├── .github └── ISSUE_TEMPLATE │ └── issue.md ├── .gitignore ├── LICENSE ├── README.md ├── data ├── input │ ├── 000003.jpg │ ├── 000004.jpg │ ├── 000170.jpg │ ├── 009649.png │ ├── ade20k.jpg │ ├── cityscapes1.png │ ├── cityscapes2.png │ ├── my_own_image.jpg │ ├── testvideo1.mp4 │ ├── testvideo2.mp4 │ └── testvideo3.mp4 └── output │ ├── result1.MP4 │ ├── result2.MP4 │ ├── result3.MP4 │ └── result_deeplabv3.jpg ├── lib ├── libcpu_extension.so ├── libformat_reader.so └── libgflags_nothreads.a ├── lrmodelconvscript.txt ├── lrmodels ├── MSCOCOcityscapes │ ├── FP16 │ │ └── .gitkeep │ └── FP32 │ │ └── .gitkeep └── PascalVOC │ ├── FP16 │ ├── frozen_inference_graph.bin │ ├── frozen_inference_graph.mapping │ └── frozen_inference_graph.xml │ └── FP32 │ ├── frozen_inference_graph.bin │ ├── frozen_inference_graph.mapping │ ├── frozen_inference_graph.xml │ └── inputoutput.txt ├── media ├── 01.jpg ├── 02.jpg ├── 03.jpg ├── sample01.jpg ├── sample02.jpg ├── sample03.jpg └── sample04.jpg ├── openvino_deeplabv3_test.py ├── pbmodels ├── MSCOCOcityscapes │ ├── frozen_inference_graph.pb │ ├── inputoutput.txt │ ├── model.ckpt.data-00000-of-00001 │ └── model.ckpt.index └── PascalVOC │ ├── frozen_inference_graph.pb │ ├── inputoutput.txt │ ├── model.ckpt-30000.data-00000-of-00001 │ └── model.ckpt-30000.index ├── savedmodel └── events.out.tfevents.1546483660.ubuntu ├── tensorboard_output.py ├── tensorboard_start_script.txt └── tfconverter.py /.github/ISSUE_TEMPLATE/issue.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: Issue 3 | about: You provide the necessary information for the early resolution of the problem. 4 | title: '' 5 | labels: '' 6 | assignees: '' 7 | 8 | --- 9 | 10 | **[Required]** Your device (RaspberryPi3, LaptopPC, or other device name): 11 | 12 | **[Required]** Your device's CPU architecture (armv7l, x86_64, or other architecture name): 13 | 14 | **[Required]** Your OS (Raspbian, Ubuntu1604, or other os name): 15 | 16 | **[Required]** Details of the work you did before the problem occurred: 17 |
18 |
19 |
20 | **[Required]** Error message: 21 |
22 |
23 |
24 | **[Required]** Overview of problems and questions: 25 |
26 |
27 |
28 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | *.pbtxt 2 | 3 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2018 PINTO 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # OpenVINO-DeeplabV3 2 | [4-5 FPS / Core m3 CPU only] [11 FPS / Core i7 CPU only] 3 | OpenVINO+DeeplabV3+LattePandaAlpha. CPU / GPU / NCS. RealTime semantic-segmentaion. Python3.5+OpenCV3.4.3+PIL 4 | 5 | **【Caution】 It does not work on ARM architecture devices such as RaspberryPi / TX2.** 6 | **【Notice】December 19, 2018 OpenVINO has supported RaspberryPi + NCS2 !! 7 | https://software.intel.com/en-us/articles/OpenVINO-RelNotes#inpage-nav-2-2** 8 | 9 | 10 |

11 | **【Japanese article / English article】** 12 | **[(1) Introducing Ubuntu 16.04 + OpenVINO to Latte Panda Alpha 864 (without OS included) and enjoying Semantic Segmentation with Neural Compute Stick and Neural Compute Stick 2](https://qiita.com/PINTO/items/5ac8f4395e190d06cfab#introducing-ubuntu-1604--openvino-to-latte-panda-alpha-864-without-os-included-and-enjoying-semantic-segmentation-with-neural-compute-stick-and-neural-compute-stick-2)** 13 | 14 | **[(2) Real-time Semantic Segmentation with CPU alone [part2] [4-5 FPS / Core m3 CPU only] [11-12 FPS / Core i7 CPU only] DeeplabV3+MobilenetV2](https://qiita.com/PINTO/items/15d822c3d280c42e08c8)** 15 | 16 | **【Reference article / Japanese】 DeepLab vs Mask RCNN** 17 | **https://jyuko49.hatenablog.com/entry/2018/11/17/145904** 18 | 19 | # Results 20 | **【Result 1】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)** 21 | [](https://youtu.be/CxxDwK7vBAo) 22 | 23 | **【Result 2】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)** 24 | [](https://youtu.be/-pXB3dDj-rQ) 25 | 26 | **【Result 3】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)** 27 | [](https://youtu.be/1NLCr5XnVX8) 28 | 29 | **【Result 4】 Click the image below to play Youtube video. (Core i7 + CPU only mode. 11.0FPS - 12.0FPS)** 30 | [](https://youtu.be/TjiH2dMltl4) 31 | 32 | # Environment 33 | - LattePanda Alpha (Intel 7th Core m3-7y30) or LaptopPC (Intel 8th Core i7-8750H) 34 | - Ubuntu 16.04 x86_64 35 | - OpenVINO toolkit 2018 R4 (2018.4.420) 36 | - Python 3.5 37 | - OpenCV 3.4.3 38 | - PIL 39 | - Tensorflow v1.11.0 or Tensorflow-GPU v1.11.0 (pip install) 40 | - DeeplabV3 + MobilenetV2 (Pascal VOC 2012) 41 | - USB Camera (PlaystationEye) / Movie file (mp4) 42 | - 【option】 Intel Neural Compute Stick / Intel Neural Compute Stick 2 or GPU 43 | 44 | # Benchmark 45 | **https://ncsforum.movidius.com/discussion/1329/lattepanda-alpha-openvino-cpu-core-m3-vs-ncs1-vs-ncs2-performance-comparison** 46 | 47 | # Usage 48 | ### 1. Installation of OpenVINO main unit 49 | #### 1.1 Download 50 | ```bash 51 | $ cd ~/Downloads 52 | $ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=18-TeUzeN34CV-QqM0rO3wpdEGODTWrBc" > /dev/null 53 | $ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)" 54 | $ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=18-TeUzeN34CV-QqM0rO3wpdEGODTWrBc" -o l_openvino_toolkit_p_2018.4.420.tgz 55 | $ tar -zxf l_openvino_toolkit_p_2018.4.420.tgz 56 | $ rm l_openvino_toolkit_p_2018.4.420.tgz 57 | $ cd l_openvino_toolkit_p_2018.4.420 58 | ``` 59 | #### 1.2 Install basic functions 60 | ```bash 61 | ## GUI version installer 62 | $ sudo ./install_GUI.sh 63 | or 64 | ## CUI version installer 65 | $ sudo ./install.sh 66 | ``` 67 | 68 | 69 | 70 | 71 | ```bash 72 | $ cd /opt/intel/computer_vision_sdk/install_dependencies 73 | $ sudo -E ./install_cv_sdk_dependencies.sh 74 | $ nano ~/.bashrc 75 | source /opt/intel/computer_vision_sdk/bin/setupvars.sh 76 | 77 | $ source ~/.bashrc 78 | $ cd /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/install_prerequisites 79 | $ sudo ./install_prerequisites.sh 80 | ``` 81 | #### 1.3 Install optional features 82 | ##### 1.3.1 【Optional execution】 Additional installation steps for the Intel® Movidius™ Neural Compute Stick v1 and Intel® Neural Compute Stick v2 83 | ```bash 84 | $ sudo usermod -a -G users "$(whoami)" 85 | $ cat < 97-usbboot.rules 86 | SUBSYSTEM=="usb", ATTRS{idProduct}=="2150", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1" 87 | SUBSYSTEM=="usb", ATTRS{idProduct}=="2485", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1" 88 | SUBSYSTEM=="usb", ATTRS{idProduct}=="f63b", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1" 