├── infer
├── modules
│ ├── vc
│ │ ├── __init__.py
│ │ └── utils.py
│ ├── gui
│ │ ├── __init__.py
│ │ └── utils.py
│ ├── onnx
│ │ └── export.py
│ └── uvr5
│ │ └── modules.py
└── lib
│ ├── infer_pack
│ └── modules
│ │ └── F0Predictor
│ │ ├── __init__.py
│ │ ├── F0Predictor.py
│ │ ├── HarvestF0Predictor.py
│ │ ├── DioF0Predictor.py
│ │ └── PMF0Predictor.py
│ ├── jit
│ ├── get_rmvpe.py
│ └── get_synthesizer.py
│ ├── uvr5_pack
│ ├── lib_v5
│ │ ├── modelparams
│ │ │ ├── 1band_sr44100_hl256.json
│ │ │ ├── 1band_sr16000_hl512.json
│ │ │ ├── 1band_sr32000_hl512.json
│ │ │ ├── 1band_sr33075_hl384.json
│ │ │ ├── 1band_sr44100_hl1024.json
│ │ │ ├── 1band_sr44100_hl512.json
│ │ │ ├── 1band_sr44100_hl512_cut.json
│ │ │ ├── 2band_48000.json
│ │ │ ├── 2band_32000.json
│ │ │ ├── 2band_44100_lofi.json
│ │ │ ├── 3band_44100.json
│ │ │ ├── ensemble.json
│ │ │ ├── 3band_44100_mid.json
│ │ │ ├── 3band_44100_msb2.json
│ │ │ ├── 4band_v2.json
│ │ │ ├── 4band_v3.json
│ │ │ ├── 4band_44100.json
│ │ │ ├── 4band_44100_sw.json
│ │ │ ├── 4band_44100_msb.json
│ │ │ ├── 4band_44100_msb2.json
│ │ │ ├── 4band_44100_reverse.json
│ │ │ ├── 4band_v2_sn.json
│ │ │ └── 4band_44100_mid.json
│ │ ├── model_param_init.py
│ │ ├── layers.py
│ │ ├── layers_123812KB .py
│ │ ├── layers_123821KB.py
│ │ ├── nets.py
│ │ ├── nets_123812KB.py
│ │ ├── nets_123821KB.py
│ │ ├── nets_33966KB.py
│ │ ├── nets_61968KB.py
│ │ ├── nets_537227KB.py
│ │ ├── nets_537238KB.py
│ │ ├── layers_new.py
│ │ ├── layers_33966KB.py
│ │ ├── layers_537227KB.py
│ │ ├── layers_537238KB.py
│ │ └── nets_new.py
│ └── utils.py
│ ├── audio.py
│ └── train
│ ├── losses.py
│ └── mel_processing.py
├── assets
├── indices
│ └── .gitignore
├── weights
│ └── .gitignore
├── pretrained
│ └── .gitignore
├── pretrained_v2
│ └── .gitignore
├── uvr5_weights
│ └── .gitignore
├── rmvpe
│ ├── .gitignore
│ └── rmvpe_inputs.pth
├── hubert
│ ├── .gitignore
│ └── hubert_inputs.pth
└── Synthesizer_inputs.pth
├── configs
├── inuse
│ ├── v1
│ │ └── .gitignore
│ ├── v2
│ │ └── .gitignore
│ └── .gitignore
├── config.json
├── v1
│ ├── 32k.json
│ ├── 40k.json
│ └── 48k.json
└── v2
│ ├── 32k.json
│ └── 48k.json
├── go-realtime-gui.bat
├── .gitattributes
├── go-web.bat
├── go-realtime-gui-dml.bat
├── go-web-dml.bat
├── .gitignore
├── docker-compose.yml
├── CONTRIBUTING.md
├── README.md
├── requirements-win-for-realtime_vc_gui.txt
├── requirements-win-for-realtime_vc_gui-dml.txt
├── tools
├── onnx
│ ├── onnx_inference_demo.py
│ └── export_onnx.py
├── cmd
│ ├── trans_weights.py
│ ├── train-index.py
│ ├── infer_cli.py
│ ├── train-index-v2.py
│ ├── infer_batch_rvc.py
│ └── calc_rvc_model_similarity.py
├── download_models.py
└── dlmodels.sh
├── i18n
├── i18n.py
├── locale_diff.py
└── scan_i18n.py
├── requirements-dml.txt
├── requirements.txt
├── requirements-amd.txt
├── requirements-py311.txt
├── LICENSE
├── requirements-ipex.txt
├── MIT协议暨相关引用库协议
├── run.sh
├── docs
├── jp
│ ├── training_tips_ja.md
│ ├── faiss_tips_ja.md
│ └── Changelog_JA.md
├── kr
│ ├── training_tips_ko.md
│ ├── README.ko.han.md
│ └── Changelog_KO.md
├── cn
│ ├── Changelog_CN.md
│ └── faq.md
├── en
│ └── training_tips_en.md
└── tr
│ └── training_tips_tr.md
├── Dockerfile
└── .env
/infer/modules/vc/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/assets/indices/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/assets/weights/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/assets/pretrained/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/assets/pretrained_v2/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/assets/uvr5_weights/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/configs/inuse/v1/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/configs/inuse/v2/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/infer/lib/infer_pack/modules/F0Predictor/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/assets/rmvpe/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 | !rmvpe_inputs.pth
--------------------------------------------------------------------------------
/configs/inuse/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 | !v1
4 | !v2
5 |
--------------------------------------------------------------------------------
/assets/hubert/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 | !hubert_inputs.pth
--------------------------------------------------------------------------------
/go-realtime-gui.bat:
--------------------------------------------------------------------------------
1 | runtime\python.exe --nocheck gui_v1.py
2 | pause
3 |
--------------------------------------------------------------------------------
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Auto detect text files and perform LF normalization
2 | * text=auto
3 |
--------------------------------------------------------------------------------
/assets/Synthesizer_inputs.pth:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NoorBayan/Ilqa/HEAD/assets/Synthesizer_inputs.pth
--------------------------------------------------------------------------------
/assets/rmvpe/rmvpe_inputs.pth:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NoorBayan/Ilqa/HEAD/assets/rmvpe/rmvpe_inputs.pth
--------------------------------------------------------------------------------
/go-web.bat:
--------------------------------------------------------------------------------
1 | runtime\python.exe infer-web.py --pycmd runtime\python.exe --nocheck --port 7897
2 | pause
3 |
--------------------------------------------------------------------------------
/assets/hubert/hubert_inputs.pth:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NoorBayan/Ilqa/HEAD/assets/hubert/hubert_inputs.pth
--------------------------------------------------------------------------------
/go-realtime-gui-dml.bat:
--------------------------------------------------------------------------------
1 | runtime\python.exe gui_v1.py --pycmd runtime\python.exe --nocheck --dml
2 | pause
3 |
--------------------------------------------------------------------------------
/go-web-dml.bat:
--------------------------------------------------------------------------------
1 | runtime\python.exe infer-web.py --pycmd runtime\python.exe --nocheck --port 7897 --dml
2 | pause
3 |
--------------------------------------------------------------------------------
/infer/lib/jit/get_rmvpe.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def get_rmvpe(model_path="assets/rmvpe/rmvpe.pt", device=torch.device("cpu")):
5 | from infer.lib.rmvpe import E2E
6 |
7 | model = E2E(4, 1, (2, 2))
8 | ckpt = torch.load(model_path, map_location=device)
9 | model.load_state_dict(ckpt)
10 | model.eval()
11 | model = model.to(device)
12 | return model
13 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 256,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 256,
9 | "n_fft": 512,
10 | "crop_start": 0,
11 | "crop_stop": 256,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 256,
18 | "pre_filter_stop": 256
19 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 16000,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 16000,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 1024
19 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 32000,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "kaiser_fast"
14 | }
15 | },
16 | "sr": 32000,
17 | "pre_filter_start": 1000,
18 | "pre_filter_stop": 1021
19 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 33075,
8 | "hl": 384,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 33075,
17 | "pre_filter_start": 1000,
18 | "pre_filter_stop": 1021
19 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 1024,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 1024
19 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 1024
19 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 700,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 700
19 | }
--------------------------------------------------------------------------------
/infer/modules/gui/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | TorchGating is a PyTorch-based implementation of Spectral Gating
3 | ================================================
4 | Author: Asaf Zorea
5 |
6 | Contents
7 | --------
8 | torchgate imports all the functions from PyTorch, and in addition provides:
9 | TorchGating --- A PyTorch module that applies a spectral gate to an input signal
10 |
11 | """
12 |
13 | from .torchgate import TorchGate
14 |
--------------------------------------------------------------------------------
/configs/config.json:
--------------------------------------------------------------------------------
1 | {"pth_path": "assets/weights/kikiV1.pth", "index_path": "logs/kikiV1.index", "sg_hostapi": "MME", "sg_wasapi_exclusive": false, "sg_input_device": "VoiceMeeter Output (VB-Audio Vo", "sg_output_device": "VoiceMeeter Input (VB-Audio Voi", "sr_type": "sr_device", "threhold": -60.0, "pitch": 12.0, "rms_mix_rate": 0.5, "index_rate": 0.0, "block_time": 0.15, "crossfade_length": 0.08, "extra_time": 2.0, "n_cpu": 4.0, "use_jit": false, "use_pv": false, "f0method": "fcpe"}
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
2 | __pycache__
3 | /TEMP
4 | *.pyd
5 | .venv
6 | /opt
7 | tools/aria2c/
8 | tools/flag.txt
9 |
10 | # Imported from huggingface.co/lj1995/VoiceConversionWebUI
11 | /pretrained
12 | /pretrained_v2
13 | /uvr5_weights
14 | hubert_base.pt
15 | rmvpe.onnx
16 | rmvpe.pt
17 |
18 | # Generated by RVC
19 | /logs
20 | /weights
21 |
22 | # To set a Python version for the project
23 | .tool-versions
24 |
25 | /runtime
26 | /assets/weights/*
27 | ffmpeg.*
28 | ffprobe.*
--------------------------------------------------------------------------------
/infer/lib/infer_pack/modules/F0Predictor/F0Predictor.py:
--------------------------------------------------------------------------------
1 | class F0Predictor(object):
2 | def compute_f0(self, wav, p_len):
3 | """
4 | input: wav:[signal_length]
5 | p_len:int
6 | output: f0:[signal_length//hop_length]
7 | """
8 | pass
9 |
10 | def compute_f0_uv(self, wav, p_len):
11 | """
12 | input: wav:[signal_length]
13 | p_len:int
14 | output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
15 | """
16 | pass
17 |
--------------------------------------------------------------------------------
/docker-compose.yml:
--------------------------------------------------------------------------------
1 | version: "3.8"
2 | services:
3 | rvc:
4 | build:
5 | context: .
6 | dockerfile: Dockerfile
7 | container_name: rvc
8 | volumes:
9 | - ./weights:/app/assets/weights
10 | - ./opt:/app/opt
11 | # - ./dataset:/app/dataset # you can use this folder in order to provide your dataset for model training
12 | ports:
13 | - 7865:7865
14 | deploy:
15 | resources:
16 | reservations:
17 | devices:
18 | - driver: nvidia
19 | count: 1
20 | capabilities: [gpu]
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # 贡献规则
2 | 1. 一般来说,作者`@RVC-Boss`将拒绝所有的算法更改,除非它是为了修复某个代码层面的错误或警告
3 | 2. 您可以贡献本仓库的其他位置,如翻译和WebUI,但请尽量作最小更改
4 | 3. 所有更改都需要由`@RVC-Boss`批准,因此您的PR可能会被搁置
5 | 4. 由此带来的不便请您谅解
6 |
7 | # Contributing Rules
8 | 1. Generally, the author `@RVC-Boss` will reject all algorithm changes unless what is to fix a code-level error or warning.
9 | 2. You can contribute to other parts of this repo like translations and WebUI, but please minimize your changes as much as possible.
10 | 3. All changes need to be approved by `@RVC-Boss`, so your PR may be put on hold.
11 | 4. Please accept our apologies for any inconvenience caused.
12 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Ilqa
2 | Ilqa is an AI-driven audio enhancement project designed to improve the quality of Quranic recitations and exegesis (tafsir) readings. Utilizing advanced speech processing and enhancement technologies, the project focuses on refining the clarity, tone, and accessibility of Quranic audio for educational purposes. The system works by enhancing the reciter's voice, ensuring that the recitation is clear, accurate, and easy to follow. This project aims to provide listeners with a high-quality audio experience of the Quran and its interpretations, supporting both learning and spiritual engagement.
3 | Files will be uploaded later.
4 |
5 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/2band_48000.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "reduction_bins": 705,
5 | "band": {
6 | "1": {
7 | "sr": 6000,
8 | "hl": 66,
9 | "n_fft": 512,
10 | "crop_start": 0,
11 | "crop_stop": 240,
12 | "lpf_start": 60,
13 | "lpf_stop": 240,
14 | "res_type": "sinc_fastest"
15 | },
16 | "2": {
17 | "sr": 48000,
18 | "hl": 528,
19 | "n_fft": 1536,
20 | "crop_start": 22,
21 | "crop_stop": 505,
22 | "hpf_start": 82,
23 | "hpf_stop": 22,
24 | "res_type": "sinc_medium"
25 | }
26 | },
27 | "sr": 48000,
28 | "pre_filter_start": 710,
29 | "pre_filter_stop": 731
30 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/2band_32000.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "reduction_bins": 705,
5 | "band": {
6 | "1": {
7 | "sr": 6000,
8 | "hl": 66,
9 | "n_fft": 512,
10 | "crop_start": 0,
11 | "crop_stop": 240,
12 | "lpf_start": 60,
13 | "lpf_stop": 118,
14 | "res_type": "sinc_fastest"
15 | },
16 | "2": {
17 | "sr": 32000,
18 | "hl": 352,
19 | "n_fft": 1024,
20 | "crop_start": 22,
21 | "crop_stop": 505,
22 | "hpf_start": 44,
23 | "hpf_stop": 23,
24 | "res_type": "sinc_medium"
25 | }
26 | },
27 | "sr": 32000,
28 | "pre_filter_start": 710,
29 | "pre_filter_stop": 731
30 | }
31 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 512,
3 | "unstable_bins": 7,
4 | "reduction_bins": 510,
5 | "band": {
6 | "1": {
7 | "sr": 11025,
8 | "hl": 160,
9 | "n_fft": 768,
10 | "crop_start": 0,
11 | "crop_stop": 192,
12 | "lpf_start": 41,
13 | "lpf_stop": 139,
14 | "res_type": "sinc_fastest"
15 | },
16 | "2": {
17 | "sr": 44100,
18 | "hl": 640,
19 | "n_fft": 1024,
20 | "crop_start": 10,
21 | "crop_stop": 320,
22 | "hpf_start": 47,
23 | "hpf_stop": 15,
24 | "res_type": "sinc_medium"
25 | }
26 | },
27 | "sr": 44100,
28 | "pre_filter_start": 510,
29 | "pre_filter_stop": 512
30 | }
31 |
--------------------------------------------------------------------------------
/requirements-win-for-realtime_vc_gui.txt:
--------------------------------------------------------------------------------
1 | #1.Install torch from pytorch.org:
2 | #torch 2.0 with cuda 11.8
3 | #pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
4 | #torch 1.11.0 with cuda 11.3
5 | #pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
6 | einops
7 | fairseq
8 | flask
9 | flask_cors
10 | gin
11 | gin_config
12 | librosa
13 | local_attention
14 | matplotlib
15 | praat-parselmouth
16 | pyworld
17 | PyYAML
18 | resampy
19 | scikit_learn
20 | scipy
21 | SoundFile
22 | tensorboard
23 | tqdm
24 | wave
25 | FreeSimpleGUI
26 | sounddevice
27 | gradio
28 | noisereduce
29 | torchfcpe
30 |
--------------------------------------------------------------------------------
/requirements-win-for-realtime_vc_gui-dml.txt:
--------------------------------------------------------------------------------
1 | #1.Install torch from pytorch.org:
2 | #torch 2.0 with cuda 11.8
3 | #pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
4 | #torch 1.11.0 with cuda 11.3
5 | #pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
6 | einops
7 | fairseq
8 | flask
9 | flask_cors
10 | gin
11 | gin_config
12 | librosa
13 | local_attention
14 | matplotlib
15 | praat-parselmouth
16 | pyworld
17 | PyYAML
18 | resampy
19 | scikit_learn
20 | scipy
21 | SoundFile
22 | tensorboard
23 | tqdm
24 | wave
25 | FreeSimpleGUI
26 | sounddevice
27 | gradio
28 | noisereduce
29 | onnxruntime-directml
30 | torchfcpe
--------------------------------------------------------------------------------
/tools/onnx/onnx_inference_demo.py:
--------------------------------------------------------------------------------
1 | import soundfile
2 |
3 | from infer.lib.infer_pack.onnx_inference import OnnxRVC
4 |
5 | hop_size = 512
6 | sampling_rate = 40000 # 采样率
7 | f0_up_key = 0 # 升降调
8 | sid = 0 # 角色ID
9 | f0_method = "dio" # F0提取算法
10 | model_path = "ShirohaRVC.onnx" # 模型的完整路径
11 | vec_name = (
12 | "vec-256-layer-9" # 内部自动补齐为 f"pretrained/{vec_name}.onnx" 需要onnx的vec模型
13 | )
14 | wav_path = "123.wav" # 输入路径或ByteIO实例
15 | out_path = "out.wav" # 输出路径或ByteIO实例
16 |
17 | model = OnnxRVC(
18 | model_path, vec_path=vec_name, sr=sampling_rate, hop_size=hop_size, device="cuda"
19 | )
20 |
21 | audio = model.inference(wav_path, sid, f0_method=f0_method, f0_up_key=f0_up_key)
22 |
23 | soundfile.write(out_path, audio, sampling_rate)
24 |
--------------------------------------------------------------------------------
/tools/cmd/trans_weights.py:
--------------------------------------------------------------------------------
1 | import pdb
2 |
3 | import torch
4 |
5 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-suc\G_1000.pth")["model"]#sim_nsf#
6 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder-flow-enc_q\G_1000.pth")["model"]#sim_nsf#
7 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder\G_1000.pth")["model"]#sim_nsf#
8 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-test\G_1000.pth")["model"]#sim_nsf#
9 | a = torch.load(
10 | r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-no_opt-no_dropout\G_1000.pth"
11 | )[
12 | "model"
13 | ] # sim_nsf#
14 | for key in a.keys():
15 | a[key] = a[key].half()
16 | # torch.save(a,"ft-mi-freeze-vocoder_true_1k.pt")#
17 | # torch.save(a,"ft-mi-sim1k.pt")#
18 | torch.save(a, "ft-mi-no_opt-no_dropout.pt") #
19 |
--------------------------------------------------------------------------------
/i18n/i18n.py:
--------------------------------------------------------------------------------
1 | import json
2 | import locale
3 | import os
4 |
5 |
6 | def load_language_list(language):
7 | with open(f"./i18n/locale/{language}.json", "r", encoding="utf-8") as f:
8 | language_list = json.load(f)
9 | return language_list
10 |
11 |
12 | class I18nAuto:
13 | def __init__(self, language=None):
14 | if language in ["Auto", None]:
15 | language = locale.getdefaultlocale()[
16 | 0
17 | ] # getlocale can't identify the system's language ((None, None))
18 | if not os.path.exists(f"./i18n/locale/{language}.json"):
19 | language = "en_US"
20 | self.language = language
21 | self.language_map = load_language_list(language)
22 |
23 | def __call__(self, key):
24 | return self.language_map.get(key, key)
25 |
26 | def __repr__(self):
27 | return "Use Language: " + self.language
28 |
--------------------------------------------------------------------------------
/requirements-dml.txt:
--------------------------------------------------------------------------------
1 | joblib>=1.1.0
2 | numba==0.56.4
3 | numpy==1.23.5
4 | scipy
5 | librosa==0.9.1
6 | llvmlite==0.39.0
7 | fairseq==0.12.2
8 | faiss-cpu==1.7.3
9 | gradio==4.23.0
10 | Cython
11 | pydub>=0.25.1
12 | soundfile>=0.12.1
13 | ffmpeg-python>=0.2.0
14 | tensorboardX
15 | Jinja2>=3.1.2
16 | json5
17 | Markdown
18 | matplotlib>=3.7.0
19 | matplotlib-inline>=0.1.3
20 | praat-parselmouth>=0.4.2
21 | Pillow>=9.1.1
22 | resampy>=0.4.2
23 | scikit-learn
24 | tensorboard
25 | tqdm>=4.63.1
26 | tornado>=6.1
27 | Werkzeug>=2.2.3
28 | uc-micro-py>=1.0.1
29 | sympy>=1.11.1
30 | tabulate>=0.8.10
31 | PyYAML>=6.0
32 | pyasn1>=0.4.8
33 | pyasn1-modules>=0.2.8
34 | fsspec>=2022.11.0
35 | absl-py>=1.2.0
36 | audioread
37 | uvicorn>=0.21.1
38 | colorama>=0.4.5
39 | pyworld==0.3.2
40 | httpx
41 | onnxruntime-directml
42 | torchcrepe==0.0.20
43 | fastapi
44 | ffmpy==0.3.1
45 | python-dotenv>=1.0.0
46 | av
47 | torchfcpe
48 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/3band_44100.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 5,
4 | "reduction_bins": 733,
5 | "band": {
6 | "1": {
7 | "sr": 11025,
8 | "hl": 128,
9 | "n_fft": 768,
10 | "crop_start": 0,
11 | "crop_stop": 278,
12 | "lpf_start": 28,
13 | "lpf_stop": 140,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 22050,
18 | "hl": 256,
19 | "n_fft": 768,
20 | "crop_start": 14,
21 | "crop_stop": 322,
22 | "hpf_start": 70,
23 | "hpf_stop": 14,
24 | "lpf_start": 283,
25 | "lpf_stop": 314,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 44100,
30 | "hl": 512,
31 | "n_fft": 768,
32 | "crop_start": 131,
33 | "crop_stop": 313,
34 | "hpf_start": 154,
35 | "hpf_stop": 141,
36 | "res_type": "sinc_medium"
37 | }
38 | },
39 | "sr": 44100,
40 | "pre_filter_start": 757,
41 | "pre_filter_stop": 768
42 | }
43 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | joblib>=1.1.0
2 | numba
3 | numpy==1.23.5
4 | scipy
5 | librosa==0.9.1
6 | llvmlite
7 | fairseq
8 | faiss-cpu
9 | gradio==4.23.0
10 | Cython
11 | pydub>=0.25.1
12 | soundfile>=0.12.1
13 | ffmpeg-python>=0.2.0
14 | tensorboardX
15 | Jinja2>=3.1.2
16 | json5
17 | Markdown
18 | matplotlib==3.5
19 | matplotlib-inline>=0.1.3
20 | praat-parselmouth>=0.4.2
21 | Pillow>=9.1.1
22 | resampy>=0.4.2
23 | scikit-learn
24 | tensorboard
25 | tqdm>=4.63.1
26 | tornado>=6.1
27 | Werkzeug>=2.2.3
28 | uc-micro-py>=1.0.1
29 | sympy>=1.11.1
30 | tabulate>=0.8.10
31 | PyYAML>=6.0
32 | pyasn1>=0.4.8
33 | pyasn1-modules>=0.2.8
34 | fsspec>=2022.11.0
35 | absl-py>=1.2.0
36 | audioread
37 | uvicorn>=0.21.1
38 | colorama>=0.4.5
39 | pyworld==0.3.2
40 | httpx
41 | onnxruntime; sys_platform == 'darwin'
42 | onnxruntime-gpu; sys_platform != 'darwin'
43 | torchcrepe==0.0.20
44 | fastapi
45 | torchfcpe
46 | ffmpy==0.3.1
47 | python-dotenv>=1.0.0
48 | av
49 |
--------------------------------------------------------------------------------
/requirements-amd.txt:
--------------------------------------------------------------------------------
1 | tensorflow-rocm
2 | joblib>=1.1.0
3 | numba==0.56.4
4 | numpy==1.23.5
5 | scipy
6 | librosa==0.9.1
7 | llvmlite==0.39.0
8 | fairseq==0.12.2
9 | faiss-cpu==1.7.3
10 | gradio==4.23.0
11 | Cython
12 | pydub>=0.25.1
13 | soundfile>=0.12.1
14 | ffmpeg-python>=0.2.0
15 | tensorboardX
16 | Jinja2>=3.1.2
17 | json5
18 | Markdown
19 | matplotlib>=3.7.0
20 | matplotlib-inline>=0.1.3
21 | praat-parselmouth>=0.4.2
22 | Pillow>=9.1.1
23 | resampy>=0.4.2
24 | scikit-learn
25 | tensorboard
26 | tqdm>=4.63.1
27 | tornado>=6.1
28 | Werkzeug>=2.2.3
29 | uc-micro-py>=1.0.1
30 | sympy>=1.11.1
31 | tabulate>=0.8.10
32 | PyYAML>=6.0
33 | pyasn1>=0.4.8
34 | pyasn1-modules>=0.2.8
35 | fsspec>=2022.11.0
36 | absl-py>=1.2.0
37 | audioread
38 | uvicorn>=0.21.1
39 | colorama>=0.4.5
40 | pyworld==0.3.2
41 | httpx
42 | onnxruntime
43 | onnxruntime-gpu
44 | torchcrepe==0.0.20
45 | fastapi
46 | ffmpy==0.3.1
47 | python-dotenv>=1.0.0
48 | av
49 | torchfcpe
50 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/ensemble.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b2": true,
3 | "bins": 1280,
4 | "unstable_bins": 7,
5 | "reduction_bins": 565,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 108,
10 | "n_fft": 2048,
11 | "crop_start": 0,
12 | "crop_stop": 374,
13 | "lpf_start": 92,
14 | "lpf_stop": 186,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 22050,
19 | "hl": 216,
20 | "n_fft": 1536,
21 | "crop_start": 0,
22 | "crop_stop": 424,
