├── .gitignore ├── ACEFormat.cls ├── ACEFormat.pdf ├── ACEFormat.tex ├── LICENSE ├── README.md └── src ├── ContinuousEnergyNeutron.tex ├── ContinuousEnergyPhotoatomic.tex ├── ContinuousEnergyPhoton.tex ├── Dosimetry.tex ├── Header.tex ├── Introduction.tex ├── References.bib ├── ThermalScattering.tex ├── UniqueIdentifier.tex ├── backmatter.tex ├── frontmatter.tex └── mainmatter.tex /.gitignore: -------------------------------------------------------------------------------- 1 | *.aux 2 | *.fls 3 | *.fdb_latexmk 4 | *.log 5 | *.out 6 | _minted* 7 | *.toc 8 | *.tdo 9 | *.pyg 10 | *.lot 11 | *.bbl 12 | *.bcf 13 | *.blg 14 | *.run.xml 15 | *.synctex.gz 16 | -------------------------------------------------------------------------------- /ACEFormat.cls: -------------------------------------------------------------------------------- 1 | % ============================================================================== 2 | % file: LabNotebook.cls 3 | % author: Jeremy Lloyd Conlin (jlconlin@lanl.gov) 4 | % desc: Provides some custom environments used in the ACE Format specification 5 | % This is really to clean up the main tex file and keep it simpler. 6 | % ============================================================================== 7 | \NeedsTeXFormat{LaTeX2e} 8 | \ProvidesClass{ACEFormat}[2017/12/13 v1.0 ACE Format] 9 | 10 | \DeclareOption*{\PassOptionsToClass{\CurrentOption}{scrartcl}} 11 | \ProcessOptions\relax 12 | 13 | \LoadClass{scrartcl} 14 | \RequirePackage{array} 15 | \RequirePackage{xparse} 16 | \RequirePackage{amsmath} 17 | \RequirePackage{collcell} 18 | 19 | \addtokomafont{section}{\clearpage} 20 | 21 | \DeclareNewSectionCommand[ 22 | style=section, 23 | counterwithin=subsubsection, 24 | font=\normalsize, 25 | afterskip=1.5ex plus .2ex, 26 | beforeskip=-3.25ex plus -1ex minus -.2ex, 27 | indent=0pt, 28 | level=4, 29 | tocstyle=section, 30 | toclevel=4, 31 | tocindent=10em, 32 | tocnumwidth=5em 33 | ]{subsubsubsection} 34 | \setcounter{secnumdepth}{\subsubsubsectionnumdepth} 35 | \setcounter{tocdepth}{\subsubsubsectiontocdepth} 36 | 37 | \RedeclareSectionCommand[ 38 | level=5, 39 | counterwithin=subsubsubsection, 40 | toclevel=5, 41 | tocindent=12em, 42 | tocnumwidth=6em 43 | ]{paragraph} 44 | \RedeclareSectionCommand[ 45 | level=6, 46 | toclevel=6, 47 | tocindent=14em, 48 | tocnumwidth=7em 49 | ]{subparagraph} 50 | 51 | \DeclareMathOperator\erf{erf} 52 | 53 | \newcommand{\MT}{\textsf{MT}} 54 | \newcommand{\MF}{\textsf{MF}} 55 | 56 | \newcommand{\var}[1]{\textsf{#1}} 57 | \NewDocumentCommand\LOC{mG{}}{\var{LOC#1}\textsubscript{#2}} 58 | 59 | \newcommand{\aceArray}[1]{\textsf{#1}} 60 | \newcommand{\IZAW}{\aceArray{IZAW}} 61 | \newcommand{\NXS}{\aceArray{NXS}} 62 | \newcommand{\nxs}[1]{\texttt{NXS(#1)}} 63 | \newcommand{\JXS}{\aceArray{JXS}} 64 | \newcommand{\jxs}[1]{\texttt{JXS(#1)}} 65 | \newcommand{\XSS}{\aceArray{XSS}} 66 | \newcommand{\xss}[1]{\texttt{XSS(#1)}} 67 | 68 | \newcommand{\Block}[1]{\hyperref[sec:#1Block]{\textsf{#1} Block}} 69 | \newcommand{\startblock}[1]{\ensuremath{S_{\mathsf{#1}}}} 70 | \newcommand{\law}[1]{\textsf{law=#1}} 71 | 72 | \newcommand{\LAB}{Lab} 73 | \newcommand{\CM}{center-of-mass} 74 | 75 | \newcommand{\PDF}{\ensuremath{\mathrm{PDF}}} 76 | \newcommand{\CDF}{\ensuremath{\mathrm{CDF}}} 77 | 78 | \newcommand{\ACE}{ACE} 79 | \newcommand{\SaB}{\ensuremath{S(\alpha, \beta)}} 80 | \newcommand{\ZA}{ {\sffamily ZA}} 81 | \newcommand{\ZAID}{{\sffamily ZAID}} 82 | \newcommand{\SZAID}{{\sffamily SZAID}} 83 | \newcommand{\Type}[1]{Type #1} 84 | \newcommand{\nubar}{\ensuremath{\overline{\nu}}} 85 | 86 | \newcommand{\Sectionref}[1]{Section~\ref{#1}} 87 | \newcommand{\Figureref}[1]{Figure~\ref{#1}} 88 | \newcommand{\Tableref}[1]{Table~\ref{#1}} 89 | \newcommand{\Equationref}[1]{Equation~\ref{#1}} 90 | 91 | %------- table environments --------- 92 | \newenvironment{NXSTable}[1]{% 93 | \begin{XXSTable}{\NXS}{#1} 94 | } 95 | {\end{XXSTable}} 96 | 97 | \newenvironment{JXSTable}[1]{% 98 | \begin{XXSTable}{\JXS}{#1} 99 | } 100 | {\end{XXSTable}} 101 | 102 | \newenvironment{XXSTable}[2]{% 103 | \begin{longtable}{rll} 104 | \caption{#1 array element definitions for #1 \ACE\ Table.} \\[1.5ex] 105 | \toprule 106 | \ifthenelse{\equal{#1}{\JXS}}% 107 | {Element & Name & Location Description \\} 108 | {Element & Name & Description \\} 109 | \midrule 110 | \endfirsthead 111 | \caption{#1 (continued)} \\[1.5ex] 112 | \toprule 113 | \ifthenelse{\equal{#1}{\JXS}}% 114 | {Element & Name & Location Description \\} 115 | {Element & Name & Description \\} 116 | \midrule 117 | \endhead 118 | \bottomrule 119 | \multicolumn{3}{r}{\emph{Continued on next page}} 120 | \endfoot 121 | \bottomrule% 122 | \ifcsempty{TPTL@body}{}{%test 123 | \insertTableNotes 124 | \csgdef{TPTL@body}{}% delete the body 125 | } 126 | \endlastfoot 127 | } 128 | {\end{longtable}} 129 | 130 | \newenvironment{BlockTable}[2][]{% 131 | \begin{XSSTable}{\textsf{#2} Block#1} 132 | } 133 | {\end{XSSTable}} 134 | 135 | \newcolumntype{J}{>{\arraybackslash}m{0.25\linewidth}} 136 | \newcolumntype{K}{>{\arraybackslash}m{0.35\linewidth}} 137 | \newcolumntype{L}{>{\arraybackslash}m{0.5\linewidth}} 138 | \newcolumntype{M}{>{\arraybackslash}m{0.65\linewidth}} 139 | \newcolumntype{V}{>{\collectcell\var}{l}<{\endcollectcell}} 140 | 141 | \newenvironment{XSSTable}[1]{% 142 | \begin{longtable}{llL} 143 | \caption{#1.} \\[1.5ex] 144 | \toprule 145 | Location in \XSS & Parameter & Description \\ 146 | \midrule 147 | \endfirsthead 148 | \caption{#1 (continued)} \\[1.5ex] 149 | \toprule 150 | Location in \XSS\ & Parameter & Description \\ 151 | \midrule 152 | \endhead 153 | \bottomrule 154 | \multicolumn{3}{r}{\emph{Continued on next page}} 155 | \endfoot 156 | \bottomrule 157 | \ifcsempty{TPTL@body}{}{%test 158 | \insertTableNotes 159 | \csgdef{TPTL@body}{}% delete the body 160 | } 161 | \endlastfoot 162 | } 163 | {\end{longtable}} 164 | 165 | \newenvironment{LAWTable}[1]{% 166 | \begin{longtable}{llL} 167 | \caption{#1.} \\[1.5ex] 168 | \toprule 169 | Location & Parameter & Description \\ 170 | \midrule 171 | \endfirsthead 172 | \caption{#1 (continued)} \\[1.5ex] 173 | \toprule 174 | Location\ & Parameter & Description \\ 175 | \midrule 176 | \endhead 177 | \bottomrule 178 | \multicolumn{3}{r}{\emph{Continued on next page}} 179 | \endfoot 180 | \bottomrule 181 | \ifcsempty{TPTL@body}{}{%test 182 | \insertTableNotes 183 | \csgdef{TPTL@body}{}% delete the body 184 | } 185 | \endlastfoot 186 | } 187 | {\end{longtable}} 188 | 189 | \newenvironment{LOCTable}[1]{% 190 | \begin{longtable}{lM} 191 | \caption{#1.} \\[1.5ex] 192 | \toprule 193 | Location in \XSS & Description \\ 194 | \midrule 195 | \endfirsthead 196 | \caption{#1 (continued)} \\[1.5ex] 197 | \toprule 198 | Location in \XSS\ & Description \\ 199 | \midrule 200 | \endhead 201 | \bottomrule 202 | \multicolumn{2}{r}{\emph{Continued on next page}} 203 | \endfoot 204 | \bottomrule 205 | \ifcsempty{TPTL@body}{}{%test 206 | \insertTableNotes 207 | \csgdef{TPTL@body}{}% delete the body 208 | } 209 | \endlastfoot 210 | } 211 | {\end{longtable}} 212 | 213 | -------------------------------------------------------------------------------- /ACEFormat.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NuclearData/ACEFormat/52308ff79c49e9fbb23425b659960429aa9280d2/ACEFormat.pdf -------------------------------------------------------------------------------- /ACEFormat.tex: -------------------------------------------------------------------------------- 1 | \documentclass[11pt,paper=letter]{ACEFormat} 2 | \usepackage[T1]{fontenc} 3 | \usepackage[svgnames]{xcolor} 4 | \usepackage[hmargin=1in, vmargin=1.5in]{geometry} 5 | \usepackage{authblk} 6 | \usepackage{minted} 7 | \usepackage{enumitem} 8 | \usepackage{booktabs} 9 | \usepackage{todonotes} 10 | \usepackage{siunitx} 11 | \usepackage{fancyvrb} 12 | \usepackage{isotope} 13 | \usepackage{longtable} 14 | \usepackage[referable]{threeparttablex} 15 | \usepackage{etoolbox} 16 | \usepackage[backend=biber,defernumbers=false,sorting=none, minbibnames=5, maxbibnames=10,backref=true]{biblatex} 17 | \usepackage{nth} 18 | \usepackage{multirow} 19 | \usepackage{float} 20 | \usepackage{fancyhdr} 21 | 22 | \usepackage[colorlinks=true,citecolor=blue,linkcolor=RoyalBlue]{hyperref} 23 | \usepackage{footnotebackref} 24 | 25 | \pagestyle{fancy} 26 | \renewcommand{\sectionmark}[1]{% 27 | \markboth{\thesection. #1}{}% 28 | } 29 | \fancypagestyle{front}{% 30 | \fancyhead[L,C]{}% 31 | } 32 | \fancypagestyle{plain}{% 33 | \renewcommand{\headrulewidth}{0pt} 34 | \fancyhead{}% 35 | \fancyfoot{} 36 | } 37 | 38 | \title{A Compact ENDF (ACE) Format Specification} 39 | \date{} 40 | 41 | \author{Jeremy Lloyd Conlin (editor)} 42 | \affil{\textsl{Los Alamos National Laboratory}} 43 | 44 | \setlist{nosep} 45 | \setlist[itemize,1]{label=--} 46 | \setlist[description]{labelindent=1em} 47 | 48 | \addbibresource{./src/References.bib} 49 | 50 | \begin{document} 51 | \input{src/frontmatter} 52 | \input{src/mainmatter} 53 | \input{src/Introduction} 54 | \input{src/Header} 55 | \input{src/UniqueIdentifier} 56 | \input{src/ContinuousEnergyNeutron} 57 | \input{src/Dosimetry} 58 | \input{src/ThermalScattering} 59 | \input{src/ContinuousEnergyPhoton} 60 | \input{src/backmatter} 61 | 62 | \end{document} 63 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Copyright (c) 2018, Los Alamos National Security, LLC. 2 | All rights reserved. 3 | 4 | Copyright 2018. Los Alamos National Security, LLC. This software was produced under U.S. Government contract DE-AC52-06NA25396 for Los Alamos National Laboratory (LANL), which is operated by Los Alamos National Security, LLC for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly marked, so as not to confuse it with the version available from LANL. 5 | 6 | Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 7 | 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 8 | 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 9 | 3. Neither the name of Los Alamos National Security, LLC, Los Alamos National Laboratory, LANL, the U.S. Government, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. 10 | 11 | THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOS ALAMOS NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 12 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # ACE—A Compact ENDF—Format Specification 2 | This repository contains the specification for the ACE format—as well as a few supporting formats. 3 | 4 | The information contained in this document was formerly Appendix F of the MCNP5 manual, but has been put in its own document to enable wider distribution. Currently the specification only contains a portion of the full specification. More will be added in time. 5 | 6 | The document itself is [ACEFormat.pdf](ACEFormat.pdf) and can be downloaded/viewed without having to clone or download the entire repository. 7 | 8 | Please note: **this document is not complete at this time.** 9 | 10 | ## Issues 11 | If you discover problems with the specification, please [file an issue](https://github.com/NuclearData/ACEFormat/issues) on GitHub. This will allow those involved to investigate and keep a record of what has been done. Note that we are not modifying or extending the format at this time; we are only looking for bugs in the format specification. 12 | 13 | # License 14 | This format is covered under the license agreement contained in the [LICENSE](LICENSE) file. 15 | -------------------------------------------------------------------------------- /src/ContinuousEnergyNeutron.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \section{Continuous-Energy and Discrete Neutron Transport Tables}\label{sec:ContinuousEnergyNeutron} 3 | The format of individual blocks found on neutron transport tables is identical for continuous-energy and discrete-reaction \ACE\ Tables; the format for both are described in this section. The blocks of data are: 4 | \begin{enumerate} 5 | \item \textbf{\Block{ESZ}}---contains the main energy grid for the Table and the total, absorption, and elastic cross sections as well as the average heating numbers. The \Block{ESZ} always exists. See \Sectionref{sec:ESZBlock}. 6 | \item \textbf{\Block{NU}}---contains prompt, delayed and/or total $\overline{\nu}$ as a function of incident neutron energy. The \Block{NU} exists only for fissionable isotopes; that is, if \jxs{2}$\neq0$. See \Sectionref{sec:NUBlock}. 7 | \item \textbf{\Block{MTR}}---contains a list of ENDF MT numbers for all neutron reactions other than elastic scattering. The \Block{MTR} exists for all isotopes that have reactions other than elastic scattering; that is, all isotopes with \nxs{4}$\neq0$. See \Sectionref{sec:MTRBlock}. 