├── .idea
└── workspace.xml
├── HIPTrack_env_cuda113.yaml
├── LICENSE
├── README.md
├── experiments
└── hiptrack
│ ├── hiptrack.yaml
│ └── hiptrack_got.yaml
├── lib
├── __init__.py
├── __pycache__
│ └── __init__.cpython-38.pyc
├── config
│ ├── __init__.py
│ ├── __pycache__
│ │ └── __init__.cpython-38.pyc
│ └── hiptrack
│ │ ├── __pycache__
│ │ └── config.cpython-38.pyc
│ │ └── config.py
├── models
│ ├── __init__.py
│ ├── __pycache__
│ │ └── __init__.cpython-38.pyc
│ ├── hip
│ │ ├── HistoricalPromptNetwork.py
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── HistoricalPromptNetwork.cpython-38.pyc
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── cbam.cpython-38.pyc
│ │ │ ├── modules.cpython-38.pyc
│ │ │ └── resnet.cpython-38.pyc
│ │ ├── cbam.py
│ │ ├── modules.py
│ │ └── resnet.py
│ ├── hiptrack
│ │ ├── DCPT.py
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── DCPT.cpython-38.pyc
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── base_backbone.cpython-38.pyc
│ │ │ ├── hiptrack.cpython-38.pyc
│ │ │ ├── utils.cpython-38.pyc
│ │ │ ├── vit.cpython-38.pyc
│ │ │ ├── vit_ce.cpython-38.pyc
│ │ │ ├── vit_ce_prompt.cpython-38.pyc
│ │ │ └── vit_prompt.cpython-38.pyc
│ │ ├── base_backbone.py
│ │ ├── hiptrack.py
│ │ ├── utils.py
│ │ ├── vit.py
│ │ ├── vit_ce.py
│ │ ├── vit_ce_prompt.py
│ │ └── vit_prompt.py
│ └── layers
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ ├── attn.cpython-38.pyc
│ │ ├── attn_blocks.cpython-38.pyc
│ │ ├── frozen_bn.cpython-38.pyc
│ │ ├── head.cpython-38.pyc
│ │ ├── patch_embed.cpython-38.pyc
│ │ └── rpe.cpython-38.pyc
│ │ ├── attn.py
│ │ ├── attn_blocks.py
│ │ ├── frozen_bn.py
│ │ ├── head.py
│ │ ├── patch_embed.py
│ │ └── rpe.py
├── test
│ ├── __init__.py
│ ├── __pycache__
│ │ └── __init__.cpython-38.pyc
│ ├── analysis
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── extract_results.cpython-38.pyc
│ │ │ └── plot_results.cpython-38.pyc
│ │ ├── extract_results.py
│ │ └── plot_results.py
│ ├── evaluation
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── data.cpython-38.pyc
│ │ │ ├── datasets.cpython-38.pyc
│ │ │ ├── environment.cpython-38.pyc
│ │ │ ├── got10kdataset.cpython-38.pyc
│ │ │ ├── lasotdataset.cpython-38.pyc
│ │ │ ├── local.cpython-38.pyc
│ │ │ ├── motdataset.cpython-38.pyc
│ │ │ ├── otbdataset.cpython-38.pyc
│ │ │ ├── running.cpython-38.pyc
│ │ │ ├── tracker.cpython-38.pyc
│ │ │ └── trackingnetdataset.cpython-38.pyc
│ │ ├── data.py
│ │ ├── datasets.py
│ │ ├── environment.py
│ │ ├── got10kdataset.py
│ │ ├── itbdataset.py
│ │ ├── lasot_lmdbdataset.py
│ │ ├── lasotdataset.py
│ │ ├── lasotextensionsubsetdataset.py
│ │ ├── llotdataset.py
│ │ ├── local.py
│ │ ├── motdataset.py
│ │ ├── nfsdataset.py
│ │ ├── otbdataset.py
│ │ ├── running.py
│ │ ├── tc128cedataset.py
│ │ ├── tc128dataset.py
│ │ ├── tnl2kdataset.py
│ │ ├── tracker.py
│ │ ├── trackingnetdataset.py
│ │ ├── uavdataset.py
│ │ └── votdataset.py
│ ├── parameter
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ └── hiptrack.cpython-38.pyc
│ │ └── hiptrack.py
│ ├── tracker
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── basetracker.cpython-38.pyc
│ │ │ ├── data_utils.cpython-38.pyc
│ │ │ ├── hiptrack.cpython-38.pyc
│ │ │ └── vis_utils.cpython-38.pyc
│ │ ├── basetracker.py
│ │ ├── data_utils.py
│ │ ├── hiptrack.py
│ │ └── vis_utils.py
│ └── utils
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ ├── _init_paths.cpython-38.pyc
│ │ ├── hann.cpython-38.pyc
│ │ ├── load_text.cpython-38.pyc
│ │ └── params.cpython-38.pyc
│ │ ├── _init_paths.py
│ │ ├── hann.py
│ │ ├── load_text.py
│ │ ├── params.py
│ │ ├── transform_got10k.py
│ │ └── transform_trackingnet.py
├── train
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ ├── _init_paths.cpython-38.pyc
│ │ ├── base_functions.cpython-38.pyc
│ │ └── train_script.cpython-38.pyc
│ ├── _init_paths.py
│ ├── actors
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── base_actor.cpython-38.pyc
│ │ │ └── hiptrack.cpython-38.pyc
│ │ ├── base_actor.py
│ │ └── hiptrack.py
│ ├── admin
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── environment.cpython-38.pyc
│ │ │ ├── local.cpython-38.pyc
│ │ │ ├── multigpu.cpython-38.pyc
│ │ │ ├── settings.cpython-38.pyc
│ │ │ ├── stats.cpython-38.pyc
│ │ │ └── tensorboard.cpython-38.pyc
│ │ ├── environment.py
│ │ ├── local.py
│ │ ├── multigpu.py
│ │ ├── settings.py
│ │ ├── stats.py
│ │ └── tensorboard.py
│ ├── base_functions.py
│ ├── data
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── image_loader.cpython-38.pyc
│ │ │ ├── loader.cpython-38.pyc
│ │ │ ├── processing.cpython-38.pyc
│ │ │ ├── processing_utils.cpython-38.pyc
│ │ │ ├── sampler.cpython-38.pyc
│ │ │ ├── transforms.cpython-38.pyc
│ │ │ └── wandb_logger.cpython-38.pyc
│ │ ├── bounding_box_utils.py
│ │ ├── image_loader.py
│ │ ├── loader.py
│ │ ├── processing.py
│ │ ├── processing_utils.py
│ │ ├── sampler.py
│ │ ├── transforms.py
│ │ └── wandb_logger.py
│ ├── data_specs
│ │ ├── README.md
│ │ ├── got10k_train_full_split.txt
│ │ ├── got10k_train_split.txt
│ │ ├── got10k_val_split.txt
│ │ ├── got10k_vot_exclude.txt
│ │ ├── got10k_vot_train_split.txt
│ │ ├── got10k_vot_val_split.txt
│ │ ├── lasot_train_split.txt
│ │ └── trackingnet_classmap.txt
│ ├── dataset
│ │ ├── COCO_tool.py
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── COCO_tool.cpython-38.pyc
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── base_image_dataset.cpython-38.pyc
│ │ │ ├── base_video_dataset.cpython-38.pyc
│ │ │ ├── coco.cpython-38.pyc
│ │ │ ├── coco_seq.cpython-38.pyc
│ │ │ ├── coco_seq_lmdb.cpython-38.pyc
│ │ │ ├── got10k.cpython-38.pyc
│ │ │ ├── got10k_lmdb.cpython-38.pyc
│ │ │ ├── imagenetvid.cpython-38.pyc
│ │ │ ├── imagenetvid_lmdb.cpython-38.pyc
│ │ │ ├── lasot.cpython-38.pyc
│ │ │ ├── lasot_lmdb.cpython-38.pyc
│ │ │ ├── tracking_net.cpython-38.pyc
│ │ │ └── tracking_net_lmdb.cpython-38.pyc
│ │ ├── base_image_dataset.py
│ │ ├── base_video_dataset.py
│ │ ├── coco.py
│ │ ├── coco_seq.py
│ │ ├── coco_seq_lmdb.py
│ │ ├── got10k.py
│ │ ├── got10k_lmdb.py
│ │ ├── imagenetvid.py
│ │ ├── imagenetvid_lmdb.py
│ │ ├── lasot.py
│ │ ├── lasot_lmdb.py
│ │ ├── tracking_net.py
│ │ └── tracking_net_lmdb.py
│ ├── run_training.py
│ ├── train_script.py
│ ├── train_script_distill.py
│ └── trainers
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ ├── base_trainer.cpython-38.pyc
│ │ └── ltr_trainer.cpython-38.pyc
│ │ ├── base_trainer.py
│ │ └── ltr_trainer.py
├── utils
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ ├── box_ops.cpython-38.pyc
│ │ ├── ce_utils.cpython-38.pyc
│ │ ├── contrast_loss.cpython-38.pyc
│ │ ├── focal_loss.cpython-38.pyc
│ │ ├── heapmap_utils.cpython-38.pyc
│ │ ├── lmdb_utils.cpython-38.pyc
│ │ ├── merge.cpython-38.pyc
│ │ ├── misc.cpython-38.pyc
│ │ └── tensor.cpython-38.pyc
│ ├── box_ops.py
│ ├── ce_utils.py
│ ├── contrast_loss.py
│ ├── focal_loss.py
│ ├── heapmap_utils.py
│ ├── lmdb_utils.py
│ ├── merge.py
│ ├── misc.py
│ ├── tensor.py
│ └── variable_hook.py
└── vis
│ ├── __init__.py
│ ├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── plotting.cpython-38.pyc
│ ├── utils.cpython-38.pyc
│ └── visdom_cus.cpython-38.pyc
│ ├── plotting.py
│ ├── utils.py
│ └── visdom_cus.py
└── tracking
├── __pycache__
└── _init_paths.cpython-38.pyc
├── _init_paths.py
├── analysis_results.py
├── analysis_results_ITP.py
├── convert_transt.py
├── create_default_local_file.py
├── download_pytracking_results.py
├── pre_read_datasets.py
├── test.py
├── test_exp.py
├── train.py
├── video_demo.py
└── vis_results.py
/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 | 1732238586378
42 |
43 |
44 | 1732238586378
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Low-Light Object Tracking: A Benchmark
2 |
3 | ## Overview
4 |
5 | [Paper](https://arxiv.org/abs/2408.11463) | [LLOT benchmark](https://pan.baidu.com/s/1CQprKcCDTRoEE9xs1690sg?pwd=fbkd)
6 |
7 | ### Install the environment
8 |
9 | Our implementation is based on PyTorch 1.10.1+CUDA11.3. Use the following command to install the runtime environment:
10 |
11 | ```bash
12 | conda env create -f HIPTrack_env_cuda113.yaml
13 | ```
14 |
15 |
16 |
17 | ### Set project paths
18 |
19 | Run the following command to set paths for this project
20 |
21 | ```bash
22 | python3 tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
23 | ```
24 |
25 | After running this command, you can also modify paths by editing these two files
26 |
27 | ```bash
28 | lib/train/admin/local.py # paths about training
29 | lib/test/evaluation/local.py # paths about testing
30 | ```
31 |
32 |
33 |
34 | ### Training
35 |
36 | - For training on datasets except GOT-10k.
37 |
38 | Download pre-trained [DropTrack/DCPT weights](https:) and put it under `$PROJECT_ROOT$/pretrained_models`.
39 |
40 | ```bash
41 | python3 tracking/train.py --script hiptrack --config hiptrack --save_dir ./output --mode multiple --nproc_per_node 4
42 | ```
43 |
44 | - For training on GOT-10k.
45 |
46 | Download pre-trained [DropTrack/DCPT weights](https:) and put it under `$PROJECT_ROOT$/pretrained_models`.
47 |
48 | ```bash
49 | python3 tracking/train.py --script hiptrack --config hiptrack_got --save_dir ./output --mode multiple --nproc_per_node 4
50 | ```
51 |
52 |
53 |
54 | ### Evaluation
55 |
56 | Change the dataset path in `lib/test/evaluation/local.py` to your storage path.
57 |
58 | - LaSOT/LLOT or other off-line evaluated benchmarks (modify `--dataset` correspondingly)
59 |
60 | ```bash
61 | python3 tracking/test.py hiptrack hiptrack --dataset lasot --threads 1 --num_gpus 1
62 | python3 tracking/analysis_results.py # need to modify tracker configs and names
63 | ```
64 |
65 | - GOT10K-test
66 |
67 | ```bash
68 | python3 tracking/test.py hiptrack hiptrack_got --dataset got10k_test --threads 1 --num_gpus 1
69 | python3 lib/test/utils/transform_got10k.py --tracker_name hiptrack --cfg_name hiptrack_got
70 | ```
71 |
72 | - TrackingNet
73 |
74 | ```bash
75 | python3 tracking/test.py hiptrack hiptrack --dataset trackingnet --threads 1 --num_gpus 1
76 | python3 lib/test/utils/transform_trackingnet.py --tracker_name hiptrack --cfg_name hiptrack
77 | ```
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 | ## Citing H-DCPT
86 |
87 | ```
88 | @article{zhong2024low,
89 | title={Low-Light Object Tracking: A Benchmark},
90 | author={Zhong, Pengzhi and Guo, Xiaoyu and Huang, Defeng and Peng, Xiaojun and Li, Yian and Zhao, Qijun and Li, Shuiwang},
91 | journal={arXiv preprint arXiv:2408.11463},
92 | year={2024}
93 | }
94 | ```
95 |
96 |
--------------------------------------------------------------------------------
/experiments/hiptrack/hiptrack.yaml:
--------------------------------------------------------------------------------
1 | DATA:
2 | MAX_SAMPLE_INTERVAL: 200
3 | MAX_JUMP: 70
4 | MEAN:
5 | - 0.485
6 | - 0.456
7 | - 0.406
8 | SEARCH:
9 | NUMBER: 5
10 | CENTER_JITTER: 4.5
11 | FACTOR: 5.0
12 | SCALE_JITTER: 0.5
13 | SIZE: 384
14 | STD:
15 | - 0.229
16 | - 0.224
17 | - 0.225
18 | TEMPLATE:
19 | CENTER_JITTER: 0
20 | FACTOR: 2.0
21 | SCALE_JITTER: 0
22 | SIZE: 192
23 | # TRAIN:
24 | # DATASETS_NAME:
25 | # - GOT10K_train_full
26 | # DATASETS_RATIO:
27 | # - 1
28 | # SAMPLE_PER_EPOCH: 60000
29 |
30 | TRAIN:
31 | DATASETS_NAME:
32 | - LASOT
33 | - GOT10K_vottrain
34 | - COCO17
35 | - TRACKINGNET
36 | DATASETS_RATIO:
37 | - 1
38 | - 1
39 | - 1
40 | - 1
41 | SAMPLE_PER_EPOCH: 60000
42 | VAL:
43 | DATASETS_NAME:
44 | - GOT10K_votval
45 | DATASETS_RATIO:
46 | - 1
47 | SAMPLE_PER_EPOCH: 10000
48 | MODEL:
49 | NEW_HIP: True
50 | PRETRAIN_FILE: "DropTrack_k700_800E_alldata.pth.tar"
51 | PRETRAIN_FILE1: "DCPT_ep0045.pth.tar"
52 | EXTRA_MERGER: False
53 | RETURN_INTER: False
54 | BACKBONE:
55 | TYPE: vit_base_patch16_224_prompt
56 | STRIDE: 16
57 | CE_LOC: [3, 6, 9]
58 | CE_KEEP_RATIO: [0.7, 0.7, 0.7]
59 | CE_TEMPLATE_RANGE: 'CTR_POINT' # choose between ALL, CTR_POINT, CTR_REC, GT_BOX
60 | HEAD:
61 | TYPE: CENTER
62 | NUM_CHANNELS: 256
63 | TRAIN:
64 | BACKBONE_MULTIPLIER: 0.1
65 | DROP_PATH_RATE: 0.1
66 | BATCH_SIZE: 4
67 | EPOCH: 100
68 | GIOU_WEIGHT: 2.0
69 | L1_WEIGHT: 5.0
70 | GRAD_CLIP_NORM: 0.1
71 | LR: 0.0001
72 | LR_DROP_EPOCH: 80
73 | NUM_WORKER: 1
74 | OPTIMIZER: ADAMW
75 | PRINT_INTERVAL: 50
76 | SCHEDULER:
77 | TYPE: step
78 | DECAY_RATE: 0.1
79 | VAL_EPOCH_INTERVAL: 20
80 | WEIGHT_DECAY: 0.0001
81 | AMP: False
82 | TEST:
83 | EPOCH: 99
84 | SEARCH_FACTOR: 5.0
85 | SEARCH_SIZE: 384
86 | TEMPLATE_FACTOR: 2.0
87 | TEMPLATE_SIZE: 192
88 |
--------------------------------------------------------------------------------
/experiments/hiptrack/hiptrack_got.yaml:
--------------------------------------------------------------------------------
1 | DATA:
2 | MAX_SAMPLE_INTERVAL: 200
3 | MAX_JUMP: 70
4 | MEAN:
5 | - 0.485
6 | - 0.456
7 | - 0.406
8 | SEARCH:
9 | NUMBER: 5
10 | CENTER_JITTER: 4.5
11 | FACTOR: 5.0
12 | SCALE_JITTER: 0.5
13 | SIZE: 384
14 | STD:
15 | - 0.229
16 | - 0.224
17 | - 0.225
18 | TEMPLATE:
19 | CENTER_JITTER: 0
20 | FACTOR: 2.0
21 | SCALE_JITTER: 0
22 | SIZE: 192
23 | TRAIN:
24 | DATASETS_NAME:
25 | - GOT10K_train_full
26 | DATASETS_RATIO:
27 | - 1
28 | SAMPLE_PER_EPOCH: 60000
29 | VAL:
30 | DATASETS_NAME:
31 | - GOT10K_official_val
32 | DATASETS_RATIO:
33 | - 1
34 | SAMPLE_PER_EPOCH: 10000
35 | MODEL:
36 | NEW_HIP: True
37 | PRETRAIN_FILE: "DropTrack_k700_800E_got10k.pth.tar"
38 | EXTRA_MERGER: False
39 | RETURN_INTER: False
40 | BACKBONE:
41 | TYPE: vit_base_patch16_224_ce
42 | STRIDE: 16
43 | CE_LOC: [3, 6, 9]
44 | CE_KEEP_RATIO: [0.7, 0.7, 0.7]
45 | CE_TEMPLATE_RANGE: 'CTR_POINT' # choose between ALL, CTR_POINT, CTR_REC, GT_BOX
46 | HEAD:
47 | TYPE: CENTER
48 | NUM_CHANNELS: 256
49 | TRAIN:
50 | BACKBONE_MULTIPLIER: 0.1
51 | DROP_PATH_RATE: 0.1
52 | BATCH_SIZE: 32
53 | EPOCH: 100
54 | GIOU_WEIGHT: 2.0
55 | L1_WEIGHT: 5.0
56 | GRAD_CLIP_NORM: 0.1
57 | LR: 0.0001
58 | LR_DROP_EPOCH: 80
59 | NUM_WORKER: 8
60 | OPTIMIZER: ADAMW
61 | PRINT_INTERVAL: 50
62 | SCHEDULER:
63 | TYPE: step
64 | DECAY_RATE: 0.1
65 | VAL_EPOCH_INTERVAL: 20
66 | WEIGHT_DECAY: 0.0001
67 | AMP: False
68 | TEST:
69 | EPOCH: 100
70 | SEARCH_FACTOR: 5.0
71 | SEARCH_SIZE: 384
72 | TEMPLATE_FACTOR: 2.0
73 | TEMPLATE_SIZE: 192
74 |
--------------------------------------------------------------------------------
/lib/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/__init__.py
--------------------------------------------------------------------------------
/lib/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/config/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/config/__init__.py
--------------------------------------------------------------------------------
/lib/config/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/config/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/config/hiptrack/__pycache__/config.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/config/hiptrack/__pycache__/config.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/config/hiptrack/config.py:
--------------------------------------------------------------------------------
1 | from easydict import EasyDict as edict
2 | import yaml
3 |
4 | """
5 | Add default config for OSTrack.
