├── .gitignore ├── References ├── TopicRefs │ ├── README.md │ ├── Round to Odd (refs).pdf │ ├── Binary8 Formats (refs).pdf │ └── Stochastic Rounding (refs).pdf ├── Papers │ ├── README.md │ └── NumericalAnalysis │ │ ├── Kahan_Thomas.pdf │ │ └── README.md └── README.md ├── Briefs ├── Discusson on Rounding.pdf ├── The Character of Binary8 Formats.pdf └── README.md ├── requirements.txt ├── IEEE WG P3109 Interim Report (latest).pdf ├── Shared Reports ├── history │ ├── P3109 WG Interim Report.pdf │ └── README.md ├── IEEE WG P3109 Interim Report v3.1.pdf ├── CITATION.cff └── README.md ├── CITATION.cff ├── Value Tables ├── latex │ ├── tbl-extremalvalues.tex │ ├── value-table-ocp_e4m3.tex │ ├── value-table-p3109_p4.tex │ ├── value-table-ocp_e5m2.tex │ ├── value-table-p3109_p5.tex │ ├── value-table-p3109_p3.tex │ ├── value-table-p3109_p7.tex │ ├── value-table-p3109_p6.tex │ ├── value-table-p3109_p2.tex │ ├── value-table-p3109_p8.tex │ └── value-table-p3109_p1.tex └── html │ ├── index.html │ └── value-table-ocp_e5m2.html └── README.md /.gitignore: -------------------------------------------------------------------------------- 1 | .vscode/ 2 | -------------------------------------------------------------------------------- /References/TopicRefs/README.md: -------------------------------------------------------------------------------- 1 | Here are topic-specific annotated references. 2 | -------------------------------------------------------------------------------- /Briefs/Discusson on Rounding.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Briefs/Discusson on Rounding.pdf -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | numpy 2 | pandas 3 | pyarrow 4 | jinja2 5 | airium 6 | ipython 7 | ipytest 8 | ipykernel 9 | -------------------------------------------------------------------------------- /References/Papers/README.md: -------------------------------------------------------------------------------- 1 | Any content that is not publicly available was contributed by the author[s]. 2 | 3 | 4 | 5 | 6 | -------------------------------------------------------------------------------- /IEEE WG P3109 Interim Report (latest).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/IEEE WG P3109 Interim Report (latest).pdf -------------------------------------------------------------------------------- /Briefs/The Character of Binary8 Formats.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Briefs/The Character of Binary8 Formats.pdf -------------------------------------------------------------------------------- /References/TopicRefs/Round to Odd (refs).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/TopicRefs/Round to Odd (refs).pdf -------------------------------------------------------------------------------- /References/TopicRefs/Binary8 Formats (refs).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/TopicRefs/Binary8 Formats (refs).pdf -------------------------------------------------------------------------------- /Shared Reports/history/P3109 WG Interim Report.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Shared Reports/history/P3109 WG Interim Report.pdf -------------------------------------------------------------------------------- /References/Papers/NumericalAnalysis/Kahan_Thomas.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/Papers/NumericalAnalysis/Kahan_Thomas.pdf -------------------------------------------------------------------------------- /References/TopicRefs/Stochastic Rounding (refs).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/References/TopicRefs/Stochastic Rounding (refs).pdf -------------------------------------------------------------------------------- /Shared Reports/IEEE WG P3109 Interim Report v3.1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/P3109/Public/HEAD/Shared Reports/IEEE WG P3109 Interim Report v3.1.pdf -------------------------------------------------------------------------------- /Shared Reports/history/README.md: -------------------------------------------------------------------------------- 1 | This is a small archive holding prior versions of the P3109 WG Interim Report that were distributed to the public. 2 | -------------------------------------------------------------------------------- /References/Papers/NumericalAnalysis/README.md: -------------------------------------------------------------------------------- 1 | - Kahan_Thomas 2 | - Augmenting a Programming Language with Complex Arithmetic (1991) 3 | 4 | 5 | 6 | 7 | -------------------------------------------------------------------------------- /References/README.md: -------------------------------------------------------------------------------- 1 | These files contain references that the working group has found useful for various reasons. 2 | There is no private proprietary work and no internal working group information in these documents. 3 | 4 | -------------------------------------------------------------------------------- /CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: If you use this software, please cite it as below. 3 | authors: 4 | - name: IEEE SA P3109 Working Group 5 | title: Interim Report on Binary Floating-point Formats for Machine Learning 6 | version: 0.9.1 7 | date-released: 2024-10-29 8 | copyright: "© 2024 by The Institute of Electrical and Electronics Engineers, Inc." 9 | url: "https://github.com/P3109/Public/blob/main/Shared%20Reports/IEEE%20WG%20P3109%20Interim%20Report.pdf" 10 | -------------------------------------------------------------------------------- /Shared Reports/CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: If you use this software, please cite it as below. 3 | authors: 4 | - name: IEEE SA P3109 Working Group 5 | title: Interim Report on Binary Floating-point Formats for Machine Learning 6 | version: 0.9.1 7 | date-released: 2024-10-29 8 | copyright: "© 2024 by The Institute of Electrical and Electronics Engineers, Inc." 9 | url: "https://github.com/P3109/Public/blob/main/Shared%20Reports/IEEE%20WG%20P3109%20Interim%20Report.pdf" 10 | -------------------------------------------------------------------------------- /Briefs/README.md: -------------------------------------------------------------------------------- 1 | These briefs share some areas of our focus. 2 | 3 | All information is preliminary and subject to correction and change. 4 | - All content is shared in accord with working group guidelines. 5 | - _You are welcome to comment by creating an "issue"._ 6 | 7 | ---- 8 | 9 | ### The Character of Binary8 Formats 10 | Jeffrey Sarnoff 11 | - expressions parameterized by precision 12 | - counts normal and subnormal values 13 | - finds extremal values 14 | 15 | ### Discussion on Rounding 16 | Mantas Mikaitis 17 | - IEEE-754 modes 18 | - Stochastic Rounding 19 | - Round-to-odd 20 | 21 | ---- 22 | 23 | 24 | 25 | 26 | -------------------------------------------------------------------------------- /Shared Reports/README.md: -------------------------------------------------------------------------------- 1 | # IEEE SA Working Group P3109 2 | ## Arithmetic Formats for Machine Learning 3 | 4 | https://sagroups.ieee.org/p3109wgpublic/ 5 | 6 | ## Public materials 7 | 8 | This repository contains an Interim Report prepared on behalf of the P3109 members. The document remains under development and review. While you are welcome to this draft, editing is disallowed. All distribution of the draft should be sourced from here. 9 | 10 | The content is an unapproved draft of elements that may become used in a proposed IEEE Standard. As such, the material subject to change. USE AT YOUR OWN RISK! In particular, the content must not be utilized for any conformance/compliance purposes. 11 | 12 | You may use [GitHub issues here](https://github.com/P3109/Public/issues) for notes, questions, and suggestions. 13 | -------------------------------------------------------------------------------- /Value Tables/latex/tbl-extremalvalues.tex: -------------------------------------------------------------------------------- 1 | % File: tbl-extremalvalues.tex 2 | % Generated from https://github.com/P3109/Public/blob/main/Value%20Tables/make-value-tables.ipynb 3 | \begin{tabular}{llllll} 4 | \toprule 5 | Format & minSubnormal & maxSubnormal & minNormal & maxNormal & maxFinite \\ 6 | \midrule 7 | p1 & nan & nan & 1*2^-62 & 1*2^63 & 1*2^63 \\ 8 | p2 & 1*2^-32 & 1*2^-32 & 1*2^-31 & 1*2^31 & 1*2^31 \\ 9 | p3 & 1*2^-17 & 3/2*2^-16 & 1*2^-15 & 3/2*2^15 & 3/2*2^15 \\ 10 | p4 & 1*2^-10 & 7/4*2^-8 & 1*2^-7 & 7/4*2^7 & 7/4*2^7 \\ 11 | p5 & 1*2^-7 & 15/8*2^-4 & 1*2^-3 & 15/8*2^3 & 15/8*2^3 \\ 12 | p6 & 1*2^-6 & 31/16*2^-2 & 1*2^-1 & 31/16*2^1 & 31/16*2^1 \\ 13 | p7 & 1*2^-6 & 63/32*2^-1 & 1*2^0 & 63/32*2^0 & 63/32*2^0 \\ 14 | ocp\_e5m2 & 1*2^-16 & 3/2*2^-15 & 1*2^-14 & 7/4*2^15 & 7/4*2^15 \\ 15 | ocp\_e4m3 & 1*2^-9 & 7/4*2^-7 & 1*2^-6 & 7/4*2^8 & 7/4*2^8 \\ 16 | \bottomrule 17 | \end{tabular} 18 | 19 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # IEEE SA Working Group P3109 2 | ## Arithmetic Formats for Machine Learning 3 | 4 | https://sagroups.ieee.org/p3109wgpublic/ 5 | 6 | ## Public materials 7 | 8 | This repository contains interim outputs from the deliberations of IEEE SA WG P3109 on Arithmetic Formats for Machine Learning. The contents of the repository represent unapproved drafts of elements that may become used in a proposed IEEE Standard. 9 | 10 | As such, the contents are subject to change. USE AT YOUR OWN RISK! 11 | In particular, the contents of the repository must not be utilized for any conformance/compliance purposes. 12 | 13 | You may use the GitHub ["Issues"](https://github.com/P3109/Public/issues) facility for notes, questions, suggestions. 14 | 15 | ## Contents 16 | 17 | - [Interim Report](https://github.com/P3109/Public/blob/main/Shared%20Reports/IEEE%20WG%20P3109%20Interim%20Report%20v3.pdf) 18 | - [References](References/README.md) 19 | - [Briefs](Briefs/README.md) 20 | - Value Tables 21 | - [Notebook](Value%20Tables/make-value-tables.ipynb) 22 | - [Generated tables](https://htmlpreview.github.io/?https://github.com/P3109/Public/blob/main/Value%20Tables/html/index.html) 23 | -------------------------------------------------------------------------------- /Value Tables/html/index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | F8 value tables 5 | 6 | 7 |

F8 value tables

8 |
    9 |
  1. 10 | 11 | p3109_p1 12 | 13 |
  2. 14 |
  3. 15 | 16 | p3109_p2 17 | 18 |
  4. 19 |
  5. 20 | 21 | p3109_p3 22 | 23 |
  6. 24 |
  7. 25 | 26 | p3109_p4 27 | 28 |
  8. 29 |
  9. 30 | 31 | p3109_p5 32 | 33 |
  10. 34 |
  11. 35 | 36 | p3109_p6 37 | 38 |
  12. 39 |
  13. 40 | 41 | p3109_p7 42 | 43 |
  14. 44 |
  15. 45 | 46 | ocp_e5m2 47 | 48 |
  16. 49 |
  17. 50 | 51 | ocp_e4m3 52 | 53 |
  18. 54 |
55 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-ocp_e4m3.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_0000\_000 = \f{0.0}}& 3 | \normal{0x40 = 0\_1000\_000 = +0b1.000\pow{1} = \f{2.0}}& 4 | \special{0x80 = 1\_0000\_000 = \f{\neg{0.0}}}& 5 | \normal{0xc0 = 1\_1000\_000 = -0b1.000\pow{1} = \f{\neg{2.0}}}\\ 6 | \subnormal{0x01 = 0\_0000\_001 = +0b0.001\pow{\neg{6}} = \f{0.001953125}}& 7 | \normal{0x41 = 0\_1000\_001 = +0b1.001\pow{1} = \f{2.25}}& 8 | \subnormal{0x81 = 1\_0000\_001 = -0b0.001\pow{\neg{6}} = \f{\neg{0.001953125}}}& 9 | \normal{0xc1 = 1\_1000\_001 = -0b1.001\pow{1} = \f{\neg{2.25}}}\\ 10 | \subnormal{0x02 = 0\_0000\_010 = +0b0.010\pow{\neg{6}} = \f{0.00390625}}& 11 | \normal{0x42 = 0\_1000\_010 = +0b1.010\pow{1} = \f{2.5}}& 12 | \subnormal{0x82 = 1\_0000\_010 = -0b0.010\pow{\neg{6}} = \f{\neg{0.00390625}}}& 13 | \normal{0xc2 = 1\_1000\_010 = -0b1.010\pow{1} = \f{\neg{2.5}}}\\ 14 | \subnormal{0x03 = 0\_0000\_011 = +0b0.011\pow{\neg{6}} = \f{0.005859375}}& 15 | \normal{0x43 = 0\_1000\_011 = +0b1.011\pow{1} = \f{2.75}}& 16 | \subnormal{0x83 = 1\_0000\_011 = -0b0.011\pow{\neg{6}} = \f{\neg{0.005859375}}}& 17 | \normal{0xc3 = 1\_1000\_011 = -0b1.011\pow{1} = \f{\neg{2.75}}}\\ 18 | \subnormal{0x04 = 0\_0000\_100 = +0b0.100\pow{\neg{6}} = \f{0.0078125}}& 19 | \normal{0x44 = 0\_1000\_100 = +0b1.100\pow{1} = \f{3.0}}& 20 | \subnormal{0x84 = 1\_0000\_100 = -0b0.100\pow{\neg{6}} = \f{\neg{0.0078125}}}& 21 | \normal{0xc4 = 1\_1000\_100 = -0b1.100\pow{1} = \f{\neg{3.0}}}\\ 22 | \subnormal{0x05 = 0\_0000\_101 = +0b0.101\pow{\neg{6}} = \f{0.009765625}}& 23 | \normal{0x45 = 0\_1000\_101 = +0b1.101\pow{1} = \f{3.25}}& 24 | \subnormal{0x85 = 1\_0000\_101 = -0b0.101\pow{\neg{6}} = \f{\neg{0.009765625}}}& 25 | \normal{0xc5 = 1\_1000\_101 = -0b1.101\pow{1} = \f{\neg{3.25}}}\\ 26 | \subnormal{0x06 = 0\_0000\_110 = +0b0.110\pow{\neg{6}} = \f{0.01171875}}& 27 | \normal{0x46 = 0\_1000\_110 = +0b1.110\pow{1} = \f{3.5}}& 28 | \subnormal{0x86 = 1\_0000\_110 = -0b0.110\pow{\neg{6}} = \f{\neg{0.01171875}}}& 29 | \normal{0xc6 = 1\_1000\_110 = -0b1.110\pow{1} = \f{\neg{3.5}}}\\ 30 | \subnormal{0x07 = 0\_0000\_111 = +0b0.111\pow{\neg{6}} = \f{0.013671875}}& 31 | \normal{0x47 = 0\_1000\_111 = +0b1.111\pow{1} = \f{3.75}}& 32 | \subnormal{0x87 = 1\_0000\_111 = -0b0.111\pow{\neg{6}} = \f{\neg{0.013671875}}}& 33 | \normal{0xc7 = 1\_1000\_111 = -0b1.111\pow{1} = \f{\neg{3.75}}}\\ 34 | \normal{0x08 = 0\_0001\_000 = +0b1.000\pow{\neg{6}} = \f{0.015625}}& 35 | \normal{0x48 = 0\_1001\_000 = +0b1.000\pow{2} = \f{4.0}}& 36 | \normal{0x88 = 1\_0001\_000 = -0b1.000\pow{\neg{6}} = \f{\neg{0.015625}}}& 37 | \normal{0xc8 = 1\_1001\_000 = -0b1.000\pow{2} = \f{\neg{4.0}}}\\ 38 | \normal{0x09 = 0\_0001\_001 = +0b1.001\pow{\neg{6}} = \f{0.017578125}}& 39 | \normal{0x49 = 0\_1001\_001 = +0b1.001\pow{2} = \f{4.5}}& 40 | \normal{0x89 = 1\_0001\_001 = -0b1.001\pow{\neg{6}} = \f{\neg{0.017578125}}}& 41 | \normal{0xc9 = 1\_1001\_001 = -0b1.001\pow{2} = \f{\neg{4.5}}}\\ 42 | \normal{0x0a = 0\_0001\_010 = +0b1.010\pow{\neg{6}} = \f{0.01953125}}& 43 | \normal{0x4a = 0\_1001\_010 = +0b1.010\pow{2} = \f{5.0}}& 44 | \normal{0x8a = 1\_0001\_010 = -0b1.010\pow{\neg{6}} = \f{\neg{0.01953125}}}& 45 | \normal{0xca = 1\_1001\_010 = -0b1.010\pow{2} = \f{\neg{5.0}}}\\ 46 | \normal{0x0b = 0\_0001\_011 = +0b1.011\pow{\neg{6}} = \f{0.021484375}}& 47 | \normal{0x4b = 0\_1001\_011 = +0b1.011\pow{2} = \f{5.5}}& 48 | \normal{0x8b = 1\_0001\_011 = -0b1.011\pow{\neg{6}} = \f{\neg{0.021484375}}}& 49 | \normal{0xcb = 1\_1001\_011 = -0b1.011\pow{2} = \f{\neg{5.5}}}\\ 50 | \normal{0x0c = 0\_0001\_100 = +0b1.100\pow{\neg{6}} = \f{0.0234375}}& 51 | \normal{0x4c = 0\_1001\_100 = +0b1.100\pow{2} = \f{6.0}}& 52 | \normal{0x8c = 1\_0001\_100 = -0b1.100\pow{\neg{6}} = \f{\neg{0.0234375}}}& 53 | \normal{0xcc = 1\_1001\_100 = -0b1.100\pow{2} = \f{\neg{6.0}}}\\ 54 | \normal{0x0d = 0\_0001\_101 = +0b1.101\pow{\neg{6}} = \f{0.025390625}}& 55 | \normal{0x4d = 0\_1001\_101 = +0b1.101\pow{2} = \f{6.5}}& 56 | \normal{0x8d = 1\_0001\_101 = -0b1.101\pow{\neg{6}} = \f{\neg{0.025390625}}}& 57 | \normal{0xcd = 1\_1001\_101 = -0b1.101\pow{2} = \f{\neg{6.5}}}\\ 58 | \normal{0x0e = 0\_0001\_110 = +0b1.110\pow{\neg{6}} = \f{0.02734375}}& 59 | \normal{0x4e = 0\_1001\_110 = +0b1.110\pow{2} = \f{7.0}}& 60 | \normal{0x8e = 1\_0001\_110 = -0b1.110\pow{\neg{6}} = \f{\neg{0.02734375}}}& 61 | \normal{0xce = 1\_1001\_110 = -0b1.110\pow{2} = \f{\neg{7.0}}}\\ 62 | \normal{0x0f = 0\_0001\_111 = +0b1.111\pow{\neg{6}} = \f{0.029296875}}& 63 | \normal{0x4f = 0\_1001\_111 = +0b1.111\pow{2} = \f{7.5}}& 64 | \normal{0x8f = 1\_0001\_111 = -0b1.111\pow{\neg{6}} = \f{\neg{0.029296875}}}& 65 | \normal{0xcf = 1\_1001\_111 = -0b1.111\pow{2} = \f{\neg{7.5}}}\\ 66 | \normal{0x10 = 0\_0010\_000 = +0b1.000\pow{\neg{5}} = \f{0.03125}}& 67 | \normal{0x50 = 0\_1010\_000 = +0b1.000\pow{3} = \f{8.0}}& 68 | \normal{0x90 = 1\_0010\_000 = -0b1.000\pow{\neg{5}} = \f{\neg{0.03125}}}& 69 | \normal{0xd0 = 1\_1010\_000 = -0b1.000\pow{3} = \f{\neg{8.0}}}\\ 70 | \normal{0x11 = 0\_0010\_001 = +0b1.001\pow{\neg{5}} = \f{0.03515625}}& 71 | \normal{0x51 = 0\_1010\_001 = +0b1.001\pow{3} = \f{9.0}}& 72 | \normal{0x91 = 1\_0010\_001 = -0b1.001\pow{\neg{5}} = \f{\neg{0.03515625}}}& 73 | \normal{0xd1 = 1\_1010\_001 = -0b1.001\pow{3} = \f{\neg{9.0}}}\\ 74 | \normal{0x12 = 0\_0010\_010 = +0b1.010\pow{\neg{5}} = \f{0.0390625}}& 75 | \normal{0x52 = 0\_1010\_010 = +0b1.010\pow{3} = \f{10.0}}& 76 | \normal{0x92 = 1\_0010\_010 = -0b1.010\pow{\neg{5}} = \f{\neg{0.0390625}}}& 77 | \normal{0xd2 = 1\_1010\_010 = -0b1.010\pow{3} = \f{\neg{10.0}}}\\ 78 | \normal{0x13 = 0\_0010\_011 = +0b1.011\pow{\neg{5}} = \f{0.04296875}}& 79 | \normal{0x53 = 0\_1010\_011 = +0b1.011\pow{3} = \f{11.0}}& 80 | \normal{0x93 = 1\_0010\_011 = -0b1.011\pow{\neg{5}} = \f{\neg{0.04296875}}}& 81 | \normal{0xd3 = 1\_1010\_011 = -0b1.011\pow{3} = \f{\neg{11.0}}}\\ 82 | \normal{0x14 = 0\_0010\_100 = +0b1.100\pow{\neg{5}} = \f{0.046875}}& 83 | \normal{0x54 = 0\_1010\_100 = +0b1.100\pow{3} = \f{12.0}}& 84 | \normal{0x94 = 1\_0010\_100 = -0b1.100\pow{\neg{5}} = \f{\neg{0.046875}}}& 85 | \normal{0xd4 = 1\_1010\_100 = -0b1.100\pow{3} = \f{\neg{12.0}}}\\ 86 | \normal{0x15 = 0\_0010\_101 = +0b1.101\pow{\neg{5}} = \f{0.05078125}}& 87 | \normal{0x55 = 0\_1010\_101 = +0b1.101\pow{3} = \f{13.0}}& 88 | \normal{0x95 = 1\_0010\_101 = -0b1.101\pow{\neg{5}} = \f{\neg{0.05078125}}}& 89 | \normal{0xd5 = 1\_1010\_101 = -0b1.101\pow{3} = \f{\neg{13.0}}}\\ 90 | \normal{0x16 = 0\_0010\_110 = +0b1.110\pow{\neg{5}} = \f{0.0546875}}& 91 | \normal{0x56 = 0\_1010\_110 = +0b1.110\pow{3} = \f{14.0}}& 92 | \normal{0x96 = 1\_0010\_110 = -0b1.110\pow{\neg{5}} = \f{\neg{0.0546875}}}& 93 | \normal{0xd6 = 1\_1010\_110 = -0b1.110\pow{3} = \f{\neg{14.0}}}\\ 94 | \normal{0x17 = 0\_0010\_111 = +0b1.111\pow{\neg{5}} = \f{0.05859375}}& 95 | \normal{0x57 = 0\_1010\_111 = +0b1.111\pow{3} = \f{15.0}}& 96 | \normal{0x97 = 1\_0010\_111 = -0b1.111\pow{\neg{5}} = \f{\neg{0.05859375}}}& 97 | \normal{0xd7 = 1\_1010\_111 = -0b1.111\pow{3} = \f{\neg{15.0}}}\\ 98 | \normal{0x18 = 0\_0011\_000 = +0b1.000\pow{\neg{4}} = \f{0.0625}}& 99 | \normal{0x58 = 0\_1011\_000 = +0b1.000\pow{4} = \f{16.0}}& 100 | \normal{0x98 = 1\_0011\_000 = -0b1.000\pow{\neg{4}} = \f{\neg{0.0625}}}& 101 | \normal{0xd8 = 1\_1011\_000 = -0b1.000\pow{4} = \f{\neg{16.0}}}\\ 102 | \normal{0x19 = 0\_0011\_001 = +0b1.001\pow{\neg{4}} = \f{0.0703125}}& 103 | \normal{0x59 = 0\_1011\_001 = +0b1.001\pow{4} = \f{18.0}}& 104 | \normal{0x99 = 1\_0011\_001 = -0b1.001\pow{\neg{4}} = \f{\neg{0.0703125}}}& 105 | \normal{0xd9 = 1\_1011\_001 = -0b1.001\pow{4} = \f{\neg{18.0}}}\\ 106 | \normal{0x1a = 0\_0011\_010 = +0b1.010\pow{\neg{4}} = \f{0.078125}}& 107 | \normal{0x5a = 0\_1011\_010 = +0b1.010\pow{4} = \f{20.0}}& 108 | \normal{0x9a = 1\_0011\_010 = -0b1.010\pow{\neg{4}} = \f{\neg{0.078125}}}& 109 | \normal{0xda = 1\_1011\_010 = -0b1.010\pow{4} = \f{\neg{20.0}}}\\ 110 | \normal{0x1b = 0\_0011\_011 = +0b1.011\pow{\neg{4}} = \f{0.0859375}}& 111 | \normal{0x5b = 0\_1011\_011 = +0b1.011\pow{4} = \f{22.0}}& 112 | \normal{0x9b = 1\_0011\_011 = -0b1.011\pow{\neg{4}} = \f{\neg{0.0859375}}}& 113 | \normal{0xdb = 1\_1011\_011 = -0b1.011\pow{4} = \f{\neg{22.0}}}\\ 114 | \normal{0x1c = 0\_0011\_100 = +0b1.100\pow{\neg{4}} = \f{0.09375}}& 115 | \normal{0x5c = 0\_1011\_100 = +0b1.100\pow{4} = \f{24.0}}& 116 | \normal{0x9c = 1\_0011\_100 = -0b1.100\pow{\neg{4}} = \f{\neg{0.09375}}}& 117 | \normal{0xdc = 1\_1011\_100 = -0b1.100\pow{4} = \f{\neg{24.0}}}\\ 118 | \normal{0x1d = 0\_0011\_101 = +0b1.101\pow{\neg{4}} = \f{0.1015625}}& 119 | \normal{0x5d = 0\_1011\_101 = +0b1.101\pow{4} = \f{26.0}}& 120 | \normal{0x9d = 1\_0011\_101 = -0b1.101\pow{\neg{4}} = \f{\neg{0.1015625}}}& 121 | \normal{0xdd = 1\_1011\_101 = -0b1.101\pow{4} = \f{\neg{26.0}}}\\ 122 | \normal{0x1e = 0\_0011\_110 = +0b1.110\pow{\neg{4}} = \f{0.109375}}& 123 | \normal{0x5e = 0\_1011\_110 = +0b1.110\pow{4} = \f{28.0}}& 124 | \normal{0x9e = 1\_0011\_110 = -0b1.110\pow{\neg{4}} = \f{\neg{0.109375}}}& 125 | \normal{0xde = 1\_1011\_110 = -0b1.110\pow{4} = \f{\neg{28.0}}}\\ 126 | \normal{0x1f = 0\_0011\_111 = +0b1.111\pow{\neg{4}} = \f{0.1171875}}& 127 | \normal{0x5f = 0\_1011\_111 = +0b1.111\pow{4} = \f{30.0}}& 128 | \normal{0x9f = 1\_0011\_111 = -0b1.111\pow{\neg{4}} = \f{\neg{0.1171875}}}& 129 | \normal{0xdf = 1\_1011\_111 = -0b1.111\pow{4} = \f{\neg{30.0}}}\\ 130 | \normal{0x20 = 0\_0100\_000 = +0b1.000\pow{\neg{3}} = \f{0.125}}& 131 | \normal{0x60 = 0\_1100\_000 = +0b1.000\pow{5} = \f{32.0}}& 132 | \normal{0xa0 = 1\_0100\_000 = -0b1.000\pow{\neg{3}} = \f{\neg{0.125}}}& 133 | \normal{0xe0 = 1\_1100\_000 = -0b1.000\pow{5} = \f{\neg{32.0}}}\\ 134 | \normal{0x21 = 0\_0100\_001 = +0b1.001\pow{\neg{3}} = \f{0.140625}}& 135 | \normal{0x61 = 0\_1100\_001 = +0b1.001\pow{5} = \f{36.0}}& 136 | \normal{0xa1 = 1\_0100\_001 = -0b1.001\pow{\neg{3}} = \f{\neg{0.140625}}}& 137 | \normal{0xe1 = 1\_1100\_001 = -0b1.001\pow{5} = \f{\neg{36.0}}}\\ 138 | \normal{0x22 = 0\_0100\_010 = +0b1.010\pow{\neg{3}} = \f{0.15625}}& 139 | \normal{0x62 = 0\_1100\_010 = +0b1.010\pow{5} = \f{40.0}}& 140 | \normal{0xa2 = 1\_0100\_010 = -0b1.010\pow{\neg{3}} = \f{\neg{0.15625}}}& 141 | \normal{0xe2 = 1\_1100\_010 = -0b1.010\pow{5} = \f{\neg{40.0}}}\\ 142 | \normal{0x23 = 0\_0100\_011 = +0b1.011\pow{\neg{3}} = \f{0.171875}}& 143 | \normal{0x63 = 0\_1100\_011 = +0b1.011\pow{5} = \f{44.0}}& 144 | \normal{0xa3 = 1\_0100\_011 = -0b1.011\pow{\neg{3}} = \f{\neg{0.171875}}}& 145 | \normal{0xe3 = 1\_1100\_011 = -0b1.011\pow{5} = \f{\neg{44.0}}}\\ 146 | \normal{0x24 = 0\_0100\_100 = +0b1.100\pow{\neg{3}} = \f{0.1875}}& 147 | \normal{0x64 = 0\_1100\_100 = +0b1.100\pow{5} = \f{48.0}}& 148 | \normal{0xa4 = 1\_0100\_100 = -0b1.100\pow{\neg{3}} = \f{\neg{0.1875}}}& 149 | \normal{0xe4 = 1\_1100\_100 = -0b1.100\pow{5} = \f{\neg{48.0}}}\\ 150 | \normal{0x25 = 0\_0100\_101 = +0b1.101\pow{\neg{3}} = \f{0.203125}}& 151 | \normal{0x65 = 0\_1100\_101 = +0b1.101\pow{5} = \f{52.0}}& 152 | \normal{0xa5 = 1\_0100\_101 = -0b1.101\pow{\neg{3}} = \f{\neg{0.203125}}}& 153 | \normal{0xe5 = 1\_1100\_101 = -0b1.101\pow{5} = \f{\neg{52.0}}}\\ 154 | \normal{0x26 = 0\_0100\_110 = +0b1.110\pow{\neg{3}} = \f{0.21875}}& 155 | \normal{0x66 = 0\_1100\_110 = +0b1.110\pow{5} = \f{56.0}}& 156 | \normal{0xa6 = 1\_0100\_110 = -0b1.110\pow{\neg{3}} = \f{\neg{0.21875}}}& 157 | \normal{0xe6 = 1\_1100\_110 = -0b1.110\pow{5} = \f{\neg{56.0}}}\\ 158 | \normal{0x27 = 0\_0100\_111 = +0b1.111\pow{\neg{3}} = \f{0.234375}}& 159 | \normal{0x67 = 0\_1100\_111 = +0b1.111\pow{5} = \f{60.0}}& 160 | \normal{0xa7 = 1\_0100\_111 = -0b1.111\pow{\neg{3}} = \f{\neg{0.234375}}}& 161 | \normal{0xe7 = 1\_1100\_111 = -0b1.111\pow{5} = \f{\neg{60.0}}}\\ 162 | \normal{0x28 = 0\_0101\_000 = +0b1.000\pow{\neg{2}} = \f{0.25}}& 163 | \normal{0x68 = 0\_1101\_000 = +0b1.000\pow{6} = \f{64.0}}& 164 | \normal{0xa8 = 1\_0101\_000 = -0b1.000\pow{\neg{2}} = \f{\neg{0.25}}}& 165 | \normal{0xe8 = 1\_1101\_000 = -0b1.000\pow{6} = \f{\neg{64.0}}}\\ 166 | \normal{0x29 = 0\_0101\_001 = +0b1.001\pow{\neg{2}} = \f{0.28125}}& 167 | \normal{0x69 = 0\_1101\_001 = +0b1.001\pow{6} = \f{72.0}}& 168 | \normal{0xa9 = 1\_0101\_001 = -0b1.001\pow{\neg{2}} = \f{\neg{0.28125}}}& 169 | \normal{0xe9 = 1\_1101\_001 = -0b1.001\pow{6} = \f{\neg{72.0}}}\\ 170 | \normal{0x2a = 0\_0101\_010 = +0b1.010\pow{\neg{2}} = \f{0.3125}}& 171 | \normal{0x6a = 0\_1101\_010 = +0b1.010\pow{6} = \f{80.0}}& 172 | \normal{0xaa = 1\_0101\_010 = -0b1.010\pow{\neg{2}} = \f{\neg{0.3125}}}& 173 | \normal{0xea = 1\_1101\_010 = -0b1.010\pow{6} = \f{\neg{80.0}}}\\ 174 | \normal{0x2b = 0\_0101\_011 = +0b1.011\pow{\neg{2}} = \f{0.34375}}& 175 | \normal{0x6b = 0\_1101\_011 = +0b1.011\pow{6} = \f{88.0}}& 176 | \normal{0xab = 1\_0101\_011 = -0b1.011\pow{\neg{2}} = \f{\neg{0.34375}}}& 177 | \normal{0xeb = 1\_1101\_011 = -0b1.011\pow{6} = \f{\neg{88.0}}}\\ 178 | \normal{0x2c = 0\_0101\_100 = +0b1.100\pow{\neg{2}} = \f{0.375}}& 179 | \normal{0x6c = 0\_1101\_100 = +0b1.100\pow{6} = \f{96.0}}& 180 | \normal{0xac = 1\_0101\_100 = -0b1.100\pow{\neg{2}} = \f{\neg{0.375}}}& 181 | \normal{0xec = 1\_1101\_100 = -0b1.100\pow{6} = \f{\neg{96.0}}}\\ 182 | \normal{0x2d = 0\_0101\_101 = +0b1.101\pow{\neg{2}} = \f{0.40625}}& 183 | \normal{0x6d = 0\_1101\_101 = +0b1.101\pow{6} = \f{104.0}}& 184 | \normal{0xad = 1\_0101\_101 = -0b1.101\pow{\neg{2}} = \f{\neg{0.40625}}}& 185 | \normal{0xed = 1\_1101\_101 = -0b1.101\pow{6} = \f{\neg{104.0}}}\\ 186 | \normal{0x2e = 0\_0101\_110 = +0b1.110\pow{\neg{2}} = \f{0.4375}}& 187 | \normal{0x6e = 0\_1101\_110 = +0b1.110\pow{6} = \f{112.0}}& 188 | \normal{0xae = 1\_0101\_110 = -0b1.110\pow{\neg{2}} = \f{\neg{0.4375}}}& 189 | \normal{0xee = 1\_1101\_110 = -0b1.110\pow{6} = \f{\neg{112.0}}}\\ 190 | \normal{0x2f = 0\_0101\_111 = +0b1.111\pow{\neg{2}} = \f{0.46875}}& 191 | \normal{0x6f = 0\_1101\_111 = +0b1.111\pow{6} = \f{120.0}}& 192 | \normal{0xaf = 1\_0101\_111 = -0b1.111\pow{\neg{2}} = \f{\neg{0.46875}}}& 193 | \normal{0xef = 1\_1101\_111 = -0b1.111\pow{6} = \f{\neg{120.0}}}\\ 194 | \normal{0x30 = 0\_0110\_000 = +0b1.000\pow{\neg{1}} = \f{0.5}}& 195 | \normal{0x70 = 0\_1110\_000 = +0b1.000\pow{7} = \f{128.0}}& 196 | \normal{0xb0 = 1\_0110\_000 = -0b1.000\pow{\neg{1}} = \f{\neg{0.5}}}& 197 | \normal{0xf0 = 1\_1110\_000 = -0b1.000\pow{7} = \f{\neg{128.0}}}\\ 198 | \normal{0x31 = 0\_0110\_001 = +0b1.001\pow{\neg{1}} = \f{0.5625}}& 199 | \normal{0x71 = 0\_1110\_001 = +0b1.001\pow{7} = \f{144.0}}& 200 | \normal{0xb1 = 1\_0110\_001 = -0b1.001\pow{\neg{1}} = \f{\neg{0.5625}}}& 201 | \normal{0xf1 = 1\_1110\_001 = -0b1.001\pow{7} = \f{\neg{144.0}}}\\ 202 | \normal{0x32 = 0\_0110\_010 = +0b1.010\pow{\neg{1}} = \f{0.625}}& 203 | \normal{0x72 = 0\_1110\_010 = +0b1.010\pow{7} = \f{160.0}}& 204 | \normal{0xb2 = 1\_0110\_010 = -0b1.010\pow{\neg{1}} = \f{\neg{0.625}}}& 205 | \normal{0xf2 = 1\_1110\_010 = -0b1.010\pow{7} = \f{\neg{160.0}}}\\ 206 | \normal{0x33 = 0\_0110\_011 = +0b1.011\pow{\neg{1}} = \f{0.6875}}& 207 | \normal{0x73 = 0\_1110\_011 = +0b1.011\pow{7} = \f{176.0}}& 208 | \normal{0xb3 = 1\_0110\_011 = -0b1.011\pow{\neg{1}} = \f{\neg{0.6875}}}& 209 | \normal{0xf3 = 1\_1110\_011 = -0b1.011\pow{7} = \f{\neg{176.0}}}\\ 210 | \normal{0x34 = 0\_0110\_100 = +0b1.100\pow{\neg{1}} = \f{0.75}}& 211 | \normal{0x74 = 0\_1110\_100 = +0b1.100\pow{7} = \f{192.0}}& 212 | \normal{0xb4 = 1\_0110\_100 = -0b1.100\pow{\neg{1}} = \f{\neg{0.75}}}& 213 | \normal{0xf4 = 1\_1110\_100 = -0b1.100\pow{7} = \f{\neg{192.0}}}\\ 214 | \normal{0x35 = 0\_0110\_101 = +0b1.101\pow{\neg{1}} = \f{0.8125}}& 215 | \normal{0x75 = 0\_1110\_101 = +0b1.101\pow{7} = \f{208.0}}& 216 | \normal{0xb5 = 1\_0110\_101 = -0b1.101\pow{\neg{1}} = \f{\neg{0.8125}}}& 217 | \normal{0xf5 = 1\_1110\_101 = -0b1.101\pow{7} = \f{\neg{208.0}}}\\ 218 | \normal{0x36 = 0\_0110\_110 = +0b1.110\pow{\neg{1}} = \f{0.875}}& 219 | \normal{0x76 = 0\_1110\_110 = +0b1.110\pow{7} = \f{224.0}}& 220 | \normal{0xb6 = 1\_0110\_110 = -0b1.110\pow{\neg{1}} = \f{\neg{0.875}}}& 221 | \normal{0xf6 = 1\_1110\_110 = -0b1.110\pow{7} = \f{\neg{224.0}}}\\ 222 | \normal{0x37 = 0\_0110\_111 = +0b1.111\pow{\neg{1}} = \f{0.9375}}& 223 | \normal{0x77 = 0\_1110\_111 = +0b1.111\pow{7} = \f{240.0}}& 224 | \normal{0xb7 = 1\_0110\_111 = -0b1.111\pow{\neg{1}} = \f{\neg{0.9375}}}& 225 | \normal{0xf7 = 1\_1110\_111 = -0b1.111\pow{7} = \f{\neg{240.0}}}\\ 226 | \normal{0x38 = 0\_0111\_000 = +0b1.000\pow{0} = \f{1.0}}& 227 | \normal{0x78 = 0\_1111\_000 = +0b1.000\pow{8} = \f{256.0}}& 228 | \normal{0xb8 = 1\_0111\_000 = -0b1.000\pow{0} = \f{\neg{1.0}}}& 229 | \normal{0xf8 = 1\_1111\_000 = -0b1.000\pow{8} = \f{\neg{256.0}}}\\ 230 | \normal{0x39 = 0\_0111\_001 = +0b1.001\pow{0} = \f{1.125}}& 231 | \normal{0x79 = 0\_1111\_001 = +0b1.001\pow{8} = \f{288.0}}& 232 | \normal{0xb9 = 1\_0111\_001 = -0b1.001\pow{0} = \f{\neg{1.125}}}& 233 | \normal{0xf9 = 1\_1111\_001 = -0b1.001\pow{8} = \f{\neg{288.0}}}\\ 234 | \normal{0x3a = 0\_0111\_010 = +0b1.010\pow{0} = \f{1.25}}& 235 | \normal{0x7a = 0\_1111\_010 = +0b1.010\pow{8} = \f{320.0}}& 236 | \normal{0xba = 1\_0111\_010 = -0b1.010\pow{0} = \f{\neg{1.25}}}& 237 | \normal{0xfa = 1\_1111\_010 = -0b1.010\pow{8} = \f{\neg{320.0}}}\\ 238 | \normal{0x3b = 0\_0111\_011 = +0b1.011\pow{0} = \f{1.375}}& 239 | \normal{0x7b = 0\_1111\_011 = +0b1.011\pow{8} = \f{352.0}}& 240 | \normal{0xbb = 1\_0111\_011 = -0b1.011\pow{0} = \f{\neg{1.375}}}& 241 | \normal{0xfb = 1\_1111\_011 = -0b1.011\pow{8} = \f{\neg{352.0}}}\\ 242 | \normal{0x3c = 0\_0111\_100 = +0b1.100\pow{0} = \f{1.5}}& 243 | \normal{0x7c = 0\_1111\_100 = +0b1.100\pow{8} = \f{384.0}}& 244 | \normal{0xbc = 1\_0111\_100 = -0b1.100\pow{0} = \f{\neg{1.5}}}& 245 | \normal{0xfc = 1\_1111\_100 = -0b1.100\pow{8} = \f{\neg{384.0}}}\\ 246 | \normal{0x3d = 0\_0111\_101 = +0b1.101\pow{0} = \f{1.625}}& 247 | \normal{0x7d = 0\_1111\_101 = +0b1.101\pow{8} = \f{416.0}}& 248 | \normal{0xbd = 1\_0111\_101 = -0b1.101\pow{0} = \f{\neg{1.625}}}& 249 | \normal{0xfd = 1\_1111\_101 = -0b1.101\pow{8} = \f{\neg{416.0}}}\\ 250 | \normal{0x3e = 0\_0111\_110 = +0b1.110\pow{0} = \f{1.75}}& 251 | \normal{0x7e = 0\_1111\_110 = +0b1.110\pow{8} = \f{448.0}}& 252 | \normal{0xbe = 1\_0111\_110 = -0b1.110\pow{0} = \f{\neg{1.75}}}& 253 | \normal{0xfe = 1\_1111\_110 = -0b1.110\pow{8} = \f{\neg{448.0}}}\\ 254 | \normal{0x3f = 0\_0111\_111 = +0b1.111\pow{0} = \f{1.875}}& 255 | \special{0x7f = 0\_1111\_111 = nan}& 256 | \normal{0xbf = 1\_0111\_111 = -0b1.111\pow{0} = \f{\neg{1.875}}}& 257 | \special{0xff = 1\_1111\_111 = nan}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p4.