{\partial X_A} 141 | \end{align} 142 | 这种实现允许我们忽略分子轨道系数相对于几何结构变化的一阶变化。 143 | 一个闭壳层体系在Hartree-Fock近似下的总能量可以表示为 144 | \begin{align} 145 | \label{C.10} 146 | E=\sum_{\mu \nu}P_{\nu \mu}H_{\mu \nu}^{core} 147 | +\frac{1}{2}\sum_{\mu \nu \lambda \sigma }P_{\nu \mu}P_{\lambda \sigma}(\mu \nu||\sigma \lambda) 148 | +V_{NN} 149 | \end{align} 150 | (见\autoref{3.184},\autoref{3.185}和\autoref{3.154})式中我们已经定义 151 | \begin{align} 152 | \nonumber 153 | V_{NN}=\sum_{A}\sum_{A \ge B}\frac{Z_A Z_B}{R_{AB}} 154 | \end{align} 155 | 以及介绍了速记符号 156 | \begin{align} 157 | \nonumber 158 | (\mu \nu||\sigma \lambda)=(\mu \nu|\sigma \lambda)-\frac{1}{2}(\mu \lambda ||\sigma \nu) 159 | \end{align} 160 | 对于实轨道,密度矩阵表示为 161 | \begin{align} 162 | \nonumber 163 | P_{\nu \mu}=2\sum_{a}^{N/2}C_{\mu a}C_{\nu a} 164 | \end{align} 165 | (见\autoref{3.145})。微分\autoref{C.10}得 166 | \begin{align} 167 | \label{C.11} 168 | \frac{\partial E}{\partial X_A}= 169 | &\sum_{\mu \nu}P_{\nu \mu}\frac{\partial H_{\mu \nu}^{core}}{\partial X_A} 170 | +\frac{1}{2}\sum_{\mu \nu\lambda \sigma }P_{\nu \mu}P_{\lambda \sigma} 171 | \frac{\partial (\mu \nu|| \sigma\lambda)}{\partial X_A} 172 | +\frac{\partial V_{NN}}{\partial X_A} 173 | \\ \nonumber 174 | &+\sum_{\mu \nu}\frac{\partial P_{\nu \mu}}{\partial X_A} H_{\mu \nu}^{core} 175 | +\sum_{\mu \nu\lambda \sigma }\frac{\partial P_{\nu \mu} }{\partial X_A}P_{\lambda \sigma}(\mu \nu|| \sigma\lambda) 176 | \end{align} 177 | \autoref{C.11}表明需要求取组合系数的导数,然而\autoref{C.9}不需要! 178 | 展开\autoref{C.11}的后两项得到 179 | \begin{align} 180 | \nonumber 181 | =&4\sum_{\mu \nu}\sum_{a}^{N/2}\frac{\partial C_{\mu a}}{\partial X_A}H_{\mu \nu}^{core}C_{\nu a} 182 | +4\sum_{\mu \nu\lambda \sigma }\sum_{a}^{N/2}\frac{\partial C_{\mu a}}{\partial X_A} P_{\lambda \sigma}(\mu \nu|| \sigma\lambda) C_{\nu a} 183 | \\ \nonumber 184 | =&4\sum_{\mu \nu}\sum_{a}^{N/2}\frac{\partial C_{\mu a}}{\partial X_A} 185 | [H_{\mu \nu}^{core}-\sum_{\lambda \sigma } P_{\lambda \sigma}(\mu \nu|| \sigma\lambda)]C_{\nu a} 186 | \\ \nonumber 187 | =&4\sum_{\mu \nu}\sum_{a}^{N/2}\frac{\partial C_{\mu a}}{\partial X_A}F_{\mu \nu}C_{\nu a} 188 | \\ \nonumber 189 | =&4\sum_{a}^{N/2} \varepsilon_a \sum_{\mu \nu}\frac{\partial C_{\mu a}}{\partial X_A}S_{\mu \nu}C_{\nu a} 190 | \end{align} 191 | 为了计算系数的导数,我们回顾一下分子轨道的正交归一化条件,即 192 | \begin{align} 193 | \nonumber 194 | \sum_{\mu \nu}C_{\mu a}S_{\mu \nu}C_{\nu a}=\delta_{ab} 195 | \end{align} 196 | (见练习3.10)。微分上式得到 197 | \begin{align} 198 | \nonumber 199 | 2\sum_{\mu \nu}\frac{\partial C_{\mu a}}{\partial X_A}S_{\mu \nu}C_{\nu a} 200 | =-\sum_{\mu \nu}C_{\mu a}C_{\nu a}\frac{\partial S_{\mu \nu}}{\partial X_A} 201 | \end{align} 202 | 组合这些表达式的结果得 203 | \begin{align} 204 | \label{C.12} 205 | \frac{\partial E}{\partial X_A}= 206 | \sum_{\mu \nu}P_{\nu \mu}\frac{\partial H_{\mu \nu}^{core}}{\partial X_A} 207 | +\frac{1}{2}\sum_{\mu \nu\lambda \sigma }P_{\nu \mu}P_{\lambda \sigma} 208 | \frac{\partial (\mu \nu|| \sigma\lambda)}{\partial X_A} 209 | -\sum_{\mu \nu}Q_{\nu \mu} \frac{\partial S_{\mu \nu}}{\partial X_A} 210 | +\frac{\partial V_{NN}}{\partial X_A} 211 | \end{align} 212 | 式中我们定义 213 | \begin{align} 214 | \nonumber 215 | Q_{\nu \mu}=2\sum_{a}^{N/2}\varepsilon_a C_{\mu a}C_{\nu a} 216 | \end{align} 217 | 因此能量的导数可以通过分子轨道系数和重叠积分以及单电子、双电子积分的导数计算得到。 218 | 219 | 以高效的方式获取电子结构理论中出现的积分的导数是一个有点专业化的领域,但我们很容易理解其一般思路。 220 | 许多从头计算都是使用笛卡尔高斯函数进行的 221 | \begin{align} 222 | \nonumber 223 | \phi_{lmn}^{GF}=N_{lmn}x_{a}^{l}y_{a}^{m}z_{a}^{n} e^{-\alpha|\mathbf{r}-\mathbf{R_{A}}|^2} 224 | \end{align} 225 | 见\autoref{sec:3.6},式中$N_{lmn}$是归一化参数,表达式为 226 | \begin{align} 227 | \nonumber 228 | N_{lmn}=\bigg[\frac{(8\alpha)^{l+m+n}l!m!n!}{(2l)!(2m)!(2n)!} \bigg]^{1/2}(\frac{2\alpha}{\pi})^{3/4} 229 | \end{align} 230 | 其中小写字母a表示从原子核A测量的电子坐标。$\phi_{lmn}^{GF}$对核坐标的导数是可以显式直接得到的,例如 231 | \begin{align} 232 | \nonumber 233 | \frac{\partial \phi_{lmn}^{GF}}{\partial X_A}=[(2l+1)a]^{1/2}\phi_{l+1.mn}^{GF}-2l(\frac{a}{2l-1})^{1/2}\phi_{l-1.mn}^{GF} 234 | \end{align} 235 | 式中,现在的$X_A$特指核A的x坐标。需要指出的是当$l=0$时,不考虑上式第二项。 236 | 237 | 所有单中心积分的导数为零,因为通常假设中心A上的所有轨道都遵循中心A的位移。动能算符和电子排斥势算符$r_{12}^{-1}$不是核坐标的函数。 238 | 核排斥势能$V_{NN}$的导数也可以直接得到 239 | \begin{align} 240 | \nonumber 241 | \frac{\partial V_{NN}}{\partial X_A}=Z_A\sum_{B}\frac{Z_B(X_B-X_A)}{R_{AB}^{3}} 242 | \end{align} 243 | 对于核-电子吸引项,可以得到 244 | \begin{align} 245 | \nonumber 246 | \frac{\partial V_{Ne}}{\partial X_A}=-Z_A\sum_{i}\frac{X_i-X_A}{r_{iA}^{3}} 247 | \end{align} 248 | 上面的公式已经足够去求解电子结构计算中遇到的电子积分的导数了。但在实际计算中,需要使用许多技巧去减少计算量。 249 | 使用Slater函数去计算梯度会更困难(见\autoref{sec:3.5}和\autoref{sec:3.6}),但是至少对于经常在半经验模型中出现的 250 | 双中心积分而言,可以沿着与高斯函数相同的方式进行推导。 251 | 252 | \autoref{C.12}相对简单,因为$\mathbf{P}$的导数没有出现,这不应与Hellmann-Feynman定理 253 | \endnote{H.Hellmann,$Einf\ddot{u}hrung in du Quantenchmie$,Franz Deuticke,Leipzig,1937; 254 | R.P.Feynman $ Phys.Rev.\bf{41}:$721(1939); 255 | A.C.Hurley,$Proc.Roy.Soc.\bf{A226:}$170,179(1954)} 256 | 混淆。现在有 257 | \begin{align} 258 | \nonumber 259 | E= \braket{\Phi |\mathcal{H} |\Phi } 260 | \end{align} 261 | 且$\braket{\Phi |\Phi }=1$,则 262 | \begin{align} 263 | \label{C.13} 264 | \frac{\partial E}{\partial X_A}=\braket{\frac{\partial \Phi}{\partial X_A} |\mathcal{H} |\Phi }+ 265 | \braket{\Phi|\mathcal{H} | \frac{\partial\Phi}{\partial X_A} }+ 266 | \braket{\Phi|\frac{\partial \mathcal{H}}{\partial X_A} | \Phi } 267 | \end{align} 268 | Hellmann-Feynman条件如下 269 | \begin{align} 270 | \label{C.14} 271 | \braket{\frac{\partial \Phi}{\partial X_A} |\mathcal{H} |\Phi }+ \braket{\Phi|\mathcal{H} | \frac{\partial\Phi}{\partial X_A} }=0 272 | \end{align} 273 | 上式只在精确解或者特定类型的试探函数的时候才成立。在\autoref{C.14}的约束下,\autoref{C.13}简化为 274 | \begin{align} 275 | \label{C.15} 276 | \frac{\partial E}{\partial X_A}=\braket{\Phi|\frac{\partial \mathcal{H}}{\partial X_A} | \Phi } 277 | \end{align} 278 | \autoref{C.15}是一个简单的单电子算符的期望值加上核排斥项的导数项。但是\autoref{C.12}并不依赖\autoref{C.14}。 279 | $\frac{\partial H^{core}}{\partial X_A}$和$ \frac{\partial (\mu \nu|| \sigma\lambda)}{\partial X_A}$中的积分 280 | 通过“原子轨道跟随”包含了波函数——例如,$\frac{\partial \phi_{\mu}^{A} }{\partial X_A}$,其中$\phi_{\mu}^{A}$ 281 | 是一个以$A$为中心的原子轨道——并且比\autoref{C.15}复杂的多。事实上,即便在\autoref{C.13}下受力应该为0, 282 | 但通过\autoref{C.15}算出来的受力也会很大,因此代表了能量函数的极值。然而,\autoref{C.15}的简洁很有吸引力, 283 | 人们想知道,当目标是几何优化时,满足\autoref{C.14}的条件所增加的不便是否不像在使用\autoref{C.15}那样快。 