89 | EOF 90 | 91 | $ sudo cp 97-usbboot.rules /etc/udev/rules.d/ 92 | $ sudo udevadm control --reload-rules 93 | $ sudo udevadm trigger 94 | $ cd /opt/intel/common/mdf/lib64 95 | $ sudo mv igfxcmrt64.so igfxcmrt64.so.org 96 | $ sudo ln -s libigfxcmrt64.so igfxcmrt64.so 97 | $ cd /opt/intel/mediasdk/lib64 98 | $ sudo mv libmfxhw64.so.1 libmfxhw64.so.1.org 99 | $ sudo mv libmfx.so.1 libmfx.so.1.org 100 | $ sudo mv libva-glx.so.2 libva-glx.so.2.org 101 | $ sudo mv libva.so.2 libva.so.2.org 102 | $ sudo mv libigdgmm.so.1 libigdgmm.so.1.org 103 | $ sudo mv libva-drm.so.2 libva-drm.so.2.org 104 | $ sudo mv libva-x11.so.2 libva-x11.so.2.org 105 | $ sudo ln -s libmfxhw64.so.1.28 libmfxhw64.so.1 106 | $ sudo ln -s libmfx.so.1.28 libmfx.so.1 107 | $ sudo ln -s libva-glx.so.2.300.0 libva-glx.so.2 108 | $ sudo ln -s libva.so.2.300.0 libva.so.2 109 | $ sudo ln -s libigdgmm.so.1.0.0 libigdgmm.so.1 110 | $ sudo ln -s libva-drm.so.2.300.0 libva-drm.so.2 111 | $ sudo ln -s libva-x11.so.2.300.0 libva-x11.so.2 112 | $ sudo ldconfig 113 | $ rm 97-usbboot.rules 114 | ``` 115 | ##### 1.3.2 【Optional execution】 Additional installation steps for processor graphics (GPU) 116 | ```bash 117 | $ cd /opt/intel/computer_vision_sdk/install_dependencies/ 118 | $ sudo -E su 119 | $ uname -r 120 | 4.15.0-42-generic #<--- display kernel version sample 121 | 122 | ### Execute only when the kernel version is older than 4.14 123 | $ ./install_4_14_kernel.sh 124 | 125 | $ ./install_NEO_OCL_driver.sh 126 | $ sudo reboot 127 | ``` 128 | 129 | ### 2. Downgrade to stable OpenCV 130 | Since OpenCV 4.0.0-pre introduced by default had bug in Gstreamer and it did not work properly, we will reinstall OpenCV 3.4.3 on our own. 131 | ```bash 132 | $ sudo -H pip3 install opencv-python==3.4.3.18 133 | $ nano ~/.bashrc 134 | export PYTHONPATH=/usr/local/lib/python3.5/dist-packages/cv2:$PYTHONPATH 135 | 136 | $ source ~/.bashrc 137 | ``` 138 | ### 3. Upgrade to Tensorflow v1.11.0 139 | Upgrade to old version Tensorflow v1.9.0, introduced by default, to Tensorflow v1.11.0, as subsequent model optimizer processing will fail. 140 | ```bash 141 | $ sudo -H pip3 install pip --upgrade 142 | 143 | $ python3 -c 'import tensorflow as tf; print(tf.__version__)' 144 | 1.9.0 #<--- display Tensorflow version sample 145 | 146 | $ sudo -H pip3 install tensorflow==1.11.0 --upgrade 147 | or 148 | $ sudo -H pip3 install tensorflow-gpu==1.11.0 --upgrade 149 | ``` 150 | ### 4. Settings for offloading custom layer behavior to Tensorflow 151 | ```bash 152 | $ sudo apt-get install -y git pkg-config zip g++ zlib1g-dev unzip 153 | $ cd ~ 154 | $ wget https://github.com/bazelbuild/bazel/releases/download/0.18.1/bazel-0.18.1-installer-linux-x86_64.sh 155 | $ sudo chmod +x bazel-0.18.1-installer-linux-x86_64.sh 156 | $ ./bazel-0.18.1-installer-linux-x86_64.sh --user 157 | $ echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc 158 | $ source ~/.bashrc 159 | $ cd /opt 160 | $ sudo git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git 161 | $ cd tensorflow 162 | $ sudo git checkout -b v1.11.0 163 | $ echo 'export TF_ROOT_DIR=/opt/tensorflow' >> ~/.bashrc 164 | $ source ~/.bashrc 165 | $ sudo nano /opt/intel/computer_vision_sdk/bin/setupvars.sh 166 | 167 | #Before 168 | INSTALLDIR=/opt/intel//computer_vision_sdk_2018.4.420 169 | ↓ 170 | #After 171 | INSTALLDIR=/opt/intel/computer_vision_sdk_2018.4.420 172 | 173 | $ source /opt/intel/computer_vision_sdk/bin/setupvars.sh 174 | $ sudo nano /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/tf_call_ie_layer/build.sh 175 | 176 | #Before 177 | bazel build --config=monolithic //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so 178 | ↓ 179 | #After 180 | sudo -H $HOME/bin/bazel build --config monolithic //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so 181 | or 182 | sudo -H $HOME/bin/bazel --host_jvm_args=-Xmx512m build --config monolithic --local_resources 1024.0,0.5,0.5 //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so 183 | 184 | $ sudo -E /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/tf_call_ie_layer/build.sh 185 | 186 | $ su - 187 | $ cp /opt/tensorflow/bazel-bin/tensorflow/cc/inference_engine_layer/libtensorflow_call_layer.so /usr/local/lib 188 | $ exit 189 | $ nano ~/.bashrc 190 | export PYTHONPATH=$PYTHONPATH:/usr/local/lib 191 | 192 | $ source ~/.bashrc 193 | $ sudo ldconfig 194 | ``` 195 | ### 5. 【Optional execution】 Build sample programs and CPU extension 196 | ```bash 197 | $ cd /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples 198 | $ sudo ./build_samples.sh 199 | 200 | ### The prebuilt binary is saved in the following path 201 | ### ~/inference_engine_samples_build/intel64/Release/ 202 | ``` 203 | ### 6. 【Optional execution】【Example】 Conversion of Tensorflow-DeeplabV3 model to lr format 204 | #### 6-1. Pascal VOC 205 | ```bash 206 | $ cd ~ 207 | $ mkdir model 208 | $ wget http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz 209 | $ tar -zxvf deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz 210 | $ cp deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb model 211 | $ sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \ 212 | --input_model pbmodels/PascalVOC/frozen_inference_graph.pb \ 213 | --input 0:MobilenetV2/Conv/Conv2D \ 214 | --output ArgMax \ 215 | --input_shape [1,513,513,3] \ 216 | --output_dir lrmodels/PascalVOC/FP32 217 | ``` 218 | #### 6-2. MS-COCO cityscapes 219 | ```bash 220 | $ wget http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz 221 | $ tar -zxvf deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz 222 | ``` 223 | 224 | ### 7. Execution (The default is "USB Camera mode") 225 | ```bash 226 | $ cd ~ 227 | $ git clone https://github.com/PINTO0309/OpenVINO-DeeplabV3.git 228 | $ cd OpenVINO-DeeplabV3 229 | $ python3 openvino_deeplabv3_test.py 230 | ``` 231 | 232 | # How to install Bazel (version 0.17.2, x86_64 only) 233 | ### 1. Bazel introduction command 234 | ```bash 235 | $ cd ~ 236 | $ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" > /dev/null 237 | $ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)" 238 | $ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" -o bazel 239 | $ sudo cp ./bazel /usr/local/bin 240 | $ rm ./bazel 241 | ``` 242 | ### 2. Supplementary information 243 | **https://github.com/PINTO0309/Bazel_bin.git** 244 | 245 | # How to check the graph structure of a ".pb" file [Part.1] 246 | Simple structure analysis. 