8 | \item \textbf{\Block{LQR}}---contains a list of kinematic $Q$-values for all neutron reactions other than elastic scattering. The \Block{LQR} exists if \nxs{4}$\neq0$. See \Sectionref{sec:LQRBlock}. 9 | \item \textbf{\Block{TYR}}---contains information about the type of reaction for all neutron reactions other than elastic scattering. Information for each reaction includes the number of secondary neutrons and whether secondary neutron angular distributions are in the laboratory or \CM system. The \Block{TYR} exists if \nxs{4}$\neq0$. See \Sectionref{sec:TYRBlock}. 10 | \item \textbf{\Block{LSIG}}---contains a list of cross section locators for all neutron reacitons other than elastic scattering. The \Block{LSIG} exists if \nxs{4}$\neq0$. See \Sectionref{sec:LSIGBlock} 11 | \item \textbf{\Block{SIG}}---contains cross sections for all reactions other than elastic scattering. The \Block{SIG} exists if \nxs{4}$\neq0$. See \Sectionref{sec:SIGBlock}. 12 | \item \textbf{\Block{LAND}}---contains a list of angular-distribution locators for all reactions producing secondary neutrons. The \Block{LAND} always exists. See \Sectionref{sec:LANDBlock}. 13 | \item \textbf{\Block{AND}}---contains list angular distributions for all reactions producing secondary neutrons. The \Block{AND} always exists. See \Sectionref{sec:ANDBlock}. 14 | \item \textbf{\Block{LDLW}}---contains a list of energy distributions for all reactions producing secondary neutrons except for elastic scattering. The \Block{LDLW} exists if \nxs{5}$\neq0$. See \Sectionref{sec:LDLWBlock}. 15 | \item \textbf{\Block{DLW}}---contains energy distributions for all reactions producing secondary neutrons except for elastic scattering. The \Block{DLW} exists if \nxs{5}$\neq0$. See \Sectionref{sec:DLWBlock}. 16 | \item \textbf{\Block{GPD}}---contains the total photon production cross section tabulated on the ESZ energy grid and a $30\times$ matrix of secondary photon energies. The \Block{GPD} exists only for those older evaluations that provide coupled neutron/photon information; that is, if \jxs{12}$\neq0$. See \Sectionref{sec:GPDBlock}. 17 | \item \textbf{\Block{MTRP}}---contains a list of MT numbers for all photon production reactions. The term ``photon production reaction'' is used for any information describing a specific neutron-in, photon-out reaction. The \Block{MTR} exists if \nxs{6}$\neq0$. See \Sectionref{sec:MTRBlock}. 18 | \item \textbf{\Block{LSIGP}}---contains a list of cross section locators for all photon production reactions. The \Block{LSIGP} exists if \nxs{6}$\neq0$. See \Sectionref{sec:LSIGBlock}. 19 | \item \textbf{\Block{SIGP}}---contains cross sections for all photon production reactions. The \Block{SIGP} exists if \nxs{6}$\neq0$. See \Sectionref{sec:SIGPBlock}. 20 | \item \textbf{\Block{LANDP}}---contains a list of angular-distribution locators for all photon production reactions. The \Block{LANDP} exist if \nxs{6}$\neq0$. See \Sectionref{sec:LANDPBlock} 21 | \item \textbf{\Block{ANDP}}---contains photon angular distributions for all photon production reactions. The \Block{ANDP} exists if \nxs{6}$\neq0$. See \Sectionref{sec:ANDPBlock}. 22 | \item \textbf{\Block{LDLWP}}---contains a list of energy-distribution locators for all photon production reactions. The \Block{LDLWP} exists if \nxs{6}$\neq0$. See \Sectionref{sec:LDLWBlock}. 23 | \item \textbf{\Block{DLWP}}---contains photon energy distributions for all photon production reactions. The \Block{DLWP} exists if \nxs{6}$\neq0$. See \Sectionref{sec:DLWBlock}. 24 | \item \textbf{\Block{YP}}---contains a list of MT identifiers of neutron reaction cross sections required as photon production yield multipliers. The \Block{YP} exists if \nxs{6}$\neq0$. See \Sectionref{sec:YPBlock}. 25 | \item \textbf{\Block{FIS}}---contains the total fission cross section tabulated on the ESZ energy grid. The \Block{FIS} exists if \jxs{21}$\neq0$. See \Sectionref{sec:FISBlock}. 26 | \item \textbf{\Block{UNR}}---contains the unresolved resonance range probability tables. The \Block{UNR} exists if \jxs{23}$\neq0$. See \Sectionref{sec:UNRBlock}. 27 | \item \textbf{\Block{PTYPE}}---contains a list of particle types for which production data will be given. The \Block{PTYPE} exists if \jxs{30}$\neq0$. See \Sectionref{sec:PTYPEBlock}. 28 | \item \textbf{\Block{NTRO}}---contains the number of reactions that produce the corresponding particle type given in the \Block{PTYPE}. The \Block{NTRO} exists if \jxs{31}$\neq0$. See \Sectionref{sec:NTROBlock}. 29 | \item \textbf{\Block{IXS}}---particle production data locators for each particle type given in the \Block{PTYPE}. The \Block{IXS} exists if \jxs{32}$\neq 0$. See \Sectionref{sec:IXSBlock}. 30 | \item \textbf{\Block{HPD}}---total particle production cross section and average heating numbers for the current particle type. The \Block{HPD} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) \neq 0$. See \Sectionref{sec:HPDBlock}. 31 | \item \textbf{\Block{MTRH}}---contains a list of ENDF MT numbers for all reactions that produce the current particle. The \Block{MTR} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 1 \neq 0$. See \Sectionref{sec:MTRHBlock}. 32 | \item \textbf{\Block{TYRH}}---contains the reaction types for all reactions that produce the current particle. The \Block{TYRH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 2 \neq 0$. See \Sectionref{sec:TYRHBlock}. 33 | \item \textbf{\Block{LSIGH}}---contains the cross section locators for all reactions that produce the current particle. The \Block{LSIGH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 3 \neq 0$. See \Sectionref{sec:LSIGHBlock}. 34 | \item \textbf{\Block{SIGH}}---contains the cross section data for all reactions that produce the current particle. The \Block{SIGH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 4 \neq 0$. See \Sectionref{sec:SIGHBlock}. 35 | \item \textbf{\Block{LANDH}}---contains the angular distribution locators for all reactions that produce the current particle. The \Block{LANDH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 5 \neq 0$. See \Sectionref{sec:LANDHBlock}. 36 | \item \textbf{\Block{ANDH}}---contains the angular distribution data for all reactions that produce the current particle. The \Block{ANDH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 6 \neq 0$. See \Sectionref{sec:ANDHBlock}. 37 | \item \textbf{\Block{LDLWH}}---contains the energy distribution locators for all reactions that produce the current particle. The \Block{LDLWH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 7 \neq 0$. See \Sectionref{sec:LDLWHBlock}. 38 | \item \textbf{\Block{DLWH}}---contains the energy distribution data for all reactions that produce the current particle. The \Block{DLWH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 8 \neq 0$. See \Sectionref{sec:DLWHBlock}. 39 | \item \textbf{\Block{YH}}---contains the particle production yield multiplier for all reactions that produce the current particle. The \Block{YH} for a given particle type $i$ exists if $\jxs{32}+10*(i-1) + 9 \neq 0$. See \Sectionref{sec:DLWHBlock}. 40 | \end{enumerate} 41 | 42 | \clearpage 43 | \subsection{\NXS\ Array}\label{sec:NXSContinuousEnergyNeutron} 44 | 45 | \begin{ThreePartTable} 46 | \begin{TableNotes} 47 | \item[$\dagger$] \label{tn:2.0.0} These values were introduced with the new 2.0.0 Header\cite{Conlin:2012Updat-0}. 48 | \item[$\ddagger$] \label{tn:Reserved} These entries are reserved for the use of transport codes (i.e., MCNP). 49 | \end{TableNotes} 50 | \begin{NXSTable}{continuous-energy neutron} 51 | 1 & --- & Length of second block of data (\XSS\ array) \\ 52 | 2 & \var{ZA} & $1000*Z+A$ \\ 53 | 3 & \var{NES} & Number of energies \\ 54 | 4 & \var{NTR} & Number of reactions excluding elastic scattering \\ 55 | 5 & \var{NR} & Number of reactions having secondary neutrons excluding elastic scattering \\ 56 | 6 & \var{NTRP} & Number of photon production reactions \\ 57 | 7 & \var{NTYPE} & Number of particle types for which production data is given \\ 58 | 8 & \var{NPCR} & Number of delayed neutron precurser families \\ 59 | 9 & \var{S} & Excited state\tnotex{tn:2.0.0} \\ 60 | 10 & \var{Z} & Atomic number\tnotex{tn:2.0.0} \\ 61 | 11 & \var{A} & Atomic mass number\tnotex{tn:2.0.0} \\ 62 | & \ldots & \\ 63 | 14 & & Reserved\tnotex{tn:Reserved} \\ 64 | 15 & & Reserved\tnotex{tn:Reserved} \\ 65 | 16 & & Reserved\tnotex{tn:Reserved} 66 | \label{tab:NXSContinuousEnergyNeutron} 67 | \end{NXSTable} 68 | \end{ThreePartTable} 69 | 70 | \clearpage 71 | \subsection{\JXS\ Array}\label{sec:JXSContinuousEnergyNeutron} 72 | \begin{JXSTable}{continuous-energy neutron} 73 | 1 & \var{ESZ} & Energy table \\ 74 | 2 & \var{NU} & Fission $\nu$ data \\ 75 | 3 & \var{MTR} & \texttt{MT} array \\ 76 | 4 & \var{LQR} & $Q$-value array \\ 77 | 5 & \var{TYR} & Reaction type array \\ 78 | 6 & \var{LSIG} & Table of cross section locators \\ 79 | 7 & \var{SIG} & Cross sections \\ 80 | 8 & \var{LAND} & Table of angular distribution locators \\ 81 | 9 & \var{AND} & Angular distributions \\ 82 | 10 & \var{LDLW} & Table of energy distribution locators \\ 83 | 11 & \var{DLW} & Energy distributions \\ 84 | 12 & \var{GPD} & Photon production data \\ 85 | 13 & \var{MTRP} & Photon production \texttt{MT} array \\ 86 | 14 & \var{LSIGP} & Table of photon production cross section locators \\ 87 | 15 & \var{SIGP} & Photon production cross sections \\ 88 | 16 & \var{LANDP} & Table of photon production angular distribution locators \\ 89 | 17 & \var{ANDP} & Photon production angular distributions \\ 90 | 18 & \var{LDLWP} & Table of photon production energy distribution locators \\ 91 | 19 & \var{DLWP} & Photon production energy distributions \\ 92 | 20 & \var{YP} & Table of yield multipliers \\ 93 | 21 & \var{FIS} & Total fission cross section \\ 94 | 22 & \var{END} & Last word of the conventional table (last word of photon production data) \\ 95 | 23 & \var{LUNR} & Probability tables \\ 96 | 24 & \var{DNU} & Delayed $\overline{\nu}$ data \\ 97 | 25 & \var{BDD} & Basic delayed neutron precursor data ($\lambda$'s, probabilities) \\ 98 | 26 & \var{DNEDL} & Table of delayed neutron energy distribution locators \\ 99 | 27 & \var{DNED} & Delayed neutron energy distributions \\ 100 | & \ldots & \\ 101 | 30 & \var{PTYPE} & Particle type array \\ 102 | 31 & \var{NTRO} & Array containing the number of particle production reactions \\ 103 | 32 & \var{NEXT} & Table of particle production locators (IXS array) 104 | \label{tab:JXSContinuousEnergyNeutron} 105 | \end{JXSTable} 106 | 107 | \subsection{Format of Individual Data Blocks} 108 | \subsubsection{\textsf{ESZ} Block}\label{sec:ESZBlock} 109 | 110 | The \Block{ESZ} provides the common incident energy table for all reactions defined in the ACE Table, cross section tables for fundamental cross sections (total, absorption, and elastic scattering) and average heating numbers. The format of the \Block{ESZ} is given in \Tableref{tab:ESZBlock}. The starting index \var{ESZ} for this block is given by \jxs{1}. 111 | 112 | \begin{ThreePartTable} 113 | \begin{TableNotes} 114 | \item[$\dagger$] \label{tn:DisappearanceXS} The disappearance cross section is defined in \cite[Appendix B]{Trkov:2011ENDF--0} as \MT{101} 115 | \end{TableNotes} 116 | \begin{BlockTable}{ESZ} 117 | \startblock{ESZ} & $E(l), l=1,\ldots, N_{E}$ & Energies \\ 118 | \startblock{ESZ} + $N_{E}$ & $\sigma_{t}(l), l=1,\ldots, N_{E}$ & Total cross section \\ 119 | \startblock{ESZ} + $2N_{E}$ & $\sigma_{a}(l), l=1,\ldots, N_{E}$ & Total neutron disappearance cross section\tnotex{tn:DisappearanceXS} \\ 120 | \startblock{ESZ} + $3N_{E}$ & $\sigma_{el}(l), l=1,\ldots, N_{E}$ & Elastic cross section \\ 121 | \startblock{ESZ} + $4N_{E}$ & $H_{ave}(l), l=1,\ldots, N_{E}$ & Average Heating numbers 122 | \label{tab:ESZBlock} 123 | \end{BlockTable} 124 | \begin{tablenotes} 125 | \note \startblock{ESZ} is index of the \XSS\ array where the \Block{ESZ} starts, \jxs{1}, and $N_{E}$ is the number of energy energy points, \nxs{3}. 126 | \end{tablenotes} 127 | \end{ThreePartTable} 128 | 129 | \subsubsection{\textsf{NU} and \textsf{DNU} Blocks}\label{sec:NUBlock}\label{sec:DNUBlock} 130 | 131 | The \Block{NU} is used to specify prompt and/or total \nubar\ and is present only if \jxs{2} > 0. Delayed \nubar\ data is specified in the \Block{DNU} (which is only present if \jxs{24} > 0) but it shares some of the tables defined in this section. 132 | 133 | When it is present, there are two possibilities for the \Block{NU}: 134 | \begin{enumerate} 135 | \item {\bfseries\sffamily Either prompt or total \nubar\ is given (but not both).} (\xss{\jxs{2}} > 0) \\ 136 | A single \nubar\ array is given and it begins at location \xss{KNU} where {\sffamily \var{KNU} = \jxs{2}}. 137 | \item {\bfseries\sffamily Both prompt and total \nubar\ are given.