284 | 285 | 对于一个组态相互作用(CI)波函数,含有行列式$\ket{\Psi _I}$, 286 | \begin{align} 287 | \nonumber 288 | \ket{\Phi _I}=\sum_{I}c_I\ket{\Psi _I} 289 | \end{align} 290 | 我们可以得到它能量的导数为 291 | \begin{align} 292 | \label{C.16} 293 | \frac{\partial E}{\partial X_A}=\frac{\partial {\tilde{E} }}{\partial X_A} 294 | +\sum_{\mu i}\frac{\partial E}{\partial C_{\mu i}}\frac{\partial C_{\mu i}}{\partial X_A} 295 | +\sum_{I}\frac{\partial E}{\partial c_{I}}\frac{\partial c_{I}}{\partial X_A} 296 | \end{align} 297 | 式中第一个求和遍历所有的分子轨道系数。在这个情况下,只有1个多组态自洽场(MCSCF)函数时$\frac{\partial E}{\partial X_A}=\frac{\partial {\tilde{E} }}{\partial X_A}$。 298 | 对于一般的Hartree-Fock和CI波函数,$\frac{\partial E}{\partial c_{I}}$,则 299 | \begin{align} 300 | \label{C.17} 301 | \frac{\partial E}{\partial X_A}=\frac{\partial {\tilde{E} }}{\partial X_A} 302 | +\sum_{\mu i}\frac{\partial E}{\partial C_{\mu i}}\frac{\partial C_{\mu i}}{\partial X_A} 303 | \end{align} 304 | 计算$\frac{\partial C_{\mu i}}{\partial X_A}$很复杂,但是可以通过微扰理论 305 | \endnote{See,for example,J.A.Pople,H.Krishnan,H.B.Schlegel,and J.S.Binkley, 306 | $Int.J.Quantum Chem.\\ \bf{S13:}$225(1979),and refences therein.}解决。 307 | 对于一个大的CI系统能量对$\mathbf{C}$的依赖性降低时;或者对于没有大量极性键的系统时;或者对于分子轨道由对称性决定的系统时,第二项对受力的贡献可能很小。 308 | 在这种情况下,对于势能面的初始搜索可以使用\autoref{C.9},但是对于精确的结果来说,依赖于这种近似是不令人满意的。 309 | 310 | Hartree-Fock能量的二阶导数可以从\autoref{C.12}直接得到 311 | \begin{align} 312 | \nonumber 313 | \frac{\partial^2 E}{\partial X_A\partial X_B}=&\sum_{ \mu \nu }P_{\nu \mu}\frac{\partial^2 H_{\mu \nu}^{core}}{\partial X_A\partial X_B} 314 | +\frac{1}{2}\sum_{\mu \nu \sigma \lambda }P_{ \nu \mu }P_{\lambda \sigma}\frac{\partial^2 (\mu \nu|| \sigma\lambda)}{\partial X_A\partial X_B} 315 | \\ \nonumber & 316 | -\sum_{\mu \nu }Q_{ \nu \mu}\frac{\partial^2 S}{\partial X_A\partial X_B} 317 | +\frac{\partial^2 V_{NN}}{\partial X_A\partial X_B} 318 | +\sum_{\mu \nu }\frac{\partial P_{ \nu\mu}}{\partial X_B}\frac{\partial H_{\mu \nu}^{core}}{\partial X_A} 319 | \\ \nonumber & 320 | +\sum_{\mu \nu \sigma \lambda }\frac{\partial P_{ \nu \mu }}{\partial X_B}P_{\lambda \sigma}\frac{\partial (\mu \nu|| \sigma\lambda)}{\partial X_A} 321 | -\sum_{\mu \nu }\frac{\partial Q_{ \nu\mu}}{\partial X_B}\frac{\partial S_{\mu \nu}}{\partial X_A} 322 | \end{align} 323 | 表达式的最后三项包含了分子轨道系数的导数并且不能用简单的方式避开。它们可以通过耦合微扰Hartree-Fock理论(CPHF)$^3$得到。 324 | %%%%% 325 | \section{优化技术} 326 | 对一个多变量函数求驻点的数值方法是一个很宏大的课题。 327 | 这些方法可以分成下列4类: 328 | \begin{enumerate} 329 | \item[(a) ] 不用梯度的方法 330 | \item[(b) ] 使用数值梯度和数值二阶导数的方法 331 | \item[(c) ] 使用解析梯度和数值二阶导数的方法 332 | \item[(d) ] 使用解析梯度和解析二阶导数的方法 333 | \end{enumerate} 334 | 等等。 335 | 336 | 上述方法除了第一种之外都是基于能量$E$的泰勒展开,它们的导数$\mathbf{f}$已经在\autoref{secC.2}给出。 337 | 在实际应用上,这些方法可以用在“估算”技术或者“迭代”技术上。 338 | 339 | d类型的方法可能是首选,因为它使用了最丰富的信息,但只有当解析的一阶导数和二阶导数能够同时获得,并且与能量$E$一样容易时,才会有这种情况。 340 | 然而,很明显,只要我们对极值处的几何结构的初始估计在价键力场的二次区域内(\autoref{C.6}的$\mathbf{Y}$坐标), 341 | 单一的应用\autoref{C.4}和\autoref{C.5}就给出$\mathbf{X_e}$和$\mathbf{E(X_e)}$。 342 | 这一对于\autoref{C.4}的单一应用,我们把它称为\textit{估算}。 343 | 如果我们不在势的二次区域内,估算可能不是非常准确,可能需要迭代;也就是说,从初猜$\mathbf{X_0}$已经确定了一个新的集合$\mathbf{X_1}$, 344 | 我们可以通过求解\autoref{secC.2}的方程得到$\mathbf{X_2}$。这要求$\mathbf{f(X_1)}$和$\mathbf{H^{-1}(X_1)}$。 345 | 这个流程可能需要一直重复,直到$E_n-E_{n-1}$小于给定的阈值,$\sigma =\mathbf{f(X_n)}^{\dagger}\mathbf{f(X_n)}$小于给定的阈值, 346 | $\mathbf{q_n}^{\dagger}\mathbf{q_n}$小于给定的阈值,或者全部三个都满足。 347 | 348 | 实际应用中,由于在获得解析二阶导数的困难,d类型算法没有被普遍的使用在几何搜索上。另一方面,一阶导数的计算时间一般与能量计算相当。 349 | 因为这个原因,c类型算法是最流行的,而且被应用在大多数的现代量子化学程序中。不幸的是,多数的过渡态搜索算法需要解析的二阶导数,因此 350 | 需要非常昂贵的计算机资源。解析的二阶导数也被用在确定一个极值点是不是势能面的最小值点(Hessian矩阵所有的本征值为正)或者过渡态 351 | (Hessian矩阵的本征值有且只有一个为负)上;如果需要的话,也会用在生成一个最小值点的振动光谱上。 352 | 353 | %%%%% 354 | \section{一些优化算法} 355 | %%%%% 356 | \section{过渡态} 357 | %%%%% 358 | \section{约束变分} 359 | %%%%% 360 | \newpage 361 | \theendnotes 362 | \addcontentsline{toc}{section}{注释} 363 | -------------------------------------------------------------------------------- /code/AppendixBcode.f90: -------------------------------------------------------------------------------- 1 | C******************************************************************** 2 | C 3 | C MINIMAL BASIS STO-3G CALCULATION ON HEH+ 4 | C 5 | C THIS IS A LITTLE DUMMY MAIN PROGRAM WHICH CALLS HFCALC 6 | C 7 | C********************************************************************* 8 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 9 | IOP=2 10 | N=3 11 | R=1.4632D0 12 | ZETA1=2.0925D0 13 | ZETA2=1.24D0 14 | ZA=2.0D0 15 | ZB=1.0D0 16 | CALL HFCALC(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 17 | END 18 | C********************************************************************* 19 | SUBROUTINE HFCALC(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 20 | C 21 | C DOES A HARTREE-FOCK CALCULATION FOR A TWO-ELECTRON DIATOMIC 22 | C USING THE 1S MINIMAL STO-NG BASIS SET 23 | C MINIMAL BASIS SET HAS BASIS FUNCTIONS 1 AND 2 ON NUCLEI A AND B 24 | C 25 | C IOP=0 NO PRINTING WHATSOEVER (TO OPTIMIZE EXPONENTS, SAY) 26 | C IOP=1 PRINT ONLY CONVERGED RESULTS 27 | C IOP=2 PRINT EVERY ITERATION 28 | C N STO-NG CALCULATION (N=1,2 OR 3) 29 | C R BONDLENGTH (AU) 30 | C ZETA1 SLATER ORBITAL EXPONENT (FUNCTION 1) 31 | C ZETA2 SLATER ORBITAL EXPONENT (FUNCTION 2) 32 | C ZA ATOMIC NUMBER (ATOM A) 33 | C ZB ATOMIC NUMBER (ATOM B) 34 | C 35 | C********************************************************************* 36 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 37 | IF (IOP.EQ.0) GO TO 20 38 | PRINT 10,N,ZA,ZB 39 | 10 FORMAT(' ',2X,'STO-',I1,'G FOR ATOMIC NUMBERS ',F5.2,' AND ', 40 | $ F5.2//) 41 | 20 CONTINUE 42 | C CALCULATE ALL THE ONE AND TWO ELECTRON INTEGRALS 43 | CALL INTGRL(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 44 | C BE INEFFICIENT AND PUT ALL INTEGRALS IN PRETTY ARRAYS 45 | CALL COLECT(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 46 | C PERFORM THE SCF CALCULATION 47 | CALL SCF(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 48 | RETURN 49 | END 50 | C********************************************************************* 51 | SUBROUTINE INTGRL(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 52 | C 53 | C CALCULATES ALL THE BASIC INTEGRALS NEEDED FOR SCF CALCULATION 54 | C 55 | C********************************************************************* 56 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 57 | COMMON/INT/S12,T11,T12,T22,V11A,V12A,V22A,V11B,V12B,V22B, 58 | $ V1111,V2111,V2121,V2211,V2221,V2222 59 | DIMENSION COEF(3,3),EXPON(3,3),D1(3),A1(3),D2(3),A2(3) 60 | DATA PI/3.1415926535898D0/ 