├── Code-and-Data-Files
├── Car-price-prediction-linear-regression-Intro-version.ipynb
├── CarPrice_Assignment.csv
├── Car_sales.csv
├── Car_sales.xls
├── Decision_Tree_IRIS.ipynb
├── EDA-Overview-Lending-Club.ipynb
├── Employee-Attrition-using-Naive-Bayes.ipynb
├── Fashion_MNIST_Image_Classification_using_Deep_Learning_tf_Keras.ipynb
├── HR-Employee-Attrition.csv
├── Handwritten-Digit-MNIST-SVM.ipynb
├── Lending-Club-EDA-Project.ipynb
├── Machine-Learning-Foundations.ipynb
├── Mall_Customers.csv
├── PCA-Housing.ipynb
├── Python-Intro-Numpy-Pandas.ipynb
├── Random-Forest-Credit-Default-Prediction.ipynb
├── churn_data.csv
├── credit-card-default.csv
├── customer-segmentation-k-means-analysis.ipynb
├── customer_data.csv
├── gapminderData.csv
├── internet_data.csv
├── iris_csv.csv
├── loan.csv
├── newhousing.csv
└── telecom-churn-prediction-logistic-regression.ipynb
└── README.md
/Code-and-Data-Files/CarPrice_Assignment.csv:
--------------------------------------------------------------------------------
1 | car_ID,symboling,CarName,fueltype,aspiration,doornumber,carbody,drivewheel,enginelocation,wheelbase,carlength,carwidth,carheight,curbweight,enginetype,cylindernumber,enginesize,fuelsystem,boreratio,stroke,compressionratio,horsepower,peakrpm,citympg,highwaympg,price
2 | 1,3,alfa-romero giulia,gas,std,two,convertible,rwd,front,88.6,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,13495
3 | 2,3,alfa-romero stelvio,gas,std,two,convertible,rwd,front,88.6,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,16500
4 | 3,1,alfa-romero Quadrifoglio,gas,std,two,hatchback,rwd,front,94.5,171.2,65.5,52.4,2823,ohcv,six,152,mpfi,2.68,3.47,9,154,5000,19,26,16500
5 | 4,2,audi 100 ls,gas,std,four,sedan,fwd,front,99.8,176.6,66.2,54.3,2337,ohc,four,109,mpfi,3.19,3.4,10,102,5500,24,30,13950
6 | 5,2,audi 100ls,gas,std,four,sedan,4wd,front,99.4,176.6,66.4,54.3,2824,ohc,five,136,mpfi,3.19,3.4,8,115,5500,18,22,17450
7 | 6,2,audi fox,gas,std,two,sedan,fwd,front,99.8,177.3,66.3,53.1,2507,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,15250
8 | 7,1,audi 100ls,gas,std,four,sedan,fwd,front,105.8,192.7,71.4,55.7,2844,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,17710
9 | 8,1,audi 5000,gas,std,four,wagon,fwd,front,105.8,192.7,71.4,55.7,2954,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,18920
10 | 9,1,audi 4000,gas,turbo,four,sedan,fwd,front,105.8,192.7,71.4,55.9,3086,ohc,five,131,mpfi,3.13,3.4,8.3,140,5500,17,20,23875
11 | 10,0,audi 5000s (diesel),gas,turbo,two,hatchback,4wd,front,99.5,178.2,67.9,52,3053,ohc,five,131,mpfi,3.13,3.4,7,160,5500,16,22,17859.167
12 | 11,2,bmw 320i,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,16430
13 | 12,0,bmw 320i,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,16925
14 | 13,0,bmw x1,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2710,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,20970
15 | 14,0,bmw x3,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2765,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,21105
16 | 15,1,bmw z4,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3055,ohc,six,164,mpfi,3.31,3.19,9,121,4250,20,25,24565
17 | 16,0,bmw x4,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3230,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,30760
18 | 17,0,bmw x5,gas,std,two,sedan,rwd,front,103.5,193.8,67.9,53.7,3380,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,41315
19 | 18,0,bmw x3,gas,std,four,sedan,rwd,front,110,197,70.9,56.3,3505,ohc,six,209,mpfi,3.62,3.39,8,182,5400,15,20,36880
20 | 19,2,chevrolet impala,gas,std,two,hatchback,fwd,front,88.4,141.1,60.3,53.2,1488,l,three,61,2bbl,2.91,3.03,9.5,48,5100,47,53,5151
21 | 20,1,chevrolet monte carlo,gas,std,two,hatchback,fwd,front,94.5,155.9,63.6,52,1874,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,6295
22 | 21,0,chevrolet vega 2300,gas,std,four,sedan,fwd,front,94.5,158.8,63.6,52,1909,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,6575
23 | 22,1,dodge rampage,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.41,68,5500,37,41,5572
24 | 23,1,dodge challenger se,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6377
25 | 24,1,dodge d200,gas,turbo,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,2128,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,7957
26 | 25,1,dodge monaco (sw),gas,std,four,hatchback,fwd,front,93.7,157.3,63.8,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6229
27 | 26,1,dodge colt hardtop,gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6692
28 | 27,1,dodge colt (sw),gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,7609
29 | 28,1,dodge coronet custom,gas,turbo,two,sedan,fwd,front,93.7,157.3,63.8,50.6,2191,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,8558
30 | 29,-1,dodge dart custom,gas,std,four,wagon,fwd,front,103.3,174.6,64.6,59.8,2535,ohc,four,122,2bbl,3.34,3.46,8.5,88,5000,24,30,8921
31 | 30,3,dodge coronet custom (sw),gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2811,ohc,four,156,mfi,3.6,3.9,7,145,5000,19,24,12964
32 | 31,2,honda civic,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1713,ohc,four,92,1bbl,2.91,3.41,9.6,58,4800,49,54,6479
33 | 32,2,honda civic cvcc,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1819,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,31,38,6855
34 | 33,1,honda civic,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1837,ohc,four,79,1bbl,2.91,3.07,10.1,60,5500,38,42,5399
35 | 34,1,honda accord cvcc,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1940,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,6529
36 | 35,1,honda civic cvcc,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1956,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,7129
37 | 36,0,honda accord lx,gas,std,four,sedan,fwd,front,96.5,163.4,64,54.5,2010,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,7295
38 | 37,0,honda civic 1500 gl,gas,std,four,wagon,fwd,front,96.5,157.1,63.9,58.3,2024,ohc,four,92,1bbl,2.92,3.41,9.2,76,6000,30,34,7295
39 | 38,0,honda accord,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2236,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,7895
40 | 39,0,honda civic 1300,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2289,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,9095
41 | 40,0,honda prelude,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2304,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,8845
42 | 41,0,honda accord,gas,std,four,sedan,fwd,front,96.5,175.4,62.5,54.1,2372,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,10295
43 | 42,0,honda civic,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2465,ohc,four,110,mpfi,3.15,3.58,9,101,5800,24,28,12945
44 | 43,1,honda civic (auto),gas,std,two,sedan,fwd,front,96.5,169.1,66,51,2293,ohc,four,110,2bbl,3.15,3.58,9.1,100,5500,25,31,10345
45 | 44,0,isuzu MU-X,gas,std,four,sedan,rwd,front,94.3,170.7,61.8,53.5,2337,ohc,four,111,2bbl,3.31,3.23,8.5,78,4800,24,29,6785
46 | 45,1,isuzu D-Max ,gas,std,two,sedan,fwd,front,94.5,155.9,63.6,52,1874,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,8916.5
47 | 46,0,isuzu D-Max V-Cross,gas,std,four,sedan,fwd,front,94.5,155.9,63.6,52,1909,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,8916.5
48 | 47,2,isuzu D-Max ,gas,std,two,hatchback,rwd,front,96,172.6,65.2,51.4,2734,ohc,four,119,spfi,3.43,3.23,9.2,90,5000,24,29,11048
49 | 48,0,jaguar xj,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,32250
50 | 49,0,jaguar xf,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,35550
51 | 50,0,jaguar xk,gas,std,two,sedan,rwd,front,102,191.7,70.6,47.8,3950,ohcv,twelve,326,mpfi,3.54,2.76,11.5,262,5000,13,17,36000
52 | 51,1,maxda rx3,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1890,ohc,four,91,2bbl,3.03,3.15,9,68,5000,30,31,5195
53 | 52,1,maxda glc deluxe,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1900,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6095
54 | 53,1,mazda rx2 coupe,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1905,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6795
55 | 54,1,mazda rx-4,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1945,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6695
56 | 55,1,mazda glc deluxe,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1950,ohc,four,91,2bbl,3.08,3.15,9,68,5000,31,38,7395
57 | 56,3,mazda 626,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.33,3.255,9.4,101,6000,17,23,10945
58 | 57,3,mazda glc,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.33,3.255,9.4,101,6000,17,23,11845
59 | 58,3,mazda rx-7 gs,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2385,rotor,two,70,4bbl,3.33,3.255,9.4,101,6000,17,23,13645
60 | 59,3,mazda glc 4,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2500,rotor,two,80,mpfi,3.33,3.255,9.4,135,6000,16,23,15645
61 | 60,1,mazda 626,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,8845
62 | 61,0,mazda glc custom l,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,8495
63 | 62,1,mazda glc custom,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,10595
64 | 63,0,mazda rx-4,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,10245
65 | 64,0,mazda glc deluxe,diesel,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2443,ohc,four,122,idi,3.39,3.39,22.7,64,4650,36,42,10795
66 | 65,0,mazda 626,gas,std,four,hatchback,fwd,front,98.8,177.8,66.5,55.5,2425,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,11245
67 | 66,0,mazda glc,gas,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2670,ohc,four,140,mpfi,3.76,3.16,8,120,5000,19,27,18280
68 | 67,0,mazda rx-7 gs,diesel,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2700,ohc,four,134,idi,3.43,3.64,22,72,4200,31,39,18344
69 | 68,-1,buick electra 225 custom,diesel,turbo,four,sedan,rwd,front,110,190.9,70.3,56.5,3515,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,25552
70 | 69,-1,buick century luxus (sw),diesel,turbo,four,wagon,rwd,front,110,190.9,70.3,58.7,3750,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,28248
71 | 70,0,buick century,diesel,turbo,two,hardtop,rwd,front,106.7,187.5,70.3,54.9,3495,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,28176
72 | 71,-1,buick skyhawk,diesel,turbo,four,sedan,rwd,front,115.6,202.6,71.7,56.3,3770,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,31600
73 | 72,-1,buick opel isuzu deluxe,gas,std,four,sedan,rwd,front,115.6,202.6,71.7,56.5,3740,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,34184
74 | 73,3,buick skylark,gas,std,two,convertible,rwd,front,96.6,180.3,70.5,50.8,3685,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,35056
75 | 74,0,buick century special,gas,std,four,sedan,rwd,front,120.9,208.1,71.7,56.7,3900,ohcv,eight,308,mpfi,3.8,3.35,8,184,4500,14,16,40960
76 | 75,1,buick regal sport coupe (turbo),gas,std,two,hardtop,rwd,front,112,199.2,72,55.4,3715,ohcv,eight,304,mpfi,3.8,3.35,8,184,4500,14,16,45400
77 | 76,1,mercury cougar,gas,turbo,two,hatchback,rwd,front,102.7,178.4,68,54.8,2910,ohc,four,140,mpfi,3.78,3.12,8,175,5000,19,24,16503
78 | 77,2,mitsubishi mirage,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1918,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,37,41,5389
79 | 78,2,mitsubishi lancer,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1944,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,6189
80 | 79,2,mitsubishi outlander,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,2004,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,6669
81 | 80,1,mitsubishi g4,gas,turbo,two,hatchback,fwd,front,93,157.3,63.8,50.8,2145,ohc,four,98,spdi,3.03,3.39,7.6,102,5500,24,30,7689
82 | 81,3,mitsubishi mirage g4,gas,turbo,two,hatchback,fwd,front,96.3,173,65.4,49.4,2370,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9959
83 | 82,3,mitsubishi g4,gas,std,two,hatchback,fwd,front,96.3,173,65.4,49.4,2328,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,8499
84 | 83,3,mitsubishi outlander,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2833,ohc,four,156,spdi,3.58,3.86,7,145,5000,19,24,12629
85 | 84,3,mitsubishi g4,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2921,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,14869
86 | 85,3,mitsubishi mirage g4,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2926,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,14489
87 | 86,1,mitsubishi montero,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2365,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,6989
88 | 87,1,mitsubishi pajero,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2405,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,8189
89 | 88,1,mitsubishi outlander,gas,turbo,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9279
90 | 89,-1,mitsubishi mirage g4,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9279
91 | 90,1,Nissan versa,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1889,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,5499
92 | 91,1,nissan gt-r,diesel,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,2017,ohc,four,103,idi,2.99,3.47,21.9,55,4800,45,50,7099
93 | 92,1,nissan rogue,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1918,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,6649
94 | 93,1,nissan latio,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1938,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,6849
95 | 94,1,nissan titan,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2024,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7349
96 | 95,1,nissan leaf,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1951,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7299
97 | 96,1,nissan juke,gas,std,two,hatchback,fwd,front,94.5,165.6,63.8,53.3,2028,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7799
98 | 97,1,nissan latio,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1971,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7499
99 | 98,1,nissan note,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2037,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7999
100 | 99,2,nissan clipper,gas,std,two,hardtop,fwd,front,95.1,162.4,63.8,53.3,2008,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,8249
101 | 100,0,nissan rogue,gas,std,four,hatchback,fwd,front,97.2,173.4,65.2,54.7,2324,ohc,four,120,2bbl,3.33,3.47,8.5,97,5200,27,34,8949
102 | 101,0,nissan nv200,gas,std,four,sedan,fwd,front,97.2,173.4,65.2,54.7,2302,ohc,four,120,2bbl,3.33,3.47,8.5,97,5200,27,34,9549
103 | 102,0,nissan dayz,gas,std,four,sedan,fwd,front,100.4,181.7,66.5,55.1,3095,ohcv,six,181,mpfi,3.43,3.27,9,152,5200,17,22,13499
104 | 103,0,nissan fuga,gas,std,four,wagon,fwd,front,100.4,184.6,66.5,56.1,3296,ohcv,six,181,mpfi,3.43,3.27,9,152,5200,17,22,14399
105 | 104,0,nissan otti,gas,std,four,sedan,fwd,front,100.4,184.6,66.5,55.1,3060,ohcv,six,181,mpfi,3.43,3.27,9,152,5200,19,25,13499
106 | 105,3,nissan teana,gas,std,two,hatchback,rwd,front,91.3,170.7,67.9,49.7,3071,ohcv,six,181,mpfi,3.43,3.27,9,160,5200,19,25,17199
107 | 106,3,nissan kicks,gas,turbo,two,hatchback,rwd,front,91.3,170.7,67.9,49.7,3139,ohcv,six,181,mpfi,3.43,3.27,7.8,200,5200,17,23,19699
108 | 107,1,nissan clipper,gas,std,two,hatchback,rwd,front,99.2,178.5,67.9,49.7,3139,ohcv,six,181,mpfi,3.43,3.27,9,160,5200,19,25,18399
109 | 108,0,peugeot 504,gas,std,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3020,l,four,120,mpfi,3.46,3.19,8.4,97,5000,19,24,11900
110 | 109,0,peugeot 304,diesel,turbo,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3197,l,four,152,idi,3.7,3.52,21,95,4150,28,33,13200
111 | 110,0,peugeot 504 (sw),gas,std,four,wagon,rwd,front,114.2,198.9,68.4,58.7,3230,l,four,120,mpfi,3.46,3.19,8.4,97,5000,19,24,12440
112 | 111,0,peugeot 504,diesel,turbo,four,wagon,rwd,front,114.2,198.9,68.4,58.7,3430,l,four,152,idi,3.7,3.52,21,95,4150,25,25,13860
113 | 112,0,peugeot 504,gas,std,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3075,l,four,120,mpfi,3.46,2.19,8.4,95,5000,19,24,15580
114 | 113,0,peugeot 604sl,diesel,turbo,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3252,l,four,152,idi,3.7,3.52,21,95,4150,28,33,16900
115 | 114,0,peugeot 504,gas,std,four,wagon,rwd,front,114.2,198.9,68.4,56.7,3285,l,four,120,mpfi,3.46,2.19,8.4,95,5000,19,24,16695
116 | 115,0,peugeot 505s turbo diesel,diesel,turbo,four,wagon,rwd,front,114.2,198.9,68.4,58.7,3485,l,four,152,idi,3.7,3.52,21,95,4150,25,25,17075
117 | 116,0,peugeot 504,gas,std,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3075,l,four,120,mpfi,3.46,3.19,8.4,97,5000,19,24,16630
118 | 117,0,peugeot 504,diesel,turbo,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3252,l,four,152,idi,3.7,3.52,21,95,4150,28,33,17950
119 | 118,0,peugeot 604sl,gas,turbo,four,sedan,rwd,front,108,186.7,68.3,56,3130,l,four,134,mpfi,3.61,3.21,7,142,5600,18,24,18150
120 | 119,1,plymouth fury iii,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1918,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,37,41,5572
121 | 120,1,plymouth cricket,gas,turbo,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,2128,ohc,four,98,spdi,3.03,3.39,7.6,102,5500,24,30,7957
122 | 121,1,plymouth fury iii,gas,std,four,hatchback,fwd,front,93.7,157.3,63.8,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6229
123 | 122,1,plymouth satellite custom (sw),gas,std,four,sedan,fwd,front,93.7,167.3,63.8,50.8,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6692
124 | 123,1,plymouth fury gran sedan,gas,std,four,sedan,fwd,front,93.7,167.3,63.8,50.8,2191,ohc,four,98,2bbl,2.97,3.23,9.4,68,5500,31,38,7609
125 | 124,-1,plymouth valiant,gas,std,four,wagon,fwd,front,103.3,174.6,64.6,59.8,2535,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,24,30,8921
126 | 125,3,plymouth duster,gas,turbo,two,hatchback,rwd,front,95.9,173.2,66.3,50.2,2818,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,12764
127 | 126,3,porsche macan,gas,std,two,hatchback,rwd,front,94.5,168.9,68.3,50.2,2778,ohc,four,151,mpfi,3.94,3.11,9.5,143,5500,19,27,22018
128 | 127,3,porcshce panamera,gas,std,two,hardtop,rwd,rear,89.5,168.9,65,51.6,2756,ohcf,six,194,mpfi,3.74,2.9,9.5,207,5900,17,25,32528
129 | 128,3,porsche cayenne,gas,std,two,hardtop,rwd,rear,89.5,168.9,65,51.6,2756,ohcf,six,194,mpfi,3.74,2.9,9.5,207,5900,17,25,34028
130 | 129,3,porsche boxter,gas,std,two,convertible,rwd,rear,89.5,168.9,65,51.6,2800,ohcf,six,194,mpfi,3.74,2.9,9.5,207,5900,17,25,37028
131 | 130,1,porsche cayenne,gas,std,two,hatchback,rwd,front,98.4,175.7,72.3,50.5,3366,dohcv,eight,203,mpfi,3.94,3.11,10,288,5750,17,28,31400.5
132 | 131,0,renault 12tl,gas,std,four,wagon,fwd,front,96.1,181.5,66.5,55.2,2579,ohc,four,132,mpfi,3.46,3.9,8.7,90,5100,23,31,9295
133 | 132,2,renault 5 gtl,gas,std,two,hatchback,fwd,front,96.1,176.8,66.6,50.5,2460,ohc,four,132,mpfi,3.46,3.9,8.7,90,5100,23,31,9895
134 | 133,3,saab 99e,gas,std,two,hatchback,fwd,front,99.1,186.6,66.5,56.1,2658,ohc,four,121,mpfi,3.54,3.07,9.31,110,5250,21,28,11850
135 | 134,2,saab 99le,gas,std,four,sedan,fwd,front,99.1,186.6,66.5,56.1,2695,ohc,four,121,mpfi,3.54,3.07,9.3,110,5250,21,28,12170
136 | 135,3,saab 99le,gas,std,two,hatchback,fwd,front,99.1,186.6,66.5,56.1,2707,ohc,four,121,mpfi,2.54,2.07,9.3,110,5250,21,28,15040
137 | 136,2,saab 99gle,gas,std,four,sedan,fwd,front,99.1,186.6,66.5,56.1,2758,ohc,four,121,mpfi,3.54,3.07,9.3,110,5250,21,28,15510
138 | 137,3,saab 99gle,gas,turbo,two,hatchback,fwd,front,99.1,186.6,66.5,56.1,2808,dohc,four,121,mpfi,3.54,3.07,9,160,5500,19,26,18150
139 | 138,2,saab 99e,gas,turbo,four,sedan,fwd,front,99.1,186.6,66.5,56.1,2847,dohc,four,121,mpfi,3.54,3.07,9,160,5500,19,26,18620
140 | 139,2,subaru,gas,std,two,hatchback,fwd,front,93.7,156.9,63.4,53.7,2050,ohcf,four,97,2bbl,3.62,2.36,9,69,4900,31,36,5118
141 | 140,2,subaru dl,gas,std,two,hatchback,fwd,front,93.7,157.9,63.6,53.7,2120,ohcf,four,108,2bbl,3.62,2.64,8.7,73,4400,26,31,7053
142 | 141,2,subaru dl,gas,std,two,hatchback,4wd,front,93.3,157.3,63.8,55.7,2240,ohcf,four,108,2bbl,3.62,2.64,8.7,73,4400,26,31,7603
143 | 142,0,subaru,gas,std,four,sedan,fwd,front,97.2,172,65.4,52.5,2145,ohcf,four,108,2bbl,3.62,2.64,9.5,82,4800,32,37,7126
144 | 143,0,subaru brz,gas,std,four,sedan,fwd,front,97.2,172,65.4,52.5,2190,ohcf,four,108,2bbl,3.62,2.64,9.5,82,4400,28,33,7775
145 | 144,0,subaru baja,gas,std,four,sedan,fwd,front,97.2,172,65.4,52.5,2340,ohcf,four,108,mpfi,3.62,2.64,9,94,5200,26,32,9960
146 | 145,0,subaru r1,gas,std,four,sedan,4wd,front,97,172,65.4,54.3,2385,ohcf,four,108,2bbl,3.62,2.64,9,82,4800,24,25,9233
147 | 146,0,subaru r2,gas,turbo,four,sedan,4wd,front,97,172,65.4,54.3,2510,ohcf,four,108,mpfi,3.62,2.64,7.7,111,4800,24,29,11259
148 | 147,0,subaru trezia,gas,std,four,wagon,fwd,front,97,173.5,65.4,53,2290,ohcf,four,108,2bbl,3.62,2.64,9,82,4800,28,32,7463
149 | 148,0,subaru tribeca,gas,std,four,wagon,fwd,front,97,173.5,65.4,53,2455,ohcf,four,108,mpfi,3.62,2.64,9,94,5200,25,31,10198
150 | 149,0,subaru dl,gas,std,four,wagon,4wd,front,96.9,173.6,65.4,54.9,2420,ohcf,four,108,2bbl,3.62,2.64,9,82,4800,23,29,8013
151 | 150,0,subaru dl,gas,turbo,four,wagon,4wd,front,96.9,173.6,65.4,54.9,2650,ohcf,four,108,mpfi,3.62,2.64,7.7,111,4800,23,23,11694
152 | 151,1,toyota corona mark ii,gas,std,two,hatchback,fwd,front,95.7,158.7,63.6,54.5,1985,ohc,four,92,2bbl,3.05,3.03,9,62,4800,35,39,5348
153 | 152,1,toyota corona,gas,std,two,hatchback,fwd,front,95.7,158.7,63.6,54.5,2040,ohc,four,92,2bbl,3.05,3.03,9,62,4800,31,38,6338
154 | 153,1,toyota corolla 1200,gas,std,four,hatchback,fwd,front,95.7,158.7,63.6,54.5,2015,ohc,four,92,2bbl,3.05,3.03,9,62,4800,31,38,6488
155 | 154,0,toyota corona hardtop,gas,std,four,wagon,fwd,front,95.7,169.7,63.6,59.1,2280,ohc,four,92,2bbl,3.05,3.03,9,62,4800,31,37,6918
156 | 155,0,toyota corolla 1600 (sw),gas,std,four,wagon,4wd,front,95.7,169.7,63.6,59.1,2290,ohc,four,92,2bbl,3.05,3.03,9,62,4800,27,32,7898
157 | 156,0,toyota carina,gas,std,four,wagon,4wd,front,95.7,169.7,63.6,59.1,3110,ohc,four,92,2bbl,3.05,3.03,9,62,4800,27,32,8778
158 | 157,0,toyota mark ii,gas,std,four,sedan,fwd,front,95.7,166.3,64.4,53,2081,ohc,four,98,2bbl,3.19,3.03,9,70,4800,30,37,6938
159 | 158,0,toyota corolla 1200,gas,std,four,hatchback,fwd,front,95.7,166.3,64.4,52.8,2109,ohc,four,98,2bbl,3.19,3.03,9,70,4800,30,37,7198
160 | 159,0,toyota corona,diesel,std,four,sedan,fwd,front,95.7,166.3,64.4,53,2275,ohc,four,110,idi,3.27,3.35,22.5,56,4500,34,36,7898