} (\xss{\jxs{2}} < 0). 138 | Two \nubar\ arrays are given, one for prompt \nubar\ and another for total \nubar. The absolute value of \xss{\jxs{2}} is the location of the total \nubar\ array so that the locations for the two \nubar\ arrays are as follows: 139 | \begin{itemize} 140 | \item The prompt \nubar\ array begins at \xss{KNU} where {\sffamily \var{KNU} = \jxs{2} + 1}. 141 | \item The total \nubar\ array begins at \xss{KNU} where {\sffamily \var{KNU} = \jxs{2} + ABS(\xss{\jxs{2}}) + 1}. 142 | \end{itemize} 143 | \end{enumerate} 144 | 145 | There are two possible forms for these \nubar\ arrays; either polynomial (see \Tableref{tab:NUBlockPolynomial}) or tabulated (see \Tableref{tab:NUBlockTabulated}). The format is specified by the \var{LNU} flag located in the \XSS\ array at index \var{KNU} where \var{KNU} is defined above. 146 | 147 | \begin{BlockTable}[---Polynomial function form]{NU} 148 | \var{KNU} & \var{LNU}=1 & Polynomial function flag \\ 149 | \var{KNU}+1 & $N_{C}$ & Number of coefficients \\ 150 | \var{KNU}+2 & $C(l), l=1,\ldots, N_{C}$ & Coefficients 151 | \label{tab:NUBlockPolynomial} 152 | \end{BlockTable} 153 | 154 | When using the polynomial function form of the \nubar\ array, \nubar\ is reconstructed as 155 | \begin{equation} 156 | \nubar(E) = \sum_{l=1}^{N_{C}} C(l)E^{l-1}, 157 | \label{eq:nubarPolynomialReconstruction} 158 | \end{equation} 159 | where the energy, $E$, is given in \si{\MeV}. 160 | 161 | \begin{ThreePartTable} 162 | \begin{TableNotes} 163 | \item[$\dagger$] \label{tn:scheme} If $N_{R}=0$, \var{NBT} and \var{INT} are omitted and linear-linear interpolation is assumed. 164 | \end{TableNotes} 165 | \begin{BlockTable}[---Tabulated form]{NU} 166 | \var{KNU} & \var{LNU}=2 & Tabulated data flag \\ 167 | \var{KNU}+1 & $N_{R}$ & Number of interpolation regions \\ 168 | \var{KNU}+2 & \var{NBT}$(l), l=1,\ldots,N_{R}$ & ENDF interpolation parameters \\ 169 | \var{KNU}+2+$N_{R}$ & \var{INT}$(l), l=1,\ldots,N_{R}$ & ENDF interpolation scheme\tnotex{tn:scheme} \\ 170 | \var{KNU}+2+$2N_{R}$ & $N_{E}$ & Number of energies \\ 171 | \var{KNU}+3+$2N_{R}$ & $E(l),l=1,\ldots,N_{E}$ & Tabulated energy points \\ 172 | \var{KNU}+3+$2N_{R}+N_{E}$ & $\nubar(l),l=1,\ldots,N_{E}$ & Tabulated \nubar\ values 173 | \label{tab:NUBlockTabulated} 174 | \end{BlockTable} 175 | \end{ThreePartTable} 176 | 177 | For the \Block{DNU}, the delayed \nubar\ array begins at \xss{KNU} where {\sffamily \var{KNU} = \jxs{24}}. Delayed \nubar\ must be given in the tabulated form as described in \Tableref{tab:NUBlockTabulated}. The polynomial form is not allowed in the \Block{DNU}. 178 | 179 | \subsubsection{\textsf{BDD} Block}\label{sec:BDDBlock} 180 | 181 | The \Block{BDD} is used to specify basic delayed neutron precursor data and is present only if \jxs{25} > 0. For every precursor group (the total number of precursor groups is given in \nxs{8}), a decay constant is given along with the partial probability that a delayed fission neutron is born from the current group. This data is given in the format given in table \Tableref{tab:DelayedPrecursorDistribution}. The starting index \var{BDD} for this block is given by \jxs{25}. 182 | 183 | \begin{ThreePartTable} 184 | \begin{TableNotes} 185 | \item[$\dagger$] \label{tn:schemeDelayedPrecursors} If $N_{R}=0$, \var{NBT} and \var{INT} are omitted and linear-linear interpolation is assumed. 186 | \end{TableNotes} 187 | \begin{XSSTable}{Delayed \nubar\ precursor distribution.} 188 | \multicolumn{3}{c}{\bfseries Data for precursor group 1} \\ 189 | $\var{BDD}$ & \var{DEC}$_{1}$ & Decay constant for the group 1 \\ 190 | $\var{BDD}+1$ & $N_{R}$ & Number of interpolation regions \\ 191 | $\var{BDD}+2$ & \var{NBT}$(l), l=1,\ldots,N_{R}$ & ENDF interpolation parameters\tnotex{tn:schemeDelayedPrecursors} \\ 192 | $\var{BDD}+2+N_{R}$ & \var{INT}$(l), l=1,\ldots,N_{R}$ & ENDF interpolation scheme \\ 193 | $\var{BDD}+2+2N_{R}$ & $N_{E}$ & Number of energies \\ 194 | $\var{BDD}+3+2N_{R}$ & $E(l),l=1,\ldots,N_{E}$ & Tabulated energy points \\ 195 | $\var{BDD}+3+2N_{R}+N_{E}$ & $P(l),l=1,\ldots,N_{E}$ & Corresponding probabilities \\ 196 | \multicolumn{3}{c}{\bfseries Data for precursor group 2---same format as for group 1} \\ 197 | \multicolumn{3}{c}{\ldots} \\ 198 | \multicolumn{3}{c}{\bfseries Data for precursor group \var{NPCR} = \nxs{8}---same format as for group 1} 199 | \label{tab:DelayedPrecursorDistribution} 200 | \end{XSSTable} 201 | \end{ThreePartTable} 202 | 203 | \subsubsection{\textsf{MTR}, \textsf{MTRP} and \textsf{MTRH} Blocks}\label{sec:MTRBlock}\label{sec:MTRPBlock}\label{sec:MTRHBlock} 204 | 205 | The format of the \Block{MTR} (for incident neutron reactions), \Block{MTRP} (for photon production reactions) and \Block{MTRH} (for particle production reactions), is given in \Tableref{tab:MTRBlock} and provides a list of \MT\ numbers for which data is available in other blocks of the ACE Table. The starting index depends on whether it is the \Block{MTR}, \Block{MTRP} or \Block{MTRH} and are given in \Tableref{tab:LMT_NMT}. For the particle production \Block{MTRH}, \var{i} refers to the index of the corresponding particle type defined on the \Block{PTYPE} and is between 1 and \var{NTYPE}. 206 | 207 | \begin{table}[h!] \centering 208 | \begin{tabular}[h]{lll} 209 | \toprule 210 | Block & \var{LMT} & \var{NMT} \\ 211 | \midrule 212 | \var{MTR} & \jxs{3} & \nxs{4} \\ 213 | \var{MTRP} & \jxs{13} & \nxs{6} \\ 214 | \var{MTRH} & \xss{\jxs{32}+10*(i-1)+1} & \xss{\jxs{31}+i-1} \\ 215 | \bottomrule 216 | \end{tabular} 217 | \caption{\var{LMT} and \var{NMT} values for the \Block{MTR} and \Block{MTRH}.} 218 | \label{tab:LMT_NMT} 219 | \end{table} 220 | 221 | \begin{BlockTable}{MTR \textnormal{\&} MTRP} 222 | \var{LMT} & \MT$_{1}$ & First ENDF Reaction available \\ 223 | \var{LMT}+1 & \MT$_{2}$ & Second ENDF Reaction available \\ 224 | \ldots \\ 225 | \var{LMT}+\var{NMT}-1 & \MT$_{\var{NMT}}$ & Last ENDF reaction available 226 | \label{tab:MTRBlock} 227 | \end{BlockTable} 228 | 229 | For the \Block{MTR} and \Block{MTRH}, \MT$_{1},\ldots,\MT_{\var{NMT}}$ are standard ENDF \MT numbers; that is, \MT=16=$(n,2n)$; \MT=17=$(n,3n)$; etc. For a complete listing of \MT\ numbers, see \cite[Appendix B]{Trkov:2011ENDF--0}. It is important to note here that the order in which these MT numbers are given is not arbitrary. The first \nxs{5} values will be the MT numbers of reactions that produce secondary particles of the same type as the incident particle (i.e. there is secondary particle distribution data for the incident particle type for these reactions). The next $\nxs{4} - \nxs{5}$ values will then be the MT numbers for reactions that do not produce a secondary particle of the same type as the incident particle. 230 | 231 | For the \Block{MTR}, every \MT\ number may appear only once. In the \Block{MTRH}, it is possible for a given \MT number to appear twice if the same particle is also produced as the residual after the reaction (e.g. d + t -> d + d). 232 | 233 | For the \Block{MTRP}, the \MT\ numbers are somewhat arbitrary. To understand the scheme used for numbering the photon production \MT s, it is necessary to realize that in the ENDF format, more than one photon can be produced by a particular neutron reaction that is itself specified by a single \MT. Each of these photons is produced with an individual energy-dependent cross section. For example, \MT 102 (radiative capture) might be responsible for 40 photons, each with its own cross section, angular distribution, and energy distribution. We need 40 photon \MT s to represent the data; the \MT s are numbered \textsf{102001}, \textsf{102002}, \ldots, \textsf{102040}. Therefore, if ENDF \MT\ $N$ is responsible for $M$ photons, we shall number the photon \MT s \textsf{1000*$N$+1}, \textsf{1000*$N$+2}, \ldots, \textsf{1000*$N$+$M$}. 234 | 235 | \subsubsection{\textsf{LQR} Block}\label{sec:LQRBlock} 236 | 237 | The format of the \Block{LQR}, containing the reaction-specific $Q$-values, is given in \Tableref{tab:LQRBlock}. The index at the start of the \Block{LQR}, \startblock{LQR}=\jxs{4}. The number of reactions, \var{NMT}, is the same through the \ACE\ Table, \var{NMT}=\nxs{4}. 238 | 239 | \begin{BlockTable}{LQR} 240 | \startblock{LQR} & $Q_{1}$ & $Q$-value for reaction \MT$_{1}$ \\ 241 | \startblock{LQR}+1 & $Q_{2}$ & $Q$-value for reaction \MT$_{2}$ \\ 242 | \ldots \\ 243 | \startblock{LQR}+\var{NMT}-1 & $Q_{\var{NMT}}$ & $Q$-value for reaction \MT$_{\var{NMT}}$ 244 | \label{tab:LQRBlock} 245 | \end{BlockTable} 246 | 247 | \subsubsection{\textsf{TYR} and \textsf{TYRH} Blocks}\label{sec:TYRBlock}\label{sec:TYRHBlock} 248 | 249 | The format of the \Block{TYR} (for incident neutron reactions) and \Block{TYRH} (for particle production reactions) is given in \Tableref{tab:TYRBlock}. The starting index \var{LTYR} depends on whether it is the \Block{TYR} or \Block{TYRH} and is given in \Tableref{tab:TYR_NMT}. For the particle production \Block{TYRH}, \var{i} refers to the index of the corresponding particle type defined on the \Block{PTYPE} and is between 1 and \var{NTYPE}. 250 | 251 | \begin{table}[h!] \centering 252 | \begin{tabular}[h]{lll} 253 | \toprule 254 | Block & \var{LTYR} & \var{NMT} \\ 255 | \midrule 256 | \var{TYR} & \jxs{5} & \nxs{4} \\ 257 | \var{TYRH} & \xss{\jxs{32}+10*(i-1)+2} & \xss{\jxs{31}+i-1} \\ 258 | \bottomrule 259 | \end{tabular} 260 | \caption{\var{LTYR} and \var{NMT} values for the \Block{TYR} and \Block{TYRH}.} 261 | \label{tab:TYR_NMT} 262 | \end{table} 263 | 264 | \begin{BlockTable}{TYR} 265 | \startblock{LTYR} & \var{TY}$_{1}$ & Particle release for reaction \MT$_{1}$ \\ 266 | \startblock{LTYR}+1 & \var{TY}$_{2}$ & Particle release for reaction \MT$_{2}$ \\ 267 | \ldots \\ 268 | \startblock{LTYR}+\var{NMT}-1 & \var{TY}$_{\var{NMT}}$ & Particle release for reaction \MT$_{\var{NMT}}$ 269 | \label{tab:TYRBlock} 270 | \end{BlockTable} 271 | 272 | The possible values of \var{TY} are $\pm 1$, $\pm 2$, $\pm 3$, $\pm 4$, $\pm 19$, 0, and integers greater than 100 in absolute value; the sign indicates the system for scattering: 273 | \begin{description} 274 | \item[negative] \CM, 275 | \item[positive] \LAB. 276 | \end{description} 277 | Thus if \var{TY}$_{i}$=+3, three particles are released for reaction \MT$_{i}$ and the data on the cross section tables used to determine the exiting neutrons' angles are given in the \LAB\ frame of reference. \var{TY}=19 indicates fission (only used in the \Block{TYR}). The number of secondary neutrons released is determined from the fission \nubar\ data found in the \Block{NU}. \var{TY}$_{i}$=0 indicates absorption; no particles are released. $\left|\var{TY}_{i}\right|>100$ signifies reactions other than fission that have energy-dependent multiplicities (currently only used in the \Block{TYR}). The number of secondary particles released is determined from the yield data found in the \Block{DLW} or \Block{DLWH}. The \MT$_{i}$s are given in the \Block{MTR} or \Block{MTRH}. 278 | 279 | As the elastic scattering reaction is not included in the \Block{TYR}, the reference frame used for this reaction is not given in the \Block{TYR} nor anywhere else in the ACE file. The reference frame for elastic scattering is always assumed to be the \CM system, since this is the way the data has to be given in the ENDF evaluation \cite[Section 4.4.1]{Trkov:2011ENDF--0}. 280 | 281 | \subsubsection{\textsf{LSIG}, \textsf{LSIGP} and \textsf{LSIGH} Blocks}\label{sec:LSIGBlock}\label{sec:LSIGHBlock}\label{sec:LSIGPBlock} 282 | 283 | The \Block{LSIG} (for incident neutron cross sections), \Block{LSIGP} (for photon production cross sections) and \Block{LSIGH} (for particle production cross sections), give the locators for the cross section array for each reaction \MT . A locator is a \emph{relative} index in the \XSS\ array where some piece of data can be found. In this case, the data are the cross section values. The format of the \Block{LSIG}, \Block{LSIGP} and \Block{LSIGH} is given in \Tableref{tab:LSIGBlock}. The format for the incident neutron cross section arrays is given in \Sectionref{sec:SIGBlock}, the format for the photon production cross sections is given in \Sectionref{sec:SIGPBlock} and the format for the particle production cross sections is given in \Sectionref{sec:SIGHBlock}. 284 | 285 | The starting index \var{LXS} depends on whether it is the \Block{LSIG}, \Block{LSIGP} or \Block{LSIGH} and are given in \Tableref{tab:LXS_NMT}. For the particle production \Block{LSIGH}, \var{i} refers to the index of the corresponding particle type defined on the \Block{PTYPE} and is between 1 and \var{NTYPE}. 