6 | """
7 | cfg = edict()
8 |
9 | # MODEL
10 | cfg.MODEL = edict()
11 | cfg.MODEL.PRETRAIN_FILE = "mae_pretrain_vit_base.pth"
12 | cfg.MODEL.PRETRAIN_FILE1 = "mae_pretrain_vit_base.pth"
13 | cfg.MODEL.EXTRA_MERGER = False
14 | cfg.MODEL.NEW_HIP = False
15 | cfg.MODEL.RETURN_INTER = False
16 | cfg.MODEL.RETURN_STAGES = []
17 |
18 | # MODEL.BACKBONE
19 | cfg.MODEL.BACKBONE = edict()
20 | cfg.MODEL.BACKBONE.TYPE = "vit_base_patch16_224_prompt"
21 | cfg.MODEL.BACKBONE.STRIDE = 16
22 | cfg.MODEL.BACKBONE.MID_PE = False
23 | cfg.MODEL.BACKBONE.SEP_SEG = False
24 | cfg.MODEL.BACKBONE.CAT_MODE = 'direct'
25 | cfg.MODEL.BACKBONE.MERGE_LAYER = 0
26 | cfg.MODEL.BACKBONE.ADD_CLS_TOKEN = False
27 | cfg.MODEL.BACKBONE.CLS_TOKEN_USE_MODE = 'ignore'
28 |
29 | cfg.MODEL.BACKBONE.CE_LOC = []
30 | cfg.MODEL.BACKBONE.CE_KEEP_RATIO = []
31 | cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE = 'ALL' # choose between ALL, CTR_POINT, CTR_REC, GT_BOX
32 |
33 | # MODEL.HEAD
34 | cfg.MODEL.HEAD = edict()
35 | cfg.MODEL.HEAD.TYPE = "CENTER"
36 | cfg.MODEL.HEAD.NUM_CHANNELS = 256
37 | cfg.MODEL.MAX_MEM = 150
38 |
39 | # TRAIN
40 | cfg.TRAIN = edict()
41 | cfg.TRAIN.PROMPT = edict()
42 | cfg.TRAIN.PROMPT.TYPE = 'DCPT'
43 | cfg.TRAIN.LR = 0.0001
44 | cfg.TRAIN.WEIGHT_DECAY = 0.0001
45 | cfg.TRAIN.EPOCH = 500
46 | cfg.TRAIN.LR_DROP_EPOCH = 400
47 | cfg.TRAIN.BATCH_SIZE = 16
48 | cfg.TRAIN.NUM_WORKER = 8
49 | cfg.TRAIN.OPTIMIZER = "ADAMW"
50 | cfg.TRAIN.BACKBONE_MULTIPLIER = 0.1
51 | cfg.TRAIN.GIOU_WEIGHT = 2.0
52 | cfg.TRAIN.L1_WEIGHT = 5.0
53 | cfg.TRAIN.FREEZE_LAYERS = [0, ]
54 | cfg.TRAIN.PRINT_INTERVAL = 50
55 | cfg.TRAIN.VAL_EPOCH_INTERVAL = 20
56 | cfg.TRAIN.GRAD_CLIP_NORM = 0.1
57 | cfg.TRAIN.AMP = False
58 |
59 | cfg.TRAIN.CE_START_EPOCH = 20 # candidate elimination start epoch
60 | cfg.TRAIN.CE_WARM_EPOCH = 80 # candidate elimination warm up epoch
61 | cfg.TRAIN.DROP_PATH_RATE = 0.1 # drop path rate for ViT backbone
62 |
63 | # TRAIN.SCHEDULER
64 | cfg.TRAIN.SCHEDULER = edict()
65 | cfg.TRAIN.SCHEDULER.TYPE = "step"
66 | cfg.TRAIN.SCHEDULER.DECAY_RATE = 0.1
67 |
68 | # DATA
69 | cfg.DATA = edict()
70 | cfg.DATA.MAX_JUMP = 8
71 | cfg.DATA.SAMPLER_MODE = "causal" # sampling methods
72 | cfg.DATA.MEAN = [0.485, 0.456, 0.406]
73 | cfg.DATA.STD = [0.229, 0.224, 0.225]
74 | cfg.DATA.MAX_SAMPLE_INTERVAL = 200
75 | # DATA.TRAIN
76 | cfg.DATA.TRAIN = edict()
77 | cfg.DATA.TRAIN.DATASETS_NAME = ["LASOT", "GOT10K_vottrain"]
78 | cfg.DATA.TRAIN.DATASETS_RATIO = [1, 1]
79 | cfg.DATA.TRAIN.SAMPLE_PER_EPOCH = 60000
80 | # DATA.VAL
81 | cfg.DATA.VAL = edict()
82 | cfg.DATA.VAL.DATASETS_NAME = ["GOT10K_votval"]
83 | cfg.DATA.VAL.DATASETS_RATIO = [1]
84 | cfg.DATA.VAL.SAMPLE_PER_EPOCH = 10000
85 | # DATA.SEARCH
86 | cfg.DATA.SEARCH = edict()
87 | cfg.DATA.SEARCH.SIZE = 320
88 | cfg.DATA.SEARCH.FACTOR = 5.0
89 | cfg.DATA.SEARCH.CENTER_JITTER = 4.5
90 | cfg.DATA.SEARCH.SCALE_JITTER = 0.5
91 | cfg.DATA.SEARCH.NUMBER = 3
92 | # DATA.TEMPLATE
93 | cfg.DATA.TEMPLATE = edict()
94 | cfg.DATA.TEMPLATE.NUMBER = 1
95 | cfg.DATA.TEMPLATE.SIZE = 128
96 | cfg.DATA.TEMPLATE.FACTOR = 2.0
97 | cfg.DATA.TEMPLATE.CENTER_JITTER = 0
98 | cfg.DATA.TEMPLATE.SCALE_JITTER = 0
99 |
100 | # TEST
101 | cfg.TEST = edict()
102 | cfg.TEST.UPDATE_INTERVAL = 20
103 | cfg.TEST.TEMPLATE_FACTOR = 2.0
104 | cfg.TEST.TEMPLATE_SIZE = 128
105 | cfg.TEST.SEARCH_FACTOR = 5.0
106 | cfg.TEST.SEARCH_SIZE = 320
107 | cfg.TEST.EPOCH = 500
108 |
109 |
110 | def _edict2dict(dest_dict, src_edict):
111 | if isinstance(dest_dict, dict) and isinstance(src_edict, dict):
112 | for k, v in src_edict.items():
113 | if not isinstance(v, edict):
114 | dest_dict[k] = v
115 | else:
116 | dest_dict[k] = {}
117 | _edict2dict(dest_dict[k], v)
118 | else:
119 | return
120 |
121 |
122 | def gen_config(config_file):
123 | cfg_dict = {}
124 | _edict2dict(cfg_dict, cfg)
125 | with open(config_file, 'w') as f:
126 | yaml.dump(cfg_dict, f, default_flow_style=False)
127 |
128 |
129 | def _update_config(base_cfg, exp_cfg):
130 | if isinstance(base_cfg, dict) and isinstance(exp_cfg, edict):
131 | for k, v in exp_cfg.items():
132 | if k in base_cfg:
133 | if not isinstance(v, dict):
134 | base_cfg[k] = v
135 | else:
136 | _update_config(base_cfg[k], v)
137 | else:
138 | raise ValueError("{} not exist in config.py".format(k))
139 | else:
140 | return
141 |
142 |
143 | def update_config_from_file(filename, base_cfg=None):
144 | exp_config = None
145 | with open(filename) as f:
146 | exp_config = edict(yaml.safe_load(f))
147 | if base_cfg is not None:
148 | _update_config(base_cfg, exp_config)
149 | else:
150 | _update_config(cfg, exp_config)
151 |
--------------------------------------------------------------------------------
/lib/models/__init__.py:
--------------------------------------------------------------------------------
1 | from .hiptrack.hiptrack import build_hiptrack
2 |
--------------------------------------------------------------------------------
/lib/models/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hip/__init__.py:
--------------------------------------------------------------------------------
1 | from .cbam import *
2 | from .resnet import *
3 | from .HistoricalPromptNetwork import *
--------------------------------------------------------------------------------
/lib/models/hip/__pycache__/HistoricalPromptNetwork.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hip/__pycache__/HistoricalPromptNetwork.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hip/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hip/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hip/__pycache__/cbam.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hip/__pycache__/cbam.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hip/__pycache__/modules.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hip/__pycache__/modules.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hip/__pycache__/resnet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hip/__pycache__/resnet.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hip/cbam.py:
--------------------------------------------------------------------------------
1 | # Modified from https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 |
6 | class BasicConv(nn.Module):
7 | def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
8 | super(BasicConv, self).__init__()
9 | self.out_channels = out_planes
10 | self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
11 |
12 | def forward(self, x):
13 | x = self.conv(x)
14 | return x
15 |
16 | class Flatten(nn.Module):
17 | def forward(self, x):
18 | return x.view(x.size(0), -1)
19 |
20 | class ChannelGate(nn.Module):
21 | def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
22 | super(ChannelGate, self).__init__()
23 | self.gate_channels = gate_channels
24 | self.mlp = nn.Sequential(
25 | Flatten(),
26 | nn.Linear(gate_channels, gate_channels // reduction_ratio),
27 | nn.ReLU(),
28 | nn.Linear(gate_channels // reduction_ratio, gate_channels)
29 | )
30 | self.pool_types = pool_types
31 | def forward(self, x):
32 | channel_att_sum = None
33 | for pool_type in self.pool_types:
34 | if pool_type=='avg':
35 | avg_pool = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
36 | channel_att_raw = self.mlp( avg_pool )
37 | elif pool_type=='max':
38 | max_pool = F.max_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
39 | channel_att_raw = self.mlp( max_pool )
40 |
41 | if channel_att_sum is None:
42 | channel_att_sum = channel_att_raw
43 | else:
44 | channel_att_sum = channel_att_sum + channel_att_raw
45 |
46 | scale = torch.sigmoid( channel_att_sum ).unsqueeze(2).unsqueeze(3).expand_as(x)
47 | return x * scale
48 |
49 | class ChannelPool(nn.Module):
50 | def forward(self, x):
51 | return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )
52 |
53 | class SpatialGate(nn.Module):
54 | def __init__(self):
55 | super(SpatialGate, self).__init__()
56 | kernel_size = 7
57 | self.compress = ChannelPool()
58 | self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2)
59 | def forward(self, x):
60 | x_compress = self.compress(x)
61 | x_out = self.spatial(x_compress)
62 | scale = torch.sigmoid(x_out) # broadcasting
63 | return x * scale
64 |
65 | class CBAM(nn.Module):
66 | def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False):
67 | super(CBAM, self).__init__()
68 | self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
69 | self.no_spatial=no_spatial
70 | if not no_spatial:
71 | self.SpatialGate = SpatialGate()
72 | def forward(self, x):
73 | x_out = self.ChannelGate(x)
74 | if not self.no_spatial:
75 | x_out = self.SpatialGate(x_out)
76 | return x_out
77 |
--------------------------------------------------------------------------------
/lib/models/hip/modules.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from torchvision import models
5 |
6 | from lib.models.hip.resnet import resnet18
7 | from lib.models.hip import cbam
8 |
9 |
10 | class ResBlock(nn.Module):
11 | def __init__(self, indim, outdim=None):
12 | super(ResBlock, self).__init__()
13 | if outdim == None:
14 | outdim = indim
15 | if indim == outdim:
16 | self.downsample = None
17 | else:
18 | self.downsample = nn.Conv2d(indim, outdim, kernel_size=3, padding=1)
19 |
20 | self.conv1 = nn.Conv2d(indim, outdim, kernel_size=3, padding=1)
21 | self.conv2 = nn.Conv2d(outdim, outdim, kernel_size=3, padding=1)
22 |
23 | def forward(self, x):
24 | r = self.conv1(F.relu(x))
25 | r = self.conv2(F.relu(r))
26 |
27 | if self.downsample is not None:
28 | x = self.downsample(x)
29 |
30 | return x + r
31 |
32 |
33 | class FeatureFusionBlock(nn.Module):
34 | def __init__(self, indim, outdim):
35 | super().__init__()
36 |
37 | self.block1 = ResBlock(indim, outdim)
38 | self.attention = cbam.CBAM(outdim)
39 | self.block2 = ResBlock(outdim, outdim)
40 |
41 | def forward(self, x, f16):
42 | x = torch.cat([x, f16], 1)
43 | x = self.block1(x)
44 | r = self.attention(x)
45 | x = self.block2(x + r)
46 |
47 | return x
48 |
49 | class HistoricalPromptEncoder(nn.Module):
50 | def __init__(self):
51 | super().__init__()
52 |
53 | resnet = resnet18(pretrained=True, extra_chan=1)
54 | self.conv1 = resnet.conv1
55 | self.bn1 = resnet.bn1
56 | self.relu = resnet.relu # 1/2, 64
57 | self.maxpool = resnet.maxpool
58 |
59 | self.layer1 = resnet.layer1 # 1/4, 64
60 | self.layer2 = resnet.layer2 # 1/8, 128
61 | self.layer3 = resnet.layer3 # 1/16, 256
62 |
63 | self.fuser = FeatureFusionBlock(768 + 256, 384)
64 |
65 | def forward(self, image, key_f16, mask):
66 | # key_f16 is the feature from the key encoder
67 |
68 | f = torch.cat([image, mask], 1)
69 |
70 | x = self.conv1(f)
71 | x = self.bn1(x)
72 | x = self.relu(x) # 1/2, 64
73 | x = self.maxpool(x) # 1/4, 64
74 | x = self.layer1(x) # 1/4, 64
75 | x = self.layer2(x) # 1/8, 128
76 | x = self.layer3(x) # 1/16, 256
77 | x = self.fuser(x, key_f16)
78 |
79 | return x
80 |
81 | class UpsampleBlock(nn.Module):
82 | def __init__(self, skip_c, up_c, out_c, scale_factor=2):
83 | super().__init__()
84 | self.skip_conv = nn.Conv2d(skip_c, up_c, kernel_size=3, padding=1)
85 | self.out_conv = ResBlock(up_c, out_c)
86 | self.scale_factor = scale_factor
87 |
88 | def forward(self, skip_f, up_f):
89 | x = self.skip_conv(skip_f)
90 | x = x + F.interpolate(up_f, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
91 | x = self.out_conv(x)
92 | return x
93 |
94 |
95 | class KeyProjection(nn.Module):
96 | def __init__(self, indim, keydim):
97 | super().__init__()
98 | self.key_proj = nn.Conv2d(indim, keydim, kernel_size=3, padding=1)
99 |
100 | nn.init.orthogonal_(self.key_proj.weight.data)
101 | nn.init.zeros_(self.key_proj.bias.data)
102 |
103 | def forward(self, x):
104 | return self.key_proj(x)
105 |
--------------------------------------------------------------------------------
/lib/models/hiptrack/__init__.py:
--------------------------------------------------------------------------------
1 | from .hiptrack import build_hiptrack
2 |
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/DCPT.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/DCPT.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/base_backbone.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/base_backbone.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/hiptrack.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/hiptrack.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/vit.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/vit.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/vit_ce.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/vit_ce.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/vit_ce_prompt.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/vit_ce_prompt.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/__pycache__/vit_prompt.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/hiptrack/__pycache__/vit_prompt.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/hiptrack/utils.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | import torch
4 | import torch.nn.functional as F
5 |
6 |
7 | def combine_tokens(template_tokens, search_tokens, mode='direct', return_res=False):
8 | # [B, HW, C]
9 | len_t = template_tokens.shape[1]
10 | len_s = search_tokens.shape[1]
11 |
12 | if mode == 'direct':
13 | merged_feature = torch.cat((template_tokens, search_tokens), dim=1)
14 | elif mode == 'template_central':
15 | central_pivot = len_s // 2
16 | first_half = search_tokens[:, :central_pivot, :]
17 | second_half = search_tokens[:, central_pivot:, :]
18 | merged_feature = torch.cat((first_half, template_tokens, second_half), dim=1)
19 | elif mode == 'partition':
20 | feat_size_s = int(math.sqrt(len_s))
21 | feat_size_t = int(math.sqrt(len_t))
22 | window_size = math.ceil(feat_size_t / 2.)
23 | # pad feature maps to multiples of window size
24 | B, _, C = template_tokens.shape
25 | H = W = feat_size_t
26 | template_tokens = template_tokens.view(B, H, W, C)
27 | pad_l = pad_b = pad_r = 0
28 | # pad_r = (window_size - W % window_size) % window_size
29 | pad_t = (window_size - H % window_size) % window_size
30 | template_tokens = F.pad(template_tokens, (0, 0, pad_l, pad_r, pad_t, pad_b))
31 | _, Hp, Wp, _ = template_tokens.shape
32 | template_tokens = template_tokens.view(B, Hp // window_size, window_size, W, C)
33 | template_tokens = torch.cat([template_tokens[:, 0, ...], template_tokens[:, 1, ...]], dim=2)
34 | _, Hc, Wc, _ = template_tokens.shape
35 | template_tokens = template_tokens.view(B, -1, C)
36 | merged_feature = torch.cat([template_tokens, search_tokens], dim=1)
37 |
38 | # calculate new h and w, which may be useful for SwinT or others
39 | merged_h, merged_w = feat_size_s + Hc, feat_size_s
40 | if return_res:
41 | return merged_feature, merged_h, merged_w
42 |
43 | else:
44 | raise NotImplementedError
45 |
46 | return merged_feature
47 |
48 |
49 | def recover_tokens(merged_tokens, len_template_token, len_search_token, mode='direct'):
50 | if mode == 'direct':
51 | recovered_tokens = merged_tokens
52 | elif mode == 'template_central':
53 | central_pivot = len_search_token // 2
54 | len_remain = len_search_token - central_pivot
55 | len_half_and_t = central_pivot + len_template_token
56 |
57 | first_half = merged_tokens[:, :central_pivot, :]
58 | second_half = merged_tokens[:, -len_remain:, :]
59 | template_tokens = merged_tokens[:, central_pivot:len_half_and_t, :]
60 |
61 | recovered_tokens = torch.cat((template_tokens, first_half, second_half), dim=1)
62 | elif mode == 'partition':
63 | recovered_tokens = merged_tokens
64 | else:
65 | raise NotImplementedError
66 |
67 | return recovered_tokens
68 |
69 |
70 | def window_partition(x, window_size: int):
71 | """
72 | Args:
73 | x: (B, H, W, C)
74 | window_size (int): window size
75 |
76 | Returns:
77 | windows: (num_windows*B, window_size, window_size, C)
78 | """
79 | B, H, W, C = x.shape
80 | x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
81 | windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
82 | return windows
83 |
84 |
85 | def window_reverse(windows, window_size: int, H: int, W: int):
86 | """
87 | Args:
88 | windows: (num_windows*B, window_size, window_size, C)
89 | window_size (int): Window size
90 | H (int): Height of image
91 | W (int): Width of image
92 |
93 | Returns:
94 | x: (B, H, W, C)
95 | """
96 | B = int(windows.shape[0] / (H * W / window_size / window_size))
97 | x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
98 | x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
99 | return x
100 |
101 | '''
102 | add token transfer to feature
103 | '''
104 | def token2feature(tokens):
105 | B,L,D=tokens.shape
106 | H=W=int(L**0.5)
107 | x = tokens.permute(0, 2, 1).view(B, D, W, H).contiguous()
108 | return x
109 |
110 |
111 | '''
112 | feature2token
113 | '''
114 | def feature2token(x):
115 | B,C,W,H = x.shape
116 | L = W*H
117 | tokens = x.view(B, C, L).permute(0, 2, 1).contiguous()
118 | return tokens
119 |
--------------------------------------------------------------------------------
/lib/models/layers/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__init__.py
--------------------------------------------------------------------------------
/lib/models/layers/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/layers/__pycache__/attn.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__pycache__/attn.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/layers/__pycache__/attn_blocks.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__pycache__/attn_blocks.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/layers/__pycache__/frozen_bn.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__pycache__/frozen_bn.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/layers/__pycache__/head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__pycache__/head.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/layers/__pycache__/patch_embed.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__pycache__/patch_embed.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/layers/__pycache__/rpe.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/models/layers/__pycache__/rpe.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/models/layers/attn.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from timm.models.layers import trunc_normal_
5 |
6 | from lib.models.layers.rpe import generate_2d_concatenated_self_attention_relative_positional_encoding_index
7 |
8 |
9 | class Attention(nn.Module):
10 | def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.,
11 | rpe=False, z_size=7, x_size=14):
12 | super().__init__()
13 | self.num_heads = num_heads
14 | head_dim = dim // num_heads
15 | self.scale = head_dim ** -0.5
16 |
17 | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
18 | self.attn_drop = nn.Dropout(attn_drop)
19 | self.proj = nn.Linear(dim, dim)
20 | self.proj_drop = nn.Dropout(proj_drop)
21 |
22 | self.rpe =rpe
23 | if self.rpe:
24 | relative_position_index = \
25 | generate_2d_concatenated_self_attention_relative_positional_encoding_index([z_size, z_size],
26 | [x_size, x_size])
27 | self.register_buffer("relative_position_index", relative_position_index)
28 | # define a parameter table of relative position bias
29 | self.relative_position_bias_table = nn.Parameter(torch.empty((num_heads,
30 | relative_position_index.max() + 1)))
31 | trunc_normal_(self.relative_position_bias_table, std=0.02)
32 |
33 | def forward(self, x, mask=None, return_attention=False):
34 | # x: B, N, C
35 | # mask: [B, N, ] torch.bool
36 | B, N, C = x.shape
37 | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
38 | q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
39 |
40 | attn = (q @ k.transpose(-2, -1)) * self.scale
41 |
42 | if self.rpe:
43 | relative_position_bias = self.relative_position_bias_table[:, self.relative_position_index].unsqueeze(0)
44 | attn += relative_position_bias
45 |
46 | if mask is not None:
47 | attn = attn.masked_fill(mask.unsqueeze(1).unsqueeze(2), float('-inf'),)
48 |
49 | attn = attn.softmax(dim=-1)
50 | attn = self.attn_drop(attn)
51 |
52 | x = (attn @ v).transpose(1, 2).reshape(B, N, C)
53 | x = self.proj(x)
54 | x = self.proj_drop(x)
55 |
56 | if return_attention:
57 | return x, attn
58 | else:
59 | return x
60 |
61 |
62 | class Attention_talking_head(nn.Module):
63 | # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
64 | # with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf)
65 | def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
66 | rpe=True, z_size=7, x_size=14):
67 | super().__init__()
68 |
69 | self.num_heads = num_heads
70 |
71 | head_dim = dim // num_heads
72 |
73 | self.scale = qk_scale or head_dim ** -0.5
74 |
75 | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
76 | self.attn_drop = nn.Dropout(attn_drop)
77 |
78 | self.proj = nn.Linear(dim, dim)
79 |
80 | self.proj_l = nn.Linear(num_heads, num_heads)
81 | self.proj_w = nn.Linear(num_heads, num_heads)
82 |
83 | self.proj_drop = nn.Dropout(proj_drop)
84 |
85 | self.rpe = rpe
86 | if self.rpe:
87 | relative_position_index = \
88 | generate_2d_concatenated_self_attention_relative_positional_encoding_index([z_size, z_size],
89 | [x_size, x_size])
90 | self.register_buffer("relative_position_index", relative_position_index)
91 | # define a parameter table of relative position bias
92 | self.relative_position_bias_table = nn.Parameter(torch.empty((num_heads,
93 | relative_position_index.max() + 1)))
94 | trunc_normal_(self.relative_position_bias_table, std=0.02)
95 |
96 | def forward(self, x, mask=None):
97 | B, N, C = x.shape
98 | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
99 | q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
100 |
101 | attn = (q @ k.transpose(-2, -1))
102 |
103 | if self.rpe:
104 | relative_position_bias = self.relative_position_bias_table[:, self.relative_position_index].unsqueeze(0)
105 | attn += relative_position_bias
106 |
107 | if mask is not None:
108 | attn = attn.masked_fill(mask.unsqueeze(1).unsqueeze(2),
109 | float('-inf'),)
110 |
111 | attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
112 |
113 | attn = attn.softmax(dim=-1)
114 |
115 | attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
116 | attn = self.attn_drop(attn)
117 |
118 | x = (attn @ v).transpose(1, 2).reshape(B, N, C)
119 | x = self.proj(x)
120 | x = self.proj_drop(x)
121 | return x
--------------------------------------------------------------------------------
/lib/models/layers/frozen_bn.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | class FrozenBatchNorm2d(torch.nn.Module):
5 | """
6 | BatchNorm2d where the batch statistics and the affine parameters are fixed.
7 |
8 | Copy-paste from torchvision.misc.ops with added eps before rqsrt,
9 | without which any other models than torchvision.models.resnet[18,34,50,101]
10 | produce nans.
11 | """
12 |
13 | def __init__(self, n):
14 | super(FrozenBatchNorm2d, self).__init__()
15 | self.register_buffer("weight", torch.ones(n))
16 | self.register_buffer("bias", torch.zeros(n))
17 | self.register_buffer("running_mean", torch.zeros(n))
18 | self.register_buffer("running_var", torch.ones(n))
19 |
20 | def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
21 | missing_keys, unexpected_keys, error_msgs):
22 | num_batches_tracked_key = prefix + 'num_batches_tracked'
23 | if num_batches_tracked_key in state_dict:
24 | del state_dict[num_batches_tracked_key]
25 |
26 | super(FrozenBatchNorm2d, self)._load_from_state_dict(
27 | state_dict, prefix, local_metadata, strict,
28 | missing_keys, unexpected_keys, error_msgs)
29 |
30 | def forward(self, x):
31 | # move reshapes to the beginning
32 | # to make it fuser-friendly
33 | w = self.weight.reshape(1, -1, 1, 1)
34 | b = self.bias.reshape(1, -1, 1, 1)
35 | rv = self.running_var.reshape(1, -1, 1, 1)
36 | rm = self.running_mean.reshape(1, -1, 1, 1)
37 | eps = 1e-5
38 | scale = w * (rv + eps).rsqrt() # rsqrt(x): 1/sqrt(x), r: reciprocal
39 | bias = b - rm * scale
40 | return x * scale + bias
41 |
--------------------------------------------------------------------------------
/lib/models/layers/patch_embed.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 |
3 | from timm.models.layers import to_2tuple
4 |
5 |
6 | class PatchEmbed(nn.Module):
7 | """ 2D Image to Patch Embedding
8 | """
9 |
10 | def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
11 | super().__init__()
12 | img_size = to_2tuple(img_size)
13 | patch_size = to_2tuple(patch_size)
14 | self.img_size = img_size
15 | self.patch_size = patch_size
16 | self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
17 | self.num_patches = self.grid_size[0] * self.grid_size[1]
18 | self.flatten = flatten
19 |
20 | self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
21 | self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
22 |
23 | def forward(self, x):
24 | # allow different input size
25 | # B, C, H, W = x.shape
26 | # _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
27 | # _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
28 | #import pdb
29 | #pdb.set_trace()
30 | x = self.proj(x)
31 | if self.flatten:
32 | x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
33 | x = self.norm(x)
34 | return x
35 |
--------------------------------------------------------------------------------
/lib/models/layers/rpe.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from timm.models.layers import trunc_normal_
4 |
5 |
6 | def generate_2d_relative_positional_encoding_index(z_shape, x_shape):
7 | '''
8 | z_shape: (z_h, z_w)
9 | x_shape: (x_h, x_w)
10 | '''
11 | z_2d_index_h, z_2d_index_w = torch.meshgrid(torch.arange(z_shape[0]), torch.arange(z_shape[1]))
12 | x_2d_index_h, x_2d_index_w = torch.meshgrid(torch.arange(x_shape[0]), torch.arange(x_shape[1]))
13 |
14 | z_2d_index_h = z_2d_index_h.flatten(0)
15 | z_2d_index_w = z_2d_index_w.flatten(0)
16 | x_2d_index_h = x_2d_index_h.flatten(0)
17 | x_2d_index_w = x_2d_index_w.flatten(0)
18 |
19 | diff_h = z_2d_index_h[:, None] - x_2d_index_h[None, :]
20 | diff_w = z_2d_index_w[:, None] - x_2d_index_w[None, :]
21 |
22 | diff = torch.stack((diff_h, diff_w), dim=-1)
23 | _, indices = torch.unique(diff.view(-1, 2), return_inverse=True, dim=0)
24 | return indices.view(z_shape[0] * z_shape[1], x_shape[0] * x_shape[1])
25 |
26 |
27 | def generate_2d_concatenated_self_attention_relative_positional_encoding_index(z_shape, x_shape):
28 | '''
29 | z_shape: (z_h, z_w)
30 | x_shape: (x_h, x_w)
31 | '''
32 | z_2d_index_h, z_2d_index_w = torch.meshgrid(torch.arange(z_shape[0]), torch.arange(z_shape[1]))
33 | x_2d_index_h, x_2d_index_w = torch.meshgrid(torch.arange(x_shape[0]), torch.arange(x_shape[1]))
34 |
35 | z_2d_index_h = z_2d_index_h.flatten(0)
36 | z_2d_index_w = z_2d_index_w.flatten(0)
37 | x_2d_index_h = x_2d_index_h.flatten(0)
38 | x_2d_index_w = x_2d_index_w.flatten(0)
39 |
40 | concatenated_2d_index_h = torch.cat((z_2d_index_h, x_2d_index_h))
41 | concatenated_2d_index_w = torch.cat((z_2d_index_w, x_2d_index_w))
42 |
43 | diff_h = concatenated_2d_index_h[:, None] - concatenated_2d_index_h[None, :]
44 | diff_w = concatenated_2d_index_w[:, None] - concatenated_2d_index_w[None, :]
45 |
46 | z_len = z_shape[0] * z_shape[1]
47 | x_len = x_shape[0] * x_shape[1]
48 | a = torch.empty((z_len + x_len), dtype=torch.int64)
49 | a[:z_len] = 0
50 | a[z_len:] = 1
51 | b=a[:, None].repeat(1, z_len + x_len)
52 | c=a[None, :].repeat(z_len + x_len, 1)
53 |
54 | diff = torch.stack((diff_h, diff_w, b, c), dim=-1)
55 | _, indices = torch.unique(diff.view((z_len + x_len) * (z_len + x_len), 4), return_inverse=True, dim=0)
56 | return indices.view((z_len + x_len), (z_len + x_len))
57 |
58 |
59 | def generate_2d_concatenated_cross_attention_relative_positional_encoding_index(z_shape, x_shape):
60 | '''
61 | z_shape: (z_h, z_w)
62 | x_shape: (x_h, x_w)
63 | '''
64 | z_2d_index_h, z_2d_index_w = torch.meshgrid(torch.arange(z_shape[0]), torch.arange(z_shape[1]))
65 | x_2d_index_h, x_2d_index_w = torch.meshgrid(torch.arange(x_shape[0]), torch.arange(x_shape[1]))
66 |
67 | z_2d_index_h = z_2d_index_h.flatten(0)
68 | z_2d_index_w = z_2d_index_w.flatten(0)
69 | x_2d_index_h = x_2d_index_h.flatten(0)
70 | x_2d_index_w = x_2d_index_w.flatten(0)
71 |
72 | concatenated_2d_index_h = torch.cat((z_2d_index_h, x_2d_index_h))
73 | concatenated_2d_index_w = torch.cat((z_2d_index_w, x_2d_index_w))
74 |
75 | diff_h = x_2d_index_h[:, None] - concatenated_2d_index_h[None, :]
76 | diff_w = x_2d_index_w[:, None] - concatenated_2d_index_w[None, :]
77 |
78 | z_len = z_shape[0] * z_shape[1]
79 | x_len = x_shape[0] * x_shape[1]
80 |
81 | a = torch.empty(z_len + x_len, dtype=torch.int64)
82 | a[: z_len] = 0
83 | a[z_len:] = 1
84 | c = a[None, :].repeat(x_len, 1)
85 |
86 | diff = torch.stack((diff_h, diff_w, c), dim=-1)
87 | _, indices = torch.unique(diff.view(x_len * (z_len + x_len), 3), return_inverse=True, dim=0)
88 | return indices.view(x_len, (z_len + x_len))
89 |
90 |
91 | class RelativePosition2DEncoder(nn.Module):
92 | def __init__(self, num_heads, embed_size):
93 | super(RelativePosition2DEncoder, self).__init__()
94 | self.relative_position_bias_table = nn.Parameter(torch.empty((num_heads, embed_size)))
95 | trunc_normal_(self.relative_position_bias_table, std=0.02)
96 |
97 | def forward(self, attn_rpe_index):
98 | '''
99 | Args:
100 | attn_rpe_index (torch.Tensor): (*), any shape containing indices, max(attn_rpe_index) < embed_size
101 | Returns:
102 | torch.Tensor: (1, num_heads, *)
103 | '''
104 | return self.relative_position_bias_table[:, attn_rpe_index].unsqueeze(0)
105 |
--------------------------------------------------------------------------------
/lib/test/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/__init__.py
--------------------------------------------------------------------------------
/lib/test/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/analysis/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/analysis/__init__.py
--------------------------------------------------------------------------------
/lib/test/analysis/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/analysis/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/analysis/__pycache__/extract_results.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/analysis/__pycache__/extract_results.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/analysis/__pycache__/plot_results.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/analysis/__pycache__/plot_results.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__init__.py:
--------------------------------------------------------------------------------
1 | from .data import Sequence
2 | from .tracker import Tracker, trackerlist
3 | from .datasets import get_dataset
4 | from .environment import create_default_local_file_ITP_test
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/data.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/data.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/datasets.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/datasets.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/environment.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/environment.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/got10kdataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/got10kdataset.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/lasotdataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/lasotdataset.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/local.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/local.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/motdataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/motdataset.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/otbdataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/otbdataset.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/running.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/running.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/tracker.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/tracker.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/__pycache__/trackingnetdataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/evaluation/__pycache__/trackingnetdataset.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/evaluation/datasets.py:
--------------------------------------------------------------------------------
1 | from collections import namedtuple
2 | import importlib
3 | from lib.test.evaluation.data import SequenceList
4 |
5 | DatasetInfo = namedtuple('DatasetInfo', ['module', 'class_name', 'kwargs'])
6 |
7 | pt = "lib.test.evaluation.%sdataset" # Useful abbreviations to reduce the clutter
8 |
9 | dataset_dict = dict(
10 | otb=DatasetInfo(module=pt % "otb", class_name="OTBDataset", kwargs=dict()),
11 | llot=DatasetInfo(module=pt % "llot", class_name="LLOTDataset", kwargs=dict()),
12 | nfs=DatasetInfo(module=pt % "nfs", class_name="NFSDataset", kwargs=dict()),
13 | mot=DatasetInfo(module=pt % "mot", class_name="motDataset", kwargs=dict()),
14 | uav=DatasetInfo(module=pt % "uav", class_name="UAVDataset", kwargs=dict()),
15 | tc128=DatasetInfo(module=pt % "tc128", class_name="TC128Dataset", kwargs=dict()),
16 | tc128ce=DatasetInfo(module=pt % "tc128ce", class_name="TC128CEDataset", kwargs=dict()),
17 | trackingnet=DatasetInfo(module=pt % "trackingnet", class_name="TrackingNetDataset", kwargs=dict()),
18 | got10k_test=DatasetInfo(module=pt % "got10k", class_name="GOT10KDataset", kwargs=dict(split='test')),
19 | got10k_val=DatasetInfo(module=pt % "got10k", class_name="GOT10KDataset", kwargs=dict(split='val')),
20 | got10k_ltrval=DatasetInfo(module=pt % "got10k", class_name="GOT10KDataset", kwargs=dict(split='ltrval')),
21 | lasot=DatasetInfo(module=pt % "lasot", class_name="LaSOTDataset", kwargs=dict()),
22 | lasot_lmdb=DatasetInfo(module=pt % "lasot_lmdb", class_name="LaSOTlmdbDataset", kwargs=dict()),
23 |
24 | vot18=DatasetInfo(module=pt % "vot", class_name="VOTDataset", kwargs=dict()),
25 | vot22=DatasetInfo(module=pt % "vot", class_name="VOTDataset", kwargs=dict(year=22)),
26 | itb=DatasetInfo(module=pt % "itb", class_name="ITBDataset", kwargs=dict()),
27 | tnl2k=DatasetInfo(module=pt % "tnl2k", class_name="TNL2kDataset", kwargs=dict()),
28 | lasot_extension_subset=DatasetInfo(module=pt % "lasotextensionsubset", class_name="LaSOTExtensionSubsetDataset",
29 | kwargs=dict()),
30 | )
31 |
32 |
33 | def load_dataset(name: str):
34 | """ Import and load a single dataset."""
