├── README.md ├── Florence-2-Models-Image-Caption └── Florence2_Models.ipynb ├── LICENSE ├── Megalodon-OCR-Sync-0713-ColabNotebook └── Megalodon_OCR_Sync_0713_ReportLab.ipynb ├── Qwen2.5-VL-3B-Instruct └── Qwen2_5_VL_3B_Instruct_ReportLab.ipynb ├── Behemoth-3B-070225-post0.1 └── Behemoth_3B_070225_post0_1_ReportLab.ipynb └── Qwen2-VL-OCR-2B-Instruct └── Qwen2_VL_OCR_2B_Instruct.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # **[OCR-ReportLab-Notebooks](https://huggingface.co/prithivMLmods/OCR-ReportLab-Notebooks/tree/main)** 2 | 3 | ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ksAGbgk8Gm4qstLB7bE4q.png) 4 | 5 | > [!note] 6 | **OCR-ReportLab** is a collection of Colab notebooks designed to perform Optical Character Recognition (OCR) on images and generate DOCX or PDF documents containing both the original image and the extracted text. It supports multiple state-of-the-art vision-language models for experimentation and practical use. 7 | 8 | ## Notebooks 9 | 10 | You can launch and run the following notebooks directly in Google Colab: 11 | 12 | - **Nanonets OCR:** [Open in Colab](https://colab.research.google.com/drive/1VvA-amvSVxGdWgIsh4_by6KWOtEs_Iqp) 13 | - **Monkey OCR:** [Open in Colab](https://colab.research.google.com/drive/1vPCojbmlXjDFUt06FJ1tjgnj_zWK4mUo) 14 | - **OCRFlux 3B:** [Open in Colab](https://colab.research.google.com/drive/1TDoCXzWdF2hxVLbISqW6DjXAzOyI7pzf) 15 | - **Typhoon OCR:** [Open in Colab](https://colab.research.google.com/drive/1_59zvLNnn1kvbiSFxzA1WiqhpbW8RKbz) 16 | 17 | ## Features 18 | 19 | - Extracts text from input images using various OCR models 20 | - Embeds the image and extracted text into DOCX or PDF formats 21 | - Designed for quick deployment via Google Colab 22 | 23 | ## Supported Models 24 | 25 | The repository currently supports the following OCR implementations: 26 | 27 | - **Nanonets OCR** 28 | - **Monkey OCR** 29 | - **OCRFlux 3B** 30 | - **Typhoon OCR 3B** 31 | 32 | ## Installation 33 | 34 | No installation is required. Simply click on the links above to run the notebooks in Google Colab. Make sure to upload your image file(s) when prompted and follow the instructions in the notebook. 35 | 36 | --- 37 | 38 | ## Other Images 39 | 40 | --- 41 | 42 | 43 | 44 | 48 | 52 | 53 |
45 | OCR 46 |

OCR

47 |
49 | Caption 50 |

Caption

51 |
54 | 55 | --- 56 | 57 | ![222](https://github.com/user-attachments/assets/eae0f85d-2963-4edf-96e9-caedfe048c4f) 58 | 59 | --- 60 | 61 | ## Dependencies 62 | 63 | The notebooks are built using: 64 | 65 | - Python 66 | - PyTorch 67 | - Hugging Face Transformers 68 | - ReportLab 69 | - Gradio (for UI) 70 | - (Qwen2.5-VL based) 71 | 72 | All dependencies are automatically installed in the Colab environment. 73 | 74 | ## Author 75 | 76 | Created and maintained by [PRITHIVSAKTHIUR](https://github.com/PRITHIVSAKTHIUR) 77 | -------------------------------------------------------------------------------- /Florence-2-Models-Image-Caption/Florence2_Models.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "source": [ 6 | "***Florence-2 Models Image Captions : Image-to-Text***\n", 7 | "\n", 8 | "*notebook by : [prithivMLmods](https://huggingface.co/prithivMLmods)🤗 x ❤️*" 9 | ], 10 | "metadata": { 11 | "id": "0wlBVusvHBDY" 12 | } 13 | }, 14 | { 15 | "cell_type": "markdown", 16 | "source": [ 17 | "***Installing all necessary packages***" 18 | ], 19 | "metadata": { 20 | "id": "v_lhI9uSHcfX" 21 | } 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": { 27 | "id": "d9NXmBEN4-5z" 28 | }, 29 | "outputs": [], 30 | "source": [ 31 | "%%capture\n", 32 | "!pip install transformers==4.48.0 timm\n", 33 | "!pip install huggingface_hub hf_xet\n", 34 | "#Hold tight, this will take around 3-5 minutes." 35 | ] 36 | }, 37 | { 38 | "cell_type": "markdown", 39 | "source": [ 40 | "***Run app 💨***" 41 | ], 42 | "metadata": { 43 | "id": "exk2jXyoHdwv" 44 | } 45 | }, 46 | { 47 | "cell_type": "code", 48 | "execution_count": null, 49 | "metadata": { 50 | "colab": { 51 | "background_save": true 52 | }, 53 | "id": "3Z7bnSM35Sfc" 54 | }, 55 | "outputs": [], 56 | "source": [ 57 | "import gradio as gr\n", 58 | "import subprocess\n", 59 | "import torch\n", 60 | "from PIL import Image\n", 61 | "from transformers import AutoProcessor, AutoModelForCausalLM\n", 62 | "\n", 63 | "#--------- Hold tight — installation takes only 2–3 minutes ---------#\n", 64 | "# Attempt to install flash-attn\n", 65 | "try:\n", 66 | " subprocess.run('pip install flash-attn==1.0.9 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': \"TRUE\"}, check=True, shell=True)\n", 67 | "except subprocess.CalledProcessError as e:\n", 68 | " print(f\"Error installing flash-attn: {e}\")\n", 69 | " print(\"Continuing without flash-attn.\")\n", 70 | "#--------- Hold tight — installation takes only 2–3 minutes ---------#\n", 71 | "\n", 72 | "# Determine the device to use\n", 73 | "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", 74 | "\n", 75 | "# Load the base model and processor\n", 76 | "try:\n", 77 | " vision_language_model_base = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()\n", 78 | " vision_language_processor_base = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)\n", 79 | "except Exception as e:\n", 80 | " print(f\"Error loading base model: {e}\")\n", 81 | " vision_language_model_base = None\n", 82 | " vision_language_processor_base = None\n", 83 | "\n", 84 | "# Load the large model and processor\n", 85 | "try:\n", 86 | " vision_language_model_large = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval()\n", 87 | " vision_language_processor_large = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True)\n", 88 | "except Exception as e:\n", 89 | " print(f\"Error loading large model: {e}\")\n", 90 | " vision_language_model_large = None\n", 91 | " vision_language_processor_large = None\n", 92 | "\n", 93 | "def describe_image(uploaded_image, model_choice):\n", 94 | " \"\"\"\n", 95 | " Generates a detailed description of the input image using the selected model.\n", 96 | "\n", 97 | " Args:\n", 98 | " uploaded_image (PIL.Image.Image): The image to describe.\n", 99 | " model_choice (str): The model to use, either \"Base\" or \"Large\".\n", 100 | "\n", 101 | " Returns:\n", 102 | " str: A detailed textual description of the image or an error message.\n", 103 | " \"\"\"\n", 104 | " if uploaded_image is None:\n", 105 | " return \"Please upload an image.\"\n", 106 | "\n", 107 | " if model_choice == \"Florence-2-base\":\n", 108 | " if vision_language_model_base is None:\n", 109 | " return \"Base model failed to load.\"\n", 110 | " model = vision_language_model_base\n", 111 | " processor = vision_language_processor_base\n", 112 | " elif model_choice == \"Florence-2-large\":\n", 113 | " if vision_language_model_large is None:\n", 114 | " return \"Large model failed to load.\"\n", 115 | " model = vision_language_model_large\n", 116 | " processor = vision_language_processor_large\n", 117 | " else:\n", 118 | " return \"Invalid model choice.\"\n", 119 | "\n", 120 | " if not isinstance(uploaded_image, Image.Image):\n", 121 | " uploaded_image = Image.fromarray(uploaded_image)\n", 122 | "\n", 123 | " inputs = processor(text=\"\", images=uploaded_image, return_tensors=\"pt\").to(device)\n", 124 | " with torch.no_grad():\n", 125 | " generated_ids = model.generate(\n", 126 | " input_ids=inputs[\"input_ids\"],\n", 127 | " pixel_values=inputs[\"pixel_values\"],\n", 128 | " max_new_tokens=1024,\n", 129 | " early_stopping=False,\n", 130 | " do_sample=False,\n", 131 | " num_beams=3,\n", 132 | " )\n", 133 | " generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n", 134 | " processed_description = processor.post_process_generation(\n", 135 | " generated_text,\n", 136 | " task=\"\",\n", 137 | " image_size=(uploaded_image.width, uploaded_image.height)\n", 138 | " )\n", 139 | " image_description = processed_description[\"\"]\n", 140 | " print(\"\\nImage description generated!:\", image_description)\n", 141 | " return image_description\n", 142 | "\n", 143 | "# Description for the interface\n", 144 | "description = \"> Select the model to use for generating the image description. 'Base' is smaller and faster, while 'Large' is more accurate but slower.\"\n", 145 | "if device == \"cpu\":\n", 146 | " description += \" Note: Running on CPU, which may be slow for large models.\"\n", 147 | "\n", 148 | "css = \"\"\"\n", 149 | ".submit-btn {\n", 150 | " background-color: #4682B4 !important;\n", 151 | " color: white !important;\n", 152 | "}\n", 153 | ".submit-btn:hover {\n", 154 | " background-color: #87CEEB !important;\n", 155 | "}\n", 156 | "\"\"\"\n", 157 | "\n", 158 | "# Create the Gradio interface with Blocks\n", 159 | "with gr.Blocks(theme=\"bethecloud/storj_theme\", css=css) as demo:\n", 160 | " gr.Markdown(\"# **[Florence-2 Models Image Captions](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**\")\n", 161 | " gr.Markdown(description)\n", 162 | " with gr.Row():\n", 163 | " # Left column: Input image and Generate button\n", 164 | " with gr.Column():\n", 165 | " image_input = gr.Image(label=\"Upload Image\", type=\"pil\")\n", 166 | " generate_btn = gr.Button(\"Generate Caption\", elem_classes=\"submit-btn\")\n", 167 | " # Right column: Model choice, output, and examples\n", 168 | " with gr.Column():\n", 169 | " model_choice = gr.Radio([\"Florence-2-base\", \"Florence-2-large\"], label=\"Model Choice\", value=\"Florence-2-base\")\n", 170 | " with gr.Row():\n", 171 | " output = gr.Textbox(label=\"Generated Caption\", lines=4, show_copy_button=True)\n", 172 | " # Connect the button to the function\n", 173 | " generate_btn.click(fn=describe_image, inputs=[image_input, model_choice], outputs=output)\n", 174 | "\n", 175 | "# Launch the interface\n", 176 | "demo.launch(debug=True)" 177 | ] 178 | }, 179 | { 180 | "cell_type": "markdown", 181 | "source": [ 182 | "## **Demo Inference Screenshots**\n", 183 | "\n", 184 | "| ![Screenshot 2025-07-27 at 23-42-00 Gradio.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Sg9YAC9iRXaYQKL7T1MRQ.png) | ![Screenshot 2025-07-27 at 23-37-02 Gradio.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/DSoE-iXiO4haktd65aQxr.png) |\n", 185 | "|:---------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------:|\n" 186 | ], 187 | "metadata": { 188 | "id": "NFKGwtueGfcW" 189 | } 190 | } 191 | ], 192 | "metadata": { 193 | "accelerator": "GPU", 194 | "colab": { 195 | "gpuType": "T4", 196 | "provenance": [] 197 | }, 198 | "kernelspec": { 199 | "display_name": "Python 3", 200 | "name": "python3" 201 | }, 202 | "language_info": { 203 | "name": "python" 204 | } 205 | }, 206 | "nbformat": 4, 207 | "nbformat_minor": 0 208 | } -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /Megalodon-OCR-Sync-0713-ColabNotebook/Megalodon_OCR_Sync_0713_ReportLab.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "uFovmijgUV1Z" 7 | }, 8 | "source": [ 9 | "***Multimodal OCR ReportLab : Megalodon-OCR-Sync-0713***\n", 10 | "\n", 11 | "*notebook by : [prithivMLmods](https://huggingface.co/prithivMLmods)🤗 x ❤️*" 12 | ] 13 | }, 14 | { 15 | "cell_type": "markdown", 16 | "metadata": { 17 | "id": "RugX4SGZV-8O" 18 | }, 19 | "source": [ 20 | "***Installing all necessary packages***" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": { 27 | "id": "l-NtFtjSpuJQ" 28 | }, 29 | "outputs": [], 30 | "source": [ 31 | "%%capture\n", 32 | "!pip install gradio transformers transformers-stream-generator qwen-vl-utils\n", 33 | "!pip install torchvision torch huggingface_hub spaces accelerate ipython\n", 34 | "!pip install pillow av python-docx requests numpy reportlab fpdf hf_xet\n", 35 | "#Hold tight, this will take around 3-5 minutes." 36 | ] 37 | }, 38 | { 39 | "cell_type": "markdown", 40 | "metadata": { 41 | "id": "mvoSnRZcVBu4" 42 | }, 43 | "source": [ 44 | "***Run app***" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": null, 50 | "metadata": { 51 | "id": "tElKr2Fkp1bO" 52 | }, 53 | "outputs": [], 54 | "source": [ 55 | "#Model used in the app: https://huggingface.co/prithivMLmods/Megalodon-OCR-Sync-0713\n", 56 | "#Architecture built on: Qwen2_5_VLForConditionalGeneration [qwen2_5_vl]\n", 57 | "import gradio as gr\n", 58 | "import spaces\n", 59 | "from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer\n", 60 | "from qwen_vl_utils import process_vision_info\n", 61 | "import torch\n", 62 | "from PIL import Image\n", 63 | "import os\n", 64 | "import uuid\n", 65 | "import io\n", 66 | "from threading import Thread\n", 67 | "from reportlab.lib.pagesizes import A4\n", 68 | "from reportlab.lib.styles import getSampleStyleSheet\n", 69 | "from reportlab.lib import colors\n", 70 | "from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer\n", 71 | "from reportlab.lib.units import inch\n", 72 | "from reportlab.pdfbase import pdfmetrics\n", 73 | "from reportlab.pdfbase.ttfonts import TTFont\n", 74 | "import docx\n", 75 | "from docx.enum.text import WD_ALIGN_PARAGRAPH\n", 76 | "\n", 77 | "# Define model options\n", 78 | "MODEL_OPTIONS = {\n", 79 | " \"Megalodon-OCR-Sync-0713\": \"prithivMLmods/Megalodon-OCR-Sync-0713\",\n", 80 | "}\n", 81 | "\n", 82 | "# Preload models and processors into CUDA\n", 83 | "models = {}\n", 84 | "processors = {}\n", 85 | "for name, model_id in MODEL_OPTIONS.items():\n", 86 | " print(f\"Loading {name}🤗. Hold tight, this will take around 4-6 minutes..\")\n", 87 | " models[name] = Qwen2_5_VLForConditionalGeneration.from_pretrained(\n", 88 | " model_id,\n", 89 | " trust_remote_code=True,\n", 90 | " torch_dtype=torch.float16\n", 91 | " ).to(\"cuda\").eval()\n", 92 | " processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)\n", 93 | "\n", 94 | "image_extensions = Image.registered_extensions()\n", 95 | "\n", 96 | "def identify_and_save_blob(blob_path):\n", 97 | " \"\"\"Identifies if the blob is an image and saves it.\"\"\"\n", 98 | " try:\n", 99 | " with open(blob_path, 'rb') as file:\n", 100 | " blob_content = file.read()\n", 101 | " try:\n", 102 | " Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image\n", 103 | " extension = \".png\" # Default to PNG for saving\n", 104 | " media_type = \"image\"\n", 105 | " except (IOError, SyntaxError):\n", 106 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 107 | "\n", 108 | " filename = f\"temp_{uuid.uuid4()}_media{extension}\"\n", 109 | " with open(filename, \"wb\") as f:\n", 110 | " f.write(blob_content)\n", 111 | "\n", 112 | " return filename, media_type\n", 113 | "\n", 114 | " except FileNotFoundError:\n", 115 | " raise ValueError(f\"The file {blob_path} was not found.\")\n", 116 | " except Exception as e:\n", 117 | " raise ValueError(f\"An error occurred while processing the file: {e}\")\n", 118 | "\n", 119 | "@spaces.GPU\n", 120 | "def qwen_inference(model_name, media_input, text_input=None):\n", 121 | " \"\"\"Handles inference for the selected model.\"\"\"\n", 122 | " model = models[model_name]\n", 123 | " processor = processors[model_name]\n", 124 | "\n", 125 | " if isinstance(media_input, str):\n", 126 | " media_path = media_input\n", 127 | " if media_path.endswith(tuple([i for i in image_extensions.keys()])):\n", 128 | " media_type = \"image\"\n", 129 | " else:\n", 130 | " try:\n", 131 | " media_path, media_type = identify_and_save_blob(media_input)\n", 132 | " except Exception as e:\n", 133 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 134 | "\n", 135 | " messages = [\n", 136 | " {\n", 137 | " \"role\": \"user\",\n", 138 | " \"content\": [\n", 139 | " {\n", 140 | " \"type\": media_type,\n", 141 | " media_type: media_path\n", 142 | " },\n", 143 | " {\"type\": \"text\", \"text\": text_input},\n", 144 | " ],\n", 145 | " }\n", 146 | " ]\n", 147 | "\n", 148 | " text = processor.apply_chat_template(\n", 149 | " messages, tokenize=False, add_generation_prompt=True\n", 150 | " )\n", 151 | " image_inputs, _ = process_vision_info(messages)\n", 152 | " inputs = processor(\n", 153 | " text=[text],\n", 154 | " images=image_inputs,\n", 155 | " padding=True,\n", 156 | " return_tensors=\"pt\",\n", 157 | " ).to(\"cuda\")\n", 158 | "\n", 159 | " streamer = TextIteratorStreamer(\n", 160 | " processor.tokenizer, skip_prompt=True, skip_special_tokens=True\n", 161 | " )\n", 162 | " generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)\n", 163 | "\n", 164 | " thread = Thread(target=model.generate, kwargs=generation_kwargs)\n", 165 | " thread.start()\n", 166 | "\n", 167 | " buffer = \"\"\n", 168 | " for new_text in streamer:\n", 169 | " buffer += new_text\n", 170 | " # Remove <|im_end|> or similar tokens from the output\n", 171 | " buffer = buffer.replace(\"<|im_end|>\", \"\")\n", 172 | " yield buffer\n", 173 | "\n", 174 | "def format_plain_text(output_text):\n", 175 | " \"\"\"Formats the output text as plain text without LaTeX delimiters.\"\"\"\n", 176 | " # Remove LaTeX delimiters and convert to plain text\n", 177 | " plain_text = output_text.replace(\"\\\\(\", \"\").replace(\"\\\\)\", \"\").replace(\"\\\\[\", \"\").replace(\"\\\\]\", \"\")\n", 178 | " return plain_text\n", 179 | "\n", 180 | "def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size):\n", 181 | " \"\"\"Generates a document with the input image and plain text output.\"\"\"\n", 182 | " plain_text = format_plain_text(output_text)\n", 183 | " if file_format == \"pdf\":\n", 184 | " return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 185 | " elif file_format == \"docx\":\n", 186 | " return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 187 | "\n", 188 | "def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 189 | " \"\"\"Generates a PDF document.\"\"\"\n", 190 | " filename = f\"output_{uuid.uuid4()}.pdf\"\n", 191 | " doc = SimpleDocTemplate(\n", 192 | " filename,\n", 193 | " pagesize=A4,\n", 194 | " rightMargin=inch,\n", 195 | " leftMargin=inch,\n", 196 | " topMargin=inch,\n", 197 | " bottomMargin=inch\n", 198 | " )\n", 199 | " styles = getSampleStyleSheet()\n", 200 | " styles[\"Normal\"].fontSize = int(font_size)\n", 201 | " styles[\"Normal\"].leading = int(font_size) * line_spacing\n", 202 | " styles[\"Normal\"].alignment = {\n", 203 | " \"Left\": 0,\n", 204 | " \"Center\": 1,\n", 205 | " \"Right\": 2,\n", 206 | " \"Justified\": 4\n", 207 | " }[alignment]\n", 208 | "\n", 209 | " story = []\n", 210 | "\n", 211 | " # Add image with size adjustment\n", 212 | " image_sizes = {\n", 213 | " \"Small\": (200, 200),\n", 214 | " \"Medium\": (400, 400),\n", 215 | " \"Large\": (600, 600)\n", 216 | " }\n", 217 | " img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])\n", 218 | " story.append(img)\n", 219 | " story.append(Spacer(1, 12))\n", 220 | "\n", 221 | " # Add plain text output\n", 222 | " text = Paragraph(plain_text, styles[\"Normal\"])\n", 223 | " story.append(text)\n", 224 | "\n", 225 | " doc.build(story)\n", 226 | " return filename\n", 227 | "\n", 228 | "def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 229 | " \"\"\"Generates a DOCX document.\"\"\"\n", 230 | " filename = f\"output_{uuid.uuid4()}.docx\"\n", 231 | " doc = docx.Document()\n", 232 | "\n", 233 | " # Add image with size adjustment\n", 234 | " image_sizes = {\n", 235 | " \"Small\": docx.shared.Inches(2),\n", 236 | " \"Medium\": docx.shared.Inches(4),\n", 237 | " \"Large\": docx.shared.Inches(6)\n", 238 | " }\n", 239 | " doc.add_picture(media_path, width=image_sizes[image_size])\n", 240 | " doc.add_paragraph()\n", 241 | "\n", 242 | " # Add plain text output\n", 243 | " paragraph = doc.add_paragraph()\n", 244 | " paragraph.paragraph_format.line_spacing = line_spacing\n", 245 | " paragraph.paragraph_format.alignment = {\n", 246 | " \"Left\": WD_ALIGN_PARAGRAPH.LEFT,\n", 247 | " \"Center\": WD_ALIGN_PARAGRAPH.CENTER,\n", 248 | " \"Right\": WD_ALIGN_PARAGRAPH.RIGHT,\n", 249 | " \"Justified\": WD_ALIGN_PARAGRAPH.JUSTIFY\n", 250 | " }[alignment]\n", 251 | " run = paragraph.add_run(plain_text)\n", 252 | " run.font.size = docx.shared.Pt(int(font_size))\n", 253 | "\n", 254 | " doc.save(filename)\n", 255 | " return filename\n", 256 | "\n", 257 | "# CSS for output styling\n", 258 | "css = \"\"\"\n", 259 | " #output {\n", 260 | " height: 500px;\n", 261 | " overflow: auto;\n", 262 | " border: 1px solid #ccc;\n", 263 | " }\n", 264 | ".submit-btn {\n", 265 | " background-color: #cf3434 !important;\n", 266 | " color: white !important;\n", 267 | "}\n", 268 | ".submit-btn:hover {\n", 269 | " background-color: #ff2323 !important;\n", 270 | "}\n", 271 | ".download-btn {\n", 272 | " background-color: #35a6d6 !important;\n", 273 | " color: white !important;\n", 274 | "}\n", 275 | ".download-btn:hover {\n", 276 | " background-color: #22bcff !important;\n", 277 | "}\n", 278 | "\"\"\"\n", 279 | "\n", 280 | "# Gradio app setup\n", 281 | "with gr.Blocks(css=css, theme=\"bethecloud/storj_theme\") as demo:\n", 282 | " gr.Markdown(\"# **Multimodal-OCR : Megalodon-OCR-Sync-0713**\")\n", 283 | "\n", 284 | " with gr.Tab(label=\"Image Input\"):\n", 285 | "\n", 286 | " with gr.Row():\n", 287 | " with gr.Column():\n", 288 | " model_choice = gr.Dropdown(\n", 289 | " label=\"Model Selection\",\n", 290 | " choices=list(MODEL_OPTIONS.keys()),\n", 291 | " value=\"Megalodon-OCR-Sync-0713\"\n", 292 | " )\n", 293 | " input_media = gr.File(\n", 294 | " label=\"Upload Image\", type=\"filepath\"\n", 295 | " )\n", 296 | " text_input = gr.Textbox(label=\"Question\", value=\"OCR the image precisely.