286 | 287 | \begin{table}[h!] \centering 288 | \begin{tabular}[h]{lll} 289 | \toprule 290 | Block & \var{LXS} & \var{NMT} \\ 291 | \midrule 292 | \var{LSIG} & \jxs{6} & \nxs{4} \\ 293 | \var{LSIGP} & \jxs{14} & \nxs{6} \\ 294 | \var{LSIGH} & \xss{\jxs{32}+10*(i-1)+3} & \xss{\jxs{31}+i-1} \\ 295 | \bottomrule 296 | \end{tabular} 297 | \caption{\var{TYR} and \var{NMT} values for the \Block{TYR} and \Block{TYRH}.} 298 | \label{tab:LXS_NMT} 299 | \end{table} 300 | 301 | The \MT s are given in the \Block{MTR}, the \Block{MTRP} and \Block{MTRH} respectively for the \Block{LSIG}, the \Block{LSIGP} and \Block{LSIGH} respectively. \LOC{A}{i} must be monotonically increasing. All locators (\LOC{A}) are \emph{relative} to \var{SIG}=\jxs{7} for the \Block{LSIG}, \emph{relative} to \var{SIGP}=\jxs{14} for the \Block{LSIGP} and \emph{relative} to \var{ANDH}=\xss{\jxs{32}+10*(i-1)+4} for the \Block{LSIGH} for particle index $i$. 302 | 303 | \begin{BlockTable}{LSIG \textnormal{\&} LSIGP} 304 | \var{LXS} & \LOC{A}{1} & Location of cross sections for reaction \MT$_{1}$ \\ 305 | \var{LXS}+1 & \LOC{A}{2} & Location of cross sections for reaction \MT$_{2}$ \\ 306 | \ldots \\ 307 | \var{LXS}+\var{NMT}-1 & \LOC{A}{\var{NMT}} & Location of cross sections for reaction \MT$_{\var{NMT}}$ 308 | \label{tab:LSIGBlock} 309 | \end{BlockTable} 310 | 311 | \subsubsection{\textsf{SIG} Block}\label{sec:SIGBlock} 312 | 313 | The \Block{SIG} contains the incident neutron cross section data (photon production cross sections are given in the \Block{SIGP} and particle production cross sections are given in \Block{SIGH}). The format of the \Block{SIG} is given in \Tableref{tab:SIGBlock}. The starting index \var{LXS} of the \Block{SIG} is given by \jxs{7}. The cross section data for each reaction begins at an index defined by the corresponding relative locator from the \Block{LSIG}, which are given in \Tableref{tab:CrossSectionArray}. 314 | 315 | \begin{ThreePartTable} 316 | \begin{LOCTable}{\Block{SIG}} 317 | \var{LXS}+\LOC{A}{1}-1 & Cross section array for reaction \MT$_{1}$ \\ 318 | \var{LXS}+\LOC{A}{2}-1 & Cross section array for reaction \MT$_{2}$ \\ 319 | \ldots \\ 320 | \var{LXS}+\LOC{A}{\var{NMT}}-1 & Cross section array for reaction \MT$_{\var{NMT}}$ 321 | \label{tab:SIGBlock} 322 | \end{LOCTable} 323 | \begin{tablenotes} 324 | \note The number of cross section arrays \var{NMT}=\nxs{4}. 325 | \end{tablenotes} 326 | \end{ThreePartTable} 327 | 328 | \begin{ThreePartTable} 329 | \begin{XSSTable}{Cross section array for the $i$-th reaction.} 330 | \var{LXS} + \LOC{A}{i}-1 & $\var{IE}_{i}$ & Energy grid index for reaction \MT$_{i}$ \\ 331 | \var{LXS} + \LOC{A}{i} & $N_{E,i}$ & Number of consecutive entries for \MT$_{i}$ \\ 332 | \multirow{2}{*}{\var{LXS} + \LOC{A}{i}+1} & $\sigma_{i}[E(l)]$ for & \multirow{2}{0.65\linewidth}{Cross section for reaction \MT$_{i}$} \\ 333 | & $l=\var{IE}_{i},\ldots,\var{IE}_{i}+N_{E,i}-1$ & 334 | \label{tab:CrossSectionArray} 335 | \end{XSSTable} 336 | \begin{tablenotes} 337 | \note The energy grid, $E(l)$ is given in the \Block{ESZ}. 338 | \end{tablenotes} 339 | \end{ThreePartTable} 340 | 341 | The energy grid index $\var{IE}_{i}$ corresponds to the first energy in the grid at which a cross section is given. The \MT$_{i}$s are defined in the \Block{MTR}. 342 | 343 | \subsubsection{\textsf{LAND}, \textsf{LANDP} and \textsf{LANDH} Blocks}\label{sec:LANDBlock}\label{sec:LANDPBlock}\label{sec:LANDHBlock} 344 | 345 | The \Block{LAND} (for incident neutron reactions), \Block{LANDP} (for photon production reactions) and \Block{LANDH} (for particle production reactions), give the locators for the angular distribution array for each reaction \MT . A locator is a \emph{relative} index in the \XSS\ array where some piece of data can be found. In this case, the data are the angular distributions. The format of the \Block{LAND}, \Block{LANDP} and \Block{LANDH} is given in \Tableref{tab:LANDBlock} and \Tableref{tab:LANDPBlock}. 346 | 347 | The starting index \var{LAND} depends on whether it is the \Block{LAND}, \Block{LANDP} or \Block{LANDH} and is given in \Tableref{tab:LAND_NMT}. For the particle production \Block{LANDH}, \var{i} refers to the index of the corresponding particle type defined on the \Block{PTYPE} and is between 1 and \var{NTYPE}. 348 | 349 | \begin{table}[h!] \centering 350 | \begin{tabular}[h]{lll} 351 | \toprule 352 | Block & \var{LAND} & \var{NMT} \\ 353 | \midrule 354 | \var{LAND} & \jxs{8} & \nxs{5} \\ 355 | \var{LANDP} & \jxs{16} & \nxs{6} \\ 356 | \var{LANDH} & \xss{\jxs{32}+10*(i-1)+5} & \xss{\jxs{31}+i-1} \\ 357 | \bottomrule 358 | \end{tabular} 359 | \caption{\var{LAND} and \var{NMT} values for the \Block{TYR} and \Block{TYRH}.} 360 | \label{tab:LAND_NMT} 361 | \end{table} 362 | 363 | The \MT s are given in the \Block{MTR}, the \Block{MTRP} and \Block{MTRH} respectively for the \Block{LAND}, the \Block{LANDP} and \Block{LANDH} respectively. \LOC{B}{i} must be monotonically increasing. All locators (\LOC{B}) are \emph{relative} to \var{AND}=\jxs{9} for the \Block{LAND}, \emph{relative} to \var{ANDP}=\jxs{17} for the \Block{LANDP} and \emph{relative} to \var{ANDH}=\xss{\jxs{32}+10*(i-1)+6} for the \Block{LANDH} for particle index $i$. 364 | 365 | \begin{BlockTable}{LAND} 366 | \var{LAND} & \LOC{B}{1} & Location of angular distributions for elastic scattering \\ 367 | \var{LAND}+1 & \LOC{B}{2} & Location of angular distributions for reaction \MT$_{1}$ \\ 368 | \ldots \\ 369 | \var{LAND}+\var{NMT} & \LOC{B}{\var{NMT}+1} & Location of angular distributions for reaction \MT$_{\var{NMT}}$ 370 | \label{tab:LANDBlock} 371 | \end{BlockTable} 372 | 373 | \begin{BlockTable}{LANDP \textnormal{and} LANDH} 374 | \var{LAND} & \LOC{B}{1} & Location of angular distributions for reaction \MT$_{1}$ \\ 375 | \var{LAND}+1 & \LOC{B}{2} & Location of angular distributions for reaction \MT$_{2}$ \\ 376 | \ldots \\ 377 | \var{LAND}+\var{NMT}-1 & \LOC{B}{\var{NMT}} & Location of angular distributions for reaction \MT$_{\var{NMT}}$ 378 | \label{tab:LANDPBlock} 379 | \end{BlockTable} 380 | 381 | \subsubsection{\textsf{AND}, \textsf{ANDP} and \textsf{ANDH} Blocks}\label{sec:ANDBlock}\label{sec:ANDPBlock}\label{sec:ANDHBlock} 382 | 383 | The \Block{AND}, \Block{ANDP} and \Block{ANDH} contains angular distribution data for all reactions that produce secondary particles (neutrons for the \Block{AND}, photons for the \Block{ANDP} and a specific particle for the \Block{ANDH}). The format of these blocks is given in \Tableref{tab:ANDBlock} and \Tableref{tab:ANDPBlock}. The angular distribution data begins at the index specified by the locator \LOC{B} from the \Block{LAND}, \Block{LANDP} or \Block{LANDH}. If \LOC{B}{i}=0, no angular distribution data are given for reaction $i$ and isotropic scattering is assumed in either the \LAB\ or \CM\ system. If \LOC{B}{i}=-1 no angular distribution data is given for reaction $i$ (this can only happen for the the \Block{AND} or \Block{ANDH}). In this case, the angular distribution data are specified through \law{44} in the \Block{DLW} or \Block{DLWH}. 384 | 385 | The starting index \var{LAND} depends on whether it is the \Block{AND}, \Block{ANDP} or \Block{ANDH} and are given in \Tableref{tab:AND_NMT}. For the particle production \Block{LANDH}, \var{i} refers to the index of the corresponding particle type defined on the \Block{PTYPE} and is between 1 and \var{NTYPE}. 386 | 387 | \begin{table}[h!] \centering 388 | \begin{tabular}[h]{lll} 389 | \toprule 390 | Block & \var{LAND} & \var{NMT} \\ 391 | \midrule 392 | \var{AND} & \jxs{9} & \nxs{5} \\ 393 | \var{ANDP} & \jxs{17} & \nxs{6} \\ 394 | \var{ANDH} & \xss{\jxs{32}+10*(i-1)+6} & \xss{\jxs{31}+i-1} \\ 395 | \bottomrule 396 | \end{tabular} 397 | \caption{\var{LAND} and \var{NMT} values for the \Block{AND} and \Block{ANDH}.} 398 | \label{tab:AND_NMT} 399 | \end{table} 400 | 401 | \begin{ThreePartTable} 402 | \begin{LOCTable}{\Block{AND}} 403 | \var{LAND}+\LOC{B}{1}-1 & Angular distribution array for elastic scattering \\ 404 | \var{LAND}+\LOC{B}{2}-1 & Angular distribution array for reaction \MT$_{1}$ \\ 405 | \ldots \\ 406 | \var{LAND}+\LOC{B}{\var{NMT}+1}-1 & Angular distribution array for reaction \MT$_{\var{NMT}}$ 407 | \label{tab:ANDBlock} 408 | \end{LOCTable} 409 | \begin{tablenotes} 410 | \note The format for the angular distribution of the $i$-th array is given in \Tableref{tab:AngularDistributionArray}. 411 | \end{tablenotes} 412 | \end{ThreePartTable} 413 | 414 | \begin{ThreePartTable} 415 | \begin{LOCTable}{\Block{ANDP} and \Block{ANDH}} 416 | \var{LAND}+\LOC{B}{1}-1 & Angular distribution array for reaction \MT$_{1}$ \\ 417 | \ldots \\ 418 | \var{LAND}+\LOC{B}{\var{NMT}}-1 & Angular distribution array for reaction \MT$_{\var{NMT}}$ 419 | \label{tab:ANDPBlock} 420 | \end{LOCTable} 421 | \begin{tablenotes} 422 | \note The format for the angular distribution of the $i$-th array is given in \Tableref{tab:AngularDistributionArray}. 423 | \end{tablenotes} 424 | \end{ThreePartTable} 425 | 426 | \begin{XSSTable}{Angular distribution array for the $i$-th reaction} 427 | \var{LAND}+\LOC{B}{i}-1 & $N_{E}$ & Number of energies at which angular distributions are tabulated. \\ 428 | \var{LAND}+\LOC{B}{i} & $E(l),l=1,\ldots,N_{E}$ & Energy grid \\ 429 | \ldots \\ 430 | \var{LAND}+\LOC{B}{i}$+N_{E}$ & $L_{C}(l),l=1,\ldots,N_{E}$ & Location of tables associated with $E(l)$ 431 | \label{tab:AngularDistributionArray} 432 | \end{XSSTable} 433 | 434 | The angular distribution arrays (\Tableref{tab:AngularDistributionArray}) contains additional locators, $L_{C}$; the sign of these locators is a flag: 435 | \begin{itemize} 436 | \item if \LOC{C}{l}=0, then distribution is isotropic and no further data is needed; 437 | \item if \LOC{C}{l}>0, then $\LOC{C}{l}$ points to a 32 equiprobable bin distribution (see \Tableref{tab:32EquiprobableBinDistribution}); 438 | \item if \LOC{C}{l}<0, then $\LOC{C}{l}$ points to a tabulated angular distribution (see \Tableref{tab:TabulatedAngularDistribution}). 439 | \end{itemize} 440 | 441 | \begin{XSSTable}{Format for the 32 equiprobable bin distribution} 442 | \multirow{2}{*}{\var{LAND}+|\LOC{C}{l}|-1} & $P(1,K)$ & 32 equiprobable cosine bins for scattering \\ 443 | & $K=1,\ldots,33$ & at energy $E(l)$. 444 | \label{tab:32EquiprobableBinDistribution} 445 | \end{XSSTable} 446 | 447 | \begin{ThreePartTable} 448 | \begin{TableNotes} 449 | \item[$\dagger$] \label{tn:ANDInterpolationFlag} 450 | \begin{description}[font=\ttfamily] 451 | \item[1] histogram interpolation, 452 | \item[2] linear-linear interpolation 453 | \end{description} 454 | \end{TableNotes} 455 | \begin{XSSTable}{Format for the tabulated angular distribution.} 456 | \var{LAND}+$|\LOC{C}{l}|-1$ & \var{JJ} & Interpolation flag\tnotex{tn:ANDInterpolationFlag} \\ 457 | \var{LAND}+$|\LOC{C}{l}|$ & $N_{P}$ & Number of points in the distribution \\ 458 | \var{LAND}+$|\LOC{C}{l}|+1$ & $CS_{\mathrm{out}}(j),j=1,\ldots,N_{P}$ & Cosine scattering angular grid \\ 459 | \var{LAND}+$|\LOC{C}{l}|+1+N_{P}$ & $\PDF(j),j=1,\ldots,N_{P}$ & Probability density function \\ 460 | \var{LAND}+$|\LOC{C}{l}|+1+2N_{P}$ & $\CDF(j),j=1,\ldots,N_{P}$ & Cumulative density function 461 | \label{tab:TabulatedAngularDistribution} 462 | \end{XSSTable} 463 | \end{ThreePartTable} 464 | 465 | The \Block{AND} and \Block{ANDH} can use both options (either a 32 equiprobable bin or tabulated distribution). The \Block{ANDP} on the other hand can only use 32 equiprobable bin distributions. 466 | 467 | \subsubsection{\textsf{LDLW}, \textsf{LDLWP}, \textsf{DNEDL and \textsf{LDLWH}} Blocks}\label{sec:LDLWBlock}\label{sec:LDLWPBlock}\label{sec:DNEDLBlock}\label{sec:LDLWHBlock} 468 | 469 | The \Block{LDLW}, \Block{LDLWP} and \Block{LDLWH} give the locators for the energy distribution for every reaction that produces secondary neutron, secondary photons or other secondary particles (respectively). The \Block{DNEDL} on the other hand gives the locators for the delayed neutron energy distribution for each precursor group. 470 | 471 | The format of the \Block{LDLW} (for secondary neutrons), the \Block{LDLW} (for secondary photons), the \Block{LDLWH} (for secondary particles) and the \Block{DNEDL} (for delayed neutrons) is given in \Tableref{tab:LDLWBlock}. The format for the distributions is given in \Sectionref{sec:DLWBlock}. 472 | 473 | The starting index \var{LED} depends on whether it is the \Block{LDLW}, \Block{LDLWP}, \Block{LDLWH} or \Block{DNEDL} and are given in \Tableref{tab:LED_NMT}. For the particle production \Block{LDLWH}, \var{i} refers to the index of the corresponding particle type defined on the \Block{PTYPE} and is between 1 and \var{NTYPE}. These blocks are given only if the starting index, \var{LED}, is different from zero. 474 | 475 | \begin{table}[h!] \centering 476 | \begin{tabular}{lll} 477 | \toprule 478 | Block & \var{LED} & \var{NMT} \\ 479 | \midrule 480 | \var{LDLW} & \jxs{10} & \nxs{5} \\ 481 | \var{LDLWP} & \jxs{18} & \nxs{6} \\ 482 | \var{LDLWH} & \xss{\jxs{32}+10*(i-1)+7} & \xss{\jxs{31}+i-1} \\ 483 | \var{DNEDL} & \jxs{26} & \nxs{8} \\ 484 | \bottomrule 485 | \end{tabular} 486 | \caption{LED and NMT values for the \Block{LDLW}, the \Block{LDLWP}, the \Block{LDLWH} and \Block{DNEDL}.