23 | "hpf_start": 68,
24 | "hpf_stop": 34,
25 | "lpf_start": 348,
26 | "lpf_stop": 418,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 44100,
31 | "hl": 432,
32 | "n_fft": 1280,
33 | "crop_start": 132,
34 | "crop_stop": 614,
35 | "hpf_start": 172,
36 | "hpf_stop": 144,
37 | "res_type": "polyphase"
38 | }
39 | },
40 | "sr": 44100,
41 | "pre_filter_start": 1280,
42 | "pre_filter_stop": 1280
43 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/3band_44100_mid.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side": true,
3 | "bins": 768,
4 | "unstable_bins": 5,
5 | "reduction_bins": 733,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 768,
11 | "crop_start": 0,
12 | "crop_stop": 278,
13 | "lpf_start": 28,
14 | "lpf_stop": 140,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 22050,
19 | "hl": 256,
20 | "n_fft": 768,
21 | "crop_start": 14,
22 | "crop_stop": 322,
23 | "hpf_start": 70,
24 | "hpf_stop": 14,
25 | "lpf_start": 283,
26 | "lpf_stop": 314,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 44100,
31 | "hl": 512,
32 | "n_fft": 768,
33 | "crop_start": 131,
34 | "crop_stop": 313,
35 | "hpf_start": 154,
36 | "hpf_stop": 141,
37 | "res_type": "sinc_medium"
38 | }
39 | },
40 | "sr": 44100,
41 | "pre_filter_start": 757,
42 | "pre_filter_stop": 768
43 | }
44 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b2": true,
3 | "bins": 640,
4 | "unstable_bins": 7,
5 | "reduction_bins": 565,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 108,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 187,
13 | "lpf_start": 92,
14 | "lpf_stop": 186,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 22050,
19 | "hl": 216,
20 | "n_fft": 768,
21 | "crop_start": 0,
22 | "crop_stop": 212,
23 | "hpf_start": 68,
24 | "hpf_stop": 34,
25 | "lpf_start": 174,
26 | "lpf_stop": 209,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 44100,
31 | "hl": 432,
32 | "n_fft": 640,
33 | "crop_start": 66,
34 | "crop_stop": 307,
35 | "hpf_start": 86,
36 | "hpf_stop": 72,
37 | "res_type": "kaiser_fast"
38 | }
39 | },
40 | "sr": 44100,
41 | "pre_filter_start": 639,
42 | "pre_filter_stop": 640
43 | }
44 |
--------------------------------------------------------------------------------
/requirements-py311.txt:
--------------------------------------------------------------------------------
1 | joblib>=1.1.0
2 | numba
3 | numpy
4 | scipy
5 | librosa==0.9.1
6 | llvmlite
7 | fairseq @ git+https://github.com/One-sixth/fairseq.git
8 | faiss-cpu
9 | gradio==4.23.0
10 | Cython
11 | pydub>=0.25.1
12 | soundfile>=0.12.1
13 | ffmpeg-python>=0.2.0
14 | tensorboardX
15 | Jinja2>=3.1.2
16 | json5
17 | Markdown
18 | matplotlib>=3.7.0
19 | matplotlib-inline>=0.1.3
20 | praat-parselmouth>=0.4.2
21 | Pillow>=9.1.1
22 | resampy>=0.4.2
23 | scikit-learn
24 | tensorboard
25 | tqdm>=4.63.1
26 | tornado>=6.1
27 | Werkzeug>=2.2.3
28 | uc-micro-py>=1.0.1
29 | sympy>=1.11.1
30 | tabulate>=0.8.10
31 | PyYAML>=6.0
32 | pyasn1>=0.4.8
33 | pyasn1-modules>=0.2.8
34 | fsspec>=2022.11.0
35 | absl-py>=1.2.0
36 | audioread
37 | uvicorn>=0.21.1
38 | colorama>=0.4.5
39 | pyworld==0.3.2
40 | httpx
41 | onnxruntime; sys_platform == 'darwin'
42 | onnxruntime-gpu; sys_platform != 'darwin'
43 | torchcrepe==0.0.20
44 | fastapi
45 | torchfcpe
46 | ffmpy==0.3.1
47 | python-dotenv>=1.0.0
48 | av
49 |
--------------------------------------------------------------------------------
/infer/modules/vc/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | from fairseq import checkpoint_utils
4 |
5 |
6 | def get_index_path_from_model(sid):
7 | return next(
8 | (
9 | f
10 | for f in [
11 | os.path.join(root, name)
12 | for root, _, files in os.walk(os.getenv("index_root"), topdown=False)
13 | for name in files
14 | if name.endswith(".index") and "trained" not in name
15 | ]
16 | if sid.split(".")[0] in f
17 | ),
18 | "",
19 | )
20 |
21 |
22 | def load_hubert(config):
23 | models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
24 | ["assets/hubert/hubert_base.pt"],
25 | suffix="",
26 | )
27 | hubert_model = models[0]
28 | hubert_model = hubert_model.to(config.device)
29 | if config.is_half:
30 | hubert_model = hubert_model.half()
31 | else:
32 | hubert_model = hubert_model.float()
33 | return hubert_model.eval()
34 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_v2.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 672,
3 | "unstable_bins": 8,
4 | "reduction_bins": 637,
5 | "band": {
6 | "1": {
7 | "sr": 7350,
8 | "hl": 80,
9 | "n_fft": 640,
10 | "crop_start": 0,
11 | "crop_stop": 85,
12 | "lpf_start": 25,
13 | "lpf_stop": 53,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 7350,
18 | "hl": 80,
19 | "n_fft": 320,
20 | "crop_start": 4,
21 | "crop_stop": 87,
22 | "hpf_start": 25,
23 | "hpf_stop": 12,
24 | "lpf_start": 31,
25 | "lpf_stop": 62,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 14700,
30 | "hl": 160,
31 | "n_fft": 512,
32 | "crop_start": 17,
33 | "crop_stop": 216,
34 | "hpf_start": 48,
35 | "hpf_stop": 24,
36 | "lpf_start": 139,
37 | "lpf_stop": 210,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 480,
43 | "n_fft": 960,
44 | "crop_start": 78,
45 | "crop_stop": 383,
46 | "hpf_start": 130,
47 | "hpf_stop": 86,
48 | "res_type": "kaiser_fast"
49 | }
50 | },
51 | "sr": 44100,
52 | "pre_filter_start": 668,
53 | "pre_filter_stop": 672
54 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_v3.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 672,
3 | "unstable_bins": 8,
4 | "reduction_bins": 530,
5 | "band": {
6 | "1": {
7 | "sr": 7350,
8 | "hl": 80,
9 | "n_fft": 640,
10 | "crop_start": 0,
11 | "crop_stop": 85,
12 | "lpf_start": 25,
13 | "lpf_stop": 53,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 7350,
18 | "hl": 80,
19 | "n_fft": 320,
20 | "crop_start": 4,
21 | "crop_stop": 87,
22 | "hpf_start": 25,
23 | "hpf_stop": 12,
24 | "lpf_start": 31,
25 | "lpf_stop": 62,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 14700,
30 | "hl": 160,
31 | "n_fft": 512,
32 | "crop_start": 17,
33 | "crop_stop": 216,
34 | "hpf_start": 48,
35 | "hpf_stop": 24,
36 | "lpf_start": 139,
37 | "lpf_stop": 210,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 480,
43 | "n_fft": 960,
44 | "crop_start": 78,
45 | "crop_stop": 383,
46 | "hpf_start": 130,
47 | "hpf_stop": 86,
48 | "res_type": "kaiser_fast"
49 | }
50 | },
51 | "sr": 44100,
52 | "pre_filter_start": 668,
53 | "pre_filter_stop": 672
54 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_44100.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "reduction_bins": 668,
5 | "band": {
6 | "1": {
7 | "sr": 11025,
8 | "hl": 128,
9 | "n_fft": 1024,
10 | "crop_start": 0,
11 | "crop_stop": 186,
12 | "lpf_start": 37,
13 | "lpf_stop": 73,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 11025,
18 | "hl": 128,
19 | "n_fft": 512,
20 | "crop_start": 4,
21 | "crop_stop": 185,
22 | "hpf_start": 36,
23 | "hpf_stop": 18,
24 | "lpf_start": 93,
25 | "lpf_stop": 185,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 22050,
30 | "hl": 256,
31 | "n_fft": 512,
32 | "crop_start": 46,
33 | "crop_stop": 186,
34 | "hpf_start": 93,
35 | "hpf_stop": 46,
36 | "lpf_start": 164,
37 | "lpf_stop": 186,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 512,
43 | "n_fft": 768,
44 | "crop_start": 121,
45 | "crop_stop": 382,
46 | "hpf_start": 138,
47 | "hpf_stop": 123,
48 | "res_type": "sinc_medium"
49 | }
50 | },
51 | "sr": 44100,
52 | "pre_filter_start": 740,
53 | "pre_filter_stop": 768
54 | }
55 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_44100_sw.json:
--------------------------------------------------------------------------------
1 | {
2 | "stereo_w": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023-2024 liujing04
4 | Copyright (c) 2023-2024 fumiama
5 | Copyright (c) 2023-2024 Ftps
6 |
7 | Permission is hereby granted, free of charge, to any person obtaining a copy
8 | of this software and associated documentation files (the "Software"), to deal
9 | in the Software without restriction, including without limitation the rights
10 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 | copies of the Software, and to permit persons to whom the Software is
12 | furnished to do so, subject to the following conditions:
13 |
14 | The above copyright notice and this permission notice shall be included in all
15 | copies or substantial portions of the Software.
16 |
17 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 | SOFTWARE.
24 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_44100_msb.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json:
--------------------------------------------------------------------------------
1 | {
2 | "reverse": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_v2_sn.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 672,
3 | "unstable_bins": 8,
4 | "reduction_bins": 637,
5 | "band": {
6 | "1": {
7 | "sr": 7350,
8 | "hl": 80,
9 | "n_fft": 640,
10 | "crop_start": 0,
11 | "crop_stop": 85,
12 | "lpf_start": 25,
13 | "lpf_stop": 53,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 7350,
18 | "hl": 80,
19 | "n_fft": 320,
20 | "crop_start": 4,
21 | "crop_stop": 87,
22 | "hpf_start": 25,
23 | "hpf_stop": 12,
24 | "lpf_start": 31,
25 | "lpf_stop": 62,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 14700,
30 | "hl": 160,
31 | "n_fft": 512,
32 | "crop_start": 17,
33 | "crop_stop": 216,
34 | "hpf_start": 48,
35 | "hpf_stop": 24,
36 | "lpf_start": 139,
37 | "lpf_stop": 210,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 480,
43 | "n_fft": 960,
44 | "crop_start": 78,
45 | "crop_stop": 383,
46 | "hpf_start": 130,
47 | "hpf_stop": 86,
48 | "convert_channels": "stereo_n",
49 | "res_type": "kaiser_fast"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 668,
54 | "pre_filter_stop": 672
55 | }
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/modelparams/4band_44100_mid.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "mid_side": true,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
56 |
--------------------------------------------------------------------------------
/configs/v1/32k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 12800,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 32000,
21 | "filter_length": 1024,
22 | "hop_length": 320,
23 | "win_length": 1024,
24 | "n_mel_channels": 80,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,4,2,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [16,16,4,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/v1/40k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 12800,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 40000,
21 | "filter_length": 2048,
22 | "hop_length": 400,
23 | "win_length": 2048,
24 | "n_mel_channels": 125,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,10,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [16,16,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/v2/32k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 12800,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 32000,
21 | "filter_length": 1024,
22 | "hop_length": 320,
23 | "win_length": 1024,
24 | "n_mel_channels": 80,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,8,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [20,16,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/v2/48k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 17280,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 48000,
21 | "filter_length": 2048,
22 | "hop_length": 480,
23 | "win_length": 2048,
24 | "n_mel_channels": 128,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [12,10,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [24,20,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/v1/48k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 11520,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 48000,
21 | "filter_length": 2048,
22 | "hop_length": 480,
23 | "win_length": 2048,
24 | "n_mel_channels": 128,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,6,2,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [16,16,4,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/requirements-ipex.txt:
--------------------------------------------------------------------------------
1 | torch==2.0.1a0
2 | intel_extension_for_pytorch==2.0.110+xpu
3 | torchvision==0.15.2a0
4 | https://github.com/Disty0/Retrieval-based-Voice-Conversion-WebUI/releases/download/torchaudio_wheels_for_ipex/torchaudio-2.0.2+31de77d-cp310-cp310-linux_x86_64.whl
5 | --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
6 | joblib>=1.1.0
7 | numba==0.56.4
8 | numpy==1.23.5
9 | scipy
10 | librosa==0.9.1
11 | llvmlite==0.39.0
12 | fairseq==0.12.2
13 | faiss-cpu==1.7.3
14 | gradio==4.23.0
15 | Cython
16 | pydub>=0.25.1
17 | soundfile>=0.12.1
18 | ffmpeg-python>=0.2.0
19 | tensorboardX
20 | Jinja2>=3.1.2
21 | json5
22 | Markdown
23 | matplotlib>=3.7.0
24 | matplotlib-inline>=0.1.3
25 | praat-parselmouth>=0.4.2
26 | Pillow>=9.1.1
27 | resampy>=0.4.2
28 | scikit-learn
29 | tensorboard
30 | tqdm>=4.63.1
31 | tornado>=6.1
32 | Werkzeug>=2.2.3
33 | uc-micro-py>=1.0.1
34 | sympy>=1.11.1
35 | tabulate>=0.8.10
36 | PyYAML>=6.0
37 | pyasn1>=0.4.8
38 | pyasn1-modules>=0.2.8
39 | fsspec>=2022.11.0
40 | absl-py>=1.2.0
41 | audioread
42 | uvicorn>=0.21.1
43 | colorama>=0.4.5
44 | pyworld==0.3.2
45 | httpx
46 | onnxruntime; sys_platform == 'darwin'
47 | onnxruntime-gpu; sys_platform != 'darwin'
48 | torchcrepe==0.0.20
49 | fastapi
50 | ffmpy==0.3.1
51 | python-dotenv>=1.0.0
52 | av
53 | FreeSimpleGUI
54 | sounddevice
55 | torchfcpe
56 |
--------------------------------------------------------------------------------
/tools/cmd/train-index.py:
--------------------------------------------------------------------------------
1 | """
2 | 格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
3 | """
4 |
5 | import os
6 | import logging
7 |
8 | logger = logging.getLogger(__name__)
9 |
10 | import faiss
11 | import numpy as np
12 |
13 | # ###########如果是原始特征要先写save
14 | inp_root = r"E:\codes\py39\dataset\mi\2-co256"
15 | npys = []
16 | for name in sorted(list(os.listdir(inp_root))):
17 | phone = np.load("%s/%s" % (inp_root, name))
18 | npys.append(phone)
19 | big_npy = np.concatenate(npys, 0)
20 | logger.debug(big_npy.shape) # (6196072, 192)#fp32#4.43G
21 | np.save("infer/big_src_feature_mi.npy", big_npy)
22 |
23 | ##################train+add
24 | # big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
25 | logger.debug(big_npy.shape)
26 | index = faiss.index_factory(256, "IVF512,Flat") # mi
27 | logger.info("Training...")
28 | index_ivf = faiss.extract_index_ivf(index) #
29 | index_ivf.nprobe = 9
30 | index.train(big_npy)
31 | faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
32 | logger.info("Adding...")
33 | index.add(big_npy)
34 | faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
35 | """
36 | 大小(都是FP32)
37 | big_src_feature 2.95G
38 | (3098036, 256)
39 | big_emb 4.43G
40 | (6196072, 192)
41 | big_emb双倍是因为求特征要repeat后再加pitch
42 |
43 | """
44 |
--------------------------------------------------------------------------------
/infer/lib/jit/get_synthesizer.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def get_synthesizer(pth_path, device=torch.device("cpu")):
5 | from infer.lib.infer_pack.models import (
6 | SynthesizerTrnMs256NSFsid,
7 | SynthesizerTrnMs256NSFsid_nono,
8 | SynthesizerTrnMs768NSFsid,
9 | SynthesizerTrnMs768NSFsid_nono,
10 | )
11 |
12 | cpt = torch.load(pth_path, map_location=torch.device("cpu"))
13 | # tgt_sr = cpt["config"][-1]
14 | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
15 | if_f0 = cpt.get("f0", 1)
16 | version = cpt.get("version", "v1")
17 | if version == "v1":
18 | if if_f0 == 1:
19 | net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=False)
20 | else:
21 | net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
22 | elif version == "v2":
23 | if if_f0 == 1:
24 | net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=False)
25 | else:
26 | net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
27 | del net_g.enc_q
28 | # net_g.forward = net_g.infer
29 | # ckpt = {}
30 | # ckpt["config"] = cpt["config"]
31 | # ckpt["f0"] = if_f0
32 | # ckpt["version"] = version
33 | # ckpt["info"] = cpt.get("info", "0epoch")
34 | net_g.load_state_dict(cpt["weight"], strict=False)
35 | net_g = net_g.float()
36 | net_g.eval().to(device)
37 | net_g.remove_weight_norm()
38 | return net_g, cpt
39 |
--------------------------------------------------------------------------------
/MIT协议暨相关引用库协议:
--------------------------------------------------------------------------------
1 | 本软件及其相关代码以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
2 | 如不认可该条款,则不能使用或引用软件包内任何代码和文件。
3 |
4 | 特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
5 | 上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
6 | 软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
7 |
8 |
9 | The LICENCEs for related libraries are as follows.
10 | 相关引用库协议如下:
11 |
12 | ContentVec
13 | https://github.com/auspicious3000/contentvec/blob/main/LICENSE
14 | MIT License
15 |
16 | VITS
17 | https://github.com/jaywalnut310/vits/blob/main/LICENSE
18 | MIT License
19 |
20 | HIFIGAN
21 | https://github.com/jik876/hifi-gan/blob/master/LICENSE
22 | MIT License
23 |
24 | gradio
25 | https://github.com/gradio-app/gradio/blob/main/LICENSE
26 | Apache License 2.0
27 |
28 | ffmpeg
29 | https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
30 | https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
31 | LPGLv3 License
32 | MIT License
33 |
34 | ultimatevocalremovergui
35 | https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
36 | https://github.com/yang123qwe/vocal_separation_by_uvr5
37 | MIT License
38 |
39 | audio-slicer
40 | https://github.com/openvpi/audio-slicer/blob/main/LICENSE
41 | MIT License
42 |
43 | FreeSimpleGUI
44 | https://github.com/spyoungtech/FreeSimpleGUI/blob/master/license.txt
45 | LPGLv3 License
46 |
--------------------------------------------------------------------------------
/infer/lib/audio.py:
--------------------------------------------------------------------------------
1 | import platform
2 | import ffmpeg
3 | import numpy as np
4 | import av
5 |
6 |
7 | def wav2(i, o, format):
8 | inp = av.open(i, "rb")
9 | if format == "m4a":
10 | format = "mp4"
11 | out = av.open(o, "wb", format=format)
12 | if format == "ogg":
13 | format = "libvorbis"
14 | if format == "mp4":
15 | format = "aac"
16 |
17 | ostream = out.add_stream(format)
18 |
19 | for frame in inp.decode(audio=0):
20 | for p in ostream.encode(frame):
21 | out.mux(p)
22 |
23 | for p in ostream.encode(None):
24 | out.mux(p)
25 |
26 | out.close()
27 | inp.close()
28 |
29 |
30 | def load_audio(file, sr):
31 | try:
32 | # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
33 | # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
34 | # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
35 | file = clean_path(file) # 防止小白拷路径头尾带了空格和"和回车
36 | out, _ = (
37 | ffmpeg.input(file, threads=0)
38 | .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
39 | .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
40 | )
41 | except Exception as e:
42 | raise RuntimeError(f"Failed to load audio: {e}")
43 |
44 | return np.frombuffer(out, np.float32).flatten()
45 |
46 |
47 | def clean_path(path_str):
48 | if platform.system() == "Windows":
49 | path_str = path_str.replace("/", "\\")
50 | return path_str.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
51 |
--------------------------------------------------------------------------------
/infer/lib/train/losses.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def feature_loss(fmap_r, fmap_g):
5 | loss = 0
6 | for dr, dg in zip(fmap_r, fmap_g):
7 | for rl, gl in zip(dr, dg):
8 | rl = rl.float().detach()
9 | gl = gl.float()
10 | loss += torch.mean(torch.abs(rl - gl))
11 |
12 | return loss * 2
13 |
14 |
15 | def discriminator_loss(disc_real_outputs, disc_generated_outputs):
16 | loss = 0
17 | r_losses = []
18 | g_losses = []
19 | for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
20 | dr = dr.float()
21 | dg = dg.float()
22 | r_loss = torch.mean((1 - dr) ** 2)
23 | g_loss = torch.mean(dg**2)
24 | loss += r_loss + g_loss
25 | r_losses.append(r_loss.item())
26 | g_losses.append(g_loss.item())
27 |
28 | return loss, r_losses, g_losses
29 |
30 |
31 | def generator_loss(disc_outputs):
32 | loss = 0
33 | gen_losses = []
34 | for dg in disc_outputs:
35 | dg = dg.float()
36 | l = torch.mean((1 - dg) ** 2)
37 | gen_losses.append(l)
38 | loss += l
39 |
40 | return loss, gen_losses
41 |
42 |
43 | def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
44 | """
45 | z_p, logs_q: [b, h, t_t]
46 | m_p, logs_p: [b, h, t_t]
47 | """
48 | z_p = z_p.float()
49 | logs_q = logs_q.float()
50 | m_p = m_p.float()
51 | logs_p = logs_p.float()
52 | z_mask = z_mask.float()
53 |
54 | kl = logs_p - logs_q - 0.5
55 | kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
56 | kl = torch.sum(kl * z_mask)
57 | l = kl / torch.sum(z_mask)
58 | return l
59 |
--------------------------------------------------------------------------------
/i18n/locale_diff.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | from collections import OrderedDict
4 |
5 | # Define the standard file name
6 | standard_file = "locale/zh_CN.json"
7 |
8 | # Find all JSON files in the directory
9 | dir_path = "locale/"
10 | languages = [
11 | os.path.join(dir_path, f)
12 | for f in os.listdir(dir_path)
13 | if f.endswith(".json") and f != standard_file
14 | ]
15 |
16 | # Load the standard file
17 | with open(standard_file, "r", encoding="utf-8") as f:
18 | standard_data = json.load(f, object_pairs_hook=OrderedDict)
19 |
20 | # Loop through each language file
21 | for lang_file in languages:
22 | # Load the language file
23 | with open(lang_file, "r", encoding="utf-8") as f:
24 | lang_data = json.load(f, object_pairs_hook=OrderedDict)
25 |
26 | # Find the difference between the language file and the standard file
27 | diff = set(standard_data.keys()) - set(lang_data.keys())
28 |
29 | miss = set(lang_data.keys()) - set(standard_data.keys())
30 |
31 | # Add any missing keys to the language file
32 | for key in diff:
33 | lang_data[key] = key
34 |
35 | # Del any extra keys to the language file
36 | for key in miss:
37 | del lang_data[key]
38 |
39 | # Sort the keys of the language file to match the order of the standard file
40 | lang_data = OrderedDict(
41 | sorted(lang_data.items(), key=lambda x: list(standard_data.keys()).index(x[0]))
42 | )
43 |
44 | # Save the updated language file
45 | with open(lang_file, "w", encoding="utf-8") as f:
46 | json.dump(lang_data, f, ensure_ascii=False, indent=4, sort_keys=True)
47 | f.write("\n")
48 |
--------------------------------------------------------------------------------
/run.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 |
3 | if [ "$(uname)" = "Darwin" ]; then
4 | # macOS specific env:
5 | export PYTORCH_ENABLE_MPS_FALLBACK=1
6 | export PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0
7 | fi
8 |
9 | if [ -d ".venv" ]; then
10 | echo "Activate venv..."