35 | name = name.lower()
36 | dset_info = dataset_dict.get(name)
37 | if dset_info is None:
38 | raise ValueError('Unknown dataset \'%s\'' % name)
39 |
40 | m = importlib.import_module(dset_info.module)
41 | dataset = getattr(m, dset_info.class_name)(**dset_info.kwargs) # Call the constructor
42 | return dataset.get_sequence_list()
43 |
44 |
45 | def get_dataset(*args):
46 | """ Get a single or set of datasets."""
47 | dset = SequenceList()
48 | for name in args:
49 | dset.extend(load_dataset(name))
50 | return dset
--------------------------------------------------------------------------------
/lib/test/evaluation/environment.py:
--------------------------------------------------------------------------------
1 | import importlib
2 | import os
3 |
4 |
5 | class EnvSettings:
6 | def __init__(self):
7 | test_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
8 |
9 | self.results_path = '{}/tracking_results/'.format(test_path)
10 | self.segmentation_path = '{}/segmentation_results/'.format(test_path)
11 | self.network_path = '{}/networks/'.format(test_path)
12 | self.result_plot_path = '{}/result_plots/'.format(test_path)
13 | self.otb_path = ''
14 | self.llot_path = ''
15 | self.nfs_path = ''
16 | self.uav_path = ''
17 | self.tpl_path = ''
18 | self.vot_path = ''
19 | self.got10k_path = ''
20 | self.lasot_path = ''
21 | self.trackingnet_path = ''
22 | self.davis_dir = ''
23 | self.youtubevos_dir = ''
24 |
25 | self.got_packed_results_path = ''
26 | self.got_reports_path = ''
27 | self.tn_packed_results_path = ''
28 |
29 |
30 | def create_default_local_file():
31 | comment = {'results_path': 'Where to store tracking results',
32 | 'network_path': 'Where tracking networks are stored.'}
33 |
34 | path = os.path.join(os.path.dirname(__file__), 'local.py')
35 | with open(path, 'w') as f:
36 | settings = EnvSettings()
37 |
38 | f.write('from test.evaluation.environment import EnvSettings\n\n')
39 | f.write('def local_env_settings():\n')
40 | f.write(' settings = EnvSettings()\n\n')
41 | f.write(' # Set your local paths here.\n\n')
42 |
43 | for attr in dir(settings):
44 | comment_str = None
45 | if attr in comment:
46 | comment_str = comment[attr]
47 | attr_val = getattr(settings, attr)
48 | if not attr.startswith('__') and not callable(attr_val):
49 | if comment_str is None:
50 | f.write(' settings.{} = \'{}\'\n'.format(attr, attr_val))
51 | else:
52 | f.write(' settings.{} = \'{}\' # {}\n'.format(attr, attr_val, comment_str))
53 | f.write('\n return settings\n\n')
54 |
55 |
56 | class EnvSettings_ITP:
57 | def __init__(self, workspace_dir, data_dir, save_dir):
58 | self.prj_dir = workspace_dir
59 | self.save_dir = save_dir
60 | self.results_path = os.path.join(save_dir, 'test/tracking_results')
61 | self.segmentation_path = os.path.join(save_dir, 'test/segmentation_results')
62 | self.network_path = os.path.join(save_dir, 'test/networks')
63 | self.result_plot_path = os.path.join(save_dir, 'test/result_plots')
64 | self.otb_path = os.path.join(data_dir, 'otb')
65 | self.llot_path = os.path.join(data_dir, 'llot')
66 | self.nfs_path = os.path.join(data_dir, 'nfs')
67 | self.uav_path = os.path.join(data_dir, 'uav')
68 | self.tc128_path = os.path.join(data_dir, 'TC128')
69 | self.tpl_path = ''
70 | self.vot_path = os.path.join(data_dir, 'VOT2019')
71 | self.got10k_path = os.path.join(data_dir, 'got10k')
72 | self.got10k_lmdb_path = os.path.join(data_dir, 'got10k_lmdb')
73 | self.lasot_path = os.path.join(data_dir, 'lasot')
74 | self.lasot_lmdb_path = os.path.join(data_dir, 'lasot_lmdb')
75 | self.trackingnet_path = os.path.join(data_dir, 'trackingnet')
76 | self.vot18_path = os.path.join(data_dir, 'vot2018')
77 | self.vot22_path = os.path.join(data_dir, 'vot2022')
78 | self.itb_path = os.path.join(data_dir, 'itb')
79 | self.tnl2k_path = os.path.join(data_dir, 'tnl2k')
80 | self.lasot_extension_subset_path_path = os.path.join(data_dir, 'lasot_extension_subset')
81 | self.davis_dir = ''
82 | self.youtubevos_dir = ''
83 |
84 | self.got_packed_results_path = ''
85 | self.got_reports_path = ''
86 | self.tn_packed_results_path = ''
87 |
88 |
89 | def create_default_local_file_ITP_test(workspace_dir, data_dir, save_dir):
90 | comment = {'results_path': 'Where to store tracking results',
91 | 'network_path': 'Where tracking networks are stored.'}
92 |
93 | path = os.path.join(os.path.dirname(__file__), 'local.py')
94 | with open(path, 'w') as f:
95 | settings = EnvSettings_ITP(workspace_dir, data_dir, save_dir)
96 |
97 | f.write('from lib.test.evaluation.environment import EnvSettings\n\n')
98 | f.write('def local_env_settings():\n')
99 | f.write(' settings = EnvSettings()\n\n')
100 | f.write(' # Set your local paths here.\n\n')
101 |
102 | for attr in dir(settings):
103 | comment_str = None
104 | if attr in comment:
105 | comment_str = comment[attr]
106 | attr_val = getattr(settings, attr)
107 | if not attr.startswith('__') and not callable(attr_val):
108 | if comment_str is None:
109 | f.write(' settings.{} = \'{}\'\n'.format(attr, attr_val))
110 | else:
111 | f.write(' settings.{} = \'{}\' # {}\n'.format(attr, attr_val, comment_str))
112 | f.write('\n return settings\n\n')
113 |
114 |
115 | def env_settings():
116 | env_module_name = 'lib.test.evaluation.local'
117 | try:
118 | env_module = importlib.import_module(env_module_name)
119 | return env_module.local_env_settings()
120 | except:
121 | env_file = os.path.join(os.path.dirname(__file__), 'local.py')
122 |
123 | # Create a default file
124 | create_default_local_file()
125 | raise RuntimeError('YOU HAVE NOT SETUP YOUR local.py!!!\n Go to "{}" and set all the paths you need. '
126 | 'Then try to run again.'.format(env_file))
--------------------------------------------------------------------------------
/lib/test/evaluation/got10kdataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
3 | from lib.test.utils.load_text import load_text
4 | import os
5 |
6 |
7 | class GOT10KDataset(BaseDataset):
8 | """ GOT-10k dataset.
9 |
10 | Publication:
11 | GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild
12 | Lianghua Huang, Xin Zhao, and Kaiqi Huang
13 | arXiv:1810.11981, 2018
14 | https://arxiv.org/pdf/1810.11981.pdf
15 |
16 | Download dataset from http://got-10k.aitestunion.com/downloads
17 | """
18 | def __init__(self, split):
19 | super().__init__()
20 | # Split can be test, val, or ltrval (a validation split consisting of videos from the official train set)
21 | if split == 'test' or split == 'val':
22 | self.base_path = os.path.join(self.env_settings.got10k_path, split)
23 | else:
24 | self.base_path = os.path.join(self.env_settings.got10k_path, 'train')
25 |
26 | self.sequence_list = self._get_sequence_list(split)
27 | self.split = split
28 |
29 | def get_sequence_list(self):
30 | return SequenceList([self._construct_sequence(s) for s in self.sequence_list])
31 |
32 | def _construct_sequence(self, sequence_name):
33 | anno_path = '{}/{}/groundtruth.txt'.format(self.base_path, sequence_name)
34 |
35 | ground_truth_rect = load_text(str(anno_path), delimiter=',', dtype=np.float64)
36 |
37 | frames_path = '{}/{}'.format(self.base_path, sequence_name)
38 | frame_list = [frame for frame in os.listdir(frames_path) if frame.endswith(".jpg")]
39 | frame_list.sort(key=lambda f: int(f[:-4]))
40 | frames_list = [os.path.join(frames_path, frame) for frame in frame_list]
41 |
42 | return Sequence(sequence_name, frames_list, 'got10k', ground_truth_rect.reshape(-1, 4))
43 |
44 | def __len__(self):
45 | return len(self.sequence_list)
46 |
47 | def _get_sequence_list(self, split):
48 | with open('{}/list.txt'.format(self.base_path)) as f:
49 | sequence_list = f.read().splitlines()
50 |
51 | if split == 'ltrval':
52 | with open('{}/got10k_val_split.txt'.format(self.env_settings.dataspec_path)) as f:
53 | seq_ids = f.read().splitlines()
54 |
55 | sequence_list = [sequence_list[int(x)] for x in seq_ids]
56 | return sequence_list
57 |
--------------------------------------------------------------------------------
/lib/test/evaluation/itbdataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
3 | from lib.test.utils.load_text import load_text
4 | import os
5 |
6 |
7 | class ITBDataset(BaseDataset):
8 | """ NUS-PRO dataset
9 | """
10 |
11 | def __init__(self):
12 | super().__init__()
13 | self.base_path = self.env_settings.itb_path
14 | self.sequence_info_list = self._get_sequence_info_list(self.base_path)
15 |
16 | def get_sequence_list(self):
17 | return SequenceList([self._construct_sequence(s) for s in self.sequence_info_list])
18 |
19 | def _construct_sequence(self, sequence_info):
20 | sequence_path = sequence_info['path']
21 | nz = sequence_info['nz']
22 | ext = sequence_info['ext']
23 | start_frame = sequence_info['startFrame']
24 | end_frame = sequence_info['endFrame']
25 |
26 | init_omit = 0
27 | if 'initOmit' in sequence_info:
28 | init_omit = sequence_info['initOmit']
29 |
30 | frames = ['{base_path}/{sequence_path}/{frame:0{nz}}.{ext}'.format(base_path=self.base_path,
31 | sequence_path=sequence_path, frame=frame_num,
32 | nz=nz, ext=ext) for frame_num in
33 | range(start_frame + init_omit, end_frame + 1)]
34 |
35 | anno_path = '{}/{}'.format(self.base_path, sequence_info['anno_path'])
36 |
37 | # NOTE: NUS has some weird annos which panda cannot handle
38 | ground_truth_rect = load_text(str(anno_path), delimiter=(',', None), dtype=np.float64, backend='numpy')
39 | return Sequence(sequence_info['name'], frames, 'otb', ground_truth_rect[init_omit:, :],
40 | object_class=sequence_info['object_class'])
41 |
42 | def __len__(self):
43 | return len(self.sequence_info_list)
44 |
45 | def get_fileNames(self, rootdir):
46 | fs = []
47 | fs_all = []
48 | for root, dirs, files in os.walk(rootdir, topdown=True):
49 | files.sort()
50 | files.sort(key=len)
51 | if files is not None:
52 | for name in files:
53 | _, ending = os.path.splitext(name)
54 | if ending == ".jpg":
55 | _, root_ = os.path.split(root)
56 | fs.append(os.path.join(root_, name))
57 | fs_all.append(os.path.join(root, name))
58 |
59 | return fs_all, fs
60 |
61 | def _get_sequence_info_list(self, base_path):
62 | sequence_info_list = []
63 | for scene in os.listdir(base_path):
64 | if '.' in scene:
65 | continue
66 | videos = os.listdir(os.path.join(base_path, scene))
67 | for video in videos:
68 | _, fs = self.get_fileNames(os.path.join(base_path, scene, video))
69 | video_tmp = {"name": video, "path": scene + '/' + video, "startFrame": 1, "endFrame": len(fs),
70 | "nz": len(fs[0].split('/')[-1].split('.')[0]), "ext": "jpg",
71 | "anno_path": scene + '/' + video + "/groundtruth.txt",
72 | "object_class": "unknown"}
73 | sequence_info_list.append(video_tmp)
74 |
75 | return sequence_info_list # sequence_info_list_50 #
76 |
--------------------------------------------------------------------------------
/lib/test/evaluation/llotdataset.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | import numpy as np
4 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
5 | from lib.test.utils.load_text import load_text
6 |
7 |
8 | class LLOTDataset(BaseDataset):
9 | """ LLOT-2015 dataset
10 | Publication:
11 | Object Tracking Benchmark
12 | Wu, Yi, Jongwoo Lim, and Ming-hsuan Yan
13 | TPAMI, 2015
14 | http://faculty.ucmerced.edu/mhyang/papers/pami15_tracking_benchmark.pdf
15 | Download the dataset from http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html
16 | """
17 | def __init__(self):
18 | super().__init__()
19 | self.base_path = self.env_settings.llot_path
20 | self.sequence_info_list = self._get_sequence_info_list()
21 |
22 | def get_sequence_list(self):
23 | return SequenceList([self._construct_sequence(s) for s in self.sequence_info_list])
24 |
25 | def _construct_sequence(self, sequence_info):
26 | sequence_path = sequence_info['path']
27 | nz = sequence_info['nz']
28 | ext = sequence_info['ext']
29 | start_frame = sequence_info['startFrame']
30 | end_frame = sequence_info['endFrame']
31 |
32 | init_omit = 0
33 | if 'initOmit' in sequence_info:
34 | init_omit = sequence_info['initOmit']
35 |
36 | frames = ['{base_path}/{sequence_path}/{frame:0{nz}}.{ext}'.format(base_path=self.base_path,
37 | sequence_path=sequence_path, frame=frame_num, nz=nz, ext=ext) for frame_num in range(start_frame+init_omit, end_frame+1)]
38 |
39 | anno_path = '{}/{}'.format(self.base_path, sequence_info['anno_path'])
40 |
41 | # NOTE: OTB has some weird annos which panda cannot handle
42 | ground_truth_rect = load_text(str(anno_path), delimiter=(',', None), dtype=np.float64, backend='numpy')
43 |
44 | return Sequence(sequence_info['name'], frames, 'llot', ground_truth_rect[init_omit:,:],
45 | object_class=sequence_info['object_class'])
46 |
47 | def __len__(self):
48 | return len(self.sequence_info_list)
49 |
50 | def _get_sequence_info_list(self):
51 | sequence_info_list = []
52 | object_list = os.listdir(self.base_path)
53 | for object_file in object_list:
54 | img_path = os.path.join(os.path.join(self.base_path,object_file),"img")
55 | cnt = len(os.listdir(img_path))
56 | object_class = object_file.replace("_*","")
57 | sequence = {"name": object_file, "path": object_file+"/img", "startFrame": 1, "endFrame": cnt, "nz": 4, "ext": "jpg",
58 | "anno_path": object_file+"/groundtruth_rect.txt",
59 | "object_class": object_class}
60 | sequence_info_list.append(sequence)
61 |
62 | return sequence_info_list
--------------------------------------------------------------------------------
/lib/test/evaluation/local.py:
--------------------------------------------------------------------------------
1 | from lib.test.evaluation.environment import EnvSettings
2 |
3 | def local_env_settings():
4 | settings = EnvSettings()
5 |
6 | # Set your local paths here.
7 |
8 | settings.davis_dir = ''
9 | settings.got10k_lmdb_path = '/home/lsw/data/got10k_lmdb'
10 | settings.got10k_path = '/home/lsw/data/GOT-10k'
11 | settings.got_packed_results_path = ''
12 | settings.got_reports_path = ''
13 | settings.itb_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/itb'
14 | settings.lasot_extension_subset_path_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/lasot_extension_subset'
15 | settings.lasot_lmdb_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/lasot_lmdb'
16 | settings.lasot_path = '/media/lsw/data4/LaSOT/zip'
17 | settings.network_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/output/test/networks' # Where tracking networks are stored.
18 | settings.nfs_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/nfs'
19 | settings.otb_path = '/media/lsw/data/OTB'
20 | settings.llot_path = '/media/lsw/data/LLOT'
21 | settings.prj_dir = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT'
22 | settings.result_plot_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/output/test/result_plots'
23 | settings.results_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/output/test/tracking_results' # Where to store tracking results
24 | settings.save_dir = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/output'
25 | settings.segmentation_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/output/test/segmentation_results'
26 | settings.tc128_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/TC128'
27 | settings.tn_packed_results_path = ''
28 | settings.tnl2k_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/tnl2k'
29 | settings.tpl_path = ''
30 | settings.trackingnet_path = '/media/lsw/data4/trackingnet'
31 | settings.uav_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/uav'
32 | settings.vot18_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/vot2018'
33 | settings.vot22_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/vot2022'
34 | settings.vot_path = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/VOT2019'
35 | settings.youtubevos_dir = ''
36 |
37 | return settings
38 |
39 |
--------------------------------------------------------------------------------
/lib/test/evaluation/motdataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
3 | from lib.test.utils.load_text import load_text
4 | import os
5 |
6 |
7 | class motDataset(BaseDataset):
8 | """ GOT-10k dataset.
