├── .gitignore ├── References ├── TopicRefs │ ├── README.md │ ├── Round to Odd (refs).pdf │ ├── Binary8 Formats (refs).pdf │ └── Stochastic Rounding (refs).pdf ├── Papers │ ├── README.md │ └── NumericalAnalysis │ │ ├── Kahan_Thomas.pdf │ │ └── README.md └── README.md ├── Briefs ├── Discusson on Rounding.pdf ├── The Character of Binary8 Formats.pdf └── README.md ├── requirements.txt ├── IEEE WG P3109 Interim Report (latest).pdf ├── Shared Reports ├── history │ ├── P3109 WG Interim Report.pdf │ └── README.md ├── IEEE WG P3109 Interim Report v3.1.pdf ├── CITATION.cff └── README.md ├── CITATION.cff ├── Value Tables ├── latex │ ├── tbl-extremalvalues.tex │ ├── value-table-ocp_e4m3.tex │ ├── value-table-p3109_p4.tex │ ├── value-table-ocp_e5m2.tex │ ├── value-table-p3109_p5.tex │ ├── value-table-p3109_p3.tex │ ├── value-table-p3109_p7.tex │ ├── value-table-p3109_p6.tex │ ├── value-table-p3109_p2.tex │ ├── value-table-p3109_p8.tex │ └── value-table-p3109_p1.tex └── html │ ├── index.html │ └── value-table-ocp_e5m2.html └── README.md /.gitignore: -------------------------------------------------------------------------------- 1 | .vscode/ 2 | -------------------------------------------------------------------------------- /References/TopicRefs/README.md: -------------------------------------------------------------------------------- 1 | Here are topic-specific annotated references. 2 | -------------------------------------------------------------------------------- /Briefs/Discusson on Rounding.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Briefs/Discusson on Rounding.pdf -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | numpy 2 | pandas 3 | pyarrow 4 | jinja2 5 | airium 6 | ipython 7 | ipytest 8 | ipykernel 9 | -------------------------------------------------------------------------------- /References/Papers/README.md: -------------------------------------------------------------------------------- 1 | Any content that is not publicly available was contributed by the author[s]. 2 | 3 | 4 | 5 | 6 | -------------------------------------------------------------------------------- /IEEE WG P3109 Interim Report (latest).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/IEEE WG P3109 Interim Report (latest).pdf -------------------------------------------------------------------------------- /Briefs/The Character of Binary8 Formats.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Briefs/The Character of Binary8 Formats.pdf -------------------------------------------------------------------------------- /References/TopicRefs/Round to Odd (refs).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/TopicRefs/Round to Odd (refs).pdf -------------------------------------------------------------------------------- /References/TopicRefs/Binary8 Formats (refs).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/TopicRefs/Binary8 Formats (refs).pdf -------------------------------------------------------------------------------- /Shared Reports/history/P3109 WG Interim Report.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Shared Reports/history/P3109 WG Interim Report.pdf -------------------------------------------------------------------------------- /References/Papers/NumericalAnalysis/Kahan_Thomas.