161 | 160,0,toyota corolla,diesel,std,four,hatchback,fwd,front,95.7,166.3,64.4,52.8,2275,ohc,four,110,idi,3.27,3.35,22.5,56,4500,38,47,7788
162 | 161,0,toyota corona,gas,std,four,sedan,fwd,front,95.7,166.3,64.4,53,2094,ohc,four,98,2bbl,3.19,3.03,9,70,4800,38,47,7738
163 | 162,0,toyota corolla,gas,std,four,hatchback,fwd,front,95.7,166.3,64.4,52.8,2122,ohc,four,98,2bbl,3.19,3.03,9,70,4800,28,34,8358
164 | 163,0,toyota mark ii,gas,std,four,sedan,fwd,front,95.7,166.3,64.4,52.8,2140,ohc,four,98,2bbl,3.19,3.03,9,70,4800,28,34,9258
165 | 164,1,toyota corolla liftback,gas,std,two,sedan,rwd,front,94.5,168.7,64,52.6,2169,ohc,four,98,2bbl,3.19,3.03,9,70,4800,29,34,8058
166 | 165,1,toyota corona,gas,std,two,hatchback,rwd,front,94.5,168.7,64,52.6,2204,ohc,four,98,2bbl,3.19,3.03,9,70,4800,29,34,8238
167 | 166,1,toyota celica gt liftback,gas,std,two,sedan,rwd,front,94.5,168.7,64,52.6,2265,dohc,four,98,mpfi,3.24,3.08,9.4,112,6600,26,29,9298
168 | 167,1,toyota corolla tercel,gas,std,two,hatchback,rwd,front,94.5,168.7,64,52.6,2300,dohc,four,98,mpfi,3.24,3.08,9.4,112,6600,26,29,9538
169 | 168,2,toyota corona liftback,gas,std,two,hardtop,rwd,front,98.4,176.2,65.6,52,2540,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,8449
170 | 169,2,toyota corolla,gas,std,two,hardtop,rwd,front,98.4,176.2,65.6,52,2536,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,9639
171 | 170,2,toyota starlet,gas,std,two,hatchback,rwd,front,98.4,176.2,65.6,52,2551,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,9989
172 | 171,2,toyota tercel,gas,std,two,hardtop,rwd,front,98.4,176.2,65.6,52,2679,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,11199
173 | 172,2,toyota corolla,gas,std,two,hatchback,rwd,front,98.4,176.2,65.6,52,2714,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,11549
174 | 173,2,toyota cressida,gas,std,two,convertible,rwd,front,98.4,176.2,65.6,53,2975,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,17669
175 | 174,-1,toyota corolla,gas,std,four,sedan,fwd,front,102.4,175.6,66.5,54.9,2326,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,29,34,8948
176 | 175,-1,toyota celica gt,diesel,turbo,four,sedan,fwd,front,102.4,175.6,66.5,54.9,2480,ohc,four,110,idi,3.27,3.35,22.5,73,4500,30,33,10698
177 | 176,-1,toyota corona,gas,std,four,hatchback,fwd,front,102.4,175.6,66.5,53.9,2414,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,27,32,9988
178 | 177,-1,toyota corolla,gas,std,four,sedan,fwd,front,102.4,175.6,66.5,54.9,2414,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,27,32,10898
179 | 178,-1,toyota mark ii,gas,std,four,hatchback,fwd,front,102.4,175.6,66.5,53.9,2458,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,27,32,11248
180 | 179,3,toyota corolla liftback,gas,std,two,hatchback,rwd,front,102.9,183.5,67.7,52,2976,dohc,six,171,mpfi,3.27,3.35,9.3,161,5200,20,24,16558
181 | 180,3,toyota corona,gas,std,two,hatchback,rwd,front,102.9,183.5,67.7,52,3016,dohc,six,171,mpfi,3.27,3.35,9.3,161,5200,19,24,15998
182 | 181,-1,toyota starlet,gas,std,four,sedan,rwd,front,104.5,187.8,66.5,54.1,3131,dohc,six,171,mpfi,3.27,3.35,9.2,156,5200,20,24,15690
183 | 182,-1,toyouta tercel,gas,std,four,wagon,rwd,front,104.5,187.8,66.5,54.1,3151,dohc,six,161,mpfi,3.27,3.35,9.2,156,5200,19,24,15750
184 | 183,2,vokswagen rabbit,diesel,std,two,sedan,fwd,front,97.3,171.7,65.5,55.7,2261,ohc,four,97,idi,3.01,3.4,23,52,4800,37,46,7775
185 | 184,2,volkswagen 1131 deluxe sedan,gas,std,two,sedan,fwd,front,97.3,171.7,65.5,55.7,2209,ohc,four,109,mpfi,3.19,3.4,9,85,5250,27,34,7975
186 | 185,2,volkswagen model 111,diesel,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2264,ohc,four,97,idi,3.01,3.4,23,52,4800,37,46,7995
187 | 186,2,volkswagen type 3,gas,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2212,ohc,four,109,mpfi,3.19,3.4,9,85,5250,27,34,8195
188 | 187,2,volkswagen 411 (sw),gas,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2275,ohc,four,109,mpfi,3.19,3.4,9,85,5250,27,34,8495
189 | 188,2,volkswagen super beetle,diesel,turbo,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2319,ohc,four,97,idi,3.01,3.4,23,68,4500,37,42,9495
190 | 189,2,volkswagen dasher,gas,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2300,ohc,four,109,mpfi,3.19,3.4,10,100,5500,26,32,9995
191 | 190,3,vw dasher,gas,std,two,convertible,fwd,front,94.5,159.3,64.2,55.6,2254,ohc,four,109,mpfi,3.19,3.4,8.5,90,5500,24,29,11595
192 | 191,3,vw rabbit,gas,std,two,hatchback,fwd,front,94.5,165.7,64,51.4,2221,ohc,four,109,mpfi,3.19,3.4,8.5,90,5500,24,29,9980
193 | 192,0,volkswagen rabbit,gas,std,four,sedan,fwd,front,100.4,180.2,66.9,55.1,2661,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,24,13295
194 | 193,0,volkswagen rabbit custom,diesel,turbo,four,sedan,fwd,front,100.4,180.2,66.9,55.1,2579,ohc,four,97,idi,3.01,3.4,23,68,4500,33,38,13845
195 | 194,0,volkswagen dasher,gas,std,four,wagon,fwd,front,100.4,183.1,66.9,55.1,2563,ohc,four,109,mpfi,3.19,3.4,9,88,5500,25,31,12290
196 | 195,-2,volvo 145e (sw),gas,std,four,sedan,rwd,front,104.3,188.8,67.2,56.2,2912,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,23,28,12940
197 | 196,-1,volvo 144ea,gas,std,four,wagon,rwd,front,104.3,188.8,67.2,57.5,3034,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,23,28,13415
198 | 197,-2,volvo 244dl,gas,std,four,sedan,rwd,front,104.3,188.8,67.2,56.2,2935,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,24,28,15985
199 | 198,-1,volvo 245,gas,std,four,wagon,rwd,front,104.3,188.8,67.2,57.5,3042,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,24,28,16515
200 | 199,-2,volvo 264gl,gas,turbo,four,sedan,rwd,front,104.3,188.8,67.2,56.2,3045,ohc,four,130,mpfi,3.62,3.15,7.5,162,5100,17,22,18420
201 | 200,-1,volvo diesel,gas,turbo,four,wagon,rwd,front,104.3,188.8,67.2,57.5,3157,ohc,four,130,mpfi,3.62,3.15,7.5,162,5100,17,22,18950
202 | 201,-1,volvo 145e (sw),gas,std,four,sedan,rwd,front,109.1,188.8,68.9,55.5,2952,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,23,28,16845
203 | 202,-1,volvo 144ea,gas,turbo,four,sedan,rwd,front,109.1,188.8,68.8,55.5,3049,ohc,four,141,mpfi,3.78,3.15,8.7,160,5300,19,25,19045
204 | 203,-1,volvo 244dl,gas,std,four,sedan,rwd,front,109.1,188.8,68.9,55.5,3012,ohcv,six,173,mpfi,3.58,2.87,8.8,134,5500,18,23,21485
205 | 204,-1,volvo 246,diesel,turbo,four,sedan,rwd,front,109.1,188.8,68.9,55.5,3217,ohc,six,145,idi,3.01,3.4,23,106,4800,26,27,22470
206 | 205,-1,volvo 264gl,gas,turbo,four,sedan,rwd,front,109.1,188.8,68.9,55.5,3062,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,19,25,22625
207 |
--------------------------------------------------------------------------------
/Code-and-Data-Files/Car_sales.csv:
--------------------------------------------------------------------------------
1 | Sales_in_thousands,Resale_value,Vehicle_type,Price_in_thousands,Engine_size,Horsepower,Wheelbase,Width,Length,Curb_weight,Fuel_capacity,Fuel_efficiency,Power_perf_factor
2 | 16.919,16.36,Passenger,21.5,1.8,140,101.2,67.3,172.4,2.639,13.2,28,58.28014952
3 | 39.384,19.875,Passenger,28.4,3.2,225,108.1,70.3,192.9,3.517,17.2,25,91.37077766
4 | 14.114,18.225,Passenger,,3.2,225,106.9,70.6,192,3.47,17.2,26,
5 | 8.588,29.725,Passenger,42,3.5,210,114.6,71.4,196.6,3.85,18,22,91.38977933
6 | 20.397,22.255,Passenger,23.99,1.8,150,102.6,68.2,178,2.998,16.4,27,62.7776392
7 | 18.78,23.555,Passenger,33.95,2.8,200,108.7,76.1,192,3.561,18.5,22,84.56510502
8 | 1.38,39,Passenger,62,4.2,310,113,74,198.2,3.902,23.7,21,134.6568582
9 | 19.747,,Passenger,26.99,2.5,170,107.3,68.4,176,3.179,16.6,26,71.19120671
10 | 9.231,28.675,Passenger,33.4,2.8,193,107.3,68.5,176,3.197,16.6,24,81.87706856
11 | 17.527,36.125,Passenger,38.9,2.8,193,111.4,70.9,188,3.472,18.5,25,83.9987238
12 | 91.561,12.475,Passenger,21.975,3.1,175,109,72.7,194.6,3.368,17.5,25,71.18145132
13 | 39.35,13.74,Passenger,25.3,3.8,240,109,72.7,196.2,3.543,17.5,23,95.63670253
14 | 27.851,20.19,Passenger,31.965,3.8,205,113.8,74.7,206.8,3.778,18.5,24,85.82840825
15 | 83.257,13.36,Passenger,27.885,3.8,205,112.2,73.5,200,3.591,17.5,25,84.25452581
16 | 63.729,22.525,Passenger,39.895,4.6,275,115.3,74.5,207.2,3.978,18.5,22,113.8545976
17 | 15.943,27.1,Passenger,44.475,4.6,275,112.2,75,201,,18.5,22,115.6213578
18 | 6.536,25.725,Passenger,39.665,4.6,275,108,75.5,200.6,3.843,19,22,113.7658739
19 | 11.185,18.225,Passenger,31.01,3,200,107.4,70.3,194.8,3.77,18,22,83.48309358
20 | 14.785,,Car,46.225,5.7,255,117.5,77,201.2,5.572,30,15,109.5091165
21 | 145.519,9.25,Passenger,13.26,2.2,115,104.1,67.9,180.9,2.676,14.3,27,46.36334747
22 | 135.126,11.225,Passenger,16.535,3.1,170,107,69.4,190.4,3.051,15,25,67.31446216
23 | 24.629,10.31,Passenger,18.89,3.1,175,107.5,72.5,200.9,3.33,16.6,25,69.9913956
24 | 42.593,11.525,Passenger,19.39,3.4,180,110.5,72.7,197.9,3.34,17,27,72.03091719
25 | 26.402,13.025,Passenger,24.34,3.8,200,101.1,74.1,193.2,3.5,16.8,25,81.11854333
26 | 17.947,36.225,Passenger,45.705,5.7,345,104.5,73.6,179.7,3.21,19.1,22,141.14115
27 | 32.299,9.125,Passenger,13.96,1.8,120,97.1,66.7,174.3,2.398,13.2,33,48.2976361
28 | 21.855,5.16,Passenger,9.235,1,55,93.1,62.6,149.4,1.895,10.3,45,23.27627233
29 | 107.995,,Passenger,18.89,3.4,180,110.5,73,200,3.389,17,27,71.83803944
30 | 7.854,12.36,Passenger,19.84,2.5,163,103.7,69.7,190.9,2.967,15.9,24,65.95718396
31 | 32.775,14.18,Passenger,24.495,2.5,168,106,69.2,193,3.332,16,24,69.52135505
32 | 31.148,13.725,Passenger,22.245,2.7,200,113,74.4,209.1,3.452,17,26,80.02378204
33 | 32.306,12.64,Passenger,16.48,2,132,108,71,186,2.911,16,27,53.56619987
34 | 13.462,17.325,Passenger,28.34,3.5,253,113,74.4,207.7,3.564,17,23,101.3292807
35 | 53.48,19.54,Car,,,,,,,,,,
36 | 30.696,,Passenger,29.185,3.5,253,113,74.4,197.8,3.567,17,23,101.6552441
37 | 76.034,7.75,Passenger,12.64,2,132,105,74.4,174.4,2.567,12.5,29,52.08489875
38 | 4.734,12.545,Passenger,19.045,2.5,163,103.7,69.1,190.2,2.879,15.9,24,65.65050834
39 | 71.186,10.185,Passenger,20.23,2.5,168,108,71,186,3.058,16,24,67.87610784
40 | 88.028,12.275,Passenger,22.505,2.7,202,113,74.7,203.7,3.489,17,,80.83147017
41 | 0.916,58.47,Passenger,69.725,8,450,96.2,75.7,176.7,3.375,19,16,188.144323
42 | 227.061,15.06,Car,19.46,5.2,230,138.7,79.3,224.2,4.47,26,17,90.21170005
43 | 16.767,15.51,Car,21.315,3.9,175,109.6,78.8,192.6,4.245,32,15,71.13529161
44 | 31.038,13.425,Car,18.575,3.9,175,127.2,78.8,208.5,4.298,32,16,70.07832154
45 | 111.313,11.26,Car,16.98,2.5,120,131,71.5,215,3.557,22,19,49.64500177
46 | 101.323,,Car,26.31,5.2,230,115.7,71.7,193.5,4.394,25,17,92.85412522
47 | 181.749,12.025,Car,19.565,2.4,150,113.3,76.8,186.3,3.533,20,24,61.22700031
48 | 70.227,7.425,Passenger,12.07,2,110,98.4,67,174.7,2.468,12.7,30,44.08370946
49 | 113.369,12.76,Passenger,21.56,3.8,190,101.3,73.1,183.2,3.203,15.7,24,76.50918456
50 | 35.068,8.835,Passenger,17.035,2.5,170,106.5,69.1,184.6,2.769,15,25,67.35101072
51 | 245.815,10.055,Passenger,17.885,3,155,108.5,73,197.6,3.368,16,24,62.5037395
52 | 175.67,,Passenger,12.315,2,107,103,66.9,174.8,2.564,13.2,30,43.11713201
53 | 63.403,14.21,Passenger,22.195,4.6,200,114.7,78.2,212,3.908,19,21,80.49953671
54 | 276.747,16.64,Car,31.93,4,210,111.6,70.2,190.7,3.876,21,19,87.63549578
55 | 155.787,13.175,Car,21.41,3,150,120.7,76.6,200.9,3.761,26,21,62.09504839
56 | 125.338,23.575,Car,36.135,4.6,240,119,78.7,204.6,4.808,26,16,100.0248023
57 | 220.65,7.85,Car,12.05,2.5,119,117.5,69.4,200.7,3.086,20,23,47.38953131
58 | 540.561,15.075,Car,26.935,4.6,220,138.5,79.1,224.5,4.241,25.1,18,89.40193473
59 | 199.685,9.85,Passenger,12.885,1.6,106,103.2,67.1,175.1,2.339,11.9,32,42.87909734
60 | 230.902,13.21,Passenger,15.35,2.3,135,106.9,70.3,188.8,2.932,17.1,27,54.26954829
61 | 73.203,17.71,Car,20.55,2,146,103.2,68.9,177.6,3.219,15.3,24,60.08796662
62 | 12.855,17.525,Car,26.6,3.2,205,106.4,70.4,178.2,3.857,21.1,19,83.6025008
63 | 76.029,19.49,Car,26,3.5,210,118.1,75.6,201.2,4.288,20,23,85.21769134
64 | 41.184,5.86,Passenger,9.699,1.5,92,96.1,65.7,166.7,2.24,11.9,31,36.67228358
65 | 66.692,7.825,Passenger,11.799,2,140,100.4,66.9,174,2.626,14.5,27,54.59004516
66 | 29.45,8.91,Passenger,14.999,2.4,148,106.3,71.6,185.4,3.072,17.2,25,58.758249
67 | 23.713,19.69,Passenger,29.465,3,227,108.3,70.2,193.7,3.342,18.5,25,92.43688923
68 | 15.467,,Passenger,42.8,3,240,114.5,71.6,191.3,3.65,18.4,21,102.1789848
69 | 55.557,13.475,Car,14.46,2.5,120,93.4,66.7,152,3.045,19,17,48.67289791
70 | 80.556,13.775,Car,21.62,4,190,101.4,69.4,167.5,3.194,20,20,76.58443962
71 | 157.04,18.81,Car,26.895,4,195,105.9,72.3,181.5,3.88,20.5,19,80.38777912
72 | 24.072,26.975,Passenger,31.505,3,210,105.1,70.5,190.2,3.373,18.5,23,87.21100104
73 | 12.698,32.075,Passenger,37.805,3,225,110.2,70.9,189.2,3.638,19.8,23,94.9466984
74 | 3.334,,Passenger,46.305,4,300,110.2,70.9,189.2,3.693,19.8,21,125.0133574
75 | 6.375,40.375,Passenger,54.005,4,290,112.2,72,196.7,3.89,22.5,22,124.4467163
76 | 9.126,,Car,60.105,4.7,230,112.2,76.4,192.5,5.401,25.4,15,105.760458
77 | 51.238,,Car,34.605,3,220,103,71.5,180.1,3.9,17.2,21,91.94380156
78 | 13.798,20.525,Passenger,39.08,4.6,275,109,73.6,208.5,3.868,20,22,113.5402069
79 | 48.911,21.725,Passenger,43.33,4.6,215,117.7,78.2,215.3,4.121,19,21,93.9579169
80 | 22.925,,Car,42.66,5.4,300,119,79.9,204.8,5.393,30,15,123.9720467
81 | 26.232,8.325,Passenger,13.987,1.8,113,98.4,66.5,173.6,2.25,13.2,30,45.83218056
82 | 42.541,10.395,Passenger,19.047,2.4,154,100.8,68.9,175.4,2.91,15.9,24,62.44196235
83 | 55.616,10.595,Passenger,17.357,2.4,145,103.7,68.5,187.8,2.945,16.3,25,58.60677292
84 | 5.711,16.575,Passenger,24.997,3.5,210,107.1,70.3,194.1,3.443,19,22,84.83077858
85 | 0.11,20.94,Passenger,25.45,3,161,97.2,72.4,180.3,3.131,19.8,21,67.54415494
86 | 11.337,19.125,Car,31.807,3.5,200,107.3,69.9,186.6,4.52,24.3,18,83.92081504
87 | 39.348,13.88,Car,22.527,3,173,107.3,66.7,178.3,3.51,19.5,20,70.66094179
88 | 14.351,8.8,Passenger,16.24,2,125,106.5,69.1,184.8,2.769,15,28,50.99774761
89 | 26.529,13.89,Passenger,16.54,2,125,106.4,69.6,185,2.892,16,30,51.11347426
90 | 67.956,11.03,Passenger,19.035,3,153,108.5,73,199.7,3.379,16,24,62.23996663
91 | 81.174,14.875,Passenger,22.605,4.6,200,114.7,78.2,212,3.958,19,21,80.65769646
92 | 27.609,20.43,Car,27.56,4,210,111.6,70.2,190.1,3.876,21,18,85.94974425
93 | 20.38,14.795,Car,22.51,3.3,170,112.2,74.9,194.7,3.944,20,21,69.671461
94 | 18.392,26.05,Passenger,31.75,2.3,185,105.9,67.7,177.4,3.25,16.4,26,78.28073088
95 | 27.602,41.45,Passenger,49.9,3.2,221,111.5,70.8,189.4,3.823,21.1,25,98.2497375
96 | 16.774,50.375,Passenger,69.7,4.3,275,121.5,73.1,203.1,4.133,23.2,21,125.2738757
97 | 3.311,58.6,Passenger,82.6,5,302,99,71.3,177.1,4.125,21.1,20,139.9822936
98 | 7.998,,Passenger,38.9,2.3,190,94.5,67.5,157.9,3.055,15.9,26,82.80736193
99 | 1.526,,Passenger,41,2.3,185,94.5,67.5,157.3,2.975,14,27,81.84896924
100 | 11.592,,Passenger,41.6,3.2,215,105.9,67.8,180.3,3.213,16.4,26,92.92579177
101 | 0.954,,Passenger,85.5,5,302,113.6,73.1,196.6,4.115,23.2,20,141.1009845
102 | 28.976,,Car,35.3,3.2,215,111,72.2,180.6,4.387,19,20,90.49553213
103 | 42.643,8.45,Passenger,13.499,1.8,126,99.8,67.3,177.5,2.593,13.2,30,50.24197791
104 | 88.094,11.295,Passenger,20.39,2.4,155,103.1,69.1,183.5,3.012,15.9,25,63.31372783
105 | 79.853,15.125,Passenger,26.249,3,222,108.3,70.3,190.5,3.294,18.5,25,89.42782031
106 | 27.308,15.38,Car,26.399,3.3,170,112.2,74.9,194.8,3.991,20,21,71.17166413
107 | 42.574,17.81,Car,29.299,3.3,170,106.3,71.7,182.6,3.947,21,19,72.29035508
108 | 54.158,,Car,22.799,3.3,170,104.3,70.4,178,3.821,19.4,18,69.78294434
109 | 65.005,,Car,17.89,3.3,170,116.1,66.5,196.1,3.217,19.4,18,67.88927059
110 | 1.112,11.24,Passenger,18.145,3.1,150,107,69.4,192,3.102,15.2,25,60.86161155
111 | 38.554,,Passenger,24.15,3.5,215,109,73.6,195.9,3.455,18,,86.27252291
112 | 80.255,,Passenger,18.27,2.4,150,107,70.1,186.7,2.958,15,27,60.72744693
113 | 14.69,19.89,Passenger,36.229,4,250,113.8,74.4,205.4,3.967,18.5,22,103.4416926
114 | 20.017,19.925,Car,31.598,4.3,190,107,67.8,181.2,4.068,17.5,19,80.51167259
115 | 24.361,15.24,Car,25.345,3.4,185,120,72.2,201.4,3.948,25,22,76.09657042
116 | 32.734,7.75,Passenger,12.64,2,132,105,74.4,174.4,2.559,12.5,29,52.08489875
117 | 5.24,9.8,Passenger,16.08,2,132,108,71,186.3,2.942,16,27,53.41189767
118 | 24.155,12.025,Car,18.85,2.4,150,113.3,76.8,186.3,3.528,20,24,60.95118512
119 | 1.872,,Passenger,43,3.5,253,113.3,76.3,165.4,2.85,12,21,106.9844563
120 | 51.645,13.79,Passenger,21.61,2.4,150,104.1,68.4,181.9,2.906,15,27,62.0158703
121 | 131.097,10.29,Passenger,19.72,3.4,175,107,70.4,186.3,3.091,15.2,25,70.38973726
122 | 19.911,17.805,Passenger,25.31,3.8,200,101.1,74.5,193.4,3.492,16.8,25,81.49272616
123 | 92.364,14.01,Passenger,21.665,3.8,195,110.5,72.7,196.5,3.396,18,25,78.31816813
124 | 35.945,13.225,Passenger,23.755,3.8,205,112.2,72.6,202.5,3.59,17.5,24,82.6613556
125 | 39.572,,Car,25.635,3.4,185,120,72.7,201.3,3.942,25,23,76.20843952
126 | 8.982,41.25,Passenger,41.43,2.7,217,95.2,70.1,171,2.778,17,22,93.4373307
127 | 1.28,60.625,Passenger,71.02,3.4,300,92.6,69.5,174.5,3.032,17,21,134.3909754
128 | 1.866,67.55,Passenger,74.97,3.4,300,92.6,69.5,174.5,3.075,17,23,135.9147096
129 | 9.191,,Passenger,33.12,2.3,170,106.4,70.6,189.2,3.28,18.5,23,73.50377819
130 | 12.115,,Passenger,26.1,2,185,102.6,67.4,182.2,2.99,16.9,23,76.02304771
131 | 80.62,9.2,Passenger,10.685,1.9,100,102.4,66.4,176.9,2.332,12.1,33,39.98642475
132 | 24.546,10.59,Passenger,12.535,1.9,100,102.4,66.4,180,2.367,12.1,33,40.70007242
133 | 5.223,10.79,Passenger,14.29,1.9,124,102.4,66.4,176.9,2.452,12.1,31,49.86577367
134 | 8.472,,Passenger,18.835,2.2,137,106.5,69,190.4,3.075,13.1,27,56.29524304
135 | 49.989,,Passenger,15.01,2.2,137,106.5,69,190.4,2.91,13.1,28,54.81972825
136 | 47.107,,Passenger,22.695,2.5,165,103.5,67.5,185.8,3.415,16.9,25,67.7659076
137 | 33.028,,Car,20.095,2.5,165,99.4,68.3,175.2,3.125,15.9,24,66.76294331
138 | 142.535,10.025,Passenger,13.108,1.8,120,97,66.7,174,2.42,13.2,33,47.96897242
139 | 247.994,13.245,Passenger,17.518,2.2,133,105.2,70.1,188.5,2.998,18.5,27,54.37241965
140 | 63.849,18.14,Passenger,25.545,3,210,107.1,71.7,191.9,3.417,18.5,26,84.91189826
141 | 33.269,15.445,Passenger,16.875,1.8,140,102.4,68.3,170.5,2.425,14.5,31,56.49603034
142 | 84.087,9.575,Car,11.528,2.4,142,103.3,66.5,178.7,2.58,15.1,23,55.29711658
143 | 65.119,,Car,22.368,3,194,114.2,73.4,193.5,3.759,20.9,22,78.02721947
144 | 25.106,13.325,Car,16.888,2,127,94.9,66.7,163.8,2.668,15.3,27,51.95510887
145 | 68.411,19.425,Car,22.288,2.7,150,105.3,66.5,183.3,3.44,18.5,23,62.35557713
146 | 9.835,34.08,Car,51.728,4.7,230,112.2,76.4,192.5,5.115,25.4,15,102.5289842
147 | 9.761,11.425,Passenger,14.9,2,115,98.9,68.3,163.3,2.767,14.5,26,46.94387676
148 | 83.721,13.24,Passenger,16.7,2,115,98.9,68.3,172.3,2.853,14.5,26,47.63823666
149 | 51.102,16.725,Passenger,21.2,1.8,150,106.4,68.5,184.1,3.043,16.4,27,61.70138136
150 | 9.569,16.575,Passenger,19.99,2,115,97.4,66.7,160.4,3.079,13.7,26,48.90737225
151 | 5.596,13.76,Passenger,17.5,2,115,98.9,68.3,163.3,2.762,14.6,26,47.94684106
152 | 49.463,,Passenger,15.9,2,115,98.9,67.9,161.1,2.769,14.5,26,47.32963226
153 | 16.957,,Passenger,23.4,1.9,160,100.5,67.6,176.6,2.998,15.8,25,66.1130568
154 | 3.545,,Passenger,24.4,1.9,160,100.5,67.6,176.6,3.042,15.8,25,66.4988123
155 | 15.245,,Passenger,27.5,2.4,168,104.9,69.3,185.9,3.208,17.9,25,70.65449545
156 | 17.531,,Passenger,28.8,2.4,168,104.9,69.3,186.2,3.259,17.9,25,71.1559776
157 | 3.493,,Passenger,45.5,2.3,236,104.9,71.5,185.7,3.601,18.5,23,101.6233572
158 | 18.969,,Passenger,36,2.9,201,109.9,72.1,189.8,3.6,21.1,24,85.73565451
159 |
--------------------------------------------------------------------------------
/Code-and-Data-Files/Car_sales.xls:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PacktPublishing/Mastering-Machine-Learning-Algorithms-using-Python/6f954531e9a1e8fb31f27323cecdfe71578a87c1/Code-and-Data-Files/Car_sales.xls
--------------------------------------------------------------------------------
/Code-and-Data-Files/Employee-Attrition-using-Naive-Bayes.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
7 | "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5"
8 | },
9 | "source": [
10 | "## Employee Attrition Prediction using Naive Bayes "
11 | ]
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "metadata": {},
16 | "source": [
17 | "### Problem Statement:\n",
18 | "We have historical Employee Data with a number of features about each employee. The ask from the organisation is to predict whether or not an Employee, given it's attributes values, will attrite or not. "
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 1,
24 | "metadata": {},
25 | "outputs": [],
26 | "source": [
27 | "import numpy as np\n",
28 | "import pandas as pd\n",
29 | "import matplotlib.pyplot as plt \n",
30 | "import seaborn as sns\n",
31 | "import warnings\n",
32 | "warnings.filterwarnings('ignore')"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "metadata": {},
38 | "source": [
39 | "### Import Employee Data into a DataFrame"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": 2,
45 | "metadata": {
46 | "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0",
47 | "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a"
48 | },
49 | "outputs": [],
50 | "source": [
51 | "df = pd.read_csv(\"HR-Employee-Attrition.csv\")"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 3,
57 | "metadata": {},
58 | "outputs": [
59 | {
60 | "data": {
61 | "text/html": [
62 | "
\n",
63 | "\n",
76 | "
\n",
77 | " \n",
78 | " \n",
79 | " | \n",
80 | " Age | \n",
81 | " Attrition | \n",
82 | " BusinessTravel | \n",
83 | " DailyRate | \n",
84 | " Department | \n",
85 | " DistanceFromHome | \n",
86 | " Education | \n",
87 | " EducationField | \n",
88 | " EmployeeCount | \n",
89 | " EmployeeNumber | \n",
90 | " ... | \n",
91 | " RelationshipSatisfaction | \n",
92 | " StandardHours | \n",
93 | " StockOptionLevel | \n",
94 | " TotalWorkingYears | \n",
95 | " TrainingTimesLastYear | \n",
96 | " WorkLifeBalance | \n",
97 | " YearsAtCompany | \n",
98 | " YearsInCurrentRole | \n",
99 | " YearsSinceLastPromotion | \n",
100 | " YearsWithCurrManager | \n",
101 | "
\n",
102 | " \n",
103 | " \n",
104 | " \n",
105 | " 0 | \n",
106 | " 41 | \n",
107 | " Yes | \n",
108 | " Travel_Rarely | \n",
109 | " 1102 | \n",
110 | " Sales | \n",
111 | " 1 | \n",
112 | " 2 | \n",
113 | " Life Sciences | \n",
114 | " 1 | \n",
115 | " 1 | \n",
116 | " ... | \n",
117 | " 1 | \n",
118 | " 80 | \n",