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_0000\_000 = \f{0.0}}& 3 | \normal{0x40 = 0\_1000\_000 = +0b1.000\pow{0} = \f{1.0}}& 4 | \special{0x80 = 1\_0000\_000 = nan}& 5 | \normal{0xc0 = 1\_1000\_000 = -0b1.000\pow{0} = \f{\neg{1.0}}}\\ 6 | \subnormal{0x01 = 0\_0000\_001 = +0b0.001\pow{\neg{7}} = \f{0.0009765625}}& 7 | \normal{0x41 = 0\_1000\_001 = +0b1.001\pow{0} = \f{1.125}}& 8 | \subnormal{0x81 = 1\_0000\_001 = -0b0.001\pow{\neg{7}} = \f{\neg{0.0009765625}}}& 9 | \normal{0xc1 = 1\_1000\_001 = -0b1.001\pow{0} = \f{\neg{1.125}}}\\ 10 | \subnormal{0x02 = 0\_0000\_010 = +0b0.010\pow{\neg{7}} = \f{0.001953125}}& 11 | \normal{0x42 = 0\_1000\_010 = +0b1.010\pow{0} = \f{1.25}}& 12 | \subnormal{0x82 = 1\_0000\_010 = -0b0.010\pow{\neg{7}} = \f{\neg{0.001953125}}}& 13 | \normal{0xc2 = 1\_1000\_010 = -0b1.010\pow{0} = \f{\neg{1.25}}}\\ 14 | \subnormal{0x03 = 0\_0000\_011 = +0b0.011\pow{\neg{7}} = \f{0.0029296875}}& 15 | \normal{0x43 = 0\_1000\_011 = +0b1.011\pow{0} = \f{1.375}}& 16 | \subnormal{0x83 = 1\_0000\_011 = -0b0.011\pow{\neg{7}} = \f{\neg{0.0029296875}}}& 17 | \normal{0xc3 = 1\_1000\_011 = -0b1.011\pow{0} = \f{\neg{1.375}}}\\ 18 | \subnormal{0x04 = 0\_0000\_100 = +0b0.100\pow{\neg{7}} = \f{0.00390625}}& 19 | \normal{0x44 = 0\_1000\_100 = +0b1.100\pow{0} = \f{1.5}}& 20 | \subnormal{0x84 = 1\_0000\_100 = -0b0.100\pow{\neg{7}} = \f{\neg{0.00390625}}}& 21 | \normal{0xc4 = 1\_1000\_100 = -0b1.100\pow{0} = \f{\neg{1.5}}}\\ 22 | \subnormal{0x05 = 0\_0000\_101 = +0b0.101\pow{\neg{7}} = \f{0.0048828125}}& 23 | \normal{0x45 = 0\_1000\_101 = +0b1.101\pow{0} = \f{1.625}}& 24 | \subnormal{0x85 = 1\_0000\_101 = -0b0.101\pow{\neg{7}} = \f{\neg{0.0048828125}}}& 25 | \normal{0xc5 = 1\_1000\_101 = -0b1.101\pow{0} = \f{\neg{1.625}}}\\ 26 | \subnormal{0x06 = 0\_0000\_110 = +0b0.110\pow{\neg{7}} = \f{0.005859375}}& 27 | \normal{0x46 = 0\_1000\_110 = +0b1.110\pow{0} = \f{1.75}}& 28 | \subnormal{0x86 = 1\_0000\_110 = -0b0.110\pow{\neg{7}} = \f{\neg{0.005859375}}}& 29 | \normal{0xc6 = 1\_1000\_110 = -0b1.110\pow{0} = \f{\neg{1.75}}}\\ 30 | \subnormal{0x07 = 0\_0000\_111 = +0b0.111\pow{\neg{7}} = \f{0.0068359375}}& 31 | \normal{0x47 = 0\_1000\_111 = +0b1.111\pow{0} = \f{1.875}}& 32 | \subnormal{0x87 = 1\_0000\_111 = -0b0.111\pow{\neg{7}} = \f{\neg{0.0068359375}}}& 33 | \normal{0xc7 = 1\_1000\_111 = -0b1.111\pow{0} = \f{\neg{1.875}}}\\ 34 | \normal{0x08 = 0\_0001\_000 = +0b1.000\pow{\neg{7}} = \f{0.0078125}}& 35 | \normal{0x48 = 0\_1001\_000 = +0b1.000\pow{1} = \f{2.0}}& 36 | \normal{0x88 = 1\_0001\_000 = -0b1.000\pow{\neg{7}} = \f{\neg{0.0078125}}}& 37 | \normal{0xc8 = 1\_1001\_000 = -0b1.000\pow{1} = \f{\neg{2.0}}}\\ 38 | \normal{0x09 = 0\_0001\_001 = +0b1.001\pow{\neg{7}} = \f{0.0087890625}}& 39 | \normal{0x49 = 0\_1001\_001 = +0b1.001\pow{1} = \f{2.25}}& 40 | \normal{0x89 = 1\_0001\_001 = -0b1.001\pow{\neg{7}} = \f{\neg{0.0087890625}}}& 41 | \normal{0xc9 = 1\_1001\_001 = -0b1.001\pow{1} = \f{\neg{2.25}}}\\ 42 | \normal{0x0a = 0\_0001\_010 = +0b1.010\pow{\neg{7}} = \f{0.009765625}}& 43 | \normal{0x4a = 0\_1001\_010 = +0b1.010\pow{1} = \f{2.5}}& 44 | \normal{0x8a = 1\_0001\_010 = -0b1.010\pow{\neg{7}} = \f{\neg{0.009765625}}}& 45 | \normal{0xca = 1\_1001\_010 = -0b1.010\pow{1} = \f{\neg{2.5}}}\\ 46 | \normal{0x0b = 0\_0001\_011 = +0b1.011\pow{\neg{7}} = \f{0.0107421875}}& 47 | \normal{0x4b = 0\_1001\_011 = +0b1.011\pow{1} = \f{2.75}}& 48 | \normal{0x8b = 1\_0001\_011 = -0b1.011\pow{\neg{7}} = \f{\neg{0.0107421875}}}& 49 | \normal{0xcb = 1\_1001\_011 = -0b1.011\pow{1} = \f{\neg{2.75}}}\\ 50 | \normal{0x0c = 0\_0001\_100 = +0b1.100\pow{\neg{7}} = \f{0.01171875}}& 51 | \normal{0x4c = 0\_1001\_100 = +0b1.100\pow{1} = \f{3.0}}& 52 | \normal{0x8c = 1\_0001\_100 = -0b1.100\pow{\neg{7}} = \f{\neg{0.01171875}}}& 53 | \normal{0xcc = 1\_1001\_100 = -0b1.100\pow{1} = \f{\neg{3.0}}}\\ 54 | \normal{0x0d = 0\_0001\_101 = +0b1.101\pow{\neg{7}} = \f{0.0126953125}}& 55 | \normal{0x4d = 0\_1001\_101 = +0b1.101\pow{1} = \f{3.25}}& 56 | \normal{0x8d = 1\_0001\_101 = -0b1.101\pow{\neg{7}} = \f{\neg{0.0126953125}}}& 57 | \normal{0xcd = 1\_1001\_101 = -0b1.101\pow{1} = \f{\neg{3.25}}}\\ 58 | \normal{0x0e = 0\_0001\_110 = +0b1.110\pow{\neg{7}} = \f{0.013671875}}& 59 | \normal{0x4e = 0\_1001\_110 = +0b1.110\pow{1} = \f{3.5}}& 60 | \normal{0x8e = 1\_0001\_110 = -0b1.110\pow{\neg{7}} = \f{\neg{0.013671875}}}& 61 | \normal{0xce = 1\_1001\_110 = -0b1.110\pow{1} = \f{\neg{3.5}}}\\ 62 | \normal{0x0f = 0\_0001\_111 = +0b1.111\pow{\neg{7}} = \f{0.0146484375}}& 63 | \normal{0x4f = 0\_1001\_111 = +0b1.111\pow{1} = \f{3.75}}& 64 | \normal{0x8f = 1\_0001\_111 = -0b1.111\pow{\neg{7}} = \f{\neg{0.0146484375}}}& 65 | \normal{0xcf = 1\_1001\_111 = -0b1.111\pow{1} = \f{\neg{3.75}}}\\ 66 | \normal{0x10 = 0\_0010\_000 = +0b1.000\pow{\neg{6}} = \f{0.015625}}& 67 | \normal{0x50 = 0\_1010\_000 = +0b1.000\pow{2} = \f{4.0}}& 68 | \normal{0x90 = 1\_0010\_000 = -0b1.000\pow{\neg{6}} = \f{\neg{0.015625}}}& 69 | \normal{0xd0 = 1\_1010\_000 = -0b1.000\pow{2} = \f{\neg{4.0}}}\\ 70 | \normal{0x11 = 0\_0010\_001 = +0b1.001\pow{\neg{6}} = \f{0.017578125}}& 71 | \normal{0x51 = 0\_1010\_001 = +0b1.001\pow{2} = \f{4.5}}& 72 | \normal{0x91 = 1\_0010\_001 = -0b1.001\pow{\neg{6}} = \f{\neg{0.017578125}}}& 73 | \normal{0xd1 = 1\_1010\_001 = -0b1.001\pow{2} = \f{\neg{4.5}}}\\ 74 | \normal{0x12 = 0\_0010\_010 = +0b1.010\pow{\neg{6}} = \f{0.01953125}}& 75 | \normal{0x52 = 0\_1010\_010 = +0b1.010\pow{2} = \f{5.0}}& 76 | \normal{0x92 = 1\_0010\_010 = -0b1.010\pow{\neg{6}} = \f{\neg{0.01953125}}}& 77 | \normal{0xd2 = 1\_1010\_010 = -0b1.010\pow{2} = \f{\neg{5.0}}}\\ 78 | \normal{0x13 = 0\_0010\_011 = +0b1.011\pow{\neg{6}} = \f{0.021484375}}& 79 | \normal{0x53 = 0\_1010\_011 = +0b1.011\pow{2} = \f{5.5}}& 80 | \normal{0x93 = 1\_0010\_011 = -0b1.011\pow{\neg{6}} = \f{\neg{0.021484375}}}& 81 | \normal{0xd3 = 1\_1010\_011 = -0b1.011\pow{2} = \f{\neg{5.5}}}\\ 82 | \normal{0x14 = 0\_0010\_100 = +0b1.100\pow{\neg{6}} = \f{0.0234375}}& 83 | \normal{0x54 = 0\_1010\_100 = +0b1.100\pow{2} = \f{6.0}}& 84 | \normal{0x94 = 1\_0010\_100 = -0b1.100\pow{\neg{6}} = \f{\neg{0.0234375}}}& 85 | \normal{0xd4 = 1\_1010\_100 = -0b1.100\pow{2} = \f{\neg{6.0}}}\\ 86 | \normal{0x15 = 0\_0010\_101 = +0b1.101\pow{\neg{6}} = \f{0.025390625}}& 87 | \normal{0x55 = 0\_1010\_101 = +0b1.101\pow{2} = \f{6.5}}& 88 | \normal{0x95 = 1\_0010\_101 = -0b1.101\pow{\neg{6}} = \f{\neg{0.025390625}}}& 89 | \normal{0xd5 = 1\_1010\_101 = -0b1.101\pow{2} = \f{\neg{6.5}}}\\ 90 | \normal{0x16 = 0\_0010\_110 = +0b1.110\pow{\neg{6}} = \f{0.02734375}}& 91 | \normal{0x56 = 0\_1010\_110 = +0b1.110\pow{2} = \f{7.0}}& 92 | \normal{0x96 = 1\_0010\_110 = -0b1.110\pow{\neg{6}} = \f{\neg{0.02734375}}}& 93 | \normal{0xd6 = 1\_1010\_110 = -0b1.110\pow{2} = \f{\neg{7.0}}}\\ 94 | \normal{0x17 = 0\_0010\_111 = +0b1.111\pow{\neg{6}} = \f{0.029296875}}& 95 | \normal{0x57 = 0\_1010\_111 = +0b1.111\pow{2} = \f{7.5}}& 96 | \normal{0x97 = 1\_0010\_111 = -0b1.111\pow{\neg{6}} = \f{\neg{0.029296875}}}& 97 | \normal{0xd7 = 1\_1010\_111 = -0b1.111\pow{2} = \f{\neg{7.5}}}\\ 98 | \normal{0x18 = 0\_0011\_000 = +0b1.000\pow{\neg{5}} = \f{0.03125}}& 99 | \normal{0x58 = 0\_1011\_000 = +0b1.000\pow{3} = \f{8.0}}& 100 | \normal{0x98 = 1\_0011\_000 = -0b1.000\pow{\neg{5}} = \f{\neg{0.03125}}}& 101 | \normal{0xd8 = 1\_1011\_000 = -0b1.000\pow{3} = \f{\neg{8.0}}}\\ 102 | \normal{0x19 = 0\_0011\_001 = +0b1.001\pow{\neg{5}} = \f{0.03515625}}& 103 | \normal{0x59 = 0\_1011\_001 = +0b1.001\pow{3} = \f{9.0}}& 104 | \normal{0x99 = 1\_0011\_001 = -0b1.001\pow{\neg{5}} = \f{\neg{0.03515625}}}& 105 | \normal{0xd9 = 1\_1011\_001 = -0b1.001\pow{3} = \f{\neg{9.0}}}\\ 106 | \normal{0x1a = 0\_0011\_010 = +0b1.010\pow{\neg{5}} = \f{0.0390625}}& 107 | \normal{0x5a = 0\_1011\_010 = +0b1.010\pow{3} = \f{10.0}}& 108 | \normal{0x9a = 1\_0011\_010 = -0b1.010\pow{\neg{5}} = \f{\neg{0.0390625}}}& 109 | \normal{0xda = 1\_1011\_010 = -0b1.010\pow{3} = \f{\neg{10.0}}}\\ 110 | \normal{0x1b = 0\_0011\_011 = +0b1.011\pow{\neg{5}} = \f{0.04296875}}& 111 | \normal{0x5b = 0\_1011\_011 = +0b1.011\pow{3} = \f{11.0}}& 112 | \normal{0x9b = 1\_0011\_011 = -0b1.011\pow{\neg{5}} = \f{\neg{0.04296875}}}& 113 | \normal{0xdb = 1\_1011\_011 = -0b1.011\pow{3} = \f{\neg{11.0}}}\\ 114 | \normal{0x1c = 0\_0011\_100 = +0b1.100\pow{\neg{5}} = \f{0.046875}}& 115 | \normal{0x5c = 0\_1011\_100 = +0b1.100\pow{3} = \f{12.0}}& 116 | \normal{0x9c = 1\_0011\_100 = -0b1.100\pow{\neg{5}} = \f{\neg{0.046875}}}& 117 | \normal{0xdc = 1\_1011\_100 = -0b1.100\pow{3} = \f{\neg{12.0}}}\\ 118 | \normal{0x1d = 0\_0011\_101 = +0b1.101\pow{\neg{5}} = \f{0.05078125}}& 119 | \normal{0x5d = 0\_1011\_101 = +0b1.101\pow{3} = \f{13.0}}& 120 | \normal{0x9d = 1\_0011\_101 = -0b1.101\pow{\neg{5}} = \f{\neg{0.05078125}}}& 121 | \normal{0xdd = 1\_1011\_101 = -0b1.101\pow{3} = \f{\neg{13.0}}}\\ 122 | \normal{0x1e = 0\_0011\_110 = +0b1.110\pow{\neg{5}} = \f{0.0546875}}& 123 | \normal{0x5e = 0\_1011\_110 = +0b1.110\pow{3} = \f{14.0}}& 124 | \normal{0x9e = 1\_0011\_110 = -0b1.110\pow{\neg{5}} = \f{\neg{0.0546875}}}& 125 | \normal{0xde = 1\_1011\_110 = -0b1.110\pow{3} = \f{\neg{14.0}}}\\ 126 | \normal{0x1f = 0\_0011\_111 = +0b1.111\pow{\neg{5}} = \f{0.05859375}}& 127 | \normal{0x5f = 0\_1011\_111 = +0b1.111\pow{3} = \f{15.0}}& 128 | \normal{0x9f = 1\_0011\_111 = -0b1.111\pow{\neg{5}} = \f{\neg{0.05859375}}}& 129 | \normal{0xdf = 1\_1011\_111 = -0b1.111\pow{3} = \f{\neg{15.0}}}\\ 130 | \normal{0x20 = 0\_0100\_000 = +0b1.000\pow{\neg{4}} = \f{0.0625}}& 131 | \normal{0x60 = 0\_1100\_000 = +0b1.000\pow{4} = \f{16.0}}& 132 | \normal{0xa0 = 1\_0100\_000 = -0b1.000\pow{\neg{4}} = \f{\neg{0.0625}}}& 133 | \normal{0xe0 = 1\_1100\_000 = -0b1.000\pow{4} = \f{\neg{16.0}}}\\ 134 | \normal{0x21 = 0\_0100\_001 = +0b1.001\pow{\neg{4}} = \f{0.0703125}}& 135 | \normal{0x61 = 0\_1100\_001 = +0b1.001\pow{4} = \f{18.0}}& 136 | \normal{0xa1 = 1\_0100\_001 = -0b1.001\pow{\neg{4}} = \f{\neg{0.0703125}}}& 137 | \normal{0xe1 = 1\_1100\_001 = -0b1.001\pow{4} = \f{\neg{18.0}}}\\ 138 | \normal{0x22 = 0\_0100\_010 = +0b1.010\pow{\neg{4}} = \f{0.078125}}& 139 | \normal{0x62 = 0\_1100\_010 = +0b1.010\pow{4} = \f{20.0}}& 140 | \normal{0xa2 = 1\_0100\_010 = -0b1.010\pow{\neg{4}} = \f{\neg{0.078125}}}& 141 | \normal{0xe2 = 1\_1100\_010 = -0b1.010\pow{4} = \f{\neg{20.0}}}\\ 142 | \normal{0x23 = 0\_0100\_011 = +0b1.011\pow{\neg{4}} = \f{0.0859375}}& 143 | \normal{0x63 = 0\_1100\_011 = +0b1.011\pow{4} = \f{22.0}}& 144 | \normal{0xa3 = 1\_0100\_011 = -0b1.011\pow{\neg{4}} = \f{\neg{0.0859375}}}& 145 | \normal{0xe3 = 1\_1100\_011 = -0b1.011\pow{4} = \f{\neg{22.0}}}\\ 146 | \normal{0x24 = 0\_0100\_100 = +0b1.100\pow{\neg{4}} = \f{0.09375}}& 147 | \normal{0x64 = 0\_1100\_100 = +0b1.100\pow{4} = \f{24.0}}& 148 | \normal{0xa4 = 1\_0100\_100 = -0b1.100\pow{\neg{4}} = \f{\neg{0.09375}}}& 149 | \normal{0xe4 = 1\_1100\_100 = -0b1.100\pow{4} = \f{\neg{24.0}}}\\ 150 | \normal{0x25 = 0\_0100\_101 = +0b1.101\pow{\neg{4}} = \f{0.1015625}}& 151 | \normal{0x65 = 0\_1100\_101 = +0b1.101\pow{4} = \f{26.0}}& 152 | \normal{0xa5 = 1\_0100\_101 = -0b1.101\pow{\neg{4}} = \f{\neg{0.1015625}}}& 153 | \normal{0xe5 = 1\_1100\_101 = -0b1.101\pow{4} = \f{\neg{26.0}}}\\ 154 | \normal{0x26 = 0\_0100\_110 = +0b1.110\pow{\neg{4}} = \f{0.109375}}& 155 | \normal{0x66 = 0\_1100\_110 = +0b1.110\pow{4} = \f{28.0}}& 156 | \normal{0xa6 = 1\_0100\_110 = -0b1.110\pow{\neg{4}} = \f{\neg{0.109375}}}& 157 | \normal{0xe6 = 1\_1100\_110 = -0b1.110\pow{4} = \f{\neg{28.0}}}\\ 158 | \normal{0x27 = 0\_0100\_111 = +0b1.111\pow{\neg{4}} = \f{0.1171875}}& 159 | \normal{0x67 = 0\_1100\_111 = +0b1.111\pow{4} = \f{30.0}}& 160 | \normal{0xa7 = 1\_0100\_111 = -0b1.111\pow{\neg{4}} = \f{\neg{0.1171875}}}& 161 | \normal{0xe7 = 1\_1100\_111 = -0b1.111\pow{4} = \f{\neg{30.0}}}\\ 162 | \normal{0x28 = 0\_0101\_000 = +0b1.000\pow{\neg{3}} = \f{0.125}}& 163 | \normal{0x68 = 0\_1101\_000 = +0b1.000\pow{5} = \f{32.0}}& 164 | \normal{0xa8 = 1\_0101\_000 = -0b1.000\pow{\neg{3}} = \f{\neg{0.125}}}& 165 | \normal{0xe8 = 1\_1101\_000 = -0b1.000\pow{5} = \f{\neg{32.0}}}\\ 166 | \normal{0x29 = 0\_0101\_001 = +0b1.001\pow{\neg{3}} = \f{0.140625}}& 167 | \normal{0x69 = 0\_1101\_001 = +0b1.001\pow{5} = \f{36.0}}& 168 | \normal{0xa9 = 1\_0101\_001 = -0b1.001\pow{\neg{3}} = \f{\neg{0.140625}}}& 169 | \normal{0xe9 = 1\_1101\_001 = -0b1.001\pow{5} = \f{\neg{36.0}}}\\ 170 | \normal{0x2a = 0\_0101\_010 = +0b1.010\pow{\neg{3}} = \f{0.15625}}& 171 | \normal{0x6a = 0\_1101\_010 = +0b1.010\pow{5} = \f{40.0}}& 172 | \normal{0xaa = 1\_0101\_010 = -0b1.010\pow{\neg{3}} = \f{\neg{0.15625}}}& 173 | \normal{0xea = 1\_1101\_010 = -0b1.010\pow{5} = \f{\neg{40.0}}}\\ 174 | \normal{0x2b = 0\_0101\_011 = +0b1.011\pow{\neg{3}} = \f{0.171875}}& 175 | \normal{0x6b = 0\_1101\_011 = +0b1.011\pow{5} = \f{44.0}}& 176 | \normal{0xab = 1\_0101\_011 = -0b1.011\pow{\neg{3}} = \f{\neg{0.171875}}}& 177 | \normal{0xeb = 1\_1101\_011 = -0b1.011\pow{5} = \f{\neg{44.0}}}\\ 178 | \normal{0x2c = 0\_0101\_100 = +0b1.100\pow{\neg{3}} = \f{0.1875}}& 179 | \normal{0x6c = 0\_1101\_100 = +0b1.100\pow{5} = \f{48.0}}& 180 | \normal{0xac = 1\_0101\_100 = -0b1.100\pow{\neg{3}} = \f{\neg{0.1875}}}& 181 | \normal{0xec = 1\_1101\_100 = -0b1.100\pow{5} = \f{\neg{48.0}}}\\ 182 | \normal{0x2d = 0\_0101\_101 = +0b1.101\pow{\neg{3}} = \f{0.203125}}& 183 | \normal{0x6d = 0\_1101\_101 = +0b1.101\pow{5} = \f{52.0}}& 184 | \normal{0xad = 1\_0101\_101 = -0b1.101\pow{\neg{3}} = \f{\neg{0.203125}}}& 185 | \normal{0xed = 1\_1101\_101 = -0b1.101\pow{5} = \f{\neg{52.0}}}\\ 186 | \normal{0x2e = 0\_0101\_110 = +0b1.110\pow{\neg{3}} = \f{0.21875}}& 187 | \normal{0x6e = 0\_1101\_110 = +0b1.110\pow{5} = \f{56.0}}& 188 | \normal{0xae = 1\_0101\_110 = -0b1.110\pow{\neg{3}} = \f{\neg{0.21875}}}& 189 | \normal{0xee = 1\_1101\_110 = -0b1.110\pow{5} = \f{\neg{56.0}}}\\ 190 | \normal{0x2f = 0\_0101\_111 = +0b1.111\pow{\neg{3}} = \f{0.234375}}& 191 | \normal{0x6f = 0\_1101\_111 = +0b1.111\pow{5} = \f{60.0}}& 192 | \normal{0xaf = 1\_0101\_111 = -0b1.111\pow{\neg{3}} = \f{\neg{0.234375}}}& 193 | \normal{0xef = 1\_1101\_111 = -0b1.111\pow{5} = \f{\neg{60.0}}}\\ 194 | \normal{0x30 = 0\_0110\_000 = +0b1.000\pow{\neg{2}} = \f{0.25}}& 195 | \normal{0x70 = 0\_1110\_000 = +0b1.000\pow{6} = \f{64.0}}& 196 | \normal{0xb0 = 1\_0110\_000 = -0b1.000\pow{\neg{2}} = \f{\neg{0.25}}}& 197 | \normal{0xf0 = 1\_1110\_000 = -0b1.000\pow{6} = \f{\neg{64.0}}}\\ 198 | \normal{0x31 = 0\_0110\_001 = +0b1.001\pow{\neg{2}} = \f{0.28125}}& 199 | \normal{0x71 = 0\_1110\_001 = +0b1.001\pow{6} = \f{72.0}}& 200 | \normal{0xb1 = 1\_0110\_001 = -0b1.001\pow{\neg{2}} = \f{\neg{0.28125}}}& 201 | \normal{0xf1 = 1\_1110\_001 = -0b1.001\pow{6} = \f{\neg{72.0}}}\\ 202 | \normal{0x32 = 0\_0110\_010 = +0b1.010\pow{\neg{2}} = \f{0.3125}}& 203 | \normal{0x72 = 0\_1110\_010 = +0b1.010\pow{6} = \f{80.0}}& 204 | \normal{0xb2 = 1\_0110\_010 = -0b1.010\pow{\neg{2}} = \f{\neg{0.3125}}}& 205 | \normal{0xf2 = 1\_1110\_010 = -0b1.010\pow{6} = \f{\neg{80.0}}}\\ 206 | \normal{0x33 = 0\_0110\_011 = +0b1.011\pow{\neg{2}} = \f{0.34375}}& 207 | \normal{0x73 = 0\_1110\_011 = +0b1.011\pow{6} = \f{88.0}}& 208 | \normal{0xb3 = 1\_0110\_011 = -0b1.011\pow{\neg{2}} = \f{\neg{0.34375}}}& 209 | \normal{0xf3 = 1\_1110\_011 = -0b1.011\pow{6} = \f{\neg{88.0}}}\\ 210 | \normal{0x34 = 0\_0110\_100 = +0b1.100\pow{\neg{2}} = \f{0.375}}& 211 | \normal{0x74 = 0\_1110\_100 = +0b1.100\pow{6} = \f{96.0}}& 212 | \normal{0xb4 = 1\_0110\_100 = -0b1.100\pow{\neg{2}} = \f{\neg{0.375}}}& 213 | \normal{0xf4 = 1\_1110\_100 = -0b1.100\pow{6} = \f{\neg{96.0}}}\\ 214 | \normal{0x35 = 0\_0110\_101 = +0b1.101\pow{\neg{2}} = \f{0.40625}}& 215 | \normal{0x75 = 0\_1110\_101 = +0b1.101\pow{6} = \f{104.0}}& 216 | \normal{0xb5 = 1\_0110\_101 = -0b1.101\pow{\neg{2}} = \f{\neg{0.40625}}}& 217 | \normal{0xf5 = 1\_1110\_101 = -0b1.101\pow{6} = \f{\neg{104.0}}}\\ 218 | \normal{0x36 = 0\_0110\_110 = +0b1.110\pow{\neg{2}} = \f{0.4375}}& 219 | \normal{0x76 = 0\_1110\_110 = +0b1.110\pow{6} = \f{112.0}}& 220 | \normal{0xb6 = 1\_0110\_110 = -0b1.110\pow{\neg{2}} = \f{\neg{0.4375}}}& 221 | \normal{0xf6 = 1\_1110\_110 = -0b1.110\pow{6} = \f{\neg{112.0}}}\\ 222 | \normal{0x37 = 0\_0110\_111 = +0b1.111\pow{\neg{2}} = \f{0.46875}}& 223 | \normal{0x77 = 0\_1110\_111 = +0b1.111\pow{6} = \f{120.0}}& 224 | \normal{0xb7 = 1\_0110\_111 = -0b1.111\pow{\neg{2}} = \f{\neg{0.46875}}}& 225 | \normal{0xf7 = 1\_1110\_111 = -0b1.111\pow{6} = \f{\neg{120.0}}}\\ 226 | \normal{0x38 = 0\_0111\_000 = +0b1.000\pow{\neg{1}} = \f{0.5}}& 227 | \normal{0x78 = 0\_1111\_000 = +0b1.000\pow{7} = \f{128.0}}& 228 | \normal{0xb8 = 1\_0111\_000 = -0b1.000\pow{\neg{1}} = \f{\neg{0.5}}}& 229 | \normal{0xf8 = 1\_1111\_000 = -0b1.000\pow{7} = \f{\neg{128.0}}}\\ 230 | \normal{0x39 = 0\_0111\_001 = +0b1.001\pow{\neg{1}} = \f{0.5625}}& 231 | \normal{0x79 = 0\_1111\_001 = +0b1.001\pow{7} = \f{144.0}}& 232 | \normal{0xb9 = 1\_0111\_001 = -0b1.001\pow{\neg{1}} = \f{\neg{0.5625}}}& 233 | \normal{0xf9 = 1\_1111\_001 = -0b1.001\pow{7} = \f{\neg{144.0}}}\\ 234 | \normal{0x3a = 0\_0111\_010 = +0b1.010\pow{\neg{1}} = \f{0.625}}& 235 | \normal{0x7a = 0\_1111\_010 = +0b1.010\pow{7} = \f{160.0}}& 236 | \normal{0xba = 1\_0111\_010 = -0b1.010\pow{\neg{1}} = \f{\neg{0.625}}}& 237 | \normal{0xfa = 1\_1111\_010 = -0b1.010\pow{7} = \f{\neg{160.0}}}\\ 238 | \normal{0x3b = 0\_0111\_011 = +0b1.011\pow{\neg{1}} = \f{0.6875}}& 239 | \normal{0x7b = 0\_1111\_011 = +0b1.011\pow{7} = \f{176.0}}& 240 | \normal{0xbb = 1\_0111\_011 = -0b1.011\pow{\neg{1}} = \f{\neg{0.6875}}}& 241 | \normal{0xfb = 1\_1111\_011 = -0b1.011\pow{7} = \f{\neg{176.0}}}\\ 242 | \normal{0x3c = 0\_0111\_100 = +0b1.100\pow{\neg{1}} = \f{0.75}}& 243 | \normal{0x7c = 0\_1111\_100 = +0b1.100\pow{7} = \f{192.0}}& 244 | \normal{0xbc = 1\_0111\_100 = -0b1.100\pow{\neg{1}} = \f{\neg{0.75}}}& 245 | \normal{0xfc = 1\_1111\_100 = -0b1.100\pow{7} = \f{\neg{192.0}}}\\ 246 | \normal{0x3d = 0\_0111\_101 = +0b1.101\pow{\neg{1}} = \f{0.8125}}& 247 | \normal{0x7d = 0\_1111\_101 = +0b1.101\pow{7} = \f{208.0}}& 248 | \normal{0xbd = 1\_0111\_101 = -0b1.101\pow{\neg{1}} = \f{\neg{0.8125}}}& 249 | \normal{0xfd = 1\_1111\_101 = -0b1.101\pow{7} = \f{\neg{208.0}}}\\ 250 | \normal{0x3e = 0\_0111\_110 = +0b1.110\pow{\neg{1}} = \f{0.875}}& 251 | \normal{0x7e = 0\_1111\_110 = +0b1.110\pow{7} = \f{224.0}}& 252 | \normal{0xbe = 1\_0111\_110 = -0b1.110\pow{\neg{1}} = \f{\neg{0.875}}}& 253 | \normal{0xfe = 1\_1111\_110 = -0b1.110\pow{7} = \f{\neg{224.0}}}\\ 254 | \normal{0x3f = 0\_0111\_111 = +0b1.111\pow{\neg{1}} = \f{0.9375}}& 255 | \special{0x7f = 0\_1111\_111 = inf}& 256 | \normal{0xbf = 1\_0111\_111 = -0b1.111\pow{\neg{1}} = \f{\neg{0.9375}}}& 257 | \special{0xff = 1\_1111\_111 = -inf}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-ocp_e5m2.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_00000\_00 = \f{0.0}}& 3 | \normal{0x40 = 0\_10000\_00 = +0b1.00\pow{1} = \f{2.0}}& 4 | \special{0x80 = 1\_00000\_00 = \f{\neg{0.0}}}& 5 | \normal{0xc0 = 1\_10000\_00 = -0b1.00\pow{1} = \f{\neg{2.0}}}\\ 6 | \subnormal{0x01 = 0\_00000\_01 = +0b0.01\pow{\neg{14}} \approx \e{1.5258789}{\neg{05}}}& 7 | \normal{0x41 = 0\_10000\_01 = +0b1.01\pow{1} = \f{2.5}}& 8 | \subnormal{0x81 = 1\_00000\_01 = -0b0.01\pow{\neg{14}} \approx \e{-1.5258789}{\neg{05}}}& 9 | \normal{0xc1 = 1\_10000\_01 = -0b1.01\pow{1} = \f{\neg{2.5}}}\\ 10 | \subnormal{0x02 = 0\_00000\_10 = +0b0.10\pow{\neg{14}} \approx \e{3.0517578}{\neg{05}}}& 11 | \normal{0x42 = 0\_10000\_10 = +0b1.10\pow{1} = \f{3.0}}& 12 | \subnormal{0x82 = 1\_00000\_10 = -0b0.10\pow{\neg{14}} \approx \e{-3.0517578}{\neg{05}}}& 13 | \normal{0xc2 = 1\_10000\_10 = -0b1.10\pow{1} = \f{\neg{3.0}}}\\ 14 | \subnormal{0x03 = 0\_00000\_11 = +0b0.11\pow{\neg{14}} \approx \e{4.5776367}{\neg{05}}}& 15 | \normal{0x43 = 0\_10000\_11 = +0b1.11\pow{1} = \f{3.5}}& 16 | \subnormal{0x83 = 1\_00000\_11 = -0b0.11\pow{\neg{14}} \approx \e{-4.5776367}{\neg{05}}}& 17 | \normal{0xc3 = 1\_10000\_11 = -0b1.11\pow{1} = \f{\neg{3.5}}}\\ 18 | \normal{0x04 = 0\_00001\_00 = +0b1.00\pow{\neg{14}} \approx \e{6.1035156}{\neg{05}}}& 19 | \normal{0x44 = 0\_10001\_00 = +0b1.00\pow{2} = \f{4.0}}& 20 | \normal{0x84 = 1\_00001\_00 = -0b1.00\pow{\neg{14}} \approx \e{-6.1035156}{\neg{05}}}& 21 | \normal{0xc4 = 1\_10001\_00 = -0b1.00\pow{2} = \f{\neg{4.0}}}\\ 22 | \normal{0x05 = 0\_00001\_01 = +0b1.01\pow{\neg{14}} \approx \e{7.6293945}{\neg{05}}}& 23 | \normal{0x45 = 0\_10001\_01 = +0b1.01\pow{2} = \f{5.0}}& 24 | \normal{0x85 = 1\_00001\_01 = -0b1.01\pow{\neg{14}} \approx \e{-7.6293945}{\neg{05}}}& 25 | \normal{0xc5 = 1\_10001\_01 = -0b1.01\pow{2} = \f{\neg{5.0}}}\\ 26 | \normal{0x06 = 0\_00001\_10 = +0b1.10\pow{\neg{14}} \approx \e{9.1552734}{\neg{05}}}& 27 | \normal{0x46 = 0\_10001\_10 = +0b1.10\pow{2} = \f{6.0}}& 28 | \normal{0x86 = 1\_00001\_10 = -0b1.10\pow{\neg{14}} \approx \e{-9.1552734}{\neg{05}}}& 29 | \normal{0xc6 = 1\_10001\_10 = -0b1.10\pow{2} = \f{\neg{6.0}}}\\ 30 | \normal{0x07 = 0\_00001\_11 = +0b1.11\pow{\neg{14}} \approx \f{0.00010681}}& 31 | \normal{0x47 = 0\_10001\_11 = +0b1.11\pow{2} = \f{7.0}}& 32 | \normal{0x87 = 1\_00001\_11 = -0b1.11\pow{\neg{14}} \approx \f{\neg{0.00010681}}}& 33 | \normal{0xc7 = 1\_10001\_11 = -0b1.11\pow{2} = \f{\neg{7.0}}}\\ 34 | \normal{0x08 = 0\_00010\_00 = +0b1.00\pow{\neg{13}} \approx \f{0.00012207}}& 35 | \normal{0x48 = 0\_10010\_00 = +0b1.00\pow{3} = \f{8.0}}& 36 | \normal{0x88 = 1\_00010\_00 = -0b1.00\pow{\neg{13}} \approx \f{\neg{0.00012207}}}& 37 | \normal{0xc8 = 1\_10010\_00 = -0b1.00\pow{3} = \f{\neg{8.0}}}\\ 38 | \normal{0x09 = 0\_00010\_01 = +0b1.01\pow{\neg{13}} \approx \f{0.00015259}}& 39 | \normal{0x49 = 0\_10010\_01 = +0b1.01\pow{3} = \f{10.0}}& 40 | \normal{0x89 = 1\_00010\_01 = -0b1.01\pow{\neg{13}} \approx \f{\neg{0.00015259}}}& 41 | \normal{0xc9 = 1\_10010\_01 = -0b1.01\pow{3} = \f{\neg{10.0}}}\\ 42 | \normal{0x0a = 0\_00010\_10 = +0b1.10\pow{\neg{13}} \approx \f{0.00018311}}& 43 | \normal{0x4a = 0\_10010\_10 = +0b1.10\pow{3} = \f{12.0}}& 44 | \normal{0x8a = 1\_00010\_10 = -0b1.10\pow{\neg{13}} \approx \f{\neg{0.00018311}}}& 45 | \normal{0xca = 1\_10010\_10 = -0b1.10\pow{3} = \f{\neg{12.0}}}\\ 46 | \normal{0x0b = 0\_00010\_11 = +0b1.11\pow{\neg{13}} \approx \f{0.00021362}}& 47 | \normal{0x4b = 0\_10010\_11 = +0b1.11\pow{3} = \f{14.0}}& 48 | \normal{0x8b = 1\_00010\_11 = -0b1.11\pow{\neg{13}} \approx \f{\neg{0.00021362}}}& 49 | \normal{0xcb = 1\_10010\_11 = -0b1.11\pow{3} = \f{\neg{14.0}}}\\ 50 | \normal{0x0c = 0\_00011\_00 = +0b1.00\pow{\neg{12}} = \f{0.000244140625}}& 51 | \normal{0x4c = 0\_10011\_00 = +0b1.00\pow{4} = \f{16.0}}& 52 | \normal{0x8c = 1\_00011\_00 = -0b1.00\pow{\neg{12}} \approx \f{\neg{0.00024414}}}& 53 | \normal{0xcc = 1\_10011\_00 = -0b1.00\pow{4} = \f{\neg{16.0}}}\\ 54 | \normal{0x0d = 0\_00011\_01 = +0b1.01\pow{\neg{12}} \approx \f{0.00030518}}& 55 | \normal{0x4d = 0\_10011\_01 = +0b1.01\pow{4} = \f{20.0}}& 56 | \normal{0x8d = 1\_00011\_01 = -0b1.01\pow{\neg{12}} \approx \f{\neg{0.00030518}}}& 57 | \normal{0xcd = 1\_10011\_01 = -0b1.01\pow{4} = \f{\neg{20.0}}}\\ 58 | \normal{0x0e = 0\_00011\_10 = +0b1.10\pow{\neg{12}} \approx \f{0.00036621}}& 59 | \normal{0x4e = 0\_10011\_10 = +0b1.10\pow{4} = \f{24.0}}& 60 | \normal{0x8e = 1\_00011\_10 = -0b1.10\pow{\neg{12}} \approx \f{\neg{0.00036621}}}& 61 | \normal{0xce = 1\_10011\_10 = -0b1.10\pow{4} = \f{\neg{24.0}}}\\ 62 | \normal{0x0f = 0\_00011\_11 = +0b1.11\pow{\neg{12}} \approx \f{0.00042725}}& 63 | \normal{0x4f = 0\_10011\_11 = +0b1.11\pow{4} = \f{28.0}}& 64 | \normal{0x8f = 1\_00011\_11 = -0b1.11\pow{\neg{12}} \approx \f{\neg{0.00042725}}}& 65 | \normal{0xcf = 1\_10011\_11 = -0b1.11\pow{4} = \f{\neg{28.0}}}\\ 66 | \normal{0x10 = 0\_00100\_00 = +0b1.00\pow{\neg{11}} = \f{0.00048828125}}& 67 | \normal{0x50 = 0\_10100\_00 = +0b1.00\pow{5} = \f{32.0}}& 68 | \normal{0x90 = 1\_00100\_00 = -0b1.00\pow{\neg{11}} = \f{\neg{0.00048828125}}}& 69 | \normal{0xd0 = 1\_10100\_00 = -0b1.00\pow{5} = \f{\neg{32.0}}}\\ 70 | \normal{0x11 = 0\_00100\_01 = +0b1.01\pow{\neg{11}} \approx \f{0.00061035}}& 71 | \normal{0x51 = 0\_10100\_01 = +0b1.01\pow{5} = \f{40.0}}& 72 | \normal{0x91 = 1\_00100\_01 = -0b1.01\pow{\neg{11}} \approx \f{\neg{0.00061035}}}& 73 | \normal{0xd1 = 1\_10100\_01 = -0b1.01\pow{5} = \f{\neg{40.0}}}\\ 74 | \normal{0x12 = 0\_00100\_10 = +0b1.10\pow{\neg{11}} = \f{0.000732421875}}& 75 | \normal{0x52 = 0\_10100\_10 = +0b1.10\pow{5} = \f{48.0}}& 76 | \normal{0x92 = 1\_00100\_10 = -0b1.10\pow{\neg{11}} \approx \f{\neg{0.00073242}}}& 77 | \normal{0xd2 = 1\_10100\_10 = -0b1.10\pow{5} = \f{\neg{48.0}}}\\ 78 | \normal{0x13 = 0\_00100\_11 = +0b1.11\pow{\neg{11}} \approx \f{0.00085449}}& 79 | \normal{0x53 = 0\_10100\_11 = +0b1.11\pow{5} = \f{56.0}}& 80 | \normal{0x93 = 1\_00100\_11 = -0b1.11\pow{\neg{11}} \approx \f{\neg{0.00085449}}}& 81 | \normal{0xd3 = 1\_10100\_11 = -0b1.11\pow{5} = \f{\neg{56.0}}}\\ 82 | \normal{0x14 = 0\_00101\_00 = +0b1.00\pow{\neg{10}} = \f{0.0009765625}}& 83 | \normal{0x54 = 0\_10101\_00 = +0b1.00\pow{6} = \f{64.0}}& 84 | \normal{0x94 = 1\_00101\_00 = -0b1.00\pow{\neg{10}} = \f{\neg{0.0009765625}}}& 85 | \normal{0xd4 = 1\_10101\_00 = -0b1.00\pow{6} = \f{\neg{64.0}}}\\ 86 | \normal{0x15 = 0\_00101\_01 = +0b1.01\pow{\neg{10}} = \f{0.001220703125}}& 87 | \normal{0x55 = 0\_10101\_01 = +0b1.01\pow{6} = \f{80.0}}& 88 | \normal{0x95 = 1\_00101\_01 = -0b1.01\pow{\neg{10}} \approx \f{\neg{0.00122070}}}& 89 | \normal{0xd5 = 1\_10101\_01 = -0b1.01\pow{6} = \f{\neg{80.0}}}\\ 90 | \normal{0x16 = 0\_00101\_10 = +0b1.10\pow{\neg{10}} = \f{0.00146484375}}& 91 | \normal{0x56 = 0\_10101\_10 = +0b1.10\pow{6} = \f{96.0}}& 92 | \normal{0x96 = 1\_00101\_10 = -0b1.10\pow{\neg{10}} = \f{\neg{0.00146484375}}}& 93 | \normal{0xd6 = 1\_10101\_10 = -0b1.10\pow{6} = \f{\neg{96.0}}}\\ 94 | \normal{0x17 = 0\_00101\_11 = +0b1.11\pow{\neg{10}} = \f{0.001708984375}}& 95 | \normal{0x57 = 0\_10101\_11 = +0b1.11\pow{6} = \f{112.0}}& 96 | \normal{0x97 = 1\_00101\_11 = -0b1.11\pow{\neg{10}} \approx \f{\neg{0.00170898}}}& 97 | \normal{0xd7 = 1\_10101\_11 = -0b1.11\pow{6} = \f{\neg{112.0}}}\\ 98 | \normal{0x18 = 0\_00110\_00 = +0b1.00\pow{\neg{9}} = \f{0.001953125}}& 99 | \normal{0x58 = 0\_10110\_00 = +0b1.00\pow{7} = \f{128.0}}& 100 | \normal{0x98 = 1\_00110\_00 = -0b1.00\pow{\neg{9}} = \f{\neg{0.001953125}}}& 101 | \normal{0xd8 = 1\_10110\_00 = -0b1.00\pow{7} = \f{\neg{128.0}}}\\ 102 | \normal{0x19 = 0\_00110\_01 = +0b1.01\pow{\neg{9}} = \f{0.00244140625}}& 103 | \normal{0x59 = 0\_10110\_01 = +0b1.01\pow{7} = \f{160.0}}& 104 | \normal{0x99 = 1\_00110\_01 = -0b1.01\pow{\neg{9}} = \f{\neg{0.00244140625}}}& 105 | \normal{0xd9 = 1\_10110\_01 = -0b1.01\pow{7} = \f{\neg{160.0}}}\\ 106 | \normal{0x1a = 0\_00110\_10 = +0b1.10\pow{\neg{9}} = \f{0.0029296875}}& 107 | \normal{0x5a = 0\_10110\_10 = +0b1.10\pow{7} = \f{192.0}}& 108 | \normal{0x9a = 1\_00110\_10 = -0b1.10\pow{\neg{9}} = \f{\neg{0.0029296875}}}& 109 | \normal{0xda = 1\_10110\_10 = -0b1.10\pow{7} = \f{\neg{192.0}}}\\ 110 | \normal{0x1b = 0\_00110\_11 = +0b1.11\pow{\neg{9}} = \f{0.00341796875}}& 111 | \normal{0x5b = 0\_10110\_11 = +0b1.11\pow{7} = \f{224.0}}& 112 | \normal{0x9b = 1\_00110\_11 = -0b1.11\pow{\neg{9}} = \f{\neg{0.00341796875}}}& 113 | \normal{0xdb = 1\_10110\_11 = -0b1.11\pow{7} = \f{\neg{224.0}}}\\ 114 | \normal{0x1c = 0\_00111\_00 = +0b1.00\pow{\neg{8}} = \f{0.00390625}}& 115 | \normal{0x5c = 0\_10111\_00 = +0b1.00\pow{8} = \f{256.0}}& 116 | \normal{0x9c = 1\_00111\_00 = -0b1.00\pow{\neg{8}} = \f{\neg{0.00390625}}}& 117 | \normal{0xdc = 1\_10111\_00 = -0b1.00\pow{8} = \f{\neg{256.0}}}\\ 118 | \normal{0x1d = 0\_00111\_01 = +0b1.01\pow{\neg{8}} = \f{0.0048828125}}& 119 | \normal{0x5d = 0\_10111\_01 = +0b1.01\pow{8} = \f{320.0}}& 120 | \normal{0x9d = 1\_00111\_01 = -0b1.01\pow{\neg{8}} = \f{\neg{0.0048828125}}}& 121 | \normal{0xdd = 1\_10111\_01 = -0b1.01\pow{8} = \f{\neg{320.0}}}\\ 122 | \normal{0x1e = 0\_00111\_10 = +0b1.10\pow{\neg{8}} = \f{0.005859375}}& 123 | \normal{0x5e = 0\_10111\_10 = +0b1.10\pow{8} = \f{384.0}}& 124 | \normal{0x9e = 1\_00111\_10 = -0b1.10\pow{\neg{8}} = \f{\neg{0.005859375}}}& 125 | \normal{0xde = 1\_10111\_10 = -0b1.10\pow{8} = \f{\neg{384.0}}}\\ 126 | \normal{0x1f = 0\_00111\_11 = +0b1.11\pow{\neg{8}} = \f{0.0068359375}}& 127 | \normal{0x5f = 0\_10111\_11 = +0b1.11\pow{8} = \f{448.0}}& 128 | \normal{0x9f = 1\_00111\_11 = -0b1.11\pow{\neg{8}} = \f{\neg{0.0068359375}}}& 129 | \normal{0xdf = 1\_10111\_11 = -0b1.11\pow{8} = \f{\neg{448.0}}}\\ 130 | \normal{0x20 = 0\_01000\_00 = +0b1.00\pow{\neg{7}} = \f{0.0078125}}& 131 | \normal{0x60 = 0\_11000\_00 = +0b1.00\pow{9} = \f{512.0}}& 132 | \normal{0xa0 = 1\_01000\_00 = -0b1.00\pow{\neg{7}} = \f{\neg{0.0078125}}}& 133 | \normal{0xe0 = 1\_11000\_00 = -0b1.00\pow{9} = \f{\neg{512.0}}}\\ 134 | \normal{0x21 = 0\_01000\_01 = +0b1.01\pow{\neg{7}} = \f{0.009765625}}& 135 | \normal{0x61 = 0\_11000\_01 = +0b1.01\pow{9} = \f{640.0}}& 136 | \normal{0xa1 = 1\_01000\_01 = -0b1.01\pow{\neg{7}} = \f{\neg{0.009765625}}}& 137 | \normal{0xe1 = 1\_11000\_01 = -0b1.01\pow{9} = \f{\neg{640.0}}}\\ 138 | \normal{0x22 = 0\_01000\_10 = +0b1.10\pow{\neg{7}} = \f{0.01171875}}& 139 | \normal{0x62 = 0\_11000\_10 = +0b1.10\pow{9} = \f{768.0}}& 140 | \normal{0xa2 = 1\_01000\_10 = -0b1.10\pow{\neg{7}} = \f{\neg{0.01171875}}}& 141 | \normal{0xe2 = 1\_11000\_10 = -0b1.10\pow{9} = \f{\neg{768.0}}}\\ 142 | \normal{0x23 = 0\_01000\_11 = +0b1.11\pow{\neg{7}} = \f{0.013671875}}& 143 | \normal{0x63 = 0\_11000\_11 = +0b1.11\pow{9} = \f{896.0}}& 144 | \normal{0xa3 = 1\_01000\_11 = -0b1.11\pow{\neg{7}} = \f{\neg{0.013671875}}}& 145 | \normal{0xe3 = 1\_11000\_11 = -0b1.11\pow{9} = \f{\neg{896.0}}}\\ 146 | \normal{0x24 = 0\_01001\_00 = +0b1.00\pow{\neg{6}} = \f{0.015625}}& 147 | \normal{0x64 = 0\_11001\_00 = +0b1.00\pow{10} = \f{1024.0}}& 148 | \normal{0xa4 = 1\_01001\_00 = -0b1.00\pow{\neg{6}} = \f{\neg{0.015625}}}& 149 | \normal{0xe4 = 1\_11001\_00 = -0b1.00\pow{10} = \f{\neg{1024.0}}}\\ 150 | \normal{0x25 = 0\_01001\_01 = +0b1.01\pow{\neg{6}} = \f{0.01953125}}& 151 | \normal{0x65 = 0\_11001\_01 = +0b1.01\pow{10} = \f{1280.0}}& 152 | \normal{0xa5 = 1\_01001\_01 = -0b1.01\pow{\neg{6}} = \f{\neg{0.01953125}}}& 153 | \normal{0xe5 = 1\_11001\_01 = -0b1.01\pow{10} = \f{\neg{1280.0}}}\\ 154 | \normal{0x26 = 0\_01001\_10 = +0b1.10\pow{\neg{6}} = \f{0.0234375}}& 155 | \normal{0x66 = 0\_11001\_10 = +0b1.10\pow{10} = \f{1536.0}}& 156 | \normal{0xa6 = 1\_01001\_10 = -0b1.10\pow{\neg{6}} = \f{\neg{0.0234375}}}& 157 | \normal{0xe6 = 1\_11001\_10 = -0b1.10\pow{10} = \f{\neg{1536.0}}}\\ 158 | \normal{0x27 = 0\_01001\_11 = +0b1.11\pow{\neg{6}} = \f{0.02734375}}& 159 | \normal{0x67 = 0\_11001\_11 = +0b1.11\pow{10} = \f{1792.0}}& 160 | \normal{0xa7 = 1\_01001\_11 = -0b1.11\pow{\neg{6}} = \f{\neg{0.02734375}}}& 161 | \normal{0xe7 = 1\_11001\_11 = -0b1.11\pow{10} = \f{\neg{1792.0}}}\\ 162 | \normal{0x28 = 0\_01010\_00 = +0b1.00\pow{\neg{5}} = \f{0.03125}}& 163 | \normal{0x68 = 0\_11010\_00 = +0b1.00\pow{11} = \f{2048.0}}& 164 | \normal{0xa8 = 1\_01010\_00 = -0b1.00\pow{\neg{5}} = \f{\neg{0.03125}}}& 165 | \normal{0xe8 = 1\_11010\_00 = -0b1.00\pow{11} = \f{\neg{2048.0}}}\\ 166 | \normal{0x29 = 0\_01010\_01 = +0b1.01\pow{\neg{5}} = \f{0.0390625}}& 167 | \normal{0x69 = 0\_11010\_01 = +0b1.01\pow{11} = \f{2560.0}}& 168 | \normal{0xa9 = 1\_01010\_01 = -0b1.01\pow{\neg{5}} = \f{\neg{0.0390625}}}& 169 | \normal{0xe9 = 1\_11010\_01 = -0b1.01\pow{11} = \f{\neg{2560.0}}}\\ 170 | \normal{0x2a = 0\_01010\_10 = +0b1.10\pow{\neg{5}} = \f{0.046875}}& 171 | \normal{0x6a = 0\_11010\_10 = +0b1.10\pow{11} = \f{3072.0}}& 172 | \normal{0xaa = 1\_01010\_10 = -0b1.10\pow{\neg{5}} = \f{\neg{0.046875}}}& 173 | \normal{0xea = 1\_11010\_10 = -0b1.10\pow{11} = \f{\neg{3072.0}}}\\ 174 | \normal{0x2b = 0\_01010\_11 = +0b1.11\pow{\neg{5}} = \f{0.0546875}}& 175 | \normal{0x6b = 0\_11010\_11 = +0b1.11\pow{11} = \f{3584.0}}& 176 | \normal{0xab = 1\_01010\_11 = -0b1.11\pow{\neg{5}} = \f{\neg{0.0546875}}}& 177 | \normal{0xeb = 1\_11010\_11 = -0b1.11\pow{11} = \f{\neg{3584.0}}}\\ 178 | \normal{0x2c = 0\_01011\_00 = +0b1.00\pow{\neg{4}} = \f{0.0625}}& 179 | \normal{0x6c = 0\_11011\_00 = +0b1.00\pow{12} = \f{4096.0}}& 180 | \normal{0xac = 1\_01011\_00 = -0b1.00\pow{\neg{4}} = \f{\neg{0.0625}}}& 181 | \normal{0xec = 1\_11011\_00 = -0b1.00\pow{12} = \f{\neg{4096.0}}}\\ 182 | \normal{0x2d = 0\_01011\_01 = +0b1.01\pow{\neg{4}} = \f{0.078125}}& 183 | \normal{0x6d = 0\_11011\_01 = +0b1.01\pow{12} = \f{5120.0}}& 184 | \normal{0xad = 1\_01011\_01 = -0b1.01\pow{\neg{4}} = \f{\neg{0.078125}}}& 185 | \normal{0xed = 1\_11011\_01 = -0b1.01\pow{12} = \f{\neg{5120.0}}}\\ 186 | \normal{0x2e = 0\_01011\_10 = +0b1.10\pow{\neg{4}} = \f{0.09375}}& 187 | \normal{0x6e = 0\_11011\_10 = +0b1.10\pow{12} = \f{6144.0}}& 188 | \normal{0xae = 1\_01011\_10 = -0b1.10\pow{\neg{4}} = \f{\neg{0.09375}}}& 189 | \normal{0xee = 1\_11011\_10 = -0b1.10\pow{12} = \f{\neg{6144.0}}}\\ 190 | \normal{0x2f = 0\_01011\_11 = +0b1.11\pow{\neg{4}} = \f{0.109375}}& 191 | \normal{0x6f = 0\_11011\_11 = +0b1.11\pow{12} = \f{7168.0}}& 192 | \normal{0xaf = 1\_01011\_11 = -0b1.11\pow{\neg{4}} = \f{\neg{0.109375}}}& 193 | \normal{0xef = 1\_11011\_11 = -0b1.11\pow{12} = \f{\neg{7168.0}}}\\ 194 | \normal{0x30 = 0\_01100\_00 = +0b1.00\pow{\neg{3}} = \f{0.125}}& 195 | \normal{0x70 = 0\_11100\_00 = +0b1.00\pow{13} = \f{8192.0}}& 196 | \normal{0xb0 = 1\_01100\_00 = -0b1.00\pow{\neg{3}} = \f{\neg{0.125}}}& 197 | \normal{0xf0 = 1\_11100\_00 = -0b1.00\pow{13} = \f{\neg{8192.0}}}\\ 198 | \normal{0x31 = 0\_01100\_01 = +0b1.01\pow{\neg{3}} = \f{0.15625}}& 199 | \normal{0x71 = 0\_11100\_01 = +0b1.01\pow{13} = \f{10240.0}}& 200 | \normal{0xb1 = 1\_01100\_01 = -0b1.01\pow{\neg{3}} = \f{\neg{0.15625}}}& 201 | \normal{0xf1 = 1\_11100\_01 = -0b1.01\pow{13} = \f{\neg{10240.0}}}\\ 202 | \normal{0x32 = 0\_01100\_10 = +0b1.10\pow{\neg{3}} = \f{0.1875}}& 203 | \normal{0x72 = 0\_11100\_10 = +0b1.10\pow{13} = \f{12288.0}}& 204 | \normal{0xb2 = 1\_01100\_10 = -0b1.10\pow{\neg{3}} = \f{\neg{0.1875}}}& 205 | \normal{0xf2 = 1\_11100\_10 = -0b1.10\pow{13} = \f{\neg{12288.0}}}\\ 206 | \normal{0x33 = 0\_01100\_11 = +0b1.11\pow{\neg{3}} = \f{0.21875}}& 207 | \normal{0x73 = 0\_11100\_11 = +0b1.11\pow{13} = \f{14336.0}}& 208 | \normal{0xb3 = 1\_01100\_11 = -0b1.11\pow{\neg{3}} = \f{\neg{0.21875}}}& 209 | \normal{0xf3 = 1\_11100\_11 = -0b1.11\pow{13} = \f{\neg{14336.0}}}\\ 210 | \normal{0x34 = 0\_01101\_00 = +0b1.00\pow{\neg{2}} = \f{0.25}}& 211 | \normal{0x74 = 0\_11101\_00 = +0b1.00\pow{14} = \f{16384.0}}& 212 | \normal{0xb4 = 1\_01101\_00 = -0b1.00\pow{\neg{2}} = \f{\neg{0.25}}}& 213 | \normal{0xf4 = 1\_11101\_00 = -0b1.00\pow{14} = \f{\neg{16384.0}}}\\ 214 | \normal{0x35 = 0\_01101\_01 = +0b1.01\pow{\neg{2}} = \f{0.3125}}& 215 | \normal{0x75 = 0\_11101\_01 = +0b1.01\pow{14} = \f{20480.0}}& 216 | \normal{0xb5 = 1\_01101\_01 = -0b1.01\pow{\neg{2}} = \f{\neg{0.3125}}}& 217 | \normal{0xf5 = 1\_11101\_01 = -0b1.01\pow{14} = \f{\neg{20480.0}}}\\ 218 | \normal{0x36 = 0\_01101\_10 = +0b1.10\pow{\neg{2}} = \f{0.375}}& 219 | \normal{0x76 = 0\_11101\_10 = +0b1.10\pow{14} = \f{24576.0}}& 220 | \normal{0xb6 = 1\_01101\_10 = -0b1.10\pow{\neg{2}} = \f{\neg{0.375}}}& 221 | \normal{0xf6 = 1\_11101\_10 = -0b1.10\pow{14} = \f{\neg{24576.0}}}\\ 222 | \normal{0x37 = 0\_01101\_11 = +0b1.11\pow{\neg{2}} = \f{0.4375}}& 223 | \normal{0x77 = 0\_11101\_11 = +0b1.11\pow{14} = \f{28672.0}}& 224 | \normal{0xb7 = 1\_01101\_11 = -0b1.11\pow{\neg{2}} = \f{\neg{0.4375}}}& 225 | \normal{0xf7 = 1\_11101\_11 = -0b1.11\pow{14} = \f{\neg{28672.0}}}\\ 226 | \normal{0x38 = 0\_01110\_00 = +0b1.00\pow{\neg{1}} = \f{0.5}}& 227 | \normal{0x78 = 0\_11110\_00 = +0b1.00\pow{15} = \f{32768.0}}& 228 | \normal{0xb8 = 1\_01110\_00 = -0b1.00\pow{\neg{1}} = \f{\neg{0.5}}}& 229 | \normal{0xf8 = 1\_11110\_00 = -0b1.00\pow{15} = \f{\neg{32768.0}}}\\ 230 | \normal{0x39 = 0\_01110\_01 = +0b1.01\pow{\neg{1}} = \f{0.625}}& 231 | \normal{0x79 = 0\_11110\_01 = +0b1.01\pow{15} = \f{40960.0}}& 232 | \normal{0xb9 = 1\_01110\_01 = -0b1.01\pow{\neg{1}} = \f{\neg{0.625}}}& 233 | \normal{0xf9 = 1\_11110\_01 = -0b1.01\pow{15} = \f{\neg{40960.0}}}\\ 234 | \normal{0x3a = 0\_01110\_10 = +0b1.10\pow{\neg{1}} = \f{0.75}}& 235 | \normal{0x7a = 0\_11110\_10 = +0b1.10\pow{15} = \f{49152.0}}& 236 | \normal{0xba = 1\_01110\_10 = -0b1.10\pow{\neg{1}} = \f{\neg{0.75}}}& 237 | \normal{0xfa = 1\_11110\_10 = -0b1.10\pow{15} = \f{\neg{49152.0}}}\\ 238 | \normal{0x3b = 0\_01110\_11 = +0b1.11\pow{\neg{1}} = \f{0.875}}& 239 | \normal{0x7b = 0\_11110\_11 = +0b1.11\pow{15} = \f{57344.0}}& 240 | \normal{0xbb = 1\_01110\_11 = -0b1.11\pow{\neg{1}} = \f{\neg{0.875}}}& 241 | \normal{0xfb = 1\_11110\_11 = -0b1.11\pow{15} = \f{\neg{57344.0}}}\\ 242 | \normal{0x3c = 0\_01111\_00 = +0b1.00\pow{0} = \f{1.0}}& 243 | \special{0x7c = 0\_11111\_00 = inf}& 244 | \normal{0xbc = 1\_01111\_00 = -0b1.00\pow{0} = \f{\neg{1.0}}}& 245 | \special{0xfc = 1\_11111\_00 = -inf}\\ 246 | \normal{0x3d = 0\_01111\_01 = +0b1.01\pow{0} = \f{1.25}}& 247 | \special{0x7d = 0\_11111\_01 = nan}& 248 | \normal{0xbd = 1\_01111\_01 = -0b1.01\pow{0} = \f{\neg{1.25}}}& 249 | \special{0xfd = 1\_11111\_01 = nan}\\ 250 | \normal{0x3e = 0\_01111\_10 = +0b1.10\pow{0} = \f{1.5}}& 251 | \special{0x7e = 0\_11111\_10 = nan}& 252 | \normal{0xbe = 1\_01111\_10 = -0b1.10\pow{0} = \f{\neg{1.5}}}& 253 | \special{0xfe = 1\_11111\_10 = nan}\\ 254 | \normal{0x3f = 0\_01111\_11 = +0b1.11\pow{0} = \f{1.75}}& 255 | \special{0x7f = 0\_11111\_11 = nan}& 256 | \normal{0xbf = 1\_01111\_11 = -0b1.11\pow{0} = \f{\neg{1.75}}}& 257 | \special{0xff = 1\_11111\_11 = nan}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p5.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_000\_0000 = \f{0.0}}& 3 | \normal{0x40 = 0\_100\_0000 = +0b1.0000\pow{0} = \f{1.0}}& 4 | \special{0x80 = 1\_000\_0000 = nan}& 5 | \normal{0xc0 = 1\_100\_0000 = -0b1.0000\pow{0} = \f{\neg{1.0}}}\\ 6 | \subnormal{0x01 = 0\_000\_0001 = +0b0.0001\pow{\neg{3}} = \f{0.0078125}}& 7 | \normal{0x41 = 0\_100\_0001 = +0b1.0001\pow{0} = \f{1.0625}}& 8 | \subnormal{0x81 = 1\_000\_0001 = -0b0.0001\pow{\neg{3}} = \f{\neg{0.0078125}}}& 9 | \normal{0xc1 = 1\_100\_0001 = -0b1.0001\pow{0} = \f{\neg{1.0625}}}\\ 10 | \subnormal{0x02 = 0\_000\_0010 = +0b0.0010\pow{\neg{3}} = \f{0.015625}}& 11 | \normal{0x42 = 0\_100\_0010 = +0b1.0010\pow{0} = \f{1.125}}& 12 | \subnormal{0x82 = 1\_000\_0010 = -0b0.0010\pow{\neg{3}} = \f{\neg{0.015625}}}& 13 | \normal{0xc2 = 1\_100\_0010 = -0b1.0010\pow{0} = \f{\neg{1.125}}}\\ 14 | \subnormal{0x03 = 0\_000\_0011 = +0b0.0011\pow{\neg{3}} = \f{0.0234375}}& 15 | \normal{0x43 = 0\_100\_0011 = +0b1.0011\pow{0} = \f{1.1875}}& 16 | \subnormal{0x83 = 1\_000\_0011 = -0b0.0011\pow{\neg{3}} = \f{\neg{0.0234375}}}& 17 | \normal{0xc3 = 1\_100\_0011 = -0b1.0011\pow{0} = \f{\neg{1.1875}}}\\ 18 | \subnormal{0x04 = 0\_000\_0100 = +0b0.0100\pow{\neg{3}} = \f{0.03125}}& 19 | \normal{0x44 = 0\_100\_0100 = +0b1.0100\pow{0} = \f{1.25}}& 20 | \subnormal{0x84 = 1\_000\_0100 = -0b0.0100\pow{\neg{3}} = \f{\neg{0.03125}}}& 21 | \normal{0xc4 = 1\_100\_0100 = -0b1.0100\pow{0} = \f{\neg{1.25}}}\\ 22 | \subnormal{0x05 = 0\_000\_0101 = +0b0.0101\pow{\neg{3}} = \f{0.0390625}}& 23 | \normal{0x45 = 0\_100\_0101 = +0b1.0101\pow{0} = \f{1.3125}}& 24 | \subnormal{0x85 = 1\_000\_0101 = -0b0.0101\pow{\neg{3}} = \f{\neg{0.0390625}}}& 25 | \normal{0xc5 = 1\_100\_0101 = -0b1.0101\pow{0} = \f{\neg{1.3125}}}\\ 26 | \subnormal{0x06 = 0\_000\_0110 = +0b0.0110\pow{\neg{3}} = \f{0.046875}}& 27 | \normal{0x46 = 0\_100\_0110 = +0b1.0110\pow{0} = \f{1.375}}& 28 | \subnormal{0x86 = 1\_000\_0110 = -0b0.0110\pow{\neg{3}} = \f{\neg{0.046875}}}& 29 | \normal{0xc6 = 1\_100\_0110 = -0b1.0110\pow{0} = \f{\neg{1.375}}}\\ 30 | \subnormal{0x07 = 0\_000\_0111 = +0b0.0111\pow{\neg{3}} = \f{0.0546875}}& 31 | \normal{0x47 = 0\_100\_0111 = +0b1.0111\pow{0} = \f{1.4375}}& 32 | \subnormal{0x87 = 1\_000\_0111 = -0b0.0111\pow{\neg{3}} = \f{\neg{0.0546875}}}& 33 | \normal{0xc7 = 1\_100\_0111 = -0b1.0111\pow{0} = \f{\neg{1.4375}}}\\ 34 | \subnormal{0x08 = 0\_000\_1000 = +0b0.1000\pow{\neg{3}} = \f{0.0625}}& 35 | \normal{0x48 = 0\_100\_1000 = +0b1.1000\pow{0} = \f{1.5}}& 36 | \subnormal{0x88 = 1\_000\_1000 = -0b0.1000\pow{\neg{3}} = \f{\neg{0.0625}}}& 37 | \normal{0xc8 = 1\_100\_1000 = -0b1.1000\pow{0} = \f{\neg{1.5}}}\\ 38 | \subnormal{0x09 = 0\_000\_1001 = +0b0.1001\pow{\neg{3}} = \f{0.0703125}}& 39 | \normal{0x49 = 0\_100\_1001 = +0b1.1001\pow{0} = \f{1.5625}}& 40 | \subnormal{0x89 = 1\_000\_1001 = -0b0.1001\pow{\neg{3}} = \f{\neg{0.0703125}}}& 41 | \normal{0xc9 = 1\_100\_1001 = -0b1.1001\pow{0} = \f{\neg{1.5625}}}\\ 42 | \subnormal{0x0a = 0\_000\_1010 = +0b0.1010\pow{\neg{3}} = \f{0.078125}}& 43 | \normal{0x4a = 0\_100\_1010 = +0b1.1010\pow{0} = \f{1.625}}& 44 | \subnormal{0x8a = 1\_000\_1010 = -0b0.1010\pow{\neg{3}} = \f{\neg{0.078125}}}& 45 | \normal{0xca = 1\_100\_1010 = -0b1.1010\pow{0} = \f{\neg{1.625}}}\\ 46 | \subnormal{0x0b = 0\_000\_1011 = +0b0.1011\pow{\neg{3}} = \f{0.0859375}}& 47 | \normal{0x4b = 0\_100\_1011 = +0b1.1011\pow{0} = \f{1.6875}}& 48 | \subnormal{0x8b = 1\_000\_1011 = -0b0.1011\pow{\neg{3}} = \f{\neg{0.0859375}}}& 49 | \normal{0xcb = 1\_100\_1011 = -0b1.1011\pow{0} = \f{\neg{1.6875}}}\\ 50 | \subnormal{0x0c = 0\_000\_1100 = +0b0.1100\pow{\neg{3}} = \f{0.09375}}& 51 | \normal{0x4c = 0\_100\_1100 = +0b1.1100\pow{0} = \f{1.75}}& 52 | \subnormal{0x8c = 1\_000\_1100 = -0b0.1100\pow{\neg{3}} = \f{\neg{0.09375}}}& 53 | \normal{0xcc = 1\_100\_1100 = -0b1.1100\pow{0} = \f{\neg{1.75}}}\\ 54 | \subnormal{0x0d = 0\_000\_1101 = +0b0.1101\pow{\neg{3}} = \f{0.1015625}}& 55 | \normal{0x4d = 0\_100\_1101 = +0b1.1101\pow{0} = \f{1.8125}}& 56 | \subnormal{0x8d = 1\_000\_1101 = -0b0.1101\pow{\neg{3}} = \f{\neg{0.1015625}}}& 57 | \normal{0xcd = 1\_100\_1101 = -0b1.1101\pow{0} = \f{\neg{1.8125}}}\\ 58 | \subnormal{0x0e = 0\_000\_1110 = +0b0.1110\pow{\neg{3}} = \f{0.109375}}& 59 | \normal{0x4e = 0\_100\_1110 = +0b1.1110\pow{0} = \f{1.875}}& 60 | \subnormal{0x8e = 1\_000\_1110 = -0b0.1110\pow{\neg{3}} = \f{\neg{0.109375}}}& 61 | \normal{0xce = 1\_100\_1110 = -0b1.1110\pow{0} = \f{\neg{1.875}}}\\ 62 | \subnormal{0x0f = 0\_000\_1111 = +0b0.1111\pow{\neg{3}} = \f{0.1171875}}& 63 | \normal{0x4f = 0\_100\_1111 = +0b1.1111\pow{0} = \f{1.9375}}& 64 | \subnormal{0x8f = 1\_000\_1111 = -0b0.1111\pow{\neg{3}} = \f{\neg{0.1171875}}}& 65 | \normal{0xcf = 1\_100\_1111 = -0b1.1111\pow{0} = \f{\neg{1.9375}}}\\ 66 | \normal{0x10 = 0\_001\_0000 = +0b1.0000\pow{\neg{3}} = \f{0.125}}& 67 | \normal{0x50 = 0\_101\_0000 = +0b1.0000\pow{1} = \f{2.0}}& 68 | \normal{0x90 = 1\_001\_0000 = -0b1.0000\pow{\neg{3}} = \f{\neg{0.125}}}& 69 | \normal{0xd0 = 1\_101\_0000 = -0b1.0000\pow{1} = \f{\neg{2.0}}}\\ 70 | \normal{0x11 = 0\_001\_0001 = +0b1.0001\pow{\neg{3}} = \f{0.1328125}}& 71 | \normal{0x51 = 0\_101\_0001 = +0b1.0001\pow{1} = \f{2.125}}& 72 | \normal{0x91 = 1\_001\_0001 = -0b1.0001\pow{\neg{3}} = \f{\neg{0.1328125}}}& 73 | \normal{0xd1 = 1\_101\_0001 = -0b1.0001\pow{1} = \f{\neg{2.125}}}\\ 74 | \normal{0x12 = 0\_001\_0010 = +0b1.0010\pow{\neg{3}} = \f{0.140625}}& 75 | \normal{0x52 = 0\_101\_0010 = +0b1.0010\pow{1} = \f{2.25}}& 76 | \normal{0x92 = 1\_001\_0010 = -0b1.0010\pow{\neg{3}} = \f{\neg{0.140625}}}& 77 | \normal{0xd2 = 1\_101\_0010 = -0b1.0010\pow{1} = \f{\neg{2.25}}}\\ 78 | \normal{0x13 = 0\_001\_0011 = +0b1.0011\pow{\neg{3}} = \f{0.1484375}}& 79 | \normal{0x53 = 0\_101\_0011 = +0b1.0011\pow{1} = \f{2.375}}& 80 | \normal{0x93 = 1\_001\_0011 = -0b1.0011\pow{\neg{3}} = \f{\neg{0.1484375}}}& 81 | \normal{0xd3 = 1\_101\_0011 = -0b1.0011\pow{1} = \f{\neg{2.375}}}\\ 82 | \normal{0x14 = 0\_001\_0100 = +0b1.0100\pow{\neg{3}} = \f{0.15625}}& 83 | \normal{0x54 = 0\_101\_0100 = +0b1.0100\pow{1} = \f{2.5}}& 84 | \normal{0x94 = 1\_001\_0100 = -0b1.0100\pow{\neg{3}} = \f{\neg{0.15625}}}& 85 | \normal{0xd4 = 1\_101\_0100 = -0b1.0100\pow{1} = \f{\neg{2.5}}}\\ 86 | \normal{0x15 = 0\_001\_0101 = +0b1.0101\pow{\neg{3}} = \f{0.1640625}}& 87 | \normal{0x55 = 0\_101\_0101 = +0b1.0101\pow{1} = \f{2.625}}& 88 | \normal{0x95 = 1\_001\_0101 = -0b1.0101\pow{\neg{3}} = \f{\neg{0.1640625}}}& 89 | \normal{0xd5 = 1\_101\_0101 = -0b1.0101\pow{1} = \f{\neg{2.625}}}\\ 90 | \normal{0x16 = 0\_001\_0110 = +0b1.0110\pow{\neg{3}} = \f{0.171875}}& 91 | \normal{0x56 = 0\_101\_0110 = +0b1.0110\pow{1} = \f{2.75}}& 92 | \normal{0x96 = 1\_001\_0110 = -0b1.0110\pow{\neg{3}} = \f{\neg{0.171875}}}& 93 | \normal{0xd6 = 1\_101\_0110 = -0b1.0110\pow{1} = \f{\neg{2.75}}}\\ 94 | \normal{0x17 = 0\_001\_0111 = +0b1.0111\pow{\neg{3}} = \f{0.1796875}}& 95 | \normal{0x57 = 0\_101\_0111 = +0b1.0111\pow{1} = \f{2.875}}& 96 | \normal{0x97 = 1\_001\_0111 = -0b1.0111\pow{\neg{3}} = \f{\neg{0.1796875}}}& 97 | \normal{0xd7 = 1\_101\_0111 = -0b1.0111\pow{1} = \f{\neg{2.875}}}\\ 98 | \normal{0x18 = 0\_001\_1000 = +0b1.1000\pow{\neg{3}} = \f{0.1875}}& 99 | \normal{0x58 = 0\_101\_1000 = +0b1.1000\pow{1} = \f{3.0}}& 100 | \normal{0x98 = 1\_001\_1000 = -0b1.1000\pow{\neg{3}} = \f{\neg{0.1875}}}& 101 | \normal{0xd8 = 1\_101\_1000 = -0b1.1000\pow{1} = \f{\neg{3.0}}}\\ 102 | \normal{0x19 = 0\_001\_1001 = +0b1.1001\pow{\neg{3}} = \f{0.1953125}}& 103 | \normal{0x59 = 0\_101\_1001 = +0b1.1001\pow{1} = \f{3.125}}& 104 | \normal{0x99 = 1\_001\_1001 = -0b1.1001\pow{\neg{3}} = \f{\neg{0.1953125}}}& 105 | \normal{0xd9 = 1\_101\_1001 = -0b1.1001\pow{1} = \f{\neg{3.125}}}\\ 106 | \normal{0x1a = 0\_001\_1010 = +0b1.1010\pow{\neg{3}} = \f{0.203125}}& 107 | \normal{0x5a = 0\_101\_1010 = +0b1.1010\pow{1} = \f{3.25}}& 108 | \normal{0x9a = 1\_001\_1010 = -0b1.1010\pow{\neg{3}} = \f{\neg{0.203125}}}& 109 | \normal{0xda = 1\_101\_1010 = -0b1.1010\pow{1} = \f{\neg{3.25}}}\\ 110 | \normal{0x1b = 0\_001\_1011 = +0b1.1011\pow{\neg{3}} = \f{0.2109375}}& 111 | \normal{0x5b = 0\_101\_1011 = +0b1.1011\pow{1} = \f{3.375}}& 112 | \normal{0x9b = 1\_001\_1011 = -0b1.1011\pow{\neg{3}} = \f{\neg{0.2109375}}}& 113 | \normal{0xdb = 1\_101\_1011 = -0b1.1011\pow{1} = \f{\neg{3.375}}}\\ 114 | \normal{0x1c = 0\_001\_1100 = +0b1.1100\pow{\neg{3}} = \f{0.21875}}& 115 | \normal{0x5c = 0\_101\_1100 = +0b1.1100\pow{1} = \f{3.5}}& 116 | \normal{0x9c = 1\_001\_1100 = -0b1.1100\pow{\neg{3}} = \f{\neg{0.21875}}}& 117 | \normal{0xdc = 1\_101\_1100 = -0b1.1100\pow{1} = \f{\neg{3.5}}}\\ 118 | \normal{0x1d = 0\_001\_1101 = +0b1.1101\pow{\neg{3}} = \f{0.2265625}}& 119 | \normal{0x5d = 0\_101\_1101 = +0b1.1101\pow{1} = \f{3.625}}& 120 | \normal{0x9d = 1\_001\_1101 = -0b1.1101\pow{\neg{3}} = \f{\neg{0.2265625}}}& 121 | \normal{0xdd = 1\_101\_1101 = -0b1.1101\pow{1} = \f{\neg{3.625}}}\\ 122 | \normal{0x1e = 0\_001\_1110 = +0b1.1110\pow{\neg{3}} = \f{0.234375}}& 123 | \normal{0x5e = 0\_101\_1110 = +0b1.1110\pow{1} = \f{3.75}}& 124 | \normal{0x9e = 1\_001\_1110 = -0b1.1110\pow{\neg{3}} = \f{\neg{0.234375}}}& 125 | \normal{0xde = 1\_101\_1110 = -0b1.1110\pow{1} = \f{\neg{3.75}}}\\ 126 | \normal{0x1f = 0\_001\_1111 = +0b1.1111\pow{\neg{3}} = \f{0.2421875}}& 127 | \normal{0x5f = 0\_101\_1111 = +0b1.1111\pow{1} = \f{3.875}}& 128 | \normal{0x9f = 1\_001\_1111 = -0b1.1111\pow{\neg{3}} = \f{\neg{0.2421875}}}& 129 | \normal{0xdf = 1\_101\_1111 = -0b1.1111\pow{1} = \f{\neg{3.875}}}\\ 130 | \normal{0x20 = 0\_010\_0000 = +0b1.0000\pow{\neg{2}} = \f{0.25}}& 131 | \normal{0x60 = 0\_110\_0000 = +0b1.0000\pow{2} = \f{4.0}}& 132 | \normal{0xa0 = 1\_010\_0000 = -0b1.0000\pow{\neg{2}} = \f{\neg{0.25}}}& 133 | \normal{0xe0 = 1\_110\_0000 = -0b1.0000\pow{2} = \f{\neg{4.0}}}\\ 134 | \normal{0x21 = 0\_010\_0001 = +0b1.0001\pow{\neg{2}} = \f{0.265625}}& 135 | \normal{0x61 = 0\_110\_0001 = +0b1.0001\pow{2} = \f{4.25}}& 136 | \normal{0xa1 = 1\_010\_0001 = -0b1.0001\pow{\neg{2}} = \f{\neg{0.265625}}}& 137 | \normal{0xe1 = 1\_110\_0001 = -0b1.0001\pow{2} = \f{\neg{4.25}}}\\ 138 | \normal{0x22 = 0\_010\_0010 = +0b1.0010\pow{\neg{2}} = \f{0.28125}}& 139 | \normal{0x62 = 0\_110\_0010 = +0b1.0010\pow{2} = \f{4.5}}& 140 | \normal{0xa2 = 1\_010\_0010 = -0b1.0010\pow{\neg{2}} = \f{\neg{0.28125}}}& 141 | \normal{0xe2 = 1\_110\_0010 = -0b1.0010\pow{2} = \f{\neg{4.5}}}\\ 142 | \normal{0x23 = 0\_010\_0011 = +0b1.0011\pow{\neg{2}} = \f{0.296875}}& 143 | \normal{0x63 = 0\_110\_0011 = +0b1.0011\pow{2} = \f{4.75}}& 144 | \normal{0xa3 = 1\_010\_0011 = -0b1.0011\pow{\neg{2}} = \f{\neg{0.296875}}}& 145 | \normal{0xe3 = 1\_110\_0011 = -0b1.0011\pow{2} = \f{\neg{4.75}}}\\ 146 | \normal{0x24 = 0\_010\_0100 = +0b1.0100\pow{\neg{2}} = \f{0.3125}}& 147 | \normal{0x64 = 0\_110\_0100 = +0b1.0100\pow{2} = \f{5.0}}& 148 | \normal{0xa4 = 1\_010\_0100 = -0b1.0100\pow{\neg{2}} = \f{\neg{0.3125}}}& 149 | \normal{0xe4 = 1\_110\_0100 = -0b1.0100\pow{2} = \f{\neg{5.0}}}\\ 150 | \normal{0x25 = 0\_010\_0101 = +0b1.0101\pow{\neg{2}} = \f{0.328125}}& 151 | \normal{0x65 = 0\_110\_0101 = +0b1.0101\pow{2} = \f{5.25}}& 152 | \normal{0xa5 = 1\_010\_0101 = -0b1.0101\pow{\neg{2}} = \f{\neg{0.328125}}}& 153 | \normal{0xe5 = 1\_110\_0101 = -0b1.0101\pow{2} = \f{\neg{5.25}}}\\ 154 | \normal{0x26 = 0\_010\_0110 = +0b1.0110\pow{\neg{2}} = \f{0.34375}}& 155 | \normal{0x66 = 0\_110\_0110 = +0b1.0110\pow{2} = \f{5.5}}& 156 | \normal{0xa6 = 1\_010\_0110 = -0b1.0110\pow{\neg{2}} = \f{\neg{0.34375}}}& 157 | \normal{0xe6 = 1\_110\_0110 = -0b1.0110\pow{2} = \f{\neg{5.5}}}\\ 158 | \normal{0x27 = 0\_010\_0111 = +0b1.0111\pow{\neg{2}} = \f{0.359375}}& 159 | \normal{0x67 = 0\_110\_0111 = +0b1.0111\pow{2} = \f{5.75}}& 160 | \normal{0xa7 = 1\_010\_0111 = -0b1.0111\pow{\neg{2}} = \f{\neg{0.359375}}}& 161 | \normal{0xe7 = 1\_110\_0111 = -0b1.0111\pow{2} = \f{\neg{5.75}}}\\ 162 | \normal{0x28 = 0\_010\_1000 = +0b1.1000\pow{\neg{2}} = \f{0.375}}& 163 | \normal{0x68 = 0\_110\_1000 = +0b1.1000\pow{2} = \f{6.0}}& 164 | \normal{0xa8 = 1\_010\_1000 = -0b1.1000\pow{\neg{2}} = \f{\neg{0.375}}}& 165 | \normal{0xe8 = 1\_110\_1000 = -0b1.1000\pow{2} = \f{\neg{6.0}}}\\ 166 | \normal{0x29 = 0\_010\_1001 = +0b1.1001\pow{\neg{2}} = \f{0.390625}}& 167 | \normal{0x69 = 0\_110\_1001 = +0b1.1001\pow{2} = \f{6.25}}& 168 | \normal{0xa9 = 1\_010\_1001 = -0b1.1001\pow{\neg{2}} = \f{\neg{0.390625}}}& 169 | \normal{0xe9 = 1\_110\_1001 = -0b1.1001\pow{2} = \f{\neg{6.25}}}\\ 170 | \normal{0x2a = 0\_010\_1010 = +0b1.1010\pow{\neg{2}} = \f{0.40625}}& 171 | \normal{0x6a = 0\_110\_1010 = +0b1.1010\pow{2} = \f{6.5}}& 172 | \normal{0xaa = 1\_010\_1010 = -0b1.1010\pow{\neg{2}} = \f{\neg{0.40625}}}& 173 | \normal{0xea = 1\_110\_1010 = -0b1.1010\pow{2} = \f{\neg{6.5}}}\\ 174 | \normal{0x2b = 0\_010\_1011 = +0b1.1011\pow{\neg{2}} = \f{0.421875}}& 175 | \normal{0x6b = 0\_110\_1011 = +0b1.1011\pow{2} = \f{6.75}}& 176 | \normal{0xab = 1\_010\_1011 = -0b1.1011\pow{\neg{2}} = \f{\neg{0.421875}}}& 177 | \normal{0xeb = 1\_110\_1011 = -0b1.1011\pow{2} = \f{\neg{6.75}}}\\ 178 | \normal{0x2c = 0\_010\_1100 = +0b1.1100\pow{\neg{2}} = \f{0.4375}}& 179 | \normal{0x6c = 0\_110\_1100 = +0b1.1100\pow{2} = \f{7.0}}& 180 | \normal{0xac = 1\_010\_1100 = -0b1.1100\pow{\neg{2}} = \f{\neg{0.4375}}}& 181 | \normal{0xec = 1\_110\_1100 = -0b1.1100\pow{2} = \f{\neg{7.0}}}\\ 182 | \normal{0x2d = 0\_010\_1101 = +0b1.1101\pow{\neg{2}} = \f{0.453125}}& 183 | \normal{0x6d = 0\_110\_1101 = +0b1.1101\pow{2} = \f{7.25}}& 184 | \normal{0xad = 1\_010\_1101 = -0b1.1101\pow{\neg{2}} = \f{\neg{0.453125}}}& 185 | \normal{0xed = 1\_110\_1101 = -0b1.1101\pow{2} = \f{\neg{7.25}}}\\ 186 | \normal{0x2e = 0\_010\_1110 = +0b1.1110\pow{\neg{2}} = \f{0.46875}}& 187 | \normal{0x6e = 0\_110\_1110 = +0b1.1110\pow{2} = \f{7.5}}& 188 | \normal{0xae = 1\_010\_1110 = -0b1.1110\pow{\neg{2}} = \f{\neg{0.46875}}}& 189 | \normal{0xee = 1\_110\_1110 = -0b1.1110\pow{2} = \f{\neg{7.5}}}\\ 190 | \normal{0x2f = 0\_010\_1111 = +0b1.1111\pow{\neg{2}} = \f{0.484375}}& 191 | \normal{0x6f = 0\_110\_1111 = +0b1.1111\pow{2} = \f{7.75}}& 192 | \normal{0xaf = 1\_010\_1111 = -0b1.1111\pow{\neg{2}} = \f{\neg{0.484375}}}& 193 | \normal{0xef = 1\_110\_1111 = -0b1.1111\pow{2} = \f{\neg{7.75}}}\\ 194 | \normal{0x30 = 0\_011\_0000 = +0b1.0000\pow{\neg{1}} = \f{0.5}}& 195 | \normal{0x70 = 0\_111\_0000 = +0b1.0000\pow{3} = \f{8.0}}& 196 | \normal{0xb0 = 1\_011\_0000 = -0b1.0000\pow{\neg{1}} = \f{\neg{0.5}}}& 197 | \normal{0xf0 = 1\_111\_0000 = -0b1.0000\pow{3} = \f{\neg{8.0}}}\\ 198 | \normal{0x31 = 0\_011\_0001 = +0b1.0001\pow{\neg{1}} = \f{0.53125}}& 199 | \normal{0x71 = 0\_111\_0001 = +0b1.0001\pow{3} = \f{8.5}}& 200 | \normal{0xb1 = 1\_011\_0001 = -0b1.0001\pow{\neg{1}} = \f{\neg{0.53125}}}& 201 | \normal{0xf1 = 1\_111\_0001 = -0b1.0001\pow{3} = \f{\neg{8.5}}}\\ 202 | \normal{0x32 = 0\_011\_0010 = +0b1.0010\pow{\neg{1}} = \f{0.5625}}& 203 | \normal{0x72 = 0\_111\_0010 = +0b1.0010\pow{3} = \f{9.0}}& 204 | \normal{0xb2 = 1\_011\_0010 = -0b1.0010\pow{\neg{1}} = \f{\neg{0.5625}}}& 205 | \normal{0xf2 = 1\_111\_0010 = -0b1.0010\pow{3} = \f{\neg{9.0}}}\\ 206 | \normal{0x33 = 0\_011\_0011 = +0b1.0011\pow{\neg{1}} = \f{0.59375}}& 207 | \normal{0x73 = 0\_111\_0011 = +0b1.0011\pow{3} = \f{9.5}}& 208 | \normal{0xb3 = 1\_011\_0011 = -0b1.0011\pow{\neg{1}} = \f{\neg{0.59375}}}& 209 | \normal{0xf3 = 1\_111\_0011 = -0b1.0011\pow{3} = \f{\neg{9.5}}}\\ 210 | \normal{0x34 = 0\_011\_0100 = +0b1.0100\pow{\neg{1}} = \f{0.625}}& 211 | \normal{0x74 = 0\_111\_0100 = +0b1.0100\pow{3} = \f{10.0}}& 212 | \normal{0xb4 = 1\_011\_0100 = -0b1.0100\pow{\neg{1}} = \f{\neg{0.625}}}& 213 | \normal{0xf4 = 1\_111\_0100 = -0b1.0100\pow{3} = \f{\neg{10.0}}}\\ 214 | \normal{0x35 = 0\_011\_0101 = +0b1.0101\pow{\neg{1}} = \f{0.65625}}& 215 | \normal{0x75 = 0\_111\_0101 = +0b1.0101\pow{3} = \f{10.5}}& 216 | \normal{0xb5 = 1\_011\_0101 = -0b1.0101\pow{\neg{1}} = \f{\neg{0.65625}}}& 217 | \normal{0xf5 = 1\_111\_0101 = -0b1.0101\pow{3} = \f{\neg{10.5}}}\\ 218 | \normal{0x36 = 0\_011\_0110 = +0b1.0110\pow{\neg{1}} = \f{0.6875}}& 219 | \normal{0x76 = 0\_111\_0110 = +0b1.0110\pow{3} = \f{11.0}}& 220 | \normal{0xb6 = 1\_011\_0110 = -0b1.0110\pow{\neg{1}} = \f{\neg{0.6875}}}& 221 | \normal{0xf6 = 1\_111\_0110 = -0b1.0110\pow{3} = \f{\neg{11.0}}}\\ 222 | \normal{0x37 = 0\_011\_0111 = +0b1.0111\pow{\neg{1}} = \f{0.71875}}& 223 | \normal{0x77 = 0\_111\_0111 = +0b1.0111\pow{3} = \f{11.5}}& 224 | \normal{0xb7 = 1\_011\_0111 = -0b1.0111\pow{\neg{1}} = \f{\neg{0.71875}}}& 225 | \normal{0xf7 = 1\_111\_0111 = -0b1.0111\pow{3} = \f{\neg{11.5}}}\\ 226 | \normal{0x38 = 0\_011\_1000 = +0b1.1000\pow{\neg{1}} = \f{0.75}}& 227 | \normal{0x78 = 0\_111\_1000 = +0b1.1000\pow{3} = \f{12.0}}& 228 | \normal{0xb8 = 1\_011\_1000 = -0b1.1000\pow{\neg{1}} = \f{\neg{0.75}}}& 229 | \normal{0xf8 = 1\_111\_1000 = -0b1.1000\pow{3} = \f{\neg{12.0}}}\\ 230 | \normal{0x39 = 0\_011\_1001 = +0b1.1001\pow{\neg{1}} = \f{0.78125}}& 231 | \normal{0x79 = 0\_111\_1001 = +0b1.1001\pow{3} = \f{12.5}}& 232 | \normal{0xb9 = 1\_011\_1001 = -0b1.1001\pow{\neg{1}} = \f{\neg{0.78125}}}& 233 | \normal{0xf9 = 1\_111\_1001 = -0b1.1001\pow{3} = \f{\neg{12.5}}}\\ 234 | \normal{0x3a = 0\_011\_1010 = +0b1.1010\pow{\neg{1}} = \f{0.8125}}& 235 | \normal{0x7a = 0\_111\_1010 = +0b1.1010\pow{3} = \f{13.0}}& 236 | \normal{0xba = 1\_011\_1010 = -0b1.1010\pow{\neg{1}} = \f{\neg{0.8125}}}& 237 | \normal{0xfa = 1\_111\_1010 = -0b1.1010\pow{3} = \f{\neg{13.0}}}\\ 238 | \normal{0x3b = 0\_011\_1011 = +0b1.1011\pow{\neg{1}} = \f{0.84375}}& 239 | \normal{0x7b = 0\_111\_1011 = +0b1.1011\pow{3} = \f{13.5}}& 240 | \normal{0xbb = 1\_011\_1011 = -0b1.1011\pow{\neg{1}} = \f{\neg{0.84375}}}& 241 | \normal{0xfb = 1\_111\_1011 = -0b1.1011\pow{3} = \f{\neg{13.5}}}\\ 242 | \normal{0x3c = 0\_011\_1100 = +0b1.1100\pow{\neg{1}} = \f{0.875}}& 243 | \normal{0x7c = 0\_111\_1100 = +0b1.1100\pow{3} = \f{14.0}}& 244 | \normal{0xbc = 1\_011\_1100 = -0b1.1100\pow{\neg{1}} = \f{\neg{0.875}}}& 245 | \normal{0xfc = 1\_111\_1100 = -0b1.1100\pow{3} = \f{\neg{14.0}}}\\ 246 | \normal{0x3d = 0\_011\_1101 = +0b1.1101\pow{\neg{1}} = \f{0.90625}}& 247 | \normal{0x7d = 0\_111\_1101 = +0b1.1101\pow{3} = \f{14.5}}& 248 | \normal{0xbd = 1\_011\_1101 = -0b1.1101\pow{\neg{1}} = \f{\neg{0.90625}}}& 249 | \normal{0xfd = 1\_111\_1101 = -0b1.1101\pow{3} = \f{\neg{14.5}}}\\ 250 | \normal{0x3e = 0\_011\_1110 = +0b1.1110\pow{\neg{1}} = \f{0.9375}}& 251 | \normal{0x7e = 0\_111\_1110 = +0b1.1110\pow{3} = \f{15.0}}& 252 | \normal{0xbe = 1\_011\_1110 = -0b1.1110\pow{\neg{1}} = \f{\neg{0.9375}}}& 253 | \normal{0xfe = 1\_111\_1110 = -0b1.1110\pow{3} = \f{\neg{15.0}}}\\ 254 | \normal{0x3f = 0\_011\_1111 = +0b1.1111\pow{\neg{1}} = \f{0.96875}}& 255 | \special{0x7f = 0\_111\_1111 = inf}& 256 | \normal{0xbf = 1\_011\_1111 = -0b1.1111\pow{\neg{1}} = \f{\neg{0.96875}}}& 257 | \special{0xff = 1\_111\_1111 = -inf}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p3.