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/Papers/NumericalAnalysis/Kahan_Thomas.pdf -------------------------------------------------------------------------------- /References/TopicRefs/Stochastic Rounding (refs).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/TopicRefs/Stochastic Rounding (refs).pdf -------------------------------------------------------------------------------- /Shared Reports/IEEE WG P3109 Interim Report v3.1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Shared Reports/IEEE WG P3109 Interim Report v3.1.pdf -------------------------------------------------------------------------------- /Shared Reports/history/README.md: -------------------------------------------------------------------------------- 1 | This is a small archive holding prior versions of the P3109 WG Interim Report that were distributed to the public. 2 | -------------------------------------------------------------------------------- /References/Papers/NumericalAnalysis/README.md: -------------------------------------------------------------------------------- 1 | - Kahan_Thomas 2 | - Augmenting a Programming Language with Complex Arithmetic (1991) 3 | 4 | 5 | 6 | 7 | -------------------------------------------------------------------------------- /References/README.md: -------------------------------------------------------------------------------- 1 | These files contain references that the working group has found useful for various reasons. 2 | There is no private proprietary work and no internal working group information in these documents. 3 | 4 | -------------------------------------------------------------------------------- /CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: If you use this software, please cite it as below. 3 | authors: 4 | - name: IEEE SA P3109 Working Group 5 | title: Interim Report on Binary Floating-point Formats for Machine Learning 6 | version: 0.9.1 7 | date-released: 2024-10-29 8 | copyright: "© 2024 by The Institute of Electrical and Electronics Engineers, Inc." 9 | url: "https://github.com/P3109/Public/blob/main/Shared%20Reports/IEEE%20WG%20P3109%20Interim%20Report.pdf" 10 | -------------------------------------------------------------------------------- /Shared Reports/CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: If you use this software, please cite it as below. 3 | authors: 4 | - name: IEEE SA P3109 Working Group 5 | title: Interim Report on Binary Floating-point Formats for Machine Learning 6 | version: 0.9.1 7 | date-released: 2024-10-29 8 | copyright: "© 2024 by The Institute of Electrical and Electronics Engineers, Inc." 9 | url: "https://github.com/P3109/Public/blob/main/Shared%20Reports/IEEE%20WG%20P3109%20Interim%20Report.pdf" 10 | -------------------------------------------------------------------------------- /Briefs/README.md: -------------------------------------------------------------------------------- 1 | These briefs share some areas of our focus. 2 | 3 | All information is preliminary and subject to correction and change. 4 | - All content is shared in accord with working group guidelines. 