11 | . .venv/bin/activate
12 | else
13 | echo "Create venv..."
14 | requirements_file="requirements.txt"
15 |
16 | # Check if Python 3.8 is installed
17 | if ! command -v python3.8 >/dev/null 2>&1 || pyenv versions --bare | grep -q "3.8"; then
18 | echo "Python 3 not found. Attempting to install 3.8..."
19 | if [ "$(uname)" = "Darwin" ] && command -v brew >/dev/null 2>&1; then
20 | brew install python@3.8
21 | elif [ "$(uname)" = "Linux" ] && command -v apt-get >/dev/null 2>&1; then
22 | sudo apt update
23 | sudo apt install -y python3.8
24 | else
25 | echo "Please install Python 3.8 manually."
26 | exit 1
27 | fi
28 | fi
29 |
30 | python3.8 -m venv .venv
31 | . .venv/bin/activate
32 |
33 | # Check if required packages are installed and install them if not
34 | if [ -f "${requirements_file}" ]; then
35 | installed_packages=$(python3.8 -m pip freeze)
36 | while IFS= read -r package; do
37 | expr "${package}" : "^#.*" > /dev/null && continue
38 | package_name=$(echo "${package}" | sed 's/[<>=!].*//')
39 | if ! echo "${installed_packages}" | grep -q "${package_name}"; then
40 | echo "${package_name} not found. Attempting to install..."
41 | python3.8 -m pip install --upgrade "${package}"
42 | fi
43 | done < "${requirements_file}"
44 | else
45 | echo "${requirements_file} not found. Please ensure the requirements file with required packages exists."
46 | exit 1
47 | fi
48 | fi
49 |
50 | # Run the main script
51 | python3 infer-web.py --pycmd python3
52 |
--------------------------------------------------------------------------------
/infer/modules/onnx/export.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from infer.lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
4 |
5 |
6 | def export_onnx(ModelPath, ExportedPath):
7 | cpt = torch.load(ModelPath, map_location="cpu")
8 | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
9 | vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768
10 |
11 | test_phone = torch.rand(1, 200, vec_channels) # hidden unit
12 | test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
13 | test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
14 | test_pitchf = torch.rand(1, 200) # nsf基频
15 | test_ds = torch.LongTensor([0]) # 说话人ID
16 | test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
17 |
18 | device = "cpu" # 导出时设备(不影响使用模型)
19 |
20 | net_g = SynthesizerTrnMsNSFsidM(
21 | *cpt["config"], is_half=False, encoder_dim=vec_channels
22 | ) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
23 | net_g.load_state_dict(cpt["weight"], strict=False)
24 | input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
25 | output_names = [
26 | "audio",
27 | ]
28 | # net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
29 | torch.onnx.export(
30 | net_g,
31 | (
32 | test_phone.to(device),
33 | test_phone_lengths.to(device),
34 | test_pitch.to(device),
35 | test_pitchf.to(device),
36 | test_ds.to(device),
37 | test_rnd.to(device),
38 | ),
39 | ExportedPath,
40 | dynamic_axes={
41 | "phone": [1],
42 | "pitch": [1],
43 | "pitchf": [1],
44 | "rnd": [2],
45 | },
46 | do_constant_folding=False,
47 | opset_version=18,
48 | verbose=True,
49 | input_names=input_names,
50 | output_names=output_names,
51 | )
52 | return "Finished"
53 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/model_param_init.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import pathlib
4 |
5 | default_param = {}
6 | default_param["bins"] = 768
7 | default_param["unstable_bins"] = 9 # training only
8 | default_param["reduction_bins"] = 762 # training only
9 | default_param["sr"] = 44100
10 | default_param["pre_filter_start"] = 757
11 | default_param["pre_filter_stop"] = 768
12 | default_param["band"] = {}
13 |
14 |
15 | default_param["band"][1] = {
16 | "sr": 11025,
17 | "hl": 128,
18 | "n_fft": 960,
19 | "crop_start": 0,
20 | "crop_stop": 245,
21 | "lpf_start": 61, # inference only
22 | "res_type": "polyphase",
23 | }
24 |
25 | default_param["band"][2] = {
26 | "sr": 44100,
27 | "hl": 512,
28 | "n_fft": 1536,
29 | "crop_start": 24,
30 | "crop_stop": 547,
31 | "hpf_start": 81, # inference only
32 | "res_type": "sinc_best",
33 | }
34 |
35 |
36 | def int_keys(d):
37 | r = {}
38 | for k, v in d:
39 | if k.isdigit():
40 | k = int(k)
41 | r[k] = v
42 | return r
43 |
44 |
45 | class ModelParameters(object):
46 | def __init__(self, config_path=""):
47 | if ".pth" == pathlib.Path(config_path).suffix:
48 | import zipfile
49 |
50 | with zipfile.ZipFile(config_path, "r") as zip:
51 | self.param = json.loads(
52 | zip.read("param.json"), object_pairs_hook=int_keys
53 | )
54 | elif ".json" == pathlib.Path(config_path).suffix:
55 | with open(config_path, "r") as f:
56 | self.param = json.loads(f.read(), object_pairs_hook=int_keys)
57 | else:
58 | self.param = default_param
59 |
60 | for k in [
61 | "mid_side",
62 | "mid_side_b",
63 | "mid_side_b2",
64 | "stereo_w",
65 | "stereo_n",
66 | "reverse",
67 | ]:
68 | if not k in self.param:
69 | self.param[k] = False
70 |
--------------------------------------------------------------------------------
/tools/onnx/export_onnx.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from infer.lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
3 |
4 | if __name__ == "__main__":
5 | MoeVS = True # 模型是否为MoeVoiceStudio(原MoeSS)使用
6 |
7 | ModelPath = "Shiroha/shiroha.pth" # 模型路径
8 | ExportedPath = "model.onnx" # 输出路径
9 | encoder_dim = 256 # encoder_dim
10 | cpt = torch.load(ModelPath, map_location="cpu")
11 | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
12 | print(*cpt["config"])
13 |
14 | test_phone = torch.rand(1, 200, encoder_dim) # hidden unit
15 | test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
16 | test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
17 | test_pitchf = torch.rand(1, 200) # nsf基频
18 | test_ds = torch.LongTensor([0]) # 说话人ID
19 | test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
20 |
21 | device = "cpu" # 导出时设备(不影响使用模型)
22 |
23 | net_g = SynthesizerTrnMsNSFsidM(
24 | *cpt["config"], is_half=False, encoder_dim=encoder_dim
25 | ) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
26 | net_g.load_state_dict(cpt["weight"], strict=False)
27 | input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
28 | output_names = [
29 | "audio",
30 | ]
31 | # net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
32 | torch.onnx.export(
33 | net_g,
34 | (
35 | test_phone.to(device),
36 | test_phone_lengths.to(device),
37 | test_pitch.to(device),
38 | test_pitchf.to(device),
39 | test_ds.to(device),
40 | test_rnd.to(device),
41 | ),
42 | ExportedPath,
43 | dynamic_axes={
44 | "phone": [1],
45 | "pitch": [1],
46 | "pitchf": [1],
47 | "rnd": [2],
48 | },
49 | do_constant_folding=False,
50 | opset_version=18,
51 | verbose=False,
52 | input_names=input_names,
53 | output_names=output_names,
54 | )
55 |
--------------------------------------------------------------------------------
/i18n/scan_i18n.py:
--------------------------------------------------------------------------------
1 | import ast
2 | import glob
3 | import json
4 | from collections import OrderedDict
5 |
6 |
7 | def extract_i18n_strings(node):
8 | i18n_strings = []
9 |
10 | if (
11 | isinstance(node, ast.Call)
12 | and isinstance(node.func, ast.Name)
13 | and node.func.id == "i18n"
14 | ):
15 | for arg in node.args:
16 | if isinstance(arg, ast.Str):
17 | i18n_strings.append(arg.s)
18 |
19 | for child_node in ast.iter_child_nodes(node):
20 | i18n_strings.extend(extract_i18n_strings(child_node))
21 |
22 | return i18n_strings
23 |
24 |
25 | # scan the directory for all .py files (recursively)
26 | # for each file, parse the code into an AST
27 | # for each AST, extract the i18n strings
28 |
29 | strings = []
30 | for filename in glob.iglob("**/*.py", recursive=True):
31 | with open(filename, "r") as f:
32 | code = f.read()
33 | if "I18nAuto" in code:
34 | tree = ast.parse(code)
35 | i18n_strings = extract_i18n_strings(tree)
36 | print(filename, len(i18n_strings))
37 | strings.extend(i18n_strings)
38 | code_keys = set(strings)
39 | """
40 | n_i18n.py
41 | gui_v1.py 26
42 | app.py 16
43 | infer-web.py 147
44 | scan_i18n.py 0
45 | i18n.py 0
46 | lib/train/process_ckpt.py 1
47 | """
48 | print()
49 | print("Total unique:", len(code_keys))
50 |
51 |
52 | standard_file = "i18n/locale/zh_CN.json"
53 | with open(standard_file, "r", encoding="utf-8") as f:
54 | standard_data = json.load(f, object_pairs_hook=OrderedDict)
55 | standard_keys = set(standard_data.keys())
56 |
57 | # Define the standard file name
58 | unused_keys = standard_keys - code_keys
59 | print("Unused keys:", len(unused_keys))
60 | for unused_key in unused_keys:
61 | print("\t", unused_key)
62 |
63 | missing_keys = code_keys - standard_keys
64 | print("Missing keys:", len(missing_keys))
65 | for missing_key in missing_keys:
66 | print("\t", missing_key)
67 |
68 | code_keys_dict = OrderedDict()
69 | for s in strings:
70 | code_keys_dict[s] = s
71 |
72 | # write back
73 | with open(standard_file, "w", encoding="utf-8") as f:
74 | json.dump(code_keys_dict, f, ensure_ascii=False, indent=4, sort_keys=True)
75 | f.write("\n")
76 |
--------------------------------------------------------------------------------
/tools/cmd/infer_cli.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import sys
4 |
5 | now_dir = os.getcwd()
6 | sys.path.append(now_dir)
7 | from dotenv import load_dotenv
8 | from scipy.io import wavfile
9 |
10 | from configs.config import Config
11 | from infer.modules.vc.modules import VC
12 |
13 | ####
14 | # USAGE
15 | #
16 | # In your Terminal or CMD or whatever
17 |
18 |
19 | def arg_parse() -> tuple:
20 | parser = argparse.ArgumentParser()
21 | parser.add_argument("--f0up_key", type=int, default=0)
22 | parser.add_argument("--input_path", type=str, help="input path")
23 | parser.add_argument("--index_path", type=str, help="index path")
24 | parser.add_argument("--f0method", type=str, default="harvest", help="harvest or pm")
25 | parser.add_argument("--opt_path", type=str, help="opt path")
26 | parser.add_argument("--model_name", type=str, help="store in assets/weight_root")
27 | parser.add_argument("--index_rate", type=float, default=0.66, help="index rate")
28 | parser.add_argument("--device", type=str, help="device")
29 | parser.add_argument("--is_half", type=bool, help="use half -> True")
30 | parser.add_argument("--filter_radius", type=int, default=3, help="filter radius")
31 | parser.add_argument("--resample_sr", type=int, default=0, help="resample sr")
32 | parser.add_argument("--rms_mix_rate", type=float, default=1, help="rms mix rate")
33 | parser.add_argument("--protect", type=float, default=0.33, help="protect")
34 |
35 | args = parser.parse_args()
36 | sys.argv = sys.argv[:1]
37 |
38 | return args
39 |
40 |
41 | def main():
42 | load_dotenv()
43 | args = arg_parse()
44 | config = Config()
45 | config.device = args.device if args.device else config.device
46 | config.is_half = args.is_half if args.is_half else config.is_half
47 | vc = VC(config)
48 | vc.get_vc(args.model_name)
49 | _, wav_opt = vc.vc_single(
50 | 0,
51 | args.input_path,
52 | args.f0up_key,
53 | None,
54 | args.f0method,
55 | args.index_path,
56 | None,
57 | args.index_rate,
58 | args.filter_radius,
59 | args.resample_sr,
60 | args.rms_mix_rate,
61 | args.protect,
62 | )
63 | wavfile.write(args.opt_path, wav_opt[0], wav_opt[1])
64 |
65 |
66 | if __name__ == "__main__":
67 | main()
68 |
--------------------------------------------------------------------------------
/tools/cmd/train-index-v2.py:
--------------------------------------------------------------------------------
1 | """
2 | 格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
3 | """
4 |
5 | import os
6 | import traceback
7 | import logging
8 |
9 | logger = logging.getLogger(__name__)
10 |
11 | from multiprocessing import cpu_count
12 |
13 | import faiss
14 | import numpy as np
15 | from sklearn.cluster import MiniBatchKMeans
16 |
17 | # ###########如果是原始特征要先写save
18 | n_cpu = 0
19 | if n_cpu == 0:
20 | n_cpu = cpu_count()
21 | inp_root = r"./logs/anz/3_feature768"
22 | npys = []
23 | listdir_res = list(os.listdir(inp_root))
24 | for name in sorted(listdir_res):
25 | phone = np.load("%s/%s" % (inp_root, name))
26 | npys.append(phone)
27 | big_npy = np.concatenate(npys, 0)
28 | big_npy_idx = np.arange(big_npy.shape[0])
29 | np.random.shuffle(big_npy_idx)
30 | big_npy = big_npy[big_npy_idx]
31 | logger.debug(big_npy.shape) # (6196072, 192)#fp32#4.43G
32 | if big_npy.shape[0] > 2e5:
33 | # if(1):
34 | info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
35 | logger.info(info)
36 | try:
37 | big_npy = (
38 | MiniBatchKMeans(
39 | n_clusters=10000,
40 | verbose=True,
41 | batch_size=256 * n_cpu,
42 | compute_labels=False,
43 | init="random",
44 | )
45 | .fit(big_npy)
46 | .cluster_centers_
47 | )
48 | except:
49 | info = traceback.format_exc()
50 | logger.warning(info)
51 |
52 | np.save("tools/infer/big_src_feature_mi.npy", big_npy)
53 |
54 | ##################train+add
55 | # big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
56 | n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
57 | index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) # mi
58 | logger.info("Training...")
59 | index_ivf = faiss.extract_index_ivf(index) #
60 | index_ivf.nprobe = 1
61 | index.train(big_npy)
62 | faiss.write_index(
63 | index, "tools/infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf)
64 | )
65 | logger.info("Adding...")
66 | batch_size_add = 8192
67 | for i in range(0, big_npy.shape[0], batch_size_add):
68 | index.add(big_npy[i : i + batch_size_add])
69 | faiss.write_index(
70 | index, "tools/infer/added_IVF%s_Flat_mi_baseline_src_feat.index" % (n_ivf)
71 | )
72 | """
73 | 大小(都是FP32)
74 | big_src_feature 2.95G
75 | (3098036, 256)
76 | big_emb 4.43G
77 | (6196072, 192)
78 | big_emb双倍是因为求特征要repeat后再加pitch
79 |
80 | """
81 |
--------------------------------------------------------------------------------
/docs/jp/training_tips_ja.md:
--------------------------------------------------------------------------------
1 | RVCの訓練における説明、およびTIPS
2 | ===============================
3 | 本TIPSではどのようにデータの訓練が行われているかを説明します。
4 |
5 | # 訓練の流れ
6 | GUIの訓練タブのstepに沿って説明します。
7 |
8 | ## step1
9 | 実験名の設定を行います。
10 |
11 | また、モデルに音高ガイド(ピッチ)を考慮させるかもここで設定できます。考慮させない場合はモデルは軽量になりますが、歌唱には向かなくなります。
12 |
13 | 各実験のデータは`/logs/実験名/`に配置されます。
14 |
15 | ## step2a
16 | 音声の読み込みと前処理を行います。
17 |
18 | ### load audio
19 | 音声のあるフォルダを指定すると、そのフォルダ内にある音声ファイルを自動で読み込みます。
20 | 例えば`C:Users\hoge\voices`を指定した場合、`C:Users\hoge\voices\voice.mp3`は読み込まれますが、`C:Users\hoge\voices\dir\voice.mp3`は読み込まれません。
21 |
22 | 音声の読み込みには内部でffmpegを利用しているので、ffmpegで対応している拡張子であれば自動的に読み込まれます。
23 | ffmpegでint16に変換した後、float32に変換し、-1 ~ 1の間に正規化されます。
24 |
25 | ### denoising
26 | 音声についてscipyのfiltfiltによる平滑化を行います。
27 |
28 | ### 音声の分割
29 | 入力した音声はまず、一定期間(max_sil_kept=5秒?)より長く無音が続く部分を検知して音声を分割します。無音で音声を分割した後は、0.3秒のoverlapを含む4秒ごとに音声を分割します。4秒以内に区切られた音声は、音量の正規化を行った後wavファイルを`/logs/実験名/0_gt_wavs`に、そこから16kのサンプリングレートに変換して`/logs/実験名/1_16k_wavs`にwavファイルで保存します。
30 |
31 | ## step2b
32 | ### ピッチの抽出
33 | wavファイルからピッチ(音の高低)の情報を抽出します。parselmouthやpyworldに内蔵されている手法でピッチ情報(=f0)を抽出し、`/logs/実験名/2a_f0`に保存します。その後、ピッチ情報を対数で変換して1~255の整数に変換し、`/logs/実験名/2b-f0nsf`に保存します。
34 |
35 | ### feature_printの抽出
36 | HuBERTを用いてwavファイルを事前にembeddingに変換します。`/logs/実験名/1_16k_wavs`に保存したwavファイルを読み込み、HuBERTでwavファイルを256次元の特徴量に変換し、npy形式で`/logs/実験名/3_feature256`に保存します。
37 |
38 | ## step3
39 | モデルのトレーニングを行います。
40 | ### 初心者向け用語解説
41 | 深層学習ではデータセットを分割し、少しずつ学習を進めていきます。一回のモデルの更新(step)では、batch_size個のデータを取り出し予測と誤差の修正を行います。これをデータセットに対して一通り行うと一epochと数えます。
42 |
43 | そのため、学習時間は 1step当たりの学習時間 x (データセット内のデータ数 ÷ バッチサイズ) x epoch数 かかります。一般にバッチサイズを大きくするほど学習は安定し、(1step当たりの学習時間÷バッチサイズ)は小さくなりますが、その分GPUのメモリを多く使用します。GPUのRAMはnvidia-smiコマンド等で確認できます。実行環境のマシンに合わせてバッチサイズをできるだけ大きくするとより短時間で学習が可能です。
44 |
45 | ### pretrained modelの指定
46 | RVCではモデルの訓練を0からではなく、事前学習済みの重みから開始するため、少ないデータセットで学習を行えます。
47 |
48 | デフォルトでは
49 |
50 | - 音高ガイドを考慮する場合、`RVCのある場所/pretrained/f0G40k.pth`と`RVCのある場所/pretrained/f0D40k.pth`を読み込みます。
51 | - 音高ガイドを考慮しない場合、`RVCのある場所/pretrained/G40k.pth`と`RVCのある場所/pretrained/D40k.pth`を読み込みます。
52 |
53 | 学習時はsave_every_epochごとにモデルのパラメータが`logs/実験名/G_{}.pth`と`logs/実験名/D_{}.pth`に保存されますが、このパスを指定することで学習を再開したり、もしくは違う実験で学習したモデルの重みから学習を開始できます。
54 |
55 | ### indexの学習
56 | RVCでは学習時に使われたHuBERTの特徴量を保存し、推論時は学習時の特徴量から近い特徴量を探してきて推論を行います。この検索を高速に行うために事前にindexの学習を行います。
57 | indexの学習には近似近傍探索ライブラリのfaissを用います。`/logs/実験名/3_feature256`の特徴量を読み込み、それを用いて学習したindexを`/logs/実験名/add_XXX.index`として保存します。
58 | (20230428updateよりtotal_fea.npyはindexから読み込むので不要になりました。)
59 |
60 | ### ボタンの説明
61 | - モデルのトレーニング: step2bまでを実行した後、このボタンを押すとモデルの学習を行います。
62 | - 特徴インデックスのトレーニング: モデルのトレーニング後、indexの学習を行います。
63 | - ワンクリックトレーニング: step2bまでとモデルのトレーニング、特徴インデックスのトレーニングを一括で行います。
64 |
65 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | # syntax=docker/dockerfile:1
2 |
3 | FROM nvidia/cuda:11.6.2-cudnn8-runtime-ubuntu20.04
4 |
5 | EXPOSE 7865
6 |
7 | WORKDIR /app
8 |
9 | # Install dependenceis to add PPAs
10 | RUN apt-get update && \
11 | apt-get install -y -qq ffmpeg aria2 && apt clean && \
12 | apt-get install -y software-properties-common && \
13 | apt-get clean && \
14 | rm -rf /var/lib/apt/lists/*
15 | # Add the deadsnakes PPA to get Python 3.9
16 | RUN add-apt-repository ppa:deadsnakes/ppa
17 |
18 | # Install Python 3.9 and pip
19 | RUN apt-get update && \
20 | apt-get install -y build-essential python-dev python3-dev python3.9-distutils python3.9-dev python3.9 curl && \
21 | apt-get clean && \
22 | update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1 && \
23 | curl https://bootstrap.pypa.io/get-pip.py | python3.9
24 |
25 | # Set Python 3.9 as the default
26 | RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
27 |
28 | COPY . .