9 |
10 | Publication:
11 | GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild
12 | Lianghua Huang, Xin Zhao, and Kaiqi Huang
13 | arXiv:1810.11981, 2018
14 | https://arxiv.org/pdf/1810.11981.pdf
15 |
16 | Download dataset from http://got-10k.aitestunion.com/downloads
17 | """
18 | def __init__(self):
19 | super().__init__()
20 |
21 | self.base_path = os.path.join(self.env_settings.mot_path)
22 | self.sequence_list = self._get_sequence_list()
23 |
24 | def get_sequence_list(self):
25 | return SequenceList([self._construct_sequence(s) for s in self.sequence_list])
26 |
27 | def _construct_sequence(self, sequence_name):
28 | anno_path = '{}/{}/groundtruth_rect.txt'.format(self.base_path, sequence_name)
29 |
30 | ground_truth_rect = load_text(str(anno_path), delimiter=',', dtype=np.float64)
31 |
32 | frames_path = '{}/{}/{}'.format(self.base_path, sequence_name,'img')
33 | frame_list = [frame for frame in os.listdir(frames_path) if frame.endswith(".jpg")]
34 | frame_list.sort(key=lambda f: int(f[:-4]))
35 | frames_list = [os.path.join(frames_path, frame) for frame in frame_list]
36 |
37 | return Sequence(sequence_name, frames_list, 'mot', ground_truth_rect.reshape(-1, 4))
38 |
39 | def __len__(self):
40 | return len(self.sequence_list)
41 |
42 | def _get_sequence_list(self):
43 | return os.listdir(self.base_path)
44 |
--------------------------------------------------------------------------------
/lib/test/evaluation/otbdataset.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | import numpy as np
4 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
5 | from lib.test.utils.load_text import load_text
6 |
7 |
8 | class OTBDataset(BaseDataset):
9 | """ OTB-2015 dataset
10 | Publication:
11 | Object Tracking Benchmark
12 | Wu, Yi, Jongwoo Lim, and Ming-hsuan Yan
13 | TPAMI, 2015
14 | http://faculty.ucmerced.edu/mhyang/papers/pami15_tracking_benchmark.pdf
15 | Download the dataset from http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html
16 | """
17 | def __init__(self):
18 | super().__init__()
19 | self.base_path = self.env_settings.otb_path
20 | self.sequence_info_list = self._get_sequence_info_list()
21 |
22 | def get_sequence_list(self):
23 | return SequenceList([self._construct_sequence(s) for s in self.sequence_info_list])
24 |
25 | def _construct_sequence(self, sequence_info):
26 | sequence_path = sequence_info['path']
27 | nz = sequence_info['nz']
28 | ext = sequence_info['ext']
29 | start_frame = sequence_info['startFrame']
30 | end_frame = sequence_info['endFrame']
31 |
32 | init_omit = 0
33 | if 'initOmit' in sequence_info:
34 | init_omit = sequence_info['initOmit']
35 |
36 | frames = ['{base_path}/{sequence_path}/{frame:0{nz}}.{ext}'.format(base_path=self.base_path,
37 | sequence_path=sequence_path, frame=frame_num, nz=nz, ext=ext) for frame_num in range(start_frame+init_omit, end_frame+1)]
38 |
39 | anno_path = '{}/{}'.format(self.base_path, sequence_info['anno_path'])
40 |
41 | # NOTE: OTB has some weird annos which panda cannot handle
42 | ground_truth_rect = load_text(str(anno_path), delimiter=(',', None), dtype=np.float64, backend='numpy')
43 |
44 | return Sequence(sequence_info['name'], frames, 'otb', ground_truth_rect[init_omit:,:],
45 | object_class=sequence_info['object_class'])
46 |
47 | def __len__(self):
48 | return len(self.sequence_info_list)
49 |
50 | def _get_sequence_info_list(self):
51 |
52 | sequence_info_list = []
53 | print(self.base_path)
54 | object_list = os.listdir(self.base_path)
55 | for object_file in object_list:
56 | img_path = os.path.join(os.path.join(self.base_path,object_file),"img")
57 | cnt = len(os.listdir(img_path))
58 | object_class = object_file.replace("_*","")
59 | sequence = {"name": object_file, "path": object_file+"/img", "startFrame": 1, "endFrame": cnt, "nz": 4, "ext": "jpg",
60 | "anno_path": object_file+"/groundtruth_rect.txt",
61 | "object_class": object_class}
62 | sequence_info_list.append(sequence)
63 |
64 | return sequence_info_list
--------------------------------------------------------------------------------
/lib/test/evaluation/tc128cedataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
3 | import os
4 | import glob
5 | import six
6 |
7 |
8 | class TC128CEDataset(BaseDataset):
9 | """
10 | TC-128 Dataset (78 newly added sequences)
11 | modified from the implementation in got10k-toolkit (https://github.com/got-10k/toolkit)
12 | """
13 | def __init__(self):
14 | super().__init__()
15 | self.base_path = self.env_settings.tc128_path
16 | self.anno_files = sorted(glob.glob(
17 | os.path.join(self.base_path, '*/*_gt.txt')))
18 | """filter the newly added sequences (_ce)"""
19 | self.anno_files = [s for s in self.anno_files if "_ce" in s]
20 | self.seq_dirs = [os.path.dirname(f) for f in self.anno_files]
21 | self.seq_names = [os.path.basename(d) for d in self.seq_dirs]
22 | # valid frame range for each sequence
23 | self.range_files = [glob.glob(os.path.join(d, '*_frames.txt'))[0] for d in self.seq_dirs]
24 |
25 | def get_sequence_list(self):
26 | return SequenceList([self._construct_sequence(s) for s in self.seq_names])
27 |
28 | def _construct_sequence(self, sequence_name):
29 | if isinstance(sequence_name, six.string_types):
30 | if not sequence_name in self.seq_names:
31 | raise Exception('Sequence {} not found.'.format(sequence_name))
32 | index = self.seq_names.index(sequence_name)
33 | # load valid frame range
34 | frames = np.loadtxt(self.range_files[index], dtype=int, delimiter=',')
35 | img_files = [os.path.join(self.seq_dirs[index], 'img/%04d.jpg' % f) for f in range(frames[0], frames[1] + 1)]
36 |
37 | # load annotations
38 | anno = np.loadtxt(self.anno_files[index], delimiter=',')
39 | assert len(img_files) == len(anno)
40 | assert anno.shape[1] == 4
41 |
42 | # return img_files, anno
43 | return Sequence(sequence_name, img_files, 'tc128', anno.reshape(-1, 4))
44 |
45 | def __len__(self):
46 | return len(self.seq_names)
47 |
--------------------------------------------------------------------------------
/lib/test/evaluation/tc128dataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
3 | import os
4 | import glob
5 | import six
6 |
7 |
8 | class TC128Dataset(BaseDataset):
9 | """
10 | TC-128 Dataset
11 | modified from the implementation in got10k-toolkit (https://github.com/got-10k/toolkit)
12 | """
13 | def __init__(self):
14 | super().__init__()
15 | self.base_path = self.env_settings.tc128_path
16 | self.anno_files = sorted(glob.glob(
17 | os.path.join(self.base_path, '*/*_gt.txt')))
18 | self.seq_dirs = [os.path.dirname(f) for f in self.anno_files]
19 | self.seq_names = [os.path.basename(d) for d in self.seq_dirs]
20 | # valid frame range for each sequence
21 | self.range_files = [glob.glob(os.path.join(d, '*_frames.txt'))[0] for d in self.seq_dirs]
22 |
23 | def get_sequence_list(self):
24 | return SequenceList([self._construct_sequence(s) for s in self.seq_names])
25 |
26 | def _construct_sequence(self, sequence_name):
27 | if isinstance(sequence_name, six.string_types):
28 | if not sequence_name in self.seq_names:
29 | raise Exception('Sequence {} not found.'.format(sequence_name))
30 | index = self.seq_names.index(sequence_name)
31 | # load valid frame range
32 | frames = np.loadtxt(self.range_files[index], dtype=int, delimiter=',')
33 | img_files = [os.path.join(self.seq_dirs[index], 'img/%04d.jpg' % f) for f in range(frames[0], frames[1] + 1)]
34 |
35 | # load annotations
36 | anno = np.loadtxt(self.anno_files[index], delimiter=',')
37 | assert len(img_files) == len(anno)
38 | assert anno.shape[1] == 4
39 |
40 | # return img_files, anno
41 | return Sequence(sequence_name, img_files, 'tc128', anno.reshape(-1, 4))
42 |
43 | def __len__(self):
44 | return len(self.seq_names)
45 |
--------------------------------------------------------------------------------
/lib/test/evaluation/tnl2kdataset.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | import numpy as np
4 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
5 | from lib.test.utils.load_text import load_text, load_str
6 |
7 | ############
8 | # current 00000492.png of test_015_Sord_video_Q01_done is damaged and replaced by a copy of 00000491.png
9 | ############
10 |
11 |
12 | class TNL2kDataset(BaseDataset):
13 | """
14 | TNL2k test set
15 | """
16 | def __init__(self):
17 | super().__init__()
18 | self.base_path = self.env_settings.tnl2k_path
19 | self.sequence_list = self._get_sequence_list()
20 |
21 | def get_sequence_list(self):
22 | return SequenceList([self._construct_sequence(s) for s in self.sequence_list])
23 |
24 | def _construct_sequence(self, sequence_name):
25 | # class_name = sequence_name.split('-')[0]
26 | anno_path = '{}/{}/groundtruth.txt'.format(self.base_path, sequence_name)
27 |
28 | ground_truth_rect = load_text(str(anno_path), delimiter=',', dtype=np.float64)
29 |
30 | text_dsp_path = '{}/{}/language.txt'.format(self.base_path, sequence_name)
31 | text_dsp = load_str(text_dsp_path)
32 |
33 | frames_path = '{}/{}/imgs'.format(self.base_path, sequence_name)
34 | frames_list = [f for f in os.listdir(frames_path)]
35 | frames_list = sorted(frames_list)
36 | frames_list = ['{}/{}'.format(frames_path, frame_i) for frame_i in frames_list]
37 |
38 | # target_class = class_name
39 | return Sequence(sequence_name, frames_list, 'tnl2k', ground_truth_rect.reshape(-1, 4), text_dsp=text_dsp)
40 |
41 | def __len__(self):
42 | return len(self.sequence_list)
43 |
44 | def _get_sequence_list(self):
45 | sequence_list = []
46 | for seq in os.listdir(self.base_path):
47 | if os.path.isdir(os.path.join(self.base_path, seq)):
48 | sequence_list.append(seq)
49 |
50 | return sequence_list
51 |
--------------------------------------------------------------------------------
/lib/test/evaluation/trackingnetdataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList
3 | import os
4 | from lib.test.utils.load_text import load_text
5 |
6 |
7 | class TrackingNetDataset(BaseDataset):
8 | """ TrackingNet test set.
9 |
10 | Publication:
11 | TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild.
12 | Matthias Mueller,Adel Bibi, Silvio Giancola, Salman Al-Subaihi and Bernard Ghanem
13 | ECCV, 2018
14 | https://ivul.kaust.edu.sa/Documents/Publications/2018/TrackingNet%20A%20Large%20Scale%20Dataset%20and%20Benchmark%20for%20Object%20Tracking%20in%20the%20Wild.pdf
15 |
16 | Download the dataset using the toolkit https://github.com/SilvioGiancola/TrackingNet-devkit.
17 | """
18 | def __init__(self):
19 | super().__init__()
20 | self.base_path = self.env_settings.trackingnet_path
21 |
22 | sets = 'TEST'
23 | if not isinstance(sets, (list, tuple)):
24 | if sets == 'TEST':
25 | sets = ['TEST']
26 | elif sets == 'TRAIN':
27 | sets = ['TRAIN_{}'.format(i) for i in range(5)]
28 |
29 | self.sequence_list = self._list_sequences(self.base_path, sets)
30 |
31 | def get_sequence_list(self):
32 | return SequenceList([self._construct_sequence(set, seq_name) for set, seq_name in self.sequence_list])
33 |
34 | def _construct_sequence(self, set, sequence_name):
35 | anno_path = '{}/{}/anno/{}.txt'.format(self.base_path, set, sequence_name)
36 |
37 | ground_truth_rect = load_text(str(anno_path), delimiter=',', dtype=np.float64, backend='numpy')
38 |
39 | frames_path = '{}/{}/frames/{}'.format(self.base_path, set, sequence_name)
40 | frame_list = [frame for frame in os.listdir(frames_path) if frame.endswith(".jpg")]
41 | frame_list.sort(key=lambda f: int(f[:-4]))
42 | frames_list = [os.path.join(frames_path, frame) for frame in frame_list]
43 |
44 | return Sequence(sequence_name, frames_list, 'trackingnet', ground_truth_rect.reshape(-1, 4))
45 |
46 | def __len__(self):
47 | return len(self.sequence_list)
48 |
49 | def _list_sequences(self, root, set_ids):
50 | sequence_list = []
51 |
52 | for s in set_ids:
53 | anno_dir = os.path.join(root, s, "anno")
54 | sequences_cur_set = [(s, os.path.splitext(f)[0]) for f in os.listdir(anno_dir) if f.endswith('.txt')]
55 |
56 | sequence_list += sequences_cur_set
57 |
58 | return sequence_list
59 |
--------------------------------------------------------------------------------
/lib/test/parameter/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/parameter/__init__.py
--------------------------------------------------------------------------------
/lib/test/parameter/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/parameter/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/parameter/__pycache__/hiptrack.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/parameter/__pycache__/hiptrack.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/parameter/hiptrack.py:
--------------------------------------------------------------------------------
1 | from lib.test.utils import TrackerParams
2 | import os
3 | from lib.test.evaluation.environment import env_settings
4 | from lib.config.hiptrack.config import cfg, update_config_from_file
5 |
6 |
7 | def parameters(yaml_name: str):
8 | #import pdb
9 | #pdb.set_trace()
10 | params = TrackerParams()
11 | prj_dir = env_settings().prj_dir
12 | save_dir = env_settings().save_dir
13 | # update default config from yaml file
14 | yaml_file = os.path.join(prj_dir, 'experiments/hiptrack/%s.yaml' % yaml_name)
15 | update_config_from_file(yaml_file)
16 | params.cfg = cfg
17 | print("test config: ", cfg)
18 |
19 | # template and search region
20 | params.template_factor = cfg.TEST.TEMPLATE_FACTOR
21 | params.template_size = cfg.TEST.TEMPLATE_SIZE
22 | params.search_factor = cfg.TEST.SEARCH_FACTOR
23 | params.search_size = cfg.TEST.SEARCH_SIZE
24 |
25 | # Network checkpoint path
26 | params.checkpoint = os.path.join(save_dir, "checkpoints1/train/hiptrack/%s/HIPTrack_ep%04d.pth.tar" %
27 | (yaml_name, cfg.TEST.EPOCH))
28 |
29 | # whether to save boxes from all queries
30 | params.save_all_boxes = False
31 |
32 | return params
33 |
--------------------------------------------------------------------------------
/lib/test/tracker/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/tracker/__init__.py
--------------------------------------------------------------------------------
/lib/test/tracker/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/tracker/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/tracker/__pycache__/basetracker.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/tracker/__pycache__/basetracker.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/tracker/__pycache__/data_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/tracker/__pycache__/data_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/tracker/__pycache__/hiptrack.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/tracker/__pycache__/hiptrack.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/tracker/__pycache__/vis_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/tracker/__pycache__/vis_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/tracker/basetracker.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | import torch
4 | from collections import OrderedDict
5 |
6 | from lib.train.data.processing_utils import transform_image_to_crop
7 | from lib.vis.visdom_cus import Visdom
8 |
9 |
10 | class BaseTracker:
11 | """Base class for all trackers."""
12 |
13 | def __init__(self, params):
14 | self.params = params
15 | self.visdom = None
16 |
17 | def predicts_segmentation_mask(self):
18 | return False
19 |
20 | def initialize(self, image, info: dict) -> dict:
21 | """Overload this function in your tracker. This should initialize the model."""
22 | raise NotImplementedError
23 |
24 | def track(self, image, info: dict = None) -> dict:
25 | """Overload this function in your tracker. This should track in the frame and update the model."""
26 | raise NotImplementedError
27 |
28 | def visdom_draw_tracking(self, image, box, segmentation=None):
29 | if isinstance(box, OrderedDict):
30 | box = [v for k, v in box.items()]
31 | else:
32 | box = (box,)
33 | if segmentation is None:
34 | self.visdom.register((image, *box), 'Tracking', 1, 'Tracking')
35 | else:
36 | self.visdom.register((image, *box, segmentation), 'Tracking', 1, 'Tracking')
37 |
38 | def transform_bbox_to_crop(self, box_in, resize_factor, device, box_extract=None, crop_type='template'):
39 | # box_in: list [x1, y1, w, h], not normalized
40 | # box_extract: same as box_in
41 | # out bbox: Torch.tensor [1, 1, 4], x1y1wh, normalized
42 | if crop_type == 'template':
43 | crop_sz = torch.Tensor([self.params.template_size, self.params.template_size])
44 | elif crop_type == 'search':
45 | crop_sz = torch.Tensor([self.params.search_size, self.params.search_size])
46 | else:
47 | raise NotImplementedError
48 |
49 | box_in = torch.tensor(box_in)
50 | if box_extract is None:
51 | box_extract = box_in
52 | else:
53 | box_extract = torch.tensor(box_extract)
54 | template_bbox = transform_image_to_crop(box_in, box_extract, resize_factor, crop_sz, normalize=True)
55 | template_bbox = template_bbox.view(1, 1, 4).to(device)
56 |
57 | return template_bbox
58 |
59 | def _init_visdom(self, visdom_info, debug):
60 | visdom_info = {} if visdom_info is None else visdom_info
61 | self.pause_mode = False
62 | self.step = False
63 | self.next_seq = False
64 | if debug > 0 and visdom_info.get('use_visdom', True):
65 | try:
66 | self.visdom = Visdom(debug, {'handler': self._visdom_ui_handler, 'win_id': 'Tracking'},
67 | visdom_info=visdom_info)
68 |
69 | # # Show help
70 | # help_text = 'You can pause/unpause the tracker by pressing ''space'' with the ''Tracking'' window ' \
71 | # 'selected. During paused mode, you can track for one frame by pressing the right arrow key.' \
72 | # 'To enable/disable plotting of a data block, tick/untick the corresponding entry in ' \
73 | # 'block list.'
74 | # self.visdom.register(help_text, 'text', 1, 'Help')
75 | except:
76 | time.sleep(0.5)
77 | print('!!! WARNING: Visdom could not start, so using matplotlib visualization instead !!!\n'
78 | '!!! Start Visdom in a separate terminal window by typing \'visdom\' !!!')
79 |
80 | def _visdom_ui_handler(self, data):
81 | if data['event_type'] == 'KeyPress':
82 | if data['key'] == ' ':
83 | self.pause_mode = not self.pause_mode
84 |
85 | elif data['key'] == 'ArrowRight' and self.pause_mode:
86 | self.step = True
87 |
88 | elif data['key'] == 'n':
89 | self.next_seq = True
90 |
--------------------------------------------------------------------------------
/lib/test/tracker/data_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | from lib.utils.misc import NestedTensor
4 |
5 |
6 | class Preprocessor(object):
7 | def __init__(self):
8 | self.mean = torch.tensor([0.485, 0.456, 0.406]).view((1, 3, 1, 1)).cuda()
9 | self.std = torch.tensor([0.229, 0.224, 0.225]).view((1, 3, 1, 1)).cuda()
10 |
11 | def process(self, img_arr: np.ndarray, amask_arr: np.ndarray):
12 | # Deal with the image patch
13 | img_tensor = torch.tensor(img_arr).cuda().float().permute((2,0,1)).unsqueeze(dim=0)
14 | img_tensor_norm = ((img_tensor / 255.0) - self.mean) / self.std # (1,3,H,W)
15 | # Deal with the attention mask
16 | amask_tensor = torch.from_numpy(amask_arr).to(torch.bool).cuda().unsqueeze(dim=0) # (1,H,W)
17 | return NestedTensor(img_tensor_norm, amask_tensor)
18 |
19 |
20 | class PreprocessorX(object):
21 | def __init__(self):
22 | self.mean = torch.tensor([0.485, 0.456, 0.406]).view((1, 3, 1, 1)).cuda()
23 | self.std = torch.tensor([0.229, 0.224, 0.225]).view((1, 3, 1, 1)).cuda()
24 |
25 | def process(self, img_arr: np.ndarray, amask_arr: np.ndarray):
26 | # Deal with the image patch
27 | img_tensor = torch.tensor(img_arr).cuda().float().permute((2,0,1)).unsqueeze(dim=0)
28 | img_tensor_norm = ((img_tensor / 255.0) - self.mean) / self.std # (1,3,H,W)
29 | # Deal with the attention mask
30 | amask_tensor = torch.from_numpy(amask_arr).to(torch.bool).cuda().unsqueeze(dim=0) # (1,H,W)
31 | return img_tensor_norm, amask_tensor
32 |
33 |
34 | class PreprocessorX_onnx(object):
35 | def __init__(self):
36 | self.mean = np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))
37 | self.std = np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))
38 |
39 | def process(self, img_arr: np.ndarray, amask_arr: np.ndarray):
40 | """img_arr: (H,W,3), amask_arr: (H,W)"""
41 | # Deal with the image patch
42 | img_arr_4d = img_arr[np.newaxis, :, :, :].transpose(0, 3, 1, 2)
43 | img_arr_4d = (img_arr_4d / 255.0 - self.mean) / self.std # (1, 3, H, W)
44 | # Deal with the attention mask
45 | amask_arr_3d = amask_arr[np.newaxis, :, :] # (1,H,W)
46 | return img_arr_4d.astype(np.float32), amask_arr_3d.astype(np.bool)
47 |
--------------------------------------------------------------------------------
/lib/test/tracker/vis_utils.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 |
4 | ############## used for visulize eliminated tokens #################
5 | def get_keep_indices(decisions):
6 | keep_indices = []
7 | for i in range(3):
8 | if i == 0:
9 | keep_indices.append(decisions[i])
10 | else:
11 | keep_indices.append(keep_indices[-1][decisions[i]])
12 | return keep_indices
13 |
14 |
15 | def gen_masked_tokens(tokens, indices, alpha=0.2):
16 | # indices = [i for i in range(196) if i not in indices]
17 | indices = indices[0].astype(int)
18 | tokens = tokens.copy()
19 | tokens[indices] = alpha * tokens[indices] + (1 - alpha) * 255
20 | return tokens
21 |
22 |
23 | def recover_image(tokens, H, W, Hp, Wp, patch_size):
24 | # image: (C, 196, 16, 16)
25 | image = tokens.reshape(Hp, Wp, patch_size, patch_size, 3).swapaxes(1, 2).reshape(H, W, 3)
26 | return image
27 |
28 |
29 | def pad_img(img):
30 | height, width, channels = img.shape
31 | im_bg = np.ones((height, width + 8, channels)) * 255
32 | im_bg[0:height, 0:width, :] = img
33 | return im_bg
34 |
35 |
36 | def gen_visualization(image, mask_indices, patch_size=16):
37 | # image [224, 224, 3]
38 | # mask_indices, list of masked token indices
39 |
40 | # mask mask_indices need to cat
41 | # mask_indices = mask_indices[::-1]
42 | num_stages = len(mask_indices)
43 | for i in range(1, num_stages):
44 | mask_indices[i] = np.concatenate([mask_indices[i-1], mask_indices[i]], axis=1)
45 |
46 | # keep_indices = get_keep_indices(decisions)
47 | image = np.asarray(image)
48 | H, W, C = image.shape
49 | Hp, Wp = H // patch_size, W // patch_size
50 | image_tokens = image.reshape(Hp, patch_size, Wp, patch_size, 3).swapaxes(1, 2).reshape(Hp * Wp, patch_size, patch_size, 3)
51 |
52 | stages = [
53 | recover_image(gen_masked_tokens(image_tokens, mask_indices[i]), H, W, Hp, Wp, patch_size)
54 | for i in range(num_stages)
55 | ]
56 | imgs = [image] + stages
57 | imgs = [pad_img(img) for img in imgs]
58 | viz = np.concatenate(imgs, axis=1)
59 | return viz
60 |
--------------------------------------------------------------------------------
/lib/test/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .params import TrackerParams, FeatureParams, Choice
--------------------------------------------------------------------------------
/lib/test/utils/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/utils/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/utils/__pycache__/_init_paths.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/utils/__pycache__/_init_paths.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/utils/__pycache__/hann.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/utils/__pycache__/hann.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/utils/__pycache__/load_text.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/utils/__pycache__/load_text.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/utils/__pycache__/params.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/test/utils/__pycache__/params.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/test/utils/_init_paths.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import
2 | from __future__ import division
3 | from __future__ import print_function
4 |
5 | import os.path as osp
6 | import sys
7 |
8 |
9 | def add_path(path):
10 | if path not in sys.path:
11 | sys.path.insert(0, path)
12 |
13 |
14 | this_dir = osp.dirname(__file__)
15 |
16 | prj_path = osp.join(this_dir, '..', '..', '..')
17 | add_path(prj_path)
18 |
--------------------------------------------------------------------------------
/lib/test/utils/hann.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import math
3 | import torch.nn.functional as F
4 | import numpy as np
5 | import cv2
6 |
7 |
8 | def hann1d(sz: int, centered = True) -> torch.Tensor:
9 | """1D cosine window."""
10 | if centered:
11 | return 0.5 * (1 - torch.cos((2 * math.pi / (sz + 1)) * torch.arange(1, sz + 1).float()))
12 | w = 0.5 * (1 + torch.cos((2 * math.pi / (sz + 2)) * torch.arange(0, sz//2 + 1).float()))
13 | return torch.cat([w, w[1:sz-sz//2].flip((0,))])
14 |
15 |
16 | def hann2d(sz: torch.Tensor, centered = True) -> torch.Tensor:
17 | """2D cosine window."""
18 | return hann1d(sz[0].item(), centered).reshape(1, 1, -1, 1) * hann1d(sz[1].item(), centered).reshape(1, 1, 1, -1)
19 |
20 | def visualizeHanning(window, size, frameNum):
21 | out_np = window.view(-1, size).unsqueeze(2).repeat((1, 1, 3)).numpy()
22 | out_np = (out_np * 255).astype(np.uint8)
23 | out_np[out_np < 0] = 0
24 | hanning = cv2.applyColorMap(out_np, cv2.COLORMAP_JET)
25 | #cv2.imwrite(f"hanning_{frameNum}.jpg", hanning)
26 | return hanning
27 |
28 | def hann2d_bias(sz: torch.Tensor, ctr_point: torch.Tensor, centered = True) -> torch.Tensor:
29 | """2D cosine window."""
30 | distance = torch.stack([ctr_point, sz-ctr_point], dim=0)
31 | max_distance, _ = distance.max(dim=0)
32 |
33 | hann1d_x = hann1d(max_distance[0].item() * 2, centered)
34 | hann1d_x = hann1d_x[max_distance[0] - distance[0, 0]: max_distance[0] + distance[1, 0]]
35 | hann1d_y = hann1d(max_distance[1].item() * 2, centered)
36 | hann1d_y = hann1d_y[max_distance[1] - distance[0, 1]: max_distance[1] + distance[1, 1]]
37 |
38 | return hann1d_y.reshape(1, 1, -1, 1) * hann1d_x.reshape(1, 1, 1, -1)
39 |
40 |
41 |
42 | def hann2d_clipped(sz: torch.Tensor, effective_sz: torch.Tensor, centered = True) -> torch.Tensor:
43 | """1D clipped cosine window."""
44 |
45 | # Ensure that the difference is even
46 | effective_sz += (effective_sz - sz) % 2
47 | effective_window = hann1d(effective_sz[0].item(), True).reshape(1, 1, -1, 1) * hann1d(effective_sz[1].item(), True).reshape(1, 1, 1, -1)
48 |
49 | pad = (sz - effective_sz) // 2
50 |
51 | window = F.pad(effective_window, (pad[1].item(), pad[1].item(), pad[0].item(), pad[0].item()), 'replicate')
52 |
53 | if centered:
54 | return window
55 | else:
56 | mid = (sz / 2).int()
57 | window_shift_lr = torch.cat((window[:, :, :, mid[1]:], window[:, :, :, :mid[1]]), 3)
58 | return torch.cat((window_shift_lr[:, :, mid[0]:, :], window_shift_lr[:, :, :mid[0], :]), 2)
59 |
60 |
61 | def gauss_fourier(sz: int, sigma: float, half: bool = False) -> torch.Tensor:
62 | if half:
63 | k = torch.arange(0, int(sz/2+1))
64 | else:
65 | k = torch.arange(-int((sz-1)/2), int(sz/2+1))
66 | return (math.sqrt(2*math.pi) * sigma / sz) * torch.exp(-2 * (math.pi * sigma * k.float() / sz)**2)
67 |
68 |
69 | def gauss_spatial(sz, sigma, center=0, end_pad=0):
70 | k = torch.arange(-(sz-1)/2, (sz+1)/2+end_pad)
71 | return torch.exp(-1.0/(2*sigma**2) * (k - center)**2)
72 |
73 |
74 | def label_function(sz: torch.Tensor, sigma: torch.Tensor):
75 | return gauss_fourier(sz[0].item(), sigma[0].item()).reshape(1, 1, -1, 1) * gauss_fourier(sz[1].item(), sigma[1].item(), True).reshape(1, 1, 1, -1)
76 |
77 | def label_function_spatial(sz: torch.Tensor, sigma: torch.Tensor, center: torch.Tensor = torch.zeros(2), end_pad: torch.Tensor = torch.zeros(2)):
78 | """The origin is in the middle of the image."""
79 | return gauss_spatial(sz[0].item(), sigma[0].item(), center[0], end_pad[0].item()).reshape(1, 1, -1, 1) * \
80 | gauss_spatial(sz[1].item(), sigma[1].item(), center[1], end_pad[1].item()).reshape(1, 1, 1, -1)
81 |
82 |
83 | def cubic_spline_fourier(f, a):
84 | """The continuous Fourier transform of a cubic spline kernel."""
85 |
86 | bf = (6*(1 - torch.cos(2 * math.pi * f)) + 3*a*(1 - torch.cos(4 * math.pi * f))
87 | - (6 + 8*a)*math.pi*f*torch.sin(2 * math.pi * f) - 2*a*math.pi*f*torch.sin(4 * math.pi * f)) \
88 | / (4 * math.pi**4 * f**4)
89 |
90 | bf[f == 0] = 1
91 |
92 | return bf
93 |
94 | def max2d(a: torch.Tensor) -> (torch.Tensor, torch.Tensor):
95 | """Computes maximum and argmax in the last two dimensions."""