5 | - _You are welcome to comment by creating an "issue"._ 6 | 7 | ---- 8 | 9 | ### The Character of Binary8 Formats 10 | Jeffrey Sarnoff 11 | - expressions parameterized by precision 12 | - counts normal and subnormal values 13 | - finds extremal values 14 | 15 | ### Discussion on Rounding 16 | Mantas Mikaitis 17 | - IEEE-754 modes 18 | - Stochastic Rounding 19 | - Round-to-odd 20 | 21 | ---- 22 | 23 | 24 | 25 | 26 | -------------------------------------------------------------------------------- /Shared Reports/README.md: -------------------------------------------------------------------------------- 1 | # IEEE SA Working Group P3109 2 | ## Arithmetic Formats for Machine Learning 3 | 4 | https://sagroups.ieee.org/p3109wgpublic/ 5 | 6 | ## Public materials 7 | 8 | This repository contains an Interim Report prepared on behalf of the P3109 members. The document remains under development and review. While you are welcome to this draft, editing is disallowed. All distribution of the draft should be sourced from here. 9 | 10 | The content is an unapproved draft of elements that may become used in a proposed IEEE Standard. As such, the material subject to change. USE AT YOUR OWN RISK! In particular, the content must not be utilized for any conformance/compliance purposes. 11 | 12 | You may use [GitHub issues here](https://github.com/P3109/Public/issues) for notes, questions, and suggestions. 13 | -------------------------------------------------------------------------------- /Value Tables/latex/tbl-extremalvalues.tex: -------------------------------------------------------------------------------- 1 | % File: tbl-extremalvalues.tex 2 | % Generated from https://github.com/P3109/Public/blob/main/Value%20Tables/make-value-tables.ipynb 3 | \begin{tabular}{llllll} 4 | \toprule 5 | Format & minSubnormal & maxSubnormal & minNormal & maxNormal & maxFinite \\ 6 | \midrule 7 | p1 & nan & nan & 1*2^-62 & 1*2^63 & 1*2^63 \\ 8 | p2 & 1*2^-32 & 1*2^-32 & 1*2^-31 & 1*2^31 & 1*2^31 \\ 9 | p3 & 1*2^-17 & 3/2*2^-16 & 1*2^-15 & 3/2*2^15 & 3/2*2^15 \\ 10 | p4 & 1*2^-10 & 7/4*2^-8 & 1*2^-7 & 7/4*2^7 & 7/4*2^7 \\ 11 | p5 & 1*2^-7 & 15/8*2^-4 & 1*2^-3 & 15/8*2^3 & 15/8*2^3 \\ 12 | p6 & 1*2^-6 & 31/16*2^-2 & 1*2^-1 & 31/16*2^1 & 31/16*2^1 \\ 13 | p7 & 1*2^-6 & 63/32*2^-1 & 1*2^0 & 63/32*2^0 & 63/32*2^0 \\ 14 | ocp\_e5m2 & 1*2^-16 & 3/2*2^-15 & 1*2^-14 & 7/4*2^15 & 7/4*2^15 \\ 15 | ocp\_e4m3 & 1*2^-9 & 7/4*2^-7 & 1*2^-6 & 7/4*2^8 & 7/4*2^8 \\ 16 | \bottomrule 17 | \end{tabular} 18 | 19 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # IEEE SA Working Group P3109 2 | ## Arithmetic Formats for Machine Learning 3 | 4 | https://sagroups.ieee.org/p3109wgpublic/ 5 | 6 | ## Public materials 7 | 8 | This repository contains interim outputs from the deliberations of IEEE SA WG P3109 on Arithmetic Formats for Machine Learning. The contents of the repository represent unapproved drafts of elements that may become used in a proposed IEEE Standard. 9 | 10 | As such, the contents are subject to change. USE AT YOUR OWN RISK! 11 | In particular, the contents of the repository must not be utilized for any conformance/compliance purposes. 12 | 13 | You may use the GitHub ["Issues"](https://github.com/P3109/Public/issues) facility for notes, questions, suggestions. 