├── .github
└── workflows
│ ├── ci.yml
│ └── non_omv.yml
├── .gitignore
├── .readthedocs.yaml
├── .travis.yml
├── NeuroML2
└── prototypes
│ ├── AllenInstituteCellTypesDB_HH
│ ├── HH_476686112.cell.nml
│ ├── HH_477127614.cell.nml
│ ├── IMchan.channel.nml
│ ├── Kd.channel.nml
│ ├── Leak.channel.nml
│ ├── Na.channel.nml
│ └── README.md
│ ├── BlueBrainProject_NMC
│ ├── Ca.channel.nml
│ ├── CaDynamics_E2_NML2.nml
│ ├── Ca_HVA.channel.nml
│ ├── Ca_LVAst.channel.nml
│ ├── Ih.channel.nml
│ ├── Im.channel.nml
│ ├── K_Pst.channel.nml
│ ├── K_Tst.channel.nml
│ ├── KdShu2007.channel.nml
│ ├── NaTa_t.channel.nml
│ ├── NaTs2_t.channel.nml
│ ├── Nap_Et2.channel.nml
│ ├── README.md
│ ├── SK_E2.channel.nml
│ ├── SKv3_1.channel.nml
│ ├── StochKv_deterministic.channel.nml
│ ├── cADpyr229_L23_PC_5ecbf9b163_0_0.cell.nml
│ └── pas.channel.nml
│ ├── L23Pyr_SmithEtAl2013
│ ├── .test.validate.omt
│ ├── AMPA.synapse.nml
│ ├── AMPA_NMDA.synapse.nml
│ ├── GABA.synapse.nml
│ ├── L23_NoHotSpot.cell.nml
│ ├── NMDA.synapse.nml
│ ├── ca.channel.nml
│ ├── it.channel.nml
│ ├── kca.channel.nml
│ ├── km.channel.nml
│ ├── kv.channel.nml
│ ├── na.channel.nml
│ └── pas.channel.nml
│ ├── Thalamocortical
│ ├── L23PyrFRB.cell.nml
│ ├── L23PyrRS.cell.nml
│ ├── SupBasket.cell.nml
│ ├── ar.channel.nml
│ ├── ar__m00.channel.nml
│ ├── ar__m00_25.channel.nml
│ ├── cad__beta0_01__phi26000.nml
│ ├── cad__beta0_02__phi260000.nml
│ ├── cad__beta0_05__phi52000.nml
│ ├── cad__beta0_05__phi520000.nml
│ ├── cal.channel.nml
│ ├── cat.channel.nml
│ ├── cat_a.channel.nml
│ ├── k2.channel.nml
│ ├── ka.channel.nml
│ ├── ka_ib.channel.nml
│ ├── kahp.channel.nml
│ ├── kahp_deeppyr.channel.nml
│ ├── kahp_slower.channel.nml
│ ├── kc.channel.nml
│ ├── kc_fast.channel.nml
│ ├── kdr.channel.nml
│ ├── kdr_fs.channel.nml
│ ├── km.channel.nml
│ ├── naf.channel.nml
│ ├── naf2.channel.nml
│ ├── naf2__a0__b0__c0__d0__fastNa_shift0.channel.nml
│ ├── naf2__a0__b0__c0__d0__fastNa_shiftmin2_5.channel.nml
│ ├── naf__a0__b0__c0__d0__fastNa_shiftmin3_5.channel.nml
│ ├── naf_tcr.channel.nml
│ ├── naf_tcr__shift_hnafmin7__shift_mnaf_initmin3__shift_mnaf_runmin2_5.channel.nml
│ ├── nap.channel.nml
│ ├── napf.channel.nml
│ ├── napf__a0__b0__c0__d0__fastNa_shift0.channel.nml
│ ├── napf_spinstell.channel.nml
│ ├── napf_spinstell__a0__b0__c0__d0__fastNa_shiftmin2_5.channel.nml
│ ├── napf_tcr.channel.nml
│ ├── napf_tcr__a0__b0__c0__d0__fastNa_shift7.channel.nml
│ ├── netConnList
│ └── pas.channel.nml
│ ├── acnet2
│ ├── AMPA_syn.synapse.nml
│ ├── AMPA_syn_inh.synapse.nml
│ ├── Ca_conc.nml
│ ├── Ca_pyr.channel.nml
│ ├── GABA_syn.synapse.nml
│ ├── GABA_syn_inh.synapse.nml
│ ├── Kahp_pyr.channel.nml
│ ├── Kdr_bask.channel.nml
│ ├── Kdr_pyr.channel.nml
│ ├── LeakConductance_bask.channel.nml
│ ├── LeakConductance_pyr.channel.nml
│ ├── Na_bask.channel.nml
│ ├── Na_pyr.channel.nml
│ ├── bask.cell.nml
│ ├── pyr_4_sym.cell.nml
│ └── pyr_4_sym_soma.cell.nml
│ ├── iaf
│ ├── iaf.cell.nml
│ └── iafRef.cell.nml
│ └── izhikevich
│ ├── Izh_471141261.cell.nml
│ └── RS.cell.nml
├── README.md
├── doc
├── Makefile
├── conf.py
├── how_to_contribute.txt
├── index.txt
├── install.txt
├── introduction.txt
├── logo.png
├── modules.txt
├── opencortex.build.txt
├── opencortex.core.txt
├── opencortex.txt
└── opencortex.utils.txt
├── examples
├── ACNet.net.nml
├── ACNet.py
├── ACNet
│ ├── Ca_conc.nml
│ ├── Ca_pyr.channel.nml
│ ├── Kahp_pyr.channel.nml
│ ├── Kdr_bask.channel.nml
│ ├── Kdr_pyr.channel.nml
│ ├── LeakConductance_bask.channel.nml
│ ├── LeakConductance_pyr.channel.nml
│ ├── Na_bask.channel.nml
│ ├── Na_pyr.channel.nml
│ ├── bask.cell.nml
│ └── pyr_4_sym.cell.nml
├── Balanced.net.nml
├── Balanced.py
├── Balanced
│ ├── CaDynamics_E2_NML2.nml
│ ├── Ca_HVA.channel.nml
│ ├── Ca_LVAst.channel.nml
│ ├── HH_476686112.cell.nml
│ ├── HH_477127614.cell.nml
│ ├── IMchan.channel.nml
│ ├── Ih.channel.nml
│ ├── Im.channel.nml
│ ├── K_Pst.channel.nml
│ ├── K_Tst.channel.nml
│ ├── Kd.channel.nml
│ ├── Leak.channel.nml
│ ├── Na.channel.nml
│ ├── NaTa_t.channel.nml
│ ├── NaTs2_t.channel.nml
│ ├── Nap_Et2.channel.nml
│ ├── SK_E2.channel.nml
│ ├── SKv3_1.channel.nml
│ ├── cADpyr229_L23_PC_5ecbf9b163_0_0.cell.nml
│ └── pas.channel.nml
├── Balanced_240cells_36926conns.net.nml
├── Balanced_24cells_336conns.net.nml
├── Balanced_24cells_336conns
│ ├── HH_476686112.cell.nml
│ ├── HH_477127614.cell.nml
│ ├── IMchan.channel.nml
│ ├── Kd.channel.nml
│ ├── Leak.channel.nml
│ └── Na.channel.nml
├── Balanced_610cells_0conns.net.nml
├── Balanced_610cells_213550conns.net.nml
├── Complex.net.nml
├── Complex.py
├── Complex
│ ├── Ca_conc.nml
│ ├── Ca_pyr.channel.nml
│ ├── Kahp_pyr.channel.nml
│ ├── Kdr_pyr.channel.nml
│ ├── LeakConductance_pyr.channel.nml
│ ├── Na_pyr.channel.nml
│ ├── RS.cell.nml
│ ├── iaf.cell.nml
│ ├── iafRef.cell.nml
│ ├── pyr_4_sym.cell.nml
│ └── pyr_4_sym_soma.cell.nml
├── Deterministic.net.nml
├── Deterministic.py
├── Deterministic
│ ├── RS.cell.nml
│ └── iaf.cell.nml
├── GapJunctions.net.nml
├── GapJunctions.py
├── GapJunctions
│ ├── Ca_conc.nml
│ ├── Ca_pyr.channel.nml
│ ├── Kahp_pyr.channel.nml
│ ├── Kdr_pyr.channel.nml
│ ├── LeakConductance_pyr.channel.nml
│ ├── Na_pyr.channel.nml
│ └── pyr_4_sym.cell.nml
├── HDF5
│ ├── ACNet.net.nml.h5
│ ├── ACNet
│ │ ├── Ca_conc.nml
│ │ ├── Ca_pyr.channel.nml
│ │ ├── Kahp_pyr.channel.nml
│ │ ├── Kdr_bask.channel.nml
│ │ ├── Kdr_pyr.channel.nml
│ │ ├── LeakConductance_bask.channel.nml
│ │ ├── LeakConductance_pyr.channel.nml
│ │ ├── Na_bask.channel.nml
│ │ ├── Na_pyr.channel.nml
│ │ ├── bask.cell.nml
│ │ └── pyr_4_sym.cell.nml
│ ├── IClamps.net.nml.h5
│ ├── IClamps
│ │ ├── Ca_conc.nml
│ │ ├── Ca_pyr.channel.nml
│ │ ├── Kahp_pyr.channel.nml
│ │ ├── Kdr_pyr.channel.nml
│ │ ├── LeakConductance_pyr.channel.nml
│ │ ├── Na_pyr.channel.nml
│ │ ├── RS.cell.nml
│ │ └── pyr_4_sym_soma.cell.nml
│ ├── LEMS_ACNet.xml
│ ├── LEMS_IClamps.xml
│ ├── LEMS_SpikingNet.xml
│ ├── SpikingNet.net.nml.h5
│ ├── SpikingNet
│ │ └── RS.cell.nml
│ ├── Weights.net.nml.h5
│ └── Weights
│ │ ├── HH_477127614.cell.nml
│ │ ├── IMchan.channel.nml
│ │ ├── Kd.channel.nml
│ │ ├── Leak.channel.nml
│ │ └── Na.channel.nml
├── IClamps.net.nml
├── IClamps.py
├── IClamps
│ ├── Ca_conc.nml
│ ├── Ca_pyr.channel.nml
│ ├── Kahp_pyr.channel.nml
│ ├── Kdr_pyr.channel.nml