119 | " 0 | \n",
120 | " 8 | \n",
121 | " 0 | \n",
122 | " 1 | \n",
123 | " 6 | \n",
124 | " 4 | \n",
125 | " 0 | \n",
126 | " 5 | \n",
127 | "
\n",
128 | " \n",
129 | " 1 | \n",
130 | " 49 | \n",
131 | " No | \n",
132 | " Travel_Frequently | \n",
133 | " 279 | \n",
134 | " Research & Development | \n",
135 | " 8 | \n",
136 | " 1 | \n",
137 | " Life Sciences | \n",
138 | " 1 | \n",
139 | " 2 | \n",
140 | " ... | \n",
141 | " 4 | \n",
142 | " 80 | \n",
143 | " 1 | \n",
144 | " 10 | \n",
145 | " 3 | \n",
146 | " 3 | \n",
147 | " 10 | \n",
148 | " 7 | \n",
149 | " 1 | \n",
150 | " 7 | \n",
151 | "
\n",
152 | " \n",
153 | " 2 | \n",
154 | " 37 | \n",
155 | " Yes | \n",
156 | " Travel_Rarely | \n",
157 | " 1373 | \n",
158 | " Research & Development | \n",
159 | " 2 | \n",
160 | " 2 | \n",
161 | " Other | \n",
162 | " 1 | \n",
163 | " 4 | \n",
164 | " ... | \n",
165 | " 2 | \n",
166 | " 80 | \n",
167 | " 0 | \n",
168 | " 7 | \n",
169 | " 3 | \n",
170 | " 3 | \n",
171 | " 0 | \n",
172 | " 0 | \n",
173 | " 0 | \n",
174 | " 0 | \n",
175 | "
\n",
176 | " \n",
177 | " 3 | \n",
178 | " 33 | \n",
179 | " No | \n",
180 | " Travel_Frequently | \n",
181 | " 1392 | \n",
182 | " Research & Development | \n",
183 | " 3 | \n",
184 | " 4 | \n",
185 | " Life Sciences | \n",
186 | " 1 | \n",
187 | " 5 | \n",
188 | " ... | \n",
189 | " 3 | \n",
190 | " 80 | \n",
191 | " 0 | \n",
192 | " 8 | \n",
193 | " 3 | \n",
194 | " 3 | \n",
195 | " 8 | \n",
196 | " 7 | \n",
197 | " 3 | \n",
198 | " 0 | \n",
199 | "
\n",
200 | " \n",
201 | " 4 | \n",
202 | " 27 | \n",
203 | " No | \n",
204 | " Travel_Rarely | \n",
205 | " 591 | \n",
206 | " Research & Development | \n",
207 | " 2 | \n",
208 | " 1 | \n",
209 | " Medical | \n",
210 | " 1 | \n",
211 | " 7 | \n",
212 | " ... | \n",
213 | " 4 | \n",
214 | " 80 | \n",
215 | " 1 | \n",
216 | " 6 | \n",
217 | " 3 | \n",
218 | " 3 | \n",
219 | " 2 | \n",
220 | " 2 | \n",
221 | " 2 | \n",
222 | " 2 | \n",
223 | "
\n",
224 | " \n",
225 | " ... | \n",
226 | " ... | \n",
227 | " ... | \n",
228 | " ... | \n",
229 | " ... | \n",
230 | " ... | \n",
231 | " ... | \n",
232 | " ... | \n",
233 | " ... | \n",
234 | " ... | \n",
235 | " ... | \n",
236 | " ... | \n",
237 | " ... | \n",
238 | " ... | \n",
239 | " ... | \n",
240 | " ... | \n",
241 | " ... | \n",
242 | " ... | \n",
243 | " ... | \n",
244 | " ... | \n",
245 | " ... | \n",
246 | " ... | \n",
247 | "
\n",
248 | " \n",
249 | " 1465 | \n",
250 | " 36 | \n",
251 | " No | \n",
252 | " Travel_Frequently | \n",
253 | " 884 | \n",
254 | " Research & Development | \n",
255 | " 23 | \n",
256 | " 2 | \n",
257 | " Medical | \n",
258 | " 1 | \n",
259 | " 2061 | \n",
260 | " ... | \n",
261 | " 3 | \n",
262 | " 80 | \n",
263 | " 1 | \n",
264 | " 17 | \n",
265 | " 3 | \n",
266 | " 3 | \n",
267 | " 5 | \n",
268 | " 2 | \n",
269 | " 0 | \n",
270 | " 3 | \n",
271 | "
\n",
272 | " \n",
273 | " 1466 | \n",
274 | " 39 | \n",
275 | " No | \n",
276 | " Travel_Rarely | \n",
277 | " 613 | \n",
278 | " Research & Development | \n",
279 | " 6 | \n",
280 | " 1 | \n",
281 | " Medical | \n",
282 | " 1 | \n",
283 | " 2062 | \n",
284 | " ... | \n",
285 | " 1 | \n",
286 | " 80 | \n",
287 | " 1 | \n",
288 | " 9 | \n",
289 | " 5 | \n",
290 | " 3 | \n",
291 | " 7 | \n",
292 | " 7 | \n",
293 | " 1 | \n",
294 | " 7 | \n",
295 | "
\n",
296 | " \n",
297 | " 1467 | \n",
298 | " 27 | \n",
299 | " No | \n",
300 | " Travel_Rarely | \n",
301 | " 155 | \n",
302 | " Research & Development | \n",
303 | " 4 | \n",
304 | " 3 | \n",
305 | " Life Sciences | \n",
306 | " 1 | \n",
307 | " 2064 | \n",
308 | " ... | \n",
309 | " 2 | \n",
310 | " 80 | \n",
311 | " 1 | \n",
312 | " 6 | \n",
313 | " 0 | \n",
314 | " 3 | \n",
315 | " 6 | \n",
316 | " 2 | \n",
317 | " 0 | \n",
318 | " 3 | \n",
319 | "
\n",
320 | " \n",
321 | " 1468 | \n",
322 | " 49 | \n",
323 | " No | \n",
324 | " Travel_Frequently | \n",
325 | " 1023 | \n",
326 | " Sales | \n",
327 | " 2 | \n",
328 | " 3 | \n",
329 | " Medical | \n",
330 | " 1 | \n",
331 | " 2065 | \n",
332 | " ... | \n",
333 | " 4 | \n",
334 | " 80 | \n",
335 | " 0 | \n",
336 | " 17 | \n",
337 | " 3 | \n",
338 | " 2 | \n",
339 | " 9 | \n",
340 | " 6 | \n",
341 | " 0 | \n",
342 | " 8 | \n",
343 | "
\n",
344 | " \n",
345 | " 1469 | \n",
346 | " 34 | \n",
347 | " No | \n",
348 | " Travel_Rarely | \n",
349 | " 628 | \n",
350 | " Research & Development | \n",
351 | " 8 | \n",
352 | " 3 | \n",
353 | " Medical | \n",
354 | " 1 | \n",
355 | " 2068 | \n",
356 | " ... | \n",
357 | " 1 | \n",
358 | " 80 | \n",
359 | " 0 | \n",
360 | " 6 | \n",
361 | " 3 | \n",
362 | " 4 | \n",
363 | " 4 | \n",
364 | " 3 | \n",
365 | " 1 | \n",
366 | " 2 | \n",
367 | "
\n",
368 | " \n",
369 | "
\n",
370 | "
1470 rows × 35 columns
\n",
371 | "
"
372 | ],
373 | "text/plain": [
374 | " Age Attrition BusinessTravel DailyRate Department \\\n",
375 | "0 41 Yes Travel_Rarely 1102 Sales \n",
376 | "1 49 No Travel_Frequently 279 Research & Development \n",
377 | "2 37 Yes Travel_Rarely 1373 Research & Development \n",
378 | "3 33 No Travel_Frequently 1392 Research & Development \n",
379 | "4 27 No Travel_Rarely 591 Research & Development \n",
380 | "... ... ... ... ... ... \n",
381 | "1465 36 No Travel_Frequently 884 Research & Development \n",
382 | "1466 39 No Travel_Rarely 613 Research & Development \n",
383 | "1467 27 No Travel_Rarely 155 Research & Development \n",
384 | "1468 49 No Travel_Frequently 1023 Sales \n",
385 | "1469 34 No Travel_Rarely 628 Research & Development \n",
386 | "\n",
387 | " DistanceFromHome Education EducationField EmployeeCount \\\n",
388 | "0 1 2 Life Sciences 1 \n",
389 | "1 8 1 Life Sciences 1 \n",
390 | "2 2 2 Other 1 \n",
391 | "3 3 4 Life Sciences 1 \n",
392 | "4 2 1 Medical 1 \n",
393 | "... ... ... ... ... \n",
394 | "1465 23 2 Medical 1 \n",
395 | "1466 6 1 Medical 1 \n",
396 | "1467 4 3 Life Sciences 1 \n",
397 | "1468 2 3 Medical 1 \n",
398 | "1469 8 3 Medical 1 \n",
399 | "\n",
400 | " EmployeeNumber ... RelationshipSatisfaction StandardHours \\\n",
401 | "0 1 ... 1 80 \n",
402 | "1 2 ... 4 80 \n",
403 | "2 4 ... 2 80 \n",
404 | "3 5 ... 3 80 \n",
405 | "4 7 ... 4 80 \n",
406 | "... ... ... ... ... \n",
407 | "1465 2061 ... 3 80 \n",
408 | "1466 2062 ... 1 80 \n",
409 | "1467 2064 ... 2 80 \n",
410 | "1468 2065 ... 4 80 \n",
411 | "1469 2068 ... 1 80 \n",
412 | "\n",
413 | " StockOptionLevel TotalWorkingYears TrainingTimesLastYear \\\n",
414 | "0 0 8 0 \n",
415 | "1 1 10 3 \n",
416 | "2 0 7 3 \n",
417 | "3 0 8 3 \n",
418 | "4 1 6 3 \n",
419 | "... ... ... ... \n",
420 | "1465 1 17 3 \n",
421 | "1466 1 9 5 \n",
422 | "1467 1 6 0 \n",
423 | "1468 0 17 3 \n",
424 | "1469 0 6 3 \n",
425 | "\n",
426 | " WorkLifeBalance YearsAtCompany YearsInCurrentRole \\\n",
427 | "0 1 6 4 \n",
428 | "1 3 10 7 \n",
429 | "2 3 0 0 \n",
430 | "3 3 8 7 \n",
431 | "4 3 2 2 \n",
432 | "... ... ... ... \n",
433 | "1465 3 5 2 \n",
434 | "1466 3 7 7 \n",
435 | "1467 3 6 2 \n",
436 | "1468 2 9 6 \n",
437 | "1469 4 4 3 \n",
438 | "\n",
439 | " YearsSinceLastPromotion YearsWithCurrManager \n",
440 | "0 0 5 \n",
441 | "1 1 7 \n",
442 | "2 0 0 \n",
443 | "3 3 0 \n",
444 | "4 2 2 \n",
445 | "... ... ... \n",
446 | "1465 0 3 \n",
447 | "1466 1 7 \n",
448 | "1467 0 3 \n",
449 | "1468 0 8 \n",
450 | "1469 1 2 \n",
451 | "\n",
452 | "[1470 rows x 35 columns]"
453 | ]
454 | },
455 | "execution_count": 3,
456 | "metadata": {},
457 | "output_type": "execute_result"
458 | }
459 | ],
460 | "source": [
461 | "df"
462 | ]
463 | },
464 | {
465 | "cell_type": "code",
466 | "execution_count": 4,
467 | "metadata": {},
468 | "outputs": [
469 | {
470 | "name": "stdout",
471 | "output_type": "stream",
472 | "text": [
473 | "\n",
474 | "RangeIndex: 1470 entries, 0 to 1469\n",
475 | "Data columns (total 35 columns):\n",
476 | " # Column Non-Null Count Dtype \n",
477 | "--- ------ -------------- ----- \n",
478 | " 0 Age 1470 non-null int64 \n",
479 | " 1 Attrition 1470 non-null object\n",
480 | " 2 BusinessTravel 1470 non-null object\n",
481 | " 3 DailyRate 1470 non-null int64 \n",
482 | " 4 Department 1470 non-null object\n",
483 | " 5 DistanceFromHome 1470 non-null int64 \n",
484 | " 6 Education 1470 non-null int64 \n",
485 | " 7 EducationField 1470 non-null object\n",
486 | " 8 EmployeeCount 1470 non-null int64 \n",
487 | " 9 EmployeeNumber 1470 non-null int64 \n",
488 | " 10 EnvironmentSatisfaction 1470 non-null int64 \n",
489 | " 11 Gender 1470 non-null object\n",
490 | " 12 HourlyRate 1470 non-null int64 \n",
491 | " 13 JobInvolvement 1470 non-null int64 \n",
492 | " 14 JobLevel 1470 non-null int64 \n",
493 | " 15 JobRole 1470 non-null object\n",
494 | " 16 JobSatisfaction 1470 non-null int64 \n",
495 | " 17 MaritalStatus 1470 non-null object\n",
496 | " 18 MonthlyIncome 1470 non-null int64 \n",
497 | " 19 MonthlyRate 1470 non-null int64 \n",
498 | " 20 NumCompaniesWorked 1470 non-null int64 \n",
499 | " 21 Over18 1470 non-null object\n",
500 | " 22 OverTime 1470 non-null object\n",
501 | " 23 PercentSalaryHike 1470 non-null int64 \n",
502 | " 24 PerformanceRating 1470 non-null int64 \n",
503 | " 25 RelationshipSatisfaction 1470 non-null int64 \n",
504 | " 26 StandardHours 1470 non-null int64 \n",
505 | " 27 StockOptionLevel 1470 non-null int64 \n",
506 | " 28 TotalWorkingYears 1470 non-null int64 \n",
507 | " 29 TrainingTimesLastYear 1470 non-null int64 \n",
508 | " 30 WorkLifeBalance 1470 non-null int64 \n",
509 | " 31 YearsAtCompany 1470 non-null int64 \n",
510 | " 32 YearsInCurrentRole 1470 non-null int64 \n",
511 | " 33 YearsSinceLastPromotion 1470 non-null int64 \n",
512 | " 34 YearsWithCurrManager 1470 non-null int64 \n",
513 | "dtypes: int64(26), object(9)\n",
514 | "memory usage: 402.1+ KB\n"
515 | ]
516 | }
517 | ],
518 | "source": [
519 | "df.info()"
520 | ]
521 | },
522 | {
523 | "cell_type": "markdown",
524 | "metadata": {},
525 | "source": [
526 | "#### Observation: No Missing Values in the Data"
527 | ]
528 | },
529 | {
530 | "cell_type": "markdown",
531 | "metadata": {},
532 | "source": [
533 | "#### Replace 'Yes' and 'No' in target feature by 1 and 0"
534 | ]
535 | },
536 | {
537 | "cell_type": "code",
538 | "execution_count": 5,
539 | "metadata": {},
540 | "outputs": [],
541 | "source": [
542 | "df.Attrition.replace({\"Yes\":1,\"No\":0}, inplace=True)"
543 | ]
544 | },
545 | {
546 | "cell_type": "markdown",
547 | "metadata": {},
548 | "source": [
549 | "#### Delete the following Features as their values are same across all observations"
550 | ]
551 | },
552 | {
553 | "cell_type": "code",
554 | "execution_count": 6,
555 | "metadata": {},
556 | "outputs": [
557 | {
558 | "data": {
559 | "text/plain": [
560 | "Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',\n",
561 | " 'DistanceFromHome', 'Education', 'EducationField', 'EmployeeNumber',\n",
562 | " 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',\n",
563 | " 'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',\n",
564 | " 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'Over18',\n",
565 | " 'OverTime', 'PercentSalaryHike', 'PerformanceRating',\n",
566 | " 'RelationshipSatisfaction', 'StockOptionLevel', 'TotalWorkingYears',\n",
567 | " 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',\n",
568 | " 'YearsInCurrentRole', 'YearsSinceLastPromotion',\n",
569 | " 'YearsWithCurrManager'],\n",
570 | " dtype='object')"
571 | ]
572 | },
573 | "execution_count": 6,
574 | "metadata": {},
575 | "output_type": "execute_result"
576 | }
577 | ],
578 | "source": [
579 | "df.drop(columns=['EmployeeCount','StandardHours'], inplace=True)\n",
580 | "df.columns"
581 | ]
582 | },
583 | {
584 | "cell_type": "markdown",
585 | "metadata": {},
586 | "source": [
587 | "### Create lists of Categorical Features and Numerical Features"
588 | ]
589 | },
590 | {
591 | "cell_type": "code",
592 | "execution_count": 7,
593 | "metadata": {},
594 | "outputs": [],
595 | "source": [
596 | "cat_col = df.select_dtypes(exclude=np.number).columns\n",
597 | "num_col = df.select_dtypes(include=np.number).columns"
598 | ]
599 | },
600 | {
601 | "cell_type": "code",
602 | "execution_count": 8,
603 | "metadata": {},
604 | "outputs": [
605 | {
606 | "name": "stdout",
607 | "output_type": "stream",
608 | "text": [
609 | "\n",
610 | "=================> BusinessTravel \n",
611 | "\n",
612 | "Travel_Rarely 1043\n",
613 | "Travel_Frequently 277\n",
614 | "Non-Travel 150\n",
615 | "Name: BusinessTravel, dtype: int64\n",
616 | "\n",
617 | "=================> Department \n",
618 | "\n",
619 | "Research & Development 961\n",
620 | "Sales 446\n",
621 | "Human Resources 63\n",
622 | "Name: Department, dtype: int64\n",
623 | "\n",
624 | "=================> EducationField \n",
625 | "\n",
626 | "Life Sciences 606\n",
627 | "Medical 464\n",
628 | "Marketing 159\n",
629 | "Technical Degree 132\n",
630 | "Other 82\n",
631 | "Human Resources 27\n",
632 | "Name: EducationField, dtype: int64\n",
633 | "\n",
634 | "=================> Gender \n",
635 | "\n",
636 | "Male 882\n",
637 | "Female 588\n",
638 | "Name: Gender, dtype: int64\n",
639 | "\n",
640 | "=================> JobRole \n",
641 | "\n",
642 | "Sales Executive 326\n",
643 | "Research Scientist 292\n",
644 | "Laboratory Technician 259\n",
645 | "Manufacturing Director 145\n",
646 | "Healthcare Representative 131\n",
647 | "Manager 102\n",
648 | "Sales Representative 83\n",
649 | "Research Director 80\n",
650 | "Human Resources 52\n",
651 | "Name: JobRole, dtype: int64\n",
652 | "\n",
653 | "=================> MaritalStatus \n",
654 | "\n",
655 | "Married 673\n",
656 | "Single 470\n",
657 | "Divorced 327\n",
658 | "Name: MaritalStatus, dtype: int64\n",
659 | "\n",
660 | "=================> Over18 \n",
661 | "\n",
662 | "Y 1470\n",
663 | "Name: Over18, dtype: int64\n",
664 | "\n",
665 | "=================> OverTime \n",
666 | "\n",
667 | "No 1054\n",
668 | "Yes 416\n",
669 | "Name: OverTime, dtype: int64\n"
670 | ]
671 | }
672 | ],
673 | "source": [
674 | "for i in cat_col:\n",
675 | " print(f\"\\n=================> {i} \\n\")\n",
676 | " print(df[i].value_counts())"
677 | ]
678 | },
679 | {
680 | "cell_type": "markdown",
681 | "metadata": {},
682 | "source": [
683 | "### Create Dummy Variables for Categorical Variable"
684 | ]
685 | },
686 | {
687 | "cell_type": "code",
688 | "execution_count": 9,
689 | "metadata": {},
690 | "outputs": [],
691 | "source": [
692 | "encoded_cat_col = pd.get_dummies(df[cat_col], drop_first=True)"
693 | ]
694 | },
695 | {
696 | "cell_type": "code",
697 | "execution_count": 10,
698 | "metadata": {},
699 | "outputs": [],
700 | "source": [
701 | "final_model = pd.concat([df[num_col],encoded_cat_col], axis = 1)"
702 | ]
703 | },
704 | {
705 | "cell_type": "code",
706 | "execution_count": 11,
707 | "metadata": {},
708 | "outputs": [
709 | {
710 | "data": {
711 | "text/html": [
712 | "\n",
713 | "\n",
726 | "
\n",
727 | " \n",
728 | " \n",
729 | " | \n",
730 | " Age | \n",
731 | " Attrition | \n",
732 | " DailyRate | \n",
733 | " DistanceFromHome | \n",
734 | " Education | \n",
735 | " EmployeeNumber | \n",
736 | " EnvironmentSatisfaction | \n",
737 | " HourlyRate | \n",
738 | " JobInvolvement | \n",
739 | " JobLevel | \n",
740 | " ... | \n",
741 | " JobRole_Laboratory Technician | \n",
742 | " JobRole_Manager | \n",
743 | " JobRole_Manufacturing Director | \n",
744 | " JobRole_Research Director | \n",
745 | " JobRole_Research Scientist | \n",
746 | " JobRole_Sales Executive | \n",
747 | " JobRole_Sales Representative | \n",
748 | " MaritalStatus_Married | \n",
749 | " MaritalStatus_Single | \n",
750 | " OverTime_Yes | \n",
751 | "
\n",
752 | " \n",
753 | " \n",
754 | " \n",
755 | " 0 | \n",
756 | " 41 | \n",
757 | " 1 | \n",
758 | " 1102 | \n",
759 | " 1 | \n",
760 | " 2 | \n",
761 | " 1 | \n",
762 | " 2 | \n",
763 | " 94 | \n",
764 | " 3 | \n",
765 | " 2 | \n",
766 | " ... | \n",
767 | " 0 | \n",
768 | " 0 | \n",
769 | " 0 | \n",
770 | " 0 | \n",
771 | " 0 | \n",
772 | " 1 | \n",
773 | " 0 | \n",
774 | " 0 | \n",
775 | " 1 | \n",
776 | " 1 | \n",
777 | "
\n",
778 | " \n",
779 | " 1 | \n",
780 | " 49 | \n",
781 | " 0 | \n",
782 | " 279 | \n",
783 | " 8 | \n",
784 | " 1 | \n",
785 | " 2 | \n",
786 | " 3 | \n",
787 | " 61 | \n",
788 | " 2 | \n",
789 | " 2 | \n",
790 | " ... | \n",
791 | " 0 | \n",
792 | " 0 | \n",
793 | " 0 | \n",
794 | " 0 | \n",
795 | " 1 | \n",
796 | " 0 | \n",
797 | " 0 | \n",
798 | " 1 | \n",
799 | " 0 | \n",
800 | " 0 | \n",
801 | "
\n",
802 | " \n",
803 | " 2 | \n",
804 | " 37 | \n",
805 | " 1 | \n",
806 | " 1373 | \n",
807 | " 2 | \n",
808 | " 2 | \n",
809 | " 4 | \n",
810 | " 4 | \n",
811 | " 92 | \n",
812 | " 2 | \n",
813 | " 1 | \n",
814 | " ... | \n",
815 | " 1 | \n",
816 | " 0 | \n",
817 | " 0 | \n",
818 | " 0 | \n",
819 | " 0 | \n",
820 | " 0 | \n",
821 | " 0 | \n",
822 | " 0 | \n",
823 | " 1 | \n",
824 | " 1 | \n",
825 | "
\n",
826 | " \n",
827 | " 3 | \n",
828 | " 33 | \n",
829 | " 0 | \n",
830 | " 1392 | \n",
831 | " 3 | \n",
832 | " 4 | \n",
833 | " 5 | \n",
834 | " 4 | \n",
835 | " 56 | \n",
836 | " 3 | \n",
837 | " 1 | \n",
838 | " ... | \n",
839 | " 0 | \n",
840 | " 0 | \n",
841 | " 0 | \n",
842 | " 0 | \n",
843 | " 1 | \n",
844 | " 0 | \n",
845 | " 0 | \n",
846 | " 1 | \n",
847 | " 0 | \n",
848 | " 1 | \n",
849 | "
\n",
850 | " \n",
851 | " 4 | \n",
852 | " 27 | \n",
853 | " 0 | \n",
854 | " 591 | \n",
855 | " 2 | \n",
856 | " 1 | \n",
857 | " 7 | \n",
858 | " 1 | \n",
859 | " 40 | \n",
860 | " 3 | \n",
861 | " 1 | \n",
862 | " ... | \n",
863 | " 1 | \n",
864 | " 0 | \n",
865 | " 0 | \n",
866 | " 0 | \n",
867 | " 0 | \n",
868 | " 0 | \n",
869 | " 0 | \n",
870 | " 1 | \n",
871 | " 0 | \n",
872 | " 0 | \n",
873 | "
\n",
874 | " \n",
875 | " ... | \n",
876 | " ... | \n",
877 | " ... | \n",
878 | " ... | \n",
879 | " ... | \n",
880 | " ... | \n",
881 | " ... | \n",
882 | " ... | \n",
883 | " ... | \n",
884 | " ... | \n",
885 | " ... | \n",
886 | " ... | \n",
887 | " ... | \n",
888 | " ... | \n",
889 | " ... | \n",
890 | " ... | \n",
891 | " ... | \n",
892 | " ... | \n",
893 | " ... | \n",
894 | " ... | \n",
895 | " ... | \n",
896 | " ... | \n",
897 | "
\n",
898 | " \n",
899 | " 1465 | \n",
900 | " 36 | \n",
901 | " 0 | \n",
902 | " 884 | \n",
903 | " 23 | \n",
904 | " 2 | \n",
905 | " 2061 | \n",
906 | " 3 | \n",
907 | " 41 | \n",
908 | " 4 | \n",
909 | " 2 | \n",
910 | " ... | \n",
911 | " 1 | \n",
912 | " 0 | \n",
913 | " 0 | \n",
914 | " 0 | \n",
915 | " 0 | \n",
916 | " 0 | \n",
917 | " 0 | \n",
918 | " 1 | \n",
919 | " 0 | \n",
920 | " 0 | \n",
921 | "
\n",
922 | " \n",
923 | " 1466 | \n",
924 | " 39 | \n",
925 | " 0 | \n",
926 | " 613 | \n",
927 | " 6 | \n",
928 | " 1 | \n",
929 | " 2062 | \n",
930 | " 4 | \n",
931 | " 42 | \n",
932 | " 2 | \n",
933 | " 3 | \n",
934 | " ... | \n",
935 | " 0 | \n",
936 | " 0 | \n",
937 | " 0 | \n",
938 | " 0 | \n",
939 | " 0 | \n",
940 | " 0 | \n",
941 | " 0 | \n",
942 | " 1 | \n",
943 | " 0 | \n",
944 | " 0 | \n",
945 | "
\n",
946 | " \n",
947 | " 1467 | \n",
948 | " 27 | \n",
949 | " 0 | \n",
950 | " 155 | \n",
951 | " 4 | \n",
952 | " 3 | \n",
953 | " 2064 | \n",
954 | " 2 | \n",
955 | " 87 | \n",
956 | " 4 | \n",
957 | " 2 | \n",
958 | " ... | \n",
959 | " 0 | \n",
960 | " 0 | \n",
961 | " 1 | \n",
962 | " 0 | \n",
963 | " 0 | \n",
964 | " 0 | \n",
965 | " 0 | \n",
966 | " 1 | \n",
967 | " 0 | \n",
968 | " 1 | \n",
969 | "
\n",
970 | " \n",
971 | " 1468 | \n",
972 | " 49 | \n",
973 | " 0 | \n",
974 | " 1023 | \n",
975 | " 2 | \n",
976 | " 3 | \n",
977 | " 2065 | \n",
978 | " 4 | \n",
979 | " 63 | \n",
980 | " 2 | \n",
981 | " 2 | \n",
982 | " ... | \n",
983 | " 0 | \n",
984 | " 0 | \n",
985 | " 0 | \n",
986 | " 0 | \n",
987 | " 0 | \n",
988 | " 1 | \n",
989 | " 0 | \n",
990 | " 1 | \n",
991 | " 0 | \n",
992 | " 0 | \n",
993 | "
\n",
994 | " \n",
995 | " 1469 | \n",
996 | " 34 | \n",
997 | " 0 | \n",
998 | " 628 | \n",
999 | " 8 | \n",
1000 | " 3 | \n",
1001 | " 2068 | \n",
1002 | " 2 | \n",
1003 | " 82 | \n",
1004 | " 4 | \n",
1005 | " 2 | \n",
1006 | " ... | \n",
1007 | " 1 | \n",
1008 | " 0 | \n",
1009 | " 0 | \n",
1010 | " 0 | \n",
1011 | " 0 | \n",
1012 | " 0 | \n",
1013 | " 0 | \n",
1014 | " 1 | \n",
1015 | " 0 | \n",
1016 | " 0 | \n",
1017 | "
\n",
1018 | " \n",
1019 | "
\n",
1020 | "
1470 rows × 46 columns
\n",
1021 | "
"
1022 | ],
1023 | "text/plain": [
1024 | " Age Attrition DailyRate DistanceFromHome Education EmployeeNumber \\\n",
1025 | "0 41 1 1102 1 2 1 \n",
1026 | "1 49 0 279 8 1 2 \n",
1027 | "2 37 1 1373 2 2 4 \n",
1028 | "3 33 0 1392 3 4 5 \n",
1029 | "4 27 0 591 2 1 7 \n",
1030 | "... ... ... ... ... ... ... \n",
1031 | "1465 36 0 884 23 2 2061 \n",
1032 | "1466 39 0 613 6 1 2062 \n",
1033 | "1467 27 0 155 4 3 2064 \n",
1034 | "1468 49 0 1023 2 3 2065 \n",
1035 | "1469 34 0 628 8 3 2068 \n",
1036 | "\n",
1037 | " EnvironmentSatisfaction HourlyRate JobInvolvement JobLevel ... \\\n",
1038 | "0 2 94 3 2 ... \n",
1039 | "1 3 61 2 2 ... \n",
1040 | "2 4 92 2 1 ... \n",
1041 | "3 4 56 3 1 ... \n",
1042 | "4 1 40 3 1 ... \n",
1043 | "... ... ... ... ... ... \n",
1044 | "1465 3 41 4 2 ... \n",
1045 | "1466 4 42 2 3 ... \n",
1046 | "1467 2 87 4 2 ... \n",
1047 | "1468 4 63 2 2 ... \n",
1048 | "1469 2 82 4 2 ... \n",
1049 | "\n",
1050 | " JobRole_Laboratory Technician JobRole_Manager \\\n",
1051 | "0 0 0 \n",
1052 | "1 0 0 \n",
1053 | "2 1 0 \n",
1054 | "3 0 0 \n",
1055 | "4 1 0 \n",
1056 | "... ... ... \n",
1057 | "1465 1 0 \n",
1058 | "1466 0 0 \n",
1059 | "1467 0 0 \n",
1060 | "1468 0 0 \n",
1061 | "1469 1 0 \n",
1062 | "\n",
1063 | " JobRole_Manufacturing Director JobRole_Research Director \\\n",
1064 | "0 0 0 \n",
1065 | "1 0 0 \n",
1066 | "2 0 0 \n",
1067 | "3 0 0 \n",
1068 | "4 0 0 \n",
1069 | "... ... ... \n",
1070 | "1465 0 0 \n",
1071 | "1466 0 0 \n",
1072 | "1467 1 0 \n",
1073 | "1468 0 0 \n",
1074 | "1469 0 0 \n",
1075 | "\n",
1076 | " JobRole_Research Scientist JobRole_Sales Executive \\\n",
1077 | "0 0 1 \n",
1078 | "1 1 0 \n",
1079 | "2 0 0 \n",
1080 | "3 1 0 \n",
1081 | "4 0 0 \n",
1082 | "... ... ... \n",
1083 | "1465 0 0 \n",
1084 | "1466 0 0 \n",
1085 | "1467 0 0 \n",
1086 | "1468 0 1 \n",
1087 | "1469 0 0 \n",
1088 | "\n",
1089 | " JobRole_Sales Representative MaritalStatus_Married \\\n",
1090 | "0 0 0 \n",
1091 | "1 0 1 \n",
1092 | "2 0 0 \n",
1093 | "3 0 1 \n",
1094 | "4 0 1 \n",
1095 | "... ... ... \n",
1096 | "1465 0 1 \n",
1097 | "1466 0 1 \n",
1098 | "1467 0 1 \n",
