├── .gitignore
├── LICENSE
├── README.md
├── screenshot_1.png
├── screenshot_2.png
└── scripts
├── crop_utils.py
├── ei_utils.py
├── enhanced_img2img.py
└── multi_frame_rendering.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Image Sequence Toolkit
2 |
3 | This is an extension for [AUTOMATIC111's WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui), which supports batch processing and better inpainting.
4 |
5 | ## Install
6 |
7 | Please refer to the [official wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Extensions) for installation instructions.
8 |
9 | ## Usage
10 |
11 | ### Enhanced img2img
12 |
13 | To use Enhanced img2img, switch to the **"img2img"** tab and select **"enhanced img2img"** under the **"script"** column.
14 |
15 | 
16 |
17 | - **Input directory**: The folder that contains all the images you want to process.
18 | - **Output directory**: The folder where you want to save the output images.
19 | - **Mask directory**: The folder containing all the masks. This is not essential.
20 | - **Use input image's alpha channel as mask**: If your original images are in PNG format with transparent backgrounds, you can use this option to create outputs with transparent backgrounds. Note: when this option is selected, the masks in the "**mask directory**" will not be used.
21 | - **Use another image as mask**: Use masks in the "**mask directory**" to inpaint images. Note: if the relevant masks are blank images or no mask is provided, the original images will not be processed.
22 | - **Use mask as output alpha channel**: Add the mask as an output alpha channel. Note: when the "**use input image's alpha channel as mask**" option is selected, this option is automatically activated.
23 | - **Zoom in masked area**: crop and resize the masked area to square images; this will give better results when the masked area is relatively small compared to the original images.
24 | - **Alpha threshold**: The alpha value to determine background and foreground.
25 | - **Rotate images (clockwise)**: This can improve AI's performance when the original images are upside down.
26 | - **Process given file(s) under the input folder, separated by comma**: Process certain image(s) from the text box to the right to it. If this option is not checked, all the images under the folder will be processed.
27 | - **Files to process**: Filenames of the images you want to process. It is recommended to name your images with a digit suffix (e.g. `000233.png, 000234.png, 000235.png, ...` or `image_233.jpg, image_234.jpg, image_235.jpg, ...`). This way, you can use `233,234,235` or simply `233-235` to assign these files. Otherwise, you need to give the full filenames like `image_a.webp,image_b.webp,image_c.webp`.
28 | - **Use deepbooru prompt**: Use DeepDanbooru to predict image tags. If you have input some prompts in the prompt area, it will append to the end of the prompts.
29 | - **Using contextual information**: This can improve accuracy (maybe) if tags are present in both current and next frames' prediction results.
30 | - **Loopback**: Similar to the loopback script, this will run input images img2img twice to enhance AI's creativity.
31 | - **Firstpass width** and **firstpass height**: AI tends to be more creative when the firstpass size is smaller.
32 | - **Denoising strength**: The denoising strength for the first pass. It's better to keep it no higher than 0.4.
33 | - **Read tags from text files**: This will read tags from text files with the same filename as the current input image.
34 | - **Text files directory**: Optional. It will load from the input directory if not specified.
35 | - **Use csv prompt list** and **input file path**: Use a `.csv` file as prompts for each image. One line for one image.
36 |
37 | ### Multi-frame rendering
38 |
39 | To use Multi-frame rendering, switch to the **"img2img"** tab and select **"multi-frame rendering"** under the **"script"** column. This should be used with ControlNet. For more information, see [the original post](https://xanthius.itch.io/multi-frame-rendering-for-stablediffusion).
40 |
41 | 
42 |
43 | - **Input directory**: The folder that contains all the images you want to process.
44 | - **Output directory**: The folder where you want to save the output images.
45 | - **Initial denoise strength**: The denoising strength of the first frame. You can set the noise reduction strength of the first frame and the rest of the frames separately. The noise reduction strength of the rest of the frames is controlled through the img2img main interface.
46 | - **Append interrogated prompt at each iteration**: Use CLIP or DeepDanbooru to predict image tags. If you have input some prompts in the prompt area, it will append to the end of the prompts.
47 | - **Third column (reference) image**: The image used to be put at the third column.
48 | - None: use only two images, the previous frame and the current frame, without a third reference image.
49 | - FirstGen: Use the **processed** first frame as the reference image.
50 | - OriginalImg: Use the **original** first frame as the reference image.
51 | - Historical: Use the second-to-last frame before the current frame as the reference image.
52 | - **Enable color correction**: Use color correction based on the loopback image. When using a non-FirstGen image as the reference image, turn on to reduce color fading.
53 | - **Unfreeze Seed**: Once checked, the basic seed value will be incremented by 1 automatically each time an image is generated.
54 | - **Loopback Source**: The images in the second column.
55 | - Previous: Generates the frame from the previous generated frame.
56 | - Currrent: Generates the frame from the current frame.
57 | - First: Generates the frame from the first generated frame.
58 | - **Read tags from text files**: This will read tags from text files with the same filename as the current input image.
59 | - **Text files directory**: Optional. It will load from the input directory if not specified.
60 | - **Use csv prompt list** and **input file path**: Use a `.csv` file as prompts for each image. One line for one image.
61 |
62 | ## Tutorial video (in Chinese)
63 |
64 |
65 |
66 |
67 |
68 | ## Credit
69 |
70 | AUTOMATIC1111's WebUI - https://github.com/AUTOMATIC1111/stable-diffusion-webui
71 |
72 | Multi-frame Rendering - https://xanthius.itch.io/multi-frame-rendering-for-stablediffusion
73 |
--------------------------------------------------------------------------------
/screenshot_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OedoSoldier/sd-webui-image-sequence-toolkit/f64a9a9c7a6dc40c780179fb06332c96c0507794/screenshot_1.png
--------------------------------------------------------------------------------
/screenshot_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OedoSoldier/sd-webui-image-sequence-toolkit/f64a9a9c7a6dc40c780179fb06332c96c0507794/screenshot_2.png
--------------------------------------------------------------------------------
/scripts/crop_utils.py:
--------------------------------------------------------------------------------
1 | # Author: OedoSoldier [大江户战士]
2 | # https://space.bilibili.com/55123
3 |
4 | from PIL import Image, ImageFilter
5 | import numpy as np
6 |
7 |
8 | class CropUtils(object):
9 | """
10 | This class provides utility functions for cropping and restoring images.
11 |
12 | The `crop_img()` function takes an image and a corresponding mask, and uses the mask to
13 | crop the image to the minimum bounding box that includes the non-zero pixels in the mask.
14 | If the width and height of the resulting image are not equal, the image is scaled up to a
15 | square image using zero padding. The function returns the cropped image, the cropped mask,
16 | and the bounding box and image size as a tuple.
17 |
18 | The `restore_by_file()` function takes a raw image, a cropped image, a reference image,
19 | and a blur mask, and uses these images to restore the cropped image to the raw image.
20 | The reference image is used to determine the bounding box of the cropped image, and the
21 | blur mask is used to apply a gaussian blur to the alpha channel of the cropped image.
22 | The function returns the restored image.
23 | """
24 |
25 | def crop_img(self, img, mask, threshold=50):
26 | """
27 | Crop the given image using the given mask.
28 |
29 | Args:
30 | img: The image to be cropped, as a PIL.Image object.
31 | mask: The mask to be used for cropping, as a PIL.Image object.
32 | threshold: The threshold to use for converting the mask to binary. Pixels in the mask
33 | with a value greater than the threshold will be considered as part of the
34 | mask, and will be included in the cropped image. Pixels with a value less
35 | than or equal to the threshold will be ignored. (default: 50)
36 |
37 | Returns:
38 | A tuple containing the cropped image, the cropped mask, and a tuple with the bounding
39 | box and image size. If the mask is empty, the function returns (img, None, None).