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_00000\_00 = \f{0.0}}& 3 | \normal{0x40 = 0\_10000\_00 = +0b1.00\pow{0} = \f{1.0}}& 4 | \special{0x80 = 1\_00000\_00 = nan}& 5 | \normal{0xc0 = 1\_10000\_00 = -0b1.00\pow{0} = \f{\neg{1.0}}}\\ 6 | \subnormal{0x01 = 0\_00000\_01 = +0b0.01\pow{\neg{15}} \approx \e{7.6293945}{\neg{06}}}& 7 | \normal{0x41 = 0\_10000\_01 = +0b1.01\pow{0} = \f{1.25}}& 8 | \subnormal{0x81 = 1\_00000\_01 = -0b0.01\pow{\neg{15}} \approx \e{-7.6293945}{\neg{06}}}& 9 | \normal{0xc1 = 1\_10000\_01 = -0b1.01\pow{0} = \f{\neg{1.25}}}\\ 10 | \subnormal{0x02 = 0\_00000\_10 = +0b0.10\pow{\neg{15}} \approx \e{1.5258789}{\neg{05}}}& 11 | \normal{0x42 = 0\_10000\_10 = +0b1.10\pow{0} = \f{1.5}}& 12 | \subnormal{0x82 = 1\_00000\_10 = -0b0.10\pow{\neg{15}} \approx \e{-1.5258789}{\neg{05}}}& 13 | \normal{0xc2 = 1\_10000\_10 = -0b1.10\pow{0} = \f{\neg{1.5}}}\\ 14 | \subnormal{0x03 = 0\_00000\_11 = +0b0.11\pow{\neg{15}} \approx \e{2.2888184}{\neg{05}}}& 15 | \normal{0x43 = 0\_10000\_11 = +0b1.11\pow{0} = \f{1.75}}& 16 | \subnormal{0x83 = 1\_00000\_11 = -0b0.11\pow{\neg{15}} \approx \e{-2.2888184}{\neg{05}}}& 17 | \normal{0xc3 = 1\_10000\_11 = -0b1.11\pow{0} = \f{\neg{1.75}}}\\ 18 | \normal{0x04 = 0\_00001\_00 = +0b1.00\pow{\neg{15}} \approx \e{3.0517578}{\neg{05}}}& 19 | \normal{0x44 = 0\_10001\_00 = +0b1.00\pow{1} = \f{2.0}}& 20 | \normal{0x84 = 1\_00001\_00 = -0b1.00\pow{\neg{15}} \approx \e{-3.0517578}{\neg{05}}}& 21 | \normal{0xc4 = 1\_10001\_00 = -0b1.00\pow{1} = \f{\neg{2.0}}}\\ 22 | \normal{0x05 = 0\_00001\_01 = +0b1.01\pow{\neg{15}} \approx \e{3.8146973}{\neg{05}}}& 23 | \normal{0x45 = 0\_10001\_01 = +0b1.01\pow{1} = \f{2.5}}& 24 | \normal{0x85 = 1\_00001\_01 = -0b1.01\pow{\neg{15}} \approx \e{-3.8146973}{\neg{05}}}& 25 | \normal{0xc5 = 1\_10001\_01 = -0b1.01\pow{1} = \f{\neg{2.5}}}\\ 26 | \normal{0x06 = 0\_00001\_10 = +0b1.10\pow{\neg{15}} \approx \e{4.5776367}{\neg{05}}}& 27 | \normal{0x46 = 0\_10001\_10 = +0b1.10\pow{1} = \f{3.0}}& 28 | \normal{0x86 = 1\_00001\_10 = -0b1.10\pow{\neg{15}} \approx \e{-4.5776367}{\neg{05}}}& 29 | \normal{0xc6 = 1\_10001\_10 = -0b1.10\pow{1} = \f{\neg{3.0}}}\\ 30 | \normal{0x07 = 0\_00001\_11 = +0b1.11\pow{\neg{15}} \approx \e{5.3405762}{\neg{05}}}& 31 | \normal{0x47 = 0\_10001\_11 = +0b1.11\pow{1} = \f{3.5}}& 32 | \normal{0x87 = 1\_00001\_11 = -0b1.11\pow{\neg{15}} \approx \e{-5.3405762}{\neg{05}}}& 33 | \normal{0xc7 = 1\_10001\_11 = -0b1.11\pow{1} = \f{\neg{3.5}}}\\ 34 | \normal{0x08 = 0\_00010\_00 = +0b1.00\pow{\neg{14}} \approx \e{6.1035156}{\neg{05}}}& 35 | \normal{0x48 = 0\_10010\_00 = +0b1.00\pow{2} = \f{4.0}}& 36 | \normal{0x88 = 1\_00010\_00 = -0b1.00\pow{\neg{14}} \approx \e{-6.1035156}{\neg{05}}}& 37 | \normal{0xc8 = 1\_10010\_00 = -0b1.00\pow{2} = \f{\neg{4.0}}}\\ 38 | \normal{0x09 = 0\_00010\_01 = +0b1.01\pow{\neg{14}} \approx \e{7.6293945}{\neg{05}}}& 39 | \normal{0x49 = 0\_10010\_01 = +0b1.01\pow{2} = \f{5.0}}& 40 | \normal{0x89 = 1\_00010\_01 = -0b1.01\pow{\neg{14}} \approx \e{-7.6293945}{\neg{05}}}& 41 | \normal{0xc9 = 1\_10010\_01 = -0b1.01\pow{2} = \f{\neg{5.0}}}\\ 42 | \normal{0x0a = 0\_00010\_10 = +0b1.10\pow{\neg{14}} \approx \e{9.1552734}{\neg{05}}}& 43 | \normal{0x4a = 0\_10010\_10 = +0b1.10\pow{2} = \f{6.0}}& 44 | \normal{0x8a = 1\_00010\_10 = -0b1.10\pow{\neg{14}} \approx \e{-9.1552734}{\neg{05}}}& 45 | \normal{0xca = 1\_10010\_10 = -0b1.10\pow{2} = \f{\neg{6.0}}}\\ 46 | \normal{0x0b = 0\_00010\_11 = +0b1.11\pow{\neg{14}} \approx \f{0.00010681}}& 47 | \normal{0x4b = 0\_10010\_11 = +0b1.11\pow{2} = \f{7.0}}& 48 | \normal{0x8b = 1\_00010\_11 = -0b1.11\pow{\neg{14}} \approx \f{\neg{0.00010681}}}& 49 | \normal{0xcb = 1\_10010\_11 = -0b1.11\pow{2} = \f{\neg{7.0}}}\\ 50 | \normal{0x0c = 0\_00011\_00 = +0b1.00\pow{\neg{13}} \approx \f{0.00012207}}& 51 | \normal{0x4c = 0\_10011\_00 = +0b1.00\pow{3} = \f{8.0}}& 52 | \normal{0x8c = 1\_00011\_00 = -0b1.00\pow{\neg{13}} \approx \f{\neg{0.00012207}}}& 53 | \normal{0xcc = 1\_10011\_00 = -0b1.00\pow{3} = \f{\neg{8.0}}}\\ 54 | \normal{0x0d = 0\_00011\_01 = +0b1.01\pow{\neg{13}} \approx \f{0.00015259}}& 55 | \normal{0x4d = 0\_10011\_01 = +0b1.01\pow{3} = \f{10.0}}& 56 | \normal{0x8d = 1\_00011\_01 = -0b1.01\pow{\neg{13}} \approx \f{\neg{0.00015259}}}& 57 | \normal{0xcd = 1\_10011\_01 = -0b1.01\pow{3} = \f{\neg{10.0}}}\\ 58 | \normal{0x0e = 0\_00011\_10 = +0b1.10\pow{\neg{13}} \approx \f{0.00018311}}& 59 | \normal{0x4e = 0\_10011\_10 = +0b1.10\pow{3} = \f{12.0}}& 60 | \normal{0x8e = 1\_00011\_10 = -0b1.10\pow{\neg{13}} \approx \f{\neg{0.00018311}}}& 61 | \normal{0xce = 1\_10011\_10 = -0b1.10\pow{3} = \f{\neg{12.0}}}\\ 62 | \normal{0x0f = 0\_00011\_11 = +0b1.11\pow{\neg{13}} \approx \f{0.00021362}}& 63 | \normal{0x4f = 0\_10011\_11 = +0b1.11\pow{3} = \f{14.0}}& 64 | \normal{0x8f = 1\_00011\_11 = -0b1.11\pow{\neg{13}} \approx \f{\neg{0.00021362}}}& 65 | \normal{0xcf = 1\_10011\_11 = -0b1.11\pow{3} = \f{\neg{14.0}}}\\ 66 | \normal{0x10 = 0\_00100\_00 = +0b1.00\pow{\neg{12}} = \f{0.000244140625}}& 67 | \normal{0x50 = 0\_10100\_00 = +0b1.00\pow{4} = \f{16.0}}& 68 | \normal{0x90 = 1\_00100\_00 = -0b1.00\pow{\neg{12}} \approx \f{\neg{0.00024414}}}& 69 | \normal{0xd0 = 1\_10100\_00 = -0b1.00\pow{4} = \f{\neg{16.0}}}\\ 70 | \normal{0x11 = 0\_00100\_01 = +0b1.01\pow{\neg{12}} \approx \f{0.00030518}}& 71 | \normal{0x51 = 0\_10100\_01 = +0b1.01\pow{4} = \f{20.0}}& 72 | \normal{0x91 = 1\_00100\_01 = -0b1.01\pow{\neg{12}} \approx \f{\neg{0.00030518}}}& 73 | \normal{0xd1 = 1\_10100\_01 = -0b1.01\pow{4} = \f{\neg{20.0}}}\\ 74 | \normal{0x12 = 0\_00100\_10 = +0b1.10\pow{\neg{12}} \approx \f{0.00036621}}& 75 | \normal{0x52 = 0\_10100\_10 = +0b1.10\pow{4} = \f{24.0}}& 76 | \normal{0x92 = 1\_00100\_10 = -0b1.10\pow{\neg{12}} \approx \f{\neg{0.00036621}}}& 77 | \normal{0xd2 = 1\_10100\_10 = -0b1.10\pow{4} = \f{\neg{24.0}}}\\ 78 | \normal{0x13 = 0\_00100\_11 = +0b1.11\pow{\neg{12}} \approx \f{0.00042725}}& 79 | \normal{0x53 = 0\_10100\_11 = +0b1.11\pow{4} = \f{28.0}}& 80 | \normal{0x93 = 1\_00100\_11 = -0b1.11\pow{\neg{12}} \approx \f{\neg{0.00042725}}}& 81 | \normal{0xd3 = 1\_10100\_11 = -0b1.11\pow{4} = \f{\neg{28.0}}}\\ 82 | \normal{0x14 = 0\_00101\_00 = +0b1.00\pow{\neg{11}} = \f{0.00048828125}}& 83 | \normal{0x54 = 0\_10101\_00 = +0b1.00\pow{5} = \f{32.0}}& 84 | \normal{0x94 = 1\_00101\_00 = -0b1.00\pow{\neg{11}} = \f{\neg{0.00048828125}}}& 85 | \normal{0xd4 = 1\_10101\_00 = -0b1.00\pow{5} = \f{\neg{32.0}}}\\ 86 | \normal{0x15 = 0\_00101\_01 = +0b1.01\pow{\neg{11}} \approx \f{0.00061035}}& 87 | \normal{0x55 = 0\_10101\_01 = +0b1.01\pow{5} = \f{40.0}}& 88 | \normal{0x95 = 1\_00101\_01 = -0b1.01\pow{\neg{11}} \approx \f{\neg{0.00061035}}}& 89 | \normal{0xd5 = 1\_10101\_01 = -0b1.01\pow{5} = \f{\neg{40.0}}}\\ 90 | \normal{0x16 = 0\_00101\_10 = +0b1.10\pow{\neg{11}} = \f{0.000732421875}}& 91 | \normal{0x56 = 0\_10101\_10 = +0b1.10\pow{5} = \f{48.0}}& 92 | \normal{0x96 = 1\_00101\_10 = -0b1.10\pow{\neg{11}} \approx \f{\neg{0.00073242}}}& 93 | \normal{0xd6 = 1\_10101\_10 = -0b1.10\pow{5} = \f{\neg{48.0}}}\\ 94 | \normal{0x17 = 0\_00101\_11 = +0b1.11\pow{\neg{11}} \approx \f{0.00085449}}& 95 | \normal{0x57 = 0\_10101\_11 = +0b1.11\pow{5} = \f{56.0}}& 96 | \normal{0x97 = 1\_00101\_11 = -0b1.11\pow{\neg{11}} \approx \f{\neg{0.00085449}}}& 97 | \normal{0xd7 = 1\_10101\_11 = -0b1.11\pow{5} = \f{\neg{56.0}}}\\ 98 | \normal{0x18 = 0\_00110\_00 = +0b1.00\pow{\neg{10}} = \f{0.0009765625}}& 99 | \normal{0x58 = 0\_10110\_00 = +0b1.00\pow{6} = \f{64.0}}& 100 | \normal{0x98 = 1\_00110\_00 = -0b1.00\pow{\neg{10}} = \f{\neg{0.0009765625}}}& 101 | \normal{0xd8 = 1\_10110\_00 = -0b1.00\pow{6} = \f{\neg{64.0}}}\\ 102 | \normal{0x19 = 0\_00110\_01 = +0b1.01\pow{\neg{10}} = \f{0.001220703125}}& 103 | \normal{0x59 = 0\_10110\_01 = +0b1.01\pow{6} = \f{80.0}}& 104 | \normal{0x99 = 1\_00110\_01 = -0b1.01\pow{\neg{10}} \approx \f{\neg{0.00122070}}}& 105 | \normal{0xd9 = 1\_10110\_01 = -0b1.01\pow{6} = \f{\neg{80.0}}}\\ 106 | \normal{0x1a = 0\_00110\_10 = +0b1.10\pow{\neg{10}} = \f{0.00146484375}}& 107 | \normal{0x5a = 0\_10110\_10 = +0b1.10\pow{6} = \f{96.0}}& 108 | \normal{0x9a = 1\_00110\_10 = -0b1.10\pow{\neg{10}} = \f{\neg{0.00146484375}}}& 109 | \normal{0xda = 1\_10110\_10 = -0b1.10\pow{6} = \f{\neg{96.0}}}\\ 110 | \normal{0x1b = 0\_00110\_11 = +0b1.11\pow{\neg{10}} = \f{0.001708984375}}& 111 | \normal{0x5b = 0\_10110\_11 = +0b1.11\pow{6} = \f{112.0}}& 112 | \normal{0x9b = 1\_00110\_11 = -0b1.11\pow{\neg{10}} \approx \f{\neg{0.00170898}}}& 113 | \normal{0xdb = 1\_10110\_11 = -0b1.11\pow{6} = \f{\neg{112.0}}}\\ 114 | \normal{0x1c = 0\_00111\_00 = +0b1.00\pow{\neg{9}} = \f{0.001953125}}& 115 | \normal{0x5c = 0\_10111\_00 = +0b1.00\pow{7} = \f{128.0}}& 116 | \normal{0x9c = 1\_00111\_00 = -0b1.00\pow{\neg{9}} = \f{\neg{0.001953125}}}& 117 | \normal{0xdc = 1\_10111\_00 = -0b1.00\pow{7} = \f{\neg{128.0}}}\\ 118 | \normal{0x1d = 0\_00111\_01 = +0b1.01\pow{\neg{9}} = \f{0.00244140625}}& 119 | \normal{0x5d = 0\_10111\_01 = +0b1.01\pow{7} = \f{160.0}}& 120 | \normal{0x9d = 1\_00111\_01 = -0b1.01\pow{\neg{9}} = \f{\neg{0.00244140625}}}& 121 | \normal{0xdd = 1\_10111\_01 = -0b1.01\pow{7} = \f{\neg{160.0}}}\\ 122 | \normal{0x1e = 0\_00111\_10 = +0b1.10\pow{\neg{9}} = \f{0.0029296875}}& 123 | \normal{0x5e = 0\_10111\_10 = +0b1.10\pow{7} = \f{192.0}}& 124 | \normal{0x9e = 1\_00111\_10 = -0b1.10\pow{\neg{9}} = \f{\neg{0.0029296875}}}& 125 | \normal{0xde = 1\_10111\_10 = -0b1.10\pow{7} = \f{\neg{192.0}}}\\ 126 | \normal{0x1f = 0\_00111\_11 = +0b1.11\pow{\neg{9}} = \f{0.00341796875}}& 127 | \normal{0x5f = 0\_10111\_11 = +0b1.11\pow{7} = \f{224.0}}& 128 | \normal{0x9f = 1\_00111\_11 = -0b1.11\pow{\neg{9}} = \f{\neg{0.00341796875}}}& 129 | \normal{0xdf = 1\_10111\_11 = -0b1.11\pow{7} = \f{\neg{224.0}}}\\ 130 | \normal{0x20 = 0\_01000\_00 = +0b1.00\pow{\neg{8}} = \f{0.00390625}}& 131 | \normal{0x60 = 0\_11000\_00 = +0b1.00\pow{8} = \f{256.0}}& 132 | \normal{0xa0 = 1\_01000\_00 = -0b1.00\pow{\neg{8}} = \f{\neg{0.00390625}}}& 133 | \normal{0xe0 = 1\_11000\_00 = -0b1.00\pow{8} = \f{\neg{256.0}}}\\ 134 | \normal{0x21 = 0\_01000\_01 = +0b1.01\pow{\neg{8}} = \f{0.0048828125}}& 135 | \normal{0x61 = 0\_11000\_01 = +0b1.01\pow{8} = \f{320.0}}& 136 | \normal{0xa1 = 1\_01000\_01 = -0b1.01\pow{\neg{8}} = \f{\neg{0.0048828125}}}& 137 | \normal{0xe1 = 1\_11000\_01 = -0b1.01\pow{8} = \f{\neg{320.0}}}\\ 138 | \normal{0x22 = 0\_01000\_10 = +0b1.10\pow{\neg{8}} = \f{0.005859375}}& 139 | \normal{0x62 = 0\_11000\_10 = +0b1.10\pow{8} = \f{384.0}}& 140 | \normal{0xa2 = 1\_01000\_10 = -0b1.10\pow{\neg{8}} = \f{\neg{0.005859375}}}& 141 | \normal{0xe2 = 1\_11000\_10 = -0b1.10\pow{8} = \f{\neg{384.0}}}\\ 142 | \normal{0x23 = 0\_01000\_11 = +0b1.11\pow{\neg{8}} = \f{0.0068359375}}& 143 | \normal{0x63 = 0\_11000\_11 = +0b1.11\pow{8} = \f{448.0}}& 144 | \normal{0xa3 = 1\_01000\_11 = -0b1.11\pow{\neg{8}} = \f{\neg{0.0068359375}}}& 145 | \normal{0xe3 = 1\_11000\_11 = -0b1.11\pow{8} = \f{\neg{448.0}}}\\ 146 | \normal{0x24 = 0\_01001\_00 = +0b1.00\pow{\neg{7}} = \f{0.0078125}}& 147 | \normal{0x64 = 0\_11001\_00 = +0b1.00\pow{9} = \f{512.0}}& 148 | \normal{0xa4 = 1\_01001\_00 = -0b1.00\pow{\neg{7}} = \f{\neg{0.0078125}}}& 149 | \normal{0xe4 = 1\_11001\_00 = -0b1.00\pow{9} = \f{\neg{512.0}}}\\ 150 | \normal{0x25 = 0\_01001\_01 = +0b1.01\pow{\neg{7}} = \f{0.009765625}}& 151 | \normal{0x65 = 0\_11001\_01 = +0b1.01\pow{9} = \f{640.0}}& 152 | \normal{0xa5 = 1\_01001\_01 = -0b1.01\pow{\neg{7}} = \f{\neg{0.009765625}}}& 153 | \normal{0xe5 = 1\_11001\_01 = -0b1.01\pow{9} = \f{\neg{640.0}}}\\ 154 | \normal{0x26 = 0\_01001\_10 = +0b1.10\pow{\neg{7}} = \f{0.01171875}}& 155 | \normal{0x66 = 0\_11001\_10 = +0b1.10\pow{9} = \f{768.0}}& 156 | \normal{0xa6 = 1\_01001\_10 = -0b1.10\pow{\neg{7}} = \f{\neg{0.01171875}}}& 157 | \normal{0xe6 = 1\_11001\_10 = -0b1.10\pow{9} = \f{\neg{768.0}}}\\ 158 | \normal{0x27 = 0\_01001\_11 = +0b1.11\pow{\neg{7}} = \f{0.013671875}}& 159 | \normal{0x67 = 0\_11001\_11 = +0b1.11\pow{9} = \f{896.0}}& 160 | \normal{0xa7 = 1\_01001\_11 = -0b1.11\pow{\neg{7}} = \f{\neg{0.013671875}}}& 161 | \normal{0xe7 = 1\_11001\_11 = -0b1.11\pow{9} = \f{\neg{896.0}}}\\ 162 | \normal{0x28 = 0\_01010\_00 = +0b1.00\pow{\neg{6}} = \f{0.015625}}& 163 | \normal{0x68 = 0\_11010\_00 = +0b1.00\pow{10} = \f{1024.0}}& 164 | \normal{0xa8 = 1\_01010\_00 = -0b1.00\pow{\neg{6}} = \f{\neg{0.015625}}}& 165 | \normal{0xe8 = 1\_11010\_00 = -0b1.00\pow{10} = \f{\neg{1024.0}}}\\ 166 | \normal{0x29 = 0\_01010\_01 = +0b1.01\pow{\neg{6}} = \f{0.01953125}}& 167 | \normal{0x69 = 0\_11010\_01 = +0b1.01\pow{10} = \f{1280.0}}& 168 | \normal{0xa9 = 1\_01010\_01 = -0b1.01\pow{\neg{6}} = \f{\neg{0.01953125}}}& 169 | \normal{0xe9 = 1\_11010\_01 = -0b1.01\pow{10} = \f{\neg{1280.0}}}\\ 170 | \normal{0x2a = 0\_01010\_10 = +0b1.10\pow{\neg{6}} = \f{0.0234375}}& 171 | \normal{0x6a = 0\_11010\_10 = +0b1.10\pow{10} = \f{1536.0}}& 172 | \normal{0xaa = 1\_01010\_10 = -0b1.10\pow{\neg{6}} = \f{\neg{0.0234375}}}& 173 | \normal{0xea = 1\_11010\_10 = -0b1.10\pow{10} = \f{\neg{1536.0}}}\\ 174 | \normal{0x2b = 0\_01010\_11 = +0b1.11\pow{\neg{6}} = \f{0.02734375}}& 175 | \normal{0x6b = 0\_11010\_11 = +0b1.11\pow{10} = \f{1792.0}}& 176 | \normal{0xab = 1\_01010\_11 = -0b1.11\pow{\neg{6}} = \f{\neg{0.02734375}}}& 177 | \normal{0xeb = 1\_11010\_11 = -0b1.11\pow{10} = \f{\neg{1792.0}}}\\ 178 | \normal{0x2c = 0\_01011\_00 = +0b1.00\pow{\neg{5}} = \f{0.03125}}& 179 | \normal{0x6c = 0\_11011\_00 = +0b1.00\pow{11} = \f{2048.0}}& 180 | \normal{0xac = 1\_01011\_00 = -0b1.00\pow{\neg{5}} = \f{\neg{0.03125}}}& 181 | \normal{0xec = 1\_11011\_00 = -0b1.00\pow{11} = \f{\neg{2048.0}}}\\ 182 | \normal{0x2d = 0\_01011\_01 = +0b1.01\pow{\neg{5}} = \f{0.0390625}}& 183 | \normal{0x6d = 0\_11011\_01 = +0b1.01\pow{11} = \f{2560.0}}& 184 | \normal{0xad = 1\_01011\_01 = -0b1.01\pow{\neg{5}} = \f{\neg{0.0390625}}}& 185 | \normal{0xed = 1\_11011\_01 = -0b1.01\pow{11} = \f{\neg{2560.0}}}\\ 186 | \normal{0x2e = 0\_01011\_10 = +0b1.10\pow{\neg{5}} = \f{0.046875}}& 187 | \normal{0x6e = 0\_11011\_10 = +0b1.10\pow{11} = \f{3072.0}}& 188 | \normal{0xae = 1\_01011\_10 = -0b1.10\pow{\neg{5}} = \f{\neg{0.046875}}}& 189 | \normal{0xee = 1\_11011\_10 = -0b1.10\pow{11} = \f{\neg{3072.0}}}\\ 190 | \normal{0x2f = 0\_01011\_11 = +0b1.11\pow{\neg{5}} = \f{0.0546875}}& 191 | \normal{0x6f = 0\_11011\_11 = +0b1.11\pow{11} = \f{3584.0}}& 192 | \normal{0xaf = 1\_01011\_11 = -0b1.11\pow{\neg{5}} = \f{\neg{0.0546875}}}& 193 | \normal{0xef = 1\_11011\_11 = -0b1.11\pow{11} = \f{\neg{3584.0}}}\\ 194 | \normal{0x30 = 0\_01100\_00 = +0b1.00\pow{\neg{4}} = \f{0.0625}}& 195 | \normal{0x70 = 0\_11100\_00 = +0b1.00\pow{12} = \f{4096.0}}& 196 | \normal{0xb0 = 1\_01100\_00 = -0b1.00\pow{\neg{4}} = \f{\neg{0.0625}}}& 197 | \normal{0xf0 = 1\_11100\_00 = -0b1.00\pow{12} = \f{\neg{4096.0}}}\\ 198 | \normal{0x31 = 0\_01100\_01 = +0b1.01\pow{\neg{4}} = \f{0.078125}}& 199 | \normal{0x71 = 0\_11100\_01 = +0b1.01\pow{12} = \f{5120.0}}& 200 | \normal{0xb1 = 1\_01100\_01 = -0b1.01\pow{\neg{4}} = \f{\neg{0.078125}}}& 201 | \normal{0xf1 = 1\_11100\_01 = -0b1.01\pow{12} = \f{\neg{5120.0}}}\\ 202 | \normal{0x32 = 0\_01100\_10 = +0b1.10\pow{\neg{4}} = \f{0.09375}}& 203 | \normal{0x72 = 0\_11100\_10 = +0b1.10\pow{12} = \f{6144.0}}& 204 | \normal{0xb2 = 1\_01100\_10 = -0b1.10\pow{\neg{4}} = \f{\neg{0.09375}}}& 205 | \normal{0xf2 = 1\_11100\_10 = -0b1.10\pow{12} = \f{\neg{6144.0}}}\\ 206 | \normal{0x33 = 0\_01100\_11 = +0b1.11\pow{\neg{4}} = \f{0.109375}}& 207 | \normal{0x73 = 0\_11100\_11 = +0b1.11\pow{12} = \f{7168.0}}& 208 | \normal{0xb3 = 1\_01100\_11 = -0b1.11\pow{\neg{4}} = \f{\neg{0.109375}}}& 209 | \normal{0xf3 = 1\_11100\_11 = -0b1.11\pow{12} = \f{\neg{7168.0}}}\\ 210 | \normal{0x34 = 0\_01101\_00 = +0b1.00\pow{\neg{3}} = \f{0.125}}& 211 | \normal{0x74 = 0\_11101\_00 = +0b1.00\pow{13} = \f{8192.0}}& 212 | \normal{0xb4 = 1\_01101\_00 = -0b1.00\pow{\neg{3}} = \f{\neg{0.125}}}& 213 | \normal{0xf4 = 1\_11101\_00 = -0b1.00\pow{13} = \f{\neg{8192.0}}}\\ 214 | \normal{0x35 = 0\_01101\_01 = +0b1.01\pow{\neg{3}} = \f{0.15625}}& 215 | \normal{0x75 = 0\_11101\_01 = +0b1.01\pow{13} = \f{10240.0}}& 216 | \normal{0xb5 = 1\_01101\_01 = -0b1.01\pow{\neg{3}} = \f{\neg{0.15625}}}& 217 | \normal{0xf5 = 1\_11101\_01 = -0b1.01\pow{13} = \f{\neg{10240.0}}}\\ 218 | \normal{0x36 = 0\_01101\_10 = +0b1.10\pow{\neg{3}} = \f{0.1875}}& 219 | \normal{0x76 = 0\_11101\_10 = +0b1.10\pow{13} = \f{12288.0}}& 220 | \normal{0xb6 = 1\_01101\_10 = -0b1.10\pow{\neg{3}} = \f{\neg{0.1875}}}& 221 | \normal{0xf6 = 1\_11101\_10 = -0b1.10\pow{13} = \f{\neg{12288.0}}}\\ 222 | \normal{0x37 = 0\_01101\_11 = +0b1.11\pow{\neg{3}} = \f{0.21875}}& 223 | \normal{0x77 = 0\_11101\_11 = +0b1.11\pow{13} = \f{14336.0}}& 224 | \normal{0xb7 = 1\_01101\_11 = -0b1.11\pow{\neg{3}} = \f{\neg{0.21875}}}& 225 | \normal{0xf7 = 1\_11101\_11 = -0b1.11\pow{13} = \f{\neg{14336.0}}}\\ 226 | \normal{0x38 = 0\_01110\_00 = +0b1.00\pow{\neg{2}} = \f{0.25}}& 227 | \normal{0x78 = 0\_11110\_00 = +0b1.00\pow{14} = \f{16384.0}}& 228 | \normal{0xb8 = 1\_01110\_00 = -0b1.00\pow{\neg{2}} = \f{\neg{0.25}}}& 229 | \normal{0xf8 = 1\_11110\_00 = -0b1.00\pow{14} = \f{\neg{16384.0}}}\\ 230 | \normal{0x39 = 0\_01110\_01 = +0b1.01\pow{\neg{2}} = \f{0.3125}}& 231 | \normal{0x79 = 0\_11110\_01 = +0b1.01\pow{14} = \f{20480.0}}& 232 | \normal{0xb9 = 1\_01110\_01 = -0b1.01\pow{\neg{2}} = \f{\neg{0.3125}}}& 233 | \normal{0xf9 = 1\_11110\_01 = -0b1.01\pow{14} = \f{\neg{20480.0}}}\\ 234 | \normal{0x3a = 0\_01110\_10 = +0b1.10\pow{\neg{2}} = \f{0.375}}& 235 | \normal{0x7a = 0\_11110\_10 = +0b1.10\pow{14} = \f{24576.0}}& 236 | \normal{0xba = 1\_01110\_10 = -0b1.10\pow{\neg{2}} = \f{\neg{0.375}}}& 237 | \normal{0xfa = 1\_11110\_10 = -0b1.10\pow{14} = \f{\neg{24576.0}}}\\ 238 | \normal{0x3b = 0\_01110\_11 = +0b1.11\pow{\neg{2}} = \f{0.4375}}& 239 | \normal{0x7b = 0\_11110\_11 = +0b1.11\pow{14} = \f{28672.0}}& 240 | \normal{0xbb = 1\_01110\_11 = -0b1.11\pow{\neg{2}} = \f{\neg{0.4375}}}& 241 | \normal{0xfb = 1\_11110\_11 = -0b1.11\pow{14} = \f{\neg{28672.0}}}\\ 242 | \normal{0x3c = 0\_01111\_00 = +0b1.00\pow{\neg{1}} = \f{0.5}}& 243 | \normal{0x7c = 0\_11111\_00 = +0b1.00\pow{15} = \f{32768.0}}& 244 | \normal{0xbc = 1\_01111\_00 = -0b1.00\pow{\neg{1}} = \f{\neg{0.5}}}& 245 | \normal{0xfc = 1\_11111\_00 = -0b1.00\pow{15} = \f{\neg{32768.0}}}\\ 246 | \normal{0x3d = 0\_01111\_01 = +0b1.01\pow{\neg{1}} = \f{0.625}}& 247 | \normal{0x7d = 0\_11111\_01 = +0b1.01\pow{15} = \f{40960.0}}& 248 | \normal{0xbd = 1\_01111\_01 = -0b1.01\pow{\neg{1}} = \f{\neg{0.625}}}& 249 | \normal{0xfd = 1\_11111\_01 = -0b1.01\pow{15} = \f{\neg{40960.0}}}\\ 250 | \normal{0x3e = 0\_01111\_10 = +0b1.10\pow{\neg{1}} = \f{0.75}}& 251 | \normal{0x7e = 0\_11111\_10 = +0b1.10\pow{15} = \f{49152.0}}& 252 | \normal{0xbe = 1\_01111\_10 = -0b1.10\pow{\neg{1}} = \f{\neg{0.75}}}& 253 | \normal{0xfe = 1\_11111\_10 = -0b1.10\pow{15} = \f{\neg{49152.0}}}\\ 254 | \normal{0x3f = 0\_01111\_11 = +0b1.11\pow{\neg{1}} = \f{0.875}}& 255 | \special{0x7f = 0\_11111\_11 = inf}& 256 | \normal{0xbf = 1\_01111\_11 = -0b1.11\pow{\neg{1}} = \f{\neg{0.875}}}& 257 | \special{0xff = 1\_11111\_11 = -inf}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p7.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_0\_000000 = \f{0.0}}& 3 | \normal{0x40 = 0\_1\_000000 = +0b1.000000\pow{0} = \f{1.0}}& 4 | \special{0x80 = 1\_0\_000000 = nan}& 5 | \normal{0xc0 = 1\_1\_000000 = -0b1.000000\pow{0} = \f{\neg{1.0}}}\\ 6 | \subnormal{0x01 = 0\_0\_000001 = +0b0.000001\pow{0} = \f{0.015625}}& 7 | \normal{0x41 = 0\_1\_000001 = +0b1.000001\pow{0} = \f{1.015625}}& 8 | \subnormal{0x81 = 1\_0\_000001 = -0b0.000001\pow{0} = \f{\neg{0.015625}}}& 9 | \normal{0xc1 = 1\_1\_000001 = -0b1.000001\pow{0} = \f{\neg{1.015625}}}\\ 10 | \subnormal{0x02 = 0\_0\_000010 = +0b0.000010\pow{0} = \f{0.03125}}& 11 | \normal{0x42 = 0\_1\_000010 = +0b1.000010\pow{0} = \f{1.03125}}& 12 | \subnormal{0x82 = 1\_0\_000010 = -0b0.000010\pow{0} = \f{\neg{0.03125}}}& 13 | \normal{0xc2 = 1\_1\_000010 = -0b1.000010\pow{0} = \f{\neg{1.03125}}}\\ 14 | \subnormal{0x03 = 0\_0\_000011 = +0b0.000011\pow{0} = \f{0.046875}}& 15 | \normal{0x43 = 0\_1\_000011 = +0b1.000011\pow{0} = \f{1.046875}}& 16 | \subnormal{0x83 = 1\_0\_000011 = -0b0.000011\pow{0} = \f{\neg{0.046875}}}& 17 | \normal{0xc3 = 1\_1\_000011 = -0b1.000011\pow{0} = \f{\neg{1.046875}}}\\ 18 | \subnormal{0x04 = 0\_0\_000100 = +0b0.000100\pow{0} = \f{0.0625}}& 19 | \normal{0x44 = 0\_1\_000100 = +0b1.000100\pow{0} = \f{1.0625}}& 20 | \subnormal{0x84 = 1\_0\_000100 = -0b0.000100\pow{0} = \f{\neg{0.0625}}}& 21 | \normal{0xc4 = 1\_1\_000100 = -0b1.000100\pow{0} = \f{\neg{1.0625}}}\\ 22 | \subnormal{0x05 = 0\_0\_000101 = +0b0.000101\pow{0} = \f{0.078125}}& 23 | \normal{0x45 = 0\_1\_000101 = +0b1.000101\pow{0} = \f{1.078125}}& 24 | \subnormal{0x85 = 1\_0\_000101 = -0b0.000101\pow{0} = \f{\neg{0.078125}}}& 25 | \normal{0xc5 = 1\_1\_000101 = -0b1.000101\pow{0} = \f{\neg{1.078125}}}\\ 26 | \subnormal{0x06 = 0\_0\_000110 = +0b0.000110\pow{0} = \f{0.09375}}& 27 | \normal{0x46 = 0\_1\_000110 = +0b1.000110\pow{0} = \f{1.09375}}& 28 | \subnormal{0x86 = 1\_0\_000110 = -0b0.000110\pow{0} = \f{\neg{0.09375}}}& 29 | \normal{0xc6 = 1\_1\_000110 = -0b1.000110\pow{0} = \f{\neg{1.09375}}}\\ 30 | \subnormal{0x07 = 0\_0\_000111 = +0b0.000111\pow{0} = \f{0.109375}}& 31 | \normal{0x47 = 0\_1\_000111 = +0b1.000111\pow{0} = \f{1.109375}}& 32 | \subnormal{0x87 = 1\_0\_000111 = -0b0.000111\pow{0} = \f{\neg{0.109375}}}& 33 | \normal{0xc7 = 1\_1\_000111 = -0b1.000111\pow{0} = \f{\neg{1.109375}}}\\ 34 | \subnormal{0x08 = 0\_0\_001000 = +0b0.001000\pow{0} = \f{0.125}}& 35 | \normal{0x48 = 0\_1\_001000 = +0b1.001000\pow{0} = \f{1.125}}& 36 | \subnormal{0x88 = 1\_0\_001000 = -0b0.001000\pow{0} = \f{\neg{0.125}}}& 37 | \normal{0xc8 = 1\_1\_001000 = -0b1.001000\pow{0} = \f{\neg{1.125}}}\\ 38 | \subnormal{0x09 = 0\_0\_001001 = +0b0.001001\pow{0} = \f{0.140625}}& 39 | \normal{0x49 = 0\_1\_001001 = +0b1.001001\pow{0} = \f{1.140625}}& 40 | \subnormal{0x89 = 1\_0\_001001 = -0b0.001001\pow{0} = \f{\neg{0.140625}}}& 41 | \normal{0xc9 = 1\_1\_001001 = -0b1.001001\pow{0} = \f{\neg{1.140625}}}\\ 42 | \subnormal{0x0a = 0\_0\_001010 = +0b0.001010\pow{0} = \f{0.15625}}& 43 | \normal{0x4a = 0\_1\_001010 = +0b1.001010\pow{0} = \f{1.15625}}& 44 | \subnormal{0x8a = 1\_0\_001010 = -0b0.001010\pow{0} = \f{\neg{0.15625}}}& 45 | \normal{0xca = 1\_1\_001010 = -0b1.001010\pow{0} = \f{\neg{1.15625}}}\\ 46 | \subnormal{0x0b = 0\_0\_001011 = +0b0.001011\pow{0} = \f{0.171875}}& 47 | \normal{0x4b = 0\_1\_001011 = +0b1.001011\pow{0} = \f{1.171875}}& 48 | \subnormal{0x8b = 1\_0\_001011 = -0b0.001011\pow{0} = \f{\neg{0.171875}}}& 49 | \normal{0xcb = 1\_1\_001011 = -0b1.001011\pow{0} = \f{\neg{1.171875}}}\\ 50 | \subnormal{0x0c = 0\_0\_001100 = +0b0.001100\pow{0} = \f{0.1875}}& 51 | \normal{0x4c = 0\_1\_001100 = +0b1.001100\pow{0} = \f{1.1875}}& 52 | \subnormal{0x8c = 1\_0\_001100 = -0b0.001100\pow{0} = \f{\neg{0.1875}}}& 53 | \normal{0xcc = 1\_1\_001100 = -0b1.001100\pow{0} = \f{\neg{1.1875}}}\\ 54 | \subnormal{0x0d = 0\_0\_001101 = +0b0.001101\pow{0} = \f{0.203125}}& 55 | \normal{0x4d = 0\_1\_001101 = +0b1.001101\pow{0} = \f{1.203125}}& 56 | \subnormal{0x8d = 1\_0\_001101 = -0b0.001101\pow{0} = \f{\neg{0.203125}}}& 57 | \normal{0xcd = 1\_1\_001101 = -0b1.001101\pow{0} = \f{\neg{1.203125}}}\\ 58 | \subnormal{0x0e = 0\_0\_001110 = +0b0.001110\pow{0} = \f{0.21875}}& 59 | \normal{0x4e = 0\_1\_001110 = +0b1.001110\pow{0} = \f{1.21875}}& 60 | \subnormal{0x8e = 1\_0\_001110 = -0b0.001110\pow{0} = \f{\neg{0.21875}}}& 61 | \normal{0xce = 1\_1\_001110 = -0b1.001110\pow{0} = \f{\neg{1.21875}}}\\ 62 | \subnormal{0x0f = 0\_0\_001111 = +0b0.001111\pow{0} = \f{0.234375}}& 63 | \normal{0x4f = 0\_1\_001111 = +0b1.001111\pow{0} = \f{1.234375}}& 64 | \subnormal{0x8f = 1\_0\_001111 = -0b0.001111\pow{0} = \f{\neg{0.234375}}}& 65 | \normal{0xcf = 1\_1\_001111 = -0b1.001111\pow{0} = \f{\neg{1.234375}}}\\ 66 | \subnormal{0x10 = 0\_0\_010000 = +0b0.010000\pow{0} = \f{0.25}}& 67 | \normal{0x50 = 0\_1\_010000 = +0b1.010000\pow{0} = \f{1.25}}& 68 | \subnormal{0x90 = 1\_0\_010000 = -0b0.010000\pow{0} = \f{\neg{0.25}}}& 69 | \normal{0xd0 = 1\_1\_010000 = -0b1.010000\pow{0} = \f{\neg{1.25}}}\\ 70 | \subnormal{0x11 = 0\_0\_010001 = +0b0.010001\pow{0} = \f{0.265625}}& 71 | \normal{0x51 = 0\_1\_010001 = +0b1.010001\pow{0} = \f{1.265625}}& 72 | \subnormal{0x91 = 1\_0\_010001 = -0b0.010001\pow{0} = \f{\neg{0.265625}}}& 73 | \normal{0xd1 = 1\_1\_010001 = -0b1.010001\pow{0} = \f{\neg{1.265625}}}\\ 74 | \subnormal{0x12 = 0\_0\_010010 = +0b0.010010\pow{0} = \f{0.28125}}& 75 | \normal{0x52 = 0\_1\_010010 = +0b1.010010\pow{0} = \f{1.28125}}& 76 | \subnormal{0x92 = 1\_0\_010010 = -0b0.010010\pow{0} = \f{\neg{0.28125}}}& 77 | \normal{0xd2 = 1\_1\_010010 = -0b1.010010\pow{0} = \f{\neg{1.28125}}}\\ 78 | \subnormal{0x13 = 0\_0\_010011 = +0b0.010011\pow{0} = \f{0.296875}}& 79 | \normal{0x53 = 0\_1\_010011 = +0b1.010011\pow{0} = \f{1.296875}}& 80 | \subnormal{0x93 = 1\_0\_010011 = -0b0.010011\pow{0} = \f{\neg{0.296875}}}& 81 | \normal{0xd3 = 1\_1\_010011 = -0b1.010011\pow{0} = \f{\neg{1.296875}}}\\ 82 | \subnormal{0x14 = 0\_0\_010100 = +0b0.010100\pow{0} = \f{0.3125}}& 83 | \normal{0x54 = 0\_1\_010100 = +0b1.010100\pow{0} = \f{1.3125}}& 84 | \subnormal{0x94 = 1\_0\_010100 = -0b0.010100\pow{0} = \f{\neg{0.3125}}}& 85 | \normal{0xd4 = 1\_1\_010100 = -0b1.010100\pow{0} = \f{\neg{1.3125}}}\\ 86 | \subnormal{0x15 = 0\_0\_010101 = +0b0.010101\pow{0} = \f{0.328125}}& 87 | \normal{0x55 = 0\_1\_010101 = +0b1.010101\pow{0} = \f{1.328125}}& 88 | \subnormal{0x95 = 1\_0\_010101 = -0b0.010101\pow{0} = \f{\neg{0.328125}}}& 89 | \normal{0xd5 = 1\_1\_010101 = -0b1.010101\pow{0} = \f{\neg{1.328125}}}\\ 90 | \subnormal{0x16 = 0\_0\_010110 = +0b0.010110\pow{0} = \f{0.34375}}& 91 | \normal{0x56 = 0\_1\_010110 = +0b1.010110\pow{0} = \f{1.34375}}& 92 | \subnormal{0x96 = 1\_0\_010110 = -0b0.010110\pow{0} = \f{\neg{0.34375}}}& 93 | \normal{0xd6 = 1\_1\_010110 = -0b1.010110\pow{0} = \f{\neg{1.34375}}}\\ 94 | \subnormal{0x17 = 0\_0\_010111 = +0b0.010111\pow{0} = \f{0.359375}}& 95 | \normal{0x57 = 0\_1\_010111 = +0b1.010111\pow{0} = \f{1.359375}}& 96 | \subnormal{0x97 = 1\_0\_010111 = -0b0.010111\pow{0} = \f{\neg{0.359375}}}& 97 | \normal{0xd7 = 1\_1\_010111 = -0b1.010111\pow{0} = \f{\neg{1.359375}}}\\ 98 | \subnormal{0x18 = 0\_0\_011000 = +0b0.011000\pow{0} = \f{0.375}}& 99 | \normal{0x58 = 0\_1\_011000 = +0b1.011000\pow{0} = \f{1.375}}& 100 | \subnormal{0x98 = 1\_0\_011000 = -0b0.011000\pow{0} = \f{\neg{0.375}}}& 101 | \normal{0xd8 = 1\_1\_011000 = -0b1.011000\pow{0} = \f{\neg{1.375}}}\\ 102 | \subnormal{0x19 = 0\_0\_011001 = +0b0.011001\pow{0} = \f{0.390625}}& 103 | \normal{0x59 = 0\_1\_011001 = +0b1.011001\pow{0} = \f{1.390625}}& 104 | \subnormal{0x99 = 1\_0\_011001 = -0b0.011001\pow{0} = \f{\neg{0.390625}}}& 105 | \normal{0xd9 = 1\_1\_011001 = -0b1.011001\pow{0} = \f{\neg{1.390625}}}\\ 106 | \subnormal{0x1a = 0\_0\_011010 = +0b0.011010\pow{0} = \f{0.40625}}& 107 | \normal{0x5a = 0\_1\_011010 = +0b1.011010\pow{0} = \f{1.40625}}& 108 | \subnormal{0x9a = 1\_0\_011010 = -0b0.011010\pow{0} = \f{\neg{0.40625}}}& 109 | \normal{0xda = 1\_1\_011010 = -0b1.011010\pow{0} = \f{\neg{1.40625}}}\\ 110 | \subnormal{0x1b = 0\_0\_011011 = +0b0.011011\pow{0} = \f{0.421875}}& 111 | \normal{0x5b = 0\_1\_011011 = +0b1.011011\pow{0} = \f{1.421875}}& 112 | \subnormal{0x9b = 1\_0\_011011 = -0b0.011011\pow{0} = \f{\neg{0.421875}}}& 113 | \normal{0xdb = 1\_1\_011011 = -0b1.011011\pow{0} = \f{\neg{1.421875}}}\\ 114 | \subnormal{0x1c = 0\_0\_011100 = +0b0.011100\pow{0} = \f{0.4375}}& 115 | \normal{0x5c = 0\_1\_011100 = +0b1.011100\pow{0} = \f{1.4375}}& 116 | \subnormal{0x9c = 1\_0\_011100 = -0b0.011100\pow{0} = \f{\neg{0.4375}}}& 117 | \normal{0xdc = 1\_1\_011100 = -0b1.011100\pow{0} = \f{\neg{1.4375}}}\\ 118 | \subnormal{0x1d = 0\_0\_011101 = +0b0.011101\pow{0} = \f{0.453125}}& 119 | \normal{0x5d = 0\_1\_011101 = +0b1.011101\pow{0} = \f{1.453125}}& 120 | \subnormal{0x9d = 1\_0\_011101 = -0b0.011101\pow{0} = \f{\neg{0.453125}}}& 121 | \normal{0xdd = 1\_1\_011101 = -0b1.011101\pow{0} = \f{\neg{1.453125}}}\\ 122 | \subnormal{0x1e = 0\_0\_011110 = +0b0.011110\pow{0} = \f{0.46875}}& 123 | \normal{0x5e = 0\_1\_011110 = +0b1.011110\pow{0} = \f{1.46875}}& 124 | \subnormal{0x9e = 1\_0\_011110 = -0b0.011110\pow{0} = \f{\neg{0.46875}}}& 125 | \normal{0xde = 1\_1\_011110 = -0b1.011110\pow{0} = \f{\neg{1.46875}}}\\ 126 | \subnormal{0x1f = 0\_0\_011111 = +0b0.011111\pow{0} = \f{0.484375}}& 127 | \normal{0x5f = 0\_1\_011111 = +0b1.011111\pow{0} = \f{1.484375}}& 128 | \subnormal{0x9f = 1\_0\_011111 = -0b0.011111\pow{0} = \f{\neg{0.484375}}}& 129 | \normal{0xdf = 1\_1\_011111 = -0b1.011111\pow{0} = \f{\neg{1.484375}}}\\ 130 | \subnormal{0x20 = 0\_0\_100000 = +0b0.100000\pow{0} = \f{0.5}}& 131 | \normal{0x60 = 0\_1\_100000 = +0b1.100000\pow{0} = \f{1.5}}& 132 | \subnormal{0xa0 = 1\_0\_100000 = -0b0.100000\pow{0} = \f{\neg{0.5}}}& 133 | \normal{0xe0 = 1\_1\_100000 = -0b1.100000\pow{0} = \f{\neg{1.5}}}\\ 134 | \subnormal{0x21 = 0\_0\_100001 = +0b0.100001\pow{0} = \f{0.515625}}& 135 | \normal{0x61 = 0\_1\_100001 = +0b1.100001\pow{0} = \f{1.515625}}& 136 | \subnormal{0xa1 = 1\_0\_100001 = -0b0.100001\pow{0} = \f{\neg{0.515625}}}& 137 | \normal{0xe1 = 1\_1\_100001 = -0b1.100001\pow{0} = \f{\neg{1.515625}}}\\ 138 | \subnormal{0x22 = 0\_0\_100010 = +0b0.100010\pow{0} = \f{0.53125}}& 139 | \normal{0x62 = 0\_1\_100010 = +0b1.100010\pow{0} = \f{1.53125}}& 140 | \subnormal{0xa2 = 1\_0\_100010 = -0b0.100010\pow{0} = \f{\neg{0.53125}}}& 141 | \normal{0xe2 = 1\_1\_100010 = -0b1.100010\pow{0} = \f{\neg{1.53125}}}\\ 142 | \subnormal{0x23 = 0\_0\_100011 = +0b0.100011\pow{0} = \f{0.546875}}& 143 | \normal{0x63 = 0\_1\_100011 = +0b1.100011\pow{0} = \f{1.546875}}& 144 | \subnormal{0xa3 = 1\_0\_100011 = -0b0.100011\pow{0} = \f{\neg{0.546875}}}& 145 | \normal{0xe3 = 1\_1\_100011 = -0b1.100011\pow{0} = \f{\neg{1.546875}}}\\ 146 | \subnormal{0x24 = 0\_0\_100100 = +0b0.100100\pow{0} = \f{0.5625}}& 147 | \normal{0x64 = 0\_1\_100100 = +0b1.100100\pow{0} = \f{1.5625}}& 148 | \subnormal{0xa4 = 1\_0\_100100 = -0b0.100100\pow{0} = \f{\neg{0.5625}}}& 149 | \normal{0xe4 = 1\_1\_100100 = -0b1.100100\pow{0} = \f{\neg{1.5625}}}\\ 150 | \subnormal{0x25 = 0\_0\_100101 = +0b0.100101\pow{0} = \f{0.578125}}& 151 | \normal{0x65 = 0\_1\_100101 = +0b1.100101\pow{0} = \f{1.578125}}& 152 | \subnormal{0xa5 = 1\_0\_100101 = -0b0.100101\pow{0} = \f{\neg{0.578125}}}& 153 | \normal{0xe5 = 1\_1\_100101 = -0b1.100101\pow{0} = \f{\neg{1.578125}}}\\ 154 | \subnormal{0x26 = 0\_0\_100110 = +0b0.100110\pow{0} = \f{0.59375}}& 155 | \normal{0x66 = 0\_1\_100110 = +0b1.100110\pow{0} = \f{1.59375}}& 156 | \subnormal{0xa6 = 1\_0\_100110 = -0b0.100110\pow{0} = \f{\neg{0.59375}}}& 157 | \normal{0xe6 = 1\_1\_100110 = -0b1.100110\pow{0} = \f{\neg{1.59375}}}\\ 158 | \subnormal{0x27 = 0\_0\_100111 = +0b0.100111\pow{0} = \f{0.609375}}& 159 | \normal{0x67 = 0\_1\_100111 = +0b1.100111\pow{0} = \f{1.609375}}& 160 | \subnormal{0xa7 = 1\_0\_100111 = -0b0.100111\pow{0} = \f{\neg{0.609375}}}& 161 | \normal{0xe7 = 1\_1\_100111 = -0b1.100111\pow{0} = \f{\neg{1.609375}}}\\ 162 | \subnormal{0x28 = 0\_0\_101000 = +0b0.101000\pow{0} = \f{0.625}}& 163 | \normal{0x68 = 0\_1\_101000 = +0b1.101000\pow{0} = \f{1.625}}& 164 | \subnormal{0xa8 = 1\_0\_101000 = -0b0.101000\pow{0} = \f{\neg{0.625}}}& 165 | \normal{0xe8 = 1\_1\_101000 = -0b1.101000\pow{0} = \f{\neg{1.625}}}\\ 166 | \subnormal{0x29 = 0\_0\_101001 = +0b0.101001\pow{0} = \f{0.640625}}& 167 | \normal{0x69 = 0\_1\_101001 = +0b1.101001\pow{0} = \f{1.640625}}& 168 | \subnormal{0xa9 = 1\_0\_101001 = -0b0.101001\pow{0} = \f{\neg{0.640625}}}& 169 | \normal{0xe9 = 1\_1\_101001 = -0b1.101001\pow{0} = \f{\neg{1.640625}}}\\ 170 | \subnormal{0x2a = 0\_0\_101010 = +0b0.101010\pow{0} = \f{0.65625}}& 171 | \normal{0x6a = 0\_1\_101010 = +0b1.101010\pow{0} = \f{1.65625}}& 172 | \subnormal{0xaa = 1\_0\_101010 = -0b0.101010\pow{0} = \f{\neg{0.65625}}}& 173 | \normal{0xea = 1\_1\_101010 = -0b1.101010\pow{0} = \f{\neg{1.65625}}}\\ 174 | \subnormal{0x2b = 0\_0\_101011 = +0b0.101011\pow{0} = \f{0.671875}}& 175 | \normal{0x6b = 0\_1\_101011 = +0b1.101011\pow{0} = \f{1.671875}}& 176 | \subnormal{0xab = 1\_0\_101011 = -0b0.101011\pow{0} = \f{\neg{0.671875}}}& 177 | \normal{0xeb = 1\_1\_101011 = -0b1.101011\pow{0} = \f{\neg{1.671875}}}\\ 178 | \subnormal{0x2c = 0\_0\_101100 = +0b0.101100\pow{0} = \f{0.6875}}& 179 | \normal{0x6c = 0\_1\_101100 = +0b1.101100\pow{0} = \f{1.6875}}& 180 | \subnormal{0xac = 1\_0\_101100 = -0b0.101100\pow{0} = \f{\neg{0.6875}}}& 181 | \normal{0xec = 1\_1\_101100 = -0b1.101100\pow{0} = \f{\neg{1.6875}}}\\ 182 | \subnormal{0x2d = 0\_0\_101101 = +0b0.101101\pow{0} = \f{0.703125}}& 183 | \normal{0x6d = 0\_1\_101101 = +0b1.101101\pow{0} = \f{1.703125}}& 184 | \subnormal{0xad = 1\_0\_101101 = -0b0.101101\pow{0} = \f{\neg{0.703125}}}& 185 | \normal{0xed = 1\_1\_101101 = -0b1.101101\pow{0} = \f{\neg{1.703125}}}\\ 186 | \subnormal{0x2e = 0\_0\_101110 = +0b0.101110\pow{0} = \f{0.71875}}& 187 | \normal{0x6e = 0\_1\_101110 = +0b1.101110\pow{0} = \f{1.71875}}& 188 | \subnormal{0xae = 1\_0\_101110 = -0b0.101110\pow{0} = \f{\neg{0.71875}}}& 189 | \normal{0xee = 1\_1\_101110 = -0b1.101110\pow{0} = \f{\neg{1.71875}}}\\ 190 | \subnormal{0x2f = 0\_0\_101111 = +0b0.101111\pow{0} = \f{0.734375}}& 191 | \normal{0x6f = 0\_1\_101111 = +0b1.101111\pow{0} = \f{1.734375}}& 192 | \subnormal{0xaf = 1\_0\_101111 = -0b0.101111\pow{0} = \f{\neg{0.734375}}}& 193 | \normal{0xef = 1\_1\_101111 = -0b1.101111\pow{0} = \f{\neg{1.734375}}}\\ 194 | \subnormal{0x30 = 0\_0\_110000 = +0b0.110000\pow{0} = \f{0.75}}& 195 | \normal{0x70 = 0\_1\_110000 = +0b1.110000\pow{0} = \f{1.75}}& 196 | \subnormal{0xb0 = 1\_0\_110000 = -0b0.110000\pow{0} = \f{\neg{0.75}}}& 197 | \normal{0xf0 = 1\_1\_110000 = -0b1.110000\pow{0} = \f{\neg{1.75}}}\\ 198 | \subnormal{0x31 = 0\_0\_110001 = +0b0.110001\pow{0} = \f{0.765625}}& 199 | \normal{0x71 = 0\_1\_110001 = +0b1.110001\pow{0} = \f{1.765625}}& 200 | \subnormal{0xb1 = 1\_0\_110001 = -0b0.110001\pow{0} = \f{\neg{0.765625}}}& 201 | \normal{0xf1 = 1\_1\_110001 = -0b1.110001\pow{0} = \f{\neg{1.765625}}}\\ 202 | \subnormal{0x32 = 0\_0\_110010 = +0b0.110010\pow{0} = \f{0.78125}}& 203 | \normal{0x72 = 0\_1\_110010 = +0b1.110010\pow{0} = \f{1.78125}}& 204 | \subnormal{0xb2 = 1\_0\_110010 = -0b0.110010\pow{0} = \f{\neg{0.78125}}}& 205 | \normal{0xf2 = 1\_1\_110010 = -0b1.110010\pow{0} = \f{\neg{1.78125}}}\\ 206 | \subnormal{0x33 = 0\_0\_110011 = +0b0.110011\pow{0} = \f{0.796875}}& 207 | \normal{0x73 = 0\_1\_110011 = +0b1.110011\pow{0} = \f{1.796875}}& 208 | \subnormal{0xb3 = 1\_0\_110011 = -0b0.110011\pow{0} = \f{\neg{0.796875}}}& 209 | \normal{0xf3 = 1\_1\_110011 = -0b1.110011\pow{0} = \f{\neg{1.796875}}}\\ 210 | \subnormal{0x34 = 0\_0\_110100 = +0b0.110100\pow{0} = \f{0.8125}}& 211 | \normal{0x74 = 0\_1\_110100 = +0b1.110100\pow{0} = \f{1.8125}}& 212 | \subnormal{0xb4 = 1\_0\_110100 = -0b0.110100\pow{0} = \f{\neg{0.8125}}}& 213 | \normal{0xf4 = 1\_1\_110100 = -0b1.110100\pow{0} = \f{\neg{1.8125}}}\\ 214 | \subnormal{0x35 = 0\_0\_110101 = +0b0.110101\pow{0} = \f{0.828125}}& 215 | \normal{0x75 = 0\_1\_110101 = +0b1.110101\pow{0} = \f{1.828125}}& 216 | \subnormal{0xb5 = 1\_0\_110101 = -0b0.110101\pow{0} = \f{\neg{0.828125}}}& 217 | \normal{0xf5 = 1\_1\_110101 = -0b1.110101\pow{0} = \f{\neg{1.828125}}}\\ 218 | \subnormal{0x36 = 0\_0\_110110 = +0b0.110110\pow{0} = \f{0.84375}}& 219 | \normal{0x76 = 0\_1\_110110 = +0b1.110110\pow{0} = \f{1.84375}}& 220 | \subnormal{0xb6 = 1\_0\_110110 = -0b0.110110\pow{0} = \f{\neg{0.84375}}}& 221 | \normal{0xf6 = 1\_1\_110110 = -0b1.110110\pow{0} = \f{\neg{1.84375}}}\\ 222 | \subnormal{0x37 = 0\_0\_110111 = +0b0.110111\pow{0} = \f{0.859375}}& 223 | \normal{0x77 = 0\_1\_110111 = +0b1.110111\pow{0} = \f{1.859375}}& 224 | \subnormal{0xb7 = 1\_0\_110111 = -0b0.110111\pow{0} = \f{\neg{0.859375}}}& 225 | \normal{0xf7 = 1\_1\_110111 = -0b1.110111\pow{0} = \f{\neg{1.859375}}}\\ 226 | \subnormal{0x38 = 0\_0\_111000 = +0b0.111000\pow{0} = \f{0.875}}& 227 | \normal{0x78 = 0\_1\_111000 = +0b1.111000\pow{0} = \f{1.875}}& 228 | \subnormal{0xb8 = 1\_0\_111000 = -0b0.111000\pow{0} = \f{\neg{0.875}}}& 229 | \normal{0xf8 = 1\_1\_111000 = -0b1.111000\pow{0} = \f{\neg{1.875}}}\\ 230 | \subnormal{0x39 = 0\_0\_111001 = +0b0.111001\pow{0} = \f{0.890625}}& 231 | \normal{0x79 = 0\_1\_111001 = +0b1.111001\pow{0} = \f{1.890625}}& 232 | \subnormal{0xb9 = 1\_0\_111001 = -0b0.111001\pow{0} = \f{\neg{0.890625}}}& 233 | \normal{0xf9 = 1\_1\_111001 = -0b1.111001\pow{0} = \f{\neg{1.890625}}}\\ 234 | \subnormal{0x3a = 0\_0\_111010 = +0b0.111010\pow{0} = \f{0.90625}}& 235 | \normal{0x7a = 0\_1\_111010 = +0b1.111010\pow{0} = \f{1.90625}}& 236 | \subnormal{0xba = 1\_0\_111010 = -0b0.111010\pow{0} = \f{\neg{0.90625}}}& 237 | \normal{0xfa = 1\_1\_111010 = -0b1.111010\pow{0} = \f{\neg{1.90625}}}\\ 238 | \subnormal{0x3b = 0\_0\_111011 = +0b0.111011\pow{0} = \f{0.921875}}& 239 | \normal{0x7b = 0\_1\_111011 = +0b1.111011\pow{0} = \f{1.921875}}& 240 | \subnormal{0xbb = 1\_0\_111011 = -0b0.111011\pow{0} = \f{\neg{0.921875}}}& 241 | \normal{0xfb = 1\_1\_111011 = -0b1.111011\pow{0} = \f{\neg{1.921875}}}\\ 242 | \subnormal{0x3c = 0\_0\_111100 = +0b0.111100\pow{0} = \f{0.9375}}& 243 | \normal{0x7c = 0\_1\_111100 = +0b1.111100\pow{0} = \f{1.9375}}& 244 | \subnormal{0xbc = 1\_0\_111100 = -0b0.111100\pow{0} = \f{\neg{0.9375}}}& 245 | \normal{0xfc = 1\_1\_111100 = -0b1.111100\pow{0} = \f{\neg{1.9375}}}\\ 246 | \subnormal{0x3d = 0\_0\_111101 = +0b0.111101\pow{0} = \f{0.953125}}& 247 | \normal{0x7d = 0\_1\_111101 = +0b1.111101\pow{0} = \f{1.953125}}& 248 | \subnormal{0xbd = 1\_0\_111101 = -0b0.111101\pow{0} = \f{\neg{0.953125}}}& 249 | \normal{0xfd = 1\_1\_111101 = -0b1.111101\pow{0} = \f{\neg{1.953125}}}\\ 250 | \subnormal{0x3e = 0\_0\_111110 = +0b0.111110\pow{0} = \f{0.96875}}& 251 | \normal{0x7e = 0\_1\_111110 = +0b1.111110\pow{0} = \f{1.96875}}& 252 | \subnormal{0xbe = 1\_0\_111110 = -0b0.111110\pow{0} = \f{\neg{0.96875}}}& 253 | \normal{0xfe = 1\_1\_111110 = -0b1.111110\pow{0} = \f{\neg{1.96875}}}\\ 254 | \subnormal{0x3f = 0\_0\_111111 = +0b0.111111\pow{0} = \f{0.984375}}& 255 | \special{0x7f = 0\_1\_111111 = inf}& 256 | \subnormal{0xbf = 1\_0\_111111 = -0b0.111111\pow{0} = \f{\neg{0.984375}}}& 257 | \special{0xff = 1\_1\_111111 = -inf}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p6.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_00\_00000 = \f{0.0}}& 3 | \normal{0x40 = 0\_10\_00000 = +0b1.00000\pow{0} = \f{1.0}}& 4 | \special{0x80 = 1\_00\_00000 = nan}& 5 | \normal{0xc0 = 1\_10\_00000 = -0b1.00000\pow{0} = \f{\neg{1.0}}}\\ 6 | \subnormal{0x01 = 0\_00\_00001 = +0b0.00001\pow{\neg{1}} = \f{0.015625}}& 7 | \normal{0x41 = 0\_10\_00001 = +0b1.00001\pow{0} = \f{1.03125}}& 8 | \subnormal{0x81 = 1\_00\_00001 = -0b0.00001\pow{\neg{1}} = \f{\neg{0.015625}}}& 9 | \normal{0xc1 = 1\_10\_00001 = -0b1.00001\pow{0} = \f{\neg{1.03125}}}\\ 10 | \subnormal{0x02 = 0\_00\_00010 = +0b0.00010\pow{\neg{1}} = \f{0.03125}}& 11 | \normal{0x42 = 0\_10\_00010 = +0b1.00010\pow{0} = \f{1.0625}}& 12 | \subnormal{0x82 = 1\_00\_00010 = -0b0.00010\pow{\neg{1}} = \f{\neg{0.03125}}}& 13 | \normal{0xc2 = 1\_10\_00010 = -0b1.00010\pow{0} = \f{\neg{1.0625}}}\\ 14 | \subnormal{0x03 = 0\_00\_00011 = +0b0.00011\pow{\neg{1}} = \f{0.046875}}& 15 | \normal{0x43 = 0\_10\_00011 = +0b1.00011\pow{0} = \f{1.09375}}& 16 | \subnormal{0x83 = 1\_00\_00011 = -0b0.00011\pow{\neg{1}} = \f{\neg{0.046875}}}& 17 | \normal{0xc3 = 1\_10\_00011 = -0b1.00011\pow{0} = \f{\neg{1.09375}}}\\ 18 | \subnormal{0x04 = 0\_00\_00100 = +0b0.00100\pow{\neg{1}} = \f{0.0625}}& 19 | \normal{0x44 = 0\_10\_00100 = +0b1.00100\pow{0} = \f{1.125}}& 20 | \subnormal{0x84 = 1\_00\_00100 = -0b0.00100\pow{\neg{1}} = \f{\neg{0.0625}}}& 21 | \normal{0xc4 = 1\_10\_00100 = -0b1.00100\pow{0} = \f{\neg{1.125}}}\\ 22 | \subnormal{0x05 = 0\_00\_00101 = +0b0.00101\pow{\neg{1}} = \f{0.078125}}& 23 | \normal{0x45 = 0\_10\_00101 = +0b1.00101\pow{0} = \f{1.15625}}& 24 | \subnormal{0x85 = 1\_00\_00101 = -0b0.00101\pow{\neg{1}} = \f{\neg{0.078125}}}& 25 | \normal{0xc5 = 1\_10\_00101 = -0b1.00101\pow{0} = \f{\neg{1.15625}}}\\ 26 | \subnormal{0x06 = 0\_00\_00110 = +0b0.00110\pow{\neg{1}} = \f{0.09375}}& 27 | \normal{0x46 = 0\_10\_00110 = +0b1.00110\pow{0} = \f{1.1875}}& 28 | \subnormal{0x86 = 1\_00\_00110 = -0b0.00110\pow{\neg{1}} = \f{\neg{0.09375}}}& 29 | \normal{0xc6 = 1\_10\_00110 = -0b1.00110\pow{0} = \f{\neg{1.1875}}}\\ 30 | \subnormal{0x07 = 0\_00\_00111 = +0b0.00111\pow{\neg{1}} = \f{0.109375}}& 31 | \normal{0x47 = 0\_10\_00111 = +0b1.00111\pow{0} = \f{1.21875}}& 32 | \subnormal{0x87 = 1\_00\_00111 = -0b0.00111\pow{\neg{1}} = \f{\neg{0.109375}}}& 33 | \normal{0xc7 = 1\_10\_00111 = -0b1.00111\pow{0} = \f{\neg{1.21875}}}\\ 34 | \subnormal{0x08 = 0\_00\_01000 = +0b0.01000\pow{\neg{1}} = \f{0.125}}& 35 | \normal{0x48 = 0\_10\_01000 = +0b1.01000\pow{0} = \f{1.25}}& 36 | \subnormal{0x88 = 1\_00\_01000 = -0b0.01000\pow{\neg{1}} = \f{\neg{0.125}}}& 37 | \normal{0xc8 = 1\_10\_01000 = -0b1.01000\pow{0} = \f{\neg{1.25}}}\\ 38 | \subnormal{0x09 = 0\_00\_01001 = +0b0.01001\pow{\neg{1}} = \f{0.140625}}& 39 | \normal{0x49 = 0\_10\_01001 = +0b1.01001\pow{0} = \f{1.28125}}& 40 | \subnormal{0x89 = 1\_00\_01001 = -0b0.01001\pow{\neg{1}} = \f{\neg{0.140625}}}& 41 | \normal{0xc9 = 1\_10\_01001 = -0b1.01001\pow{0} = \f{\neg{1.28125}}}\\ 42 | \subnormal{0x0a = 0\_00\_01010 = +0b0.01010\pow{\neg{1}} = \f{0.15625}}& 43 | \normal{0x4a = 0\_10\_01010 = +0b1.01010\pow{0} = \f{1.3125}}& 44 | \subnormal{0x8a = 1\_00\_01010 = -0b0.01010\pow{\neg{1}} = \f{\neg{0.15625}}}& 45 | \normal{0xca = 1\_10\_01010 = -0b1.01010\pow{0} = \f{\neg{1.3125}}}\\ 46 | \subnormal{0x0b = 0\_00\_01011 = +0b0.01011\pow{\neg{1}} = \f{0.171875}}& 47 | \normal{0x4b = 0\_10\_01011 = +0b1.01011\pow{0} = \f{1.34375}}& 48 | \subnormal{0x8b = 1\_00\_01011 = -0b0.01011\pow{\neg{1}} = \f{\neg{0.171875}}}& 49 | \normal{0xcb = 1\_10\_01011 = -0b1.01011\pow{0} = \f{\neg{1.34375}}}\\ 50 | \subnormal{0x0c = 0\_00\_01100 = +0b0.01100\pow{\neg{1}} = \f{0.1875}}& 51 | \normal{0x4c = 0\_10\_01100 = +0b1.01100\pow{0} = \f{1.375}}& 52 | \subnormal{0x8c = 1\_00\_01100 = -0b0.01100\pow{\neg{1}} = \f{\neg{0.1875}}}& 53 | \normal{0xcc = 1\_10\_01100 = -0b1.01100\pow{0} = \f{\neg{1.375}}}\\ 54 | \subnormal{0x0d = 0\_00\_01101 = +0b0.01101\pow{\neg{1}} = \f{0.203125}}& 55 | \normal{0x4d = 0\_10\_01101 = +0b1.01101\pow{0} = \f{1.40625}}& 56 | \subnormal{0x8d = 1\_00\_01101 = -0b0.01101\pow{\neg{1}} = \f{\neg{0.203125}}}& 57 | \normal{0xcd = 1\_10\_01101 = -0b1.01101\pow{0} = \f{\neg{1.40625}}}\\ 58 | \subnormal{0x0e = 0\_00\_01110 = +0b0.01110\pow{\neg{1}} = \f{0.21875}}& 59 | \normal{0x4e = 0\_10\_01110 = +0b1.01110\pow{0} = \f{1.4375}}& 60 | \subnormal{0x8e = 1\_00\_01110 = -0b0.01110\pow{\neg{1}} = \f{\neg{0.21875}}}& 61 | \normal{0xce = 1\_10\_01110 = -0b1.01110\pow{0} = \f{\neg{1.4375}}}\\ 62 | \subnormal{0x0f = 0\_00\_01111 = +0b0.01111\pow{\neg{1}} = \f{0.234375}}& 63 | \normal{0x4f = 0\_10\_01111 = +0b1.01111\pow{0} = \f{1.46875}}& 64 | \subnormal{0x8f = 1\_00\_01111 = -0b0.01111\pow{\neg{1}} = \f{\neg{0.234375}}}& 65 | \normal{0xcf = 1\_10\_01111 = -0b1.01111\pow{0} = \f{\neg{1.46875}}}\\ 66 | \subnormal{0x10 = 0\_00\_10000 = +0b0.10000\pow{\neg{1}} = \f{0.25}}& 67 | \normal{0x50 = 0\_10\_10000 = +0b1.10000\pow{0} = \f{1.5}}& 68 | \subnormal{0x90 = 1\_00\_10000 = -0b0.10000\pow{\neg{1}} = \f{\neg{0.25}}}& 69 | \normal{0xd0 = 1\_10\_10000 = -0b1.10000\pow{0} = \f{\neg{1.5}}}\\ 70 | \subnormal{0x11 = 0\_00\_10001 = +0b0.10001\pow{\neg{1}} = \f{0.265625}}& 71 | \normal{0x51 = 0\_10\_10001 = +0b1.10001\pow{0} = \f{1.53125}}& 72 | \subnormal{0x91 = 1\_00\_10001 = -0b0.10001\pow{\neg{1}} = \f{\neg{0.265625}}}& 73 | \normal{0xd1 = 1\_10\_10001 = -0b1.10001\pow{0} = \f{\neg{1.53125}}}\\ 74 | \subnormal{0x12 = 0\_00\_10010 = +0b0.10010\pow{\neg{1}} = \f{0.28125}}& 75 | \normal{0x52 = 0\_10\_10010 = +0b1.10010\pow{0} = \f{1.5625}}& 76 | \subnormal{0x92 = 1\_00\_10010 = -0b0.10010\pow{\neg{1}} = \f{\neg{0.28125}}}& 77 | \normal{0xd2 = 1\_10\_10010 = -0b1.10010\pow{0} = \f{\neg{1.5625}}}\\ 78 | \subnormal{0x13 = 0\_00\_10011 = +0b0.10011\pow{\neg{1}} = \f{0.296875}}& 79 | \normal{0x53 = 0\_10\_10011 = +0b1.10011\pow{0} = \f{1.59375}}& 80 | \subnormal{0x93 = 1\_00\_10011 = -0b0.10011\pow{\neg{1}} = \f{\neg{0.296875}}}& 81 | \normal{0xd3 = 1\_10\_10011 = -0b1.10011\pow{0} = \f{\neg{1.59375}}}\\ 82 | \subnormal{0x14 = 0\_00\_10100 = +0b0.10100\pow{\neg{1}} = \f{0.3125}}& 83 | \normal{0x54 = 0\_10\_10100 = +0b1.10100\pow{0} = \f{1.625}}& 84 | \subnormal{0x94 = 1\_00\_10100 = -0b0.10100\pow{\neg{1}} = \f{\neg{0.3125}}}& 85 | \normal{0xd4 = 1\_10\_10100 = -0b1.10100\pow{0} = \f{\neg{1.625}}}\\ 86 | \subnormal{0x15 = 0\_00\_10101 = +0b0.10101\pow{\neg{1}} = \f{0.328125}}& 87 | \normal{0x55 = 0\_10\_10101 = +0b1.10101\pow{0} = \f{1.65625}}& 88 | \subnormal{0x95 = 1\_00\_10101 = -0b0.10101\pow{\neg{1}} = \f{\neg{0.328125}}}& 89 | \normal{0xd5 = 1\_10\_10101 = -0b1.10101\pow{0} = \f{\neg{1.65625}}}\\ 90 | \subnormal{0x16 = 0\_00\_10110 = +0b0.10110\pow{\neg{1}} = \f{0.34375}}& 91 | \normal{0x56 = 0\_10\_10110 = +0b1.10110\pow{0} = \f{1.6875}}& 92 | \subnormal{0x96 = 1\_00\_10110 = -0b0.10110\pow{\neg{1}} = \f{\neg{0.34375}}}& 93 | \normal{0xd6 = 1\_10\_10110 = -0b1.10110\pow{0} = \f{\neg{1.6875}}}\\ 94 | \subnormal{0x17 = 0\_00\_10111 = +0b0.10111\pow{\neg{1}} = \f{0.359375}}& 95 | \normal{0x57 = 0\_10\_10111 = +0b1.10111\pow{0} = \f{1.71875}}& 96 | \subnormal{0x97 = 1\_00\_10111 = -0b0.10111\pow{\neg{1}} = \f{\neg{0.359375}}}& 97 | \normal{0xd7 = 1\_10\_10111 = -0b1.10111\pow{0} = \f{\neg{1.71875}}}\\ 98 | \subnormal{0x18 = 0\_00\_11000 = +0b0.11000\pow{\neg{1}} = \f{0.375}}& 99 | \normal{0x58 = 0\_10\_11000 = +0b1.11000\pow{0} = \f{1.75}}& 100 | \subnormal{0x98 = 1\_00\_11000 = -0b0.11000\pow{\neg{1}} = \f{\neg{0.375}}}& 101 | \normal{0xd8 = 1\_10\_11000 = -0b1.11000\pow{0} = \f{\neg{1.75}}}\\ 102 | \subnormal{0x19 = 0\_00\_11001 = +0b0.11001\pow{\neg{1}} = \f{0.390625}}& 103 | \normal{0x59 = 0\_10\_11001 = +0b1.11001\pow{0} = \f{1.78125}}& 104 | \subnormal{0x99 = 1\_00\_11001 = -0b0.11001\pow{\neg{1}} = \f{\neg{0.390625}}}& 105 | \normal{0xd9 = 1\_10\_11001 = -0b1.11001\pow{0} = \f{\neg{1.78125}}}\\ 106 | \subnormal{0x1a = 0\_00\_11010 = +0b0.11010\pow{\neg{1}} = \f{0.40625}}& 107 | \normal{0x5a = 0\_10\_11010 = +0b1.11010\pow{0} = \f{1.8125}}& 108 | \subnormal{0x9a = 1\_00\_11010 = -0b0.11010\pow{\neg{1}} = \f{\neg{0.40625}}}& 109 | \normal{0xda = 1\_10\_11010 = -0b1.11010\pow{0} = \f{\neg{1.8125}}}\\ 110 | \subnormal{0x1b = 0\_00\_11011 = +0b0.11011\pow{\neg{1}} = \f{0.421875}}& 111 | \normal{0x5b = 0\_10\_11011 = +0b1.11011\pow{0} = \f{1.84375}}& 112 | \subnormal{0x9b = 1\_00\_11011 = -0b0.11011\pow{\neg{1}} = \f{\neg{0.421875}}}& 113 | \normal{0xdb = 1\_10\_11011 = -0b1.11011\pow{0} = \f{\neg{1.84375}}}\\ 114 | \subnormal{0x1c = 0\_00\_11100 = +0b0.11100\pow{\neg{1}} = \f{0.4375}}& 115 | \normal{0x5c = 0\_10\_11100 = +0b1.11100\pow{0} = \f{1.875}}& 116 | \subnormal{0x9c = 1\_00\_11100 = -0b0.11100\pow{\neg{1}} = \f{\neg{0.4375}}}& 117 | \normal{0xdc = 1\_10\_11100 = -0b1.11100\pow{0} = \f{\neg{1.875}}}\\ 118 | \subnormal{0x1d = 0\_00\_11101 = +0b0.11101\pow{\neg{1}} = \f{0.453125}}& 119 | \normal{0x5d = 0\_10\_11101 = +0b1.11101\pow{0} = \f{1.90625}}& 120 | \subnormal{0x9d = 1\_00\_11101 = -0b0.11101\pow{\neg{1}} = \f{\neg{0.453125}}}& 121 | \normal{0xdd = 1\_10\_11101 = -0b1.11101\pow{0} = \f{\neg{1.90625}}}\\ 122 | \subnormal{0x1e = 0\_00\_11110 = +0b0.11110\pow{\neg{1}} = \f{0.46875}}& 123 | \normal{0x5e = 0\_10\_11110 = +0b1.11110\pow{0} = \f{1.9375}}& 124 | \subnormal{0x9e = 1\_00\_11110 = -0b0.11110\pow{\neg{1}} = \f{\neg{0.46875}}}& 125 | \normal{0xde = 1\_10\_11110 = -0b1.11110\pow{0} = \f{\neg{1.9375}}}\\ 126 | \subnormal{0x1f = 0\_00\_11111 = +0b0.11111\pow{\neg{1}} = \f{0.484375}}& 127 | \normal{0x5f = 0\_10\_11111 = +0b1.11111\pow{0} = \f{1.96875}}& 128 | \subnormal{0x9f = 1\_00\_11111 = -0b0.11111\pow{\neg{1}} = \f{\neg{0.484375}}}& 129 | \normal{0xdf = 1\_10\_11111 = -0b1.11111\pow{0} = \f{\neg{1.96875}}}\\ 130 | \normal{0x20 = 0\_01\_00000 = +0b1.00000\pow{\neg{1}} = \f{0.5}}& 131 | \normal{0x60 = 0\_11\_00000 = +0b1.00000\pow{1} = \f{2.0}}& 132 | \normal{0xa0 = 1\_01\_00000 = -0b1.00000\pow{\neg{1}} = \f{\neg{0.5}}}& 133 | \normal{0xe0 = 1\_11\_00000 = -0b1.00000\pow{1} = \f{\neg{2.0}}}\\ 134 | \normal{0x21 = 0\_01\_00001 = +0b1.00001\pow{\neg{1}} = \f{0.515625}}& 135 | \normal{0x61 = 0\_11\_00001 = +0b1.00001\pow{1} = \f{2.0625}}& 136 | \normal{0xa1 = 1\_01\_00001 = -0b1.00001\pow{\neg{1}} = \f{\neg{0.515625}}}& 137 | \normal{0xe1 = 1\_11\_00001 = -0b1.00001\pow{1} = \f{\neg{2.0625}}}\\ 138 | \normal{0x22 = 0\_01\_00010 = +0b1.00010\pow{\neg{1}} = \f{0.53125}}& 139 | \normal{0x62 = 0\_11\_00010 = +0b1.00010\pow{1} = \f{2.125}}& 140 | \normal{0xa2 = 1\_01\_00010 = -0b1.00010\pow{\neg{1}} = \f{\neg{0.53125}}}& 141 | \normal{0xe2 = 1\_11\_00010 = -0b1.00010\pow{1} = \f{\neg{2.125}}}\\ 142 | \normal{0x23 = 0\_01\_00011 = +0b1.00011\pow{\neg{1}} = \f{0.546875}}& 143 | \normal{0x63 = 0\_11\_00011 = +0b1.00011\pow{1} = \f{2.1875}}& 144 | \normal{0xa3 = 1\_01\_00011 = -0b1.00011\pow{\neg{1}} = \f{\neg{0.546875}}}& 145 | \normal{0xe3 = 1\_11\_00011 = -0b1.00011\pow{1} = \f{\neg{2.1875}}}\\ 146 | \normal{0x24 = 0\_01\_00100 = +0b1.00100\pow{\neg{1}} = \f{0.5625}}& 147 | \normal{0x64 = 0\_11\_00100 = +0b1.00100\pow{1} = \f{2.25}}& 148 | \normal{0xa4 = 1\_01\_00100 = -0b1.00100\pow{\neg{1}} = \f{\neg{0.5625}}}& 149 | \normal{0xe4 = 1\_11\_00100 = -0b1.00100\pow{1} = \f{\neg{2.25}}}\\ 150 | \normal{0x25 = 0\_01\_00101 = +0b1.00101\pow{\neg{1}} = \f{0.578125}}& 151 | \normal{0x65 = 0\_11\_00101 = +0b1.00101\pow{1} = \f{2.3125}}& 152 | \normal{0xa5 = 1\_01\_00101 = -0b1.00101\pow{\neg{1}} = \f{\neg{0.578125}}}& 153 | \normal{0xe5 = 1\_11\_00101 = -0b1.00101\pow{1} = \f{\neg{2.3125}}}\\ 154 | \normal{0x26 = 0\_01\_00110 = +0b1.00110\pow{\neg{1}} = \f{0.59375}}& 155 | \normal{0x66 = 0\_11\_00110 = +0b1.00110\pow{1} = \f{2.375}}& 156 | \normal{0xa6 = 1\_01\_00110 = -0b1.00110\pow{\neg{1}} = \f{\neg{0.59375}}}& 157 | \normal{0xe6 = 1\_11\_00110 = -0b1.00110\pow{1} = \f{\neg{2.375}}}\\ 158 | \normal{0x27 = 0\_01\_00111 = +0b1.00111\pow{\neg{1}} = \f{0.609375}}& 159 | \normal{0x67 = 0\_11\_00111 = +0b1.00111\pow{1} = \f{2.4375}}& 160 | \normal{0xa7 = 1\_01\_00111 = -0b1.00111\pow{\neg{1}} = \f{\neg{0.609375}}}& 161 | \normal{0xe7 = 1\_11\_00111 = -0b1.00111\pow{1} = \f{\neg{2.4375}}}\\ 162 | \normal{0x28 = 0\_01\_01000 = +0b1.01000\pow{\neg{1}} = \f{0.625}}& 163 | \normal{0x68 = 0\_11\_01000 = +0b1.01000\pow{1} = \f{2.5}}& 164 | \normal{0xa8 = 1\_01\_01000 = -0b1.01000\pow{\neg{1}} = \f{\neg{0.625}}}& 165 | \normal{0xe8 = 1\_11\_01000 = -0b1.01000\pow{1} = \f{\neg{2.5}}}\\ 166 | \normal{0x29 = 0\_01\_01001 = +0b1.01001\pow{\neg{1}} = \f{0.640625}}& 167 | \normal{0x69 = 0\_11\_01001 = +0b1.01001\pow{1} = \f{2.5625}}& 168 | \normal{0xa9 = 1\_01\_01001 = -0b1.01001\pow{\neg{1}} = \f{\neg{0.640625}}}& 169 | \normal{0xe9 = 1\_11\_01001 = -0b1.01001\pow{1} = \f{\neg{2.5625}}}\\ 170 | \normal{0x2a = 0\_01\_01010 = +0b1.01010\pow{\neg{1}} = \f{0.65625}}& 171 | \normal{0x6a = 0\_11\_01010 = +0b1.01010\pow{1} = \f{2.625}}& 172 | \normal{0xaa = 1\_01\_01010 = -0b1.01010\pow{\neg{1}} = \f{\neg{0.65625}}}& 173 | \normal{0xea = 1\_11\_01010 = -0b1.01010\pow{1} = \f{\neg{2.625}}}\\ 174 | \normal{0x2b = 0\_01\_01011 = +0b1.01011\pow{\neg{1}} = \f{0.671875}}& 175 | \normal{0x6b = 0\_11\_01011 = +0b1.01011\pow{1} = \f{2.6875}}& 176 | \normal{0xab = 1\_01\_01011 = -0b1.01011\pow{\neg{1}} = \f{\neg{0.671875}}}& 177 | \normal{0xeb = 1\_11\_01011 = -0b1.01011\pow{1} = \f{\neg{2.6875}}}\\ 178 | \normal{0x2c = 0\_01\_01100 = +0b1.01100\pow{\neg{1}} = \f{0.6875}}& 179 | \normal{0x6c = 0\_11\_01100 = +0b1.01100\pow{1} = \f{2.75}}& 180 | \normal{0xac = 1\_01\_01100 = -0b1.01100\pow{\neg{1}} = \f{\neg{0.6875}}}& 181 | \normal{0xec = 1\_11\_01100 = -0b1.01100\pow{1} = \f{\neg{2.75}}}\\ 182 | \normal{0x2d = 0\_01\_01101 = +0b1.01101\pow{\neg{1}} = \f{0.703125}}& 183 | \normal{0x6d = 0\_11\_01101 = +0b1.01101\pow{1} = \f{2.8125}}& 184 | \normal{0xad = 1\_01\_01101 = -0b1.01101\pow{\neg{1}} = \f{\neg{0.703125}}}& 185 | \normal{0xed = 1\_11\_01101 = -0b1.01101\pow{1} = \f{\neg{2.8125}}}\\ 186 | \normal{0x2e = 0\_01\_01110 = +0b1.01110\pow{\neg{1}} = \f{0.71875}}& 187 | \normal{0x6e = 0\_11\_01110 = +0b1.01110\pow{1} = \f{2.875}}& 188 | \normal{0xae = 1\_01\_01110 = -0b1.01110\pow{\neg{1}} = \f{\neg{0.71875}}}& 189 | \normal{0xee = 1\_11\_01110 = -0b1.01110\pow{1} = \f{\neg{2.875}}}\\ 190 | \normal{0x2f = 0\_01\_01111 = +0b1.01111\pow{\neg{1}} = \f{0.734375}}& 191 | \normal{0x6f = 0\_11\_01111 = +0b1.01111\pow{1} = \f{2.9375}}& 192 | \normal{0xaf = 1\_01\_01111 = -0b1.01111\pow{\neg{1}} = \f{\neg{0.734375}}}& 193 | \normal{0xef = 1\_11\_01111 = -0b1.01111\pow{1} = \f{\neg{2.9375}}}\\ 194 | \normal{0x30 = 0\_01\_10000 = +0b1.10000\pow{\neg{1}} = \f{0.75}}& 195 | \normal{0x70 = 0\_11\_10000 = +0b1.10000\pow{1} = \f{3.0}}& 196 | \normal{0xb0 = 1\_01\_10000 = -0b1.10000\pow{\neg{1}} = \f{\neg{0.75}}}& 197 | \normal{0xf0 = 1\_11\_10000 = -0b1.10000\pow{1} = \f{\neg{3.0}}}\\ 198 | \normal{0x31 = 0\_01\_10001 = +0b1.10001\pow{\neg{1}} = \f{0.765625}}& 199 | \normal{0x71 = 0\_11\_10001 = +0b1.10001\pow{1} = \f{3.0625}}& 200 | \normal{0xb1 = 1\_01\_10001 = -0b1.10001\pow{\neg{1}} = \f{\neg{0.765625}}}& 201 | \normal{0xf1 = 1\_11\_10001 = -0b1.10001\pow{1} = \f{\neg{3.0625}}}\\ 202 | \normal{0x32 = 0\_01\_10010 = +0b1.10010\pow{\neg{1}} = \f{0.78125}}& 203 | \normal{0x72 = 0\_11\_10010 = +0b1.10010\pow{1} = \f{3.125}}& 204 | \normal{0xb2 = 1\_01\_10010 = -0b1.10010\pow{\neg{1}} = \f{\neg{0.78125}}}& 205 | \normal{0xf2 = 1\_11\_10010 = -0b1.10010\pow{1} = \f{\neg{3.125}}}\\ 206 | \normal{0x33 = 0\_01\_10011 = +0b1.10011\pow{\neg{1}} = \f{0.796875}}& 207 | \normal{0x73 = 0\_11\_10011 = +0b1.10011\pow{1} = \f{3.1875}}& 208 | \normal{0xb3 = 1\_01\_10011 = -0b1.10011\pow{\neg{1}} = \f{\neg{0.796875}}}& 209 | \normal{0xf3 = 1\_11\_10011 = -0b1.10011\pow{1} = \f{\neg{3.1875}}}\\ 210 | \normal{0x34 = 0\_01\_10100 = +0b1.10100\pow{\neg{1}} = \f{0.8125}}& 211 | \normal{0x74 = 0\_11\_10100 = +0b1.10100\pow{1} = \f{3.25}}& 212 | \normal{0xb4 = 1\_01\_10100 = -0b1.10100\pow{\neg{1}} = \f{\neg{0.8125}}}& 213 | \normal{0xf4 = 1\_11\_10100 = -0b1.10100\pow{1} = \f{\neg{3.25}}}\\ 214 | \normal{0x35 = 0\_01\_10101 = +0b1.10101\pow{\neg{1}} = \f{0.828125}}& 215 | \normal{0x75 = 0\_11\_10101 = +0b1.10101\pow{1} = \f{3.3125}}& 216 | \normal{0xb5 = 1\_01\_10101 = -0b1.10101\pow{\neg{1}} = \f{\neg{0.828125}}}& 217 | \normal{0xf5 = 1\_11\_10101 = -0b1.10101\pow{1} = \f{\neg{3.3125}}}\\ 218 | \normal{0x36 = 0\_01\_10110 = +0b1.10110\pow{\neg{1}} = \f{0.84375}}& 219 | \normal{0x76 = 0\_11\_10110 = +0b1.10110\pow{1} = \f{3.375}}& 220 | \normal{0xb6 = 1\_01\_10110 = -0b1.10110\pow{\neg{1}} = \f{\neg{0.84375}}}& 221 | \normal{0xf6 = 1\_11\_10110 = -0b1.10110\pow{1} = \f{\neg{3.375}}}\\ 222 | \normal{0x37 = 0\_01\_10111 = +0b1.10111\pow{\neg{1}} = \f{0.859375}}& 223 | \normal{0x77 = 0\_11\_10111 = +0b1.10111\pow{1} = \f{3.4375}}& 224 | \normal{0xb7 = 1\_01\_10111 = -0b1.10111\pow{\neg{1}} = \f{\neg{0.859375}}}& 225 | \normal{0xf7 = 1\_11\_10111 = -0b1.10111\pow{1} = \f{\neg{3.4375}}}\\ 226 | \normal{0x38 = 0\_01\_11000 = +0b1.11000\pow{\neg{1}} = \f{0.875}}& 227 | \normal{0x78 = 0\_11\_11000 = +0b1.11000\pow{1} = \f{3.5}}& 228 | \normal{0xb8 = 1\_01\_11000 = -0b1.11000\pow{\neg{1}} = \f{\neg{0.875}}}& 229 | \normal{0xf8 = 1\_11\_11000 = -0b1.11000\pow{1} = \f{\neg{3.5}}}\\ 230 | \normal{0x39 = 0\_01\_11001 = +0b1.11001\pow{\neg{1}} = \f{0.890625}}& 231 | \normal{0x79 = 0\_11\_11001 = +0b1.11001\pow{1} = \f{3.5625}}& 232 | \normal{0xb9 = 1\_01\_11001 = -0b1.11001\pow{\neg{1}} = \f{\neg{0.890625}}}& 233 | \normal{0xf9 = 1\_11\_11001 = -0b1.11001\pow{1} = \f{\neg{3.5625}}}\\ 234 | \normal{0x3a = 0\_01\_11010 = +0b1.11010\pow{\neg{1}} = \f{0.90625}}& 235 | \normal{0x7a = 0\_11\_11010 = +0b1.11010\pow{1} = \f{3.625}}& 236 | \normal{0xba = 1\_01\_11010 = -0b1.11010\pow{\neg{1}} = \f{\neg{0.90625}}}& 237 | \normal{0xfa = 1\_11\_11010 = -0b1.11010\pow{1} = \f{\neg{3.625}}}\\ 238 | \normal{0x3b = 0\_01\_11011 = +0b1.11011\pow{\neg{1}} = \f{0.921875}}& 239 | \normal{0x7b = 0\_11\_11011 = +0b1.11011\pow{1} = \f{3.6875}}& 240 | \normal{0xbb = 1\_01\_11011 = -0b1.11011\pow{\neg{1}} = \f{\neg{0.921875}}}& 241 | \normal{0xfb = 1\_11\_11011 = -0b1.11011\pow{1} = \f{\neg{3.6875}}}\\ 242 | \normal{0x3c = 0\_01\_11100 = +0b1.11100\pow{\neg{1}} = \f{0.9375}}& 243 | \normal{0x7c = 0\_11\_11100 = +0b1.11100\pow{1} = \f{3.75}}& 244 | \normal{0xbc = 1\_01\_11100 = -0b1.11100\pow{\neg{1}} = \f{\neg{0.9375}}}& 245 | \normal{0xfc = 1\_11\_11100 = -0b1.11100\pow{1} = \f{\neg{3.75}}}\\ 246 | \normal{0x3d = 0\_01\_11101 = +0b1.11101\pow{\neg{1}} = \f{0.953125}}& 247 | \normal{0x7d = 0\_11\_11101 = +0b1.11101\pow{1} = \f{3.8125}}& 248 | \normal{0xbd = 1\_01\_11101 = -0b1.11101\pow{\neg{1}} = \f{\neg{0.953125}}}& 249 | \normal{0xfd = 1\_11\_11101 = -0b1.11101\pow{1} = \f{\neg{3.8125}}}\\ 250 | \normal{0x3e = 0\_01\_11110 = +0b1.11110\pow{\neg{1}} = \f{0.96875}}& 251 | \normal{0x7e = 0\_11\_11110 = +0b1.11110\pow{1} = \f{3.875}}& 252 | \normal{0xbe = 1\_01\_11110 = -0b1.11110\pow{\neg{1}} = \f{\neg{0.96875}}}& 253 | \normal{0xfe = 1\_11\_11110 = -0b1.11110\pow{1} = \f{\neg{3.875}}}\\ 254 | \normal{0x3f = 0\_01\_11111 = +0b1.11111\pow{\neg{1}} = \f{0.984375}}& 255 | \special{0x7f = 0\_11\_11111 = inf}& 256 | \normal{0xbf = 1\_01\_11111 = -0b1.11111\pow{\neg{1}} = \f{\neg{0.984375}}}& 257 | \special{0xff = 1\_11\_11111 = -inf}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p2.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_000000\_0 = \f{0.0}}& 3 | \normal{0x40 = 0\_100000\_0 = +0b1.0\pow{0} = \f{1.0}}& 4 | \special{0x80 = 1\_000000\_0 = nan}& 5 | \normal{0xc0 = 1\_100000\_0 = -0b1.0\pow{0} = \f{\neg{1.0}}}\\ 6 | \subnormal{0x01 = 0\_000000\_1 = +0b0.1\pow{\neg{31}} \approx \e{2.3283064}{\neg{10}}}& 7 | \normal{0x41 = 0\_100000\_1 = +0b1.1\pow{0} = \f{1.5}}& 8 | \subnormal{0x81 = 1\_000000\_1 = -0b0.1\pow{\neg{31}} \approx \e{-2.3283064}{\neg{10}}}& 9 | \normal{0xc1 = 1\_100000\_1 = -0b1.1\pow{0} = \f{\neg{1.5}}}\\ 10 | \normal{0x02 = 0\_000001\_0 = +0b1.0\pow{\neg{31}} \approx \e{4.6566129}{\neg{10}}}& 11 | \normal{0x42 = 0\_100001\_0 = +0b1.0\pow{1} = \f{2.0}}& 12 | \normal{0x82 = 1\_000001\_0 = -0b1.0\pow{\neg{31}} \approx \e{-4.6566129}{\neg{10}}}& 13 | \normal{0xc2 = 1\_100001\_0 = -0b1.0\pow{1} = \f{\neg{2.0}}}\\ 14 | \normal{0x03 = 0\_000001\_1 = +0b1.1\pow{\neg{31}} \approx \e{6.9849193}{\neg{10}}}& 15 | \normal{0x43 = 0\_100001\_1 = +0b1.1\pow{1} = \f{3.0}}& 16 | \normal{0x83 = 1\_000001\_1 = -0b1.1\pow{\neg{31}} \approx \e{-6.9849193}{\neg{10}}}& 17 | \normal{0xc3 = 1\_100001\_1 = -0b1.1\pow{1} = \f{\neg{3.0}}}\\ 18 | \normal{0x04 = 0\_000010\_0 = +0b1.0\pow{\neg{30}} \approx \e{9.3132257}{\neg{10}}}& 19 | \normal{0x44 = 0\_100010\_0 = +0b1.0\pow{2} = \f{4.0}}& 20 | \normal{0x84 = 1\_000010\_0 = -0b1.0\pow{\neg{30}} \approx \e{-9.3132257}{\neg{10}}}& 21 | \normal{0xc4 = 1\_100010\_0 = -0b1.0\pow{2} = \f{\neg{4.0}}}\\ 22 | \normal{0x05 = 0\_000010\_1 = +0b1.1\pow{\neg{30}} \approx \e{1.3969839}{\neg{09}}}& 23 | \normal{0x45 = 0\_100010\_1 = +0b1.1\pow{2} = \f{6.0}}& 24 | \normal{0x85 = 1\_000010\_1 = -0b1.1\pow{\neg{30}} \approx \e{-1.3969839}{\neg{09}}}& 25 | \normal{0xc5 = 1\_100010\_1 = -0b1.1\pow{2} = \f{\neg{6.0}}}\\ 26 | \normal{0x06 = 0\_000011\_0 = +0b1.0\pow{\neg{29}} \approx \e{1.8626451}{\neg{09}}}& 27 | \normal{0x46 = 0\_100011\_0 = +0b1.0\pow{3} = \f{8.0}}& 28 | \normal{0x86 = 1\_000011\_0 = -0b1.0\pow{\neg{29}} \approx \e{-1.8626451}{\neg{09}}}& 29 | \normal{0xc6 = 1\_100011\_0 = -0b1.0\pow{3} = \f{\neg{8.0}}}\\ 30 | \normal{0x07 = 0\_000011\_1 = +0b1.1\pow{\neg{29}} \approx \e{2.7939677}{\neg{09}}}& 31 | \normal{0x47 = 0\_100011\_1 = +0b1.1\pow{3} = \f{12.0}}& 32 | \normal{0x87 = 1\_000011\_1 = -0b1.1\pow{\neg{29}} \approx \e{-2.7939677}{\neg{09}}}& 33 | \normal{0xc7 = 1\_100011\_1 = -0b1.1\pow{3} = \f{\neg{12.0}}}\\ 34 | \normal{0x08 = 0\_000100\_0 = +0b1.0\pow{\neg{28}} \approx \e{3.7252903}{\neg{09}}}& 35 | \normal{0x48 = 0\_100100\_0 = +0b1.0\pow{4} = \f{16.0}}& 36 | \normal{0x88 = 1\_000100\_0 = -0b1.0\pow{\neg{28}} \approx \e{-3.7252903}{\neg{09}}}& 37 | \normal{0xc8 = 1\_100100\_0 = -0b1.0\pow{4} = \f{\neg{16.0}}}\\ 38 | \normal{0x09 = 0\_000100\_1 = +0b1.1\pow{\neg{28}} \approx \e{5.5879354}{\neg{09}}}& 39 | \normal{0x49 = 0\_100100\_1 = +0b1.1\pow{4} = \f{24.0}}& 40 | \normal{0x89 = 1\_000100\_1 = -0b1.1\pow{\neg{28}} \approx \e{-5.5879354}{\neg{09}}}& 41 | \normal{0xc9 = 1\_100100\_1 = -0b1.1\pow{4} = \f{\neg{24.0}}}\\ 42 | \normal{0x0a = 0\_000101\_0 = +0b1.0\pow{\neg{27}} \approx \e{7.4505806}{\neg{09}}}& 43 | \normal{0x4a = 0\_100101\_0 = +0b1.0\pow{5} = \f{32.0}}& 44 | \normal{0x8a = 1\_000101\_0 = -0b1.0\pow{\neg{27}} \approx \e{-7.4505806}{\neg{09}}}& 45 | \normal{0xca = 1\_100101\_0 = -0b1.0\pow{5} = \f{\neg{32.0}}}\\ 46 | \normal{0x0b = 0\_000101\_1 = +0b1.1\pow{\neg{27}} \approx \e{1.1175871}{\neg{08}}}& 47 | \normal{0x4b = 0\_100101\_1 = +0b1.1\pow{5} = \f{48.0}}& 48 | \normal{0x8b = 1\_000101\_1 = -0b1.1\pow{\neg{27}} \approx \e{-1.1175871}{\neg{08}}}& 49 | \normal{0xcb = 1\_100101\_1 = -0b1.1\pow{5} = \f{\neg{48.0}}}\\ 50 | \normal{0x0c = 0\_000110\_0 = +0b1.0\pow{\neg{26}} \approx \e{1.4901161}{\neg{08}}}& 51 | \normal{0x4c = 0\_100110\_0 = +0b1.0\pow{6} = \f{64.0}}& 52 | \normal{0x8c = 1\_000110\_0 = -0b1.0\pow{\neg{26}} \approx \e{-1.4901161}{\neg{08}}}& 53 | \normal{0xcc = 1\_100110\_0 = -0b1.0\pow{6} = \f{\neg{64.0}}}\\ 54 | \normal{0x0d = 0\_000110\_1 = +0b1.1\pow{\neg{26}} \approx \e{2.2351742}{\neg{08}}}& 55 | \normal{0x4d = 0\_100110\_1 = +0b1.1\pow{6} = \f{96.0}}& 56 | \normal{0x8d = 1\_000110\_1 = -0b1.1\pow{\neg{26}} \approx \e{-2.2351742}{\neg{08}}}& 57 | \normal{0xcd = 1\_100110\_1 = -0b1.1\pow{6} = \f{\neg{96.0}}}\\ 58 | \normal{0x0e = 0\_000111\_0 = +0b1.0\pow{\neg{25}} \approx \e{2.9802322}{\neg{08}}}& 59 | \normal{0x4e = 0\_100111\_0 = +0b1.0\pow{7} = \f{128.0}}& 60 | \normal{0x8e = 1\_000111\_0 = -0b1.0\pow{\neg{25}} \approx \e{-2.9802322}{\neg{08}}}& 61 | \normal{0xce = 1\_100111\_0 = -0b1.0\pow{7} = \f{\neg{128.0}}}\\ 62 | \normal{0x0f = 0\_000111\_1 = +0b1.1\pow{\neg{25}} \approx \e{4.4703484}{\neg{08}}}& 63 | \normal{0x4f = 0\_100111\_1 = +0b1.1\pow{7} = \f{192.0}}& 64 | \normal{0x8f = 1\_000111\_1 = -0b1.1\pow{\neg{25}} \approx \e{-4.4703484}{\neg{08}}}& 65 | \normal{0xcf = 1\_100111\_1 = -0b1.1\pow{7} = \f{\neg{192.0}}}\\ 66 | \normal{0x10 = 0\_001000\_0 = +0b1.0\pow{\neg{24}} \approx \e{5.9604645}{\neg{08}}}& 67 | \normal{0x50 = 0\_101000\_0 = +0b1.0\pow{8} = \f{256.0}}& 68 | \normal{0x90 = 1\_001000\_0 = -0b1.0\pow{\neg{24}} \approx \e{-5.9604645}{\neg{08}}}& 69 | \normal{0xd0 = 1\_101000\_0 = -0b1.0\pow{8} = \f{\neg{256.0}}}\\ 70 | \normal{0x11 = 0\_001000\_1 = +0b1.1\pow{\neg{24}} \approx \e{8.9406967}{\neg{08}}}& 71 | \normal{0x51 = 0\_101000\_1 = +0b1.1\pow{8} = \f{384.0}}& 72 | \normal{0x91 = 1\_001000\_1 = -0b1.1\pow{\neg{24}} \approx \e{-8.9406967}{\neg{08}}}& 73 | \normal{0xd1 = 1\_101000\_1 = -0b1.1\pow{8} = \f{\neg{384.0}}}\\ 74 | \normal{0x12 = 0\_001001\_0 = +0b1.0\pow{\neg{23}} \approx \e{1.1920929}{\neg{07}}}& 75 | \normal{0x52 = 0\_101001\_0 = +0b1.0\pow{9} = \f{512.0}}& 76 | \normal{0x92 = 1\_001001\_0 = -0b1.0\pow{\neg{23}} \approx \e{-1.1920929}{\neg{07}}}& 77 | \normal{0xd2 = 1\_101001\_0 = -0b1.0\pow{9} = \f{\neg{512.0}}}\\ 78 | \normal{0x13 = 0\_001001\_1 = +0b1.1\pow{\neg{23}} \approx \e{1.7881393}{\neg{07}}}& 79 | \normal{0x53 = 0\_101001\_1 = +0b1.1\pow{9} = \f{768.0}}& 80 | \normal{0x93 = 1\_001001\_1 = -0b1.1\pow{\neg{23}} \approx \e{-1.7881393}{\neg{07}}}& 81 | \normal{0xd3 = 1\_101001\_1 = -0b1.1\pow{9} = \f{\neg{768.0}}}\\ 82 | \normal{0x14 = 0\_001010\_0 = +0b1.0\pow{\neg{22}} \approx \e{2.3841858}{\neg{07}}}& 83 | \normal{0x54 = 0\_101010\_0 = +0b1.0\pow{10} = \f{1024.0}}& 84 | \normal{0x94 = 1\_001010\_0 = -0b1.0\pow{\neg{22}} \approx \e{-2.3841858}{\neg{07}}}& 85 | \normal{0xd4 = 1\_101010\_0 = -0b1.0\pow{10} = \f{\neg{1024.0}}}\\ 86 | \normal{0x15 = 0\_001010\_1 = +0b1.1\pow{\neg{22}} \approx \e{3.5762787}{\neg{07}}}& 87 | \normal{0x55 = 0\_101010\_1 = +0b1.1\pow{10} = \f{1536.0}}& 88 | \normal{0x95 = 1\_001010\_1 = -0b1.1\pow{\neg{22}} \approx \e{-3.5762787}{\neg{07}}}& 89 | \normal{0xd5 = 1\_101010\_1 = -0b1.1\pow{10} = \f{\neg{1536.0}}}\\ 90 | \normal{0x16 = 0\_001011\_0 = +0b1.0\pow{\neg{21}} \approx \e{4.7683716}{\neg{07}}}& 91 | \normal{0x56 = 0\_101011\_0 = +0b1.0\pow{11} = \f{2048.0}}& 92 | \normal{0x96 = 1\_001011\_0 = -0b1.0\pow{\neg{21}} \approx \e{-4.7683716}{\neg{07}}}& 93 | \normal{0xd6 = 1\_101011\_0 = -0b1.0\pow{11} = \f{\neg{2048.0}}}\\ 94 | \normal{0x17 = 0\_001011\_1 = +0b1.1\pow{\neg{21}} \approx \e{7.1525574}{\neg{07}}}& 95 | \normal{0x57 = 0\_101011\_1 = +0b1.1\pow{11} = \f{3072.0}}& 96 | \normal{0x97 = 1\_001011\_1 = -0b1.1\pow{\neg{21}} \approx \e{-7.1525574}{\neg{07}}}& 97 | \normal{0xd7 = 1\_101011\_1 = -0b1.1\pow{11} = \f{\neg{3072.0}}}\\ 98 | \normal{0x18 = 0\_001100\_0 = +0b1.0\pow{\neg{20}} \approx \e{9.5367432}{\neg{07}}}& 99 | \normal{0x58 = 0\_101100\_0 = +0b1.0\pow{12} = \f{4096.0}}& 100 | \normal{0x98 = 1\_001100\_0 = -0b1.0\pow{\neg{20}} \approx \e{-9.5367432}{\neg{07}}}& 101 | \normal{0xd8 = 1\_101100\_0 = -0b1.0\pow{12} = \f{\neg{4096.0}}}\\ 102 | \normal{0x19 = 0\_001100\_1 = +0b1.1\pow{\neg{20}} \approx \e{1.4305115}{\neg{06}}}& 103 | \normal{0x59 = 0\_101100\_1 = +0b1.1\pow{12} = \f{6144.0}}& 104 | \normal{0x99 = 1\_001100\_1 = -0b1.1\pow{\neg{20}} \approx \e{-1.4305115}{\neg{06}}}& 105 | \normal{0xd9 = 1\_101100\_1 = -0b1.1\pow{12} = \f{\neg{6144.0}}}\\ 106 | \normal{0x1a = 0\_001101\_0 = +0b1.0\pow{\neg{19}} \approx \e{1.9073486}{\neg{06}}}& 107 | \normal{0x5a = 0\_101101\_0 = +0b1.0\pow{13} = \f{8192.0}}& 108 | \normal{0x9a = 1\_001101\_0 = -0b1.0\pow{\neg{19}} \approx \e{-1.9073486}{\neg{06}}}& 109 | \normal{0xda = 1\_101101\_0 = -0b1.0\pow{13} = \f{\neg{8192.0}}}\\ 110 | \normal{0x1b = 0\_001101\_1 = +0b1.1\pow{\neg{19}} \approx \e{2.8610229}{\neg{06}}}& 111 | \normal{0x5b = 0\_101101\_1 = +0b1.1\pow{13} = \f{12288.0}}& 112 | \normal{0x9b = 1\_001101\_1 = -0b1.1\pow{\neg{19}} \approx \e{-2.8610229}{\neg{06}}}& 113 | \normal{0xdb = 1\_101101\_1 = -0b1.1\pow{13} = \f{\neg{12288.0}}}\\ 114 | \normal{0x1c = 0\_001110\_0 = +0b1.0\pow{\neg{18}} \approx \e{3.8146973}{\neg{06}}}& 115 | \normal{0x5c = 0\_101110\_0 = +0b1.0\pow{14} = \f{16384.0}}& 116 | \normal{0x9c = 1\_001110\_0 = -0b1.0\pow{\neg{18}} \approx \e{-3.8146973}{\neg{06}}}& 117 | \normal{0xdc = 1\_101110\_0 = -0b1.0\pow{14} = \f{\neg{16384.0}}}\\ 118 | \normal{0x1d = 0\_001110\_1 = +0b1.1\pow{\neg{18}} \approx \e{5.7220459}{\neg{06}}}& 119 | \normal{0x5d = 0\_101110\_1 = +0b1.1\pow{14} = \f{24576.0}}& 120 | \normal{0x9d = 1\_001110\_1 = -0b1.1\pow{\neg{18}} \approx \e{-5.7220459}{\neg{06}}}& 121 | \normal{0xdd = 1\_101110\_1 = -0b1.1\pow{14} = \f{\neg{24576.0}}}\\ 122 | \normal{0x1e = 0\_001111\_0 = +0b1.0\pow{\neg{17}} \approx \e{7.6293945}{\neg{06}}}& 123 | \normal{0x5e = 0\_101111\_0 = +0b1.0\pow{15} = \f{32768.0}}& 124 | \normal{0x9e = 1\_001111\_0 = -0b1.0\pow{\neg{17}} \approx \e{-7.6293945}{\neg{06}}}& 125 | \normal{0xde = 1\_101111\_0 = -0b1.0\pow{15} = \f{\neg{32768.0}}}\\ 126 | \normal{0x1f = 0\_001111\_1 = +0b1.1\pow{\neg{17}} \approx \e{1.1444092}{\neg{05}}}& 127 | \normal{0x5f = 0\_101111\_1 = +0b1.1\pow{15} = \f{49152.0}}& 128 | \normal{0x9f = 1\_001111\_1 = -0b1.1\pow{\neg{17}} \approx \e{-1.1444092}{\neg{05}}}& 129 | \normal{0xdf = 1\_101111\_1 = -0b1.1\pow{15} = \f{\neg{49152.0}}}\\ 130 | \normal{0x20 = 0\_010000\_0 = +0b1.0\pow{\neg{16}} \approx \e{1.5258789}{\neg{05}}}& 131 | \normal{0x60 = 0\_110000\_0 = +0b1.0\pow{16} = \f{65536.0}}& 132 | \normal{0xa0 = 1\_010000\_0 = -0b1.0\pow{\neg{16}} \approx \e{-1.5258789}{\neg{05}}}& 133 | \normal{0xe0 = 1\_110000\_0 = -0b1.0\pow{16} = \f{\neg{65536.0}}}\\ 134 | \normal{0x21 = 0\_010000\_1 = +0b1.1\pow{\neg{16}} \approx \e{2.2888184}{\neg{05}}}& 135 | \normal{0x61 = 0\_110000\_1 = +0b1.1\pow{16} = \f{98304.0}}& 136 | \normal{0xa1 = 1\_010000\_1 = -0b1.1\pow{\neg{16}} \approx \e{-2.2888184}{\neg{05}}}& 137 | \normal{0xe1 = 1\_110000\_1 = -0b1.1\pow{16} = \f{\neg{98304.0}}}\\ 138 | \normal{0x22 = 0\_010001\_0 = +0b1.0\pow{\neg{15}} \approx \e{3.0517578}{\neg{05}}}& 139 | \normal{0x62 = 0\_110001\_0 = +0b1.0\pow{17} = \f{131072.0}}& 140 | \normal{0xa2 = 1\_010001\_0 = -0b1.0\pow{\neg{15}} \approx \e{-3.0517578}{\neg{05}}}& 141 | \normal{0xe2 = 1\_110001\_0 = -0b1.0\pow{17} = \f{\neg{131072.0}}}\\ 142 | \normal{0x23 = 0\_010001\_1 = +0b1.1\pow{\neg{15}} \approx \e{4.5776367}{\neg{05}}}& 143 | \normal{0x63 = 0\_110001\_1 = +0b1.1\pow{17} = \f{196608.0}}& 144 | \normal{0xa3 = 1\_010001\_1 = -0b1.1\pow{\neg{15}} \approx \e{-4.5776367}{\neg{05}}}& 145 | \normal{0xe3 = 1\_110001\_1 = -0b1.1\pow{17} = \f{\neg{196608.0}}}\\ 146 | \normal{0x24 = 0\_010010\_0 = +0b1.0\pow{\neg{14}} \approx \e{6.1035156}{\neg{05}}}& 147 | \normal{0x64 = 0\_110010\_0 = +0b1.0\pow{18} = \f{262144.0}}& 148 | \normal{0xa4 = 1\_010010\_0 = -0b1.0\pow{\neg{14}} \approx \e{-6.1035156}{\neg{05}}}& 149 | \normal{0xe4 = 1\_110010\_0 = -0b1.0\pow{18} = \f{\neg{262144.0}}}\\ 150 | \normal{0x25 = 0\_010010\_1 = +0b1.1\pow{\neg{14}} \approx \e{9.1552734}{\neg{05}}}& 151 | \normal{0x65 = 0\_110010\_1 = +0b1.1\pow{18} = \f{393216.0}}& 152 | \normal{0xa5 = 1\_010010\_1 = -0b1.1\pow{\neg{14}} \approx \e{-9.1552734}{\neg{05}}}& 153 | \normal{0xe5 = 1\_110010\_1 = -0b1.1\pow{18} = \f{\neg{393216.0}}}\\ 154 | \normal{0x26 = 0\_010011\_0 = +0b1.0\pow{\neg{13}} \approx \f{0.00012207}}& 155 | \normal{0x66 = 0\_110011\_0 = +0b1.0\pow{19} = \f{524288.0}}& 156 | \normal{0xa6 = 1\_010011\_0 = -0b1.0\pow{\neg{13}} \approx \f{\neg{0.00012207}}}& 157 | \normal{0xe6 = 1\_110011\_0 = -0b1.0\pow{19} = \f{\neg{524288.0}}}\\ 158 | \normal{0x27 = 0\_010011\_1 = +0b1.1\pow{\neg{13}} \approx \f{0.00018311}}& 159 | \normal{0x67 = 0\_110011\_1 = +0b1.1\pow{19} = \f{786432.0}}& 160 | \normal{0xa7 = 1\_010011\_1 = -0b1.1\pow{\neg{13}} \approx \f{\neg{0.00018311}}}& 161 | \normal{0xe7 = 1\_110011\_1 = -0b1.1\pow{19} = \f{\neg{786432.0}}}\\ 162 | \normal{0x28 = 0\_010100\_0 = +0b1.0\pow{\neg{12}} = \f{0.000244140625}}& 163 | \normal{0x68 = 0\_110100\_0 = +0b1.0\pow{20} = \f{1048576.0}}& 164 | \normal{0xa8 = 1\_010100\_0 = -0b1.0\pow{\neg{12}} \approx \f{\neg{0.00024414}}}& 165 | \normal{0xe8 = 1\_110100\_0 = -0b1.0\pow{20} = \f{\neg{1048576.0}}}\\ 166 | \normal{0x29 = 0\_010100\_1 = +0b1.1\pow{\neg{12}} \approx \f{0.00036621}}& 167 | \normal{0x69 = 0\_110100\_1 = +0b1.1\pow{20} = \f{1572864.0}}& 168 | \normal{0xa9 = 1\_010100\_1 = -0b1.1\pow{\neg{12}} \approx \f{\neg{0.00036621}}}& 169 | \normal{0xe9 = 1\_110100\_1 = -0b1.1\pow{20} = \f{\neg{1572864.0}}}\\ 170 | \normal{0x2a = 0\_010101\_0 = +0b1.0\pow{\neg{11}} = \f{0.00048828125}}& 171 | \normal{0x6a = 0\_110101\_0 = +0b1.0\pow{21} = \f{2097152.0}}& 172 | \normal{0xaa = 1\_010101\_0 = -0b1.0\pow{\neg{11}} = \f{\neg{0.00048828125}}}& 173 | \normal{0xea = 1\_110101\_0 = -0b1.0\pow{21} = \f{\neg{2097152.0}}}\\ 174 | \normal{0x2b = 0\_010101\_1 = +0b1.1\pow{\neg{11}} = \f{0.000732421875}}& 175 | \normal{0x6b = 0\_110101\_1 = +0b1.1\pow{21} = \f{3145728.0}}& 176 | \normal{0xab = 1\_010101\_1 = -0b1.1\pow{\neg{11}} \approx \f{\neg{0.00073242}}}& 177 | \normal{0xeb = 1\_110101\_1 = -0b1.1\pow{21} = \f{\neg{3145728.0}}}\\ 178 | \normal{0x2c = 0\_010110\_0 = +0b1.0\pow{\neg{10}} = \f{0.0009765625}}& 179 | \normal{0x6c = 0\_110110\_0 = +0b1.0\pow{22} = \f{4194304.0}}& 180 | \normal{0xac = 1\_010110\_0 = -0b1.0\pow{\neg{10}} = \f{\neg{0.0009765625}}}& 181 | \normal{0xec = 1\_110110\_0 = -0b1.0\pow{22} = \f{\neg{4194304.0}}}\\ 182 | \normal{0x2d = 0\_010110\_1 = +0b1.1\pow{\neg{10}} = \f{0.00146484375}}& 183 | \normal{0x6d = 0\_110110\_1 = +0b1.1\pow{22} = \f{6291456.0}}& 184 | \normal{0xad = 1\_010110\_1 = -0b1.1\pow{\neg{10}} = \f{\neg{0.00146484375}}}& 185 | \normal{0xed = 1\_110110\_1 = -0b1.1\pow{22} = \f{\neg{6291456.0}}}\\ 186 | \normal{0x2e = 0\_010111\_0 = +0b1.0\pow{\neg{9}} = \f{0.001953125}}& 187 | \normal{0x6e = 0\_110111\_0 = +0b1.0\pow{23} = \f{8388608.0}}& 188 | \normal{0xae = 1\_010111\_0 = -0b1.0\pow{\neg{9}} = \f{\neg{0.001953125}}}& 189 | \normal{0xee = 1\_110111\_0 = -0b1.0\pow{23} = \f{\neg{8388608.0}}}\\ 190 | \normal{0x2f = 0\_010111\_1 = +0b1.1\pow{\neg{9}} = \f{0.0029296875}}& 191 | \normal{0x6f = 0\_110111\_1 = +0b1.1\pow{23} = \f{12582912.0}}& 192 | \normal{0xaf = 1\_010111\_1 = -0b1.1\pow{\neg{9}} = \f{\neg{0.0029296875}}}& 193 | \normal{0xef = 1\_110111\_1 = -0b1.1\pow{23} = \f{\neg{12582912.0}}}\\ 194 | \normal{0x30 = 0\_011000\_0 = +0b1.0\pow{\neg{8}} = \f{0.00390625}}& 195 | \normal{0x70 = 0\_111000\_0 = +0b1.0\pow{24} = \f{16777216.0}}& 196 | \normal{0xb0 = 1\_011000\_0 = -0b1.0\pow{\neg{8}} = \f{\neg{0.00390625}}}& 197 | \normal{0xf0 = 1\_111000\_0 = -0b1.0\pow{24} = \f{\neg{16777216.0}}}\\ 198 | \normal{0x31 = 0\_011000\_1 = +0b1.1\pow{\neg{8}} = \f{0.005859375}}& 199 | \normal{0x71 = 0\_111000\_1 = +0b1.1\pow{24} = \f{25165824.0}}& 200 | \normal{0xb1 = 1\_011000\_1 = -0b1.1\pow{\neg{8}} = \f{\neg{0.005859375}}}& 201 | \normal{0xf1 = 1\_111000\_1 = -0b1.1\pow{24} = \f{\neg{25165824.0}}}\\ 202 | \normal{0x32 = 0\_011001\_0 = +0b1.0\pow{\neg{7}} = \f{0.0078125}}& 203 | \normal{0x72 = 0\_111001\_0 = +0b1.0\pow{25} = \f{33554432.0}}& 204 | \normal{0xb2 = 1\_011001\_0 = -0b1.0\pow{\neg{7}} = \f{\neg{0.0078125}}}& 205 | \normal{0xf2 = 1\_111001\_0 = -0b1.0\pow{25} = \f{\neg{33554432.0}}}\\ 206 | \normal{0x33 = 0\_011001\_1 = +0b1.1\pow{\neg{7}} = \f{0.01171875}}& 207 | \normal{0x73 = 0\_111001\_1 = +0b1.1\pow{25} = \f{50331648.0}}& 208 | \normal{0xb3 = 1\_011001\_1 = -0b1.1\pow{\neg{7}} = \f{\neg{0.01171875}}}& 209 | \normal{0xf3 = 1\_111001\_1 = -0b1.1\pow{25} = \f{\neg{50331648.0}}}\\ 210 | \normal{0x34 = 0\_011010\_0 = +0b1.0\pow{\neg{6}} = \f{0.015625}}& 211 | \normal{0x74 = 0\_111010\_0 = +0b1.0\pow{26} = \f{67108864.0}}& 212 | \normal{0xb4 = 1\_011010\_0 = -0b1.0\pow{\neg{6}} = \f{\neg{0.015625}}}& 213 | \normal{0xf4 = 1\_111010\_0 = -0b1.0\pow{26} = \f{\neg{67108864.0}}}\\ 214 | \normal{0x35 = 0\_011010\_1 = +0b1.1\pow{\neg{6}} = \f{0.0234375}}& 215 | \normal{0x75 = 0\_111010\_1 = +0b1.1\pow{26} = \f{100663296.0}}& 216 | \normal{0xb5 = 1\_011010\_1 = -0b1.1\pow{\neg{6}} = \f{\neg{0.0234375}}}& 217 | \normal{0xf5 = 1\_111010\_1 = -0b1.1\pow{26} = \f{\neg{100663296.0}}}\\ 218 | \normal{0x36 = 0\_011011\_0 = +0b1.0\pow{\neg{5}} = \f{0.03125}}& 219 | \normal{0x76 = 0\_111011\_0 = +0b1.0\pow{27} = \f{134217728.0}}& 220 | \normal{0xb6 = 1\_011011\_0 = -0b1.0\pow{\neg{5}} = \f{\neg{0.03125}}}& 221 | \normal{0xf6 = 1\_111011\_0 = -0b1.0\pow{27} = \f{\neg{134217728.0}}}\\ 222 | \normal{0x37 = 0\_011011\_1 = +0b1.1\pow{\neg{5}} = \f{0.046875}}& 223 | \normal{0x77 = 0\_111011\_1 = +0b1.1\pow{27} = \f{201326592.0}}& 224 | \normal{0xb7 = 1\_011011\_1 = -0b1.1\pow{\neg{5}} = \f{\neg{0.046875}}}& 225 | \normal{0xf7 = 1\_111011\_1 = -0b1.1\pow{27} = \f{\neg{201326592.0}}}\\ 226 | \normal{0x38 = 0\_011100\_0 = +0b1.0\pow{\neg{4}} = \f{0.0625}}& 227 | \normal{0x78 = 0\_111100\_0 = +0b1.0\pow{28} = \f{268435456.0}}& 228 | \normal{0xb8 = 1\_011100\_0 = -0b1.0\pow{\neg{4}} = \f{\neg{0.0625}}}& 229 | \normal{0xf8 = 1\_111100\_0 = -0b1.0\pow{28} = \f{\neg{268435456.0}}}\\ 230 | \normal{0x39 = 0\_011100\_1 = +0b1.1\pow{\neg{4}} = \f{0.09375}}& 231 | \normal{0x79 = 0\_111100\_1 = +0b1.1\pow{28} = \f{402653184.0}}& 232 | \normal{0xb9 = 1\_011100\_1 = -0b1.1\pow{\neg{4}} = \f{\neg{0.09375}}}& 233 | \normal{0xf9 = 1\_111100\_1 = -0b1.1\pow{28} = \f{\neg{402653184.0}}}\\ 234 | \normal{0x3a = 0\_011101\_0 = +0b1.0\pow{\neg{3}} = \f{0.125}}& 235 | \normal{0x7a = 0\_111101\_0 = +0b1.0\pow{29} = \f{536870912.0}}& 236 | \normal{0xba = 1\_011101\_0 = -0b1.0\pow{\neg{3}} = \f{\neg{0.125}}}& 237 | \normal{0xfa = 1\_111101\_0 = -0b1.0\pow{29} = \f{\neg{536870912.0}}}\\ 238 | \normal{0x3b = 0\_011101\_1 = +0b1.1\pow{\neg{3}} = \f{0.1875}}& 239 | \normal{0x7b = 0\_111101\_1 = +0b1.1\pow{29} = \f{805306368.0}}& 240 | \normal{0xbb = 1\_011101\_1 = -0b1.1\pow{\neg{3}} = \f{\neg{0.1875}}}& 241 | \normal{0xfb = 1\_111101\_1 = -0b1.1\pow{29} = \f{\neg{805306368.0}}}\\ 242 | \normal{0x3c = 0\_011110\_0 = +0b1.0\pow{\neg{2}} = \f{0.25}}& 243 | \normal{0x7c = 0\_111110\_0 = +0b1.0\pow{30} = \f{1073741824.0}}& 244 | \normal{0xbc = 1\_011110\_0 = -0b1.0\pow{\neg{2}} = \f{\neg{0.25}}}& 245 | \normal{0xfc = 1\_111110\_0 = -0b1.0\pow{30} = \f{\neg{1073741824.0}}}\\ 246 | \normal{0x3d = 0\_011110\_1 = +0b1.1\pow{\neg{2}} = \f{0.375}}& 247 | \normal{0x7d = 0\_111110\_1 = +0b1.1\pow{30} = \f{1610612736.0}}& 248 | \normal{0xbd = 1\_011110\_1 = -0b1.1\pow{\neg{2}} = \f{\neg{0.375}}}& 249 | \normal{0xfd = 1\_111110\_1 = -0b1.1\pow{30} = \f{\neg{1610612736.0}}}\\ 250 | \normal{0x3e = 0\_011111\_0 = +0b1.0\pow{\neg{1}} = \f{0.5}}& 251 | \normal{0x7e = 0\_111111\_0 = +0b1.0\pow{31} = \f{2147483648.0}}& 252 | \normal{0xbe = 1\_011111\_0 = -0b1.0\pow{\neg{1}} = \f{\neg{0.5}}}& 253 | \normal{0xfe = 1\_111111\_0 = -0b1.0\pow{31} = \f{\neg{2147483648.0}}}\\ 254 | \normal{0x3f = 0\_011111\_1 = +0b1.1\pow{\neg{1}} = \f{0.75}}& 255 | \special{0x7f = 0\_111111\_1 = inf}& 256 | \normal{0xbf = 1\_011111\_1 = -0b1.1\pow{\neg{1}} = \f{\neg{0.75}}}& 257 | \special{0xff = 1\_111111\_1 = -inf}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p8.