96 |
97 | max_val_row, argmax_row = torch.max(a, dim=-2)
98 | max_val, argmax_col = torch.max(max_val_row, dim=-1)
99 | argmax_row = argmax_row.view(argmax_col.numel(),-1)[torch.arange(argmax_col.numel()), argmax_col.view(-1)]
100 | argmax_row = argmax_row.reshape(argmax_col.shape)
101 | argmax = torch.cat((argmax_row.unsqueeze(-1), argmax_col.unsqueeze(-1)), -1)
102 | return max_val, argmax
103 |
--------------------------------------------------------------------------------
/lib/test/utils/load_text.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pandas as pd
3 |
4 |
5 | def load_text_numpy(path, delimiter, dtype):
6 | if isinstance(delimiter, (tuple, list)):
7 | for d in delimiter:
8 | try:
9 | ground_truth_rect = np.loadtxt(path, delimiter=d, dtype=dtype)
10 | return ground_truth_rect
11 | except:
12 | pass
13 |
14 | raise Exception('Could not read file {}'.format(path))
15 | else:
16 | ground_truth_rect = np.loadtxt(path, delimiter=delimiter, dtype=dtype)
17 | return ground_truth_rect
18 |
19 |
20 | def load_text_pandas(path, delimiter, dtype):
21 | if isinstance(delimiter, (tuple, list)):
22 | for d in delimiter:
23 | try:
24 | ground_truth_rect = pd.read_csv(path, delimiter=d, header=None, dtype=dtype, na_filter=False,
25 | low_memory=False).values
26 | return ground_truth_rect
27 | except Exception as e:
28 | pass
29 |
30 | raise Exception('Could not read file {}'.format(path))
31 | else:
32 | ground_truth_rect = pd.read_csv(path, delimiter=delimiter, header=None, dtype=dtype, na_filter=False,
33 | low_memory=False).values
34 | return ground_truth_rect
35 |
36 |
37 | def load_text(path, delimiter=' ', dtype=np.float32, backend='numpy'):
38 | if backend == 'numpy':
39 | return load_text_numpy(path, delimiter, dtype)
40 | elif backend == 'pandas':
41 | return load_text_pandas(path, delimiter, dtype)
42 |
43 |
44 | def load_str(path):
45 | with open(path, "r") as f:
46 | text_str = f.readline().strip().lower()
47 | return text_str
48 |
--------------------------------------------------------------------------------
/lib/test/utils/params.py:
--------------------------------------------------------------------------------
1 | from lib.utils import TensorList
2 | import random
3 |
4 |
5 | class TrackerParams:
6 | """Class for tracker parameters."""
7 | def set_default_values(self, default_vals: dict):
8 | for name, val in default_vals.items():
9 | if not hasattr(self, name):
10 | setattr(self, name, val)
11 |
12 | def get(self, name: str, *default):
13 | """Get a parameter value with the given name. If it does not exists, it return the default value given as a
14 | second argument or returns an error if no default value is given."""
15 | if len(default) > 1:
16 | raise ValueError('Can only give one default value.')
17 |
18 | if not default:
19 | return getattr(self, name)
20 |
21 | return getattr(self, name, default[0])
22 |
23 | def has(self, name: str):
24 | """Check if there exist a parameter with the given name."""
25 | return hasattr(self, name)
26 |
27 |
28 | class FeatureParams:
29 | """Class for feature specific parameters"""
30 | def __init__(self, *args, **kwargs):
31 | if len(args) > 0:
32 | raise ValueError
33 |
34 | for name, val in kwargs.items():
35 | if isinstance(val, list):
36 | setattr(self, name, TensorList(val))
37 | else:
38 | setattr(self, name, val)
39 |
40 |
41 | def Choice(*args):
42 | """Can be used to sample random parameter values."""
43 | return random.choice(args)
44 |
--------------------------------------------------------------------------------
/lib/test/utils/transform_got10k.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import os
3 | import shutil
4 | import argparse
5 | import _init_paths
6 | from lib.test.evaluation.environment import env_settings
7 |
8 |
9 | def transform_got10k(tracker_name, cfg_name):
10 | env = env_settings()
11 | result_dir = env.results_path
12 | src_dir = os.path.join(result_dir, "%s/%s/got10k/" % (tracker_name, cfg_name))
13 | dest_dir = os.path.join(result_dir, "%s/%s/got10k_submit/" % (tracker_name, cfg_name))
14 | if not os.path.exists(dest_dir):
15 | os.makedirs(dest_dir)
16 | items = os.listdir(src_dir)
17 | for item in items:
18 | if "all" in item:
19 | continue
20 | src_path = os.path.join(src_dir, item)
21 | if "time" not in item:
22 | seq_name = item.replace(".txt", '')
23 | seq_dir = os.path.join(dest_dir, seq_name)
24 | if not os.path.exists(seq_dir):
25 | os.makedirs(seq_dir)
26 | new_item = item.replace(".txt", '_001.txt')
27 | dest_path = os.path.join(seq_dir, new_item)
28 | bbox_arr = np.loadtxt(src_path, dtype=int, delimiter='\t')
29 | np.savetxt(dest_path, bbox_arr, fmt='%d', delimiter=',')
30 | else:
31 | seq_name = item.replace("_time.txt", '')
32 | seq_dir = os.path.join(dest_dir, seq_name)
33 | if not os.path.exists(seq_dir):
34 | os.makedirs(seq_dir)
35 | dest_path = os.path.join(seq_dir, item)
36 | os.system("cp %s %s" % (src_path, dest_path))
37 | # make zip archive
38 | shutil.make_archive(src_dir, "zip", src_dir)
39 | shutil.make_archive(dest_dir, "zip", dest_dir)
40 | # Remove the original files
41 | shutil.rmtree(src_dir)
42 | shutil.rmtree(dest_dir)
43 |
44 |
45 | if __name__ == "__main__":
46 | parser = argparse.ArgumentParser(description='transform got10k results.')
47 | parser.add_argument('--tracker_name', type=str, help='Name of tracking method.')
48 | parser.add_argument('--cfg_name', type=str, help='Name of config file.')
49 |
50 | args = parser.parse_args()
51 | transform_got10k(args.tracker_name, args.cfg_name)
52 |
53 |
--------------------------------------------------------------------------------
/lib/test/utils/transform_trackingnet.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import os
3 | import shutil
4 | import argparse
5 | import _init_paths
6 | from lib.test.evaluation.environment import env_settings
7 |
8 |
9 | def transform_trackingnet(tracker_name, cfg_name):
10 | env = env_settings()
11 | result_dir = env.results_path
12 | src_dir = os.path.join(result_dir, "%s/%s/trackingnet/" % (tracker_name, cfg_name))
13 | dest_dir = os.path.join(result_dir, "%s/%s/trackingnet_submit/" % (tracker_name, cfg_name))
14 | if not os.path.exists(dest_dir):
15 | os.makedirs(dest_dir)
16 | items = os.listdir(src_dir)
17 | for item in items:
18 | if "all" in item:
19 | continue
20 | if "time" not in item:
21 | src_path = os.path.join(src_dir, item)
22 | dest_path = os.path.join(dest_dir, item)
23 | bbox_arr = np.loadtxt(src_path, dtype=int, delimiter='\t')
24 | np.savetxt(dest_path, bbox_arr, fmt='%d', delimiter=',')
25 | # make zip archive
26 | shutil.make_archive(src_dir, "zip", src_dir)
27 | shutil.make_archive(dest_dir, "zip", dest_dir)
28 | # Remove the original files
29 | shutil.rmtree(src_dir)
30 | shutil.rmtree(dest_dir)
31 |
32 |
33 | if __name__ == "__main__":
34 | parser = argparse.ArgumentParser(description='transform trackingnet results.')
35 | parser.add_argument('--tracker_name', type=str, help='Name of tracking method.')
36 | parser.add_argument('--cfg_name', type=str, help='Name of config file.')
37 |
38 | args = parser.parse_args()
39 | transform_trackingnet(args.tracker_name, args.cfg_name)
40 |
--------------------------------------------------------------------------------
/lib/train/__init__.py:
--------------------------------------------------------------------------------
1 | from .admin.multigpu import MultiGPU
2 |
--------------------------------------------------------------------------------
/lib/train/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/__pycache__/_init_paths.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/__pycache__/_init_paths.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/__pycache__/base_functions.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/__pycache__/base_functions.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/__pycache__/train_script.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/__pycache__/train_script.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/_init_paths.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import
2 | from __future__ import division
3 | from __future__ import print_function
4 |
5 | import os.path as osp
6 | import sys
7 |
8 |
9 | def add_path(path):
10 | if path not in sys.path:
11 | sys.path.insert(0, path)
12 |
13 |
14 | this_dir = osp.dirname(__file__)
15 |
16 | prj_path = osp.join(this_dir, '../..')
17 | add_path(prj_path)
18 |
--------------------------------------------------------------------------------
/lib/train/actors/__init__.py:
--------------------------------------------------------------------------------
1 | from .base_actor import BaseActor
2 | from .hiptrack import HIPTrackActor
3 |
--------------------------------------------------------------------------------
/lib/train/actors/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/actors/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/actors/__pycache__/base_actor.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/actors/__pycache__/base_actor.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/actors/__pycache__/hiptrack.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/actors/__pycache__/hiptrack.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/actors/base_actor.py:
--------------------------------------------------------------------------------
1 | from lib.utils import TensorDict
2 |
3 |
4 | class BaseActor:
5 | """ Base class for actor. The actor class handles the passing of the data through the network
6 | and calculation the loss"""
7 | def __init__(self, net, objective):
8 | """
9 | args:
10 | net - The network to train
11 | objective - The loss function
12 | """
13 | self.net = net
14 | self.objective = objective
15 |
16 | def __call__(self, data: TensorDict):
17 | """ Called in each training iteration. Should pass in input data through the network, calculate the loss, and
18 | return the training stats for the input data
19 | args:
20 | data - A TensorDict containing all the necessary data blocks.
21 |
22 | returns:
23 | loss - loss for the input data
24 | stats - a dict containing detailed losses
25 | """
26 | raise NotImplementedError
27 |
28 | def to(self, device):
29 | """ Move the network to device
30 | args:
31 | device - device to use. 'cpu' or 'cuda'
32 | """
33 | self.net.to(device)
34 |
35 | def train(self, mode=True):
36 | """ Set whether the network is in train mode.
37 | args:
38 | mode (True) - Bool specifying whether in training mode.
39 | """
40 | self.net.train(mode)
41 |
42 | def eval(self):
43 | """ Set network to eval mode"""
44 | self.train(False)
--------------------------------------------------------------------------------
/lib/train/admin/__init__.py:
--------------------------------------------------------------------------------
1 | from .environment import env_settings, create_default_local_file_ITP_train
2 | from .stats import AverageMeter, StatValue
3 | from .tensorboard import TensorboardWriter
4 |
--------------------------------------------------------------------------------
/lib/train/admin/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/admin/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/admin/__pycache__/environment.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/admin/__pycache__/environment.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/admin/__pycache__/local.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/admin/__pycache__/local.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/admin/__pycache__/multigpu.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/admin/__pycache__/multigpu.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/admin/__pycache__/settings.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/admin/__pycache__/settings.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/admin/__pycache__/stats.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/admin/__pycache__/stats.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/admin/__pycache__/tensorboard.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/admin/__pycache__/tensorboard.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/admin/environment.py:
--------------------------------------------------------------------------------
1 | import importlib
2 | import os
3 | from collections import OrderedDict
4 |
5 |
6 | def create_default_local_file():
7 | path = os.path.join(os.path.dirname(__file__), 'local.py')
8 |
9 | empty_str = '\'\''
10 | default_settings = OrderedDict({
11 | 'workspace_dir': empty_str,
12 | 'tensorboard_dir': 'self.workspace_dir + \'/tensorboard/\'',
13 | 'pretrained_networks': 'self.workspace_dir + \'/pretrained_networks/\'',
14 | 'lasot_dir': empty_str,
15 | 'got10k_dir': empty_str,
16 | 'trackingnet_dir': empty_str,
17 | 'coco_dir': empty_str,
18 | 'lvis_dir': empty_str,
19 | 'sbd_dir': empty_str,
20 | 'imagenet_dir': empty_str,
21 | 'imagenetdet_dir': empty_str,
22 | 'ecssd_dir': empty_str,
23 | 'hkuis_dir': empty_str,
24 | 'msra10k_dir': empty_str,
25 | 'davis_dir': empty_str,
26 | 'youtubevos_dir': empty_str})
27 |
28 | comment = {'workspace_dir': 'Base directory for saving network checkpoints1.',
29 | 'tensorboard_dir': 'Directory for tensorboard files.'}
30 |
31 | with open(path, 'w') as f:
32 | f.write('class EnvironmentSettings:\n')
33 | f.write(' def __init__(self):\n')
34 |
35 | for attr, attr_val in default_settings.items():
36 | comment_str = None
37 | if attr in comment:
38 | comment_str = comment[attr]
39 | if comment_str is None:
40 | f.write(' self.{} = {}\n'.format(attr, attr_val))
41 | else:
42 | f.write(' self.{} = {} # {}\n'.format(attr, attr_val, comment_str))
43 |
44 |
45 | def create_default_local_file_ITP_train(workspace_dir, data_dir):
46 | path = os.path.join(os.path.dirname(__file__), 'local.py')
47 |
48 | empty_str = '\'\''
49 | default_settings = OrderedDict({
50 | 'workspace_dir': workspace_dir,
51 | 'tensorboard_dir': os.path.join(workspace_dir, 'tensorboard'), # Directory for tensorboard files.
52 | 'pretrained_networks': os.path.join(workspace_dir, 'pretrained_networks'),
53 | 'lasot_dir': os.path.join(data_dir, 'lasot'),
54 | 'got10k_dir': os.path.join(data_dir, 'got10k/train'),
55 | 'got10k_val_dir': os.path.join(data_dir, 'got10k/val'),
56 | 'lasot_lmdb_dir': os.path.join(data_dir, 'lasot_lmdb'),
57 | 'got10k_lmdb_dir': os.path.join(data_dir, 'got10k_lmdb'),
58 | 'trackingnet_dir': os.path.join(data_dir, 'trackingnet'),
59 | 'trackingnet_lmdb_dir': os.path.join(data_dir, 'trackingnet_lmdb'),
60 | 'coco_dir': os.path.join(data_dir, 'coco'),
61 | 'coco_lmdb_dir': os.path.join(data_dir, 'coco_lmdb'),
62 | 'lvis_dir': empty_str,
63 | 'sbd_dir': empty_str,
64 | 'imagenet_dir': os.path.join(data_dir, 'vid'),
65 | 'imagenet_lmdb_dir': os.path.join(data_dir, 'vid_lmdb'),
66 | 'imagenetdet_dir': empty_str,
67 | 'ecssd_dir': empty_str,
68 | 'hkuis_dir': empty_str,
69 | 'msra10k_dir': empty_str,
70 | 'davis_dir': empty_str,
71 | 'youtubevos_dir': empty_str})
72 |
73 | comment = {'workspace_dir': 'Base directory for saving network checkpoints1.',
74 | 'tensorboard_dir': 'Directory for tensorboard files.'}
75 |
76 | with open(path, 'w') as f:
77 | f.write('class EnvironmentSettings:\n')
78 | f.write(' def __init__(self):\n')
79 |
80 | for attr, attr_val in default_settings.items():
81 | comment_str = None
82 | if attr in comment:
83 | comment_str = comment[attr]
84 | if comment_str is None:
85 | if attr_val == empty_str:
86 | f.write(' self.{} = {}\n'.format(attr, attr_val))
87 | else:
88 | f.write(' self.{} = \'{}\'\n'.format(attr, attr_val))
89 | else:
90 | f.write(' self.{} = \'{}\' # {}\n'.format(attr, attr_val, comment_str))
91 |
92 |
93 | def env_settings():
94 | env_module_name = 'lib.train.admin.local'
95 | try:
96 | env_module = importlib.import_module(env_module_name)
97 | return env_module.EnvironmentSettings()
98 | except:
99 | env_file = os.path.join(os.path.dirname(__file__), 'local.py')
100 |
101 | create_default_local_file()
102 | raise RuntimeError('YOU HAVE NOT SETUP YOUR local.py!!!\n Go to "{}" and set all the paths you need. Then try to run again.'.format(env_file))
103 |
--------------------------------------------------------------------------------
/lib/train/admin/local.py:
--------------------------------------------------------------------------------
1 | class EnvironmentSettings:
2 | def __init__(self):
3 | self.workspace_dir = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT' # Base directory for saving network checkpoints.
4 | self.tensorboard_dir = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/tensorboard' # Directory for tensorboard files.
5 | self.pretrained_networks = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/pretrained_networks'
6 | self.lvis_dir = ''
7 | self.sbd_dir = ''
8 | self.imagenet_dir = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/vid'
9 | self.imagenet_lmdb_dir = '/home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/data/vid_lmdb'
10 | self.imagenetdet_dir = ''
11 | self.ecssd_dir = ''
12 | self.hkuis_dir = ''
13 | self.msra10k_dir = ''
14 | self.davis_dir = ''
15 | self.youtubevos_dir = ''
16 | self.lasot_dir = '/home/lsw/data/lasot'
17 | self.got10k_dir = '/home/lsw/data/got10k/train'
18 | self.got10k_val_dir = '/home/lsw/data/got10k/val'
19 | self.lasot_lmdb_dir = '/home/lsw/data/lasot_lmdb'
20 | self.got10k_lmdb_dir = '/home/lsw/data/got10k_lmdb'
21 | self.trackingnet_dir = '/home/lsw/data/trackingnet'
22 | self.trackingnet_lmdb_dir = '/home/lsw/data/trackingnet_lmdb'
23 | self.coco_dir = '/home/lsw/data/coco'
24 | self.coco_lmdb_dir = '/home/lsw/data/coco_lmdb'
25 |
--------------------------------------------------------------------------------
/lib/train/admin/multigpu.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | # Here we use DistributedDataParallel(DDP) rather than DataParallel(DP) for multiple GPUs training
3 |
4 |
5 | def is_multi_gpu(net):
6 | return isinstance(net, (MultiGPU, nn.parallel.distributed.DistributedDataParallel))
7 |
8 |
9 | class MultiGPU(nn.parallel.distributed.DistributedDataParallel):
10 | def __getattr__(self, item):
11 | try:
12 | return super().__getattr__(item)
13 | except:
14 | pass
15 | return getattr(self.module, item)
16 |
--------------------------------------------------------------------------------
/lib/train/admin/settings.py:
--------------------------------------------------------------------------------
1 | from lib.train.admin.environment import env_settings
2 |
3 |
4 | class Settings:
5 | """ Training settings, e.g. the paths to datasets and networks."""
6 | def __init__(self):
7 | self.set_default()
8 |
9 | def set_default(self):
10 | self.env = env_settings()
11 | self.use_gpu = True
12 |
13 |
14 |
--------------------------------------------------------------------------------
/lib/train/admin/stats.py:
--------------------------------------------------------------------------------
1 |
2 |
3 | class StatValue:
4 | def __init__(self):
5 | self.clear()
6 |
7 | def reset(self):
8 | self.val = 0
9 |
10 | def clear(self):
11 | self.reset()
12 | self.history = []
13 |
14 | def update(self, val):
15 | self.val = val
16 | self.history.append(self.val)
17 |
18 |
19 | class AverageMeter(object):
20 | """Computes and stores the average and current value"""
21 | def __init__(self):
22 | self.clear()
23 | self.has_new_data = False
24 |
25 | def reset(self):
26 | self.avg = 0
27 | self.val = 0
28 | self.sum = 0
29 | self.count = 0
30 |
31 | def clear(self):
32 | self.reset()
33 | self.history = []
34 |
35 | def update(self, val, n=1):
36 | self.val = val
37 | self.sum += val * n
38 | self.count += n
39 | self.avg = self.sum / self.count
40 |
41 | def new_epoch(self):
42 | if self.count > 0:
43 | self.history.append(self.avg)
44 | self.reset()
45 | self.has_new_data = True
46 | else:
47 | self.has_new_data = False
48 |
49 |
50 | def topk_accuracy(output, target, topk=(1,)):
51 | """Computes the precision@k for the specified values of k"""
52 | single_input = not isinstance(topk, (tuple, list))
53 | if single_input:
54 | topk = (topk,)
55 |
56 | maxk = max(topk)
57 | batch_size = target.size(0)
58 |
59 | _, pred = output.topk(maxk, 1, True, True)
60 | pred = pred.t()
61 | correct = pred.eq(target.view(1, -1).expand_as(pred))
62 |
63 | res = []
64 | for k in topk:
65 | correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)[0]
66 | res.append(correct_k * 100.0 / batch_size)
67 |
68 | if single_input:
69 | return res[0]
70 |
71 | return res
72 |
--------------------------------------------------------------------------------
/lib/train/admin/tensorboard.py:
--------------------------------------------------------------------------------
1 | import os
2 | from collections import OrderedDict
3 | try:
4 | from torch.utils.tensorboard import SummaryWriter
5 | except:
6 | print('WARNING: You are using tensorboardX instead sis you have a too old pytorch version.')
7 | from tensorboardX import SummaryWriter
8 |
9 |
10 | class TensorboardWriter:
11 | def __init__(self, directory, loader_names):
12 | self.directory = directory
13 | self.writer = OrderedDict({name: SummaryWriter(os.path.join(self.directory, name)) for name in loader_names})
14 |
15 | def write_info(self, script_name, description):
16 | tb_info_writer = SummaryWriter(os.path.join(self.directory, 'info'))
17 | tb_info_writer.add_text('Script_name', script_name)
18 | tb_info_writer.add_text('Description', description)
19 | tb_info_writer.close()
20 |
21 | def write_epoch(self, stats: OrderedDict, epoch: int, ind=-1):
22 | for loader_name, loader_stats in stats.items():
23 | if loader_stats is None:
24 | continue
25 | for var_name, val in loader_stats.items():
26 | if hasattr(val, 'history') and getattr(val, 'has_new_data', True):
27 | self.writer[loader_name].add_scalar(var_name, val.history[ind], epoch)
--------------------------------------------------------------------------------
/lib/train/data/__init__.py:
--------------------------------------------------------------------------------
1 | from .loader import LTRLoader
2 | from .image_loader import jpeg4py_loader, opencv_loader, jpeg4py_loader_w_failsafe, default_image_loader
3 |
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/image_loader.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/image_loader.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/loader.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/loader.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/processing.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/processing.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/processing_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/processing_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/sampler.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/sampler.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/transforms.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/transforms.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/__pycache__/wandb_logger.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/data/__pycache__/wandb_logger.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/data/bounding_box_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def rect_to_rel(bb, sz_norm=None):
5 | """Convert standard rectangular parametrization of the bounding box [x, y, w, h]
6 | to relative parametrization [cx/sw, cy/sh, log(w), log(h)], where [cx, cy] is the center coordinate.
7 | args:
8 | bb - N x 4 tensor of boxes.
9 | sz_norm - [N] x 2 tensor of value of [sw, sh] (optional). sw=w and sh=h if not given.
10 | """
11 |
12 | c = bb[...,:2] + 0.5 * bb[...,2:]
13 | if sz_norm is None:
14 | c_rel = c / bb[...,2:]
15 | else:
16 | c_rel = c / sz_norm
17 | sz_rel = torch.log(bb[...,2:])
18 | return torch.cat((c_rel, sz_rel), dim=-1)
19 |
20 |
21 | def rel_to_rect(bb, sz_norm=None):
22 | """Inverts the effect of rect_to_rel. See above."""
23 |
24 | sz = torch.exp(bb[...,2:])
25 | if sz_norm is None:
26 | c = bb[...,:2] * sz
27 | else:
28 | c = bb[...,:2] * sz_norm
29 | tl = c - 0.5 * sz
30 | return torch.cat((tl, sz), dim=-1)
31 |
32 |
33 | def masks_to_bboxes(mask, fmt='c'):
34 |
35 | """ Convert a mask tensor to one or more bounding boxes.
36 | Note: This function is a bit new, make sure it does what it says. /Andreas
37 | :param mask: Tensor of masks, shape = (..., H, W)
38 | :param fmt: bbox layout. 'c' => "center + size" or (x_center, y_center, width, height)
39 | 't' => "top left + size" or (x_left, y_top, width, height)
40 | 'v' => "vertices" or (x_left, y_top, x_right, y_bottom)
41 | :return: tensor containing a batch of bounding boxes, shape = (..., 4)
42 | """
43 | batch_shape = mask.shape[:-2]
44 | mask = mask.reshape((-1, *mask.shape[-2:]))
45 | bboxes = []
46 |
47 | for m in mask:
48 | mx = m.sum(dim=-2).nonzero()
49 | my = m.sum(dim=-1).nonzero()
50 | bb = [mx.min(), my.min(), mx.max(), my.max()] if (len(mx) > 0 and len(my) > 0) else [0, 0, 0, 0]
51 | bboxes.append(bb)
52 |
53 | bboxes = torch.tensor(bboxes, dtype=torch.float32, device=mask.device)
54 | bboxes = bboxes.reshape(batch_shape + (4,))
55 |
56 | if fmt == 'v':
57 | return bboxes
58 |
59 | x1 = bboxes[..., :2]
60 | s = bboxes[..., 2:] - x1 + 1
61 |
62 | if fmt == 'c':
63 | return torch.cat((x1 + 0.5 * s, s), dim=-1)
64 | elif fmt == 't':
65 | return torch.cat((x1, s), dim=-1)
66 |
67 | raise ValueError("Undefined bounding box layout '%s'" % fmt)
68 |
69 |
70 | def masks_to_bboxes_multi(mask, ids, fmt='c'):
71 | assert mask.dim() == 2
72 | bboxes = []
73 |
74 | for id in ids:
75 | mx = (mask == id).sum(dim=-2).nonzero()
76 | my = (mask == id).float().sum(dim=-1).nonzero()
77 | bb = [mx.min(), my.min(), mx.max(), my.max()] if (len(mx) > 0 and len(my) > 0) else [0, 0, 0, 0]
78 |
79 | bb = torch.tensor(bb, dtype=torch.float32, device=mask.device)
80 |
81 | x1 = bb[:2]
82 | s = bb[2:] - x1 + 1
83 |
84 | if fmt == 'v':
85 | pass
86 | elif fmt == 'c':
87 | bb = torch.cat((x1 + 0.5 * s, s), dim=-1)
88 | elif fmt == 't':
89 | bb = torch.cat((x1, s), dim=-1)
90 | else:
91 | raise ValueError("Undefined bounding box layout '%s'" % fmt)
92 | bboxes.append(bb)
93 |
94 | return bboxes
95 |
--------------------------------------------------------------------------------
/lib/train/data/image_loader.py:
--------------------------------------------------------------------------------
1 | import jpeg4py
2 | import cv2 as cv
3 | from PIL import Image
4 | import numpy as np
5 |
6 | davis_palette = np.repeat(np.expand_dims(np.arange(0,256), 1), 3, 1).astype(np.uint8)
7 | davis_palette[:22, :] = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
8 | [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
9 | [64, 0, 0], [191, 0, 0], [64, 128, 0], [191, 128, 0],
10 | [64, 0, 128], [191, 0, 128], [64, 128, 128], [191, 128, 128],
11 | [0, 64, 0], [128, 64, 0], [0, 191, 0], [128, 191, 0],
12 | [0, 64, 128], [128, 64, 128]]
13 |
14 |
15 | def default_image_loader(path):
16 | """The default image loader, reads the image from the given path. It first tries to use the jpeg4py_loader,
17 | but reverts to the opencv_loader if the former is not available."""