29 |
30 | RUN python3 -m pip install --no-cache-dir -r requirements.txt
31 |
32 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d assets/pretrained_v2/ -o D40k.pth
33 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d assets/pretrained_v2/ -o G40k.pth
34 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -d assets/pretrained_v2/ -o f0D40k.pth
35 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -d assets/pretrained_v2/ -o f0G40k.pth
36 |
37 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d assets/uvr5_weights/ -o HP2-人声vocals+非人声instrumentals.pth
38 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d assets/uvr5_weights/ -o HP5-主旋律人声vocals+其他instrumentals.pth
39 |
40 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d assets/hubert -o hubert_base.pt
41 |
42 | RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d assets/rmvpe -o rmvpe.pt
43 |
44 | VOLUME [ "/app/weights", "/app/opt" ]
45 |
46 | CMD ["python3", "infer-web.py"]
47 |
--------------------------------------------------------------------------------
/tools/cmd/infer_batch_rvc.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import sys
4 |
5 | print("Command-line arguments:", sys.argv)
6 |
7 | now_dir = os.getcwd()
8 | sys.path.append(now_dir)
9 | import sys
10 |
11 | import tqdm as tq
12 | from dotenv import load_dotenv
13 | from scipy.io import wavfile
14 |
15 | from configs.config import Config
16 | from infer.modules.vc.modules import VC
17 |
18 |
19 | def arg_parse() -> tuple:
20 | parser = argparse.ArgumentParser()
21 | parser.add_argument("--f0up_key", type=int, default=0)
22 | parser.add_argument("--input_path", type=str, help="input path")
23 | parser.add_argument("--index_path", type=str, help="index path")
24 | parser.add_argument("--f0method", type=str, default="harvest", help="harvest or pm")
25 | parser.add_argument("--opt_path", type=str, help="opt path")
26 | parser.add_argument("--model_name", type=str, help="store in assets/weight_root")
27 | parser.add_argument("--index_rate", type=float, default=0.66, help="index rate")
28 | parser.add_argument("--device", type=str, help="device")
29 | parser.add_argument("--is_half", type=bool, help="use half -> True")
30 | parser.add_argument("--filter_radius", type=int, default=3, help="filter radius")
31 | parser.add_argument("--resample_sr", type=int, default=0, help="resample sr")
32 | parser.add_argument("--rms_mix_rate", type=float, default=1, help="rms mix rate")
33 | parser.add_argument("--protect", type=float, default=0.33, help="protect")
34 |
35 | args = parser.parse_args()
36 | sys.argv = sys.argv[:1]
37 |
38 | return args
39 |
40 |
41 | def main():
42 | load_dotenv()
43 | args = arg_parse()
44 | config = Config()
45 | config.device = args.device if args.device else config.device
46 | config.is_half = args.is_half if args.is_half else config.is_half
47 | vc = VC(config)
48 | vc.get_vc(args.model_name)
49 | audios = os.listdir(args.input_path)
50 | for file in tq.tqdm(audios):
51 | if file.endswith(".wav"):
52 | file_path = os.path.join(args.input_path, file)
53 | _, wav_opt = vc.vc_single(
54 | 0,
55 | file_path,
56 | args.f0up_key,
57 | None,
58 | args.f0method,
59 | args.index_path,
60 | None,
61 | args.index_rate,
62 | args.filter_radius,
63 | args.resample_sr,
64 | args.rms_mix_rate,
65 | args.protect,
66 | )
67 | out_path = os.path.join(args.opt_path, file)
68 | wavfile.write(out_path, wav_opt[0], wav_opt[1])
69 |
70 |
71 | if __name__ == "__main__":
72 | main()
73 |
--------------------------------------------------------------------------------
/docs/kr/training_tips_ko.md:
--------------------------------------------------------------------------------
1 | RVC 훈련에 대한 설명과 팁들
2 | ======================================
3 | 본 팁에서는 어떻게 데이터 훈련이 이루어지고 있는지 설명합니다.
4 |
5 | # 훈련의 흐름
6 | GUI의 훈련 탭의 단계를 따라 설명합니다.
7 |
8 | ## step1
9 | 실험 이름을 지정합니다. 또한, 모델이 피치(소리의 높낮이)를 고려해야 하는지 여부를 여기에서 설정할 수도 있습니다..
10 | 각 실험을 위한 데이터는 `/logs/experiment name/`에 배치됩니다..
11 |
12 | ## step2a
13 | 음성 파일을 불러오고 전처리합니다.
14 |
15 | ### 음성 파일 불러오기
16 | 음성 파일이 있는 폴더를 지정하면 해당 폴더에 있는 음성 파일이 자동으로 가져와집니다.
17 | 예를 들어 `C:Users\hoge\voices`를 지정하면 `C:Users\hoge\voices\voice.mp3`가 읽히지만 `C:Users\hoge\voices\dir\voice.mp3`는 읽히지 않습니다.
18 |
19 | 음성 로드에는 내부적으로 ffmpeg를 이용하고 있으므로, ffmpeg로 대응하고 있는 확장자라면 자동적으로 읽힙니다.
20 | ffmpeg에서 int16으로 변환한 후 float32로 변환하고 -1과 1 사이에 정규화됩니다.
21 |
22 | ### 잡음 제거
23 | 음성 파일에 대해 scipy의 filtfilt를 이용하여 잡음을 처리합니다.
24 |
25 | ### 음성 분할
26 | 입력한 음성 파일은 먼저 일정 기간(max_sil_kept=5초?)보다 길게 무음이 지속되는 부분을 감지하여 음성을 분할합니다.무음으로 음성을 분할한 후에는 0.3초의 overlap을 포함하여 4초마다 음성을 분할합니다.4초 이내에 구분된 음성은 음량의 정규화를 실시한 후 wav 파일을 `/logs/실험명/0_gt_wavs`로, 거기에서 16k의 샘플링 레이트로 변환해 `/logs/실험명/1_16k_wavs`에 wav 파일로 저장합니다.
27 |
28 | ## step2b
29 | ### 피치 추출
30 | wav 파일에서 피치(소리의 높낮이) 정보를 추출합니다. parselmouth나 pyworld에 내장되어 있는 메서드으로 피치 정보(=f0)를 추출해, `/logs/실험명/2a_f0`에 저장합니다. 그 후 피치 정보를 로그로 변환하여 1~255 정수로 변환하고 `/logs/실험명/2b-f0nsf`에 저장합니다.
31 |
32 | ### feature_print 추출
33 | HuBERT를 이용하여 wav 파일을 미리 embedding으로 변환합니다. `/logs/실험명/1_16k_wavs`에 저장한 wav 파일을 읽고 HuBERT에서 wav 파일을 256차원 feature들로 변환한 후 npy 형식으로 `/logs/실험명/3_feature256`에 저장합니다.
34 |
35 | ## step3
36 | 모델의 훈련을 진행합니다.
37 |
38 | ### 초보자용 용어 해설
39 | 심층학습(딥러닝)에서는 데이터셋을 분할하여 조금씩 학습을 진행합니다.한 번의 모델 업데이트(step) 단계 당 batch_size개의 데이터를 탐색하여 예측과 오차를 수정합니다. 데이터셋 전부에 대해 이 작업을 한 번 수행하는 이를 하나의 epoch라고 계산합니다.
40 |
41 | 따라서 학습 시간은 단계당 학습 시간 x (데이터셋 내 데이터의 수 / batch size) x epoch 수가 소요됩니다. 일반적으로 batch size가 클수록 학습이 안정적이게 됩니다. (step당 학습 시간 ÷ batch size)는 작아지지만 GPU 메모리를 더 많이 사용합니다. GPU RAM은 nvidia-smi 명령어를 통해 확인할 수 있습니다. 실행 환경에 따라 배치 크기를 최대한 늘리면 짧은 시간 내에 학습이 가능합니다.
42 |
43 | ### 사전 학습된 모델 지정
44 | RVC는 적은 데이터셋으로도 훈련이 가능하도록 사전 훈련된 가중치에서 모델 훈련을 시작합니다. 기본적으로 `rvc-location/pretrained/f0G40k.pth` 및 `rvc-location/pretrained/f0D40k.pth`를 불러옵니다. 학습을 할 시에, 모델 파라미터는 각 save_every_epoch별로 `logs/experiment name/G_{}.pth` 와 `logs/experiment name/D_{}.pth`로 저장이 되는데, 이 경로를 지정함으로써 학습을 재개하거나, 다른 실험에서 학습한 모델의 가중치에서 학습을 시작할 수 있습니다.
45 |
46 | ### index의 학습
47 | RVC에서는 학습시에 사용된 HuBERT의 feature값을 저장하고, 추론 시에는 학습 시 사용한 feature값과 유사한 feature 값을 탐색해 추론을 진행합니다. 이 탐색을 고속으로 수행하기 위해 사전에 index을 학습하게 됩니다.
48 | Index 학습에는 근사 근접 탐색법 라이브러리인 Faiss를 사용하게 됩니다. `/logs/실험명/3_feature256`의 feature값을 불러와, 이를 모두 결합시킨 feature값을 `/logs/실험명/total_fea.npy`로서 저장, 그것을 사용해 학습한 index를`/logs/실험명/add_XXX.index`로 저장합니다.
49 |
50 | ### 버튼 설명
51 | - モデルのトレーニング (모델 학습): step2b까지 실행한 후, 이 버튼을 눌러 모델을 학습합니다.
52 | - 特徴インデックスのトレーニング (특징 지수 훈련): 모델의 훈련 후, index를 학습합니다.
53 | - ワンクリックトレーニング (원클릭 트레이닝): step2b까지의 모델 훈련, feature index 훈련을 일괄로 실시합니다.
--------------------------------------------------------------------------------
/tools/download_models.py:
--------------------------------------------------------------------------------
1 | import os
2 | from pathlib import Path
3 | import requests
4 |
5 | RVC_DOWNLOAD_LINK = "https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/"
6 |
7 | BASE_DIR = Path(__file__).resolve().parent.parent
8 |
9 |
10 | def dl_model(link, model_name, dir_name):
11 | with requests.get(f"{link}{model_name}") as r:
12 | r.raise_for_status()
13 | os.makedirs(os.path.dirname(dir_name / model_name), exist_ok=True)
14 | with open(dir_name / model_name, "wb") as f:
15 | for chunk in r.iter_content(chunk_size=8192):
16 | f.write(chunk)
17 |
18 |
19 | if __name__ == "__main__":
20 | print("Downloading hubert_base.pt...")
21 | dl_model(RVC_DOWNLOAD_LINK, "hubert_base.pt", BASE_DIR / "assets/hubert")
22 | print("Downloading rmvpe.pt...")
23 | dl_model(RVC_DOWNLOAD_LINK, "rmvpe.pt", BASE_DIR / "assets/rmvpe")
24 | print("Downloading vocals.onnx...")
25 | dl_model(
26 | RVC_DOWNLOAD_LINK + "uvr5_weights/onnx_dereverb_By_FoxJoy/",
27 | "vocals.onnx",
28 | BASE_DIR / "assets/uvr5_weights/onnx_dereverb_By_FoxJoy",
29 | )
30 |
31 | rvc_models_dir = BASE_DIR / "assets/pretrained"
32 |
33 | print("Downloading pretrained models:")
34 |
35 | model_names = [
36 | "D32k.pth",
37 | "D40k.pth",
38 | "D48k.pth",
39 | "G32k.pth",
40 | "G40k.pth",
41 | "G48k.pth",
42 | "f0D32k.pth",
43 | "f0D40k.pth",
44 | "f0D48k.pth",
45 | "f0G32k.pth",
46 | "f0G40k.pth",
47 | "f0G48k.pth",
48 | ]
49 | for model in model_names:
50 | print(f"Downloading {model}...")
51 | dl_model(RVC_DOWNLOAD_LINK + "pretrained/", model, rvc_models_dir)
52 |
53 | rvc_models_dir = BASE_DIR / "assets/pretrained_v2"
54 |
55 | print("Downloading pretrained models v2:")
56 |
57 | for model in model_names:
58 | print(f"Downloading {model}...")
59 | dl_model(RVC_DOWNLOAD_LINK + "pretrained_v2/", model, rvc_models_dir)
60 |
61 | print("Downloading uvr5_weights:")
62 |
63 | rvc_models_dir = BASE_DIR / "assets/uvr5_weights"
64 |
65 | model_names = [
66 | "HP2-%E4%BA%BA%E5%A3%B0vocals%2B%E9%9D%9E%E4%BA%BA%E5%A3%B0instrumentals.pth",
67 | "HP2_all_vocals.pth",
68 | "HP3_all_vocals.pth",
69 | "HP5-%E4%B8%BB%E6%97%8B%E5%BE%8B%E4%BA%BA%E5%A3%B0vocals%2B%E5%85%B6%E4%BB%96instrumentals.pth",
70 | "HP5_only_main_vocal.pth",
71 | "VR-DeEchoAggressive.pth",
72 | "VR-DeEchoDeReverb.pth",
73 | "VR-DeEchoNormal.pth",
74 | ]
75 | for model in model_names:
76 | print(f"Downloading {model}...")
77 | dl_model(RVC_DOWNLOAD_LINK + "uvr5_weights/", model, rvc_models_dir)
78 |
79 | print("All models downloaded!")
80 |
--------------------------------------------------------------------------------
/infer/modules/gui/utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.types import Number
3 |
4 |
5 | @torch.no_grad()
6 | def amp_to_db(
7 | x: torch.Tensor, eps=torch.finfo(torch.float64).eps, top_db=40
8 | ) -> torch.Tensor:
9 | """
10 | Convert the input tensor from amplitude to decibel scale.
11 |
12 | Arguments:
13 | x {[torch.Tensor]} -- [Input tensor.]
14 |
15 | Keyword Arguments:
16 | eps {[float]} -- [Small value to avoid numerical instability.]
17 | (default: {torch.finfo(torch.float64).eps})
18 | top_db {[float]} -- [threshold the output at ``top_db`` below the peak]
19 | ` (default: {40})
20 |
21 | Returns:
22 | [torch.Tensor] -- [Output tensor in decibel scale.]
23 | """
24 | x_db = 20 * torch.log10(x.abs() + eps)
25 | return torch.max(x_db, (x_db.max(-1).values - top_db).unsqueeze(-1))
26 |
27 |
28 | @torch.no_grad()
29 | def temperature_sigmoid(x: torch.Tensor, x0: float, temp_coeff: float) -> torch.Tensor:
30 | """
31 | Apply a sigmoid function with temperature scaling.
32 |
33 | Arguments:
34 | x {[torch.Tensor]} -- [Input tensor.]
35 | x0 {[float]} -- [Parameter that controls the threshold of the sigmoid.]
36 | temp_coeff {[float]} -- [Parameter that controls the slope of the sigmoid.]
37 |
38 | Returns:
39 | [torch.Tensor] -- [Output tensor after applying the sigmoid with temperature scaling.]
40 | """
41 | return torch.sigmoid((x - x0) / temp_coeff)
42 |
43 |
44 | @torch.no_grad()
45 | def linspace(
46 | start: Number, stop: Number, num: int = 50, endpoint: bool = True, **kwargs
47 | ) -> torch.Tensor:
48 | """
49 | Generate a linearly spaced 1-D tensor.
50 |
51 | Arguments:
52 | start {[Number]} -- [The starting value of the sequence.]
53 | stop {[Number]} -- [The end value of the sequence, unless `endpoint` is set to False.
54 | In that case, the sequence consists of all but the last of ``num + 1``
55 | evenly spaced samples, so that `stop` is excluded. Note that the step
56 | size changes when `endpoint` is False.]
57 |
58 | Keyword Arguments:
59 | num {[int]} -- [Number of samples to generate. Default is 50. Must be non-negative.]
60 | endpoint {[bool]} -- [If True, `stop` is the last sample. Otherwise, it is not included.
61 | Default is True.]
62 | **kwargs -- [Additional arguments to be passed to the underlying PyTorch `linspace` function.]
63 |
64 | Returns:
65 | [torch.Tensor] -- [1-D tensor of `num` equally spaced samples from `start` to `stop`.]
66 | """
67 | if endpoint:
68 | return torch.linspace(start, stop, num, **kwargs)
69 | else:
70 | return torch.linspace(start, stop, num + 1, **kwargs)[:-1]
71 |
--------------------------------------------------------------------------------
/tools/dlmodels.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 |
3 | printf "working dir is %s\n" "$PWD"
4 | echo "downloading requirement aria2 check."
5 |
6 | if command -v aria2c > /dev/null 2>&1
7 | then
8 | echo "aria2 command found"
9 | else
10 | echo "failed. please install aria2"
11 | exit 1
12 | fi
13 |
14 | echo "dir check start."
15 |
16 | check_dir() {
17 | [ -d "$1" ] && printf "dir %s checked\n" "$1" || \
18 | printf "failed. generating dir %s\n" "$1" && mkdir -p "$1"
19 | }
20 |
21 | check_dir "./assets/pretrained"
22 | check_dir "./assets/pretrained_v2"
23 | check_dir "./assets/uvr5_weights"
24 | check_dir "./assets/uvr5_weights/onnx_dereverb_By_FoxJoy"
25 |
26 | echo "dir check finished."
27 |
28 | echo "required files check start."
29 | check_file_pretrained() {
30 | printf "checking %s\n" "$2"
31 | if [ -f "./assets/""$1""/""$2""" ]; then
32 | printf "%s in ./assets/%s checked.\n" "$2" "$1"
33 | else
34 | echo failed. starting download from huggingface.
35 | if command -v aria2c > /dev/null 2>&1; then
36 | aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/"$1"/"$2" -d ./assets/"$1" -o "$2"
37 | [ -f "./assets/""$1""/""$2""" ] && echo "download successful." || echo "please try again!" && exit 1
38 | else
39 | echo "aria2c command not found. Please install aria2c and try again."
40 | exit 1
41 | fi
42 | fi
43 | }
44 |
45 | check_file_special() {
46 | printf "checking %s\n" "$2"
47 | if [ -f "./assets/""$1""/""$2""" ]; then
48 | printf "%s in ./assets/%s checked.\n" "$2" "$1"
49 | else
50 | echo failed. starting download from huggingface.
51 | if command -v aria2c > /dev/null 2>&1; then
52 | aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/"$2" -d ./assets/"$1" -o "$2"
53 | [ -f "./assets/""$1""/""$2""" ] && echo "download successful." || echo "please try again!" && exit 1
54 | else
55 | echo "aria2c command not found. Please install aria2c and try again."
56 | exit 1
57 | fi
58 | fi
59 | }
60 |
61 | check_file_pretrained pretrained D32k.pth
62 | check_file_pretrained pretrained D40k.pth
63 | check_file_pretrained pretrained D48k.pth
64 | check_file_pretrained pretrained G32k.pth
65 | check_file_pretrained pretrained G40k.pth
66 | check_file_pretrained pretrained G48k.pth
67 | check_file_pretrained pretrained_v2 f0D40k.pth
68 | check_file_pretrained pretrained_v2 f0G40k.pth
69 | check_file_pretrained pretrained_v2 D40k.pth
70 | check_file_pretrained pretrained_v2 G40k.pth
71 | check_file_pretrained uvr5_weights HP2_all_vocals.pth
72 | check_file_pretrained uvr5_weights HP3_all_vocals.pth
73 | check_file_pretrained uvr5_weights HP5_only_main_vocal.pth
74 | check_file_pretrained uvr5_weights VR-DeEchoAggressive.pth
75 | check_file_pretrained uvr5_weights VR-DeEchoDeReverb.pth
76 | check_file_pretrained uvr5_weights VR-DeEchoNormal.pth
77 | check_file_pretrained uvr5_weights "onnx_dereverb_By_FoxJoy/vocals.onnx"
78 | check_file_special rmvpe rmvpe.pt
79 | check_file_special hubert hubert_base.pt
80 |
81 | echo "required files check finished."
