├── .github
└── ISSUE_TEMPLATE
│ └── issue.md
├── .gitignore
├── LICENSE
├── README.md
├── data
├── input
│ ├── 000003.jpg
│ ├── 000004.jpg
│ ├── 000170.jpg
│ ├── 009649.png
│ ├── ade20k.jpg
│ ├── cityscapes1.png
│ ├── cityscapes2.png
│ ├── my_own_image.jpg
│ ├── testvideo1.mp4
│ ├── testvideo2.mp4
│ └── testvideo3.mp4
└── output
│ ├── result1.MP4
│ ├── result2.MP4
│ ├── result3.MP4
│ └── result_deeplabv3.jpg
├── lib
├── libcpu_extension.so
├── libformat_reader.so
└── libgflags_nothreads.a
├── lrmodelconvscript.txt
├── lrmodels
├── MSCOCOcityscapes
│ ├── FP16
│ │ └── .gitkeep
│ └── FP32
│ │ └── .gitkeep
└── PascalVOC
│ ├── FP16
│ ├── frozen_inference_graph.bin
│ ├── frozen_inference_graph.mapping
│ └── frozen_inference_graph.xml
│ └── FP32
│ ├── frozen_inference_graph.bin
│ ├── frozen_inference_graph.mapping
│ ├── frozen_inference_graph.xml
│ └── inputoutput.txt
├── media
├── 01.jpg
├── 02.jpg
├── 03.jpg
├── sample01.jpg
├── sample02.jpg
├── sample03.jpg
└── sample04.jpg
├── openvino_deeplabv3_test.py
├── pbmodels
├── MSCOCOcityscapes
│ ├── frozen_inference_graph.pb
│ ├── inputoutput.txt
│ ├── model.ckpt.data-00000-of-00001
│ └── model.ckpt.index
└── PascalVOC
│ ├── frozen_inference_graph.pb
│ ├── inputoutput.txt
│ ├── model.ckpt-30000.data-00000-of-00001
│ └── model.ckpt-30000.index
├── savedmodel
└── events.out.tfevents.1546483660.ubuntu
├── tensorboard_output.py
├── tensorboard_start_script.txt
└── tfconverter.py
/.github/ISSUE_TEMPLATE/issue.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Issue
3 | about: You provide the necessary information for the early resolution of the problem.
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **[Required]** Your device (RaspberryPi3, LaptopPC, or other device name):
11 |
12 | **[Required]** Your device's CPU architecture (armv7l, x86_64, or other architecture name):
13 |
14 | **[Required]** Your OS (Raspbian, Ubuntu1604, or other os name):
15 |
16 | **[Required]** Details of the work you did before the problem occurred:
17 |
18 |
19 |
20 | **[Required]** Error message:
21 |
22 |
23 |
24 | **[Required]** Overview of problems and questions:
25 |
26 |
27 |
28 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pbtxt
2 |
3 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2018 PINTO
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # OpenVINO-DeeplabV3
2 | [4-5 FPS / Core m3 CPU only] [11 FPS / Core i7 CPU only]
3 | OpenVINO+DeeplabV3+LattePandaAlpha. CPU / GPU / NCS. RealTime semantic-segmentaion. Python3.5+OpenCV3.4.3+PIL
4 |
5 | **【Caution】 It does not work on ARM architecture devices such as RaspberryPi / TX2.**
6 | **【Notice】December 19, 2018 OpenVINO has supported RaspberryPi + NCS2 !!
7 | https://software.intel.com/en-us/articles/OpenVINO-RelNotes#inpage-nav-2-2**
8 |
9 |
10 |
11 | **【Japanese article / English article】**
12 | **[(1) Introducing Ubuntu 16.04 + OpenVINO to Latte Panda Alpha 864 (without OS included) and enjoying Semantic Segmentation with Neural Compute Stick and Neural Compute Stick 2](https://qiita.com/PINTO/items/5ac8f4395e190d06cfab#introducing-ubuntu-1604--openvino-to-latte-panda-alpha-864-without-os-included-and-enjoying-semantic-segmentation-with-neural-compute-stick-and-neural-compute-stick-2)**
13 |
14 | **[(2) Real-time Semantic Segmentation with CPU alone [part2] [4-5 FPS / Core m3 CPU only] [11-12 FPS / Core i7 CPU only] DeeplabV3+MobilenetV2](https://qiita.com/PINTO/items/15d822c3d280c42e08c8)**
15 |
16 | **【Reference article / Japanese】 DeepLab vs Mask RCNN**
17 | **https://jyuko49.hatenablog.com/entry/2018/11/17/145904**
18 |
19 | # Results
20 | **【Result 1】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)**
21 | [ ](https://youtu.be/CxxDwK7vBAo)
22 |
23 | **【Result 2】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)**
24 | [ ](https://youtu.be/-pXB3dDj-rQ)
25 |
26 | **【Result 3】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)**
27 | [ ](https://youtu.be/1NLCr5XnVX8)
28 |
29 | **【Result 4】 Click the image below to play Youtube video. (Core i7 + CPU only mode. 11.0FPS - 12.0FPS)**
30 | [ ](https://youtu.be/TjiH2dMltl4)
31 |
32 | # Environment
33 | - LattePanda Alpha (Intel 7th Core m3-7y30) or LaptopPC (Intel 8th Core i7-8750H)
34 | - Ubuntu 16.04 x86_64
35 | - OpenVINO toolkit 2018 R4 (2018.4.420)
36 | - Python 3.5
37 | - OpenCV 3.4.3
38 | - PIL
39 | - Tensorflow v1.11.0 or Tensorflow-GPU v1.11.0 (pip install)
40 | - DeeplabV3 + MobilenetV2 (Pascal VOC 2012)
41 | - USB Camera (PlaystationEye) / Movie file (mp4)
42 | - 【option】 Intel Neural Compute Stick / Intel Neural Compute Stick 2 or GPU
43 |
44 | # Benchmark
45 | **https://ncsforum.movidius.com/discussion/1329/lattepanda-alpha-openvino-cpu-core-m3-vs-ncs1-vs-ncs2-performance-comparison**
46 |
47 | # Usage
48 | ### 1. Installation of OpenVINO main unit
49 | #### 1.1 Download
50 | ```bash
51 | $ cd ~/Downloads
52 | $ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=18-TeUzeN34CV-QqM0rO3wpdEGODTWrBc" > /dev/null
53 | $ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
54 | $ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=18-TeUzeN34CV-QqM0rO3wpdEGODTWrBc" -o l_openvino_toolkit_p_2018.4.420.tgz
55 | $ tar -zxf l_openvino_toolkit_p_2018.4.420.tgz
56 | $ rm l_openvino_toolkit_p_2018.4.420.tgz
57 | $ cd l_openvino_toolkit_p_2018.4.420
58 | ```
59 | #### 1.2 Install basic functions
60 | ```bash
61 | ## GUI version installer
62 | $ sudo ./install_GUI.sh
63 | or
64 | ## CUI version installer
65 | $ sudo ./install.sh
66 | ```
67 |
68 |
69 |
70 |
71 | ```bash
72 | $ cd /opt/intel/computer_vision_sdk/install_dependencies
73 | $ sudo -E ./install_cv_sdk_dependencies.sh
74 | $ nano ~/.bashrc
75 | source /opt/intel/computer_vision_sdk/bin/setupvars.sh
76 |
77 | $ source ~/.bashrc
78 | $ cd /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/install_prerequisites
79 | $ sudo ./install_prerequisites.sh
80 | ```
81 | #### 1.3 Install optional features
82 | ##### 1.3.1 【Optional execution】 Additional installation steps for the Intel® Movidius™ Neural Compute Stick v1 and Intel® Neural Compute Stick v2
83 | ```bash
84 | $ sudo usermod -a -G users "$(whoami)"
85 | $ cat < 97-usbboot.rules
86 | SUBSYSTEM=="usb", ATTRS{idProduct}=="2150", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
87 | SUBSYSTEM=="usb", ATTRS{idProduct}=="2485", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
88 | SUBSYSTEM=="usb", ATTRS{idProduct}=="f63b", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
89 | EOF
90 |
91 | $ sudo cp 97-usbboot.rules /etc/udev/rules.d/
92 | $ sudo udevadm control --reload-rules
93 | $ sudo udevadm trigger
94 | $ cd /opt/intel/common/mdf/lib64
95 | $ sudo mv igfxcmrt64.so igfxcmrt64.so.org
96 | $ sudo ln -s libigfxcmrt64.so igfxcmrt64.so
97 | $ cd /opt/intel/mediasdk/lib64
98 | $ sudo mv libmfxhw64.so.1 libmfxhw64.so.1.org
99 | $ sudo mv libmfx.so.1 libmfx.so.1.org
100 | $ sudo mv libva-glx.so.2 libva-glx.so.2.org
101 | $ sudo mv libva.so.2 libva.so.2.org
102 | $ sudo mv libigdgmm.so.1 libigdgmm.so.1.org
103 | $ sudo mv libva-drm.so.2 libva-drm.so.2.org
104 | $ sudo mv libva-x11.so.2 libva-x11.so.2.org
105 | $ sudo ln -s libmfxhw64.so.1.28 libmfxhw64.so.1
106 | $ sudo ln -s libmfx.so.1.28 libmfx.so.1
107 | $ sudo ln -s libva-glx.so.2.300.0 libva-glx.so.2
108 | $ sudo ln -s libva.so.2.300.0 libva.so.2
109 | $ sudo ln -s libigdgmm.so.1.0.0 libigdgmm.so.1
110 | $ sudo ln -s libva-drm.so.2.300.0 libva-drm.so.2
111 | $ sudo ln -s libva-x11.so.2.300.0 libva-x11.so.2
112 | $ sudo ldconfig
113 | $ rm 97-usbboot.rules
114 | ```
115 | ##### 1.3.2 【Optional execution】 Additional installation steps for processor graphics (GPU)
116 | ```bash
117 | $ cd /opt/intel/computer_vision_sdk/install_dependencies/
118 | $ sudo -E su
119 | $ uname -r
120 | 4.15.0-42-generic #<--- display kernel version sample
121 |
122 | ### Execute only when the kernel version is older than 4.14
123 | $ ./install_4_14_kernel.sh
124 |
125 | $ ./install_NEO_OCL_driver.sh
126 | $ sudo reboot
127 | ```
128 |
129 | ### 2. Downgrade to stable OpenCV
130 | Since OpenCV 4.0.0-pre introduced by default had bug in Gstreamer and it did not work properly, we will reinstall OpenCV 3.4.3 on our own.