14 | 15 | ## Contents 16 | 17 | - [Interim Report](https://github.com/P3109/Public/blob/main/Shared%20Reports/IEEE%20WG%20P3109%20Interim%20Report%20v3.pdf) 18 | - [References](References/README.md) 19 | - [Briefs](Briefs/README.md) 20 | - Value Tables 21 | - [Notebook](Value%20Tables/make-value-tables.ipynb) 22 | - [Generated tables](https://htmlpreview.github.io/?https://github.com/P3109/Public/blob/main/Value%20Tables/html/index.html) 23 | -------------------------------------------------------------------------------- /Value Tables/html/index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 |
4 |p3109_p1
12 |
13 | p3109_p2
17 |
18 | p3109_p3
22 |
23 | p3109_p4
27 |
28 | p3109_p5
32 |
33 | p3109_p6
37 |
38 | p3109_p7
42 |
43 | ocp_e5m2
47 |
48 | ocp_e4m3
52 |
53 |
51 | 0x00 0_00000_00 = 0.052 | |
53 |
54 | 0x40 0_10000_00 = +0b1.00*2^1 = 2.055 | |
56 |
57 | 0x80 1_00000_00 = -0.058 | |
59 |
60 | 0xc0 1_10000_00 = -0b1.00*2^1 = -2.061 | |
62 |
65 | 0x01 0_00000_01 = +0b0.01*2^-14 ≈ 1.5258789e-0566 | |
67 |
68 | 0x41 0_10000_01 = +0b1.01*2^1 = 2.569 | |
70 |
71 | 0x81 1_00000_01 = -0b0.01*2^-14 ≈ -1.5258789e-0572 | |
73 |
74 | 0xc1 1_10000_01 = -0b1.01*2^1 = -2.575 | |
76 |
79 | 0x02 0_00000_10 = +0b0.10*2^-14 ≈ 3.0517578e-0580 | |
81 |
82 | 0x42 0_10000_10 = +0b1.10*2^1 = 3.083 | |
84 |
85 | 0x82 1_00000_10 = -0b0.10*2^-14 ≈ -3.0517578e-0586 | |
87 |
88 | 0xc2 1_10000_10 = -0b1.10*2^1 = -3.089 | |
90 |
93 | 0x03 0_00000_11 = +0b0.11*2^-14 ≈ 4.5776367e-0594 | |
95 |
96 | 0x43 0_10000_11 = +0b1.11*2^1 = 3.597 | |
98 |
99 | 0x83 1_00000_11 = -0b0.11*2^-14 ≈ -4.5776367e-05100 | |
101 |
102 | 0xc3 1_10000_11 = -0b1.11*2^1 = -3.5103 | |
104 |
107 | 0x04 0_00001_00 = +0b1.00*2^-14 ≈ 6.1035156e-05108 | |
109 |
110 | 0x44 0_10001_00 = +0b1.00*2^2 = 4.0111 | |
112 |
113 | 0x84 1_00001_00 = -0b1.00*2^-14 ≈ -6.1035156e-05114 | |
115 |
116 | 0xc4 1_10001_00 = -0b1.00*2^2 = -4.0117 | |
118 |
121 | 0x05 0_00001_01 = +0b1.01*2^-14 ≈ 7.6293945e-05122 | |
123 |
124 | 0x45 0_10001_01 = +0b1.01*2^2 = 5.0125 | |
126 |
127 | 0x85 1_00001_01 = -0b1.01*2^-14 ≈ -7.6293945e-05128 | |
129 |
130 | 0xc5 1_10001_01 = -0b1.01*2^2 = -5.0131 | |
132 |
135 | 0x06 0_00001_10 = +0b1.10*2^-14 ≈ 9.1552734e-05136 | |
137 |
138 | 0x46 0_10001_10 = +0b1.10*2^2 = 6.0139 | |
140 |
141 | 0x86 1_00001_10 = -0b1.10*2^-14 ≈ -9.1552734e-05142 | |
143 |
144 | 0xc6 1_10001_10 = -0b1.10*2^2 = -6.0145 | |
146 |
149 | 0x07 0_00001_11 = +0b1.11*2^-14 ≈ 0.00010681150 | |
151 |
152 | 0x47 0_10001_11 = +0b1.11*2^2 = 7.0153 | |
154 |
155 | 0x87 1_00001_11 = -0b1.11*2^-14 ≈ -0.00010681156 | |
157 |
158 | 0xc7 1_10001_11 = -0b1.11*2^2 = -7.0159 | |
160 |
163 | 0x08 0_00010_00 = +0b1.00*2^-13 ≈ 0.00012207164 | |
165 |
166 | 0x48 0_10010_00 = +0b1.00*2^3 = 8.0167 | |
168 |
169 | 0x88 1_00010_00 = -0b1.00*2^-13 ≈ -0.00012207170 | |
171 |
172 | 0xc8 1_10010_00 = -0b1.00*2^3 = -8.0173 | |
174 |
177 | 0x09 0_00010_01 = +0b1.01*2^-13 ≈ 0.00015259178 | |
179 |
180 | 0x49 0_10010_01 = +0b1.01*2^3 = 10.0181 | |
182 |
183 | 0x89 1_00010_01 = -0b1.01*2^-13 ≈ -0.00015259184 | |
185 |
186 | 0xc9 1_10010_01 = -0b1.01*2^3 = -10.0187 | |
188 |
191 | 0x0a 0_00010_10 = +0b1.10*2^-13 ≈ 0.00018311192 | |