40 | """
41 |
42 | # Code for cropping the image using the mask
43 |
44 | mask = mask.resize(img.size) if img.size[0] != mask.size[0] else mask
45 |
46 | bbox = mask.convert('L').point(
47 | lambda x: 255 if x > threshold else 0,
48 | mode='1').getbbox()
49 |
50 | if bbox:
51 | img, mask = img.crop(bbox), mask.crop(bbox)
52 | size = img.size
53 | if size[0] != size[1]:
54 | bigside = size[0] if size[0] > size[1] else size[1]
55 |
56 | img_np = np.zeros((bigside, bigside, 4), dtype=np.uint8)
57 | mask_np = np.zeros((bigside, bigside, 4), dtype=np.uint8)
58 |
59 | offset = (
60 | round(
61 | (bigside - size[0]) / 2),
62 | round(
63 | (bigside - size[1]) / 2))
64 |
65 | img_np[offset[1]:offset[1] + size[1],
66 | offset[0]:offset[0] + size[0]] = img
67 | mask_np[offset[1]:offset[1] + size[1],
68 | offset[0]:offset[0] + size[0]] = mask
69 |
70 | img = Image.fromarray(img_np)
71 | mask = Image.fromarray(mask_np)
72 |
73 | return img, mask, bbox + size
74 |
75 | return img, None, None
76 |
77 | def restore_by_file(
78 | self,
79 | raw,
80 | img,
81 | ref_img,
82 | blur_mask,
83 | info,
84 | mask_blur=0.5):
85 | """
86 | Restore the given cropped image to the given raw image.
87 |
88 | Args:
89 | raw: The raw image, as a PIL.Image object.
90 | img: The cropped image, as a PIL.Image object.
91 | ref_img: The reference image, as a PIL.Image object. This image is used to determine
92 | the bounding box of the cropped image.
93 | blur_mask: The blur mask, as a PIL.Image object. This mask is used to apply a gaussian
94 | blur to the alpha channel of the cropped image.
95 | info: A tuple containing the bounding box of the cropped image. This tuple should have
96 | the form (upper_left_x, upper_left_y, lower_right_x, lower_right_y).
97 | mask_blur: The sigma value to use for the gaussian blur. Higher values result in a
98 | stronger blur. (default: 0.5)
99 |
100 | Returns:
101 | The restored image, as a PIL.Image object.
102 | """
103 |
104 | # Code for restoring the cropped image
105 |
106 | raw_size = raw.size
107 | ref_size = ref_img.size
108 |
109 | upper_left_x = info[0]
110 | upper_left_y = info[1]
111 |
112 | img = img.resize(ref_size).convert('RGBA')
113 | blur_mask = blur_mask.resize(ref_size).convert('RGBA')
114 | raw = raw.convert('RGBA')
115 |
116 | bbox = ref_img.split(
117 | )[-1].convert('L').point(lambda x: 255 if x > 0 else 0, mode='1').getbbox()
118 | bbox = list(bbox)
119 | w, h = bbox[2] - bbox[0], bbox[3] - bbox[1]
120 |
121 | img = img.crop(bbox)
122 | blur_mask = blur_mask.crop(bbox)
123 |
124 | blur_img = np.zeros((raw_size[1], raw_size[0], 4), dtype=np.uint8)
125 | blur_img[upper_left_y:upper_left_y +
126 | h, upper_left_x:upper_left_x +
127 | w, :] = np.array(blur_mask)
128 | blur_img = Image.fromarray(blur_img, 'RGBA')
129 | blur_img = blur_img.filter(ImageFilter.GaussianBlur(mask_blur))
130 |
131 | new_img = np.zeros((raw_size[1], raw_size[0], 4), dtype=np.uint8)
132 | new_img[upper_left_y:upper_left_y +
133 | h, upper_left_x:upper_left_x +
134 | w, :] = np.array(img)
135 | new_img = Image.fromarray(new_img, 'RGBA')
136 |
137 | new_img = Image.alpha_composite(raw, new_img)
138 | new_img.putalpha(blur_img.split()[-1].convert('L'))
139 | new_img = Image.alpha_composite(raw, new_img)
140 |
141 | return new_img
142 |
--------------------------------------------------------------------------------
/scripts/ei_utils.py:
--------------------------------------------------------------------------------
1 | import re
2 | import pandas as pd
3 | from modules.processing import StableDiffusionProcessingImg2Img
4 |
5 | def gr_show(visible=True):
6 | return {"visible": visible, "__type__": "update"}
7 |
8 |
9 | def gr_show_value_none(visible=True):
10 | return {"value": None, "visible": visible, "__type__": "update"}
11 |
12 |
13 | def gr_show_and_load(value=None, visible=True):
14 | if value:
15 | if value.orig_name.endswith('.csv'):
16 | value = pd.read_csv(value.name)
17 | else:
18 | value = pd.read_excel(value.name)
19 | else:
20 | visible = False
21 | return {"value": value, "visible": visible, "__type__": "update"}
22 |
23 |
24 | def gr_set_value(value=None, visible=True):
25 | return {"value": value, "visible": visible, "__type__": "update"}
26 |
27 |
28 | def sort_images(lst):
29 | pattern = re.compile(r"\d+(?=\.)(?!.*\d)")
30 | return sorted(lst, key=lambda x: int(re.search(pattern, x).group()))
31 |
32 |
33 | def I2I_Generator_Create(p, i2i_sample, i2i_mask_blur, full_res_inpainting, inpainting_padding, init_image, denoise, cfg, steps, width, height, tiling, scripts, scripts_list, alwaysonscripts_list, script_args, positive, negative):
34 | i2i = StableDiffusionProcessingImg2Img(
35 | init_images = [init_image],
36 | resize_mode = 0,
37 | denoising_strength = 0,
38 | mask = None,
39 | mask_blur= i2i_mask_blur,
40 | inpainting_fill = 1,
41 | inpaint_full_res = full_res_inpainting,
42 | inpaint_full_res_padding= inpainting_padding,
43 | inpainting_mask_invert= 0,
44 | sd_model=p.sd_model,
45 | outpath_samples=p.outpath_samples,
46 | outpath_grids=p.outpath_grids,
47 | restore_faces=p.restore_faces,
48 | prompt='',
49 | negative_prompt='',
50 | styles=p.styles,
51 | seed=p.seed,
52 | subseed=p.subseed,
53 | subseed_strength=p.subseed_strength,
54 | seed_resize_from_h=p.seed_resize_from_h,
55 | seed_resize_from_w=p.seed_resize_from_w,
56 | sampler_name=i2i_sample,
57 | n_iter=1,
58 | batch_size=1,
59 | steps=steps,
60 | cfg_scale=cfg,
61 | width=width,
62 | height=height,
63 | tiling=tiling,
64 | )
65 | i2i.denoising_strength = denoise
66 | i2i.do_not_save_grid = True
67 | i2i.do_not_save_samples = True
68 | i2i.override_settings = {}
69 | i2i.override_settings_restore_afterwards = {}
70 | i2i.scripts = scripts
71 | i2i.scripts.scripts = scripts_list.copy()
72 | i2i.scripts.alwayson_scripts = alwaysonscripts_list.copy()
73 | i2i.script_args = script_args
74 | i2i.prompt = positive
75 | i2i.negative_prompt = negative
76 |
77 | return i2i
--------------------------------------------------------------------------------
/scripts/enhanced_img2img.py:
--------------------------------------------------------------------------------
1 | # Author: OedoSoldier [大江户战士]
2 | # https://space.bilibili.com/55123
3 |
4 | import math
5 | import os
6 | import sys
7 | import traceback
8 | import copy
9 | import pandas as pd
10 | import piexif
11 |
12 | import modules.scripts as scripts
13 | import gradio as gr
14 |
15 | from scripts.crop_utils import CropUtils
16 | from scripts.ei_utils import *
17 |
18 | from modules.processing import Processed, process_images, create_infotext
19 | from PIL import Image, ImageFilter, PngImagePlugin
20 | from modules.shared import opts, cmd_opts, state
21 | from modules.script_callbacks import ImageSaveParams, before_image_saved_callback
22 | from modules.sd_hijack import model_hijack
23 | if cmd_opts.deepdanbooru:
24 | import modules.deepbooru as deepbooru
25 |
26 | import re
27 |
28 | re_findidx = re.compile(
29 | r'(?=\S)(\d+)\.(?:[P|p][N|n][G|g]?|[J|j][P|p][G|g]?|[J|j][P|p][E|e][G|g]?|[W|w][E|e][B|b][P|p]?)\b')
30 | re_findname = re.compile(r'[\w-]+?(?=\.)')