247 | ### 1. Build and run graph structure analysis program 248 | ```bash 249 | $ cd ~ 250 | $ git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git 251 | $ cd tensorflow 252 | $ git checkout -b v1.11.0 253 | $ bazel build tensorflow/tools/graph_transforms:summarize_graph 254 | $ bazel-bin/tensorflow/tools/graph_transforms/summarize_graph --in_graph=xxxx.pb 255 | ``` 256 | ### 2. Sample of display result 257 | ```bash 258 | Found 1 possible inputs: (name=ImageTensor, type=uint8(4), shape=[1,?,?,3]) 259 | No variables spotted. 260 | Found 1 possible outputs: (name=SemanticPredictions, op=Slice) 261 | Found 2146325 (2.15M) const parameters, 0 (0) variable parameters, and 4 control_edges 262 | Op types used: 374 Const, 357 Identity, 54 FusedBatchNorm, 38 Conv2D, 34 Relu6, \ 263 | 17 DepthwiseConv2dNative, 13 Add, 10 StridedSlice, 10 BatchToSpaceND, 10 \ 264 | SpaceToBatchND, 8 Sub, 5 Pack, 4 GreaterEqual, 4 Assert, 4 Shape, 4 ResizeBilinear, \ 265 | 3 Cast, 3 Relu, 2 ExpandDims, 2 Squeeze, 2 Maximum, 2 Mul, 1 Slice, 1 LogicalAnd, \ 266 | 1 Reshape, 1 Placeholder, 1 Pad, 1 Equal, 1 ConcatV2, 1 BiasAdd, 1 AvgPool, 1 ArgMax 267 | To use with tensorflow/tools/benchmark:benchmark_model try these arguments: 268 | bazel run tensorflow/tools/benchmark:benchmark_model -- \ 269 | --graph=xxxx.pb \ 270 | --show_flops \ 271 | --input_layer=ImageTensor \ 272 | --input_layer_type=uint8 \ 273 | --input_layer_shape=1,-1,-1,3 \ 274 | --output_layer=SemanticPredictions 275 | ``` 276 | 277 | # How to check the graph structure of a ".pb" file [Part.2] 278 | Convert to text format. 279 | ### 1. Run graph structure analysis program 280 | ```bash 281 | $ python3 tfconverter.py 282 | ### ".pbtxt" in ProtocolBuffer format is output. 283 | ### The size of the generated text file is huge. 284 | ``` 285 | 286 | # How to check the graph structure of a ".pb" file [Part.3] 287 | Use Tensorboard. 288 | ### 1. Build Tensorboard 289 | ```bash 290 | $ cd ~ 291 | $ git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git 292 | $ cd tensorflow 293 | $ git checkout -b v1.11.0 294 | $ bazel build tensorflow/tensorboard:tensorboard 295 | ``` 296 | ### 2. Run log output program for Tensorboard 297 | ```python 298 | import tensorflow as tf 299 | from tensorflow.python.platform import gfile 300 | 301 | with tf.Session() as sess: 302 | model_filename ="xxxx.pb" 303 | with gfile.FastGFile(model_filename, "rb") as f: 304 | graph_def = tf.GraphDef() 305 | graph_def.ParseFromString(f.read()) 306 | g_in = tf.import_graph_def(graph_def) 307 | 308 | LOGDIR="path/to/logs" 309 | train_writer = tf.summary.FileWriter(LOGDIR) 310 | train_writer.add_graph(sess.graph) 311 | ``` 312 | ### 3. Starting Tensorboard 313 | ```bash 314 | $ bazel-bin/tensorflow/tensorboard/tensorboard --logdir=path/to/logs 315 | ``` 316 | ### 4. Display of Tensorboard 317 | Access `http://localhost:6006` from the browser. 318 | 319 | # Reference article, thanks 320 | https://github.com/FionaZZ92/OpenVINO.git 321 | https://medium.com/@oleksandrsavsunenko/optimizing-neural-networks-for-production-with-intels-openvino-a7ee3a6883d 322 | https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md 323 | https://blogs.yahoo.co.jp/verification_engineer/71450155.html 324 | -------------------------------------------------------------------------------- /data/input/000003.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/000003.jpg -------------------------------------------------------------------------------- /data/input/000004.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/000004.jpg -------------------------------------------------------------------------------- /data/input/000170.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/000170.jpg -------------------------------------------------------------------------------- /data/input/009649.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/009649.png -------------------------------------------------------------------------------- /data/input/ade20k.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/ade20k.jpg -------------------------------------------------------------------------------- /data/input/cityscapes1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/cityscapes1.png -------------------------------------------------------------------------------- /data/input/cityscapes2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/cityscapes2.png -------------------------------------------------------------------------------- /data/input/my_own_image.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/my_own_image.jpg -------------------------------------------------------------------------------- /data/input/testvideo1.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/testvideo1.mp4 -------------------------------------------------------------------------------- /data/input/testvideo2.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/testvideo2.mp4 -------------------------------------------------------------------------------- /data/input/testvideo3.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/input/testvideo3.mp4 -------------------------------------------------------------------------------- /data/output/result1.MP4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result1.MP4 -------------------------------------------------------------------------------- /data/output/result2.MP4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result2.MP4 -------------------------------------------------------------------------------- /data/output/result3.MP4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result3.MP4 -------------------------------------------------------------------------------- /data/output/result_deeplabv3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/data/output/result_deeplabv3.jpg -------------------------------------------------------------------------------- /lib/libcpu_extension.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lib/libcpu_extension.so -------------------------------------------------------------------------------- /lib/libformat_reader.