193 |
194 | 0x4a 0_10010_10 = +0b1.10*2^3 = 12.0195 | |
196 |
197 | 0x8a 1_00010_10 = -0b1.10*2^-13 ≈ -0.00018311198 | |
199 |
200 | 0xca 1_10010_10 = -0b1.10*2^3 = -12.0201 | |
202 |
205 | 0x0b 0_00010_11 = +0b1.11*2^-13 ≈ 0.00021362206 | |
207 |
208 | 0x4b 0_10010_11 = +0b1.11*2^3 = 14.0209 | |
210 |
211 | 0x8b 1_00010_11 = -0b1.11*2^-13 ≈ -0.00021362212 | |
213 |
214 | 0xcb 1_10010_11 = -0b1.11*2^3 = -14.0215 | |
216 |
219 | 0x0c 0_00011_00 = +0b1.00*2^-12 = 0.000244140625220 | |
221 |
222 | 0x4c 0_10011_00 = +0b1.00*2^4 = 16.0223 | |
224 |
225 | 0x8c 1_00011_00 = -0b1.00*2^-12 ≈ -0.00024414226 | |
227 |
228 | 0xcc 1_10011_00 = -0b1.00*2^4 = -16.0229 | |
230 |
233 | 0x0d 0_00011_01 = +0b1.01*2^-12 ≈ 0.00030518234 | |
235 |
236 | 0x4d 0_10011_01 = +0b1.01*2^4 = 20.0237 | |
238 |
239 | 0x8d 1_00011_01 = -0b1.01*2^-12 ≈ -0.00030518240 | |
241 |
242 | 0xcd 1_10011_01 = -0b1.01*2^4 = -20.0243 | |
244 |
247 | 0x0e 0_00011_10 = +0b1.10*2^-12 ≈ 0.00036621248 | |
249 |
250 | 0x4e 0_10011_10 = +0b1.10*2^4 = 24.0251 | |
252 |
253 | 0x8e 1_00011_10 = -0b1.10*2^-12 ≈ -0.00036621254 | |
255 |
256 | 0xce 1_10011_10 = -0b1.10*2^4 = -24.0257 | |
258 |
261 | 0x0f 0_00011_11 = +0b1.11*2^-12 ≈ 0.00042725262 | |
263 |
264 | 0x4f 0_10011_11 = +0b1.11*2^4 = 28.0265 | |
266 |
267 | 0x8f 1_00011_11 = -0b1.11*2^-12 ≈ -0.00042725268 | |
269 |
270 | 0xcf 1_10011_11 = -0b1.11*2^4 = -28.0271 | |
272 |
275 | 0x10 0_00100_00 = +0b1.00*2^-11 = 0.00048828125276 | |
277 |
278 | 0x50 0_10100_00 = +0b1.00*2^5 = 32.0279 | |
280 |
281 | 0x90 1_00100_00 = -0b1.00*2^-11 = -0.00048828125282 | |
283 |
284 | 0xd0 1_10100_00 = -0b1.00*2^5 = -32.0285 | |
286 |
289 | 0x11 0_00100_01 = +0b1.01*2^-11 ≈ 0.00061035290 | |
291 |
292 | 0x51 0_10100_01 = +0b1.01*2^5 = 40.0293 | |
294 |
295 | 0x91 1_00100_01 = -0b1.01*2^-11 ≈ -0.00061035296 | |
297 |
298 | 0xd1 1_10100_01 = -0b1.01*2^5 = -40.0299 | |
300 |
303 | 0x12 0_00100_10 = +0b1.10*2^-11 = 0.000732421875304 | |
305 |
306 | 0x52 0_10100_10 = +0b1.10*2^5 = 48.0307 | |
308 |
309 | 0x92 1_00100_10 = -0b1.10*2^-11 ≈ -0.00073242310 | |
311 |
312 | 0xd2 1_10100_10 = -0b1.10*2^5 = -48.0313 | |
314 |
317 | 0x13 0_00100_11 = +0b1.11*2^-11 ≈ 0.00085449318 | |
319 |
320 | 0x53 0_10100_11 = +0b1.11*2^5 = 56.0321 | |
322 |
323 | 0x93 1_00100_11 = -0b1.11*2^-11 ≈ -0.00085449324 | |
325 |
326 | 0xd3 1_10100_11 = -0b1.11*2^5 = -56.0327 | |
328 |
331 | 0x14 0_00101_00 = +0b1.00*2^-10 = 0.0009765625332 | |
333 |
334 | 0x54 0_10101_00 = +0b1.00*2^6 = 64.0335 | |
336 |
337 | 0x94 1_00101_00 = -0b1.00*2^-10 = -0.0009765625338 | |
339 |
340 | 0xd4 1_10101_00 = -0b1.00*2^6 = -64.0341 | |
342 |
345 | 0x15 0_00101_01 = +0b1.01*2^-10 = 0.001220703125346 | |
347 |
348 | 0x55 0_10101_01 = +0b1.01*2^6 = 80.0349 | |
350 |
351 | 0x95 1_00101_01 = -0b1.01*2^-10 ≈ -0.00122070352 | |
353 |
354 | 0xd5 1_10101_01 = -0b1.01*2^6 = -80.0355 | |
356 |
359 | 0x16 0_00101_10 = +0b1.10*2^-10 = 0.00146484375360 | |
361 |
362 | 0x56 0_10101_10 = +0b1.10*2^6 = 96.0363 | |
364 |
365 | 0x96 1_00101_10 = -0b1.10*2^-10 = -0.00146484375366 | |
367 |
368 | 0xd6 1_10101_10 = -0b1.10*2^6 = -96.0369 | |
370 |
373 | 0x17 0_00101_11 = +0b1.11*2^-10 = 0.001708984375374 | |
375 |