31 |
32 |
33 | # def module_from_file(module_name, file_path):
34 | # spec = importlib.util.spec_from_file_location(module_name, file_path)
35 | # module = importlib.util.module_from_spec(spec)
36 | # spec.loader.exec_module(module)
37 | # return module
38 |
39 |
40 | class Script(scripts.Script):
41 | def title(self):
42 | return 'Enhanced img2img'
43 |
44 | def description(self):
45 | return 'Process multiple images with masks'
46 |
47 | # def show(self, is_img2img):
48 | # return scripts.AlwaysVisible # is_img2img
49 |
50 | def ui(self, is_img2img):
51 | # if not is_img2img:
52 | # return None
53 | self.is_img2img = is_img2img
54 | self.max_models = opts.data.get("control_net_max_models_num", 1)
55 |
56 | with gr.Row():
57 | input_dir = gr.Textbox(label='Input directory', lines=1)
58 | use_mask = gr.Checkbox(
59 | label='Use input image\'s alpha channel as mask', visible=self.is_img2img)
60 |
61 | output_dir = gr.Textbox(label='Output directory', lines=1)
62 |
63 | with gr.Row():
64 | use_cn_inpaint = gr.Checkbox(
65 | label='Use Control Net inpaint model')
66 | cn_inpaint_num = gr.Dropdown(
67 | [f"Control Model - {i}" for i in range(self.max_models)], label="ControlNet inpaint model index", visible=False)
68 |
69 | with gr.Row():
70 | use_cn_reference = gr.Checkbox(
71 | label='Use Control Net reference only mode')
72 | cn_reference_num = gr.Dropdown(
73 | [f"Control Model - {i}" for i in range(self.max_models)], label="ControlNet reference only index", visible=False)
74 | cn_reference_source = gr.Dropdown(
75 | ["First", "Previous", "Current"], label="Reference loopback source", visible=False)
76 |
77 | with gr.Row(visible=False) as mask_options:
78 | mask_dir = gr.Textbox(label='Mask directory', lines=1)
79 | as_output_alpha = gr.Checkbox(
80 | label='Use mask as output alpha channel', visible=self.is_img2img)
81 |
82 | with gr.Row():
83 | use_img_mask = gr.Checkbox(label='Use another image as mask', visible=self.is_img2img)
84 | is_crop = gr.Checkbox(label='Zoom in masked area', visible=self.is_img2img)
85 | use_cn = gr.Checkbox(label='Use another image as ControlNet input', visible=self.is_img2img)
86 |
87 | with gr.Row(visible=(False or not self.is_img2img)) as cn_options:
88 | cn_dirs = []
89 | with gr.Group():
90 | with gr.Tabs():
91 | for i in range(self.max_models):
92 | with gr.Tab(f"ControlNet-{i}", open=False):
93 | cn_dirs.append(gr.Textbox(label='ControlNet input directory', lines=1))
94 |
95 | with gr.Row():
96 | alpha_threshold = gr.Slider(
97 | minimum=0,
98 | maximum=255,
99 | step=1,
100 | label='Alpha threshold',
101 | value=50,
102 | visible=self.is_img2img)
103 |
104 | with gr.Row():
105 | rotate_img = gr.Radio(
106 | label='Rotate images (clockwise)', choices=[
107 | '0', '-90', '180', '90'], value='0')
108 |
109 | with gr.Row():
110 | given_file = gr.Checkbox(
111 | label='Process given file(s) under the input folder, seperate by comma')
112 | specified_filename = gr.Textbox(
113 | label='Files to process', lines=1, visible=False)
114 |
115 | with gr.Row():
116 | process_deepbooru = gr.Checkbox(
117 | label='Use deepbooru prompt',
118 | visible=cmd_opts.deepdanbooru)
119 | deepbooru_prev = gr.Checkbox(
120 | label='Using contextual information',
121 | visible=False)
122 |
123 | with gr.Row(visible=self.is_img2img):
124 | is_rerun = gr.Checkbox(label='Loopback')
125 |
126 | with gr.Row(visible=False) as rerun_options:
127 | rerun_width = gr.Slider(
128 | minimum=64.0,
129 | maximum=2048.0,
130 | step=64.0,
131 | label='Firstpass width',
132 | value=512.0)
133 | rerun_height = gr.Slider(
134 | minimum=64.0,
135 | maximum=2048.0,
136 | step=64.0,
137 | label='Firstpass height',
138 | value=512.0)
139 | rerun_strength = gr.Slider(
140 | minimum=0.0,
141 | maximum=1.0,
142 | step=0.01,
143 | label='Denoising strength',
144 | value=0.2)
145 |
146 | with gr.Row():
147 | use_txt = gr.Checkbox(label='Read tags from text files')
148 |
149 | with gr.Row():
150 | txt_path = gr.Textbox(
151 | label='Text files directory (optional, will load from input dir if not specified)',
152 | lines=1)
153 |
154 | with gr.Row():
155 | use_csv = gr.Checkbox(label='Read tabular commands')
156 | csv_path = gr.File(
157 | label='.csv or .xlsx',
158 | file_types=['file'],
159 | visible=False)
160 |
161 | with gr.Row():
162 | with gr.Column():
163 | table_content = gr.Dataframe(visible=False, wrap=True)
164 |
165 | use_img_mask.change(
166 | fn=lambda x: gr_show(x),
167 | inputs=[use_img_mask],
168 | outputs=[mask_options],
169 | )
170 | use_cn_inpaint.change(
171 | fn=lambda x: [gr_set_value(x), gr_set_value(x)],
172 | inputs=[use_cn_inpaint],
173 | outputs=[use_img_mask, use_cn],
174 | )
175 | use_cn.change(
176 | fn=lambda x: gr_show(x),
177 | inputs=[use_cn],
178 | outputs=[cn_options],
179 | )
180 | given_file.change(
181 | fn=lambda x: gr_show(x),
182 | inputs=[given_file],
183 | outputs=[specified_filename],
184 | )
185 | process_deepbooru.change(
186 | fn=lambda x: gr_show(x),
187 | inputs=[process_deepbooru],
188 | outputs=[deepbooru_prev],
189 | )
190 | use_csv.change(
191 | fn=lambda x: [gr_show_value_none(x), gr_show_value_none(False)],
192 | inputs=[use_csv],
193 | outputs=[csv_path, table_content],
194 | )
195 | csv_path.change(
196 | fn=lambda x: gr_show_and_load(x),
197 | inputs=[csv_path],
198 | outputs=[table_content],
199 | )
200 | is_rerun.change(
201 | fn=lambda x: gr_show(x),
202 | inputs=[is_rerun],
203 | outputs=[rerun_options],
204 | )
205 | use_cn_inpaint.change(
206 | fn=lambda x: [gr_show(x), gr_show(x), gr_show(x)],
207 | inputs=[use_cn_inpaint],
208 | outputs=[use_mask, use_img_mask, cn_inpaint_num],
209 | )
210 | use_cn_reference.change(
211 | fn=lambda x: [gr_show(x), gr_show(x)],
212 | inputs=[use_cn_reference],
213 | outputs=[cn_reference_num, cn_reference_source],
214 | )
215 |
216 | return [
217 | input_dir,
218 | output_dir,
219 | mask_dir,
220 | use_mask,
221 | use_img_mask,
222 | as_output_alpha,
223 | is_crop,
224 | use_cn,
225 | alpha_threshold,
226 | rotate_img,
227 | given_file,
228 | specified_filename,
229 | process_deepbooru,
230 | deepbooru_prev,
231 | use_txt,
232 | txt_path,
233 | use_csv,
234 | table_content,
235 | is_rerun,
236 | rerun_width,
237 | rerun_height,
238 | rerun_strength,
239 | use_cn_inpaint,
240 | cn_inpaint_num,
241 | use_cn_reference,
242 | cn_reference_num,
243 | cn_reference_source,
244 | *cn_dirs,]
245 |
246 | def run(
247 | self,
248 | p,
249 | input_dir,
250 | output_dir,
251 | mask_dir,
252 | use_mask,
253 | use_img_mask,
254 | as_output_alpha,
255 | is_crop,
256 | use_cn,
257 | alpha_threshold,
258 | rotate_img,
259 | given_file,
260 | specified_filename,
261 | process_deepbooru,
262 | deepbooru_prev,
263 | use_txt,
264 | txt_path,
265 | use_csv,
266 | table_content,
267 | is_rerun,
268 | rerun_width,
269 | rerun_height,
270 | rerun_strength,
271 | use_cn_inpaint,
272 | cn_inpaint_num,
273 | use_cn_reference,
274 | cn_reference_num,
275 | cn_reference_source,
276 | *cn_dirs):
277 |
278 | mask_flag = self.is_img2img or (use_cn_inpaint and not self.is_img2img)
279 |
280 | if use_cn_reference or use_cn_inpaint:
281 | use_cn = True
282 |