1099 | "1468 0 1 \n",
1100 | "1469 0 1 \n",
1101 | "\n",
1102 | " MaritalStatus_Single OverTime_Yes \n",
1103 | "0 1 1 \n",
1104 | "1 0 0 \n",
1105 | "2 1 1 \n",
1106 | "3 0 1 \n",
1107 | "4 0 0 \n",
1108 | "... ... ... \n",
1109 | "1465 0 0 \n",
1110 | "1466 0 0 \n",
1111 | "1467 0 1 \n",
1112 | "1468 0 0 \n",
1113 | "1469 0 0 \n",
1114 | "\n",
1115 | "[1470 rows x 46 columns]"
1116 | ]
1117 | },
1118 | "execution_count": 11,
1119 | "metadata": {},
1120 | "output_type": "execute_result"
1121 | }
1122 | ],
1123 | "source": [
1124 | "final_model"
1125 | ]
1126 | },
1127 | {
1128 | "cell_type": "code",
1129 | "execution_count": 12,
1130 | "metadata": {},
1131 | "outputs": [],
1132 | "source": [
1133 | "from sklearn.model_selection import train_test_split\n",
1134 | "from sklearn import metrics\n",
1135 | "from sklearn.metrics import classification_report"
1136 | ]
1137 | },
1138 | {
1139 | "cell_type": "markdown",
1140 | "metadata": {},
1141 | "source": [
1142 | "### Segrgate X and y Features, Create Train and Test Sets"
1143 | ]
1144 | },
1145 | {
1146 | "cell_type": "code",
1147 | "execution_count": 13,
1148 | "metadata": {},
1149 | "outputs": [],
1150 | "source": [
1151 | "x = final_model.drop(columns=\"Attrition\")\n",
1152 | "y = final_model[\"Attrition\"]\n",
1153 | "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=10)"
1154 | ]
1155 | },
1156 | {
1157 | "cell_type": "code",
1158 | "execution_count": 14,
1159 | "metadata": {},
1160 | "outputs": [],
1161 | "source": [
1162 | "from sklearn.naive_bayes import GaussianNB"
1163 | ]
1164 | },
1165 | {
1166 | "cell_type": "markdown",
1167 | "metadata": {},
1168 | "source": [
1169 | "### Create our Gaussian Naive Bayes Model"
1170 | ]
1171 | },
1172 | {
1173 | "cell_type": "code",
1174 | "execution_count": 15,
1175 | "metadata": {},
1176 | "outputs": [],
1177 | "source": [
1178 | "model = GaussianNB()"
1179 | ]
1180 | },
1181 | {
1182 | "cell_type": "markdown",
1183 | "metadata": {},
1184 | "source": [
1185 | "#### Train and Predict using Training Data"
1186 | ]
1187 | },
1188 | {
1189 | "cell_type": "code",
1190 | "execution_count": 16,
1191 | "metadata": {},
1192 | "outputs": [],
1193 | "source": [
1194 | "model.fit(x_train, y_train)\n",
1195 | "train_Pred = model.predict(x_train)"
1196 | ]
1197 | },
1198 | {
1199 | "cell_type": "code",
1200 | "execution_count": 17,
1201 | "metadata": {},
1202 | "outputs": [
1203 | {
1204 | "data": {
1205 | "text/plain": [
1206 | "array([[749, 127],\n",
1207 | " [ 58, 95]])"
1208 | ]
1209 | },
1210 | "execution_count": 17,
1211 | "metadata": {},
1212 | "output_type": "execute_result"
1213 | }
1214 | ],
1215 | "source": [
1216 | "metrics.confusion_matrix(y_train,train_Pred)"
1217 | ]
1218 | },
1219 | {
1220 | "cell_type": "code",
1221 | "execution_count": 23,
1222 | "metadata": {},
1223 | "outputs": [
1224 | {
1225 | "data": {
1226 | "text/plain": [
1227 | "82.02137998056365"
1228 | ]
1229 | },
1230 | "execution_count": 23,
1231 | "metadata": {},
1232 | "output_type": "execute_result"
1233 | }
1234 | ],
1235 | "source": [
1236 | "Accuracy_percent_train = (metrics.accuracy_score(y_train,train_Pred)) * 100\n",
1237 | "Accuracy_percent_train"
1238 | ]
1239 | },
1240 | {
1241 | "cell_type": "markdown",
1242 | "metadata": {},
1243 | "source": [
1244 | "#### Our model is able to predict with 82% accuracy from Training Data"
1245 | ]
1246 | },
1247 | {
1248 | "cell_type": "markdown",
1249 | "metadata": {},
1250 | "source": [
1251 | "### Predict using Test Data"
1252 | ]
1253 | },
1254 | {
1255 | "cell_type": "code",
1256 | "execution_count": 19,
1257 | "metadata": {},
1258 | "outputs": [],
1259 | "source": [
1260 | "test_Pred = model.predict(x_test)"
1261 | ]
1262 | },
1263 | {
1264 | "cell_type": "code",
1265 | "execution_count": 20,
1266 | "metadata": {},
1267 | "outputs": [
1268 | {
1269 | "data": {
1270 | "text/plain": [
1271 | "array([[300, 57],\n",
1272 | " [ 28, 56]])"
1273 | ]
1274 | },
1275 | "execution_count": 20,
1276 | "metadata": {},
1277 | "output_type": "execute_result"
1278 | }
1279 | ],
1280 | "source": [
1281 | "metrics.confusion_matrix(y_test,test_Pred)"
1282 | ]
1283 | },
1284 | {
1285 | "cell_type": "code",
1286 | "execution_count": 21,
1287 | "metadata": {},
1288 | "outputs": [
1289 | {
1290 | "data": {
1291 | "text/plain": [
1292 | "80.72562358276643"
1293 | ]
1294 | },
1295 | "execution_count": 21,
1296 | "metadata": {},
1297 | "output_type": "execute_result"
1298 | }
1299 | ],
1300 | "source": [
1301 | "Accuracy_percent_test = (metrics.accuracy_score(y_test,test_Pred))*100\n",
1302 | "Accuracy_percent_test"
1303 | ]
1304 | },
1305 | {
1306 | "cell_type": "markdown",
1307 | "metadata": {},
1308 | "source": [
1309 | "#### Our model is able to predict with 80.7% accuracy from Test Data"
1310 | ]
1311 | },
1312 | {
1313 | "cell_type": "code",
1314 | "execution_count": 28,
1315 | "metadata": {},
1316 | "outputs": [
1317 | {
1318 | "data": {
1319 | "text/plain": [
1320 | "[(0, 0),\n",
1321 | " (1, 1),\n",
1322 | " (0, 0),\n",
1323 | " (0, 0),\n",
1324 | " (0, 0),\n",
1325 | " (1, 1),\n",
1326 | " (0, 0),\n",
1327 | " (1, 0),\n",
1328 | " (0, 0),\n",
1329 | " (0, 0),\n",
1330 | " (0, 0),\n",
1331 | " (0, 0),\n",
1332 | " (0, 0),\n",
1333 | " (0, 1),\n",
1334 | " (0, 0),\n",
1335 | " (1, 0),\n",
1336 | " (0, 0),\n",
1337 | " (0, 0),\n",
1338 | " (0, 0),\n",
1339 | " (0, 0)]"
1340 | ]
1341 | },
1342 | "execution_count": 28,
1343 | "metadata": {},
1344 | "output_type": "execute_result"
1345 | }
1346 | ],
1347 | "source": [
1348 | "list(zip(y_test, test_Pred))[0:20]"
1349 | ]
1350 | },
1351 | {
1352 | "cell_type": "code",
1353 | "execution_count": null,
1354 | "metadata": {},
1355 | "outputs": [],
1356 | "source": []
1357 | },
1358 | {
1359 | "cell_type": "code",
1360 | "execution_count": null,
1361 | "metadata": {},
1362 | "outputs": [],
1363 | "source": []
1364 | },
1365 | {
1366 | "cell_type": "code",
1367 | "execution_count": null,
1368 | "metadata": {},
1369 | "outputs": [],
1370 | "source": []
1371 | },
1372 | {
1373 | "cell_type": "code",
1374 | "execution_count": null,
1375 | "metadata": {},
1376 | "outputs": [],
1377 | "source": []
1378 | },
1379 | {
1380 | "cell_type": "code",
1381 | "execution_count": null,
1382 | "metadata": {},
1383 | "outputs": [],
1384 | "source": []
1385 | },
1386 | {
1387 | "cell_type": "code",
1388 | "execution_count": null,
1389 | "metadata": {},
1390 | "outputs": [],
1391 | "source": []
1392 | },
1393 | {
1394 | "cell_type": "code",
1395 | "execution_count": null,
1396 | "metadata": {},
1397 | "outputs": [],
1398 | "source": []
1399 | },
1400 | {
1401 | "cell_type": "code",
1402 | "execution_count": null,
1403 | "metadata": {},
1404 | "outputs": [],
1405 | "source": []
1406 | },
1407 | {
1408 | "cell_type": "code",
1409 | "execution_count": null,
1410 | "metadata": {},
1411 | "outputs": [],
1412 | "source": []
1413 | },
1414 | {
1415 | "cell_type": "code",
1416 | "execution_count": 22,
1417 | "metadata": {},
1418 | "outputs": [
1419 | {
1420 | "name": "stdout",
1421 | "output_type": "stream",
1422 | "text": [
1423 | " precision recall f1-score support\n",
1424 | "\n",
1425 | " 0 0.91 0.84 0.88 357\n",
1426 | " 1 0.50 0.67 0.57 84\n",
1427 | "\n",
1428 | " accuracy 0.81 441\n",
1429 | " macro avg 0.71 0.75 0.72 441\n",
1430 | "weighted avg 0.83 0.81 0.82 441\n",
1431 | "\n"
1432 | ]
1433 | }
1434 | ],
1435 | "source": [
1436 | "print(classification_report(y_test, test_Pred))"
1437 | ]
1438 | },
1439 | {
1440 | "cell_type": "code",
1441 | "execution_count": null,
1442 | "metadata": {},
1443 | "outputs": [],
1444 | "source": []
1445 | },
1446 | {
1447 | "cell_type": "code",
1448 | "execution_count": null,
1449 | "metadata": {},
1450 | "outputs": [],
1451 | "source": []
1452 | },
1453 | {
1454 | "cell_type": "code",
1455 | "execution_count": null,
1456 | "metadata": {},
1457 | "outputs": [],
1458 | "source": []
1459 | }
1460 | ],
1461 | "metadata": {
1462 | "kernelspec": {
1463 | "display_name": "Python 3",
1464 | "language": "python",
1465 | "name": "python3"
1466 | },
1467 | "language_info": {
1468 | "codemirror_mode": {
1469 | "name": "ipython",
1470 | "version": 3
1471 | },
1472 | "file_extension": ".py",
1473 | "mimetype": "text/x-python",
1474 | "name": "python",
1475 | "nbconvert_exporter": "python",
1476 | "pygments_lexer": "ipython3",
1477 | "version": "3.8.5"
1478 | }
1479 | },
1480 | "nbformat": 4,
1481 | "nbformat_minor": 1
1482 | }
1483 |
--------------------------------------------------------------------------------
/Code-and-Data-Files/Fashion_MNIST_Image_Classification_using_Deep_Learning_tf_Keras.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "Fashion MNIST - Image Classification using Deep Learning - tf.Keras.ipynb",
7 | "private_outputs": true,
8 | "provenance": [],
9 | "collapsed_sections": []
10 | },
11 | "kernelspec": {
12 | "name": "python3",
13 | "display_name": "Python 3"
14 | },
15 | "language_info": {
16 | "name": "python"
17 | },
18 | "accelerator": "GPU"
19 | },
20 | "cells": [
21 | {
22 | "cell_type": "markdown",
23 | "metadata": {
24 | "id": "mbjbQpQUxVRZ"
25 | },
26 | "source": [
27 | "## Fashion MNIST Image Classification using tf.Keras"
28 | ]
29 | },
30 | {
31 | "cell_type": "code",
32 | "metadata": {
33 | "id": "f0JUkBqYxGDq"
34 | },
35 | "source": [
36 | "import tensorflow as tf\n",
37 | "import numpy as np\n",
38 | "import pandas as pd\n",
39 | "import matplotlib.pyplot as plt"
40 | ],
41 | "execution_count": null,
42 | "outputs": []
43 | },
44 | {
45 | "cell_type": "code",
46 | "metadata": {
47 | "id": "s9cH4hfOxNcX"
48 | },
49 | "source": [
50 | "from tensorflow import keras\n",
51 | "from keras import optimizers"
52 | ],
53 | "execution_count": null,
54 | "outputs": []
55 | },
56 | {
57 | "cell_type": "code",
58 | "metadata": {
59 | "id": "XCtyzYJnxNig"
60 | },
61 | "source": [
62 | "keras.__version__"
63 | ],
64 | "execution_count": null,
65 | "outputs": []
66 | },
67 | {
68 | "cell_type": "code",
69 | "metadata": {
70 | "id": "liHOa4WBxNlf"
71 | },
72 | "source": [
73 | "fashion_mnist = keras.datasets.fashion_mnist"
74 | ],
75 | "execution_count": null,
76 | "outputs": []
77 | },
78 | {
79 | "cell_type": "code",
80 | "metadata": {
81 | "id": "4zoJIz3Lxog3"
82 | },
83 | "source": [
84 | "(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()"
85 | ],
86 | "execution_count": null,
87 | "outputs": []
88 | },
89 | {
90 | "cell_type": "code",
91 | "metadata": {
92 | "id": "gFiBnZN9xojx"
93 | },
94 | "source": [
95 | "print(X_train_full.shape)\n",
96 | "print(y_train_full.shape)\n",
97 | "print(X_test.shape)\n",
98 | "print(y_test.shape)"
99 | ],
100 | "execution_count": null,
101 | "outputs": []
102 | },
103 | {
104 | "cell_type": "markdown",
105 | "metadata": {
106 | "id": "vLU7OMq5yRwu"
107 | },
108 | "source": [
109 | "### Create a Validation Set from Train set and scale down the pixel values to 0-1"
110 | ]
111 | },
112 | {
113 | "cell_type": "code",
114 | "metadata": {
115 | "id": "lMjUa479xoph"
116 | },
117 | "source": [
118 | "X_valid, X_train = X_train_full[:5000] / 255, X_train_full[5000:] / 255 "
119 | ],
120 | "execution_count": null,
121 | "outputs": []
122 | },
123 | {
124 | "cell_type": "code",
125 | "metadata": {
126 | "id": "uv3uwl42yM9N"
127 | },
128 | "source": [
129 | "y_valid, y_train = y_train_full[:5000], y_train_full[5000:] "
130 | ],
131 | "execution_count": null,
132 | "outputs": []
133 | },
134 | {
135 | "cell_type": "code",
136 | "metadata": {
137 | "id": "scyAnVX7yNAE"
138 | },
139 | "source": [
140 | "class_names = ['T-shirt/Top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot']"
141 | ],
142 | "execution_count": null,
143 | "outputs": []
144 | },
145 | {
146 | "cell_type": "code",
147 | "metadata": {
148 | "id": "ekWayzcSyNCc"
149 | },
150 | "source": [
151 | "class_names[y_train[0]]"
152 | ],
153 | "execution_count": null,
154 | "outputs": []
155 | },
156 | {
157 | "cell_type": "code",
158 | "metadata": {
159 | "id": "a_HmyB0y75LK"
160 | },
161 | "source": [
162 | "y_train[0]"
163 | ],
164 | "execution_count": null,
165 | "outputs": []
166 | },
167 | {
168 | "cell_type": "markdown",
169 | "metadata": {
170 | "id": "94HhAIOQbN_j"
171 | },
172 | "source": [
173 | "## How an Image looks like as Matrix of Pixel values"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "metadata": {
179 | "id": "eFyfEXmIZuDz"
180 | },
181 | "source": [
182 | "X_train[0].shape"
183 | ],
184 | "execution_count": null,
185 | "outputs": []
186 | },
187 | {
188 | "cell_type": "code",
189 | "metadata": {
190 | "id": "1FfEfunwbkHE"
191 | },
192 | "source": [
193 | "X_train[0]"
194 | ],
195 | "execution_count": null,
196 | "outputs": []
197 | },
198 | {
199 | "cell_type": "markdown",
200 | "metadata": {
201 | "id": "qFampMDGbEky"
202 | },
203 | "source": [
204 | "## Display the first 8 images from the Dataset"
205 | ]
206 | },
207 | {
208 | "cell_type": "code",
209 | "metadata": {
210 | "id": "BwxMEQ-wZuHP"
211 | },
212 | "source": [
213 | "fig, ax = plt.subplots(4, 4, figsize=(10,10))\n",
214 | "for i, axi in enumerate(ax.flat):\n",
215 | " axi.imshow(X_train[i])\n",
216 | " axi.set(xticks=[], yticks=[])"
217 | ],
218 | "execution_count": null,
219 | "outputs": []
220 | },
221 | {
222 | "cell_type": "markdown",
223 | "metadata": {
224 | "id": "NrpvzuIUzay8"
225 | },
226 | "source": [
227 | "## Create our Keras Sequential Model"
228 | ]
229 | },
230 | {
231 | "cell_type": "code",
232 | "metadata": {
233 | "id": "aWTSicPbyNFA"
234 | },
235 | "source": [
236 | "model = keras.models.Sequential()\n",
237 | "model.add(keras.layers.Flatten(input_shape=[28, 28]))\n",
238 | "model.add(keras.layers.Dense(300, activation='relu'))\n",
239 | "model.add(keras.layers.Dense(100, activation='relu'))\n",
240 | "model.add(keras.layers.Dense(10, activation='softmax')) "
241 | ],
242 | "execution_count": null,
243 | "outputs": []
244 | },
245 | {
246 | "cell_type": "code",
247 | "metadata": {
248 | "id": "66bBvYXMzWub"
249 | },
250 | "source": [
251 | "model.summary()"
252 | ],
253 | "execution_count": null,
254 | "outputs": []
255 | },
256 | {
257 | "cell_type": "code",
258 | "metadata": {
259 | "id": "F6JSQ0OkzW0T"
260 | },
261 | "source": [
262 | "model.layers"
263 | ],
264 | "execution_count": null,
265 | "outputs": []
266 | },
267 | {
268 | "cell_type": "code",
269 | "metadata": {
270 | "id": "J4BQV7uI4xPp"
271 | },
272 | "source": [
273 | "hidden1 = model.layers[1]\n",
274 | "hidden1.name"
275 | ],
276 | "execution_count": null,
277 | "outputs": []
278 | },
279 | {
280 | "cell_type": "code",
281 | "metadata": {
282 | "id": "y8KSDFWMzW2o"
283 | },
284 | "source": [
285 | "weights, biases = hidden1.get_weights()\n",
286 | "print(weights)\n",
287 | "print(biases)"
288 | ],
289 | "execution_count": null,
290 | "outputs": []
291 | },
292 | {
293 | "cell_type": "markdown",
294 | "metadata": {
295 | "id": "BlEm261n5AmH"
296 | },
297 | "source": [
298 | "### Compile the Model"
299 | ]
300 | },
301 | {
302 | "cell_type": "code",
303 | "metadata": {
304 | "id": "3vmIoabYzW5R"
305 | },
306 | "source": [
307 | "model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n",
308 | "#model.compile(loss='mse', optimizer=optimizers.RMSprop(lr=0.001), metrics=['accuracy'])"
309 | ],
310 | "execution_count": null,
311 | "outputs": []
312 | },
313 | {
314 | "cell_type": "code",
315 | "metadata": {
316 | "id": "JiPBF9-TxosI"
317 | },
318 | "source": [
319 | "history = model.fit(X_train, y_train, epochs=10, batch_size=128, validation_data=(X_valid, y_valid))"
320 | ],
321 | "execution_count": null,
322 | "outputs": []
323 | },
324 | {
325 | "cell_type": "markdown",
326 | "metadata": {
327 | "id": "SoNSzVIf5nl0"
328 | },
329 | "source": [
330 | "### Evaluating our Model"
331 | ]
332 | },
333 | {
334 | "cell_type": "code",
335 | "metadata": {
336 | "id": "xQnOITJD5gBZ"
337 | },
338 | "source": [
339 | "import pandas as pd\n",
340 | "import numpy as np\n",
341 | "import matplotlib.pyplot as plt"
342 | ],
343 | "execution_count": null,
344 | "outputs": []
345 | },
346 | {
347 | "cell_type": "code",
348 | "metadata": {
349 | "id": "HXXkCDG25gEz"
350 | },
351 | "source": [
352 | "pd.DataFrame(history.history).plot(figsize=(8,5))\n",
353 | "plt.grid=True\n",
354 | "plt.gca().set_ylim(0, 1)\n",
355 | "plt.show()"
356 | ],
357 | "execution_count": null,
358 | "outputs": []
359 | },
360 | {
361 | "cell_type": "code",
362 | "metadata": {
363 | "id": "JivQ0gkf5gJD"
364 | },
365 | "source": [
366 | "model.evaluate(X_test, y_test)"
367 | ],
368 | "execution_count": null,
369 | "outputs": []
370 | },
371 | {
372 | "cell_type": "markdown",
373 | "metadata": {
374 | "id": "N_JJpScx6c6M"
375 | },
376 | "source": [
377 | "## Use our Model to make Predictions"
378 | ]
379 | },
380 | {
381 | "cell_type": "code",
382 | "metadata": {
383 | "id": "u4skATNb6Nmu"
384 | },
385 | "source": [
386 | "X_new = X_test[:3]\n",
387 | "y_proba = model.predict(X_new)\n",
388 | "y_proba.round(2)"
389 | ],
390 | "execution_count": null,
391 | "outputs": []
392 | },
393 | {
394 | "cell_type": "code",
395 | "metadata": {
396 | "id": "evpIscPH6gmZ"
397 | },
398 | "source": [
399 | "predict_x = model.predict(X_test) \n",
400 | "y_pred = np.argmax(predict_x, axis=1)"
401 | ],
402 | "execution_count": null,
403 | "outputs": []
404 | },
405 | {
406 | "cell_type": "code",
407 | "metadata": {
408 | "id": "Yqc_cMSP6Npz"
409 | },
410 | "source": [
411 | "y_pred"
412 | ],
413 | "execution_count": null,
414 | "outputs": []
415 | },
416 | {
417 | "cell_type": "markdown",
418 | "metadata": {
419 | "id": "MNZjI7Ftc9DF"
420 | },
421 | "source": [
422 | "## Compare the Actual and Predicted Labels"
423 | ]
424 | },
425 | {
426 | "cell_type": "code",
427 | "metadata": {
428 | "id": "CciiKrKS6Nsj"
429 | },
430 | "source": [
431 | "list(zip(np.array(class_names)[y_test], np.array(class_names)[y_pred]))"
432 | ],
433 | "execution_count": null,
434 | "outputs": []
435 | },
436 | {
437 | "cell_type": "code",
438 | "metadata": {
439 | "id": "Yyv5WM2W5gNK"
440 | },
441 | "source": [
442 | "y_test"
443 | ],
444 | "execution_count": null,
445 | "outputs": []
446 | },
447 | {
448 | "cell_type": "code",
449 | "metadata": {
450 | "id": "cAWDbSUV8nSF"
451 | },
452 | "source": [
453 | "from sklearn.metrics import confusion_matrix\n",
454 | "from sklearn.metrics import classification_report"
455 | ],
456 | "execution_count": null,
457 | "outputs": []
458 | },
459 | {
460 | "cell_type": "code",
461 | "metadata": {
462 | "id": "Gk82wIdq8eaE"
463 | },
464 | "source": [
465 | "matrix = confusion_matrix(y_test, y_pred)\n",
466 | "print('Confusion matrix : \\n', matrix)"
467 | ],
468 | "execution_count": null,
469 | "outputs": []
470 | },
471 | {
472 | "cell_type": "code",
473 | "metadata": {
474 | "id": "RVOd16vk8ec6"
475 | },
476 | "source": [
477 | "matrix = classification_report(y_test, y_pred,labels=[1,0])\n",
478 | "print('Classification report : \\n', matrix)"
479 | ],
480 | "execution_count": null,
481 | "outputs": []
482 | },
483 | {
484 | "cell_type": "code",
485 | "metadata": {
486 | "id": "brx5f6-R8efj"
487 | },
488 | "source": [
489 | "from sklearn.metrics import accuracy_score\n",
490 | "accuracy_score(y_test, y_pred)"
491 | ],
492 | "execution_count": null,
493 | "outputs": []
494 | },
495 | {
496 | "cell_type": "code",
497 | "metadata": {
498 | "id": "aFxHVXUVZBNa"
499 | },
500 | "source": [
501 | ""
502 | ],
503 | "execution_count": null,
504 | "outputs": []
505 | },
506 | {
507 | "cell_type": "code",
508 | "metadata": {
509 | "id": "_6JMlvE8ZBYe"
510 | },
511 | "source": [
512 | ""
513 | ],
514 | "execution_count": null,
515 | "outputs": []
516 | },
517 | {
518 | "cell_type": "code",
519 | "metadata": {
520 | "id": "zMcMXZtcZBcg"
521 | },
522 | "source": [
523 | ""
524 | ],
525 | "execution_count": null,
526 | "outputs": []
527 | },
528 | {
529 | "cell_type": "code",
530 | "metadata": {
531 | "id": "dLPwf3_BZBgB"
532 | },
533 | "source": [
534 | ""
535 | ],
536 | "execution_count": null,
537 | "outputs": []
538 | },
539 | {
540 | "cell_type": "code",
541 | "metadata": {
542 | "id": "u_MCOXVSZBjU"
543 | },
544 | "source": [
545 | ""
546 | ],
547 | "execution_count": null,
548 | "outputs": []
549 | },
550 | {
551 | "cell_type": "code",
552 | "metadata": {
553 | "id": "EcTHGdHLZBmd"
554 | },
555 | "source": [
556 | ""
557 | ],
558 | "execution_count": null,
559 | "outputs": []
560 | },
561 | {
562 | "cell_type": "code",
563 | "metadata": {
564 | "id": "Pv2vPYhCZBpj"
565 | },
566 | "source": [
567 | ""
568 | ],
569 | "execution_count": null,
570 | "outputs": []
571 | },
572 | {
573 | "cell_type": "code",
574 | "metadata": {
575 | "id": "zc6phznyZBsr"
576 | },
577 | "source": [
578 | ""
579 | ],
580 | "execution_count": null,
581 | "outputs": []
582 | },
583 | {
584 | "cell_type": "code",
585 | "metadata": {
586 | "id": "Uykm-FiSZBvo"
587 | },
588 | "source": [
589 | ""
590 | ],
591 | "execution_count": null,
592 | "outputs": []
593 | },
594 | {
595 | "cell_type": "code",
596 | "metadata": {
597 | "id": "ptgc6FYlZBzO"
598 | },
599 | "source": [
600 | ""
601 | ],
602 | "execution_count": null,
603 | "outputs": []
604 | }
605 | ]
606 | }
--------------------------------------------------------------------------------
/Code-and-Data-Files/Mall_Customers.csv:
--------------------------------------------------------------------------------
1 | CustomerID,Gender,Age,Annual Income (k$),Spending Score (1-100)
2 | 1,Male,19,15,39
3 | 2,Male,21,15,81
4 | 3,Female,20,16,6
5 | 4,Female,23,16,77
6 | 5,Female,31,17,40
7 | 6,Female,22,17,76
8 | 7,Female,35,18,6
9 | 8,Female,23,18,94
10 | 9,Male,64,19,3
11 | 10,Female,30,19,72
12 | 11,Male,67,19,14
13 | 12,Female,35,19,99
14 | 13,Female,58,20,15
15 | 14,Female,24,20,77
16 | 15,Male,37,20,13
17 | 16,Male,22,20,79
18 | 17,Female,35,21,35
19 | 18,Male,20,21,66
20 | 19,Male,52,23,29
21 | 20,Female,35,23,98
22 | 21,Male,35,24,35
23 | 22,Male,25,24,73
24 | 23,Female,46,25,5
25 | 24,Male,31,25,73
26 | 25,Female,54,28,14
27 | 26,Male,29,28,82
28 | 27,Female,45,28,32
29 | 28,Male,35,28,61
30 | 29,Female,40,29,31
31 | 30,Female,23,29,87
32 | 31,Male,60,30,4
33 | 32,Female,21,30,73
34 | 33,Male,53,33,4
35 | 34,Male,18,33,92
36 | 35,Female,49,33,14
37 | 36,Female,21,33,81
38 | 37,Female,42,34,17
39 | 38,Female,30,34,73
40 | 39,Female,36,37,26
41 | 40,Female,20,37,75
42 | 41,Female,65,38,35