\")\n", 297 | " submit_btn = gr.Button(value=\"Submit\", elem_classes=\"submit-btn\")\n", 298 | "\n", 299 | " with gr.Column():\n", 300 | " output_text = gr.Textbox(label=\"Output Text\", lines=7)\n", 301 | "\n", 302 | " with gr.Accordion(\"Plain Text\", open=False):\n", 303 | " plain_text_output = gr.Textbox(label=\"Standardized Plain Text\", lines=10)\n", 304 | "\n", 305 | " submit_btn.click(\n", 306 | " qwen_inference, [model_choice, input_media, text_input], [output_text]\n", 307 | " ).then(\n", 308 | " lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]\n", 309 | " )\n", 310 | "\n", 311 | " with gr.Accordion(\"Docx/PDF Settings\", open=False):\n", 312 | " with gr.Row():\n", 313 | " with gr.Column():\n", 314 | " line_spacing = gr.Dropdown(\n", 315 | " choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],\n", 316 | " value=1.5,\n", 317 | " label=\"Line Spacing\"\n", 318 | " )\n", 319 | " font_size = gr.Dropdown(\n", 320 | " choices=[\"8\", \"10\", \"12\", \"14\", \"16\", \"18\", \"20\", \"22\", \"24\"],\n", 321 | " value=\"16\",\n", 322 | " label=\"Font Size\"\n", 323 | " )\n", 324 | " alignment = gr.Dropdown(\n", 325 | " choices=[\"Left\", \"Center\", \"Right\", \"Justified\"],\n", 326 | " value=\"Justified\",\n", 327 | " label=\"Text Alignment\"\n", 328 | " )\n", 329 | " image_size = gr.Dropdown(\n", 330 | " choices=[\"Small\", \"Medium\", \"Large\"],\n", 331 | " value=\"Medium\",\n", 332 | " label=\"Image Size\"\n", 333 | " )\n", 334 | " file_format = gr.Radio([\"pdf\", \"docx\"], label=\"File Format\", value=\"pdf\")\n", 335 | "\n", 336 | " get_document_btn = gr.Button(value=\"Get Document\", elem_classes=\"download-btn\")\n", 337 | "\n", 338 | " get_document_btn.click(\n", 339 | " generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label=\"Download Document\")\n", 340 | " )\n", 341 | "\n", 342 | "demo.launch(debug=True)" 343 | ] 344 | } 345 | ], 346 | "metadata": { 347 | "accelerator": "GPU", 348 | "colab": { 349 | "gpuType": "T4", 350 | "provenance": [] 351 | }, 352 | "kernelspec": { 353 | "display_name": "Python 3", 354 | "name": "python3" 355 | }, 356 | "language_info": { 357 | "name": "python" 358 | } 359 | }, 360 | "nbformat": 4, 361 | "nbformat_minor": 0 362 | } 363 | -------------------------------------------------------------------------------- /Qwen2.5-VL-3B-Instruct/Qwen2_5_VL_3B_Instruct_ReportLab.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "uFovmijgUV1Z" 7 | }, 8 | "source": [ 9 | "***Multimodal ReportLab : Qwen2.5-VL-3B-Instruct***\n", 10 | "\n", 11 | "*notebook by : [prithivMLmods](https://huggingface.co/prithivMLmods)🤗 x ❤️*" 12 | ] 13 | }, 14 | { 15 | "cell_type": "markdown", 16 | "metadata": { 17 | "id": "RugX4SGZV-8O" 18 | }, 19 | "source": [ 20 | "***Installing all necessary packages***" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": { 27 | "id": "l-NtFtjSpuJQ" 28 | }, 29 | "outputs": [], 30 | "source": [ 31 | "%%capture\n", 32 | "!pip install gradio transformers transformers-stream-generator qwen-vl-utils\n", 33 | "!pip install torchvision torch huggingface_hub spaces accelerate ipython\n", 34 | "!pip install pillow av python-docx requests numpy reportlab fpdf hf_xet\n", 35 | "#Hold tight, this will take around 3-5 minutes." 36 | ] 37 | }, 38 | { 39 | "cell_type": "markdown", 40 | "metadata": { 41 | "id": "mvoSnRZcVBu4" 42 | }, 43 | "source": [ 44 | "***Run app***" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": null, 50 | "metadata": { 51 | "id": "tElKr2Fkp1bO" 52 | }, 53 | "outputs": [], 54 | "source": [ 55 | "# ================================================\n", 56 | "# Model Configuration\n", 57 | "# ================================================\n", 58 | "\n", 59 | "# Model used in the app:\n", 60 | "# https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct\n", 61 | "\n", 62 | "# Architecture built on:\n", 63 | "# Qwen2_5_VLForConditionalGeneration [qwen2_5_vl]\n", 64 | "import gradio as gr\n", 65 | "import spaces\n", 66 | "from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer\n", 67 | "from qwen_vl_utils import process_vision_info\n", 68 | "import torch\n", 69 | "from PIL import Image\n", 70 | "import os\n", 71 | "import uuid\n", 72 | "import io\n", 73 | "from threading import Thread\n", 74 | "from reportlab.lib.pagesizes import A4\n", 75 | "from reportlab.lib.styles import getSampleStyleSheet\n", 76 | "from reportlab.lib import colors\n", 77 | "from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer\n", 78 | "from reportlab.lib.units import inch\n", 79 | "from reportlab.pdfbase import pdfmetrics\n", 80 | "from reportlab.pdfbase.ttfonts import TTFont\n", 81 | "import docx\n", 82 | "from docx.enum.text import WD_ALIGN_PARAGRAPH\n", 83 | "\n", 84 | "# Define model options\n", 85 | "MODEL_OPTIONS = {\n", 86 | " \"Qwen2.5-VL-3B-Instruct\": \"Qwen/Qwen2.5-VL-3B-Instruct\",\n", 87 | "}\n", 88 | "\n", 89 | "# Preload models and processors into CUDA\n", 90 | "models = {}\n", 91 | "processors = {}\n", 92 | "for name, model_id in MODEL_OPTIONS.items():\n", 93 | " print(f\"Loading {name}🤗. Hold tight, this will take around 4-6 minutes..\")\n", 94 | " models[name] = Qwen2_5_VLForConditionalGeneration.from_pretrained(\n", 95 | " model_id,\n", 96 | " trust_remote_code=True,\n", 97 | " torch_dtype=torch.float16\n", 98 | " ).to(\"cuda\").eval()\n", 99 | " processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)\n", 100 | "\n", 101 | "image_extensions = Image.registered_extensions()\n", 102 | "\n", 103 | "def identify_and_save_blob(blob_path):\n", 104 | " \"\"\"Identifies if the blob is an image and saves it.\"\"\"\n", 105 | " try:\n", 106 | " with open(blob_path, 'rb') as file:\n", 107 | " blob_content = file.read()\n", 108 | " try:\n", 109 | " Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image\n", 110 | " extension = \".png\" # Default to PNG for saving\n", 111 | " media_type = \"image\"\n", 112 | " except (IOError, SyntaxError):\n", 113 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 114 | "\n", 115 | " filename = f\"temp_{uuid.uuid4()}_media{extension}\"\n", 116 | " with open(filename, \"wb\") as f:\n", 117 | " f.write(blob_content)\n", 118 | "\n", 119 | " return filename, media_type\n", 120 | "\n", 121 | " except FileNotFoundError:\n", 122 | " raise ValueError(f\"The file {blob_path} was not found.\")\n", 123 | " except Exception as e:\n", 124 | " raise ValueError(f\"An error occurred while processing the file: {e}\")\n", 125 | "\n", 126 | "@spaces.GPU\n", 127 | "def qwen_inference(model_name, media_input, text_input=None):\n", 128 | " \"\"\"Handles inference for the selected model.\"\"\"\n", 129 | " model = models[model_name]\n", 130 | " processor = processors[model_name]\n", 131 | "\n", 132 | " if isinstance(media_input, str):\n", 133 | " media_path = media_input\n", 134 | " if media_path.endswith(tuple([i for i in image_extensions.keys()])):\n", 135 | " media_type = \"image\"\n", 136 | " else:\n", 137 | " try:\n", 138 | " media_path, media_type = identify_and_save_blob(media_input)\n", 139 | " except Exception as e:\n", 140 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 141 | "\n", 142 | " messages = [\n", 143 | " {\n", 144 | " \"role\": \"user\",\n", 145 | " \"content\": [\n", 146 | " {\n", 147 | " \"type\": media_type,\n", 148 | " media_type: media_path\n", 149 | " },\n", 150 | " {\"type\": \"text\", \"text\": text_input},\n", 151 | " ],\n", 152 | " }\n", 153 | " ]\n", 154 | "\n", 155 | " text = processor.apply_chat_template(\n", 156 | " messages, tokenize=False, add_generation_prompt=True\n", 157 | " )\n", 158 | " image_inputs, _ = process_vision_info(messages)\n", 159 | " inputs = processor(\n", 160 | " text=[text],\n", 161 | " images=image_inputs,\n", 162 | " padding=True,\n", 163 | " return_tensors=\"pt\",\n", 164 | " ).to(\"cuda\")\n", 165 | "\n", 166 | " streamer = TextIteratorStreamer(\n", 167 | " processor.tokenizer, skip_prompt=True, skip_special_tokens=True\n", 168 | " )\n", 169 | " generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)\n", 170 | "\n", 171 | " thread = Thread(target=model.generate, kwargs=generation_kwargs)\n", 172 | " thread.start()\n", 173 | "\n", 174 | " buffer = \"\"\n", 175 | " for new_text in streamer:\n", 176 | " buffer += new_text\n", 177 | " # Remove <|im_end|> or similar tokens from the output\n", 178 | " buffer = buffer.replace(\"<|im_end|>\", \"\")\n", 179 | " yield buffer\n", 180 | "\n", 181 | "def format_plain_text(output_text):\n", 182 | " \"\"\"Formats the output text as plain text without LaTeX delimiters.\"\"\"\n", 183 | " # Remove LaTeX delimiters and convert to plain text\n", 184 | " plain_text = output_text.replace(\"\\\\(\", \"\").replace(\"\\\\)\", \"\").replace(\"\\\\[\", \"\").replace(\"\\\\]\", \"\")\n", 185 | " return plain_text\n", 186 | "\n", 187 | "def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size):\n", 188 | " \"\"\"Generates a document with the input image and plain text output.\"\"\"\n", 189 | " plain_text = format_plain_text(output_text)\n", 190 | " if file_format == \"pdf\":\n", 191 | " return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 192 | " elif file_format == \"docx\":\n", 193 | " return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 194 | "\n", 195 | "def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 196 | " \"\"\"Generates a PDF document.\"\"\"\n", 197 | " filename = f\"output_{uuid.uuid4()}.pdf\"\n", 198 | " doc = SimpleDocTemplate(\n", 199 | " filename,\n", 200 | " pagesize=A4,\n", 201 | " rightMargin=inch,\n", 202 | " leftMargin=inch,\n", 203 | " topMargin=inch,\n", 204 | " bottomMargin=inch\n", 205 | " )\n", 206 | " styles = getSampleStyleSheet()\n", 207 | " styles[\"Normal\"].fontSize = int(font_size)\n", 208 | " styles[\"Normal\"].leading = int(font_size) * line_spacing\n", 209 | " styles[\"Normal\"].alignment = {\n", 210 | " \"Left\": 0,\n", 211 | " \"Center\": 1,\n", 212 | " \"Right\": 2,\n", 213 | " \"Justified\": 4\n", 214 | " }[alignment]\n", 215 | "\n", 216 | " story = []\n", 217 | "\n", 218 | " # Add image with size adjustment\n", 219 | " image_sizes = {\n", 220 | " \"Small\": (200, 200),\n", 221 | " \"Medium\": (400, 400),\n", 222 | " \"Large\": (600, 600)\n", 223 | " }\n", 224 | " img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])\n", 225 | " story.append(img)\n", 226 | " story.append(Spacer(1, 12))\n", 227 | "\n", 228 | " # Add plain text output\n", 229 | " text = Paragraph(plain_text, styles[\"Normal\"])\n", 230 | " story.append(text)\n", 231 | "\n", 232 | " doc.build(story)\n", 233 | " return filename\n", 234 | "\n", 235 | "def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 236 | " \"\"\"Generates a DOCX document.\"\"\"\n", 237 | " filename = f\"output_{uuid.uuid4()}.docx\"\n", 238 | " doc = docx.Document()\n", 239 | "\n", 240 | " # Add image with size adjustment\n", 241 | " image_sizes = {\n", 242 | " \"Small\": docx.shared.Inches(2),\n", 243 | " \"Medium\": docx.shared.Inches(4),\n", 244 | " \"Large\": docx.shared.Inches(6)\n", 245 | " }\n", 246 | " doc.add_picture(media_path, width=image_sizes[image_size])\n", 247 | " doc.add_paragraph()\n", 248 | "\n", 249 | " # Add plain text output\n", 250 | " paragraph = doc.add_paragraph()\n", 251 | " paragraph.paragraph_format.line_spacing = line_spacing\n", 252 | " paragraph.paragraph_format.alignment = {\n", 253 | " \"Left\": WD_ALIGN_PARAGRAPH.LEFT,\n", 254 | " \"Center\": WD_ALIGN_PARAGRAPH.CENTER,\n", 255 | " \"Right\": WD_ALIGN_PARAGRAPH.RIGHT,\n", 256 | " \"Justified\": WD_ALIGN_PARAGRAPH.JUSTIFY\n", 257 | " }[alignment]\n", 258 | " run = paragraph.add_run(plain_text)\n", 259 | " run.font.size = docx.shared.Pt(int(font_size))\n", 260 | "\n", 261 | " doc.save(filename)\n", 262 | " return filename\n", 263 | "\n", 264 | "# CSS for output styling\n", 265 | "css = \"\"\"\n", 266 | " #output {\n", 267 | " height: 500px;\n", 268 | " overflow: auto;\n", 269 | " border: 1px solid #ccc;\n", 270 | " }\n", 271 | ".submit-btn {\n", 272 | " background-color: #cf3434 !important;\n", 273 | " color: white !important;\n", 274 | "}\n", 275 | ".submit-btn:hover {\n", 276 | " background-color: #ff2323 !important;\n", 277 | "}\n", 278 | ".download-btn {\n", 279 | " background-color: #35a6d6 !important;\n", 280 | " color: white !important;\n", 281 | "}\n", 282 | ".download-btn:hover {\n", 283 | " background-color: #22bcff !important;\n", 284 | "}\n", 285 | "\"\"\"\n", 286 | "\n", 287 | "# Gradio app setup\n", 288 | "with gr.Blocks(css=css, theme=\"bethecloud/storj_theme\") as demo:\n", 289 | " gr.Markdown(\"# **MultimodalVLM : Qwen2.5-VL-3B-Instruct**\")\n", 290 | "\n", 291 | " with gr.Tab(label=\"Image Input\"):\n", 292 | "\n", 293 | " with gr.Row():\n", 294 | " with gr.Column():\n", 295 | " model_choice = gr.Dropdown(\n", 296 | " label=\"Model Selection\",\n", 297 | " choices=list(MODEL_OPTIONS.keys()),\n", 298 | " value=\"Qwen2.5-VL-3B-Instruct\"\n", 299 | " )\n", 300 | " input_media = gr.File(\n", 301 | " label=\"Upload Image\", type=\"filepath\"\n", 302 | " )\n", 303 | " text_input = gr.Textbox(label=\"Question\", value=\"Explain the content precisely.\")\n", 304 | " submit_btn = gr.Button(value=\"Submit\", elem_classes=\"submit-btn\")\n", 305 | "\n", 306 | " with gr.Column():\n", 307 | " output_text = gr.Textbox(label=\"Output Text\", lines=7)\n", 308 | "\n", 309 | " with gr.Accordion(\"Plain Text\", open=False):\n", 310 | " plain_text_output = gr.Textbox(label=\"Standardized Plain Text\", lines=10)\n", 311 | "\n", 312 | " submit_btn.click(\n", 313 | " qwen_inference, [model_choice, input_media, text_input], [output_text]\n", 314 | " ).then(\n", 315 | " lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]\n", 316 | " )\n", 317 | "\n", 318 | " with gr.Accordion(\"Docx/PDF Settings\", open=False):\n", 319 | " with gr.Row():\n", 320 | " with gr.Column():\n", 321 | " line_spacing = gr.Dropdown(\n", 322 | " choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],\n", 323 | " value=1.5,\n", 324 | " label=\"Line Spacing\"\n", 325 | " )\n", 326 | " font_size = gr.Dropdown(\n", 327 | " choices=[\"8\", \"10\", \"12\", \"14\", \"16\", \"18\", \"20\", \"22\", \"24\"],\n", 328 | " value=\"16\",\n", 329 | " label=\"Font Size\"\n", 330 | " )\n", 331 | " alignment = gr.Dropdown(\n", 332 | " choices=[\"Left\", \"Center\", \"Right\", \"Justified\"],\n", 333 | " value=\"Justified\",\n", 334 | " label=\"Text Alignment\"\n", 335 | " )\n", 336 | " image_size = gr.Dropdown(\n", 337 | " choices=[\"Small\", \"Medium\", \"Large\"],\n", 338 | " value=\"Medium\",\n", 339 | " label=\"Image Size\"\n", 340 | " )\n", 341 | " file_format = gr.Radio([\"pdf\", \"docx\"], label=\"File Format\", value=\"pdf\")\n", 342 | "\n", 343 | " get_document_btn = gr.Button(value=\"Get Document\", elem_classes=\"download-btn\")\n", 344 | "\n", 345 | " get_document_btn.click(\n", 346 | " generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label=\"Download Document\")\n", 347 | " )\n", 348 | "\n", 349 | "demo.launch(debug=True)" 350 | ] 351 | } 352 | ], 353 | "metadata": { 354 | "accelerator": "GPU", 355 | "colab": { 356 | "gpuType": "T4", 357 | "provenance": [] 358 | }, 359 | "kernelspec": { 360 | "display_name": "Python 3", 361 | "name": "python3" 362 | }, 363 | "language_info": { 364 | "name": "python" 365 | } 366 | }, 367 | "nbformat": 4, 368 | "nbformat_minor": 0 369 | } -------------------------------------------------------------------------------- /Behemoth-3B-070225-post0.1/Behemoth_3B_070225_post0_1_ReportLab.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "uFovmijgUV1Z" 7 | }, 8 | "source": [ 9 | "***Multimodal Caption ReportLab : Behemoth-3B-070225-post0.1***\n", 10 | "\n", 11 | "*notebook by : [prithivMLmods](https://huggingface.co/prithivMLmods)🤗 x ❤️*" 12 | ] 13 | }, 14 | { 15 | "cell_type": "markdown", 16 | "metadata": { 17 | "id": "RugX4SGZV-8O" 18 | }, 19 | "source": [ 20 | "***Installing all necessary packages***" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": { 27 | "id": "l-NtFtjSpuJQ" 28 | }, 29 | "outputs": [], 30 | "source": [ 31 | "%%capture\n", 32 | "!pip install gradio transformers transformers-stream-generator qwen-vl-utils\n", 33 | "!pip install torchvision torch huggingface_hub spaces accelerate ipython\n", 34 | "!pip install pillow av python-docx requests numpy reportlab fpdf hf_xet\n", 35 | "#Hold tight, this will take around 3-5 minutes." 36 | ] 37 | }, 38 | { 39 | "cell_type": "markdown", 40 | "metadata": { 41 | "id": "mvoSnRZcVBu4" 42 | }, 43 | "source": [ 44 | "***Run app***" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": null, 50 | "metadata": { 51 | "id": "tElKr2Fkp1bO" 52 | }, 53 | "outputs": [], 54 | "source": [ 55 | "# ================================================\n", 56 | "# Model Configuration\n", 57 | "# ================================================\n", 58 | "\n", 59 | "# Model used in the app:\n", 60 | "# https://huggingface.co/prithivMLmods/Behemoth-3B-070225-post0.1\n", 61 | "\n", 62 | "# Architecture built on:\n", 63 | "# Qwen2_5_VLForConditionalGeneration [qwen2_5_vl]\n", 64 | "import gradio as gr\n", 65 | "import spaces\n", 66 | "from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer\n", 67 | "from qwen_vl_utils import process_vision_info\n", 68 | "import torch\n", 69 | "from PIL import Image\n", 70 | "import os\n", 71 | "import uuid\n", 72 | "import io\n", 73 | "from threading import Thread\n", 74 | "from reportlab.lib.pagesizes import A4\n", 75 | "from reportlab.lib.styles import getSampleStyleSheet\n", 76 | "from reportlab.lib import colors\n", 77 | "from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer\n", 78 | "from reportlab.lib.units import inch\n", 79 | "from reportlab.pdfbase import pdfmetrics\n", 80 | "from reportlab.pdfbase.ttfonts import TTFont\n", 81 | "import docx\n", 82 | "from docx.enum.text import WD_ALIGN_PARAGRAPH\n", 83 | "\n", 84 | "# Define model options\n", 85 | "MODEL_OPTIONS = {\n", 86 | " \"Behemoth-3B-070225-post0.1\": \"prithivMLmods/Behemoth-3B-070225-post0.1\",\n", 87 | "}\n", 88 | "\n", 89 | "# Preload models and processors into CUDA\n", 90 | "models = {}\n", 91 | "processors = {}\n", 92 | "for name, model_id in MODEL_OPTIONS.items():\n", 93 | " print(f\"Loading {name}🤗. Hold tight, this will take around 4-6 minutes..\")\n", 94 | " models[name] = Qwen2_5_VLForConditionalGeneration.from_pretrained(\n", 95 | " model_id,\n", 96 | " trust_remote_code=True,\n", 97 | " torch_dtype=torch.float16\n", 98 | " ).to(\"cuda\").eval()\n", 99 | " processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)\n", 100 | "\n", 101 | "image_extensions = Image.registered_extensions()\n", 102 | "\n", 103 | "def identify_and_save_blob(blob_path):\n", 104 | " \"\"\"Identifies if the blob is an image and saves it.\"\"\"\n", 105 | " try:\n", 106 | " with open(blob_path, 'rb') as file:\n", 107 | " blob_content = file.read()\n", 108 | " try:\n", 109 | " Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image\n", 110 | " extension = \".png\" # Default to PNG for saving\n", 111 | " media_type = \"image\"\n", 112 | " except (IOError, SyntaxError):\n", 113 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 114 | "\n", 115 | " filename = f\"temp_{uuid.uuid4()}_media{extension}\"\n", 116 | " with open(filename, \"wb\") as f:\n", 117 | " f.write(blob_content)\n", 118 | "\n", 119 | " return filename, media_type\n", 120 | "\n", 121 | " except FileNotFoundError:\n", 122 | " raise ValueError(f\"The file {blob_path} was not found.\")\n", 123 | " except Exception as e:\n", 124 | " raise ValueError(f\"An error occurred while processing the file: {e}\")\n", 125 | "\n", 126 | "@spaces.GPU\n", 127 | "def qwen_inference(model_name, media_input, text_input=None):\n", 128 | " \"\"\"Handles inference for the selected model.