18 | if default_image_loader.use_jpeg4py is None:
19 | # Try using jpeg4py
20 | im = jpeg4py_loader(path)
21 | if im is None:
22 | default_image_loader.use_jpeg4py = False
23 | print('Using opencv_loader instead.')
24 | else:
25 | default_image_loader.use_jpeg4py = True
26 | return im
27 | if default_image_loader.use_jpeg4py:
28 | return jpeg4py_loader(path)
29 | return opencv_loader(path)
30 |
31 | default_image_loader.use_jpeg4py = None
32 |
33 |
34 | def jpeg4py_loader(path):
35 | """ Image reading using jpeg4py https://github.com/ajkxyz/jpeg4py"""
36 | try:
37 | return jpeg4py.JPEG(path).decode()
38 | except Exception as e:
39 | print('ERROR: Could not read image "{}"'.format(path))
40 | print(e)
41 | return None
42 |
43 |
44 | def opencv_loader(path):
45 | """ Read image using opencv's imread function and returns it in rgb format"""
46 | try:
47 | im = cv.imread(path, cv.IMREAD_COLOR)
48 |
49 | # convert to rgb and return
50 | return cv.cvtColor(im, cv.COLOR_BGR2RGB)
51 | except Exception as e:
52 | print('ERROR: Could not read image "{}"'.format(path))
53 | print(e)
54 | return None
55 |
56 |
57 | def jpeg4py_loader_w_failsafe(path):
58 | """ Image reading using jpeg4py https://github.com/ajkxyz/jpeg4py"""
59 | try:
60 | return jpeg4py.JPEG(path).decode()
61 | except:
62 | try:
63 | im = cv.imread(path, cv.IMREAD_COLOR)
64 |
65 | # convert to rgb and return
66 | return cv.cvtColor(im, cv.COLOR_BGR2RGB)
67 | except Exception as e:
68 | print('ERROR: Could not read image "{}"'.format(path))
69 | print(e)
70 | return None
71 |
72 |
73 | def opencv_seg_loader(path):
74 | """ Read segmentation annotation using opencv's imread function"""
75 | try:
76 | return cv.imread(path)
77 | except Exception as e:
78 | print('ERROR: Could not read image "{}"'.format(path))
79 | print(e)
80 | return None
81 |
82 |
83 | def imread_indexed(filename):
84 | """ Load indexed image with given filename. Used to read segmentation annotations."""
85 |
86 | im = Image.open(filename)
87 |
88 | annotation = np.atleast_3d(im)[...,0]
89 | return annotation
90 |
91 |
92 | def imwrite_indexed(filename, array, color_palette=None):
93 | """ Save indexed image as png. Used to save segmentation annotation."""
94 |
95 | if color_palette is None:
96 | color_palette = davis_palette
97 |
98 | if np.atleast_3d(array).shape[2] != 1:
99 | raise Exception("Saving indexed PNGs requires 2D array.")
100 |
101 | im = Image.fromarray(array)
102 | im.putpalette(color_palette.ravel())
103 | im.save(filename, format='PNG')
--------------------------------------------------------------------------------
/lib/train/data/wandb_logger.py:
--------------------------------------------------------------------------------
1 | from collections import OrderedDict
2 |
3 | try:
4 | import wandb
5 | except ImportError:
6 | raise ImportError(
7 | 'Please run "pip install wandb" to install wandb')
8 |
9 |
10 | class WandbWriter:
11 | def __init__(self, exp_name, cfg, output_dir, cur_step=0, step_interval=0):
12 | self.wandb = wandb
13 | self.step = cur_step
14 | self.interval = step_interval
15 | wandb.init(project="tracking", name=exp_name, config=cfg, dir=output_dir)
16 |
17 | def write_log(self, stats: OrderedDict, epoch=-1):
18 | self.step += 1
19 | for loader_name, loader_stats in stats.items():
20 | if loader_stats is None:
21 | continue
22 |
23 | log_dict = {}
24 | for var_name, val in loader_stats.items():
25 | if hasattr(val, 'avg'):
26 | log_dict.update({loader_name + '/' + var_name: val.avg})
27 | else:
28 | log_dict.update({loader_name + '/' + var_name: val.val})
29 |
30 | if epoch >= 0:
31 | log_dict.update({loader_name + '/epoch': epoch})
32 |
33 | self.wandb.log(log_dict, step=self.step*self.interval)
34 |
--------------------------------------------------------------------------------
/lib/train/data_specs/README.md:
--------------------------------------------------------------------------------
1 | # README
2 |
3 | ## Description for different text files
4 | GOT10K
5 | - got10k_train_full_split.txt: the complete GOT-10K training set. (9335 videos)
6 | - got10k_train_split.txt: part of videos from the GOT-10K training set
7 | - got10k_val_split.txt: another part of videos from the GOT-10K training set
8 | - got10k_vot_exclude.txt: 1k videos that are forbidden from "using to train models then testing on VOT" (as required by [VOT Challenge](https://www.votchallenge.net/vot2020/participation.html))
9 | - got10k_vot_train_split.txt: part of videos from the "VOT-permitted" GOT-10K training set
10 | - got10k_vot_val_split.txt: another part of videos from the "VOT-permitted" GOT-10K training set
11 |
12 | LaSOT
13 | - lasot_train_split.txt: the complete LaSOT training set
14 |
15 | TrackingNnet
16 | - trackingnet_classmap.txt: The map from the sequence name to the target class for the TrackingNet
--------------------------------------------------------------------------------
/lib/train/dataset/__init__.py:
--------------------------------------------------------------------------------
1 | from .lasot import Lasot
2 | from .got10k import Got10k
3 | from .tracking_net import TrackingNet
4 | from .imagenetvid import ImagenetVID
5 | from .coco import MSCOCO
6 | from .coco_seq import MSCOCOSeq
7 | from .got10k_lmdb import Got10k_lmdb
8 | from .lasot_lmdb import Lasot_lmdb
9 | from .imagenetvid_lmdb import ImagenetVID_lmdb
10 | from .coco_seq_lmdb import MSCOCOSeq_lmdb
11 | from .tracking_net_lmdb import TrackingNet_lmdb
12 |
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/COCO_tool.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/COCO_tool.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/base_image_dataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/base_image_dataset.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/base_video_dataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/base_video_dataset.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/coco.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/coco.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/coco_seq.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/coco_seq.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/coco_seq_lmdb.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/coco_seq_lmdb.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/got10k.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/got10k.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/got10k_lmdb.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/got10k_lmdb.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/imagenetvid.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/imagenetvid.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/imagenetvid_lmdb.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/imagenetvid_lmdb.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/lasot.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/lasot.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/lasot_lmdb.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/lasot_lmdb.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/tracking_net.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/tracking_net.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/__pycache__/tracking_net_lmdb.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/dataset/__pycache__/tracking_net_lmdb.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/dataset/base_image_dataset.py:
--------------------------------------------------------------------------------
1 | import torch.utils.data
2 | from lib.train.data.image_loader import jpeg4py_loader
3 |
4 |
5 | class BaseImageDataset(torch.utils.data.Dataset):
6 | """ Base class for image datasets """
7 |
8 | def __init__(self, name, root, image_loader=jpeg4py_loader):
9 | """
10 | args:
11 | root - The root path to the dataset
12 | image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py)
13 | is used by default.
14 | """
15 | self.name = name
16 | self.root = root
17 | self.image_loader = image_loader
18 |
19 | self.image_list = [] # Contains the list of sequences.
20 | self.class_list = []
21 |
22 | def __len__(self):
23 | """ Returns size of the dataset
24 | returns:
25 | int - number of samples in the dataset
26 | """
27 | return self.get_num_images()
28 |
29 | def __getitem__(self, index):
30 | """ Not to be used! Check get_frames() instead.
31 | """
32 | return None
33 |
34 | def get_name(self):
35 | """ Name of the dataset
36 |
37 | returns:
38 | string - Name of the dataset
39 | """
40 | raise NotImplementedError
41 |
42 | def get_num_images(self):
43 | """ Number of sequences in a dataset
44 |
45 | returns:
46 | int - number of sequences in the dataset."""
47 | return len(self.image_list)
48 |
49 | def has_class_info(self):
50 | return False
51 |
52 | def get_class_name(self, image_id):
53 | return None
54 |
55 | def get_num_classes(self):
56 | return len(self.class_list)
57 |
58 | def get_class_list(self):
59 | return self.class_list
60 |
61 | def get_images_in_class(self, class_name):
62 | raise NotImplementedError
63 |
64 | def has_segmentation_info(self):
65 | return False
66 |
67 | def get_image_info(self, seq_id):
68 | """ Returns information about a particular image,
69 |
70 | args:
71 | seq_id - index of the image
72 |
73 | returns:
74 | Dict
75 | """
76 | raise NotImplementedError
77 |
78 | def get_image(self, image_id, anno=None):
79 | """ Get a image
80 |
81 | args:
82 | image_id - index of image
83 | anno(None) - The annotation for the sequence (see get_sequence_info). If None, they will be loaded.
84 |
85 | returns:
86 | image -
87 | anno -
88 | dict - A dict containing meta information about the sequence, e.g. class of the target object.
89 |
90 | """
91 | raise NotImplementedError
92 |
93 |
--------------------------------------------------------------------------------
/lib/train/dataset/base_video_dataset.py:
--------------------------------------------------------------------------------
1 | import torch.utils.data
2 | # 2021.1.5 use jpeg4py_loader_w_failsafe as default
3 | from lib.train.data.image_loader import jpeg4py_loader_w_failsafe
4 |
5 |
6 | class BaseVideoDataset(torch.utils.data.Dataset):
7 | """ Base class for video datasets """
8 |
9 | def __init__(self, name, root, image_loader=jpeg4py_loader_w_failsafe):
10 | """
11 | args:
12 | root - The root path to the dataset
13 | image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py)
14 | is used by default.
15 | """
16 | self.name = name
17 | self.root = root
18 | self.image_loader = image_loader
19 |
20 | self.sequence_list = [] # Contains the list of sequences.
21 | self.class_list = []
22 |
23 | def __len__(self):
24 | """ Returns size of the dataset
25 | returns:
26 | int - number of samples in the dataset
27 | """
28 | return self.get_num_sequences()
29 |
30 | def __getitem__(self, index):
31 | """ Not to be used! Check get_frames() instead.
32 | """
33 | return None
34 |
35 | def is_video_sequence(self):
36 | """ Returns whether the dataset is a video dataset or an image dataset
37 |
38 | returns:
39 | bool - True if a video dataset
40 | """
41 | return True
42 |
43 | def is_synthetic_video_dataset(self):
44 | """ Returns whether the dataset contains real videos or synthetic
45 |
46 | returns:
47 | bool - True if a video dataset
48 | """
49 | return False
50 |
51 | def get_name(self):
52 | """ Name of the dataset
53 |
54 | returns:
55 | string - Name of the dataset
56 | """
57 | raise NotImplementedError
58 |
59 | def get_num_sequences(self):
60 | """ Number of sequences in a dataset
61 |
62 | returns:
63 | int - number of sequences in the dataset."""
64 | return len(self.sequence_list)
65 |
66 | def has_class_info(self):
67 | return False
68 |
69 | def has_occlusion_info(self):
70 | return False
71 |
72 | def get_num_classes(self):
73 | return len(self.class_list)
74 |
75 | def get_class_list(self):
76 | return self.class_list
77 |
78 | def get_sequences_in_class(self, class_name):
79 | raise NotImplementedError
80 |
81 | def has_segmentation_info(self):
82 | return False
83 |
84 | def get_sequence_info(self, seq_id):
85 | """ Returns information about a particular sequences,
86 |
87 | args:
88 | seq_id - index of the sequence
89 |
90 | returns:
91 | Dict
92 | """
93 | raise NotImplementedError
94 |
95 | def get_frames(self, seq_id, frame_ids, anno=None):
96 | """ Get a set of frames from a particular sequence
97 |
98 | args:
99 | seq_id - index of sequence
100 | frame_ids - a list of frame numbers
101 | anno(None) - The annotation for the sequence (see get_sequence_info). If None, they will be loaded.
102 |
103 | returns:
104 | list - List of frames corresponding to frame_ids
105 | list - List of dicts for each frame
106 | dict - A dict containing meta information about the sequence, e.g. class of the target object.
107 |
108 | """
109 | raise NotImplementedError
110 |
111 |
--------------------------------------------------------------------------------
/lib/train/dataset/imagenetvid_lmdb.py:
--------------------------------------------------------------------------------
1 | import os
2 | from .base_video_dataset import BaseVideoDataset
3 | from lib.train.data import jpeg4py_loader
4 | import torch
5 | from collections import OrderedDict
6 | from lib.train.admin import env_settings
7 | from lib.utils.lmdb_utils import decode_img, decode_json
8 |
9 |
10 | def get_target_to_image_ratio(seq):
11 | anno = torch.Tensor(seq['anno'])
12 | img_sz = torch.Tensor(seq['image_size'])
13 | return (anno[0, 2:4].prod() / (img_sz.prod())).sqrt()
14 |
15 |
16 | class ImagenetVID_lmdb(BaseVideoDataset):
17 | """ Imagenet VID dataset.
18 |
19 | Publication:
20 | ImageNet Large Scale Visual Recognition Challenge
21 | Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
22 | Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei
23 | IJCV, 2015
24 | https://arxiv.org/pdf/1409.0575.pdf
25 |
26 | Download the dataset from http://image-net.org/
27 | """
28 | def __init__(self, root=None, image_loader=jpeg4py_loader, min_length=0, max_target_area=1):
29 | """
30 | args:
31 | root - path to the imagenet vid dataset.
32 | image_loader (default_image_loader) - The function to read the images. If installed,
33 | jpeg4py (https://github.com/ajkxyz/jpeg4py) is used by default. Else,
34 | opencv's imread is used.
35 | min_length - Minimum allowed sequence length.
36 | max_target_area - max allowed ratio between target area and image area. Can be used to filter out targets
37 | which cover complete image.
38 | """
39 | root = env_settings().imagenet_dir if root is None else root
40 | super().__init__("imagenetvid_lmdb", root, image_loader)
41 |
42 | sequence_list_dict = decode_json(root, "cache.json")
43 | self.sequence_list = sequence_list_dict
44 |
45 | # Filter the sequences based on min_length and max_target_area in the first frame
46 | self.sequence_list = [x for x in self.sequence_list if len(x['anno']) >= min_length and
47 | get_target_to_image_ratio(x) < max_target_area]
48 |
49 | def get_name(self):
50 | return 'imagenetvid_lmdb'
51 |
52 | def get_num_sequences(self):
53 | return len(self.sequence_list)
54 |
55 | def get_sequence_info(self, seq_id):
56 | bb_anno = torch.Tensor(self.sequence_list[seq_id]['anno'])
57 | valid = (bb_anno[:, 2] > 0) & (bb_anno[:, 3] > 0)
58 | visible = torch.ByteTensor(self.sequence_list[seq_id]['target_visible']) & valid.byte()
59 | return {'bbox': bb_anno, 'valid': valid, 'visible': visible}
60 |
61 | def _get_frame(self, sequence, frame_id):
62 | set_name = 'ILSVRC2015_VID_train_{:04d}'.format(sequence['set_id'])
63 | vid_name = 'ILSVRC2015_train_{:08d}'.format(sequence['vid_id'])
64 | frame_number = frame_id + sequence['start_frame']
65 | frame_path = os.path.join('Data', 'VID', 'train', set_name, vid_name,
66 | '{:06d}.JPEG'.format(frame_number))
67 | return decode_img(self.root, frame_path)
68 |
69 | def get_frames(self, seq_id, frame_ids, anno=None):
70 | sequence = self.sequence_list[seq_id]
71 |
72 | frame_list = [self._get_frame(sequence, f) for f in frame_ids]
73 |
74 | if anno is None:
75 | anno = self.get_sequence_info(seq_id)
76 |
77 | # Create anno dict
78 | anno_frames = {}
79 | for key, value in anno.items():
80 | anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids]
81 |
82 | # added the class info to the meta info
83 | object_meta = OrderedDict({'object_class': sequence['class_name'],
84 | 'motion_class': None,
85 | 'major_class': None,
86 | 'root_class': None,
87 | 'motion_adverb': None})
88 |
89 | return frame_list, anno_frames, object_meta
90 |
91 |
--------------------------------------------------------------------------------
/lib/train/run_training.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import argparse
4 | import importlib
5 | import cv2 as cv
6 | import torch.backends.cudnn
7 | import torch.distributed as dist
8 |
9 | import random
10 | import numpy as np
11 | torch.backends.cudnn.benchmark = False
12 |
13 | import _init_paths
14 | import lib.train.admin.settings as ws_settings
15 |
16 |
17 | def init_seeds(seed):
18 | random.seed(seed)
19 | np.random.seed(seed)
20 | torch.manual_seed(seed)
21 | torch.cuda.manual_seed(seed)
22 | torch.backends.cudnn.deterministic = True
23 | torch.backends.cudnn.benchmark = False
24 |
25 |
26 | def run_training(script_name, config_name, cudnn_benchmark=True, local_rank=-1, save_dir=None, base_seed=None,
27 | use_lmdb=False, script_name_prv=None, config_name_prv=None, use_wandb=False,
28 | distill=None, script_teacher=None, config_teacher=None):
29 | """Run the train script.
30 | args:
31 | script_name: Name of emperiment in the "experiments/" folder.
32 | config_name: Name of the yaml file in the "experiments/".
33 | cudnn_benchmark: Use cudnn benchmark or not (default is True).
34 | """
35 | if save_dir is None:
36 | print("save_dir dir is not given. Use the default dir instead.")
37 | # This is needed to avoid strange crashes related to opencv
38 | cv.setNumThreads(0)
39 |
40 | torch.backends.cudnn.benchmark = cudnn_benchmark
41 |
42 | print('script_name: {}.py config_name: {}.yaml'.format(script_name, config_name))
43 |
44 | '''2021.1.5 set seed for different process'''
45 | if base_seed is not None:
46 | if local_rank != -1:
47 | init_seeds(base_seed + local_rank)
48 | else:
49 | init_seeds(base_seed)
50 |
51 | settings = ws_settings.Settings()
52 | settings.script_name = script_name
53 | settings.config_name = config_name
54 | settings.project_path = 'train/{}/{}'.format(script_name, config_name)
55 | if script_name_prv is not None and config_name_prv is not None:
56 | settings.project_path_prv = 'train/{}/{}'.format(script_name_prv, config_name_prv)
57 | settings.local_rank = local_rank
58 | settings.save_dir = os.path.abspath(save_dir)
59 | settings.use_lmdb = use_lmdb
60 | prj_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
61 | settings.cfg_file = os.path.join(prj_dir, 'experiments/%s/%s.yaml' % (script_name, config_name))
62 | settings.use_wandb = use_wandb
63 | if distill:
64 | settings.distill = distill
65 | settings.script_teacher = script_teacher
66 | settings.config_teacher = config_teacher
67 | if script_teacher is not None and config_teacher is not None:
68 | settings.project_path_teacher = 'train/{}/{}'.format(script_teacher, config_teacher)
69 | settings.cfg_file_teacher = os.path.join(prj_dir, 'experiments/%s/%s.yaml' % (script_teacher, config_teacher))
70 | expr_module = importlib.import_module('lib.train.train_script_distill')
71 | else:
72 | expr_module = importlib.import_module('lib.train.train_script')
73 | expr_func = getattr(expr_module, 'run')
74 |
75 | expr_func(settings)
76 |
77 |
78 | def main():
79 | parser = argparse.ArgumentParser(description='Run a train scripts in train_settings.')
80 | parser.add_argument('--script', type=str, required=True, help='Name of the train script.')
81 | parser.add_argument('--config', type=str, required=True, help="Name of the config file.")
82 | parser.add_argument('--cudnn_benchmark', type=bool, default=True, help='Set cudnn benchmark on (1) or off (0) (default is on).')
83 | parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
84 | parser.add_argument('--save_dir', type=str, help='the directory to save checkpoints1 and logs')
85 | parser.add_argument('--seed', type=int, default=42, help='seed for random numbers')
86 | parser.add_argument('--use_lmdb', type=int, choices=[0, 1], default=0) # whether datasets are in lmdb format
87 | parser.add_argument('--script_prv', type=str, default=None, help='Name of the train script of previous model.')
88 | parser.add_argument('--config_prv', type=str, default=None, help="Name of the config file of previous model.")
89 | parser.add_argument('--use_wandb', type=int, choices=[0, 1], default=0) # whether to use wandb
90 | # for knowledge distillation
91 | parser.add_argument('--distill', type=int, choices=[0, 1], default=0) # whether to use knowledge distillation
92 | parser.add_argument('--script_teacher', type=str, help='teacher script name')
93 | parser.add_argument('--config_teacher', type=str, help='teacher yaml configure file name')
94 |
95 | args = parser.parse_args()
96 | if args.local_rank != -1:
97 | dist.init_process_group(backend='nccl')
98 | torch.cuda.set_device(args.local_rank)
99 | else:
100 | torch.cuda.set_device(0)
101 | run_training(args.script, args.config, cudnn_benchmark=args.cudnn_benchmark,
102 | local_rank=args.local_rank, save_dir=args.save_dir, base_seed=args.seed,
103 | use_lmdb=args.use_lmdb, script_name_prv=args.script_prv, config_name_prv=args.config_prv,
104 | use_wandb=args.use_wandb,
105 | distill=args.distill, script_teacher=args.script_teacher, config_teacher=args.config_teacher)
106 |
107 |
108 | if __name__ == '__main__':
109 | main()
110 |
--------------------------------------------------------------------------------
/lib/train/train_script.py:
--------------------------------------------------------------------------------
1 | import os
2 | from lib.utils import contrast_loss
3 | # loss function related
4 | from lib.utils.box_ops import giou_loss
5 | from torch.nn.functional import l1_loss
6 | from torch.nn import BCEWithLogitsLoss
7 | # train pipeline related
8 | from lib.train.trainers import LTRTrainer
9 | # distributed training related
10 | from torch.nn.parallel import DistributedDataParallel as DDP
11 | # some more advanced functions
12 | from .base_functions import *
13 | # network related
14 | from lib.models.hiptrack import build_hiptrack
15 | # forward propagation related
16 | from lib.train.actors import HIPTrackActor
17 | # for import modules
18 | import importlib
19 |
20 | from ..utils.focal_loss import FocalLoss
21 | from ..utils.contrast_loss import ContrastLoss
22 |
23 |
24 | def run(settings):
25 | settings.description = 'Training script for STARK-S, STARK-ST stage1, and STARK-ST stage2'
26 |
27 | # update the default configs with config file
28 | if not os.path.exists(settings.cfg_file):
29 | raise ValueError("%s doesn't exist." % settings.cfg_file)
30 | config_module = importlib.import_module("lib.config.%s.config" % settings.script_name)
31 | cfg = config_module.cfg
32 | config_module.update_config_from_file(settings.cfg_file)
33 | if settings.local_rank in [-1, 0]:
34 | print("New configuration is shown below.")
35 | for key in cfg.keys():
36 | print("%s configuration:" % key, cfg[key])
37 | print('\n')
38 |
39 | # update settings based on cfg
40 | update_settings(settings, cfg)
41 |
42 | # Record the training log
43 | log_dir = os.path.join(settings.save_dir, 'logs')
44 | if settings.local_rank in [-1, 0]:
45 | if not os.path.exists(log_dir):
46 | os.makedirs(log_dir)
47 | settings.log_file = os.path.join(log_dir, "%s-%s.log" % (settings.script_name, settings.config_name))
48 |
49 | # Build dataloaders
50 | loader_train, loader_val = build_dataloaders(cfg, settings)
51 |
52 | if "RepVGG" in cfg.MODEL.BACKBONE.TYPE or "swin" in cfg.MODEL.BACKBONE.TYPE or "LightTrack" in cfg.MODEL.BACKBONE.TYPE:
53 | cfg.ckpt_dir = settings.save_dir
54 |
55 | # Create network
56 | if settings.script_name == "hiptrack":
57 | net = build_hiptrack(cfg)
58 | else:
59 | raise ValueError("illegal script name")
60 |
61 | # wrap networks to distributed one
62 | net.cuda()
63 |
64 | for k, v in net.named_parameters():
65 | if 'backbone' in k and 'prompt' not in k:
66 | v.requires_grad = False
67 |
68 | if settings.local_rank != -1:
69 | # net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net) # add syncBN converter
70 | net = DDP(net, device_ids=[settings.local_rank], find_unused_parameters=True)
71 | settings.device = torch.device("cuda:%d" % settings.local_rank)
72 | else:
73 | settings.device = torch.device("cuda:0")
74 | settings.deep_sup = getattr(cfg.TRAIN, "DEEP_SUPERVISION", False)
75 | settings.distill = getattr(cfg.TRAIN, "DISTILL", False)
76 | settings.distill_loss_type = getattr(cfg.TRAIN, "DISTILL_LOSS_TYPE", "KL")
77 | # Loss functions and Actors
78 | if settings.script_name == "hiptrack":
79 | focal_loss = FocalLoss()
80 | #contrast_loss = ContrastLoss()
81 | objective = {'giou': giou_loss, 'l1': l1_loss, 'focal': focal_loss, 'cls': BCEWithLogitsLoss()}
82 | loss_weight = {'giou': cfg.TRAIN.GIOU_WEIGHT, 'l1': cfg.TRAIN.L1_WEIGHT, 'focal': 1., 'cls': 1.0}
83 | actor = HIPTrackActor(net=net, objective=objective, loss_weight=loss_weight, settings=settings, cfg=cfg, multiFrame=False)
84 | else:
85 | raise ValueError("illegal script name")
86 |
87 | # if cfg.TRAIN.DEEP_SUPERVISION:
88 | # raise ValueError("Deep supervision is not supported now.")