43 | 42,Male,24,38,92
44 | 43,Male,48,39,36
45 | 44,Female,31,39,61
46 | 45,Female,49,39,28
47 | 46,Female,24,39,65
48 | 47,Female,50,40,55
49 | 48,Female,27,40,47
50 | 49,Female,29,40,42
51 | 50,Female,31,40,42
52 | 51,Female,49,42,52
53 | 52,Male,33,42,60
54 | 53,Female,31,43,54
55 | 54,Male,59,43,60
56 | 55,Female,50,43,45
57 | 56,Male,47,43,41
58 | 57,Female,51,44,50
59 | 58,Male,69,44,46
60 | 59,Female,27,46,51
61 | 60,Male,53,46,46
62 | 61,Male,70,46,56
63 | 62,Male,19,46,55
64 | 63,Female,67,47,52
65 | 64,Female,54,47,59
66 | 65,Male,63,48,51
67 | 66,Male,18,48,59
68 | 67,Female,43,48,50
69 | 68,Female,68,48,48
70 | 69,Male,19,48,59
71 | 70,Female,32,48,47
72 | 71,Male,70,49,55
73 | 72,Female,47,49,42
74 | 73,Female,60,50,49
75 | 74,Female,60,50,56
76 | 75,Male,59,54,47
77 | 76,Male,26,54,54
78 | 77,Female,45,54,53
79 | 78,Male,40,54,48
80 | 79,Female,23,54,52
81 | 80,Female,49,54,42
82 | 81,Male,57,54,51
83 | 82,Male,38,54,55
84 | 83,Male,67,54,41
85 | 84,Female,46,54,44
86 | 85,Female,21,54,57
87 | 86,Male,48,54,46
88 | 87,Female,55,57,58
89 | 88,Female,22,57,55
90 | 89,Female,34,58,60
91 | 90,Female,50,58,46
92 | 91,Female,68,59,55
93 | 92,Male,18,59,41
94 | 93,Male,48,60,49
95 | 94,Female,40,60,40
96 | 95,Female,32,60,42
97 | 96,Male,24,60,52
98 | 97,Female,47,60,47
99 | 98,Female,27,60,50
100 | 99,Male,48,61,42
101 | 100,Male,20,61,49
102 | 101,Female,23,62,41
103 | 102,Female,49,62,48
104 | 103,Male,67,62,59
105 | 104,Male,26,62,55
106 | 105,Male,49,62,56
107 | 106,Female,21,62,42
108 | 107,Female,66,63,50
109 | 108,Male,54,63,46
110 | 109,Male,68,63,43
111 | 110,Male,66,63,48
112 | 111,Male,65,63,52
113 | 112,Female,19,63,54
114 | 113,Female,38,64,42
115 | 114,Male,19,64,46
116 | 115,Female,18,65,48
117 | 116,Female,19,65,50
118 | 117,Female,63,65,43
119 | 118,Female,49,65,59
120 | 119,Female,51,67,43
121 | 120,Female,50,67,57
122 | 121,Male,27,67,56
123 | 122,Female,38,67,40
124 | 123,Female,40,69,58
125 | 124,Male,39,69,91
126 | 125,Female,23,70,29
127 | 126,Female,31,70,77
128 | 127,Male,43,71,35
129 | 128,Male,40,71,95
130 | 129,Male,59,71,11
131 | 130,Male,38,71,75
132 | 131,Male,47,71,9
133 | 132,Male,39,71,75
134 | 133,Female,25,72,34
135 | 134,Female,31,72,71
136 | 135,Male,20,73,5
137 | 136,Female,29,73,88
138 | 137,Female,44,73,7
139 | 138,Male,32,73,73
140 | 139,Male,19,74,10
141 | 140,Female,35,74,72
142 | 141,Female,57,75,5
143 | 142,Male,32,75,93
144 | 143,Female,28,76,40
145 | 144,Female,32,76,87
146 | 145,Male,25,77,12
147 | 146,Male,28,77,97
148 | 147,Male,48,77,36
149 | 148,Female,32,77,74
150 | 149,Female,34,78,22
151 | 150,Male,34,78,90
152 | 151,Male,43,78,17
153 | 152,Male,39,78,88
154 | 153,Female,44,78,20
155 | 154,Female,38,78,76
156 | 155,Female,47,78,16
157 | 156,Female,27,78,89
158 | 157,Male,37,78,1
159 | 158,Female,30,78,78
160 | 159,Male,34,78,1
161 | 160,Female,30,78,73
162 | 161,Female,56,79,35
163 | 162,Female,29,79,83
164 | 163,Male,19,81,5
165 | 164,Female,31,81,93
166 | 165,Male,50,85,26
167 | 166,Female,36,85,75
168 | 167,Male,42,86,20
169 | 168,Female,33,86,95
170 | 169,Female,36,87,27
171 | 170,Male,32,87,63
172 | 171,Male,40,87,13
173 | 172,Male,28,87,75
174 | 173,Male,36,87,10
175 | 174,Male,36,87,92
176 | 175,Female,52,88,13
177 | 176,Female,30,88,86
178 | 177,Male,58,88,15
179 | 178,Male,27,88,69
180 | 179,Male,59,93,14
181 | 180,Male,35,93,90
182 | 181,Female,37,97,32
183 | 182,Female,32,97,86
184 | 183,Male,46,98,15
185 | 184,Female,29,98,88
186 | 185,Female,41,99,39
187 | 186,Male,30,99,97
188 | 187,Female,54,101,24
189 | 188,Male,28,101,68
190 | 189,Female,41,103,17
191 | 190,Female,36,103,85
192 | 191,Female,34,103,23
193 | 192,Female,32,103,69
194 | 193,Male,33,113,8
195 | 194,Female,38,113,91
196 | 195,Female,47,120,16
197 | 196,Female,35,120,79
198 | 197,Female,45,126,28
199 | 198,Male,32,126,74
200 | 199,Male,32,137,18
201 | 200,Male,30,137,83
202 |
--------------------------------------------------------------------------------
/Code-and-Data-Files/PCA-Housing.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## PCA Demonstration in Python"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 11,
13 | "metadata": {},
14 | "outputs": [],
15 | "source": [
16 | "# Importing the required libraries"
17 | ]
18 | },
19 | {
20 | "cell_type": "code",
21 | "execution_count": 12,
22 | "metadata": {},
23 | "outputs": [],
24 | "source": [
25 | "import numpy as np, pandas as pd"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 13,
31 | "metadata": {},
32 | "outputs": [],
33 | "source": [
34 | "data = pd.read_csv(\"newhousing.csv\")"
35 | ]
36 | },
37 | {
38 | "cell_type": "code",
39 | "execution_count": 14,
40 | "metadata": {},
41 | "outputs": [
42 | {
43 | "data": {
44 | "text/html": [
45 | "\n",
46 | "\n",
59 | "
\n",
60 | " \n",
61 | " \n",
62 | " | \n",
63 | " price | \n",
64 | " area | \n",
65 | " bedrooms | \n",
66 | " bathrooms | \n",
67 | " stories | \n",
68 | " mainroad | \n",
69 | " guestroom | \n",
70 | " basement | \n",
71 | " hotwaterheating | \n",
72 | " airconditioning | \n",
73 | " parking | \n",
74 | " prefarea | \n",
75 | " semi-furnished | \n",
76 | " unfurnished | \n",
77 | " areaperbedroom | \n",
78 | " bbratio | \n",
79 | "
\n",
80 | " \n",
81 | " \n",
82 | " \n",
83 | " 0 | \n",
84 | " 5250000 | \n",
85 | " 5500 | \n",
86 | " 3 | \n",
87 | " 2 | \n",
88 | " 1 | \n",
89 | " 1 | \n",
90 | " 0 | \n",
91 | " 1 | \n",
92 | " 0 | \n",
93 | " 0 | \n",
94 | " 0 | \n",
95 | " 0 | \n",
96 | " 1 | \n",
97 | " 0 | \n",
98 | " 1833.333333 | \n",
99 | " 0.666667 | \n",
100 | "
\n",
101 | " \n",
102 | " 1 | \n",
103 | " 4480000 | \n",
104 | " 4040 | \n",
105 | " 3 | \n",
106 | " 1 | \n",
107 | " 2 | \n",
108 | " 1 | \n",
109 | " 0 | \n",
110 | " 0 | \n",
111 | " 0 | \n",
112 | " 0 | \n",
113 | " 1 | \n",
114 | " 0 | \n",
115 | " 1 | \n",
116 | " 0 | \n",
117 | " 1346.666667 | \n",
118 | " 0.333333 | \n",
119 | "
\n",
120 | " \n",
121 | " 2 | \n",
122 | " 3570000 | \n",
123 | " 3640 | \n",
124 | " 2 | \n",
125 | " 1 | \n",
126 | " 1 | \n",
127 | " 1 | \n",
128 | " 0 | \n",
129 | " 0 | \n",
130 | " 0 | \n",
131 | " 0 | \n",
132 | " 0 | \n",
133 | " 0 | \n",
134 | " 0 | \n",
135 | " 1 | \n",
136 | " 1820.000000 | \n",
137 | " 0.500000 | \n",
138 | "
\n",
139 | " \n",
140 | " 3 | \n",
141 | " 2870000 | \n",
142 | " 3040 | \n",
143 | " 2 | \n",
144 | " 1 | \n",
145 | " 1 | \n",
146 | " 0 | \n",
147 | " 0 | \n",
148 | " 0 | \n",
149 | " 0 | \n",
150 | " 0 | \n",
151 | " 0 | \n",
152 | " 0 | \n",
153 | " 0 | \n",
154 | " 1 | \n",
155 | " 1520.000000 | \n",
156 | " 0.500000 | \n",
157 | "
\n",
158 | " \n",
159 | " 4 | \n",
160 | " 3570000 | \n",
161 | " 4500 | \n",
162 | " 2 | \n",
163 | " 1 | \n",
164 | " 1 | \n",
165 | " 0 | \n",
166 | " 0 | \n",
167 | " 0 | \n",
168 | " 0 | \n",
169 | " 0 | \n",
170 | " 0 | \n",
171 | " 0 | \n",
172 | " 0 | \n",
173 | " 0 | \n",
174 | " 2250.000000 | \n",
175 | " 0.500000 | \n",
176 | "
\n",
177 | " \n",
178 | " ... | \n",
179 | " ... | \n",
180 | " ... | \n",
181 | " ... | \n",
182 | " ... | \n",
183 | " ... | \n",
184 | " ... | \n",
185 | " ... | \n",
186 | " ... | \n",
187 | " ... | \n",
188 | " ... | \n",
189 | " ... | \n",
190 | " ... | \n",
191 | " ... | \n",
192 | " ... | \n",
193 | " ... | \n",
194 | " ... | \n",
195 | "
\n",
196 | " \n",
197 | " 540 | \n",
198 | " 4403000 | \n",
199 | " 4880 | \n",
200 | " 3 | \n",
201 | " 1 | \n",
202 | " 1 | \n",
203 | " 1 | \n",
204 | " 0 | \n",
205 | " 0 | \n",
206 | " 0 | \n",
207 | " 0 | \n",
208 | " 2 | \n",
209 | " 1 | \n",
210 | " 0 | \n",
211 | " 1 | \n",
212 | " 1626.666667 | \n",
213 | " 0.333333 | \n",
214 | "
\n",
215 | " \n",
216 | " 541 | \n",
217 | " 2660000 | \n",
218 | " 2000 | \n",
219 | " 2 | \n",
220 | " 1 | \n",
221 | " 2 | \n",
222 | " 1 | \n",
223 | " 0 | \n",
224 | " 0 | \n",
225 | " 0 | \n",
226 | " 0 | \n",
227 | " 0 | \n",
228 | " 0 | \n",
229 | " 1 | \n",
230 | " 0 | \n",
231 | " 1000.000000 | \n",
232 | " 0.500000 | \n",
233 | "
\n",
234 | " \n",
235 | " 542 | \n",
236 | " 4480000 | \n",
237 | " 8250 | \n",
238 | " 3 | \n",
239 | " 1 | \n",
240 | " 1 | \n",
241 | " 1 | \n",
242 | " 0 | \n",
243 | " 0 | \n",
244 | " 0 | \n",
245 | " 0 | \n",
246 | " 0 | \n",
247 | " 0 | \n",
248 | " 0 | \n",
249 | " 0 | \n",
250 | " 2750.000000 | \n",
251 | " 0.333333 | \n",
252 | "
\n",
253 | " \n",
254 | " 543 | \n",
255 | " 5110000 | \n",
256 | " 11410 | \n",
257 | " 2 | \n",
258 | " 1 | \n",
259 | " 2 | \n",
260 | " 1 | \n",
261 | " 0 | \n",
262 | " 0 | \n",
263 | " 0 | \n",
264 | " 0 | \n",
265 | " 0 | \n",
266 | " 1 | \n",
267 | " 0 | \n",
268 | " 0 | \n",
269 | " 5705.000000 | \n",
270 | " 0.500000 | \n",
271 | "
\n",
272 | " \n",
273 | " 544 | \n",
274 | " 4410000 | \n",
275 | " 3968 | \n",
276 | " 3 | \n",
277 | " 1 | \n",
278 | " 2 | \n",
279 | " 0 | \n",
280 | " 0 | \n",
281 | " 0 | \n",
282 | " 0 | \n",
283 | " 0 | \n",
284 | " 0 | \n",
285 | " 0 | \n",
286 | " 1 | \n",
287 | " 0 | \n",
288 | " 1322.666667 | \n",
289 | " 0.333333 | \n",
290 | "
\n",
291 | " \n",
292 | "
\n",
293 | "
545 rows × 16 columns
\n",
294 | "
"
295 | ],
296 | "text/plain": [
297 | " price area bedrooms bathrooms stories mainroad guestroom \\\n",
298 | "0 5250000 5500 3 2 1 1 0 \n",
299 | "1 4480000 4040 3 1 2 1 0 \n",
300 | "2 3570000 3640 2 1 1 1 0 \n",
301 | "3 2870000 3040 2 1 1 0 0 \n",
302 | "4 3570000 4500 2 1 1 0 0 \n",
303 | ".. ... ... ... ... ... ... ... \n",
304 | "540 4403000 4880 3 1 1 1 0 \n",
305 | "541 2660000 2000 2 1 2 1 0 \n",
306 | "542 4480000 8250 3 1 1 1 0 \n",
307 | "543 5110000 11410 2 1 2 1 0 \n",
308 | "544 4410000 3968 3 1 2 0 0 \n",
309 | "\n",
310 | " basement hotwaterheating airconditioning parking prefarea \\\n",
311 | "0 1 0 0 0 0 \n",
312 | "1 0 0 0 1 0 \n",
313 | "2 0 0 0 0 0 \n",
314 | "3 0 0 0 0 0 \n",
315 | "4 0 0 0 0 0 \n",
316 | ".. ... ... ... ... ... \n",
317 | "540 0 0 0 2 1 \n",
318 | "541 0 0 0 0 0 \n",
319 | "542 0 0 0 0 0 \n",
320 | "543 0 0 0 0 1 \n",
321 | "544 0 0 0 0 0 \n",
322 | "\n",
323 | " semi-furnished unfurnished areaperbedroom bbratio \n",
324 | "0 1 0 1833.333333 0.666667 \n",
325 | "1 1 0 1346.666667 0.333333 \n",
326 | "2 0 1 1820.000000 0.500000 \n",
327 | "3 0 1 1520.000000 0.500000 \n",
328 | "4 0 0 2250.000000 0.500000 \n",
329 | ".. ... ... ... ... \n",
330 | "540 0 1 1626.666667 0.333333 \n",
331 | "541 1 0 1000.000000 0.500000 \n",
332 | "542 0 0 2750.000000 0.333333 \n",
333 | "543 0 0 5705.000000 0.500000 \n",
334 | "544 1 0 1322.666667 0.333333 \n",
335 | "\n",
336 | "[545 rows x 16 columns]"
337 | ]
338 | },
339 | "execution_count": 14,
340 | "metadata": {},
341 | "output_type": "execute_result"
342 | }
343 | ],
344 | "source": [
345 | "data"
346 | ]
347 | },
348 | {
349 | "cell_type": "code",
350 | "execution_count": 15,
351 | "metadata": {},
352 | "outputs": [
353 | {
354 | "data": {
355 | "text/html": [
356 | "\n",
357 | "\n",
370 | "
\n",
371 | " \n",
372 | " \n",
373 | " | \n",
374 | " price | \n",
375 | " area | \n",
376 | " bedrooms | \n",
377 | " bathrooms | \n",
378 | " stories | \n",
379 | " mainroad | \n",
380 | " guestroom | \n",
381 | " basement | \n",
382 | " hotwaterheating | \n",
383 | " airconditioning | \n",
384 | " parking | \n",
385 | " prefarea | \n",
386 | " semi-furnished | \n",
387 | " unfurnished | \n",
388 | " areaperbedroom | \n",
389 | " bbratio | \n",
390 | "
\n",
391 | " \n",
392 | " \n",
393 | " \n",
394 | " count | \n",
395 | " 5.450000e+02 | \n",
396 | " 545.000000 | \n",
397 | " 545.000000 | \n",
398 | " 545.000000 | \n",
399 | " 545.000000 | \n",
400 | " 545.000000 | \n",
401 | " 545.000000 | \n",
402 | " 545.000000 | \n",
403 | " 545.000000 | \n",
404 | " 545.000000 | \n",
405 | " 545.000000 | \n",
406 | " 545.000000 | \n",
407 | " 545.000000 | \n",
408 | " 545.000000 | \n",
409 | " 545.000000 | \n",
410 | " 545.000000 | \n",
411 | "
\n",
412 | " \n",
413 | " mean | \n",
414 | " 4.766729e+06 | \n",
415 | " 5150.541284 | \n",
416 | " 2.965138 | \n",
417 | " 1.286239 | \n",
418 | " 1.805505 | \n",
419 | " 0.858716 | \n",
420 | " 0.177982 | \n",
421 | " 0.350459 | \n",
422 | " 0.045872 | \n",
423 | " 0.315596 | \n",
424 | " 0.693578 | \n",
425 | " 0.234862 | \n",
426 | " 0.416514 | \n",
427 | " 0.326606 | \n",
428 | " 1819.852599 | \n",
429 | " 0.446361 | \n",
430 | "
\n",
431 | " \n",
432 | " std | \n",
433 | " 1.870440e+06 | \n",
434 | " 2170.141023 | \n",
435 | " 0.738064 | \n",
436 | " 0.502470 | \n",
437 | " 0.867492 | \n",
438 | " 0.348635 | \n",
439 | " 0.382849 | \n",
440 | " 0.477552 | \n",
441 | " 0.209399 | \n",
442 | " 0.465180 | \n",
443 | " 0.861586 | \n",
444 | " 0.424302 | \n",
445 | " 0.493434 | \n",
446 | " 0.469402 | \n",
447 | " 839.091825 | \n",
448 | " 0.159492 | \n",
449 | "
\n",
450 | " \n",
451 | " min | \n",
452 | " 1.750000e+06 | \n",
453 | " 1650.000000 | \n",
454 | " 1.000000 | \n",
455 | " 1.000000 | \n",
456 | " 1.000000 | \n",
457 | " 0.000000 | \n",
458 | " 0.000000 | \n",
459 | " 0.000000 | \n",
460 | " 0.000000 | \n",
461 | " 0.000000 | \n",
462 | " 0.000000 | \n",
463 | " 0.000000 | \n",
464 | " 0.000000 | \n",
465 | " 0.000000 | \n",
466 | " 381.000000 | \n",
467 | " 0.166667 | \n",
468 | "
\n",
469 | " \n",
470 | " 25% | \n",
471 | " 3.430000e+06 | \n",
472 | " 3600.000000 | \n",
473 | " 2.000000 | \n",
474 | " 1.000000 | \n",
475 | " 1.000000 | \n",
476 | " 1.000000 | \n",
477 | " 0.000000 | \n",
478 | " 0.000000 | \n",
479 | " 0.000000 | \n",
480 | " 0.000000 | \n",
481 | " 0.000000 | \n",
482 | " 0.000000 | \n",
483 | " 0.000000 | \n",
484 | " 0.000000 | \n",
485 | " 1237.500000 | \n",
486 | " 0.333333 | \n",
487 | "
\n",
488 | " \n",
489 | " 50% | \n",
490 | " 4.340000e+06 | \n",
491 | " 4600.000000 | \n",
492 | " 3.000000 | \n",
493 | " 1.000000 | \n",
494 | " 2.000000 | \n",
495 | " 1.000000 | \n",
496 | " 0.000000 | \n",
497 | " 0.000000 | \n",
498 | " 0.000000 | \n",
499 | " 0.000000 | \n",
500 | " 0.000000 | \n",
501 | " 0.000000 | \n",
502 | " 0.000000 | \n",
503 | " 0.000000 | \n",
504 | " 1666.666667 | \n",
505 | " 0.400000 | \n",
506 | "
\n",
507 | " \n",
508 | " 75% | \n",
509 | " 5.740000e+06 | \n",
510 | " 6360.000000 | \n",
511 | " 3.000000 | \n",
512 | " 2.000000 | \n",
513 | " 2.000000 | \n",
514 | " 1.000000 | \n",
515 | " 0.000000 | \n",
516 | " 1.000000 | \n",
517 | " 0.000000 | \n",
518 | " 1.000000 | \n",
519 | " 1.000000 | \n",
520 | " 0.000000 | \n",
521 | " 1.000000 | \n",
522 | " 1.000000 | \n",
523 | " 2183.333333 | \n",
524 | " 0.500000 | \n",
525 | "
\n",
526 | " \n",
527 | " max | \n",
528 | " 1.330000e+07 | \n",
529 | " 16200.000000 | \n",
530 | " 6.000000 | \n",
531 | " 4.000000 | \n",
532 | " 4.000000 | \n",
533 | " 1.000000 | \n",
534 | " 1.000000 | \n",
535 | " 1.000000 | \n",
536 | " 1.000000 | \n",
537 | " 1.000000 | \n",
538 | " 3.000000 | \n",
539 | " 1.000000 | \n",
540 | " 1.000000 | \n",
541 | " 1.000000 | \n",
542 | " 6600.000000 | \n",
543 | " 1.000000 | \n",
544 | "
\n",
545 | " \n",
546 | "
\n",
547 | "
"
548 | ],
549 | "text/plain": [
550 | " price area bedrooms bathrooms stories \\\n",
551 | "count 5.450000e+02 545.000000 545.000000 545.000000 545.000000 \n",
552 | "mean 4.766729e+06 5150.541284 2.965138 1.286239 1.805505 \n",
553 | "std 1.870440e+06 2170.141023 0.738064 0.502470 0.867492 \n",
554 | "min 1.750000e+06 1650.000000 1.000000 1.000000 1.000000 \n",
555 | "25% 3.430000e+06 3600.000000 2.000000 1.000000 1.000000 \n",
556 | "50% 4.340000e+06 4600.000000 3.000000 1.000000 2.000000 \n",
557 | "75% 5.740000e+06 6360.000000 3.000000 2.000000 2.000000 \n",
558 | "max 1.330000e+07 16200.000000 6.000000 4.000000 4.000000 \n",
559 | "\n",
560 | " mainroad guestroom basement hotwaterheating airconditioning \\\n",
561 | "count 545.000000 545.000000 545.000000 545.000000 545.000000 \n",
562 | "mean 0.858716 0.177982 0.350459 0.045872 0.315596 \n",
563 | "std 0.348635 0.382849 0.477552 0.209399 0.465180 \n",
564 | "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
565 | "25% 1.000000 0.000000 0.000000 0.000000 0.000000 \n",
566 | "50% 1.000000 0.000000 0.000000 0.000000 0.000000 \n",
567 | "75% 1.000000 0.000000 1.000000 0.000000 1.000000 \n",
568 | "max 1.000000 1.000000 1.000000 1.000000 1.000000 \n",
569 | "\n",
570 | " parking prefarea semi-furnished unfurnished areaperbedroom \\\n",
571 | "count 545.000000 545.000000 545.000000 545.000000 545.000000 \n",
572 | "mean 0.693578 0.234862 0.416514 0.326606 1819.852599 \n",
573 | "std 0.861586 0.424302 0.493434 0.469402 839.091825 \n",
574 | "min 0.000000 0.000000 0.000000 0.000000 381.000000 \n",
575 | "25% 0.000000 0.000000 0.000000 0.000000 1237.500000 \n",
576 | "50% 0.000000 0.000000 0.000000 0.000000 1666.666667 \n",
577 | "75% 1.000000 0.000000 1.000000 1.000000 2183.333333 \n",
578 | "max 3.000000 1.000000 1.000000 1.000000 6600.000000 \n",
579 | "\n",
580 | " bbratio \n",
581 | "count 545.000000 \n",
582 | "mean 0.446361 \n",
583 | "std 0.159492 \n",
584 | "min 0.166667 \n",
585 | "25% 0.333333 \n",
586 | "50% 0.400000 \n",
587 | "75% 0.500000 \n",
588 | "max 1.000000 "
589 | ]
590 | },
591 | "execution_count": 15,
592 | "metadata": {},
593 | "output_type": "execute_result"
594 | }
595 | ],
596 | "source": [
597 | "data.describe()"
598 | ]
599 | },
600 | {
601 | "cell_type": "markdown",
602 | "metadata": {},
603 | "source": [
604 | "Scaling the data"
605 | ]
606 | },
607 | {
608 | "cell_type": "code",
609 | "execution_count": 16,
610 | "metadata": {},
611 | "outputs": [],
612 | "source": [
613 | "from sklearn.preprocessing import StandardScaler"
614 | ]
615 | },
616 | {
617 | "cell_type": "code",
618 | "execution_count": 17,
619 | "metadata": {},
620 | "outputs": [],
621 | "source": [
622 | "scaler = StandardScaler()"
623 | ]
624 | },
625 | {
626 | "cell_type": "code",
627 | "execution_count": 18,
628 | "metadata": {},
629 | "outputs": [],
630 | "source": [
631 | "X = data.copy()"
632 | ]
633 | },
634 | {
635 | "cell_type": "code",
636 | "execution_count": 19,
637 | "metadata": {},
638 | "outputs": [],
639 | "source": [
640 | "x = scaler.fit_transform(X)"
641 | ]
642 | },
643 | {
644 | "cell_type": "code",
645 | "execution_count": 21,
646 | "metadata": {},
647 | "outputs": [
648 | {
649 | "data": {
650 | "text/html": [
651 | "\n",
652 | "\n",
665 | "
\n",
666 | " \n",
667 | " \n",
668 | " | \n",
669 | " price | \n",
670 | " area | \n",
671 | " bedrooms | \n",
672 | " bathrooms | \n",
673 | " stories | \n",
674 | " mainroad | \n",
675 | " guestroom | \n",
676 | " basement | \n",
677 | " hotwaterheating | \n",
678 | " airconditioning | \n",
679 | " parking | \n",
680 | " prefarea | \n",
681 | " semi-furnished | \n",
682 | " unfurnished | \n",
683 | " areaperbedroom | \n",
684 | " bbratio | \n",
685 | "
\n",
686 | " \n",
687 | " \n",
688 | " \n",
689 | " 0 | \n",
690 | " 0.258610 | \n",
691 | " 0.161178 | \n",
692 | " 0.047278 | \n",
693 | " 1.421812 | \n",
694 | " -0.929397 | \n",
695 | " 0.405623 | \n",
696 | " -0.465315 | \n",
697 | " 1.361397 | \n",
698 | " -0.219265 | \n",
699 | " -0.679063 | \n",
700 | " -0.805741 | \n",
701 | " -0.554035 | \n",
702 | " 1.183588 | \n",
703 | " -0.696429 | \n",
704 | " 0.016081 | \n",
705 | " 1.382568 | \n",
706 | "
\n",
707 | " \n",
708 | " 1 | \n",
709 | " -0.153436 | \n",
710 | " -0.512207 | \n",
711 | " 0.047278 | \n",
712 | " -0.570187 | \n",
713 | " 0.224410 | \n",
714 | " 0.405623 | \n",
715 | " -0.465315 | \n",
716 | " -0.734539 | \n",
717 | " -0.219265 | \n",
718 | " -0.679063 | \n",
719 | " 0.355976 | \n",
720 | " -0.554035 | \n",
721 | " 1.183588 | \n",
722 | " -0.696429 | \n",
723 | " -0.564444 | \n",
724 | " -0.709324 | \n",
725 | "
\n",
726 | " \n",
727 | " 2 | \n",
728 | " -0.640400 | \n",
729 | " -0.696696 | \n",
730 | " -1.308863 | \n",
731 | " -0.570187 | \n",
732 | " -0.929397 | \n",
733 | " 0.405623 | \n",
734 | " -0.465315 | \n",
735 | " -0.734539 | \n",
736 | " -0.219265 | \n",
737 | " -0.679063 | \n",
738 | " -0.805741 | \n",
739 | " -0.554035 | \n",
740 | " -0.844888 | \n",
741 | " 1.435896 | \n",
742 | " 0.000176 | \n",
743 | " 0.336622 | \n",
744 | "
\n",
745 | " \n",
746 | " 3 | \n",
747 | " -1.014987 | \n",
748 | " -0.973430 | \n",
749 | " -1.308863 | \n",
750 | " -0.570187 | \n",
751 | " -0.929397 | \n",
752 | " -2.465344 | \n",
753 | " -0.465315 | \n",
754 | " -0.734539 | \n",
755 | " -0.219265 | \n",
756 | " -0.679063 | \n",
757 | " -0.805741 | \n",
758 | " -0.554035 | \n",
759 | " -0.844888 | \n",
760 | " 1.435896 | \n",
761 | " -0.357682 | \n",
762 | " 0.336622 | \n",
763 | "
\n",
764 | " \n",
765 | " 4 | \n",
766 | " -0.640400 | \n",
767 | " -0.300045 | \n",
768 | " -1.308863 | \n",
769 | " -0.570187 | \n",
770 | " -0.929397 | \n",
771 | " -2.465344 | \n",
772 | " -0.465315 | \n",
773 | " -0.734539 | \n",
774 | " -0.219265 | \n",
775 | " -0.679063 | \n",
776 | " -0.805741 | \n",
777 | " -0.554035 | \n",
778 | " -0.844888 | \n",
779 | " -0.696429 | \n",
780 | " 0.513105 | \n",
781 | " 0.336622 | \n",
782 | "
\n",
783 | " \n",
784 | " ... | \n",
785 | " ... | \n",
786 | " ... | \n",
787 | " ... | \n",
788 | " ... | \n",
789 | " ... | \n",
790 | " ... | \n",
791 | " ... | \n",
792 | " ... | \n",
793 | " ... | \n",
794 | " ... | \n",
795 | " ... | \n",
796 | " ... | \n",
797 | " ... | \n",
798 | " ... | \n",
799 | " ... | \n",
800 | " ... | \n",
801 | "
\n",
802 | " \n",
803 | " 540 | \n",
804 | " -0.194641 | \n",
805 | " -0.124780 | \n",
806 | " 0.047278 | \n",
807 | " -0.570187 | \n",
808 | " -0.929397 | \n",
809 | " 0.405623 | \n",
810 | " -0.465315 | \n",
811 | " -0.734539 | \n",
812 | " -0.219265 | \n",
813 | " -0.679063 | \n",
814 | " 1.517692 | \n",
815 | " 1.804941 | \n",
816 | " -0.844888 | \n",
817 | " 1.435896 | \n",
818 | " -0.230444 | \n",
819 | " -0.709324 | \n",
820 | "
\n",
821 | " \n",
822 | " 541 | \n",
823 | " -1.127363 | \n",
824 | " -1.453102 | \n",
825 | " -1.308863 | \n",
826 | " -0.570187 | \n",
827 | " 0.224410 | \n",
828 | " 0.405623 | \n",
829 | " -0.465315 | \n",
830 | " -0.734539 | \n",
831 | " -0.219265 | \n",
832 | " -0.679063 | \n",
833 | " -0.805741 | \n",
834 | " -0.554035 | \n",
835 | " 1.183588 | \n",
836 | " -0.696429 | \n",
837 | " -0.977969 | \n",
838 | " 0.336622 | \n",
839 | "
\n",
840 | " \n",
841 | " 542 | \n",
842 | " -0.153436 | \n",
843 | " 1.429541 | \n",
844 | " 0.047278 | \n",
845 | " -0.570187 | \n",
846 | " -0.929397 | \n",
847 | " 0.405623 | \n",
848 | " -0.465315 | \n",