283 | # crop_util = module_from_file(
284 | # 'util', 'extensions/enhanced-img2img/scripts/util.py').CropUtils()
285 |
286 | rotation_dict = {
287 | '-90': Image.Transpose.ROTATE_90,
288 | '180': Image.Transpose.ROTATE_180,
289 | '90': Image.Transpose.ROTATE_270}
290 |
291 | if use_mask and mask_flag:
292 | mask_dir = input_dir
293 | use_img_mask = True
294 | as_output_alpha = True
295 |
296 | if is_rerun and self.is_img2img:
297 | original_strength = copy.deepcopy(p.denoising_strength)
298 | original_size = (copy.deepcopy(p.width), copy.deepcopy(p.height))
299 |
300 | if process_deepbooru:
301 | deepbooru.model.start()
302 |
303 | if use_csv:
304 | prompt_list = [i[0] for i in table_content.values.tolist()]
305 | prompt_list.insert(0, prompt_list.pop())
306 | init_prompt = p.prompt
307 | if init_prompt != "":
308 | init_prompt = init_prompt.rstrip(
309 | ', ') + ', ' if not init_prompt.rstrip().endswith(',') else init_prompt.rstrip() + ' '
310 |
311 | initial_info = None
312 | start_img = None
313 | reference_img = None
314 | images_in_folder = [os.path.join(
315 | input_dir,
316 | f) for f in os.listdir(input_dir) if re.match(
317 | r'.+\.(jpg|png)$',
318 | f)]
319 | if given_file:
320 | if specified_filename == '':
321 | images = [os.path.join(
322 | input_dir,
323 | f) for f in os.listdir(input_dir) if re.match(
324 | r'.+\.(jpg|png)$',
325 | f)]
326 | else:
327 | images = []
328 | try:
329 | images_idx = [int(re.findall(re_findidx, j)[0])
330 | for j in images_in_folder]
331 | except BaseException:
332 | images_idx = [re.findall(re_findname, j)[0]
333 | for j in images_in_folder]
334 | images_in_folder_dict = dict(zip(images_idx, images_in_folder))
335 | sep = ',' if ',' in specified_filename else ' '
336 | for i in specified_filename.split(sep):
337 | if i in images_in_folder:
338 | images.append(i)
339 | start = end = i
340 | else:
341 | try:
342 | match = re.search(r'(^\d*)-(\d*$)', i)
343 | if match:
344 | start, end = match.groups()
345 | if start == '':
346 | start = images_idx[0]
347 | if end == '':
348 | end = images_idx[-1]
349 | images += [images_in_folder_dict[j]
350 | for j in list(range(int(start), int(end) + 1))]
351 | except BaseException:
352 | images.append(images_in_folder_dict[int(i)])
353 |
354 | if len(images) == 0:
355 | raise FileNotFoundError
356 |
357 | else:
358 | images = [
359 | file for file in [
360 | os.path.join(
361 | input_dir,
362 | x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
363 | images = [f for f in images if re.match(r'.+\.(jpg|png)$', f)]
364 | # images = sorted(images)
365 | images = sort_images(images)
366 | images_in_folder = sort_images(images_in_folder)
367 | start_img = images_in_folder[0]
368 | if use_cn_reference:
369 | if cn_reference_source == "First":
370 | reference_img = [images_in_folder[0] for i in images]
371 | elif cn_reference_source == "Previous":
372 | img_idx = [images_in_folder.index(i) for i in images]
373 | reference_img = [images_in_folder[max(0, i - 1)] for i in img_idx]
374 | elif cn_reference_source == "Current":
375 | reference_img = images
376 | if cn_reference_source != "Current":
377 | reference_img = [os.path.join(output_dir, os.path.basename(i)) for i in reference_img]
378 | print(f'Will process following files: {", ".join(images)}')
379 |
380 | if use_txt:
381 | if txt_path == "":
382 | files = [
383 | re.sub(
384 | r'\.(jpg|png|jpeg|webp)$',
385 | '.txt',
386 | path) for path in images]
387 | else:
388 | files = [
389 | os.path.join(
390 | txt_path,
391 | os.path.basename(
392 | re.sub(
393 | r'\.(jpg|png|jpeg|webp)$',
394 | '.txt',
395 | path))) for path in images]
396 | prompt_list = [open(file, 'r').read().rstrip('\n')
397 | for file in files]
398 |
399 | if use_img_mask and mask_flag:
400 | masks_in_folder = [
401 | file for file in [
402 | os.path.join(
403 | mask_dir,
404 | x) for x in os.listdir(mask_dir)] if os.path.isfile(file)]
405 | masks_in_folder = [f for f in masks_in_folder if re.match(r'.+\.(jpg|png)$', f)]
406 | try:
407 | masks = [
408 | re.findall(
409 | re_findidx,
410 | file)[0] for file in masks_in_folder if os.path.isfile(file)]
411 | except BaseException:
412 | masks = [
413 | re.findall(
414 | re_findname,
415 | file)[0] for file in masks_in_folder if os.path.isfile(file)]
416 |
417 | masks_in_folder_dict = dict(zip(masks, masks_in_folder))
418 |
419 | else:
420 | masks = images
421 |
422 | if use_cn or not self.is_img2img:
423 | cn_in_folder_dicts = []
424 | for cn_dir in cn_dirs:
425 | if cn_dir == '':
426 | cn_dir = input_dir
427 |
428 | cn_in_folder = [
429 | file for file in [
430 | os.path.join(
431 | cn_dir,
432 | x) for x in os.listdir(cn_dir)] if os.path.isfile(file)]
433 | cn_in_folder = [f for f in cn_in_folder if re.match(r'.+\.(jpg|png)$', f)]
434 |
435 | try:
436 | cn_images_ = [
437 | re.findall(
438 | re_findidx,
439 | file)[0] for file in cn_in_folder if os.path.isfile(file)]
440 | except BaseException:
441 | cn_images_ = [
442 | re.findall(
443 | re_findname,
444 | file)[0] for file in cn_in_folder if os.path.isfile(file)]
445 |
446 | cn_in_folder_dict = dict(zip(cn_images_, cn_in_folder))
447 | cn_in_folder_dicts.append(cn_in_folder_dict)
448 |
449 | p.img_len = 1
450 | p.do_not_save_grid = True
451 | p.do_not_save_samples = True
452 |
453 | state.job_count = 1
454 |
455 | if process_deepbooru and deepbooru_prev:
456 | prev_prompt = ['']
457 |
458 | frame = 0
459 |
460 | img_len = len(images)
461 | if is_rerun:
462 | state.job_count *= 2 * len(images)
463 | else:
464 | state.job_count *= len(images)
465 |
466 | def set_reference(p, idx, enabled=False):
467 | import importlib
468 | external_code = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code')
469 |
470 | cn_units = external_code.get_all_units_in_processing(p)
471 | cn_units[idx].enabled = enabled
472 | external_code.update_cn_script_in_processing(p, cn_units)
473 |
474 | for idx, path in enumerate(images):
475 | if state.interrupted:
476 | break
477 | batch_images = []
478 | batched_raw = []
479 | cropped, mask, crop_info, cropped_cns, cn_images = None, None, None, None, None
480 | print(f'Processing: {path}')
481 | try:
482 | img = Image.open(path)
483 | try:
484 | to_process = re.findall(re_findidx, path)[0]
485 | except BaseException:
486 | to_process = re.findall(re_findname, path)[0]
487 | if use_cn or not self.is_img2img:
488 | cn_images = [Image.open(cn_in_folder_dict[to_process]) for cn_in_folder_dict in cn_in_folder_dicts]
489 | if use_cn_reference and path != start_img:
490 | cn_images[int(cn_reference_num[-1])] = Image.open(reference_img[idx])
491 | if rotate_img != '0':
492 | img = img.transpose(rotation_dict[rotate_img])
493 | if use_cn:
494 | cn_images = [cn_image.transpose(rotation_dict[rotate_img]) for cn_image in cn_images]
495 | if use_img_mask and mask_flag:
496 | try:
497 | mask = Image.open(masks_in_folder_dict[to_process])
498 | a = mask.split()[-1].convert('L').point(
499 | lambda x: 255 if x > alpha_threshold else 0)
500 | mask = Image.merge('RGBA', (a, a, a, a.convert('L')))
501 | except BaseException:
502 | print(
503 | f'Mask of {os.path.basename(path)} is not found, output original image!')