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lib/libformat_reader.so -------------------------------------------------------------------------------- /lib/libgflags_nothreads.a: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lib/libgflags_nothreads.a -------------------------------------------------------------------------------- /lrmodelconvscript.txt: -------------------------------------------------------------------------------- 1 | sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \ 2 | --input_model pbmodels/PascalVOC/frozen_inference_graph.pb \ 3 | --input 0:MobilenetV2/Conv/Conv2D \ 4 | --output ArgMax \ 5 | --input_shape [1,513,513,3] \ 6 | --output_dir lrmodels/PascalVOC/FP32 7 | 8 | sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \ 9 | --input_model pbmodels/PascalVOC/frozen_inference_graph.pb \ 10 | --input 0:MobilenetV2/Conv/Conv2D \ 11 | --output ResizeBilinear_3 \ 12 | --input_shape [1,513,513,3] \ 13 | --output_dir lrmodels/PascalVOC/FP16 \ 14 | --data_type FP16 15 | -------------------------------------------------------------------------------- /lrmodels/MSCOCOcityscapes/FP16/.gitkeep: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/MSCOCOcityscapes/FP16/.gitkeep -------------------------------------------------------------------------------- /lrmodels/MSCOCOcityscapes/FP32/.gitkeep: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/MSCOCOcityscapes/FP32/.gitkeep -------------------------------------------------------------------------------- /lrmodels/PascalVOC/FP16/frozen_inference_graph.bin: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/PascalVOC/FP16/frozen_inference_graph.bin -------------------------------------------------------------------------------- /lrmodels/PascalVOC/FP16/frozen_inference_graph.mapping: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | -------------------------------------------------------------------------------- /lrmodels/PascalVOC/FP16/frozen_inference_graph.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 8 | 3 9 | 513 10 | 513 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 1 19 | 3 20 | 513 21 | 513 22 | 23 | 24 | 25 | 26 | 1 27 | 32 28 | 257 29 | 257 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 1 42 | 32 43 | 257 44 | 257 45 | 46 | 47 | 48 | 49 | 1 50 | 32 51 | 257 52 | 257 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 1 61 | 32 62 | 257 63 | 257 64 | 65 | 66 | 67 | 68 | 1 69 | 32 70 | 257 71 | 257 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 1 84 | 32 85 | 257 86 | 257 87 | 88 | 89 | 90 | 91 | 1 92 | 32 93 | 257 94 | 257 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 1 103 | 32 104 | 257 105 | 257 106 | 107 | 108 | 109 | 110 | 1 111 | 16 112 | 257 113 | 257 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 1 126 | 16 127 | 257 128 | 257 129 | 130 | 131 | 132 | 133 | 1 134 | 96 135 | 257 136 | 257 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 1 149 | 96 150 | 257 151 | 257 152 | 153 | 154 | 155 | 156 | 1 157 | 96 158 | 257 159 | 257 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 1 168 | 96 169 | 257 170 | 257 171 | 172 | 173 | 174 | 175 | 1 176 | 96 177 | 129 178 | 129 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 1 191 | 96 192 | 129 193 | 129 194 | 195 | 196 | 197 | 198 | 1 199 | 96 200 | 129 201 | 129 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 1 210 | 96 211 | 129 212 | 129 213 | 214 | 215 | 216 | 217 | 1 218 | 24 219 | 129 220 | 129 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 1 233 | 24 234 | 129 235 | 129 236 | 237 | 238 | 239 | 240 | 1 241 | 144 242 | 129 243 | 129 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 1 256 | 144 257 | 129 258 | 129 259 | 260 | 261 | 262 | 263 | 1 264 | 144 265 | 129 266 | 129 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 1 275 | 144 276 | 129 277 | 129 278 | 279 | 280 | 281 | 282 | 1 283 | 144 284 | 129 285 | 129 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 1 298 | 144 299 | 129 300 | 129 301 | 302 | 303 | 304 | 305 | 1 306 | 144 307 | 129 308 | 129 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 1 317 | 144 318 | 129 319 | 129 320 | 321 | 322 | 323 | 324 | 1 325 | 24 326 | 129 327 | 129 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 1 340 | 24 341 | 129 342 | 129 343 | 344 | 345 | 1 346 | 24 347 | 129 348 | 129 349 | 350 | 351 | 352 | 353 | 1 354 | 24 355 | 129 356 | 129 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 1 365 | 24 366 | 129 367 | 129 368 | 369 | 370 | 371 | 372 | 1 373 | 144 374 | 129 375 | 129 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 1 388 | 144 389 | 129 390 | 129 391 | 392 | 393 | 394 | 395 | 1 396 | 144 397 | 129 398 | 129 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 1 407 | 144 408 | 129 409 | 129 410 | 411 | 412 | 413 | 414 | 1 415 | 144 416 | 65 417 | 65 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 1 430 | 144 431 | 65 432 | 65 433 | 434 | 435 | 436 | 437 | 1 438 | 144 439 | 65 440 | 65 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 1 449 | 144 450 | 65 451 | 65 452 | 453 | 454 | 455 | 456 | 1 457 | 32 458 | 65 459 | 65 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 1 472 | 32 473 | 65 474 | 65 475 | 476 | 477 | 478 | 479 | 1 480 | 192 481 | 65 482 | 65 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 1 495 | 192 496 | 65 497 | 65 498 | 499 | 500 | 501 | 502 | 1 503 | 192 504 | 65 505 | 65 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 1 514 | 192 515 | 65 516 | 65 517 | 518 | 519 | 520 | 521 | 1 522 | 192 523 | 65 524 | 65 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 1 537 | 192 538 | 65 539 | 65 540 | 541 | 542 | 543 | 544 | 1 545 | 192 546 | 65 547 | 65 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 1 556 | 192 557 | 65 558 | 65 559 | 560 | 561 | 562 | 563 | 1 564 | 32 565 | 65 566 | 65 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 1 579 | 32 580 | 65 581 | 65 582 | 583 | 584 | 1 585 | 32 586 | 65 587 | 65 588 | 589 | 590 | 591 | 592 | 1 593 | 32 594 | 65 595 | 65 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 1 604 | 32 605 | 65 606 | 65 607 | 608 | 609 | 610 | 611 | 1 612 | 192 613 | 65 614 | 65 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 1 627 | 192 628 | 65 629 | 65 630 | 631 | 632 | 633 | 634 | 1 635 | 192 636 | 65 637 | 65 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 1 646 | 192 647 | 65 648 | 65 649 | 650 | 651 | 652 | 653 | 1 654 | 192 655 | 65 656 | 65 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 1 669 | 192 670 | 65 671 | 65 672 | 673 | 674 | 675 | 676 | 1 677 | 192 678 | 65 679 | 65 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 1 688 | 192 689 | 65 690 | 65 691 | 692 | 693 | 694 | 695 | 1 696 | 32 697 | 65 698 | 65 