} 487 | \label{tab:LED_NMT} 488 | \end{table} 489 | 490 | \begin{ThreePartTable} 491 | \begin{BlockTable}{LDLW} 492 | \var{LED} & \LOC{C}{1} & Location of energy distribution data for reaction \MT$_{1}$ or group 1 (if delayed neutron) \\ 493 | \var{LED}+1 & \LOC{C}{2} & Location of energy distribution data for reaction \MT$_{2}$ or group 2 (if delayed neutron) \\ 494 | \ldots \\ 495 | \var{LED}+\var{NMT}-1 & \LOC{C}{\var{NMT}} & Location of energy distribution data for reaction \MT$_{\var{NMT}}$ or group \var{NMT} (if delayed neutron) 496 | \label{tab:LDLWBlock} 497 | \end{BlockTable} 498 | \begin{tablenotes} 499 | \note The \LOC{C}{i} must be monotonically increasing. 500 | \end{tablenotes} 501 | \end{ThreePartTable} 502 | 503 | The \MT s are given in the \Block{MTR}, the \Block{MTRP} and \Block{MTRH} respectively for the \Block{LDLW}, the \Block{LDLWP} and \Block{LDLWH} respectively. \LOC{C}{i} must be monotonically increasing. All locators (\LOC{C}) are \emph{relative} to \var{JED}=\jxs{19} for the \Block{LDLW}, \emph{relative} to \var{JED}=\jxs{19} for the \Block{LDLWP} and \emph{relative} to \var{JED}=\xss{\jxs{32}+10*(i-1)+8} for the \Block{LDLWH} for particle index $i$. 504 | 505 | \subsubsection{\textsf{DLW}, \textsf{DLWP}, \textsf{DLWH} and \textsf{DNED} Blocks}\label{sec:DLWBlock}\label{sec:DLWHBlock}\label{sec:DLWPBlock}\label{sec:DNEDBlock} 506 | 507 | The \Block{DLW} contains secondary neutron energy distributions for all reactions producing secondary neutrons (except for elastic scattering), the \Block{DLWP} contains secondary photon energy distributions for all photon-producing reactions, the \Block{DLWH} contains secondary particle energy distributions for all secondary particle producing reactions and the \Block{DNED} contains the energy distributions for the delayed neutrons. The \Block{DLW}, \Block{DLWP}, \Block{DLWH} and \Block{DNED} block have the same format (although there may be restrictions on which laws are allowed in these blocks). The energy distributions are given starting with a locator, \LOC{C}, which were given in the \Block{LDLW}, \Block{LDLWP} or \Block{DNEDL}. The locators are relative to the \var{JED} parameter. The value for \var{JED} and \var{NMT} (the number of reactions or the number of delayed precursor groups) is dependent on whether it is the \Block{DLW}, \Block{DLWP}, \Block{DLWH} or \Block{DNED}. These values are given in \Tableref{tab:JED_NMT}. For the particle production \Block{DLWH}, \var{i} refers to the index of the corresponding particle type defined on the \Block{PTYPE} and is between 1 and \var{NTYPE}. 508 | 509 | \begin{table}[h!] \centering 510 | \begin{tabular}{lll} 511 | \toprule 512 | Block & \var{JED} & \var{NMT} \\ 513 | \midrule 514 | \var{DLW} & \jxs{11} & \nxs{5} \\ 515 | \var{DLWP} & \jxs{19} & \nxs{6} \\ 516 | \var{DLWH} & \xss{\jxs{32}+10*(i-1)+8} & \xss{\jxs{31}+i-1} \\ 517 | \var{DNED} & \jxs{27} & \nxs{8} \\ 518 | \bottomrule 519 | \end{tabular} 520 | \caption{\var{JED} and \var{NMT} for the \Block{DLW}, \Block{DLWP} and \Block{DLWH}.} 521 | \label{tab:JED_NMT} 522 | \end{table} 523 | 524 | \begin{LOCTable}{\Block{DLW}} 525 | \var{JED}+\LOC{C}{1}-1 & Energy distribution array for reaction \MT$_{1}$ or group 1 (if delayed neutron) \\ 526 | \var{JED}+\LOC{C}{2}-1 & Energy distribution array for reaction \MT$_{2}$ or group 2 (if delayed neutron) \\ 527 | \ldots \\ 528 | \var{JED}+\LOC{C}{\var{NMT}}-1 & Energy distribution array for reaction \MT$_{\var{NMT}}$ or group \var{NMT} (if delayed neutron) 529 | \label{tab:DLWBlock} 530 | \end{LOCTable} 531 | 532 | The $i$-th array has the form shown in 533 | \begin{ThreePartTable} 534 | \begin{TableNotes} 535 | \item[$\dagger$] \label{tn:LNW} If \var{LNW}$_{i}=0$ then \var{LAW}$_{1}$ is used regardless of other circumstances. 536 | \item[$\ddagger$] \label{tn:EnergyDistributionInterpolationScheme} If $N_{R}=0$, \var{NBT} and \var{INT} are omitted and linear-linear interpolation is assumed. 537 | \item[$\ast$] \label{tn:EnergyDistributionProbability} If the particle energy $EE(N_{E})$, then $P(E)=P(N_{E})$. If more than one law is given, then \var{LAW}$_{1}$ is used only if $\xi0$] The value of \var{ILF} is a special \MT\ number whose tabulation is the sum of the inelastic levels. 1217 | \item[$\var{ILF}=0$] The sum of the contribution of the inelastic reactions will be made using a balance relationship involving the smooth cross sections. 1218 | \end{description} 1219 | An exception to this scheme is typically made when there is only one inelastic level within the unresolved energy range, because the flag can then just be set to its \MT\ number and the special tabulation is not needed. 1220 | \item[\var{IOA}] The \var{IOA} is the other absorption flag for determining the contribution of ``other absorptions'' (no neutron out or destruction reactions). 1221 | \begin{description} 1222 | \item[$\var{IOA}<0$] The ``other absorption'' cross section is zero within the entire unresolved resonance range. 1223 | \item[$\var{IOA}>0$] The value of \var{IOA} is a special \MT\ number whose tabulation is the sum of the ``other absorption'' reactions. 1224 | \item[$\var{IOA}=0$] The sum of the contribution of the ``other absorption'' reactions will be made using a balanced relationship involving the smooth cross sections. 1225 | \end{description} 1226 | An exception to this scheme is typically made when there is only one ``other absorption'' reaction within the unresolved energy range, because the flag can then just be set to its \MT\ number and the special tabulation is not needed. 1227 | \item[\var{IFF}] The \var{IFF} is the factors flag. 1228 | \begin{description} 1229 | \item[$\var{IFF}=0$] The tabulations in the probability tables are cross sections. 1230 | \item[$\var{IFF}=1$] The tabulations in the probability tables are factors that must be multiplied by the corresponding ``smooth'' cross sections to obtain the actual cross sections. 1231 | \end{description} 1232 | %\item[$P(i,j,k)$] $P(i,j,k)$ are the values that make up the probability table. 1233 | \end{description} 1234 | 1235 | \par 1236 | The format of the \Block{UNR} is given in \Tableref{tab:UNRBlock}. The $P(i,j,k)$ values, where 1237 | \begin{itemize} 1238 | \item $i=1,\ldots,N$, 1239 | \item $j=1,\ldots,6$, 1240 | \item $k=1,\ldots,M$, 1241 | \end{itemize} 1242 | are what make up the probability tables. The argument $j$ has special meaning depending on its value as shown in \Tableref{tab:Argumentj}. 1243 | \begin{table} \centering 1244 | \caption{Possible values for the $j$ argument.} 1245 | \begin{tabular}{ll} 1246 | \toprule 1247 | $j$ & Description \\ 1248 | \midrule 1249 | 1 & cumulative probability \\ 1250 | 2 & total cross section/factor \\ 1251 | 3 & elastic cross section/factor \\ 1252 | 4 & fission cross section/factor \\ 1253 | 5 & $(n,\gamma)$ cross section/factor \\ 1254 | 6 & neutron heating number/factor \\ 1255 | \bottomrule 1256 | \end{tabular} 1257 | \label{tab:Argumentj} 1258 | \end{table} 1259 | 1260 | \begin{ThreePartTable} 1261 | \begin{TableNotes} 1262 | \item[$\dagger$] \label{tn:UNRInterpolationFlag} 1263 | \begin{description}[font=\ttfamily] 1264 | \item[2] linear-linear interpolation, 1265 | \item[5] log-log interpolation 1266 | \end{description} 1267 | \end{TableNotes} 1268 | \begin{BlockTable}{UNR} 1269 | \jxs{23} & $N$ & Number of incident energies where there is a probability table. \\ 1270 | \jxs{23}+1 & $M$ & Length of probability table. \\ 1271 | \jxs{23}+2 & \var{INT} & Interpolation parameter between tables.\tnotex{tn:UNRInterpolationFlag} \\ 1272 | \jxs{23}+3 & \var{ILF} & Inelastic competition flag. \\ 1273 | \jxs{23}+4 & \var{IOA} & Other absorption flag. \\ 1274 | \jxs{23}+5 & \var{IFF} & Factors flag. \\ 1275 | \jxs{23}+6 & $E(i),i=1,\ldots,N$ & Incident energies. \\ 1276 | \jxs{23}+6+$N$ & $P(i,j,k)$ & Probability tables. 1277 | \label{tab:UNRBlock} 1278 | \end{BlockTable} 1279 | \end{ThreePartTable} 1280 | 1281 | The ordering of the probability table entries, $P(i,j,k)$ is given in \Tableref{tab:PTableOrder}, which begins at $\var{PTABLE}=\jxs{23}+6+N$. 1282 | \begin{ThreePartTable} 1283 | \begin{TableNotes} 1284 | \item[$\dagger$] \label{tn:CumulativeProbabilities} The cumulative probabilities are monotonically increasing from an implied (but not included) lower value of zero to the upper value of $P(i,1,k=M)=1.0$. 1285 | \end{TableNotes} 1286 | \begin{XSSTable}{Order of probability table elements $P(i,j,k)$} 1287 | \multicolumn{3}{c}{\bfseries Data for $\mathbf{E(1)}$} \\ 1288 | \var{PTABLE} & $\CDF_{1}(l),l=1,\ldots,M$ & Cumulative probabilities\tnotex{tn:CumulativeProbabilities}\ for energy $i=1$ \\ 1289 | \var{PTABLE}+$M$ & $\sigma_{t,1}(l),l=1,\ldots,M$ & Total cross section/factors for energy $i=1$ \\ 1290 | \var{PTABLE}+$2M$ & $\sigma_{s,1}(l),l=1,\ldots,M$ & Elastic cross section/factors for energy $i=1$ \\ 1291 | \var{PTABLE}+$3M$ & $\sigma_{f,1}(l),l=1,\ldots,M$ & Fission cross section/factors for energy $i=1$ \\ 1292 | \var{PTABLE}+$4M$ & $\sigma_{(n,\gamma),1}(l),l=1,\ldots,M$ & $(n,\gamma)$ cross section/factors for energy $i=1$ \\ 1293 | \var{PTABLE}+$5M$ & $H_{1}(l),l=1,\ldots,M$ & Heating number/factors for energy $i=1$ \\ 1294 | \cmidrule{1-3} 1295 | \multicolumn{3}{c}{\bfseries Data for incident energy 2---same format for $E(1)$} \\ 1296 | \multicolumn{3}{c}{\ldots} \\ 1297 | \multicolumn{3}{c}{\bfseries Data for incident energy $N$---same format for $E(1)$} 1298 | \label{tab:PTableOrder} 1299 | \end{XSSTable} 1300 | \end{ThreePartTable} 1301 | 1302 | \subsubsection{\textsf{PTYPE} Block}\label{sec:PTYPEBlock} 1303 | 1304 | The \Block{PTYPE} is the first of the particle production blocks used for neutron and charged particle production data. These particle production blocks are given only if the number of particles \var{NTYPE} = \nxs{7} is different from zero. If the \Block{PTYPE} is present, the \Block{PTYPE} starts at the index \var{LTYPE} = \jxs{30}. 1305 | 1306 | {\color{red}\textbf{Question:} The particle type can be neutron, when is this actually used?} 1307 | 1308 | The \Block{PTYPE} gives a list of particle types for which particle production data is available. This includes cross section data (given in the \Block{SIGH}), angular distribution data (given in the \Block{ANDH}) and secondary particle energy distribution data (given in the \Block{DLWH}). 1309 | 1310 | The format of the \Block{PTYPE} is given in \Tableref{tab:PTYPEBlock}. 1311 | 1312 | \begin{BlockTable}{PTYPE} 1313 | \var{LTYPE} & \var{IP}$_{1}$ & First particle type \\ 1314 | \var{LTYPE}+1 & \var{IP}$_{2}$ & Second particle type \\ 1315 | \ldots \\ 1316 | \var{LTYPE}+\var{NTYPE}-1 & \var{IP}$_{\var{NMT}}$ & Last particle type 1317 | \label{tab:PTYPEBlock} 1318 | \end{BlockTable} 1319 | 1320 | $\var{IP}_{1},\ldots,\var{IP}_{\var{NMT}}$ are particle identifiers given as follows: 1321 | \begin{itemize} 1322 | \item $\var{IP} = 1$ for neutrons 1323 | \item $\var{IP} = 9$ for protons 1324 | \item $\var{IP} = 31$ for deuterons 1325 | \item $\var{IP} = 32$ for tritons 1326 | \item $\var{IP} = 33$ for helions 1327 | \item $\var{IP} = 34$ for aphas 1328 | \end{itemize} 1329 | 1330 | \subsubsection{\textsf{NTRO} Block}\label{sec:NTROBlock} 1331 | 1332 | The \Block{NTRO} gives the number of reactions for each of the particle types defined in the \Block{PTYPE}. If the \Block{NTRO} is present, the \Block{NTRO} starts at the index \var{LTYPE} = \jxs{31}. 1333 | 1334 | The format of the \Block{NTRO} is given in \Tableref{tab:NTROBlock}. 1335 | 1336 | \begin{BlockTable}{NTRO} 1337 | \var{LTYPE} & \var{NP}$_{1}$ & Number of reactions producing the first particle type \\ 1338 | \var{LTYPE}+1 & \var{NP}$_{2}$ & Number of reactions producing the second particle type \\ 1339 | \ldots \\ 1340 | \var{LTYPE}+\var{NTYPE}-1 & \var{NP}$_{\var{NMT}}$ & Number of reactions producing the last particle type 1341 | \label{tab:NTROBlock} 1342 | \end{BlockTable} 1343 | 1344 | \subsubsection{\textsf{IXS} Block}\label{sec:IXSBlock} 1345 | 1346 | The \Block{IXS} gives 10 particle production locators for each of the particle types defined in the \Block{PTYPE}. If the \Block{IXS} is present, the \Block{IXS} starts at the index \var{NEXT} = \jxs{32}. The \Block{IXS} serves a similar function as the \hyperref[sec:JXSContinuousEnergyNeutron]{JXS Array}, in that it provides the locators to specific blocks of data, as laid out in \Tableref{tab:IXSBlock}. 