504 | img.save(
505 | os.path.join(
506 | output_dir,
507 | os.path.basename(path)))
508 | continue
509 | if rotate_img != '0':
510 | mask = mask.transpose(
511 | rotation_dict[rotate_img])
512 | if is_crop:
513 | original_mask = mask.copy()
514 | cropped, mask, crop_info = CropUtils.crop_img(
515 | img.copy(), mask, alpha_threshold)
516 | if use_cn:
517 | cropped_cns = [i[0] for i in [CropUtils.crop_img(cn_image.copy(), original_mask, alpha_threshold) for cn_image in cn_images]]
518 | if not mask:
519 | print(
520 | f'Mask of {os.path.basename(path)} is blank, output original image!')
521 | img.save(
522 | os.path.join(
523 | output_dir,
524 | os.path.basename(path)))
525 | continue
526 | batched_raw.append(img.copy())
527 | img = cropped if cropped is not None else img
528 | if use_cn:
529 | cn_images = cropped_cns if cropped_cns is not None else cn_images
530 | batch_images.append((img, path))
531 |
532 | except BaseException:
533 | print(f'Error processing {path}:', file=sys.stderr)
534 | print(traceback.format_exc(), file=sys.stderr)
535 |
536 | if len(batch_images) == 0:
537 | print('No images will be processed.')
538 | break
539 |
540 | if process_deepbooru:
541 | deepbooru_prompt = deepbooru.model.tag_multi(
542 | batch_images[0][0])
543 | if deepbooru_prev:
544 | deepbooru_prompt = deepbooru_prompt.split(', ')
545 | common_prompt = list(
546 | set(prev_prompt) & set(deepbooru_prompt))
547 | p.prompt = init_prompt + ', '.join(common_prompt) + ', '.join(
548 | [i for i in deepbooru_prompt if i not in common_prompt])
549 | prev_prompt = deepbooru_prompt
550 | else:
551 | if len(init_prompt) > 0:
552 | init_prompt += ', '
553 | p.prompt = init_prompt + deepbooru_prompt
554 |
555 | if use_csv or use_txt:
556 | p.prompt = init_prompt + prompt_list[frame]
557 |
558 | state.job = f'{idx} out of {img_len}: {batch_images[0][1]}'
559 | if self.is_img2img:
560 | p.init_images = [x[0] for x in batch_images]
561 |
562 | if mask is not None and (use_mask or use_img_mask) and self.is_img2img:
563 | p.image_mask = mask
564 |
565 | if cn_images is not None and (use_cn or not self.is_img2img):
566 | p.control_net_input_image = cn_images
567 | if use_cn_reference:
568 | if path == start_img and cn_reference_source != 'Current':
569 | set_reference(p, int(cn_reference_num[-1]), False)
570 | else:
571 | set_reference(p, int(cn_reference_num[-1]), True)
572 |
573 | if use_cn_inpaint:
574 | inpaint_idx = int(cn_inpaint_num[-1])
575 | p.control_net_input_image[inpaint_idx] = {"image": p.control_net_input_image[inpaint_idx], "mask": mask.convert("L")}
576 |
577 | def process_images_with_size(p, size, strength):
578 | p.width, p.height, = size
579 | p.strength = strength
580 | return process_images(p)
581 |
582 | if is_rerun and self.is_img2img:
583 | proc = process_images_with_size(
584 | p, (rerun_width, rerun_height), rerun_strength)
585 | p_2 = p
586 | p_2.init_images = proc.images
587 | proc = process_images_with_size(
588 | p_2, original_size, original_strength)
589 | else:
590 | proc = process_images(p)
591 |
592 | if initial_info is None:
593 | initial_info = proc.info
594 | for output, (input_img, path) in zip(proc.images, batch_images):
595 | filename = os.path.basename(path)
596 | if use_img_mask and self.is_img2img:
597 | if as_output_alpha:
598 | output.putalpha(
599 | p.image_mask.resize(
600 | output.size).convert('L'))
601 |
602 | if rotate_img != '0':
603 | output = output.transpose(
604 | rotation_dict[str(-int(rotate_img))])
605 |
606 | if is_crop and self.is_img2img:
607 | output = CropUtils.restore_by_file(
608 | batched_raw[0],
609 | output,
610 | batch_images[0][0],
611 | mask,
612 | crop_info,
613 | p.mask_blur + 1)
614 |
615 | comments = {}
616 | if len(model_hijack.comments) > 0:
617 | for comment in model_hijack.comments:
618 | comments[comment] = 1
619 |
620 | info = create_infotext(
621 | p,
622 | p.all_prompts,
623 | p.all_seeds,
624 | p.all_subseeds,
625 | comments,
626 | 0,
627 | 0)
628 | pnginfo = {}
629 | if info is not None:
630 | pnginfo['parameters'] = info
631 |
632 | params = ImageSaveParams(output, p, filename, pnginfo)
633 | before_image_saved_callback(params)
634 | fullfn_without_extension, extension = os.path.splitext(
635 | filename)
636 |
637 | if is_rerun and self.is_img2img:
638 | params.pnginfo['loopback_params'] = f'Firstpass size: {rerun_width}x{rerun_height}, Firstpass strength: {original_strength}'
639 |
640 | info = params.pnginfo.get('parameters', None)
641 |
642 | def exif_bytes():
643 | return piexif.dump({
644 | 'Exif': {
645 | piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or '', encoding='unicode')
646 | },
647 | })
648 |
649 | if extension.lower() == '.png':
650 | pnginfo_data = PngImagePlugin.PngInfo()
651 | for k, v in params.pnginfo.items():
652 | pnginfo_data.add_text(k, str(v))
653 |
654 | output.save(
655 | os.path.join(
656 | output_dir,
657 | filename),
658 | pnginfo=pnginfo_data)
659 |
660 | elif extension.lower() in ('.jpg', '.jpeg', '.webp'):
661 | output.save(os.path.join(output_dir, filename))
662 |
663 | if opts.enable_pnginfo and info is not None:
664 | piexif.insert(
665 | exif_bytes(), os.path.join(
666 | output_dir, filename))
667 | else:
668 | output.save(os.path.join(output_dir, filename))
669 |
670 | frame += 1
671 |
672 | if process_deepbooru:
673 | deepbooru.model.stop()
674 |
675 | return Processed(p, [], p.seed, initial_info)
676 |
--------------------------------------------------------------------------------
/scripts/multi_frame_rendering.py:
--------------------------------------------------------------------------------
1 | # Original Xanthius (https://xanthius.itch.io/multi-frame-rendering-for-stablediffusion)
2 | # Modified OedoSoldier [大江户战士] (https://space.bilibili.com/55123)
3 |
4 | import numpy as np
5 | from tqdm import trange
6 | from PIL import Image, ImageSequence, ImageDraw, ImageFilter, PngImagePlugin
7 |
8 | import modules.scripts as scripts
9 | import gradio as gr
10 |
11 | from scripts.ei_utils import *
12 |
13 | from modules import processing, shared, sd_samplers, images
14 | from modules.processing import Processed
15 | from modules.sd_samplers import samplers
16 | from modules.shared import opts, cmd_opts, state
17 | from modules import deepbooru
18 | from modules.script_callbacks import ImageSaveParams, before_image_saved_callback
19 | from modules.shared import opts, cmd_opts, state
20 | from modules.sd_hijack import model_hijack
21 |
22 | import pandas as pd
23 |
24 | import piexif
25 | import piexif.helper
26 |
27 | import os
28 | import re
29 |
30 | re_findidx = re.compile(
31 | r'(?=\S)(\d+)\.(?:[P|p][N|n][G|g]?|[J|j][P|p][G|g]?|[J|j][P|p][E|e][G|g]?|[W|w][E|e][B|b][P|p]?)\b')
32 | re_findname = re.compile(r'[\w-]+?(?=\.)')