849 | " -0.734539 | \n",
850 | " -0.219265 | \n",
851 | " -0.679063 | \n",
852 | " -0.805741 | \n",
853 | " -0.554035 | \n",
854 | " -0.844888 | \n",
855 | " -0.696429 | \n",
856 | " 1.109535 | \n",
857 | " -0.709324 | \n",
858 | "
\n",
859 | " \n",
860 | " 543 | \n",
861 | " 0.183693 | \n",
862 | " 2.887006 | \n",
863 | " -1.308863 | \n",
864 | " -0.570187 | \n",
865 | " 0.224410 | \n",
866 | " 0.405623 | \n",
867 | " -0.465315 | \n",
868 | " -0.734539 | \n",
869 | " -0.219265 | \n",
870 | " -0.679063 | \n",
871 | " -0.805741 | \n",
872 | " 1.804941 | \n",
873 | " -0.844888 | \n",
874 | " -0.696429 | \n",
875 | " 4.634435 | \n",
876 | " 0.336622 | \n",
877 | "
\n",
878 | " \n",
879 | " 544 | \n",
880 | " -0.190895 | \n",
881 | " -0.545415 | \n",
882 | " 0.047278 | \n",
883 | " -0.570187 | \n",
884 | " 0.224410 | \n",
885 | " -2.465344 | \n",
886 | " -0.465315 | \n",
887 | " -0.734539 | \n",
888 | " -0.219265 | \n",
889 | " -0.679063 | \n",
890 | " -0.805741 | \n",
891 | " -0.554035 | \n",
892 | " 1.183588 | \n",
893 | " -0.696429 | \n",
894 | " -0.593073 | \n",
895 | " -0.709324 | \n",
896 | "
\n",
897 | " \n",
898 | "
\n",
899 | "
545 rows × 16 columns
\n",
900 | "
"
901 | ],
902 | "text/plain": [
903 | " price area bedrooms bathrooms stories mainroad guestroom \\\n",
904 | "0 0.258610 0.161178 0.047278 1.421812 -0.929397 0.405623 -0.465315 \n",
905 | "1 -0.153436 -0.512207 0.047278 -0.570187 0.224410 0.405623 -0.465315 \n",
906 | "2 -0.640400 -0.696696 -1.308863 -0.570187 -0.929397 0.405623 -0.465315 \n",
907 | "3 -1.014987 -0.973430 -1.308863 -0.570187 -0.929397 -2.465344 -0.465315 \n",
908 | "4 -0.640400 -0.300045 -1.308863 -0.570187 -0.929397 -2.465344 -0.465315 \n",
909 | ".. ... ... ... ... ... ... ... \n",
910 | "540 -0.194641 -0.124780 0.047278 -0.570187 -0.929397 0.405623 -0.465315 \n",
911 | "541 -1.127363 -1.453102 -1.308863 -0.570187 0.224410 0.405623 -0.465315 \n",
912 | "542 -0.153436 1.429541 0.047278 -0.570187 -0.929397 0.405623 -0.465315 \n",
913 | "543 0.183693 2.887006 -1.308863 -0.570187 0.224410 0.405623 -0.465315 \n",
914 | "544 -0.190895 -0.545415 0.047278 -0.570187 0.224410 -2.465344 -0.465315 \n",
915 | "\n",
916 | " basement hotwaterheating airconditioning parking prefarea \\\n",
917 | "0 1.361397 -0.219265 -0.679063 -0.805741 -0.554035 \n",
918 | "1 -0.734539 -0.219265 -0.679063 0.355976 -0.554035 \n",
919 | "2 -0.734539 -0.219265 -0.679063 -0.805741 -0.554035 \n",
920 | "3 -0.734539 -0.219265 -0.679063 -0.805741 -0.554035 \n",
921 | "4 -0.734539 -0.219265 -0.679063 -0.805741 -0.554035 \n",
922 | ".. ... ... ... ... ... \n",
923 | "540 -0.734539 -0.219265 -0.679063 1.517692 1.804941 \n",
924 | "541 -0.734539 -0.219265 -0.679063 -0.805741 -0.554035 \n",
925 | "542 -0.734539 -0.219265 -0.679063 -0.805741 -0.554035 \n",
926 | "543 -0.734539 -0.219265 -0.679063 -0.805741 1.804941 \n",
927 | "544 -0.734539 -0.219265 -0.679063 -0.805741 -0.554035 \n",
928 | "\n",
929 | " semi-furnished unfurnished areaperbedroom bbratio \n",
930 | "0 1.183588 -0.696429 0.016081 1.382568 \n",
931 | "1 1.183588 -0.696429 -0.564444 -0.709324 \n",
932 | "2 -0.844888 1.435896 0.000176 0.336622 \n",
933 | "3 -0.844888 1.435896 -0.357682 0.336622 \n",
934 | "4 -0.844888 -0.696429 0.513105 0.336622 \n",
935 | ".. ... ... ... ... \n",
936 | "540 -0.844888 1.435896 -0.230444 -0.709324 \n",
937 | "541 1.183588 -0.696429 -0.977969 0.336622 \n",
938 | "542 -0.844888 -0.696429 1.109535 -0.709324 \n",
939 | "543 -0.844888 -0.696429 4.634435 0.336622 \n",
940 | "544 1.183588 -0.696429 -0.593073 -0.709324 \n",
941 | "\n",
942 | "[545 rows x 16 columns]"
943 | ]
944 | },
945 | "execution_count": 21,
946 | "metadata": {},
947 | "output_type": "execute_result"
948 | }
949 | ],
950 | "source": [
951 | "dfx = pd.DataFrame(x, columns=X.columns)\n",
952 | "dfx"
953 | ]
954 | },
955 | {
956 | "cell_type": "markdown",
957 | "metadata": {},
958 | "source": [
959 | "### Applying PCA on the data"
960 | ]
961 | },
962 | {
963 | "cell_type": "code",
964 | "execution_count": 22,
965 | "metadata": {},
966 | "outputs": [],
967 | "source": [
968 | "from sklearn.decomposition import PCA"
969 | ]
970 | },
971 | {
972 | "cell_type": "code",
973 | "execution_count": 23,
974 | "metadata": {},
975 | "outputs": [],
976 | "source": [
977 | "pca = PCA(random_state=100)"
978 | ]
979 | },
980 | {
981 | "cell_type": "code",
982 | "execution_count": 24,
983 | "metadata": {},
984 | "outputs": [
985 | {
986 | "data": {
987 | "text/plain": [
988 | "PCA(random_state=100)"
989 | ]
990 | },
991 | "execution_count": 24,
992 | "metadata": {},
993 | "output_type": "execute_result"
994 | }
995 | ],
996 | "source": [
997 | "pca.fit(x)"
998 | ]
999 | },
1000 | {
1001 | "cell_type": "code",
1002 | "execution_count": 25,
1003 | "metadata": {},
1004 | "outputs": [
1005 | {
1006 | "data": {
1007 | "text/plain": [
1008 | "array([[ 4.82691560e-01, 3.79259187e-01, 1.93444345e-01,\n",
1009 | " 3.31592969e-01, 2.20511391e-01, 2.25130078e-01,\n",
1010 | " 1.87658075e-01, 1.32122283e-01, 2.54880647e-02,\n",
1011 | " 2.67834986e-01, 2.71095618e-01, 2.11749047e-01,\n",
1012 | " 7.33740295e-02, -2.09608241e-01, 2.22158739e-01,\n",
1013 | " 1.85543681e-01],\n",
1014 | " [-8.68229361e-02, 3.35184987e-01, -4.89972866e-01,\n",
1015 | " -2.53147243e-01, -3.82621294e-01, 1.76917174e-01,\n",
1016 | " -1.28866383e-02, -5.12208954e-03, -6.59030403e-02,\n",
1017 | " -8.94738334e-02, 9.53693725e-02, 8.53366832e-02,\n",
1018 | " -9.18180644e-02, 8.21599552e-02, 5.88817690e-01,\n",
1019 | " 8.63208692e-02],\n",
1020 | " [ 2.17427216e-02, -5.38681701e-02, -1.52434343e-01,\n",
1021 | " 4.10985855e-01, 1.31641225e-01, -1.15103674e-01,\n",
1022 | " -1.06329298e-01, -2.05081994e-01, -3.46053956e-02,\n",
1023 | " 7.56155215e-02, -7.33137511e-02, -1.67949504e-01,\n",
1024 | " -4.50573699e-01, 4.33716661e-01, 3.41474167e-02,\n",
1025 | " 5.36420574e-01],\n",
1026 | " [-6.57974393e-02, -1.73106669e-01, -2.48021188e-01,\n",
1027 | " 2.89342424e-01, -2.10220065e-01, -1.30250694e-01,\n",
1028 | " 3.87384866e-02, 1.37260547e-01, 1.93311132e-01,\n",
1029 | " -2.36840295e-01, -4.36824452e-02, -1.65679742e-01,\n",
1030 | " 4.70738181e-01, -3.99694175e-01, -1.36766848e-02,\n",
1031 | " 4.84370736e-01],\n",
1032 | " [-8.50283223e-03, -1.51710020e-01, -3.08001831e-02,\n",
1033 | " 3.50375465e-02, -2.30775827e-01, -7.17563428e-02,\n",
1034 | " 5.27924659e-01, 6.25445376e-01, -1.35306027e-01,\n",
1035 | " 3.90419133e-03, -1.80387559e-01, 3.00767754e-01,\n",
1036 | " -2.20755386e-01, 1.81024249e-01, -1.35970157e-01,\n",
1037 | " 7.16113953e-02],\n",
1038 | " [ 4.69380044e-02, 1.00462082e-01, 1.94428858e-01,\n",
1039 | " 4.46273861e-02, -1.33463140e-01, -2.97178131e-02,\n",
1040 | " 2.09151454e-04, 1.28341581e-01, 7.69345992e-01,\n",
1041 | " -3.83823328e-01, 2.78303311e-01, -4.17817800e-02,\n",
1042 | " -2.05638288e-01, 2.03280611e-01, -2.45870009e-03,\n",
1043 | " -1.03511526e-01],\n",
1044 | " [-1.11104302e-02, 2.20342257e-01, 1.75426844e-01,\n",
1045 | " 5.17426312e-03, -2.29403673e-01, -6.66501476e-01,\n",
1046 | " 9.33656143e-02, 1.23154277e-01, -1.74550356e-01,\n",
1047 | " 2.44784647e-01, 2.83537212e-01, -4.49588602e-01,\n",
1048 | " 1.04152190e-02, 1.62521981e-03, 1.28563988e-01,\n",
1049 | " -1.01191363e-01],\n",
1050 | " [ 4.05779082e-02, 1.30459933e-02, -2.09558064e-01,\n",
1051 | " -2.08536780e-01, 2.61163901e-01, 4.28141734e-02,\n",
1052 | " 4.91307935e-01, -1.03437735e-01, 4.11383678e-01,\n",
1053 | " 3.26956862e-01, -3.86120642e-01, -3.76618394e-01,\n",
1054 | " 8.18717045e-03, -3.59961610e-02, 1.29111323e-01,\n",
1055 | " -5.96506748e-02],\n",
1056 | " [ 5.50953696e-02, 2.88097624e-01, 1.21136360e-01,\n",
1057 | " 6.42070971e-02, 8.60641064e-02, -5.10827292e-01,\n",
1058 | " -1.24661639e-01, -1.10750256e-01, 1.15079051e-01,\n",
1059 | " -1.45343273e-01, -5.61363810e-01, 4.38064273e-01,\n",
1060 | " 1.00134161e-01, 3.90802736e-03, 2.15989638e-01,\n",
1061 | " -3.03126705e-02],\n",
1062 | " [-1.00869804e-01, 2.78417358e-01, 2.94743998e-01,\n",
1063 | " 1.51007675e-01, 1.02874361e-01, 2.33198603e-01,\n",
1064 | " 3.02389751e-01, -4.42872756e-02, -3.30118352e-01,\n",
1065 | " -5.86071554e-01, -2.00495889e-01, -3.70511394e-01,\n",
1066 | " 2.02763847e-02, 4.31561923e-02, 1.02802465e-01,\n",
1067 | " -3.85855629e-02],\n",
1068 | " [-3.33026090e-02, -1.19501494e-01, -1.73348961e-01,\n",
1069 | " -8.09963374e-02, 1.89235588e-01, -2.78675287e-01,\n",
1070 | " 5.19973589e-01, -4.78671858e-01, -7.20111491e-02,\n",
1071 | " -2.39033975e-01, 4.17384861e-01, 3.05344313e-01,\n",
1072 | " 3.07868047e-02, -5.42703882e-03, -5.73484784e-02,\n",
1073 | " 3.15675333e-02],\n",
1074 | " [ 6.33211594e-02, -2.75387474e-02, -2.89932547e-01,\n",
1075 | " -2.10262329e-01, 6.66690227e-01, -1.83455445e-01,\n",
1076 | " -2.07080712e-01, 4.81508686e-01, -7.53256653e-02,\n",
1077 | " -2.51613412e-01, 1.48081548e-01, -9.21272150e-02,\n",
1078 | " -5.34174729e-03, 1.82927484e-02, 1.19418669e-01,\n",
1079 | " 8.56225394e-03],\n",
1080 | " [ 3.46883351e-02, -4.17627417e-02, -5.25828008e-03,\n",
1081 | " -3.14981461e-02, -3.33062196e-02, -7.31559738e-02,\n",
1082 | " -3.05316563e-02, -4.35270603e-02, -1.88659861e-02,\n",
1083 | " -1.08534838e-01, -6.73857778e-02, -2.70166828e-02,\n",
1084 | " -6.76575615e-01, -7.15215405e-01, 1.79302909e-03,\n",
1085 | " -6.89847435e-03],\n",
1086 | " [ 8.53259699e-01, -1.50538284e-01, -1.63812402e-01,\n",
1087 | " -1.45508009e-01, -2.27963486e-01, -6.04892976e-02,\n",
1088 | " -3.86963182e-02, -1.03607867e-01, -1.13296915e-01,\n",
1089 | " -2.17732043e-01, -1.20324760e-01, -1.55466153e-01,\n",
1090 | " 2.96512182e-02, 1.08260885e-01, -1.20722871e-01,\n",
1091 | " -8.57665133e-02],\n",
1092 | " [ 5.51246332e-02, -5.12424309e-01, 5.04403322e-01,\n",
1093 | " -3.23982493e-01, 3.38353947e-03, 7.63941481e-03,\n",
1094 | " 1.11038918e-02, -1.36802481e-02, -6.96079056e-03,\n",
1095 | " -6.62619083e-03, 1.08285906e-02, 1.52544790e-02,\n",
1096 | " 1.81466070e-02, 2.33859901e-02, 5.29394361e-01,\n",
1097 | " 3.05021426e-01],\n",
1098 | " [-3.66712251e-04, 4.08137595e-01, 1.65442121e-01,\n",
1099 | " -5.67251865e-01, -1.36758456e-02, 1.49395847e-03,\n",
1100 | " -1.47902853e-02, -8.82464298e-03, 1.46164959e-02,\n",
1101 | " 3.14238838e-03, -7.17888215e-03, 3.31597858e-03,\n",
1102 | " -1.28405285e-03, -3.89805246e-03, -4.25780001e-01,\n",
1103 | " 5.49727574e-01]])"
1104 | ]
1105 | },
1106 | "execution_count": 25,
1107 | "metadata": {},
1108 | "output_type": "execute_result"
1109 | }
1110 | ],
1111 | "source": [
1112 | "pca.components_"
1113 | ]
1114 | },
1115 | {
1116 | "cell_type": "code",
1117 | "execution_count": 26,
1118 | "metadata": {},
1119 | "outputs": [
1120 | {
1121 | "data": {
1122 | "text/plain": [
1123 | "array([0.20967771, 0.12745495, 0.10099763, 0.09591569, 0.08818216,\n",
1124 | " 0.06718996, 0.0559836 , 0.05203792, 0.04968734, 0.04585248,\n",
1125 | " 0.03694627, 0.02759915, 0.02364306, 0.01534462, 0.00231593,\n",
1126 | " 0.0011715 ])"
1127 | ]
1128 | },
1129 | "execution_count": 26,
1130 | "metadata": {},
1131 | "output_type": "execute_result"
1132 | }
1133 | ],
1134 | "source": [
1135 | "pca.explained_variance_ratio_"
1136 | ]
1137 | },
1138 | {
1139 | "cell_type": "code",
1140 | "execution_count": 27,
1141 | "metadata": {},
1142 | "outputs": [],
1143 | "source": [
1144 | "import matplotlib.pyplot as plt"
1145 | ]
1146 | },
1147 | {
1148 | "cell_type": "code",
1149 | "execution_count": 28,
1150 | "metadata": {},
1151 | "outputs": [
1152 | {
1153 | "data": {
1154 | "text/plain": [
1155 | ""
1156 | ]
1157 | },
1158 | "execution_count": 28,
1159 | "metadata": {},
1160 | "output_type": "execute_result"
1161 | },
1162 | {
1163 | "data": {
1164 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWRklEQVR4nO3df4wf9Z3f8eerS6wWEgSEBVzbqX2RD+qeiIO2hha1vRzlZDsnlkhFMro6Vo7IcRUfoQpt9u6kU6RIlUVJaKNSVk7iC1G5WFwCZdXsxbHcXKPTQerF9RmM42PP5+DFxt7AXYiKhOP41T++s7npl6+98/Wu/f1uPq+HtPrOfObzmXmPf3xfO/P9zoxsExER5fk7vS4gIiJ6IwEQEVGoBEBERKESABERhUoAREQU6rJeF9CNa6+91suXL+91GRERC8rzzz//I9uD7e0LKgCWL1/OxMREr8uIiFhQJP2wU3tOAUVEFCoBEBFRqARAREShEgAREYVKAEREFCoBEBFRqARAREShEgAREYVKAEREFGpBXQk8F8tHvjWn8Ue3fXieKomI6A85AoiIKFQCICKiUAmAiIhCJQAiIgqVAIiIKFSjAJC0VtJhSZOSRjos/01JB6qfP5P0gdnGSrpG0m5JL1evV8/PLkVERBOzBoCkAeBRYB2wCrhX0qq2bn8F/AvbNwOfA7Y3GDsC7LG9EthTzUdExCXS5AhgDTBp+4jt08BOYLjewfaf2f7ravY5YGmDscPA49X048DdF7wXERHRtSYBsAQ4VpufqtrO5T7gjxuMvd72CYDq9bpOK5O0WdKEpInp6ekG5UZERBNNAkAd2tyxo/QhWgHwmW7Hnovt7baHbA8NDr7jmcYREXGBmgTAFLCsNr8UON7eSdLNwJeBYduvNxh7UtLiauxi4FR3pUdExFw0CYC9wEpJKyQtAjYAY/UOkt4HPAVstP0XDceOAZuq6U3AMxe+GxER0a1ZbwZn+4ykrcAuYADYYfugpC3V8lHg94H3Av9VEsCZ6rRNx7HVqrcBT0q6D3gFuGee9y0iIs6j0d1AbY8D421to7XpjwMfbzq2an8duKObYiMiYv7kSuCIiEIlACIiCpUAiIgoVAIgIqJQCYCIiEIlACIiCpUAiIgoVAIgIqJQCYCIiEIlACIiCpUAiIgoVAIgIqJQCYCIiEIlACIiCpUAiIgoVAIgIqJQjQJA0lpJhyVNShrpsPwmSc9KelvSg7X2GyXtr/28KemBatlnJb1aW7Z+3vYqIiJmNesTwSQNAI8Cd9J6yPteSWO2X6p1ewO4H7i7Ptb2YWB1bT2vAk/Xujxi++E51B8REReoyRHAGmDS9hHbp4GdwHC9g+1TtvcCPz3Peu4A/tL2Dy+42oiImDdNAmAJcKw2P1W1dWsD8PW2tq2SDkjaIenqToMkbZY0IWlienr6AjYbERGdNAkAdWhzNxuRtAi4C/ijWvNjwPtpnSI6AXy+01jb220P2R4aHBzsZrMREXEeTQJgClhWm18KHO9yO+uAfbZPzjTYPmn7Z7bPAl+idaopIiIukSYBsBdYKWlF9Zv8BmCsy+3cS9vpH0mLa7MfAV7scp0RETEHs34LyPYZSVuBXcAAsMP2QUlbquWjkm4AJoArgbPVVz1X2X5T0uW0vkH0ibZVPyRpNa3TSUc7LI+IiIto1gAAsD0OjLe1jdamX6N1aqjT2LeA93Zo39hVpRERMa9yJXBERKESABERhUoAREQUKgEQEVGoBEBERKESABERhUoAREQUKgEQEVGoBEBERKESABERhUoAREQUKgEQEVGoBEBERKESABERhUoAREQUqlEASFor6bCkSUkjHZbfJOlZSW9LerBt2VFJL0jaL2mi1n6NpN2SXq5eOz4UPiIiLo5ZA0DSAPAoref6rgLulbSqrdsbwP3Aw+dYzYdsr7Y9VGsbAfbYXgnsqeYjIuISaXIEsAaYtH3E9mlgJzBc72D7lO29wE+72PYw8Hg1/ThwdxdjIyJijpoEwBLgWG1+qmprysB3JD0vaXOt/XrbJwCq1+u6WGdERMxRk2cCq0Obu9jG7baPS7oO2C3pB7a/13RwFRqbAd73vvd1sdmIiDifJkcAU8Cy2vxS4HjTDdg+Xr2eAp6mdUoJ4KSkxQDV66lzjN9ue8j20ODgYNPNRkTELJoEwF5gpaQVkhYBG4CxJiuXdIWk98xMA78OvFgtHgM2VdObgGe6KTwiIuZm1lNAts9I2grsAgaAHbYPStpSLR+VdAMwAVwJnJX0AK1vDF0LPC1pZlt/aPvb1aq3AU9Kug94BbhnXvcsIiLOq8lnANgeB8bb2kZr06/ROjXU7k3gA+dY5+vAHY0rjYiIeZUrgSMiCpUAiIgoVAIgIqJQCYCIiEIlACIiCpUAiIgoVAIgIqJQCYCIiEIlACIiCpUAiIgoVAIgIqJQCYCIiEIlACIiCpUAiIgoVAIgIqJQCYCIiEI1CgBJayUdljQpaaTD8pskPSvpbUkP1tqXSfqupEOSDkr6VG3ZZyW9Kml/9bN+fnYpIiKamPWJYJIGgEeBO2k9IH6vpDHbL9W6vQHcD9zdNvwM8Gnb+6pnAz8vaXdt7CO2H57rTlxqy0e+NafxR7d9eJ4qiYi4cE2OANYAk7aP2D4N7ASG6x1sn7K9F/hpW/sJ2/uq6Z8Ah4Al81J5RETMSZMAWAIcq81PcQFv4pKWAx8Evl9r3irpgKQdkq4+x7jNkiYkTUxPT3e72YiIOIcmAaAObe5mI5LeDXwTeMD2m1XzY8D7gdXACeDzncba3m57yPbQ4OBgN5uNiIjzaBIAU8Cy2vxS4HjTDUh6F603/ydsPzXTbvuk7Z/ZPgt8idappoiIuESaBMBeYKWkFZIWARuAsSYrlyTgK8Ah219oW7a4NvsR4MVmJUdExHyY9VtAts9I2grsAgaAHbYPStpSLR+VdAMwAVwJnJX0ALAKuBnYCLwgaX+1yt+1PQ48JGk1rdNJR4FPzON+RUTELGYNAIDqDXu8rW20Nv0arVND7f6Uzp8hYHtj8zIjImK+5UrgiIhCJQAiIgqVAIiIKFQCICKiUAmAiIhCJQAiIgqVAIiIKFQCICKiUAmAiIhCJQAiIgqVAIiIKFQCICKiUAmAiIhCJQAiIgqVAIiIKFQCICKiUI0CQNJaSYclTUoa6bD8JknPSnpb0oNNxkq6RtJuSS9Xr1fPfXciIqKpWQNA0gDwKLCO1mMe75W0qq3bG8D9wMNdjB0B9theCeyp5iMi4hJp8kjINcCk7SMAknYCw8BLMx1snwJOSfpwF2OHgV+t+j0O/AnwmQvdkYVs+ci3Lnjs0W3tf+QREc00OQW0BDhWm5+q2po439jrbZ8AqF6v67QCSZslTUiamJ6ebrjZiIiYTZMA6PRQdzdc/1zGtjrb220P2R4aHBzsZmhERJxHkwCYApbV5pcCxxuu/3xjT0paDFC9nmq4zoiImAdNAmAvsFLSCkmLgA3AWMP1n2/sGLCpmt4EPNO87IiImKtZPwS2fUbSVmAXMADssH1Q0pZq+aikG4AJ4ErgrKQHgFW23+w0tlr1NuBJSfcBrwD3zPO+FSkfKEdEU02+BYTtcWC8rW20Nv0ardM7jcZW7a8Dd3RTbEREzJ9cCRwRUagEQEREoRIAERGFSgBERBQqARARUagEQEREoRp9DTTKNJdrCiDXFUT0uxwBREQUKgEQEVGoBEBERKESABERhUoAREQUKgEQEVGoBEBERKESABERhUoAREQUqlEASFor6bCkSUkjHZZL0her5Qck3VK13yhpf+3nzeppYUj6rKRXa8vWz+ueRUTEec16KwhJA8CjwJ20HvK+V9KY7Zdq3dYBK6ufW4HHgFttHwZW19bzKvB0bdwjth+eh/2IiIguNTkCWANM2j5i+zSwExhu6zMMfM0tzwFXSVrc1ucO4C9t/3DOVUdExJw1CYAlwLHa/FTV1m2fDcDX29q2VqeMdki6utPGJW2WNCFpYnp6ukG5ERHRRJMAUIc2d9NH0iLgLuCPassfA95P6xTRCeDznTZue7vtIdtDg4ODDcqNiIgmmgTAFLCsNr8UON5ln3XAPtsnZxpsn7T9M9tngS/ROtUUERGXSJMA2AuslLSi+k1+AzDW1mcM+Gj1baDbgB/bPlFbfi9tp3/aPiP4CPBi19VHRMQFm/VbQLbPSNoK7AIGgB22D0raUi0fBcaB9cAk8BbwsZnxki6n9Q2iT7St+iFJq2mdKjraYXlERFxEjZ4IZnuc1pt8vW20Nm3gk+cY+xbw3g7tG7uqNCIi5lWuBI6IKFSeCRyXRJ4vHNF/cgQQEVGoBEBERKESABERhUoAREQUKgEQEVGoBEBERKESABERhUoAREQUKgEQEVGoBEBERKESABERhcq9gGJBmsu9hXJfoYiWHAFERBSqUQBIWivpsKRJSSMdlkvSF6vlByTdUlt2VNILkvZLmqi1XyNpt6SXq9eOD4WPiIiLY9ZTQJIGgEdpPdVrCtgracz2S7Vu64CV1c+ttB74fmtt+Yds/6ht1SPAHtvbqlAZAT5zwXsScYFyOilK1eQIYA0wafuI7dPATmC4rc8w8DW3PAdc1fbM306Ggcer6ceBu5uXHRERc9UkAJYAx2rzU1Vb0z4GviPpeUmba32un3lwfPV6XaeNS9osaULSxPT0dINyIyKiiSbfAlKHNnfR53bbxyVdB+yW9APb32taoO3twHaAoaGh9u1G9JU8+SwWkiZHAFPAstr8UuB40z62Z15PAU/TOqUEcHLmNFH1eqrb4iMi4sI1CYC9wEpJKyQtAjYAY219xoCPVt8Gug34se0Tkq6Q9B4ASVcAvw68WBuzqZreBDwzx32JiIguzHoKyPYZSVuBXcAAsMP2QUlbquWjwDiwHpgE3gI+Vg2/Hnha0sy2/tD2t6tl24AnJd0HvALcM297FRERs2p0JbDtcVpv8vW20dq0gU92GHcE+MA51vk6cEc3xUaUJl9RjYspVwJHRBQqARARUagEQEREoRIAERGFSgBERBQqARARUagEQEREofJEsIhC5JqCaJcjgIiIQiUAIiIKlQCIiChUAiAiolAJgIiIQiUAIiIKlQCIiChUAiAiolCNAkDSWkmHJU1KGumwXJK+WC0/IOmWqn2ZpO9KOiTpoKRP1cZ8VtKrkvZXP+vnb7ciImI2s14JLGkAeBS4k9bD3/dKGrP9Uq3bOmBl9XMr8Fj1egb4tO191bOBn5e0uzb2EdsPz9/uRMSlkKuKfzE0OQJYA0zaPmL7NLATGG7rMwx8zS3PAVdJWmz7hO19ALZ/AhwClsxj/RERcYGaBMAS4Fhtfop3vonP2kfScuCDwPdrzVurU0Y7JF3daeOSNkuakDQxPT3doNyIiGiiyc3g1KHN3fSR9G7gm8ADtt+smh8DPlf1+xzweeC33rESezuwHWBoaKh9uxGxwM3ldBLklNJcNDkCmAKW1eaXAseb9pH0Llpv/k/Yfmqmg+2Ttn9m+yzwJVqnmiIi4hJpEgB7gZWSVkhaBGwAxtr6jAEfrb4NdBvwY9snJAn4CnDI9hfqAyQtrs1+BHjxgvciIiK6NuspINtnJG0FdgEDwA7bByVtqZaPAuPAemASeAv4WDX8dmAj8IKk/VXb79oeBx6StJrWKaCjwCfmaZ8iIqKBRg+Eqd6wx9vaRmvTBj7ZYdyf0vnzAWxv7KrSiIiYV7kSOCKiUAmAiIhCJQAiIgqVAIiIKFSjD4EjIhaK3KeouRwBREQUKgEQEVGoBEBERKESABERhUoAREQUKgEQEVGoBEBERKESABERhUoAREQUKgEQEVGoBEBERKEaBYCktZIOS5qUNNJhuSR9sVp+QNIts42VdI2k3ZJerl6vnp9dioiIJma9GZykAeBR4E5aD3/fK2nM9ku1buuAldXPrcBjwK2zjB0B9tjeVgXDCPCZ+du1iIi5+UW/sVyTu4GuASZtHwGQtBMYBuoBMAx8rXo05HOSrqoe+r78PGOHgV+txj8O/AkJgIj4BTWXMIGLEyhqvWefp4P0r4C1tj9ezW8EbrW9tdbnfwDbqmcAI2kPrTfz5ecaK+lvbF9VW8df237HaSBJm4HN1eyNwOHa4muBH3W1x5dGv9YF/Vtbv9YF/Vtbv9YF/Vtbv9YFF7e2f2B7sL2xyRFAp4e6t6fGufo0GXtetrcD2zsWJk3YHupmfZdCv9YF/Vtbv9YF/Vtbv9YF/Vtbv9YFvamtyYfAU8Cy2vxS4HjDPucbe7I6TUT1eqp52RERMVdNAmAvsFLSCkmLgA3AWFufMeCj1beBbgN+bPvELGPHgE3V9CbgmTnuS0REdGHWU0C2z0jaCuwCBoAdtg9K2lItHwXGgfXAJPAW8LHzja1WvQ14UtJ9wCvAPRdQf8dTQ32gX+uC/q2tX+uC/q2tX+uC/q2tX+uCHtQ264fAERHxiylXAkdEFCoBEBFRqAUZALPdmqJXJC2T9F1JhyQdlPSpXtdUJ2lA0v+prtvoG9WFg9+Q9IPqz+6f9LomAEn/tvp7fFHS1yX93R7WskPSKUkv1tr64nYq56jtP1Z/nwckPS3pqn6oq7bsQUmWdO2lrut8tUn67eq97aCkhy52HQsuAGq3l1gHrALulbSqt1X93Bng07b/IXAb8Mk+qg3gU8ChXhfRwX8Gvm37JuAD9EGNkpYA9wNDtn+F1pcYNvSwpK8Ca9vaZm6nshLYU833wld5Z227gV+xfTPwF8DvXOqi6FwXkpbRuj3NK5e6oJqv0labpA/RukPCzbb/EfDwxS5iwQUAtVtT2D4NzNxeoudsn7C9r5r+Ca03siW9rapF0lLgw8CXe11LnaQrgX8OfAXA9mnbf9PTov7WZcDfk3QZcDnvvP7lkrH9PeCNtuZhWrdRoXq9+1LWNKNTbba/Y/tMNfscrWuAel5X5RHg39PlRanz6Ry1/Rtad1R4u+pz0a+NWogBsAQ4Vpufok/eZOskLQc+CHy/x6XM+E+0/tGf7XEd7X4JmAb+oDo99WVJV/S6KNuv0voN7BXgBK1rW77T26re4frqehuq1+t6XM+5/Bbwx70uAkDSXcCrtv+817V08MvAP5P0fUn/S9I/vtgbXIgBMOfbS1xskt4NfBN4wPabfVDPbwCnbD/f61o6uAy4BXjM9geB/0vvTmX8XHU+fRhYAfx94ApJ/7q3VS08kn6P1qnRJ/qglsuB3wN+v9e1nMNlwNW0Th//O1rXSXV6v5s3CzEAmtyaomckvYvWm/8Ttp/qdT2V24G7JB2ldcrs1yT9t96W9HNTwJTtmSOlb9AKhF77l8Bf2Z62/VPgKeCf9rimdn19OxVJm4DfAH7T/XHB0ftpBfqfV/8XlgL7JN3Q06r+1hTwlFv+N62j9Yv6IfVCDIAmt6boiSqtvwIcsv2FXtczw/bv2F5qezmtP6//absvfpu1/RpwTNKNVdMd/P+3Gu+VV4DbJF1e/b3eQR98ON2mb2+nImktrTsC32X7rV7XA2D7BdvX2V5e/V+YAm6p/g32g/8O/BqApF8GFnGR71y64AKg+mBp5vYSh4Ana7eX6LXbgY20fsPeX/2s73VRC8BvA09IOgCsBv5Db8uB6ojkG8A+4AVa/1d6dhsBSV8HngVulDRV3UJlG3CnpJdpfatlWx/V9l+A9wC7q/8Ho31SV184R207gF+qvhq6E9h0sY+cciuIiIhCLbgjgIiImB8JgIiIQiUAIiIKlQCIiChUAiAiolAJgIiIQiUAIiIK9f8AXXk+lEKbQLoAAAAASUVORK5CYII=\n",
1165 | "text/plain": [
1166 | ""
1167 | ]
1168 | },
1169 | "metadata": {
1170 | "needs_background": "light"
1171 | },
1172 | "output_type": "display_data"
1173 | }
1174 | ],
1175 | "source": [
1176 | "plt.bar(range(1,len(pca.explained_variance_ratio_)+1), pca.explained_variance_ratio_)"
1177 | ]
1178 | },
1179 | {
1180 | "cell_type": "code",
1181 | "execution_count": 29,
1182 | "metadata": {},
1183 | "outputs": [],
1184 | "source": [
1185 | "var_cumu = np.cumsum(pca.explained_variance_ratio_)"
1186 | ]
1187 | },
1188 | {
1189 | "cell_type": "markdown",
1190 | "metadata": {},
1191 | "source": [
1192 | "#### Making the scree plot"
1193 | ]
1194 | },
1195 | {
1196 | "cell_type": "code",
1197 | "execution_count": 30,
1198 | "metadata": {},
1199 | "outputs": [
1200 | {
1201 | "data": {
1202 | "text/plain": [
1203 | "[]"
1204 | ]
1205 | },
1206 | "execution_count": 30,
1207 | "metadata": {},
1208 | "output_type": "execute_result"
1209 | },
1210 | {
1211 | "data": {