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | % Commit 8669ab0614c2c575be2e7cc1cb888c2997951130+CHANGES at https://github.com/P3109/Public 3 | \normal{0x00 = 0\_\_0000000 = \f{0.0}}& 4 | \subnormal{0x40 = 0\_\_1000000 = +0b0.1000000\pow{2} = \f{2.0}}& 5 | \special{0x80 = 1\_\_0000000 = nan}& 6 | \subnormal{0xc0 = 1\_\_1000000 = -0b0.1000000\pow{2} = \f{\neg{2.0}}}\\ 7 | \subnormal{0x01 = 0\_\_0000001 = +0b0.0000001\pow{2} = \f{0.03125}}& 8 | \subnormal{0x41 = 0\_\_1000001 = +0b0.1000001\pow{2} = \f{2.03125}}& 9 | \subnormal{0x81 = 1\_\_0000001 = -0b0.0000001\pow{2} = \f{\neg{0.03125}}}& 10 | \subnormal{0xc1 = 1\_\_1000001 = -0b0.1000001\pow{2} = \f{\neg{2.03125}}}\\ 11 | \subnormal{0x02 = 0\_\_0000010 = +0b0.0000010\pow{2} = \f{0.0625}}& 12 | \subnormal{0x42 = 0\_\_1000010 = +0b0.1000010\pow{2} = \f{2.0625}}& 13 | \subnormal{0x82 = 1\_\_0000010 = -0b0.0000010\pow{2} = \f{\neg{0.0625}}}& 14 | \subnormal{0xc2 = 1\_\_1000010 = -0b0.1000010\pow{2} = \f{\neg{2.0625}}}\\ 15 | \subnormal{0x03 = 0\_\_0000011 = +0b0.0000011\pow{2} = \f{0.09375}}& 16 | \subnormal{0x43 = 0\_\_1000011 = +0b0.1000011\pow{2} = \f{2.09375}}& 17 | \subnormal{0x83 = 1\_\_0000011 = -0b0.0000011\pow{2} = \f{\neg{0.09375}}}& 18 | \subnormal{0xc3 = 1\_\_1000011 = -0b0.1000011\pow{2} = \f{\neg{2.09375}}}\\ 19 | \subnormal{0x04 = 0\_\_0000100 = +0b0.0000100\pow{2} = \f{0.125}}& 20 | \subnormal{0x44 = 0\_\_1000100 = +0b0.1000100\pow{2} = \f{2.125}}& 21 | \subnormal{0x84 = 1\_\_0000100 = -0b0.0000100\pow{2} = \f{\neg{0.125}}}& 22 | \subnormal{0xc4 = 1\_\_1000100 = -0b0.1000100\pow{2} = \f{\neg{2.125}}}\\ 23 | \subnormal{0x05 = 0\_\_0000101 = +0b0.0000101\pow{2} = \f{0.15625}}& 24 | \subnormal{0x45 = 0\_\_1000101 = +0b0.1000101\pow{2} = \f{2.15625}}& 25 | \subnormal{0x85 = 1\_\_0000101 = -0b0.0000101\pow{2} = \f{\neg{0.15625}}}& 26 | \subnormal{0xc5 = 1\_\_1000101 = -0b0.1000101\pow{2} = \f{\neg{2.15625}}}\\ 27 | \subnormal{0x06 = 0\_\_0000110 = +0b0.0000110\pow{2} = \f{0.1875}}& 28 | \subnormal{0x46 = 0\_\_1000110 = +0b0.1000110\pow{2} = \f{2.1875}}& 29 | \subnormal{0x86 = 1\_\_0000110 = -0b0.0000110\pow{2} = \f{\neg{0.1875}}}& 30 | \subnormal{0xc6 = 1\_\_1000110 = -0b0.1000110\pow{2} = \f{\neg{2.1875}}}\\ 31 | \subnormal{0x07 = 0\_\_0000111 = +0b0.0000111\pow{2} = \f{0.21875}}& 32 | \subnormal{0x47 = 0\_\_1000111 = +0b0.1000111\pow{2} = \f{2.21875}}& 33 | \subnormal{0x87 = 1\_\_0000111 = -0b0.0000111\pow{2} = \f{\neg{0.21875}}}& 34 | \subnormal{0xc7 = 1\_\_1000111 = -0b0.1000111\pow{2} = \f{\neg{2.21875}}}\\ 35 | \subnormal{0x08 = 0\_\_0001000 = +0b0.0001000\pow{2} = \f{0.25}}& 36 | \subnormal{0x48 = 0\_\_1001000 = +0b0.1001000\pow{2} = \f{2.25}}& 37 | \subnormal{0x88 = 1\_\_0001000 = -0b0.0001000\pow{2} = \f{\neg{0.25}}}& 38 | \subnormal{0xc8 = 1\_\_1001000 = -0b0.1001000\pow{2} = \f{\neg{2.25}}}\\ 39 | \subnormal{0x09 = 0\_\_0001001 = +0b0.0001001\pow{2} = \f{0.28125}}& 40 | \subnormal{0x49 = 0\_\_1001001 = +0b0.1001001\pow{2} = \f{2.28125}}& 41 | \subnormal{0x89 = 1\_\_0001001 = -0b0.0001001\pow{2} = \f{\neg{0.28125}}}& 42 | \subnormal{0xc9 = 1\_\_1001001 = -0b0.1001001\pow{2} = \f{\neg{2.28125}}}\\ 43 | \subnormal{0x0a = 0\_\_0001010 = +0b0.0001010\pow{2} = \f{0.3125}}& 44 | \subnormal{0x4a = 0\_\_1001010 = +0b0.1001010\pow{2} = \f{2.3125}}& 45 | \subnormal{0x8a = 1\_\_0001010 = -0b0.0001010\pow{2} = \f{\neg{0.3125}}}& 46 | \subnormal{0xca = 1\_\_1001010 = -0b0.1001010\pow{2} = \f{\neg{2.3125}}}\\ 47 | \subnormal{0x0b = 0\_\_0001011 = +0b0.0001011\pow{2} = \f{0.34375}}& 48 | \subnormal{0x4b = 0\_\_1001011 = +0b0.1001011\pow{2} = \f{2.34375}}& 49 | \subnormal{0x8b = 1\_\_0001011 = -0b0.0001011\pow{2} = \f{\neg{0.34375}}}& 50 | \subnormal{0xcb = 1\_\_1001011 = -0b0.1001011\pow{2} = \f{\neg{2.34375}}}\\ 51 | \subnormal{0x0c = 0\_\_0001100 = +0b0.0001100\pow{2} = \f{0.375}}& 52 | \subnormal{0x4c = 0\_\_1001100 = +0b0.1001100\pow{2} = \f{2.375}}& 53 | \subnormal{0x8c = 1\_\_0001100 = -0b0.0001100\pow{2} = \f{\neg{0.375}}}& 54 | \subnormal{0xcc = 1\_\_1001100 = -0b0.1001100\pow{2} = \f{\neg{2.375}}}\\ 55 | \subnormal{0x0d = 0\_\_0001101 = +0b0.0001101\pow{2} = \f{0.40625}}& 56 | \subnormal{0x4d = 0\_\_1001101 = +0b0.1001101\pow{2} = \f{2.40625}}& 57 | \subnormal{0x8d = 1\_\_0001101 = -0b0.0001101\pow{2} = \f{\neg{0.40625}}}& 58 | \subnormal{0xcd = 1\_\_1001101 = -0b0.1001101\pow{2} = \f{\neg{2.40625}}}\\ 59 | \subnormal{0x0e = 0\_\_0001110 = +0b0.0001110\pow{2} = \f{0.4375}}& 60 | \subnormal{0x4e = 0\_\_1001110 = +0b0.1001110\pow{2} = \f{2.4375}}& 61 | \subnormal{0x8e = 1\_\_0001110 = -0b0.0001110\pow{2} = \f{\neg{0.4375}}}& 62 | \subnormal{0xce = 1\_\_1001110 = -0b0.1001110\pow{2} = \f{\neg{2.4375}}}\\ 63 | \subnormal{0x0f = 0\_\_0001111 = +0b0.0001111\pow{2} = \f{0.46875}}& 64 | \subnormal{0x4f = 0\_\_1001111 = +0b0.1001111\pow{2} = \f{2.46875}}& 65 | \subnormal{0x8f = 1\_\_0001111 = -0b0.0001111\pow{2} = \f{\neg{0.46875}}}& 66 | \subnormal{0xcf = 1\_\_1001111 = -0b0.1001111\pow{2} = \f{\neg{2.46875}}}\\ 67 | \subnormal{0x10 = 0\_\_0010000 = +0b0.0010000\pow{2} = \f{0.5}}& 68 | \subnormal{0x50 = 0\_\_1010000 = +0b0.1010000\pow{2} = \f{2.5}}& 69 | \subnormal{0x90 = 1\_\_0010000 = -0b0.0010000\pow{2} = \f{\neg{0.5}}}& 70 | \subnormal{0xd0 = 1\_\_1010000 = -0b0.1010000\pow{2} = \f{\neg{2.5}}}\\ 71 | \subnormal{0x11 = 0\_\_0010001 = +0b0.0010001\pow{2} = \f{0.53125}}& 72 | \subnormal{0x51 = 0\_\_1010001 = +0b0.1010001\pow{2} = \f{2.53125}}& 73 | \subnormal{0x91 = 1\_\_0010001 = -0b0.0010001\pow{2} = \f{\neg{0.53125}}}& 74 | \subnormal{0xd1 = 1\_\_1010001 = -0b0.1010001\pow{2} = \f{\neg{2.53125}}}\\ 75 | \subnormal{0x12 = 0\_\_0010010 = +0b0.0010010\pow{2} = \f{0.5625}}& 76 | \subnormal{0x52 = 0\_\_1010010 = +0b0.1010010\pow{2} = \f{2.5625}}& 77 | \subnormal{0x92 = 1\_\_0010010 = -0b0.0010010\pow{2} = \f{\neg{0.5625}}}& 78 | \subnormal{0xd2 = 1\_\_1010010 = -0b0.1010010\pow{2} = \f{\neg{2.5625}}}\\ 79 | \subnormal{0x13 = 0\_\_0010011 = +0b0.0010011\pow{2} = \f{0.59375}}& 80 | \subnormal{0x53 = 0\_\_1010011 = +0b0.1010011\pow{2} = \f{2.59375}}& 81 | \subnormal{0x93 = 1\_\_0010011 = -0b0.0010011\pow{2} = \f{\neg{0.59375}}}& 82 | \subnormal{0xd3 = 1\_\_1010011 = -0b0.1010011\pow{2} = \f{\neg{2.59375}}}\\ 83 | \subnormal{0x14 = 0\_\_0010100 = +0b0.0010100\pow{2} = \f{0.625}}& 84 | \subnormal{0x54 = 0\_\_1010100 = +0b0.1010100\pow{2} = \f{2.625}}& 85 | \subnormal{0x94 = 1\_\_0010100 = -0b0.0010100\pow{2} = \f{\neg{0.625}}}& 86 | \subnormal{0xd4 = 1\_\_1010100 = -0b0.1010100\pow{2} = \f{\neg{2.625}}}\\ 87 | \subnormal{0x15 = 0\_\_0010101 = +0b0.0010101\pow{2} = \f{0.65625}}& 88 | \subnormal{0x55 = 0\_\_1010101 = +0b0.1010101\pow{2} = \f{2.65625}}& 89 | \subnormal{0x95 = 1\_\_0010101 = -0b0.0010101\pow{2} = \f{\neg{0.65625}}}& 90 | \subnormal{0xd5 = 1\_\_1010101 = -0b0.1010101\pow{2} = \f{\neg{2.65625}}}\\ 91 | \subnormal{0x16 = 0\_\_0010110 = +0b0.0010110\pow{2} = \f{0.6875}}& 92 | \subnormal{0x56 = 0\_\_1010110 = +0b0.1010110\pow{2} = \f{2.6875}}& 93 | \subnormal{0x96 = 1\_\_0010110 = -0b0.0010110\pow{2} = \f{\neg{0.6875}}}& 94 | \subnormal{0xd6 = 1\_\_1010110 = -0b0.1010110\pow{2} = \f{\neg{2.6875}}}\\ 95 | \subnormal{0x17 = 0\_\_0010111 = +0b0.0010111\pow{2} = \f{0.71875}}& 96 | \subnormal{0x57 = 0\_\_1010111 = +0b0.1010111\pow{2} = \f{2.71875}}& 97 | \subnormal{0x97 = 1\_\_0010111 = -0b0.0010111\pow{2} = \f{\neg{0.71875}}}& 98 | \subnormal{0xd7 = 1\_\_1010111 = -0b0.1010111\pow{2} = \f{\neg{2.71875}}}\\ 99 | \subnormal{0x18 = 0\_\_0011000 = +0b0.0011000\pow{2} = \f{0.75}}& 100 | \subnormal{0x58 = 0\_\_1011000 = +0b0.1011000\pow{2} = \f{2.75}}& 101 | \subnormal{0x98 = 1\_\_0011000 = -0b0.0011000\pow{2} = \f{\neg{0.75}}}& 102 | \subnormal{0xd8 = 1\_\_1011000 = -0b0.1011000\pow{2} = \f{\neg{2.75}}}\\ 103 | \subnormal{0x19 = 0\_\_0011001 = +0b0.0011001\pow{2} = \f{0.78125}}& 104 | \subnormal{0x59 = 0\_\_1011001 = +0b0.1011001\pow{2} = \f{2.78125}}& 105 | \subnormal{0x99 = 1\_\_0011001 = -0b0.0011001\pow{2} = \f{\neg{0.78125}}}& 106 | \subnormal{0xd9 = 1\_\_1011001 = -0b0.1011001\pow{2} = \f{\neg{2.78125}}}\\ 107 | \subnormal{0x1a = 0\_\_0011010 = +0b0.0011010\pow{2} = \f{0.8125}}& 108 | \subnormal{0x5a = 0\_\_1011010 = +0b0.1011010\pow{2} = \f{2.8125}}& 109 | \subnormal{0x9a = 1\_\_0011010 = -0b0.0011010\pow{2} = \f{\neg{0.8125}}}& 110 | \subnormal{0xda = 1\_\_1011010 = -0b0.1011010\pow{2} = \f{\neg{2.8125}}}\\ 111 | \subnormal{0x1b = 0\_\_0011011 = +0b0.0011011\pow{2} = \f{0.84375}}& 112 | \subnormal{0x5b = 0\_\_1011011 = +0b0.1011011\pow{2} = \f{2.84375}}& 113 | \subnormal{0x9b = 1\_\_0011011 = -0b0.0011011\pow{2} = \f{\neg{0.84375}}}& 114 | \subnormal{0xdb = 1\_\_1011011 = -0b0.1011011\pow{2} = \f{\neg{2.84375}}}\\ 115 | \subnormal{0x1c = 0\_\_0011100 = +0b0.0011100\pow{2} = \f{0.875}}& 116 | \subnormal{0x5c = 0\_\_1011100 = +0b0.1011100\pow{2} = \f{2.875}}& 117 | \subnormal{0x9c = 1\_\_0011100 = -0b0.0011100\pow{2} = \f{\neg{0.875}}}& 118 | \subnormal{0xdc = 1\_\_1011100 = -0b0.1011100\pow{2} = \f{\neg{2.875}}}\\ 119 | \subnormal{0x1d = 0\_\_0011101 = +0b0.0011101\pow{2} = \f{0.90625}}& 120 | \subnormal{0x5d = 0\_\_1011101 = +0b0.1011101\pow{2} = \f{2.90625}}& 121 | \subnormal{0x9d = 1\_\_0011101 = -0b0.0011101\pow{2} = \f{\neg{0.90625}}}& 122 | \subnormal{0xdd = 1\_\_1011101 = -0b0.1011101\pow{2} = \f{\neg{2.90625}}}\\ 123 | \subnormal{0x1e = 0\_\_0011110 = +0b0.0011110\pow{2} = \f{0.9375}}& 124 | \subnormal{0x5e = 0\_\_1011110 = +0b0.1011110\pow{2} = \f{2.9375}}& 125 | \subnormal{0x9e = 1\_\_0011110 = -0b0.0011110\pow{2} = \f{\neg{0.9375}}}& 126 | \subnormal{0xde = 1\_\_1011110 = -0b0.1011110\pow{2} = \f{\neg{2.9375}}}\\ 127 | \subnormal{0x1f = 0\_\_0011111 = +0b0.0011111\pow{2} = \f{0.96875}}& 128 | \subnormal{0x5f = 0\_\_1011111 = +0b0.1011111\pow{2} = \f{2.96875}}& 129 | \subnormal{0x9f = 1\_\_0011111 = -0b0.0011111\pow{2} = \f{\neg{0.96875}}}& 130 | \subnormal{0xdf = 1\_\_1011111 = -0b0.1011111\pow{2} = \f{\neg{2.96875}}}\\ 131 | \subnormal{0x20 = 0\_\_0100000 = +0b0.0100000\pow{2} = \f{1.0}}& 132 | \subnormal{0x60 = 0\_\_1100000 = +0b0.1100000\pow{2} = \f{3.0}}& 133 | \subnormal{0xa0 = 1\_\_0100000 = -0b0.0100000\pow{2} = \f{\neg{1.0}}}& 134 | \subnormal{0xe0 = 1\_\_1100000 = -0b0.1100000\pow{2} = \f{\neg{3.0}}}\\ 135 | \subnormal{0x21 = 0\_\_0100001 = +0b0.0100001\pow{2} = \f{1.03125}}& 136 | \subnormal{0x61 = 0\_\_1100001 = +0b0.1100001\pow{2} = \f{3.03125}}& 137 | \subnormal{0xa1 = 1\_\_0100001 = -0b0.0100001\pow{2} = \f{\neg{1.03125}}}& 138 | \subnormal{0xe1 = 1\_\_1100001 = -0b0.1100001\pow{2} = \f{\neg{3.03125}}}\\ 139 | \subnormal{0x22 = 0\_\_0100010 = +0b0.0100010\pow{2} = \f{1.0625}}& 140 | \subnormal{0x62 = 0\_\_1100010 = +0b0.1100010\pow{2} = \f{3.0625}}& 141 | \subnormal{0xa2 = 1\_\_0100010 = -0b0.0100010\pow{2} = \f{\neg{1.0625}}}& 142 | \subnormal{0xe2 = 1\_\_1100010 = -0b0.1100010\pow{2} = \f{\neg{3.0625}}}\\ 143 | \subnormal{0x23 = 0\_\_0100011 = +0b0.0100011\pow{2} = \f{1.09375}}& 144 | \subnormal{0x63 = 0\_\_1100011 = +0b0.1100011\pow{2} = \f{3.09375}}& 145 | \subnormal{0xa3 = 1\_\_0100011 = -0b0.0100011\pow{2} = \f{\neg{1.09375}}}& 146 | \subnormal{0xe3 = 1\_\_1100011 = -0b0.1100011\pow{2} = \f{\neg{3.09375}}}\\ 147 | \subnormal{0x24 = 0\_\_0100100 = +0b0.0100100\pow{2} = \f{1.125}}& 148 | \subnormal{0x64 = 0\_\_1100100 = +0b0.1100100\pow{2} = \f{3.125}}& 149 | \subnormal{0xa4 = 1\_\_0100100 = -0b0.0100100\pow{2} = \f{\neg{1.125}}}& 150 | \subnormal{0xe4 = 1\_\_1100100 = -0b0.1100100\pow{2} = \f{\neg{3.125}}}\\ 151 | \subnormal{0x25 = 0\_\_0100101 = +0b0.0100101\pow{2} = \f{1.15625}}& 152 | \subnormal{0x65 = 0\_\_1100101 = +0b0.1100101\pow{2} = \f{3.15625}}& 153 | \subnormal{0xa5 = 1\_\_0100101 = -0b0.0100101\pow{2} = \f{\neg{1.15625}}}& 154 | \subnormal{0xe5 = 1\_\_1100101 = -0b0.1100101\pow{2} = \f{\neg{3.15625}}}\\ 155 | \subnormal{0x26 = 0\_\_0100110 = +0b0.0100110\pow{2} = \f{1.1875}}& 156 | \subnormal{0x66 = 0\_\_1100110 = +0b0.1100110\pow{2} = \f{3.1875}}& 157 | \subnormal{0xa6 = 1\_\_0100110 = -0b0.0100110\pow{2} = \f{\neg{1.1875}}}& 158 | \subnormal{0xe6 = 1\_\_1100110 = -0b0.1100110\pow{2} = \f{\neg{3.1875}}}\\ 159 | \subnormal{0x27 = 0\_\_0100111 = +0b0.0100111\pow{2} = \f{1.21875}}& 160 | \subnormal{0x67 = 0\_\_1100111 = +0b0.1100111\pow{2} = \f{3.21875}}& 161 | \subnormal{0xa7 = 1\_\_0100111 = -0b0.0100111\pow{2} = \f{\neg{1.21875}}}& 162 | \subnormal{0xe7 = 1\_\_1100111 = -0b0.1100111\pow{2} = \f{\neg{3.21875}}}\\ 163 | \subnormal{0x28 = 0\_\_0101000 = +0b0.0101000\pow{2} = \f{1.25}}& 164 | \subnormal{0x68 = 0\_\_1101000 = +0b0.1101000\pow{2} = \f{3.25}}& 165 | \subnormal{0xa8 = 1\_\_0101000 = -0b0.0101000\pow{2} = \f{\neg{1.25}}}& 166 | \subnormal{0xe8 = 1\_\_1101000 = -0b0.1101000\pow{2} = \f{\neg{3.25}}}\\ 167 | \subnormal{0x29 = 0\_\_0101001 = +0b0.0101001\pow{2} = \f{1.28125}}& 168 | \subnormal{0x69 = 0\_\_1101001 = +0b0.1101001\pow{2} = \f{3.28125}}& 169 | \subnormal{0xa9 = 1\_\_0101001 = -0b0.0101001\pow{2} = \f{\neg{1.28125}}}& 170 | \subnormal{0xe9 = 1\_\_1101001 = -0b0.1101001\pow{2} = \f{\neg{3.28125}}}\\ 171 | \subnormal{0x2a = 0\_\_0101010 = +0b0.0101010\pow{2} = \f{1.3125}}& 172 | \subnormal{0x6a = 0\_\_1101010 = +0b0.1101010\pow{2} = \f{3.3125}}& 173 | \subnormal{0xaa = 1\_\_0101010 = -0b0.0101010\pow{2} = \f{\neg{1.3125}}}& 174 | \subnormal{0xea = 1\_\_1101010 = -0b0.1101010\pow{2} = \f{\neg{3.3125}}}\\ 175 | \subnormal{0x2b = 0\_\_0101011 = +0b0.0101011\pow{2} = \f{1.34375}}& 176 | \subnormal{0x6b = 0\_\_1101011 = +0b0.1101011\pow{2} = \f{3.34375}}& 177 | \subnormal{0xab = 1\_\_0101011 = -0b0.0101011\pow{2} = \f{\neg{1.34375}}}& 178 | \subnormal{0xeb = 1\_\_1101011 = -0b0.1101011\pow{2} = \f{\neg{3.34375}}}\\ 179 | \subnormal{0x2c = 0\_\_0101100 = +0b0.0101100\pow{2} = \f{1.375}}& 180 | \subnormal{0x6c = 0\_\_1101100 = +0b0.1101100\pow{2} = \f{3.375}}& 181 | \subnormal{0xac = 1\_\_0101100 = -0b0.0101100\pow{2} = \f{\neg{1.375}}}& 182 | \subnormal{0xec = 1\_\_1101100 = -0b0.1101100\pow{2} = \f{\neg{3.375}}}\\ 183 | \subnormal{0x2d = 0\_\_0101101 = +0b0.0101101\pow{2} = \f{1.40625}}& 184 | \subnormal{0x6d = 0\_\_1101101 = +0b0.1101101\pow{2} = \f{3.40625}}& 185 | \subnormal{0xad = 1\_\_0101101 = -0b0.0101101\pow{2} = \f{\neg{1.40625}}}& 186 | \subnormal{0xed = 1\_\_1101101 = -0b0.1101101\pow{2} = \f{\neg{3.40625}}}\\ 187 | \subnormal{0x2e = 0\_\_0101110 = +0b0.0101110\pow{2} = \f{1.4375}}& 188 | \subnormal{0x6e = 0\_\_1101110 = +0b0.1101110\pow{2} = \f{3.4375}}& 189 | \subnormal{0xae = 1\_\_0101110 = -0b0.0101110\pow{2} = \f{\neg{1.4375}}}& 190 | \subnormal{0xee = 1\_\_1101110 = -0b0.1101110\pow{2} = \f{\neg{3.4375}}}\\ 191 | \subnormal{0x2f = 0\_\_0101111 = +0b0.0101111\pow{2} = \f{1.46875}}& 192 | \subnormal{0x6f = 0\_\_1101111 = +0b0.1101111\pow{2} = \f{3.46875}}& 193 | \subnormal{0xaf = 1\_\_0101111 = -0b0.0101111\pow{2} = \f{\neg{1.46875}}}& 194 | \subnormal{0xef = 1\_\_1101111 = -0b0.1101111\pow{2} = \f{\neg{3.46875}}}\\ 195 | \subnormal{0x30 = 0\_\_0110000 = +0b0.0110000\pow{2} = \f{1.5}}& 196 | \subnormal{0x70 = 0\_\_1110000 = +0b0.1110000\pow{2} = \f{3.5}}& 197 | \subnormal{0xb0 = 1\_\_0110000 = -0b0.0110000\pow{2} = \f{\neg{1.5}}}& 198 | \subnormal{0xf0 = 1\_\_1110000 = -0b0.1110000\pow{2} = \f{\neg{3.5}}}\\ 199 | \subnormal{0x31 = 0\_\_0110001 = +0b0.0110001\pow{2} = \f{1.53125}}& 200 | \subnormal{0x71 = 0\_\_1110001 = +0b0.1110001\pow{2} = \f{3.53125}}& 201 | \subnormal{0xb1 = 1\_\_0110001 = -0b0.0110001\pow{2} = \f{\neg{1.53125}}}& 202 | \subnormal{0xf1 = 1\_\_1110001 = -0b0.1110001\pow{2} = \f{\neg{3.53125}}}\\ 203 | \subnormal{0x32 = 0\_\_0110010 = +0b0.0110010\pow{2} = \f{1.5625}}& 204 | \subnormal{0x72 = 0\_\_1110010 = +0b0.1110010\pow{2} = \f{3.5625}}& 205 | \subnormal{0xb2 = 1\_\_0110010 = -0b0.0110010\pow{2} = \f{\neg{1.5625}}}& 206 | \subnormal{0xf2 = 1\_\_1110010 = -0b0.1110010\pow{2} = \f{\neg{3.5625}}}\\ 207 | \subnormal{0x33 = 0\_\_0110011 = +0b0.0110011\pow{2} = \f{1.59375}}& 208 | \subnormal{0x73 = 0\_\_1110011 = +0b0.1110011\pow{2} = \f{3.59375}}& 209 | \subnormal{0xb3 = 1\_\_0110011 = -0b0.0110011\pow{2} = \f{\neg{1.59375}}}& 210 | \subnormal{0xf3 = 1\_\_1110011 = -0b0.1110011\pow{2} = \f{\neg{3.59375}}}\\ 211 | \subnormal{0x34 = 0\_\_0110100 = +0b0.0110100\pow{2} = \f{1.625}}& 212 | \subnormal{0x74 = 0\_\_1110100 = +0b0.1110100\pow{2} = \f{3.625}}& 213 | \subnormal{0xb4 = 1\_\_0110100 = -0b0.0110100\pow{2} = \f{\neg{1.625}}}& 214 | \subnormal{0xf4 = 1\_\_1110100 = -0b0.1110100\pow{2} = \f{\neg{3.625}}}\\ 215 | \subnormal{0x35 = 0\_\_0110101 = +0b0.0110101\pow{2} = \f{1.65625}}& 216 | \subnormal{0x75 = 0\_\_1110101 = +0b0.1110101\pow{2} = \f{3.65625}}& 217 | \subnormal{0xb5 = 1\_\_0110101 = -0b0.0110101\pow{2} = \f{\neg{1.65625}}}& 218 | \subnormal{0xf5 = 1\_\_1110101 = -0b0.1110101\pow{2} = \f{\neg{3.65625}}}\\ 219 | \subnormal{0x36 = 0\_\_0110110 = +0b0.0110110\pow{2} = \f{1.6875}}& 220 | \subnormal{0x76 = 0\_\_1110110 = +0b0.1110110\pow{2} = \f{3.6875}}& 221 | \subnormal{0xb6 = 1\_\_0110110 = -0b0.0110110\pow{2} = \f{\neg{1.6875}}}& 222 | \subnormal{0xf6 = 1\_\_1110110 = -0b0.1110110\pow{2} = \f{\neg{3.6875}}}\\ 223 | \subnormal{0x37 = 0\_\_0110111 = +0b0.0110111\pow{2} = \f{1.71875}}& 224 | \subnormal{0x77 = 0\_\_1110111 = +0b0.1110111\pow{2} = \f{3.71875}}& 225 | \subnormal{0xb7 = 1\_\_0110111 = -0b0.0110111\pow{2} = \f{\neg{1.71875}}}& 226 | \subnormal{0xf7 = 1\_\_1110111 = -0b0.1110111\pow{2} = \f{\neg{3.71875}}}\\ 227 | \subnormal{0x38 = 0\_\_0111000 = +0b0.0111000\pow{2} = \f{1.75}}& 228 | \subnormal{0x78 = 0\_\_1111000 = +0b0.1111000\pow{2} = \f{3.75}}& 229 | \subnormal{0xb8 = 1\_\_0111000 = -0b0.0111000\pow{2} = \f{\neg{1.75}}}& 230 | \subnormal{0xf8 = 1\_\_1111000 = -0b0.1111000\pow{2} = \f{\neg{3.75}}}\\ 231 | \subnormal{0x39 = 0\_\_0111001 = +0b0.0111001\pow{2} = \f{1.78125}}& 232 | \subnormal{0x79 = 0\_\_1111001 = +0b0.1111001\pow{2} = \f{3.78125}}& 233 | \subnormal{0xb9 = 1\_\_0111001 = -0b0.0111001\pow{2} = \f{\neg{1.78125}}}& 234 | \subnormal{0xf9 = 1\_\_1111001 = -0b0.1111001\pow{2} = \f{\neg{3.78125}}}\\ 235 | \subnormal{0x3a = 0\_\_0111010 = +0b0.0111010\pow{2} = \f{1.8125}}& 236 | \subnormal{0x7a = 0\_\_1111010 = +0b0.1111010\pow{2} = \f{3.8125}}& 237 | \subnormal{0xba = 1\_\_0111010 = -0b0.0111010\pow{2} = \f{\neg{1.8125}}}& 238 | \subnormal{0xfa = 1\_\_1111010 = -0b0.1111010\pow{2} = \f{\neg{3.8125}}}\\ 239 | \subnormal{0x3b = 0\_\_0111011 = +0b0.0111011\pow{2} = \f{1.84375}}& 240 | \subnormal{0x7b = 0\_\_1111011 = +0b0.1111011\pow{2} = \f{3.84375}}& 241 | \subnormal{0xbb = 1\_\_0111011 = -0b0.0111011\pow{2} = \f{\neg{1.84375}}}& 242 | \subnormal{0xfb = 1\_\_1111011 = -0b0.1111011\pow{2} = \f{\neg{3.84375}}}\\ 243 | \subnormal{0x3c = 0\_\_0111100 = +0b0.0111100\pow{2} = \f{1.875}}& 244 | \subnormal{0x7c = 0\_\_1111100 = +0b0.1111100\pow{2} = \f{3.875}}& 245 | \subnormal{0xbc = 1\_\_0111100 = -0b0.0111100\pow{2} = \f{\neg{1.875}}}& 246 | \subnormal{0xfc = 1\_\_1111100 = -0b0.1111100\pow{2} = \f{\neg{3.875}}}\\ 247 | \subnormal{0x3d = 0\_\_0111101 = +0b0.0111101\pow{2} = \f{1.90625}}& 248 | \subnormal{0x7d = 0\_\_1111101 = +0b0.1111101\pow{2} = \f{3.90625}}& 249 | \subnormal{0xbd = 1\_\_0111101 = -0b0.0111101\pow{2} = \f{\neg{1.90625}}}& 250 | \subnormal{0xfd = 1\_\_1111101 = -0b0.1111101\pow{2} = \f{\neg{3.90625}}}\\ 251 | \subnormal{0x3e = 0\_\_0111110 = +0b0.0111110\pow{2} = \f{1.9375}}& 252 | \subnormal{0x7e = 0\_\_1111110 = +0b0.1111110\pow{2} = \f{3.9375}}& 253 | \subnormal{0xbe = 1\_\_0111110 = -0b0.0111110\pow{2} = \f{\neg{1.9375}}}& 254 | \subnormal{0xfe = 1\_\_1111110 = -0b0.1111110\pow{2} = \f{\neg{3.9375}}}\\ 255 | \subnormal{0x3f = 0\_\_0111111 = +0b0.0111111\pow{2} = \f{1.96875}}& 256 | \special{0x7f = 0\_\_1111111 = inf}& 257 | \subnormal{0xbf = 1\_\_0111111 = -0b0.0111111\pow{2} = \f{\neg{1.96875}}}& 258 | \special{0xff = 1\_\_1111111 = -inf}\\ 259 | -------------------------------------------------------------------------------- /Value Tables/latex/value-table-p3109_p1.tex: -------------------------------------------------------------------------------- 1 | % Autogenerated from make-value-tables.ipynb 2 | \normal{0x00 = 0\_0000000\_ = \f{0.0}}& 3 | \normal{0x40 = 0\_1000000\_ = +0b1.0\pow{1} = \f{2.0}}& 4 | \special{0x80 = 1\_0000000\_ = nan}& 5 | \normal{0xc0 = 1\_1000000\_ = -0b1.0\pow{1} = \f{\neg{2.0}}}\\ 6 | \normal{0x01 = 0\_0000001\_ = +0b1.0\pow{\neg{62}} \approx \e{2.1684043}{\neg{19}}}& 7 | \normal{0x41 = 0\_1000001\_ = +0b1.0\pow{2} = \f{4.0}}& 8 | \normal{0x81 = 1\_0000001\_ = -0b1.0\pow{\neg{62}} \approx \e{-2.1684043}{\neg{19}}}& 9 | \normal{0xc1 = 1\_1000001\_ = -0b1.0\pow{2} = \f{\neg{4.0}}}\\ 10 | \normal{0x02 = 0\_0000010\_ = +0b1.0\pow{\neg{61}} \approx \e{4.3368087}{\neg{19}}}& 11 | \normal{0x42 = 0\_1000010\_ = +0b1.0\pow{3} = \f{8.0}}& 12 | \normal{0x82 = 1\_0000010\_ = -0b1.0\pow{\neg{61}} \approx \e{-4.3368087}{\neg{19}}}& 13 | \normal{0xc2 = 1\_1000010\_ = -0b1.0\pow{3} = \f{\neg{8.0}}}\\ 14 | \normal{0x03 = 0\_0000011\_ = +0b1.0\pow{\neg{60}} \approx \e{8.6736174}{\neg{19}}}& 15 | \normal{0x43 = 0\_1000011\_ = +0b1.0\pow{4} = \f{16.0}}& 16 | \normal{0x83 = 1\_0000011\_ = -0b1.0\pow{\neg{60}} \approx \e{-8.6736174}{\neg{19}}}& 17 | \normal{0xc3 = 1\_1000011\_ = -0b1.0\pow{4} = \f{\neg{16.0}}}\\ 18 | \normal{0x04 = 0\_0000100\_ = +0b1.0\pow{\neg{59}} \approx \e{1.7347235}{\neg{18}}}& 19 | \normal{0x44 = 0\_1000100\_ = +0b1.0\pow{5} = \f{32.0}}& 20 | \normal{0x84 = 1\_0000100\_ = -0b1.0\pow{\neg{59}} \approx \e{-1.7347235}{\neg{18}}}& 21 | \normal{0xc4 = 1\_1000100\_ = -0b1.0\pow{5} = \f{\neg{32.0}}}\\ 22 | \normal{0x05 = 0\_0000101\_ = +0b1.0\pow{\neg{58}} \approx \e{3.469447}{\neg{18}}}& 23 | \normal{0x45 = 0\_1000101\_ = +0b1.0\pow{6} = \f{64.0}}& 24 | \normal{0x85 = 1\_0000101\_ = -0b1.0\pow{\neg{58}} \approx \e{-3.469447}{\neg{18}}}& 25 | \normal{0xc5 = 1\_1000101\_ = -0b1.0\pow{6} = \f{\neg{64.0}}}\\ 26 | \normal{0x06 = 0\_0000110\_ = +0b1.0\pow{\neg{57}} \approx \e{6.9388939}{\neg{18}}}& 27 | \normal{0x46 = 0\_1000110\_ = +0b1.0\pow{7} = \f{128.0}}& 28 | \normal{0x86 = 1\_0000110\_ = -0b1.0\pow{\neg{57}} \approx \e{-6.9388939}{\neg{18}}}& 29 | \normal{0xc6 = 1\_1000110\_ = -0b1.0\pow{7} = \f{\neg{128.0}}}\\ 30 | \normal{0x07 = 0\_0000111\_ = +0b1.0\pow{\neg{56}} \approx \e{1.3877788}{\neg{17}}}& 31 | \normal{0x47 = 0\_1000111\_ = +0b1.0\pow{8} = \f{256.0}}& 32 | \normal{0x87 = 1\_0000111\_ = -0b1.0\pow{\neg{56}} \approx \e{-1.3877788}{\neg{17}}}& 33 | \normal{0xc7 = 1\_1000111\_ = -0b1.0\pow{8} = \f{\neg{256.0}}}\\ 34 | \normal{0x08 = 0\_0001000\_ = +0b1.0\pow{\neg{55}} \approx \e{2.7755576}{\neg{17}}}& 35 | \normal{0x48 = 0\_1001000\_ = +0b1.0\pow{9} = \f{512.0}}& 36 | \normal{0x88 = 1\_0001000\_ = -0b1.0\pow{\neg{55}} \approx \e{-2.7755576}{\neg{17}}}& 37 | \normal{0xc8 = 1\_1001000\_ = -0b1.0\pow{9} = \f{\neg{512.0}}}\\ 38 | \normal{0x09 = 0\_0001001\_ = +0b1.0\pow{\neg{54}} \approx \e{5.5511151}{\neg{17}}}& 39 | \normal{0x49 = 0\_1001001\_ = +0b1.0\pow{10} = \f{1024.0}}& 40 | \normal{0x89 = 1\_0001001\_ = -0b1.0\pow{\neg{54}} \approx \e{-5.5511151}{\neg{17}}}& 41 | \normal{0xc9 = 1\_1001001\_ = -0b1.0\pow{10} = \f{\neg{1024.0}}}\\ 42 | \normal{0x0a = 0\_0001010\_ = +0b1.0\pow{\neg{53}} \approx \e{1.110223}{\neg{16}}}& 43 | \normal{0x4a = 0\_1001010\_ = +0b1.0\pow{11} = \f{2048.0}}& 44 | \normal{0x8a = 1\_0001010\_ = -0b1.0\pow{\neg{53}} \approx \e{-1.110223}{\neg{16}}}& 45 | \normal{0xca = 1\_1001010\_ = -0b1.0\pow{11} = \f{\neg{2048.0}}}\\ 46 | \normal{0x0b = 0\_0001011\_ = +0b1.0\pow{\neg{52}} \approx \e{2.220446}{\neg{16}}}& 47 | \normal{0x4b = 0\_1001011\_ = +0b1.0\pow{12} = \f{4096.0}}& 48 | \normal{0x8b = 1\_0001011\_ = -0b1.0\pow{\neg{52}} \approx \e{-2.220446}{\neg{16}}}& 49 | \normal{0xcb = 1\_1001011\_ = -0b1.0\pow{12} = \f{\neg{4096.0}}}\\ 50 | \normal{0x0c = 0\_0001100\_ = +0b1.0\pow{\neg{51}} \approx \e{4.4408921}{\neg{16}}}& 51 | \normal{0x4c = 0\_1001100\_ = +0b1.0\pow{13} = \f{8192.0}}& 52 | \normal{0x8c = 1\_0001100\_ = -0b1.0\pow{\neg{51}} \approx \e{-4.4408921}{\neg{16}}}& 53 | \normal{0xcc = 1\_1001100\_ = -0b1.0\pow{13} = \f{\neg{8192.0}}}\\ 54 | \normal{0x0d = 0\_0001101\_ = +0b1.0\pow{\neg{50}} \approx \e{8.8817842}{\neg{16}}}& 55 | \normal{0x4d = 0\_1001101\_ = +0b1.0\pow{14} = \f{16384.0}}& 56 | \normal{0x8d = 1\_0001101\_ = -0b1.0\pow{\neg{50}} \approx \e{-8.8817842}{\neg{16}}}& 57 | \normal{0xcd = 1\_1001101\_ = -0b1.0\pow{14} = \f{\neg{16384.0}}}\\ 58 | \normal{0x0e = 0\_0001110\_ = +0b1.0\pow{\neg{49}} \approx \e{1.7763568}{\neg{15}}}& 59 | \normal{0x4e = 0\_1001110\_ = +0b1.0\pow{15} = \f{32768.0}}& 60 | \normal{0x8e = 1\_0001110\_ = -0b1.0\pow{\neg{49}} \approx \e{-1.7763568}{\neg{15}}}& 61 | \normal{0xce = 1\_1001110\_ = -0b1.0\pow{15} = \f{\neg{32768.0}}}\\ 62 | \normal{0x0f = 0\_0001111\_ = +0b1.0\pow{\neg{48}} \approx \e{3.5527137}{\neg{15}}}& 63 | \normal{0x4f = 0\_1001111\_ = +0b1.0\pow{16} = \f{65536.0}}& 64 | \normal{0x8f = 1\_0001111\_ = -0b1.0\pow{\neg{48}} \approx \e{-3.5527137}{\neg{15}}}& 65 | \normal{0xcf = 1\_1001111\_ = -0b1.0\pow{16} = \f{\neg{65536.0}}}\\ 66 | \normal{0x10 = 0\_0010000\_ = +0b1.0\pow{\neg{47}} \approx \e{7.1054274}{\neg{15}}}& 67 | \normal{0x50 = 0\_1010000\_ = +0b1.0\pow{17} = \f{131072.0}}& 68 | \normal{0x90 = 1\_0010000\_ = -0b1.0\pow{\neg{47}} \approx \e{-7.1054274}{\neg{15}}}& 69 | \normal{0xd0 = 1\_1010000\_ = -0b1.0\pow{17} = \f{\neg{131072.0}}}\\ 70 | \normal{0x11 = 0\_0010001\_ = +0b1.0\pow{\neg{46}} \approx \e{1.4210855}{\neg{14}}}& 71 | \normal{0x51 = 0\_1010001\_ = +0b1.0\pow{18} = \f{262144.0}}& 72 | \normal{0x91 = 1\_0010001\_ = -0b1.0\pow{\neg{46}} \approx \e{-1.4210855}{\neg{14}}}& 73 | \normal{0xd1 = 1\_1010001\_ = -0b1.0\pow{18} = \f{\neg{262144.0}}}\\ 74 | \normal{0x12 = 0\_0010010\_ = +0b1.0\pow{\neg{45}} \approx \e{2.8421709}{\neg{14}}}& 75 | \normal{0x52 = 0\_1010010\_ = +0b1.0\pow{19} = \f{524288.0}}& 76 | \normal{0x92 = 1\_0010010\_ = -0b1.0\pow{\neg{45}} \approx \e{-2.8421709}{\neg{14}}}& 77 | \normal{0xd2 = 1\_1010010\_ = -0b1.0\pow{19} = \f{\neg{524288.0}}}\\ 78 | \normal{0x13 = 0\_0010011\_ = +0b1.0\pow{\neg{44}} \approx \e{5.6843419}{\neg{14}}}& 79 | \normal{0x53 = 0\_1010011\_ = +0b1.0\pow{20} = \f{1048576.0}}& 80 | \normal{0x93 = 1\_0010011\_ = -0b1.0\pow{\neg{44}} \approx \e{-5.6843419}{\neg{14}}}& 81 | \normal{0xd3 = 1\_1010011\_ = -0b1.0\pow{20} = \f{\neg{1048576.0}}}\\ 82 | \normal{0x14 = 0\_0010100\_ = +0b1.0\pow{\neg{43}} \approx \e{1.1368684}{\neg{13}}}& 83 | \normal{0x54 = 0\_1010100\_ = +0b1.0\pow{21} = \f{2097152.0}}& 84 | \normal{0x94 = 1\_0010100\_ = -0b1.0\pow{\neg{43}} \approx \e{-1.1368684}{\neg{13}}}& 85 | \normal{0xd4 = 1\_1010100\_ = -0b1.0\pow{21} = \f{\neg{2097152.0}}}\\ 86 | \normal{0x15 = 0\_0010101\_ = +0b1.0\pow{\neg{42}} \approx \e{2.2737368}{\neg{13}}}& 87 | \normal{0x55 = 0\_1010101\_ = +0b1.0\pow{22} = \f{4194304.0}}& 88 | \normal{0x95 = 1\_0010101\_ = -0b1.0\pow{\neg{42}} \approx \e{-2.2737368}{\neg{13}}}& 89 | \normal{0xd5 = 1\_1010101\_ = -0b1.0\pow{22} = \f{\neg{4194304.0}}}\\ 90 | \normal{0x16 = 0\_0010110\_ = +0b1.0\pow{\neg{41}} \approx \e{4.5474735}{\neg{13}}}& 91 | \normal{0x56 = 0\_1010110\_ = +0b1.0\pow{23} = \f{8388608.0}}& 92 | \normal{0x96 = 1\_0010110\_ = -0b1.0\pow{\neg{41}} \approx \e{-4.5474735}{\neg{13}}}& 93 | \normal{0xd6 = 1\_1010110\_ = -0b1.0\pow{23} = \f{\neg{8388608.0}}}\\ 94 | \normal{0x17 = 0\_0010111\_ = +0b1.0\pow{\neg{40}} \approx \e{9.094947}{\neg{13}}}& 95 | \normal{0x57 = 0\_1010111\_ = +0b1.0\pow{24} = \f{16777216.0}}& 96 | \normal{0x97 = 1\_0010111\_ = -0b1.0\pow{\neg{40}} \approx \e{-9.094947}{\neg{13}}}& 97 | \normal{0xd7 = 1\_1010111\_ = -0b1.0\pow{24} = \f{\neg{16777216.0}}}\\ 98 | \normal{0x18 = 0\_0011000\_ = +0b1.0\pow{\neg{39}} \approx \e{1.8189894}{\neg{12}}}& 99 | \normal{0x58 = 0\_1011000\_ = +0b1.0\pow{25} = \f{33554432.0}}& 100 | \normal{0x98 = 1\_0011000\_ = -0b1.0\pow{\neg{39}} \approx \e{-1.8189894}{\neg{12}}}& 101 | \normal{0xd8 = 1\_1011000\_ = -0b1.0\pow{25} = \f{\neg{33554432.0}}}\\ 102 | \normal{0x19 = 0\_0011001\_ = +0b1.0\pow{\neg{38}} \approx \e{3.6379788}{\neg{12}}}& 103 | \normal{0x59 = 0\_1011001\_ = +0b1.0\pow{26} = \f{67108864.0}}& 104 | \normal{0x99 = 1\_0011001\_ = -0b1.0\pow{\neg{38}} \approx \e{-3.6379788}{\neg{12}}}& 105 | \normal{0xd9 = 1\_1011001\_ = -0b1.0\pow{26} = \f{\neg{67108864.0}}}\\ 106 | \normal{0x1a = 0\_0011010\_ = +0b1.0\pow{\neg{37}} \approx \e{7.2759576}{\neg{12}}}& 107 | \normal{0x5a = 0\_1011010\_ = +0b1.0\pow{27} = \f{134217728.0}}& 108 | \normal{0x9a = 1\_0011010\_ = -0b1.0\pow{\neg{37}} \approx \e{-7.2759576}{\neg{12}}}& 109 | \normal{0xda = 1\_1011010\_ = -0b1.0\pow{27} = \f{\neg{134217728.0}}}\\ 110 | \normal{0x1b = 0\_0011011\_ = +0b1.0\pow{\neg{36}} \approx \e{1.4551915}{\neg{11}}}& 111 | \normal{0x5b = 0\_1011011\_ = +0b1.0\pow{28} = \f{268435456.0}}& 112 | \normal{0x9b = 1\_0011011\_ = -0b1.0\pow{\neg{36}} \approx \e{-1.4551915}{\neg{11}}}& 113 | \normal{0xdb = 1\_1011011\_ = -0b1.0\pow{28} = \f{\neg{268435456.0}}}\\ 114 | \normal{0x1c = 0\_0011100\_ = +0b1.0\pow{\neg{35}} \approx \e{2.910383}{\neg{11}}}& 115 | \normal{0x5c = 0\_1011100\_ = +0b1.0\pow{29} = \f{536870912.0}}& 116 | \normal{0x9c = 1\_0011100\_ = -0b1.0\pow{\neg{35}} \approx \e{-2.910383}{\neg{11}}}& 117 | \normal{0xdc = 1\_1011100\_ = -0b1.0\pow{29} = \f{\neg{536870912.0}}}\\ 118 | \normal{0x1d = 0\_0011101\_ = +0b1.0\pow{\neg{34}} \approx \e{5.8207661}{\neg{11}}}& 119 | \normal{0x5d = 0\_1011101\_ = +0b1.0\pow{30} = \f{1073741824.0}}& 120 | \normal{0x9d = 1\_0011101\_ = -0b1.0\pow{\neg{34}} \approx \e{-5.8207661}{\neg{11}}}& 121 | \normal{0xdd = 