33 |
34 | class Script(scripts.Script):
35 | def title(self):
36 | return "Multi-frame rendering"
37 |
38 | def show(self, is_img2img):
39 | return is_img2img
40 |
41 | def ui(self, is_img2img):
42 | with gr.Row():
43 | input_dir = gr.Textbox(label='Input directory', lines=1)
44 | output_dir = gr.Textbox(label='Output directory', lines=1)
45 | # reference_imgs = gr.UploadButton(label="Upload Guide Frames", file_types = ['.png','.jpg','.jpeg'], live=True, file_count = "multiple")
46 |
47 | with gr.Row():
48 | mask_dir = gr.Textbox(label='Mask directory', placeholder="Keep blank if you don't have mask", lines=1)
49 |
50 | first_denoise = gr.Slider(
51 | minimum=0,
52 | maximum=1,
53 | step=0.05,
54 | label='Initial denoising strength',
55 | value=1,
56 | elem_id=self.elem_id("first_denoise"))
57 | append_interrogation = gr.Dropdown(
58 | label="Append interrogated prompt at each iteration", choices=[
59 | "None", "CLIP", "DeepBooru"], value="None")
60 | third_frame_image = gr.Dropdown(
61 | label="Third column (reference) image",
62 | choices=[
63 | "None",
64 | "FirstGen",
65 | "OriginalImg",
66 | "Historical"],
67 | value="FirstGen")
68 | color_correction_enabled = gr.Checkbox(
69 | label="Enable color correction",
70 | value=False,
71 | elem_id=self.elem_id("color_correction_enabled"))
72 | unfreeze_seed = gr.Checkbox(
73 | label="Unfreeze seed",
74 | value=False,
75 | elem_id=self.elem_id("unfreeze_seed"))
76 | loopback_source = gr.Dropdown(
77 | label="Loopback source",
78 | choices=[
79 | "Previous",
80 | "Current",
81 | "First"],
82 | value="Current")
83 |
84 | with gr.Row():
85 | given_file = gr.Checkbox(
86 | label='Process given file(s) under the input folder, seperate by comma')
87 | specified_filename = gr.Textbox(
88 | label='Files to process', lines=1, visible=False)
89 |
90 | self.max_models = opts.data.get("control_net_max_models_num", 1)
91 |
92 | with gr.Row():
93 | use_cn_inpaint = gr.Checkbox(
94 | label='Use Control Net inpaint model')
95 | cn_inpaint_num = gr.Dropdown(
96 | [f"Control Model - {i}" for i in range(self.max_models)], label="ControlNet inpaint model index", visible=False)
97 |
98 | use_cn = gr.Checkbox(label='Use another image as ControlNet input')
99 | with gr.Row(visible=False) as cn_options:
100 | cn_dirs = []
101 | with gr.Group():
102 | with gr.Tabs():
103 | for i in range(self.max_models):
104 | with gr.Tab(f"ControlNet-{i}", open=False):
105 | cn_dirs.append(gr.Textbox(label='ControlNet input directory', lines=1))
106 |
107 | with gr.Row():
108 | use_txt = gr.Checkbox(label='Read tags from text files')
109 |
110 | with gr.Row():
111 | txt_path = gr.Textbox(
112 | label='Text files directory (Optional, will load from input dir if not specified)',
113 | lines=1)
114 |
115 | with gr.Row():
116 | use_csv = gr.Checkbox(label='Read tabular commands')
117 | csv_path = gr.File(
118 | label='.csv or .xlsx',
119 | file_types=['file'],
120 | visible=False)
121 |
122 | with gr.Row():
123 | with gr.Column():
124 | table_content = gr.Dataframe(visible=False, wrap=True)
125 |
126 | use_csv.change(
127 | fn=lambda x: [gr_show_value_none(x), gr_show_value_none(False)],
128 | inputs=[use_csv],
129 | outputs=[csv_path, table_content],
130 | )
131 | csv_path.change(
132 | fn=lambda x: gr_show_and_load(x),
133 | inputs=[csv_path],
134 | outputs=[table_content],
135 | )
136 | given_file.change(
137 | fn=lambda x: gr_show(x),
138 | inputs=[given_file],
139 | outputs=[specified_filename],
140 | )
141 | use_cn_inpaint.change(
142 | fn=lambda x: gr_show(x),
143 | inputs=[use_cn_inpaint],
144 | outputs=[cn_inpaint_num]
145 | )
146 | use_cn.change(
147 | fn=lambda x: gr_show(x),
148 | inputs=[use_cn],
149 | outputs=[cn_options],
150 | )
151 |
152 | return [
153 | append_interrogation,
154 | input_dir,
155 | output_dir,
156 | mask_dir,
157 | first_denoise,
158 | third_frame_image,
159 | color_correction_enabled,
160 | unfreeze_seed,
161 | loopback_source,
162 | use_csv,
163 | table_content,
164 | given_file,
165 | specified_filename,
166 | use_txt,
167 | txt_path,
168 | use_cn_inpaint,
169 | cn_inpaint_num,
170 | use_cn,
171 | *cn_dirs,]
172 |
173 | def run(
174 | self,
175 | p,
176 | append_interrogation,
177 | input_dir,
178 | output_dir,
179 | mask_dir,
180 | first_denoise,
181 | third_frame_image,
182 | color_correction_enabled,
183 | unfreeze_seed,
184 | loopback_source,
185 | use_csv,
186 | table_content,
187 | given_file,
188 | specified_filename,
189 | use_txt,
190 | txt_path,
191 | use_cn_inpaint,
192 | cn_inpaint_num,
193 | use_cn,
194 | *cn_dirs,):
195 | freeze_seed = not unfreeze_seed
196 |
197 | if use_csv:
198 | prompt_list = [i[0] for i in table_content.values.tolist()]
199 | prompt_list.insert(0, prompt_list.pop())
200 |
201 | history_imgs = None
202 | if given_file:
203 | if specified_filename == '':
204 | images = [os.path.join(
205 | input_dir,
206 | f) for f in os.listdir(input_dir) if re.match(
207 | r'.+\.(jpg|png)$',
208 | f)]
209 | else:
210 | images = []
211 | masks = []
212 | images_in_folder = [os.path.join(
213 | input_dir,
214 | f) for f in os.listdir(input_dir) if re.match(
215 | r'.+\.(jpg|png)$',
216 | f)]
217 | try:
218 | images_idx = [int(re.findall(re_findidx, j)[0])
219 | for j in images_in_folder]
220 | except BaseException:
221 | images_idx = [re.findall(re_findname, j)[0]
222 | for j in images_in_folder]
223 | images_in_folder_dict = dict(zip(images_idx, images_in_folder))
224 | sep = ',' if ',' in specified_filename else ' '
225 | for i in specified_filename.split(sep):
226 | if i in images_in_folder:
227 | images.append(i)
228 | start = end = i
229 | else:
230 | try:
231 | match = re.search(r'(^\d*)-(\d*$)', i)
232 | if match:
233 | start, end = match.groups()
234 | if start == '':
235 | start = images_idx[0]
236 | if end == '':
237 | end = images_idx[-1]
238 | images += [images_in_folder_dict[j]
239 | for j in list(range(int(start), int(end) + 1))]
240 | except BaseException:
241 | images.append(images_in_folder_dict[int(i)])
242 | if len(images) == 0:
243 | raise FileNotFoundError
244 | reference_imgs = [images_in_folder_dict[images_idx[0]], images_in_folder_dict[max(0, int(start) - 1)]] + images