131 | ```bash
132 | $ sudo -H pip3 install opencv-python==3.4.3.18
133 | $ nano ~/.bashrc
134 | export PYTHONPATH=/usr/local/lib/python3.5/dist-packages/cv2:$PYTHONPATH
135 |
136 | $ source ~/.bashrc
137 | ```
138 | ### 3. Upgrade to Tensorflow v1.11.0
139 | Upgrade to old version Tensorflow v1.9.0, introduced by default, to Tensorflow v1.11.0, as subsequent model optimizer processing will fail.
140 | ```bash
141 | $ sudo -H pip3 install pip --upgrade
142 |
143 | $ python3 -c 'import tensorflow as tf; print(tf.__version__)'
144 | 1.9.0 #<--- display Tensorflow version sample
145 |
146 | $ sudo -H pip3 install tensorflow==1.11.0 --upgrade
147 | or
148 | $ sudo -H pip3 install tensorflow-gpu==1.11.0 --upgrade
149 | ```
150 | ### 4. Settings for offloading custom layer behavior to Tensorflow
151 | ```bash
152 | $ sudo apt-get install -y git pkg-config zip g++ zlib1g-dev unzip
153 | $ cd ~
154 | $ wget https://github.com/bazelbuild/bazel/releases/download/0.18.1/bazel-0.18.1-installer-linux-x86_64.sh
155 | $ sudo chmod +x bazel-0.18.1-installer-linux-x86_64.sh
156 | $ ./bazel-0.18.1-installer-linux-x86_64.sh --user
157 | $ echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc
158 | $ source ~/.bashrc
159 | $ cd /opt
160 | $ sudo git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git
161 | $ cd tensorflow
162 | $ sudo git checkout -b v1.11.0
163 | $ echo 'export TF_ROOT_DIR=/opt/tensorflow' >> ~/.bashrc
164 | $ source ~/.bashrc
165 | $ sudo nano /opt/intel/computer_vision_sdk/bin/setupvars.sh
166 |
167 | #Before
168 | INSTALLDIR=/opt/intel//computer_vision_sdk_2018.4.420
169 | ↓
170 | #After
171 | INSTALLDIR=/opt/intel/computer_vision_sdk_2018.4.420
172 |
173 | $ source /opt/intel/computer_vision_sdk/bin/setupvars.sh
174 | $ sudo nano /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/tf_call_ie_layer/build.sh
175 |
176 | #Before
177 | bazel build --config=monolithic //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so
178 | ↓
179 | #After
180 | sudo -H $HOME/bin/bazel build --config monolithic //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so
181 | or
182 | sudo -H $HOME/bin/bazel --host_jvm_args=-Xmx512m build --config monolithic --local_resources 1024.0,0.5,0.5 //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so
183 |
184 | $ sudo -E /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/tf_call_ie_layer/build.sh
185 |
186 | $ su -
187 | $ cp /opt/tensorflow/bazel-bin/tensorflow/cc/inference_engine_layer/libtensorflow_call_layer.so /usr/local/lib
188 | $ exit
189 | $ nano ~/.bashrc
190 | export PYTHONPATH=$PYTHONPATH:/usr/local/lib
191 |
192 | $ source ~/.bashrc
193 | $ sudo ldconfig
194 | ```
195 | ### 5. 【Optional execution】 Build sample programs and CPU extension
196 | ```bash
197 | $ cd /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples
198 | $ sudo ./build_samples.sh
199 |
200 | ### The prebuilt binary is saved in the following path
201 | ### ~/inference_engine_samples_build/intel64/Release/
202 | ```
203 | ### 6. 【Optional execution】【Example】 Conversion of Tensorflow-DeeplabV3 model to lr format
204 | #### 6-1. Pascal VOC
205 | ```bash
206 | $ cd ~
207 | $ mkdir model
208 | $ wget http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
209 | $ tar -zxvf deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
210 | $ cp deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb model
211 | $ sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \
212 | --input_model pbmodels/PascalVOC/frozen_inference_graph.pb \
213 | --input 0:MobilenetV2/Conv/Conv2D \
214 | --output ArgMax \
215 | --input_shape [1,513,513,3] \
216 | --output_dir lrmodels/PascalVOC/FP32
217 | ```
218 | #### 6-2. MS-COCO cityscapes
219 | ```bash
220 | $ wget http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz
221 | $ tar -zxvf deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz
222 | ```
223 |
224 | ### 7. Execution (The default is "USB Camera mode")
225 | ```bash
226 | $ cd ~
227 | $ git clone https://github.com/PINTO0309/OpenVINO-DeeplabV3.git
228 | $ cd OpenVINO-DeeplabV3
229 | $ python3 openvino_deeplabv3_test.py
230 | ```
231 |
232 | # How to install Bazel (version 0.17.2, x86_64 only)
233 | ### 1. Bazel introduction command
234 | ```bash
235 | $ cd ~
236 | $ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" > /dev/null
237 | $ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
238 | $ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" -o bazel
239 | $ sudo cp ./bazel /usr/local/bin
240 | $ rm ./bazel
241 | ```
242 | ### 2. Supplementary information
243 | **https://github.com/PINTO0309/Bazel_bin.git**
244 |
245 | # How to check the graph structure of a ".pb" file [Part.1]
246 | Simple structure analysis.
247 | ### 1. Build and run graph structure analysis program
248 | ```bash
249 | $ cd ~
250 | $ git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git
251 | $ cd tensorflow
252 | $ git checkout -b v1.11.0
253 | $ bazel build tensorflow/tools/graph_transforms:summarize_graph
254 | $ bazel-bin/tensorflow/tools/graph_transforms/summarize_graph --in_graph=xxxx.pb
255 | ```
256 | ### 2. Sample of display result
257 | ```bash
258 | Found 1 possible inputs: (name=ImageTensor, type=uint8(4), shape=[1,?,?,3])
259 | No variables spotted.
260 | Found 1 possible outputs: (name=SemanticPredictions, op=Slice)
261 | Found 2146325 (2.15M) const parameters, 0 (0) variable parameters, and 4 control_edges
262 | Op types used: 374 Const, 357 Identity, 54 FusedBatchNorm, 38 Conv2D, 34 Relu6, \
263 | 17 DepthwiseConv2dNative, 13 Add, 10 StridedSlice, 10 BatchToSpaceND, 10 \
264 | SpaceToBatchND, 8 Sub, 5 Pack, 4 GreaterEqual, 4 Assert, 4 Shape, 4 ResizeBilinear, \
265 | 3 Cast, 3 Relu, 2 ExpandDims, 2 Squeeze, 2 Maximum, 2 Mul, 1 Slice, 1 LogicalAnd, \
266 | 1 Reshape, 1 Placeholder, 1 Pad, 1 Equal, 1 ConcatV2, 1 BiasAdd, 1 AvgPool, 1 ArgMax
267 | To use with tensorflow/tools/benchmark:benchmark_model try these arguments:
268 | bazel run tensorflow/tools/benchmark:benchmark_model -- \
269 | --graph=xxxx.pb \
270 | --show_flops \
271 | --input_layer=ImageTensor \
272 | --input_layer_type=uint8 \
273 | --input_layer_shape=1,-1,-1,3 \
274 | --output_layer=SemanticPredictions
275 | ```
276 |
277 | # How to check the graph structure of a ".pb" file [Part.2]
278 | Convert to text format.