82 |
--------------------------------------------------------------------------------
/infer/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pyworld
3 |
4 | from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
5 |
6 |
7 | class HarvestF0Predictor(F0Predictor):
8 | def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
9 | self.hop_length = hop_length
10 | self.f0_min = f0_min
11 | self.f0_max = f0_max
12 | self.sampling_rate = sampling_rate
13 |
14 | def interpolate_f0(self, f0):
15 | """
16 | 对F0进行插值处理
17 | """
18 |
19 | data = np.reshape(f0, (f0.size, 1))
20 |
21 | vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
22 | vuv_vector[data > 0.0] = 1.0
23 | vuv_vector[data <= 0.0] = 0.0
24 |
25 | ip_data = data
26 |
27 | frame_number = data.size
28 | last_value = 0.0
29 | for i in range(frame_number):
30 | if data[i] <= 0.0:
31 | j = i + 1
32 | for j in range(i + 1, frame_number):
33 | if data[j] > 0.0:
34 | break
35 | if j < frame_number - 1:
36 | if last_value > 0.0:
37 | step = (data[j] - data[i - 1]) / float(j - i)
38 | for k in range(i, j):
39 | ip_data[k] = data[i - 1] + step * (k - i + 1)
40 | else:
41 | for k in range(i, j):
42 | ip_data[k] = data[j]
43 | else:
44 | for k in range(i, frame_number):
45 | ip_data[k] = last_value
46 | else:
47 | ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
48 | last_value = data[i]
49 |
50 | return ip_data[:, 0], vuv_vector[:, 0]
51 |
52 | def resize_f0(self, x, target_len):
53 | source = np.array(x)
54 | source[source < 0.001] = np.nan
55 | target = np.interp(
56 | np.arange(0, len(source) * target_len, len(source)) / target_len,
57 | np.arange(0, len(source)),
58 | source,
59 | )
60 | res = np.nan_to_num(target)
61 | return res
62 |
63 | def compute_f0(self, wav, p_len=None):
64 | if p_len is None:
65 | p_len = wav.shape[0] // self.hop_length
66 | f0, t = pyworld.harvest(
67 | wav.astype(np.double),
68 | fs=self.sampling_rate,
69 | f0_ceil=self.f0_max,
70 | f0_floor=self.f0_min,
71 | frame_period=1000 * self.hop_length / self.sampling_rate,
72 | )
73 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
74 | return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
75 |
76 | def compute_f0_uv(self, wav, p_len=None):
77 | if p_len is None:
78 | p_len = wav.shape[0] // self.hop_length
79 | f0, t = pyworld.harvest(
80 | wav.astype(np.double),
81 | fs=self.sampling_rate,
82 | f0_floor=self.f0_min,
83 | f0_ceil=self.f0_max,
84 | frame_period=1000 * self.hop_length / self.sampling_rate,
85 | )
86 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
87 | return self.interpolate_f0(self.resize_f0(f0, p_len))
88 |
--------------------------------------------------------------------------------
/tools/cmd/calc_rvc_model_similarity.py:
--------------------------------------------------------------------------------
1 | # This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
2 | # Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
3 | import os
4 | import logging
5 |
6 | logger = logging.getLogger(__name__)
7 |
8 | import torch
9 | import torch.nn as nn
10 | import torch.nn.functional as F
11 |
12 |
13 | def cal_cross_attn(to_q, to_k, to_v, rand_input):
14 | hidden_dim, embed_dim = to_q.shape
15 | attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
16 | attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False)
17 | attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False)
18 | attn_to_q.load_state_dict({"weight": to_q})
19 | attn_to_k.load_state_dict({"weight": to_k})
20 | attn_to_v.load_state_dict({"weight": to_v})
21 |
22 | return torch.einsum(
23 | "ik, jk -> ik",
24 | F.softmax(
25 | torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)),
26 | dim=-1,
27 | ),
28 | attn_to_v(rand_input),
29 | )
30 |
31 |
32 | def model_hash(filename):
33 | try:
34 | with open(filename, "rb") as file:
35 | import hashlib
36 |
37 | m = hashlib.sha256()
38 |
39 | file.seek(0x100000)
40 | m.update(file.read(0x10000))
41 | return m.hexdigest()[0:8]
42 | except FileNotFoundError:
43 | return "NOFILE"
44 |
45 |
46 | def eval(model, n, input):
47 | qk = f"enc_p.encoder.attn_layers.{n}.conv_q.weight"
48 | uk = f"enc_p.encoder.attn_layers.{n}.conv_k.weight"
49 | vk = f"enc_p.encoder.attn_layers.{n}.conv_v.weight"
50 | atoq, atok, atov = model[qk][:, :, 0], model[uk][:, :, 0], model[vk][:, :, 0]
51 |
52 | attn = cal_cross_attn(atoq, atok, atov, input)
53 | return attn
54 |
55 |
56 | def main(path, root):
57 | torch.manual_seed(114514)
58 | model_a = torch.load(path, map_location="cpu")["weight"]
59 |
60 | logger.info("Query:\t\t%s\t%s" % (path, model_hash(path)))
61 |
62 | map_attn_a = {}
63 | map_rand_input = {}
64 | for n in range(6):
65 | hidden_dim, embed_dim, _ = model_a[
66 | f"enc_p.encoder.attn_layers.{n}.conv_v.weight"
67 | ].shape
68 | rand_input = torch.randn([embed_dim, hidden_dim])
69 |
70 | map_attn_a[n] = eval(model_a, n, rand_input)
71 | map_rand_input[n] = rand_input
72 |
73 | del model_a
74 |
75 | for name in sorted(list(os.listdir(root))):
76 | path = "%s/%s" % (root, name)
77 | model_b = torch.load(path, map_location="cpu")["weight"]
78 |
79 | sims = []
80 | for n in range(6):
81 | attn_a = map_attn_a[n]
82 | attn_b = eval(model_b, n, map_rand_input[n])
83 |
84 | sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
85 | sims.append(sim)
86 |
87 | logger.info(
88 | "Reference:\t%s\t%s\t%s"
89 | % (path, model_hash(path), f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%")
90 | )
91 |
92 |
93 | if __name__ == "__main__":
94 | query_path = r"assets\weights\mi v3.pth"
95 | reference_root = r"assets\weights"
96 | main(query_path, reference_root)
97 |
--------------------------------------------------------------------------------
/docs/cn/Changelog_CN.md:
--------------------------------------------------------------------------------
1 | ### 20231006更新
2 |
3 | 我们制作了一个用于实时变声的界面go-realtime-gui.bat/gui_v1.py(事实上早就存在了),本次更新重点也优化了实时变声的性能。对比0813版:
4 | - 1、优优化界面操作:参数热更新(调整参数不需要中止再启动),懒加载模型(已加载过的模型不需要重新加载),增加响度因子参数(响度向输入音频靠近)
5 | - 2、优化自带降噪效果与速度
6 | - 3、大幅优化推理速度
7 |
8 | 注意输入输出设备应该选择同种类型,例如都选MME类型。
9 |
10 | 1006版本整体的更新为:
11 | - 1、继续提升rmvpe音高提取算法效果,对于男低音有更大的提升
12 | - 2、优化推理界面布局
13 |
14 | ### 20230813更新
15 | 1-常规bug修复
16 | - 保存频率总轮数最低改为1 总轮数最低改为2
17 | - 修复无pretrain模型训练报错
18 | - 增加伴奏人声分离完毕清理显存
19 | - faiss保存路径绝对路径改为相对路径
20 | - 支持路径包含空格(训练集路径+实验名称均支持,不再会报错)
21 | - filelist取消强制utf8编码
22 | - 解决实时变声中开启索引导致的CPU极大占用问题
23 |
24 | 2-重点更新
25 | - 训练出当前最强开源人声音高提取模型RMVPE,并用于RVC的训练、离线/实时推理,支持pytorch/onnx/DirectML
26 | - 通过pytorch-dml支持A卡和I卡的
27 | (1)实时变声(2)推理(3)人声伴奏分离(4)训练暂未支持,会切换至CPU训练;通过onnx_dml支持rmvpe_gpu的推理
28 |
29 | ### 20230618更新
30 | - v2增加32k和48k两个新预训练模型
31 | - 修复非f0模型推理报错
32 | - 对于超过一小时的训练集的索引建立环节,自动kmeans缩小特征处理以加速索引训练、加入和查询
33 | - 附送一个人声转吉他玩具仓库
34 | - 数据处理剔除异常值切片
35 | - onnx导出选项卡
36 |
37 | 失败的实验:
38 | - ~~特征检索增加时序维度:寄,没啥效果~~
39 | - ~~特征检索增加PCAR降维可选项:寄,数据大用kmeans缩小数据量,数据小降维操作耗时比省下的匹配耗时还多~~
40 | - ~~支持onnx推理(附带仅推理的小压缩包):寄,生成nsf还是需要pytorch~~
41 | - ~~训练时在音高、gender、eq、噪声等方面对输入进行随机增强:寄,没啥效果~~
42 | - ~~接入小型声码器调研:寄,效果变差~~
43 |
44 | todolist:
45 | - ~~训练集音高识别支持crepe:已经被RMVPE取代,不需要~~
46 | - ~~多进程harvest推理:已经被RMVPE取代,不需要~~
47 | - ~~crepe的精度支持和RVC-config同步:已经被RMVPE取代,不需要。支持这个还要同步torchcrepe的库,麻烦~~
48 | - 对接F0编辑器
49 |
50 |
51 | ### 20230528更新
52 | - 增加v2的jupyter notebook,韩文changelog,增加一些环境依赖
53 | - 增加呼吸、清辅音、齿音保护模式
54 | - 支持crepe-full推理
55 | - UVR5人声伴奏分离加上3个去延迟模型和MDX-Net去混响模型,增加HP3人声提取模型
56 | - 索引名称增加版本和实验名称
57 | - 人声伴奏分离、推理批量导出增加音频导出格式选项
58 | - 废弃32k模型的训练
59 |
60 | ### 20230513更新
61 | - 清除一键包内部老版本runtime内残留的lib.infer_pack和uvr5_pack
62 | - 修复训练集预处理伪多进程的bug
63 | - 增加harvest识别音高可选通过中值滤波削弱哑音现象,可调整中值滤波半径
64 | - 导出音频增加后处理重采样
65 | - 训练n_cpu进程数从"仅调整f0提取"改为"调整数据预处理和f0提取"
66 | - 自动检测logs文件夹下的index路径,提供下拉列表功能
67 | - tab页增加"常见问题解答"(也可参考github-rvc-wiki)
68 | - 相同路径的输入音频推理增加了音高缓存(用途:使用harvest音高提取,整个pipeline会经历漫长且重复的音高提取过程,如果不使用缓存,实验不同音色、索引、音高中值滤波半径参数的用户在第一次测试后的等待结果会非常痛苦)
69 |
70 | ### 20230514更新
71 | - 音量包络对齐输入混合(可以缓解“输入静音输出小幅度噪声”的问题。如果输入音频背景底噪大则不建议开启,默认不开启(值为1可视为不开启))
72 | - 支持按照指定频率保存提取的小模型(假如你想尝试不同epoch下的推理效果,但是不想保存所有大checkpoint并且每次都要ckpt手工处理提取小模型,这项功能会非常实用)
73 | - 通过设置环境变量解决服务端开了系统全局代理导致浏览器连接错误的问题
74 | - 支持v2预训练模型(目前只公开了40k版本进行测试,另外2个采样率还没有训练完全)
75 | - 推理前限制超过1的过大音量
76 | - 微调数据预处理参数
77 |
78 |
79 | ### 20230409更新
80 | - 修正训练参数,提升显卡平均利用率,A100最高从25%提升至90%左右,V100:50%->90%左右,2060S:60%->85%左右,P40:25%->95%左右,训练速度显著提升
81 | - 修正参数:总batch_size改为每张卡的batch_size
82 | - 修正total_epoch:最大限制100解锁至1000;默认10提升至默认20
83 | - 修复ckpt提取识别是否带音高错误导致推理异常的问题
84 | - 修复分布式训练每个rank都保存一次ckpt的问题
85 | - 特征提取进行nan特征过滤
86 | - 修复静音输入输出随机辅音or噪声的问题(老版模型需要重做训练集重训)
87 |
88 | ### 20230416更新
89 | - 新增本地实时变声迷你GUI,双击go-realtime-gui.bat启动
90 | - 训练推理均对<50Hz的频段进行滤波过滤
91 | - 训练推理音高提取pyworld最低音高从默认80下降至50,50-80hz间的男声低音不会哑
92 | - WebUI支持根据系统区域变更语言(现支持en_US,ja_JP,zh_CN,zh_HK,zh_SG,zh_TW,不支持的默认en_US)
93 | - 修正部分显卡识别(例如V100-16G识别失败,P4识别失败)
94 |
95 | ### 20230428更新
96 | - 升级faiss索引设置,速度更快,质量更高
97 | - 取消total_npy依赖,后续分享模型不再需要填写total_npy
98 | - 解锁16系限制。4G显存GPU给到4G的推理设置。
99 | - 修复部分音频格式下UVR5人声伴奏分离的bug
100 | - 实时变声迷你gui增加对非40k与不懈怠音高模型的支持
101 |
102 | ### 后续计划:
103 | 功能:
104 | - 支持多人训练选项卡(至多4人)
105 |
106 | 底模:
107 | - 收集呼吸wav加入训练集修正呼吸变声电音的问题
108 | - 我们正在训练增加了歌声训练集的底模,未来会公开
109 |
110 |
--------------------------------------------------------------------------------
/infer/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pyworld
3 |
4 | from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
5 |
6 |
7 | class DioF0Predictor(F0Predictor):
8 | def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
9 | self.hop_length = hop_length
10 | self.f0_min = f0_min
11 | self.f0_max = f0_max
12 | self.sampling_rate = sampling_rate
13 |
14 | def interpolate_f0(self, f0):
15 | """
16 | 对F0进行插值处理
17 | """
18 |
19 | data = np.reshape(f0, (f0.size, 1))
20 |
21 | vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
22 | vuv_vector[data > 0.0] = 1.0
23 | vuv_vector[data <= 0.0] = 0.0
24 |
25 | ip_data = data
26 |
27 | frame_number = data.size
28 | last_value = 0.0
29 | for i in range(frame_number):
30 | if data[i] <= 0.0:
31 | j = i + 1
32 | for j in range(i + 1, frame_number):
33 | if data[j] > 0.0:
34 | break
35 | if j < frame_number - 1:
36 | if last_value > 0.0:
37 | step = (data[j] - data[i - 1]) / float(j - i)
38 | for k in range(i, j):
39 | ip_data[k] = data[i - 1] + step * (k - i + 1)
40 | else:
41 | for k in range(i, j):
42 | ip_data[k] = data[j]
43 | else:
44 | for k in range(i, frame_number):
45 | ip_data[k] = last_value
46 | else:
47 | ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
48 | last_value = data[i]
49 |
50 | return ip_data[:, 0], vuv_vector[:, 0]
51 |
52 | def resize_f0(self, x, target_len):
53 | source = np.array(x)
54 | source[source < 0.001] = np.nan
55 | target = np.interp(
56 | np.arange(0, len(source) * target_len, len(source)) / target_len,
57 | np.arange(0, len(source)),
58 | source,
59 | )
60 | res = np.nan_to_num(target)
61 | return res
62 |
63 | def compute_f0(self, wav, p_len=None):
64 | if p_len is None:
65 | p_len = wav.shape[0] // self.hop_length
66 | f0, t = pyworld.dio(
67 | wav.astype(np.double),
68 | fs=self.sampling_rate,
69 | f0_floor=self.f0_min,
70 | f0_ceil=self.f0_max,
71 | frame_period=1000 * self.hop_length / self.sampling_rate,
72 | )
73 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
74 | for index, pitch in enumerate(f0):
75 | f0[index] = round(pitch, 1)
76 | return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
77 |
78 | def compute_f0_uv(self, wav, p_len=None):
79 | if p_len is None:
80 | p_len = wav.shape[0] // self.hop_length
81 | f0, t = pyworld.dio(
82 | wav.astype(np.double),
83 | fs=self.sampling_rate,
84 | f0_floor=self.f0_min,
85 | f0_ceil=self.f0_max,
86 | frame_period=1000 * self.hop_length / self.sampling_rate,
87 | )
88 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
89 | for index, pitch in enumerate(f0):
90 | f0[index] = round(pitch, 1)
91 | return self.interpolate_f0(self.resize_f0(f0, p_len))
92 |
--------------------------------------------------------------------------------
/docs/jp/faiss_tips_ja.md:
--------------------------------------------------------------------------------
1 | faiss tuning TIPS
2 | ==================
3 | # about faiss
4 | faissはfacebook researchの開発する、密なベクトルに対する近傍探索をまとめたライブラリで、多くの近似近傍探索の手法を効率的に実装しています。
5 | 近似近傍探索はある程度精度を犠牲にしながら高速に類似するベクトルを探します。
6 |
7 | ## faiss in RVC
8 | RVCではHuBERTで変換した特徴量のEmbeddingに対し、学習データから生成されたEmbeddingと類似するものを検索し、混ぜることでより元の音声に近い変換を実現しています。ただ、この検索は愚直に行うと時間がかかるため、近似近傍探索を用いることで高速な変換を実現しています。
9 |
10 | # 実装のoverview
11 | モデルが配置されている '/logs/your-experiment/3_feature256'には各音声データからHuBERTで抽出された特徴量が配置されています。
12 | ここからnpyファイルをファイル名でソートした順番で読み込み、ベクトルを連結してbig_npyを作成しfaissを学習させます。(このベクトルのshapeは[N, 256]です。)
13 |
14 | 本Tipsではまずこれらのパラメータの意味を解説します。
15 |
16 | # 手法の解説
17 | ## index factory
18 | index factoryは複数の近似近傍探索の手法を繋げるパイプラインをstringで表記するfaiss独自の記法です。
19 | これにより、index factoryの文字列を変更するだけで様々な近似近傍探索の手法を試せます。
20 | RVCでは以下のように使われています。
21 |
22 | ```python
23 | index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
24 | ```
25 | index_factoryの引数のうち、1つ目はベクトルの次元数、2つ目はindex factoryの文字列で、3つ目には用いる距離を指定することができます。
26 |
27 | より詳細な記法については
28 | https://github.com/facebookresearch/faiss/wiki/The-index-factory
29 |
30 | ## 距離指標
31 | embeddingの類似度として用いられる代表的な指標として以下の二つがあります。
32 |
33 | - ユークリッド距離(METRIC_L2)
34 | - 内積(METRIC_INNER_PRODUCT)
35 |
36 | ユークリッド距離では各次元において二乗の差をとり、全次元の差を足してから平方根をとります。これは日常的に用いる2次元、3次元での距離と同じです。
37 | 内積はこのままでは類似度の指標として用いず、一般的にはL2ノルムで正規化してから内積をとるコサイン類似度を用います。
38 |
39 | どちらがよいかは場合によりますが、word2vec等で得られるembeddingやArcFace等で学習した類似画像検索のモデルではコサイン類似度が用いられることが多いです。ベクトルXに対してl2正規化をnumpyで行う場合は、0 divisionを避けるために十分に小さな値をepsとして以下のコードで可能です。
40 |
41 | ```python
42 | X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
43 | ```
44 |
45 | また、index factoryには第3引数に渡す値を選ぶことで計算に用いる距離指標を変更できます。
46 |
47 | ```python
48 | index = faiss.index_factory(dimention, text, faiss.METRIC_INNER_PRODUCT)
49 | ```
50 |
51 | ## IVF
52 | IVF(Inverted file indexes)は全文検索における転置インデックスと似たようなアルゴリズムです。
53 | 学習時には検索対象に対してkmeansでクラスタリングを行い、クラスタ中心を用いてボロノイ分割を行います。各データ点には一つずつクラスタが割り当てられるので、クラスタからデータ点を逆引きする辞書を作成します。
54 |
55 | 例えば以下のようにクラスタが割り当てられた場合
56 | |index|クラスタ|
57 | |-----|-------|
58 | |1|A|
59 | |2|B|
60 | |3|A|
61 | |4|C|
62 | |5|B|
63 |
64 | 作成される転置インデックスは以下のようになります。
65 |
66 | |クラスタ|index|
67 | |-------|-----|
68 | |A|1, 3|
69 | |B|2, 5|
70 | |C|4|
71 |
72 | 検索時にはまずクラスタからn_probe個のクラスタを検索し、次にそれぞれのクラスタに属するデータ点について距離を計算します。
73 |
74 | # 推奨されるパラメータ
75 | indexの選び方については公式にガイドラインがあるので、それに準じて説明します。
76 | https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
77 |
78 | 1M以下のデータセットにおいては4bit-PQが2023年4月時点ではfaissで利用できる最も効率的な手法です。
79 | これをIVFと組み合わせ、4bit-PQで候補を絞り、最後に正確な指標で距離を再計算するには以下のindex factoryを用いることで記載できます。
80 |
81 | ```python
82 | index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
83 | ```
84 |
85 | ## IVFの推奨パラメータ
86 | IVFの数が多すぎる場合、たとえばデータ数の数だけIVFによる粗量子化を行うと、これは愚直な全探索と同じになり効率が悪いです。
87 | 1M以下の場合ではIVFの値はデータ点の数Nに対して4*sqrt(N) ~ 16*sqrt(N)に推奨しています。
88 |
89 | n_probeはn_probeの数に比例して計算時間が増えるので、精度と相談して適切に選んでください。個人的にはRVCにおいてそこまで精度は必要ないと思うのでn_probe = 1で良いと思います。
90 |
91 | ## FastScan
92 | FastScanは直積量子化で大まかに距離を近似するのを、レジスタ内で行うことにより高速に行うようにした手法です。
93 | 直積量子化は学習時にd次元ごと(通常はd=2)に独立してクラスタリングを行い、クラスタ同士の距離を事前計算してlookup tableを作成します。予測時はlookup tableを見ることで各次元の距離をO(1)で計算できます。
94 | そのため、PQの次に指定する数字は通常ベクトルの半分の次元を指定します。
95 |
96 | FastScanに関するより詳細な説明は公式のドキュメントを参照してください。
97 | https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
98 |
99 | ## RFlat
100 | RFlatはFastScanで計算した大まかな距離を、index factoryの第三引数で指定した正確な距離で再計算する指示です。
101 | k個の近傍を取得する際は、k*k_factor個の点について再計算が行われます。
102 |
--------------------------------------------------------------------------------
/.env:
--------------------------------------------------------------------------------
1 | OPENBLAS_NUM_THREADS = 1
2 | no_proxy = localhost, 127.0.0.1, ::1
3 |
4 | # You can change the location of the model, etc. by changing here
5 | weight_root = assets/weights
6 | weight_uvr5_root = assets/uvr5_weights
7 | index_root = logs
8 | outside_index_root = assets/indices
9 | rmvpe_root = assets/rmvpe
10 |
11 | sha256_hubert_base_pt = f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
12 | sha256_rmvpe_pt = 6d62215f4306e3ca278246188607209f09af3dc77ed4232efdd069798c4ec193
13 | sha256_rmvpe_onnx = 5370e71ac80af8b4b7c793d27efd51fd8bf962de3a7ede0766dac0befa3660fd
14 |
15 | sha256_v1_D32k_pth = 2ab20645829460fdad0d3c44254f1ab53c32cae50c22a66c926ae5aa30abda6f
16 | sha256_v1_D40k_pth = 547f66dbbcd9023b9051ed244d12ab043ba8a4e854b154cc28761ac7c002909b
17 | sha256_v1_D48k_pth = 8cc013fa60ed9c3f902f5bd99f48c7e3b9352d763d4d3cd6bc241c37b0bfd9ad
18 | sha256_v1_G32k_pth = 81817645cde7ed2e2d83f23ef883f33dda564924b497e84d792743912eca4c23
19 | sha256_v1_G40k_pth = e428573bda1124b0ae0ae843fd8dcded6027d3993444790b3e9b0100938b2113
20 | sha256_v1_G48k_pth = 3862a67ea6313e8ffefc05cee6bee656ef3e089442e9ecf4a6618d60721f3e95
21 | sha256_v1_f0D32k_pth = 294db3087236e2c75260d6179056791c9231245daf5d0485545d9e54c4057c77
22 | sha256_v1_f0D40k_pth = 7d4f5a441594b470d67579958b2fd4c6b992852ded28ff9e72eda67abcebe423
23 | sha256_v1_f0D48k_pth = 1b84c8bf347ad1e539c842e8f2a4c36ecd9e7fb23c16041189e4877e9b07925c
24 | sha256_v1_f0G32k_pth = 285f524bf48bb692c76ad7bd0bc654c12bd9e5edeb784dddf7f61a789a608574
25 | sha256_v1_f0G40k_pth = 9115654aeef1995f7dd3c6fc4140bebbef0ca9760bed798105a2380a34299831
26 | sha256_v1_f0G48k_pth = 78bc9cab27e34bcfc194f93029374d871d8b3e663ddedea32a9709e894cc8fe8
27 |
28 | sha256_v2_D32k_pth = d8043378cc6619083d385f5a045de09b83fb3bf8de45c433ca863b71723ac3ca
29 | sha256_v2_D40k_pth = 471378e894e7191f89a94eda8288c5947b16bbe0b10c3f1f17efdb7a1d998242
30 | sha256_v2_D48k_pth = db01094a93c09868a278e03dafe8bb781bfcc1a5ba8df168c948bf9168c84d82
31 | sha256_v2_G32k_pth = 869b26a47f75168d6126f64ac39e6de5247017a8658cfd68aca600f7323efb9f
32 | sha256_v2_G40k_pth = a3843da7fde33db1dab176146c70d6c2df06eafe9457f4e3aa10024e9c6a4b69
33 | sha256_v2_G48k_pth = 2e2b1581a436d07a76b10b9d38765f64aa02836dc65c7dee1ce4140c11ea158b
34 | sha256_v2_f0D32k_pth = bd7134e7793674c85474d5145d2d982e3c5d8124fc7bb6c20f710ed65808fa8a
35 | sha256_v2_f0D40k_pth = 6b6ab091e70801b28e3f41f335f2fc5f3f35c75b39ae2628d419644ec2b0fa09
36 | sha256_v2_f0D48k_pth = 2269b73c7a4cf34da09aea99274dabf99b2ddb8a42cbfb065fb3c0aa9a2fc748
37 | sha256_v2_f0G32k_pth = 2332611297b8d88c7436de8f17ef5f07a2119353e962cd93cda5806d59a1133d
38 | sha256_v2_f0G40k_pth = 3b2c44035e782c4b14ddc0bede9e2f4a724d025cd073f736d4f43708453adfcb
39 | sha256_v2_f0G48k_pth = b5d51f589cc3632d4eae36a315b4179397695042edc01d15312e1bddc2b764a4
40 |
41 | sha256_uvr5_HP2-人声vocals+非人声instrumentals_pth = 39796caa5db18d7f9382d8ac997ac967bfd85f7761014bb807d2543cc844ef05
42 | sha256_uvr5_HP2_all_vocals_pth = 39796caa5db18d7f9382d8ac997ac967bfd85f7761014bb807d2543cc844ef05
43 | sha256_uvr5_HP3_all_vocals_pth = 45e6b65199e781b4a6542002699be9f19cd3d1cb7d1558bc2bfbcd84674dfe28
44 | sha256_uvr5_HP5-主旋律人声vocals+其他instrumentals_pth = 5908891829634926119720241e8573d97cbeb8277110a7512bdb0bd7563258ee
45 | sha256_uvr5_HP5_only_main_vocal_pth = 5908891829634926119720241e8573d97cbeb8277110a7512bdb0bd7563258ee
46 | sha256_uvr5_VR-DeEchoAggressive_pth = 8c8fd1582f9aabc363e47af62ddb88df6cae7e064cae75bbf041a067a5e0aee2
47 | sha256_uvr5_VR-DeEchoDeReverb_pth = 01376dd2a571bf3cb9cced680732726d2d732609d09216a610b0d110f133febe
48 | sha256_uvr5_VR-DeEchoNormal_pth = 56aba59db3bcdd14a14464e62f3129698ecdea62eee0f003b9360923eb3ac79e