245 | history_imgs = [images_in_folder_dict[images_idx[0]], images_in_folder_dict[max(images_idx[0], int(start) - 2)], images_in_folder_dict[max(0, int(start) - 1)]]
246 | history_imgs = [images_in_folder_dict[images_idx[0]]] + [os.path.join(output_dir, os.path.basename(f)) for f in history_imgs]
247 | else:
248 | reference_imgs = [
249 | os.path.join(
250 | input_dir,
251 | f) for f in os.listdir(input_dir) if re.match(
252 | r'.+\.(jpg|png)$',
253 | f)]
254 | reference_imgs = sort_images(reference_imgs)
255 | print(f'Will process following files: {", ".join(reference_imgs)}')
256 |
257 | if use_txt:
258 | if txt_path == "":
259 | files = [re.sub(r'\.(jpg|png)$', '.txt', path)
260 | for path in reference_imgs]
261 | else:
262 | files = [
263 | os.path.join(
264 | txt_path,
265 | os.path.basename(
266 | re.sub(
267 | r'\.(jpg|png)$',
268 | '.txt',
269 | path))) for path in reference_imgs]
270 | prompt_list = [open(file, 'r').read().rstrip('\n')
271 | for file in files]
272 |
273 | if use_cn:
274 | cn_dirs = [input_dir if cn_dir=="" else cn_dir for cn_dir in cn_dirs]
275 | cn_images = [[os.path.join(
276 | cn_dir,
277 | os.path.basename(path)) for path in reference_imgs] for cn_dir in cn_dirs]
278 |
279 | loops = len(reference_imgs)
280 |
281 | processing.fix_seed(p)
282 | batch_count = p.n_iter
283 |
284 | p.batch_size = 1
285 | p.n_iter = 1
286 |
287 | output_images, info = None, None
288 | initial_seed = None
289 | initial_info = None
290 |
291 | initial_width = p.width
292 | initial_img = reference_imgs[0] # p.init_images[0]
293 | p.init_images = [
294 | Image.open(initial_img).resize(
295 | (initial_width, p.height), Image.ANTIALIAS)]
296 |
297 | # grids = []
298 | # all_images = []
299 | # original_init_image = p.init_images
300 | original_prompt = p.prompt
301 | if original_prompt != "":
302 | original_prompt = original_prompt.rstrip(
303 | ', ') + ', ' if not original_prompt.rstrip().endswith(',') else original_prompt.rstrip() + ' '
304 | original_denoise = p.denoising_strength
305 | state.job_count = (loops - 2) * batch_count if given_file else loops * batch_count
306 |
307 | initial_color_corrections = [
308 | processing.setup_color_correction(
309 | p.init_images[0])]
310 |
311 | # for n in range(batch_count):
312 | history = None
313 | # frames = []
314 | third_image = None
315 | third_image_index = 0
316 | frame_color_correction = None
317 |
318 | # Reset to original init image at the start of each batch
319 | p.width = initial_width
320 | p.control_net_resize_mode = "Just Resize"
321 |
322 | for i in range(loops):
323 | if state.interrupted:
324 | break
325 | if given_file and i < 2:
326 | p.init_images[0] = Image.open(
327 | history_imgs[-1]).resize(
328 | (initial_width, p.height), Image.ANTIALIAS)
329 | history = p.init_images[0]
330 | if third_frame_image != "None":
331 | if third_frame_image == "FirstGen" and i == 0:
332 | third_image = Image.open(
333 | history_imgs[1]).resize(
334 | (initial_width, p.height), Image.ANTIALIAS)
335 | third_image_index = 0
336 | elif third_frame_image == "OriginalImg" and i == 0:
337 | third_image = Image.open(
338 | history_imgs[0]).resize(
339 | (initial_width, p.height), Image.ANTIALIAS)
340 | third_image_index = 0
341 | elif third_frame_image == "Historical":
342 | third_image = Image.open(
343 | history_imgs[2]).resize(
344 | (initial_width, p.height), Image.ANTIALIAS)
345 | third_image_index = (i - 1)
346 | continue
347 | filename = os.path.basename(reference_imgs[i])
348 | print(f'Processing: {reference_imgs[i]}')
349 | p.n_iter = 1
350 | p.batch_size = 1
351 | p.do_not_save_grid = True
352 | p.control_net_input_image = Image.open(
353 | reference_imgs[i]).resize(
354 | (initial_width, p.height), Image.ANTIALIAS)
355 |
356 | if(i > 0):
357 | loopback_image = p.init_images[0]
358 | if loopback_source == "Current":
359 | loopback_image = p.control_net_input_image
360 | elif loopback_source == "First":
361 | loopback_image = history
362 |
363 | if third_frame_image != "None":
364 | p.width = initial_width * 3
365 | img = Image.new("RGB", (initial_width * 3, p.height))
366 | img.paste(p.init_images[0], (0, 0))
367 | # img.paste(p.init_images[0], (initial_width, 0))
368 | img.paste(loopback_image, (initial_width, 0))
369 | if i == 1:
370 | third_image = p.init_images[0]
371 | img.paste(third_image, (initial_width * 2, 0))
372 | p.init_images = [img]
373 | if color_correction_enabled:
374 | p.color_corrections = [
375 | processing.setup_color_correction(img)]
376 |
377 | if use_cn:
378 | msk = []
379 | for cn_image in cn_images:
380 | m = Image.new("RGB", (initial_width * 3, p.height))
381 | m.paste(Image.open(cn_image[i - 1]).resize(
382 | (initial_width, p.height), Image.ANTIALIAS), (0, 0))
383 | m.paste(Image.open(cn_image[i]).resize(
384 | (initial_width, p.height), Image.ANTIALIAS), (initial_width, 0))
385 | m.paste(Image.open(cn_image[third_image_index]).resize(
386 | (initial_width, p.height), Image.ANTIALIAS), (initial_width * 2, 0))
387 | msk.append(m)
388 | else:
389 | msk = Image.new("RGB", (initial_width * 3, p.height))
390 | msk.paste(Image.open(reference_imgs[i - 1]).resize(
391 | (initial_width, p.height), Image.ANTIALIAS), (0, 0))
392 | msk.paste(p.control_net_input_image, (initial_width, 0))
393 | msk.paste(Image.open(reference_imgs[third_image_index]).resize(
394 | (initial_width, p.height), Image.ANTIALIAS), (initial_width * 2, 0))
395 | p.control_net_input_image = msk
396 | latent_mask = Image.new(
397 | "RGB", (initial_width * 3, p.height), "black")
398 | if mask_dir == '':
399 | latent_draw = ImageDraw.Draw(latent_mask)
400 | latent_draw.rectangle(
401 | (initial_width, 0, initial_width * 2, p.height), fill="white")
402 | else:
403 | latent_mask.paste(Image.open(os.path.join(mask_dir, os.path.basename(filename))).resize(
404 | (initial_width, p.height), Image.ANTIALIAS).convert("L"), (initial_width, 0))
405 | p.image_mask = latent_mask
406 | p.denoising_strength = original_denoise
407 | else:
408 | p.width = initial_width * 2
409 | img = Image.new("RGB", (initial_width * 2, p.height))
410 | img.paste(p.init_images[0], (0, 0))
411 | # img.paste(p.init_images[0], (initial_width, 0))
412 | img.paste(loopback_image, (initial_width, 0))