│ ├── LeakConductance_pyr.channel.nml
│ ├── Na_pyr.channel.nml
│ ├── RS.cell.nml
│ └── pyr_4_sym_soma.cell.nml
├── L23TraubDemo.net.nml
├── L23TraubDemo.py
├── L23TraubDemo
│ ├── L23PyrRS.cell.nml
│ ├── SupBasket.cell.nml
│ ├── ar__m00_25.channel.nml
│ ├── cad__beta0_01__phi26000.nml
│ ├── cad__beta0_02__phi260000.nml
│ ├── cad__beta0_05__phi52000.nml
│ ├── cad__beta0_05__phi520000.nml
│ ├── cal.channel.nml
│ ├── cat.channel.nml
│ ├── k2.channel.nml
│ ├── ka.channel.nml
│ ├── kahp.channel.nml
│ ├── kahp_slower.channel.nml
│ ├── kc.channel.nml
│ ├── kc_fast.channel.nml
│ ├── kdr.channel.nml
│ ├── kdr_fs.channel.nml
│ ├── km.channel.nml
│ ├── naf2__a0__b0__c0__d0__fastNa_shiftmin2_5.channel.nml
│ ├── naf__a0__b0__c0__d0__fastNa_shiftmin3_5.channel.nml
│ ├── nap.channel.nml
│ └── pas.channel.nml
├── LEMS_ACNet.xml
├── LEMS_Balanced.xml
├── LEMS_Balanced_24cells_336conns.xml
├── LEMS_Balanced_610cells_0conns.xml
├── LEMS_Complex.xml
├── LEMS_Deterministic.xml
├── LEMS_GapJunctions.xml
├── LEMS_IClamps.xml
├── LEMS_L23TraubDemo.xml
├── LEMS_Recording.xml
├── LEMS_SimpleNet.xml
├── LEMS_SpikingNet.xml
├── LEMS_VClamp.xml
├── LEMS_Weights.xml
├── Multiscale.py
├── Recording.net.nml
├── Recording.py
├── Recording
│ ├── Ca_conc.nml
│ ├── Ca_pyr.channel.nml
│ ├── Kahp_pyr.channel.nml
│ ├── Kdr_pyr.channel.nml
│ ├── LeakConductance_pyr.channel.nml
│ ├── Na_pyr.channel.nml
│ └── pyr_4_sym.cell.nml
├── SimpleNet.net.nml
├── SimpleNet.py
├── SimpleNet
│ └── RS.cell.nml
├── SpikingNet.net.nml
├── SpikingNet.py
├── SpikingNet
│ └── RS.cell.nml
├── VClamp.net.nml
├── VClamp.py
├── VClamp
│ ├── L23PyrRS.cell.nml
│ ├── ar__m00_25.channel.nml
│ ├── cad__beta0_01__phi26000.nml
│ ├── cad__beta0_05__phi52000.nml
│ ├── cal.channel.nml
│ ├── cat.channel.nml
│ ├── k2.channel.nml
│ ├── ka.channel.nml
│ ├── kahp.channel.nml
│ ├── kc.channel.nml
│ ├── kdr.channel.nml
│ ├── km.channel.nml
│ ├── naf__a0__b0__c0__d0__fastNa_shiftmin3_5.channel.nml
│ ├── nap.channel.nml
│ └── pas.channel.nml
├── Weights.net.nml
├── Weights.py
├── Weights
│ ├── HH_477127614.cell.nml
│ ├── IMchan.channel.nml
│ ├── Kd.channel.nml
│ ├── Leak.channel.nml
│ └── Na.channel.nml
├── netpyneLoad.py
├── neuromllite
│ ├── LEMS_SimSimpleNet.xml
│ ├── README.md
│ ├── SimSimpleNet.json
│ ├── SimpleNet.json
│ ├── SimpleNet.net.nml
│ └── SimpleNet.py
├── redo.sh
├── regenerateAll.sh
├── test_scaling.py
└── tests
│ ├── .test.acnet.h5.jnmlnetpyne.omt
│ ├── .test.acnet.h5.jnmlnrn.omt
│ ├── .test.acnet.jnmlnetpyne.omt
│ ├── .test.acnet.jnmlnetpyne4.omt_
│ ├── .test.acnet.jnmlnrn.omt
│ ├── .test.acnet.mep
│ ├── .test.balanced.jnmlnetpyne.omt
│ ├── .test.balanced.jnmlnrn.omt
│ ├── .test.balanced.mep
│ ├── .test.complex.jnmlnetpyne.omt
│ ├── .test.complex.jnmlnrn.omt
│ ├── .test.deterministic.jnml.omt
│ ├── .test.deterministic.jnmlnetpyne.omt
│ ├── .test.deterministic.jnmlnrn.omt
│ ├── .test.deterministic.mep
│ ├── .test.iclamps.h5.jnmlnetpyne.omt
│ ├── .test.iclamps.h5.jnmlnetpyne2.omt_
│ ├── .test.iclamps.h5.jnmlnrn.omt
│ ├── .test.iclamps.jnml.omt
│ ├── .test.iclamps.jnmlnetpyne.omt
│ ├── .test.iclamps.jnmlnrn.omt
│ ├── .test.iclamps.jnmlpynnnrn.omt
│ ├── .test.iclamps.mep
│ ├── .test.l23traub.mep
│ ├── .test.l23traubdemo.jnmlnetpyne.omt
│ ├── .test.l23traubdemo.jnmlnetpyne2.omt_
│ ├── .test.l23traubdemo.jnmlnrn.omt
│ ├── .test.recording.jnmlnrn.omt
│ ├── .test.simple.jnml.mep
│ ├── .test.simple.jnml.omt
│ ├── .test.simple.jnmlnetpyne.omt
│ ├── .test.simple.jnmlnetpyne2.omt_
│ ├── .test.simple.jnmlnrn.mep
│ ├── .test.simple.jnmlnrn.omt
│ ├── .test.spiking.h5.jnmlnetpyne.omt
│ ├── .test.spiking.h5.jnmlnetpyne2.omt_
│ ├── .test.spiking.h5.jnmlnrn.omt
│ ├── .test.spiking.jnml.omt
│ ├── .test.spiking.jnmlnetpyne.omt
│ ├── .test.spiking.jnmlnetpyne2.omt_
│ ├── .test.spiking.jnmlnetpyne4.omt_
│ ├── .test.spiking.jnmlnrn.omt
│ ├── .test.spiking.jnmlpynnnrn.omt
│ ├── .test.spiking.nrn.mep
│ ├── .test.validate.omt
│ └── .test.vclamp.jnmlnrn.omt
├── notebooks
└── TestIClamp.ipynb
├── opencortex
├── __init__.py
├── build
│ └── __init__.py
├── core
│ └── __init__.py
├── test
│ ├── ConnListTest
│ ├── README.md
│ ├── Test.cell.nml
│ ├── Test2.cell.nml
│ ├── test_build_methods.py
│ └── test_utils_methods.py
└── utils
│ ├── __init__.py
│ └── color.py
└── setup.py
/.github/workflows/ci.yml:
--------------------------------------------------------------------------------
1 | name: Continuous builds - OMV tests
2 |
3 | on:
4 | push:
5 | branches: [ master, development, experimental ]
6 | pull_request:
7 | branches: [ master, development, experimental ]
8 |
9 | jobs:
10 | build:
11 |
12 | runs-on: ubuntu-latest
13 | strategy:
14 | fail-fast: false
15 | matrix:
16 | python-version: [ 3.8, 3.9, "3.10" ]
17 | engine: [ jNeuroML, jNeuroML_NEURON, jNeuroML_NetPyNE, jNeuroML_validate, jNeuroML_PyNN_NEURON ]
18 |
19 | steps:
20 | - uses: actions/checkout@v3
21 | - name: Set up Python ${{ matrix.python-version }}
22 | uses: actions/setup-python@v3
23 | with:
24 | python-version: ${{ matrix.python-version }}
25 | - name: Install OMV
26 | run: |
27 | pip install git+https://github.com/OpenSourceBrain/osb-model-validation
28 | pip install scipy sympy matplotlib cython pandas tables
29 |
30 | pip install 'numpy<=1.23.0' # see https://github.com/OpenSourceBrain/osb-model-validation/issues/91
31 |
32 | - name: Run OMV tests on engine ${{ matrix.engine }}
33 | run: |
34 | omv all -V --engine=${{ matrix.engine }}
35 | - name: OMV final version info
36 | run: |
37 | omv list -V # list installed engines
38 |
--------------------------------------------------------------------------------
/.github/workflows/non_omv.yml:
--------------------------------------------------------------------------------
1 | name: Non OMV tests
2 |
3 | on:
4 | push:
5 | branches: [ master, development, experimental ]
6 | pull_request:
7 | branches: [ master, development, experimental ]
8 |
9 | jobs:
10 | build:
11 |
12 | runs-on: ubuntu-latest
13 | strategy:
14 | matrix:
15 | python-version: [ 3.8, 3.9 ]
16 |
17 | steps:
18 | - uses: actions/checkout@v3
19 | - name: Set up Python ${{ matrix.python-version }}
20 | uses: actions/setup-python@v3
21 | with:
22 | python-version: ${{ matrix.python-version }}
23 | - name: Install OpenCortex
24 | run: |
25 | pip install .