1212 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkCklEQVR4nO3deXxU9b3/8dcnCfu+LwFk3xfBEVzqRrUiLljbW3G3oohX7OKvrUtbW69etdu1eqWlaBF3al2potZaW6x1IWELBFAIAiEBwhbWkGU+vz9m9MYQyAATzizv5+PBg5k5JzNvIXl7OOd8v19zd0REJPllBB1ARETiQ4UuIpIiVOgiIilChS4ikiJU6CIiKSIrqA9u37699+zZM6iPFxFJSrm5uVvcvUNt2wIr9J49e5KTkxPUx4uIJCUzW3uwbTrlIiKSIlToIiIpQoUuIpIiVOgiIilChS4ikiLqLHQzm2lmm81s6UG2m5k9bGarzGyJmY2Kf0wREalLLEfos4Bxh9h+HtAv+msy8PujjyUiIoerzvvQ3X2emfU8xC4TgCc9Mg/vh2bW2sy6uHtxvEKKiNQXd6cy7JRXhimvDLM/+nt5VRVlFWEqqsJUhSP7VFX7Vfmlx2HC7lRWRV/z6OtVHnm9xted2LMNp/WrdWzQUYnHwKJsYH2154XR1w4odDObTOQonh49esTho0Uk3YXDzrpte8kv3kl+0U7Wb9/L/oow5VWfF3TVl4p6f2Vk2/6Kqi/2CR/jZSGmnNEnYQvdanmt1j8ed58BzAAIhUJaWUNEDsv+yio+3bSb/KKd5BfvZFlRKcuLd7F7fyUAmRlGdusmNG6QQcOsDBplZdIwM4OmTbNolBV57fPXG33xOIOGmdUeZ2VW2y+yLSvTyMwwMs2ijzPItMhrWZlGhhlZGdF9Mr78OPI8g4wMIr8bmNVWm0cvHoVeCHSv9rwbUBSH9xWRNFa6r4LlxTtZVhQ58l5WVMqqzbupjB5ON2uYyaAuLblkVDZDurZkcJdW9OvUnMYNMgNOHpx4FPocYKqZzQbGAKU6fy4isXJ3ikvLoqW9k/ziUvKLd7J+274v9unQohFDurZk7MCODOnaisFdW3Jc26ZkZNTPkW6yqrPQzew54EygvZkVAj8DGgC4+3RgLjAeWAXsBb5dX2FFJDWs37aXd1du5t0Vm1m0fgfb91YAYAa92jVjRLfWXDa6B4O7tGRw15Z0bNE44MTJIZa7XC6rY7sDN8ctkYiknPLKMDlrt/Huis28u7KEVZt3A9CzXVPOHdI5csqka0sGdm5Js0aBTQKb9PQnJyL1YvOuMv6xsoR3V2zmvU+3sHt/JQ0zMxjTuy2Xje7B2IEd6dW+WdAxU4oKXUTiIhx2Fhfu+OIoPG9DKQCdWzbmwhFdOGtAR07t215H4PVIf7IicsRK91Yw79PIUfg/Pylh655yMgxG9WjDD88dwFkDOjKoS4t6u01PvkyFLiIxc3dWbtrFuysiJZ67bjtVYadN0wac0b8DZw3syOn9OtCmWcOgo6YlFbqIHJK7s6SwlNeWFDE3byMbdkRuJxzcpSU3ndGHswZ25PjurcnULYSBU6GLyAHcnfzinby2pJjXlxSzbtteGmQap/frwC1j+3LmgI50bqVbCRONCl1EvvDJpl28triI15YUU7BlD5kZxql92zN1bF/OHdyZVk0bBB1RDkGFLpLmCkp289qSYl5bUsQnm3aTYXBS73Zcf1pvxg3tTFudD08aKnSRNLR+217+sqSI1xYXk1+8E4ATe7bh7ouGcN6wzhqZmaRU6CJpomjHPl6PHokvLozcI35899b85PxBnD+8C11aNQk4oRwtFbpICtu8s4y5ecW8tqSYnLXbARia3ZLbzxvI+cO60L1t04ATSjyp0EVSUO7abfzhnwW8vXwT7jCgUwv+3zn9uWBEVw23T2EqdJEUURV23s7fxIx5q1mwbgetmjRgyhl9uGRkNv06tQg6nhwDKnSRJFdWUcULuYX88V9rWLNlD93aNOHnFw7mP0LdNW9KmtHftkiS2rannCc/+IwnP1jLtj3lDO/WikcuH8m4IZ3JyswIOp4EQIUukmQ+27KHP/5rDX/OXU9ZRZixAzsy+fTejOnVVpNgpbmYCt3MxgEPAZnAY+7+QI3tbYCZQB+gDLjO3ZfGOatIWlu4bjsz5hXw5rKNNMjI4OKRXbnhtN46Py5fiGUJukxgGnAOkQWh55vZHHfPr7bbncAid/+6mQ2M7v/V+ggskk7CYeedFZuZMW818z/bTsvGWdx0Rh+uPaUnHVtq8I98WSxH6KOBVe5eABBdDHoCUL3QBwP3A7j7CjPraWad3H1TvAOLpIOyiipeXriBR98roKBkD9mtm3DXBYO59ERd6JSDi+U7IxtYX+15ITCmxj6LgUuAf5nZaOA4oBvwpUI3s8nAZIAePXocYWSR1LVjbzlPf7iWWf9ey5bd+xma3ZKHLxvJ+KG60Cl1i6XQa7vK4jWePwA8ZGaLgDxgIVB5wBe5zwBmAIRCoZrvIZK2SvdVMO3dVTz1wVr2VVRx5oAOTD69Nyf3bqcLnRKzWAq9EOhe7Xk3oKj6Du6+E/g2gEW++9ZEf4nIIVRUhXn2o3X89m+fsGNfBV8/Ppsbz+jDgM660CmHL5ZCnw/0M7NewAZgInB59R3MrDWw193LgeuBedGSF5FauDv/WFnCva/ns7pkD6f0acdPzh/M4K4tg44mSazOQnf3SjObCrxF5LbFme6+zMymRLdPBwYBT5pZFZGLpZPqMbNIUlu5cRf3vp7Pe59uoVf7Zjx6dYizB3XUqRU5ajFdLnf3ucDcGq9Nr/b4A6BffKOJpJYtu/fzP29/wuyP19GicQPuumAwV550HA2zdLFT4kP3P4nUs7KKKh5//zOmvbuKsooqrj65J987ux+tm2olIIkvFbpIPXF3Xs8r5oE3VlC4fR9nD+rIHeMH0adD86CjSYpSoYvUg0Xrd3Dva/nkrN3OwM4teOb6MZzat33QsSTFqdBF4qhoxz5++eYKXllURPvmjXjgkmH8R6g7mRm64Cn1T4UuEgd79lfyh3+uZsZ7BYQdbj6rDzed2ZfmGqYvx5C+20SOQlXYeXFBIb9+ayWbd+3nwhFduW3cALq10Vqdcuyp0EWO0IcFW/mvv+STX7yTkT1a8/srT+CE49oEHUvSmApd5DBt3lXGf7++nFcXFZHdugkPTTyei0Z01cAgCZwKXSRGVWHnmY/W8qu3VrK/Isx3xvblP8/qS+MGmUFHEwFU6CIxWVK4g5+8spQlhaWc2rcd90wYSm/dTy4JRoUucgil+yr4zV9X8tSHa2nfvBEPXzaSC4d30ekVSUgqdJFauDuvLiri3teXs23Pfq45uSe3fq0/LRs3CDqayEGp0EVqWLV5N3e9upR/r97KiO6tmfXtExma3SroWCJ1UqGLRO0rr+KRdz9lxrwCmjTI5N6Lh3LZ6B4a5SlJQ4UuAvx9xSbuenUZhdv3ccnIbO4YP4gOLRoFHUvksKjQJa0V7djH3X9ZxlvLNtG3Y3NmTz6Jk3q3CzqWyBGJqdDNbBzwEJEVix5z9wdqbG8FPA30iL7nr9398ThnFYmbiqowj7+/ht/+7VPC7vxo3ACu/0pvLTYhSa3OQjezTGAacA6RBaPnm9kcd8+vttvNQL67X2hmHYCVZvZMdI1RkYSS89k2fvzyUlZu2sXZgzryswuH0L2t5l6R5BfLEfpoYJW7FwCY2WxgApG1Qz/nQAuL3JzbHNgGVMY5q8hR2bannPvnLufPuYVkt27Co1eHOGdwp6BjicRNLIWeDayv9rwQGFNjn0eAOUAR0AK41N3DNd/IzCYDkwF69OhxJHlFDpu780JuIf89dzm7yyqZckYfvvPVvjRtqEtIklpi+Y6u7Z4tr/H8XGARMBboA7xtZu+5+84vfZH7DGAGQCgUqvkeInG3bute7nw5j3+t2kLouDbcd8kw+ndqEXQskXoRS6EXAt2rPe9G5Ei8um8DD7i7A6vMbA0wEPg4LilFDlNlVZjH3/+M37y9kqyMDO69eCiXj+5Bhu4plxQWS6HPB/qZWS9gAzARuLzGPuuArwLvmVknYABQEM+gIrFaVlTK7S/mkbehlLMHdeKei4fQpVWToGOJ1Ls6C93dK81sKvAWkdsWZ7r7MjObEt0+HbgHmGVmeURO0dzm7lvqMbfIAcoqqnjonchIzzZNGzDt8lGMH9ZZE2lJ2ojpqpC7zwXm1nhterXHRcDX4htNJHYfFmzljpfyWLNlD98KdePO8YNo3bRh0LFEjild5pekVrqvggfeWM5zH6+nR9umPHP9GE7t2z7oWCKBUKFL0npz6UbuenUpW3bv58bTe/O9s/vTpKFWD5L0pUKXpLNpZxk/e3UZby7byOAuLZl5raa3FQEVuiSRcNj5U8567pu7nPLKMLefN5BJX+lFg0zNvyICKnRJEgUlu7njpTw+WrONk3q35f5LhtOrfbOgY4kkFBW6JLSKqjAz5hXw0Duf0igrg198YxjfCnXXrYgitVChS8JaUriD217MY3nxTs4b2pm7LxpCx5aNg44lkrBU6JJw9ldW8eDbnzJj3mraN2/E9CtPYNzQzkHHEkl4KnRJKMuLd/L9Py1ixcZdTDyxO3eMH0SrJg2CjiWSFFTokhCqws6MeQX8z9sradWkITOvDTF2oOYqFzkcKnQJ3Lqte7n1+UXkrN3O+GGduffiYbRtpmH7IodLhS6BcXdmz1/PPa/lk5lhPHjpCC4+Plt3sIgcIRW6BGLzrjJufzGPv6/YzKl92/Grb46ga2tNcStyNFTocsy9kVfMnS/nsbe8ip9dOJhrTu6phSdE4kCFLsdM6b4K7p6zjJcWbmBYdisevHQEfTtqOTiReFGhyzHx/qot/PDPi9m0az/f/Wo/po7tqzlYROIspkI3s3HAQ0RWLHrM3R+osf2HwBXV3nMQ0MHdt8UxqyShsooqfvHmCh5//zN6t2/GizedwvHdWwcdSyQl1VnoZpYJTAPOIbJg9Hwzm+Pu+Z/v4+6/An4V3f9C4Psqc1lSuIPv/2kRq0v2cO0pPblt3EDNVy5Sj2I5Qh8NrHL3AgAzmw1MAPIPsv9lwHPxiSfJqKIqzO/eXc3//v1T2jdvxFOTRnNavw5BxxJJebEUejawvtrzQmBMbTuaWVNgHDD1INsnA5MBevTocVhBJTmsLtnNrX9axOLCUi4+vit3XzSUVk01dF/kWIil0Gu7n8wPsu+FwPsHO93i7jOAGQChUOhg7yFJKBx2nvpwLfe/sZzGDTKZdvkozh/eJehYImkllkIvBLpXe94NKDrIvhPR6Za0U7q3gu/MXsg/PynhzAEd+OU3hmuaW5EAxFLo84F+ZtYL2ECktC+vuZOZtQLOAK6Ma0JJaKtLdnP9EzkUbt/LPRcP5coxPTR0XyQgdRa6u1ea2VTgLSK3Lc5092VmNiW6fXp0168Df3X3PfWWVhLKvE9KuPnZBTTMzOC5G04i1LNt0JFE0pq5B3MqOxQKeU5OTiCfLUfH3Xn8/c+49/V8+ndqwWPXhOjWpmnQsUTSgpnlunuotm0aKSqHpbwyzF2vLmX2/PV8bXAnHrz0eJo10reRSCLQT6LEbNuecqY8ncvHa7Yx9ay+3HpOf02qJZJAVOgSk5UbdzHpifls3rWfhyYez4Tjs4OOJCI1qNClTn/L38R3Zy+kWaMsnr/xZM3FIpKgVOhyUO7OH+YV8Is3VzC0aysevTpE51a6v1wkUanQpVZlFVXc+VIeLy3cwAXDu/Crb47QxFoiCU6FLgfYvKuMG5/KZeG6Hdx6Tn9uGdtXg4VEkoAKXb5k6YZSbngyhx17K/j9FaM4b5jmYxFJFip0+cLcvGJufX4RbZs25M9TTmZodqugI4nIYVChC+7Ow++s4sG/fcKoHq2ZftUJdGyhi58iyUaFnub2lVfxgxcW8/qSYi4Zlc39lwyjUZYufookIxV6Gisu3ccNT+awrGgnd44fyA2n9dbFT5EkpkJPUwvXbWfyU7nsK6/isatDfHVQp6AjichRUqGnoX+v2sK1s+bTqWUjnrl+DP07tQg6kojEgQo9zSwp3MENT+bQq10znr1hDO2aNwo6kojESUbQAeTYWV2ym2sfn0+bZg15ctJolblIiomp0M1snJmtNLNVZnb7QfY508wWmdkyM/tnfGPK0Sou3cdVj31EhsFTk8bQSWt+iqScOk+5mFkmMA04h8iC0fPNbI6751fbpzXwO2Ccu68zs471lFeOwPY95Vz1x4/ZVVbJc5NPolf7ZkFHEpF6EMsR+mhglbsXuHs5MBuYUGOfy4GX3H0dgLtvjm9MOVJ79ldy7az5rNu2l0evCWn0p0gKi6XQs4H11Z4XRl+rrj/Qxsz+YWa5ZnZ1bW9kZpPNLMfMckpKSo4sscRsf2UVU57OJa9wB49cNpKTercLOpKI1KNYCr22kSY1V5bOAk4AzgfOBX5qZv0P+CL3Ge4ecvdQhw4dDjusxK4q7Nz6/GLe+3QLD3xjOF8b0jnoSCJSz2K5bbEQ6F7teTegqJZ9trj7HmCPmc0DRgCfxCWlHBZ3565Xl/L6kmJ+PH4Q3wp1r/uLRCTpxXKEPh/oZ2a9zKwhMBGYU2OfV4HTzCzLzJoCY4Dl8Y0qsXrw7U945qN1TDmjDzec3jvoOCJyjNR5hO7ulWY2FXgLyARmuvsyM5sS3T7d3Zeb2ZvAEiAMPObuS+szuNTu8ffX8PDfV3FpqDu3jRsQdBwROYbMvebp8GMjFAp5Tk5OIJ+dql5ZuIHv/WkR5w7pxLTLR5GVqXFjIqnGzHLdPVTbNv3Ep4h3V2zmB39ezMm92/HQxJEqc5E0pJ/6FJDz2TZueiaXgV1aMOPqE2jcQPOZi6QjFXqSW7FxJ9fNmk/XVk2Y9e3RtGjcIOhIIhIQFXoSW7d1L1f/8WOaNsziyUmjaa/JtkTSmqbPTVKbd5Vx1cyPKK8K8+cbT6Zbm6ZBRxKRgOkIPQmV7qvgmpnzKdm1n8evPZF+WqBCRFChJ52yiipueCKHVZt3Mf3KExjZo03QkUQkQeiUSxKprAoz9dkFzF+7jYcnjuT0/poPR0T+j47Qk0Q47Nz2Yh5/W76Z/5owlAtHdA06kogkGBV6EnB37pu7nBcXFHLrOf256qTjgo4kIglIhZ4EHntvDY/9aw3XntKTW8b2DTqOiCQoFXqCe2vZRu57YznnD+vCXRcMxqy26elFRFToCW3phlK+N3sRw7u15jffGkFGhspcRA5OhZ6gNpaWcf0TObRp2oBHNT+LiMRAty0moL3llVz/5Hx2lVXwwk2n0LFF46AjiUgSUKEnmHDYufVPi8kv2slj14QY1KVl0JFEJEnEdMrFzMaZ2UozW2Vmt9ey/UwzKzWzRdFfd8U/anr41V9X8uayjfz4/MGMHdgp6DgikkTqPEI3s0xgGnAOkcWg55vZHHfPr7Hre+5+QT1kTBvP56zn9/9YzRVjenDdqT2DjiMiSSaWI/TRwCp3L3D3cmA2MKF+Y6WfDwu28uOX8zitX3t+ftEQ3Z4oIoctlkLPBtZXe14Yfa2mk81ssZm9YWZDansjM5tsZjlmllNSUnIEcVPTmi17mPJ0Lj3aNuWRy0fRQMvHicgRiKU5ajtUrLmy9ALgOHcfAfwv8Eptb+TuM9w95O6hDh00sRRA6d4KJs2ajwEzrz2RVk204pCIHJlYCr0Q6F7teTegqPoO7r7T3XdHH88FGphZ+7ilTFEVVWFueiaXwu37mHF1iOPaNQs6kogksVgKfT7Qz8x6mVlDYCIwp/oOZtbZoid9zWx09H23xjtsKnF3fvrKUv69eiv3XzKME3u2DTqSiCS5Ou9ycfdKM5sKvAVkAjPdfZmZTYlunw58E7jJzCqBfcBEd695Wkaqeey9Ncyev56pZ/XlGyd0CzqOiKQAC6p3Q6GQ5+TkBPLZQXs7fxOTn8rhvKGdeeSyUZqjRURiZma57h6qbZtupzjGlhWV8t3ZCxme3Yrf/MfxKnMRiRsV+jG0aWcZk2bl0LpJAx69OkSThppwS0TiR3O5HCP7yqu44ckcdpZV8MKUU+jYUhNuiUh8qdCPgXDYufX5ReRtKOXRq0IM7qoJt0Qk/nTK5Rj4zdsreWPpRn48fhBnD9aEWyJSP1To9eyF3EKmvbuay0b3YNJXegUdR0RSmAq9Hn28Zht3vLSEU/u2478maMItEalfKvR68tmWPdz4VA7d2zbld5efoAm3RKTeqWXqQeneCq57Yj4Aj197Iq2aasItEal/usslziqrwkx9bgHrt+3l6UljNOGWiBwzKvQ4++VbK3nv0y388hvDGdO7XdBxRCSN6JRLHL26aAMz5hVwzcnH8a0Tu9f9BSIicaRCj5OlG0r50QtLGN2rLT+5YHDQcUQkDanQ42Dr7v3c+FQubZs15HdXaAk5EQmGzqEfpYqqMFOfXUjJ7v28MOVk2jdvFHQkEUlTOpQ8SvfNXc4HBVu5/+vDGN6tddBxRCSNxVToZjbOzFaa2Sozu/0Q+51oZlVm9s34RUxcL+YW8vj7n3Hdqb206pCIBK7OQjezTGAacB4wGLjMzA646hfd7xdElqpLeUsKd3DHy3mc3Lsdd44fGHQcEZGYjtBHA6vcvcDdy4HZwIRa9rsFeBHYHMd8CalkV+QiaIfmjXjk8pFk6SKoiCSAWJooG1hf7Xlh9LUvmFk28HVg+qHeyMwmm1mOmeWUlJQcbtaEUFEV5uZnFrB9bzl/uOoE2ukiqIgkiFgKvbYpAmuuLP1b4DZ3rzrUG7n7DHcPuXuoQ4cOMUZMLPe8ls/Hn23jF98YztDsVkHHERH5Qiy3LRYC1Yc9dgOKauwTAmZHp4dtD4w3s0p3fyUeIRPF8/PX8+QHa5l8em8mHJ9d9xeIiBxDsRT6fKCfmfUCNgATgcur7+DuX6zcYGazgNdSrcwXrtvOT15Zylf6tudH5w4IOo6IyAHqLHR3rzSzqUTuXskEZrr7MjObEt1+yPPmqWDzrjKmPJ1Lp1aN+N/LdBFURBJTTCNF3X0uMLfGa7UWubtfe/SxEkd5ZZibnl7Azn2VvPSfp9CmWcOgI4mI1EpD/+vw878sI3ftdh65fCSDurQMOo6IyEHp3MEhPPvROp79aB03ndmHC4Z3DTqOiMghqdAPInftNn42Zyln9O/AD76mi6AikvhU6LXYWFrGlKcX0LV1Ex6eOJLMjNpuxRcRSSw6h17D/soqpjydy579lTw9aYwWeBaRpKFCr8bd+ekrS1m0fgfTrxzFgM4tgo4kIhIznXKp5ukP1/J8TiG3jO3LuKFdgo4jInJYVOhRHxVs5e6/5DN2YEe+f3b/oOOIiBw2FTpQtGMfNz+7gB5tm/LgpceToYugIpKE0v4cekVVmJuezqWsIszsySfQqokugopIckr7Qp8xr4DFhaX8/opR9O2oi6AikrzS+pRLQcluHnrnU8YP68x5w3QRVESSW9oWurtz58t5NMrK4OcXDgk6jojIUUvbQn8+Zz0fFmzjzvGD6NiycdBxRESOWloW+uZdZfz368sZ3astl4a61/0FIiJJIC0L/e6/5FNWGeb+S4bpFkURSRkxFbqZjTOzlWa2ysxur2X7BDNbYmaLzCzHzL4S/6jx8c7yTby+pJhbzupLnw7Ng44jIhI3dd62aGaZwDTgHCILRs83sznunl9tt3eAOe7uZjYceB4YWB+Bj8bu/ZX85JWl9O/UnBvP6BN0HBGRuIrlCH00sMrdC9y9HJgNTKi+g7vvdnePPm0GOAno12+tZOPOMu6/ZDgNs9LybJOIpLBYWi0bWF/teWH0tS8xs6+b2QrgdeC62t7IzCZHT8nklJSUHEneI7Zw3Xae+OAzrjrpOE44rs0x/WwRkWMhlkKv7arhAUfg7v6yuw8ELgbuqe2N3H2Gu4fcPdShQ4fDCno0KqrC3PFSHp1aNOaH52r1IRFJTbEUeiFQ/d6+bkDRwXZ293lAHzNrf5TZ4mbGvAJWbNzFPRcPpUVjzdUiIqkplkKfD/Qzs15m1hCYCMypvoOZ9TUziz4eBTQEtsY77JGoPrz/nMGdgo4jIlJv6rzLxd0rzWwq8BaQCcx092VmNiW6fTrwDeBqM6sA9gGXVrtIGhgN7xeRdBLTbIvuPheYW+O16dUe/wL4RXyjHb3Ph/fff8kwDe8XkZSXsvfuaXi/iKSblC10De8XkXSTkoWu4f0iko5SrtA/H94/oFMLDe8XkbSSckvQfT68f9oVozS8X0TSSko13oLo8P6rTzqOUT00vF9E0kvKFHp5ZZg7Xsyjc8vG/HBcwk30KCJS71LmlMuMeatZuWkXj10donmjlPnPEhGJWUocoReU7Obhv6/i/GFdOFvD+0UkTSV9oYfDzh0v5dE4K4OfXTQ46DgiIoFJ+kJ/Pmc9H63Zxp3jB9GxhYb3i0j6SupC37yrjPvmLmdMr7ZceqKG94tIekvqQr97TmR4/32XDCM6e6+ISNpK2kL/W/4mXs/T8H4Rkc8lZaHvKqvgp69qeL+ISHVJecO2hveLiBwopjY0s3FmttLMVpnZ7bVsv8LMlkR//dvMRsQ/akTu2u08+eFaDe8XEamhzkI3s0xgGnAeMBi4zMxq3vC9BjjD3YcD9wAz4h30c1kZxlf6ttfwfhGRGmI55TIaWOXuBQBmNhuYAOR/voO7/7va/h8C3eIZsroR3Vvz1KQx9fX2IiJJK5ZTLtnA+mrPC6OvHcwk4I3aNpjZZDPLMbOckpKS2FOKiEidYin02m7w9lp3NDuLSKHfVtt2d5/h7iF3D3Xo0CH2lCIiUqdYTrkUAtWHYXYDimruZGbDgceA89x9a3ziiYhIrGI5Qp8P9DOzXmbWEJgIzKm+g5n1AF4CrnL3T+IfU0RE6lLnEbq7V5rZVOAtIBOY6e7LzGxKdPt04C6gHfC76BD8SncP1V9sERGpydxrPR1e70KhkOfk5ATy2SIiycrMcg92wKxhliIiKUKFLiKSIgI75WJmJcDaQD68du2BLUGHOIREzweJnzHR84EyxkOi54Ojy3icu9d633dghZ5ozCwnkS/kJno+SPyMiZ4PlDEeEj0f1F9GnXIREUkRKnQRkRShQv8/9TZDZJwkej5I/IyJng+UMR4SPR/UU0adQxcRSRE6QhcRSREqdBGRFJHWhW5m3c3sXTNbbmbLzOy7QWc6GDPLNLOFZvZa0FlqMrPWZvaCma2I/lmeHHSmmszs+9G/46Vm9pyZNU6ATDPNbLOZLa32Wlsze9vMPo3+Htg6iwfJ96vo3/MSM3vZzFoHlS+a54CM1bb9wMzczNoHka1ajlozmtkt0aU9l5nZL+PxWWld6EAl8P/cfRBwEnBzLcvrJYrvAsuDDnEQDwFvuvtAYAQJltPMsoHvACF3H0pkkrmJwaYCYBYwrsZrtwPvuHs/4J3o86DM4sB8bwNDo8tNfgLccaxD1TCLAzNiZt2Bc4B1xzpQLWZRI2N07YgJwHB3HwL8Oh4flNaF7u7F7r4g+ngXkSI61GpMgTCzbsD5ROabTyhm1hI4HfgjgLuXu/uOQEPVLgtoYmZZQFNqmdP/WHP3ecC2Gi9PAJ6IPn4CuPhYZqqutnzu/ld3r4w+rdflJmNxkD9DgAeBH3GQxXiOpYNkvAl4wN33R/fZHI/PSutCr87MegIjgY8CjlKb3xL55gwHnKM2vYES4PHoKaHHzKxZ0KGqc/cNRI6A1gHFQKm7/zXYVAfVyd2LIXLAAXQMOM+hXMdBlpsMkpldBGxw98VBZzmE/sBpZvaRmf3TzE6Mx5uq0AEzaw68CHzP3XcGnac6M7sA2OzuuUFnOYgsYBTwe3cfCewh2NMEB4ieh54A9AK6As3M7MpgUyU3M/sxkVOWzwSdpTozawr8mMgaDYksC2hD5FTvD4HnLbqYxNFI+0I3swZEyvwZd38p6Dy1OBW4yMw+A2YDY83s6WAjfUkhUOjun//L5gUiBZ9IzgbWuHuJu1cQWV3rlIAzHcwmM+sCEP09Lv8Ujyczuwa4ALjCE28gSx8i/+NeHP2Z6QYsMLPOgaY6UCHwkkd8TORf30d98TatCz36f8Q/Asvd/X+CzlMbd7/D3bu5e08iF/L+7u4Jc3Tp7huB9WY2IPrSV4H8ACPVZh1wkpk1jf6df5UEu3BbzRzgmujja4BXA8xyADMbR2QR+IvcfW/QeWpy9zx37+juPaM/M4XAqOj3aSJ5BRgLYGb9gYbEYYbItC50Ike/VxE56l0U/TU+6FBJ6BbgGTNbAhwP3BdsnC+L/uvhBWABkEfk+z7w4eFm9hzwATDAzArNbBLwAHCOmX1K5C6NBxIs3yNAC+Dt6M/L9KDyHSJjQjlIxplA7+itjLOBa+Lxrx0N/RcRSRHpfoQuIpIyVOgiIilChS4ikiJU6CIiKUKFLiKSIlToIiIpQoUuIpIi/j9O+A5d0P5KqAAAAABJRU5ErkJggg==\n",
1213 | "text/plain": [
1214 | ""
1215 | ]
1216 | },
1217 | "metadata": {
1218 | "needs_background": "light"
1219 | },
1220 | "output_type": "display_data"
1221 | }
1222 | ],
1223 | "source": [
1224 | "plt.plot(range(1,len(var_cumu)+1), var_cumu)"
1225 | ]
1226 | },
1227 | {
1228 | "cell_type": "markdown",
1229 | "metadata": {},
1230 | "source": [
1231 | "PCA with 2 components"
1232 | ]
1233 | },
1234 | {
1235 | "cell_type": "code",
1236 | "execution_count": 31,
1237 | "metadata": {},
1238 | "outputs": [],
1239 | "source": [
1240 | "pc2 = PCA(n_components=6, random_state=100)"
1241 | ]
1242 | },
1243 | {
1244 | "cell_type": "code",
1245 | "execution_count": 32,
1246 | "metadata": {},
1247 | "outputs": [],
1248 | "source": [
1249 | "newdata = pc2.fit_transform(x)"
1250 | ]
1251 | },
1252 | {
1253 | "cell_type": "code",
1254 | "execution_count": 33,
1255 | "metadata": {},
1256 | "outputs": [
1257 | {
1258 | "data": {
1259 | "text/plain": [
1260 | "(545, 6)"
1261 | ]
1262 | },
1263 | "execution_count": 33,
1264 | "metadata": {},
1265 | "output_type": "execute_result"
1266 | }
1267 | ],
1268 | "source": [
1269 | "newdata.shape"
1270 | ]
1271 | },
1272 | {
1273 | "cell_type": "markdown",
1274 | "metadata": {},
1275 | "source": [
1276 | "Making a dataframe out of it for convenience\n",
1277 | "\n"
1278 | ]
1279 | },
1280 | {
1281 | "cell_type": "code",
1282 | "execution_count": 34,
1283 | "metadata": {},
1284 | "outputs": [
1285 | {
1286 | "data": {
1287 | "text/html": [
1288 | "\n",
1289 | "\n",
1302 | "
\n",
1303 | " \n",
1304 | " \n",
1305 | " | \n",
1306 | " PC1 | \n",
1307 | " PC2 | \n",
1308 | " PC3 | \n",
1309 | " PC4 | \n",
1310 | " PC5 | \n",
1311 | " PC6 | \n",
1312 | "
\n",
1313 | " \n",
1314 | " \n",
1315 | " \n",
1316 | " 0 | \n",
1317 | " 0.615199 | \n",
1318 | " -0.011124 | \n",
1319 | " 0.190523 | \n",
1320 | " 2.416540 | \n",
1321 | " 0.528108 | \n",
1322 | " -0.249667 | \n",
1323 | "
\n",
1324 | " \n",
1325 | " 1 | \n",
1326 | " -0.724275 | \n",
1327 | " -0.539129 | \n",
1328 | " -1.246245 | \n",
1329 | " 0.397548 | \n",
1330 | " -1.293617 | \n",
1331 | " -0.307270 | \n",
1332 | "
\n",
1333 | " \n",
1334 | " 2 | \n",
1335 | " -2.137286 | \n",
1336 | " 1.220651 | \n",
1337 | " 1.312260 | \n",
1338 | " -0.217079 | \n",
1339 | " 0.088041 | \n",
1340 | " -0.040716 | \n",
1341 | "
\n",
1342 | " \n",
1343 | " 3 | \n",
1344 | " -3.148892 | \n",
1345 | " 0.441781 | \n",
1346 | " 1.637261 | \n",
1347 | " 0.234312 | \n",
1348 | " 0.387878 | \n",
1349 | " 0.000099 | \n",
1350 | "
\n",
1351 | " \n",
1352 | " 4 | \n",
1353 | " -2.072288 | \n",
1354 | " 0.972510 | \n",
1355 | " 0.714042 | \n",
1356 | " 0.933466 | \n",
1357 | " -0.221870 | \n",
1358 | " -0.350270 | \n",
1359 | "
\n",
1360 | " \n",
1361 | "
\n",
1362 | "
"
1363 | ],
1364 | "text/plain": [
1365 | " PC1 PC2 PC3 PC4 PC5 PC6\n",
1366 | "0 0.615199 -0.011124 0.190523 2.416540 0.528108 -0.249667\n",
1367 | "1 -0.724275 -0.539129 -1.246245 0.397548 -1.293617 -0.307270\n",
1368 | "2 -2.137286 1.220651 1.312260 -0.217079 0.088041 -0.040716\n",
1369 | "3 -3.148892 0.441781 1.637261 0.234312 0.387878 0.000099\n",
1370 | "4 -2.072288 0.972510 0.714042 0.933466 -0.221870 -0.350270"
1371 | ]
1372 | },
1373 | "execution_count": 34,
1374 | "metadata": {},
1375 | "output_type": "execute_result"
1376 | }
1377 | ],
1378 | "source": [
1379 | "df = pd.DataFrame(newdata, columns=[\"PC1\", \"PC2\", \"PC3\", \"PC4\", \"PC5\", \"PC6\"])\n",
1380 | "df.head()"
1381 | ]
1382 | },
1383 | {
1384 | "cell_type": "markdown",
1385 | "metadata": {},
1386 | "source": [
1387 | "## Next.....Model building..."
1388 | ]
1389 | },
1390 | {
1391 | "cell_type": "code",
1392 | "execution_count": null,
1393 | "metadata": {},
1394 | "outputs": [],
1395 | "source": []
1396 | },
1397 | {
1398 | "cell_type": "code",
1399 | "execution_count": null,
1400 | "metadata": {},
1401 | "outputs": [],
1402 | "source": []
1403 | },
1404 | {
1405 | "cell_type": "code",
1406 | "execution_count": null,
1407 | "metadata": {},
1408 | "outputs": [],
1409 | "source": []
1410 | },
1411 | {
1412 | "cell_type": "code",
1413 | "execution_count": null,
1414 | "metadata": {},
1415 | "outputs": [],
1416 | "source": []
1417 | },
1418 | {
1419 | "cell_type": "code",
1420 | "execution_count": null,
1421 | "metadata": {},
1422 | "outputs": [],
1423 | "source": []
1424 | },
1425 | {
1426 | "cell_type": "code",
1427 | "execution_count": null,
1428 | "metadata": {},
1429 | "outputs": [],
1430 | "source": []
1431 | },
1432 | {
1433 | "cell_type": "code",
1434 | "execution_count": null,
1435 | "metadata": {},
1436 | "outputs": [],
1437 | "source": []
1438 | },
1439 | {
1440 | "cell_type": "code",
1441 | "execution_count": null,
1442 | "metadata": {},
1443 | "outputs": [],
1444 | "source": []
1445 | },
1446 | {
1447 | "cell_type": "code",
1448 | "execution_count": null,
1449 | "metadata": {},
1450 | "outputs": [],
1451 | "source": []
1452 | },
1453 | {
1454 | "cell_type": "code",
1455 | "execution_count": null,
1456 | "metadata": {},
1457 | "outputs": [],
1458 | "source": []
1459 | },
1460 | {
1461 | "cell_type": "code",
1462 | "execution_count": null,
1463 | "metadata": {},
1464 | "outputs": [],
1465 | "source": []
1466 | },
1467 | {
1468 | "cell_type": "code",
1469 | "execution_count": null,
1470 | "metadata": {},
1471 | "outputs": [],
1472 | "source": []
1473 | },
1474 | {
1475 | "cell_type": "code",
1476 | "execution_count": null,
1477 | "metadata": {},
1478 | "outputs": [],
1479 | "source": []
1480 | },
1481 | {
1482 | "cell_type": "code",
1483 | "execution_count": null,
1484 | "metadata": {},
1485 | "outputs": [],
1486 | "source": []
1487 | },
1488 | {
1489 | "cell_type": "code",
1490 | "execution_count": null,
1491 | "metadata": {},
1492 | "outputs": [],
1493 | "source": []
1494 | },
1495 | {
1496 | "cell_type": "code",
1497 | "execution_count": null,
1498 | "metadata": {},
1499 | "outputs": [],
1500 | "source": []
1501 | },
1502 | {
1503 | "cell_type": "code",
1504 | "execution_count": null,
1505 | "metadata": {},
1506 | "outputs": [],
1507 | "source": []
1508 | },
1509 | {
1510 | "cell_type": "code",
1511 | "execution_count": null,
1512 | "metadata": {},
1513 | "outputs": [],
1514 | "source": []
1515 | },
1516 | {
1517 | "cell_type": "code",
1518 | "execution_count": null,
1519 | "metadata": {},
1520 | "outputs": [],
1521 | "source": []
1522 | },
1523 | {
1524 | "cell_type": "code",
1525 | "execution_count": null,
1526 | "metadata": {},
1527 | "outputs": [],
1528 | "source": []
1529 | },
1530 | {
1531 | "cell_type": "code",
1532 | "execution_count": null,
1533 | "metadata": {},
1534 | "outputs": [],
1535 | "source": []
1536 | },
1537 | {
1538 | "cell_type": "code",
1539 | "execution_count": null,
1540 | "metadata": {},
1541 | "outputs": [],
1542 | "source": []
1543 | }
1544 | ],
1545 | "metadata": {
1546 | "kernelspec": {
1547 | "display_name": "Python 3",
1548 | "language": "python",
1549 | "name": "python3"
1550 | },
1551 | "language_info": {
1552 | "codemirror_mode": {
1553 | "name": "ipython",
1554 | "version": 3
1555 | },
1556 | "file_extension": ".py",
1557 | "mimetype": "text/x-python",
1558 | "name": "python",
1559 | "nbconvert_exporter": "python",
1560 | "pygments_lexer": "ipython3",
1561 | "version": "3.8.5"
1562 | }
1563 | },
1564 | "nbformat": 4,
1565 | "nbformat_minor": 2
1566 | }
1567 |
--------------------------------------------------------------------------------
/Code-and-Data-Files/iris_csv.csv:
--------------------------------------------------------------------------------
1 | sepallength,sepalwidth,petallength,petalwidth,class
2 | 5.1,3.5,1.4,0.2,Iris-setosa
3 | 4.9,3.0,1.4,0.2,Iris-setosa
4 | 4.7,3.2,1.3,0.2,Iris-setosa
5 | 4.6,3.1,1.5,0.2,Iris-setosa
6 | 5.0,3.6,1.4,0.2,Iris-setosa
7 | 5.4,3.9,1.7,0.4,Iris-setosa
8 | 4.6,3.4,1.4,0.3,Iris-setosa
9 | 5.0,3.4,1.5,0.2,Iris-setosa
10 | 4.4,2.9,1.4,0.2,Iris-setosa
11 | 4.9,3.1,1.5,0.1,Iris-setosa
12 | 5.4,3.7,1.5,0.2,Iris-setosa
13 | 4.8,3.4,1.6,0.2,Iris-setosa
14 | 4.8,3.0,1.4,0.1,Iris-setosa
15 | 4.3,3.0,1.1,0.1,Iris-setosa
16 | 5.8,4.0,1.2,0.2,Iris-setosa
17 | 5.7,4.4,1.5,0.4,Iris-setosa
18 | 5.4,3.9,1.3,0.4,Iris-setosa
19 | 5.1,3.5,1.4,0.3,Iris-setosa
20 | 5.7,3.8,1.7,0.3,Iris-setosa
21 | 5.1,3.8,1.5,0.3,Iris-setosa
22 | 5.4,3.4,1.7,0.2,Iris-setosa
23 | 5.1,3.7,1.5,0.4,Iris-setosa
24 | 4.6,3.6,1.0,0.2,Iris-setosa
25 | 5.1,3.3,1.7,0.5,Iris-setosa
26 | 4.8,3.4,1.9,0.2,Iris-setosa
27 | 5.0,3.0,1.6,0.2,Iris-setosa
28 | 5.0,3.4,1.6,0.4,Iris-setosa
29 | 5.2,3.5,1.5,0.2,Iris-setosa
30 | 5.2,3.4,1.4,0.2,Iris-setosa
31 | 4.7,3.2,1.6,0.2,Iris-setosa
32 | 4.8,3.1,1.6,0.2,Iris-setosa
33 | 5.4,3.4,1.5,0.4,Iris-setosa
34 | 5.2,4.1,1.5,0.1,Iris-setosa
35 | 5.5,4.2,1.4,0.2,Iris-setosa
36 | 4.9,3.1,1.5,0.1,Iris-setosa
37 | 5.0,3.2,1.2,0.2,Iris-setosa
38 | 5.5,3.5,1.3,0.2,Iris-setosa
39 | 4.9,3.1,1.5,0.1,Iris-setosa
40 | 4.4,3.0,1.3,0.2,Iris-setosa
41 | 5.1,3.4,1.5,0.2,Iris-setosa
42 | 5.0,3.5,1.3,0.3,Iris-setosa
43 | 4.5,2.3,1.3,0.3,Iris-setosa
44 | 4.4,3.2,1.3,0.2,Iris-setosa
45 | 5.0,3.5,1.6,0.6,Iris-setosa
46 | 5.1,3.8,1.9,0.4,Iris-setosa
47 | 4.8,3.0,1.4,0.3,Iris-setosa
48 | 5.1,3.8,1.6,0.2,Iris-setosa
49 | 4.6,3.2,1.4,0.2,Iris-setosa
50 | 5.3,3.7,1.5,0.2,Iris-setosa
51 | 5.0,3.3,1.4,0.2,Iris-setosa
52 | 7.0,3.2,4.7,1.4,Iris-versicolor
53 | 6.4,3.2,4.5,1.5,Iris-versicolor
54 | 6.9,3.1,4.9,1.5,Iris-versicolor
55 | 5.5,2.3,4.0,1.3,Iris-versicolor
56 | 6.5,2.8,4.6,1.5,Iris-versicolor
57 | 5.7,2.8,4.5,1.3,Iris-versicolor
58 | 6.3,3.3,4.7,1.6,Iris-versicolor
59 | 4.9,2.4,3.3,1.0,Iris-versicolor
60 | 6.6,2.9,4.6,1.3,Iris-versicolor
61 | 5.2,2.7,3.9,1.4,Iris-versicolor
62 | 5.0,2.0,3.5,1.0,Iris-versicolor
63 | 5.9,3.0,4.2,1.5,Iris-versicolor
64 | 6.0,2.2,4.0,1.0,Iris-versicolor
65 | 6.1,2.9,4.7,1.4,Iris-versicolor
66 | 5.6,2.9,3.6,1.3,Iris-versicolor
67 | 6.7,3.1,4.4,1.4,Iris-versicolor
68 | 5.6,3.0,4.5,1.5,Iris-versicolor
69 | 5.8,2.7,4.1,1.0,Iris-versicolor
70 | 6.2,2.2,4.5,1.5,Iris-versicolor
71 | 5.6,2.5,3.9,1.1,Iris-versicolor
72 | 5.9,3.2,4.8,1.8,Iris-versicolor
73 | 6.1,2.8,4.0,1.3,Iris-versicolor
74 | 6.3,2.5,4.9,1.5,Iris-versicolor
75 | 6.1,2.8,4.7,1.2,Iris-versicolor
76 | 6.4,2.9,4.3,1.3,Iris-versicolor
77 | 6.6,3.0,4.4,1.4,Iris-versicolor
78 | 6.8,2.8,4.8,1.4,Iris-versicolor
79 | 6.7,3.0,5.0,1.7,Iris-versicolor
80 | 6.0,2.9,4.5,1.5,Iris-versicolor
81 | 5.7,2.6,3.5,1.0,Iris-versicolor
82 | 5.5,2.4,3.8,1.1,Iris-versicolor
83 | 5.5,2.4,3.7,1.0,Iris-versicolor
84 | 5.8,2.7,3.9,1.2,Iris-versicolor
85 | 6.0,2.7,5.1,1.6,Iris-versicolor
86 | 5.4,3.0,4.5,1.5,Iris-versicolor
87 | 6.0,3.4,4.5,1.6,Iris-versicolor
88 | 6.7,3.1,4.7,1.5,Iris-versicolor
89 | 6.3,2.3,4.4,1.3,Iris-versicolor
90 | 5.6,3.0,4.1,1.3,Iris-versicolor
91 | 5.5,2.5,4.0,1.3,Iris-versicolor
92 | 5.5,2.6,4.4,1.2,Iris-versicolor
93 | 6.1,3.0,4.6,1.4,Iris-versicolor
94 | 5.8,2.6,4.0,1.2,Iris-versicolor
95 | 5.0,2.3,3.3,1.0,Iris-versicolor
96 | 5.6,2.7,4.2,1.3,Iris-versicolor
97 | 5.7,3.0,4.2,1.2,Iris-versicolor
98 | 5.7,2.9,4.2,1.3,Iris-versicolor
99 | 6.2,2.9,4.3,1.3,Iris-versicolor
100 | 5.1,2.5,3.0,1.1,Iris-versicolor
101 | 5.7,2.8,4.1,1.3,Iris-versicolor
102 | 6.3,3.3,6.0,2.5,Iris-virginica
103 | 5.8,2.7,5.1,1.9,Iris-virginica
104 | 7.1,3.0,5.9,2.1,Iris-virginica
105 | 6.3,2.9,5.6,1.8,Iris-virginica
106 | 6.5,3.0,5.8,2.2,Iris-virginica
107 | 7.6,3.0,6.6,2.1,Iris-virginica
108 | 4.9,2.5,4.5,1.7,Iris-virginica
109 | 7.3,2.9,6.3,1.8,Iris-virginica
110 | 6.7,2.5,5.8,1.8,Iris-virginica
111 | 7.2,3.6,6.1,2.5,Iris-virginica
112 | 6.5,3.2,5.1,2.0,Iris-virginica
113 | 6.4,2.7,5.3,1.9,Iris-virginica
114 | 6.8,3.0,5.5,2.1,Iris-virginica
115 | 5.7,2.5,5.0,2.0,Iris-virginica
116 | 5.8,2.8,5.1,2.4,Iris-virginica
117 | 6.4,3.2,5.3,2.3,Iris-virginica
118 | 6.5,3.0,5.5,1.8,Iris-virginica
119 | 7.7,3.8,6.7,2.2,Iris-virginica
120 | 7.7,2.6,6.9,2.3,Iris-virginica
121 | 6.0,2.2,5.0,1.5,Iris-virginica
122 | 6.9,3.2,5.7,2.3,Iris-virginica