49 | sha256_uvr5_vocals_onnx = 233bb5c6aaa365e568659a0a81211746fa881f8f47f82d9e864fce1f7692db80
50 |
--------------------------------------------------------------------------------
/infer/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import parselmouth
3 |
4 | from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
5 |
6 |
7 | class PMF0Predictor(F0Predictor):
8 | def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
9 | self.hop_length = hop_length
10 | self.f0_min = f0_min
11 | self.f0_max = f0_max
12 | self.sampling_rate = sampling_rate
13 |
14 | def interpolate_f0(self, f0):
15 | """
16 | 对F0进行插值处理
17 | """
18 |
19 | data = np.reshape(f0, (f0.size, 1))
20 |
21 | vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
22 | vuv_vector[data > 0.0] = 1.0
23 | vuv_vector[data <= 0.0] = 0.0
24 |
25 | ip_data = data
26 |
27 | frame_number = data.size
28 | last_value = 0.0
29 | for i in range(frame_number):
30 | if data[i] <= 0.0:
31 | j = i + 1
32 | for j in range(i + 1, frame_number):
33 | if data[j] > 0.0:
34 | break
35 | if j < frame_number - 1:
36 | if last_value > 0.0:
37 | step = (data[j] - data[i - 1]) / float(j - i)
38 | for k in range(i, j):
39 | ip_data[k] = data[i - 1] + step * (k - i + 1)
40 | else:
41 | for k in range(i, j):
42 | ip_data[k] = data[j]
43 | else:
44 | for k in range(i, frame_number):
45 | ip_data[k] = last_value
46 | else:
47 | ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
48 | last_value = data[i]
49 |
50 | return ip_data[:, 0], vuv_vector[:, 0]
51 |
52 | def compute_f0(self, wav, p_len=None):
53 | x = wav
54 | if p_len is None:
55 | p_len = x.shape[0] // self.hop_length
56 | else:
57 | assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
58 | time_step = self.hop_length / self.sampling_rate * 1000
59 | f0 = (
60 | parselmouth.Sound(x, self.sampling_rate)
61 | .to_pitch_ac(
62 | time_step=time_step / 1000,
63 | voicing_threshold=0.6,
64 | pitch_floor=self.f0_min,
65 | pitch_ceiling=self.f0_max,
66 | )
67 | .selected_array["frequency"]
68 | )
69 |
70 | pad_size = (p_len - len(f0) + 1) // 2
71 | if pad_size > 0 or p_len - len(f0) - pad_size > 0:
72 | f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
73 | f0, uv = self.interpolate_f0(f0)
74 | return f0
75 |
76 | def compute_f0_uv(self, wav, p_len=None):
77 | x = wav
78 | if p_len is None:
79 | p_len = x.shape[0] // self.hop_length
80 | else:
81 | assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
82 | time_step = self.hop_length / self.sampling_rate * 1000
83 | f0 = (
84 | parselmouth.Sound(x, self.sampling_rate)
85 | .to_pitch_ac(
86 | time_step=time_step / 1000,
87 | voicing_threshold=0.6,
88 | pitch_floor=self.f0_min,
89 | pitch_ceiling=self.f0_max,
90 | )
91 | .selected_array["frequency"]
92 | )
93 |
94 | pad_size = (p_len - len(f0) + 1) // 2
95 | if pad_size > 0 or p_len - len(f0) - pad_size > 0:
96 | f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
97 | f0, uv = self.interpolate_f0(f0)
98 | return f0, uv
99 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/utils.py:
--------------------------------------------------------------------------------
1 | import json
2 |
3 | import numpy as np
4 | import torch
5 | from tqdm import tqdm
6 |
7 |
8 | def load_data(file_name: str = "./infer/lib/uvr5_pack/name_params.json") -> dict:
9 | with open(file_name, "r") as f:
10 | data = json.load(f)
11 |
12 | return data
13 |
14 |
15 | def make_padding(width, cropsize, offset):
16 | left = offset
17 | roi_size = cropsize - left * 2
18 | if roi_size == 0:
19 | roi_size = cropsize
20 | right = roi_size - (width % roi_size) + left
21 |
22 | return left, right, roi_size
23 |
24 |
25 | def inference(X_spec, device, model, aggressiveness, data):
26 | """
27 | data : dic configs
28 | """
29 |
30 | def _execute(
31 | X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half=True
32 | ):
33 | model.eval()
34 | with torch.no_grad():
35 | preds = []
36 |
37 | iterations = [n_window]
38 |
39 | total_iterations = sum(iterations)
40 | for i in tqdm(range(n_window)):
41 | start = i * roi_size
42 | X_mag_window = X_mag_pad[
43 | None, :, :, start : start + data["window_size"]
44 | ]
45 | X_mag_window = torch.from_numpy(X_mag_window)
46 | if is_half:
47 | X_mag_window = X_mag_window.half()
48 | X_mag_window = X_mag_window.to(device)
49 |
50 | pred = model.predict(X_mag_window, aggressiveness)
51 |
52 | pred = pred.detach().cpu().numpy()
53 | preds.append(pred[0])
54 |
55 | pred = np.concatenate(preds, axis=2)
56 | return pred
57 |
58 | def preprocess(X_spec):
59 | X_mag = np.abs(X_spec)
60 | X_phase = np.angle(X_spec)
61 |
62 | return X_mag, X_phase
63 |
64 | X_mag, X_phase = preprocess(X_spec)
65 |
66 | coef = X_mag.max()
67 | X_mag_pre = X_mag / coef
68 |
69 | n_frame = X_mag_pre.shape[2]
70 | pad_l, pad_r, roi_size = make_padding(n_frame, data["window_size"], model.offset)
71 | n_window = int(np.ceil(n_frame / roi_size))
72 |
73 | X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
74 |
75 | if list(model.state_dict().values())[0].dtype == torch.float16:
76 | is_half = True
77 | else:
78 | is_half = False
79 | pred = _execute(
80 | X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
81 | )
82 | pred = pred[:, :, :n_frame]
83 |
84 | if data["tta"]:
85 | pad_l += roi_size // 2
86 | pad_r += roi_size // 2
87 | n_window += 1
88 |
89 | X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
90 |
91 | pred_tta = _execute(
92 | X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
93 | )
94 | pred_tta = pred_tta[:, :, roi_size // 2 :]
95 | pred_tta = pred_tta[:, :, :n_frame]
96 |
97 | return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.0j * X_phase)
98 | else:
99 | return pred * coef, X_mag, np.exp(1.0j * X_phase)
100 |
101 |
102 | def _get_name_params(model_path, model_hash):
103 | data = load_data()
104 | flag = False
105 | ModelName = model_path
106 | for type in list(data):
107 | for model in list(data[type][0]):
108 | for i in range(len(data[type][0][model])):
109 | if str(data[type][0][model][i]["hash_name"]) == model_hash:
110 | flag = True
111 | elif str(data[type][0][model][i]["hash_name"]) in ModelName:
112 | flag = True
113 |
114 | if flag:
115 | model_params_auto = data[type][0][model][i]["model_params"]
116 | param_name_auto = data[type][0][model][i]["param_name"]
117 | if type == "equivalent":
118 | return param_name_auto, model_params_auto
119 | else:
120 | flag = False
121 | return param_name_auto, model_params_auto
122 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/layers.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import spec_utils
6 |
7 |
8 | class Conv2DBNActiv(nn.Module):
9 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10 | super(Conv2DBNActiv, self).__init__()
11 | self.conv = nn.Sequential(
12 | nn.Conv2d(
13 | nin,
14 | nout,
15 | kernel_size=ksize,
16 | stride=stride,
17 | padding=pad,
18 | dilation=dilation,
19 | bias=False,
20 | ),
21 | nn.BatchNorm2d(nout),
22 | activ(),
23 | )
24 |
25 | def __call__(self, x):
26 | return self.conv(x)
27 |
28 |
29 | class SeperableConv2DBNActiv(nn.Module):
30 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31 | super(SeperableConv2DBNActiv, self).__init__()
32 | self.conv = nn.Sequential(
33 | nn.Conv2d(
34 | nin,
35 | nin,
36 | kernel_size=ksize,
37 | stride=stride,
38 | padding=pad,
39 | dilation=dilation,
40 | groups=nin,
41 | bias=False,
42 | ),
43 | nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44 | nn.BatchNorm2d(nout),
45 | activ(),
46 | )
47 |
48 | def __call__(self, x):
49 | return self.conv(x)
50 |
51 |
52 | class Encoder(nn.Module):
53 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54 | super(Encoder, self).__init__()
55 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56 | self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57 |
58 | def __call__(self, x):
59 | skip = self.conv1(x)
60 | h = self.conv2(skip)
61 |
62 | return h, skip
63 |
64 |
65 | class Decoder(nn.Module):
66 | def __init__(
67 | self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68 | ):
69 | super(Decoder, self).__init__()
70 | self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71 | self.dropout = nn.Dropout2d(0.1) if dropout else None
72 |
73 | def __call__(self, x, skip=None):
74 | x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75 | if skip is not None:
76 | skip = spec_utils.crop_center(skip, x)
77 | x = torch.cat([x, skip], dim=1)
78 | h = self.conv(x)
79 |
80 | if self.dropout is not None:
81 | h = self.dropout(h)
82 |
83 | return h
84 |
85 |
86 | class ASPPModule(nn.Module):
87 | def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88 | super(ASPPModule, self).__init__()
89 | self.conv1 = nn.Sequential(
90 | nn.AdaptiveAvgPool2d((1, None)),
91 | Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92 | )
93 | self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94 | self.conv3 = SeperableConv2DBNActiv(
95 | nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96 | )
97 | self.conv4 = SeperableConv2DBNActiv(
98 | nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99 | )
100 | self.conv5 = SeperableConv2DBNActiv(
101 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102 | )
103 | self.bottleneck = nn.Sequential(
104 | Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
105 | )
106 |
107 | def forward(self, x):
108 | _, _, h, w = x.size()
109 | feat1 = F.interpolate(
110 | self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
111 | )
112 | feat2 = self.conv2(x)
113 | feat3 = self.conv3(x)
114 | feat4 = self.conv4(x)
115 | feat5 = self.conv5(x)
116 | out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
117 | bottle = self.bottleneck(out)
118 | return bottle
119 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/layers_123812KB .py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import spec_utils
6 |
7 |
8 | class Conv2DBNActiv(nn.Module):
9 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10 | super(Conv2DBNActiv, self).__init__()
11 | self.conv = nn.Sequential(
12 | nn.Conv2d(
13 | nin,
14 | nout,
15 | kernel_size=ksize,
16 | stride=stride,
17 | padding=pad,
18 | dilation=dilation,
19 | bias=False,
20 | ),
21 | nn.BatchNorm2d(nout),
22 | activ(),
23 | )
24 |
25 | def __call__(self, x):
26 | return self.conv(x)
27 |
28 |
29 | class SeperableConv2DBNActiv(nn.Module):
30 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31 | super(SeperableConv2DBNActiv, self).__init__()
32 | self.conv = nn.Sequential(
33 | nn.Conv2d(
34 | nin,
35 | nin,
36 | kernel_size=ksize,
37 | stride=stride,
38 | padding=pad,
39 | dilation=dilation,
40 | groups=nin,
41 | bias=False,
42 | ),
43 | nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44 | nn.BatchNorm2d(nout),
45 | activ(),
46 | )
47 |
48 | def __call__(self, x):
49 | return self.conv(x)
50 |
51 |
52 | class Encoder(nn.Module):
53 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54 | super(Encoder, self).__init__()
55 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56 | self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57 |
58 | def __call__(self, x):
59 | skip = self.conv1(x)
60 | h = self.conv2(skip)
61 |
62 | return h, skip
63 |
64 |
65 | class Decoder(nn.Module):
66 | def __init__(
67 | self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68 | ):
69 | super(Decoder, self).__init__()
70 | self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71 | self.dropout = nn.Dropout2d(0.1) if dropout else None
72 |
73 | def __call__(self, x, skip=None):
74 | x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75 | if skip is not None:
76 | skip = spec_utils.crop_center(skip, x)
77 | x = torch.cat([x, skip], dim=1)
78 | h = self.conv(x)
79 |
80 | if self.dropout is not None:
81 | h = self.dropout(h)
82 |
83 | return h
84 |
85 |
86 | class ASPPModule(nn.Module):
87 | def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88 | super(ASPPModule, self).__init__()
89 | self.conv1 = nn.Sequential(
90 | nn.AdaptiveAvgPool2d((1, None)),
91 | Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92 | )
93 | self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94 | self.conv3 = SeperableConv2DBNActiv(
95 | nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96 | )
97 | self.conv4 = SeperableConv2DBNActiv(
98 | nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99 | )
100 | self.conv5 = SeperableConv2DBNActiv(
101 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102 | )
103 | self.bottleneck = nn.Sequential(
104 | Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
105 | )
106 |
107 | def forward(self, x):
108 | _, _, h, w = x.size()
109 | feat1 = F.interpolate(
110 | self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
111 | )
112 | feat2 = self.conv2(x)
113 | feat3 = self.conv3(x)
114 | feat4 = self.conv4(x)
115 | feat5 = self.conv5(x)
116 | out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
117 | bottle = self.bottleneck(out)
118 | return bottle
119 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/layers_123821KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import spec_utils
6 |
7 |
8 | class Conv2DBNActiv(nn.Module):
9 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10 | super(Conv2DBNActiv, self).__init__()
11 | self.conv = nn.Sequential(
12 | nn.Conv2d(
13 | nin,
14 | nout,
15 | kernel_size=ksize,
16 | stride=stride,
17 | padding=pad,
18 | dilation=dilation,
19 | bias=False,
20 | ),
21 | nn.BatchNorm2d(nout),
22 | activ(),
23 | )
24 |
25 | def __call__(self, x):
26 | return self.conv(x)
27 |
28 |
29 | class SeperableConv2DBNActiv(nn.Module):
30 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31 | super(SeperableConv2DBNActiv, self).__init__()
32 | self.conv = nn.Sequential(
33 | nn.Conv2d(
34 | nin,
35 | nin,
36 | kernel_size=ksize,
37 | stride=stride,
38 | padding=pad,
39 | dilation=dilation,
40 | groups=nin,
41 | bias=False,
42 | ),
43 | nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44 | nn.BatchNorm2d(nout),
45 | activ(),
46 | )
47 |
48 | def __call__(self, x):
49 | return self.conv(x)
50 |
51 |
52 | class Encoder(nn.Module):
53 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54 | super(Encoder, self).__init__()
55 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56 | self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57 |
58 | def __call__(self, x):
59 | skip = self.conv1(x)
60 | h = self.conv2(skip)
61 |
62 | return h, skip
63 |
64 |
65 | class Decoder(nn.Module):
66 | def __init__(
67 | self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68 | ):
69 | super(Decoder, self).__init__()
70 | self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71 | self.dropout = nn.Dropout2d(0.1) if dropout else None
72 |
73 | def __call__(self, x, skip=None):
74 | x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75 | if skip is not None:
76 | skip = spec_utils.crop_center(skip, x)
77 | x = torch.cat([x, skip], dim=1)
78 | h = self.conv(x)
79 |
80 | if self.dropout is not None:
81 | h = self.dropout(h)
82 |
83 | return h
84 |
85 |
86 | class ASPPModule(nn.Module):
87 | def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88 | super(ASPPModule, self).__init__()
89 | self.conv1 = nn.Sequential(
90 | nn.AdaptiveAvgPool2d((1, None)),
91 | Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92 | )
93 | self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94 | self.conv3 = SeperableConv2DBNActiv(
95 | nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96 | )
97 | self.conv4 = SeperableConv2DBNActiv(
98 | nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99 | )
100 | self.conv5 = SeperableConv2DBNActiv(
101 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102 | )
103 | self.bottleneck = nn.Sequential(
104 | Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
105 | )
106 |
107 | def forward(self, x):
108 | _, _, h, w = x.size()
109 | feat1 = F.interpolate(
110 | self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
111 | )
112 | feat2 = self.conv2(x)
113 | feat3 = self.conv3(x)
114 | feat4 = self.conv4(x)
115 | feat5 = self.conv5(x)
116 | out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
117 | bottle = self.bottleneck(out)
118 | return bottle
119 |
--------------------------------------------------------------------------------
/infer/lib/train/mel_processing.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.utils.data
3 | from librosa.filters import mel as librosa_mel_fn
4 | import logging
5 |
6 | logger = logging.getLogger(__name__)
7 |
8 | MAX_WAV_VALUE = 32768.0
9 |
10 |
11 | def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
12 | """
13 | PARAMS
14 | ------
15 | C: compression factor
16 | """
17 | return torch.log(torch.clamp(x, min=clip_val) * C)
18 |
19 |
20 | def dynamic_range_decompression_torch(x, C=1):
21 | """
22 | PARAMS
23 | ------
24 | C: compression factor used to compress
25 | """
26 | return torch.exp(x) / C
27 |
28 |
29 | def spectral_normalize_torch(magnitudes):
30 | return dynamic_range_compression_torch(magnitudes)
31 |
32 |
33 | def spectral_de_normalize_torch(magnitudes):
34 | return dynamic_range_decompression_torch(magnitudes)
35 |
36 |
37 | # Reusable banks
38 | mel_basis = {}
39 | hann_window = {}
40 |
41 |
42 | def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
43 | """Convert waveform into Linear-frequency Linear-amplitude spectrogram.
44 |
45 | Args:
46 | y :: (B, T) - Audio waveforms
47 | n_fft
48 | sampling_rate
49 | hop_size
50 | win_size
51 | center
52 | Returns:
53 | :: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
54 | """
55 |
56 | # Window - Cache if needed
57 | global hann_window
58 | dtype_device = str(y.dtype) + "_" + str(y.device)
59 | wnsize_dtype_device = str(win_size) + "_" + dtype_device
60 | if wnsize_dtype_device not in hann_window:
61 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
62 | dtype=y.dtype, device=y.device
63 | )
64 |
65 | # Padding
66 | y = torch.nn.functional.pad(
67 | y.unsqueeze(1),
68 | (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
69 | mode="reflect",
70 | )
71 | y = y.squeeze(1)
72 |
73 | # Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
74 | spec = torch.stft(
75 | y,
76 | n_fft,
77 | hop_length=hop_size,
78 | win_length=win_size,
79 | window=hann_window[wnsize_dtype_device],
80 | center=center,
81 | pad_mode="reflect",
82 | normalized=False,
83 | onesided=True,
84 | return_complex=True,
85 | )
86 |
87 | # Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
88 | spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)
89 | return spec
90 |
91 |
92 | def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
93 | # MelBasis - Cache if needed
94 | global mel_basis
95 | dtype_device = str(spec.dtype) + "_" + str(spec.device)
96 | fmax_dtype_device = str(fmax) + "_" + dtype_device
97 | if fmax_dtype_device not in mel_basis:
98 | mel = librosa_mel_fn(
99 | sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
100 | )
101 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
102 | dtype=spec.dtype, device=spec.device
103 | )
104 |
105 | # Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
106 | melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
107 | melspec = spectral_normalize_torch(melspec)
108 | return melspec
109 |
110 |
111 | def mel_spectrogram_torch(
112 | y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
113 | ):
114 | """Convert waveform into Mel-frequency Log-amplitude spectrogram.