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 1 711 | 32 712 | 65 713 | 65 714 | 715 | 716 | 1 717 | 32 718 | 65 719 | 65 720 | 721 | 722 | 723 | 724 | 1 725 | 32 726 | 65 727 | 65 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 1 736 | 32 737 | 65 738 | 65 739 | 740 | 741 | 742 | 743 | 1 744 | 192 745 | 65 746 | 65 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 1 759 | 192 760 | 65 761 | 65 762 | 763 | 764 | 765 | 766 | 1 767 | 192 768 | 65 769 | 65 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 1 778 | 192 779 | 65 780 | 65 781 | 782 | 783 | 784 | 785 | 1 786 | 192 787 | 65 788 | 65 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 1 801 | 192 802 | 65 803 | 65 804 | 805 | 806 | 807 | 808 | 1 809 | 192 810 | 65 811 | 65 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 | 1 820 | 192 821 | 65 822 | 65 823 | 824 | 825 | 826 | 827 | 1 828 | 64 829 | 65 830 | 65 831 | 832 | 833 | 834 | 835 | 836 | 837 | 838 | 839 | 840 | 841 | 842 | 1 843 | 64 844 | 65 845 | 65 846 | 847 | 848 | 849 | 850 | 1 851 | 384 852 | 65 853 | 65 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | 1 866 | 384 867 | 65 868 | 65 869 | 870 | 871 | 872 | 873 | 1 874 | 384 875 | 65 876 | 65 877 | 878 | 879 | 880 | 881 | 882 | 883 | 884 | 1 885 | 384 886 | 65 887 | 65 888 | 889 | 890 | 891 | 892 | 1 893 | 384 894 | 65 895 | 65 896 | 897 | 898 | 899 | 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 1 908 | 384 909 | 65 910 | 65 911 | 912 | 913 | 914 | 915 | 1 916 | 384 917 | 65 918 | 65 919 | 920 | 921 | 922 | 923 | 924 | 925 | 926 | 1 927 | 384 928 | 65 929 | 65 930 | 931 | 932 | 933 | 934 | 1 935 | 64 936 | 65 937 | 65 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 | 1 950 | 64 951 | 65 952 | 65 953 | 954 | 955 | 1 956 | 64 957 | 65 958 | 65 959 | 960 | 961 | 962 | 963 | 1 964 | 64 965 | 65 966 | 65 967 | 968 | 969 | 970 | 971 | 972 | 973 | 974 | 1 975 | 64 976 | 65 977 | 65 978 | 979 | 980 | 981 | 982 | 1 983 | 384 984 | 65 985 | 65 986 | 987 | 988 | 989 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 1 998 | 384 999 | 65 1000 | 65 1001 | 1002 | 1003 | 1004 | 1005 | 1 1006 | 384 1007 | 65 1008 | 65 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1 1017 | 384 1018 | 65 1019 | 65 1020 | 1021 | 1022 | 1023 | 1024 | 1 1025 | 384 1026 | 65 1027 | 65 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 | 1 1040 | 384 1041 | 65 1042 | 65 1043 | 1044 | 1045 | 1046 | 1047 | 1 1048 | 384 1049 | 65 1050 | 65 1051 | 1052 | 1053 | 1054 | 1055 | 1056 | 1057 | 1058 | 1 1059 | 384 1060 | 65 1061 | 65 1062 | 1063 | 1064 | 1065 | 1066 | 1 1067 | 64 1068 | 65 1069 | 65 1070 | 1071 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 | 1080 | 1081 | 1 1082 | 64 1083 | 65 1084 | 65 1085 | 1086 | 1087 | 1 1088 | 64 1089 | 65 1090 | 65 1091 | 1092 | 1093 | 1094 | 1095 | 1 1096 | 64 1097 | 65 1098 | 65 1099 | 1100 | 1101 | 1102 | 1103 | 1104 | 1105 | 1106 | 1 1107 | 64 1108 | 65 1109 | 65 1110 | 1111 | 1112 | 1113 | 1114 | 1 1115 | 384 1116 | 65 1117 | 65 1118 | 1119 | 1120 | 1121 | 1122 | 1123 | 1124 | 1125 | 1126 | 1127 | 1128 | 1129 | 1 1130 | 384 1131 | 65 1132 | 65 1133 | 1134 | 1135 | 1136 | 1137 | 1 1138 | 384 1139 | 65 1140 | 65 1141 | 1142 | 1143 | 1144 | 1145 | 1146 | 1147 | 1148 | 1 1149 | 384 1150 | 65 1151 | 65 1152 | 1153 | 1154 | 1155 | 1156 | 1 1157 | 384 1158 | 65 1159 | 65 1160 | 1161 | 1162 | 1163 | 1164 | 1165 | 1166 | 1167 | 1168 | 1169 | 1170 | 1171 | 1 1172 | 384 1173 | 65 1174 | 65 1175 | 1176 | 1177 | 1178 | 1179 | 1 1180 | 384 1181 | 65 1182 | 65 1183 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1 1191 | 384 1192 | 65 1193 | 65 1194 | 1195 | 1196 | 1197 | 1198 | 1 1199 | 64 1200 | 65 1201 | 65 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1 1214 | 64 1215 | 65 1216 | 65 1217 | 1218 | 1219 | 1 1220 | 64 1221 | 65 1222 | 65 1223 | 1224 | 1225 | 1226 | 1227 | 1 1228 | 64 1229 | 65 1230 | 65 1231 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1 1239 | 64 1240 | 65 1241 | 65 1242 | 1243 | 1244 | 1245 | 1246 | 1 1247 | 384 1248 | 65 1249 | 65 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1 1262 | 384 1263 | 65 1264 | 65 1265 | 1266 | 1267 | 1268 | 1269 | 1 1270 | 384 1271 | 65 1272 | 65 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 | 1280 | 1 1281 | 384 1282 | 65 1283 | 65 1284 | 1285 | 1286 | 1287 | 1288 | 1 1289 | 384 1290 | 65 1291 | 65 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 1 1304 | 384 1305 | 65 1306 | 65 1307 | 1308 | 1309 | 1310 | 1311 | 1 1312 | 384 1313 | 65 1314 | 65 1315 | 1316 | 1317 | 1318 | 1319 | 1320 | 1321 | 1322 | 1 1323 | 384 1324 | 65 1325 | 65 1326 | 1327 | 1328 | 1329 | 1330 | 1 1331 | 96 1332 | 65 1333 | 65 1334 | 1335 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | 1344 | 1345 | 1 1346 | 96 1347 | 65 1348 | 65 1349 | 1350 | 1351 | 1352 | 1353 | 1 1354 | 576 1355 | 65 1356 | 65 1357 | 1358 | 1359 | 1360 | 1361 | 1362 | 1363 | 1364 | 1365 | 1366 | 1367 | 1368 | 1 1369 | 576 1370 | 65 1371 | 65 1372 | 1373 | 1374 | 1375 | 1376 | 1 1377 | 576 1378 | 65 1379 | 65 1380 | 1381 | 1382 | 1383 | 1384 | 1385 | 1386 | 1387 | 1 1388 | 576 1389 | 65 1390 | 65 1391 | 1392 | 1393 | 1394 | 1395 | 1 1396 | 576 1397 | 65 1398 | 65 1399 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | 1408 | 1409 | 1410 | 1 1411 | 576 1412 | 65 1413 | 65 1414 | 1415 | 1416 | 1417 | 1418 | 1 1419 | 576 1420 | 65 1421 | 65 1422 | 1423 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 | 1 1430 | 576 1431 | 65 1432 | 65 1433 | 1434 | 1435 | 1436 | 1437 | 1 1438 | 96 1439 | 65 1440 | 65 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 | 1450 | 1451 | 1452 | 1 1453 | 96 1454 | 65 1455 | 65 1456 | 1457 | 1458 | 1 1459 | 96 1460 | 65 1461 | 65 1462 | 1463 | 1464 | 1465 | 1466 | 1 1467 | 96 1468 | 65 1469 | 65 1470 | 1471 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1 1478 | 96 1479 | 65 1480 | 65 1481 | 1482 | 1483 | 1484 | 1485 | 1 1486 | 576 1487 | 65 1488 | 65 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 | 1500 | 1 1501 | 576 1502 | 65 1503 | 65 1504 | 1505 | 1506 | 1507 | 1508 | 1 1509 | 576 1510 | 65 1511 | 65 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 | 1 1520 | 576 1521 | 65 1522 | 65 1523 | 1524 | 1525 | 1526 | 1527 | 1 1528 | 576 1529 | 65 1530 | 65 1531 | 1532 | 1533 | 1534 | 1535 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1 1543 | 576 1544 | 65 1545 | 65 1546 | 1547 | 1548 | 1549 | 1550 | 1 1551 | 576 1552 | 65 1553 | 65 1554 | 1555 | 1556 | 1557 | 1558 | 1559 | 1560 | 1561 | 1 1562 | 576 1563 | 65 1564 | 65 1565 | 1566 | 1567 | 1568 | 1569 | 1 1570 | 96 1571 | 65 1572 | 65 1573 | 1574 | 1575 | 1576 | 1577 | 1578 | 1579 | 1580 | 1581 | 1582 | 1583 | 1584 | 1 1585 | 96 1586 | 65 1587 | 65 1588 | 1589 | 1590 | 1 1591 | 96 1592 | 65 1593 | 65 1594 | 1595 | 1596 | 1597 | 1598 | 1 1599 | 96 1600 | 65 1601 | 65 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 | 1 1610 | 96 1611 | 65 1612 | 65 1613 | 1614 | 1615 | 1616 | 1617 | 1 1618 | 576 1619 | 65 1620 | 65 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | 1632 | 1 1633 | 576 1634 | 65 1635 | 65 1636 | 1637 | 1638 | 1639 | 1640 | 1 1641 | 576 1642 | 65 1643 | 65 1644 | 1645 | 1646 | 1647 | 1648 | 1649 | 1650 | 1651 | 1 1652 | 576 1653 | 65 1654 | 65 1655 | 1656 | 1657 | 1658 | 1659 | 1 1660 | 576 1661 | 65 1662 | 65 1663 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 | 1670 | 1671 | 1672 | 1673 | 1674 | 1 1675 | 576 1676 | 65 1677 | 65 1678 | 1679 | 1680 | 1681 | 1682 | 1 1683 | 576 1684 | 65 1685 | 65 1686 | 1687 | 1688 | 1689 | 1690 | 1691 | 1692 | 1693 | 1 1694 | 576 1695 | 65 1696 | 65 1697 | 1698 | 1699 | 1700 | 1701 | 1 1702 | 160 1703 | 65 1704 | 65 1705 | 1706 | 1707 | 1708 | 1709 | 1710 | 1711 | 1712 | 1713 | 1714 | 1715 | 1716 | 1 1717 | 160 1718 | 65 1719 | 65 1720 | 1721 | 1722 | 1723 | 1724 | 1 1725 | 960 1726 | 65 1727 | 65 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | 1 1740 | 960 1741 | 65 1742 | 65 1743 | 1744 | 1745 | 1746 | 1747 | 1 1748 | 960 1749 | 65 1750 | 65 1751 | 1752 | 1753 | 1754 | 1755 | 1756 | 1757 | 1758 | 1 1759 | 960 1760 | 65 1761 | 65 1762 | 1763 | 1764 | 1765 | 1766 | 1 1767 | 960 1768 | 65 1769 | 65 1770 | 1771 | 1772 | 1773 | 1774 | 1775 | 1776 | 1777 | 1778 | 1779 | 1780 | 1781 | 1 1782 | 960 1783 | 65 1784 | 65 1785 | 1786 | 1787 | 1788 | 1789 | 1 1790 | 960 1791 | 65 1792 | 65 1793 | 1794 | 1795 | 1796 | 1797 | 1798 | 1799 | 1800 | 1 1801 | 960 1802 | 65 1803 | 65 1804 | 1805 | 1806 | 1807 | 1808 | 1 1809 | 160 1810 | 65 1811 | 65 1812 | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 | 1820 | 1821 | 1822 | 1823 | 1 1824 | 160 1825 | 65 1826 | 65 1827 | 1828 | 1829 | 1 1830 | 160 1831 | 65 1832 | 65 1833 | 1834 | 1835 | 1836 | 1837 | 1 1838 | 160 1839 | 65 1840 | 65 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1 1849 | 160 1850 | 65 1851 | 65 1852 | 1853 | 1854 | 1855 | 1856 | 1 1857 | 960 1858 | 65 1859 | 65 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 | 1870 | 1871 | 1 1872 | 960 1873 | 65 1874 | 65 1875 | 1876 | 1877 | 1878 | 1879 | 1 1880 | 960 1881 | 65 1882 | 65 1883 | 1884 | 1885 | 1886 | 1887 | 1888 | 1889 | 1890 | 1 1891 | 960 1892 | 65 1893 | 65 1894 | 1895 | 1896 | 1897 | 1898 | 1 1899 | 960 1900 | 65 1901 | 65 1902 | 1903 | 1904 | 1905 | 1906 | 1907 | 1908 | 1909 | 1910 | 1911 | 1912 | 1913 | 1 1914 | 960 1915 | 65 1916 | 65 1917 | 1918 | 1919 | 1920 | 1921 | 1 1922 | 960 1923 | 65 1924 | 65 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1 1933 | 960 1934 | 65 1935 | 65 1936 | 1937 | 1938 | 1939 | 1940 | 1 1941 | 160 1942 | 65 1943 | 65 1944 | 1945 | 1946 | 1947 | 1948 | 1949 | 1950 | 1951 | 1952 | 1953 | 1954 | 1955 | 1 1956 | 160 1957 | 65 1958 | 65 1959 | 1960 | 1961 | 1 1962 | 160 1963 | 65 1964 | 65 1965 | 1966 | 1967 | 1968 | 1969 | 1 1970 | 160 1971 | 65 1972 | 65 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1 1981 | 160 1982 | 65 1983 | 65 1984 | 1985 | 1986 | 1987 | 1988 | 1 1989 | 960 1990 | 65 1991 | 65 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 1 2004 | 960 2005 | 65 2006 | 65 2007 | 2008 | 2009 | 2010 | 2011 | 1 2012 | 960 2013 | 65 2014 | 65 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 1 2023 | 960 2024 | 65 2025 | 65 2026 | 2027 | 2028 | 2029 | 2030 | 1 2031 | 960 2032 | 65 2033 | 65 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 1 2046 | 960 2047 | 65 2048 | 65 2049 | 2050 | 2051 | 2052 | 2053 | 1 2054 | 960 2055 | 65 2056 | 65 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 2063 | 2064 | 1 2065 | 960 2066 | 65 2067 | 65 2068 | 2069 | 2070 | 2071 | 2072 | 1 2073 | 320 2074 | 65 2075 | 65 2076 | 2077 | 2078 | 2079 | 2080 | 2081 | 2082 | 2083 | 2084 | 2085 | 2086 | 2087 | 1 2088 | 320 2089 | 65 2090 | 65 2091 | 2092 | 2093 | 2094 | 2095 | 1 2096 | 320 2097 | 1 2098 | 1 2099 | 2100 | 2101 | 2102 | 2103 | 2104 | 2105 | 2106 | 1 2107 | 320 2108 | 1 2109 | 1 2110 | 2111 | 2112 | 2113 | 2114 | 1 2115 | 256 2116 | 1 2117 | 1 2118 | 2119 | 2120 | 2121 | 2122 | 2123 | 2124 | 2125 | 2126 | 2127 | 2128 | 1 2129 | 256 2130 | 1 2131 | 1 2132 | 2133 | 2134 | 2135 | 2136 | 1 2137 | 256 2138 | 1 2139 | 1 2140 | 2141 | 2142 | 2143 | 2144 | 2145 | 2146 | 2147 | 1 2148 | 256 2149 | 1 2150 | 1 2151 | 2152 | 2153 | 2154 | 2155 | 1 2156 | 256 2157 | 65 2158 | 65 2159 | 2160 | 2161 | 2162 | 2163 | 2164 | 2165 | 2166 | 1 2167 | 320 2168 | 65 2169 | 65 2170 | 2171 | 2172 | 2173 | 2174 | 1 2175 | 256 2176 | 65 2177 | 65 2178 | 2179 | 2180 | 2181 | 2182 | 2183 | 2184 | 2185 | 2186 | 2187 | 2188 | 1 2189 | 256 2190 | 65 2191 | 65 2192 | 2193 | 2194 | 2195 | 2196 | 1 2197 | 256 2198 | 65 2199 | 65 2200 | 2201 | 2202 | 2203 | 2204 | 2205 | 2206 | 2207 | 1 2208 | 256 2209 | 65 2210 | 65 2211 | 2212 | 2213 | 1 2214 | 256 2215 | 65 2216 | 65 2217 | 2218 | 2219 | 2220 | 2221 | 1 2222 | 512 2223 | 65 2224 | 65 2225 | 2226 | 2227 | 2228 | 2229 | 2230 | 2231 | 2232 | 1 2233 | 512 2234 | 65 2235 | 65 2236 | 2237 | 2238 | 2239 | 2240 | 1 2241 | 256 2242 | 65 2243 | 65 2244 | 2245 | 2246 | 2247 | 2248 | 2249 | 2250 | 2251 | 2252 | 2253 | 2254 | 1 2255 | 256 2256 | 65 2257 | 65 2258 | 2259 | 2260 | 2261 | 2262 | 1 2263 | 256 2264 | 65 2265 | 65 2266 | 2267 | 2268 | 2269 | 2270 | 2271 | 2272 | 2273 | 1 2274 | 256 2275 | 65 2276 | 65 2277 | 2278 | 2279 | 2280 | 2281 | 1 2282 | 21 2283 | 65 2284 | 65 2285 | 2286 | 2287 | 2288 | 2289 | 2290 | 2291 | 2292 | 2293 | 2294 | 2295 | 2296 | 1 2297 | 21 2298 | 65 2299 | 65 2300 | 2301 | 2302 | 2303 | 2304 | 1 2305 | 21 2306 | 65 2307 | 65 2308 | 2309 | 2310 | 2311 | 2312 | 2313 | 2314 | 2315 | 1 2316 | 21 2317 | 65 2318 | 65 2319 | 2320 | 2321 | 2322 | 2323 | 1 2324 | 21 2325 | 513 2326 | 513 2327 | 2328 | 2329 | 2330 | 2331 | 2332 | 2333 | 2334 | 2335 | 2336 | 2337 | 2338 | 2339 | 2340 | 2341 | 2342 | 2343 | 2344 | 2345 | 2346 | 2347 | 2348 | 2349 | 2350 | 2351 | 2352 | 2353 | 2354 | 2355 | 2356 | 2357 | 2358 | 2359 | 2360 | 2361 | 2362 | 