\"\"\"\n", 129 | " model = models[model_name]\n", 130 | " processor = processors[model_name]\n", 131 | "\n", 132 | " if isinstance(media_input, str):\n", 133 | " media_path = media_input\n", 134 | " if media_path.endswith(tuple([i for i in image_extensions.keys()])):\n", 135 | " media_type = \"image\"\n", 136 | " else:\n", 137 | " try:\n", 138 | " media_path, media_type = identify_and_save_blob(media_input)\n", 139 | " except Exception as e:\n", 140 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 141 | "\n", 142 | " messages = [\n", 143 | " {\n", 144 | " \"role\": \"user\",\n", 145 | " \"content\": [\n", 146 | " {\n", 147 | " \"type\": media_type,\n", 148 | " media_type: media_path\n", 149 | " },\n", 150 | " {\"type\": \"text\", \"text\": text_input},\n", 151 | " ],\n", 152 | " }\n", 153 | " ]\n", 154 | "\n", 155 | " text = processor.apply_chat_template(\n", 156 | " messages, tokenize=False, add_generation_prompt=True\n", 157 | " )\n", 158 | " image_inputs, _ = process_vision_info(messages)\n", 159 | " inputs = processor(\n", 160 | " text=[text],\n", 161 | " images=image_inputs,\n", 162 | " padding=True,\n", 163 | " return_tensors=\"pt\",\n", 164 | " ).to(\"cuda\")\n", 165 | "\n", 166 | " streamer = TextIteratorStreamer(\n", 167 | " processor.tokenizer, skip_prompt=True, skip_special_tokens=True\n", 168 | " )\n", 169 | " generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)\n", 170 | "\n", 171 | " thread = Thread(target=model.generate, kwargs=generation_kwargs)\n", 172 | " thread.start()\n", 173 | "\n", 174 | " buffer = \"\"\n", 175 | " for new_text in streamer:\n", 176 | " buffer += new_text\n", 177 | " # Remove <|im_end|> or similar tokens from the output\n", 178 | " buffer = buffer.replace(\"<|im_end|>\", \"\")\n", 179 | " yield buffer\n", 180 | "\n", 181 | "def format_plain_text(output_text):\n", 182 | " \"\"\"Formats the output text as plain text without LaTeX delimiters.\"\"\"\n", 183 | " # Remove LaTeX delimiters and convert to plain text\n", 184 | " plain_text = output_text.replace(\"\\\\(\", \"\").replace(\"\\\\)\", \"\").replace(\"\\\\[\", \"\").replace(\"\\\\]\", \"\")\n", 185 | " return plain_text\n", 186 | "\n", 187 | "def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size):\n", 188 | " \"\"\"Generates a document with the input image and plain text output.\"\"\"\n", 189 | " plain_text = format_plain_text(output_text)\n", 190 | " if file_format == \"pdf\":\n", 191 | " return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 192 | " elif file_format == \"docx\":\n", 193 | " return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 194 | "\n", 195 | "def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 196 | " \"\"\"Generates a PDF document.\"\"\"\n", 197 | " filename = f\"output_{uuid.uuid4()}.pdf\"\n", 198 | " doc = SimpleDocTemplate(\n", 199 | " filename,\n", 200 | " pagesize=A4,\n", 201 | " rightMargin=inch,\n", 202 | " leftMargin=inch,\n", 203 | " topMargin=inch,\n", 204 | " bottomMargin=inch\n", 205 | " )\n", 206 | " styles = getSampleStyleSheet()\n", 207 | " styles[\"Normal\"].fontSize = int(font_size)\n", 208 | " styles[\"Normal\"].leading = int(font_size) * line_spacing\n", 209 | " styles[\"Normal\"].alignment = {\n", 210 | " \"Left\": 0,\n", 211 | " \"Center\": 1,\n", 212 | " \"Right\": 2,\n", 213 | " \"Justified\": 4\n", 214 | " }[alignment]\n", 215 | "\n", 216 | " story = []\n", 217 | "\n", 218 | " # Add image with size adjustment\n", 219 | " image_sizes = {\n", 220 | " \"Small\": (200, 200),\n", 221 | " \"Medium\": (400, 400),\n", 222 | " \"Large\": (600, 600)\n", 223 | " }\n", 224 | " img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])\n", 225 | " story.append(img)\n", 226 | " story.append(Spacer(1, 12))\n", 227 | "\n", 228 | " # Add plain text output\n", 229 | " text = Paragraph(plain_text, styles[\"Normal\"])\n", 230 | " story.append(text)\n", 231 | "\n", 232 | " doc.build(story)\n", 233 | " return filename\n", 234 | "\n", 235 | "def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 236 | " \"\"\"Generates a DOCX document.\"\"\"\n", 237 | " filename = f\"output_{uuid.uuid4()}.docx\"\n", 238 | " doc = docx.Document()\n", 239 | "\n", 240 | " # Add image with size adjustment\n", 241 | " image_sizes = {\n", 242 | " \"Small\": docx.shared.Inches(2),\n", 243 | " \"Medium\": docx.shared.Inches(4),\n", 244 | " \"Large\": docx.shared.Inches(6)\n", 245 | " }\n", 246 | " doc.add_picture(media_path, width=image_sizes[image_size])\n", 247 | " doc.add_paragraph()\n", 248 | "\n", 249 | " # Add plain text output\n", 250 | " paragraph = doc.add_paragraph()\n", 251 | " paragraph.paragraph_format.line_spacing = line_spacing\n", 252 | " paragraph.paragraph_format.alignment = {\n", 253 | " \"Left\": WD_ALIGN_PARAGRAPH.LEFT,\n", 254 | " \"Center\": WD_ALIGN_PARAGRAPH.CENTER,\n", 255 | " \"Right\": WD_ALIGN_PARAGRAPH.RIGHT,\n", 256 | " \"Justified\": WD_ALIGN_PARAGRAPH.JUSTIFY\n", 257 | " }[alignment]\n", 258 | " run = paragraph.add_run(plain_text)\n", 259 | " run.font.size = docx.shared.Pt(int(font_size))\n", 260 | "\n", 261 | " doc.save(filename)\n", 262 | " return filename\n", 263 | "\n", 264 | "# CSS for output styling\n", 265 | "css = \"\"\"\n", 266 | " #output {\n", 267 | " height: 500px;\n", 268 | " overflow: auto;\n", 269 | " border: 1px solid #ccc;\n", 270 | " }\n", 271 | ".submit-btn {\n", 272 | " background-color: #cf3434 !important;\n", 273 | " color: white !important;\n", 274 | "}\n", 275 | ".submit-btn:hover {\n", 276 | " background-color: #ff2323 !important;\n", 277 | "}\n", 278 | ".download-btn {\n", 279 | " background-color: #35a6d6 !important;\n", 280 | " color: white !important;\n", 281 | "}\n", 282 | ".download-btn:hover {\n", 283 | " background-color: #22bcff !important;\n", 284 | "}\n", 285 | "\"\"\"\n", 286 | "\n", 287 | "# Gradio app setup\n", 288 | "with gr.Blocks(css=css, theme=\"bethecloud/storj_theme\") as demo:\n", 289 | " gr.Markdown(\"# **Multimodal-Caption : Behemoth-3B-070225-post0.1**\")\n", 290 | "\n", 291 | " with gr.Tab(label=\"Image Input\"):\n", 292 | "\n", 293 | " with gr.Row():\n", 294 | " with gr.Column():\n", 295 | " model_choice = gr.Dropdown(\n", 296 | " label=\"Model Selection\",\n", 297 | " choices=list(MODEL_OPTIONS.keys()),\n", 298 | " value=\"Behemoth-3B-070225-post0.1\"\n", 299 | " )\n", 300 | " input_media = gr.File(\n", 301 | " label=\"Upload Image\", type=\"filepath\"\n", 302 | " )\n", 303 | " text_input = gr.Textbox(label=\"Question\", value=\"OCR the image precisely.\")\n", 304 | " submit_btn = gr.Button(value=\"Submit\", elem_classes=\"submit-btn\")\n", 305 | "\n", 306 | " with gr.Column():\n", 307 | " output_text = gr.Textbox(label=\"Output Text\", lines=7)\n", 308 | "\n", 309 | " with gr.Accordion(\"Plain Text\", open=False):\n", 310 | " plain_text_output = gr.Textbox(label=\"Standardized Plain Text\", lines=10)\n", 311 | "\n", 312 | " submit_btn.click(\n", 313 | " qwen_inference, [model_choice, input_media, text_input], [output_text]\n", 314 | " ).then(\n", 315 | " lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]\n", 316 | " )\n", 317 | "\n", 318 | " with gr.Accordion(\"Docx/PDF Settings\", open=False):\n", 319 | " with gr.Row():\n", 320 | " with gr.Column():\n", 321 | " line_spacing = gr.Dropdown(\n", 322 | " choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],\n", 323 | " value=1.5,\n", 324 | " label=\"Line Spacing\"\n", 325 | " )\n", 326 | " font_size = gr.Dropdown(\n", 327 | " choices=[\"8\", \"10\", \"12\", \"14\", \"16\", \"18\", \"20\", \"22\", \"24\"],\n", 328 | " value=\"16\",\n", 329 | " label=\"Font Size\"\n", 330 | " )\n", 331 | " alignment = gr.Dropdown(\n", 332 | " choices=[\"Left\", \"Center\", \"Right\", \"Justified\"],\n", 333 | " value=\"Justified\",\n", 334 | " label=\"Text Alignment\"\n", 335 | " )\n", 336 | " image_size = gr.Dropdown(\n", 337 | " choices=[\"Small\", \"Medium\", \"Large\"],\n", 338 | " value=\"Medium\",\n", 339 | " label=\"Image Size\"\n", 340 | " )\n", 341 | " file_format = gr.Radio([\"pdf\", \"docx\"], label=\"File Format\", value=\"pdf\")\n", 342 | "\n", 343 | " get_document_btn = gr.Button(value=\"Get Document\", elem_classes=\"download-btn\")\n", 344 | "\n", 345 | " get_document_btn.click(\n", 346 | " generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label=\"Download Document\")\n", 347 | " )\n", 348 | "\n", 349 | "demo.launch(debug=True)" 350 | ] 351 | }, 352 | { 353 | "cell_type": "markdown", 354 | "source": [ 355 | "## **Demo Inference**\n", 356 | "\n", 357 | "\n", 358 | "| Preview |\n", 359 | "|:--:|\n", 360 | "| ![Image 1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mOHuzqK2dUYAX03WZEkL7.jpeg) |\n", 361 | "| *Movie Still / Poster* |\n", 362 | "| ![Image 2](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BA9p11MXXii5nJJbSR-Sg.png) |\n", 363 | "| *Gradio UI Screenshot* |\n" 364 | ], 365 | "metadata": { 366 | "id": "ynyjulRaDl3m" 367 | } 368 | } 369 | ], 370 | "metadata": { 371 | "accelerator": "GPU", 372 | "colab": { 373 | "gpuType": "T4", 374 | "provenance": [] 375 | }, 376 | "kernelspec": { 377 | "display_name": "Python 3", 378 | "name": "python3" 379 | }, 380 | "language_info": { 381 | "name": "python" 382 | } 383 | }, 384 | "nbformat": 4, 385 | "nbformat_minor": 0 386 | } -------------------------------------------------------------------------------- /Qwen2-VL-OCR-2B-Instruct/Qwen2_VL_OCR_2B_Instruct.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "uFovmijgUV1Z" 7 | }, 8 | "source": [ 9 | "***Multimodal OCR ReportLab : [Qwen2-VL-OCR-2B-Instruct](https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct)***\n", 10 | "\n", 11 | "*notebook by : [prithivMLmods](https://huggingface.co/prithivMLmods)🤗*\n", 12 | "\n", 13 | " The Qwen2-VL-OCR-2B-Instruct model is a fine-tuned version of Qwen/Qwen2-VL-2B-Instruct, tailored for tasks that involve Optical Character Recognition (OCR), image-to-text conversion, and math problem solving with LaTeX formatting. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively." 14 | ] 15 | }, 16 | { 17 | "cell_type": "markdown", 18 | "metadata": { 19 | "id": "RugX4SGZV-8O" 20 | }, 21 | "source": [ 22 | "***Installing all necessary packages***" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": null, 28 | "metadata": { 29 | "id": "l-NtFtjSpuJQ" 30 | }, 31 | "outputs": [], 32 | "source": [ 33 | "%%capture\n", 34 | "!pip install gradio transformers transformers-stream-generator qwen-vl-utils\n", 35 | "!pip install torchvision torch huggingface_hub spaces accelerate ipython\n", 36 | "!pip install pillow av python-docx requests numpy reportlab fpdf hf_xet\n", 37 | "#Hold tight, this will take around 3-5 minutes." 38 | ] 39 | }, 40 | { 41 | "cell_type": "markdown", 42 | "metadata": { 43 | "id": "mvoSnRZcVBu4" 44 | }, 45 | "source": [ 46 | "***Run app***" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": null, 52 | "metadata": { 53 | "colab": { 54 | "base_uri": "https://localhost:8080/", 55 | "height": 1000, 56 | "referenced_widgets": [ 57 | "f02993bce0b44cbb8f04451e8eb80c52", 58 | "14fda8541b1c4c0e84b27253f40a4144", 59 | "c48b13fbc349441491130d591c02820a", 60 | "1b4e0053f73a4dc8956fd70261050031", 61 | "0834cba909674903b340ead5d03d8ee7", 62 | "6d8fc2d9b39e4264af969fd4968db0f0", 63 | "5a9c313556474d32b6920a31d682c993", 64 | "13b7228aa5134ee4b0efd7fc2e9d7927", 65 | "24cc5fd73b2e483ca3f2992414fc2ea0", 66 | "10126373db724c58bb1539c09defe1be", 67 | "d7414d9c2c724e389772835304938f97", 68 | "52861218164a4578b743c9ad7e533e77", 69 | "917a3fc5850b408b8ae8d62016949d5c", 70 | "67d0c6474f2c41259fa7f5550ca5bbcf", 71 | "91d1868fecbb4a64b3f36ec7b0146f66", 72 | "f33523339ad44ee18ae542a99ba8d2e4", 73 | "72b6c563c2d24b349268b28caac0a9cc", 74 | "d34cb5d22b5a466a9f46c0bc673f122d", 75 | "06bcc05a336c4bc8a16fd64b8c93e90a", 76 | "f4966c179fae4b1e91d260494a05a5f7", 77 | "5e7bab46de5b48af85da3e6c7aea4a3e", 78 | "36ba4652bd354eceae677c8782c6a92b", 79 | "9ee381628bcb460ebb0fe5bc6b6b729f", 80 | "ac4ed071c177445fa7342281ae2d2718", 81 | "885b919e1f9e410693291d5575f7f4ed", 82 | "20bf4656b0aa49df85a2b5dc743f8b10", 83 | "e2cd392332aa4772bf972d95d377be1f", 84 | "7aff1a40c9f943b18cf5f474fb54cf0e", 85 | "155d93fd988340e3842d5a2939d4f0a7", 86 | "fa8edcae23db448eb70e14726b650667", 87 | "3545befbc8924abca73cf6cfdb6ead60", 88 | "530c357a2bfb422190ecf9a7606bead7", 89 | "7ab567c1f33547bcb4f395b09b5d547c", 90 | "9f71abcacd154557a7f6a7b34676978f", 91 | "e8da003fcd7342d382c6faddb28af484", 92 | "db8ff08397c343ee8ae7a1863655175b", 93 | "6f234194b2f744c6b9895b37625526bc", 94 | "1714271f35c1451186d668bc136fdb75", 95 | "7b3ca20c348d4fe3bf88d0bd1adbdc2f", 96 | "dd432405c22a497e9c8c28793d89bfc8", 97 | "690d0fbf63b34557bb742f8745caf2bd", 98 | "f5c6bb58779248b5a9caa906156e0cd9", 99 | "bbac7d370e234af0b4cf20ace13e361c", 100 | "0a899139f1f849e0b9d1966062c8e2f6", 101 | "2f02c79edd024c73b71a432b6218bcc6", 102 | "3e8bf0fbf4844e618be5d6f076a1832e", 103 | "e749b795c4c5480eb378e05f2b2408c3", 104 | "62d07eb3ad454b70bdaf99598578c810", 105 | "f69d8e8a4e174b7382610cf3c497bb7b", 106 | "906543db98a44f43abdf245509f4fcee", 107 | "48d1d6a874cf4ef28080fb30de2ef493", 108 | "e60c5d50578a48189b1970f5a7abf069", 109 | "eca800b9be034f5285d0873ca23d3baf", 110 | "5714e66524bf45b7a80bf425e3532d29", 111 | "35bd67b6557c41fc8e6bdcba49f6da06", 112 | "90e258bc60ed41218fb30cd5eb30a56e", 113 | "a0473c41a5ee4be1940d21f3e6287c4f", 114 | "627a93427bc3433e9c52df769648d388", 115 | "998ac37a221c46c389c1a239a9fb79bc", 116 | "1682d18df349461fbce9afaf390f14af", 117 | "26f392b41d404db282b44b3a52bf8b3c", 118 | "ee23b33158544ec9b901fc93c0d9cd94", 119 | "c310ebc5e4e54a159cffccbcfdd9b727", 120 | "cb3d490817574d5ea1017a1fe20e60e0", 121 | "f2f97d1c2d354db5befe512d80f9853e", 122 | "c8b622e02ce043c997b99632e7411d3d", 123 | "50dbff5eb9e94f4c876680007bf3add6", 124 | "cebf1c1226ff42128dbe5abfc3928214", 125 | "e7b07b23703e46f4adc60a86d7eaa327", 126 | "2705bfba51e049b0bf2fd1d7d21d0eef", 127 | "57f8dd1f25bf40a88fa07fb6b3b11261", 128 | "3472426d6625433b9c470f500ef1ca74", 129 | "3344aea877d5458bb3fa445b3c79c795", 130 | "e4331b5ab5c547079e16d05b8992718b", 131 | "922cce75a65b424eb7a251659657757d", 132 | "cfaa646376a64891aa43a7e3848c12fc", 133 | "937d2150bd974ffdb4053870c9339b0f", 134 | "4665d5bf963b4cab85fd038b8d288156", 135 | "e8cc4aace30a463faad2dfe6342a2821", 136 | "b89ecb8a8a144723a4fe528ff04fba78", 137 | "4051bcbe013642fc931a6fbb94d42a6f", 138 | "37f8dddb0de34128a7d15aac01d7370f", 139 | "e544f1cb1428406b81cf89ab4d29c953", 140 | "14120640e617483f80c34982da8e5391", 141 | "bc07491af94f45f9b398f841f3c3fc5a", 142 | "c8d951f2a04340d8bf62e8ddca072a7f", 143 | "a2a6e91f8e754eeb85b9997b9e7a454a", 144 | "1f6c4390253d4b4684d3f04bc6f0ca43", 145 | "77c9df6d39e94dcca57d2738f11fabc3", 146 | "1339218232624b45a5cdfde89847241e", 147 | "fbe2788824ea4de0b112d533c5e57c9d", 148 | "96956674f7804a14864a6baaae4bcd2c", 149 | "f0d0db32a8074f47868eefecb6c24b4e", 150 | "c85c990c84064da5a4126893328a2805", 151 | "aef802c8c44843acb7df00f1ae75cde4", 152 | "92004181dd9e4e9083e03788dca31c10", 153 | "ec6acd940e154ec4b4314aeaab783ea2", 154 | "9770b1cf7b6c42229454441ad6cea465", 155 | "30740f63144043c3acb482e42ae82119" 156 | ] 157 | }, 158 | "id": "tElKr2Fkp1bO", 159 | "outputId": "5b1e7c3c-344a-4819-8c20-aacfb1092cf6" 160 | }, 161 | "outputs": [], 162 | "source": [ 163 | "#Model used in the app: https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct\n", 164 | "#Architecture built on: Qwen2VLForConditionalGeneration [qwen2_vl]\n", 165 | "import gradio as gr\n", 166 | "import spaces\n", 167 | "from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer\n", 168 | "from qwen_vl_utils import process_vision_info\n", 169 | "import torch\n", 170 | "from PIL import Image\n", 171 | "import os\n", 172 | "import uuid\n", 173 | "import io\n", 174 | "from threading import Thread\n", 175 | "from reportlab.lib.pagesizes import A4\n", 176 | "from reportlab.lib.styles import getSampleStyleSheet\n", 177 | "from reportlab.lib import colors\n", 178 | "from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer\n", 179 | "from reportlab.lib.units import inch\n", 180 | "from reportlab.pdfbase import pdfmetrics\n", 181 | "from reportlab.pdfbase.ttfonts import TTFont\n", 182 | "import docx\n", 183 | "from docx.enum.text import WD_ALIGN_PARAGRAPH\n", 184 | "\n", 185 | "# Define model options\n", 186 | "MODEL_OPTIONS = {\n", 187 | " \"Qwen2-VL-OCR-2B-Instruct\": \"prithivMLmods/Qwen2-VL-OCR-2B-Instruct\",\n", 188 | "}\n", 189 | "\n", 190 | "# Preload models and processors into CUDA\n", 191 | "models = {}\n", 192 | "processors = {}\n", 193 | "for name, model_id in MODEL_OPTIONS.items():\n", 194 | " print(f\"Loading {name}🤗. Hold tight, this will take around 4-6 minutes..\")\n", 195 | " models[name] = Qwen2VLForConditionalGeneration.from_pretrained(\n", 196 | " model_id,\n", 197 | " trust_remote_code=True,\n", 198 | " torch_dtype=torch.float16\n", 199 | " ).to(\"cuda\").eval()\n", 200 | " processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)\n", 201 | "\n", 202 | "image_extensions = Image.registered_extensions()\n", 203 | "\n", 204 | "def identify_and_save_blob(blob_path):\n", 205 | " \"\"\"Identifies if the blob is an image and saves it.\"\"\"\n", 206 | " try:\n", 207 | " with open(blob_path, 'rb') as file:\n", 208 | " blob_content = file.read()\n", 209 | " try:\n", 210 | " Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image\n", 211 | " extension = \".png\" # Default to PNG for saving\n", 212 | " media_type = \"image\"\n", 213 | " except (IOError, SyntaxError):\n", 214 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 215 | "\n", 216 | " filename = f\"temp_{uuid.uuid4()}_media{extension}\"\n", 217 | " with open(filename, \"wb\") as f:\n", 218 | " f.write(blob_content)\n", 219 | "\n", 220 | " return filename, media_type\n", 221 | "\n", 222 | " except FileNotFoundError:\n", 223 | " raise ValueError(f\"The file {blob_path} was not found.\")\n", 224 | " except Exception as e:\n", 225 | " raise ValueError(f\"An error occurred while processing the file: {e}\")\n", 226 | "\n", 227 | "@spaces.GPU\n", 228 | "def qwen_inference(model_name, media_input, text_input=None):\n", 229 | " \"\"\"Handles inference for the selected model.\"\"\"\n", 230 | " model = models[model_name]\n", 231 | " processor = processors[model_name]\n", 232 | "\n", 233 | " if isinstance(media_input, str):\n", 234 | " media_path = media_input\n", 235 | " if media_path.endswith(tuple([i for i in image_extensions.keys()])):\n", 236 | " media_type = \"image\"\n", 237 | " else:\n", 238 | " try:\n", 239 | " media_path, media_type = identify_and_save_blob(media_input)\n", 240 | " except Exception as e:\n", 241 | " raise ValueError(\"Unsupported media type. Please upload a valid image.\")\n", 242 | "\n", 243 | " messages = [\n", 244 | " {\n", 245 | " \"role\": \"user\",\n", 246 | " \"content\": [\n", 247 | " {\n", 248 | " \"type\": media_type,\n", 249 | " media_type: media_path\n", 250 | " },\n", 251 | " {\"type\": \"text\", \"text\": text_input},\n", 252 | " ],\n", 253 | " }\n", 254 | " ]\n", 255 | "\n", 256 | " text = processor.apply_chat_template(\n", 257 | " messages, tokenize=False, add_generation_prompt=True\n", 258 | " )\n", 259 | " image_inputs, _ = process_vision_info(messages)\n", 260 | " inputs = processor(\n", 261 | " text=[text],\n", 262 | " images=image_inputs,\n", 263 | " padding=True,\n", 264 | " return_tensors=\"pt\",\n", 265 | " ).to(\"cuda\")\n", 266 | "\n", 267 | " streamer = TextIteratorStreamer(\n", 268 | " processor.tokenizer, skip_prompt=True, skip_special_tokens=True\n", 269 | " )\n", 270 | " generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)\n", 271 | "\n", 272 | " thread = Thread(target=model.generate, kwargs=generation_kwargs)\n", 273 | " thread.start()\n", 274 | "\n", 275 | " buffer = \"\"\n", 276 | " for new_text in streamer:\n", 277 | " buffer += new_text\n", 278 | " # Remove <|im_end|> or similar tokens from the output\n", 279 | " buffer = buffer.replace(\"<|im_end|>\", \"\")\n", 280 | " yield buffer\n", 281 | "\n", 282 | "def format_plain_text(output_text):\n", 283 | " \"\"\"Formats the output text as plain text without LaTeX delimiters.\"\"\"\n", 284 | " # Remove LaTeX delimiters and convert to plain text\n", 285 | " plain_text = output_text.replace(\"\\\\(\", \"\").replace(\"\\\\)\", \"\").replace(\"\\\\[\", \"\").replace(\"\\\\]\", \"\")\n", 286 | " return plain_text\n", 287 | "\n", 288 | "def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size):\n", 289 | " \"\"\"Generates a document with the input image and plain text output.\"\"\"\n", 290 | " plain_text = format_plain_text(output_text)\n", 291 | " if file_format == \"pdf\":\n", 292 | " return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 293 | " elif file_format == \"docx\":\n", 294 | " return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size)\n", 295 | "\n", 296 | "def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 297 | " \"\"\"Generates a PDF document.