115 |
116 | Args:
117 | y :: (B, T) - Waveforms
118 | Returns:
119 | melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
120 | """
121 | # Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
122 | spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
123 |
124 | # Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
125 | melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
126 |
127 | return melspec
128 |
--------------------------------------------------------------------------------
/infer/modules/uvr5/modules.py:
--------------------------------------------------------------------------------
1 | import os
2 | import traceback
3 | import logging
4 |
5 | logger = logging.getLogger(__name__)
6 |
7 | import ffmpeg
8 | import torch
9 |
10 | from configs.config import Config
11 | from infer.modules.uvr5.mdxnet import MDXNetDereverb
12 | from infer.modules.uvr5.vr import AudioPre, AudioPreDeEcho
13 |
14 | config = Config()
15 |
16 |
17 | def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
18 | infos = []
19 | try:
20 | inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
21 | save_root_vocal = (
22 | save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
23 | )
24 | save_root_ins = (
25 | save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
26 | )
27 | if model_name == "onnx_dereverb_By_FoxJoy":
28 | pre_fun = MDXNetDereverb(15, config.device)
29 | else:
30 | func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
31 | pre_fun = func(
32 | agg=int(agg),
33 | model_path=os.path.join(
34 | os.getenv("weight_uvr5_root"), model_name + ".pth"
35 | ),
36 | device=config.device,
37 | is_half=config.is_half,
38 | )
39 | is_hp3 = "HP3" in model_name
40 | if inp_root != "":
41 | paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
42 | else:
43 | paths = [path.name for path in paths]
44 | for path in paths:
45 | inp_path = os.path.join(inp_root, path)
46 | need_reformat = 1
47 | done = 0
48 | try:
49 | info = ffmpeg.probe(inp_path, cmd="ffprobe")
50 | if (
51 | info["streams"][0]["channels"] == 2
52 | and info["streams"][0]["sample_rate"] == "44100"
53 | ):
54 | need_reformat = 0
55 | pre_fun._path_audio_(
56 | inp_path, save_root_ins, save_root_vocal, format0, is_hp3=is_hp3
57 | )
58 | done = 1
59 | except:
60 | need_reformat = 1
61 | traceback.print_exc()
62 | if need_reformat == 1:
63 | tmp_path = "%s/%s.reformatted.wav" % (
64 | os.path.join(os.environ["TEMP"]),
65 | os.path.basename(inp_path),
66 | )
67 | os.system(
68 | "ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
69 | % (inp_path, tmp_path)
70 | )
71 | inp_path = tmp_path
72 | try:
73 | if done == 0:
74 | pre_fun._path_audio_(
75 | inp_path, save_root_ins, save_root_vocal, format0
76 | )
77 | infos.append("%s->Success" % (os.path.basename(inp_path)))
78 | yield "\n".join(infos)
79 | except:
80 | try:
81 | if done == 0:
82 | pre_fun._path_audio_(
83 | inp_path, save_root_ins, save_root_vocal, format0
84 | )
85 | infos.append("%s->Success" % (os.path.basename(inp_path)))
86 | yield "\n".join(infos)
87 | except:
88 | infos.append(
89 | "%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
90 | )
91 | yield "\n".join(infos)
92 | except:
93 | infos.append(traceback.format_exc())
94 | yield "\n".join(infos)
95 | finally:
96 | try:
97 | if model_name == "onnx_dereverb_By_FoxJoy":
98 | del pre_fun.pred.model
99 | del pre_fun.pred.model_
100 | else:
101 | del pre_fun.model
102 | del pre_fun
103 | except:
104 | traceback.print_exc()
105 | if torch.cuda.is_available():
106 | torch.cuda.empty_cache()
107 | logger.info("Executed torch.cuda.empty_cache()")
108 | yield "\n".join(infos)
109 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/nets.py:
--------------------------------------------------------------------------------
1 | import layers
2 | import torch
3 | import torch.nn.functional as F
4 | from torch import nn
5 |
6 | from . import spec_utils
7 |
8 |
9 | class BaseASPPNet(nn.Module):
10 | def __init__(self, nin, ch, dilations=(4, 8, 16)):
11 | super(BaseASPPNet, self).__init__()
12 | self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
13 | self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
14 | self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
15 | self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
16 |
17 | self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
18 |
19 | self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
20 | self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
21 | self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
22 | self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
23 |
24 | def __call__(self, x):
25 | h, e1 = self.enc1(x)
26 | h, e2 = self.enc2(h)
27 | h, e3 = self.enc3(h)
28 | h, e4 = self.enc4(h)
29 |
30 | h = self.aspp(h)
31 |
32 | h = self.dec4(h, e4)
33 | h = self.dec3(h, e3)
34 | h = self.dec2(h, e2)
35 | h = self.dec1(h, e1)
36 |
37 | return h
38 |
39 |
40 | class CascadedASPPNet(nn.Module):
41 | def __init__(self, n_fft):
42 | super(CascadedASPPNet, self).__init__()
43 | self.stg1_low_band_net = BaseASPPNet(2, 16)
44 | self.stg1_high_band_net = BaseASPPNet(2, 16)
45 |
46 | self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
47 | self.stg2_full_band_net = BaseASPPNet(8, 16)
48 |
49 | self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
50 | self.stg3_full_band_net = BaseASPPNet(16, 32)
51 |
52 | self.out = nn.Conv2d(32, 2, 1, bias=False)
53 | self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
54 | self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
55 |
56 | self.max_bin = n_fft // 2
57 | self.output_bin = n_fft // 2 + 1
58 |
59 | self.offset = 128
60 |
61 | def forward(self, x, aggressiveness=None):
62 | mix = x.detach()
63 | x = x.clone()
64 |
65 | x = x[:, :, : self.max_bin]
66 |
67 | bandw = x.size()[2] // 2
68 | aux1 = torch.cat(
69 | [
70 | self.stg1_low_band_net(x[:, :, :bandw]),
71 | self.stg1_high_band_net(x[:, :, bandw:]),
72 | ],
73 | dim=2,
74 | )
75 |
76 | h = torch.cat([x, aux1], dim=1)
77 | aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
78 |
79 | h = torch.cat([x, aux1, aux2], dim=1)
80 | h = self.stg3_full_band_net(self.stg3_bridge(h))
81 |
82 | mask = torch.sigmoid(self.out(h))
83 | mask = F.pad(
84 | input=mask,
85 | pad=(0, 0, 0, self.output_bin - mask.size()[2]),
86 | mode="replicate",
87 | )
88 |
89 | if self.training:
90 | aux1 = torch.sigmoid(self.aux1_out(aux1))
91 | aux1 = F.pad(
92 | input=aux1,
93 | pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
94 | mode="replicate",
95 | )
96 | aux2 = torch.sigmoid(self.aux2_out(aux2))
97 | aux2 = F.pad(
98 | input=aux2,
99 | pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
100 | mode="replicate",
101 | )
102 | return mask * mix, aux1 * mix, aux2 * mix
103 | else:
104 | if aggressiveness:
105 | mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
106 | mask[:, :, : aggressiveness["split_bin"]],
107 | 1 + aggressiveness["value"] / 3,
108 | )
109 | mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
110 | mask[:, :, aggressiveness["split_bin"] :],
111 | 1 + aggressiveness["value"],
112 | )
113 |
114 | return mask * mix
115 |
116 | def predict(self, x_mag, aggressiveness=None):
117 | h = self.forward(x_mag, aggressiveness)
118 |
119 | if self.offset > 0:
120 | h = h[:, :, :, self.offset : -self.offset]
121 | assert h.size()[3] > 0
122 |
123 | return h
124 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/nets_123812KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import layers_123821KB as layers
6 |
7 |
8 | class BaseASPPNet(nn.Module):
9 | def __init__(self, nin, ch, dilations=(4, 8, 16)):
10 | super(BaseASPPNet, self).__init__()
11 | self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
12 | self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
13 | self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
14 | self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
15 |
16 | self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
17 |
18 | self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
19 | self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
20 | self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
21 | self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
22 |
23 | def __call__(self, x):
24 | h, e1 = self.enc1(x)
25 | h, e2 = self.enc2(h)
26 | h, e3 = self.enc3(h)
27 | h, e4 = self.enc4(h)
28 |
29 | h = self.aspp(h)
30 |
31 | h = self.dec4(h, e4)
32 | h = self.dec3(h, e3)
33 | h = self.dec2(h, e2)
34 | h = self.dec1(h, e1)
35 |
36 | return h
37 |
38 |
39 | class CascadedASPPNet(nn.Module):
40 | def __init__(self, n_fft):
41 | super(CascadedASPPNet, self).__init__()
42 | self.stg1_low_band_net = BaseASPPNet(2, 32)
43 | self.stg1_high_band_net = BaseASPPNet(2, 32)
44 |
45 | self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
46 | self.stg2_full_band_net = BaseASPPNet(16, 32)
47 |
48 | self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
49 | self.stg3_full_band_net = BaseASPPNet(32, 64)
50 |
51 | self.out = nn.Conv2d(64, 2, 1, bias=False)
52 | self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
53 | self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
54 |
55 | self.max_bin = n_fft // 2
56 | self.output_bin = n_fft // 2 + 1
57 |
58 | self.offset = 128
59 |
60 | def forward(self, x, aggressiveness=None):
61 | mix = x.detach()
62 | x = x.clone()
63 |
64 | x = x[:, :, : self.max_bin]
65 |
66 | bandw = x.size()[2] // 2
67 | aux1 = torch.cat(
68 | [
69 | self.stg1_low_band_net(x[:, :, :bandw]),
70 | self.stg1_high_band_net(x[:, :, bandw:]),
71 | ],
72 | dim=2,
73 | )
74 |
75 | h = torch.cat([x, aux1], dim=1)
76 | aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
77 |
78 | h = torch.cat([x, aux1, aux2], dim=1)
79 | h = self.stg3_full_band_net(self.stg3_bridge(h))
80 |
81 | mask = torch.sigmoid(self.out(h))
82 | mask = F.pad(
83 | input=mask,
84 | pad=(0, 0, 0, self.output_bin - mask.size()[2]),
85 | mode="replicate",
86 | )
87 |
88 | if self.training:
89 | aux1 = torch.sigmoid(self.aux1_out(aux1))
90 | aux1 = F.pad(
91 | input=aux1,
92 | pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
93 | mode="replicate",
94 | )
95 | aux2 = torch.sigmoid(self.aux2_out(aux2))
96 | aux2 = F.pad(
97 | input=aux2,
98 | pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
99 | mode="replicate",
100 | )
101 | return mask * mix, aux1 * mix, aux2 * mix
102 | else:
103 | if aggressiveness:
104 | mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
105 | mask[:, :, : aggressiveness["split_bin"]],
106 | 1 + aggressiveness["value"] / 3,
107 | )
108 | mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
109 | mask[:, :, aggressiveness["split_bin"] :],
110 | 1 + aggressiveness["value"],
111 | )
112 |
113 | return mask * mix
114 |
115 | def predict(self, x_mag, aggressiveness=None):
116 | h = self.forward(x_mag, aggressiveness)
117 |
118 | if self.offset > 0:
119 | h = h[:, :, :, self.offset : -self.offset]
120 | assert h.size()[3] > 0
121 |
122 | return h
123 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/nets_123821KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import layers_123821KB as layers
6 |
7 |
8 | class BaseASPPNet(nn.Module):
9 | def __init__(self, nin, ch, dilations=(4, 8, 16)):
10 | super(BaseASPPNet, self).__init__()
11 | self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
12 | self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
13 | self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
14 | self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
15 |
16 | self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
17 |
18 | self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
19 | self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
20 | self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
21 | self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
22 |
23 | def __call__(self, x):
24 | h, e1 = self.enc1(x)
25 | h, e2 = self.enc2(h)
26 | h, e3 = self.enc3(h)
27 | h, e4 = self.enc4(h)
28 |
29 | h = self.aspp(h)
30 |
31 | h = self.dec4(h, e4)
32 | h = self.dec3(h, e3)
33 | h = self.dec2(h, e2)
34 | h = self.dec1(h, e1)
35 |
36 | return h
37 |
38 |
39 | class CascadedASPPNet(nn.Module):
40 | def __init__(self, n_fft):
41 | super(CascadedASPPNet, self).__init__()
42 | self.stg1_low_band_net = BaseASPPNet(2, 32)
43 | self.stg1_high_band_net = BaseASPPNet(2, 32)
44 |
45 | self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
46 | self.stg2_full_band_net = BaseASPPNet(16, 32)
47 |
48 | self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
49 | self.stg3_full_band_net = BaseASPPNet(32, 64)
50 |
51 | self.out = nn.Conv2d(64, 2, 1, bias=False)
52 | self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
53 | self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
54 |
55 | self.max_bin = n_fft // 2
56 | self.output_bin = n_fft // 2 + 1
57 |
58 | self.offset = 128
59 |
60 | def forward(self, x, aggressiveness=None):
61 | mix = x.detach()
62 | x = x.clone()
63 |
64 | x = x[:, :, : self.max_bin]
65 |
66 | bandw = x.size()[2] // 2
67 | aux1 = torch.cat(
68 | [
69 | self.stg1_low_band_net(x[:, :, :bandw]),
70 | self.stg1_high_band_net(x[:, :, bandw:]),
71 | ],
72 | dim=2,
73 | )
74 |
75 | h = torch.cat([x, aux1], dim=1)
76 | aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
77 |
78 | h = torch.cat([x, aux1, aux2], dim=1)
79 | h = self.stg3_full_band_net(self.stg3_bridge(h))
80 |
81 | mask = torch.sigmoid(self.out(h))
82 | mask = F.pad(
83 | input=mask,
84 | pad=(0, 0, 0, self.output_bin - mask.size()[2]),
85 | mode="replicate",
86 | )
87 |
88 | if self.training:
89 | aux1 = torch.sigmoid(self.aux1_out(aux1))
90 | aux1 = F.pad(
91 | input=aux1,
92 | pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
93 | mode="replicate",
94 | )
95 | aux2 = torch.sigmoid(self.aux2_out(aux2))
96 | aux2 = F.pad(
97 | input=aux2,
98 | pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
99 | mode="replicate",
100 | )
101 | return mask * mix, aux1 * mix, aux2 * mix
102 | else:
103 | if aggressiveness:
104 | mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
105 | mask[:, :, : aggressiveness["split_bin"]],
106 | 1 + aggressiveness["value"] / 3,
107 | )
108 | mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
109 | mask[:, :, aggressiveness["split_bin"] :],
110 | 1 + aggressiveness["value"],
111 | )
112 |
113 | return mask * mix
114 |
115 | def predict(self, x_mag, aggressiveness=None):
116 | h = self.forward(x_mag, aggressiveness)
117 |
118 | if self.offset > 0:
119 | h = h[:, :, :, self.offset : -self.offset]
120 | assert h.size()[3] > 0
121 |
122 | return h
123 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/nets_33966KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import layers_33966KB as layers
6 |
7 |
8 | class BaseASPPNet(nn.Module):
9 | def __init__(self, nin, ch, dilations=(4, 8, 16, 32)):
10 | super(BaseASPPNet, self).__init__()
11 | self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
12 | self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
13 | self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
14 | self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
15 |
16 | self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
17 |
18 | self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
19 | self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
20 | self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
21 | self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
22 |
23 | def __call__(self, x):
24 | h, e1 = self.enc1(x)
25 | h, e2 = self.enc2(h)
26 | h, e3 = self.enc3(h)
27 | h, e4 = self.enc4(h)
28 |
29 | h = self.aspp(h)
30 |
31 | h = self.dec4(h, e4)
32 | h = self.dec3(h, e3)
33 | h = self.dec2(h, e2)
34 | h = self.dec1(h, e1)
35 |
36 | return h
37 |
38 |
39 | class CascadedASPPNet(nn.Module):
40 | def __init__(self, n_fft):
41 | super(CascadedASPPNet, self).__init__()
42 | self.stg1_low_band_net = BaseASPPNet(2, 16)
43 | self.stg1_high_band_net = BaseASPPNet(2, 16)
44 |
45 | self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
46 | self.stg2_full_band_net = BaseASPPNet(8, 16)
47 |
48 | self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
49 | self.stg3_full_band_net = BaseASPPNet(16, 32)
50 |
51 | self.out = nn.Conv2d(32, 2, 1, bias=False)
52 | self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
53 | self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
54 |
55 | self.max_bin = n_fft // 2
56 | self.output_bin = n_fft // 2 + 1
57 |
58 | self.offset = 128
59 |
60 | def forward(self, x, aggressiveness=None):
61 | mix = x.detach()
62 | x = x.clone()
63 |
64 | x = x[:, :, : self.max_bin]
65 |
66 | bandw = x.size()[2] // 2
67 | aux1 = torch.cat(
68 | [
69 | self.stg1_low_band_net(x[:, :, :bandw]),
70 | self.stg1_high_band_net(x[:, :, bandw:]),
71 | ],
72 | dim=2,
73 | )
74 |
75 | h = torch.cat([x, aux1], dim=1)
76 | aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
77 |
78 | h = torch.cat([x, aux1, aux2], dim=1)
79 | h = self.stg3_full_band_net(self.stg3_bridge(h))
80 |
81 | mask = torch.sigmoid(self.out(h))
82 | mask = F.pad(
83 | input=mask,
84 | pad=(0, 0, 0, self.output_bin - mask.size()[2]),
85 | mode="replicate",
86 | )
87 |
88 | if self.training:
89 | aux1 = torch.sigmoid(self.aux1_out(aux1))
90 | aux1 = F.pad(
91 | input=aux1,
92 | pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
93 | mode="replicate",
94 | )
95 | aux2 = torch.sigmoid(self.aux2_out(aux2))
96 | aux2 = F.pad(
97 | input=aux2,
98 | pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
99 | mode="replicate",
100 | )
101 | return mask * mix, aux1 * mix, aux2 * mix
102 | else:
103 | if aggressiveness:
104 | mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
105 | mask[:, :, : aggressiveness["split_bin"]],
106 | 1 + aggressiveness["value"] / 3,
107 | )
108 | mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
109 | mask[:, :, aggressiveness["split_bin"] :],
110 | 1 + aggressiveness["value"],
111 | )
112 |
113 | return mask * mix
114 |
115 | def predict(self, x_mag, aggressiveness=None):
116 | h = self.forward(x_mag, aggressiveness)
117 |
118 | if self.offset > 0:
119 | h = h[:, :, :, self.offset : -self.offset]
120 | assert h.size()[3] > 0
121 |
122 | return h
123 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/nets_61968KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import layers_123821KB as layers
6 |
7 |
8 | class BaseASPPNet(nn.Module):
9 | def __init__(self, nin, ch, dilations=(4, 8, 16)):
10 | super(BaseASPPNet, self).__init__()
11 | self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
12 | self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
13 | self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
14 | self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
15 |
16 | self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
17 |
18 | self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
19 | self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
20 | self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
21 | self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
22 |
23 | def __call__(self, x):
24 | h, e1 = self.enc1(x)
25 | h, e2 = self.enc2(h)
26 | h, e3 = self.enc3(h)
27 | h, e4 = self.enc4(h)
28 |
29 | h = self.aspp(h)
30 |
31 | h = self.dec4(h, e4)
32 | h = self.dec3(h, e3)
33 | h = self.dec2(h, e2)
34 | h = self.dec1(h, e1)
35 |
36 | return h
37 |
38 |
39 | class CascadedASPPNet(nn.Module):
40 | def __init__(self, n_fft):
41 | super(CascadedASPPNet, self).__init__()
42 | self.stg1_low_band_net = BaseASPPNet(2, 32)
43 | self.stg1_high_band_net = BaseASPPNet(2, 32)
44 |
45 | self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
46 | self.stg2_full_band_net = BaseASPPNet(16, 32)
47 |
48 | self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
49 | self.stg3_full_band_net = BaseASPPNet(32, 64)
50 |
51 | self.out = nn.Conv2d(64, 2, 1, bias=False)
52 | self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
53 | self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
54 |
55 | self.max_bin = n_fft // 2
56 | self.output_bin = n_fft // 2 + 1
57 |
58 | self.offset = 128
59 |
60 | def forward(self, x, aggressiveness=None):
61 | mix = x.detach()
62 | x = x.clone()
63 |
64 | x = x[:, :, : self.max_bin]
65 |
66 | bandw = x.size()[2] // 2
67 | aux1 = torch.cat(
68 | [
69 | self.stg1_low_band_net(x[:, :, :bandw]),
70 | self.stg1_high_band_net(x[:, :, bandw:]),
71 | ],
72 | dim=2,
73 | )
74 |
75 | h = torch.cat([x, aux1], dim=1)
76 | aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
77 |
78 | h = torch.cat([x, aux1, aux2], dim=1)
79 | h = self.stg3_full_band_net(self.stg3_bridge(h))
80 |
81 | mask = torch.sigmoid(self.out(h))
82 | mask = F.pad(
83 | input=mask,
84 | pad=(0, 0, 0, self.output_bin - mask.size()[2]),
85 | mode="replicate",
86 | )
87 |
88 | if self.training:
89 | aux1 = torch.sigmoid(self.aux1_out(aux1))
90 | aux1 = F.pad(
91 | input=aux1,
92 | pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
93 | mode="replicate",
94 | )
95 | aux2 = torch.sigmoid(self.aux2_out(aux2))
96 | aux2 = F.pad(
97 | input=aux2,
98 | pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
99 | mode="replicate",
100 | )
101 | return mask * mix, aux1 * mix, aux2 * mix
102 | else:
103 | if aggressiveness:
104 | mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
105 | mask[:, :, : aggressiveness["split_bin"]],
106 | 1 + aggressiveness["value"] / 3,
107 | )
108 | mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
109 | mask[:, :, aggressiveness["split_bin"] :],
110 | 1 + aggressiveness["value"],
111 | )
112 |
113 | return mask * mix
114 |
115 | def predict(self, x_mag, aggressiveness=None):
116 | h = self.forward(x_mag, aggressiveness)
117 |
118 | if self.offset > 0:
119 | h = h[:, :, :, self.offset : -self.offset]
120 | assert h.size()[3] > 0
121 |
122 | return h
123 |
--------------------------------------------------------------------------------
/docs/cn/faq.md:
--------------------------------------------------------------------------------
1 | ## Q1:ffmpeg error/utf8 error.
2 |
3 | 大概率不是ffmpeg问题,而是音频路径问题;
4 | ffmpeg读取路径带空格、()等特殊符号,可能出现ffmpeg error;训练集音频带中文路径,在写入filelist.txt的时候可能出现utf8 error;
5 |
6 | ## Q2:一键训练结束没有索引
7 |
8 | 显示"Training is done. The program is closed."则模型训练成功,后续紧邻的报错是假的;
9 |
10 | 一键训练结束完成没有added开头的索引文件,可能是因为训练集太大卡住了添加索引的步骤;已通过批处理add索引解决内存add索引对内存需求过大的问题。临时可尝试再次点击"训练索引"按钮。
11 |
12 | ## Q3:训练结束推理没看到训练集的音色
13 | 点刷新音色再看看,如果还没有看看训练有没有报错,控制台和webui的截图,logs/实验名下的log,都可以发给开发者看看。
14 |
15 | ## Q4:如何分享模型
16 | rvc_root/logs/实验名 下面存储的pth不是用来分享模型用来推理的,而是为了存储实验状态供复现,以及继续训练用的。用来分享的模型应该是weights文件夹下大小为60+MB的pth文件;
17 | 后续将把weights/exp_name.pth和logs/exp_name/added_xxx.index合并打包成weights/exp_name.zip省去填写index的步骤,那么zip文件用来分享,不要分享pth文件,除非是想换机器继续训练;
18 | 如果你把logs文件夹下的几百MB的pth文件复制/分享到weights文件夹下强行用于推理,可能会出现f0,tgt_sr等各种key不存在的报错。你需要用ckpt选项卡最下面,手工或自动(本地logs下如果能找到相关信息则会自动)选择是否携带音高、目标音频采样率的选项后进行ckpt小模型提取(输入路径填G开头的那个),提取完在weights文件夹下会出现60+MB的pth文件,刷新音色后可以选择使用。
19 |
20 | ## Q5:Connection Error.
21 | 也许你关闭了控制台(黑色窗口)。
22 |
23 | ## Q6:WebUI弹出Expecting value: line 1 column 1 (char 0).
24 | 请关闭系统局域网代理/全局代理。
25 |
26 | 这个不仅是客户端的代理,也包括服务端的代理(例如你使用autodl设置了http_proxy和https_proxy学术加速,使用时也需要unset关掉)
27 |
28 | ## Q7:不用WebUI如何通过命令训练推理
29 | 训练脚本:
30 | 可先跑通WebUI,消息窗内会显示数据集处理和训练用命令行;
31 |
32 | 推理脚本:
33 | https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py
34 |
35 | 例子:
36 |
37 | runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True
38 |
39 | f0up_key=sys.argv[1]
40 | input_path=sys.argv[2]
41 | index_path=sys.argv[3]
42 | f0method=sys.argv[4]#harvest or pm
43 | opt_path=sys.argv[5]
44 | model_path=sys.argv[6]
45 | index_rate=float(sys.argv[7])
46 | device=sys.argv[8]
47 | is_half=bool(sys.argv[9])
48 |
49 | ## Q8:Cuda error/Cuda out of memory.