26 | - name: Run some examples
27 | run: |
28 | echo "Running non OMV tests..."
29 | cd examples
30 | ./regenerateAll.sh
31 | ls -alt
32 | cd ../opencortex/test
33 | pip install pytest
34 | pytest -vs
35 | pip freeze
36 |
--------------------------------------------------------------------------------
/.readthedocs.yaml:
--------------------------------------------------------------------------------
1 | # .readthedocs.yaml
2 | # Read the Docs configuration file
3 | # See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
4 |
5 | # Required
6 | version: 2
7 |
8 | # Set the version of Python and other tools you might need
9 | build:
10 | os: ubuntu-22.04
11 | tools:
12 | python: "3.11"
13 |
14 | # Build documentation in the docs/ directory with Sphinx
15 | sphinx:
16 | configuration: doc/conf.py
17 |
18 | # We recommend specifying your dependencies to enable reproducible builds:
19 | # https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
20 | # python:
21 | # install:
22 | # - requirements: docs/requirements.txt
23 |
--------------------------------------------------------------------------------
/.travis.yml:
--------------------------------------------------------------------------------
1 | # Framework for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | dist: xenial
4 | sudo: false
5 |
6 | addons:
7 | apt:
8 | packages:
9 | #- python-matplotlib
10 | #- python-numpy
11 | #- python-scipy
12 | - python-tk
13 | - python-lxml
14 | - python-tornado
15 | - python-tables
16 |
17 | language: python
18 | python:
19 | - 2.7
20 | #- 3.6
21 |
22 | env:
23 | - OMV_ENGINE=jNeuroML
24 | - OMV_ENGINE=jNeuroML_NEURON
25 | - OMV_ENGINE=jNeuroML_NetPyNE
26 | - OMV_ENGINE=jNeuroML_PyNN_NEURON
27 | - OMV_ENGINE=jNeuroML_validate
28 | - OMV_ENGINE=NON_OMV_TESTS
29 |
30 | install:
31 | - git clone https://github.com/OpenSourceBrain/osb-model-validation
32 | - cd osb-model-validation
33 | - python setup.py install
34 | - cd ..
35 |
36 | - pip install matplotlib>=2.2.5 # This is more because Matplotlib v2.x is required...
37 | - pip install future pandas matplotlib-scalebar bokeh scipy # For NetPyNE...
38 | - pip install tables # Ditto
39 |
40 | - pip install .
41 |
42 | script:
43 | - omv all -V; export OMV_SUCCESS=$?; echo $OMV_SUCCESS
44 | - echo "Finished all OMV tests"
45 | - omv list-engines -V
46 | - if [[ ${OMV_ENGINE} == "NON_OMV_TESTS" ]]; then echo "Continuing with tests not under OMV..."; else exit $OMV_SUCCESS; fi
47 | - echo "Running non OMV tests..."
48 | - cd examples
49 | - ./regenerateAll.sh
50 | - ls -alt
51 | - cd ../opencortex/test
52 | - nosetests -vs
53 |
54 |
55 |
56 |
57 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/AllenInstituteCellTypesDB_HH/Leak.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | ChannelML file containing a single Channel description
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/AllenInstituteCellTypesDB_HH/README.md:
--------------------------------------------------------------------------------
1 |
2 | #### Allen CellTypes Database
3 |
4 | Data and models from the [Allen CellTypes Database](http://celltypes.brain-map.org/) has been used to
5 | construct NeuroML based models. See https://github.com/OpenSourceBrain/AllenInstituteNeuroML/tree/master/CellTypesDatabase.
6 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/Ca.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | NeuroML file containing a single Channel description
9 |
10 | Note: was called Ca_HVA in Hay et al 2011: http://www.opensourcebrain.org/projects/l5bpyrcellhayetal2011
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
21 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 | Calcium channels
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/Ca_HVA.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | High voltage activated Ca2+ current.
9 |
10 | Comment from original mod file:
11 | Reuveni, Friedman, Amitai, and Gutnick, J.Neurosci. 1993
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
20 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 | Calcium channels
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/Ih.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Non-specific cation current
9 |
10 | Comment from original mod file:
11 | Reference : : Kole,Hallermann,and Stuart, J. Neurosci. 2006
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
20 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/Im.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Muscarinic K+ current
9 |
10 | Comment from original mod file:
11 | :Reference : : Adams et al. 1982 - M-currents and other potassium currents in bullfrog sympathetic neurones
12 | :Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
21 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 | K channels
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/KdShu2007.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
6 |
7 | NeuroML file containing a single Channel description
8 |
9 |
10 |
11 | K-D current for prefrontal cortical neuron - Yuguo Yu 2007
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | K channels
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
31 |
32 |
33 |
34 |
35 |
36 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/NaTa_t.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Fast inactivating Na+ current
9 |
10 | Comment from original mod file:
11 | :Reference :Colbert and Pan 2002
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
20 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 | Na channels
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/NaTs2_t.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Fast inactivating Na+ current. Comment from mod file (NaTs2_t.mod): took the NaTa and shifted both activation/inactivation by 6 mv
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
17 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 | Na channels
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/README.md:
--------------------------------------------------------------------------------
1 | #### BBP Neocortical Microcircuit to NeuroML 2
2 |
3 | This directory contains code for converting cell models from the [Neocortical Microcircuit Collaboration Portal](https://bbp.epfl.ch/nmc-portal/microcircuit)
4 | to NeuroML 2.
5 |
6 |
7 | See [here](https://github.com/OpenSourceBrain/BlueBrainProjectShowcase/blob/master/NMC/NeuroML2/README.md) for more.
8 |
9 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/StochKv_deterministic.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML2 file containing a single Channel description
5 |
6 |
7 |
8 | Deterministic version of StochKv channel. See https://github.com/OpenSourceBrain/BlueBrainProjectShowcase/tree/master/NMC/NEURON/test
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 | K channels
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/BlueBrainProject_NMC/pas.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Simple example of a leak/passive conductance. Note: for GENESIS cells with a single leak conductance,
9 | it is better to use the Rm and Em variables for a passive current.
10 |
11 |
12 |
13 |
14 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/L23Pyr_SmithEtAl2013/.test.validate.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | # This test will validate all of the NeuroML 2 files in the current directory using: jnml -validate *.nml
4 | target: "*.nml"
5 | engine: jNeuroML_validate
6 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/L23Pyr_SmithEtAl2013/AMPA.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML 2 file describing a single synaptic mechanism
5 |
6 |
7 | AMPA synapse
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/L23Pyr_SmithEtAl2013/AMPA_NMDA.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | A single "synapse" which contains both AMPA and NMDA. Hopefully the need for extra synapse1Path/synapse2Path attributes can be removed in later versions.
13 |
14 |
15 |
16 |
17 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/L23Pyr_SmithEtAl2013/GABA.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
6 |
7 | NeuroML 2 file describing a single synaptic mechanism
8 |
9 |
10 | GABA synapse
11 |
12 |
13 |
14 |
15 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/L23Pyr_SmithEtAl2013/NMDA.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
6 |
7 | NeuroML 2 file describing a single synaptic mechanism
8 |
9 |
10 |
12 | NMDA synapse
13 |
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/L23Pyr_SmithEtAl2013/kca.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
6 |
7 | WARNING: in the orginial mod file the conductance was multiplied by e-4, remember to scale your Gmax
8 |
9 |
10 |
11 | Comment from original mod file: Calcium-dependent potassium channel,
12 | Based on Pennefather (1990) -- sympathetic ganglion cells,
13 | taken from Reuveni et al (1993) -- neocortical cells
14 | Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/L23Pyr_SmithEtAl2013/pas.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Simple example of a leak/passive conductance.
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/Thalamocortical/cad__beta0_01__phi26000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/Thalamocortical/cad__beta0_02__phi260000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/Thalamocortical/cad__beta0_05__phi52000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/Thalamocortical/cad__beta0_05__phi520000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/Thalamocortical/pas.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | Simple passive leak conductance
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/AMPA_syn.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing a single synaptic mechanism
5 |
6 |
7 |
8 | Simple example of a synaptic mechanism, which consists of a postsynaptic conductance which changes as a double exponential function of time. Mappings exist for NEURON and GENESIS.