\"\"\"\n", 298 | " filename = f\"output_{uuid.uuid4()}.pdf\"\n", 299 | " doc = SimpleDocTemplate(\n", 300 | " filename,\n", 301 | " pagesize=A4,\n", 302 | " rightMargin=inch,\n", 303 | " leftMargin=inch,\n", 304 | " topMargin=inch,\n", 305 | " bottomMargin=inch\n", 306 | " )\n", 307 | " styles = getSampleStyleSheet()\n", 308 | " styles[\"Normal\"].fontSize = int(font_size)\n", 309 | " styles[\"Normal\"].leading = int(font_size) * line_spacing\n", 310 | " styles[\"Normal\"].alignment = {\n", 311 | " \"Left\": 0,\n", 312 | " \"Center\": 1,\n", 313 | " \"Right\": 2,\n", 314 | " \"Justified\": 4\n", 315 | " }[alignment]\n", 316 | "\n", 317 | " story = []\n", 318 | "\n", 319 | " # Add image with size adjustment\n", 320 | " image_sizes = {\n", 321 | " \"Small\": (200, 200),\n", 322 | " \"Medium\": (400, 400),\n", 323 | " \"Large\": (600, 600)\n", 324 | " }\n", 325 | " img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])\n", 326 | " story.append(img)\n", 327 | " story.append(Spacer(1, 12))\n", 328 | "\n", 329 | " # Add plain text output\n", 330 | " text = Paragraph(plain_text, styles[\"Normal\"])\n", 331 | " story.append(text)\n", 332 | "\n", 333 | " doc.build(story)\n", 334 | " return filename\n", 335 | "\n", 336 | "def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size):\n", 337 | " \"\"\"Generates a DOCX document.\"\"\"\n", 338 | " filename = f\"output_{uuid.uuid4()}.docx\"\n", 339 | " doc = docx.Document()\n", 340 | "\n", 341 | " # Add image with size adjustment\n", 342 | " image_sizes = {\n", 343 | " \"Small\": docx.shared.Inches(2),\n", 344 | " \"Medium\": docx.shared.Inches(4),\n", 345 | " \"Large\": docx.shared.Inches(6)\n", 346 | " }\n", 347 | " doc.add_picture(media_path, width=image_sizes[image_size])\n", 348 | " doc.add_paragraph()\n", 349 | "\n", 350 | " # Add plain text output\n", 351 | " paragraph = doc.add_paragraph()\n", 352 | " paragraph.paragraph_format.line_spacing = line_spacing\n", 353 | " paragraph.paragraph_format.alignment = {\n", 354 | " \"Left\": WD_ALIGN_PARAGRAPH.LEFT,\n", 355 | " \"Center\": WD_ALIGN_PARAGRAPH.CENTER,\n", 356 | " \"Right\": WD_ALIGN_PARAGRAPH.RIGHT,\n", 357 | " \"Justified\": WD_ALIGN_PARAGRAPH.JUSTIFY\n", 358 | " }[alignment]\n", 359 | " run = paragraph.add_run(plain_text)\n", 360 | " run.font.size = docx.shared.Pt(int(font_size))\n", 361 | "\n", 362 | " doc.save(filename)\n", 363 | " return filename\n", 364 | "\n", 365 | "# CSS for output styling\n", 366 | "css = \"\"\"\n", 367 | " #output {\n", 368 | " height: 500px;\n", 369 | " overflow: auto;\n", 370 | " border: 1px solid #ccc;\n", 371 | " }\n", 372 | ".submit-btn {\n", 373 | " background-color: #cf3434 !important;\n", 374 | " color: white !important;\n", 375 | "}\n", 376 | ".submit-btn:hover {\n", 377 | " background-color: #ff2323 !important;\n", 378 | "}\n", 379 | ".download-btn {\n", 380 | " background-color: #35a6d6 !important;\n", 381 | " color: white !important;\n", 382 | "}\n", 383 | ".download-btn:hover {\n", 384 | " background-color: #22bcff !important;\n", 385 | "}\n", 386 | "\"\"\"\n", 387 | "\n", 388 | "# Gradio app setup\n", 389 | "with gr.Blocks(css=css, theme=\"bethecloud/storj_theme\") as demo:\n", 390 | " gr.Markdown(\"# **Multimodal-OCR : Qwen2-VL-OCR-2B-Instruct**\")\n", 391 | "\n", 392 | " with gr.Tab(label=\"Image Input\"):\n", 393 | "\n", 394 | " with gr.Row():\n", 395 | " with gr.Column():\n", 396 | " model_choice = gr.Dropdown(\n", 397 | " label=\"Model Selection\",\n", 398 | " choices=list(MODEL_OPTIONS.keys()),\n", 399 | " value=\"Qwen2-VL-OCR-2B-Instruct\"\n", 400 | " )\n", 401 | " input_media = gr.File(\n", 402 | " label=\"Upload Image\", type=\"filepath\"\n", 403 | " )\n", 404 | " text_input = gr.Textbox(label=\"Question\", value=\"OCR the image precisely.\")\n", 405 | " submit_btn = gr.Button(value=\"Submit\", elem_classes=\"submit-btn\")\n", 406 | "\n", 407 | " with gr.Column():\n", 408 | " output_text = gr.Textbox(label=\"Output Text\", lines=7)\n", 409 | "\n", 410 | " with gr.Accordion(\"Plain Text\", open=False):\n", 411 | " plain_text_output = gr.Textbox(label=\"Standardized Plain Text\", lines=10)\n", 412 | "\n", 413 | " submit_btn.click(\n", 414 | " qwen_inference, [model_choice, input_media, text_input], [output_text]\n", 415 | " ).then(\n", 416 | " lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]\n", 417 | " )\n", 418 | "\n", 419 | " with gr.Accordion(\"Docx/PDF Settings\", open=False):\n", 420 | " with gr.Row():\n", 421 | " with gr.Column():\n", 422 | " line_spacing = gr.Dropdown(\n", 423 | " choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],\n", 424 | " value=1.5,\n", 425 | " label=\"Line Spacing\"\n", 426 | " )\n", 427 | " font_size = gr.Dropdown(\n", 428 | " choices=[\"8\", \"10\", \"12\", \"14\", \"16\", \"18\", \"20\", \"22\", \"24\"],\n", 429 | " value=\"16\",\n", 430 | " label=\"Font Size\"\n", 431 | " )\n", 432 | " alignment = gr.Dropdown(\n", 433 | " choices=[\"Left\", \"Center\", \"Right\", \"Justified\"],\n", 434 | " value=\"Justified\",\n", 435 | " label=\"Text Alignment\"\n", 436 | " )\n", 437 | " image_size = gr.Dropdown(\n", 438 | " choices=[\"Small\", \"Medium\", \"Large\"],\n", 439 | " value=\"Medium\",\n", 440 | " label=\"Image Size\"\n", 441 | " )\n", 442 | " file_format = gr.Radio([\"pdf\", \"docx\"], label=\"File Format\", value=\"pdf\")\n", 443 | "\n", 444 | " get_document_btn = gr.Button(value=\"Get Document\", elem_classes=\"download-btn\")\n", 445 | "\n", 446 | " get_document_btn.click(\n", 447 | " generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label=\"Download Document\")\n", 448 | " )\n", 449 | "\n", 450 | "demo.launch(debug=True)" 451 | ] 452 | }, 453 | { 454 | "cell_type": "markdown", 455 | "metadata": { 456 | "id": "iujTALhGd33H" 457 | }, 458 | "source": [ 459 | "**Demo Inference**\n", 460 | "\n", 461 | "`Query Input : OCR the Image Precisely`\n", 462 | "\n", 463 | "\n", 464 | " \n", 465 | " \n", 468 | " \n", 471 | " \n", 472 | "
\n", 466 | " \"Image\n", 467 | " \n", 469 | " \"Image\n", 470 | "
\n" 473 | ] 474 | } 475 | ], 476 | "metadata": { 477 | "accelerator": "GPU", 478 | "colab": { 479 | "gpuType": "T4", 480 | "provenance": [] 481 | }, 482 | "kernelspec": { 483 | "display_name": "Python 3", 484 | "name": "python3" 485 | }, 486 | "language_info": { 487 | "name": "python" 488 | }, 489 | "widgets": { 490 | "application/vnd.jupyter.widget-state+json": { 491 | "06bcc05a336c4bc8a16fd64b8c93e90a": { 492 | "model_module": "@jupyter-widgets/base", 493 | "model_module_version": "1.2.0", 494 | "model_name": "LayoutModel", 495 | "state": { 496 | "_model_module": "@jupyter-widgets/base", 497 | "_model_module_version": "1.2.0", 498 | "_model_name": "LayoutModel", 499 | "_view_count": null, 500 | "_view_module": "@jupyter-widgets/base", 501 | "_view_module_version": "1.2.0", 502 | "_view_name": "LayoutView", 503 | "align_content": null, 504 | "align_items": null, 505 | "align_self": null, 506 | "border": null, 507 | "bottom": null, 508 | "display": null, 509 | "flex": null, 510 | "flex_flow": null, 511 | "grid_area": null, 512 | "grid_auto_columns": null, 513 | "grid_auto_flow": null, 514 | "grid_auto_rows": null, 515 | "grid_column": null, 516 | "grid_gap": null, 517 | "grid_row": null, 518 | "grid_template_areas": null, 519 | "grid_template_columns": null, 520 | "grid_template_rows": null, 521 | "height": null, 522 | "justify_content": null, 523 | "justify_items": null, 524 | "left": null, 525 | "margin": null, 526 | "max_height": null, 527 | "max_width": null, 528 | "min_height": null, 529 | "min_width": null, 530 | "object_fit": null, 531 | "object_position": null, 532 | "order": null, 533 | "overflow": null, 534 | "overflow_x": null, 535 | "overflow_y": null, 536 | "padding": null, 537 | "right": null, 538 | "top": null, 539 | "visibility": null, 540 | "width": null 541 | } 542 | }, 543 | "0834cba909674903b340ead5d03d8ee7": { 544 | "model_module": "@jupyter-widgets/base", 545 | "model_module_version": "1.2.0", 546 | "model_name": "LayoutModel", 547 | "state": { 548 | "_model_module": "@jupyter-widgets/base", 549 | "_model_module_version": "1.2.0", 550 | "_model_name": "LayoutModel", 551 | "_view_count": null, 552 | "_view_module": "@jupyter-widgets/base", 553 | "_view_module_version": "1.2.0", 554 | "_view_name": "LayoutView", 555 | "align_content": null, 556 | "align_items": null, 557 | "align_self": null, 558 | "border": null, 559 | "bottom": null, 560 | "display": null, 561 | "flex": null, 562 | "flex_flow": null, 563 | "grid_area": null, 564 | "grid_auto_columns": null, 565 | "grid_auto_flow": null, 566 | "grid_auto_rows": null, 567 | "grid_column": null, 568 | "grid_gap": null, 569 | "grid_row": null, 570 | "grid_template_areas": null, 571 | "grid_template_columns": null, 572 | "grid_template_rows": null, 573 | "height": null, 574 | "justify_content": null, 575 | "justify_items": null, 576 | "left": null, 577 | "margin": null, 578 | "max_height": null, 579 | "max_width": null, 580 | "min_height": null, 581 | "min_width": null, 582 | "object_fit": null, 583 | "object_position": null, 584 | "order": null, 585 | "overflow": null, 586 | "overflow_x": null, 587 | "overflow_y": null, 588 | "padding": null, 589 | "right": null, 590 | "top": null, 591 | "visibility": null, 592 | "width": null 593 | } 594 | }, 595 | "0a899139f1f849e0b9d1966062c8e2f6": { 596 | "model_module": "@jupyter-widgets/controls", 597 | "model_module_version": "1.5.0", 598 | "model_name": "DescriptionStyleModel", 599 | "state": { 600 | "_model_module": "@jupyter-widgets/controls", 601 | "_model_module_version": "1.5.0", 602 | "_model_name": "DescriptionStyleModel", 603 | "_view_count": null, 604 | "_view_module": "@jupyter-widgets/base", 605 | "_view_module_version": "1.2.0", 606 | "_view_name": "StyleView", 607 | "description_width": "" 608 | } 609 | }, 610 | "10126373db724c58bb1539c09defe1be": { 611 | "model_module": "@jupyter-widgets/base", 612 | "model_module_version": "1.2.0", 613 | "model_name": "LayoutModel", 614 | "state": { 615 | "_model_module": "@jupyter-widgets/base", 616 | "_model_module_version": "1.2.0", 617 | "_model_name": "LayoutModel", 618 | "_view_count": null, 619 | "_view_module": "@jupyter-widgets/base", 620 | "_view_module_version": "1.2.0", 621 | "_view_name": "LayoutView", 622 | "align_content": null, 623 | "align_items": null, 624 | "align_self": null, 625 | "border": null, 626 | "bottom": null, 627 | "display": null, 628 | "flex": null, 629 | "flex_flow": null, 630 | "grid_area": null, 631 | "grid_auto_columns": null, 632 | "grid_auto_flow": null, 633 | "grid_auto_rows": null, 634 | "grid_column": null, 635 | "grid_gap": null, 636 | "grid_row": null, 637 | "grid_template_areas": null, 638 | "grid_template_columns": null, 639 | "grid_template_rows": null, 640 | "height": null, 641 | "justify_content": null, 642 | "justify_items": null, 643 | "left": null, 644 | "margin": null, 645 | "max_height": null, 646 | "max_width": null, 647 | "min_height": null, 648 | "min_width": null, 649 | "object_fit": null, 650 | "object_position": null, 651 | "order": null, 652 | "overflow": null, 653 | "overflow_x": null, 654 | "overflow_y": null, 655 | "padding": null, 656 | "right": null, 657 | "top": null, 658 | "visibility": null, 659 | "width": null 660 | } 661 | }, 662 | "1339218232624b45a5cdfde89847241e": { 663 | "model_module": "@jupyter-widgets/controls", 664 | "model_module_version": "1.5.0", 665 | "model_name": "HTMLModel", 666 | "state": { 667 | "_dom_classes": [], 668 | "_model_module": "@jupyter-widgets/controls", 669 | "_model_module_version": "1.5.0", 670 | "_model_name": "HTMLModel", 671 | "_view_count": null, 672 | "_view_module": "@jupyter-widgets/controls", 673 | "_view_module_version": "1.5.0", 674 | "_view_name": "HTMLView", 675 | "description": "", 676 | "description_tooltip": null, 677 | "layout": "IPY_MODEL_c85c990c84064da5a4126893328a2805", 678 | "placeholder": "​", 679 | "style": "IPY_MODEL_aef802c8c44843acb7df00f1ae75cde4", 680 | "value": "theme_schema%400.0.1.json: " 681 | } 682 | }, 683 | "13b7228aa5134ee4b0efd7fc2e9d7927": { 684 | "model_module": "@jupyter-widgets/base", 685 | "model_module_version": "1.2.0", 686 | "model_name": "LayoutModel", 687 | "state": { 688 | "_model_module": "@jupyter-widgets/base", 689 | "_model_module_version": "1.2.0", 690 | "_model_name": "LayoutModel", 691 | "_view_count": null, 692 | "_view_module": "@jupyter-widgets/base", 693 | "_view_module_version": "1.2.0", 694 | "_view_name": "LayoutView", 695 | "align_content": null, 696 | "align_items": null, 697 | "align_self": null, 698 | "border": null, 699 | "bottom": null, 700 | "display": null, 701 | "flex": null, 702 | "flex_flow": null, 703 | "grid_area": null, 704 | "grid_auto_columns": null, 705 | "grid_auto_flow": null, 706 | "grid_auto_rows": null, 707 | "grid_column": null, 708 | "grid_gap": null, 709 | "grid_row": null, 710 | "grid_template_areas": null, 711 | "grid_template_columns": null, 712 | "grid_template_rows": null, 713 | "height": null, 714 | "justify_content": null, 715 | "justify_items": null, 716 | "left": null, 717 | "margin": null, 718 | "max_height": null, 719 | "max_width": null, 720 | "min_height": null, 721 | "min_width": null, 722 | "object_fit": null, 723 | "object_position": null, 724 | "order": null, 725 | "overflow": null, 726 | "overflow_x": null, 727 | "overflow_y": null, 728 | "padding": null, 729 | "right": null, 730 | "top": null, 731 | "visibility": null, 732 | "width": "20px" 733 | } 734 | }, 735 | "14120640e617483f80c34982da8e5391": { 736 | "model_module": "@jupyter-widgets/controls", 737 | "model_module_version": "1.5.0", 738 | "model_name": "DescriptionStyleModel", 739 | "state": { 740 | "_model_module": "@jupyter-widgets/controls", 741 | "_model_module_version": "1.5.0", 742 | "_model_name": "DescriptionStyleModel", 743 | "_view_count": null, 744 | "_view_module": "@jupyter-widgets/base", 745 | "_view_module_version": "1.2.0", 746 | "_view_name": "StyleView", 747 | "description_width": "" 748 | } 749 | }, 750 | "14fda8541b1c4c0e84b27253f40a4144": { 751 | "model_module": "@jupyter-widgets/controls", 752 | "model_module_version": "1.5.0", 753 | "model_name": "HTMLModel", 754 | "state": { 755 | "_dom_classes": [], 756 | "_model_module": "@jupyter-widgets/controls", 757 | "_model_module_version": "1.5.0", 758 | "_model_name": "HTMLModel", 759 | "_view_count": null, 760 | "_view_module": "@jupyter-widgets/controls", 761 | "_view_module_version": "1.5.0", 762 | "_view_name": "HTMLView", 763 | "description": "", 764 | "description_tooltip": null, 765 | "layout": "IPY_MODEL_6d8fc2d9b39e4264af969fd4968db0f0", 766 | "placeholder": "​", 767 | "style": "IPY_MODEL_5a9c313556474d32b6920a31d682c993", 768 | "value": "config.json: " 769 | } 770 | }, 771 | "155d93fd988340e3842d5a2939d4f0a7": { 772 | "model_module": "@jupyter-widgets/controls", 773 | "model_module_version": "1.5.0", 774 | "model_name": "DescriptionStyleModel", 775 | "state": { 776 | "_model_module": "@jupyter-widgets/controls", 777 | "_model_module_version": "1.5.0", 778 | "_model_name": "DescriptionStyleModel", 779 | "_view_count": null, 780 | "_view_module": "@jupyter-widgets/base", 781 | "_view_module_version": "1.2.0", 782 | "_view_name": "StyleView", 783 | "description_width": "" 784 | } 785 | }, 786 | "1682d18df349461fbce9afaf390f14af": { 787 | "model_module": "@jupyter-widgets/base", 788 | "model_module_version": "1.2.0", 789 | "model_name": "LayoutModel", 790 | "state": { 791 | "_model_module": "@jupyter-widgets/base", 792 | "_model_module_version": "1.2.0", 793 | "_model_name": "LayoutModel", 794 | "_view_count": null, 795 | "_view_module": "@jupyter-widgets/base", 796 | "_view_module_version": "1.2.0", 797 | "_view_name": "LayoutView", 798 | "align_content": null, 799 | "align_items": null, 800 | "align_self": null, 801 | "border": null, 802 | "bottom": null, 803 | "display": null, 804 | "flex": null, 805 | "flex_flow": null, 806 | "grid_area": null, 807 | "grid_auto_columns": null, 808 | "grid_auto_flow": null, 809 | "grid_auto_rows": null, 810 | "grid_column": null, 811 | "grid_gap": null, 812 | "grid_row": null, 813 | "grid_template_areas": null, 814 | "grid_template_columns": null, 815 | "grid_template_rows": null, 816 | "height": null, 817 | "justify_content": null, 818 | "justify_items": null, 819 | "left": null, 820 | "margin": null, 821 | "max_height": null, 822 | "max_width": null, 823 | "min_height": null, 824 | "min_width": null, 825 | "object_fit": null, 826 | "object_position": null, 827 | "order": null, 828 | "overflow": null, 829 | "overflow_x": null, 830 | "overflow_y": null, 831 | "padding": null, 832 | "right": null, 833 | "top": null, 834 | "visibility": null, 835 | "width": null 836 | } 837 | }, 838 | "1714271f35c1451186d668bc136fdb75": { 839 | "model_module": "@jupyter-widgets/base", 840 | "model_module_version": "1.2.0", 841 | "model_name": "LayoutModel", 842 | "state": { 843 | "_model_module": "@jupyter-widgets/base", 844 | "_model_module_version": "1.2.0", 845 | "_model_name": "LayoutModel", 846 | "_view_count": null, 847 | "_view_module": "@jupyter-widgets/base", 848 | "_view_module_version": "1.2.0", 849 | "_view_name": "LayoutView", 850 | "align_content": null, 851 | "align_items": null, 852 | "align_self": null, 853 | "border": null, 854 | "bottom": null, 855 | "display": null, 856 | "flex": null, 857 | "flex_flow": null, 858 | "grid_area": null, 859 | "grid_auto_columns": null, 860 | "grid_auto_flow": null, 861 | "grid_auto_rows": null, 862 | "grid_column": null, 863 | "grid_gap": null, 864 | "grid_row": null, 865 | "grid_template_areas": null, 866 | "grid_template_columns": null, 867 | "grid_template_rows": null, 868 | "height": null, 869 | "justify_content": null, 870 | "justify_items": null, 871 | "left": null, 872 | "margin": null, 873 | "max_height": null, 874 | "max_width": null, 875 | "min_height": null, 876 | "min_width": null, 877 | "object_fit": null, 878 | "object_position": null, 879 | "order": null, 880 | "overflow": null, 881 | "overflow_x": null, 882 | "overflow_y": null, 883 | "padding": null, 884 | "right": null, 885 | "top": null, 886 | "visibility": null, 887 | "width": null 888 | } 889 | }, 890 | "1b4e0053f73a4dc8956fd70261050031": { 891 | "model_module": "@jupyter-widgets/controls", 892 | "model_module_version": "1.5.0", 893 | "model_name": "HTMLModel", 894 | "state": { 895 | "_dom_classes": [], 896 | "_model_module": "@jupyter-widgets/controls", 897 | "_model_module_version": "1.5.0", 898 | "_model_name": "HTMLModel", 899 | "_view_count": null, 900 | "_view_module": "@jupyter-widgets/controls", 901 | "_view_module_version": "1.5.0", 902 | "_view_name": "HTMLView", 903 | "description": "", 904 | "description_tooltip": null, 905 | "layout": "IPY_MODEL_10126373db724c58bb1539c09defe1be", 906 | "placeholder": "​", 907 | "style": "IPY_MODEL_d7414d9c2c724e389772835304938f97", 908 | "value": " 1.17k/? [00:00<00:00, 113kB/s]" 909 | } 910 | }, 911 | "1f6c4390253d4b4684d3f04bc6f0ca43": { 912 | "model_module": "@jupyter-widgets/controls", 913 | "model_module_version": "1.5.0", 914 | "model_name": "DescriptionStyleModel", 915 | "state": { 916 | "_model_module": "@jupyter-widgets/controls", 917 | "_model_module_version": "1.5.0", 918 | "_model_name": "DescriptionStyleModel", 919 | "_view_count": null, 920 | "_view_module": "@jupyter-widgets/base", 921 | "_view_module_version": "1.2.0", 922 | "_view_name": "StyleView", 923 | "description_width": "" 924 | } 925 | }, 926 | "20bf4656b0aa49df85a2b5dc743f8b10": { 927 | "model_module": "@jupyter-widgets/controls", 928 | "model_module_version": "1.5.0", 929 | "model_name": "HTMLModel", 930 | "state": { 931 | "_dom_classes": [], 932 | "_model_module": "@jupyter-widgets/controls", 933 | "_model_module_version": "1.5.0", 934 | "_model_name": "HTMLModel", 935 | "_view_count": null, 936 | "_view_module": "@jupyter-widgets/controls", 937 | "_view_module_version": "1.5.0", 938 | "_view_name": "HTMLView", 939 | "description": "", 940 | "description_tooltip": null, 941 | "layout": "IPY_MODEL_530c357a2bfb422190ecf9a7606bead7", 942 | "placeholder": "​", 943 | "style": "IPY_MODEL_7ab567c1f33547bcb4f395b09b5d547c", 944 | "value": " 252/252 [00:00<00:00, 27.0kB/s]" 945 | } 946 | }, 947 | "24cc5fd73b2e483ca3f2992414fc2ea0": { 948 | "model_module": "@jupyter-widgets/controls", 949 | "model_module_version": "1.5.0", 950 | "model_name": "ProgressStyleModel", 951 | "state": { 952 | "_model_module": "@jupyter-widgets/controls", 953 | "_model_module_version": "1.5.0", 954 | "_model_name": "ProgressStyleModel", 955 | "_view_count": null, 956 | "_view_module": "@jupyter-widgets/base", 957 | "_view_module_version": "1.2.0", 958 | "_view_name": "StyleView", 959 | "bar_color": null, 960 | "description_width": "" 961 | } 962 | }, 963 | "26f392b41d404db282b44b3a52bf8b3c": { 964 | "model_module": "@jupyter-widgets/base", 965 | "model_module_version": "1.2.0", 966 | "model_name": "LayoutModel", 