61 | C THESE ARE THE CONTRACTION COEFFICIENTS AND EXPONENTS FOR 62 | C A NORMALIZED SLATER ORBITAL WITH EXPONENT 1.0 IN TERMS OF 63 | C NORMALIZED 1S PRIMITIVE GAUSSIANS 64 | DATA COEF,EXPON/1.0D0,2*0.0D0,0.678914D0,0.430129D0,0.0D0, 65 | $ 0.444635D0,0.535328D0,0.154329D0,0.270950D0,2*0.0D0,0.151623D0, 66 | $ 0.851819D0,0.0D0,0.109818D0,0.405771D0,2.22766D0/ 67 | R2=R*R 68 | C SCALE THE EXPONENTS (A) OF PRIMITIVE GAUSSIANS 69 | C INCLUDE NORMALIZATION IN CONTRACTION COEFFICIENTS (D) 70 | DO 10 I=1,N 71 | A1(I)=EXPON(I,N)*(ZETA1**2) 72 | D1(I)=COEF(I,N)*((2.0D0*A1(I)/PI)**0.75D0) 73 | A2(I)=EXPON(I,N)*(ZETA2**2) 74 | D2(I)=COEF(I,N)*((2.0D0*A2(I)/PI)**0.75D0) 75 | 10 CONTINUE 76 | C D AND A ARE NOW THE CONTRACTION COEFFICIENTS AND EXPONENTS 77 | C IN TERMS OF UNNORMALIZED PRIMITIVE GAUSSIANS 78 | S12=0.0D0 79 | T11=0.0D0 80 | T12=0.0D0 81 | T22=0.0D0 82 | V11A=0.0D0 83 | V12A=0.0D0 84 | V22A=0.0D0 85 | V11B=0.0D0 86 | V12B=0.0D0 87 | V22B=0.0D0 88 | V1111=0.0D0 89 | V2111=0.0D0 90 | V2121=0.0D0 91 | V2211=0.0D0 92 | V2221=0.0D0 93 | V2222=0.0D0 94 | C CALCULATE ONE-ELECTRON INTEGRALS 95 | C CENTER A IS FIRST ATOM, CETER B IS SECOND ATOM 96 | C ORIGIN IS ON CENTER A 97 | C V12A = OFF-DIAGONAL NUCLEAR ATTRACTION TO CENTER A, ETC. 98 | DO 20 I=1,N 99 | DO 20 J=1,N 100 | C RAP2 = SQUARED DISTANCE BETWEEN CENTER A AND CENTER P, ETC. 101 | RAP=A2(J)*R/(A1(I)+A2(J)) 102 | RAP2=RAP**2 103 | RBP2=(R-RAP)**2 104 | S12=S12+S(A1(I),A2(J),R2)*D1(I)*D2(J) 105 | T11=T11+T(A1(I),A1(J),0.0D0)*D1(I)*D1(J) 106 | T12=T12+T(A1(I),A2(J),R2)*D1(I)*D2(J) 107 | T22=T22+T(A2(I),A2(J),0.0D0)*D2(I)*D2(J) 108 | V11A=V11A+V(A1(I),A1(J),0.0D0,0.0D0,ZA)*D1(I)*D1(J) 109 | V12A=V12A+V(A1(I),A2(J),R2,RAP2,ZA)*D1(I)*D2(J) 110 | V22A=V22A+V(A2(I),A2(J),0.0D0,R2,ZA)*D2(I)*D2(J) 111 | V11B=V11B+V(A1(I),A1(J),0.0D0,R2,ZB)*D1(I)*D1(J) 112 | V12B=V12B+V(A1(I),A2(J),R2,RBP2,ZB)*D1(I)*D2(J) 113 | V22B=V22B+V(A2(I),A2(J),0.0D0,0.0D0,ZB)*D2(I)*D2(J) 114 | 20 CONTINUE 115 | C CALCULATE TWO-ELECTRON INTEGRALS 116 | DO 30 I=1,N 117 | DO 30 J=1,N 118 | DO 30 K=1,N 119 | DO 30 L=1,N 120 | RAP=A2(I)*R/(A2(I)+A1(J)) 121 | RBP=R-RAP 122 | RAQ=A2(K)*R/(A2(K)+A1(L)) 123 | RBQ=R-RAQ 124 | RPQ=RAP-RAQ 125 | RAP2=RAP*RAP 126 | RBP2=RBP*RBP 127 | RAQ2=RAQ*RAQ 128 | RBQ2=RBQ*RBQ 129 | RPQ2=RPQ*RPQ 130 | V1111=V1111+TWOE(A1(I),A1(J),A1(K),A1(L),0.0D0,0.0D0,0.0D0) 131 | $ *D1(I)*D1(J)*D1(K)*D1(L) 132 | V2111=V2111+TWOE(A2(I),A1(J),A1(K),A1(L),R2,0.0D0,RAP2) 133 | $ *D2(I)*D1(J)*D1(K)*D1(L) 134 | V2121=V2121+TWOE(A2(I),A1(J),A2(K),A1(L),R2,R2,RPQ2) 135 | $ *D2(I)*D1(J)*D2(K)*D1(L) 136 | V2211=V2211+TWOE(A2(I),A2(J),A1(K),A1(L),0.0D0,0.0D0,R2) 137 | $ *D2(I)*D2(J)*D1(K)*D1(L) 138 | V2221=V2221+TWOE(A2(I),A2(J),A2(K),A1(L),0.0D0,R2,RBQ2) 139 | $ *D2(I)*D2(J)*D2(K)*D1(L) 140 | V2222=V2222+TWOE(A2(I),A2(J),A2(K),A2(L),0.0D0,0.0D0,0.0D0) 141 | $ *D2(I)*D2(J)*D2(K)*D2(L) 142 | 30 CONTINUE 143 | IF (IOP.EQ.0) GO TO 90 144 | PRINT 40 145 | 40 FORMAT(3X,'R',10X,'ZETA1',6X,'ZETA2',6X,'S12',8X,'T11'/) 146 | PRINT 50, R,ZETA1,ZETA2,S12,T11 147 | 50 FORMAT(5F11.6//) 148 | PRINT 60 149 | 60 FORMAT(3X,'T12',8X,'T22',8X,'V11A',7X,'V12A',7X,'V22A'/) 150 | PRINT 50, T12,T22,V11A,V12A,V22A 151 | PRINT 70 152 | 70 FORMAT(3X,4HV11B,7X,4HV12B,7X,4HV22B,7X,'V1111',6X,'V2111'/) 153 | PRINT 50, V11B,V12B,V22B,V1111,V2111 154 | PRINT 80 155 | 80 FORMAT(3X,5HV2121,6X,5HV2211,6X,5HV2221,6X,5HV2222/) 156 | PRINT 50, V2121,V2211,V2221,V2222 157 | 90 RETURN 158 | END 159 | C********************************************************************* 160 | FUNCTION F0(ARG) 161 | C 162 | C CALCULATES THE F FUNCTION 163 | C FO ONLY (S-TYPE ORBITALS) 164 | C 165 | C********************************************************************* 166 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 167 | DATA PI/3.1415926535898D0/ 168 | IF (ARG.LT.1.0D-6) GO TO 10 169 | C F0 IN TERMS OF THE ERROR FUNCTION 170 | F0=DSQRT(PI/ARG)*DERFOTHER(DSQRT(ARG))/2.0D0 171 | GO TO 20 172 | C ASYMPTOTIC VALUE FOR SMALL ARGUMENTS 173 | 10 F0=1.0D0-ARG/3.0D0 174 | 20 CONTINUE 175 | RETURN 176 | END 177 | C********************************************************************* 178 | FUNCTION DERFOTHER(ARG) 179 | C 180 | C CALCULATES THE ERROR FUNCTION ACCORDING TO A RATIONAL 181 | C APPROXIMATION FROM M. ARBRAMOWITZ AND I.A. STEGUN, 182 | C HANDBOOK OF MATHEMATICAL FUNCTIONS, DOVER. 183 | C ABSOLUTE ERROR IS LESS THAN 1.5*10**(-7) 184 | C CAN BE REPLACED BY A BUILT-IN FUNCTION ON SOME MACHINES 185 | C 186 | C********************************************************************* 187 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 188 | DIMENSION A(5) 189 | DATA P/0.3275911D0/ 190 | DATA A/0.254829592D0,-0.284496736D0,1.421413741D0, 191 | $ -1.453152027D0,1.061405429D0/ 192 | T=1.0D0/(1.0D0+P*ARG) 193 | TN=T 194 | POLY=A(1)*TN 195 | DO 10 I=2,5 196 | TN=TN*T 197 | POLY=POLY+A(I)*TN 198 | 10 CONTINUE 199 | DERFOTHER=1.0D0-POLY*DEXP(-ARG*ARG) 200 | RETURN 201 | END 202 | C********************************************************************* 203 | FUNCTION S(A,B,RAB2) 204 | C 205 | C CALCULATES OVERLAPS FOR UN-NORMALIZED PRIMITIVES 206 | C 207 | C********************************************************************* 208 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 209 | DATA PI/3.1415926535898D0/ 210 | S=(PI/(A+B))**1.5D0*DEXP(-A*B*RAB2/(A+B)) 211 | RETURN 212 | END 213 | C********************************************************************* 214 | FUNCTION T(A,B,RAB2) 215 | C 216 | C CALCULATES KINETIC ENERGY INTEGRALS FOR UN-NORMALIZED PRIMITIVES 217 | C 218 | C********************************************************************* 219 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 220 | DATA PI/3.1415926535898D0/ 221 | T=A*B/(A+B)*(3.0D0-2.0D0*A*B*RAB2/(A+B))*(PI/(A+B))**1.5D0 222 | $ *DEXP(-A*B*RAB2/(A+B)) 223 | RETURN 224 | END 225 | C********************************************************************* 226 | FUNCTION V(A,B,RAB2,RCP2,ZC) 227 | C 228 | C CALCULATES UN-NORMALIZED NUCLEAR ATTRACTION INTEGRALS 229 | C 230 | C********************************************************************* 231 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 232 | DATA PI/3.1415926535898D0/ 233 | V=2.0D0*PI/(A+B)*F0((A+B)*RCP2)*DEXP(-A*B*RAB2/(A+B)) 234 | V=-V*ZC 235 | RETURN 236 | END 237 | C********************************************************************* 238 | FUNCTION TWOE(A,B,C,D,RAB2,RCD2,RPQ2) 