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/AMPA_syn_inh.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing a single synaptic mechanism
5 |
6 |
7 |
8 |
9 | Simple example of a synaptic mechanism, which consists of a postsynaptic conductance which changes as a double exponential function of time. Mappings exist for NEURON and GENESIS.
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/GABA_syn.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing a single synaptic mechanism
5 |
6 |
7 |
8 | Simple example of a synaptic mechanism, which consists of a postsynaptic conductance which changes as a double exponential function of time. Mappings exist for NEURON and GENESIS.
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/GABA_syn_inh.synapse.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing a single synaptic mechanism
5 |
6 |
7 |
8 | NOTE: zero conductance as per ACnet2-main.g
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/Kdr_bask.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the book Neuronal Networks of the Hippocampus, Traub and Miles 1991
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the book Neuronal Networks of the Hippocampus, Traub and Miles 1991
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., & Miles, R. (1991). Neuronal Networks of the Hippocampus. Cambridge University Press.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/LeakConductance_bask.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for basket cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/acnet2/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/iaf/iaf.cell.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
7 |
8 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/iaf/iafRef.cell.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
7 |
8 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/NeuroML2/prototypes/izhikevich/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## OpenCortex
2 |
3 | A framework for building cortical network models on OSB in NeuroML format.
4 |
5 | In development, subject to change without notice... Contact P Gleeson for more details.
6 |
7 | **Note: much of this functionality has been replaced by: https://github.com/NeuroML/NeuroMLlite**
8 |
9 | [](https://github.com/OpenSourceBrain/OpenCortex/actions/workflows/ci.yml)
10 | [](https://github.com/OpenSourceBrain/OpenCortex/actions/workflows/non_omv.yml)
11 |
--------------------------------------------------------------------------------
/doc/how_to_contribute.txt:
--------------------------------------------------------------------------------
1 | How to contribute
2 | =================
3 |
4 | Contact: p dot gleeson at gmail dot com
5 |
--------------------------------------------------------------------------------
/doc/index.txt:
--------------------------------------------------------------------------------
1 | =========================
2 | OpenCortex: documentation
3 | =========================
4 |
5 | .. toctree::
6 | :maxdepth: 2
7 |
8 | introduction
9 | install
10 |
11 | =======================
12 | Developer documentation
13 | =======================
14 |
15 | .. toctree::
16 | :maxdepth: 2
17 |
18 | how_to_contribute
19 | modules
20 |
21 |
22 | .. .. Source documentation
23 | .. ====================
24 | ..
25 | .. .. toctree::
26 | .. :maxdepth: 3
27 | ..
28 | .. modules
29 |
30 | .. Indices and tables
31 | .. ==================
32 |
33 | .. * :ref:`genindex`
34 | .. * :ref:`modindex`
35 | .. * :ref:`search`
36 |
37 |
38 |
39 |
--------------------------------------------------------------------------------
/doc/install.txt:
--------------------------------------------------------------------------------
1 | Installation
2 | ============
3 |
4 |
5 | Requirements
6 | ----------------------------------------
7 |
8 |
9 | Work in progress...
--------------------------------------------------------------------------------
/doc/introduction.txt:
--------------------------------------------------------------------------------
1 | Introduction
2 | ============
3 |
4 | In progress...
5 |
6 |
--------------------------------------------------------------------------------
/doc/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenSourceBrain/OpenCortex/ece5a5d1d773c4d993346087790795e5191818d6/doc/logo.png
--------------------------------------------------------------------------------
/doc/modules.txt:
--------------------------------------------------------------------------------
1 | opencortex
2 | ==========
3 |
4 | .. toctree::
5 | :maxdepth: 4
6 |
7 | opencortex
8 |
--------------------------------------------------------------------------------
/doc/opencortex.build.txt:
--------------------------------------------------------------------------------
1 | opencortex build Package
2 | ========================
3 |
4 | Utility functions for OpenCortex. See :mod:`opencortex.core` for the main module for user interaction with OpenCortex.
5 |
6 | :mod:`opencortex.build` Package
7 | -------------------------------
8 |
9 | .. automodule:: opencortex.build
10 | :members:
11 | :undoc-members:
12 | :show-inheritance:
13 |
14 |
15 |
16 |
--------------------------------------------------------------------------------
/doc/opencortex.core.txt:
--------------------------------------------------------------------------------
1 | opencortex core Package
2 | =======================
3 |
4 | This is the main module for user interaction with OpenCortex.
5 |
6 | :mod:`opencortex.core` Package
7 | ------------------------------
8 |
9 | .. automodule:: opencortex.core
10 | :members:
11 | :undoc-members:
12 | :show-inheritance:
13 |
14 |
15 |
16 |
--------------------------------------------------------------------------------
/doc/opencortex.txt:
--------------------------------------------------------------------------------
1 | opencortex Package
2 | ==================
3 |
4 | See :mod:`opencortex.core` for the main module for user interaction with OpenCortex.
5 |
6 | :mod:`opencortex` Package
7 | -------------------------
8 |
9 | .. automodule:: opencortex.__init__
10 | :members:
11 | :undoc-members:
12 | :show-inheritance:
13 |
14 | Subpackages
15 | -----------
16 |
17 | .. toctree::
18 |
19 | opencortex.core
20 | opencortex.build
21 | opencortex.utils
22 |
23 |
24 |
--------------------------------------------------------------------------------
/doc/opencortex.utils.txt:
--------------------------------------------------------------------------------
1 | opencortex utils Package
2 | ========================
3 |
4 |
5 | Utility functions for OpenCortex. See :mod:`opencortex.core` for the main module for user interaction with OpenCortex.
6 |
7 | :mod:`opencortex.utils` Package
8 | -------------------------------
9 |
10 | .. automodule:: opencortex.utils
11 | :members:
12 | :undoc-members:
13 | :show-inheritance:
14 |
15 |
16 |
17 |
--------------------------------------------------------------------------------
/examples/ACNet/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/examples/ACNet/Kdr_bask.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the book Neuronal Networks of the Hippocampus, Traub and Miles 1991
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the book Neuronal Networks of the Hippocampus, Traub and Miles 1991
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., & Miles, R. (1991). Neuronal Networks of the Hippocampus. Cambridge University Press.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/ACNet/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/ACNet/LeakConductance_bask.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for basket cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/ACNet/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/ACNet/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/examples/Balanced/Ca_HVA.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | High voltage activated Ca2+ current.
9 |
10 | Comment from original mod file:
11 | Reuveni, Friedman, Amitai, and Gutnick, J.Neurosci. 1993
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
20 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 | Calcium channels
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
--------------------------------------------------------------------------------
/examples/Balanced/Ih.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Non-specific cation current
9 |
10 | Comment from original mod file:
11 | Reference : : Kole,Hallermann,and Stuart, J. Neurosci. 2006
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
20 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
--------------------------------------------------------------------------------
/examples/Balanced/Im.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Muscarinic K+ current
9 |
10 | Comment from original mod file:
11 | :Reference : : Adams et al. 1982 - M-currents and other potassium currents in bullfrog sympathetic neurones
12 | :Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
21 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 | K channels
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
--------------------------------------------------------------------------------
/examples/Balanced/Leak.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | ChannelML file containing a single Channel description
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/Balanced/NaTa_t.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Fast inactivating Na+ current
9 |
10 | Comment from original mod file:
11 | :Reference :Colbert and Pan 2002
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
20 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 | Na channels
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
--------------------------------------------------------------------------------
/examples/Balanced/NaTs2_t.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Fast inactivating Na+ current. Comment from mod file (NaTs2_t.mod): took the NaTa and shifted both activation/inactivation by 6 mv
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties,
17 | Etay Hay, Sean Hill, Felix Schürmann, Henry Markram and Idan Segev, PLoS Comp Biol 2011
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 | Na channels
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
--------------------------------------------------------------------------------
/examples/Balanced/pas.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Simple example of a leak/passive conductance. Note: for GENESIS cells with a single leak conductance,
9 | it is better to use the Rm and Em variables for a passive current.