1\_1011101\_ = -0b1.0\pow{30} = \f{\neg{1073741824.0}}}\\ 122 | \normal{0x1e = 0\_0011110\_ = +0b1.0\pow{\neg{33}} \approx \e{1.1641532}{\neg{10}}}& 123 | \normal{0x5e = 0\_1011110\_ = +0b1.0\pow{31} = \f{2147483648.0}}& 124 | \normal{0x9e = 1\_0011110\_ = -0b1.0\pow{\neg{33}} \approx \e{-1.1641532}{\neg{10}}}& 125 | \normal{0xde = 1\_1011110\_ = -0b1.0\pow{31} = \f{\neg{2147483648.0}}}\\ 126 | \normal{0x1f = 0\_0011111\_ = +0b1.0\pow{\neg{32}} \approx \e{2.3283064}{\neg{10}}}& 127 | \normal{0x5f = 0\_1011111\_ = +0b1.0\pow{32} = \f{4294967296.0}}& 128 | \normal{0x9f = 1\_0011111\_ = -0b1.0\pow{\neg{32}} \approx \e{-2.3283064}{\neg{10}}}& 129 | \normal{0xdf = 1\_1011111\_ = -0b1.0\pow{32} = \f{\neg{4294967296.0}}}\\ 130 | \normal{0x20 = 0\_0100000\_ = +0b1.0\pow{\neg{31}} \approx \e{4.6566129}{\neg{10}}}& 131 | \normal{0x60 = 0\_1100000\_ = +0b1.0\pow{33} = \f{8589934592.0}}& 132 | \normal{0xa0 = 1\_0100000\_ = -0b1.0\pow{\neg{31}} \approx \e{-4.6566129}{\neg{10}}}& 133 | \normal{0xe0 = 1\_1100000\_ = -0b1.0\pow{33} = \f{\neg{8589934592.0}}}\\ 134 | \normal{0x21 = 0\_0100001\_ = +0b1.0\pow{\neg{30}} \approx \e{9.3132257}{\neg{10}}}& 135 | \normal{0x61 = 0\_1100001\_ = +0b1.0\pow{34} = \f{17179869184.0}}& 136 | \normal{0xa1 = 1\_0100001\_ = -0b1.0\pow{\neg{30}} \approx \e{-9.3132257}{\neg{10}}}& 137 | \normal{0xe1 = 1\_1100001\_ = -0b1.0\pow{34} = \f{\neg{17179869184.0}}}\\ 138 | \normal{0x22 = 0\_0100010\_ = +0b1.0\pow{\neg{29}} \approx \e{1.8626451}{\neg{09}}}& 139 | \normal{0x62 = 0\_1100010\_ = +0b1.0\pow{35} = \f{34359738368.0}}& 140 | \normal{0xa2 = 1\_0100010\_ = -0b1.0\pow{\neg{29}} \approx \e{-1.8626451}{\neg{09}}}& 141 | \normal{0xe2 = 1\_1100010\_ = -0b1.0\pow{35} = \f{\neg{34359738368.0}}}\\ 142 | \normal{0x23 = 0\_0100011\_ = +0b1.0\pow{\neg{28}} \approx \e{3.7252903}{\neg{09}}}& 143 | \normal{0x63 = 0\_1100011\_ = +0b1.0\pow{36} = \f{68719476736.0}}& 144 | \normal{0xa3 = 1\_0100011\_ = -0b1.0\pow{\neg{28}} \approx \e{-3.7252903}{\neg{09}}}& 145 | \normal{0xe3 = 1\_1100011\_ = -0b1.0\pow{36} = \f{\neg{68719476736.0}}}\\ 146 | \normal{0x24 = 0\_0100100\_ = +0b1.0\pow{\neg{27}} \approx \e{7.4505806}{\neg{09}}}& 147 | \normal{0x64 = 0\_1100100\_ = +0b1.0\pow{37} = \f{137438953472.0}}& 148 | \normal{0xa4 = 1\_0100100\_ = -0b1.0\pow{\neg{27}} \approx \e{-7.4505806}{\neg{09}}}& 149 | \normal{0xe4 = 1\_1100100\_ = -0b1.0\pow{37} \approx -1.3743895e\f{+11}}\\ 150 | \normal{0x25 = 0\_0100101\_ = +0b1.0\pow{\neg{26}} \approx \e{1.4901161}{\neg{08}}}& 151 | \normal{0x65 = 0\_1100101\_ = +0b1.0\pow{38} = \f{274877906944.0}}& 152 | \normal{0xa5 = 1\_0100101\_ = -0b1.0\pow{\neg{26}} \approx \e{-1.4901161}{\neg{08}}}& 153 | \normal{0xe5 = 1\_1100101\_ = -0b1.0\pow{38} \approx -2.7487791e\f{+11}}\\ 154 | \normal{0x26 = 0\_0100110\_ = +0b1.0\pow{\neg{25}} \approx \e{2.9802322}{\neg{08}}}& 155 | \normal{0x66 = 0\_1100110\_ = +0b1.0\pow{39} = \f{549755813888.0}}& 156 | \normal{0xa6 = 1\_0100110\_ = -0b1.0\pow{\neg{25}} \approx \e{-2.9802322}{\neg{08}}}& 157 | \normal{0xe6 = 1\_1100110\_ = -0b1.0\pow{39} \approx -5.4975581e\f{+11}}\\ 158 | \normal{0x27 = 0\_0100111\_ = +0b1.0\pow{\neg{24}} \approx \e{5.9604645}{\neg{08}}}& 159 | \normal{0x67 = 0\_1100111\_ = +0b1.0\pow{40} \approx 1.0995116e\f{+12}}& 160 | \normal{0xa7 = 1\_0100111\_ = -0b1.0\pow{\neg{24}} \approx \e{-5.9604645}{\neg{08}}}& 161 | \normal{0xe7 = 1\_1100111\_ = -0b1.0\pow{40} \approx -1.0995116e\f{+12}}\\ 162 | \normal{0x28 = 0\_0101000\_ = +0b1.0\pow{\neg{23}} \approx \e{1.1920929}{\neg{07}}}& 163 | \normal{0x68 = 0\_1101000\_ = +0b1.0\pow{41} \approx 2.1990233e\f{+12}}& 164 | \normal{0xa8 = 1\_0101000\_ = -0b1.0\pow{\neg{23}} \approx \e{-1.1920929}{\neg{07}}}& 165 | \normal{0xe8 = 1\_1101000\_ = -0b1.0\pow{41} \approx -2.1990233e\f{+12}}\\ 166 | \normal{0x29 = 0\_0101001\_ = +0b1.0\pow{\neg{22}} \approx \e{2.3841858}{\neg{07}}}& 167 | \normal{0x69 = 0\_1101001\_ = +0b1.0\pow{42} \approx 4.3980465e\f{+12}}& 168 | \normal{0xa9 = 1\_0101001\_ = -0b1.0\pow{\neg{22}} \approx \e{-2.3841858}{\neg{07}}}& 169 | \normal{0xe9 = 1\_1101001\_ = -0b1.0\pow{42} \approx -4.3980465e\f{+12}}\\ 170 | \normal{0x2a = 0\_0101010\_ = +0b1.0\pow{\neg{21}} \approx \e{4.7683716}{\neg{07}}}& 171 | \normal{0x6a = 0\_1101010\_ = +0b1.0\pow{43} \approx 8.796093e\f{+12}}& 172 | \normal{0xaa = 1\_0101010\_ = -0b1.0\pow{\neg{21}} \approx \e{-4.7683716}{\neg{07}}}& 173 | \normal{0xea = 1\_1101010\_ = -0b1.0\pow{43} \approx -8.796093e\f{+12}}\\ 174 | \normal{0x2b = 0\_0101011\_ = +0b1.0\pow{\neg{20}} \approx \e{9.5367432}{\neg{07}}}& 175 | \normal{0x6b = 0\_1101011\_ = +0b1.0\pow{44} \approx 1.7592186e\f{+13}}& 176 | \normal{0xab = 1\_0101011\_ = -0b1.0\pow{\neg{20}} \approx \e{-9.5367432}{\neg{07}}}& 177 | \normal{0xeb = 1\_1101011\_ = -0b1.0\pow{44} \approx -1.7592186e\f{+13}}\\ 178 | \normal{0x2c = 0\_0101100\_ = +0b1.0\pow{\neg{19}} \approx \e{1.9073486}{\neg{06}}}& 179 | \normal{0x6c = 0\_1101100\_ = +0b1.0\pow{45} \approx 3.5184372e\f{+13}}& 180 | \normal{0xac = 1\_0101100\_ = -0b1.0\pow{\neg{19}} \approx \e{-1.9073486}{\neg{06}}}& 181 | \normal{0xec = 1\_1101100\_ = -0b1.0\pow{45} \approx -3.5184372e\f{+13}}\\ 182 | \normal{0x2d = 0\_0101101\_ = +0b1.0\pow{\neg{18}} \approx \e{3.8146973}{\neg{06}}}& 183 | \normal{0x6d = 0\_1101101\_ = +0b1.0\pow{46} \approx 7.0368744e\f{+13}}& 184 | \normal{0xad = 1\_0101101\_ = -0b1.0\pow{\neg{18}} \approx \e{-3.8146973}{\neg{06}}}& 185 | \normal{0xed = 1\_1101101\_ = -0b1.0\pow{46} \approx -7.0368744e\f{+13}}\\ 186 | \normal{0x2e = 0\_0101110\_ = +0b1.0\pow{\neg{17}} \approx \e{7.6293945}{\neg{06}}}& 187 | \normal{0x6e = 0\_1101110\_ = +0b1.0\pow{47} \approx 1.4073749e\f{+14}}& 188 | \normal{0xae = 1\_0101110\_ = -0b1.0\pow{\neg{17}} \approx \e{-7.6293945}{\neg{06}}}& 189 | \normal{0xee = 1\_1101110\_ = -0b1.0\pow{47} \approx -1.4073749e\f{+14}}\\ 190 | \normal{0x2f = 0\_0101111\_ = +0b1.0\pow{\neg{16}} \approx \e{1.5258789}{\neg{05}}}& 191 | \normal{0x6f = 0\_1101111\_ = +0b1.0\pow{48} \approx 2.8147498e\f{+14}}& 192 | \normal{0xaf = 1\_0101111\_ = -0b1.0\pow{\neg{16}} \approx \e{-1.5258789}{\neg{05}}}& 193 | \normal{0xef = 1\_1101111\_ = -0b1.0\pow{48} \approx -2.8147498e\f{+14}}\\ 194 | \normal{0x30 = 0\_0110000\_ = +0b1.0\pow{\neg{15}} \approx \e{3.0517578}{\neg{05}}}& 195 | \normal{0x70 = 0\_1110000\_ = +0b1.0\pow{49} \approx 5.6294995e\f{+14}}& 196 | \normal{0xb0 = 1\_0110000\_ = -0b1.0\pow{\neg{15}} \approx \e{-3.0517578}{\neg{05}}}& 197 | \normal{0xf0 = 1\_1110000\_ = -0b1.0\pow{49} \approx -5.6294995e\f{+14}}\\ 198 | \normal{0x31 = 0\_0110001\_ = +0b1.0\pow{\neg{14}} \approx \e{6.1035156}{\neg{05}}}& 199 | \normal{0x71 = 0\_1110001\_ = +0b1.0\pow{50} \approx 1.1258999e\f{+15}}& 200 | \normal{0xb1 = 1\_0110001\_ = -0b1.0\pow{\neg{14}} \approx \e{-6.1035156}{\neg{05}}}& 201 | \normal{0xf1 = 1\_1110001\_ = -0b1.0\pow{50} \approx -1.1258999e\f{+15}}\\ 202 | \normal{0x32 = 0\_0110010\_ = +0b1.0\pow{\neg{13}} \approx \f{0.00012207}}& 203 | \normal{0x72 = 0\_1110010\_ = +0b1.0\pow{51} \approx 2.2517998e\f{+15}}& 204 | \normal{0xb2 = 1\_0110010\_ = -0b1.0\pow{\neg{13}} \approx \f{\neg{0.00012207}}}& 205 | \normal{0xf2 = 1\_1110010\_ = -0b1.0\pow{51} \approx -2.2517998e\f{+15}}\\ 206 | \normal{0x33 = 0\_0110011\_ = +0b1.0\pow{\neg{12}} = \f{0.000244140625}}& 207 | \normal{0x73 = 0\_1110011\_ = +0b1.0\pow{52} \approx 4.5035996e\f{+15}}& 208 | \normal{0xb3 = 1\_0110011\_ = -0b1.0\pow{\neg{12}} \approx \f{\neg{0.00024414}}}& 209 | \normal{0xf3 = 1\_1110011\_ = -0b1.0\pow{52} \approx -4.5035996e\f{+15}}\\ 210 | \normal{0x34 = 0\_0110100\_ = +0b1.0\pow{\neg{11}} = \f{0.00048828125}}& 211 | \normal{0x74 = 0\_1110100\_ = +0b1.0\pow{53} \approx 9.0071993e\f{+15}}& 212 | \normal{0xb4 = 1\_0110100\_ = -0b1.0\pow{\neg{11}} = \f{\neg{0.00048828125}}}& 213 | \normal{0xf4 = 1\_1110100\_ = -0b1.0\pow{53} \approx -9.0071993e\f{+15}}\\ 214 | \normal{0x35 = 0\_0110101\_ = +0b1.0\pow{\neg{10}} = \f{0.0009765625}}& 215 | \normal{0x75 = 0\_1110101\_ = +0b1.0\pow{54} \approx 1.8014399e\f{+16}}& 216 | \normal{0xb5 = 1\_0110101\_ = -0b1.0\pow{\neg{10}} = \f{\neg{0.0009765625}}}& 217 | \normal{0xf5 = 1\_1110101\_ = -0b1.0\pow{54} \approx -1.8014399e\f{+16}}\\ 218 | \normal{0x36 = 0\_0110110\_ = +0b1.0\pow{\neg{9}} = \f{0.001953125}}& 219 | \normal{0x76 = 0\_1110110\_ = +0b1.0\pow{55} \approx 3.6028797e\f{+16}}& 220 | \normal{0xb6 = 1\_0110110\_ = -0b1.0\pow{\neg{9}} = \f{\neg{0.001953125}}}& 221 | \normal{0xf6 = 1\_1110110\_ = -0b1.0\pow{55} \approx -3.6028797e\f{+16}}\\ 222 | \normal{0x37 = 0\_0110111\_ = +0b1.0\pow{\neg{8}} = \f{0.00390625}}& 223 | \normal{0x77 = 0\_1110111\_ = +0b1.0\pow{56} \approx 7.2057594e\f{+16}}& 224 | \normal{0xb7 = 1\_0110111\_ = -0b1.0\pow{\neg{8}} = \f{\neg{0.00390625}}}& 225 | \normal{0xf7 = 1\_1110111\_ = -0b1.0\pow{56} \approx -7.2057594e\f{+16}}\\ 226 | \normal{0x38 = 0\_0111000\_ = +0b1.0\pow{\neg{7}} = \f{0.0078125}}& 227 | \normal{0x78 = 0\_1111000\_ = +0b1.0\pow{57} \approx 1.4411519e\f{+17}}& 228 | \normal{0xb8 = 1\_0111000\_ = -0b1.0\pow{\neg{7}} = \f{\neg{0.0078125}}}& 229 | \normal{0xf8 = 1\_1111000\_ = -0b1.0\pow{57} \approx -1.4411519e\f{+17}}\\ 230 | \normal{0x39 = 0\_0111001\_ = +0b1.0\pow{\neg{6}} = \f{0.015625}}& 231 | \normal{0x79 = 0\_1111001\_ = +0b1.0\pow{58} \approx 2.8823038e\f{+17}}& 232 | \normal{0xb9 = 1\_0111001\_ = -0b1.0\pow{\neg{6}} = \f{\neg{0.015625}}}& 233 | \normal{0xf9 = 1\_1111001\_ = -0b1.0\pow{58} \approx -2.8823038e\f{+17}}\\ 234 | \normal{0x3a = 0\_0111010\_ = +0b1.0\pow{\neg{5}} = \f{0.03125}}& 235 | \normal{0x7a = 0\_1111010\_ = +0b1.0\pow{59} \approx 5.7646075e\f{+17}}& 236 | \normal{0xba = 1\_0111010\_ = -0b1.0\pow{\neg{5}} = \f{\neg{0.03125}}}& 237 | \normal{0xfa = 1\_1111010\_ = -0b1.0\pow{59} \approx -5.7646075e\f{+17}}\\ 238 | \normal{0x3b = 0\_0111011\_ = +0b1.0\pow{\neg{4}} = \f{0.0625}}& 239 | \normal{0x7b = 0\_1111011\_ = +0b1.0\pow{60} \approx 1.1529215e\f{+18}}& 240 | \normal{0xbb = 1\_0111011\_ = -0b1.0\pow{\neg{4}} = \f{\neg{0.0625}}}& 241 | \normal{0xfb = 1\_1111011\_ = -0b1.0\pow{60} \approx -1.1529215e\f{+18}}\\ 242 | \normal{0x3c = 0\_0111100\_ = +0b1.0\pow{\neg{3}} = \f{0.125}}& 243 | \normal{0x7c = 0\_1111100\_ = +0b1.0\pow{61} \approx 2.305843e\f{+18}}& 244 | \normal{0xbc = 1\_0111100\_ = -0b1.0\pow{\neg{3}} = \f{\neg{0.125}}}& 245 | \normal{0xfc = 1\_1111100\_ = -0b1.0\pow{61} \approx -2.305843e\f{+18}}\\ 246 | \normal{0x3d = 0\_0111101\_ = +0b1.0\pow{\neg{2}} = \f{0.25}}& 247 | \normal{0x7d = 0\_1111101\_ = +0b1.0\pow{62} \approx 4.611686e\f{+18}}& 248 | \normal{0xbd = 1\_0111101\_ = -0b1.0\pow{\neg{2}} = \f{\neg{0.25}}}& 249 | \normal{0xfd = 1\_1111101\_ = -0b1.0\pow{62} \approx -4.611686e\f{+18}}\\ 250 | \normal{0x3e = 0\_0111110\_ = +0b1.0\pow{\neg{1}} = \f{0.5}}& 251 | \normal{0x7e = 0\_1111110\_ = +0b1.0\pow{63} \approx 9.223372e\f{+18}}& 252 | \normal{0xbe = 1\_0111110\_ = -0b1.0\pow{\neg{1}} = \f{\neg{0.5}}}& 253 | \normal{0xfe = 1\_1111110\_ = -0b1.0\pow{63} \approx -9.223372e\f{+18}}\\ 254 | \normal{0x3f = 0\_0111111\_ = +0b1.0\pow{0} = \f{1.0}}& 255 | \special{0x7f = 0\_1111111\_ = inf}& 256 | \normal{0xbf = 1\_0111111\_ = -0b1.0\pow{0} = \f{\neg{1.0}}}& 257 | \special{0xff = 1\_1111111\_ = -inf}\\ 258 | -------------------------------------------------------------------------------- /Value Tables/html/value-table-ocp_e5m2.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | FP8 Value Table, ocp_e5m2 6 | 45 | 46 | 47 |

FP8 Value Table, ocp_e5m2

48 | 49 | 50 | 53 | 56 | 59 | 62 | 63 | 64 | 67 | 70 | 73 | 76 | 77 | 78 | 81 | 84 | 87 | 90 | 91 | 92 | 95 | 98 | 101 | 104 | 105 | 106 | 109 | 112 | 115 | 118 | 119 | 120 | 123 | 126 | 129 | 132 | 133 | 134 | 137 | 140 | 143 | 146 | 147 | 148 | 151 | 154 | 157 | 160 | 161 | 162 | 165 | 168 | 171 | 174 | 175 | 176 | 179 | 182 | 185 | 188 | 189 | 190 | 193 | 196 | 199 | 202 | 203 | 204 | 207 | 210 | 213 | 216 | 217 | 218 | 221 | 224 | 227 | 230 | 231 | 232 | 235 | 238 | 241 | 244 | 245 | 246 | 249 | 252 | 255 | 258 | 259 | 260 | 263 | 266 | 269 | 272 | 273 | 274 | 277 | 280 | 283 | 286 | 287 | 288 | 291 | 294 | 297 | 300 | 301 | 302 | 305 | 308 | 311 | 314 | 315 | 316 | 319 | 322 | 325 | 328 | 329 | 330 | 333 | 336 | 339 | 342 | 343 | 344 | 347 | 350 | 353 | 356 | 357 | 358 | 361 | 364 | 367 | 370 | 371 | 372 | 375 | 378 | 381 | 384 | 385 | 386 | 389 | 392 | 395 | 398 | 399 | 400 | 403 | 406 | 409 | 412 | 413 | 414 | 417 | 420 | 423 | 426 | 427 | 428 | 431 | 434 | 437 | 440 | 441 | 442 | 445 | 448 | 451 | 454 | 455 | 456 | 459 | 462 | 465 | 468 | 469 | 470 | 473 | 476 | 479 | 482 | 483 | 484 | 487 | 490 | 493 | 496 | 497 | 498 | 501 | 504 | 507 | 510 | 511 | 512 | 515 | 518 | 521 | 524 | 525 | 526 | 529 | 532 | 535 | 538 | 539 | 540 | 543 | 546 | 549 | 552 | 553 | 554 | 557 | 560 | 563 | 566 | 567 | 568 | 571 | 574 | 577 | 580 | 581 | 582 | 585 | 588 | 591 | 594 | 595 | 596 | 599 | 602 | 605 | 608 | 609 | 610 | 613 | 616 | 619 | 622 | 623 | 624 | 627 | 630 | 633 | 636 | 637 | 638 | 641 | 644 | 647 | 650 | 651 | 652 | 655 | 658 | 661 | 664 | 665 | 666 | 669 | 672 | 675 | 678 | 679 | 680 | 683 | 686 | 689 | 692 | 693 | 694 | 697 | 700 | 703 | 706 | 707 | 708 | 711 | 714 | 717 | 720 | 721 | 722 | 725 | 728 | 731 | 734 | 735 | 736 | 739 | 742 | 745 | 748 | 749 | 750 | 753 | 756 | 759 | 762 | 763 | 764 | 767 | 770 | 773 | 776 | 777 | 778 | 781 | 784 | 787 | 790 | 791 | 792 | 795 | 798 | 801 | 804 | 805 | 806 | 809 | 812 | 815 | 818 | 819 | 820 | 823 | 826 | 829 | 832 | 833 | 834 | 837 | 840 | 843 | 846 | 847 | 848 | 851 | 854 | 857 | 860 | 861 | 862 | 865 | 868 | 871 | 874 | 875 | 876 | 879 | 882 | 885 | 888 | 889 | 890 | 893 | 896 | 899 | 902 | 903 | 904 | 907 | 910 | 913 | 916 | 917 | 918 | 921 | 924 | 927 | 930 | 931 | 932 | 935 | 938 | 941 | 944 | 945 |
51 |
0x00 0_00000_00 = 0.0
52 |
54 |
0x40 0_10000_00 = +0b1.00*2^1   = 2.0
55 |
57 |
0x80 1_00000_00 = -0.0
58 |
60 |
0xc0 1_10000_00 = -0b1.00*2^1   = -2.0
61 |
65 |
0x01 0_00000_01 = +0b0.01*2^-14 ≈ 1.5258789e-05
66 |
68 |
0x41 0_10000_01 = +0b1.01*2^1   = 2.5
69 |
71 |
0x81 1_00000_01 = -0b0.01*2^-14 ≈ -1.5258789e-05
72 |
74 |
0xc1 1_10000_01 = -0b1.01*2^1   = -2.5
75 |
79 |
0x02 0_00000_10 = +0b0.10*2^-14 ≈ 3.0517578e-05
80 |
82 |
0x42 0_10000_10 = +0b1.10*2^1   = 3.0
83 |
85 |
0x82 1_00000_10 = -0b0.10*2^-14 ≈ -3.0517578e-05
86 |
88 |
0xc2 1_10000_10 = -0b1.10*2^1   = -3.0
89 |
93 |
0x03 0_00000_11 = +0b0.11*2^-14 ≈ 4.5776367e-05
94 |
96 |
0x43 0_10000_11 = +0b1.11*2^1   = 3.5
97 |
99 |
0x83 1_00000_11 = -0b0.11*2^-14 ≈ -4.5776367e-05
100 |
102 |
0xc3 1_10000_11 = -0b1.11*2^1   = -3.5
103 |
107 |
0x04 0_00001_00 = +0b1.00*2^-14 ≈ 6.1035156e-05
108 |
110 |
0x44 0_10001_00 = +0b1.00*2^2   = 4.0
111 |
113 |
0x84 1_00001_00 = -0b1.00*2^-14 ≈ -6.1035156e-05
114 |
116 |
0xc4 1_10001_00 = -0b1.00*2^2   = -4.0
117 |
121 |
0x05 0_00001_01 = +0b1.01*2^-14 ≈ 7.6293945e-05
122 |
124 |
0x45 0_10001_01 = +0b1.01*2^2   = 5.0
125 |
127 |
0x85 1_00001_01 = -0b1.01*2^-14 ≈ -7.6293945e-05
128 |
130 |
0xc5 1_10001_01 = -0b1.01*2^2   = -5.0
131 |
135 |
0x06 0_00001_10 = +0b1.10*2^-14 ≈ 9.1552734e-05
136 |
138 |
0x46 0_10001_10 = +0b1.10*2^2   = 6.0
139 |
141 |
0x86 1_00001_10 = -0b1.10*2^-14 ≈ -9.1552734e-05
142 |
144 |
0xc6 1_10001_10 = -0b1.10*2^2   = -6.0
145 |
149 |
0x07 0_00001_11 = +0b1.11*2^-14 ≈ 0.00010681
150 |
152 |
0x47 0_10001_11 = +0b1.11*2^2   = 7.0
153 |
155 |
0x87 1_00001_11 = -0b1.11*2^-14 ≈ -0.00010681
156 |
158 |
0xc7 1_10001_11 = -0b1.11*2^2   = -7.0
159 |
163 |
0x08 0_00010_00 = +0b1.00*2^-13 ≈ 0.00012207
164 |
166 |
0x48 0_10010_00 = +0b1.00*2^3   = 8.0
167 |
169 |
0x88 1_00010_00 = -0b1.00*2^-13 ≈ -0.00012207
170 |
172 |
0xc8 1_10010_00 = -0b1.00*2^3   = -8.0
173 |
177 |
0x09 0_00010_01 = +0b1.01*2^-13 ≈ 0.00015259
178 |
180 |
0x49 0_10010_01 = +0b1.01*2^3   = 10.0
181 |
183 |
0x89 1_00010_01 = -0b1.01*2^-13 ≈ -0.00015259
184 |
186 |
0xc9 1_10010_01 = -0b1.01*2^3   = -10.0
187 |
191 |
0x0a 0_00010_10 = +0b1.10*2^-13 ≈ 0.00018311
192 |
194 |
0x4a 0_10010_10 = +0b1.10*2^3   = 12.0
195 |
197 |
0x8a 1_00010_10 = -0b1.10*2^-13 ≈ -0.00018311
198 |
200 |
0xca 1_10010_10 = -0b1.10*2^3   = -12.0
201 |
205 |
0x0b 0_00010_11 = +0b1.11*2^-13 ≈ 0.00021362
206 |
208 |
0x4b 0_10010_11 = +0b1.11*2^3   = 14.0
209 |
211 |
0x8b 1_00010_11 = -0b1.11*2^-13 ≈ -0.00021362
212 |
214 |
0xcb 1_10010_11 = -0b1.11*2^3   = -14.0
215 |
219 |
0x0c 0_00011_00 = +0b1.00*2^-12 = 0.000244140625
220 |
222 |
0x4c 0_10011_00 = +0b1.00*2^4   = 16.0
223 |
225 |
0x8c 1_00011_00 = -0b1.00*2^-12 ≈ -0.00024414
226 |
228 |
0xcc 1_10011_00 = -0b1.00*2^4   = -16.0
229 |
233 |
0x0d 0_00011_01 = +0b1.01*2^-12 ≈ 0.00030518
234 |
236 |
0x4d 0_10011_01 = +0b1.01*2^4   = 20.0
237 |
239 |
0x8d 1_00011_01 = -0b1.01*2^-12 ≈ -0.00030518
240 |
242 |
0xcd 1_10011_01 = -0b1.01*2^4   = -20.0
243 |
247 |
0x0e 0_00011_10 = +0b1.10*2^-12 ≈ 0.00036621
248 |
250 |
0x4e 0_10011_10 = +0b1.10*2^4   = 24.0
251 |
253 |
0x8e 1_00011_10 = -0b1.10*2^-12 ≈ -0.00036621
254 |
256 |
0xce 1_10011_10 = -0b1.10*2^4   = -24.0
257 |
261 |
0x0f 0_00011_11 = +0b1.11*2^-12 ≈ 0.00042725
262 |
264 |
0x4f 0_10011_11 = +0b1.11*2^4   = 28.0
265 |
267 |
0x8f 1_00011_11 = -0b1.11*2^-12 ≈ -0.00042725
268 |
270 |
0xcf 1_10011_11 = -0b1.11*2^4   = -28.0
271 |
275 |
0x10 0_00100_00 = +0b1.00*2^-11 = 0.00048828125
276 |
278 |
0x50 0_10100_00 = +0b1.00*2^5   = 32.0
279 |
281 |
0x90 1_00100_00 = -0b1.00*2^-11 = -0.00048828125
282 |
284 |
0xd0 1_10100_00 = -0b1.00*2^5   = -32.0
285 |
289 |
0x11 0_00100_01 = +0b1.01*2^-11 ≈ 0.00061035
290 |
292 |
0x51 0_10100_01 = +0b1.01*2^5   = 40.0
293 |
295 |
0x91 1_00100_01 = -0b1.01*2^-11 ≈ -0.00061035
296 |
298 |
0xd1 1_10100_01 = -0b1.01*2^5   = -40.0
299 |
303 |
0x12 0_00100_10 = +0b1.10*2^-11 = 0.000732421875
304 |
306 |
0x52 0_10100_10 = +0b1.10*2^5   = 48.0
307 |
309 |
0x92 1_00100_10 = -0b1.10*2^-11 ≈ -0.00073242
310 |
312 |
0xd2 1_10100_10 = -0b1.10*2^5   = -48.0
313 |
317 |
0x13 0_00100_11 = +0b1.11*2^-11 ≈ 0.00085449
318 |
320 |
0x53 0_10100_11 = +0b1.11*2^5   = 56.0
321 |
323 |
0x93 1_00100_11 = -0b1.11*2^-11 ≈ -0.00085449
324 |
326 |
0xd3 1_10100_11 = -0b1.11*2^5   = -56.0
327 |
331 |
0x14 0_00101_00 = +0b1.00*2^-10 = 0.0009765625
332 |
334 |
0x54 0_10101_00 = +0b1.00*2^6   = 64.0
335 |
337 |
0x94 1_00101_00 = -0b1.00*2^-10 = -0.0009765625
338 |
340 |
0xd4 1_10101_00 = -0b1.00*2^6   = -64.0
341 |
345 |
0x15 0_00101_01 = +0b1.01*2^-10 = 0.001220703125
346 |
348 |
0x55 0_10101_01 = +0b1.01*2^6   = 80.0
349 |
351 |
0x95 1_00101_01 = -0b1.01*2^-10 ≈ -0.00122070
352 |
354 |
0xd5 1_10101_01 = -0b1.01*2^6   = -80.0
355 |
359 |
0x16 0_00101_10 = +0b1.10*2^-10 = 0.00146484375
360 |
362 |
0x56 0_10101_10 = +0b1.10*2^6   = 96.0
363 |
365 |
0x96 1_00101_10 = -0b1.10*2^-10 = -0.00146484375
366 |
368 |
0xd6 1_10101_10 = -0b1.10*2^6   = -96.0
369 |
373 |
0x17 0_00101_11 = +0b1.11*2^-10 = 0.001708984375
374 |
376 |
0x57 0_10101_11 = +0b1.11*2^6   = 112.0
377 |
379 |
0x97 1_00101_11 = -0b1.11*2^-10 ≈ -0.00170898
380 |
382 |
0xd7 1_10101_11 = -0b1.11*2^6   = -112.0
383 |
387 |
0x18 0_00110_00 = +0b1.00*2^-9  = 0.001953125
388 |
390 |
0x58 0_10110_00 = +0b1.00*2^7   = 128.0
391 |
393 |
0x98 1_00110_00 = -0b1.00*2^-9  = -0.001953125
394 |
396 |
0xd8 1_10110_00 = -0b1.00*2^7   = -128.0
397 |
401 |
0x19 0_00110_01 = +0b1.01*2^-9  = 0.00244140625
402 |
404 |
0x59 0_10110_01 = +0b1.01*2^7   = 160.0
405 |
407 |
0x99 1_00110_01 = -0b1.01*2^-9  = -0.00244140625
408 |
410 |
0xd9 1_10110_01 = -0b1.01*2^7   = -160.0
411 |
415 |
0x1a 0_00110_10 = +0b1.10*2^-9  = 0.0029296875
416 |
418 |
0x5a 0_10110_10 = +0b1.10*2^7   = 192.0
419 |
421 |
0x9a 1_00110_10 = -0b1.10*2^-9  = -0.0029296875
422 |
424 |
0xda 1_10110_10 = -0b1.10*2^7   = -192.0
425 |
429 |
0x1b 0_00110_11 = +0b1.11*2^-9  = 0.00341796875
430 |
432 |
0x5b 0_10110_11 = +0b1.11*2^7   = 224.0
433 |
435 |
0x9b 1_00110_11 = -0b1.11*2^-9  = -0.00341796875
436 |
438 |
0xdb 1_10110_11 = -0b1.11*2^7   = -224.0
439 |
443 |
0x1c 0_00111_00 = +0b1.00*2^-8  = 0.00390625
444 |
446 |
0x5c 0_10111_00 = +0b1.00*2^8   = 256.0
447 |
449 |
0x9c 1_00111_00 = -0b1.00*2^-8  = -0.00390625
450 |
452 |
0xdc 1_10111_00 = -0b1.00*2^8   = -256.0
453 |
457 |
0x1d 0_00111_01 = +0b1.01*2^-8  = 0.0048828125
458 |
460 |
0x5d 0_10111_01 = +0b1.01*2^8   = 320.0
461 |
463 |
0x9d 1_00111_01 = -0b1.01*2^-8  = -0.0048828125
464 |
466 |
0xdd 1_10111_01 = -0b1.01*2^8   = -320.0
467 |
471 |
0x1e 0_00111_10 = +0b1.10*2^-8  = 0.005859375
472 |
474 |
0x5e 0_10111_10 = +0b1.10*2^8   = 384.0
475 |
477 |
0x9e 1_00111_10 = -0b1.10*2^-8  = -0.005859375
478 |
480 |
0xde 1_10111_10 = -0b1.10*2^8   = -384.0
481 |
485 |
0x1f 0_00111_11 = +0b1.11*2^-8  = 0.0068359375
486 |
488 |
0x5f 0_10111_11 = +0b1.11*2^8   = 448.0
489 |
491 |
0x9f 1_00111_11 = -0b1.11*2^-8  = -0.0068359375
492 |
494 |
0xdf 1_10111_11 = -0b1.11*2^8   = -448.0
495 |
499 |
0x20 0_01000_00 = +0b1.00*2^-7  = 0.0078125
500 |
502 |
0x60 0_11000_00 = +0b1.00*2^9   = 512.0
503 |
505 |
0xa0 1_01000_00 = -0b1.00*2^-7  = -0.0078125
506 |
508 |
0xe0 1_11000_00 = -0b1.00*2^9   = -512.0
509 |
513 |
0x21 0_01000_01 = +0b1.01*2^-7  = 0.009765625
514 |
516 |
0x61 0_11000_01 = +0b1.01*2^9   = 640.0
517 |
519 |
0xa1 1_01000_01 = -0b1.01*2^-7  = -0.009765625
520 |
522 |
0xe1 1_11000_01 = -0b1.01*2^9   = -640.0
523 |
527 |
0x22 0_01000_10 = +0b1.10*2^-7  = 0.01171875
528 |
530 |
0x62 0_11000_10 = +0b1.10*2^9   = 768.0
531 |
533 |
0xa2 1_01000_10 = -0b1.10*2^-7  = -0.01171875
534 |
536 |
0xe2 1_11000_10 = -0b1.10*2^9   = -768.0
537 |
541 |
0x23 0_01000_11 = +0b1.11*2^-7  = 0.013671875
542 |
544 |
0x63 0_11000_11 = +0b1.11*2^9   = 896.0
545 |
547 |
0xa3 1_01000_11 = -0b1.11*2^-7  = -0.013671875
548 |
550 |
0xe3 1_11000_11 = -0b1.11*2^9   = -896.0
551 |
555 |
0x24 0_01001_00 = +0b1.00*2^-6  = 0.015625
556 |
558 |
0x64 0_11001_00 = +0b1.00*2^10  = 1024.0
559 |
561 |
0xa4 1_01001_00 = -0b1.00*2^-6  = -0.015625
562 |
564 |
0xe4 1_11001_00 = -0b1.00*2^10  = -1024.0
565 |
569 |
0x25 0_01001_01 = +0b1.01*2^-6  = 0.01953125
570 |
572 |
0x65 0_11001_01 = +0b1.01*2^10  = 1280.0
573 |
575 |
0xa5 1_01001_01 = -0b1.01*2^-6  = -0.01953125
576 |
578 |
0xe5 1_11001_01 = -0b1.01*2^10  = -1280.0
579 |
583 |
0x26 0_01001_10 = +0b1.10*2^-6  = 0.0234375
584 |
586 |
0x66 0_11001_10 = +0b1.10*2^10  = 1536.0
587 |
589 |
0xa6 1_01001_10 = -0b1.10*2^-6  = -0.0234375
590 |
592 |
0xe6 1_11001_10 = -0b1.10*2^10  = -1536.0
593 |
597 |
0x27 0_01001_11 = +0b1.11*2^-6  = 0.02734375
598 |
600 |
0x67 0_11001_11 = +0b1.11*2^10  = 1792.0
601 |
603 |
0xa7 1_01001_11 = -0b1.11*2^-6  = -0.02734375
604 |
606 |
0xe7 1_11001_11 = -0b1.11*2^10  = -1792.0
607 |
611 |
0x28 0_01010_00 = +0b1.00*2^-5  = 0.03125
612 |
614 |
0x68 0_11010_00 = +0b1.00*2^11  = 2048.0
615 |
617 |
0xa8 1_01010_00 = -0b1.00*2^-5  = -0.03125
618 |
620 |
0xe8 1_11010_00 = -0b1.00*2^11  = -2048.0
621 |
625 |
0x29 0_01010_01 = +0b1.01*2^-5  = 0.0390625
626 |
628 |
0x69 0_11010_01 = +0b1.01*2^11  = 2560.0
629 |
631 |
0xa9 1_01010_01 = -0b1.01*2^-5  = -0.0390625
632 |
634 |
0xe9 1_11010_01 = -0b1.01*2^11  = -2560.0
635 |
639 |
0x2a 0_01010_10 = +0b1.10*2^-5  = 0.046875
640 |
642 |
0x6a 0_11010_10 = +0b1.10*2^11  = 3072.0
643 |
645 |
0xaa 1_01010_10 = -0b1.10*2^-5  = -0.046875
646 |
648 |
0xea 1_11010_10 = -0b1.10*2^11  = -3072.0
649 |
653 |
0x2b 0_01010_11 = +0b1.11*2^-5  = 0.0546875
654 |
656 |
0x6b 0_11010_11 = +0b1.11*2^11  = 3584.0
657 |
659 |
0xab 1_01010_11 = -0b1.11*2^-5  = -0.0546875
660 |
662 |
0xeb 1_11010_11 = -0b1.11*2^11  = -3584.0
663 |
667 |
0x2c 0_01011_00 = +0b1.00*2^-4  = 0.0625
668 |
670 |
0x6c 0_11011_00 = +0b1.00*2^12  = 4096.0
671 |
673 |
0xac 1_01011_00 = -0b1.00*2^-4  = -0.0625
674 |
676 |
0xec 1_11011_00 = -0b1.00*2^12  = -4096.0
677 |
681 |
0x2d 0_01011_01 = +0b1.01*2^-4  = 0.078125
682 |
684 |
0x6d 0_11011_01 = +0b1.01*2^12  = 5120.0
685 |
687 |
0xad 1_01011_01 = -0b1.01*2^-4  = -0.078125
688 |
690 |
0xed 1_11011_01 = -0b1.01*2^12  = -5120.0
691 |
695 |
0x2e 0_01011_10 = +0b1.10*2^-4  = 0.09375
696 |
698 |
0x6e 0_11011_10 = +0b1.10*2^12  = 6144.0
699 |
701 |
0xae 1_01011_10 = -0b1.10*2^-4  = -0.09375
702 |
704 |
0xee 1_11011_10 = -0b1.10*2^12  = -6144.0
705 |
709 |
0x2f 0_01011_11 = +0b1.11*2^-4  = 0.109375
710 |
712 |
0x6f 0_11011_11 = +0b1.11*2^12  = 7168.0
713 |
715 |
0xaf 1_01011_11 = -0b1.11*2^-4  = -0.109375
716 |
718 |
0xef 1_11011_11 = -0b1.11*2^12  = -7168.0
719 |
723 |
0x30 0_01100_00 = +0b1.00*2^-3  = 0.125
724 |
726 |
0x70 0_11100_00 = +0b1.00*2^13  = 8192.0
727 |
729 |
0xb0 1_01100_00 = -0b1.00*2^-3  = -0.125
730 |
732 |
0xf0 1_11100_00 = -0b1.00*2^13  = -8192.0
733 |
737 |
0x31 0_01100_01 = +0b1.01*2^-3  = 0.15625
738 |
740 |
0x71 0_11100_01 = +0b1.01*2^13  = 10240.0
741 |
743 |
0xb1 1_01100_01 = -0b1.01*2^-3  = -0.15625
744 |
746 |
0xf1 1_11100_01 = -0b1.01*2^13  = -10240.0
747 |
751 |
0x32 0_01100_10 = +0b1.10*2^-3  = 0.1875
752 |
754 |
0x72 0_11100_10 = +0b1.10*2^13  = 12288.0
755 |
757 |
0xb2 1_01100_10 = -0b1.10*2^-3  = -0.1875
758 |
760 |
0xf2 1_11100_10 = -0b1.10*2^13  = -12288.0
761 |
765 |
0x33 0_01100_11 = +0b1.11*2^-3  = 0.21875
766 |
768 |
0x73 0_11100_11 = +0b1.11*2^13  = 14336.0
769 |
771 |
0xb3 1_01100_11 = -0b1.11*2^-3  = -0.21875
772 |
774 |
0xf3 1_11100_11 = -0b1.11*2^13  = -14336.0
775 |
779 |
0x34 0_01101_00 = +0b1.00*2^-2  = 0.25
780 |
782 |
0x74 0_11101_00 = +0b1.00*2^14  = 16384.0
783 |
785 |
0xb4 1_01101_00 = -0b1.00*2^-2  = -0.25
786 |
788 |
0xf4 1_11101_00 = -0b1.00*2^14  = -16384.0
789 |
793 |
0x35 0_01101_01 = +0b1.01*2^-2  = 0.3125
794 |
796 |
0x75 0_11101_01 = +0b1.01*2^14  = 20480.0
797 |
799 |
0xb5 1_01101_01 = -0b1.01*2^-2  = -0.3125
800 |
802 |
0xf5 1_11101_01 = -0b1.01*2^14  = -20480.0
803 |
807 |
0x36 0_01101_10 = +0b1.10*2^-2  = 0.375
808 |
810 |
0x76 0_11101_10 = +0b1.10*2^14  = 24576.0
811 |
813 |
0xb6 1_01101_10 = -0b1.10*2^-2  = -0.375
814 |
816 |
0xf6 1_11101_10 = -0b1.10*2^14  = -24576.0
817 |
821 |
0x37 0_01101_11 = +0b1.11*2^-2  = 0.4375
822 |
824 |
0x77 0_11101_11 = +0b1.11*2^14  = 28672.0
825 |
827 |
0xb7 1_01101_11 = -0b1.11*2^-2  = -0.4375
828 |
830 |
0xf7 1_11101_11 = -0b1.11*2^14  = -28672.0
831 |
835 |
0x38 0_01110_00 = +0b1.00*2^-1  = 0.5
836 |
838 |
0x78 0_11110_00 = +0b1.00*2^15  = 32768.0
839 |
841 |
0xb8 1_01110_00 = -0b1.00*2^-1  = -0.5
842 |
844 |
0xf8 1_11110_00 = -0b1.00*2^15  = -32768.0
845 |
849 |
0x39 0_01110_01 = +0b1.01*2^-1  = 0.625
850 |
852 |
0x79 0_11110_01 = +0b1.01*2^15  = 40960.0
853 |
855 |
0xb9 1_01110_01 = -0b1.01*2^-1  = -0.625
856 |
858 |
0xf9 1_11110_01 = -0b1.01*2^15  = -40960.0
859 |
863 |
0x3a 0_01110_10 = +0b1.10*2^-1  = 0.75
864 |
866 |
0x7a 0_11110_10 = +0b1.10*2^15  = 49152.0
867 |
869 |
0xba 1_01110_10 = -0b1.10*2^-1  = -0.75
870 |
872 |
0xfa 1_11110_10 = -0b1.10*2^15  = -49152.0
873 |
877 |
0x3b 0_01110_11 = +0b1.11*2^-1  = 0.875
878 |
880 |
0x7b 0_11110_11 = +0b1.11*2^15  = 57344.0
881 |
883 |
0xbb 1_01110_11 = -0b1.11*2^-1  = -0.875
884 |
886 |
0xfb 1_11110_11 = -0b1.11*2^15  = -57344.0
887 |
891 |
0x3c 0_01111_00 = +0b1.00*2^0   = 1.0
892 |
894 |
0x7c 0_11111_00 = inf
895 |
897 |
0xbc 1_01111_00 = -0b1.00*2^0   = -1.0
898 |
900 |
0xfc 1_11111_00 = -inf
901 |
905 |
0x3d 0_01111_01 = +0b1.01*2^0   = 1.25
906 |
908 |
0x7d 0_11111_01 = nan
909 |
911 |
0xbd 1_01111_01 = -0b1.01*2^0   = -1.25
912 |
914 |
0xfd 1_11111_01 = nan
915 |
919 |
0x3e 0_01111_10 = +0b1.10*2^0   = 1.5
920 |
922 |
0x7e 0_11111_10 = nan
923 |
925 |
0xbe 1_01111_10 = -0b1.10*2^0   = -1.5
926 |
928 |
0xfe 1_11111_10 = nan
929 |
933 |
0x3f 0_01111_11 = +0b1.11*2^0   = 1.75
934 |
936 |
0x7f 0_11111_11 = nan
937 |
939 |
0xbf 1_01111_11 = -0b1.11*2^0   = -1.75
940 |
942 |
0xff 1_11111_11 = nan
943 |
946 | 947 | --------------------------------------------------------------------------------