239 | C 240 | C CALCULATES TWO-ELECTRON INTEGRALS FOR UN-NORMALIZED PRIMITIVES 241 | C A,B,C,D ARE THE EXPONENTS ALPHA, BETA, ETC. 242 | C RAB2 EQUALS SQUARED DISTANCE BETWEEN CENTER A AND CENTER B, ETC. 243 | C********************************************************************* 244 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 245 | DATA PI/3.1415926535898D0/ 246 | TWOE=2.0D0*(PI**2.5D0)/((A+B)*(C+D)*DSQRT(A+B+C+D)) 247 | $ *F0((A+B)*(C+D)*RPQ2/(A+B+C+D)) 248 | $ *DEXP(-A*B*RAB2/(A+B)-C*D*RCD2/(C+D)) 249 | RETURN 250 | END 251 | C********************************************************************* 252 | SUBROUTINE COLECT(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 253 | C 254 | C THIS TAKES THE BASIC INTEGRALS FROM COMMON AND ASSEMBLES THE 255 | C RELEVENT MATRICES, THAT IS S,H,X,XT, AND TWO-ELECTRON INTEGRALS 256 | C 257 | C********************************************************************* 258 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 259 | COMMON/MATRIX/S(2,2),X(2,2),XT(2,2),H(2,2),F(2,2),G(2,2),C(2,2), 260 | $ FPRIME(2,2),CPRIME(2,2),P(2,2),OLDP(2,2),TT(2,2,2,2),E(2,2) 261 | COMMON/INT/S12,T11,T12,T22,V11A,V12A,V22A,V11B,V12B,V22B, 262 | $ V1111,V2111,V2121,V2211,V2221,V2222 263 | C FORM CORE HAMILTONIAN 264 | H(1,1)=T11+V11A+V11B 265 | H(1,2)=T12+V12A+V12B 266 | H(2,1)=H(1,2) 267 | H(2,2)=T22+V22A+V22B 268 | C FORM OVERLAP MATRIX 269 | S(1,1)=1.0D0 270 | S(1,2)=S12 271 | S(2,1)=S(1,2) 272 | S(2,2)=1.0D0 273 | C USE CANONICAL ORTHOGONALIZATION 274 | X(1,1)=1.0D0/DSQRT(2.0D0*(1.0D0+S12)) 275 | X(2,1)=X(1,1) 276 | X(1,2)=1.0D0/DSQRT(2.0D0*(1.0D0-S12)) 277 | X(2,2)=-X(1,2) 278 | C TRANSPOSE OF TRANSFORMATION MATRIX 279 | XT(1,1)=X(1,1) 280 | XT(1,2)=X(2,1) 281 | XT(2,1)=X(1,2) 282 | XT(2,2)=X(2,2) 283 | C MATRIX OF TWO-ELE�CTRON INTEGRALS 284 | TT(1,1,1,1)=V1111 285 | TT(2,1,1,1)=V2111 286 | TT(1,2,1,1)=V2111 287 | TT(1,1,2,1)=V2111 288 | TT(1,1,1,2)=V2111 289 | TT(2,1,2,1)=V2121 290 | TT(1,2,2,1)=V2121 291 | TT(2,1,1,2)=V2121 292 | TT(1,2,1,2)=V2121 293 | TT(2,2,1,1)=V2211 294 | TT(1,1,2,2)=V2211 295 | TT(2,2,2,1)=V2221 296 | TT(2,2,1,2)=V2221 297 | TT(2,1,2,2)=V2221 298 | TT(1,2,2,2)=V2221 299 | TT(2,2,2,2)=V2222 300 | IF (IOP.EQ.0) GO TO 40 301 | CALL MATOUT(S,2,2,2,2,4HS ) 302 | CALL MATOUT(X,2,2,2,2,4HX ) 303 | CALL MATOUT(H,2,2,2,2,4HH ) 304 | PRINT 10 305 | 10 FORMAT(//) 306 | DO 30 I=1,2 307 | DO 30 J=1,2 308 | DO 30 K=1,2 309 | DO 30 L=1,2 310 | PRINT 20, I,J,K,L,TT(I,J,K,L) 311 | 20 FORMAT(3X,1H(,4I2,2H ),F10.6) 312 | 30 CONTINUE 313 | 40 RETURN 314 | END 315 | C********************************************************************* 316 | SUBROUTINE SCF(IOP,N,R,ZETA1,ZETA2,ZA,ZB) 317 | C 318 | C PERFORMS THE SCF ITERATIONS 319 | C 320 | C********************************************************************* 321 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 322 | COMMON/MATRIX/S(2,2),X(2,2),XT(2,2),H(2,2),F(2,2),G(2,2),C(2,2), 323 | $ FPRIME(2,2),CPRIME(2,2),P(2,2),OLDP(2,2),TT(2,2,2,2),E(2,2) 324 | DATA PI/3.1415926535898D0/ 325 | C CONVERGENCE CRITERION FOR DENSITY MATRIX 326 | DATA CRIT/1.0D-4/ 327 | C MAXIMUM NUMBER OF ITERATIONS 328 | DATA MAXIT/25/ 329 | C ITERATION NUMBER 330 | ITER=0 331 | C USE CORE-HAMILTONIAN FOR INITIAL GUESS AT F, I.E. (P=0) 332 | DO 10 I=1,2 333 | DO 10 J=1,2 334 | 10 P(I,J)=0.0D0 335 | IF (IOP.LT.2) GO TO 20 336 | CALL MATOUT(P,2,2,2,2,4HP ) 337 | C START OF ITERATION LOOP 338 | 20 ITER=ITER+1 339 | IF (IOP.LT.2) GO TO 40 340 | PRINT 30, ITER 341 | 30 FORMAT(/,4X,28HSTART OF ITERATION NUMBER = ,I2) 342 | 40 CONTINUE 343 | C FORM TWO-ELECTRON PART OF FOCK MATRIX FROM P 344 | CALL FORMG 345 | IF (IOP.LT.2) GO TO 50 346 | CALL MATOUT(G,2,2,2,2,4HG ) 347 | 50 CONTINUE 348 | C ADD CORE HAMILTONIAN TO GET FOCK MATRIX 349 | DO 60 I=1,2 350 | DO 60 J=1,2 351 | F(I,J) = H(I,J)+G(I,J) 352 | 60 CONTINUE 353 | C CALCULATE ELECTRONIC ENERGY 354 | EN=0.0D0 355 | DO 70 I=1,2 356 | DO 70 J=1,2 357 | EN=EN+0.5D0*P(I,J)*(H(I,J)+F(I,J)) 358 | 70 CONTINUE 359 | IF (IOP.LT.2) GO TO 90 360 | CALL MATOUT(F,2,2,2,2,4HF ) 361 | PRINT 80, EN 362 | 80 FORMAT(///,4X,20HELECTRONIC ENERGY = ,D20.12) 363 | 90 CONTINUE 364 | C TRANSFORM FOCK MATRIX USING G FOR TEMPORARY STORAGE 365 | CALL MULT(F,X,G,2,2) 366 | CALL MULT(XT,G,FPRIME,2,2) 367 | C DIAGONALIZE TRANSFORMED FOCK MATRIX 368 | CALL DIAG(FPRIME,CPRIME,E) 369 | C TRANSFORM EIGENVECTORS TO GET MATRIX C 370 | CALL MULT(X,CPRIME,C,2,2) 371 | C FORM NEW DENSITY MATRIX 372 | DO 100 I=1,2 373 | DO 100 J=1,2 374 | C SAVE PRESENT DENSITY MATRIX 375 | C BEFORE CREATING NEW ONE 376 | OLDP(I,J)=P(I,J) 377 | P(I,J)=0.0D0 378 | DO 100 K=1,1 379 | P(I,J)=P(I,J)+2.0D0*C(I,K)*C(J,K) 380 | 100 CONTINUE 381 | IF (IOP.LT.2) GO TO 110 382 | CALL MATOUT(FPRIME,2,2,2,2,"F' ") 383 | CALL MATOUT(CPRIME,2,2,2,2,"C' ") 384 | CALL MATOUT(E,2,2,2,2,'E ') 385 | CALL MATOUT(C,2,2,2,2,'C ') 386 | CALL MATOUT(P,2,2,2,2,'P ') 387 | 110 CONTINUE 388 | C CALCULATE DELTA 389 | DELTA=0.0D0 390 | DO 120 I=1,2 391 | DO 120 J=1,2 392 | DELTA=DELTA+(P(I,J)-OLDP(I,J))**2 393 | 120 CONTINUE 394 | DELTA=DSQRT(DELTA/4.0D0) 395 | IF (IOP.EQ.0) GO TO 140 396 | PRINT 130, DELTA 397 | 130 FORMAT(/,4X,39HDELTA(CONVERGENCE OF DENSITY MATRIX) = 398 | $F10.6,/) 399 | 140 CONTINUE 400 | C CHECK FOR CONVERGENCE 401 | IF (DELTA.LT.CRIT) GO TO 160 402 | C NOT YET CONVERGED 403 | C TEST FOR MAXIMUM NUMBER OF ITERATIONS 404 | C IF MAXIMUM NUMBER NOT YET REACHED 405 | C GO BACK FOR ANOTHER ITERATION 406 | IF(ITER.LT.MAXIT) GO TO 20 407 | C SOMETHING WRONG HERE 408 | PRINT 150 409 | 150 FORMAT(4X,21HNO CONVERGENCE IN SCF) 410 | STOP 411 | 160 CONTINUE 412 | C CALCULATION CONVERGED IF IT GOT HERE 413 | C ADD NUCLEAR REPULSION TO GET TOTAL ENERGY 414 | ENT=EN+ZA*ZB/R 415 | IF (IOP.EQ.0) GO TO 180 416 | PRINT 170, EN, ENT 417 | 170 FORMAT(//,4X,21HCALCULATION CONVERGED,//, 418 | $4X,20HELECTRONIC ENERGY = ,D20.12,//, 419 | $4X,20HTOTAL ENERGY = ,D20.12 ) 420 | 180 CONTINUE 421 | IF (IOP.NE.1) GO TO 190 422 | C PRINT OUT THE FINAL RESULTS IF 423 | C HAVE NOT DONE SO ALREADY 424 | CALL MATOUT(G,2,2,2,2,4HG ) 425 | CALL MATOUT(F,2,2,2,2,4HF ) 426 | CALL MATOUT(E,2,2,2,2,4HE ) 427 | CALL MATOUT(C,2,2,2,2,4HC ) 428 | CALL MATOUT(P,2,2,2,2,4HP ) 429 | 190 CONTINUE 430 | C PS MATRIX HAS MULLIKEN POPULATIONS 431 | CALL MULT(P,S,OLDP,2,2) 432 | IF(IOP.EQ.0) GO TO 200 433 | CALL MATOUT(OLDP,2,2,2,2,4HPS ) 434 | 200 CONTINUE 435 | RETURN 