1347 | 1348 | \begin{BlockTable}{IXS array for particle type $j$, with $\var{LTYPE}=\var{NEXT}+10\var{NTYPE}(j-1)$} 1349 | \var{LTYPE} & \var{HPD} & Location of the total particle production and heating data \\ 1350 | \var{LTYPE}+1 & \var{MTRH} & Location of the particle production MT array \\ 1351 | \var{LTYPE}+2 & \var{TYRH} & Location of the particle production TYR data \\ 1352 | \var{LTYPE}+3 & \var{LSIGH} & Location of the particle production cross section locators \\ 1353 | \var{LTYPE}+4 & \var{SIGH} & Location of the particle production cross sections \\ 1354 | \var{LTYPE}+5 & \var{LANDH} & Location of the particle production angular distribution locators \\ 1355 | \var{LTYPE}+6 & \var{ANDH} & Location of the particle production angular distributions \\ 1356 | \var{LTYPE}+7 & \var{LDLWH} & Location of the particle production energy distribution locators \\ 1357 | \var{LTYPE}+8 & \var{DLWH} & Location of the particle production energy distributions \\ 1358 | \var{LTYPE}+9 & \var{YH} & Location of the particle production yield multipliers 1359 | \label{tab:IXSBlock} 1360 | \end{BlockTable} 1361 | 1362 | With the exception of the \Block{HPD}, all other locators point to blocks similar to the ones already defined for neutrons and photons. 1363 | 1364 | \subsubsection{\textsf{HPD} Block}\label{sec:HPDBlock} 1365 | 1366 | The \Block{HPD} gives the total particle production cross section and the associated heating number for a given particle. If the particle production data is given (i.e. the $\var{NTYPE}\ne0$, and the \Block{PTYPE}, the \Block{NTRO} and \Block{IXS} are given), the \Block{HPD} is present. The \Block{HPD} starts at the location index $\var{HPD}=\xss(\var{NEXT}+10*(j-1))$. 1367 | 1368 | \begin{BlockTable}{HPD} 1369 | \var{HPD} & \var{IE} & Energy grid index \\ 1370 | \var{HPD}+1 & $N_{E}$ & Number of consecutive energies \\ 1371 | \var{HPD}+2 & $\sigma[E(K)],$ & Total particle production cross section \\ 1372 | \var{HPD}+2+\var{NE} & $E(l),l=1,\ldots,N_{E}$ & Average heating numbers \\ 1373 | \label{tab:HPDBlock} 1374 | \end{BlockTable} 1375 | -------------------------------------------------------------------------------- /src/ContinuousEnergyPhotoatomic.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | 3 | -------------------------------------------------------------------------------- /src/ContinuousEnergyPhoton.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \section{Continuous-Energy Photon}\label{sec:ContinuousEnergyPhoton} 3 | 4 | \subsection{\NXS\ Array}\label{sec:NXSContinuousEnergyPhoton} 5 | 6 | \begin{NXSTable}{continuous-energyphoton} 7 | 1 & --- & Length of second block of data (\XSS\ array) \\ 8 | 2 & Z & Atomic number \\ 9 | 3 & NES & Number of energies \\ 10 | 4 & NFLC & Length of the flourescence data divided by 4 \\ 11 | 5 & NSH & Number of electron shells \\ 12 | & \ldots & \\ 13 | 16 & --- & 14 | \end{NXSTable} 15 | 16 | \subsection{\JXS\ Array}\label{sec:JXSContinuousEnergyPhoton} 17 | \begin{JXSTable}{continuous-energy photon} 18 | 1 & ESZG & Energy table \\ 19 | 2 & JINC & Incoherent form factors \\ 20 | 3 & JCOH & Coherent form factors \\ 21 | 4 & JFLO & Fluorescence data \\ 22 | 5 & LHNM & Heating numbers \\ 23 | 6 & LNEPS & Number of electrons per shell \\ 24 | 7 & LBEPS & Binding energy per shell \\ 25 | 8 & LPIPS & Probability of interaction per shell \\ 26 | 9 & LSWD & Array of offsets to the shell-wise data \\ 27 | 10 & SWD & Shell-wise data in PDF and CDF form \\ 28 | & \ldots & \\ 29 | 32 & --- & 30 | \label{tab:JXSContinuousEnergyPhoton} 31 | \end{JXSTable} 32 | -------------------------------------------------------------------------------- /src/Dosimetry.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \section{Neutron Dosimetry}\label{sec:Dosimetry} 3 | 4 | \subsection{\NXS\ Array}\label{sec:NXSDosimetry} 5 | \begin{NXSTable}{neutron dosimetry} 6 | 1 & --- & Length of second block of data (\XSS\ array) \\ 7 | 2 & ZA & $1000*Z+A$ \\ 8 | 3 & --- & \\ 9 | 4 & NTR & Number of reactions \\ 10 | & \ldots & \\ 11 | 16 & --- & 12 | \label{tab:NXSDosimetry} 13 | \end{NXSTable} 14 | 15 | \subsection{\JXS\ Array}\label{sec:JXSDosimetry} 16 | \begin{JXSTable}{neutron dosimetry} 17 | 1 & LONE & First word of table \\ 18 | 2 & --- & \\ 19 | 3 & MTR & \texttt{MT} array \\ 20 | & \ldots & \\ 21 | 6 & LSIG & Table of cross section locators \\ 22 | 7 & SIGD & Cross sections \\ 23 | & \ldots & \\ 24 | 22 & END & Last word of this table \\ 25 | & \ldots & \\ 26 | 32 & --- & 27 | \label{tab:JXSDosimetry} 28 | \end{JXSTable} 29 | -------------------------------------------------------------------------------- /src/Header.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \section{\ACE\ Tables} 3 | An \ACE\ Table consists of a Header followed by an array (\XSS) containing the actual data. The Header and \XSS\ array are the same regardless of whether the \ACE\ Table is \Type{1} or \Type{2}. Each line in a \Type{1} \ACE\ Table is \num{80} characters or less. 4 | 5 | \subsection{\ACE\ Header}\label{sec:ACEHeader} 6 | The first section of an \ACE\ Table is the Header. The \ACE\ Header contains metadata\footnote{data about the data} about the \ACE\ Table. The Header consists of four parts: 7 | \begin{enumerate} 8 | \item Opening, 9 | \item \IZAW\ array, 10 | \item \NXS\ array, and 11 | \item \JXS\ array. 12 | \end{enumerate} 13 | An example of an \ACE\ Table Header (from \isotope[1]{H} in the ENDf71x library) is given in Figure~\ref{fig:HeaderExample} with each part highlighted a different color. 14 | 15 | \begin{figure}[h!] \centering 16 | \begin{Verbatim}[frame=single, fontsize=\footnotesize,commandchars=\\\{\},numbers=left,numbersep=2pt] 17 | \color{red}{1001.80c 0.999167 2.5301E-08 12/17/12} 18 | \color{red}{H1 ENDF71x (jlconlin) Ref. see jlconlin (ref 09/10/2012 10:00:53) mat 125} 19 | \color{blue}{ 0 0. 0 0. 0 0. 0 0.} 20 | \color{blue}{ 0 0. 0 0. 0 0. 0 0.} 21 | \color{blue}{ 0 0. 0 0. 0 0. 0 0.} 22 | \color{blue}{ 0 0. 0 0. 0 0. 0 0.} 23 | \color{teal}{ 17969 1001 590 3 0 1 1 0} 24 | \color{teal}{ 0 1 1 0 0 0 0 0} 25 | \color{violet}{ 1 0 2951 2954 2957 2960 2963 4352} 26 | \color{violet}{ 4353 5644 5644 5644 6234 6235 6236 6244} 27 | \color{violet}{ 6245 6245 6246 16721 0 16722 0 0} 28 | \color{violet}{ 0 0 0 0 0 16723 16724 16725} 29 | \end{Verbatim} 30 | \caption{Header example. The (Legacy) Opening (lines 1--2) is in {\color{red}red}, the \IZAW\ array (lines 3--6) is in {\color{blue}blue}, the \NXS\ array (lines 7--8) is in {\color{teal}teal}, and the \JXS\ array (lines 9--12) is in {\color{violet}violet}.} 31 | \label{fig:HeaderExample} 32 | \end{figure} 33 | 34 | \paragraph{Legacy Header Opening} 35 | There are two slightly different formats for the Header Opening. The most common one found is called here the Legacy Opening and is the one demonstrated in the Header example in Figure~\ref{fig:HeaderExample}. 36 | 37 | The Legacy Opening consists of several variables given over two 80-character lines. The variables and the Fortran format for reading the variable is given in Table~\ref{tab:LegacyHeader} 38 | \begin{table} \centering 39 | \begin{tabular}{rVll} 40 | \toprule 41 | Line & {Variable} & Format & Description\\ 42 | \midrule 43 | 1 & HZ & \mintinline{Fortran}{A10} & \ZAID\ (see Section~\ref{sec:ZAID})\\ 44 | 1 & AW & \mintinline{Fortran}{E12.0} & Atomic weight ratio \\ 45 | 1 & TZ & \mintinline{Fortran}{E12.0} & Temperature \\ 46 | 1 & --- & \mintinline{Fortran}{1X} & (blank space) \\ 47 | 1 & HD & \mintinline{Fortran}{A10} & Processing date \\ 48 | \cmidrule{1-4} 49 | 2 & HK & \mintinline{Fortran}{A70} & Descriptive string \\ 50 | 2 & HM & \mintinline{Fortran}{A10} & 10-character material identifier \\ 51 | \bottomrule 52 | \end{tabular} 53 | \caption{Variables in the Legacy Opening part of the \ACE\ Header.} 54 | \label{tab:LegacyHeader} 55 | \end{table} 56 | 57 | \paragraph{2.0.1 Header Opening} 58 | There is a limitation to the number of unique \ZA\ IDs for a given \ZA; 100 different IDs, in fact, for each class of \ACE\ Table. To overcome this limitation, a new Header Opening\cite{Conlin:2012Updat-0} was developed in 2012 and updated a few years later to correct some errors. 59 | 60 | \begin{table} \centering 61 | \begin{tabular}{rVll} 62 | \toprule 63 | Line & Variable & Format & Description\\ 64 | \midrule 65 | 1 & VERS & \mintinline{Fortran}{A10} & Version format string \\ 66 | 1 & --- & \mintinline{Fortran}{1X} & (blank space) \\ 67 | 1 & HZ & \mintinline{Fortran}{A24} & \SZAID\ (see Section~\ref{sec:SZAID})\\ 68 | 1 & --- & \mintinline{Fortran}{1X} & (blank space) \\ 69 | 1 & SRC & \mintinline{Fortran}{A24} & Evaluation source \\ 70 | \cmidrule{1-4} 71 | 2 & AW & \mintinline{Fortran}{E12.0} & Atomic weight ratio \\ 72 | 2 & --- & \mintinline{Fortran}{1X} & (blank space) \\ 73 | 2 & TZ & \mintinline{Fortran}{E12.0} & Temperature \\ 74 | 2 & --- & \mintinline{Fortran}{1X} & (blank space) \\ 75 | 2 & HD & \mintinline{Fortran}{A10} & Processing date \\ 76 | 2 & --- & \mintinline{Fortran}{1X} & (blank space) \\ 77 | 2 & N & \mintinline{Fortran}{I4} & Number of comment lines to follow \\ 78 | 3--(\var{N}+2) & --- & \mintinline{Fortran}{A70} & \var{N} comment lines \\ 79 | \bottomrule 80 | \end{tabular} 81 | \caption{Variables in the 2.0.1 Opening part of the \ACE\ Header.} 82 | \label{tab:2.0Header} 83 | \end{table} 84 | 85 | 86 | \begin{figure}[h!] \centering 87 | \begin{Verbatim}[frame=single, fontsize=\footnotesize,commandchars=\\\{\}] 88 | \color{red}{2.0.1 1001.800nc ENDF/B-VIII.0-B1} 89 | \color{red}{ 0.999167 2.5301e-08 2018-05-02 2} 90 | \color{blue}{ 1001.00c 0.999167 2.5301E-08 05/02/18} 91 | \color{blue}{H1 Lib80x (jlconlin) Ref. see jlconlin (ref 01/29/2018 07:54) mat 125} 92 | \end{Verbatim} 93 | \caption{Header Opening example. The Legacy Opening is shown in {\color{blue}blue} while the 2.0.1 Opening consists of the {\color{red}red} and the {\color{blue}blue} portions.} 94 | \label{fig:HeaderOpeningExample} 95 | \end{figure} 96 | 97 | Note that a Legacy Header Opening can be contained in the comment section of the 2.0.1 Header Opening. This was designed explicitly to allow backwards compatibility while application codes were modified to be able to handle. An example of this is shown in Figure~\ref{fig:HeaderOpeningExample}. Codes that cannot read the 2.0.1 Header can be told (typically via an xsdir\cite{Conlin:2012Updat-0} entry) to start reading the \ACE\ Table several lines after the beginning of the 2.0.1 Header. 98 | 99 | Following the Opening of the Header are three arrays, \IZAW, \NXS, and \JXS\ respectively. They are each described below. Immediately following the \JXS\ array is the \XSS array. 100 | 101 | \subsubsection{\IZAW\ Array} 102 | The \IZAW\ array follows on the lines immediately following the Header. It consists of \num{16} pairs of \ZA's (\texttt{IZ}) and atomic weight ratios (\texttt{AW}). The \texttt{IZ} entries are still needed for \SaB\ Tables to indicate for which isotope(s) the scattering data are appropriate. 103 | 104 | The \num{16} pairs of numbers are spread over \num{4} lines. The Fortran format for reading/writing the numbers on one line is: \mintinline{Fortran}{4(I7,F11.0)}. 105 | 106 | \subsubsection{\NXS\ Array} 107 | The \NXS\ array comes on the \num{2} lines after the \IZAW\ array. The \NXS\ array has \num{16} integer elements; \num{8} on each line. The Fortran format for reading/writing the numbers on each line is: \mintinline{Fortran}{8I9}. The first element of the \NXS\ array indicates how many numbers are in the \XSS\ array. The remainder of the \NXS\ array elements (usually) indicate how many of different pieces of data there is. 108 | 109 | \subsubsection{\JXS\ Array} 110 | The \JXS\ array comes on the \num{4} lines after the \NXS\ array. The \JXS\ array has \num{32} integer elements; \num{8} on each line. The Fortran format for reading/writing the numbers on each line is: \mintinline{Fortran}{8I9}. The \JXS\ array contains indices to the \XSS\ array where difference pieces of data begins. 111 | 112 | The specific definition of the elements of the \NXS\ and \JXS\ arrays are dependent on the class of data in the Table and are defined in the section of this document that describes each class of data.\footnote{See, for example, Table~\ref{tab:NXSContinuousEnergyNeutron} and Table~\ref{tab:JXSContinuousEnergyNeutron}.} Note that not all elements of the arrays are (currently) being used, allowing for future expansion. 113 | 114 | \subsection{The \XSS\ Array} 115 | After the \ACE\ Header comes the \XSS\ array. It is typically \emph{very} large with hundreds of thousands of elements. It is broken up into blocks with the blocks being dependent on the class of data that is contained in the table. The description and definition of each of these blocks can be found in the descriptions later in this document. 