376 | 0x57 0_10101_11 = +0b1.11*2^6 = 112.0377 | |
378 |
379 | 0x97 1_00101_11 = -0b1.11*2^-10 ≈ -0.00170898380 | |
381 |
382 | 0xd7 1_10101_11 = -0b1.11*2^6 = -112.0383 | |
384 |
387 | 0x18 0_00110_00 = +0b1.00*2^-9 = 0.001953125388 | |
389 |
390 | 0x58 0_10110_00 = +0b1.00*2^7 = 128.0391 | |
392 |
393 | 0x98 1_00110_00 = -0b1.00*2^-9 = -0.001953125394 | |
395 |
396 | 0xd8 1_10110_00 = -0b1.00*2^7 = -128.0397 | |
398 |
401 | 0x19 0_00110_01 = +0b1.01*2^-9 = 0.00244140625402 | |
403 |
404 | 0x59 0_10110_01 = +0b1.01*2^7 = 160.0405 | |
406 |
407 | 0x99 1_00110_01 = -0b1.01*2^-9 = -0.00244140625408 | |
409 |
410 | 0xd9 1_10110_01 = -0b1.01*2^7 = -160.0411 | |
412 |
415 | 0x1a 0_00110_10 = +0b1.10*2^-9 = 0.0029296875416 | |
417 |
418 | 0x5a 0_10110_10 = +0b1.10*2^7 = 192.0419 | |
420 |
421 | 0x9a 1_00110_10 = -0b1.10*2^-9 = -0.0029296875422 | |
423 |
424 | 0xda 1_10110_10 = -0b1.10*2^7 = -192.0425 | |
426 |
429 | 0x1b 0_00110_11 = +0b1.11*2^-9 = 0.00341796875430 | |
431 |
432 | 0x5b 0_10110_11 = +0b1.11*2^7 = 224.0433 | |
434 |
435 | 0x9b 1_00110_11 = -0b1.11*2^-9 = -0.00341796875436 | |
437 |
438 | 0xdb 1_10110_11 = -0b1.11*2^7 = -224.0439 | |
440 |
443 | 0x1c 0_00111_00 = +0b1.00*2^-8 = 0.00390625444 | |
445 |
446 | 0x5c 0_10111_00 = +0b1.00*2^8 = 256.0447 | |
448 |
449 | 0x9c 1_00111_00 = -0b1.00*2^-8 = -0.00390625450 | |
451 |
452 | 0xdc 1_10111_00 = -0b1.00*2^8 = -256.0453 | |
454 |
457 | 0x1d 0_00111_01 = +0b1.01*2^-8 = 0.0048828125458 | |
459 |
460 | 0x5d 0_10111_01 = +0b1.01*2^8 = 320.0461 | |
462 |
463 | 0x9d 1_00111_01 = -0b1.01*2^-8 = -0.0048828125464 | |
465 |
466 | 0xdd 1_10111_01 = -0b1.01*2^8 = -320.0467 | |
468 |
471 | 0x1e 0_00111_10 = +0b1.10*2^-8 = 0.005859375472 | |
473 |
474 | 0x5e 0_10111_10 = +0b1.10*2^8 = 384.0475 | |
476 |
477 | 0x9e 1_00111_10 = -0b1.10*2^-8 = -0.005859375478 | |
479 |
480 | 0xde 1_10111_10 = -0b1.10*2^8 = -384.0481 | |
482 |
485 | 0x1f 0_00111_11 = +0b1.11*2^-8 = 0.0068359375486 | |
487 |
488 | 0x5f 0_10111_11 = +0b1.11*2^8 = 448.0489 | |
490 |
491 | 0x9f 1_00111_11 = -0b1.11*2^-8 = -0.0068359375492 | |
493 |
494 | 0xdf 1_10111_11 = -0b1.11*2^8 = -448.0495 | |
496 |
499 | 0x20 0_01000_00 = +0b1.00*2^-7 = 0.0078125500 | |
501 |
502 | 0x60 0_11000_00 = +0b1.00*2^9 = 512.0503 | |
504 |
505 | 0xa0 1_01000_00 = -0b1.00*2^-7 = -0.0078125506 | |
507 |
508 | 0xe0 1_11000_00 = -0b1.00*2^9 = -512.0509 | |
510 |
513 | 0x21 0_01000_01 = +0b1.01*2^-7 = 0.009765625514 | |
515 |
516 | 0x61 0_11000_01 = +0b1.01*2^9 = 640.0517 | |
518 |
519 | 0xa1 1_01000_01 = -0b1.01*2^-7 = -0.009765625520 | |
521 |
522 | 0xe1 1_11000_01 = -0b1.01*2^9 = -640.0523 | |
524 |
527 | 0x22 0_01000_10 = +0b1.10*2^-7 = 0.01171875528 | |
529 |
530 | 0x62 0_11000_10 = +0b1.10*2^9 = 768.0531 | |
532 |
533 | 0xa2 1_01000_10 = -0b1.10*2^-7 = -0.01171875534 | |
535 |
536 | 0xe2 1_11000_10 = -0b1.10*2^9 = -768.0537 | |
538 |
541 | 0x23 0_01000_11 = +0b1.11*2^-7 = 0.013671875542 | |
543 |
544 | 0x63 0_11000_11 = +0b1.11*2^9 = 896.0545 | |
546 |
547 | 0xa3 1_01000_11 = -0b1.11*2^-7 = -0.013671875548 | |
549 |
550 | 0xe3 1_11000_11 = -0b1.11*2^9 = -896.0551 | |
552 |
555 | 0x24 0_01001_00 = +0b1.00*2^-6 = 0.015625556 | |
557 |
558 | 0x64 0_11001_00 = +0b1.00*2^10 = 1024.0559 | |
560 |