279 | ### 1. Run graph structure analysis program
280 | ```bash
281 | $ python3 tfconverter.py
282 | ### ".pbtxt" in ProtocolBuffer format is output.
283 | ### The size of the generated text file is huge.
284 | ```
285 |
286 | # How to check the graph structure of a ".pb" file [Part.3]
287 | Use Tensorboard.
288 | ### 1. Build Tensorboard
289 | ```bash
290 | $ cd ~
291 | $ git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git
292 | $ cd tensorflow
293 | $ git checkout -b v1.11.0
294 | $ bazel build tensorflow/tensorboard:tensorboard
295 | ```
296 | ### 2. Run log output program for Tensorboard
297 | ```python
298 | import tensorflow as tf
299 | from tensorflow.python.platform import gfile
300 |
301 | with tf.Session() as sess:
302 | model_filename ="xxxx.pb"
303 | with gfile.FastGFile(model_filename, "rb") as f:
304 | graph_def = tf.GraphDef()
305 | graph_def.ParseFromString(f.read())
306 | g_in = tf.import_graph_def(graph_def)
307 |
308 | LOGDIR="path/to/logs"
309 | train_writer = tf.summary.FileWriter(LOGDIR)
310 | train_writer.add_graph(sess.graph)
311 | ```
312 | ### 3. Starting Tensorboard
313 | ```bash
314 | $ bazel-bin/tensorflow/tensorboard/tensorboard --logdir=path/to/logs
315 | ```
316 | ### 4. Display of Tensorboard
317 | Access `http://localhost:6006` from the browser.
318 |
319 | # Reference article, thanks
320 | https://github.com/FionaZZ92/OpenVINO.git
321 | https://medium.com/@oleksandrsavsunenko/optimizing-neural-networks-for-production-with-intels-openvino-a7ee3a6883d
322 | https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
323 | https://blogs.yahoo.co.jp/verification_engineer/71450155.html
324 |
--------------------------------------------------------------------------------
/data/input/000003.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/000003.jpg
--------------------------------------------------------------------------------
/data/input/000004.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/000004.jpg
--------------------------------------------------------------------------------
/data/input/000170.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/000170.jpg
--------------------------------------------------------------------------------
/data/input/009649.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/009649.png
--------------------------------------------------------------------------------
/data/input/ade20k.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/ade20k.jpg
--------------------------------------------------------------------------------
/data/input/cityscapes1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/cityscapes1.png
--------------------------------------------------------------------------------
/data/input/cityscapes2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/cityscapes2.png
--------------------------------------------------------------------------------
/data/input/my_own_image.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/my_own_image.jpg
--------------------------------------------------------------------------------
/data/input/testvideo1.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/testvideo1.mp4
--------------------------------------------------------------------------------
/data/input/testvideo2.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/testvideo2.mp4
--------------------------------------------------------------------------------
/data/input/testvideo3.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/testvideo3.mp4
--------------------------------------------------------------------------------
/data/output/result1.MP4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result1.MP4
--------------------------------------------------------------------------------
/data/output/result2.MP4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result2.MP4
--------------------------------------------------------------------------------
/data/output/result3.MP4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result3.MP4
--------------------------------------------------------------------------------
/data/output/result_deeplabv3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result_deeplabv3.jpg
--------------------------------------------------------------------------------
/lib/libcpu_extension.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lib/libcpu_extension.so
--------------------------------------------------------------------------------
/lib/libformat_reader.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lib/libformat_reader.so
--------------------------------------------------------------------------------
/lib/libgflags_nothreads.a:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lib/libgflags_nothreads.a
--------------------------------------------------------------------------------
/lrmodelconvscript.txt:
--------------------------------------------------------------------------------
1 | sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \
2 | --input_model pbmodels/PascalVOC/frozen_inference_graph.pb \
3 | --input 0:MobilenetV2/Conv/Conv2D \
4 | --output ArgMax \
5 | --input_shape [1,513,513,3] \
6 | --output_dir lrmodels/PascalVOC/FP32
7 |
8 | sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \
9 | --input_model pbmodels/PascalVOC/frozen_inference_graph.pb \
10 | --input 0:MobilenetV2/Conv/Conv2D \
11 | --output ResizeBilinear_3 \
12 | --input_shape [1,513,513,3] \
13 | --output_dir lrmodels/PascalVOC/FP16 \
14 | --data_type FP16
15 |
--------------------------------------------------------------------------------
/lrmodels/MSCOCOcityscapes/FP16/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/MSCOCOcityscapes/FP16/.gitkeep
--------------------------------------------------------------------------------
/lrmodels/MSCOCOcityscapes/FP32/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/MSCOCOcityscapes/FP32/.gitkeep
--------------------------------------------------------------------------------
/lrmodels/PascalVOC/FP16/frozen_inference_graph.bin:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/PascalVOC/FP16/frozen_inference_graph.bin
--------------------------------------------------------------------------------
/lrmodels/PascalVOC/FP16/frozen_inference_graph.mapping:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 |
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 |
546 |
547 |
548 |
549 |
550 |
551 |
552 |
553 |
554 |
555 |
556 |
557 |
558 |
559 |
560 |
561 |
562 |
563 |
564 |
565 |
566 |
567 |
568 |
569 |
570 |
571 |
572 |
573 |
574 |
575 |
576 |
577 |
578 |
579 |
580 |
581 |
582 |
583 |
584 |
585 |
586 |
587 |
588 |
589 |
590 |
591 |
592 |
593 |