89 |
90 | # Optimizer, parameters, and learning rates
91 | #import pdb
92 | #pdb.set_trace()
93 | optimizer, lr_scheduler = get_optimizer_scheduler(net, cfg)
94 | use_amp = getattr(cfg.TRAIN, "AMP", False)
95 | trainer = LTRTrainer(actor, [loader_train, loader_val], optimizer, settings, lr_scheduler, use_amp=use_amp)
96 |
97 | # train process
98 | trainer.train(cfg.TRAIN.EPOCH, load_latest=True, fail_safe=True)
99 |
--------------------------------------------------------------------------------
/lib/train/train_script_distill.py:
--------------------------------------------------------------------------------
1 | import os
2 | # loss function related
3 | from lib.utils.box_ops import giou_loss
4 | from torch.nn.functional import l1_loss
5 | from torch.nn import BCEWithLogitsLoss
6 | # train pipeline related
7 | from lib.train.trainers import LTRTrainer
8 | # distributed training related
9 | from torch.nn.parallel import DistributedDataParallel as DDP
10 | # some more advanced functions
11 | from .base_functions import *
12 | # network related
13 | from lib.models.stark import build_starks, build_starkst
14 | from lib.models.stark import build_stark_lightning_x_trt
15 | # forward propagation related
16 | from lib.train.actors import STARKLightningXtrtdistillActor
17 | # for import modules
18 | import importlib
19 |
20 |
21 | def build_network(script_name, cfg):
22 | # Create network
23 | if script_name == "stark_s":
24 | net = build_starks(cfg)
25 | elif script_name == "stark_st1" or script_name == "stark_st2":
26 | net = build_starkst(cfg)
27 | elif script_name == "stark_lightning_X_trt":
28 | net = build_stark_lightning_x_trt(cfg, phase="train")
29 | else:
30 | raise ValueError("illegal script name")
31 | return net
32 |
33 |
34 | def run(settings):
35 | settings.description = 'Training script for STARK-S, STARK-ST stage1, and STARK-ST stage2'
36 |
37 | # update the default configs with config file
38 | if not os.path.exists(settings.cfg_file):
39 | raise ValueError("%s doesn't exist." % settings.cfg_file)
40 | config_module = importlib.import_module("lib.config.%s.config" % settings.script_name)
41 | cfg = config_module.cfg
42 | config_module.update_config_from_file(settings.cfg_file)
43 | if settings.local_rank in [-1, 0]:
44 | print("New configuration is shown below.")
45 | for key in cfg.keys():
46 | print("%s configuration:" % key, cfg[key])
47 | print('\n')
48 |
49 | # update the default teacher configs with teacher config file
50 | if not os.path.exists(settings.cfg_file_teacher):
51 | raise ValueError("%s doesn't exist." % settings.cfg_file_teacher)
52 | config_module_teacher = importlib.import_module("lib.config.%s.config" % settings.script_teacher)
53 | cfg_teacher = config_module_teacher.cfg
54 | config_module_teacher.update_config_from_file(settings.cfg_file_teacher)
55 | if settings.local_rank in [-1, 0]:
56 | print("New teacher configuration is shown below.")
57 | for key in cfg_teacher.keys():
58 | print("%s configuration:" % key, cfg_teacher[key])
59 | print('\n')
60 |
61 | # update settings based on cfg
62 | update_settings(settings, cfg)
63 |
64 | # Record the training log
65 | log_dir = os.path.join(settings.save_dir, 'logs')
66 | if settings.local_rank in [-1, 0]:
67 | if not os.path.exists(log_dir):
68 | os.makedirs(log_dir)
69 | settings.log_file = os.path.join(log_dir, "%s-%s.log" % (settings.script_name, settings.config_name))
70 |
71 | # Build dataloaders
72 | loader_train, loader_val = build_dataloaders(cfg, settings)
73 |
74 | if "RepVGG" in cfg.MODEL.BACKBONE.TYPE or "swin" in cfg.MODEL.BACKBONE.TYPE:
75 | cfg.ckpt_dir = settings.save_dir
76 | """turn on the distillation mode"""
77 | cfg.TRAIN.DISTILL = True
78 | cfg_teacher.TRAIN.DISTILL = True
79 | net = build_network(settings.script_name, cfg)
80 | net_teacher = build_network(settings.script_teacher, cfg_teacher)
81 |
82 | # wrap networks to distributed one
83 | net.cuda()
84 | net_teacher.cuda()
85 | net_teacher.eval()
86 |
87 | if settings.local_rank != -1:
88 | net = DDP(net, device_ids=[settings.local_rank], find_unused_parameters=True)
89 | net_teacher = DDP(net_teacher, device_ids=[settings.local_rank], find_unused_parameters=True)
90 | settings.device = torch.device("cuda:%d" % settings.local_rank)
91 | else:
92 | settings.device = torch.device("cuda:0")
93 | # settings.deep_sup = getattr(cfg.TRAIN, "DEEP_SUPERVISION", False)
94 | # settings.distill = getattr(cfg.TRAIN, "DISTILL", False)
95 | settings.distill_loss_type = getattr(cfg.TRAIN, "DISTILL_LOSS_TYPE", "L1")
96 | # Loss functions and Actors
97 | if settings.script_name == "stark_lightning_X_trt":
98 | objective = {'giou': giou_loss, 'l1': l1_loss}
99 | loss_weight = {'giou': cfg.TRAIN.GIOU_WEIGHT, 'l1': cfg.TRAIN.L1_WEIGHT}
100 | actor = STARKLightningXtrtdistillActor(net=net, objective=objective, loss_weight=loss_weight, settings=settings,
101 | net_teacher=net_teacher)
102 | else:
103 | raise ValueError("illegal script name")
104 |
105 | # Optimizer, parameters, and learning rates
106 | optimizer, lr_scheduler = get_optimizer_scheduler(net, cfg)
107 | use_amp = getattr(cfg.TRAIN, "AMP", False)
108 | trainer = LTRTrainer(actor, [loader_train, loader_val], optimizer, settings, lr_scheduler, use_amp=use_amp)
109 |
110 | # train process
111 | trainer.train(cfg.TRAIN.EPOCH, load_latest=True, fail_safe=True, distill=True)
112 |
--------------------------------------------------------------------------------
/lib/train/trainers/__init__.py:
--------------------------------------------------------------------------------
1 | from .base_trainer import BaseTrainer
2 | from .ltr_trainer import LTRTrainer
3 |
--------------------------------------------------------------------------------
/lib/train/trainers/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/trainers/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/trainers/__pycache__/base_trainer.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/trainers/__pycache__/base_trainer.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/train/trainers/__pycache__/ltr_trainer.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/train/trainers/__pycache__/ltr_trainer.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .tensor import TensorDict, TensorList
2 |
--------------------------------------------------------------------------------
/lib/utils/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/box_ops.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/box_ops.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/ce_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/ce_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/contrast_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/contrast_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/focal_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/focal_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/heapmap_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/heapmap_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/lmdb_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/lmdb_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/merge.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/merge.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/misc.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/misc.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/__pycache__/tensor.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/utils/__pycache__/tensor.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/utils/box_ops.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torchvision.ops.boxes import box_area
3 | import numpy as np
4 | import cv2
5 | import random
6 |
7 | def box_cxcywh_to_xyxy(x):
8 | x_c, y_c, w, h = x.unbind(-1)
9 | b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
10 | (x_c + 0.5 * w), (y_c + 0.5 * h)]
11 | return torch.stack(b, dim=-1)
12 |
13 |
14 | def box_xywh_to_xyxy(x):
15 | x1, y1, w, h = x.unbind(-1)
16 | b = [x1, y1, x1 + w, y1 + h]
17 | return torch.stack(b, dim=-1)
18 |
19 |
20 | def box_xyxy_to_xywh(x):
21 | x1, y1, x2, y2 = x.unbind(-1)
22 | b = [x1, y1, x2 - x1, y2 - y1]
23 | return torch.stack(b, dim=-1)
24 |
25 |
26 | def box_xyxy_to_cxcywh(x):
27 | x0, y0, x1, y1 = x.unbind(-1)
28 | b = [(x0 + x1) / 2, (y0 + y1) / 2,
29 | (x1 - x0), (y1 - y0)]
30 | return torch.stack(b, dim=-1)
31 |
32 |
33 | # modified from torchvision to also return the union
34 | '''Note that this function only supports shape (N,4)'''
35 |
36 |
37 | def box_iou(boxes1, boxes2):
38 | """
39 |
40 | :param boxes1: (N, 4) (x1,y1,x2,y2)
41 | :param boxes2: (N, 4) (x1,y1,x2,y2)
42 | :return:
43 | """
44 | area1 = box_area(boxes1) # (N,)
45 | area2 = box_area(boxes2) # (N,)
46 |
47 | lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # (N,2)
48 | rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # (N,2)
49 |
50 | wh = (rb - lt).clamp(min=0) # (N,2)
51 | inter = wh[:, 0] * wh[:, 1] # (N,)
52 |
53 | union = area1 + area2 - inter
54 |
55 | iou = inter / union
56 | return iou, union
57 |
58 |
59 | '''Note that this implementation is different from DETR's'''
60 | def visualizeDuringTraining(img_input, Box, isNormed=True, imgSize=384, needRescale=True):
61 | try:
62 | img = img_input.cpu().detach().numpy()
63 | except:
64 | img = img_input
65 | if isNormed:
66 | mean = np.array([0.485, 0.456, 0.406])
67 | std = np.array([0.229, 0.224, 0.225])
68 | img[0] = (img[0] * std[0] + mean[0]) * 255
69 | img[1] = (img[1] * std[1] + mean[1]) * 255
70 | img[2] = (img[2] * std[2] + mean[2]) * 255
71 | img = img.transpose(1, 2, 0).astype(np.int8).copy()
72 | box = Box.cpu().detach().numpy()
73 | if needRescale:
74 | box *= imgSize
75 | left = int(box[0] - 0.5 * box[2])
76 | top = int(box[1] - 0.5 * box[3])
77 | width = int(box[2])
78 | height = int(box[3])
79 | cv2.rectangle(img, (left, top), (left + width, top + height),
80 | (0, 0, 255), 1)
81 | cv2.imwrite("pre.jpg", img)
82 |
83 | def generalized_box_iou(boxes1, boxes2):
84 | """
85 | Generalized IoU from https://giou.stanford.edu/
86 |
87 | The boxes should be in [x0, y0, x1, y1] format
88 |
89 | boxes1: (N, 4)
90 | boxes2: (N, 4)
91 | """
92 | # degenerate boxes gives inf / nan results
93 | # so do an early check
94 | # try:
95 | assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
96 | assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
97 | iou, union = box_iou(boxes1, boxes2) # (N,)
98 |
99 | lt = torch.min(boxes1[:, :2], boxes2[:, :2])
100 | rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
101 |
102 | wh = (rb - lt).clamp(min=0) # (N,2)
103 | area = wh[:, 0] * wh[:, 1] # (N,)
104 |
105 | return iou - (area - union) / area, iou
106 |
107 |
108 | def giou_loss(boxes1, boxes2):
109 | """
110 |
111 | :param boxes1: (N, 4) (x1,y1,x2,y2)
112 | :param boxes2: (N, 4) (x1,y1,x2,y2)
113 | :return:
114 | """
115 | giou, iou = generalized_box_iou(boxes1, boxes2)
116 | return (1 - giou).mean(), iou
117 |
118 |
119 | def clip_box(box: list, H, W, margin=0):
120 | x1, y1, w, h = box
121 | x2, y2 = x1 + w, y1 + h
122 | x1 = min(max(0, x1), W-margin)
123 | x2 = min(max(margin, x2), W)
124 | y1 = min(max(0, y1), H-margin)
125 | y2 = min(max(margin, y2), H)
126 | w = max(margin, x2-x1)
127 | h = max(margin, y2-y1)
128 | return [x1, y1, w, h]
129 |
--------------------------------------------------------------------------------
/lib/utils/ce_utils.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | import torch
4 | import torch.nn.functional as F
5 |
6 |
7 | def generate_bbox_mask(bbox_mask, bbox):
8 | b, h, w = bbox_mask.shape
9 | for i in range(b):
10 | bbox_i = bbox[i].cpu().tolist()
11 | bbox_mask[i, int(bbox_i[1]):int(bbox_i[1] + bbox_i[3] - 1), int(bbox_i[0]):int(bbox_i[0] + bbox_i[2] - 1)] = 1
12 | return bbox_mask
13 |
14 |
15 | def generate_mask_cond(cfg, bs, device, gt_bbox):
16 | template_size = cfg.DATA.TEMPLATE.SIZE
17 | stride = cfg.MODEL.BACKBONE.STRIDE
18 | template_feat_size = template_size // stride
19 |
20 | if cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'ALL':
21 | box_mask_z = None
22 | elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'CTR_POINT':
23 | if template_feat_size == 8:
24 | index = slice(3, 4)
25 | elif template_feat_size == 12:
26 | index = slice(5, 6)
27 | elif template_feat_size == 7:
28 | index = slice(3, 4)
29 | elif template_feat_size == 14:
30 | index = slice(6, 7)
31 | else:
32 | raise NotImplementedError
33 | box_mask_z = torch.zeros([bs, template_feat_size, template_feat_size], device=device)
34 | box_mask_z[:, index, index] = 1
35 | box_mask_z = box_mask_z.flatten(1).to(torch.bool)
36 | elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'CTR_REC':
37 | # use fixed 4x4 region, 3:5 for 8x8
38 | # use fixed 4x4 region 5:6 for 12x12
39 | if template_feat_size == 8:
40 | index = slice(3, 5)
41 | elif template_feat_size == 12:
42 | index = slice(5, 7)
43 | elif template_feat_size == 7:
44 | index = slice(3, 4)
45 | else:
46 | raise NotImplementedError
47 | box_mask_z = torch.zeros([bs, template_feat_size, template_feat_size], device=device)
48 | box_mask_z[:, index, index] = 1
49 | box_mask_z = box_mask_z.flatten(1).to(torch.bool)
50 |
51 | elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'GT_BOX':
52 | box_mask_z = torch.zeros([bs, template_size, template_size], device=device)
53 | # box_mask_z_ori = data['template_seg'][0].view(-1, 1, *data['template_seg'].shape[2:]) # (batch, 1, 128, 128)
54 | box_mask_z = generate_bbox_mask(box_mask_z, gt_bbox * template_size).unsqueeze(1).to(
55 | torch.float) # (batch, 1, 128, 128)
56 | # box_mask_z_vis = box_mask_z.cpu().numpy()
57 | box_mask_z = F.interpolate(box_mask_z, scale_factor=1. / cfg.MODEL.BACKBONE.STRIDE, mode='bilinear',
58 | align_corners=False)
59 | box_mask_z = box_mask_z.flatten(1).to(torch.bool)
60 | # box_mask_z_vis = box_mask_z[:, 0, ...].cpu().numpy()
61 | # gaussian_maps_vis = generate_heatmap(data['template_anno'], self.cfg.DATA.TEMPLATE.SIZE, self.cfg.MODEL.STRIDE)[0].cpu().numpy()
62 | else:
63 | raise NotImplementedError
64 |
65 | return box_mask_z
66 |
67 |
68 | def adjust_keep_rate(epoch, warmup_epochs, total_epochs, ITERS_PER_EPOCH, base_keep_rate=0.5, max_keep_rate=1, iters=-1):
69 | if epoch < warmup_epochs:
70 | return 1
71 | if epoch >= total_epochs:
72 | return base_keep_rate
73 | if iters == -1:
74 | iters = epoch * ITERS_PER_EPOCH
75 | total_iters = ITERS_PER_EPOCH * (total_epochs - warmup_epochs)
76 | iters = iters - ITERS_PER_EPOCH * warmup_epochs
77 | keep_rate = base_keep_rate + (max_keep_rate - base_keep_rate) \
78 | * (math.cos(iters / total_iters * math.pi) + 1) * 0.5
79 |
80 | return keep_rate
81 |
--------------------------------------------------------------------------------
/lib/utils/contrast_loss.py:
--------------------------------------------------------------------------------
1 | from abc import ABC
2 | from turtle import forward
3 |
4 | import torch
5 | import torch.nn as nn
6 | import torch.nn.functional as F
7 |
8 |
9 | class ContrastLoss(nn.Module, ABC):
10 | def __init__(self):
11 | super(ContrastLoss, self).__init__()
12 |
13 | def forward(self, contrastItems):
14 | contras_loss = 0
15 | aux_loss = 0
16 | if len(contrastItems) == 0:
17 | return {
18 | 'loss_contrast' : torch.tensor(0.0).cuda(),
19 | 'loss_contrast_aux' : torch.tensor(0.0).cuda()
20 | }
21 | for contrastItem in contrastItems:
22 | if len(contrastItem['contrast']) == 0:
23 | continue
24 | pred = contrastItem['contrast'].permute(1, 0)
25 | label = contrastItem['label'].unsqueeze(0)
26 | pos_inds = (label == 1)
27 | neg_inds = (label == 0)
28 | pred_pos = pred * pos_inds.float()
29 | pred_neg = pred * neg_inds.float()
30 | # use -inf to mask out unwanted elements.
31 | pred_pos[neg_inds] = pred_pos[neg_inds] + float('inf')
32 | pred_neg[pos_inds] = pred_neg[pos_inds] + float('-inf')
33 |
34 | _pos_expand = torch.repeat_interleave(pred_pos, pred.shape[1], dim=1)
35 | _neg_expand = pred_neg.repeat(1, pred.shape[1])
36 | # [bz,N], N is all pos and negative samples on reference frame, label indicate it's pos or negative
37 | x = torch.nn.functional.pad((_neg_expand - _pos_expand), (0, 1), "constant", 0)
38 | contras_loss += torch.logsumexp(x, dim=1)
39 |
40 | aux_pred = contrastItem['aux_consin'].permute(1,0)
41 | aux_label = contrastItem['aux_label'].unsqueeze(0)
42 | aux_loss += (torch.abs(aux_pred - aux_label)**2).mean()
43 | #print("aux_loss is : ", aux_loss)
44 | #import pdb
45 | #pdb.set_trace()
46 | losses = {
47 | 'loss_contrast' : contras_loss.sum() / len(contrastItems),
48 | 'loss_contrast_aux' : aux_loss / len(contrastItems)
49 | }
50 | return losses
--------------------------------------------------------------------------------
/lib/utils/focal_loss.py:
--------------------------------------------------------------------------------
1 | from abc import ABC
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 |
7 |
8 | class FocalLoss(nn.Module, ABC):
9 | def __init__(self, alpha=2, beta=4):
10 | super(FocalLoss, self).__init__()
11 | self.alpha = alpha
12 | self.beta = beta
13 |
14 | def forward(self, prediction, target):
15 | positive_index = target.eq(1).float()
16 | negative_index = target.lt(1).float()
17 |
18 | negative_weights = torch.pow(1 - target, self.beta)
19 | # clamp min value is set to 1e-12 to maintain the numerical stability
20 | prediction = torch.clamp(prediction, 1e-12)
21 |
22 | positive_loss = torch.log(prediction) * torch.pow(1 - prediction, self.alpha) * positive_index
23 | negative_loss = torch.log(1 - prediction) * torch.pow(prediction,
24 | self.alpha) * negative_weights * negative_index
25 |
26 | num_positive = positive_index.float().sum()
27 | positive_loss = positive_loss.sum()
28 | negative_loss = negative_loss.sum()
29 |
30 | if num_positive == 0:
31 | loss = -negative_loss
32 | else:
33 | loss = -(positive_loss + negative_loss) / num_positive
34 |
35 | return loss
36 |
37 |
38 | class LBHinge(nn.Module):
39 | """Loss that uses a 'hinge' on the lower bound.
40 | This means that for samples with a label value smaller than the threshold, the loss is zero if the prediction is
41 | also smaller than that threshold.
42 | args:
43 | error_matric: What base loss to use (MSE by default).
44 | threshold: Threshold to use for the hinge.
45 | clip: Clip the loss if it is above this value.
46 | """
47 | def __init__(self, error_metric=nn.MSELoss(), threshold=None, clip=None):
48 | super().__init__()
49 | self.error_metric = error_metric
50 | self.threshold = threshold if threshold is not None else -100
51 | self.clip = clip
52 |
53 | def forward(self, prediction, label, target_bb=None):
54 | negative_mask = (label < self.threshold).float()
55 | positive_mask = (1.0 - negative_mask)
56 |
57 | prediction = negative_mask * F.relu(prediction) + positive_mask * prediction
58 |
59 | loss = self.error_metric(prediction, positive_mask * label)
60 |
61 | if self.clip is not None:
62 | loss = torch.min(loss, torch.tensor([self.clip], device=loss.device))
63 | return loss
--------------------------------------------------------------------------------
/lib/utils/lmdb_utils.py:
--------------------------------------------------------------------------------
1 | import lmdb
2 | import numpy as np
3 | import cv2
4 | import json
5 |
6 | LMDB_ENVS = dict()
7 | LMDB_HANDLES = dict()
8 | LMDB_FILELISTS = dict()
9 |
10 |
11 | def get_lmdb_handle(name):
12 | global LMDB_HANDLES, LMDB_FILELISTS
13 | item = LMDB_HANDLES.get(name, None)
14 | if item is None:
15 | env = lmdb.open(name, readonly=True, lock=False, readahead=False, meminit=False)
16 | LMDB_ENVS[name] = env
17 | item = env.begin(write=False)
18 | LMDB_HANDLES[name] = item
19 |
20 | return item
21 |
22 |
23 | def decode_img(lmdb_fname, key_name):
24 | handle = get_lmdb_handle(lmdb_fname)
25 | binfile = handle.get(key_name.encode())
26 | if binfile is None:
27 | print("Illegal data detected. %s %s" % (lmdb_fname, key_name))
28 | s = np.frombuffer(binfile, np.uint8)
29 | x = cv2.cvtColor(cv2.imdecode(s, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
30 | return x
31 |
32 |
33 | def decode_str(lmdb_fname, key_name):
34 | handle = get_lmdb_handle(lmdb_fname)
35 | binfile = handle.get(key_name.encode())
36 | string = binfile.decode()
37 | return string
38 |
39 |
40 | def decode_json(lmdb_fname, key_name):
41 | return json.loads(decode_str(lmdb_fname, key_name))
42 |
43 |
44 | if __name__ == "__main__":
45 | lmdb_fname = "/data/sda/v-yanbi/iccv21/LittleBoy_clean/data/got10k_lmdb"
46 | '''Decode image'''
47 | # key_name = "test/GOT-10k_Test_000001/00000001.jpg"
48 | # img = decode_img(lmdb_fname, key_name)
49 | # cv2.imwrite("001.jpg", img)
50 | '''Decode str'''
51 | # key_name = "test/list.txt"
52 | # key_name = "train/GOT-10k_Train_000001/groundtruth.txt"
53 | key_name = "train/GOT-10k_Train_000001/absence.label"
54 | str_ = decode_str(lmdb_fname, key_name)
55 | print(str_)
56 |
--------------------------------------------------------------------------------
/lib/utils/merge.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def merge_template_search(inp_list, return_search=False, return_template=False):
5 | """NOTICE: search region related features must be in the last place"""
6 | seq_dict = {"feat": torch.cat([x["feat"] for x in inp_list], dim=0),
7 | "mask": torch.cat([x["mask"] for x in inp_list], dim=1),
8 | "pos": torch.cat([x["pos"] for x in inp_list], dim=0)}
9 | if return_search:
10 | x = inp_list[-1]
11 | seq_dict.update({"feat_x": x["feat"], "mask_x": x["mask"], "pos_x": x["pos"]})
12 | if return_template:
13 | z = inp_list[0]
14 | seq_dict.update({"feat_z": z["feat"], "mask_z": z["mask"], "pos_z": z["pos"]})
15 | return seq_dict
16 |
17 |
18 | def get_qkv(inp_list):
19 | """The 1st element of the inp_list is about the template,
20 | the 2nd (the last) element is about the search region"""
21 | dict_x = inp_list[-1]
22 | dict_c = {"feat": torch.cat([x["feat"] for x in inp_list], dim=0),
23 | "mask": torch.cat([x["mask"] for x in inp_list], dim=1),
24 | "pos": torch.cat([x["pos"] for x in inp_list], dim=0)} # concatenated dict
25 | q = dict_x["feat"] + dict_x["pos"]
26 | k = dict_c["feat"] + dict_c["pos"]
27 | v = dict_c["feat"]
28 | key_padding_mask = dict_c["mask"]
29 | return q, k, v, key_padding_mask
30 |
--------------------------------------------------------------------------------
/lib/utils/variable_hook.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from bytecode import Bytecode, Instr
3 |
4 |
5 | class get_local(object):
6 | cache = {}
7 | is_activate = False
8 |
9 | def __init__(self, varname):
10 | self.varname = varname
11 |
12 | def __call__(self, func):
13 | if not type(self).is_activate:
14 | return func
15 |
16 | type(self).cache[func.__qualname__] = []
17 | c = Bytecode.from_code(func.__code__)
18 | extra_code = [
19 | Instr('STORE_FAST', '_res'),
20 | Instr('LOAD_FAST', self.varname),
21 | Instr('STORE_FAST', '_value'),
22 | Instr('LOAD_FAST', '_res'),
23 | Instr('LOAD_FAST', '_value'),
24 | Instr('BUILD_TUPLE', 2),
25 | Instr('STORE_FAST', '_result_tuple'),
26 | Instr('LOAD_FAST', '_result_tuple'),
27 | ]
28 | c[-1:-1] = extra_code
29 | func.__code__ = c.to_code()
30 |
31 | def wrapper(*args, **kwargs):
32 | res, values = func(*args, **kwargs)
33 | if isinstance(values, torch.Tensor):
34 | type(self).cache[func.__qualname__].append(values.detach().cpu().numpy())
35 | elif isinstance(values, list): # list of Tensor
36 | type(self).cache[func.__qualname__].append([value.detach().cpu().numpy() for value in values])
37 | else:
38 | raise NotImplementedError
39 | return res
40 |
41 | return wrapper
42 |
43 | @classmethod
44 | def clear(cls):
45 | for key in cls.cache.keys():
46 | cls.cache[key] = []
47 |
48 | @classmethod
49 | def activate(cls):
50 | cls.is_activate = True
51 |
--------------------------------------------------------------------------------
/lib/vis/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/vis/__init__.py
--------------------------------------------------------------------------------
/lib/vis/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/vis/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/vis/__pycache__/plotting.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/vis/__pycache__/plotting.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/vis/__pycache__/utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/vis/__pycache__/utils.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/vis/__pycache__/visdom_cus.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/lib/vis/__pycache__/visdom_cus.cpython-38.pyc
--------------------------------------------------------------------------------
/lib/vis/plotting.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import numpy as np
3 | import torch
4 | import cv2
5 |
6 |
7 | def draw_figure(fig):
8 | fig.canvas.draw()
9 | fig.canvas.flush_events()
10 | plt.pause(0.001)
11 |
12 |
13 | def show_tensor(a: torch.Tensor, fig_num = None, title = None, range=(None, None), ax=None):
14 | """Display a 2D tensor.