116 | 117 | The data is written with \num{4} floating-point numbers on each 80-character line. All data in the \XSS\ array can be read using the Fortran format: \verb|4E20.0| for each line. 118 | 119 | \begin{figure}[h!] \centering 120 | \begin{Verbatim}[frame=single,fontsize=\footnotesize,numbersep=2pt] 121 | 2.0.1 1001.710nc ENDFB-VII.1 122 | 0.999167 2.5301E-08 12/17/12 3 123 | The next two lines are the first two lines of 'old-style' ACE. 124 | 1001.80c 0.999167 2.5301E-08 12/17/12 125 | H1 ENDF71x (jlconlin) Ref. see jlconlin (ref 09/10/2012 10:00:53) mat 125 126 | 0 0. 0 0. 0 0. 0 0. 127 | 0 0. 0 0. 0 0. 0 0. 128 | 0 0. 0 0. 0 0. 0 0. 129 | 0 0. 0 0. 0 0. 0 0. 130 | 17969 1001 590 3 0 1 1 0 131 | 0 1 1 0 0 0 0 0 132 | 1 0 2951 2954 2957 2960 2963 4352 133 | 4353 5644 5644 5644 6234 6235 6236 6244 134 | 6245 6245 6246 16721 0 16722 0 0 135 | 0 0 0 0 0 16723 16724 16725 136 | 1.00000000000E-11 1.03125000000E-11 1.06250000000E-11 1.09375000000E-11 137 | 1.12500000000E-11 1.15625000000E-11 1.18750000000E-11 1.21875000000E-11 138 | 1.25000000000E-11 1.28125000000E-11 1.31250000000E-11 1.34375000000E-11 139 | 1.37500000000E-11 1.43750000000E-11 1.50000000000E-11 1.56250000000E-11 140 | 1.62500000000E-11 1.68750000000E-11 1.75000000000E-11 1.81250000000E-11 141 | 1.87500000000E-11 1.93750000000E-11 2.00000000000E-11 2.09375000000E-11 142 | 2.18750000000E-11 2.28125000000E-11 2.37500000000E-11 2.46875000000E-11 143 | 2.56250000000E-11 2.65625000000E-11 2.75000000000E-11 2.84375000000E-11 144 | 2.93750000000E-11 3.03125000000E-11 3.12500000000E-11 3.21875000000E-11 145 | 3.31250000000E-11 3.40625000000E-11 3.50000000000E-11 3.59375000000E-11 146 | \end{Verbatim} 147 | \caption{\ACE\ Header with beginning of \XSS\ array for \isotope[1]{H}. Note this uses the 2.0.1 Header with backwards compatibility with the Legacy Header.} 148 | \label{fig:XSSExample} 149 | \end{figure} 150 | -------------------------------------------------------------------------------- /src/Introduction.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \section{Introduction}\label{sec:Introduction} 3 | The \ACE\ format consists of two \emph{types} and many \emph{classes} of data. The data are kept in an \ACE\ Table. The term \ACE\ Table and \ACE\ file are often used interchangeably. 4 | 5 | \subsection{Types of \ACE-Formatted Data} 6 | There are two types of \ACE-formatted data; simply called \Type{1} and \Type{2}. 7 | \begin{description} 8 | \item[\Type{1}] Standard formatted tables. These tables contain ASCII text and are machine independent; they are readable on every machine. 9 | \item[\Type{2}] Standard unformatted tables. These tables are binary and can be generated from the \Type{1} files. They are more compact and faster to read than the \Type{1} \ACE\ Tables 10 | but are machine/platform dependent; they are not readable on every machine. 11 | \end{description} 12 | Traditionally 13 | \Type{2} \ACE\ files were more commonly used because they were smaller in size and faster to read. However 14 | due to the fact that they are not portable across machines and platforms they have fallen out of fashion. 15 | 16 | \subsection{Classes of \ACE-Formatted Data} 17 | There are many classes of \ACE-formatted data: 18 | \begin{enumerate} 19 | \item continuous-energy neutron (see Section~\ref{sec:ContinuousEnergyNeutron}), 20 | \item discrete-reaction neutron, 21 | \item neutron dosimetry (see Section~\ref{sec:Dosimetry}), 22 | \item \SaB\ thermal scattering (see Section~\ref{sec:ThermalScattering}), 23 | \item continuous-energy photoatomic (see Section~\ref{sec:ContinuousEnergyPhoton}), 24 | \item continuous-energy electron interaction, 25 | \item continuous-energy photonuclear interaction, 26 | \item multigroup-energy neutron, and 27 | \item multigroup-energy photoatomic. 28 | \end{enumerate} 29 | Each of these classes of data are described later in this document. 30 | 31 | An \ACE\ Table is an entity that contains evaluation-dependent data about one of the many classes of data for a specific material---an target isotope, isomer, or element. For a given \ZAID, the data contained on a \Type{1} and \Type{2} tables are identical. Simulations run with one type of data should produce identical results as those run with the other type of data. 32 | 33 | \subsection{\ACE\ Libraries} 34 | A collection of \ACE\ data tables that derive from a single set of evaluation files are typically grouped together in a ``library''---not to be confused from the evaluation library from which they derive. Multiple \ACE\ data tables can concatenated into the same logical file on the computer, although this has fallen somewhat out of fashion due to the large amount of data on each \ACE\ table derived from modern evaluation files. Applications that use \ACE-formatted data should produce the same results regardless of whether the tables are contained in one logical file on the computer or spread across many. 35 | -------------------------------------------------------------------------------- /src/References.bib: -------------------------------------------------------------------------------- 1 | %% This BibTeX bibliography file was created using BibDesk. 2 | %% http://bibdesk.sourceforge.net/ 3 | 4 | %% Created for Jeremy Lloyd Conlin at 2018-07-11 14:04:04 -0600 5 | 6 | 7 | %% Saved with string encoding Unicode (UTF-8) 8 | 9 | 10 | 11 | @inproceedings{Conlin:2012Updat-0, 12 | Address = {San Diego, California}, 13 | Author = {Jeremy Lloyd Conlin and Forrest B. Brown and A. C. Kahler and M. Beth Lee and D. Kent Parsons and Morgan C. White}, 14 | Booktitle = {Transactions of the American Nuclear Socity}, 15 | Date-Added = {2018-07-11 20:04:02 +0000}, 16 | Date-Modified = {2018-07-11 20:04:02 +0000}, 17 | Editor = {Julie Rule}, 18 | Month = {November 11--15}, 19 | Number = {LA-UR-12-22033}, 20 | Pages = {631--633}, 21 | Publisher = {American Nuclear Society}, 22 | Read = {1}, 23 | Title = {Updating the Format of ACE Data Tables}, 24 | Volume = {107}, 25 | Year = {2012}, 26 | Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QLi4uLy4uLy4uL1BhcGVycy9Db25saW4vQ29ubGluMjAxMlVwZGF0LTAtMC5wZGbSFwsYGVdOUy5kYXRhTxEBfgAAAAABfgACAAAHR2FuZGFsZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEJEAAH/////F0NvbmxpbjIwMTJVcGRhdC0wLTAucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP////8AAAAAAAAAAAAAAAAAAwADAAAKIGN1AAAAAAAAAAAAAAAAAAZDb25saW4AAgBALzpVc2VyczpqbGNvbmxpbjpEb2N1bWVudHM6UGFwZXJzOkNvbmxpbjpDb25saW4yMDEyVXBkYXQtMC0wLnBkZgAOADAAFwBDAG8AbgBsAGkAbgAyADAAMQAyAFUAcABkAGEAdAAtADAALQAwAC4AcABkAGYADwAQAAcARwBhAG4AZABhAGwAZgASAD5Vc2Vycy9qbGNvbmxpbi9Eb2N1bWVudHMvUGFwZXJzL0Nvbmxpbi9Db25saW4yMDEyVXBkYXQtMC0wLnBkZgATAAEvAAAVAAIAD///AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAL8AxADMAk4CUAJVAmACaQJ3AnsCggKLApACnQKgArICtQK6AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAArw=}} 27 | 28 | @techreport{Trkov:2011ENDF--0, 29 | Author = {A. Trkov and M. Herman and D. A. Brown}, 30 | Date-Added = {2017-12-14 20:40:21 +0000}, 31 | Date-Modified = {2017-12-14 20:40:21 +0000}, 32 | Institution = {National Nuclear Data Center, Brookhaven National Laboratory}, 33 | Month = {December}, 34 | Number = {BNL-90365-2009 Rev.2}, 35 | Title = {{ENDF-6} Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files}, 36 | Year = {2011}, 37 | Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QLC4uLy4uLy4uL1BhcGVycy9Ucmtvdi9UcmtvdjIwMTFFTkRGLS0wLTAucGRm0hcLGBlXTlMuZGF0YU8RAXgAAAAAAXgAAgAAB0dhbmRhbGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCRAAB/////xZUcmtvdjIwMTFFTkRGLS0wLTAucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/////AAAAAAAAAAAAAAAAAAMAAwAACiBjdQAAAAAAAAAAAAAAAAAFVHJrb3YAAAIAPi86VXNlcnM6amxjb25saW46RG9jdW1lbnRzOlBhcGVyczpUcmtvdjpUcmtvdjIwMTFFTkRGLS0wLTAucGRmAA4ALgAWAFQAcgBrAG8AdgAyADAAMQAxAEUATgBEAEYALQAtADAALQAwAC4AcABkAGYADwAQAAcARwBhAG4AZABhAGwAZgASADxVc2Vycy9qbGNvbmxpbi9Eb2N1bWVudHMvUGFwZXJzL1Rya292L1Rya292MjAxMUVOREYtLTAtMC5wZGYAEwABLwAAFQACAA///wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgC9AMIAygJGAkgCTQJYAmECbwJzAnoCgwKIApUCmAKqAq0CsgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAK0}} 38 | -------------------------------------------------------------------------------- /src/ThermalScattering.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \section[Thermal Scattering]{Thermal Scattering \SaB}\label{sec:ThermalScattering} 3 | 4 | Data from thermal \SaB\ tables provide a complete representation of thermal neutron scattering by molecules 5 | and crystalline solids. Cross sections for (coherent and incoherent) elastic and (incoherent) inelastic 6 | scattering are found on the tables. A coupled energy/angle representation is used to describe the spectra 7 | of inelastically scattered neutrons. Angular distributions for elastic scattering are also provided. 8 | 9 | Four unique types of data blocks are associated with \SaB\ tables. We now briefly describe each of these four data 10 | block types and reference the sections in which their formats are detailed. 11 | 12 | \begin{enumerate} 13 | \item \textbf{\Block{ITIE}}---contains the energy-dependent incoherent inelastic scattering cross sections. 14 | The \Block{ITIE} always exists. See \Sectionref{sec:ITIEBlock}. 15 | \item \textbf{\Block{ITCE}} and \textbf{\Block{ITCEI}}---contains the energy-dependent elastic scattering cross sections. 16 | The \Block{ITCE} exists if the material has coherent and/or incoherent elastic scattering 17 | (\nxs{5}$\neq0$ and \jxs{4}$\neq0$). The \Block{ITCEI} only exists for mixed mode elastic scattering 18 | (\nxs{5}$=5$ and \jxs{7}$\neq0$). See \Sectionref{sec:ITCEBlock}. 19 | \item \textbf{\Block{ITXE}}---contains coupled energy/angle distributions for incoherent inelastic scattering. 20 | The \Block{ITXE} always exists. See \Sectionref{sec:ITXEBlock}. 21 | \item \textbf{\Block{ITCA}} and \textbf{\Block{ITCAI}}---contains angular distributions for elastic scattering. 22 | The \Block{ITCA} exists if the material has coherent and/or incoherent elastic scattering 23 | (\nxs{5}$\neq0$, \jxs{6}$\neq0$ and \nxs{6}$\neq-1$). The \Block{ITCEI} only exists for mixed mode 24 | elastic scattering (\nxs{5}$=5$, \jxs{9}$\neq0$ and \nxs{6}$\neq-1$). See \Sectionref{sec:ITCABlock}. 25 | \end{enumerate} 26 | 27 | \subsection{\NXS\ Array}\label{sec:NXSThermalScattering} 28 | 29 | \begin{NXSTable}{thermal scattering} 30 | 1 & --- & Length of second block of data (\XSS\ array) \\ 31 | 2 & \var{IDPNI} & Inelastic scattering mode \\ 32 | 3 & \var{NIL} & Inelastic dimensioning parameter \\ 33 | 4 & \var{NIEB} & Number of inelastic exiting energies \\ 34 | 5 & \var{IDPNC} & Elastic scattering mode (no elastic data=0, incoherent=3, coherent=4, mixed=5) \\ 35 | 6 & \var{NCL} & Elastic dimensioning parameter for the first elastic block \\ 36 | 7 & \var{IFENG} & Secondary energy mode (discrete=0, skewed=1, continuous=2) \\ 37 | 8 & \var{NCLI} & Elastic dimensioning parameter for the second elastic block \\ 38 | & \ldots & \\ 39 | 16 & --- & 40 | \label{tab:NXSThermalScattering} 41 | \end{NXSTable} 42 | 43 | \subsection{\JXS\ Array}\label{sec:JXSThermalScattering} 44 | 45 | \begin{JXSTable}{thermal scattering} 46 | 1 & \var{ITIE} & Inelastic energy table \\ 47 | 2 & \var{ITIX} & Inelastic cross sections \\ 48 | 3 & \var{ITXE} & Inelastic energy/angle distributions \\ 49 | 4 & \var{ITCE} & Elastic energy table (used for coherent elastic scattering if \\ 50 | & & \nxs{5}=4 or 5, and used for incoherent elastic scattering if \nxs{5}=3) \\ 51 | 5 & \var{ITCX} & Elastic cross sections (used for coherent elastic scattering if \\ 52 | & & \nxs{5}=4 or 5, and used for incoherent elastic scattering if \nxs{5}=3) \\ 53 | 6 & \var{ITCA} & Elastic angular distributions (used for coherent elastic scattering \\ 54 | & & if \nxs{5}=4 or 5, and used for incoherent elastic scattering if \nxs{5}=3) \\ 55 | 7 & \var{ITCEI} & Elastic energy table (used for incoherent elastic scattering if \nxs{5}=5) \\ 56 | 8 & \var{ITCXI} & Elastic cross sections (used for incoherent elastic scattering if \nxs{5}=5) \\ 57 | 9 & \var{ITCAI} & Elastic angular distributions (used for incoherent elastic scattering if \nxs{5}=5) \\ 58 | & \ldots & \\ 59 | 32 & --- & 60 | \label{tab:JXSThermalScattering} 61 | \end{JXSTable} 62 | 63 | When a single mode of elastic scattering is used (either coherent when \nxs{5}$=4$ or incoherent when \nxs{5}$=3$), then only the first 64 | elastic block will be used. This is the way data was stored in the ACE format prior to the introduction 65 | of mixed mode elastic scattering in thermal scattering evaluations that combines both coherent and incoherent 66 | elastic scattering. 