561 | 0xa4 1_01001_00 = -0b1.00*2^-6 = -0.015625562 | |
563 |
564 | 0xe4 1_11001_00 = -0b1.00*2^10 = -1024.0565 | |
566 |
569 | 0x25 0_01001_01 = +0b1.01*2^-6 = 0.01953125570 | |
571 |
572 | 0x65 0_11001_01 = +0b1.01*2^10 = 1280.0573 | |
574 |
575 | 0xa5 1_01001_01 = -0b1.01*2^-6 = -0.01953125576 | |
577 |
578 | 0xe5 1_11001_01 = -0b1.01*2^10 = -1280.0579 | |
580 |
583 | 0x26 0_01001_10 = +0b1.10*2^-6 = 0.0234375584 | |
585 |
586 | 0x66 0_11001_10 = +0b1.10*2^10 = 1536.0587 | |
588 |
589 | 0xa6 1_01001_10 = -0b1.10*2^-6 = -0.0234375590 | |
591 |
592 | 0xe6 1_11001_10 = -0b1.10*2^10 = -1536.0593 | |
594 |
597 | 0x27 0_01001_11 = +0b1.11*2^-6 = 0.02734375598 | |
599 |
600 | 0x67 0_11001_11 = +0b1.11*2^10 = 1792.0601 | |
602 |
603 | 0xa7 1_01001_11 = -0b1.11*2^-6 = -0.02734375604 | |
605 |
606 | 0xe7 1_11001_11 = -0b1.11*2^10 = -1792.0607 | |
608 |
611 | 0x28 0_01010_00 = +0b1.00*2^-5 = 0.03125612 | |
613 |
614 | 0x68 0_11010_00 = +0b1.00*2^11 = 2048.0615 | |
616 |
617 | 0xa8 1_01010_00 = -0b1.00*2^-5 = -0.03125618 | |
619 |
620 | 0xe8 1_11010_00 = -0b1.00*2^11 = -2048.0621 | |
622 |
625 | 0x29 0_01010_01 = +0b1.01*2^-5 = 0.0390625626 | |
627 |
628 | 0x69 0_11010_01 = +0b1.01*2^11 = 2560.0629 | |
630 |
631 | 0xa9 1_01010_01 = -0b1.01*2^-5 = -0.0390625632 | |
633 |
634 | 0xe9 1_11010_01 = -0b1.01*2^11 = -2560.0635 | |
636 |
639 | 0x2a 0_01010_10 = +0b1.10*2^-5 = 0.046875640 | |
641 |
642 | 0x6a 0_11010_10 = +0b1.10*2^11 = 3072.0643 | |
644 |
645 | 0xaa 1_01010_10 = -0b1.10*2^-5 = -0.046875646 | |
647 |
648 | 0xea 1_11010_10 = -0b1.10*2^11 = -3072.0649 | |
650 |
653 | 0x2b 0_01010_11 = +0b1.11*2^-5 = 0.0546875654 | |
655 |
656 | 0x6b 0_11010_11 = +0b1.11*2^11 = 3584.0657 | |
658 |
659 | 0xab 1_01010_11 = -0b1.11*2^-5 = -0.0546875660 | |
661 |
662 | 0xeb 1_11010_11 = -0b1.11*2^11 = -3584.0663 | |
664 |
667 | 0x2c 0_01011_00 = +0b1.00*2^-4 = 0.0625668 | |
669 |
670 | 0x6c 0_11011_00 = +0b1.00*2^12 = 4096.0671 | |
672 |
673 | 0xac 1_01011_00 = -0b1.00*2^-4 = -0.0625674 | |
675 |
676 | 0xec 1_11011_00 = -0b1.00*2^12 = -4096.0677 | |
678 |
681 | 0x2d 0_01011_01 = +0b1.01*2^-4 = 0.078125682 | |
683 |
684 | 0x6d 0_11011_01 = +0b1.01*2^12 = 5120.0685 | |
686 |
687 | 0xad 1_01011_01 = -0b1.01*2^-4 = -0.078125688 | |
689 |
690 | 0xed 1_11011_01 = -0b1.01*2^12 = -5120.0691 | |
692 |
695 | 0x2e 0_01011_10 = +0b1.10*2^-4 = 0.09375696 | |
697 |
698 | 0x6e 0_11011_10 = +0b1.10*2^12 = 6144.0699 | |
700 |
701 | 0xae 1_01011_10 = -0b1.10*2^-4 = -0.09375702 | |
703 |
704 | 0xee 1_11011_10 = -0b1.10*2^12 = -6144.0705 | |
706 |
709 | 0x2f 0_01011_11 = +0b1.11*2^-4 = 0.109375710 | |
711 |
712 | 0x6f 0_11011_11 = +0b1.11*2^12 = 7168.0713 | |
714 |
715 | 0xaf 1_01011_11 = -0b1.11*2^-4 = -0.109375716 | |
717 |
718 | 0xef 1_11011_11 = -0b1.11*2^12 = -7168.0719 | |
720 |
723 | 0x30 0_01100_00 = +0b1.00*2^-3 = 0.125724 | |
725 |
726 | 0x70 0_11100_00 = +0b1.00*2^13 = 8192.0727 | |
728 |
729 | 0xb0 1_01100_00 = -0b1.00*2^-3 = -0.125730 | |
731 |
732 | 0xf0 1_11100_00 = -0b1.00*2^13 = -8192.0733 | |
734 |
737 | 0x31 0_01100_01 = +0b1.01*2^-3 = 0.15625738 | |
739 |
740 | 0x71 0_11100_01 = +0b1.01*2^13 = 10240.0741 | |
742 |
743 | 0xb1 1_01100_01 = -0b1.01*2^-3 = -0.15625744 | |
745 |