15 | args:
16 | fig_num: Figure number.
17 | title: Title of figure.
18 | """
19 | a_np = a.squeeze().cpu().clone().detach().numpy()
20 | if a_np.ndim == 3:
21 | a_np = np.transpose(a_np, (1, 2, 0))
22 |
23 | if ax is None:
24 | fig = plt.figure(fig_num)
25 | plt.tight_layout()
26 | plt.cla()
27 | plt.imshow(a_np, vmin=range[0], vmax=range[1])
28 | plt.axis('off')
29 | plt.axis('equal')
30 | if title is not None:
31 | plt.title(title)
32 | draw_figure(fig)
33 | else:
34 | ax.cla()
35 | ax.imshow(a_np, vmin=range[0], vmax=range[1])
36 | ax.set_axis_off()
37 | ax.axis('equal')
38 | if title is not None:
39 | ax.set_title(title)
40 | draw_figure(plt.gcf())
41 |
42 |
43 | def plot_graph(a: torch.Tensor, fig_num = None, title = None):
44 | """Plot graph. Data is a 1D tensor.
45 | args:
46 | fig_num: Figure number.
47 | title: Title of figure.
48 | """
49 | a_np = a.squeeze().cpu().clone().detach().numpy()
50 | if a_np.ndim > 1:
51 | raise ValueError
52 | fig = plt.figure(fig_num)
53 | # plt.tight_layout()
54 | plt.cla()
55 | plt.plot(a_np)
56 | if title is not None:
57 | plt.title(title)
58 | draw_figure(fig)
59 |
60 |
61 | def show_image_with_boxes(im, boxes, iou_pred=None, disp_ids=None):
62 | im_np = im.clone().cpu().squeeze().numpy()
63 | im_np = np.ascontiguousarray(im_np.transpose(1, 2, 0).astype(np.uint8))
64 |
65 | boxes = boxes.view(-1, 4).cpu().numpy().round().astype(int)
66 |
67 | # Draw proposals
68 | for i_ in range(boxes.shape[0]):
69 | if disp_ids is None or disp_ids[i_]:
70 | bb = boxes[i_, :]
71 | disp_color = (i_*38 % 256, (255 - i_*97) % 256, (123 + i_*66) % 256)
72 | cv2.rectangle(im_np, (bb[0], bb[1]), (bb[0] + bb[2], bb[1] + bb[3]),
73 | disp_color, 1)
74 |
75 | if iou_pred is not None:
76 | text_pos = (bb[0], bb[1] - 5)
77 | cv2.putText(im_np, 'ID={} IOU = {:3.2f}'.format(i_, iou_pred[i_]), text_pos,
78 | cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1, bottomLeftOrigin=False)
79 |
80 | im_tensor = torch.from_numpy(im_np.transpose(2, 0, 1)).float()
81 |
82 | return im_tensor
83 |
84 |
85 |
86 | def _pascal_color_map(N=256, normalized=False):
87 | """
88 | Python implementation of the color map function for the PASCAL VOC data set.
89 | Official Matlab version can be found in the PASCAL VOC devkit
90 | http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit
91 | """
92 |
93 | def bitget(byteval, idx):
94 | return (byteval & (1 << idx)) != 0
95 |
96 | dtype = 'float32' if normalized else 'uint8'
97 | cmap = np.zeros((N, 3), dtype=dtype)
98 | for i in range(N):
99 | r = g = b = 0
100 | c = i
101 | for j in range(8):
102 | r = r | (bitget(c, 0) << 7 - j)
103 | g = g | (bitget(c, 1) << 7 - j)
104 | b = b | (bitget(c, 2) << 7 - j)
105 | c = c >> 3
106 |
107 | cmap[i] = np.array([r, g, b])
108 |
109 | cmap = cmap / 255 if normalized else cmap
110 | return cmap
111 |
112 |
113 | def overlay_mask(im, ann, alpha=0.5, colors=None, contour_thickness=None):
114 | """ Overlay mask over image.
115 | Source: https://github.com/albertomontesg/davis-interactive/blob/master/davisinteractive/utils/visualization.py
116 | This function allows you to overlay a mask over an image with some
117 | transparency.
118 | # Arguments
119 | im: Numpy Array. Array with the image. The shape must be (H, W, 3) and
120 | the pixels must be represented as `np.uint8` data type.
121 | ann: Numpy Array. Array with the mask. The shape must be (H, W) and the
122 | values must be intergers
123 | alpha: Float. Proportion of alpha to apply at the overlaid mask.
124 | colors: Numpy Array. Optional custom colormap. It must have shape (N, 3)
125 | being N the maximum number of colors to represent.
126 | contour_thickness: Integer. Thickness of each object index contour draw
127 | over the overlay. This function requires to have installed the
128 | package `opencv-python`.
129 | # Returns
130 | Numpy Array: Image of the overlay with shape (H, W, 3) and data type
131 | `np.uint8`.
132 | """
133 | im, ann = np.asarray(im, dtype=np.uint8), np.asarray(ann, dtype=np.int)
134 | if im.shape[:-1] != ann.shape:
135 | raise ValueError('First two dimensions of `im` and `ann` must match')
136 | if im.shape[-1] != 3:
137 | raise ValueError('im must have three channels at the 3 dimension')
138 |
139 | colors = colors or _pascal_color_map()
140 | colors = np.asarray(colors, dtype=np.uint8)
141 |
142 | mask = colors[ann]
143 | fg = im * alpha + (1 - alpha) * mask
144 |
145 | img = im.copy()
146 | img[ann > 0] = fg[ann > 0]
147 |
148 | if contour_thickness: # pragma: no cover
149 | import cv2
150 | for obj_id in np.unique(ann[ann > 0]):
151 | contours = cv2.findContours((ann == obj_id).astype(
152 | np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
153 | cv2.drawContours(img, contours[0], -1, colors[obj_id].tolist(),
154 | contour_thickness)
155 | return img
156 |
--------------------------------------------------------------------------------
/lib/vis/utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 |
4 |
5 | def numpy_to_torch(a: np.ndarray):
6 | return torch.from_numpy(a).float().permute(2, 0, 1).unsqueeze(0)
--------------------------------------------------------------------------------
/tracking/__pycache__/_init_paths.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenCodeGithub/H-DCPT/6260eebe03f667cfeff82e9d075f29061503eded/tracking/__pycache__/_init_paths.cpython-38.pyc
--------------------------------------------------------------------------------
/tracking/_init_paths.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import
2 | from __future__ import division
3 | from __future__ import print_function
4 |
5 | import os.path as osp
6 | import sys
7 |
8 |
9 | def add_path(path):
10 | if path not in sys.path:
11 | sys.path.insert(0, path)
12 |
13 |
14 | this_dir = osp.dirname(__file__)
15 |
16 | prj_path = osp.join(this_dir, '..')
17 | add_path(prj_path)
18 |
--------------------------------------------------------------------------------
/tracking/analysis_results.py:
--------------------------------------------------------------------------------
1 | import _init_paths
2 | import matplotlib.pyplot as plt
3 | plt.rcParams['figure.figsize'] = [8, 8]
4 |
5 | from lib.test.analysis.plot_results import plot_results, print_results, print_per_sequence_results
6 | from lib.test.evaluation import get_dataset, trackerlist
7 |
8 | trackers = []
9 | dataset_name = 'lasot'
10 | """H-DCPT"""
11 | trackers.extend(trackerlist(name='H-DCPT', parameter_name='H-DCPT', dataset_name=dataset_name,
12 | run_ids=None, display_name='H-DCPT'))
13 |
14 | dataset = get_dataset(dataset_name)
15 | # dataset = get_dataset('otb', 'nfs', 'uav', 'tc128ce')
16 | #plot_results(trackers, dataset, 'otb', merge_results=True, plot_types=('success', 'prec','norm_prec'),
17 | # skip_missing_seq=False, force_evaluation=True, plot_bin_gap=0.05)
18 | print_results(trackers, dataset, dataset_name, merge_results=True, plot_types=('success', 'norm_prec', 'prec'))
19 | # print_results(trackers, dataset, 'UNO', merge_results=True, plot_types=('success', 'prec'))
20 |
21 |
--------------------------------------------------------------------------------
/tracking/analysis_results_ITP.py:
--------------------------------------------------------------------------------
1 | import _init_paths
2 | import argparse
3 | from lib.test.analysis.plot_results import print_results
4 | from lib.test.evaluation import get_dataset, trackerlist
5 |
6 |
7 | def parse_args():
8 | """
9 | args for evaluation.
10 | """
11 | parser = argparse.ArgumentParser(description='Parse args for training')
12 | # for train
13 | parser.add_argument('--script', type=str, help='training script name')
14 | parser.add_argument('--config', type=str, default='baseline', help='yaml configure file name')
15 |
16 | args = parser.parse_args()
17 |
18 | return args
19 |
20 |
21 | if __name__ == "__main__":
22 | args = parse_args()
23 | trackers = []
24 | trackers.extend(trackerlist(args.script, args.config, "None", None, args.config))
25 |
26 | dataset = get_dataset('lasot')
27 |
28 | print_results(trackers, dataset, 'LaSOT', merge_results=True, plot_types=('success', 'prec', 'norm_prec'))
--------------------------------------------------------------------------------
/tracking/convert_transt.py:
--------------------------------------------------------------------------------
1 | import _init_paths
2 | import os
3 | from lib.test.evaluation import get_dataset
4 | import shutil
5 |
6 | trackers = []
7 | # dataset_name = 'uav'
8 | dataset_name = 'nfs'
9 |
10 |
11 | root_dir = "/data/sda/v-yanbi/iccv21/STARK_Latest/Stark"
12 | base_dir = os.path.join(root_dir, "test/tracking_results/TransT_N2")
13 | dataset = get_dataset(dataset_name)
14 | for x in dataset:
15 | seq_name = x.name
16 | file_name = "%s.txt" % (seq_name.replace("nfs_", ""))
17 | file_path = os.path.join(base_dir, file_name)
18 | file_path_new = os.path.join(base_dir, "%s.txt" % seq_name)
19 | if os.path.exists(file_path):
20 | shutil.move(file_path, file_path_new)
21 |
22 |
--------------------------------------------------------------------------------
/tracking/create_default_local_file.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import _init_paths
4 | from lib.train.admin import create_default_local_file_ITP_train
5 | from lib.test.evaluation import create_default_local_file_ITP_test
6 |
7 |
8 | def parse_args():
9 | parser = argparse.ArgumentParser(description='Create default local file on ITP or PAI')
10 | parser.add_argument("--workspace_dir", type=str, required=True) # workspace dir
11 | parser.add_argument("--data_dir", type=str, required=True)
12 | parser.add_argument("--save_dir", type=str, required=True)
13 | args = parser.parse_args()
14 | return args
15 |
16 |
17 | if __name__ == "__main__":
18 | args = parse_args()
19 | workspace_dir = os.path.realpath(args.workspace_dir)
20 | data_dir = os.path.realpath(args.data_dir)
21 | save_dir = os.path.realpath(args.save_dir)
22 | create_default_local_file_ITP_train(workspace_dir, data_dir)
23 | create_default_local_file_ITP_test(workspace_dir, data_dir, save_dir)
24 |
--------------------------------------------------------------------------------
/tracking/pre_read_datasets.py:
--------------------------------------------------------------------------------
1 | import _init_paths
2 | import multiprocessing as mp
3 | import argparse
4 | import os
5 | from lib.utils.lmdb_utils import decode_str
6 | import time
7 | import json
8 |
9 |
10 | def parse_args():
11 | """
12 | args for training.
13 | """
14 | parser = argparse.ArgumentParser(description='Parse args for training')
15 | parser.add_argument('--data_dir', type=str, help='directory where lmdb data is located')
16 | parser.add_argument('--dataset_str', type=str, help="which datasets to use")
17 | args = parser.parse_args()
18 |
19 | return args
20 |
21 |
22 | def get_trknet_dict(trknet_dir):
23 | with open(os.path.join(trknet_dir, "seq_list.json"), "r") as f:
24 | seq_list = json.loads(f.read())
25 | res_dict = {}
26 | set_idx_pre = -1
27 | for set_idx, seq_name in seq_list:
28 | if set_idx != set_idx_pre:
29 | res_dict[set_idx] = "anno/%s.txt" % seq_name
30 | set_idx_pre = set_idx
31 | return res_dict
32 |
33 |
34 | def target(lmdb_dir, key_name):
35 | _ = decode_str(lmdb_dir, key_name)
36 |
37 |
38 | if __name__ == "__main__":
39 | args = parse_args()
40 | data_dir = args.data_dir
41 | dataset_str = args.dataset_str
42 | key_dict = {"got10k_lmdb": "train/list.txt",
43 | "lasot_lmdb": "LaSOTBenchmark.json",
44 | "coco_lmdb": "annotations/instances_train2017.json",
45 | "vid_lmdb": "cache.json"}
46 | print("Ready to pre load datasets")
47 | start = time.time()
48 | ps = []
49 | datasets = []
50 | if 'g' in dataset_str:
51 | datasets.append("got10k_lmdb")
52 | if 'l' in dataset_str:
53 | datasets.append("lasot_lmdb")
54 | if 'c' in dataset_str:
55 | datasets.append("coco_lmdb")
56 | if 'v' in dataset_str:
57 | datasets.append("vid_lmdb")
58 | for dataset in datasets:
59 | lmdb_dir = os.path.join(data_dir, dataset)
60 | p = mp.Process(target=target, args=(lmdb_dir, key_dict[dataset]))
61 | print("add %s %s to job queue" % (lmdb_dir, key_dict[dataset]))
62 | ps.append(p)
63 | # deal with trackingnet
64 | if 't' in dataset_str:
65 | trknet_dict = get_trknet_dict(os.path.join(data_dir, "trackingnet_lmdb"))
66 | for set_idx, seq_path in trknet_dict.items():
67 | lmdb_dir = os.path.join(data_dir, "trackingnet_lmdb", "TRAIN_%d_lmdb" % set_idx)
68 | p = mp.Process(target=target, args=(lmdb_dir, seq_path))
69 | print("add %s %s to job queue" % (lmdb_dir, seq_path))
70 | ps.append(p)
71 | for p in ps:
72 | p.start()
73 | for p in ps:
74 | p.join()
75 |
76 | print("Pre read over")
77 | end = time.time()
78 | hour = (end - start) / 3600
79 | print("it takes %.2f hours to pre-read data" % hour)
80 |
--------------------------------------------------------------------------------
/tracking/test.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import argparse
4 |
5 | prj_path = os.path.join(os.path.dirname(__file__), '..')
6 | if prj_path not in sys.path:
7 | sys.path.append(prj_path)
8 |
9 | from lib.test.evaluation import get_dataset
10 | from lib.test.evaluation.running import run_dataset
11 | from lib.test.evaluation.tracker import Tracker
12 |
13 | import torch
14 |
15 | print("torch.__version__", torch.__version__)
16 | print("torch.version.cuda ", torch.version.cuda)
17 | print("torch.cuda.is_available() ", torch.cuda.is_available())
18 |
19 | def run_tracker(tracker_name, tracker_param, run_id=None, dataset_name='llot', sequence=None, debug=0, threads=0,
20 | num_gpus=8):
21 | """Run tracker on sequence or dataset.
22 | args:
23 | tracker_name: Name of tracking method.
24 | tracker_param: Name of parameter file.
25 | run_id: The run id.
26 | dataset_name: Name of dataset (otb,llot, nfs, uav, tpl, vot, tn, gott, gotv, lasot).
27 | sequence: Sequence number or name.
28 | debug: Debug level.
29 | threads: Number of threads.
30 | """
31 | #import pdb
32 | #pdb.set_trace()
33 | dataset = get_dataset(dataset_name)
34 |
35 | if sequence is not None:
36 | dataset = [dataset[sequence]]
37 |
38 | trackers = [Tracker(tracker_name, tracker_param, dataset_name, run_id)]
39 |
40 | run_dataset(dataset, trackers, debug, threads, num_gpus=num_gpus)
41 |
42 |
43 | def main():
44 | parser = argparse.ArgumentParser(description='Run tracker on sequence or dataset.')
45 | parser.add_argument('tracker_name', type=str, help='Name of tracking method.')
46 | parser.add_argument('tracker_param', type=str, help='Name of config file.')
47 | parser.add_argument('--runid', type=int, default=None, help='The run id.')
48 | parser.add_argument('--dataset_name', type=str, default='llot', help='Name of dataset (otb, llot,nfs, uav, tpl, vot, tn, gott, gotv, lasot).')
49 | parser.add_argument('--sequence', type=str, default=None, help='Sequence number or name.')
50 | parser.add_argument('--debug', type=int, default=0, help='Debug level.')
51 | parser.add_argument('--threads', type=int, default=0, help='Number of threads.')
52 | parser.add_argument('--num_gpus', type=int, default=8)
53 |
54 | args = parser.parse_args()
55 |
56 | try:
57 | seq_name = int(args.sequence)
58 | except:
59 | seq_name = args.sequence
60 |
61 | run_tracker(args.tracker_name, args.tracker_param, args.runid, args.dataset_name, seq_name, args.debug,
62 | args.threads, num_gpus=args.num_gpus)
63 |
64 |
65 | if __name__ == '__main__':
66 | main()
67 |
--------------------------------------------------------------------------------
/tracking/test_exp.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import argparse
4 |
5 | prj_path = os.path.join(os.path.dirname(__file__), '..')
6 | if prj_path not in sys.path:
7 | sys.path.append(prj_path)
8 |
9 | from lib.test.evaluation import get_dataset
10 | from lib.test.evaluation.running import run_dataset
11 | from lib.test.evaluation.tracker import Tracker
12 |
13 |
14 | def run_tracker(tracker_name, tracker_param, run_id=None, dataset_name='otb', sequence=None, debug=0, threads=0,
15 | num_gpus=8):
16 | """Run tracker on sequence or dataset.
17 | args:
18 | tracker_name: Name of tracking method.
19 | tracker_param: Name of parameter file.
20 | run_id: The run id.
21 | dataset_name: Name of dataset (otb, nfs, uav, tpl, vot, tn, gott, gotv, lasot).
22 | sequence: Sequence number or name.
23 | debug: Debug level.
24 | threads: Number of threads.
25 | """
26 |
27 | dataset = get_dataset(*dataset_name)
28 |
29 | if sequence is not None:
30 | dataset = [dataset[sequence]]
31 |
32 | trackers = [Tracker(tracker_name, tracker_param, dataset_name, run_id)]
33 |
34 | run_dataset(dataset, trackers, debug, threads, num_gpus=num_gpus)
35 |
36 |
37 | def main():
38 | parser = argparse.ArgumentParser(description='Run tracker on sequence or dataset.')
39 | parser.add_argument('tracker_name', type=str, help='Name of tracking method.')
40 | parser.add_argument('tracker_param', type=str, help='Name of config file.')
41 | parser.add_argument('--runid', type=int, default=None, help='The run id.')
42 | parser.add_argument('--dataset_name', type=str, default='otb', help='Name of dataset (otb, nfs, uav, tpl, vot, tn, gott, gotv, lasot).')
43 | parser.add_argument('--sequence', type=str, default=None, help='Sequence number or name.')
44 | parser.add_argument('--debug', type=int, default=0, help='Debug level.')
45 | parser.add_argument('--threads', type=int, default=0, help='Number of threads.')
46 | parser.add_argument('--num_gpus', type=int, default=8)
47 |
48 | args = parser.parse_args()
49 |
50 | try:
51 | seq_name = int(args.sequence)
52 | except:
53 | seq_name = args.sequence
54 |
55 | args.dataset_name = ['trackingnet', 'got10k_test', 'lasot']
56 |
57 | run_tracker(args.tracker_name, args.tracker_param, args.runid, args.dataset_name, seq_name, args.debug,
58 | args.threads, num_gpus=args.num_gpus)
59 |
60 |
61 | if __name__ == '__main__':
62 | main()
63 |
--------------------------------------------------------------------------------
/tracking/train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import random
4 |
5 |
6 | def parse_args():
7 | """
8 | args for training.
9 | """
10 | parser = argparse.ArgumentParser(description='Parse args for training')
11 | # for train
12 | parser.add_argument('--script', type=str, help='training script name')
13 | parser.add_argument('--config', type=str, default='baseline', help='yaml configure file name')
14 | parser.add_argument('--save_dir', type=str, help='root directory to save checkpoints1, logs, and tensorboard')
15 | parser.add_argument('--mode', type=str, choices=["single", "multiple", "multi_node"], default="multiple",
16 | help="train on single gpu or multiple gpus")
17 | parser.add_argument('--nproc_per_node', type=int, help="number of GPUs per node") # specify when mode is multiple
18 | parser.add_argument('--use_lmdb', type=int, choices=[0, 1], default=0) # whether datasets are in lmdb format
19 | parser.add_argument('--script_prv', type=str, help='training script name')
20 | parser.add_argument('--config_prv', type=str, default='baseline', help='yaml configure file name')
21 | parser.add_argument('--use_wandb', type=int, choices=[0, 1], default=0) # whether to use wandb
22 | # for knowledge distillation
23 | parser.add_argument('--distill', type=int, choices=[0, 1], default=0) # whether to use knowledge distillation
24 | parser.add_argument('--script_teacher', type=str, help='teacher script name')
25 | parser.add_argument('--config_teacher', type=str, help='teacher yaml configure file name')
26 |
27 | # for multiple machines
28 | parser.add_argument('--rank', type=int, help='Rank of the current process.')
29 | parser.add_argument('--world-size', type=int, help='Number of processes participating in the job.')
30 | parser.add_argument('--ip', type=str, default='127.0.0.1', help='IP of the current rank 0.')
31 | parser.add_argument('--port', type=int, default='20000', help='Port of the current rank 0.')
32 |
33 | args = parser.parse_args()
34 |
35 | return args
36 |
37 |
38 | def main():
39 | args = parse_args()
40 | if args.mode == "single":
41 | train_cmd = "python /home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/lib/train/run_training.py --script %s --config %s --save_dir %s --use_lmdb %d " \
42 | "--script_prv %s --config_prv %s --distill %d --script_teacher %s --config_teacher %s --use_wandb %d"\
43 | % (args.script, args.config, args.save_dir, args.use_lmdb, args.script_prv, args.config_prv,
44 | args.distill, args.script_teacher, args.config_teacher, args.use_wandb)
45 | elif args.mode == "multiple":
46 | train_cmd = "python -m torch.distributed.launch --nproc_per_node %d --master_port %d /home/lsw/PycharmProjects/HIPTrack_Re/H-DCPT/lib/train/run_training.py " \
47 | "--script %s --config %s --save_dir %s --use_lmdb %d --script_prv %s --config_prv %s --use_wandb %d " \
48 | "--distill %d --script_teacher %s --config_teacher %s" \
49 | % (args.nproc_per_node, random.randint(10000, 50000), args.script, args.config, args.save_dir, args.use_lmdb, args.script_prv, args.config_prv, args.use_wandb,
50 | args.distill, args.script_teacher, args.config_teacher)
51 | elif args.mode == "multi_node":
52 | train_cmd = "python -m torch.distributed.launch --nproc_per_node %d --master_addr %s --master_port %d --nnodes %d --node_rank %d lib/train/run_training.py " \
53 | "--script %s --config %s --save_dir %s --use_lmdb %d --script_prv %s --config_prv %s --use_wandb %d " \
54 | "--distill %d --script_teacher %s --config_teacher %s" \
55 | % (args.nproc_per_node, args.ip, args.port, args.world_size, args.rank, args.script, args.config, args.save_dir, args.use_lmdb, args.script_prv, args.config_prv, args.use_wandb,
56 | args.distill, args.script_teacher, args.config_teacher)
57 | else:
58 | raise ValueError("mode should be 'single' or 'multiple'.")
59 | os.system(train_cmd)
60 |
61 |
62 | if __name__ == "__main__":
63 | import torch
64 | print(torch.__version__)
65 | main()
66 |
--------------------------------------------------------------------------------
/tracking/video_demo.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import argparse
4 |
5 | prj_path = os.path.join(os.path.dirname(__file__), '..')
6 | if prj_path not in sys.path:
7 | sys.path.append(prj_path)
8 |
9 | from lib.test.evaluation import Tracker
10 |
11 |
12 | def run_video(tracker_name, tracker_param, videofile, optional_box=None, debug=None, save_results=False):
13 | """Run the tracker on your webcam.
14 | args:
15 | tracker_name: Name of tracking method.
16 | tracker_param: Name of parameter file.
17 | debug: Debug level.
18 | """
19 | tracker = Tracker(tracker_name, tracker_param, "video")
20 | tracker.run_video(videofilepath=videofile, optional_box=optional_box, debug=debug, save_results=save_results)
21 |
22 |
23 | def main():
24 | parser = argparse.ArgumentParser(description='Run the tracker on your webcam.')
25 | parser.add_argument('tracker_name', type=str, help='Name of tracking method.')
26 | parser.add_argument('tracker_param', type=str, help='Name of parameter file.')
27 | parser.add_argument('videofile', type=str, help='path to a video file.')
28 | parser.add_argument('--optional_box', type=float, default=None, nargs="+", help='optional_box with format x y w h.')
29 | parser.add_argument('--debug', type=int, default=0, help='Debug level.')
30 | parser.add_argument('--save_results', dest='save_results', action='store_true', help='Save bounding boxes')
31 | parser.set_defaults(save_results=False)
32 |
33 | args = parser.parse_args()
34 |
35 | run_video(args.tracker_name, args.tracker_param, args.videofile, args.optional_box, args.debug, args.save_results)
36 |
37 |
38 | if __name__ == '__main__':
39 | main()
40 |
--------------------------------------------------------------------------------