10 |
11 |
12 |
13 |
14 |
--------------------------------------------------------------------------------
/examples/Balanced_24cells_336conns/Leak.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | ChannelML file containing a single Channel description
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/Complex/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/examples/Complex/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/Complex/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/Complex/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/examples/Complex/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/examples/Complex/iaf.cell.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
7 |
8 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/examples/Complex/iafRef.cell.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
7 |
8 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/Deterministic/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/examples/Deterministic/iaf.cell.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
7 |
8 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/examples/GapJunctions/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/examples/GapJunctions/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/GapJunctions/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/GapJunctions/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/examples/HDF5/ACNet.net.nml.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenSourceBrain/OpenCortex/ece5a5d1d773c4d993346087790795e5191818d6/examples/HDF5/ACNet.net.nml.h5
--------------------------------------------------------------------------------
/examples/HDF5/ACNet/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/examples/HDF5/ACNet/Kdr_bask.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the book Neuronal Networks of the Hippocampus, Traub and Miles 1991
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the book Neuronal Networks of the Hippocampus, Traub and Miles 1991
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., & Miles, R. (1991). Neuronal Networks of the Hippocampus. Cambridge University Press.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/HDF5/ACNet/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/HDF5/ACNet/LeakConductance_bask.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for basket cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/HDF5/ACNet/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/HDF5/ACNet/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/examples/HDF5/IClamps.net.nml.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenSourceBrain/OpenCortex/ece5a5d1d773c4d993346087790795e5191818d6/examples/HDF5/IClamps.net.nml.h5
--------------------------------------------------------------------------------
/examples/HDF5/IClamps/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/examples/HDF5/IClamps/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/HDF5/IClamps/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/HDF5/IClamps/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/examples/HDF5/IClamps/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/examples/HDF5/LEMS_IClamps.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
--------------------------------------------------------------------------------
/examples/HDF5/SpikingNet.net.nml.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenSourceBrain/OpenCortex/ece5a5d1d773c4d993346087790795e5191818d6/examples/HDF5/SpikingNet.net.nml.h5
--------------------------------------------------------------------------------
/examples/HDF5/SpikingNet/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/examples/HDF5/Weights.net.nml.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/OpenSourceBrain/OpenCortex/ece5a5d1d773c4d993346087790795e5191818d6/examples/HDF5/Weights.net.nml.h5
--------------------------------------------------------------------------------
/examples/HDF5/Weights/Leak.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | ChannelML file containing a single Channel description
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/IClamps.net.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | This NeuroML 2 file was generated by OpenCortex v0.1.18 using:
5 | libNeuroML v0.6.3
6 | pyNeuroML v1.3.7
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
--------------------------------------------------------------------------------
/examples/IClamps/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/examples/IClamps/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/IClamps/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/IClamps/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/examples/IClamps/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/examples/L23TraubDemo/cad__beta0_01__phi26000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/examples/L23TraubDemo/cad__beta0_02__phi260000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/examples/L23TraubDemo/cad__beta0_05__phi52000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/examples/L23TraubDemo/cad__beta0_05__phi520000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/examples/L23TraubDemo/pas.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | Simple passive leak conductance
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/LEMS_IClamps.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
--------------------------------------------------------------------------------
/examples/LEMS_SimpleNet.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
--------------------------------------------------------------------------------
/examples/Recording/Ca_conc.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file describing intracellular Calcium dynamics, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/examples/Recording/Kdr_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Potassium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | K channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/examples/Recording/LeakConductance_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Channel description
5 |
6 |
7 |
8 | Passive conductance for pyramidal cell
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/Recording/Na_pyr.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
5 |
6 |
7 |
8 | NeuroML file containing a single Sodium Channel description, from the Hippocampal CA3 neuron model presented in Traub et al., 1991.
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 | Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology, 66(2), 635-50.
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | Na channels
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
--------------------------------------------------------------------------------
/examples/SimpleNet.net.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | This NeuroML 2 file was generated by OpenCortex v0.1.18 using:
5 | libNeuroML v0.6.3
6 | pyNeuroML v1.3.7
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
--------------------------------------------------------------------------------
/examples/SimpleNet.py:
--------------------------------------------------------------------------------
1 |
2 | import opencortex.core as oc
3 |
4 |
5 | min_pop_size = 3
6 |
7 | def scale_pop_size(baseline, scale):
8 | return max(min_pop_size, int(baseline*scale))
9 |
10 |
11 |
12 | def generate(reference = "SimpleNet",
13 | scale=1,
14 | format='xml'):
15 |
16 | population_size = scale_pop_size(3,scale)
17 |
18 | nml_doc, network = oc.generate_network(reference)
19 |
20 | oc.include_opencortex_cell(nml_doc, 'izhikevich/RS.cell.nml')
21 |
22 | pop = oc.add_population_in_rectangular_region(network,
23 | 'RS_pop',
24 | 'RS',
25 | population_size,
26 | 0,0,0,
27 | 100,100,100,
28 | color='0 .8 0')
29 | import neuroml
30 | pop.properties.append(neuroml.Property('radius',10))
31 |
32 | syn = oc.add_exp_two_syn(nml_doc,
33 | id="syn0",
34 | gbase="2nS",
35 | erev="0mV",
36 | tau_rise="0.5ms",
37 | tau_decay="10ms")
38 |
39 | pfs = oc.add_poisson_firing_synapse(nml_doc,
40 | id="poissonFiringSyn",
41 | average_rate="50 Hz",
42 | synapse_id=syn.id)
43 |
44 | oc.add_inputs_to_population(network,
45 | "Stim0",
46 | pop,
47 | pfs.id,
48 | all_cells=True)
49 |
50 | nml_file_name = '%s.net.nml'%network.id
51 | oc.save_network(nml_doc,
52 | nml_file_name,
53 | validate=(format=='xml'),
54 | format = format)
55 |
56 | if format=='xml':
57 | oc.generate_lems_simulation(nml_doc,
58 | network,
59 | nml_file_name,
60 | duration = 500,
61 | dt = 0.025,
62 | report_file_name='report.simple.txt')
63 |
64 |
65 | if __name__ == '__main__':
66 |
67 | import sys
68 |
69 | if len(sys.argv)==2:
70 | generate(scale=int(sys.argv[1]))
71 | else:
72 | generate()
--------------------------------------------------------------------------------
/examples/SimpleNet/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/examples/SpikingNet/RS.cell.nml:
--------------------------------------------------------------------------------
1 |
6 |
7 |
10 |
11 |
--------------------------------------------------------------------------------
/examples/VClamp/cad__beta0_01__phi26000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/examples/VClamp/cad__beta0_05__phi52000.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
11 |
12 |
13 |
14 | ChannelML file based on Traub et al. 2003
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/examples/VClamp/pas.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | Simple passive leak conductance
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/Weights/Leak.channel.nml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ChannelML file containing a single Channel description
5 |
6 |
7 |
8 | ChannelML file containing a single Channel description
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/examples/neuromllite/LEMS_SimSimpleNet.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
--------------------------------------------------------------------------------
/examples/neuromllite/README.md:
--------------------------------------------------------------------------------
1 | Demonstrating use of NeuroMLlite to build similar models to the OpenCortex examples
2 |
--------------------------------------------------------------------------------
/examples/neuromllite/SimSimpleNet.json:
--------------------------------------------------------------------------------
1 | {
2 | "SimSimpleNet": {
3 | "version": "NeuroMLlite v0.5.2",
4 | "network": "SimpleNet.json",
5 | "duration": 1000.0,
6 | "dt": 0.025,
7 | "record_traces": {
8 | "all": "*"
9 | }
10 | }
11 | }
--------------------------------------------------------------------------------
/examples/neuromllite/SimpleNet.json:
--------------------------------------------------------------------------------
1 | {
2 | "SimpleNet": {
3 | "version": "NeuroMLlite v0.5.2",
4 | "notes": "Simple network with single population",
5 | "cells": {
6 | "RS": {
7 | "neuroml2_source_file": "../../NeuroML2/prototypes/izhikevich/RS.cell.nml"
8 | }
9 | },
10 | "synapses": {
11 | "ampa": {
12 | "neuroml2_source_file": "../../NeuroML2/prototypes/synapses/ampa.synapse.nml"
13 | }
14 | },
15 | "input_sources": {
16 | "poissonFiringSyn": {
17 | "parameters": {
18 | "average_rate": "50Hz",
19 | "synapse": "ampa",
20 | "spike_target": "./ampa"
21 | },
22 | "neuroml2_input": "poissonFiringSynapse"
23 | }
24 | },
25 | "regions": {
26 | "region1": {
27 | "x": 0.0,
28 | "y": 0.0,
29 | "z": 0.0,
30 | "width": 100.0,
31 | "height": 100.0,
32 | "depth": 100.0
33 | }
34 | },
35 | "populations": {
36 | "RS_pop": {
37 | "size": 3,
38 | "component": "RS",
39 | "properties": {
40 | "color": "0 .8 0"
41 | },
42 | "random_layout": {
43 | "region": "region1"
44 | }
45 | }
46 | },
47 | "inputs": {
48 | "Stim0": {
49 | "input_source": "poissonFiringSyn",
50 | "population": "RS_pop",
51 | "percentage": 100.0
52 | }
53 | },
54 | "temperature": 32.0
55 | }
56 | }
--------------------------------------------------------------------------------
/examples/neuromllite/SimpleNet.net.nml:
--------------------------------------------------------------------------------
1 |
2 | Generated by NeuroMLlite v0.5.2
3 | Generated network: SimpleNet
4 | Generation seed: 1234
5 |
6 |
7 |
8 |
9 | Simple network with single population
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
--------------------------------------------------------------------------------
/examples/neuromllite/SimpleNet.py:
--------------------------------------------------------------------------------
1 | from neuromllite import Network, Cell, InputSource, Population, Synapse, RectangularRegion, RandomLayout
2 | from neuromllite import Projection, RandomConnectivity, Input, Simulation
3 | from neuromllite.NetworkGenerator import generate_and_run
4 | import sys
5 |
6 | ################################################################################
7 | ### Build new network
8 |
9 | net = Network(id='SimpleNet')
10 | net.notes = 'Simple network with single population'
11 | net.temperature = 32.0
12 |
13 | cell = Cell(id='RS', neuroml2_source_file='../../NeuroML2/prototypes/izhikevich/RS.cell.nml')
14 | net.cells.append(cell)
15 |
16 | syn = Synapse(id='ampa', neuroml2_source_file='../../NeuroML2/prototypes/synapses/ampa.synapse.nml')
17 | net.synapses.append(syn)
18 |
19 | input_source = InputSource(id='poissonFiringSyn',
20 | neuroml2_input='poissonFiringSynapse',
21 | parameters={'average_rate':"50Hz", 'synapse':syn.id, 'spike_target':"./ampa"})
22 | net.input_sources.append(input_source)
23 |
24 | r1 = RectangularRegion(id='region1', x=0,y=0,z=0,width=100,height=100,depth=100)
25 | net.regions.append(r1)
26 |
27 | p0 = Population(id='RS_pop', size=3, component=cell.id, properties={'color':'0 .8 0'},random_layout = RandomLayout(region=r1.id))
28 |
29 | net.populations.append(p0)
30 |
31 | net.inputs.append(Input(id='Stim0',
32 | input_source=input_source.id,
33 | population=p0.id,
34 | percentage=100))
35 |
36 | print(net.to_json())
37 | new_file = net.to_json_file('%s.json'%net.id)
38 |
39 |
40 | ################################################################################
41 | ### Build Simulation object & save as JSON
42 |
43 | sim = Simulation(id='SimSimpleNet',
44 | network=new_file,
45 | duration='1000',
46 | dt='0.025',
47 | record_traces={'all':'*'})
48 |
49 | sim.to_json_file()
50 |
51 |
52 |
53 | ################################################################################
54 | ### Run in some simulators
55 |
56 | from neuromllite.NetworkGenerator import check_to_generate_or_run
57 | import sys
58 |
59 | check_to_generate_or_run(sys.argv, sim)
60 |
--------------------------------------------------------------------------------
/examples/redo.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -ex
3 | cd ..