594 |
595 |
596 |
597 |
598 |
599 |
600 |
601 |
602 |
603 |
604 |
605 |
606 |
607 |
608 |
609 |
610 |
611 |
612 |
613 |
614 |
615 |
616 |
617 |
618 |
619 |
620 |
621 |
622 |
623 |
624 |
625 |
626 |
627 |
628 |
629 |
630 |
631 |
632 |
633 |
634 |
635 |
636 |
637 |
638 |
639 |
640 |
641 |
642 |
643 |
644 |
645 |
646 |
647 |
648 |
649 |
650 |
651 |
652 |
653 |
654 |
655 |
656 |
657 |
658 |
659 |
660 |
661 |
662 |
663 |
664 |
665 |
666 |
667 |
668 |
669 |
670 |
671 |
672 |
673 |
674 |
675 |
676 |
677 |
678 |
679 |
680 |
681 |
682 |
683 |
684 |
685 |
686 |
687 |
688 |
689 |
690 |
691 |
692 |
693 |
694 |
695 |
696 |
697 |
698 |
699 |
700 |
701 |
702 |
703 |
704 |
705 |
706 |
707 |
708 |
709 |
710 |
711 |
712 |
713 |
714 |
715 |
716 |
717 |
718 |
719 |
720 |
721 |
722 |
723 |
724 |
725 |
726 |
727 |
728 |
729 |
730 |
731 |
732 |
733 |
734 |
735 |
736 |
737 |
738 |
739 |
740 |
741 |
742 |
743 |
744 |
745 |
746 |
747 |
748 |
749 |
750 |
751 |
752 |
753 |
754 |
755 |
756 |
757 |
758 |
759 |
760 |
761 |
762 |
763 |
764 |
765 |
766 |
767 |
768 |
769 |
770 |
771 |
772 |
773 |
774 |
775 |
776 |
--------------------------------------------------------------------------------
/lrmodels/PascalVOC/FP16/frozen_inference_graph.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | 1
8 | 3
9 | 513
10 | 513
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 | 1
19 | 3
20 | 513
21 | 513
22 |
23 |
24 |
25 |
26 | 1
27 | 32
28 | 257
29 | 257
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 | 1
42 | 32
43 | 257
44 | 257
45 |
46 |
47 |
48 |
49 | 1
50 | 32
51 | 257
52 | 257
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 | 1
61 | 32
62 | 257
63 | 257
64 |
65 |
66 |
67 |
68 | 1
69 | 32
70 | 257
71 | 257
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 | 1
84 | 32
85 | 257
86 | 257
87 |
88 |
89 |
90 |
91 | 1
92 | 32
93 | 257
94 | 257
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 | 1
103 | 32
104 | 257
105 | 257
106 |
107 |
108 |
109 |
110 | 1
111 | 16
112 | 257
113 | 257
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 | 1
126 | 16
127 | 257
128 | 257
129 |
130 |
131 |
132 |
133 | 1
134 | 96
135 | 257
136 | 257
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 | 1
149 | 96
150 | 257
151 | 257
152 |
153 |
154 |
155 |
156 | 1
157 | 96
158 | 257
159 | 257
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 | 1
168 | 96
169 | 257
170 | 257
171 |
172 |
173 |
174 |
175 | 1
176 | 96
177 | 129
178 | 129
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 | 1
191 | 96
192 | 129
193 | 129
194 |
195 |
196 |
197 |
198 | 1
199 | 96
200 | 129
201 | 129
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 | 1
210 | 96
211 | 129
212 | 129
213 |
214 |
215 |
216 |
217 | 1
218 | 24
219 | 129
220 | 129
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 | 1
233 | 24
234 | 129
235 | 129
236 |
237 |
238 |
239 |
240 | 1
241 | 144
242 | 129
243 | 129
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 | 1
256 | 144
257 | 129
258 | 129
259 |
260 |
261 |
262 |
263 | 1
264 | 144
265 | 129
266 | 129
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 | 1
275 | 144
276 | 129
277 | 129
278 |
279 |
280 |
281 |
282 | 1
283 | 144
284 | 129
285 | 129
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 | 1
298 | 144
299 | 129
300 | 129
301 |
302 |
303 |
304 |
305 | 1
306 | 144
307 | 129
308 | 129
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 | 1
317 | 144
318 | 129
319 | 129
320 |
321 |
322 |
323 |
324 | 1
325 | 24
326 | 129
327 | 129
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 | 1
340 | 24
341 | 129
342 | 129
343 |
344 |
345 | 1
346 | 24
347 | 129
348 | 129
349 |
350 |
351 |
352 |
353 | 1
354 | 24
355 | 129
356 | 129
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 | 1
365 | 24
366 | 129
367 | 129
368 |
369 |
370 |
371 |
372 | 1
373 | 144
374 | 129
375 | 129
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 | 1
388 | 144
389 | 129
390 | 129
391 |
392 |
393 |
394 |
395 | 1
396 | 144
397 | 129
398 | 129
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 | 1
407 | 144
408 | 129
409 | 129
410 |
411 |
412 |
413 |
414 | 1
415 | 144
416 | 65
417 | 65
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 | 1
430 | 144
431 | 65
432 | 65
433 |
434 |
435 |
436 |
437 | 1
438 | 144
439 | 65
440 | 65
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 | 1
449 | 144
450 | 65
451 | 65
452 |
453 |
454 |
455 |
456 | 1
457 | 32
458 | 65
459 | 65
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 | 1
472 | 32
473 | 65
474 | 65
475 |
476 |
477 |
478 |
479 | 1
480 | 192
481 | 65
482 | 65
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 | 1
495 | 192
496 | 65
497 | 65
498 |
499 |
500 |
501 |
502 | 1
503 | 192
504 | 65
505 | 65
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 | 1
514 | 192
515 | 65
516 | 65
517 |
518 |
519 |
520 |
521 | 1
522 | 192
523 | 65
524 | 65
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 | 1
537 | 192
538 | 65
539 | 65
540 |
541 |
542 |
543 |
544 | 1
545 | 192
546 | 65
547 | 65
548 |
549 |
550 |
551 |
552 |
553 |
554 |
555 | 1
556 | 192
557 | 65
558 | 65
559 |
560 |
561 |
562 |
563 | 1
564 | 32
565 | 65
566 | 65
567 |
568 |
569 |
570 |
571 |
572 |
573 |
574 |
575 |
576 |
577 |
578 | 1
579 | 32
580 | 65
581 | 65
582 |
583 |
584 | 1
585 | 32
586 | 65
587 | 65
588 |
589 |
590 |
591 |
592 | 1
593 | 32
594 | 65
595 | 65
596 |
597 |
598 |
599 |
600 |
601 |
602 |
603 | 1
604 | 32
605 | 65
606 | 65
607 |
608 |
609 |
610 |
611 | 1
612 | 192
613 | 65
614 | 65
615 |
616 |
617 |
618 |
619 |
620 |
621 |
622 |
623 |
624 |
625 |
626 | 1
627 | 192
628 | 65
629 | 65
630 |
631 |
632 |
633 |
634 | 1
635 | 192
636 | 65
637 | 65
638 |
639 |
640 |
641 |
642 |
643 |
644 |
645 | 1
646 | 192
647 | 65
648 | 65
649 |
650 |
651 |
652 |
653 | 1
654 | 192
655 | 65
656 | 65
657 |
658 |
659 |
660 |
661 |
662 |
663 |
664 |
665 |
666 |
667 |
668 | 1
669 | 192
670 | 65
671 | 65
672 |
673 |
674 |
675 |
676 | 1
677 | 192
678 | 65
679 | 65
680 |
681 |
682 |
683 |
684 |
685 |
686 |
687 | 1
688 | 192
689 | 65
690 | 65
691 |
692 |
693 |
694 |
695 | 1
696 | 32
697 | 65
698 | 65
699 |
700 |
701 |
702 |
703 |
704 |
705 |
706 |
707 |
708 |
709 |
710 | 1
711 | 32
712 | 65
713 | 65
714 |
715 |
716 | 1
717 | 32
718 | 65
719 | 65
720 |
721 |
722 |
723 |
724 | 1
725 | 32
726 | 65
727 | 65
728 |
729 |
730 |
731 |
732 |
733 |
734 |
735 | 1
736 | 32
737 | 65
738 | 65
739 |
740 |
741 |
742 |
743 | 1
744 | 192
745 | 65
746 | 65
747 |
748 |
749 |
750 |
751 |
752 |
753 |
754 |
755 |
756 |
757 |
758 | 1
759 | 192
760 | 65
761 | 65
762 |
763 |
764 |
765 |
766 | 1
767 | 192
768 | 65
769 | 65
770 |
771 |
772 |
773 |
774 |
775 |
776 |
777 | 1
778 | 192
779 | 65
780 | 65
781 |