436 | END 437 | C********************************************************************* 438 | SUBROUTINE FORMG 439 | C 440 | C CALCULATES THE G MATRIX FROM THE DENSITY MATRIX 441 | C AND TWO-ELECTRON INTEGRALS 442 | C 443 | C********************************************************************* 444 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 445 | COMMON/MATRIX/S(2,2),X(2,2),XT(2,2),H(2,2),F(2,2),G(2,2),C(2,2), 446 | $FPRIME(2,2),CPRIME(2,2),P(2,2),OLDP(2,2),TT(2,2,2,2),E(2,2) 447 | DO 10 I=1,2 448 | DO 10 J=1,2 449 | G(I,J)=0.0D0 450 | DO 10 K=1,2 451 | DO 10 L=1,2 452 | G(I,J)=G(I,J)+P(K,L)*(TT(I,J,K,L)-0.5D0*TT(I,L,K,J)) 453 | 10 CONTINUE 454 | RETURN 455 | END 456 | C********************************************************************* 457 | SUBROUTINE DIAG(F,C,E) 458 | C 459 | C DIAGONALIZES F TO GIVE EIGENVECTORS IN C AND EIGENVALUES IN E 460 | C THETA IS THE ANGLE DESCRIBING SOLUTION 461 | C 462 | C********************************************************************* 463 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 464 | DIMENSION F(2,2),C(2,2),E(2,2) 465 | DATA PI/3.1415926535898D0/ 466 | IF (DABS(F(1,1)-F(2,2)).GT.1.0D-20) GO TO 10 467 | C HERE IS SYMMETRY DETERMINED SOLUTION (HOMONUCLEAR DIATOMIC) 468 | THETA=PI/4.0D0 469 | GO TO 20 470 | 10 CONTINUE 471 | C SOLUTION FOR HETERONUCLEAR DIATOMIC 472 | THETA=0.5D0*DATAN(2.0D0*F(1,2)/(F(1,1)-F(2,2))) 473 | 20 CONTINUE 474 | C(1,1)=DCOS(THETA) 475 | C(2,1)=DSIN(THETA) 476 | C(1,2)=DSIN(THETA) 477 | C(2,2)=-DCOS(THETA) 478 | E(1,1)=F(1,1)*DCOS(THETA)**2+F(2,2)*DSIN(THETA)**2 479 | $ +F(1,2)*DSIN(2.0D0*THETA) 480 | E(2,2)=F(2,2)*DCOS(THETA)**2+F(1,1)*DSIN(THETA)**2 481 | $ -F(1,2)*DSIN(2.0D0*THETA) 482 | E(2,1)=0.0D0 483 | E(1,2)=0.0D0 484 | C ORDER EIGENVALUES AND EIGENVECTORS 485 | IF (E(2,2).GT.E(1,1)) GO TO 30 486 | TEMP=E(2,2) 487 | E(2,2)=E(1,1) 488 | E(1,1)=TEMP 489 | TEMP=C(1,2) 490 | C(1,2)=C(1,1) 491 | C(1,1)=TEMP 492 | TEMP=C(2,2) 493 | C(2,2)=C(2,1) 494 | C(2,1)=TEMP 495 | 30 RETURN 496 | END 497 | C********************************************************************* 498 | SUBROUTINE MULT(A,B,C,IM,M) 499 | C 500 | C MULTIPLIES TWO SQUARE MATRICES A AND B TO GET C 501 | C 502 | C********************************************************************* 503 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 504 | DIMENSION A(IM,IM),B(IM,IM),C(IM,IM) 505 | DO 10 I=1,M 506 | DO 10 J=1,M 507 | C(I,J)=0.0D0 508 | DO 10 K=1,M 509 | 10 C(I,J)=C(I,J)+A(I,K)*B(K,J) 510 | RETURN 511 | END 512 | C********************************************************************* 513 | SUBROUTINE MATOUT(A,IM,IN,M,N,LABEL) 514 | C 515 | C PRINT MATRICES OF SIZE M BY N 516 | C 517 | C********************************************************************* 518 | IMPLICIT DOUBLE PRECISION(A-H,O-Z) 519 | DIMENSION A(IM,IN) 520 | IHIGH=0 521 | 10 LOW=IHIGH+1 522 | IHIGH=IHIGH+5 523 | IHIGH=MIN(IHIGH,N) 524 | PRINT 20, LABEL,(I,I=LOW,IHIGH) 525 | 20 FORMAT(///,3X,5H THE ,A4,6H ARRAY,/,15X,5(10X,I3,6X)//) 526 | DO 30 I=1,M 527 | 30 PRINT 40, I,(A(I,J),J=LOW,IHIGH) 528 | 40 FORMAT(I10,5X,5(1X,D18.10)) 529 | IF (N-IHIGH) 50,50,10 530 | 50 RETURN 531 | END 532 | -------------------------------------------------------------------------------- /Chaps/Chap5.tex: -------------------------------------------------------------------------------- 1 | \chapter{对理论与耦合对理论} 2 | 第四章中我们已经看到, 3 | 若仅使用双激发组态相互作用(DCI)计算, 4 | 则$N$个无相互作用$\hd$分子的关联能正比于$N^{-1/2}$(当$N$大时). 5 | 由于宏观系统的能量是热力学广度性质, 6 | 它必须正比于粒子数目, 7 | 所以DCI无法良好地处理大体系. 8 | 举个例子, 9 | 若用DCI计算晶体中每个原子所占的相关能, 10 | 结果会是零!很明显, 11 | 要描述无限大体系的相关效应, 12 | 必须使用能使能量正比于粒子数的方法. 13 | 即使对有限体系, 14 | 使用近似方法时也我们希望能给出在不同大小分子下可比较的结果. 15 | 举个例子, 16 | 研究分子解离时, 17 | 要对整个分子以及解离碎片使用(某种意义上的)同等质量的方法. 18 | 一种近似方法, 19 | 若用其计算所得的能量在体系增大时按粒子数目线性变化, 20 | 那么就说该近似是\emph{大小一致的(size consistent)}. 21 | 之前的特例——$N$个闭壳层无相互作用的``单体''组成的超分子中, 22 | 若用大小一致的办法, 23 | 则超分子的能量就等于$N$乘以单体的能量. 24 | 25 | 26 | 虽然大小一致性看似是个普通的要求, 27 | 但除了full CI外的所有CI方法——前者当然是精确的——都不满足这个性质. 28 | 本征我们要考虑对理论及对耦合理论, 29 | 它们有大小一致性, 30 | 下一章要讨论的一种微扰论形式也具有这个性质. 31 | 对理论和微扰论具有大小一致性, 32 | 但代价就是, 33 | 与DCI不同, 34 | 前两个方法不是变分的, 35 | 因此由它们所得的总能可以比真实能量低. 36 | 比如, 37 | 对理论在特定情形下会给出$120\%$的相关能. 38 | 39 | 40 | 5.1节讲独立电子对近似(the independent electron pair approximation, IEPA). 我们用一种快速的方式先构建计算框架, 但是这种方式可能会让读者错误地认为IEPA是DCI的近似. 展示了\phrase{对计算}中的细节后, 我们回到该方法的物理基础上并证明实际上IEPA和DCI是\emph{full CI}的不同近似. 5.1.1节指出了IEPA的一个缺点, 该缺点在DCI和微扰论中都不存在:IEPA在简并分子轨道的酉变换下并非不变. 5.1.2节列出了一些数值结果, 以说明IEPA用在小分子上比较精确, 而在大分子上有严重缺陷. 41 | 42 | 5.2节中考虑如何超越IEPA:加入不同电子对间的耦合. 我们讨论耦合对多电子理论(CPMET), 它有时也叫作耦合簇近似(coupled cluster approximation, CCA). 接下来介绍一系列的对这个复杂方法的简化方案, 特别地,我们要考察耦合电子对近似(coupled electron pair approximation, CEPA). 最后在 5.2.4节介绍一阶\phrase{耦合对理论}的一些数值例子. 43 | 44 | 由于\phrase{耦合对理论}非常重要但又较复杂, 45 | 我们在5. 46 | 3节(为教学计)用这些方法来计算一个特殊的$N$-电子体系的能量, 47 | 该体系的哈密顿仅包含单粒子作用. 48 | 这个问题很容易用基础的方法精确求解. 49 | 但是, 50 | 通过观察``大马力''的手段在这种简单问题中工作的方式, 51 | 我们可以洞察这些近似方法的本质. 52 | 特别地, 53 | 由此可以清晰地知道各个多电子理论间的关系. 54 | 作为多电子方法应用到单电子哈密顿体系中的一个具体例子, 55 | 我们在5. 56 | 3. 57 | 2节考虑H\"ucekl框架下环多烯的共振能. 58 | 这里的主要目的不是要主张用H\"uckel理论或是多电子方法得到共振能. 59 | 而是, 60 | 要利用共振能和相关能的类似性来提供一个可以解析研究的模型, 61 | 通过它我们能够说明各个多电子方法在在计算层面上的一些事情。 62 | 63 | 64 | \section{独立电子对近似(The Independent Electron Pair Approximation, IEPA)} 65 | 在前面一章我们已经知道, 66 | 用中间归一化full CI波函数(由\hft 行列式中的自旋轨道激发出的所有可能组态构成)可以得到相关能: 67 | \begin{align} 68 | E_\mathrm{corr} = \sum_{a2$也不是精确的。 398 | 因此,将四激发系数近似为双激发系数的平方,并不只是对DQCI的近似,实际上还隐含了将六激发系数近似为双激发系数的立方,等等。 399 | CCA在这个理想模型中给出精确解的原因是,\emph{所有}更高(六、八,等等)激发的系数都是双激发系数的乘积。 400 | 在下一节中将会以一个更基本的视角(也是历史上CCA被提出的方式)清楚地展示CCA的这个特点。 401 | 这一节会用一些二次量子化的记号,可以不失连续性地跳过。 402 | 403 | \subsection{波函数的簇展开} 404 | 双激发行列式$\ket{\Psi^{rs}_{ab}}$可以写成二次量子化的形式: 405 | \begin{align*} 406 | \ket{\Psi^{rs}_{ab}}=a^{\dagger}_ra^{\dagger}_sa_ba_a\ket{\Psi_0} 407 | \end{align*} 408 | 其中$a_a,a_b$从HF行列式中移除了一个占据轨道,取而代之,$a^{\dagger}_r,a^{\dagger}_s$添加了一个非占据的自旋轨道。 409 | 因此双激发CI波函数可以写成: 410 | \begin{align*} 411 | \ket{\Psi_{DCI}}=\left(1+\frac{1}{4}\sum_{abrs}c^{rs}_{ab}a^{\dagger}_ra^{\dagger}_sa_ba_a\ket{\Phi_0}\right) 412 | \end{align*} 413 | 现引入一个波函数,它包含双激发、四激发、六激发等等,其中2n激发的系数是n个双激发系数的乘积。这样一个波函数$\ket{\Phi_{CCA}}$可以写成: 414 | \begin{align} 415 | \ket{\Phi_{CCA}}=\exp(\mathscr{T}_2)\ket{\Psi_0}\tag{5.61a} 416 | \end{align} 417 | \addtocounter{equation}{1} 418 | 其中 419 | \begin{align} 420 | \exp(\mathscr{T}_2)=\frac{1}{4}\sum_{abrs}c^{rs}_{ab}a^{\dagger}_ra^{\dagger}_sa_ba_a\tag{5.61b} 421 | \end{align} 422 | 这叫做波函数的簇形式。