967 | "state": { 968 | "_model_module": "@jupyter-widgets/base", 969 | "_model_module_version": "1.2.0", 970 | "_model_name": "LayoutModel", 971 | "_view_count": null, 972 | "_view_module": "@jupyter-widgets/base", 973 | "_view_module_version": "1.2.0", 974 | "_view_name": "LayoutView", 975 | "align_content": null, 976 | "align_items": null, 977 | "align_self": null, 978 | "border": null, 979 | "bottom": null, 980 | "display": null, 981 | "flex": null, 982 | "flex_flow": null, 983 | "grid_area": null, 984 | "grid_auto_columns": null, 985 | "grid_auto_flow": null, 986 | "grid_auto_rows": null, 987 | "grid_column": null, 988 | "grid_gap": null, 989 | "grid_row": null, 990 | "grid_template_areas": null, 991 | "grid_template_columns": null, 992 | "grid_template_rows": null, 993 | "height": null, 994 | "justify_content": null, 995 | "justify_items": null, 996 | "left": null, 997 | "margin": null, 998 | "max_height": null, 999 | "max_width": null, 1000 | "min_height": null, 1001 | "min_width": null, 1002 | "object_fit": null, 1003 | "object_position": null, 1004 | "order": null, 1005 | "overflow": null, 1006 | "overflow_x": null, 1007 | "overflow_y": null, 1008 | "padding": null, 1009 | "right": null, 1010 | "top": null, 1011 | "visibility": null, 1012 | "width": null 1013 | } 1014 | }, 1015 | "2705bfba51e049b0bf2fd1d7d21d0eef": { 1016 | "model_module": "@jupyter-widgets/controls", 1017 | "model_module_version": "1.5.0", 1018 | "model_name": "HTMLModel", 1019 | "state": { 1020 | "_dom_classes": [], 1021 | "_model_module": "@jupyter-widgets/controls", 1022 | "_model_module_version": "1.5.0", 1023 | "_model_name": "HTMLModel", 1024 | "_view_count": null, 1025 | "_view_module": "@jupyter-widgets/controls", 1026 | "_view_module_version": "1.5.0", 1027 | "_view_name": "HTMLView", 1028 | "description": "", 1029 | "description_tooltip": null, 1030 | "layout": "IPY_MODEL_cfaa646376a64891aa43a7e3848c12fc", 1031 | "placeholder": "​", 1032 | "style": "IPY_MODEL_937d2150bd974ffdb4053870c9339b0f", 1033 | "value": " 408/408 [00:00<00:00, 44.0kB/s]" 1034 | } 1035 | }, 1036 | "2f02c79edd024c73b71a432b6218bcc6": { 1037 | "model_module": "@jupyter-widgets/controls", 1038 | "model_module_version": "1.5.0", 1039 | "model_name": "HBoxModel", 1040 | "state": { 1041 | "_dom_classes": [], 1042 | "_model_module": "@jupyter-widgets/controls", 1043 | "_model_module_version": "1.5.0", 1044 | "_model_name": "HBoxModel", 1045 | "_view_count": null, 1046 | "_view_module": "@jupyter-widgets/controls", 1047 | "_view_module_version": "1.5.0", 1048 | "_view_name": "HBoxView", 1049 | "box_style": "", 1050 | "children": [ 1051 | "IPY_MODEL_3e8bf0fbf4844e618be5d6f076a1832e", 1052 | "IPY_MODEL_e749b795c4c5480eb378e05f2b2408c3", 1053 | "IPY_MODEL_62d07eb3ad454b70bdaf99598578c810" 1054 | ], 1055 | "layout": "IPY_MODEL_f69d8e8a4e174b7382610cf3c497bb7b" 1056 | } 1057 | }, 1058 | "30740f63144043c3acb482e42ae82119": { 1059 | "model_module": "@jupyter-widgets/controls", 1060 | "model_module_version": "1.5.0", 1061 | "model_name": "DescriptionStyleModel", 1062 | "state": { 1063 | "_model_module": "@jupyter-widgets/controls", 1064 | "_model_module_version": "1.5.0", 1065 | "_model_name": "DescriptionStyleModel", 1066 | "_view_count": null, 1067 | "_view_module": "@jupyter-widgets/base", 1068 | "_view_module_version": "1.2.0", 1069 | "_view_name": "StyleView", 1070 | "description_width": "" 1071 | } 1072 | }, 1073 | "3344aea877d5458bb3fa445b3c79c795": { 1074 | "model_module": "@jupyter-widgets/controls", 1075 | "model_module_version": "1.5.0", 1076 | "model_name": "DescriptionStyleModel", 1077 | "state": { 1078 | "_model_module": "@jupyter-widgets/controls", 1079 | "_model_module_version": "1.5.0", 1080 | "_model_name": "DescriptionStyleModel", 1081 | "_view_count": null, 1082 | "_view_module": "@jupyter-widgets/base", 1083 | "_view_module_version": "1.2.0", 1084 | "_view_name": "StyleView", 1085 | "description_width": "" 1086 | } 1087 | }, 1088 | "3472426d6625433b9c470f500ef1ca74": { 1089 | "model_module": "@jupyter-widgets/base", 1090 | "model_module_version": "1.2.0", 1091 | "model_name": "LayoutModel", 1092 | "state": { 1093 | "_model_module": "@jupyter-widgets/base", 1094 | "_model_module_version": "1.2.0", 1095 | "_model_name": "LayoutModel", 1096 | "_view_count": null, 1097 | "_view_module": "@jupyter-widgets/base", 1098 | "_view_module_version": "1.2.0", 1099 | "_view_name": "LayoutView", 1100 | "align_content": null, 1101 | "align_items": null, 1102 | "align_self": null, 1103 | "border": null, 1104 | "bottom": null, 1105 | "display": null, 1106 | "flex": null, 1107 | "flex_flow": null, 1108 | "grid_area": null, 1109 | "grid_auto_columns": null, 1110 | "grid_auto_flow": null, 1111 | "grid_auto_rows": null, 1112 | "grid_column": null, 1113 | "grid_gap": null, 1114 | "grid_row": null, 1115 | "grid_template_areas": null, 1116 | "grid_template_columns": null, 1117 | "grid_template_rows": null, 1118 | "height": null, 1119 | "justify_content": null, 1120 | "justify_items": null, 1121 | "left": null, 1122 | "margin": null, 1123 | "max_height": null, 1124 | "max_width": null, 1125 | "min_height": null, 1126 | "min_width": null, 1127 | "object_fit": null, 1128 | "object_position": null, 1129 | "order": null, 1130 | "overflow": null, 1131 | "overflow_x": null, 1132 | "overflow_y": null, 1133 | "padding": null, 1134 | "right": null, 1135 | "top": null, 1136 | "visibility": null, 1137 | "width": null 1138 | } 1139 | }, 1140 | "3545befbc8924abca73cf6cfdb6ead60": { 1141 | "model_module": "@jupyter-widgets/controls", 1142 | "model_module_version": "1.5.0", 1143 | "model_name": "ProgressStyleModel", 1144 | "state": { 1145 | "_model_module": "@jupyter-widgets/controls", 1146 | "_model_module_version": "1.5.0", 1147 | "_model_name": "ProgressStyleModel", 1148 | "_view_count": null, 1149 | "_view_module": "@jupyter-widgets/base", 1150 | "_view_module_version": "1.2.0", 1151 | "_view_name": "StyleView", 1152 | "bar_color": null, 1153 | "description_width": "" 1154 | } 1155 | }, 1156 | "35bd67b6557c41fc8e6bdcba49f6da06": { 1157 | "model_module": "@jupyter-widgets/controls", 1158 | "model_module_version": "1.5.0", 1159 | "model_name": "DescriptionStyleModel", 1160 | "state": { 1161 | "_model_module": "@jupyter-widgets/controls", 1162 | "_model_module_version": "1.5.0", 1163 | "_model_name": "DescriptionStyleModel", 1164 | "_view_count": null, 1165 | "_view_module": "@jupyter-widgets/base", 1166 | "_view_module_version": "1.2.0", 1167 | "_view_name": "StyleView", 1168 | "description_width": "" 1169 | } 1170 | }, 1171 | "36ba4652bd354eceae677c8782c6a92b": { 1172 | "model_module": "@jupyter-widgets/controls", 1173 | "model_module_version": "1.5.0", 1174 | "model_name": "DescriptionStyleModel", 1175 | "state": { 1176 | "_model_module": "@jupyter-widgets/controls", 1177 | "_model_module_version": "1.5.0", 1178 | "_model_name": "DescriptionStyleModel", 1179 | "_view_count": null, 1180 | "_view_module": "@jupyter-widgets/base", 1181 | "_view_module_version": "1.2.0", 1182 | "_view_name": "StyleView", 1183 | "description_width": "" 1184 | } 1185 | }, 1186 | "37f8dddb0de34128a7d15aac01d7370f": { 1187 | "model_module": "@jupyter-widgets/base", 1188 | "model_module_version": "1.2.0", 1189 | "model_name": "LayoutModel", 1190 | "state": { 1191 | "_model_module": "@jupyter-widgets/base", 1192 | "_model_module_version": "1.2.0", 1193 | "_model_name": "LayoutModel", 1194 | "_view_count": null, 1195 | "_view_module": "@jupyter-widgets/base", 1196 | "_view_module_version": "1.2.0", 1197 | "_view_name": "LayoutView", 1198 | "align_content": null, 1199 | "align_items": null, 1200 | "align_self": null, 1201 | "border": null, 1202 | "bottom": null, 1203 | "display": null, 1204 | "flex": null, 1205 | "flex_flow": null, 1206 | "grid_area": null, 1207 | "grid_auto_columns": null, 1208 | "grid_auto_flow": null, 1209 | "grid_auto_rows": null, 1210 | "grid_column": null, 1211 | "grid_gap": null, 1212 | "grid_row": null, 1213 | "grid_template_areas": null, 1214 | "grid_template_columns": null, 1215 | "grid_template_rows": null, 1216 | "height": null, 1217 | "justify_content": null, 1218 | "justify_items": null, 1219 | "left": null, 1220 | "margin": null, 1221 | "max_height": null, 1222 | "max_width": null, 1223 | "min_height": null, 1224 | "min_width": null, 1225 | "object_fit": null, 1226 | "object_position": null, 1227 | "order": null, 1228 | "overflow": null, 1229 | "overflow_x": null, 1230 | "overflow_y": null, 1231 | "padding": null, 1232 | "right": null, 1233 | "top": null, 1234 | "visibility": null, 1235 | "width": null 1236 | } 1237 | }, 1238 | "3e8bf0fbf4844e618be5d6f076a1832e": { 1239 | "model_module": "@jupyter-widgets/controls", 1240 | "model_module_version": "1.5.0", 1241 | "model_name": "HTMLModel", 1242 | "state": { 1243 | "_dom_classes": [], 1244 | "_model_module": "@jupyter-widgets/controls", 1245 | "_model_module_version": "1.5.0", 1246 | "_model_name": "HTMLModel", 1247 | "_view_count": null, 1248 | "_view_module": "@jupyter-widgets/controls", 1249 | "_view_module_version": "1.5.0", 1250 | "_view_name": "HTMLView", 1251 | "description": "", 1252 | "description_tooltip": null, 1253 | "layout": "IPY_MODEL_906543db98a44f43abdf245509f4fcee", 1254 | "placeholder": "​", 1255 | "style": "IPY_MODEL_48d1d6a874cf4ef28080fb30de2ef493", 1256 | "value": "vocab.json: " 1257 | } 1258 | }, 1259 | "4051bcbe013642fc931a6fbb94d42a6f": { 1260 | "model_module": "@jupyter-widgets/controls", 1261 | "model_module_version": "1.5.0", 1262 | "model_name": "HTMLModel", 1263 | "state": { 1264 | "_dom_classes": [], 1265 | "_model_module": "@jupyter-widgets/controls", 1266 | "_model_module_version": "1.5.0", 1267 | "_model_name": "HTMLModel", 1268 | "_view_count": null, 1269 | "_view_module": "@jupyter-widgets/controls", 1270 | "_view_module_version": "1.5.0", 1271 | "_view_name": "HTMLView", 1272 | "description": "", 1273 | "description_tooltip": null, 1274 | "layout": "IPY_MODEL_a2a6e91f8e754eeb85b9997b9e7a454a", 1275 | "placeholder": "​", 1276 | "style": "IPY_MODEL_1f6c4390253d4b4684d3f04bc6f0ca43", 1277 | "value": " 1.05k/? [00:00<00:00, 62.3kB/s]" 1278 | } 1279 | }, 1280 | "4665d5bf963b4cab85fd038b8d288156": { 1281 | "model_module": "@jupyter-widgets/controls", 1282 | "model_module_version": "1.5.0", 1283 | "model_name": "HBoxModel", 1284 | "state": { 1285 | "_dom_classes": [], 1286 | "_model_module": "@jupyter-widgets/controls", 1287 | "_model_module_version": "1.5.0", 1288 | "_model_name": "HBoxModel", 1289 | "_view_count": null, 1290 | "_view_module": "@jupyter-widgets/controls", 1291 | "_view_module_version": "1.5.0", 1292 | "_view_name": "HBoxView", 1293 | "box_style": "", 1294 | "children": [ 1295 | "IPY_MODEL_e8cc4aace30a463faad2dfe6342a2821", 1296 | "IPY_MODEL_b89ecb8a8a144723a4fe528ff04fba78", 1297 | "IPY_MODEL_4051bcbe013642fc931a6fbb94d42a6f" 1298 | ], 1299 | "layout": "IPY_MODEL_37f8dddb0de34128a7d15aac01d7370f" 1300 | } 1301 | }, 1302 | "48d1d6a874cf4ef28080fb30de2ef493": { 1303 | "model_module": "@jupyter-widgets/controls", 1304 | "model_module_version": "1.5.0", 1305 | "model_name": "DescriptionStyleModel", 1306 | "state": { 1307 | "_model_module": "@jupyter-widgets/controls", 1308 | "_model_module_version": "1.5.0", 1309 | "_model_name": "DescriptionStyleModel", 1310 | "_view_count": null, 1311 | "_view_module": "@jupyter-widgets/base", 1312 | "_view_module_version": "1.2.0", 1313 | "_view_name": "StyleView", 1314 | "description_width": "" 1315 | } 1316 | }, 1317 | "50dbff5eb9e94f4c876680007bf3add6": { 1318 | "model_module": "@jupyter-widgets/controls", 1319 | "model_module_version": "1.5.0", 1320 | "model_name": "HBoxModel", 1321 | "state": { 1322 | "_dom_classes": [], 1323 | "_model_module": "@jupyter-widgets/controls", 1324 | "_model_module_version": "1.5.0", 1325 | "_model_name": "HBoxModel", 1326 | "_view_count": null, 1327 | "_view_module": "@jupyter-widgets/controls", 1328 | "_view_module_version": "1.5.0", 1329 | "_view_name": "HBoxView", 1330 | "box_style": "", 1331 | "children": [ 1332 | "IPY_MODEL_cebf1c1226ff42128dbe5abfc3928214", 1333 | "IPY_MODEL_e7b07b23703e46f4adc60a86d7eaa327", 1334 | "IPY_MODEL_2705bfba51e049b0bf2fd1d7d21d0eef" 1335 | ], 1336 | "layout": "IPY_MODEL_57f8dd1f25bf40a88fa07fb6b3b11261" 1337 | } 1338 | }, 1339 | "52861218164a4578b743c9ad7e533e77": { 1340 | "model_module": "@jupyter-widgets/controls", 1341 | "model_module_version": "1.5.0", 1342 | "model_name": "HBoxModel", 1343 | "state": { 1344 | "_dom_classes": [], 1345 | "_model_module": "@jupyter-widgets/controls", 1346 | "_model_module_version": "1.5.0", 1347 | "_model_name": "HBoxModel", 1348 | "_view_count": null, 1349 | "_view_module": "@jupyter-widgets/controls", 1350 | "_view_module_version": "1.5.0", 1351 | "_view_name": "HBoxView", 1352 | "box_style": "", 1353 | "children": [ 1354 | "IPY_MODEL_917a3fc5850b408b8ae8d62016949d5c", 1355 | "IPY_MODEL_67d0c6474f2c41259fa7f5550ca5bbcf", 1356 | "IPY_MODEL_91d1868fecbb4a64b3f36ec7b0146f66" 1357 | ], 1358 | "layout": "IPY_MODEL_f33523339ad44ee18ae542a99ba8d2e4" 1359 | } 1360 | }, 1361 | "530c357a2bfb422190ecf9a7606bead7": { 1362 | "model_module": "@jupyter-widgets/base", 1363 | "model_module_version": "1.2.0", 1364 | "model_name": "LayoutModel", 1365 | "state": { 1366 | "_model_module": "@jupyter-widgets/base", 1367 | "_model_module_version": "1.2.0", 1368 | "_model_name": "LayoutModel", 1369 | "_view_count": null, 1370 | "_view_module": "@jupyter-widgets/base", 1371 | "_view_module_version": "1.2.0", 1372 | "_view_name": "LayoutView", 1373 | "align_content": null, 1374 | "align_items": null, 1375 | "align_self": null, 1376 | "border": null, 1377 | "bottom": null, 1378 | "display": null, 1379 | "flex": null, 1380 | "flex_flow": null, 1381 | "grid_area": null, 1382 | "grid_auto_columns": null, 1383 | "grid_auto_flow": null, 1384 | "grid_auto_rows": null, 1385 | "grid_column": null, 1386 | "grid_gap": null, 1387 | "grid_row": null, 1388 | "grid_template_areas": null, 1389 | "grid_template_columns": null, 1390 | "grid_template_rows": null, 1391 | "height": null, 1392 | "justify_content": null, 1393 | "justify_items": null, 1394 | "left": null, 1395 | "margin": null, 1396 | "max_height": null, 1397 | "max_width": null, 1398 | "min_height": null, 1399 | "min_width": null, 1400 | "object_fit": null, 1401 | "object_position": null, 1402 | "order": null, 1403 | "overflow": null, 1404 | "overflow_x": null, 1405 | "overflow_y": null, 1406 | "padding": null, 1407 | "right": null, 1408 | "top": null, 1409 | "visibility": null, 1410 | "width": null 1411 | } 1412 | }, 1413 | "5714e66524bf45b7a80bf425e3532d29": { 1414 | "model_module": "@jupyter-widgets/base", 1415 | "model_module_version": "1.2.0", 1416 | "model_name": "LayoutModel", 1417 | "state": { 1418 | "_model_module": "@jupyter-widgets/base", 1419 | "_model_module_version": "1.2.0", 1420 | "_model_name": "LayoutModel", 1421 | "_view_count": null, 1422 | "_view_module": "@jupyter-widgets/base", 1423 | "_view_module_version": "1.2.0", 1424 | "_view_name": "LayoutView", 1425 | "align_content": null, 1426 | "align_items": null, 1427 | "align_self": null, 1428 | "border": null, 1429 | "bottom": null, 1430 | "display": null, 1431 | "flex": null, 1432 | "flex_flow": null, 1433 | "grid_area": null, 1434 | "grid_auto_columns": null, 1435 | "grid_auto_flow": null, 1436 | "grid_auto_rows": null, 1437 | "grid_column": null, 1438 | "grid_gap": null, 1439 | "grid_row": null, 1440 | "grid_template_areas": null, 1441 | "grid_template_columns": null, 1442 | "grid_template_rows": null, 1443 | "height": null, 1444 | "justify_content": null, 1445 | "justify_items": null, 1446 | "left": null, 1447 | "margin": null, 1448 | "max_height": null, 1449 | "max_width": null, 1450 | "min_height": null, 1451 | "min_width": null, 1452 | "object_fit": null, 1453 | "object_position": null, 1454 | "order": null, 1455 | "overflow": null, 1456 | "overflow_x": null, 1457 | "overflow_y": null, 1458 | "padding": null, 1459 | "right": null, 1460 | "top": null, 1461 | "visibility": null, 1462 | "width": null 1463 | } 1464 | }, 1465 | "57f8dd1f25bf40a88fa07fb6b3b11261": { 1466 | "model_module": "@jupyter-widgets/base", 1467 | "model_module_version": "1.2.0", 1468 | "model_name": "LayoutModel", 1469 | "state": { 1470 | "_model_module": "@jupyter-widgets/base", 1471 | "_model_module_version": "1.2.0", 1472 | "_model_name": "LayoutModel", 1473 | "_view_count": null, 1474 | "_view_module": "@jupyter-widgets/base", 1475 | "_view_module_version": "1.2.0", 1476 | "_view_name": "LayoutView", 1477 | "align_content": null, 1478 | "align_items": null, 1479 | "align_self": null, 1480 | "border": null, 1481 | "bottom": null, 1482 | "display": null, 1483 | "flex": null, 1484 | "flex_flow": null, 1485 | "grid_area": null, 1486 | "grid_auto_columns": null, 1487 | "grid_auto_flow": null, 1488 | "grid_auto_rows": null, 1489 | "grid_column": null, 1490 | "grid_gap": null, 1491 | "grid_row": null, 1492 | "grid_template_areas": null, 1493 | "grid_template_columns": null, 1494 | "grid_template_rows": null, 1495 | "height": null, 1496 | "justify_content": null, 1497 | "justify_items": null, 1498 | "left": null, 1499 | "margin": null, 1500 | "max_height": null, 1501 | "max_width": null, 1502 | "min_height": null, 1503 | "min_width": null, 1504 | "object_fit": null, 1505 | "object_position": null, 1506 | "order": null, 1507 | "overflow": null, 1508 | "overflow_x": null, 1509 | "overflow_y": null, 1510 | "padding": null, 1511 | "right": null, 1512 | "top": null, 1513 | "visibility": null, 1514 | "width": null 1515 | } 1516 | }, 1517 | "5a9c313556474d32b6920a31d682c993": { 1518 | "model_module": "@jupyter-widgets/controls", 1519 | "model_module_version": "1.5.0", 1520 | "model_name": "DescriptionStyleModel", 1521 | "state": { 1522 | "_model_module": "@jupyter-widgets/controls", 1523 | "_model_module_version": "1.5.0", 1524 | "_model_name": "DescriptionStyleModel", 1525 | "_view_count": null, 1526 | "_view_module": "@jupyter-widgets/base", 1527 | "_view_module_version": "1.2.0", 1528 | "_view_name": "StyleView", 1529 | "description_width": "" 1530 | } 1531 | }, 1532 | "5e7bab46de5b48af85da3e6c7aea4a3e": { 1533 | "model_module": "@jupyter-widgets/base", 1534 | "model_module_version": "1.2.0", 1535 | "model_name": "LayoutModel", 1536 | "state": { 1537 | "_model_module": "@jupyter-widgets/base", 1538 | "_model_module_version": "1.2.0", 1539 | "_model_name": "LayoutModel", 1540 | "_view_count": null, 1541 | "_view_module": "@jupyter-widgets/base", 1542 | "_view_module_version": "1.2.0", 1543 | "_view_name": "LayoutView", 1544 | "align_content": null, 1545 | "align_items": null, 1546 | "align_self": null, 1547 | "border": null, 1548 | "bottom": null, 1549 | "display": null, 1550 | "flex": null, 1551 | "flex_flow": null, 1552 | "grid_area": null, 1553 | "grid_auto_columns": null, 1554 | "grid_auto_flow": null, 1555 | "grid_auto_rows": null, 1556 | "grid_column": null, 1557 | "grid_gap": null, 1558 | "grid_row": null, 1559 | "grid_template_areas": null, 1560 | "grid_template_columns": null, 1561 | "grid_template_rows": null, 1562 | "height": null, 1563 | "justify_content": null, 1564 | "justify_items": null, 1565 | "left": null, 1566 | "margin": null, 1567 | "max_height": null, 1568 | "max_width": null, 1569 | "min_height": null, 1570 | "min_width": null, 1571 | "object_fit": null, 1572 | "object_position": null, 1573 | "order": null, 1574 | "overflow": null, 1575 | "overflow_x": null, 1576 | "overflow_y": null, 1577 | "padding": null, 1578 | "right": null, 1579 | "top": null, 1580 | "visibility": null, 1581 | "width": null 1582 | } 1583 | }, 1584 | "627a93427bc3433e9c52df769648d388": { 1585 | "model_module": "@jupyter-widgets/controls", 1586 | "model_module_version": "1.5.0", 1587 | "model_name": "FloatProgressModel", 1588 | "state": { 1589 | "_dom_classes": [], 1590 | "_model_module": "@jupyter-widgets/controls", 1591 | "_model_module_version": "1.5.0", 1592 | "_model_name": "FloatProgressModel", 1593 | "_view_count": null, 1594 | "_view_module": "@jupyter-widgets/controls", 1595 | "_view_module_version": "1.5.0", 1596 | "_view_name": "ProgressView", 1597 | "bar_style": "success", 1598 | "description": "", 1599 | "description_tooltip": null, 1600 | "layout": "IPY_MODEL_c310ebc5e4e54a159cffccbcfdd9b727", 1601 | "max": 1, 1602 | "min": 0, 1603 | "orientation": "horizontal", 1604 | "style": "IPY_MODEL_cb3d490817574d5ea1017a1fe20e60e0", 1605 | "value": 1 1606 | } 1607 | }, 1608 | "62d07eb3ad454b70bdaf99598578c810": { 1609 | "model_module": "@jupyter-widgets/controls", 1610 | "model_module_version": "1.5.0", 1611 | "model_name": "HTMLModel", 1612 | "state": { 1613 | "_dom_classes": [], 1614 | "_model_module": "@jupyter-widgets/controls", 1615 | "_model_module_version": "1.5.0", 1616 | "_model_name": "HTMLModel", 1617 | "_view_count": null, 1618 | "_view_module": "@jupyter-widgets/controls", 1619 | "_view_module_version": "1.5.0", 1620 | "_view_name": "HTMLView", 1621 | "description": "", 1622 | "description_tooltip": null, 1623 | "layout": "IPY_MODEL_5714e66524bf45b7a80bf425e3532d29", 1624 | "placeholder": "​", 1625 | "style": "IPY_MODEL_35bd67b6557c41fc8e6bdcba49f6da06", 1626 | "value": " 2.78M/? [00:00<00:00, 58.2MB/s]" 1627 | } 1628 | }, 1629 | "67d0c6474f2c41259fa7f5550ca5bbcf": { 1630 | "model_module": "@jupyter-widgets/controls", 1631 | "model_module_version": "1.5.0", 1632 | "model_name": "FloatProgressModel", 1633 | "state": { 1634 | "_dom_classes": [], 1635 | "_model_module": "@jupyter-widgets/controls", 1636 | "_model_module_version": "1.5.0", 1637 | "_model_name": "FloatProgressModel", 1638 | "_view_count": null, 1639 | "_view_module": "@jupyter-widgets/controls", 1640 | "_view_module_version": "1.5.0", 1641 | "_view_name": "ProgressView", 1642 | "bar_style": "success", 1643 | "description": "", 1644 | "description_tooltip": null, 1645 | "layout": "IPY_MODEL_06bcc05a336c4bc8a16fd64b8c93e90a", 1646 | "max": 4418050848, 1647 | "min": 0, 1648 | "orientation": "horizontal", 1649 | "style": "IPY_MODEL_f4966c179fae4b1e91d260494a05a5f7", 1650 | "value": 4418050848 1651 | } 1652 | }, 1653 | "690d0fbf63b34557bb742f8745caf2bd": { 1654 | "model_module": "@jupyter-widgets/base", 1655 | "model_module_version": "1.2.0", 1656 | "model_name": "LayoutModel", 1657 | "state": { 1658 | "_model_module": "@jupyter-widgets/base", 1659 | "_model_module_version": "1.2.0", 1660 | "_model_name": "LayoutModel", 1661 | "_view_count": null, 1662 | "_view_module": "@jupyter-widgets/base", 1663 | "_view_module_version": "1.2.0", 1664 | "_view_name": "LayoutView", 1665 | "align_content": null, 1666 | "align_items": null, 1667 | "align_self": null, 1668 | "border": null, 1669 | "bottom": null, 1670 | "display": null, 1671 | "flex": null, 1672 | "flex_flow": null, 1673 | "grid_area": null, 1674 | "grid_auto_columns": null, 1675 | "grid_auto_flow": null, 1676 | "grid_auto_rows": null, 1677 | "grid_column": null, 1678 | "grid_gap": null, 1679 | "grid_row": null, 1680 | "grid_template_areas": null, 1681 | "grid_template_columns": null, 1682 | "grid_template_rows": null, 1683 | "height": null, 1684 | "justify_content": null, 1685 | "justify_items": null, 1686 | "left": null, 1687 | "margin": null, 1688 | "max_height": null, 1689 | "max_width": null, 1690 | "min_height": null, 1691 | "min_width": null, 1692 | "object_fit": null, 1693 | "object_position": null, 1694 | "order": null, 1695 | "overflow": null, 1696 | "overflow_x": null, 1697 | "overflow_y": null, 1698 | "padding": null, 1699 | "right": null, 1700 | "top": null, 1701 | "visibility": null, 1702 | "width": null 1703 | } 1704 | }, 1705 | "6d8fc2d9b39e4264af969fd4968db0f0": { 1706 | "model_module": "@jupyter-widgets/base", 1707 | "model_module_version": "1.2.0", 1708 | "model_name": "LayoutModel", 1709 | "state": { 1710 | "_model_module": "@jupyter-widgets/base", 1711 | "_model_module_version": "1.2.0", 1712 | "_model_name": "LayoutModel", 1713 | "_view_count": null, 1714 | "_view_module": "@jupyter-widgets/base", 1715 | "_view_module_version": "1.2.0", 1716 | "_view_name": "LayoutView", 1717 | "align_content": null, 1718 | "align_items": null, 1719 | "align_self": null, 1720 | "border": null, 1721 | "bottom": null, 1722 | "display": null, 1723 | "flex": null, 1724 | "flex_flow": null, 1725 | "grid_area": null, 1726 | "grid_auto_columns": null, 1727 | "grid_auto_flow": null, 1728 | "grid_auto_rows": null, 1729 | "grid_column": null, 1730 | "grid_gap": null, 1731 | "grid_row": null, 1732 | "grid_template_areas": null, 1733 | "grid_template_columns": null, 1734 | "grid_template_rows": null, 1735 | "height": null, 1736 | "justify_content": null, 1737 | "justify_items": null, 1738 | "left": null, 1739 | "margin": null, 1740 | "max_height": null, 1741 | "max_width": null, 1742 | "min_height": null, 1743 | "min_width": null, 1744 | "object_fit": null, 1745 | "object_position": null, 1746 | "order": null, 1747 | "overflow": null, 1748 | "overflow_x": null, 1749 | "overflow_y": null, 1750 | "padding": null, 1751 | "right": null, 1752 | "top": null, 1753 | "visibility": null, 1754 | "width": null 1755 | } 1756 | }, 1757 | "6f234194b2f744c6b9895b37625526bc": { 1758 | "model_module": "@jupyter-widgets/controls", 1759 | "model_module_version": "1.5.0", 1760 | "model_name": "HTMLModel", 1761 | "state": { 1762 | "_dom_classes": [], 1763 | "_model_module": "@jupyter-widgets/controls", 1764 | "_model_module_version": "1.5.0", 1765 | "_model_name": "HTMLModel", 1766 | "_view_count": null, 1767 | "_view_module": "@jupyter-widgets/controls", 1768 | "_view_module_version": "1.5.0", 1769 | "_view_name": "HTMLView", 1770 | "description": "", 1771 | "description_tooltip": null, 1772 | "layout": "IPY_MODEL_bbac7d370e234af0b4cf20ace13e361c", 1773 | "placeholder": "​", 1774 | "style": "IPY_MODEL_0a899139f1f849e0b9d1966062c8e2f6", 1775 | "value": " 572/572 [00:00<00:00, 55.1kB/s]" 1776 | } 1777 | }, 1778 | "72b6c563c2d24b349268b28caac0a9cc": { 1779 | "model_module": "@jupyter-widgets/base", 1780 | "model_module_version": "1.2.0", 1781 | "model_name": "LayoutModel", 1782 | "state": { 1783 | "_model_module": "@jupyter-widgets/base", 1784 | "_model_module_version": "1.2.0", 1785 | "_model_name": "LayoutModel", 1786 | "_view_count": null, 1787 | "_view_module": "@jupyter-widgets/base", 1788 | "_view_module_version": "1.2.0", 1789 | "_view_name": "LayoutView", 1790 | "align_content": null, 1791 | "align_items": null, 1792 | "align_self": null, 1793 | "border": null, 1794 | "bottom": null, 1795 | "display": null, 1796 | "flex": null, 1797 | "flex_flow": null, 1798 | "grid_area": null, 1799 | "grid_auto_columns": null, 1800 | "grid_auto_flow": null, 1801 | "grid_auto_rows": null, 1802 | "grid_column": null, 1803 | "grid_gap": null, 1804 | "grid_row": null, 1805 | "grid_template_areas": null, 1806 | "grid_template_columns": null, 1807 | "grid_template_rows": null, 1808 | "height": null, 1809 | "justify_content": null, 1810 | "justify_items": null, 1811 | "left": null, 1812 | "margin": null, 1813 | "max_height": null, 1814 | "max_width": null, 1815 | "min_height": null, 1816 | "min_width": null, 1817 | "object_fit": null, 1818 | "object_position": null, 1819 | "order": null, 1820 | "overflow": null, 1821 | "overflow_x": null, 1822 | "overflow_y": null, 1823 | "padding": null, 1824 | "right": null, 1825 | "top": null, 1826 | "visibility": null, 1827 | "width": null 1828 | } 1829 | }, 1830 | "77c9df6d39e94dcca57d2738f11fabc3": { 1831 | "model_module": "@jupyter-widgets/controls", 1832 | "model_module_version": "1.5.0", 1833 | "model_name": "HBoxModel", 1834 | "state": { 1835 | "_dom_classes": [], 1836 | "_model_module": "@jupyter-widgets/controls", 1837 | "_model_module_version": "1.5.0", 1838 | "_model_name": "HBoxModel", 1839 | "_view_count": null, 1840 | "_view_module": "@jupyter-widgets/controls", 1841 | "_view_module_version": "1.5.0", 1842 | "_view_name": "HBoxView", 1843 | "box_style": "", 1844 | "children": [ 1845 | "IPY_MODEL_1339218232624b45a5cdfde89847241e", 1846 | "IPY_MODEL_fbe2788824ea4de0b112d533c5e57c9d", 1847 | "IPY_MODEL_96956674f7804a14864a6baaae4bcd2c" 1848 | ], 1849 | "layout": "IPY_MODEL_f0d0db32a8074f47868eefecb6c24b4e" 1850 | } 1851 | }, 1852 | "7ab567c1f33547bcb4f395b09b5d547c": { 1853 | "model_module": "@jupyter-widgets/controls", 1854 | "model_module_version": "1.5.0", 1855 | "model_name": "DescriptionStyleModel", 1856 | "state": { 1857 | "_model_module": "@jupyter-widgets/controls", 1858 | "_model_module_version": "1.5.0", 1859 | "_model_name": "DescriptionStyleModel", 1860 | "_view_count": null, 1861 | "_view_module": "@jupyter-widgets/base", 1862 | "_view_module_version": "1.2.0", 1863 | "_view_name": "StyleView", 1864 | "description_width": "" 1865 | } 1866 | }, 1867 | "7aff1a40c9f943b18cf5f474fb54cf0e": { 1868 | "model_module": "@jupyter-widgets/base", 1869 | "model_module_version": "1.2.0", 1870 | "model_name": "LayoutModel", 1871 | "state": { 1872 | "_model_module": "@jupyter-widgets/base", 1873 | "_model_module_version": "1.2.0", 1874 | "_model_name": "LayoutModel", 1875 | "_view_count": null, 1876 | "_view_module": "@jupyter-widgets/base", 1877 | "_view_module_version": "1.2.0", 1878 | "_view_name": "LayoutView", 1879 | "align_content": null, 1880 | "align_items": null, 1881 | "align_self": null, 1882 | "border": null, 1883 | "bottom": null, 1884 | "display": null, 1885 | "flex": null, 1886 | "flex_flow": null, 1887 | "grid_area": null, 1888 | "grid_auto_columns": null, 1889 | "grid_auto_flow": null, 1890 | "grid_auto_rows": null, 1891 | "grid_column": null, 1892 | "grid_gap": null, 1893 | "grid_row": null, 1894 | "grid_template_areas": null, 1895 | "grid_template_columns": null, 1896 | "grid_template_rows": null, 1897 | "height": null, 1898 | "justify_content": null, 1899 | "justify_items": null, 1900 | "left": null, 1901 | "margin": null, 1902 | "max_height": null, 1903 | "max_width": null, 1904 | "min_height": null, 1905 | "min_width": null, 1906 | "object_fit": null, 1907 | "object_position": null, 1908 | "order": null, 1909 | "overflow": null, 1910 | "overflow_x": null, 1911 | "overflow_y": null, 1912 | "padding": null, 1913 | "right": null, 1914 | "top": null, 1915 | "visibility": null, 1916 | "width": null 1917 | } 1918 | }, 1919 | "7b3ca20c348d4fe3bf88d0bd1adbdc2f": { 1920 | "model_module": "@jupyter-widgets/base", 1921 | "model_module_version": "1.2.0", 1922 | "model_name": "LayoutModel", 1923 | "state": { 1924 | "_model_module": "@jupyter-widgets/base", 1925 | "_model_module_version": "1.2.0", 1926 | "_model_name": "LayoutModel", 1927 | "_view_count": null, 1928 | "_view_module": "@jupyter-widgets/base", 1929 | "_view_module_version": "1.2.0", 1930 | "_view_name": "LayoutView", 1931 | "align_content": null, 1932 | "align_items": null, 1933 | "align_self": null, 1934 | "border": null, 1935 | "bottom": null, 1936 | "display": null, 1937 | "flex": null, 1938 | "flex_flow": null, 1939 | "grid_area": null, 1940 | "grid_auto_columns": null, 1941 | "grid_auto_flow": null, 1942 | "grid_auto_rows": null, 1943 | "grid_column": null, 1944 | "grid_gap": null, 1945 | "grid_row": null, 1946 | "grid_template_areas": null, 1947 | "grid_template_columns": null, 1948 | "grid_template_rows": null, 1949 | "height": null, 1950 | "justify_content": null, 1951 | "justify_items": null, 1952 | "left": null, 1953 | "margin": null, 1954 | "max_height": null, 1955 | "max_width": null, 1956 | "min_height": null, 1957 | "min_width": null, 1958 | "object_fit": null, 1959 | "object_position": null, 1960 | "order": null, 1961 | "overflow": null, 1962 | "overflow_x": null, 1963 | "overflow_y": null, 1964 | "padding": null, 1965 | "right": null, 1966 | "top": null, 1967 | "visibility": null, 1968 | "width": null 1969 | } 1970 | }, 1971 | "885b919e1f9e410693291d5575f7f4ed": { 1972 | "model_module": "@jupyter-widgets/controls", 1973 | "model_module_version": "1.5.0", 1974 | "model_name": "FloatProgressModel", 1975 | "state": { 1976 | "_dom_classes": [], 1977 | "_model_module": "@jupyter-widgets/controls", 1978 | "_model_module_version": "1.5.0", 1979 | "_model_name": "FloatProgressModel", 1980 | "_view_count": null, 1981 | "_view_module": "@jupyter-widgets/controls", 1982 | "_view_module_version": "1.5.0", 1983 | "_view_name": "ProgressView", 1984 | "bar_style": "success", 1985 | "description": "", 1986 | "description_tooltip": null, 1987 | "layout": "IPY_MODEL_fa8edcae23db448eb70e14726b650667", 1988 | "max": 252, 1989 | "min": 0, 1990 | "orientation": "horizontal", 1991 | "style": "IPY_MODEL_3545befbc8924abca73cf6cfdb6ead60", 1992 | "value": 252 1993 | } 1994 | }, 1995 | "906543db98a44f43abdf245509f4fcee": { 1996 | "model_module": "@jupyter-widgets/base", 1997 | "model_module_version": "1.2.0", 1998 | "model_name": "LayoutModel", 1999 | "state": { 2000 | "_model_module": "@jupyter-widgets/base", 2001 | "_model_module_version": "1.2.0", 2002 | "_model_name": "LayoutModel", 2003 | "_view_count": null, 2004 | "_view_module": "@jupyter-widgets/base", 2005 | "_view_module_version": "1.2.0", 2006 | "_view_name": "LayoutView", 2007 | "align_content": null, 2008 | "align_items": null, 2009 | "align_self": null, 2010 | "border": null, 2011 | "bottom": null, 2012 | "display": null, 2013 | "flex": null, 2014 | "flex_flow": null, 2015 | "grid_area": null, 2016 | "grid_auto_columns": null, 2017 | "grid_auto_flow": null, 2018 | "grid_auto_rows": null, 2019 | "grid_column": null, 2020 | "grid_gap": null, 2021 | "grid_row": null, 2022 | "grid_template_areas": null, 2023 | "grid_template_columns": null, 2024 | "grid_template_rows": null, 2025 | "height": null, 2026 | "justify_content": null, 2027 | "justify_items": null, 2028 | "left": null, 2029 | "margin": null, 2030 | "max_height": null, 2031 | "max_width": null, 2032 | "min_height": null, 2033 | "min_width": null, 2034 | "object_fit": null, 2035 | "object_position": null, 2036 | "order": null, 2037 | "overflow": null, 2038 | "overflow_x": null, 2039 | "overflow_y": null, 2040 | "padding": null, 2041 | "right": null, 2042 | "top": null, 2043 | "visibility": null, 2044 | "width": null 2045 | } 2046 | }, 2047 | "90e258bc60ed41218fb30cd5eb30a56e": { 2048 | "model_module": "@jupyter-widgets/controls", 2049 | "model_module_version": "1.5.0", 2050 | "model_name": "HBoxModel", 2051 | "state": { 2052 | "_dom_classes": [], 2053 | "_model_module": "@jupyter-widgets/controls", 2054 | "_model_module_version": "1.5.0", 2055 | "_model_name": "HBoxModel", 2056 | "_view_count": null, 2057 | "_view_module": "@jupyter-widgets/controls", 2058 | "_view_module_version": "1.5.0", 2059 | "_view_name": "HBoxView", 2060 | "box_style": "", 2061 | "children": [ 2062 | "IPY_MODEL_a0473c41a5ee4be1940d21f3e6287c4f", 2063 | "IPY_MODEL_627a93427bc3433e9c52df769648d388", 2064 | "IPY_MODEL_998ac37a221c46c389c1a239a9fb79bc" 2065 | ], 2066 | "layout": "IPY_MODEL_1682d18df349461fbce9afaf390f14af" 2067 | } 2068 | }, 2069 | "917a3fc5850b408b8ae8d62016949d5c": { 2070 | "model_module": "@jupyter-widgets/controls", 2071 | "model_module_version": "1.5.0", 2072 | "model_name": "HTMLModel", 2073 | "state": { 2074 | "_dom_classes": [], 2075 | "_model_module": "@jupyter-widgets/controls", 2076 | "_model_module_version": "1.5.0", 2077 | "_model_name": "HTMLModel", 2078 | "_view_count": null, 2079 | "_view_module": "@jupyter-widgets/controls", 2080 | "_view_module_version": "1.5.0", 2081 | "_view_name": "HTMLView", 2082 | "description": "", 2083 | "description_tooltip": null, 2084 | "layout": "IPY_MODEL_72b6c563c2d24b349268b28caac0a9cc", 2085 | "placeholder": "​", 2086 | "style": "IPY_MODEL_d34cb5d22b5a466a9f46c0bc673f122d", 2087 | "value": "model.safetensors: 100%" 2088 | } 2089 | }, 2090 | "91d1868fecbb4a64b3f36ec7b0146f66": { 2091 | "model_module": "@jupyter-widgets/controls", 2092 | "model_module_version": "1.5.0", 2093 | "model_name": "HTMLModel", 2094 | "state": { 2095 | "_dom_classes": [], 2096 | "_model_module": "@jupyter-widgets/controls", 2097 | "_model_module_version": "1.5.0", 2098 | "_model_name": "HTMLModel", 2099 | "_view_count": null, 2100 | "_view_module": "@jupyter-widgets/controls", 2101 | "_view_module_version": "1.5.0", 2102 | "_view_name": "HTMLView", 2103 | "description": "", 2104 | "description_tooltip": null, 2105 | "layout": "IPY_MODEL_5e7bab46de5b48af85da3e6c7aea4a3e", 2106 | "placeholder": "​", 2107 | "style": "IPY_MODEL_36ba4652bd354eceae677c8782c6a92b", 2108 | "value": " 4.42G/4.42G [02:32<00:00, 42.7MB/s]" 2109 | } 2110 | }, 2111 | "92004181dd9e4e9083e03788dca31c10": { 2112 | "model_module": "@jupyter-widgets/base", 2113 | "model_module_version": "1.2.0", 2114 | "model_name": "LayoutModel", 2115 | "state": { 2116 | "_model_module": "@jupyter-widgets/base", 2117 | "_model_module_version": "1.2.0", 2118 | "_model_name": "LayoutModel", 2119 | "_view_count": null, 2120 | "_view_module": "@jupyter-widgets/base", 2121 | "_view_module_version": "1.2.0", 2122 | "_view_name": "LayoutView", 2123 | "align_content": null, 2124 | "align_items": null, 2125 | "align_self": null, 2126 | "border": null, 2127 | "bottom": null, 2128 | "display": null, 2129 | "flex": null, 2130 | "flex_flow": null, 2131 | "grid_area": null, 2132 | "grid_auto_columns": null, 2133 | "grid_auto_flow": null, 2134 | "grid_auto_rows": null, 2135 | "grid_column": null, 2136 | "grid_gap": null, 2137 | "grid_row": null, 2138 | "grid_template_areas": null, 2139 | "grid_template_columns": null, 2140 | "grid_template_rows": null, 2141 | "height": null, 2142 | "justify_content": null, 2143 | "justify_items": null, 2144 | "left": null, 2145 | "margin": null, 2146 | "max_height": null, 2147 | "max_width": null, 2148 | "min_height": null, 2149 | "min_width": null, 2150 | "object_fit": null, 2151 | "object_position": null, 2152 | "order": null, 2153 | "overflow": null, 2154 | "overflow_x": null, 2155 | "overflow_y": null, 2156 | "padding": null, 2157 | "right": null, 2158 | "top": null, 2159 | "visibility": null, 2160 | "width": "20px" 2161 | } 2162 | }, 2163 | "922cce75a65b424eb7a251659657757d": { 2164 | "model_module": "@jupyter-widgets/controls", 2165 | "model_module_version": "1.5.0", 2166 | "model_name": "ProgressStyleModel", 2167 | "state": { 2168 | "_model_module": "@jupyter-widgets/controls", 2169 | "_model_module_version": "1.5.0", 2170 | "_model_name": "ProgressStyleModel", 2171 | "_view_count": null, 2172 | "_view_module": "@jupyter-widgets/base", 2173 | "_view_module_version": "1.2.0", 2174 | "_view_name": "StyleView", 2175 | "bar_color": null, 2176 | "description_width": "" 2177 | } 2178 | }, 2179 | "937d2150bd974ffdb4053870c9339b0f": { 2180 | "model_module": "@jupyter-widgets/controls", 2181 | "model_module_version": "1.5.0", 2182 | "model_name": "DescriptionStyleModel", 2183 | "state": { 2184 | "_model_module": "@jupyter-widgets/controls", 2185 | "_model_module_version": "1.5.0", 2186 | "_model_name": "DescriptionStyleModel", 2187 | "_view_count": null, 2188 | "_view_module": "@jupyter-widgets/base", 2189 | "_view_module_version": "1.2.0", 2190 | "_view_name": "StyleView", 2191 | "description_width": "" 2192 | } 2193 | }, 2194 | "96956674f7804a14864a6baaae4bcd2c": { 2195 | "model_module": "@jupyter-widgets/controls", 2196 | "model_module_version": "1.5.0", 2197 | "model_name": "HTMLModel", 2198 | "state": { 2199 | "_dom_classes": [], 2200 | "_model_module": "@jupyter-widgets/controls", 2201 | "_model_module_version": "1.5.0", 2202 | "_model_name": "HTMLModel", 2203 | "_view_count": null, 2204 | "_view_module": "@jupyter-widgets/controls", 2205 | "_view_module_version": "1.5.0", 2206 | "_view_name": "HTMLView", 2207 | "description": "", 2208 | "description_tooltip": null, 2209 | "layout": "IPY_MODEL_9770b1cf7b6c42229454441ad6cea465", 2210 | "placeholder": "​", 2211 | "style": "IPY_MODEL_30740f63144043c3acb482e42ae82119", 2212 | "value": " 12.9k/? [00:00<00:00, 1.21MB/s]" 2213 | } 2214 | }, 2215 | "9770b1cf7b6c42229454441ad6cea465": { 2216 | "model_module": "@jupyter-widgets/base", 2217 | "model_module_version": "1.2.0", 2218 | "model_name": "LayoutModel", 2219 | "state": { 2220 | "_model_module": "@jupyter-widgets/base", 2221 | "_model_module_version": "1.2.0", 2222 | "_model_name": "LayoutModel", 2223 | "_view_count": null, 2224 | "_view_module": "@jupyter-widgets/base", 2225 | "_view_module_version": "1.2.0", 2226 | "_view_name": "LayoutView", 2227 | "align_content": null, 2228 | "align_items": null, 2229 | "align_self": null, 2230 | "border": null, 2231 | "bottom": null, 2232 | "display": null, 2233 | "flex": null, 2234 | "flex_flow": null, 2235 | "grid_area": null, 2236 | "grid_auto_columns": null, 2237 | "grid_auto_flow": null, 2238 | "grid_auto_rows": null, 2239 | "grid_column": null, 2240 | "grid_gap": null, 2241 | "grid_row": null, 2242 | "grid_template_areas": null, 2243 | "grid_template_columns": null, 2244 | "grid_template_rows": null, 2245 | "height": null, 2246 | "justify_content": null, 2247 | "justify_items": null, 2248 | "left": null, 2249 | "margin": null, 2250 | "max_height": null, 2251 | "max_width": null, 2252 | "min_height": null, 2253 | "min_width": null, 2254 | "object_fit": null, 2255 | "object_position": null, 2256 | "order": null, 2257 | "overflow": null, 2258 | "overflow_x": null, 2259 | "overflow_y": null, 2260 | "padding": null, 2261 | "right": null, 2262 | "top": null, 2263 | "visibility": null, 2264 | "width": null 2265 | } 2266 | }, 2267 | "998ac37a221c46c389c1a239a9fb79bc": { 