782 |
783 |
784 |
785 | 1
786 | 192
787 | 65
788 | 65
789 |
790 |
791 |
792 |
793 |
794 |
795 |
796 |
797 |
798 |
799 |
800 | 1
801 | 192
802 | 65
803 | 65
804 |
805 |
806 |
807 |
808 | 1
809 | 192
810 | 65
811 | 65
812 |
813 |
814 |
815 |
816 |
817 |
818 |
819 | 1
820 | 192
821 | 65
822 | 65
823 |
824 |
825 |
826 |
827 | 1
828 | 64
829 | 65
830 | 65
831 |
832 |
833 |
834 |
835 |
836 |
837 |
838 |
839 |
840 |
841 |
842 | 1
843 | 64
844 | 65
845 | 65
846 |
847 |
848 |
849 |
850 | 1
851 | 384
852 | 65
853 | 65
854 |
855 |
856 |
857 |
858 |
859 |
860 |
861 |
862 |
863 |
864 |
865 | 1
866 | 384
867 | 65
868 | 65
869 |
870 |
871 |
872 |
873 | 1
874 | 384
875 | 65
876 | 65
877 |
878 |
879 |
880 |
881 |
882 |
883 |
884 | 1
885 | 384
886 | 65
887 | 65
888 |
889 |
890 |
891 |
892 | 1
893 | 384
894 | 65
895 | 65
896 |
897 |
898 |
899 |
900 |
901 |
902 |
903 |
904 |
905 |
906 |
907 | 1
908 | 384
909 | 65
910 | 65
911 |
912 |
913 |
914 |
915 | 1
916 | 384
917 | 65
918 | 65
919 |
920 |
921 |
922 |
923 |
924 |
925 |
926 | 1
927 | 384
928 | 65
929 | 65
930 |
931 |
932 |
933 |
934 | 1
935 | 64
936 | 65
937 | 65
938 |
939 |
940 |
941 |
942 |
943 |
944 |
945 |
946 |
947 |
948 |
949 | 1
950 | 64
951 | 65
952 | 65
953 |
954 |
955 | 1
956 | 64
957 | 65
958 | 65
959 |
960 |
961 |
962 |
963 | 1
964 | 64
965 | 65
966 | 65
967 |
968 |
969 |
970 |
971 |
972 |
973 |
974 | 1
975 | 64
976 | 65
977 | 65
978 |
979 |
980 |
981 |
982 | 1
983 | 384
984 | 65
985 | 65
986 |
987 |
988 |
989 |
990 |
991 |
992 |
993 |
994 |
995 |
996 |
997 | 1
998 | 384
999 | 65
1000 | 65
1001 |
1002 |
1003 |
1004 |
1005 | 1
1006 | 384
1007 | 65
1008 | 65
1009 |
1010 |
1011 |
1012 |
1013 |
1014 |
1015 |
1016 | 1
1017 | 384
1018 | 65
1019 | 65
1020 |
1021 |
1022 |
1023 |
1024 | 1
1025 | 384
1026 | 65
1027 | 65
1028 |
1029 |
1030 |
1031 |
1032 |
1033 |
1034 |
1035 |
1036 |
1037 |
1038 |
1039 | 1
1040 | 384
1041 | 65
1042 | 65
1043 |
1044 |
1045 |
1046 |
1047 | 1
1048 | 384
1049 | 65
1050 | 65
1051 |
1052 |
1053 |
1054 |
1055 |
1056 |
1057 |
1058 | 1
1059 | 384
1060 | 65
1061 | 65
1062 |
1063 |
1064 |
1065 |
1066 | 1
1067 | 64
1068 | 65
1069 | 65
1070 |
1071 |
1072 |
1073 |
1074 |
1075 |
1076 |
1077 |
1078 |
1079 |
1080 |
1081 | 1
1082 | 64
1083 | 65
1084 | 65
1085 |
1086 |
1087 | 1
1088 | 64
1089 | 65
1090 | 65
1091 |
1092 |
1093 |
1094 |
1095 | 1
1096 | 64
1097 | 65
1098 | 65
1099 |
1100 |
1101 |
1102 |
1103 |
1104 |
1105 |
1106 | 1
1107 | 64
1108 | 65
1109 | 65
1110 |
1111 |
1112 |
1113 |
1114 | 1
1115 | 384
1116 | 65
1117 | 65
1118 |
1119 |
1120 |
1121 |
1122 |
1123 |
1124 |
1125 |
1126 |
1127 |
1128 |
1129 | 1
1130 | 384
1131 | 65
1132 | 65
1133 |
1134 |
1135 |
1136 |
1137 | 1
1138 | 384
1139 | 65
1140 | 65
1141 |
1142 |
1143 |
1144 |
1145 |
1146 |
1147 |
1148 | 1
1149 | 384
1150 | 65
1151 | 65
1152 |
1153 |
1154 |
1155 |
1156 | 1
1157 | 384
1158 | 65
1159 | 65
1160 |
1161 |
1162 |
1163 |
1164 |
1165 |
1166 |
1167 |
1168 |
1169 |
1170 |
1171 | 1
1172 | 384
1173 | 65
1174 | 65
1175 |
1176 |
1177 |
1178 |
1179 | 1
1180 | 384
1181 | 65
1182 | 65
1183 |
1184 |
1185 |
1186 |
1187 |
1188 |
1189 |
1190 | 1
1191 | 384
1192 | 65
1193 | 65
1194 |
1195 |
1196 |
1197 |
1198 | 1
1199 | 64
1200 | 65
1201 | 65
1202 |
1203 |
1204 |
1205 |
1206 |
1207 |
1208 |
1209 |
1210 |
1211 |
1212 |
1213 | 1
1214 | 64
1215 | 65
1216 | 65
1217 |
1218 |
1219 | 1
1220 | 64
1221 | 65
1222 | 65
1223 |
1224 |
1225 |
1226 |
1227 | 1
1228 | 64
1229 | 65
1230 | 65
1231 |
1232 |
1233 |
1234 |
1235 |
1236 |
1237 |
1238 | 1
1239 | 64
1240 | 65
1241 | 65
1242 |
1243 |
1244 |
1245 |
1246 | 1
1247 | 384
1248 | 65
1249 | 65
1250 |
1251 |
1252 |
1253 |
1254 |
1255 |
1256 |
1257 |
1258 |
1259 |
1260 |
1261 | 1
1262 | 384
1263 | 65
1264 | 65
1265 |
1266 |
1267 |
1268 |
1269 | 1
1270 | 384
1271 | 65
1272 | 65
1273 |
1274 |
1275 |
1276 |
1277 |
1278 |
1279 |
1280 | 1
1281 | 384
1282 | 65
1283 | 65
1284 |
1285 |
1286 |
1287 |
1288 | 1
1289 | 384
1290 | 65
1291 | 65
1292 |
1293 |
1294 |
1295 |
1296 |
1297 |
1298 |
1299 |
1300 |
1301 |
1302 |
1303 | 1
1304 | 384
1305 | 65
1306 | 65
1307 |
1308 |
1309 |
1310 |
1311 | 1
1312 | 384
1313 | 65
1314 | 65
1315 |
1316 |
1317 |
1318 |
1319 |
1320 |
1321 |
1322 | 1
1323 | 384
1324 | 65
1325 | 65
1326 |
1327 |
1328 |
1329 |
1330 | 1
1331 | 96
1332 | 65
1333 | 65
1334 |
1335 |
1336 |
1337 |
1338 |
1339 |
1340 |
1341 |
1342 |
1343 |
1344 |
1345 | 1
1346 | 96
1347 | 65
1348 | 65
1349 |
1350 |
1351 |
1352 |
1353 | 1
1354 | 576
1355 | 65
1356 | 65
1357 |
1358 |
1359 |
1360 |
1361 |
1362 |
1363 |
1364 |
1365 |
1366 |
1367 |
1368 | 1
1369 | 576
1370 | 65
1371 | 65
1372 |
1373 |
1374 |
1375 |
1376 | 1
1377 | 576
1378 | 65
1379 | 65
1380 |
1381 |
1382 |
1383 |
1384 |
1385 |
1386 |
1387 | 1
1388 | 576
1389 | 65
1390 | 65
1391 |
1392 |
1393 |
1394 |
1395 | 1
1396 | 576
1397 | 65
1398 | 65
1399 |
1400 |
1401 |
1402 |
1403 |
1404 |
1405 |
1406 |
1407 |
1408 |
1409 |
1410 | 1
1411 | 576
1412 | 65
1413 | 65
1414 |
1415 |
1416 |
1417 |
1418 | 1
1419 | 576
1420 | 65
1421 | 65
1422 |
1423 |
1424 |
1425 |
1426 |
1427 |
1428 |
1429 | 1
1430 | 576
1431 | 65
1432 | 65
1433 |
1434 |
1435 |
1436 |
1437 | 1
1438 | 96
1439 | 65
1440 | 65
1441 |
1442 |
1443 |
1444 |
1445 |
1446 |
1447 |
1448 |
1449 |
1450 |
1451 |
1452 | 1
1453 | 96
1454 | 65
1455 | 65
1456 |
1457 |
1458 | 1
1459 | 96
1460 | 65
1461 | 65
1462 |
1463 |
1464 |
1465 |
1466 | 1
1467 | 96
1468 | 65
1469 | 65
1470 |
1471 |
1472 |
1473 |
1474 |
1475 |
1476 |
1477 | 1
1478 | 96
1479 | 65
1480 | 65
1481 |
1482 |
1483 |
1484 |
1485 | 1
1486 | 576
1487 | 65
1488 | 65
1489 |
1490 |
1491 |
1492 |
1493 |
1494 |
1495 |
1496 |
1497 |
1498 |
1499 |
1500 | 1
1501 | 576
1502 | 65
1503 | 65
1504 |
1505 |
1506 |
1507 |
1508 | 1
1509 | 576
1510 | 65
1511 | 65
1512 |
1513 |
1514 |
1515 |
1516 |
1517 |
1518 |
1519 | 1
1520 | 576
1521 | 65
1522 | 65
1523 |
1524 |
1525 |
1526 |
1527 | 1
1528 | 576
1529 | 65
1530 | 65
1531 |
1532 |
1533 |
1534 |
1535 |
1536 |
1537 |
1538 |
1539 |
1540 |
1541 |
1542 | 1
1543 | 576
1544 | 65
1545 | 65
1546 |
1547 |
1548 |
1549 |
1550 | 1
1551 | 576
1552 | 65
1553 | 65
1554 |
1555 |
1556 |
1557 |
1558 |
1559 |
1560 |
1561 | 1
1562 | 576
1563 | 65
1564 | 65
1565 |
1566 |
1567 |
1568 |
1569 | 1
1570 | 96
1571 | 65
1572 | 65
1573 |
1574 |
1575 |
1576 |
1577 |
1578 |
1579 |
1580 |
1581 |
1582 |
1583 |
1584 | 1
1585 | 96
1586 | 65
1587 | 65
1588 |
1589 |
1590 | 1
1591 | 96
1592 | 65
1593 | 65
1594 |
1595 |
1596 |
1597 |
1598 | 1
1599 | 96
1600 | 65
1601 | 65
1602 |
1603 |
1604 |
1605 |
1606 |
1607 |
1608 |
1609 | 1
1610 | 96
1611 | 65
1612 | 65
1613 |
1614 |
1615 |
1616 |
1617 | 1
1618 | 576
1619 | 65
1620 | 65
1621 |
1622 |
1623 |
1624 |
1625 |
1626 |
1627 |
1628 |
1629 |
1630 |