4 | pip install .
5 | cd opencortex/test
6 | pytest -vs
7 | cd ../../examples
8 |
9 | cleanGenNML.sh
10 | ./regenerateAll.sh
11 |
12 | time omv all -V
13 | date
14 |
15 | echo "Finished OpenCortex tests"
16 |
--------------------------------------------------------------------------------
/examples/regenerateAll.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 | python Complex.py
4 | python IClamps.py
5 | python SpikingNet.py
6 | python SimpleNet.py
7 | python Deterministic.py
8 | python Recording.py
9 | python L23TraubDemo.py
10 | python ACNet.py
11 | python GapJunctions.py
12 | python Weights.py
13 | python VClamp.py
14 |
15 | python Balanced.py -all
16 |
17 |
--------------------------------------------------------------------------------
/examples/test_scaling.py:
--------------------------------------------------------------------------------
1 | from Balanced import generate
2 |
3 |
4 | nml_doc, nml_file_name, lems_file_name = generate(num_bbp =10,
5 | scalePops = 20,
6 | scalex=2,
7 | scalez=2,
8 | connections=True,
9 | format='hdf5')
10 |
11 | from neuroml.loaders import NeuroMLHdf5Loader
12 |
13 | nml_doc2 = NeuroMLHdf5Loader.load(nml_file_name)
14 |
15 |
16 | for doc in [nml_doc,nml_doc2]:
17 | doc.summary()
18 |
--------------------------------------------------------------------------------
/examples/tests/.test.acnet.h5.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_ACNet.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.acnet.mep
6 | experiments:
7 | p_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_ACNet.pop_pyr.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 1.8686199494019725e-16
18 | p_1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_ACNet.pop_pyr.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 2.267388067842362e-16
29 | b_0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../HDF5/Sim_ACNet.pop_bask.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 2.14220534617705e-16
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.acnet.h5.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_ACNet.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.acnet.mep
6 | experiments:
7 | p_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_ACNet.pop_pyr.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0.0
18 | p_1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_ACNet.pop_pyr.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0.000
29 | b_0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../HDF5/Sim_ACNet.pop_bask.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 0.000
40 |
41 |
--------------------------------------------------------------------------------
/examples/tests/.test.acnet.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_ACNet.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.acnet.mep
6 | experiments:
7 | p_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_ACNet.pop_pyr.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 1.8686199494019725e-16
18 | p_1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_ACNet.pop_pyr.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 2.267388067842362e-16
29 | b_0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_ACNet.pop_bask.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 2.14220534617705e-16
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.acnet.jnmlnetpyne4.omt_:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_ACNet.xml
4 | engine: jNeuroML_NetPyNE_NP4
5 | mep: .test.acnet.mep
6 | experiments:
7 | p_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_ACNet.pop_pyr.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 1.8686199494019725e-16
18 | p_1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_ACNet.pop_pyr.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 2.267388067842362e-16
29 | b_0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_ACNet.pop_bask.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 2.14220534617705e-16
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.acnet.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_ACNet.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.acnet.mep
6 | experiments:
7 | p_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_ACNet.pop_pyr.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0.0
18 | p_1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_ACNet.pop_pyr.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0.000
29 | b_0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_ACNet.pop_bask.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 0.000
40 |
41 |
--------------------------------------------------------------------------------
/examples/tests/.test.acnet.mep:
--------------------------------------------------------------------------------
1 | system: Test
2 | experiments:
3 | p_0:
4 | expected:
5 | spike times: [14.475, 38.025000000000006, 54.15, 70.75, 77.075, 83.1, 90.075, 107.14999999999999, 123.5, 134.35, 141.225, 146.85, 152.2, 166.17499999999998, 175.675, 191.625, 197.3, 204.375, 214.2, 222.125, 239.1, 246.775]
6 | p_1:
7 | expected:
8 | spike times: [3.8, 10.4, 16.85, 36.5, 49.325, 58.35, 90.85, 97.775, 104.25, 110.7, 118.8, 125.35, 132.97500000000002, 142.95, 150.15, 157.4, 166.125, 177.75, 184.5, 191.325, 198.075, 205.725, 215.95000000000002, 223.6, 230.75]
9 | b_0:
10 | expected:
11 | spike times: [21.6, 39.65, 56.275, 70.6, 84.025, 100.55, 116.95, 132.67499999999998, 149.725, 165.9, 180.5, 196.55, 212.07500000000002, 226.92499999999998, 242.65]
12 |
--------------------------------------------------------------------------------
/examples/tests/.test.balanced.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Balanced.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.balanced.mep
6 | experiments:
7 | pe_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../popExc_v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0.0
18 | pi_0:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../popInh_v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0.0
29 | pb_0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../popBBP_v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 0.00026371308016883636
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.balanced.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Balanced.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.balanced.mep
6 | experiments:
7 | pe_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../popExc_v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0.0
18 | pi_0:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../popInh_v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0.0
29 | pb_0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../popBBP_v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 0.0
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.balanced.mep:
--------------------------------------------------------------------------------
1 | system: Test
2 | experiments:
3 | pe_0:
4 | expected:
5 | spike times: [99.225, 258.575, 425.575, 586.625, 752.0, 761.525, 936.975]
6 | pi_0:
7 | expected:
8 | spike times: [99.575, 264.79999999999995, 428.05, 585.625, 760.575, 940.5250000000001]
9 | pb_0:
10 | expected:
11 | spike times: [98.025, 264.25, 429.975, 588.975, 762.025, 942.1500000000001]
--------------------------------------------------------------------------------
/examples/tests/.test.complex.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Complex.xml
4 | engine: jNeuroML_NetPyNE
5 |
--------------------------------------------------------------------------------
/examples/tests/.test.complex.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Complex.xml
4 | engine: jNeuroML_NEURON
5 |
--------------------------------------------------------------------------------
/examples/tests/.test.deterministic.jnml.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Deterministic.xml
4 | engine: jNeuroML
5 | mep: .test.deterministic.mep
6 | experiments:
7 | 1_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_Deterministic.pop_rs.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0.000806
--------------------------------------------------------------------------------
/examples/tests/.test.deterministic.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Deterministic.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.deterministic.mep
6 | experiments:
7 | 1_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_Deterministic.pop_rs.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
--------------------------------------------------------------------------------
/examples/tests/.test.deterministic.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Deterministic.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.deterministic.mep
6 | experiments:
7 | 1_0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_Deterministic.pop_rs.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
--------------------------------------------------------------------------------
/examples/tests/.test.deterministic.mep:
--------------------------------------------------------------------------------
1 | system: Test
2 | experiments:
3 | 1_0:
4 | expected:
5 | spike times: [82.64, 104.2, 130.425, 157.95999999999998, 185.185, 213.345, 241.62, 269.76, 297.53499999999997, 324.85999999999996, 353.03499999999997, 381.03999999999996, 408.735, 435.78499999999997, 471.52]
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.h5.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_IClamps.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.iclamps.mep
6 | experiments:
7 | izh:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_IClamps.popIzh.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | hh:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_IClamps.popHH.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 |
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.h5.jnmlnetpyne2.omt_:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_IClamps.xml
4 | engine: jNeuroML_NetPyNE_NP2
5 | mep: .test.iclamps.mep
6 | experiments:
7 | izh:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_IClamps.popIzh.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | hh:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_IClamps.popHH.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 |
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.h5.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_IClamps.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.iclamps.mep
6 | experiments:
7 | izh:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_IClamps.popIzh.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | hh:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_IClamps.popHH.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 |