为了找到一些感觉,我们将指数展开为$\exp(x)=1+x+\frac{1}{2}x^2+\cdots$,得到 423 | \begin{align*} 424 | \ket{\Phi_{CCA}}&=\left(1+\frac{1}{4}\sum_{abrs}c^{rs}_{ab}a^{\dagger}_ra^{\dagger}_sa_ba_a +\frac{1}{32}\sum_{\substack{abcd\\rstu}}c^{rs}_{ab}c^{tu}_{cd}a^{\dagger}_ra^{\dagger}_sa_ba_aa^{\dagger}_ta^{\dagger}_ua_da_c+\cdots\right)\ket{\Psi_0}\\ 425 | &=\ket{\Psi_0}+\frac{1}{4}\sum_{abrs}c^{rs}_{ab}\ket{\Psi^{rs}_{ab}}+\frac{1}{32}\sum_{\substack{abcd\\rstu}}c^{rs}_{ab}c^{tu}_{cd}\ket{\Psi^{rstu}_{abcd}}+\cdots 426 | \end{align*} 427 | 经过一些冗长的运算,它可以写成: 428 | \begin{align} 429 | \label{5.62} 430 | \ket{\Phi_{CCA}}=\ket{\Psi_0}+\sum_{\substack{a\m@ne 148 | \if@mainmatter 149 | \@chapapp\ \thechapter. \ % 150 | \fi 151 | \fi 152 | ##1}}{}}% 153 | \def\sectionmark##1{% 154 | \markright {\MakeUppercase{% 155 | \ifnum \c@secnumdepth >\z@ 156 | \thesection. \ % 157 | \fi 158 | ##1}}}} 159 | \else 160 | \def\ps@headings{% 161 | \let\@oddfoot\@empty 162 | \def\@oddhead{{\slshape\rightmark}\hfil\thepage}% 163 | \let\@mkboth\markboth 164 | \def\chaptermark##1{% 165 | \markright {\MakeUppercase{% 166 | \ifnum \c@secnumdepth >\m@ne 167 | \if@mainmatter 168 | \@chapapp\ \thechapter. \ % 169 | \fi 170 | \fi 171 | ##1}}}} 172 | \fi 173 | \def\ps@myheadings{% 174 | \let\@oddfoot\@empty\let\@evenfoot\@empty 175 | \def\@evenhead{\thepage\hfil\slshape\leftmark}% 176 | \def\@oddhead{{\slshape\rightmark}\hfil\thepage}% 177 | \let\@mkboth\@gobbletwo 178 | \let\chaptermark\@gobble 179 | \let\sectionmark\@gobble 180 | } 181 | \if@titlepage 182 | \newcommand\maketitle{\begin{titlepage}% 183 | \let\footnotesize\small 184 | \let\footnoterule\relax 185 | \let \footnote \thanks 186 | \null\vfil 187 | \vskip 60\p@ 188 | \begin{center}% 189 | {\LARGE \@title \par}% 190 | \vskip 3em% 191 | {\large 192 | \lineskip .75em% 193 | \begin{tabular}[t]{c}% 194 | \@author 195 | \end{tabular}\par}% 196 | \vskip 1.5em% 197 | {\large \@date \par}% % Set date in \large size. 198 | \end{center}\par 199 | \@thanks 200 | \vfil\null 201 | \end{titlepage}% 202 | \setcounter{footnote}{0}% 203 | \global\let\thanks\relax 204 | \global\let\maketitle\relax 205 | \global\let\@thanks\@empty 206 | \global\let\@author\@empty 207 | \global\let\@date\@empty 208 | \global\let\@title\@empty 209 | \global\let\title\relax 210 | \global\let\author\relax 211 | \global\let\date\relax 212 | \global\let\and\relax 213 | } 214 | \else 215 | \newcommand\maketitle{\par 216 | \begingroup 217 | \renewcommand\thefootnote{\@fnsymbol\c@footnote}% 218 | \def\@makefnmark{\rlap{\@textsuperscript{\normalfont\@thefnmark}}}% 219 | \long\def\@makefntext##1{\parindent 1em\noindent 220 | \hb@xt@1.8em{% 221 | \hss\@textsuperscript{\normalfont\@thefnmark}}##1}% 222 | \if@twocolumn 223 | \ifnum \col@number=\@ne 224 | \@maketitle 225 | \else 226 | \twocolumn[\@maketitle]% 227 | \fi 228 | \else 229 | \newpage 230 | \global\@topnum\z@ % Prevents figures from going at top of page. 231 | \@maketitle 232 | \fi 233 | \thispagestyle{plain}\@thanks 234 | \endgroup 235 | \setcounter{footnote}{0}% 236 | \global\let\thanks\relax 237 | \global\let\maketitle\relax 238 | \global\let\@maketitle\relax 239 | \global\let\@thanks\@empty 240 | \global\let\@author\@empty 241 | \global\let\@date\@empty 242 | \global\let\@title\@empty 243 | \global\let\title\relax 244 | \global\let\author\relax 245 | \global\let\date\relax 246 | \global\let\and\relax 247 | } 248 | \def\@maketitle{% 249 | \newpage 250 | \null 251 | \vskip 2em% 252 | \begin{center}% 253 | \let \footnote \thanks 254 | {\LARGE \@title \par}% 255 | \vskip 1.5em% 256 | {\large 257 | \lineskip .5em% 258 | \begin{tabular}[t]{c}% 259 | \@author 260 | \end{tabular}\par}% 261 | \vskip 1em% 262 | {\large \@date}% 263 | \end{center}% 264 | \par 265 | \vskip 1.5em} 266 | \fi 267 | \newcommand*\chaptermark[1]{} 268 | \setcounter{secnumdepth}{2} 269 | \newcounter {part} 270 | \newcounter {chapter} 271 | \newcounter {section}[chapter] 272 | \newcounter {subsection}[section] 273 | \newcounter {subsubsection}[subsection] 274 | \newcounter {paragraph}[subsubsection] 275 | \newcounter {subparagraph}[paragraph] 276 | \renewcommand \thepart {\@Roman\c@part} 277 | \renewcommand \thechapter {\@arabic\c@chapter} 278 | \renewcommand \thesection {\thechapter.\@arabic\c@section} 279 | \renewcommand\thesubsection {\thesection.\@arabic\c@subsection} 280 | \renewcommand\thesubsubsection{\thesubsection.\@arabic\c@subsubsection} 281 | \renewcommand\theparagraph {\thesubsubsection.\@arabic\c@paragraph} 282 | \renewcommand\thesubparagraph {\theparagraph.\@arabic\c@subparagraph} 283 | \newcommand\@chapapp{\chaptername} 284 | \newcommand\frontmatter{% 285 | \cleardoublepage 286 | \@mainmatterfalse 287 | \pagenumbering{roman}} 288 | \newcommand\mainmatter{% 289 | \cleardoublepage 290 | \@mainmattertrue 291 | \pagenumbering{arabic}} 292 | \newcommand\backmatter{% 293 | \if@openright 294 | \cleardoublepage 295 | \else 296 | \clearpage 297 | \fi 298 | \@mainmatterfalse} 299 | \newcommand\part{% 300 | \if@openright 301 | \cleardoublepage 302 | \else 303 | \clearpage 304 | \fi 305 | \thispagestyle{plain}% 306 | \if@twocolumn 307 | \onecolumn 308 | \@tempswatrue 309 | \else 310 | \@tempswafalse 311 | \fi 312 | \null\vfil 313 | \secdef\@part\@spart} 314 | 315 | \def\@part[#1]#2{% 316 | \ifnum \c@secnumdepth >-2\relax 317 | \refstepcounter{part}% 318 | \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}% 319 | \else 320 | \addcontentsline{toc}{part}{#1}% 321 | \fi 322 | \markboth{}{}% 323 | {\centering 324 | \interlinepenalty \@M 325 | \normalfont 326 | \ifnum \c@secnumdepth >-2\relax 327 | \huge\bfseries \partname\nobreakspace\thepart 328 | \par 329 | \vskip 20\p@ 330 | \fi 331 | \Huge \bfseries #2\par}% 332 | \@endpart} 333 | \def\@spart#1{% 334 | {\centering 335 | \interlinepenalty \@M 336 | \normalfont 337 | \Huge \bfseries #1\par}% 338 | \@endpart} 339 | \def\@endpart{\vfil\newpage 340 | \if@twoside 341 | \if@openright 342 | \null 343 | \thispagestyle{empty}% 344 | \newpage 345 | \fi 346 | \fi 347 | \if@tempswa 348 | \twocolumn 349 | \fi} 350 | \newcommand\chapter{\if@openright\cleardoublepage\else\clearpage\fi 351 | \thispagestyle{plain}% 352 | \global\@topnum\z@ 353 | \@afterindentfalse 354 | \secdef\@chapter\@schapter} 355 | \def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne 356 | \if@mainmatter 357 | \refstepcounter{chapter}% 358 | \typeout{\@chapapp\space\thechapter.