1631 |
1632 | 1
1633 | 576
1634 | 65
1635 | 65
1636 |
1637 |
1638 |
1639 |
1640 | 1
1641 | 576
1642 | 65
1643 | 65
1644 |
1645 |
1646 |
1647 |
1648 |
1649 |
1650 |
1651 | 1
1652 | 576
1653 | 65
1654 | 65
1655 |
1656 |
1657 |
1658 |
1659 | 1
1660 | 576
1661 | 65
1662 | 65
1663 |
1664 |
1665 |
1666 |
1667 |
1668 |
1669 |
1670 |
1671 |
1672 |
1673 |
1674 | 1
1675 | 576
1676 | 65
1677 | 65
1678 |
1679 |
1680 |
1681 |
1682 | 1
1683 | 576
1684 | 65
1685 | 65
1686 |
1687 |
1688 |
1689 |
1690 |
1691 |
1692 |
1693 | 1
1694 | 576
1695 | 65
1696 | 65
1697 |
1698 |
1699 |
1700 |
1701 | 1
1702 | 160
1703 | 65
1704 | 65
1705 |
1706 |
1707 |
1708 |
1709 |
1710 |
1711 |
1712 |
1713 |
1714 |
1715 |
1716 | 1
1717 | 160
1718 | 65
1719 | 65
1720 |
1721 |
1722 |
1723 |
1724 | 1
1725 | 960
1726 | 65
1727 | 65
1728 |
1729 |
1730 |
1731 |
1732 |
1733 |
1734 |
1735 |
1736 |
1737 |
1738 |
1739 | 1
1740 | 960
1741 | 65
1742 | 65
1743 |
1744 |
1745 |
1746 |
1747 | 1
1748 | 960
1749 | 65
1750 | 65
1751 |
1752 |
1753 |
1754 |
1755 |
1756 |
1757 |
1758 | 1
1759 | 960
1760 | 65
1761 | 65
1762 |
1763 |
1764 |
1765 |
1766 | 1
1767 | 960
1768 | 65
1769 | 65
1770 |
1771 |
1772 |
1773 |
1774 |
1775 |
1776 |
1777 |
1778 |
1779 |
1780 |
1781 | 1
1782 | 960
1783 | 65
1784 | 65
1785 |
1786 |
1787 |
1788 |
1789 | 1
1790 | 960
1791 | 65
1792 | 65
1793 |
1794 |
1795 |
1796 |
1797 |
1798 |
1799 |
1800 | 1
1801 | 960
1802 | 65
1803 | 65
1804 |
1805 |
1806 |
1807 |
1808 | 1
1809 | 160
1810 | 65
1811 | 65
1812 |
1813 |
1814 |
1815 |
1816 |
1817 |
1818 |
1819 |
1820 |
1821 |
1822 |
1823 | 1
1824 | 160
1825 | 65
1826 | 65
1827 |
1828 |
1829 | 1
1830 | 160
1831 | 65
1832 | 65
1833 |
1834 |
1835 |
1836 |
1837 | 1
1838 | 160
1839 | 65
1840 | 65
1841 |
1842 |
1843 |
1844 |
1845 |
1846 |
1847 |
1848 | 1
1849 | 160
1850 | 65
1851 | 65
1852 |
1853 |
1854 |
1855 |
1856 | 1
1857 | 960
1858 | 65
1859 | 65
1860 |
1861 |
1862 |
1863 |
1864 |
1865 |
1866 |
1867 |
1868 |
1869 |
1870 |
1871 | 1
1872 | 960
1873 | 65
1874 | 65
1875 |
1876 |
1877 |
1878 |
1879 | 1
1880 | 960
1881 | 65
1882 | 65
1883 |
1884 |
1885 |
1886 |
1887 |
1888 |
1889 |
1890 | 1
1891 | 960
1892 | 65
1893 | 65
1894 |
1895 |
1896 |
1897 |
1898 | 1
1899 | 960
1900 | 65
1901 | 65
1902 |
1903 |
1904 |
1905 |
1906 |
1907 |
1908 |
1909 |
1910 |
1911 |
1912 |
1913 | 1
1914 | 960
1915 | 65
1916 | 65
1917 |
1918 |
1919 |
1920 |
1921 | 1
1922 | 960
1923 | 65
1924 | 65
1925 |
1926 |
1927 |
1928 |
1929 |
1930 |
1931 |
1932 | 1
1933 | 960
1934 | 65
1935 | 65
1936 |
1937 |
1938 |
1939 |
1940 | 1
1941 | 160
1942 | 65
1943 | 65
1944 |
1945 |
1946 |
1947 |
1948 |
1949 |
1950 |
1951 |
1952 |
1953 |
1954 |
1955 | 1
1956 | 160
1957 | 65
1958 | 65
1959 |
1960 |
1961 | 1
1962 | 160
1963 | 65
1964 | 65
1965 |
1966 |
1967 |
1968 |
1969 | 1
1970 | 160
1971 | 65
1972 | 65
1973 |
1974 |
1975 |
1976 |
1977 |
1978 |
1979 |
1980 | 1
1981 | 160
1982 | 65
1983 | 65
1984 |
1985 |
1986 |
1987 |
1988 | 1
1989 | 960
1990 | 65
1991 | 65
1992 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
1999 |
2000 |
2001 |
2002 |
2003 | 1
2004 | 960
2005 | 65
2006 | 65
2007 |
2008 |
2009 |
2010 |
2011 | 1
2012 | 960
2013 | 65
2014 | 65
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 | 1
2023 | 960
2024 | 65
2025 | 65
2026 |
2027 |
2028 |
2029 |
2030 | 1
2031 | 960
2032 | 65
2033 | 65
2034 |
2035 |
2036 |
2037 |
2038 |
2039 |
2040 |
2041 |
2042 |
2043 |
2044 |
2045 | 1
2046 | 960
2047 | 65
2048 | 65
2049 |
2050 |
2051 |
2052 |
2053 | 1
2054 | 960
2055 | 65
2056 | 65
2057 |
2058 |
2059 |
2060 |
2061 |
2062 |
2063 |
2064 | 1
2065 | 960
2066 | 65
2067 | 65
2068 |
2069 |
2070 |
2071 |
2072 | 1
2073 | 320
2074 | 65
2075 | 65
2076 |
2077 |
2078 |
2079 |
2080 |
2081 |
2082 |
2083 |
2084 |
2085 |
2086 |
2087 | 1
2088 | 320
2089 | 65
2090 | 65
2091 |
2092 |
2093 |
2094 |
2095 | 1
2096 | 320
2097 | 1
2098 | 1
2099 |
2100 |
2101 |
2102 |
2103 |
2104 |
2105 |
2106 | 1
2107 | 320
2108 | 1
2109 | 1
2110 |
2111 |
2112 |
2113 |
2114 | 1
2115 | 256
2116 | 1
2117 | 1
2118 |
2119 |
2120 |
2121 |
2122 |
2123 |
2124 |
2125 |
2126 |
2127 |
2128 | 1
2129 | 256
2130 | 1
2131 | 1
2132 |
2133 |
2134 |
2135 |
2136 | 1
2137 | 256
2138 | 1
2139 | 1
2140 |
2141 |
2142 |
2143 |
2144 |
2145 |
2146 |
2147 | 1
2148 | 256
2149 | 1
2150 | 1
2151 |
2152 |
2153 |
2154 |
2155 | 1
2156 | 256
2157 | 65
2158 | 65
2159 |
2160 |
2161 |
2162 |
2163 |
2164 |
2165 |
2166 | 1
2167 | 320
2168 | 65
2169 | 65
2170 |
2171 |
2172 |
2173 |
2174 | 1
2175 | 256
2176 | 65
2177 | 65
2178 |
2179 |
2180 |
2181 |
2182 |
2183 |
2184 |
2185 |
2186 |
2187 |
2188 | 1
2189 | 256
2190 | 65
2191 | 65
2192 |
2193 |
2194 |
2195 |
2196 | 1
2197 | 256
2198 | 65
2199 | 65
2200 |
2201 |
2202 |
2203 |
2204 |
2205 |
2206 |
2207 | 1
2208 | 256
2209 | 65
2210 | 65
2211 |
2212 |
2213 | 1
2214 | 256
2215 | 65
2216 | 65
2217 |
2218 |
2219 |
2220 |
2221 | 1
2222 | 512
2223 | 65
2224 | 65
2225 |
2226 |
2227 |
2228 |
2229 |
2230 |
2231 |
2232 | 1
2233 | 512
2234 | 65
2235 | 65
2236 |
2237 |
2238 |
2239 |
2240 | 1
2241 | 256
2242 | 65
2243 | 65
2244 |
2245 |
2246 |
2247 |
2248 |
2249 |
2250 |
2251 |
2252 |
2253 |
2254 | 1
2255 | 256
2256 | 65
2257 | 65
2258 |
2259 |
2260 |
2261 |
2262 | 1
2263 | 256
2264 | 65
2265 | 65
2266 |
2267 |
2268 |
2269 |
2270 |
2271 |
2272 |
2273 | 1
2274 | 256
2275 | 65
2276 | 65
2277 |
2278 |
2279 |
2280 |
2281 | 1
2282 | 21
2283 | 65
2284 | 65
2285 |
2286 |
2287 |
2288 |
2289 |
2290 |
2291 |
2292 |
2293 |
2294 |
2295 |
2296 | 1
2297 | 21
2298 | 65
2299 | 65
2300 |
2301 |
2302 |
2303 |
2304 | 1
2305 | 21
2306 | 65
2307 | 65
2308 |
2309 |
2310 |
2311 |
2312 |
2313 |
2314 |
2315 | 1
2316 | 21
2317 | 65
2318 | 65
2319 |
2320 |
2321 |
2322 |
2323 | 1
2324 | 21
2325 | 513
2326 | 513
2327 |
2328 |
2329 |
2330 |
2331 |
2332 |
2333 |
2334 |
2335 |
2336 |
2337 |
2338 |
2339 |
2340 |
2341 |
2342 |
2343 |
2344 |
2345 |
2346 |
2347 |
2348 |
2349 |
2350 |
2351 |
2352 |
2353 |
2354 |
2355 |
2356 |
2357 |
2358 |
2359 |
2360 |
2361 |
2362 |
2363 |
2364 |
2365 |
2366 |
2367 |
2368 |
2369 |
2370 |
2371 |
2372 |
2373 |
2374 |
2375 |
2376 |
2377 |
2378 |
2379 |
2380 |
2381 |
2382 |
2383 |
2384 |
2385 |
2386 |
2387 |
2388 |
2389 |
2390 |
2391 |
2392 |
2393 |
2394 |
2395 |
2396 |
2397 |
2398 |
2399 |
2400 |
2401 |
2402 |
2403 |
2404 |
2405 |
2406 |
2407 |
2408 |
2409 |
2410 |
2411 |
2412 |
2413 |
2414 |
2415 |
2416 |
2417 |
2418 |
2419 |
2420 |
2421 |
2422 |
2423 |
2424 |
2425 |
2426 |
2427 |
2428 |
2429 |
2430 |
2431 |
2432 |
2433 |
2434 |
2435 |
2436 |
2437 |
2438 |
2439 |
2440 |
2441 |
2442 |
2443 |
2444 |
2445 |
2446 |
2447 |
2448 |
2449 |
2450 |
2451 |
2452 |
2453 |
2454 |
2455 |
2456 |
2457 |
2458 |
2459 |
2460 |
2461 |
2462 |
2463 |
2464 |
2465 |
2466 |
2467 |
2468 |