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.jnml.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_IClamps.xml
4 | engine: jNeuroML
5 | mep: .test.iclamps.mep
6 | experiments:
7 | izh:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_IClamps.popIzh.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0.0003164
18 | hh:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_IClamps.popHH.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0.0046
29 |
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_IClamps.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.iclamps.mep
6 | experiments:
7 | izh:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_IClamps.popIzh.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | hh:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_IClamps.popHH.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_IClamps.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.iclamps.mep
6 | experiments:
7 | izh:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_IClamps.popIzh.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | hh:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_IClamps.popHH.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.jnmlpynnnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_IClamps.xml
4 | engine: jNeuroML_PyNN_NEURON
5 |
--------------------------------------------------------------------------------
/examples/tests/.test.iclamps.mep:
--------------------------------------------------------------------------------
1 | system: Test
2 | experiments:
3 | izh:
4 | expected:
5 | spike times: [108.58500000000001, 116.895, 126.15, 136.26, 147.04, 158.28, 169.81, 181.5, 193.28, 205.10999999999999, 216.965, 228.825, 240.7, 252.575, 264.455, 276.33000000000004, 288.21000000000004, 300.09000000000003, 311.97, 323.85, 335.72999999999996, 347.60999999999996, 359.48999999999995, 371.37, 383.25, 395.13]
6 |
7 | hh:
8 | expected:
9 | spike times: [101.045, 111.8, 123.19, 135.285, 148.03, 161.265, 174.82500000000002, 188.595, 202.505, 216.505, 230.57, 244.685, 258.84000000000003, 273.02500000000003, 287.235, 301.465, 315.70500000000004, 329.96, 344.22, 358.48999999999995, 372.76, 387.035]
10 |
--------------------------------------------------------------------------------
/examples/tests/.test.l23traub.mep:
--------------------------------------------------------------------------------
1 | system: Test Simple
2 | experiments:
3 | rs0:
4 | expected:
5 | spike times: [ 7.6, 106.14999999999999, 277.225 ]
6 | bask0:
7 | expected:
8 | spike times: [2.975, 89.27499999999999, 174.57500000000002, 264.6]
--------------------------------------------------------------------------------
/examples/tests/.test.l23traubdemo.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_L23TraubDemo.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.l23traub.mep
6 | experiments:
7 | rs0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_L23TraubDemo.pop_rs.0.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | bask0:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_L23TraubDemo.pop_bask.0.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
--------------------------------------------------------------------------------
/examples/tests/.test.l23traubdemo.jnmlnetpyne2.omt_:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_L23TraubDemo.xml
4 | engine: jNeuroML_NetPyNE_NP2
5 | mep: .test.l23traub.mep
6 | experiments:
7 | rs0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_L23TraubDemo.pop_rs.0.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | bask0:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_L23TraubDemo.pop_bask.0.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
--------------------------------------------------------------------------------
/examples/tests/.test.l23traubdemo.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_L23TraubDemo.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.l23traub.mep
6 | experiments:
7 | rs0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_L23TraubDemo.pop_rs.0.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | bask0:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_L23TraubDemo.pop_bask.0.v.dat
23 | columns: [0,1]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
--------------------------------------------------------------------------------
/examples/tests/.test.recording.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_Recording.xml
4 | engine: jNeuroML_NEURON
5 |
--------------------------------------------------------------------------------
/examples/tests/.test.simple.jnml.mep:
--------------------------------------------------------------------------------
1 | system: Test Simple
2 | experiments:
3 | 0:
4 | expected:
5 | spike times: [271.0, 295.175, 360.025]
6 | 1:
7 | expected:
8 | spike times: [92.35000000000001, 228.775, 406.875]
9 | 2:
10 | expected:
11 | spike times: [80.22500000000001, 186.29999999999998, 295.35, 378.3, 483.425]
12 |
13 |
--------------------------------------------------------------------------------
/examples/tests/.test.simple.jnml.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SimpleNet.xml
4 | engine: jNeuroML
5 | mep: .test.simple.jnml.mep
6 | experiments:
7 | 0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SimpleNet.RS_pop.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | 1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SimpleNet.RS_pop.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | 2:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SimpleNet.RS_pop.v.dat
34 | columns: [0,3]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 0
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.simple.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SimpleNet.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.simple.jnmlnrn.mep
6 | experiments:
7 | 0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SimpleNet.RS_pop.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 5e-8
18 | 1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SimpleNet.RS_pop.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 5e-8
29 | 2:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SimpleNet.RS_pop.v.dat
34 | columns: [0,3]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 5e-8
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.simple.jnmlnetpyne2.omt_:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SimpleNet.xml
4 | engine: jNeuroML_NetPyNE_NP2
5 | mep: .test.simple.jnmlnrn.mep
6 | experiments:
7 | 0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SimpleNet.RS_pop.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 5e-8
18 | 1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SimpleNet.RS_pop.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 5e-8
29 | 2:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SimpleNet.RS_pop.v.dat
34 | columns: [0,3]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 5e-8
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.simple.jnmlnrn.mep:
--------------------------------------------------------------------------------
1 | system: Test Simple
2 | experiments:
3 | 0:
4 | expected:
5 | spike times: [86.275, 323.975]
6 | 1:
7 | expected:
8 | spike times: [27.275000000000002, 103.35, 157.45000000000002, 311.95, 390.25]
9 | 2:
10 | expected:
11 | spike times: [89.725, 223.35, 245.625, 340.55]
--------------------------------------------------------------------------------
/examples/tests/.test.simple.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SimpleNet.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.simple.jnmlnrn.mep
6 | experiments:
7 | 0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SimpleNet.RS_pop.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | 1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SimpleNet.RS_pop.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | 2:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SimpleNet.RS_pop.v.dat
34 | columns: [0,3]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: 0
39 | tolerance: 0
40 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.h5.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_SpikingNet.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.spiking.nrn.mep
6 | experiments:
7 | pr0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_SpikingNet.pop_pre.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 1.04e-5
18 | pr1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_SpikingNet.pop_pre.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | po0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../HDF5/Sim_SpikingNet.pop_post.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: -59.5
39 | tolerance: 1.41e-5
40 | po1:
41 | observables:
42 | spike times:
43 | file:
44 | path: ../HDF5/Sim_SpikingNet.pop_post.v.dat
45 | columns: [0,2]
46 | scaling: [1000, 1000]
47 | spike detection:
48 | method: threshold
49 | threshold: -59.8
50 | tolerance: 5.38198649122e-05
51 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.h5.jnmlnetpyne2.omt_:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_SpikingNet.xml
4 | engine: jNeuroML_NetPyNE_NP2
5 | mep: .test.spiking.nrn.mep
6 | experiments:
7 | pr0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_SpikingNet.pop_pre.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 1.04e-5
18 | pr1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_SpikingNet.pop_pre.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | po0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../HDF5/Sim_SpikingNet.pop_post.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: -59.5
39 | tolerance: 1.41e-5
40 | po1:
41 | observables:
42 | spike times:
43 | file:
44 | path: ../HDF5/Sim_SpikingNet.pop_post.v.dat
45 | columns: [0,2]
46 | scaling: [1000, 1000]
47 | spike detection:
48 | method: threshold
49 | threshold: -59.8
50 | tolerance: 5.38198649122e-05
51 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.h5.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../HDF5/LEMS_SpikingNet.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.spiking.nrn.mep
6 | experiments:
7 | pr0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../HDF5/Sim_SpikingNet.pop_pre.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | pr1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../HDF5/Sim_SpikingNet.pop_pre.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | po0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../HDF5/Sim_SpikingNet.pop_post.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: -59.5
39 | tolerance: 0
40 | po1:
41 | observables:
42 | spike times:
43 | file:
44 | path: ../HDF5/Sim_SpikingNet.pop_post.v.dat
45 | columns: [0,2]
46 | scaling: [1000, 1000]
47 | spike detection:
48 | method: threshold
49 | threshold: -59.8
50 | tolerance: 0
51 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.jnml.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SpikingNet.xml
4 | engine: jNeuroML
5 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.jnmlnetpyne.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SpikingNet.xml
4 | engine: jNeuroML_NetPyNE
5 | mep: .test.spiking.nrn.mep
6 | experiments:
7 | pr0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SpikingNet.pop_pre.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | pr1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SpikingNet.pop_pre.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | po0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SpikingNet.pop_post.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: -59.5
39 | tolerance: 1.2103899876666817e-05
40 | po1:
41 | observables:
42 | spike times:
43 | file:
44 | path: ../Sim_SpikingNet.pop_post.v.dat
45 | columns: [0,2]
46 | scaling: [1000, 1000]
47 | spike detection:
48 | method: threshold
49 | threshold: -59.8
50 | tolerance: 1.8751523561059118e-05
51 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.jnmlnetpyne2.omt_:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SpikingNet.xml
4 | engine: jNeuroML_NetPyNE_NP2
5 | mep: .test.spiking.nrn.mep
6 | experiments:
7 | pr0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SpikingNet.pop_pre.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | pr1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SpikingNet.pop_pre.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | po0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SpikingNet.pop_post.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: -59.5
39 | tolerance: 1.2103899876666817e-05
40 | po1:
41 | observables:
42 | spike times:
43 | file:
44 | path: ../Sim_SpikingNet.pop_post.v.dat
45 | columns: [0,2]
46 | scaling: [1000, 1000]
47 | spike detection:
48 | method: threshold
49 | threshold: -59.8
50 | tolerance: 1.8751523561059118e-05
51 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.jnmlnetpyne4.omt_:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SpikingNet.xml
4 | engine: jNeuroML_NetPyNE_NP4
5 | mep: .test.spiking.nrn.mep
6 | experiments:
7 | pr0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SpikingNet.pop_pre.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | pr1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SpikingNet.pop_pre.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | po0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SpikingNet.pop_post.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: -59.5
39 | tolerance: 1.2103899876666817e-05
40 | po1:
41 | observables:
42 | spike times:
43 | file:
44 | path: ../Sim_SpikingNet.pop_post.v.dat
45 | columns: [0,2]
46 | scaling: [1000, 1000]
47 | spike detection:
48 | method: threshold
49 | threshold: -59.8
50 | tolerance: 1.8751523561059118e-05
51 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SpikingNet.xml
4 | engine: jNeuroML_NEURON
5 | mep: .test.spiking.nrn.mep
6 | experiments:
7 | pr0:
8 | observables:
9 | spike times:
10 | file:
11 | path: ../Sim_SpikingNet.pop_pre.v.dat
12 | columns: [0,1]
13 | scaling: [1000, 1000]
14 | spike detection:
15 | method: threshold
16 | threshold: 0
17 | tolerance: 0
18 | pr1:
19 | observables:
20 | spike times:
21 | file:
22 | path: ../Sim_SpikingNet.pop_pre.v.dat
23 | columns: [0,2]
24 | scaling: [1000, 1000]
25 | spike detection:
26 | method: threshold
27 | threshold: 0
28 | tolerance: 0
29 | po0:
30 | observables:
31 | spike times:
32 | file:
33 | path: ../Sim_SpikingNet.pop_post.v.dat
34 | columns: [0,1]
35 | scaling: [1000, 1000]
36 | spike detection:
37 | method: threshold
38 | threshold: -59.5
39 | tolerance: 0
40 | po1:
41 | observables:
42 | spike times:
43 | file:
44 | path: ../Sim_SpikingNet.pop_post.v.dat
45 | columns: [0,2]
46 | scaling: [1000, 1000]
47 | spike detection:
48 | method: threshold
49 | threshold: -59.8
50 | tolerance: 0
51 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.jnmlpynnnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_SpikingNet.xml
4 | engine: jNeuroML_PyNN_NEURON
5 |
--------------------------------------------------------------------------------
/examples/tests/.test.spiking.nrn.mep:
--------------------------------------------------------------------------------
1 | system: Test Simple
2 | experiments:
3 | pr0:
4 | expected:
5 | spike times: [125.66, 224.47, 287.59000000000003, 427.03999999999996, 626.51, 726.35, 764.51, 814.94, 862.72, 940.23]
6 | pr1:
7 | expected:
8 | spike times: [31.61, 78.14, 146.68, 259.18, 324.40999999999997, 448.07000000000005, 540.54, 612.3100000000001, 670.8, 766.98, 805.87, 866.88, 952.08]
9 |
10 | po0:
11 | expected:
12 | spike times: [132.67000000000002, 172.24, 184.91, 202.2, 260.85999999999996, 277.38, 292.65000000000003, 395.06, 430.05, 462.59, 621.49, 659.85, 733.12, 826.1800000000001, 951.85]
13 | po1:
14 | expected:
15 | spike times: [101.43, 151.75, 255.38, 337.82, 399.27000000000004, 533.2900000000001, 603.37, 676.87, 775.78, 823.4200000000001, 913.18]
--------------------------------------------------------------------------------
/examples/tests/.test.validate.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | # This test will validate all of the NeuroML 2 files in the current directory using: jnml -validate *.nml
4 | target: "../*.nml"
5 | engine: jNeuroML_validate
6 |
--------------------------------------------------------------------------------
/examples/tests/.test.vclamp.jnmlnrn.omt:
--------------------------------------------------------------------------------
1 | # Script for running automated tests on OSB using Travis-CI, see https://github.com/OpenSourceBrain/osb-model-validation
2 |
3 | target: ../LEMS_VClamp.xml
4 | engine: jNeuroML_NEURON
5 |
--------------------------------------------------------------------------------
/opencortex/__init__.py:
--------------------------------------------------------------------------------
1 | ###############################################################
2 | ###
3 | ### Note: OpenCortex is under active development, the API is subject to change without notice!!
4 | ###
5 | ### Authors: Padraig Gleeson, Rokas Stanislovas
6 | ###
7 | ### This software has been funded by the Wellcome Trust, as well as a GSoC 2016 project
8 | ### on Cortical Network develoment
9 | ###
10 | ##############################################################
11 |
12 | print("\n*********************************************************************************************")
13 | print(" Please note that OpenCortex is in a preliminary state ");
14 | print(" and the API is subject to change without notice! ")
15 | print("*********************************************************************************************\n")
16 |
17 | __version__ = '0.1.18'
18 |
19 |
20 | verbose = False
21 |
22 | def print_comment_v(text):
23 | """
24 | Always print the comment
25 | """
26 | print_comment(text, True)
27 |
28 |
29 | def print_comment(text, print_it=verbose):
30 | """
31 | Print a comment only if print_it == True
32 | """
33 | prefix = "OpenCortex >>> "
34 | if not isinstance(text, str): text = text.decode('ascii')
35 | if print_it:
36 |
37 | print("%s%s"%(prefix, text.replace("\n", "\n"+prefix)))
38 |
39 | def set_verbose(value=True):
40 | global verbose
41 | verbose = value
42 |
--------------------------------------------------------------------------------
/opencortex/test/README.md:
--------------------------------------------------------------------------------
1 | Some tests...
--------------------------------------------------------------------------------
/opencortex/utils/color.py:
--------------------------------------------------------------------------------
1 | ###############################################################
2 | ###
3 | ### Note: OpenCortex is under active development, the API is subject to change without notice!!
4 | ###
5 | ### Authors: Padraig Gleeson, Rokas Stanislovas
6 | ###
7 | ### This software has been funded by the Wellcome Trust, as well as a GSoC 2016 project
8 | ### on Cortical Network develoment
9 | ###
10 | ##############################################################
11 |
12 | # Colors to use across different networks to ease visual comparison
13 |
14 | # Reds
15 | L1_PRINCIPAL_CELL = '0.4 0.6 0.6' # rgb(95,158,160)
16 | L1_INTERNEURON = '0.5 0.9 0.9' # rgb(175,238,238)
17 |
18 | # Reds
19 | L23_PRINCIPAL_CELL = '0.6 0 0'
20 | L23_PRINCIPAL_CELL_2 = '1 0.2 0.2'
21 | L23_INTERNEURON = '1 0.4 0.4'
22 | L23_INTERNEURON_2 = '1 0.6 0.6'
23 |
24 | # Blues
25 | L4_PRINCIPAL_CELL = '0 0.25 0.5'
26 | L4_INTERNEURON = '0.8 0.7 1'
27 |
28 | #Greens
29 | L5_PRINCIPAL_CELL = '0 0.4 0'
30 | L5_PRINCIPAL_CELL_2 = '0 0.8 0.4'
31 | L5_INTERNEURON = '0.8 1 0.8'
32 | L5_INTERNEURON_2 = '0.8 1 0.6'
33 |
34 | #Oranges
35 | L6_PRINCIPAL_CELL = '1 0.6 0.2'
36 | L6_INTERNEURON = '1 0.8 0.8'
37 |
38 |
39 | THALAMUS_1 = '0 0.6 0.6' #Cyan
40 | THALAMUS_2 = '1 0.6 0.6' #Olive
41 |
42 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | import opencortex
4 | version = opencortex.__version__
5 |
6 | setup(
7 | name='OpenCortex',
8 | version=version,
9 | author='Rokas Stanislovas and Padraig Gleeson',
10 | author_email='p.gleeson@gmail.com',
11 | packages = ['opencortex',
12 | 'opencortex.core',
13 | 'opencortex.build',
14 | 'opencortex.test',
15 | 'opencortex.utils'],
16 | package_data={
17 | 'opencortex': [
18 | '../NeuroML2/prototypes/iaf/*',
19 | '../NeuroML2/prototypes/izhikevich/*',
20 | '../NeuroML2/prototypes/Thalamocortical/*',
21 | '../NeuroML2/prototypes/BlueBrainProject_NMC/*',
22 | '../NeuroML2/prototypes/AllenInstituteCellTypesDB_HH/*',
23 | '../NeuroML2/prototypes/L23Pyr_SmithEtAl2013/*',
24 | '../NeuroML2/prototypes/acnet2/*']},
25 |
26 | url='https://github.com/OpenSourceBrain/OpenCortex',
27 | license='LICENSE.lesser',
28 | description='A framework for building cortical network models',
29 | long_description=open('README.md').read(),
30 | install_requires=[
31 | 'pyNeuroML>=0.3.18', # sets dependencies for other neuroml libs
32 | 'matplotlib',
33 | 'tables'],
34 | dependency_links=[
35 | 'git+https://github.com/NeuralEnsemble/libNeuroML.git@development#egg=libNeuroML-0.2.10'
36 | ],
37 | classifiers = [
38 | 'Intended Audience :: Science/Research',
39 | 'License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)',
40 | 'Natural Language :: English',
41 | 'Operating System :: OS Independent',
42 | 'Programming Language :: Python :: 2.6',
43 | 'Programming Language :: Python :: 2.7',
44 | 'Programming Language :: Python :: 3.2',
45 | 'Topic :: Scientific/Engineering']
46 | )
47 |
--------------------------------------------------------------------------------