413 | p.init_images = [img]
414 | if color_correction_enabled:
415 | p.color_corrections = [
416 | processing.setup_color_correction(img)]
417 |
418 | if use_cn:
419 | msk = []
420 | for cn_image in cn_images:
421 | m = Image.new("RGB", (initial_width * 2, p.height))
422 | m.paste(Image.open(cn_image[i - 1]).resize(
423 | (initial_width, p.height), Image.ANTIALIAS), (0, 0))
424 | m.paste(Image.open(cn_image[i]).resize(
425 | (initial_width, p.height), Image.ANTIALIAS), (initial_width, 0))
426 | else:
427 | msk = Image.new("RGB", (initial_width * 2, p.height))
428 | msk.paste(Image.open(reference_imgs[i - 1]).resize(
429 | (initial_width, p.height), Image.ANTIALIAS), (0, 0))
430 | msk.paste(p.control_net_input_image, (initial_width, 0))
431 | p.control_net_input_image = msk
432 | # frames.append(msk)
433 |
434 | # latent_mask = Image.new("RGB", (initial_width*2, p.height), "white")
435 | # latent_draw = ImageDraw.Draw(latent_mask)
436 | # latent_draw.rectangle((0,0,initial_width,p.height), fill="black")
437 | latent_mask = Image.new(
438 | "RGB", (initial_width * 2, p.height), "black")
439 | if mask_dir == '':
440 | latent_draw = ImageDraw.Draw(latent_mask)
441 | latent_draw.rectangle(
442 | (initial_width, 0, initial_width * 2, p.height), fill="white")
443 | else:
444 | latent_mask.paste(Image.open(os.path.join(mask_dir, os.path.basename(filename))).resize(
445 | (initial_width, p.height), Image.ANTIALIAS).convert("L"), (initial_width, 0))
446 |
447 | # p.latent_mask = latent_mask
448 | p.image_mask = latent_mask
449 | p.denoising_strength = original_denoise
450 | else:
451 | p.init_images = [p.init_images[0].resize((initial_width, p.height), Image.ANTIALIAS)]
452 | if mask_dir == '':
453 | latent_mask = Image.new(
454 | "RGB", (initial_width, p.height), "white")
455 | else:
456 | latent_mask = Image.open(os.path.join(mask_dir, os.path.basename(filename))).resize(
457 | (initial_width, p.height), Image.ANTIALIAS).convert("L")
458 | # p.latent_mask = latent_mask
459 | p.image_mask = latent_mask
460 | p.denoising_strength = first_denoise
461 | if use_cn:
462 | p.control_net_input_image = [Image.open(cn_image[0]).resize((initial_width, p.height), Image.ANTIALIAS) for cn_image in cn_images]
463 | else:
464 | p.control_net_input_image = p.control_net_input_image.resize((initial_width, p.height), Image.ANTIALIAS)
465 | # frames.append(p.control_net_input_image)
466 |
467 | # if opts.img2img_color_correction:
468 | # p.color_corrections = initial_color_corrections
469 |
470 | if append_interrogation != "None":
471 | p.prompt = original_prompt
472 | if append_interrogation == "CLIP":
473 | p.prompt += shared.interrogator.interrogate(
474 | p.init_images[0])
475 | elif append_interrogation == "DeepBooru":
476 | p.prompt += deepbooru.model.tag(p.init_images[0])
477 |
478 | if use_csv or use_txt:
479 | p.prompt = original_prompt + prompt_list[i]
480 |
481 | # state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
482 | if use_cn_inpaint:
483 | p.control_net_input_image = [p.control_net_input_image] * self.max_models
484 | p.control_net_input_image[int(cn_inpaint_num[-1])] = {"image": p.init_images[0], "mask": p.image_mask.convert("L")}
485 |
486 | processed = processing.process_images(p)
487 |
488 | if initial_seed is None:
489 | initial_seed = processed.seed
490 | initial_info = processed.info
491 |
492 | init_img = processed.images[0]
493 | if(i > 0):
494 | init_img = init_img.crop(
495 | (initial_width, 0, initial_width * 2, p.height))
496 |
497 | comments = {}
498 | if len(model_hijack.comments) > 0:
499 | for comment in model_hijack.comments:
500 | comments[comment] = 1
501 |
502 | info = processing.create_infotext(
503 | p,
504 | p.all_prompts,
505 | p.all_seeds,
506 | p.all_subseeds,
507 | comments,
508 | 0,
509 | 0)
510 | pnginfo = {}
511 | if info is not None:
512 | pnginfo['parameters'] = info
513 |
514 | params = ImageSaveParams(init_img, p, filename, pnginfo)
515 | before_image_saved_callback(params)
516 | fullfn_without_extension, extension = os.path.splitext(
517 | filename)
518 |
519 | info = params.pnginfo.get('parameters', None)
520 |
521 | def exif_bytes():
522 | return piexif.dump({
523 | 'Exif': {
524 | piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or '', encoding='unicode')
525 | },
526 | })
527 |
528 | if extension.lower() == '.png':
529 | pnginfo_data = PngImagePlugin.PngInfo()
530 | for k, v in params.pnginfo.items():
531 | pnginfo_data.add_text(k, str(v))
532 |
533 | init_img.save(
534 | os.path.join(
535 | output_dir,
536 | filename),
537 | pnginfo=pnginfo_data)
538 |
539 | elif extension.lower() in ('.jpg', '.jpeg', '.webp'):
540 | init_img.save(os.path.join(output_dir, filename))
541 |
542 | if opts.enable_pnginfo and info is not None:
543 | piexif.insert(
544 | exif_bytes(), os.path.join(
545 | output_dir, filename))
546 | else:
547 | init_img.save(os.path.join(output_dir, filename))
548 |
549 | if third_frame_image != "None":
550 | if third_frame_image == "FirstGen" and i == 0:
551 | third_image = init_img
552 | third_image_index = 0
553 | elif third_frame_image == "OriginalImg" and i == 0:
554 | third_image = initial_img[0]
555 | third_image_index = 0
556 | elif third_frame_image == "Historical":
557 | third_image = processed.images[0].crop(
558 | (0, 0, initial_width, p.height))
559 | third_image_index = (i - 1)
560 |
561 | p.init_images = [init_img]
562 | if(freeze_seed):
563 | p.seed = processed.seed
564 | else:
565 | p.seed = processed.seed + 1
566 | # p.seed = processed.seed
567 | if i == 0:
568 | history = init_img
569 | # history.append(processed.images[0])
570 | # frames.append(processed.images[0])
571 |
572 | # grid = images.image_grid(history, rows=1)
573 | # if opts.grid_save:
574 | # images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
575 |
576 | # grids.append(grid)
577 | # # all_images += history + frames
578 | # all_images += history
579 |
580 | # p.seed = p.seed+1
581 |
582 | # if opts.return_grid:
583 | # all_images = grids + all_images
584 |
585 | processed = Processed(p, [], initial_seed, initial_info)
586 |
587 | return processed
588 |
--------------------------------------------------------------------------------