2469 |
2470 |
2471 |
2472 |
2473 |
2474 |
2475 |
2476 |
2477 |
2478 |
2479 |
2480 |
--------------------------------------------------------------------------------
/lrmodels/PascalVOC/FP32/frozen_inference_graph.bin:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/PascalVOC/FP32/frozen_inference_graph.bin
--------------------------------------------------------------------------------
/lrmodels/PascalVOC/FP32/frozen_inference_graph.mapping:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 |
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 |
546 |
547 |
548 |
549 |
550 |
551 |
552 |
553 |
554 |
555 |
556 |
557 |
558 |
559 |
560 |
561 |
562 |
563 |
564 |
565 |
566 |
567 |
568 |
569 |
570 |
571 |
572 |
573 |
574 |
575 |
576 |
577 |
578 |
579 |
580 |
581 |
582 |
583 |
584 |
585 |
586 |
587 |
588 |
589 |
590 |
591 |
592 |
593 |
594 |
595 |
596 |
597 |
598 |
599 |
600 |
601 |
602 |
603 |
604 |
605 |
606 |
607 |
608 |
609 |
610 |
611 |
612 |
613 |
614 |
615 |
616 |
617 |
618 |
619 |
620 |
621 |
622 |
623 |
624 |
625 |
626 |
627 |
628 |
629 |
630 |
631 |
632 |
633 |
634 |
635 |
636 |
637 |
638 |
639 |
640 |
641 |
642 |
643 |
644 |
645 |
646 |
647 |
648 |
649 |
650 |
651 |
652 |
653 |
654 |
655 |
656 |
657 |
658 |
659 |
660 |
661 |
662 |
663 |
664 |
665 |
666 |
667 |
668 |
669 |
670 |
671 |
672 |
673 |
674 |
675 |
676 |
677 |
678 |
679 |
680 |
681 |
682 |
683 |
684 |
685 |
686 |
687 |
688 |
689 |
690 |
691 |
692 |
693 |
694 |
695 |
696 |
697 |
698 |
699 |
700 |
701 |
702 |
703 |
704 |
705 |
706 |
707 |
708 |
709 |
710 |
711 |
712 |
713 |
714 |
715 |
716 |
717 |
718 |
719 |
720 |
721 |
722 |
723 |
724 |
725 |
726 |
727 |
728 |
729 |
730 |
731 |
732 |
733 |
734 |
735 |
736 |
737 |
738 |
739 |
740 |
741 |
742 |
743 |
744 |
745 |
746 |
747 |
748 |
749 |
750 |
751 |
752 |
753 |
754 |
755 |
756 |
757 |
758 |
759 |
760 |
761 |
762 |
763 |
764 |
765 |
766 |
767 |
768 |
769 |
770 |
771 |
772 |
773 |
774 |
775 |
776 |
--------------------------------------------------------------------------------
/lrmodels/PascalVOC/FP32/inputoutput.txt:
--------------------------------------------------------------------------------
1 | INPUT_TENSOR_NAME = 0:MobilenetV2/Conv/Conv2D
2 | OUTPUT_TENSOR_NAME = ArgMax
3 | INPUT_SIZE = [1,513,513,3]
4 | FROZEN_GRAPH_NAME = frozen_inference_graph.pb
5 |
6 |
--------------------------------------------------------------------------------
/media/01.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/01.jpg
--------------------------------------------------------------------------------
/media/02.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/02.jpg
--------------------------------------------------------------------------------
/media/03.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/03.jpg
--------------------------------------------------------------------------------
/media/sample01.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample01.jpg
--------------------------------------------------------------------------------
/media/sample02.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample02.jpg
--------------------------------------------------------------------------------
/media/sample03.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample03.jpg
--------------------------------------------------------------------------------
/media/sample04.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample04.jpg
--------------------------------------------------------------------------------
/openvino_deeplabv3_test.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | from argparse import ArgumentParser
4 | import numpy as np
5 | import cv2
6 | import time
7 | from PIL import Image
8 | import tensorflow as tf
9 | from tensorflow.python.platform import gfile
10 | try:
11 | from armv7l.openvino.inference_engine import IENetwork, IEPlugin
12 | except:
13 | from openvino.inference_engine import IENetwork, IEPlugin
14 |
15 | class _model_preprocess():
16 | def __init__(self):
17 | graph = tf.Graph()
18 | f_handle = gfile.FastGFile("pbmodels/PascalVOC/frozen_inference_graph.pb", "rb")
19 | graph_def = tf.GraphDef.FromString(f_handle.read())
20 | with graph.as_default():
21 | tf.import_graph_def(graph_def, name='')
22 | self. sess = tf.Session(graph=graph)
23 |
24 | def _pre_process(self, image):
25 | seg_map = self.sess.run("sub_7:0", feed_dict={"ImageTensor:0": [image]})
26 | return seg_map
27 |
28 |
29 | class _model_postprocess():
30 | def __init__(self):
31 | graph = tf.Graph()
32 | f_handle = gfile.FastGFile("pbmodels/PascalVOC/frozen_inference_graph.pb", "rb")
33 | graph_def = tf.GraphDef.FromString(f_handle.read())
34 | with graph.as_default():
35 | new_input = tf.placeholder(tf.int64, shape=(1, 513, 513), name="new_input")
36 | tf.import_graph_def(graph_def, input_map={"ArgMax:0": new_input}, name='')
37 | self.sess = tf.Session(graph=graph)
38 |
39 | def _post_process(self, image_ir, image):
40 | seg_map = self.sess.run("SemanticPredictions:0", feed_dict={"ImageTensor:0": [image], "new_input:0": np.int64(image_ir)})
41 | return seg_map
42 |
43 |
44 | _pre = _model_preprocess()
45 | _post = _model_postprocess()
46 |
47 |
48 | def build_argparser():
49 | parser = ArgumentParser()
50 | parser.add_argument("-pp", "--plugin_dir", help="Path to a plugin folder", type=str, default=None)
51 | parser.add_argument("-d", "--device", help="Specify the target device to infer on; CPU, GPU, FPGA or MYRIAD is acceptable. Sample will look for a suitable plugin for device specified (CPU by default)", default="CPU", type=str)
52 | parser.add_argument("-nt", "--number_top", help="Number of top results", default=10, type=int)
53 | parser.add_argument("-pc", "--performance", help="Enables per-layer performance report", action='store_true')
54 |
55 | return parser
56 |
57 |
58 | def main_IE_infer():
59 | camera_width = 320
60 | camera_height = 240
61 | m_input_size=513
62 | fps = ""
63 | framepos = 0
64 | frame_count = 0
65 | vidfps = 0
66 | skip_frame = 0
67 | elapsedTime = 0
68 |
69 | args = build_argparser().parse_args()
70 | #model_xml = "lrmodels/PascalVOC/FP32/frozen_inference_graph.xml" #<--- CPU
71 | model_xml = "lrmodels/PascalVOC/FP16/frozen_inference_graph.xml" #<--- MYRIAD
72 | model_bin = os.path.splitext(model_xml)[0] + ".bin"
73 |
74 | seg_image = Image.open("data/input/009649.png")
75 | palette = seg_image.getpalette() # Get a color palette
76 |
77 | cap = cv2.VideoCapture(0)
78 | cap.set(cv2.CAP_PROP_FPS, 10)
79 | cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
80 | cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
81 |
82 | #cap = cv2.VideoCapture("data/input/testvideo.mp4")