50 | 小概率是cuda配置问题、设备不支持;大概率是显存不够(out of memory);
51 |
52 | 训练的话缩小batch size(如果缩小到1还不够只能更换显卡训练),推理的话酌情缩小config.py结尾的x_pad,x_query,x_center,x_max。4G以下显存(例如1060(3G)和各种2G显卡)可以直接放弃,4G显存显卡还有救。
53 |
54 | ## Q9:total_epoch调多少比较好
55 |
56 | 如果训练集音质差底噪大,20~30足够了,调太高,底模音质无法带高你的低音质训练集
57 | 如果训练集音质高底噪低时长多,可以调高,200是ok的(训练速度很快,既然你有条件准备高音质训练集,显卡想必条件也不错,肯定不在乎多一些训练时间)
58 |
59 | ## Q10:需要多少训练集时长
60 | 推荐10min至50min
61 | 保证音质高底噪低的情况下,如果有个人特色的音色统一,则多多益善
62 | 高水平的训练集(精简+音色有特色),5min至10min也是ok的,仓库作者本人就经常这么玩
63 | 也有人拿1min至2min的数据来训练并且训练成功的,但是成功经验是其他人不可复现的,不太具备参考价值。这要求训练集音色特色非常明显(比如说高频气声较明显的萝莉少女音),且音质高;
64 | 1min以下时长数据目前没见有人尝试(成功)过。不建议进行这种鬼畜行为。
65 |
66 | ## Q11:index rate干嘛用的,怎么调(科普)
67 | 如果底模和推理源的音质高于训练集的音质,他们可以带高推理结果的音质,但代价可能是音色往底模/推理源的音色靠,这种现象叫做"音色泄露";
68 | index rate用来削减/解决音色泄露问题。调到1,则理论上不存在推理源的音色泄露问题,但音质更倾向于训练集。如果训练集音质比推理源低,则index rate调高可能降低音质。调到0,则不具备利用检索混合来保护训练集音色的效果;
69 | 如果训练集优质时长多,可调高total_epoch,此时模型本身不太会引用推理源和底模的音色,很少存在"音色泄露"问题,此时index_rate不重要,你甚至可以不建立/分享index索引文件。
70 |
71 | ## Q11:推理怎么选gpu
72 | config.py文件里device cuda:后面选择卡号;
73 | 卡号和显卡的映射关系,在训练选项卡的显卡信息栏里能看到。
74 |
75 | ## Q12:如何推理训练中间保存的pth
76 | 通过ckpt选项卡最下面提取小模型。
77 |
78 |
79 | ## Q13:如何中断和继续训练
80 | 现阶段只能关闭WebUI控制台双击go-web.bat重启程序。网页参数也要刷新重新填写;
81 | 继续训练:相同网页参数点训练模型,就会接着上次的checkpoint继续训练。
82 |
83 | ## Q14:训练时出现文件页面/内存error
84 | 进程开太多了,内存炸了。你可能可以通过如下方式解决
85 | 1、"提取音高和处理数据使用的CPU进程数" 酌情拉低;
86 | 2、训练集音频手工切一下,不要太长。
87 |
88 |
89 | ## Q15:如何中途加数据训练
90 | 1、所有数据新建一个实验名;
91 | 2、拷贝上一次的最新的那个G和D文件(或者你想基于哪个中间ckpt训练,也可以拷贝中间的)到新实验名;下
92 | 3、一键训练新实验名,他会继续上一次的最新进度训练。
93 |
94 | ## Q16: error about llvmlite.dll
95 |
96 | OSError: Could not load shared object file: llvmlite.dll
97 |
98 | FileNotFoundError: Could not find module lib\site-packages\llvmlite\binding\llvmlite.dll (or one of its dependencies). Try using the full path with constructor syntax.
99 |
100 | win平台会报这个错,装上https://aka.ms/vs/17/release/vc_redist.x64.exe这个再重启WebUI就好了。
101 |
102 | ## Q17: RuntimeError: The expanded size of the tensor (17280) must match the existing size (0) at non-singleton dimension 1. Target sizes: [1, 17280]. Tensor sizes: [0]
103 |
104 | wavs16k文件夹下,找到文件大小显著比其他都小的一些音频文件,删掉,点击训练模型,就不会报错了,不过由于一键流程中断了你训练完模型还要点训练索引。
105 |
106 | ## Q18: RuntimeError: The size of tensor a (24) must match the size of tensor b (16) at non-singleton dimension 2
107 |
108 | 不要中途变更采样率继续训练。如果一定要变更,应更换实验名从头训练。当然你也可以把上次提取的音高和特征(0/1/2/2b folders)拷贝过去加速训练流程。
109 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/nets_537227KB.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.nn.functional as F
4 | from torch import nn
5 |
6 | from . import layers_537238KB as layers
7 |
8 |
9 | class BaseASPPNet(nn.Module):
10 | def __init__(self, nin, ch, dilations=(4, 8, 16)):
11 | super(BaseASPPNet, self).__init__()
12 | self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
13 | self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
14 | self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
15 | self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
16 |
17 | self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
18 |
19 | self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
20 | self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
21 | self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
22 | self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
23 |
24 | def __call__(self, x):
25 | h, e1 = self.enc1(x)
26 | h, e2 = self.enc2(h)
27 | h, e3 = self.enc3(h)
28 | h, e4 = self.enc4(h)
29 |
30 | h = self.aspp(h)
31 |
32 | h = self.dec4(h, e4)
33 | h = self.dec3(h, e3)
34 | h = self.dec2(h, e2)
35 | h = self.dec1(h, e1)
36 |
37 | return h
38 |
39 |
40 | class CascadedASPPNet(nn.Module):
41 | def __init__(self, n_fft):
42 | super(CascadedASPPNet, self).__init__()
43 | self.stg1_low_band_net = BaseASPPNet(2, 64)
44 | self.stg1_high_band_net = BaseASPPNet(2, 64)
45 |
46 | self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
47 | self.stg2_full_band_net = BaseASPPNet(32, 64)
48 |
49 | self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
50 | self.stg3_full_band_net = BaseASPPNet(64, 128)
51 |
52 | self.out = nn.Conv2d(128, 2, 1, bias=False)
53 | self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
54 | self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
55 |
56 | self.max_bin = n_fft // 2
57 | self.output_bin = n_fft // 2 + 1
58 |
59 | self.offset = 128
60 |
61 | def forward(self, x, aggressiveness=None):
62 | mix = x.detach()
63 | x = x.clone()
64 |
65 | x = x[:, :, : self.max_bin]
66 |
67 | bandw = x.size()[2] // 2
68 | aux1 = torch.cat(
69 | [
70 | self.stg1_low_band_net(x[:, :, :bandw]),
71 | self.stg1_high_band_net(x[:, :, bandw:]),
72 | ],
73 | dim=2,
74 | )
75 |
76 | h = torch.cat([x, aux1], dim=1)
77 | aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
78 |
79 | h = torch.cat([x, aux1, aux2], dim=1)
80 | h = self.stg3_full_band_net(self.stg3_bridge(h))
81 |
82 | mask = torch.sigmoid(self.out(h))
83 | mask = F.pad(
84 | input=mask,
85 | pad=(0, 0, 0, self.output_bin - mask.size()[2]),
86 | mode="replicate",
87 | )
88 |
89 | if self.training:
90 | aux1 = torch.sigmoid(self.aux1_out(aux1))
91 | aux1 = F.pad(
92 | input=aux1,
93 | pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
94 | mode="replicate",
95 | )
96 | aux2 = torch.sigmoid(self.aux2_out(aux2))
97 | aux2 = F.pad(
98 | input=aux2,
99 | pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
100 | mode="replicate",
101 | )
102 | return mask * mix, aux1 * mix, aux2 * mix
103 | else:
104 | if aggressiveness:
105 | mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
106 | mask[:, :, : aggressiveness["split_bin"]],
107 | 1 + aggressiveness["value"] / 3,
108 | )
109 | mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
110 | mask[:, :, aggressiveness["split_bin"] :],
111 | 1 + aggressiveness["value"],
112 | )
113 |
114 | return mask * mix
115 |
116 | def predict(self, x_mag, aggressiveness=None):
117 | h = self.forward(x_mag, aggressiveness)
118 |
119 | if self.offset > 0:
120 | h = h[:, :, :, self.offset : -self.offset]
121 | assert h.size()[3] > 0
122 |
123 | return h
124 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/nets_537238KB.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.nn.functional as F
4 | from torch import nn
5 |
6 | from . import layers_537238KB as layers
7 |
8 |
9 | class BaseASPPNet(nn.Module):
10 | def __init__(self, nin, ch, dilations=(4, 8, 16)):
11 | super(BaseASPPNet, self).__init__()
12 | self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
13 | self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
14 | self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
15 | self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
16 |
17 | self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
18 |
19 | self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
20 | self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
21 | self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
22 | self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
23 |
24 | def __call__(self, x):
25 | h, e1 = self.enc1(x)
26 | h, e2 = self.enc2(h)
27 | h, e3 = self.enc3(h)
28 | h, e4 = self.enc4(h)
29 |
30 | h = self.aspp(h)
31 |
32 | h = self.dec4(h, e4)
33 | h = self.dec3(h, e3)
34 | h = self.dec2(h, e2)
35 | h = self.dec1(h, e1)
36 |
37 | return h
38 |
39 |
40 | class CascadedASPPNet(nn.Module):
41 | def __init__(self, n_fft):
42 | super(CascadedASPPNet, self).__init__()
43 | self.stg1_low_band_net = BaseASPPNet(2, 64)
44 | self.stg1_high_band_net = BaseASPPNet(2, 64)
45 |
46 | self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
47 | self.stg2_full_band_net = BaseASPPNet(32, 64)
48 |
49 | self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
50 | self.stg3_full_band_net = BaseASPPNet(64, 128)
51 |
52 | self.out = nn.Conv2d(128, 2, 1, bias=False)
53 | self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
54 | self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
55 |
56 | self.max_bin = n_fft // 2
57 | self.output_bin = n_fft // 2 + 1
58 |
59 | self.offset = 128
60 |
61 | def forward(self, x, aggressiveness=None):
62 | mix = x.detach()
63 | x = x.clone()
64 |
65 | x = x[:, :, : self.max_bin]
66 |
67 | bandw = x.size()[2] // 2
68 | aux1 = torch.cat(
69 | [
70 | self.stg1_low_band_net(x[:, :, :bandw]),
71 | self.stg1_high_band_net(x[:, :, bandw:]),
72 | ],
73 | dim=2,
74 | )
75 |
76 | h = torch.cat([x, aux1], dim=1)
77 | aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
78 |
79 | h = torch.cat([x, aux1, aux2], dim=1)
80 | h = self.stg3_full_band_net(self.stg3_bridge(h))
81 |
82 | mask = torch.sigmoid(self.out(h))
83 | mask = F.pad(
84 | input=mask,
85 | pad=(0, 0, 0, self.output_bin - mask.size()[2]),
86 | mode="replicate",
87 | )
88 |
89 | if self.training:
90 | aux1 = torch.sigmoid(self.aux1_out(aux1))
91 | aux1 = F.pad(
92 | input=aux1,
93 | pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
94 | mode="replicate",
95 | )
96 | aux2 = torch.sigmoid(self.aux2_out(aux2))
97 | aux2 = F.pad(
98 | input=aux2,
99 | pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
100 | mode="replicate",
101 | )
102 | return mask * mix, aux1 * mix, aux2 * mix
103 | else:
104 | if aggressiveness:
105 | mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
106 | mask[:, :, : aggressiveness["split_bin"]],
107 | 1 + aggressiveness["value"] / 3,
108 | )
109 | mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
110 | mask[:, :, aggressiveness["split_bin"] :],
111 | 1 + aggressiveness["value"],
112 | )
113 |
114 | return mask * mix
115 |
116 | def predict(self, x_mag, aggressiveness=None):
117 | h = self.forward(x_mag, aggressiveness)
118 |
119 | if self.offset > 0:
120 | h = h[:, :, :, self.offset : -self.offset]
121 | assert h.size()[3] > 0
122 |
123 | return h
124 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/layers_new.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import spec_utils
6 |
7 |
8 | class Conv2DBNActiv(nn.Module):
9 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10 | super(Conv2DBNActiv, self).__init__()
11 | self.conv = nn.Sequential(
12 | nn.Conv2d(
13 | nin,
14 | nout,
15 | kernel_size=ksize,
16 | stride=stride,
17 | padding=pad,
18 | dilation=dilation,
19 | bias=False,
20 | ),
21 | nn.BatchNorm2d(nout),
22 | activ(),
23 | )
24 |
25 | def __call__(self, x):
26 | return self.conv(x)
27 |
28 |
29 | class Encoder(nn.Module):
30 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
31 | super(Encoder, self).__init__()
32 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
33 | self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
34 |
35 | def __call__(self, x):
36 | h = self.conv1(x)
37 | h = self.conv2(h)
38 |
39 | return h
40 |
41 |
42 | class Decoder(nn.Module):
43 | def __init__(
44 | self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
45 | ):
46 | super(Decoder, self).__init__()
47 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
48 | # self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
49 | self.dropout = nn.Dropout2d(0.1) if dropout else None
50 |
51 | def __call__(self, x, skip=None):
52 | x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
53 |
54 | if skip is not None:
55 | skip = spec_utils.crop_center(skip, x)
56 | x = torch.cat([x, skip], dim=1)
57 |
58 | h = self.conv1(x)
59 | # h = self.conv2(h)
60 |
61 | if self.dropout is not None:
62 | h = self.dropout(h)
63 |
64 | return h
65 |
66 |
67 | class ASPPModule(nn.Module):
68 | def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
69 | super(ASPPModule, self).__init__()
70 | self.conv1 = nn.Sequential(
71 | nn.AdaptiveAvgPool2d((1, None)),
72 | Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
73 | )
74 | self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
75 | self.conv3 = Conv2DBNActiv(
76 | nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
77 | )
78 | self.conv4 = Conv2DBNActiv(
79 | nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
80 | )
81 | self.conv5 = Conv2DBNActiv(
82 | nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
83 | )
84 | self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
85 | self.dropout = nn.Dropout2d(0.1) if dropout else None
86 |
87 | def forward(self, x):
88 | _, _, h, w = x.size()
89 | feat1 = F.interpolate(
90 | self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
91 | )
92 | feat2 = self.conv2(x)
93 | feat3 = self.conv3(x)
94 | feat4 = self.conv4(x)
95 | feat5 = self.conv5(x)
96 | out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
97 | out = self.bottleneck(out)
98 |
99 | if self.dropout is not None:
100 | out = self.dropout(out)
101 |
102 | return out
103 |
104 |
105 | class LSTMModule(nn.Module):
106 | def __init__(self, nin_conv, nin_lstm, nout_lstm):
107 | super(LSTMModule, self).__init__()
108 | self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
109 | self.lstm = nn.LSTM(
110 | input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True
111 | )
112 | self.dense = nn.Sequential(
113 | nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
114 | )
115 |
116 | def forward(self, x):
117 | N, _, nbins, nframes = x.size()
118 | h = self.conv(x)[:, 0] # N, nbins, nframes
119 | h = h.permute(2, 0, 1) # nframes, N, nbins
120 | h, _ = self.lstm(h)
121 | h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
122 | h = h.reshape(nframes, N, 1, nbins)
123 | h = h.permute(1, 2, 3, 0)
124 |
125 | return h
126 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/layers_33966KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import spec_utils
6 |
7 |
8 | class Conv2DBNActiv(nn.Module):
9 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10 | super(Conv2DBNActiv, self).__init__()
11 | self.conv = nn.Sequential(
12 | nn.Conv2d(
13 | nin,
14 | nout,
15 | kernel_size=ksize,
16 | stride=stride,
17 | padding=pad,
18 | dilation=dilation,
19 | bias=False,
20 | ),
21 | nn.BatchNorm2d(nout),
22 | activ(),
23 | )
24 |
25 | def __call__(self, x):
26 | return self.conv(x)
27 |
28 |
29 | class SeperableConv2DBNActiv(nn.Module):
30 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31 | super(SeperableConv2DBNActiv, self).__init__()
32 | self.conv = nn.Sequential(
33 | nn.Conv2d(
34 | nin,
35 | nin,
36 | kernel_size=ksize,
37 | stride=stride,
38 | padding=pad,
39 | dilation=dilation,
40 | groups=nin,
41 | bias=False,
42 | ),
43 | nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44 | nn.BatchNorm2d(nout),
45 | activ(),
46 | )
47 |
48 | def __call__(self, x):
49 | return self.conv(x)
50 |
51 |
52 | class Encoder(nn.Module):
53 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54 | super(Encoder, self).__init__()
55 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56 | self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57 |
58 | def __call__(self, x):
59 | skip = self.conv1(x)
60 | h = self.conv2(skip)
61 |
62 | return h, skip
63 |
64 |
65 | class Decoder(nn.Module):
66 | def __init__(
67 | self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68 | ):
69 | super(Decoder, self).__init__()
70 | self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71 | self.dropout = nn.Dropout2d(0.1) if dropout else None
72 |
73 | def __call__(self, x, skip=None):
74 | x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75 | if skip is not None:
76 | skip = spec_utils.crop_center(skip, x)
77 | x = torch.cat([x, skip], dim=1)
78 | h = self.conv(x)
79 |
80 | if self.dropout is not None:
81 | h = self.dropout(h)
82 |
83 | return h
84 |
85 |
86 | class ASPPModule(nn.Module):
87 | def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
88 | super(ASPPModule, self).__init__()
89 | self.conv1 = nn.Sequential(
90 | nn.AdaptiveAvgPool2d((1, None)),
91 | Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92 | )
93 | self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94 | self.conv3 = SeperableConv2DBNActiv(
95 | nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96 | )
97 | self.conv4 = SeperableConv2DBNActiv(
98 | nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99 | )
100 | self.conv5 = SeperableConv2DBNActiv(
101 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102 | )
103 | self.conv6 = SeperableConv2DBNActiv(
104 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
105 | )
106 | self.conv7 = SeperableConv2DBNActiv(
107 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
108 | )
109 | self.bottleneck = nn.Sequential(
110 | Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
111 | )
112 |
113 | def forward(self, x):
114 | _, _, h, w = x.size()
115 | feat1 = F.interpolate(
116 | self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
117 | )
118 | feat2 = self.conv2(x)
119 | feat3 = self.conv3(x)
120 | feat4 = self.conv4(x)
121 | feat5 = self.conv5(x)
122 | feat6 = self.conv6(x)
123 | feat7 = self.conv7(x)
124 | out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
125 | bottle = self.bottleneck(out)
126 | return bottle
127 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/layers_537227KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import spec_utils
6 |
7 |
8 | class Conv2DBNActiv(nn.Module):
9 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10 | super(Conv2DBNActiv, self).__init__()
11 | self.conv = nn.Sequential(
12 | nn.Conv2d(
13 | nin,
14 | nout,
15 | kernel_size=ksize,
16 | stride=stride,
17 | padding=pad,
18 | dilation=dilation,
19 | bias=False,
20 | ),
21 | nn.BatchNorm2d(nout),
22 | activ(),
23 | )
24 |
25 | def __call__(self, x):
26 | return self.conv(x)
27 |
28 |
29 | class SeperableConv2DBNActiv(nn.Module):
30 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31 | super(SeperableConv2DBNActiv, self).__init__()
32 | self.conv = nn.Sequential(
33 | nn.Conv2d(
34 | nin,
35 | nin,
36 | kernel_size=ksize,
37 | stride=stride,
38 | padding=pad,
39 | dilation=dilation,
40 | groups=nin,
41 | bias=False,
42 | ),
43 | nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44 | nn.BatchNorm2d(nout),
45 | activ(),
46 | )
47 |
48 | def __call__(self, x):
49 | return self.conv(x)
50 |
51 |
52 | class Encoder(nn.Module):
53 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54 | super(Encoder, self).__init__()
55 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56 | self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57 |
58 | def __call__(self, x):
59 | skip = self.conv1(x)
60 | h = self.conv2(skip)
61 |
62 | return h, skip
63 |
64 |
65 | class Decoder(nn.Module):
66 | def __init__(
67 | self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68 | ):
69 | super(Decoder, self).__init__()
70 | self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71 | self.dropout = nn.Dropout2d(0.1) if dropout else None
72 |
73 | def __call__(self, x, skip=None):
74 | x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75 | if skip is not None:
76 | skip = spec_utils.crop_center(skip, x)
77 | x = torch.cat([x, skip], dim=1)
78 | h = self.conv(x)
79 |
80 | if self.dropout is not None:
81 | h = self.dropout(h)
82 |
83 | return h
84 |
85 |
86 | class ASPPModule(nn.Module):
87 | def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
88 | super(ASPPModule, self).__init__()
89 | self.conv1 = nn.Sequential(
90 | nn.AdaptiveAvgPool2d((1, None)),
91 | Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92 | )
93 | self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94 | self.conv3 = SeperableConv2DBNActiv(
95 | nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96 | )
97 | self.conv4 = SeperableConv2DBNActiv(
98 | nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99 | )
100 | self.conv5 = SeperableConv2DBNActiv(
101 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102 | )
103 | self.conv6 = SeperableConv2DBNActiv(
104 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
105 | )
106 | self.conv7 = SeperableConv2DBNActiv(
107 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
108 | )
109 | self.bottleneck = nn.Sequential(
110 | Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
111 | )
112 |
113 | def forward(self, x):
114 | _, _, h, w = x.size()
115 | feat1 = F.interpolate(
116 | self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
117 | )
118 | feat2 = self.conv2(x)
119 | feat3 = self.conv3(x)
120 | feat4 = self.conv4(x)
121 | feat5 = self.conv5(x)
122 | feat6 = self.conv6(x)
123 | feat7 = self.conv7(x)
124 | out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
125 | bottle = self.bottleneck(out)
126 | return bottle
127 |
--------------------------------------------------------------------------------
/infer/lib/uvr5_pack/lib_v5/layers_537238KB.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from torch import nn
4 |
5 | from . import spec_utils
6 |
7 |
8 | class Conv2DBNActiv(nn.Module):
9 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10 | super(Conv2DBNActiv, self).__init__()
11 | self.conv = nn.Sequential(
12 | nn.Conv2d(
13 | nin,
14 | nout,
15 | kernel_size=ksize,
16 | stride=stride,
17 | padding=pad,
18 | dilation=dilation,
19 | bias=False,
20 | ),
21 | nn.BatchNorm2d(nout),
22 | activ(),
23 | )
24 |
25 | def __call__(self, x):
26 | return self.conv(x)
27 |
28 |
29 | class SeperableConv2DBNActiv(nn.Module):
30 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31 | super(SeperableConv2DBNActiv, self).__init__()
32 | self.conv = nn.Sequential(
33 | nn.Conv2d(
34 | nin,
35 | nin,
36 | kernel_size=ksize,
37 | stride=stride,
38 | padding=pad,
39 | dilation=dilation,
40 | groups=nin,
41 | bias=False,
42 | ),
43 | nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44 | nn.BatchNorm2d(nout),
45 | activ(),
46 | )
47 |
48 | def __call__(self, x):
49 | return self.conv(x)
50 |
51 |
52 | class Encoder(nn.Module):
53 | def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54 | super(Encoder, self).__init__()
55 | self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56 | self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57 |
58 | def __call__(self, x):
59 | skip = self.conv1(x)
60 | h = self.conv2(skip)
61 |
62 | return h, skip
63 |
64 |
65 | class Decoder(nn.Module):
66 | def __init__(
67 | self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68 | ):
69 | super(Decoder, self).__init__()
70 | self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71 | self.dropout = nn.Dropout2d(0.1) if dropout else None
72 |
73 | def __call__(self, x, skip=None):
74 | x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75 | if skip is not None:
76 | skip = spec_utils.crop_center(skip, x)
77 | x = torch.cat([x, skip], dim=1)
78 | h = self.conv(x)
79 |
80 | if self.dropout is not None:
81 | h = self.dropout(h)
82 |
83 | return h
84 |
85 |
86 | class ASPPModule(nn.Module):
87 | def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
88 | super(ASPPModule, self).__init__()
89 | self.conv1 = nn.Sequential(
90 | nn.AdaptiveAvgPool2d((1, None)),
91 | Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92 | )
93 | self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94 | self.conv3 = SeperableConv2DBNActiv(
95 | nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96 | )
97 | self.conv4 = SeperableConv2DBNActiv(
98 | nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99 | )
100 | self.conv5 = SeperableConv2DBNActiv(
101 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102 | )
103 | self.conv6 = SeperableConv2DBNActiv(
104 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
105 | )
106 | self.conv7 = SeperableConv2DBNActiv(
107 | nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
108 | )
109 | self.bottleneck = nn.Sequential(
110 | Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
111 | )
112 |
113 | def forward(self, x):
114 | _, _, h, w = x.size()
115 | feat1 = F.interpolate(
116 | self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
117 | )
118 | feat2 = self.conv2(x)
119 | feat3 = self.conv3(x)
120 | feat4 = self.conv4(x)
121 | feat5 = self.conv5(x)
122 | feat6 = self.conv6(x)
123 | feat7 = self.conv7(x)
124 | out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
125 | bottle = self.bottleneck(out)
126 | return bottle
127 |
--------------------------------------------------------------------------------
/docs/kr/README.ko.han.md:
--------------------------------------------------------------------------------
1 |