2268 | "model_module": "@jupyter-widgets/controls", 2269 | "model_module_version": "1.5.0", 2270 | "model_name": "HTMLModel", 2271 | "state": { 2272 | "_dom_classes": [], 2273 | "_model_module": "@jupyter-widgets/controls", 2274 | "_model_module_version": "1.5.0", 2275 | "_model_name": "HTMLModel", 2276 | "_view_count": null, 2277 | "_view_module": "@jupyter-widgets/controls", 2278 | "_view_module_version": "1.5.0", 2279 | "_view_name": "HTMLView", 2280 | "description": "", 2281 | "description_tooltip": null, 2282 | "layout": "IPY_MODEL_f2f97d1c2d354db5befe512d80f9853e", 2283 | "placeholder": "​", 2284 | "style": "IPY_MODEL_c8b622e02ce043c997b99632e7411d3d", 2285 | "value": " 1.82M/? [00:00<00:00, 48.9MB/s]" 2286 | } 2287 | }, 2288 | "9ee381628bcb460ebb0fe5bc6b6b729f": { 2289 | "model_module": "@jupyter-widgets/controls", 2290 | "model_module_version": "1.5.0", 2291 | "model_name": "HBoxModel", 2292 | "state": { 2293 | "_dom_classes": [], 2294 | "_model_module": "@jupyter-widgets/controls", 2295 | "_model_module_version": "1.5.0", 2296 | "_model_name": "HBoxModel", 2297 | "_view_count": null, 2298 | "_view_module": "@jupyter-widgets/controls", 2299 | "_view_module_version": "1.5.0", 2300 | "_view_name": "HBoxView", 2301 | "box_style": "", 2302 | "children": [ 2303 | "IPY_MODEL_ac4ed071c177445fa7342281ae2d2718", 2304 | "IPY_MODEL_885b919e1f9e410693291d5575f7f4ed", 2305 | "IPY_MODEL_20bf4656b0aa49df85a2b5dc743f8b10" 2306 | ], 2307 | "layout": "IPY_MODEL_e2cd392332aa4772bf972d95d377be1f" 2308 | } 2309 | }, 2310 | "9f71abcacd154557a7f6a7b34676978f": { 2311 | "model_module": "@jupyter-widgets/controls", 2312 | "model_module_version": "1.5.0", 2313 | "model_name": "HBoxModel", 2314 | "state": { 2315 | "_dom_classes": [], 2316 | "_model_module": "@jupyter-widgets/controls", 2317 | "_model_module_version": "1.5.0", 2318 | "_model_name": "HBoxModel", 2319 | "_view_count": null, 2320 | "_view_module": "@jupyter-widgets/controls", 2321 | "_view_module_version": "1.5.0", 2322 | "_view_name": "HBoxView", 2323 | "box_style": "", 2324 | "children": [ 2325 | "IPY_MODEL_e8da003fcd7342d382c6faddb28af484", 2326 | "IPY_MODEL_db8ff08397c343ee8ae7a1863655175b", 2327 | "IPY_MODEL_6f234194b2f744c6b9895b37625526bc" 2328 | ], 2329 | "layout": "IPY_MODEL_1714271f35c1451186d668bc136fdb75" 2330 | } 2331 | }, 2332 | "a0473c41a5ee4be1940d21f3e6287c4f": { 2333 | "model_module": "@jupyter-widgets/controls", 2334 | "model_module_version": "1.5.0", 2335 | "model_name": "HTMLModel", 2336 | "state": { 2337 | "_dom_classes": [], 2338 | "_model_module": "@jupyter-widgets/controls", 2339 | "_model_module_version": "1.5.0", 2340 | "_model_name": "HTMLModel", 2341 | "_view_count": null, 2342 | "_view_module": "@jupyter-widgets/controls", 2343 | "_view_module_version": "1.5.0", 2344 | "_view_name": "HTMLView", 2345 | "description": "", 2346 | "description_tooltip": null, 2347 | "layout": "IPY_MODEL_26f392b41d404db282b44b3a52bf8b3c", 2348 | "placeholder": "​", 2349 | "style": "IPY_MODEL_ee23b33158544ec9b901fc93c0d9cd94", 2350 | "value": "merges.txt: " 2351 | } 2352 | }, 2353 | "a2a6e91f8e754eeb85b9997b9e7a454a": { 2354 | "model_module": "@jupyter-widgets/base", 2355 | "model_module_version": "1.2.0", 2356 | "model_name": "LayoutModel", 2357 | "state": { 2358 | "_model_module": "@jupyter-widgets/base", 2359 | "_model_module_version": "1.2.0", 2360 | "_model_name": "LayoutModel", 2361 | "_view_count": null, 2362 | "_view_module": "@jupyter-widgets/base", 2363 | "_view_module_version": "1.2.0", 2364 | "_view_name": "LayoutView", 2365 | "align_content": null, 2366 | "align_items": null, 2367 | "align_self": null, 2368 | "border": null, 2369 | "bottom": null, 2370 | "display": null, 2371 | "flex": null, 2372 | "flex_flow": null, 2373 | "grid_area": null, 2374 | "grid_auto_columns": null, 2375 | "grid_auto_flow": null, 2376 | "grid_auto_rows": null, 2377 | "grid_column": null, 2378 | "grid_gap": null, 2379 | "grid_row": null, 2380 | "grid_template_areas": null, 2381 | "grid_template_columns": null, 2382 | "grid_template_rows": null, 2383 | "height": null, 2384 | "justify_content": null, 2385 | "justify_items": null, 2386 | "left": null, 2387 | "margin": null, 2388 | "max_height": null, 2389 | "max_width": null, 2390 | "min_height": null, 2391 | "min_width": null, 2392 | "object_fit": null, 2393 | "object_position": null, 2394 | "order": null, 2395 | "overflow": null, 2396 | "overflow_x": null, 2397 | "overflow_y": null, 2398 | "padding": null, 2399 | "right": null, 2400 | "top": null, 2401 | "visibility": null, 2402 | "width": null 2403 | } 2404 | }, 2405 | "ac4ed071c177445fa7342281ae2d2718": { 2406 | "model_module": "@jupyter-widgets/controls", 2407 | "model_module_version": "1.5.0", 2408 | "model_name": "HTMLModel", 2409 | "state": { 2410 | "_dom_classes": [], 2411 | "_model_module": "@jupyter-widgets/controls", 2412 | "_model_module_version": "1.5.0", 2413 | "_model_name": "HTMLModel", 2414 | "_view_count": null, 2415 | "_view_module": "@jupyter-widgets/controls", 2416 | "_view_module_version": "1.5.0", 2417 | "_view_name": "HTMLView", 2418 | "description": "", 2419 | "description_tooltip": null, 2420 | "layout": "IPY_MODEL_7aff1a40c9f943b18cf5f474fb54cf0e", 2421 | "placeholder": "​", 2422 | "style": "IPY_MODEL_155d93fd988340e3842d5a2939d4f0a7", 2423 | "value": "generation_config.json: 100%" 2424 | } 2425 | }, 2426 | "aef802c8c44843acb7df00f1ae75cde4": { 2427 | "model_module": "@jupyter-widgets/controls", 2428 | "model_module_version": "1.5.0", 2429 | "model_name": "DescriptionStyleModel", 2430 | "state": { 2431 | "_model_module": "@jupyter-widgets/controls", 2432 | "_model_module_version": "1.5.0", 2433 | "_model_name": "DescriptionStyleModel", 2434 | "_view_count": null, 2435 | "_view_module": "@jupyter-widgets/base", 2436 | "_view_module_version": "1.2.0", 2437 | "_view_name": "StyleView", 2438 | "description_width": "" 2439 | } 2440 | }, 2441 | "b89ecb8a8a144723a4fe528ff04fba78": { 2442 | "model_module": "@jupyter-widgets/controls", 2443 | "model_module_version": "1.5.0", 2444 | "model_name": "FloatProgressModel", 2445 | "state": { 2446 | "_dom_classes": [], 2447 | "_model_module": "@jupyter-widgets/controls", 2448 | "_model_module_version": "1.5.0", 2449 | "_model_name": "FloatProgressModel", 2450 | "_view_count": null, 2451 | "_view_module": "@jupyter-widgets/controls", 2452 | "_view_module_version": "1.5.0", 2453 | "_view_name": "ProgressView", 2454 | "bar_style": "success", 2455 | "description": "", 2456 | "description_tooltip": null, 2457 | "layout": "IPY_MODEL_bc07491af94f45f9b398f841f3c3fc5a", 2458 | "max": 1, 2459 | "min": 0, 2460 | "orientation": "horizontal", 2461 | "style": "IPY_MODEL_c8d951f2a04340d8bf62e8ddca072a7f", 2462 | "value": 1 2463 | } 2464 | }, 2465 | "bbac7d370e234af0b4cf20ace13e361c": { 2466 | "model_module": "@jupyter-widgets/base", 2467 | "model_module_version": "1.2.0", 2468 | "model_name": "LayoutModel", 2469 | "state": { 2470 | "_model_module": "@jupyter-widgets/base", 2471 | "_model_module_version": "1.2.0", 2472 | "_model_name": "LayoutModel", 2473 | "_view_count": null, 2474 | "_view_module": "@jupyter-widgets/base", 2475 | "_view_module_version": "1.2.0", 2476 | "_view_name": "LayoutView", 2477 | "align_content": null, 2478 | "align_items": null, 2479 | "align_self": null, 2480 | "border": null, 2481 | "bottom": null, 2482 | "display": null, 2483 | "flex": null, 2484 | "flex_flow": null, 2485 | "grid_area": null, 2486 | "grid_auto_columns": null, 2487 | "grid_auto_flow": null, 2488 | "grid_auto_rows": null, 2489 | "grid_column": null, 2490 | "grid_gap": null, 2491 | "grid_row": null, 2492 | "grid_template_areas": null, 2493 | "grid_template_columns": null, 2494 | "grid_template_rows": null, 2495 | "height": null, 2496 | "justify_content": null, 2497 | "justify_items": null, 2498 | "left": null, 2499 | "margin": null, 2500 | "max_height": null, 2501 | "max_width": null, 2502 | "min_height": null, 2503 | "min_width": null, 2504 | "object_fit": null, 2505 | "object_position": null, 2506 | "order": null, 2507 | "overflow": null, 2508 | "overflow_x": null, 2509 | "overflow_y": null, 2510 | "padding": null, 2511 | "right": null, 2512 | "top": null, 2513 | "visibility": null, 2514 | "width": null 2515 | } 2516 | }, 2517 | "bc07491af94f45f9b398f841f3c3fc5a": { 2518 | "model_module": "@jupyter-widgets/base", 2519 | "model_module_version": "1.2.0", 2520 | "model_name": "LayoutModel", 2521 | "state": { 2522 | "_model_module": "@jupyter-widgets/base", 2523 | "_model_module_version": "1.2.0", 2524 | "_model_name": "LayoutModel", 2525 | "_view_count": null, 2526 | "_view_module": "@jupyter-widgets/base", 2527 | "_view_module_version": "1.2.0", 2528 | "_view_name": "LayoutView", 2529 | "align_content": null, 2530 | "align_items": null, 2531 | "align_self": null, 2532 | "border": null, 2533 | "bottom": null, 2534 | "display": null, 2535 | "flex": null, 2536 | "flex_flow": null, 2537 | "grid_area": null, 2538 | "grid_auto_columns": null, 2539 | "grid_auto_flow": null, 2540 | "grid_auto_rows": null, 2541 | "grid_column": null, 2542 | "grid_gap": null, 2543 | "grid_row": null, 2544 | "grid_template_areas": null, 2545 | "grid_template_columns": null, 2546 | "grid_template_rows": null, 2547 | "height": null, 2548 | "justify_content": null, 2549 | "justify_items": null, 2550 | "left": null, 2551 | "margin": null, 2552 | "max_height": null, 2553 | "max_width": null, 2554 | "min_height": null, 2555 | "min_width": null, 2556 | "object_fit": null, 2557 | "object_position": null, 2558 | "order": null, 2559 | "overflow": null, 2560 | "overflow_x": null, 2561 | "overflow_y": null, 2562 | "padding": null, 2563 | "right": null, 2564 | "top": null, 2565 | "visibility": null, 2566 | "width": "20px" 2567 | } 2568 | }, 2569 | "c310ebc5e4e54a159cffccbcfdd9b727": { 2570 | "model_module": "@jupyter-widgets/base", 2571 | "model_module_version": "1.2.0", 2572 | "model_name": "LayoutModel", 2573 | "state": { 2574 | "_model_module": "@jupyter-widgets/base", 2575 | "_model_module_version": "1.2.0", 2576 | "_model_name": "LayoutModel", 2577 | "_view_count": null, 2578 | "_view_module": "@jupyter-widgets/base", 2579 | "_view_module_version": "1.2.0", 2580 | "_view_name": "LayoutView", 2581 | "align_content": null, 2582 | "align_items": null, 2583 | "align_self": null, 2584 | "border": null, 2585 | "bottom": null, 2586 | "display": null, 2587 | "flex": null, 2588 | "flex_flow": null, 2589 | "grid_area": null, 2590 | "grid_auto_columns": null, 2591 | "grid_auto_flow": null, 2592 | "grid_auto_rows": null, 2593 | "grid_column": null, 2594 | "grid_gap": null, 2595 | "grid_row": null, 2596 | "grid_template_areas": null, 2597 | "grid_template_columns": null, 2598 | "grid_template_rows": null, 2599 | "height": null, 2600 | "justify_content": null, 2601 | "justify_items": null, 2602 | "left": null, 2603 | "margin": null, 2604 | "max_height": null, 2605 | "max_width": null, 2606 | "min_height": null, 2607 | "min_width": null, 2608 | "object_fit": null, 2609 | "object_position": null, 2610 | "order": null, 2611 | "overflow": null, 2612 | "overflow_x": null, 2613 | "overflow_y": null, 2614 | "padding": null, 2615 | "right": null, 2616 | "top": null, 2617 | "visibility": null, 2618 | "width": "20px" 2619 | } 2620 | }, 2621 | "c48b13fbc349441491130d591c02820a": { 2622 | "model_module": "@jupyter-widgets/controls", 2623 | "model_module_version": "1.5.0", 2624 | "model_name": "FloatProgressModel", 2625 | "state": { 2626 | "_dom_classes": [], 2627 | "_model_module": "@jupyter-widgets/controls", 2628 | "_model_module_version": "1.5.0", 2629 | "_model_name": "FloatProgressModel", 2630 | "_view_count": null, 2631 | "_view_module": "@jupyter-widgets/controls", 2632 | "_view_module_version": "1.5.0", 2633 | "_view_name": "ProgressView", 2634 | "bar_style": "success", 2635 | "description": "", 2636 | "description_tooltip": null, 2637 | "layout": "IPY_MODEL_13b7228aa5134ee4b0efd7fc2e9d7927", 2638 | "max": 1, 2639 | "min": 0, 2640 | "orientation": "horizontal", 2641 | "style": "IPY_MODEL_24cc5fd73b2e483ca3f2992414fc2ea0", 2642 | "value": 1 2643 | } 2644 | }, 2645 | "c85c990c84064da5a4126893328a2805": { 2646 | "model_module": "@jupyter-widgets/base", 2647 | "model_module_version": "1.2.0", 2648 | "model_name": "LayoutModel", 2649 | "state": { 2650 | "_model_module": "@jupyter-widgets/base", 2651 | "_model_module_version": "1.2.0", 2652 | "_model_name": "LayoutModel", 2653 | "_view_count": null, 2654 | "_view_module": "@jupyter-widgets/base", 2655 | "_view_module_version": "1.2.0", 2656 | "_view_name": "LayoutView", 2657 | "align_content": null, 2658 | "align_items": null, 2659 | "align_self": null, 2660 | "border": null, 2661 | "bottom": null, 2662 | "display": null, 2663 | "flex": null, 2664 | "flex_flow": null, 2665 | "grid_area": null, 2666 | "grid_auto_columns": null, 2667 | "grid_auto_flow": null, 2668 | "grid_auto_rows": null, 2669 | "grid_column": null, 2670 | "grid_gap": null, 2671 | "grid_row": null, 2672 | "grid_template_areas": null, 2673 | "grid_template_columns": null, 2674 | "grid_template_rows": null, 2675 | "height": null, 2676 | "justify_content": null, 2677 | "justify_items": null, 2678 | "left": null, 2679 | "margin": null, 2680 | "max_height": null, 2681 | "max_width": null, 2682 | "min_height": null, 2683 | "min_width": null, 2684 | "object_fit": null, 2685 | "object_position": null, 2686 | "order": null, 2687 | "overflow": null, 2688 | "overflow_x": null, 2689 | "overflow_y": null, 2690 | "padding": null, 2691 | "right": null, 2692 | "top": null, 2693 | "visibility": null, 2694 | "width": null 2695 | } 2696 | }, 2697 | "c8b622e02ce043c997b99632e7411d3d": { 2698 | "model_module": "@jupyter-widgets/controls", 2699 | "model_module_version": "1.5.0", 2700 | "model_name": "DescriptionStyleModel", 2701 | "state": { 2702 | "_model_module": "@jupyter-widgets/controls", 2703 | "_model_module_version": "1.5.0", 2704 | "_model_name": "DescriptionStyleModel", 2705 | "_view_count": null, 2706 | "_view_module": "@jupyter-widgets/base", 2707 | "_view_module_version": "1.2.0", 2708 | "_view_name": "StyleView", 2709 | "description_width": "" 2710 | } 2711 | }, 2712 | "c8d951f2a04340d8bf62e8ddca072a7f": { 2713 | "model_module": "@jupyter-widgets/controls", 2714 | "model_module_version": "1.5.0", 2715 | "model_name": "ProgressStyleModel", 2716 | "state": { 2717 | "_model_module": "@jupyter-widgets/controls", 2718 | "_model_module_version": "1.5.0", 2719 | "_model_name": "ProgressStyleModel", 2720 | "_view_count": null, 2721 | "_view_module": "@jupyter-widgets/base", 2722 | "_view_module_version": "1.2.0", 2723 | "_view_name": "StyleView", 2724 | "bar_color": null, 2725 | "description_width": "" 2726 | } 2727 | }, 2728 | "cb3d490817574d5ea1017a1fe20e60e0": { 2729 | "model_module": "@jupyter-widgets/controls", 2730 | "model_module_version": "1.5.0", 2731 | "model_name": "ProgressStyleModel", 2732 | "state": { 2733 | "_model_module": "@jupyter-widgets/controls", 2734 | "_model_module_version": "1.5.0", 2735 | "_model_name": "ProgressStyleModel", 2736 | "_view_count": null, 2737 | "_view_module": "@jupyter-widgets/base", 2738 | "_view_module_version": "1.2.0", 2739 | "_view_name": "StyleView", 2740 | "bar_color": null, 2741 | "description_width": "" 2742 | } 2743 | }, 2744 | "cebf1c1226ff42128dbe5abfc3928214": { 2745 | "model_module": "@jupyter-widgets/controls", 2746 | "model_module_version": "1.5.0", 2747 | "model_name": "HTMLModel", 2748 | "state": { 2749 | "_dom_classes": [], 2750 | "_model_module": "@jupyter-widgets/controls", 2751 | "_model_module_version": "1.5.0", 2752 | "_model_name": "HTMLModel", 2753 | "_view_count": null, 2754 | "_view_module": "@jupyter-widgets/controls", 2755 | "_view_module_version": "1.5.0", 2756 | "_view_name": "HTMLView", 2757 | "description": "", 2758 | "description_tooltip": null, 2759 | "layout": "IPY_MODEL_3472426d6625433b9c470f500ef1ca74", 2760 | "placeholder": "​", 2761 | "style": "IPY_MODEL_3344aea877d5458bb3fa445b3c79c795", 2762 | "value": "added_tokens.json: 100%" 2763 | } 2764 | }, 2765 | "cfaa646376a64891aa43a7e3848c12fc": { 2766 | "model_module": "@jupyter-widgets/base", 2767 | "model_module_version": "1.2.0", 2768 | "model_name": "LayoutModel", 2769 | "state": { 2770 | "_model_module": "@jupyter-widgets/base", 2771 | "_model_module_version": "1.2.0", 2772 | "_model_name": "LayoutModel", 2773 | "_view_count": null, 2774 | "_view_module": "@jupyter-widgets/base", 2775 | "_view_module_version": "1.2.0", 2776 | "_view_name": "LayoutView", 2777 | "align_content": null, 2778 | "align_items": null, 2779 | "align_self": null, 2780 | "border": null, 2781 | "bottom": null, 2782 | "display": null, 2783 | "flex": null, 2784 | "flex_flow": null, 2785 | "grid_area": null, 2786 | "grid_auto_columns": null, 2787 | "grid_auto_flow": null, 2788 | "grid_auto_rows": null, 2789 | "grid_column": null, 2790 | "grid_gap": null, 2791 | "grid_row": null, 2792 | "grid_template_areas": null, 2793 | "grid_template_columns": null, 2794 | "grid_template_rows": null, 2795 | "height": null, 2796 | "justify_content": null, 2797 | "justify_items": null, 2798 | "left": null, 2799 | "margin": null, 2800 | "max_height": null, 2801 | "max_width": null, 2802 | "min_height": null, 2803 | "min_width": null, 2804 | "object_fit": null, 2805 | "object_position": null, 2806 | "order": null, 2807 | "overflow": null, 2808 | "overflow_x": null, 2809 | "overflow_y": null, 2810 | "padding": null, 2811 | "right": null, 2812 | "top": null, 2813 | "visibility": null, 2814 | "width": null 2815 | } 2816 | }, 2817 | "d34cb5d22b5a466a9f46c0bc673f122d": { 2818 | "model_module": "@jupyter-widgets/controls", 2819 | "model_module_version": "1.5.0", 2820 | "model_name": "DescriptionStyleModel", 2821 | "state": { 2822 | "_model_module": "@jupyter-widgets/controls", 2823 | "_model_module_version": "1.5.0", 2824 | "_model_name": "DescriptionStyleModel", 2825 | "_view_count": null, 2826 | "_view_module": "@jupyter-widgets/base", 2827 | "_view_module_version": "1.2.0", 2828 | "_view_name": "StyleView", 2829 | "description_width": "" 2830 | } 2831 | }, 2832 | "d7414d9c2c724e389772835304938f97": { 2833 | "model_module": "@jupyter-widgets/controls", 2834 | "model_module_version": "1.5.0", 2835 | "model_name": "DescriptionStyleModel", 2836 | "state": { 2837 | "_model_module": "@jupyter-widgets/controls", 2838 | "_model_module_version": "1.5.0", 2839 | "_model_name": "DescriptionStyleModel", 2840 | "_view_count": null, 2841 | "_view_module": "@jupyter-widgets/base", 2842 | "_view_module_version": "1.2.0", 2843 | "_view_name": "StyleView", 2844 | "description_width": "" 2845 | } 2846 | }, 2847 | "db8ff08397c343ee8ae7a1863655175b": { 2848 | "model_module": "@jupyter-widgets/controls", 2849 | "model_module_version": "1.5.0", 2850 | "model_name": "FloatProgressModel", 2851 | "state": { 2852 | "_dom_classes": [], 2853 | "_model_module": "@jupyter-widgets/controls", 2854 | "_model_module_version": "1.5.0", 2855 | "_model_name": "FloatProgressModel", 2856 | "_view_count": null, 2857 | "_view_module": "@jupyter-widgets/controls", 2858 | "_view_module_version": "1.5.0", 2859 | "_view_name": "ProgressView", 2860 | "bar_style": "success", 2861 | "description": "", 2862 | "description_tooltip": null, 2863 | "layout": "IPY_MODEL_690d0fbf63b34557bb742f8745caf2bd", 2864 | "max": 572, 2865 | "min": 0, 2866 | "orientation": "horizontal", 2867 | "style": "IPY_MODEL_f5c6bb58779248b5a9caa906156e0cd9", 2868 | "value": 572 2869 | } 2870 | }, 2871 | "dd432405c22a497e9c8c28793d89bfc8": { 2872 | "model_module": "@jupyter-widgets/controls", 2873 | "model_module_version": "1.5.0", 2874 | "model_name": "DescriptionStyleModel", 2875 | "state": { 2876 | "_model_module": "@jupyter-widgets/controls", 2877 | "_model_module_version": "1.5.0", 2878 | "_model_name": "DescriptionStyleModel", 2879 | "_view_count": null, 2880 | "_view_module": "@jupyter-widgets/base", 2881 | "_view_module_version": "1.2.0", 2882 | "_view_name": "StyleView", 2883 | "description_width": "" 2884 | } 2885 | }, 2886 | "e2cd392332aa4772bf972d95d377be1f": { 2887 | "model_module": "@jupyter-widgets/base", 2888 | "model_module_version": "1.2.0", 2889 | "model_name": "LayoutModel", 2890 | "state": { 2891 | "_model_module": "@jupyter-widgets/base", 2892 | "_model_module_version": "1.2.0", 2893 | "_model_name": "LayoutModel", 2894 | "_view_count": null, 2895 | "_view_module": "@jupyter-widgets/base", 2896 | "_view_module_version": "1.2.0", 2897 | "_view_name": "LayoutView", 2898 | "align_content": null, 2899 | "align_items": null, 2900 | "align_self": null, 2901 | "border": null, 2902 | "bottom": null, 2903 | "display": null, 2904 | "flex": null, 2905 | "flex_flow": null, 2906 | "grid_area": null, 2907 | "grid_auto_columns": null, 2908 | "grid_auto_flow": null, 2909 | "grid_auto_rows": null, 2910 | "grid_column": null, 2911 | "grid_gap": null, 2912 | "grid_row": null, 2913 | "grid_template_areas": null, 2914 | "grid_template_columns": null, 2915 | "grid_template_rows": null, 2916 | "height": null, 2917 | "justify_content": null, 2918 | "justify_items": null, 2919 | "left": null, 2920 | "margin": null, 2921 | "max_height": null, 2922 | "max_width": null, 2923 | "min_height": null, 2924 | "min_width": null, 2925 | "object_fit": null, 2926 | "object_position": null, 2927 | "order": null, 2928 | "overflow": null, 2929 | "overflow_x": null, 2930 | "overflow_y": null, 2931 | "padding": null, 2932 | "right": null, 2933 | "top": null, 2934 | "visibility": null, 2935 | "width": null 2936 | } 2937 | }, 2938 | "e4331b5ab5c547079e16d05b8992718b": { 2939 | "model_module": "@jupyter-widgets/base", 2940 | "model_module_version": "1.2.0", 2941 | "model_name": "LayoutModel", 2942 | "state": { 2943 | "_model_module": "@jupyter-widgets/base", 2944 | "_model_module_version": "1.2.0", 2945 | "_model_name": "LayoutModel", 2946 | "_view_count": null, 2947 | "_view_module": "@jupyter-widgets/base", 2948 | "_view_module_version": "1.2.0", 2949 | "_view_name": "LayoutView", 2950 | "align_content": null, 2951 | "align_items": null, 2952 | "align_self": null, 2953 | "border": null, 2954 | "bottom": null, 2955 | "display": null, 2956 | "flex": null, 2957 | "flex_flow": null, 2958 | "grid_area": null, 2959 | "grid_auto_columns": null, 2960 | "grid_auto_flow": null, 2961 | "grid_auto_rows": null, 2962 | "grid_column": null, 2963 | "grid_gap": null, 2964 | "grid_row": null, 2965 | "grid_template_areas": null, 2966 | "grid_template_columns": null, 2967 | "grid_template_rows": null, 2968 | "height": null, 2969 | "justify_content": null, 2970 | "justify_items": null, 2971 | "left": null, 2972 | "margin": null, 2973 | "max_height": null, 2974 | "max_width": null, 2975 | "min_height": null, 2976 | "min_width": null, 2977 | "object_fit": null, 2978 | "object_position": null, 2979 | "order": null, 2980 | "overflow": null, 2981 | "overflow_x": null, 2982 | "overflow_y": null, 2983 | "padding": null, 2984 | "right": null, 2985 | "top": null, 2986 | "visibility": null, 2987 | "width": null 2988 | } 2989 | }, 2990 | "e544f1cb1428406b81cf89ab4d29c953": { 2991 | "model_module": "@jupyter-widgets/base", 2992 | "model_module_version": "1.2.0", 2993 | "model_name": "LayoutModel", 2994 | "state": { 2995 | "_model_module": "@jupyter-widgets/base", 2996 | "_model_module_version": "1.2.0", 2997 | "_model_name": "LayoutModel", 2998 | "_view_count": null, 2999 | "_view_module": "@jupyter-widgets/base", 3000 | "_view_module_version": "1.2.0", 3001 | "_view_name": "LayoutView", 3002 | "align_content": null, 3003 | "align_items": null, 3004 | "align_self": null, 3005 | "border": null, 3006 | "bottom": null, 3007 | "display": null, 3008 | "flex": null, 3009 | "flex_flow": null, 3010 | "grid_area": null, 3011 | "grid_auto_columns": null, 3012 | "grid_auto_flow": null, 3013 | "grid_auto_rows": null, 3014 | "grid_column": null, 3015 | "grid_gap": null, 3016 | "grid_row": null, 3017 | "grid_template_areas": null, 3018 | "grid_template_columns": null, 3019 | "grid_template_rows": null, 3020 | "height": null, 3021 | "justify_content": null, 3022 | "justify_items": null, 3023 | "left": null, 3024 | "margin": null, 3025 | "max_height": null, 3026 | "max_width": null, 3027 | "min_height": null, 3028 | "min_width": null, 3029 | "object_fit": null, 3030 | "object_position": null, 3031 | "order": null, 3032 | "overflow": null, 3033 | "overflow_x": null, 3034 | "overflow_y": null, 3035 | "padding": null, 3036 | "right": null, 3037 | "top": null, 3038 | "visibility": null, 3039 | "width": null 3040 | } 3041 | }, 3042 | "e60c5d50578a48189b1970f5a7abf069": { 3043 | "model_module": "@jupyter-widgets/base", 3044 | "model_module_version": "1.2.0", 3045 | "model_name": "LayoutModel", 3046 | "state": { 3047 | "_model_module": "@jupyter-widgets/base", 3048 | "_model_module_version": "1.2.0", 3049 | "_model_name": "LayoutModel", 3050 | "_view_count": null, 3051 | "_view_module": "@jupyter-widgets/base", 3052 | "_view_module_version": "1.2.0", 3053 | "_view_name": "LayoutView", 3054 | "align_content": null, 3055 | "align_items": null, 3056 | "align_self": null, 3057 | "border": null, 3058 | "bottom": null, 3059 | "display": null, 3060 | "flex": null, 3061 | "flex_flow": null, 3062 | "grid_area": null, 3063 | "grid_auto_columns": null, 3064 | "grid_auto_flow": null, 3065 | "grid_auto_rows": null, 3066 | "grid_column": null, 3067 | "grid_gap": null, 3068 | "grid_row": null, 3069 | "grid_template_areas": null, 3070 | "grid_template_columns": null, 3071 | "grid_template_rows": null, 3072 | "height": null, 3073 | "justify_content": null, 3074 | "justify_items": null, 3075 | "left": null, 3076 | "margin": null, 3077 | "max_height": null, 3078 | "max_width": null, 3079 | "min_height": null, 3080 | "min_width": null, 3081 | "object_fit": null, 3082 | "object_position": null, 3083 | "order": null, 3084 | "overflow": null, 3085 | "overflow_x": null, 3086 | "overflow_y": null, 3087 | "padding": null, 3088 | "right": null, 3089 | "top": null, 3090 | "visibility": null, 3091 | "width": "20px" 3092 | } 3093 | }, 3094 | "e749b795c4c5480eb378e05f2b2408c3": { 3095 | "model_module": "@jupyter-widgets/controls", 3096 | "model_module_version": "1.5.0", 3097 | "model_name": "FloatProgressModel", 3098 | "state": { 3099 | "_dom_classes": [], 3100 | "_model_module": "@jupyter-widgets/controls", 3101 | "_model_module_version": "1.5.0", 3102 | "_model_name": "FloatProgressModel", 3103 | "_view_count": null, 3104 | "_view_module": "@jupyter-widgets/controls", 3105 | "_view_module_version": "1.5.0", 3106 | "_view_name": "ProgressView", 3107 | "bar_style": "success", 3108 | "description": "", 3109 | "description_tooltip": null, 3110 | "layout": "IPY_MODEL_e60c5d50578a48189b1970f5a7abf069", 3111 | "max": 1, 3112 | "min": 0, 3113 | "orientation": "horizontal", 3114 | "style": "IPY_MODEL_eca800b9be034f5285d0873ca23d3baf", 3115 | "value": 1 3116 | } 3117 | }, 3118 | "e7b07b23703e46f4adc60a86d7eaa327": { 3119 | "model_module": "@jupyter-widgets/controls", 3120 | "model_module_version": "1.5.0", 3121 | "model_name": "FloatProgressModel", 3122 | "state": { 3123 | "_dom_classes": [], 3124 | "_model_module": "@jupyter-widgets/controls", 3125 | "_model_module_version": "1.5.0", 3126 | "_model_name": "FloatProgressModel", 3127 | "_view_count": null, 3128 | "_view_module": "@jupyter-widgets/controls", 3129 | "_view_module_version": "1.5.0", 3130 | "_view_name": "ProgressView", 3131 | "bar_style": "success", 3132 | "description": "", 3133 | "description_tooltip": null, 3134 | "layout": "IPY_MODEL_e4331b5ab5c547079e16d05b8992718b", 3135 | "max": 408, 3136 | "min": 0, 3137 | "orientation": "horizontal", 3138 | "style": "IPY_MODEL_922cce75a65b424eb7a251659657757d", 3139 | "value": 408 3140 | } 3141 | }, 3142 | "e8cc4aace30a463faad2dfe6342a2821": { 3143 | "model_module": "@jupyter-widgets/controls", 3144 | "model_module_version": "1.5.0", 3145 | "model_name": "HTMLModel", 3146 | "state": { 3147 | "_dom_classes": [], 3148 | "_model_module": "@jupyter-widgets/controls", 3149 | "_model_module_version": "1.5.0", 3150 | "_model_name": "HTMLModel", 3151 | "_view_count": null, 3152 | "_view_module": "@jupyter-widgets/controls", 3153 | "_view_module_version": "1.5.0", 3154 | "_view_name": "HTMLView", 3155 | "description": "", 3156 | "description_tooltip": null, 3157 | "layout": "IPY_MODEL_e544f1cb1428406b81cf89ab4d29c953", 3158 | "placeholder": "​", 3159 | "style": "IPY_MODEL_14120640e617483f80c34982da8e5391", 3160 | "value": "chat_template.json: " 3161 | } 3162 | }, 3163 | "e8da003fcd7342d382c6faddb28af484": { 3164 | "model_module": "@jupyter-widgets/controls", 3165 | "model_module_version": "1.5.0", 3166 | "model_name": "HTMLModel", 3167 | "state": { 3168 | "_dom_classes": [], 3169 | "_model_module": "@jupyter-widgets/controls", 3170 | "_model_module_version": "1.5.0", 3171 | "_model_name": "HTMLModel", 3172 | "_view_count": null, 3173 | "_view_module": "@jupyter-widgets/controls", 3174 | "_view_module_version": "1.5.0", 3175 | "_view_name": "HTMLView", 3176 | "description": "", 3177 | "description_tooltip": null, 3178 | "layout": "IPY_MODEL_7b3ca20c348d4fe3bf88d0bd1adbdc2f", 3179 | "placeholder": "​", 3180 | "style": "IPY_MODEL_dd432405c22a497e9c8c28793d89bfc8", 3181 | "value": "preprocessor_config.json: 100%" 3182 | } 3183 | }, 3184 | "ec6acd940e154ec4b4314aeaab783ea2": { 3185 | "model_module": "@jupyter-widgets/controls", 3186 | "model_module_version": "1.5.0", 3187 | "model_name": "ProgressStyleModel", 3188 | "state": { 3189 | "_model_module": "@jupyter-widgets/controls", 3190 | "_model_module_version": "1.5.0", 3191 | "_model_name": "ProgressStyleModel", 3192 | "_view_count": null, 3193 | "_view_module": "@jupyter-widgets/base", 3194 | "_view_module_version": "1.2.0", 3195 | "_view_name": "StyleView", 3196 | "bar_color": null, 3197 | "description_width": "" 3198 | } 3199 | }, 3200 | "eca800b9be034f5285d0873ca23d3baf": { 3201 | "model_module": "@jupyter-widgets/controls", 3202 | "model_module_version": "1.5.0", 3203 | "model_name": "ProgressStyleModel", 3204 | "state": { 3205 | "_model_module": "@jupyter-widgets/controls", 3206 | "_model_module_version": "1.5.0", 3207 | "_model_name": "ProgressStyleModel", 3208 | "_view_count": null, 3209 | "_view_module": "@jupyter-widgets/base", 3210 | "_view_module_version": "1.2.0", 3211 | "_view_name": "StyleView", 3212 | "bar_color": null, 3213 | "description_width": "" 3214 | } 3215 | }, 3216 | "ee23b33158544ec9b901fc93c0d9cd94": { 3217 | "model_module": "@jupyter-widgets/controls", 3218 | "model_module_version": "1.5.0", 3219 | "model_name": "DescriptionStyleModel", 3220 | "state": { 3221 | "_model_module": "@jupyter-widgets/controls", 3222 | "_model_module_version": "1.5.0", 3223 | "_model_name": "DescriptionStyleModel", 3224 | "_view_count": null, 3225 | "_view_module": "@jupyter-widgets/base", 3226 | "_view_module_version": "1.2.0", 3227 | "_view_name": "StyleView", 3228 | "description_width": "" 3229 | } 3230 | }, 3231 | "f02993bce0b44cbb8f04451e8eb80c52": { 3232 | "model_module": "@jupyter-widgets/controls", 3233 | "model_module_version": "1.5.0", 3234 | "model_name": "HBoxModel", 3235 | "state": { 3236 | "_dom_classes": [], 3237 | "_model_module": "@jupyter-widgets/controls", 3238 | "_model_module_version": "1.5.0", 3239 | "_model_name": "HBoxModel", 3240 | "_view_count": null, 3241 | "_view_module": "@jupyter-widgets/controls", 3242 | "_view_module_version": "1.5.0", 3243 | "_view_name": "HBoxView", 3244 | "box_style": "", 3245 | "children": [ 3246 | "IPY_MODEL_14fda8541b1c4c0e84b27253f40a4144", 3247 | "IPY_MODEL_c48b13fbc349441491130d591c02820a", 3248 | "IPY_MODEL_1b4e0053f73a4dc8956fd70261050031" 3249 | ], 3250 | "layout": "IPY_MODEL_0834cba909674903b340ead5d03d8ee7" 3251 | } 3252 | }, 3253 | "f0d0db32a8074f47868eefecb6c24b4e": { 3254 | "model_module": "@jupyter-widgets/base", 3255 | "model_module_version": "1.2.0", 3256 | "model_name": "LayoutModel", 3257 | "state": { 3258 | "_model_module": "@jupyter-widgets/base", 3259 | "_model_module_version": "1.2.0", 3260 | "_model_name": "LayoutModel", 3261 | "_view_count": null, 3262 | "_view_module": "@jupyter-widgets/base", 3263 | "_view_module_version": "1.2.0", 3264 | "_view_name": "LayoutView", 3265 | "align_content": null, 3266 | "align_items": null, 3267 | "align_self": null, 3268 | "border": null, 3269 | "bottom": null, 3270 | "display": null, 3271 | "flex": null, 3272 | "flex_flow": null, 3273 | "grid_area": null, 3274 | "grid_auto_columns": null, 3275 | "grid_auto_flow": null, 3276 | "grid_auto_rows": null, 3277 | "grid_column": null, 3278 | "grid_gap": null, 3279 | "grid_row": null, 3280 | "grid_template_areas": null, 3281 | "grid_template_columns": null, 3282 | "grid_template_rows": null, 3283 | "height": null, 3284 | "justify_content": null, 3285 | "justify_items": null, 3286 | "left": null, 3287 | "margin": null, 3288 | "max_height": null, 3289 | "max_width": null, 3290 | "min_height": null, 3291 | "min_width": null, 3292 | "object_fit": null, 3293 | "object_position": null, 3294 | "order": null, 3295 | "overflow": null, 3296 | "overflow_x": null, 3297 | "overflow_y": null, 3298 | "padding": null, 3299 | "right": null, 3300 | "top": null, 3301 | "visibility": null, 3302 | "width": null 3303 | } 3304 | }, 3305 | "f2f97d1c2d354db5befe512d80f9853e": { 3306 | "model_module": "@jupyter-widgets/base", 3307 | "model_module_version": "1.2.0", 3308 | "model_name": "LayoutModel", 3309 | "state": { 3310 | "_model_module": "@jupyter-widgets/base", 3311 | "_model_module_version": "1.2.0", 3312 | "_model_name": "LayoutModel", 3313 | "_view_count": null, 3314 | "_view_module": "@jupyter-widgets/base", 3315 | "_view_module_version": "1.2.0", 3316 | "_view_name": "LayoutView", 3317 | "align_content": null, 3318 | "align_items": null, 3319 | "align_self": null, 3320 | "border": null, 3321 | "bottom": null, 3322 | "display": null, 3323 | "flex": null, 3324 | "flex_flow": null, 3325 | "grid_area": null, 3326 | "grid_auto_columns": null, 3327 | "grid_auto_flow": null, 3328 | "grid_auto_rows": null, 3329 | "grid_column": null, 3330 | "grid_gap": null, 3331 | "grid_row": null, 3332 | "grid_template_areas": null, 3333 | "grid_template_columns": null, 3334 | "grid_template_rows": null, 3335 | "height": null, 3336 | "justify_content": null, 3337 | "justify_items": null, 3338 | "left": null, 3339 | "margin": null, 3340 | "max_height": null, 3341 | "max_width": null, 3342 | "min_height": null, 3343 | "min_width": null, 3344 | "object_fit": null, 3345 | "object_position": null, 3346 | "order": null, 3347 | "overflow": null, 3348 | "overflow_x": null, 3349 | "overflow_y": null, 3350 | "padding": null, 3351 | "right": null, 3352 | "top": null, 3353 | "visibility": null, 3354 | "width": null 3355 | } 3356 | }, 3357 | "f33523339ad44ee18ae542a99ba8d2e4": { 3358 | "model_module": "@jupyter-widgets/base", 3359 | "model_module_version": "1.2.0", 3360 | "model_name": "LayoutModel", 3361 | "state": { 3362 | "_model_module": "@jupyter-widgets/base", 3363 | "_model_module_version": "1.2.0", 3364 | "_model_name": "LayoutModel", 3365 | "_view_count": null, 3366 | "_view_module": "@jupyter-widgets/base", 3367 | "_view_module_version": "1.2.0", 3368 | "_view_name": "LayoutView", 3369 | "align_content": null, 3370 | "align_items": null, 3371 | "align_self": null, 3372 | "border": null, 3373 | "bottom": null, 3374 | "display": null, 3375 | "flex": null, 3376 | "flex_flow": null, 3377 | "grid_area": null, 3378 | "grid_auto_columns": null, 3379 | "grid_auto_flow": null, 3380 | "grid_auto_rows": null, 3381 | "grid_column": null, 3382 | "grid_gap": null, 3383 | "grid_row": null, 3384 | "grid_template_areas": null, 3385 | "grid_template_columns": null, 3386 | "grid_template_rows": null, 3387 | "height": null, 3388 | "justify_content": null, 3389 | "justify_items": null, 3390 | "left": null, 3391 | "margin": null, 3392 | "max_height": null, 3393 | "max_width": null, 3394 | "min_height": null, 3395 | "min_width": null, 3396 | "object_fit": null, 3397 | "object_position": null, 3398 | "order": null, 3399 | "overflow": null, 3400 | "overflow_x": null, 3401 | "overflow_y": null, 3402 | "padding": null, 3403 | "right": null, 3404 | "top": null, 3405 | "visibility": null, 3406 | "width": null 3407 | } 3408 | }, 3409 | "f4966c179fae4b1e91d260494a05a5f7": { 3410 | "model_module": "@jupyter-widgets/controls", 3411 | "model_module_version": "1.5.0", 3412 | "model_name": "ProgressStyleModel", 3413 | "state": { 3414 | "_model_module": "@jupyter-widgets/controls", 3415 | "_model_module_version": "1.5.0", 3416 | "_model_name": "ProgressStyleModel", 3417 | "_view_count": null, 3418 | "_view_module": "@jupyter-widgets/base", 3419 | "_view_module_version": "1.2.0", 3420 | "_view_name": "StyleView", 3421 | "bar_color": null, 3422 | "description_width": "" 3423 | } 3424 | }, 3425 | "f5c6bb58779248b5a9caa906156e0cd9": { 3426 | "model_module": "@jupyter-widgets/controls", 3427 | "model_module_version": "1.5.0", 3428 | "model_name": "ProgressStyleModel", 3429 | "state": { 3430 | "_model_module": "@jupyter-widgets/controls", 3431 | "_model_module_version": "1.5.0", 3432 | "_model_name": "ProgressStyleModel", 3433 | "_view_count": null, 3434 | "_view_module": "@jupyter-widgets/base", 3435 | "_view_module_version": "1.2.0", 3436 | "_view_name": "StyleView", 3437 | "bar_color": null, 3438 | "description_width": "" 3439 | } 3440 | }, 3441 | "f69d8e8a4e174b7382610cf3c497bb7b": { 3442 | "model_module": "@jupyter-widgets/base", 3443 | "model_module_version": "1.2.0", 3444 | "model_name": "LayoutModel", 3445 | "state": { 3446 | "_model_module": "@jupyter-widgets/base", 3447 | "_model_module_version": "1.2.0", 3448 | "_model_name": "LayoutModel", 3449 | "_view_count": null, 3450 | "_view_module": "@jupyter-widgets/base", 3451 | "_view_module_version": "1.2.0", 3452 | "_view_name": "LayoutView", 3453 | "align_content": null, 3454 | "align_items": null, 3455 | "align_self": null, 3456 | "border": null, 3457 | "bottom": null, 3458 | "display": null, 3459 | "flex": null, 3460 | "flex_flow": null, 3461 | "grid_area": null, 3462 | "grid_auto_columns": null, 3463 | "grid_auto_flow": null, 3464 | "grid_auto_rows": null, 3465 | "grid_column": null, 3466 | "grid_gap": null, 3467 | "grid_row": null, 3468 | "grid_template_areas": null, 3469 | "grid_template_columns": null, 3470 | "grid_template_rows": null, 3471 | "height": null, 3472 | "justify_content": null, 3473 | "justify_items": null, 3474 | "left": null, 3475 | "margin": null, 3476 | "max_height": null, 3477 | "max_width": null, 3478 | "min_height": null, 3479 | "min_width": null, 3480 | "object_fit": null, 3481 | "object_position": null, 3482 | "order": null, 3483 | "overflow": null, 3484 | "overflow_x": null, 3485 | "overflow_y": null, 3486 | "padding": null, 3487 | "right": null, 3488 | "top": null, 3489 | "visibility": null, 3490 | "width": null 3491 | } 3492 | }, 3493 | "fa8edcae23db448eb70e14726b650667": { 3494 | "model_module": "@jupyter-widgets/base", 3495 | "model_module_version": "1.2.0", 3496 | "model_name": "LayoutModel", 3497 | "state": { 3498 | "_model_module": "@jupyter-widgets/base", 3499 | "_model_module_version": "1.2.0", 3500 | "_model_name": "LayoutModel", 3501 | "_view_count": null, 3502 | "_view_module": "@jupyter-widgets/base", 3503 | "_view_module_version": "1.2.0", 3504 | "_view_name": "LayoutView", 3505 | "align_content": null, 3506 | "align_items": null, 3507 | "align_self": null, 3508 | "border": null, 3509 | "bottom": null, 3510 | "display": null, 3511 | "flex": null, 3512 | "flex_flow": null, 3513 | "grid_area": null, 3514 | "grid_auto_columns": null, 3515 | "grid_auto_flow": null, 3516 | "grid_auto_rows": null, 3517 | "grid_column": null, 3518 | "grid_gap": null, 3519 | "grid_row": null, 3520 | "grid_template_areas": null, 3521 | "grid_template_columns": null, 3522 | "grid_template_rows": null, 3523 | "height": null, 3524 | "justify_content": null, 3525 | "justify_items": null, 3526 | "left": null, 3527 | "margin": null, 3528 | "max_height": null, 3529 | "max_width": null, 3530 | "min_height": null, 3531 | "min_width": null, 3532 | "object_fit": null, 3533 | "object_position": null, 3534 | "order": null, 3535 | "overflow": null, 3536 | "overflow_x": null, 3537 | "overflow_y": null, 3538 | "padding": null, 3539 | "right": null, 3540 | "top": null, 3541 | "visibility": null, 3542 | "width": null 3543 | } 3544 | }, 3545 | "fbe2788824ea4de0b112d533c5e57c9d": { 3546 | "model_module": "@jupyter-widgets/controls", 3547 | "model_module_version": "1.5.0", 3548 | "model_name": "FloatProgressModel", 3549 | "state": { 3550 | "_dom_classes": [], 3551 | "_model_module": "@jupyter-widgets/controls", 3552 | "_model_module_version": "1.5.0", 3553 | "_model_name": "FloatProgressModel", 3554 | "_view_count": null, 3555 | "_view_module": "@jupyter-widgets/controls", 3556 | "_view_module_version": "1.5.0", 3557 | "_view_name": "ProgressView", 3558 | "bar_style": "success", 3559 | "description": "", 3560 | "description_tooltip": null, 3561 | "layout": "IPY_MODEL_92004181dd9e4e9083e03788dca31c10", 3562 | "max": 1, 3563 | "min": 0, 3564 | "orientation": "horizontal", 3565 | "style": "IPY_MODEL_ec6acd940e154ec4b4314aeaab783ea2", 3566 | "value": 1 3567 | } 3568 | } 3569 | } 3570 | } 3571 | }, 3572 | "nbformat": 4, 3573 | "nbformat_minor": 0 3574 | } 3575 | --------------------------------------------------------------------------------