}% 359 | \addcontentsline{toc}{chapter}% 360 | {\protect\numberline{\thechapter}#1}% 361 | \else 362 | \addcontentsline{toc}{chapter}{#1}% 363 | \fi 364 | \else 365 | \addcontentsline{toc}{chapter}{#1}% 366 | \fi 367 | \chaptermark{#1}% 368 | \addtocontents{lof}{\protect\addvspace{10\p@}}% 369 | \addtocontents{lot}{\protect\addvspace{10\p@}}% 370 | \if@twocolumn 371 | \@topnewpage[\@makechapterhead{#2}]% 372 | \else 373 | \@makechapterhead{#2}% 374 | \@afterheading 375 | \fi} 376 | \def\@makechapterhead#1{% 377 | \vspace*{50\p@}% 378 | {\parindent \z@ \raggedright \normalfont 379 | \ifnum \c@secnumdepth >\m@ne 380 | \if@mainmatter 381 | \fontsize{12pt}{\baselineskip}\selectfont\bfseries \@chapapp\space \thechapter 382 | \par\nobreak 383 | \vskip 20\p@ 384 | \fi 385 | \fi 386 | \interlinepenalty\@M 387 | \fontsize{12pt}{\baselineskip}\selectfont \bfseries #1\par\nobreak 388 | \vskip 40\p@ 389 | }} 390 | \def\@schapter#1{\if@twocolumn 391 | \@topnewpage[\@makeschapterhead{#1}]% 392 | \else 393 | \@makeschapterhead{#1}% 394 | \@afterheading 395 | \fi} 396 | \def\@makeschapterhead#1{% 397 | \vspace*{50\p@}% 398 | {\parindent \z@ \raggedright 399 | \normalfont 400 | \interlinepenalty\@M 401 | \fontsize{12pt}{\baselineskip}\selectfont \bfseries #1\par\nobreak 402 | \vskip 40\p@ 403 | }} 404 | \newcommand\section{\@startsection {section}{1}{\z@}% 405 | {-3.5ex \@plus -1ex \@minus -.2ex}% 406 | {2.3ex \@plus.2ex}% 407 | {\normalfont\fontsize{8.5pt}{\baselineskip}\selectfont\bfseries}} 408 | \newcommand\subsection{\@startsection{subsection}{2}{\z@}% 409 | {-3.25ex\@plus -1ex \@minus -.2ex}% 410 | {1.5ex \@plus .2ex}% 411 | {\normalfont\fontsize{8pt}{\baselineskip}\selectfont\bfseries}} 412 | \newcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}% 413 | {-3.25ex\@plus -1ex \@minus -.2ex}% 414 | {1.5ex \@plus .2ex}% 415 | {\normalfont\normalsize\bfseries}} 416 | \newcommand\paragraph{\@startsection{paragraph}{4}{\z@}% 417 | {3.25ex \@plus1ex \@minus.2ex}% 418 | {-1em}% 419 | {\normalfont\normalsize\bfseries}} 420 | \newcommand\subparagraph{\@startsection{subparagraph}{5}{\parindent}% 421 | {3.25ex \@plus1ex \@minus .2ex}% 422 | {-1em}% 423 | {\normalfont\normalsize\bfseries}} 424 | \if@twocolumn 425 | \setlength\leftmargini {2em} 426 | \else 427 | \setlength\leftmargini {2.5em} 428 | \fi 429 | \leftmargin \leftmargini 430 | \setlength\leftmarginii {2.2em} 431 | \setlength\leftmarginiii {1.87em} 432 | \setlength\leftmarginiv {1.7em} 433 | \if@twocolumn 434 | \setlength\leftmarginv {.5em} 435 | \setlength\leftmarginvi {.5em} 436 | \else 437 | \setlength\leftmarginv {1em} 438 | \setlength\leftmarginvi {1em} 439 | \fi 440 | \setlength \labelsep {.5em} 441 | \setlength \labelwidth{\leftmargini} 442 | \addtolength\labelwidth{-\labelsep} 443 | \@beginparpenalty -\@lowpenalty 444 | \@endparpenalty -\@lowpenalty 445 | \@itempenalty -\@lowpenalty 446 | \renewcommand\theenumi{\@arabic\c@enumi} 447 | \renewcommand\theenumii{\@alph\c@enumii} 448 | \renewcommand\theenumiii{\@roman\c@enumiii} 449 | \renewcommand\theenumiv{\@Alph\c@enumiv} 450 | \newcommand\labelenumi{\theenumi.} 451 | \newcommand\labelenumii{(\theenumii)} 452 | \newcommand\labelenumiii{\theenumiii.} 453 | \newcommand\labelenumiv{\theenumiv.} 454 | \renewcommand\p@enumii{\theenumi} 455 | \renewcommand\p@enumiii{\theenumi(\theenumii)} 456 | \renewcommand\p@enumiv{\p@enumiii\theenumiii} 457 | \newcommand\labelitemi{\textbullet} 458 | \newcommand\labelitemii{\normalfont\bfseries \textendash} 459 | \newcommand\labelitemiii{\textasteriskcentered} 460 | \newcommand\labelitemiv{\textperiodcentered} 461 | \newenvironment{description} 462 | {\list{}{\labelwidth\z@ \itemindent-\leftmargin 463 | \let\makelabel\descriptionlabel}} 464 | {\endlist} 465 | \newcommand*\descriptionlabel[1]{\hspace\labelsep 466 | \normalfont\bfseries #1} 467 | \newenvironment{verse} 468 | {\let\\\@centercr 469 | \list{}{\itemsep \z@ 470 | \itemindent -1.5em% 471 | \listparindent\itemindent 472 | \rightmargin \leftmargin 473 | \advance\leftmargin 1.5em}% 474 | \item\relax} 475 | {\endlist} 476 | \newenvironment{quotation} 477 | {\list{}{\listparindent 1.5em% 478 | \itemindent \listparindent 479 | \rightmargin \leftmargin 480 | \parsep \z@ \@plus\p@}% 481 | \item\relax} 482 | {\endlist} 483 | \newenvironment{quote} 484 | {\list{}{\rightmargin\leftmargin}% 485 | \item\relax} 486 | {\endlist} 487 | \if@compatibility 488 | \newenvironment{titlepage} 489 | {% 490 | \cleardoublepage 491 | \if@twocolumn 492 | \@restonecoltrue\onecolumn 493 | \else 494 | \@restonecolfalse\newpage 495 | \fi 496 | \thispagestyle{empty}% 497 | \setcounter{page}\z@ 498 | }% 499 | {\if@restonecol\twocolumn \else \newpage \fi 500 | } 501 | \else 502 | \newenvironment{titlepage} 503 | {% 504 | \cleardoublepage 505 | \if@twocolumn 506 | \@restonecoltrue\onecolumn 507 | \else 508 | \@restonecolfalse\newpage 509 | \fi 510 | \thispagestyle{empty}% 511 | \setcounter{page}\@ne 512 | }% 513 | {\if@restonecol\twocolumn \else \newpage \fi 514 | \if@twoside\else 515 | \setcounter{page}\@ne 516 | \fi 517 | } 518 | \fi 519 | \newcommand\appendix{\par 520 | \setcounter{chapter}{0}% 521 | \setcounter{section}{0}% 522 | \gdef\@chapapp{\appendixname}% 523 | \gdef\thechapter{\@Alph\c@chapter}} 524 | \setlength\arraycolsep{5\p@} 525 | \setlength\tabcolsep{6\p@} 526 | \setlength\arrayrulewidth{.4\p@} 527 | \setlength\doublerulesep{2\p@} 528 | \setlength\tabbingsep{\labelsep} 529 | \skip\@mpfootins = \skip\footins 530 | \setlength\fboxsep{3\p@} 531 | \setlength\fboxrule{.4\p@} 532 | \@addtoreset {equation}{chapter} 533 | \renewcommand\theequation 534 | {\ifnum \c@chapter>\z@ \thechapter.\fi \@arabic\c@equation} 535 | \newcounter{figure}[chapter] 536 | \renewcommand \thefigure 537 | {\ifnum \c@chapter>\z@ \thechapter.\fi \@arabic\c@figure} 538 | \def\fps@figure{tbp} 539 | \def\ftype@figure{1} 540 | \def\ext@figure{lof} 541 | \def\fnum@figure{\figurename\nobreakspace\thefigure} 542 | \newenvironment{figure} 543 | {\@float{figure}} 544 | {\end@float} 545 | \newenvironment{figure*} 546 | {\@dblfloat{figure}} 547 | {\end@dblfloat} 548 | \newcounter{table}[chapter] 549 | \renewcommand \thetable 550 | {\ifnum \c@chapter>\z@ \thechapter.