67 | 68 | When using mixed mode elastic scattering (both coherent and incoherent elastic scattering are given, 69 | $\nxs{5}=5$), the JXS array will contain an additional set of indices for a second elastic data block. In mixed 70 | mode, the first elastic blocks (pointed to by \jxs{4} to \jxs{6}) are used for the coherent part and the second 71 | elastic blocks (pointed to by \jxs{7} to \jxs{9)} are used for the incoherent part. 72 | 73 | \subsection{Format of Individual Data Blocks} 74 | \subsubsection{\textsf{ITIE} Block}\label{sec:ITIEBlock} 75 | 76 | The format of the \Block{ITIE} is given in \Tableref{tab:ITIEBlock}. The index at the start of the block is \startblock{ITIE}=\jxs{1}. 77 | Note that \jxs{2}=\jxs{1}+1+$N_{in}$. Linear-linear interpolation is assumed between adjacent energies. 78 | 79 | \begin{BlockTable}{ITIE} 80 | \startblock{ITIE} & $N_{in}$ & Number of inelastic energies \\ 81 | \startblock{ITIE}+1 & $E_{in}(l),l=1,\ldots,N_{in}$ & Energies \\ 82 | \startblock{ITIE}+1+$N_{in}$ & $\sigma_{in}(l),l=1,\ldots,N_{in}$ & Inelastic cross sections 83 | \label{tab:ITIEBlock} 84 | \end{BlockTable} 85 | 86 | \subsubsection{\textsf{ITXE} Block}\label{sec:ITXEBlock} 87 | 88 | The format of the coupled energy/angle distribution for incoherent inelastic scattering is governed by the value 89 | of \nxs{7}. There are three possibilities: 90 | \begin{description} 91 | \item[$\nxs{7}=0$] equally-likely discrete cosines and energies (\Tableref{tab:ITXEBlock}) 92 | \item[$\nxs{7}=1$] skewed distribution of discrete cosines and energies (\Tableref{tab:ITXEBlock}) 93 | \item[$\nxs{7}=2$] continuous distribution of outgoing energies and equally-likely discrete cosines 94 | (\Tableref{tab:ITXEBlockContinuousHeader} and \Tableref{tab:ITXEBlockContinuousData}) 95 | \end{description} 96 | 97 | The format of the \Block{ITXE} for $\nxs{7}<2$ is given in \Tableref{tab:ITXEBlock}. The index at the start of the 98 | block is \startblock{ITXE}=\jxs{3}. For each incident energy from the \Block{ITIE}, $N'=$\nxs{4} discrete outgoing 99 | energies are given. For each pair of incident and outgoing energies, $N_\mu=$\nxs{3}+1 discrete cosines are given. 100 | The incident inelastic energy grid $E_{in}(l)$ is given in the \Block{ITIE}, and linear-linear interpolation is assumed 101 | between adjacent values of $E_{in}$. 102 | 103 | \begin{ThreePartTable} 104 | \begin{TableNotes} 105 | \item[$\dagger$] \label{tn:nieb} The number of outgoing energies \var{NIEB} is determined as \nxs{4}. 106 | \end{TableNotes} 107 | \begin{XSSTable}{\Block{ITXE} for $\nxs{7}<2$} 108 | \startblock{ITXE} & $E_1^{out}[E_{in}(1)]$ & First of \var{NIEB}\tnotex{tn:nieb}\ outgoing energies for inelastic scattering at $E_{in}(1)$ \\ 109 | \startblock{ITXE}+1 & $\mu_l(1\rightarrow 1), l=1,\ldots,N_\mu$ & Discrete cosines for scattering from $E_{in}(1)$ to $E_1^{out}[E_{in}(1)]$ \\ 110 | \startblock{ITXE}+1+$N_\mu$ & $E_2^{out}[E_{in}(1)]$ & Second of \var{NIEB} outgoing energies for inelastic scattering at $E_{in}(1)$ \\ 111 | \startblock{ITXE}+2+$N_\mu$ & $\mu_l(1\rightarrow 2), l=1,\ldots,N_\mu$ & Discrete cosines for scattering from $E_{in}(1)$ to $E_2^{out}[E_{in}(1)]$ \\ 112 | \multicolumn{1}{c}{\vdots} & \multicolumn{1}{c}{\vdots} & \multicolumn{1}{c}{\vdots} \\ 113 | \startblock{ITXE}+($N'$-1)(1+$N_\mu$) & $E_{N'}^{out}[E_{in}(1)]$ & Last of \var{NIEB} outgoing energies for inelastic scattering at $E_{in}(1)$ \\ 114 | \startblock{ITXE}+($N'$-1)(1+$N_\mu$)+1 & $\mu_l(1\rightarrow N'), l=1,\ldots,N_\mu$ & Discrete cosines for scattering from $E_{in}(1)$ to $E_{N'}^{out}[E_{in}(1)]$ \\ 115 | \midrule 116 | \multicolumn{3}{l}{(Repeat for all remaining values of $E_{in}$)} 117 | \label{tab:ITXEBlock} 118 | \end{XSSTable} 119 | \end{ThreePartTable} 120 | 121 | When $\nxs{7}=0$, each of the \nxs{4} discrete outgoing energies for a given incident energy are equally probable. When $\nxs{7}=1$, the 122 | selection of the discrete outgoing energies is skewed such that the first two and last two outgoing energies have a lower probability of 123 | being selected than all other outgoing energies. The first and last energies have a relative probability of 1, the second and second-to-last 124 | energies have a relative probability of 4, and all other energies have a relative probability of 10. 125 | 126 | Because the use of discrete outgoing energies and cosines can result in unphysical spikes in the neutron flux spectrum at thermal energies, 127 | some Monte Carlo codes attempt to ``smear'' the outgoing energies and cosines to produce a smoother distribution (that more closely approximates 128 | a continuous distribution with $\nxs{7}=2$). 129 | 130 | When $\nxs{7}=2$, the distribution of outgoing energies for each incident energy is continuous in energy and specified by a probability 131 | density function and cumulative distribution function. The format of the \Block{ITXE} in this case is given in \Tableref{tab:ITXEBlockContinuousHeader} 132 | and \Tableref{tab:ITXEBlockContinuousData}. As before, the index at the start of the block is \startblock{ITXE}=\jxs{3}. Unlike in the $\nxs{7} < 2$ 133 | cases, the number of outgoing energies for each incident energy is allowed to vary. The number of discrete cosines, $N_\mu=$\nxs{3}-1, remains the same 134 | for each pair of incident and outgoing energies, however. 135 | 136 | \begin{ThreePartTable} 137 | \begin{TableNotes} 138 | \item[$\dagger$] \label{tn:nin} The number of incoming energies $N_{in}$ for incoherent inelastic scattering is given in the \Block{ITIE}. 139 | \end{TableNotes} 140 | \begin{XSSTable}{\Block{ITXE} for $\nxs{7}=2$} 141 | \startblock{ITXE} & \var{L}$(l),l=1,\ldots,N_{in}$\tnotex{tn:nin} & Location in \XSS\ of distribution for incident energy $l$ \\ 142 | \startblock{ITXE}+$N_{in}$ & $N'(l),l=1,\ldots,N_{in}$ & Number of outgoing energies for incident energy $l$ 143 | \label{tab:ITXEBlockContinuousHeader} 144 | \end{XSSTable} 145 | \end{ThreePartTable} 146 | 147 | \begin{XSSTable}{\Block{ITXE} for $\nxs{7}=2$ (continued)} 148 | \var{L}(1)+1 & $E_1^{out}[E_{in}(1)]$ & First of \var{NIEB}\tnotex{tn:nieb}\ outgoing energies for inelastic scattering at $E_{in}(1)$ \\ 149 | \var{L}(1)+2 & $\mathrm{PDF}_1[E_{in}(1)]$ & Probability density function value for $E_1^{out}[E_{in}(1)]$ \\ 150 | \var{L}(1)+3 & $\mathrm{CDF}_1[E_{in}(1)]$ & Cumulative distribution function value for $E_1^{out}[E_{in}(1)]$ \\ 151 | \var{L}(1)+4 & $\mu_l(1\rightarrow 1), l=1,\ldots,N_\mu$ & Discrete cosines for scattering from $E_{in}(1)$ to $E_1^{out}[E_{in}(1)]$ \\ 152 | \var{L}(1)+4+$N_\mu$ & $E_2^{out}[E_{in}(1)]$ & Second of \var{NIEB} outgoing energies for inelastic scattering at $E_{in}(1)$ \\ 153 | \var{L}(1)+5+$N_\mu$ & $\mathrm{PDF}_2[E_{in}(1)]$ & Probability density function value for $E_2^{out}[E_{in}(1)]$ \\ 154 | \var{L}(1)+6+$N_\mu$ & $\mathrm{CDF}_2[E_{in}(1)]$ & Cumulative distribution function value for $E_2^{out}[E_{in}(1)]$ \\ 155 | \var{L}(1)+7+$N_\mu$ & $\mu_l(1\rightarrow 2), l=1,\ldots,N_\mu$ & Discrete cosines for scattering from $E_{in}(1)$ to $E_2^{out}[E_{in}(1)]$ \\ 156 | \multicolumn{1}{c}{\vdots} & \multicolumn{1}{c}{\vdots} & \multicolumn{1}{c}{\vdots} \\ 157 | \var{L}(1)+1+($N'(1)$-1)(3+$N_\mu$) & $E_{N'(1)}^{out}[E_{in}(1)]$ & Last of $N'(1)$ outgoing energies for inelastic scattering at $E_{in}(1)$ \\ 158 | \var{L}(1)+2+($N'(1)$-1)(3+$N_\mu$) & $\mathrm{PDF}_{N'(1)}[E_{in}(1)]$ & Probability density function value for $E_{N'(1)}^{out}[E_{in}(1)]$ \\ 159 | \var{L}(1)+3+($N'(1)$-1)(3+$N_\mu$) & $\mathrm{CDF}_{N'(1)}[E_{in}(1)]$ & Cumulative distribution function value for $E_{N'(1)}^{out}[E_{in}(1)]$ \\ 160 | \var{L}(1)+4+($N'(1)$-1)(3+$N_\mu$) & $\mu_l(1\rightarrow N'(1)), l=1,\ldots,N_\mu$ & Discrete cosines for scattering from $E_{in}(1)$ to $E_{N'(1)}^{out}[E_{in}(1)]$ \\ 161 | \midrule 162 | \multicolumn{3}{l}{(Repeat for all remaining values of $E_{in}$)} 163 | \label{tab:ITXEBlockContinuousData} 164 | \end{XSSTable} 165 | 166 | \subsubsection{\textsf{ITCE} Block}\label{sec:ITCEBlock}\label{sec:ITCEIBlock} 167 | 168 | The format of the \Block{ITCE} and \Block{ITCEI} is given in \Tableref{tab:ITCEBlock}. The index at the start of the \Block{ITCE} 169 | and \Block{ITCEI} is respectively \startblock{ITCE}=\jxs{4} and \startblock{ITCE}=\jxs{7}. 170 | 171 | \begin{BlockTable}{ITCE} 172 | \startblock{ITCE} & $N_{el}$ & Number of elastic energies \\ 173 | \startblock{ITCE}+1 & $E_{el}(l),l=1,\ldots,N_{el}$ & Energies \\ 174 | \startblock{ITCE}+1+$N_{el}$ & $P(l),l=1,\ldots,N_{el}$ & (See below) 175 | \label{tab:ITCEBlock} 176 | \end{BlockTable} 177 | 178 | For incoherent elastic scattering (stored in \Block{ITCE} if $\nxs{5}=4$ and stored in \Block{ITCEI} if $\nxs{5}=5$), 179 | \begin{equation} 180 | P(l) = \sigma_{el}(E_{el}(l)) 181 | \end{equation} 182 | with linear-linear interpolation between points. For coherent elastic scattering (stored in \Block{ITCE} if \nxs{5}$=4 \text{or} 5$), 183 | \begin{equation} 184 | P(l) = E\cdot\sigma_{el}(E), \qquad E_{el}(l) \le E < E_{el}(l+1). 185 | \label{eq:CoherentP} 186 | \end{equation} 187 | In this case, the energies $E_{el}(l)$ correspond to Bragg edges, and between two energies the cross section 188 | is determined by inverting \Equationref{eq:CoherentP}: 189 | \begin{equation} 190 | \sigma_{el}(l) = \frac{P(l)}{E}, \qquad E_{el}(l) \le E < E_{el}(l+1). 191 | \end{equation} 192 | Also note that $\sigma_{el}(E)=0$ below $E_{el}(1)$. However, above $E_{el}(N_{el})$, $\sigma_{el}(E) = P(N_{el})/E$. 193 | 194 | \subsubsection{\textsf{ITCA} Block}\label{sec:ITCABlock}\label{sec:ITCAIBlock} 195 | 196 | The format of the \Block{ITCA} and \Block{ITCAI} is given in \Tableref{tab:ITCABlock}. The index at the start of the \Block{ITCA} 197 | and \Block{ITCAI} is respectively \startblock{ITCA}=\jxs{6} and \startblock{ITCA}=\jxs{9}. For each incident energy from the 198 | \Block{ITCE} and \Block{ITCEI} respectively, $N_\mu=$\nxs{6}+1 and $N_\mu=$\nxs{8}+1 discrete cosines are given. 199 | 200 | \begin{BlockTable}{ITCA} 201 | \startblock{ITCA} & $\mu_l[E_{el}(1)], l=1,\ldots,N_\mu$ & Discrete cosines for elastic scattering at $E_{el}(1)$ \\ 202 | \startblock{ITCA}+$N_\mu$ & $\mu_l[E_{el}(2)], l=1,\ldots,N_\mu$ & Discrete cosines for elastic scattering at $E_{el}(2)$ \\ 203 | \multicolumn{1}{c}{\vdots} & \multicolumn{1}{c}{\vdots} & \multicolumn{1}{c}{\vdots} \\ 204 | \startblock{ITCA}+($N_{el}$-1)$N_\mu$ & $\mu_l[E_{el}(N_{el})], l=1,\ldots,N_\mu$ & Discrete cosines for elastic scattering at $E_{el}(N_{el})$ 205 | \label{tab:ITCABlock} 206 | \end{BlockTable} 207 | 208 | The incident elastic energy grid $E_{el}(l)$ is given in the \Block{ITCE} or \Block{ITCEI}. Linear-linear interpolation is assumed between adjacent values of $E_{el}$. 209 | -------------------------------------------------------------------------------- /src/UniqueIdentifier.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \section{Unique \ACE\ Table Identifier}\label{sec:UniqueIdentifier} 3 | \todo[inline]{This needs to be done.} 4 | Each \ACE\ Table needs to have an identifier to uniquely distinguish the data that is contained in the Table. 5 | \subsection{\ZAID}\label{sec:ZAID} 6 | 7 | \subsection{\SZAID}\label{sec:SZAID} 8 | With the introduction of the 2.0.1 \ACE\ Header, the identifier was modified to better specify the metastable state of the material as well as expand the available space for identifiers. 9 | 10 | The new identifier is referred to as a \SZAID\footnote{pronounced ``ess-ZAID''}. 11 | 12 | -------------------------------------------------------------------------------- /src/backmatter.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \clearpage 3 | \printbibliography[heading=bibintoc] 4 | -------------------------------------------------------------------------------- /src/frontmatter.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \thispagestyle{plain} 3 | \pagenumbering{roman} 4 | \maketitle 5 | 6 | \begin{center}\large 7 | \textbf{Contributors}: \\ 8 | Jeremy Lloyd Conlin (\emph{Los Alamos National Laboratory}) \\ 9 | Wim Haeck (\emph{Los Alamos National Laboratory}) \\ 10 | Paul Romano (\emph{Argonne National Laboratory}) 11 | \end{center} 12 | 13 | \vspace{4in} 14 | \begin{center} 15 | \Large LA-UR-19-29016 16 | \end{center} 17 | 18 | 19 | \newpage 20 | \pagestyle{front} 21 | \tableofcontents 22 | \clearpage 23 | % \listoftables 24 | \listoftodos 25 | -------------------------------------------------------------------------------- /src/mainmatter.tex: -------------------------------------------------------------------------------- 1 | %!TEX root = ../ACEFormat.tex 2 | \clearpage 3 | \pagestyle{fancy} 4 | \pagenumbering{arabic} 5 | --------------------------------------------------------------------------------