2363 | 2364 | 2365 | 2366 | 2367 | 2368 | 2369 | 2370 | 2371 | 2372 | 2373 | 2374 | 2375 | 2376 | 2377 | 2378 | 2379 | 2380 | 2381 | 2382 | 2383 | 2384 | 2385 | 2386 | 2387 | 2388 | 2389 | 2390 | 2391 | 2392 | 2393 | 2394 | 2395 | 2396 | 2397 | 2398 | 2399 | 2400 | 2401 | 2402 | 2403 | 2404 | 2405 | 2406 | 2407 | 2408 | 2409 | 2410 | 2411 | 2412 | 2413 | 2414 | 2415 | 2416 | 2417 | 2418 | 2419 | 2420 | 2421 | 2422 | 2423 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 | 2430 | 2431 | 2432 | 2433 | 2434 | 2435 | 2436 | 2437 | 2438 | 2439 | 2440 | 2441 | 2442 | 2443 | 2444 | 2445 | 2446 | 2447 | 2448 | 2449 | 2450 | 2451 | 2452 | 2453 | 2454 | 2455 | 2456 | 2457 | 2458 | 2459 | 2460 | 2461 | 2462 | 2463 | 2464 | 2465 | 2466 | 2467 | 2468 | 2469 | 2470 | 2471 | 2472 | 2473 | 2474 | 2475 | 2476 | 2477 | 2478 | 2479 | 2480 | -------------------------------------------------------------------------------- /lrmodels/PascalVOC/FP32/frozen_inference_graph.bin: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/lrmodels/PascalVOC/FP32/frozen_inference_graph.bin -------------------------------------------------------------------------------- /lrmodels/PascalVOC/FP32/frozen_inference_graph.mapping: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | -------------------------------------------------------------------------------- /lrmodels/PascalVOC/FP32/inputoutput.txt: -------------------------------------------------------------------------------- 1 | INPUT_TENSOR_NAME = 0:MobilenetV2/Conv/Conv2D 2 | OUTPUT_TENSOR_NAME = ArgMax 3 | INPUT_SIZE = [1,513,513,3] 4 | FROZEN_GRAPH_NAME = frozen_inference_graph.pb 5 | 6 | -------------------------------------------------------------------------------- /media/01.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/01.jpg -------------------------------------------------------------------------------- /media/02.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/02.jpg -------------------------------------------------------------------------------- /media/03.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/03.jpg -------------------------------------------------------------------------------- /media/sample01.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample01.jpg -------------------------------------------------------------------------------- /media/sample02.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample02.jpg -------------------------------------------------------------------------------- /media/sample03.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample03.jpg -------------------------------------------------------------------------------- /media/sample04.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/media/sample04.jpg -------------------------------------------------------------------------------- /openvino_deeplabv3_test.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import os 3 | from argparse import ArgumentParser 4 | import numpy as np 5 | import cv2 6 | import time 7 | from PIL import Image 8 | import tensorflow as tf 9 | from tensorflow.python.platform import gfile 10 | try: 11 | from armv7l.openvino.inference_engine import IENetwork, IEPlugin 12 | except: 13 | from openvino.inference_engine import IENetwork, IEPlugin 14 | 15 | class _model_preprocess(): 16 | def __init__(self): 17 | graph = tf.Graph() 18 | f_handle = gfile.FastGFile("pbmodels/PascalVOC/frozen_inference_graph.pb", "rb") 19 | graph_def = tf.GraphDef.FromString(f_handle.read()) 20 | with graph.as_default(): 21 | tf.import_graph_def(graph_def, name='') 22 | self. sess = tf.Session(graph=graph) 23 | 24 | def _pre_process(self, image): 25 | seg_map = self.sess.run("sub_7:0", feed_dict={"ImageTensor:0": [image]}) 26 | return seg_map 27 | 28 | 29 | class _model_postprocess(): 30 | def __init__(self): 31 | graph = tf.Graph() 32 | f_handle = gfile.FastGFile("pbmodels/PascalVOC/frozen_inference_graph.pb", "rb") 33 | graph_def = tf.GraphDef.FromString(f_handle.read()) 34 | with graph.as_default(): 35 | new_input = tf.placeholder(tf.int64, shape=(1, 513, 513), name="new_input") 36 | tf.import_graph_def(graph_def, input_map={"ArgMax:0": new_input}, name='') 37 | self.sess = tf.Session(graph=graph) 38 | 39 | def _post_process(self, image_ir, image): 40 | seg_map = self.sess.run("SemanticPredictions:0", feed_dict={"ImageTensor:0": [image], "new_input:0": np.int64(image_ir)}) 41 | return seg_map 42 | 43 | 44 | _pre = _model_preprocess() 45 | _post = _model_postprocess() 46 | 47 | 48 | def build_argparser(): 49 | parser = ArgumentParser() 50 | parser.add_argument("-pp", "--plugin_dir", help="Path to a plugin folder", type=str, default=None) 51 | parser.add_argument("-d", "--device", help="Specify the target device to infer on; CPU, GPU, FPGA or MYRIAD is acceptable. Sample will look for a suitable plugin for device specified (CPU by default)", default="CPU", type=str) 52 | parser.add_argument("-nt", "--number_top", help="Number of top results", default=10, type=int) 53 | parser.add_argument("-pc", "--performance", help="Enables per-layer performance report", action='store_true') 54 | 55 | return parser 56 | 57 | 58 | def main_IE_infer(): 59 | camera_width = 320 60 | camera_height = 240 61 | m_input_size=513 62 | fps = "" 63 | framepos = 0 64 | frame_count = 0 65 | vidfps = 0 66 | skip_frame = 0 67 | elapsedTime = 0 68 | 69 | args = build_argparser().parse_args() 70 | #model_xml = "lrmodels/PascalVOC/FP32/frozen_inference_graph.xml" #<--- CPU 71 | model_xml = "lrmodels/PascalVOC/FP16/frozen_inference_graph.xml" #<--- MYRIAD 72 | model_bin = os.path.splitext(model_xml)[0] + ".bin" 73 | 74 | seg_image = Image.open("data/input/009649.png") 75 | palette = seg_image.getpalette() # Get a color palette 76 | 77 | cap = cv2.VideoCapture(0) 78 | cap.set(cv2.CAP_PROP_FPS, 10) 79 | cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) 80 | cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) 81 | 82 | #cap = cv2.VideoCapture("data/input/testvideo.mp4") 83 | #camera_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) 84 | #camera_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) 85 | #frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) 86 | #vidfps = int(cap.get(cv2.CAP_PROP_FPS)) 87 | #print("videosFrameCount =", str(frame_count)) 88 | #print("videosFPS =", str(vidfps)) 89 | 90 | time.sleep(1) 91 | 92 | plugin = IEPlugin(device=args.device, plugin_dirs=args.plugin_dir) 93 | if "CPU" in args.device: 94 | plugin.add_cpu_extension("lib/libcpu_extension.so") 95 | if args.performance: 96 | plugin.set_config({"PERF_COUNT": "YES"}) 97 | # Read IR 98 | net = IENetwork(model=model_xml, weights=model_bin) 99 | input_blob = next(iter(net.inputs)) 100 | exec_net = plugin.load(network=net) 101 | 102 | while cap.isOpened(): 103 | t1 = time.time() 104 | 105 | #cap.set(cv2.CAP_PROP_POS_FRAMES, framepos) # Uncomment only when playing video files 106 | 107 | ret, image = cap.read() 108 | if not ret: 109 | break 110 | 111 | ratio = 1.0 * m_input_size / max(image.shape[0], image.shape[1]) 112 | shrink_size = (int(ratio * image.shape[1]), int(ratio * image.shape[0])) 113 | image = cv2.resize(image, shrink_size, interpolation=cv2.INTER_CUBIC) 114 | 115 | prepimg = _pre._pre_process(image) 116 | prepimg = prepimg.transpose((0, 3, 1, 2)) #NHWC to NCHW 117 | res = exec_net.infer(inputs={input_blob: prepimg}) 118 | result = _post._post_process(res["ArgMax/Squeeze"], image)[0] 119 | 120 | outputimg = Image.fromarray(np.uint8(result), mode="P") 121 | outputimg.putpalette(palette) 122 | outputimg = outputimg.convert("RGB") 123 | outputimg = np.asarray(outputimg) 124 | outputimg = cv2.cvtColor(outputimg, cv2.COLOR_RGB2BGR) 125 | outputimg = cv2.addWeighted(image, 1.0, outputimg, 0.9, 0) 126 | outputimg = cv2.resize(outputimg, (camera_width, camera_height)) 127 | 128 | cv2.putText(outputimg, fps, (camera_width-180,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA) 129 | cv2.imshow("Result", outputimg) 130 | 131 | if cv2.waitKey(1)&0xFF == ord('q'): 132 | break 133 | elapsedTime = time.time() - t1 134 | fps = "(Playback) {:.1f} FPS".format(1/elapsedTime) 135 | 136 | # frame skip, video file only 137 | skip_frame = int((vidfps - int(1/elapsedTime)) / int(1/elapsedTime)) 138 | framepos += skip_frame 139 | 140 | cv2.destroyAllWindows() 141 | del net 142 | del exec_net 143 | del plugin 144 | 145 | 146 | if __name__ == '__main__': 147 | sys.exit(main_IE_infer() or 0) 148 | -------------------------------------------------------------------------------- /pbmodels/MSCOCOcityscapes/frozen_inference_graph.pb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/MSCOCOcityscapes/frozen_inference_graph.pb -------------------------------------------------------------------------------- /pbmodels/MSCOCOcityscapes/inputoutput.txt: -------------------------------------------------------------------------------- 1 | INPUT_TENSOR_NAME = ImageTensor:0 2 | OUTPUT_TENSOR_NAME = SemanticPredictions:0 3 | INPUT_SIZE = [1,-1,-1,3] 4 | FROZEN_GRAPH_NAME = frozen_inference_graph.pb 5 | 6 | -------------------------------------------------------------------------------- /pbmodels/MSCOCOcityscapes/model.ckpt.data-00000-of-00001: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/MSCOCOcityscapes/model.ckpt.data-00000-of-00001 -------------------------------------------------------------------------------- /pbmodels/MSCOCOcityscapes/model.ckpt.index: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/MSCOCOcityscapes/model.ckpt.index -------------------------------------------------------------------------------- /pbmodels/PascalVOC/frozen_inference_graph.pb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/PascalVOC/frozen_inference_graph.pb -------------------------------------------------------------------------------- /pbmodels/PascalVOC/inputoutput.txt: -------------------------------------------------------------------------------- 1 | INPUT_TENSOR_NAME = ImageTensor:0 2 | OUTPUT_TENSOR_NAME = SemanticPredictions:0 3 | INPUT_SIZE = [1,513,513,3] 4 | FROZEN_GRAPH_NAME = frozen_inference_graph.pb 5 | 6 | -------------------------------------------------------------------------------- /pbmodels/PascalVOC/model.ckpt-30000.data-00000-of-00001: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/PascalVOC/model.ckpt-30000.data-00000-of-00001 -------------------------------------------------------------------------------- /pbmodels/PascalVOC/model.ckpt-30000.index: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/pbmodels/PascalVOC/model.ckpt-30000.index -------------------------------------------------------------------------------- /savedmodel/events.out.tfevents.1546483660.ubuntu: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PINTO0309/OpenVINO-DeeplabV3/b6e59554524494a4f8a35f49ccfe449982f507b3/savedmodel/events.out.tfevents.1546483660.ubuntu -------------------------------------------------------------------------------- /tensorboard_output.py: -------------------------------------------------------------------------------- 1 | import tensorflow as tf 2 | from tensorflow.python.platform import gfile 3 | 4 | with tf.Session() as sess: 5 | model_filename ="pbmodels/PascalVOC/frozen_inference_graph.pb" 6 | with gfile.FastGFile(model_filename, "rb") as f: 7 | graph_def = tf.GraphDef() 8 | graph_def.ParseFromString(f.read()) 9 | g_in = tf.import_graph_def(graph_def) 10 | 11 | LOGDIR="savedmodel" 12 | train_writer = tf.summary.FileWriter(LOGDIR) 13 | train_writer.add_graph(sess.graph) 14 | -------------------------------------------------------------------------------- /tensorboard_start_script.txt: -------------------------------------------------------------------------------- 1 | tensorboard --logdir=/home/b920405/git/OpenVINO-DeeplabV3/savedmodel 2 | -------------------------------------------------------------------------------- /tfconverter.py: -------------------------------------------------------------------------------- 1 | import tensorflow as tf 2 | from google.protobuf import text_format 3 | from tensorflow.python.platform import gfile 4 | 5 | def pbtxt_to_graphdef(filename): 6 | with open(filename, 'r') as f: 7 | graph_def = tf.GraphDef() 8 | file_content = f.read() 9 | text_format.Merge(file_content, graph_def) 10 | tf.import_graph_def(graph_def, name='') 11 | tf.train.write_graph(graph_def, './', 'protobuf.pb', as_text=False) 12 | 13 | def graphdef_to_pbtxt(filename): 14 | with gfile.FastGFile(filename,'rb') as f: 15 | graph_def = tf.GraphDef() 16 | graph_def.ParseFromString(f.read()) 17 | tf.import_graph_def(graph_def, name='') 18 | tf.train.write_graph(graph_def, './', filename+'txt', as_text=True) 19 | return 20 | 21 | 22 | graphdef_to_pbtxt('pbmodels/PascalVOC/frozen_inference_graph.pb') # here you can write the name of the file to be converted 23 | --------------------------------------------------------------------------------