\fi \@arabic\c@table} 551 | \def\fps@table{tbp} 552 | \def\ftype@table{2} 553 | \def\ext@table{lot} 554 | \def\fnum@table{\tablename\nobreakspace\thetable} 555 | \newenvironment{table} 556 | {\@float{table}} 557 | {\end@float} 558 | \newenvironment{table*} 559 | {\@dblfloat{table}} 560 | {\end@dblfloat} 561 | \newlength\abovecaptionskip 562 | \newlength\belowcaptionskip 563 | \setlength\abovecaptionskip{10\p@} 564 | \setlength\belowcaptionskip{0\p@} 565 | \long\def\@makecaption#1#2{% 566 | \vskip\abovecaptionskip 567 | \sbox\@tempboxa{#1: #2}% 568 | \ifdim \wd\@tempboxa >\hsize 569 | #1: #2\par 570 | \else 571 | \global \@minipagefalse 572 | \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}% 573 | \fi 574 | \vskip\belowcaptionskip} 575 | \DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm} 576 | \DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf} 577 | \DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt} 578 | \DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf} 579 | \DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit} 580 | \DeclareOldFontCommand{\sl}{\normalfont\slshape}{\@nomath\sl} 581 | \DeclareOldFontCommand{\sc}{\normalfont\scshape}{\@nomath\sc} 582 | \DeclareRobustCommand*\cal{\@fontswitch\relax\mathcal} 583 | \DeclareRobustCommand*\mit{\@fontswitch\relax\mathnormal} 584 | \newcommand\@pnumwidth{1.55em} 585 | \newcommand\@tocrmarg{2.55em} 586 | \newcommand\@dotsep{4.5} 587 | \setcounter{tocdepth}{2} 588 | \newcommand\tableofcontents{% 589 | \if@twocolumn 590 | \@restonecoltrue\onecolumn 591 | \else 592 | \@restonecolfalse 593 | \fi 594 | \chapter*{\contentsname 595 | \@mkboth{% 596 | \MakeUppercase\contentsname}{\MakeUppercase\contentsname}}% 597 | \@starttoc{toc}% 598 | \if@restonecol\twocolumn\fi 599 | } 600 | \newcommand*\l@part[2]{% 601 | \ifnum \c@tocdepth >-2\relax 602 | \addpenalty{-\@highpenalty}% 603 | \addvspace{2.25em \@plus\p@}% 604 | \setlength\@tempdima{3em}% 605 | \begingroup 606 | \parindent \z@ \rightskip \@pnumwidth 607 | \parfillskip -\@pnumwidth 608 | {\leavevmode 609 | \large \bfseries #1\hfil \hb@xt@\@pnumwidth{\hss #2}}\par 610 | \nobreak 611 | \global\@nobreaktrue 612 | \everypar{\global\@nobreakfalse\everypar{}}% 613 | \endgroup 614 | \fi} 615 | \newcommand*\l@chapter[2]{% 616 | \ifnum \c@tocdepth >\m@ne 617 | \addpenalty{-\@highpenalty}% 618 | \vskip 1.0em \@plus\p@ 619 | \setlength\@tempdima{1.5em}% 620 | \begingroup 621 | \parindent \z@ \rightskip \@pnumwidth 622 | \parfillskip -\@pnumwidth 623 | \leavevmode \bfseries 624 | \advance\leftskip\@tempdima 625 | \hskip -\leftskip 626 | #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss #2}\par 627 | \penalty\@highpenalty 628 | \endgroup 629 | \fi} 630 | \newcommand*\l@section{\@dottedtocline{1}{1.5em}{2.3em}} 631 | \newcommand*\l@subsection{\@dottedtocline{2}{3.8em}{3.2em}} 632 | \newcommand*\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}} 633 | \newcommand*\l@paragraph{\@dottedtocline{4}{10em}{5em}} 634 | \newcommand*\l@subparagraph{\@dottedtocline{5}{12em}{6em}} 635 | \newcommand\listoffigures{% 636 | \if@twocolumn 637 | \@restonecoltrue\onecolumn 638 | \else 639 | \@restonecolfalse 640 | \fi 641 | \chapter*{\listfigurename}% 642 | \@mkboth{\MakeUppercase\listfigurename}% 643 | {\MakeUppercase\listfigurename}% 644 | \@starttoc{lof}% 645 | \if@restonecol\twocolumn\fi 646 | } 647 | \newcommand*\l@figure{\@dottedtocline{1}{1.5em}{2.3em}} 648 | \newcommand\listoftables{% 649 | \if@twocolumn 650 | \@restonecoltrue\onecolumn 651 | \else 652 | \@restonecolfalse 653 | \fi 654 | \chapter*{\listtablename}% 655 | \@mkboth{% 656 | \MakeUppercase\listtablename}% 657 | {\MakeUppercase\listtablename}% 658 | \@starttoc{lot}% 659 | \if@restonecol\twocolumn\fi 660 | } 661 | \let\l@table\l@figure 662 | \newdimen\bibindent 663 | \setlength\bibindent{1.5em} 664 | \newenvironment{thebibliography}[1] 665 | {\chapter*{\bibname}% 666 | \@mkboth{\MakeUppercase\bibname}{\MakeUppercase\bibname}% 667 | \list{\@biblabel{\@arabic\c@enumiv}}% 668 | {\settowidth\labelwidth{\@biblabel{#1}}% 669 | \leftmargin\labelwidth 670 | \advance\leftmargin\labelsep 671 | \@openbib@code 672 | \usecounter{enumiv}% 673 | \let\p@enumiv\@empty 674 | \renewcommand\theenumiv{\@arabic\c@enumiv}}% 675 | \sloppy 676 | \clubpenalty4000 677 | \@clubpenalty \clubpenalty 678 | \widowpenalty4000% 679 | \sfcode`\.\@m} 680 | {\def\@noitemerr 681 | {\@latex@warning{Empty `thebibliography' environment}}% 682 | \endlist} 683 | \newcommand\newblock{\hskip .11em\@plus.33em\@minus.07em} 684 | \let\@openbib@code\@empty 685 | \newenvironment{theindex} 686 | {\if@twocolumn 687 | \@restonecolfalse 688 | \else 689 | \@restonecoltrue 690 | \fi 691 | \twocolumn[\@makeschapterhead{\indexname}]% 692 | \@mkboth{\MakeUppercase\indexname}% 693 | {\MakeUppercase\indexname}% 694 | \thispagestyle{plain}\parindent\z@ 695 | \parskip\z@ \@plus .3\p@\relax 696 | \columnseprule \z@ 697 | \columnsep 35\p@ 698 | \let\item\@idxitem} 699 | {\if@restonecol\onecolumn\else\clearpage\fi} 700 | \newcommand\@idxitem{\par\hangindent 40\p@} 701 | \newcommand\subitem{\@idxitem \hspace*{20\p@}} 702 | \newcommand\subsubitem{\@idxitem \hspace*{30\p@}} 703 | \newcommand\indexspace{\par \vskip 10\p@ \@plus5\p@ \@minus3\p@\relax} 704 | \renewcommand\footnoterule{% 705 | \kern-3\p@ 706 | \hrule\@width.4\columnwidth 707 | \kern2.6\p@} 708 | \@addtoreset{footnote}{chapter} 709 | \newcommand\@makefntext[1]{% 710 | \parindent 1em% 711 | \noindent 712 | \hb@xt@1.8em{\hss\@makefnmark}#1} 713 | \newcommand\contentsname{Contents} 714 | \newcommand\listfigurename{List of Figures} 715 | \newcommand\listtablename{List of Tables} 716 | \newcommand\bibname{Bibliography} 717 | \newcommand\indexname{Index} 718 | \newcommand\figurename{Figure} 719 | \newcommand\tablename{Table} 720 | \newcommand\partname{Part} 721 | \newcommand\chaptername{Chapter} 722 | \newcommand\appendixname{Appendix} 723 | \def\today{\ifcase\month\or 724 | January\or February\or March\or April\or May\or June\or 725 | July\or August\or September\or October\or November\or December\fi 726 | \space\number\day, \number\year} 727 | \setlength\columnsep{10\p@} 728 | \setlength\columnseprule{0\p@} 729 | \pagestyle{headings} 730 | \pagenumbering{arabic} 731 | \if@twoside 732 | \else 733 | \raggedbottom 734 | \fi 735 | \if@twocolumn 736 | \twocolumn 737 | \sloppy 738 | \flushbottom 739 | \else 740 | \onecolumn 741 | \fi 742 | \endinput 743 | %% 744 | %% End of file `book.cls'. 745 | --------------------------------------------------------------------------------