746 | 0xf1 1_11100_01 = -0b1.01*2^13 = -10240.0747 | |
748 |
751 | 0x32 0_01100_10 = +0b1.10*2^-3 = 0.1875752 | |
753 |
754 | 0x72 0_11100_10 = +0b1.10*2^13 = 12288.0755 | |
756 |
757 | 0xb2 1_01100_10 = -0b1.10*2^-3 = -0.1875758 | |
759 |
760 | 0xf2 1_11100_10 = -0b1.10*2^13 = -12288.0761 | |
762 |
765 | 0x33 0_01100_11 = +0b1.11*2^-3 = 0.21875766 | |
767 |
768 | 0x73 0_11100_11 = +0b1.11*2^13 = 14336.0769 | |
770 |
771 | 0xb3 1_01100_11 = -0b1.11*2^-3 = -0.21875772 | |
773 |
774 | 0xf3 1_11100_11 = -0b1.11*2^13 = -14336.0775 | |
776 |
779 | 0x34 0_01101_00 = +0b1.00*2^-2 = 0.25780 | |
781 |
782 | 0x74 0_11101_00 = +0b1.00*2^14 = 16384.0783 | |
784 |
785 | 0xb4 1_01101_00 = -0b1.00*2^-2 = -0.25786 | |
787 |
788 | 0xf4 1_11101_00 = -0b1.00*2^14 = -16384.0789 | |
790 |
793 | 0x35 0_01101_01 = +0b1.01*2^-2 = 0.3125794 | |
795 |
796 | 0x75 0_11101_01 = +0b1.01*2^14 = 20480.0797 | |
798 |
799 | 0xb5 1_01101_01 = -0b1.01*2^-2 = -0.3125800 | |
801 |
802 | 0xf5 1_11101_01 = -0b1.01*2^14 = -20480.0803 | |
804 |
807 | 0x36 0_01101_10 = +0b1.10*2^-2 = 0.375808 | |
809 |
810 | 0x76 0_11101_10 = +0b1.10*2^14 = 24576.0811 | |
812 |
813 | 0xb6 1_01101_10 = -0b1.10*2^-2 = -0.375814 | |
815 |
816 | 0xf6 1_11101_10 = -0b1.10*2^14 = -24576.0817 | |
818 |
821 | 0x37 0_01101_11 = +0b1.11*2^-2 = 0.4375822 | |
823 |
824 | 0x77 0_11101_11 = +0b1.11*2^14 = 28672.0825 | |
826 |
827 | 0xb7 1_01101_11 = -0b1.11*2^-2 = -0.4375828 | |
829 |
830 | 0xf7 1_11101_11 = -0b1.11*2^14 = -28672.0831 | |
832 |
835 | 0x38 0_01110_00 = +0b1.00*2^-1 = 0.5836 | |
837 |
838 | 0x78 0_11110_00 = +0b1.00*2^15 = 32768.0839 | |
840 |
841 | 0xb8 1_01110_00 = -0b1.00*2^-1 = -0.5842 | |
843 |
844 | 0xf8 1_11110_00 = -0b1.00*2^15 = -32768.0845 | |
846 |
849 | 0x39 0_01110_01 = +0b1.01*2^-1 = 0.625850 | |
851 |
852 | 0x79 0_11110_01 = +0b1.01*2^15 = 40960.0853 | |
854 |
855 | 0xb9 1_01110_01 = -0b1.01*2^-1 = -0.625856 | |
857 |
858 | 0xf9 1_11110_01 = -0b1.01*2^15 = -40960.0859 | |
860 |
863 | 0x3a 0_01110_10 = +0b1.10*2^-1 = 0.75864 | |
865 |
866 | 0x7a 0_11110_10 = +0b1.10*2^15 = 49152.0867 | |
868 |
869 | 0xba 1_01110_10 = -0b1.10*2^-1 = -0.75870 | |
871 |
872 | 0xfa 1_11110_10 = -0b1.10*2^15 = -49152.0873 | |
874 |
877 | 0x3b 0_01110_11 = +0b1.11*2^-1 = 0.875878 | |
879 |
880 | 0x7b 0_11110_11 = +0b1.11*2^15 = 57344.0881 | |
882 |
883 | 0xbb 1_01110_11 = -0b1.11*2^-1 = -0.875884 | |
885 |
886 | 0xfb 1_11110_11 = -0b1.11*2^15 = -57344.0887 | |
888 |
891 | 0x3c 0_01111_00 = +0b1.00*2^0 = 1.0892 | |
893 |
894 | 0x7c 0_11111_00 = inf895 | |
896 |
897 | 0xbc 1_01111_00 = -0b1.00*2^0 = -1.0898 | |
899 |
900 | 0xfc 1_11111_00 = -inf901 | |
902 |
905 | 0x3d 0_01111_01 = +0b1.01*2^0 = 1.25906 | |
907 |
908 | 0x7d 0_11111_01 = nan909 | |
910 |
911 | 0xbd 1_01111_01 = -0b1.01*2^0 = -1.25912 | |
913 |
914 | 0xfd 1_11111_01 = nan915 | |
916 |
919 | 0x3e 0_01111_10 = +0b1.10*2^0 = 1.5920 | |
921 |
922 | 0x7e 0_11111_10 = nan923 | |
924 |
925 | 0xbe 1_01111_10 = -0b1.10*2^0 = -1.5926 | |
927 |
928 | 0xfe 1_11111_10 = nan929 | |
930 |
933 | 0x3f 0_01111_11 = +0b1.11*2^0 = 1.75934 | |
935 |
936 | 0x7f 0_11111_11 = nan937 | |
938 |
939 | 0xbf 1_01111_11 = -0b1.11*2^0 = -1.75940 | |
941 |
942 | 0xff 1_11111_11 = nan943 | |
944 |