83 | #camera_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
84 | #camera_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
85 | #frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
86 | #vidfps = int(cap.get(cv2.CAP_PROP_FPS))
87 | #print("videosFrameCount =", str(frame_count))
88 | #print("videosFPS =", str(vidfps))
89 |
90 | time.sleep(1)
91 |
92 | plugin = IEPlugin(device=args.device, plugin_dirs=args.plugin_dir)
93 | if "CPU" in args.device:
94 | plugin.add_cpu_extension("lib/libcpu_extension.so")
95 | if args.performance:
96 | plugin.set_config({"PERF_COUNT": "YES"})
97 | # Read IR
98 | net = IENetwork(model=model_xml, weights=model_bin)
99 | input_blob = next(iter(net.inputs))
100 | exec_net = plugin.load(network=net)
101 |
102 | while cap.isOpened():
103 | t1 = time.time()
104 |
105 | #cap.set(cv2.CAP_PROP_POS_FRAMES, framepos) # Uncomment only when playing video files
106 |
107 | ret, image = cap.read()
108 | if not ret:
109 | break
110 |
111 | ratio = 1.0 * m_input_size / max(image.shape[0], image.shape[1])
112 | shrink_size = (int(ratio * image.shape[1]), int(ratio * image.shape[0]))
113 | image = cv2.resize(image, shrink_size, interpolation=cv2.INTER_CUBIC)
114 |
115 | prepimg = _pre._pre_process(image)
116 | prepimg = prepimg.transpose((0, 3, 1, 2)) #NHWC to NCHW
117 | res = exec_net.infer(inputs={input_blob: prepimg})
118 | result = _post._post_process(res["ArgMax/Squeeze"], image)[0]
119 |
120 | outputimg = Image.fromarray(np.uint8(result), mode="P")
121 | outputimg.putpalette(palette)
122 | outputimg = outputimg.convert("RGB")
123 | outputimg = np.asarray(outputimg)
124 | outputimg = cv2.cvtColor(outputimg, cv2.COLOR_RGB2BGR)
125 | outputimg = cv2.addWeighted(image, 1.0, outputimg, 0.9, 0)
126 | outputimg = cv2.resize(outputimg, (camera_width, camera_height))
127 |
128 | cv2.putText(outputimg, fps, (camera_width-180,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
129 | cv2.imshow("Result", outputimg)
130 |
131 | if cv2.waitKey(1)&0xFF == ord('q'):
132 | break
133 | elapsedTime = time.time() - t1
134 | fps = "(Playback) {:.1f} FPS".format(1/elapsedTime)
135 |
136 | # frame skip, video file only
137 | skip_frame = int((vidfps - int(1/elapsedTime)) / int(1/elapsedTime))
138 | framepos += skip_frame
139 |
140 | cv2.destroyAllWindows()
141 | del net
142 | del exec_net
143 | del plugin
144 |
145 |
146 | if __name__ == '__main__':
147 | sys.exit(main_IE_infer() or 0)
148 |
--------------------------------------------------------------------------------
/pbmodels/MSCOCOcityscapes/frozen_inference_graph.pb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/MSCOCOcityscapes/frozen_inference_graph.pb
--------------------------------------------------------------------------------
/pbmodels/MSCOCOcityscapes/inputoutput.txt:
--------------------------------------------------------------------------------
1 | INPUT_TENSOR_NAME = ImageTensor:0
2 | OUTPUT_TENSOR_NAME = SemanticPredictions:0
3 | INPUT_SIZE = [1,-1,-1,3]
4 | FROZEN_GRAPH_NAME = frozen_inference_graph.pb
5 |
6 |
--------------------------------------------------------------------------------
/pbmodels/MSCOCOcityscapes/model.ckpt.data-00000-of-00001:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/MSCOCOcityscapes/model.ckpt.data-00000-of-00001
--------------------------------------------------------------------------------
/pbmodels/MSCOCOcityscapes/model.ckpt.index:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/MSCOCOcityscapes/model.ckpt.index
--------------------------------------------------------------------------------
/pbmodels/PascalVOC/frozen_inference_graph.pb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/PascalVOC/frozen_inference_graph.pb
--------------------------------------------------------------------------------
/pbmodels/PascalVOC/inputoutput.txt:
--------------------------------------------------------------------------------
1 | INPUT_TENSOR_NAME = ImageTensor:0
2 | OUTPUT_TENSOR_NAME = SemanticPredictions:0
3 | INPUT_SIZE = [1,513,513,3]
4 | FROZEN_GRAPH_NAME = frozen_inference_graph.pb
5 |
6 |
--------------------------------------------------------------------------------
/pbmodels/PascalVOC/model.ckpt-30000.data-00000-of-00001:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/PascalVOC/model.ckpt-30000.data-00000-of-00001
--------------------------------------------------------------------------------
/pbmodels/PascalVOC/model.ckpt-30000.index:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/PascalVOC/model.ckpt-30000.index
--------------------------------------------------------------------------------
/savedmodel/events.out.tfevents.1546483660.ubuntu:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/savedmodel/events.out.tfevents.1546483660.ubuntu
--------------------------------------------------------------------------------
/tensorboard_output.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | from tensorflow.python.platform import gfile
3 |
4 | with tf.Session() as sess:
5 | model_filename ="pbmodels/PascalVOC/frozen_inference_graph.pb"
6 | with gfile.FastGFile(model_filename, "rb") as f:
7 | graph_def = tf.GraphDef()
8 | graph_def.ParseFromString(f.read())
9 | g_in = tf.import_graph_def(graph_def)
10 |
11 | LOGDIR="savedmodel"
12 | train_writer = tf.summary.FileWriter(LOGDIR)
13 | train_writer.add_graph(sess.graph)
14 |
--------------------------------------------------------------------------------
/tensorboard_start_script.txt:
--------------------------------------------------------------------------------
1 | tensorboard --logdir=/home/b920405/git/OpenVINO-DeeplabV3/savedmodel
2 |
--------------------------------------------------------------------------------
/tfconverter.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | from google.protobuf import text_format
3 | from tensorflow.python.platform import gfile
4 |
5 | def pbtxt_to_graphdef(filename):
6 | with open(filename, 'r') as f:
7 | graph_def = tf.GraphDef()
8 | file_content = f.read()
9 | text_format.Merge(file_content, graph_def)
10 | tf.import_graph_def(graph_def, name='')
11 | tf.train.write_graph(graph_def, './', 'protobuf.pb', as_text=False)
12 |
13 | def graphdef_to_pbtxt(filename):
14 | with gfile.FastGFile(filename,'rb') as f:
15 | graph_def = tf.GraphDef()
16 | graph_def.ParseFromString(f.read())
17 | tf.import_graph_def(graph_def, name='')
18 | tf.train.write_graph(graph_def, './', filename+'txt', as_text=True)
19 | return
20 |
21 |
22 | graphdef_to_pbtxt('pbmodels/PascalVOC/frozen_inference_graph.pb') # here you can write the name of the file to be converted
23 |
--------------------------------------------------------------------------------