123 | 5.6,2.8,4.9,2.0,Iris-virginica
124 | 7.7,2.8,6.7,2.0,Iris-virginica
125 | 6.3,2.7,4.9,1.8,Iris-virginica
126 | 6.7,3.3,5.7,2.1,Iris-virginica
127 | 7.2,3.2,6.0,1.8,Iris-virginica
128 | 6.2,2.8,4.8,1.8,Iris-virginica
129 | 6.1,3.0,4.9,1.8,Iris-virginica
130 | 6.4,2.8,5.6,2.1,Iris-virginica
131 | 7.2,3.0,5.8,1.6,Iris-virginica
132 | 7.4,2.8,6.1,1.9,Iris-virginica
133 | 7.9,3.8,6.4,2.0,Iris-virginica
134 | 6.4,2.8,5.6,2.2,Iris-virginica
135 | 6.3,2.8,5.1,1.5,Iris-virginica
136 | 6.1,2.6,5.6,1.4,Iris-virginica
137 | 7.7,3.0,6.1,2.3,Iris-virginica
138 | 6.3,3.4,5.6,2.4,Iris-virginica
139 | 6.4,3.1,5.5,1.8,Iris-virginica
140 | 6.0,3.0,4.8,1.8,Iris-virginica
141 | 6.9,3.1,5.4,2.1,Iris-virginica
142 | 6.7,3.1,5.6,2.4,Iris-virginica
143 | 6.9,3.1,5.1,2.3,Iris-virginica
144 | 5.8,2.7,5.1,1.9,Iris-virginica
145 | 6.8,3.2,5.9,2.3,Iris-virginica
146 | 6.7,3.3,5.7,2.5,Iris-virginica
147 | 6.7,3.0,5.2,2.3,Iris-virginica
148 | 6.3,2.5,5.0,1.9,Iris-virginica
149 | 6.5,3.0,5.2,2.0,Iris-virginica
150 | 6.2,3.4,5.4,2.3,Iris-virginica
151 | 5.9,3.0,5.1,1.8,Iris-virginica
152 |
--------------------------------------------------------------------------------
/Code-and-Data-Files/newhousing.csv:
--------------------------------------------------------------------------------
1 | price,area,bedrooms,bathrooms,stories,mainroad,guestroom,basement,hotwaterheating,airconditioning,parking,prefarea,semi-furnished,unfurnished,areaperbedroom,bbratio
2 | 5250000,5500,3,2,1,1,0,1,0,0,0,0,1,0,1833.333333333333,0.6666666666666666
3 | 4480000,4040,3,1,2,1,0,0,0,0,1,0,1,0,1346.6666666666667,0.3333333333333333
4 | 3570000,3640,2,1,1,1,0,0,0,0,0,0,0,1,1820.0,0.5
5 | 2870000,3040,2,1,1,0,0,0,0,0,0,0,0,1,1520.0,0.5
6 | 3570000,4500,2,1,1,0,0,0,0,0,0,0,0,0,2250.0,0.5
7 | 3920000,7260,3,2,1,1,1,1,0,0,3,0,0,0,2420.0,0.6666666666666666
8 | 2450000,3210,3,1,2,1,0,1,0,0,0,0,0,1,1070.0,0.3333333333333333
9 | 3290000,4040,2,1,1,1,0,0,0,0,0,0,0,1,2020.0,0.5
10 | 5460000,6100,3,1,3,1,1,0,0,1,0,1,1,0,2033.333333333333,0.3333333333333333
11 | 4235000,6650,3,1,2,1,1,0,0,0,0,0,1,0,2216.6666666666665,0.3333333333333333
12 | 6300000,6400,3,1,1,1,1,1,0,1,1,1,1,0,2133.333333333333,0.3333333333333333
13 | 1767150,2400,3,1,1,0,0,0,0,0,0,0,1,0,800.0,0.3333333333333333
14 | 2940000,3660,4,1,2,0,0,0,0,0,0,0,0,1,915.0,0.25
15 | 5425000,6825,3,1,1,1,1,1,0,1,0,1,1,0,2275.0,0.3333333333333333
16 | 6265000,6000,4,1,3,1,1,1,0,0,0,1,0,1,1500.0,0.25
17 | 6475000,3960,3,1,1,1,0,1,0,0,2,0,1,0,1320.0,0.3333333333333333
18 | 3850000,5300,5,2,2,1,0,0,0,0,0,0,1,0,1060.0,0.4
19 | 4200000,4079,3,1,3,1,0,0,0,0,0,0,1,0,1359.6666666666667,0.3333333333333333
20 | 3535000,3850,3,1,1,1,0,0,0,0,2,0,0,1,1283.3333333333333,0.3333333333333333
21 | 8680000,7155,3,2,1,1,1,1,0,1,2,0,0,1,2385.0,0.6666666666666666
22 | 3290000,5880,3,1,1,1,0,0,0,0,1,0,0,1,1960.0,0.3333333333333333
23 | 4200000,4000,4,2,2,0,0,0,0,0,0,0,1,0,1000.0,0.5
24 | 3430000,2610,3,1,2,1,0,1,0,0,0,1,0,1,870.0,0.3333333333333333
25 | 5243000,6050,3,1,1,1,0,1,0,0,0,1,1,0,2016.666666666667,0.3333333333333333
26 | 5145000,7980,3,1,1,1,0,0,0,0,1,1,1,0,2660.0,0.3333333333333333
27 | 5880000,6500,3,2,3,1,0,0,0,1,0,0,0,1,2166.6666666666665,0.6666666666666666
28 | 3885000,3180,4,2,2,1,0,0,0,0,0,0,0,0,795.0,0.5
29 | 2940000,5850,3,1,2,1,0,1,0,0,1,0,0,1,1950.0,0.3333333333333333
30 | 6650000,4260,4,2,2,1,0,0,1,0,0,0,1,0,1065.0,0.5
31 | 6090000,6600,3,1,1,1,1,1,0,0,2,1,1,0,2200.0,0.3333333333333333
32 | 6020000,6800,2,1,1,1,1,1,0,0,2,0,0,0,3400.0,0.5
33 | 4200000,5800,3,1,1,1,0,0,1,0,2,0,1,0,1933.333333333333,0.3333333333333333
34 | 3633000,3520,3,1,1,1,0,0,0,0,2,1,0,1,1173.3333333333333,0.3333333333333333
35 | 9870000,8100,4,1,2,1,1,1,0,1,2,1,0,0,2025.0,0.25
36 | 5215000,7200,3,1,2,1,1,1,0,0,1,1,0,0,2400.0,0.3333333333333333
37 | 13300000,7420,4,2,3,1,0,0,0,1,2,1,0,0,1855.0,0.5
38 | 3010000,4600,2,1,1,1,0,0,0,0,0,0,0,0,2300.0,0.5
39 | 4865000,4350,2,1,1,1,0,1,0,0,0,0,0,1,2175.0,0.5
40 | 6160000,5450,4,2,1,1,0,1,0,1,0,1,1,0,1362.5,0.5
41 | 3640000,2850,3,2,2,0,0,1,0,0,0,1,0,1,950.0,0.6666666666666666
42 | 5740000,5800,3,2,4,1,0,0,0,1,0,0,0,1,1933.333333333333,0.6666666666666666
43 | 4620000,2870,2,1,2,1,1,1,0,0,0,1,1,0,1435.0,0.5
44 | 6107500,3240,4,1,3,1,0,0,0,0,1,0,1,0,810.0,0.25
45 | 6230000,6600,3,2,1,1,0,1,0,1,0,1,0,1,2200.0,0.6666666666666666
46 | 2450000,3500,2,1,1,1,1,0,0,0,0,0,0,1,1750.0,0.5
47 | 5250000,8520,3,1,1,1,0,0,0,1,2,0,0,0,2840.0,0.3333333333333333
48 | 3360000,3750,3,1,1,1,0,0,0,0,0,0,0,1,1250.0,0.3333333333333333
49 | 5460000,3150,3,2,1,1,1,1,0,1,0,0,0,0,1050.0,0.6666666666666666
50 | 2730000,4000,3,1,2,1,0,0,0,0,1,0,0,1,1333.3333333333333,0.3333333333333333
51 | 4893000,4995,4,2,1,1,0,1,0,0,0,0,1,0,1248.75,0.5
52 | 2653000,3185,2,1,1,1,0,0,0,1,0,0,0,1,1592.5,0.5
53 | 4200000,4600,3,2,2,1,0,0,0,1,1,0,1,0,1533.333333333333,0.6666666666666666
54 | 6895000,7700,3,2,1,1,0,0,0,0,2,0,0,1,2566.6666666666665,0.6666666666666666
55 | 4613000,4510,4,2,2,1,0,1,0,0,0,0,1,0,1127.5,0.5
56 | 3640000,4130,3,2,2,1,0,0,0,0,2,0,1,0,1376.666666666667,0.6666666666666666
57 | 3640000,3520,2,2,1,1,0,1,0,0,0,0,1,0,1760.0,1.0
58 | 3255000,3930,2,1,1,0,0,0,0,0,0,0,0,1,1965.0,0.5
59 | 6090000,6615,4,2,2,1,1,0,1,0,1,0,1,0,1653.75,0.5
60 | 3605000,4500,2,1,1,1,0,0,0,0,0,0,1,0,2250.0,0.5
61 | 4543000,4990,4,2,2,1,1,1,0,0,0,1,0,0,1247.5,0.5
62 | 3745000,3480,2,1,1,1,0,0,0,0,0,1,1,0,1740.0,0.5
63 | 4200000,2953,3,1,2,1,0,1,0,1,0,0,0,1,984.3333333333335,0.3333333333333333
64 | 2800000,3960,3,1,1,1,0,0,0,0,0,0,0,0,1320.0,0.3333333333333333
65 | 4123000,6060,2,1,1,1,0,1,0,0,1,0,1,0,3030.0,0.5
66 | 3360000,3100,3,1,2,0,0,1,0,0,0,0,1,0,1033.3333333333333,0.3333333333333333
67 | 5950000,7020,3,1,1,1,0,1,0,1,2,1,1,0,2340.0,0.3333333333333333
68 | 7700000,6480,3,2,4,1,0,0,0,1,2,0,0,1,2160.0,0.6666666666666666
69 | 2590000,3600,2,1,1,1,0,0,0,0,0,0,0,1,1800.0,0.5
70 | 6300000,6000,4,2,4,1,0,0,0,0,1,0,1,0,1500.0,0.5
71 | 7455000,4300,3,2,2,1,0,1,0,0,1,0,0,1,1433.333333333333,0.6666666666666666
72 | 4200000,4500,3,1,1,1,0,1,0,0,0,0,0,0,1500.0,0.3333333333333333
73 | 3703000,3120,3,1,2,0,0,1,1,0,0,0,1,0,1040.0,0.3333333333333333
74 | 4200000,2610,4,3,2,0,0,0,0,0,0,0,1,0,652.5,0.75
75 | 6125000,6420,3,1,3,1,0,1,0,0,0,1,0,1,2140.0,0.3333333333333333
76 | 3045000,3800,2,1,1,1,0,0,0,0,0,0,0,1,1900.0,0.5
77 | 4060000,3000,4,1,3,1,0,1,0,1,2,0,1,0,750.0,0.25
78 | 4690000,4320,3,1,1,1,0,0,0,0,0,1,1,0,1440.0,0.3333333333333333
79 | 2660000,3630,3,3,2,0,1,0,0,0,0,0,0,1,1210.0,1.0
80 | 5810000,5828,4,1,4,1,1,0,0,0,0,0,1,0,1457.0,0.25
81 | 5740000,5400,4,2,2,1,0,0,0,1,2,0,0,1,1350.0,0.5
82 | 3360000,3185,2,1,1,1,0,1,0,0,2,0,0,0,1592.5,0.5
83 | 8960000,8500,3,2,4,1,0,0,0,1,2,0,0,0,2833.333333333333,0.6666666666666666
84 | 6020000,8000,3,1,1,1,1,1,0,1,2,1,1,0,2666.6666666666665,0.3333333333333333
85 | 10850000,7500,3,3,1,1,0,1,0,1,2,1,1,0,2500.0,1.0
86 | 4200000,3640,3,2,2,1,0,1,0,0,0,0,0,1,1213.3333333333333,0.6666666666666666
87 | 5950000,6420,3,1,1,1,0,1,0,1,0,1,0,0,2140.0,0.3333333333333333
88 | 3493000,4900,3,1,2,0,0,0,0,0,0,0,0,1,1633.333333333333,0.3333333333333333
89 | 7560000,6000,3,2,3,1,0,0,0,1,0,0,1,0,2000.0,0.6666666666666666
90 | 4900000,4646,3,1,2,1,1,1,0,0,2,0,1,0,1548.666666666667,0.3333333333333333
91 | 3010000,3090,3,1,2,0,0,0,0,0,0,0,1,0,1030.0,0.3333333333333333
92 | 5250000,5300,4,2,1,1,0,0,0,1,0,1,0,1,1325.0,0.5
93 | 4480000,4510,4,1,2,1,0,0,0,1,2,0,1,0,1127.5,0.25
94 | 7000000,11175,3,1,1,1,0,1,0,1,1,1,0,0,3725.0,0.3333333333333333
95 | 2653000,4000,3,1,2,1,0,0,0,1,0,0,0,1,1333.3333333333333,0.3333333333333333
96 | 4690000,5170,3,1,4,1,0,0,0,1,0,0,1,0,1723.333333333333,0.3333333333333333
97 | 6510000,8250,3,2,3,1,0,0,0,1,0,0,0,0,2750.0,0.6666666666666666
98 | 3780000,3600,2,1,1,1,0,0,0,0,0,0,1,0,1800.0,0.5
99 | 5523000,6900,3,1,1,1,1,1,0,0,0,1,1,0,2300.0,0.3333333333333333
100 | 3990000,4050,2,1,2,1,1,1,0,0,0,1,0,1,2025.0,0.5
101 | 4025000,3630,3,2,2,1,0,0,1,0,2,0,1,0,1210.0,0.6666666666666666
102 | 4060000,4992,3,2,2,1,0,0,0,0,2,0,0,1,1664.0,0.6666666666666666
103 | 4830000,6040,3,1,1,1,0,0,0,0,2,1,1,0,2013.333333333333,0.3333333333333333
104 | 3640000,3180,3,1,2,0,0,1,0,0,0,0,1,0,1060.0,0.3333333333333333
105 | 3850000,3850,2,1,1,1,0,0,0,0,0,0,1,0,1925.0,0.5
106 | 3710000,4040,2,1,1,1,0,0,0,0,0,0,1,0,2020.0,0.5
107 | 4550000,8400,4,1,4,1,0,0,0,0,3,0,0,1,2100.0,0.25
108 | 6650000,4040,3,1,2,1,0,1,1,0,1,0,0,0,1346.6666666666667,0.3333333333333333
109 | 3773000,8250,3,1,1,1,0,0,0,0,2,0,0,0,2750.0,0.3333333333333333
110 | 9100000,6000,4,1,2,1,0,1,0,0,2,0,1,0,1500.0,0.25
111 | 3290000,2500,2,1,1,0,0,0,0,1,0,0,0,1,1250.0,0.5
112 | 3500000,7424,3,1,1,0,0,0,0,0,0,0,0,1,2474.6666666666665,0.3333333333333333
113 | 7525000,6000,3,2,4,1,0,0,0,1,1,0,0,0,2000.0,0.6666666666666666
114 | 8400000,7950,5,2,2,1,0,1,1,0,2,0,0,1,1590.0,0.4
115 | 4200000,2145,3,1,3,1,0,0,0,0,1,1,0,1,715.0,0.3333333333333333
116 | 1750000,2910,3,1,1,0,0,0,0,0,0,0,0,0,970.0,0.3333333333333333
117 | 3080000,4500,2,1,2,1,0,0,1,0,1,0,1,0,2250.0,0.5
118 | 3640000,4280,2,1,1,1,0,0,0,1,2,0,1,0,2140.0,0.5
119 | 2835000,4350,3,1,2,0,0,0,1,0,1,0,0,1,1450.0,0.3333333333333333
120 | 9681000,6000,4,3,2,1,1,1,1,0,2,0,1,0,1500.0,0.75
121 | 6720000,5020,3,1,4,1,0,0,0,1,0,1,0,1,1673.333333333333,0.3333333333333333
122 | 2233000,5300,3,1,1,0,0,0,0,1,0,1,0,1,1766.666666666667,0.3333333333333333
123 | 2590000,3600,2,2,2,1,0,1,0,0,1,0,0,0,1800.0,1.0
124 | 6083000,9620,3,1,1,1,0,1,0,0,2,1,0,0,3206.666666666666,0.3333333333333333
125 | 3290000,2145,3,1,2,1,0,1,0,0,0,1,0,0,715.0,0.3333333333333333
126 | 8043000,7482,3,2,3,1,0,0,1,0,1,1,0,0,2494.0,0.6666666666666666
127 | 6860000,6000,3,1,1,1,0,0,0,1,1,0,0,0,2000.0,0.3333333333333333
128 | 4935000,5948,3,1,2,1,0,0,0,1,0,0,1,0,1982.666666666667,0.3333333333333333
129 | 7962500,6000,3,1,4,1,1,0,0,1,2,0,0,1,2000.0,0.3333333333333333
130 | 10150000,16200,5,3,2,1,0,0,0,0,0,0,0,1,3240.0,0.6
131 | 3325000,4775,4,1,2,1,0,0,0,0,0,0,0,1,1193.75,0.25
132 | 3115000,3500,2,1,1,1,0,0,0,0,0,0,0,1,1750.0,0.5
133 | 2520000,2880,3,1,1,0,0,0,0,0,0,0,0,1,960.0,0.3333333333333333
134 | 5600000,6600,4,2,1,1,0,1,0,0,0,1,1,0,1650.0,0.5
135 | 2940000,2700,2,1,1,0,0,0,0,0,0,0,0,0,1350.0,0.5
136 | 3990000,4100,4,1,1,0,0,1,0,0,0,0,0,1,1025.0,0.25
137 | 5250000,10269,3,1,1,1,0,0,0,0,1,1,1,0,3423.0,0.3333333333333333
138 | 8540000,6540,4,2,2,1,1,1,0,1,2,1,0,0,1635.0,0.5
139 | 3150000,6750,2,1,1,1,0,0,0,0,0,0,1,0,3375.0,0.5
140 | 5950000,7231,3,1,2,1,1,1,0,1,0,1,1,0,2410.333333333333,0.3333333333333333
141 | 8400000,5500,4,2,2,1,0,1,0,1,1,1,1,0,1375.0,0.5
142 | 3220000,3120,3,1,2,0,0,0,0,0,0,0,0,0,1040.0,0.3333333333333333
143 | 4970000,7686,3,1,1,1,1,1,1,0,0,0,1,0,2562.0,0.3333333333333333
144 | 5950000,6540,3,1,1,1,1,1,0,0,2,1,0,0,2180.0,0.3333333333333333
145 | 3150000,3069,2,1,1,1,0,0,0,0,1,0,0,1,1534.5,0.5
146 | 4403000,4920,3,1,2,1,0,0,0,0,1,0,1,0,1640.0,0.3333333333333333
147 | 9800000,5750,3,2,4,1,1,0,0,1,1,1,0,1,1916.666666666667,0.6666666666666666
148 | 4060000,4320,3,1,2,1,0,0,0,0,2,1,0,0,1440.0,0.3333333333333333
149 | 5740000,5000,3,1,3,1,0,0,0,1,0,0,1,0,1666.666666666667,0.3333333333333333
150 | 5040000,6600,3,1,1,1,1,1,0,0,0,1,0,0,2200.0,0.3333333333333333
151 | 2870000,6000,2,1,1,1,0,0,0,0,0,0,1,0,3000.0,0.5
152 | 3990000,3960,3,1,2,1,0,0,0,0,0,0,0,0,1320.0,0.3333333333333333
153 | 4480000,4000,3,1,2,1,0,0,0,0,2,0,0,0,1333.3333333333333,0.3333333333333333
154 | 4095000,5600,2,1,1,1,0,0,0,1,0,0,1,0,2800.0,0.5
155 | 4543000,4100,2,2,1,1,1,1,0,0,0,0,1,0,2050.0,1.0
156 | 4900000,4520,3,1,2,1,0,1,0,1,0,0,1,0,1506.666666666667,0.3333333333333333
157 | 2450000,7700,2,1,1,1,0,0,0,0,0,0,0,1,3850.0,0.5
158 | 7343000,11440,4,1,2,1,0,1,0,0,1,1,1,0,2860.0,0.25
159 | 3010000,2835,2,1,1,1,0,0,0,0,0,0,1,0,1417.5,0.5
160 | 4270000,4500,2,1,1,1,0,0,0,1,2,0,0,0,2250.0,0.5
161 | 4830000,6862,3,1,2,1,0,0,0,1,2,1,0,0,2287.333333333333,0.3333333333333333
162 | 4515000,3450,3,1,2,1,0,1,0,0,1,0,1,0,1150.0,0.3333333333333333
163 | 2660000,4000,3,1,1,1,0,0,0,0,0,0,1,0,1333.3333333333333,0.3333333333333333
164 | 2870000,5400,4,1,2,1,0,0,0,0,0,0,0,1,1350.0,0.25
165 | 4956000,2800,3,2,2,0,0,1,0,1,1,0,1,0,933.3333333333335,0.6666666666666666
166 | 2940000,3480,3,1,2,0,0,0,0,0,1,0,1,0,1160.0,0.3333333333333333
167 | 4900000,4120,2,1,1,1,0,1,0,0,1,0,1,0,2060.0,0.5
168 | 6755000,6000,4,2,4,1,0,0,0,1,0,0,0,1,1500.0,0.5
169 | 2240000,1950,3,1,1,0,0,0,1,0,0,0,0,1,650.0,0.3333333333333333
170 | 3570000,3150,3,1,2,1,0,1,0,0,0,0,0,0,1050.0,0.3333333333333333
171 | 4200000,2747,4,2,2,0,0,0,0,0,0,0,1,0,686.75,0.5
172 | 7210000,7680,4,2,4,1,1,0,0,1,1,0,1,0,1920.0,0.5
173 | 7210000,6000,3,2,4,1,1,0,0,1,1,0,0,0,2000.0,0.6666666666666666
174 | 3325000,4040,2,1,1,1,0,0,0,0,1,0,0,1,2020.0,0.5
175 | 4550000,5360,3,1,2,1,0,0,0,0,2,1,0,1,1786.666666666667,0.3333333333333333
176 | 4025000,5400,3,1,1,1,0,0,0,0,3,0,1,0,1800.0,0.3333333333333333
177 | 4830000,4160,3,1,3,1,0,0,0,0,0,0,0,1,1386.666666666667,0.3333333333333333
178 | 3500000,3650,3,1,2,1,0,0,0,0,0,0,0,1,1216.6666666666667,0.3333333333333333
179 | 4200000,5040,3,1,2,1,0,1,0,1,0,0,0,1,1680.0,0.3333333333333333
180 | 4480000,5885,2,1,1,1,0,0,0,1,1,0,0,1,2942.5,0.5
181 | 3395000,3450,3,1,1,1,0,1,0,0,2,0,0,1,1150.0,0.3333333333333333
182 | 7140000,6000,3,2,2,1,1,0,0,0,1,0,1,0,2000.0,0.6666666666666666
183 | 4200000,2325,3,1,2,0,0,0,0,0,0,0,1,0,775.0,0.3333333333333333
184 | 6790000,12090,4,2,2,1,0,0,0,0,2,1,0,0,3022.5,0.5
185 | 2660000,3934,2,1,1,1,0,0,0,0,0,0,0,1,1967.0,0.5
186 | 5950000,7320,4,2,2,1,0,0,0,0,0,0,0,0,1830.0,0.5
187 | 4340000,6450,4,1,2,1,0,0,0,0,0,0,1,0,1612.5,0.25
188 | 3500000,3120,3,1,2,1,0,0,0,0,1,0,0,1,1040.0,0.3333333333333333
189 | 8400000,7475,3,2,4,1,0,0,0,1,2,0,0,1,2491.6666666666665,0.6666666666666666
190 | 2800000,2650,3,1,2,1,0,1,0,0,1,0,0,1,883.3333333333335,0.3333333333333333
191 | 4305000,4400,2,1,1,1,0,0,0,0,1,0,1,0,2200.0,0.5
192 | 7875000,6550,3,1,2,1,0,1,0,1,0,1,0,0,2183.333333333333,0.3333333333333333
193 | 5110000,3000,3,1,2,1,0,1,0,0,0,0,0,1,1000.0,0.3333333333333333
194 | 4319000,4032,2,1,1,1,0,1,0,0,0,0,0,0,2016.0,0.5
195 | 4200000,5500,3,1,2,1,0,0,0,1,0,0,0,1,1833.333333333333,0.3333333333333333
196 | 5810000,5200,3,1,3,1,0,0,0,1,0,0,1,0,1733.333333333333,0.3333333333333333
197 | 4025000,3460,3,2,1,1,0,1,0,1,1,0,0,0,1153.3333333333333,0.6666666666666666
198 | 4795000,7000,3,1,2,1,0,1,0,0,0,0,0,1,2333.333333333333,0.3333333333333333
199 | 2275000,3970,3,1,2,1,0,1,0,0,0,0,0,1,1323.3333333333333,0.3333333333333333
200 | 3500000,3480,3,1,1,0,0,0,0,1,0,0,0,1,1160.0,0.3333333333333333
201 | 5005000,8150,3,2,1,1,1,1,0,0,0,0,1,0,2716.6666666666665,0.6666666666666666
202 | 3430000,2145,3,1,3,1,0,0,0,0,0,1,0,0,715.0,0.3333333333333333
203 | 11410000,7420,4,1,2,1,1,1,0,1,2,0,0,0,1855.0,0.25
204 | 4900000,6720,3,1,1,1,0,0,0,0,0,0,0,1,2240.0,0.3333333333333333
205 | 6930000,13200,2,1,1,1,0,1,1,0,1,0,0,0,6600.0,0.5
206 | 3780000,4820,3,1,2,1,0,0,0,0,0,0,1,0,1606.666666666667,0.3333333333333333
207 | 6930000,8880,3,2,2,1,0,1,0,1,1,0,0,0,2960.0,0.6666666666666666
208 | 4550000,3760,3,1,1,1,0,0,0,0,2,0,1,0,1253.3333333333333,0.3333333333333333
209 | 3087000,8100,2,1,1,1,0,0,0,0,1,0,0,1,4050.0,0.5
210 | 3780000,2856,3,1,3,1,0,0,0,0,0,1,0,0,952.0,0.3333333333333333
211 | 3290000,3792,4,1,2,1,0,0,0,0,0,0,1,0,948.0,0.25
212 | 4515000,3520,2,1,2,1,0,0,0,0,0,1,0,0,1760.0,0.5
213 | 4893000,3420,4,2,2,1,0,1,0,1,2,0,1,0,855.0,0.5
214 | 4098500,3600,3,1,1,1,0,1,0,1,0,1,0,0,1200.0,0.3333333333333333
215 | 8080940,7000,3,2,4,1,0,0,0,1,2,0,0,0,2333.333333333333,0.6666666666666666
216 | 2660000,3480,2,1,1,1,0,0,0,0,1,0,1,0,1740.0,0.5
217 | 3360000,4120,2,1,2,1,0,0,0,0,0,0,0,1,2060.0,0.5
218 | 6650000,6500,3,2,3,1,0,0,0,1,0,1,0,0,2166.6666666666665,0.6666666666666666
219 | 3500000,3512,2,1,1,1,0,0,0,0,1,1,0,1,1756.0,0.5
220 | 3500000,5880,2,1,1,1,0,0,0,0,0,0,0,1,2940.0,0.5
221 | 7420000,7440,3,2,1,1,1,1,0,1,0,1,1,0,2480.0,0.6666666666666666
222 | 7910000,6000,4,2,4,1,0,0,0,1,1,0,1,0,1500.0,0.5
223 | 6083000,4300,6,2,2,1,0,0,0,0,0,0,0,0,716.6666666666665,0.3333333333333333
224 | 4382000,4950,4,1,2,1,0,0,0,1,0,0,1,0,1237.5,0.25
225 | 6440000,5000,3,1,2,1,0,0,0,1,0,0,1,0,1666.666666666667,0.3333333333333333
226 | 3430000,3185,2,1,1,1,0,0,0,0,2,0,0,1,1592.5,0.5
227 | 6510000,6670,3,1,3,1,0,1,0,0,0,1,0,1,2223.333333333333,0.3333333333333333
228 | 5040000,10700,3,1,2,1,1,1,0,0,0,0,1,0,3566.666666666666,0.3333333333333333
229 | 3675000,3630,2,1,1,1,0,0,0,1,0,0,0,1,1815.0,0.5
230 | 7560000,6000,4,2,4,1,0,0,0,1,1,0,0,0,1500.0,0.5
231 | 8120000,6840,5,1,2,1,1,1,0,1,1,0,0,0,1368.0,0.2
232 | 3332000,2145,3,1,2,1,0,1,0,0,0,1,0,0,715.0,0.3333333333333333
233 | 3920000,3816,2,1,1,1,0,1,0,1,2,0,0,0,1908.0,0.5
234 | 12250000,8960,4,4,4,1,0,0,0,1,3,0,0,0,2240.0,1.0
235 | 6300000,9000,3,1,1,1,0,1,0,0,1,1,0,0,3000.0,0.3333333333333333
236 | 3080000,4960,2,1,1,1,0,1,0,1,0,0,0,1,2480.0,0.5
237 | 5600000,4800,5,2,3,0,0,1,1,0,0,0,0,1,960.0,0.4
238 | 7840000,6360,3,2,4,1,0,0,0,1,0,1,0,0,2120.0,0.6666666666666666
239 | 2870000,3630,2,1,1,1,0,0,0,0,0,0,0,1,1815.0,0.5
240 | 3500000,3640,2,1,1,1,0,0,0,0,1,0,1,0,1820.0,0.5
241 | 4620000,3880,3,2,2,1,0,1,0,0,2,0,1,0,1293.3333333333333,0.6666666666666666
242 | 3465000,3060,3,1,1,1,0,0,0,0,0,0,0,1,1020.0,0.3333333333333333
243 | 3290000,6060,3,1,1,1,1,1,0,0,0,0,0,0,2020.0,0.3333333333333333
244 | 3710000,6020,3,1,1,1,0,0,0,0,0,0,1,0,2006.666666666667,0.3333333333333333
245 | 7420000,7440,3,2,4,1,0,0,0,0,1,1,0,1,2480.0,0.6666666666666666
246 | 6615000,4000,3,2,2,1,0,1,0,1,1,0,1,0,1333.3333333333333,0.6666666666666666
247 | 2100000,3360,2,1,1,1,0,0,0,0,1,0,0,1,1680.0,0.5
248 | 4620000,4160,3,1,1,1,1,1,0,1,0,0,0,1,1386.666666666667,0.3333333333333333
249 | 6090000,8372,3,1,3,1,0,0,0,1,2,0,0,1,2790.666666666666,0.3333333333333333
250 | 2380000,2787,4,2,2,1,0,0,0,0,0,0,0,0,696.75,0.5
251 | 5652500,6660,4,2,2,1,1,1,0,0,1,1,1,0,1665.0,0.5
252 | 4690000,6000,2,1,1,1,0,1,0,1,1,0,0,0,3000.0,0.5
253 | 3360000,3500,4,1,2,1,0,0,0,1,2,0,0,1,875.0,0.25
254 | 2275000,3970,1,1,1,0,0,0,0,0,0,0,0,1,3970.0,1.0
255 | 3710000,3600,3,1,1,1,0,0,0,0,1,0,0,1,1200.0,0.3333333333333333
256 | 7980000,9000,4,2,4,1,0,0,0,1,2,0,0,0,2250.0,0.5
257 | 2485000,3000,3,1,2,0,0,0,0,0,0,0,1,0,1000.0,0.3333333333333333
258 | 3675000,3630,2,1,1,1,0,1,0,0,0,0,0,0,1815.0,0.5
259 | 3710000,3584,2,1,1,1,0,0,1,0,0,0,1,0,1792.0,0.5
260 | 5250000,9800,4,2,2,1,1,0,0,0,2,0,1,0,2450.0,0.5
261 | 4900000,3000,3,1,2,1,0,1,0,1,0,0,1,0,1000.0,0.3333333333333333
262 | 3605000,4000,2,1,1,1,0,0,0,0,0,1,1,0,2000.0,0.5
263 | 3500000,7350,2,1,1,1,0,0,0,0,1,0,1,0,3675.0,0.5
264 | 4753000,6440,2,1,1,1,0,0,0,1,3,0,1,0,3220.0,0.5
265 | 4690000,3630,3,1,2,1,0,0,0,0,2,0,1,0,1210.0,0.3333333333333333
266 | 5383000,6450,3,2,1,1,1,1,1,0,0,0,0,1,2150.0,0.6666666666666666
267 | 5775000,6000,3,2,4,1,0,0,0,1,0,0,0,1,2000.0,0.6666666666666666
268 | 6440000,8580,5,3,2,1,0,0,0,0,2,0,0,0,1716.0,0.6
269 | 3500000,2135,3,2,2,0,0,0,0,0,0,0,0,1,711.6666666666665,0.6666666666666666
270 | 3080000,3090,2,1,1,1,1,1,0,0,0,0,0,1,1545.0,0.5
271 | 5495000,2817,4,2,2,0,1,1,0,0,1,0,0,0,704.25,0.5
272 | 4907000,4200,3,1,2,1,0,0,0,0,1,0,0,0,1400.0,0.3333333333333333
273 | 7490000,6600,3,1,4,1,0,0,0,1,3,1,0,0,2200.0,0.3333333333333333
274 | 8645000,8050,3,1,1,1,1,1,0,1,1,0,0,0,2683.333333333333,0.3333333333333333
275 | 3815000,3150,2,2,1,0,0,1,0,0,0,0,1,0,1575.0,1.0
276 | 3675000,5640,2,1,1,0,0,0,0,0,0,0,1,0,2820.0,0.5
277 | 3920000,2145,4,2,1,1,0,1,0,0,0,1,0,1,536.25,0.5
278 | 3423000,4040,2,1,1,1,0,0,0,0,0,0,0,1,2020.0,0.5
279 | 5033000,4800,2,1,1,1,1,1,0,0,0,0,1,0,2400.0,0.5
280 | 3500000,12944,3,1,1,1,0,0,0,0,0,0,0,1,4314.666666666667,0.3333333333333333
281 | 5600000,6360,3,1,3,1,0,0,0,0,0,1,1,0,2120.0,0.3333333333333333
282 | 4550000,5320,3,1,2,1,1,1,0,0,0,1,1,0,1773.333333333333,0.3333333333333333
283 | 2408000,3635,2,1,1,0,0,0,0,0,0,0,0,1,1817.5,0.5
284 | 1855000,2990,2,1,1,0,0,0,0,0,1,0,0,1,1495.0,0.5
285 | 3010000,5076,3,1,1,0,0,0,0,0,0,0,0,1,1692.0,0.3333333333333333
286 | 3220000,4370,3,1,2,1,0,0,0,0,0,0,0,1,1456.666666666667,0.3333333333333333
287 | 3675000,3600,2,1,1,1,0,0,0,0,0,0,0,0,1800.0,0.5
288 | 7070000,6240,4,2,2,1,0,0,0,1,1,0,0,0,1560.0,0.5
289 | 4515000,9860,3,1,1,1,0,0,0,0,0,0,1,0,3286.666666666666,0.3333333333333333
290 | 4130000,4632,4,1,2,1,0,0,0,1,0,0,1,0,1158.0,0.25
291 | 1820000,3000,2,1,1,1,0,1,0,0,2,0,0,1,1500.0,0.5
292 | 2940000,6615,3,1,2,1,0,0,0,0,0,0,1,0,2205.0,0.3333333333333333
293 | 3234000,3640,4,1,2,1,0,1,0,0,0,0,0,1,910.0,0.25
294 | 4550000,3520,3,1,1,1,0,0,0,0,0,1,1,0,1173.3333333333333,0.3333333333333333
295 | 3010000,3750,3,1,2,1,0,0,0,0,0,0,0,1,1250.0,0.3333333333333333
296 | 3115000,3850,3,1,2,1,0,0,0,0,0,0,0,1,1283.3333333333333,0.3333333333333333
297 | 3220000,4320,3,1,1,0,0,0,0,0,1,0,0,1,1440.0,0.3333333333333333
298 | 3360000,4960,4,1,3,0,0,0,0,0,0,0,1,0,1240.0,0.25
299 | 2975000,4352,4,1,2,0,0,0,0,0,1,0,0,1,1088.0,0.25
300 | 5950000,6254,4,2,1,1,0,1,0,0,1,1,1,0,1563.5,0.5
301 | 3500000,3990,3,1,2,1,0,0,0,0,0,0,1,0,1330.0,0.3333333333333333
302 | 4060000,5900,4,2,2,0,0,1,0,0,1,0,0,1,1475.0,0.5
303 | 7700000,6000,4,2,4,1,0,0,0,0,2,0,1,0,1500.0,0.5
304 | 2485000,4400,3,1,2,1,0,0,0,0,0,0,0,1,1466.666666666667,0.3333333333333333
305 | 6195000,5500,3,2,4,1,1,0,0,1,1,0,1,0,1833.333333333333,0.6666666666666666
306 | 3430000,3850,3,1,1,1,0,0,0,0,0,0,0,1,1283.3333333333333,0.3333333333333333
307 | 4900000,6300,3,1,1,1,0,0,0,1,2,0,1,0,2100.0,0.3333333333333333
308 | 3780000,3420,2,1,2,1,0,0,1,0,1,0,1,0,1710.0,0.5
309 | 3850000,3180,2,2,1,1,0,1,0,0,2,0,1,0,1590.0,1.0
310 | 4340000,4500,3,2,3,1,0,0,1,0,1,0,0,0,1500.0,0.6666666666666666
311 | 5285000,4600,2,2,1,1,0,0,0,1,2,0,1,0,2300.0,1.0
312 | 8890000,4600,3,2,2,1,1,0,0,1,2,0,0,0,1533.333333333333,0.6666666666666666
313 | 3290000,3180,4,1,2,1,0,1,0,1,0,0,0,1,795.0,0.25
314 | 2852500,5200,4,1,3,1,0,0,0,0,0,0,0,1,1300.0,0.25
315 | 6790000,4000,3,2,2,1,0,1,0,1,0,1,1,0,1333.3333333333333,0.6666666666666666
316 | 4410000,4900,2,1,2,1,0,1,0,0,0,0,1,0,2450.0,0.5
317 | 5145000,3410,3,1,2,0,0,0,0,1,0,0,1,0,1136.6666666666667,0.3333333333333333
318 | 5943000,15600,3,1,1,1,0,0,0,1,2,0,1,0,5200.0,0.3333333333333333
319 | 2275000,1836,2,1,1,0,0,1,0,0,0,0,1,0,918.0,0.5
320 | 6650000,6000,3,2,3,1,1,0,0,1,0,0,0,0,2000.0,0.6666666666666666
321 | 3500000,4600,4,1,2,1,0,0,0,0,0,0,1,0,1150.0,0.25
322 | 3500000,5900,2,1,1,1,0,0,0,0,1,0,0,0,2950.0,0.5
323 | 3500000,3600,6,1,2,1,0,0,0,0,1,0,0,1,600.0,0.16666666666666666
324 | 1960000,3420,5,1,2,0,0,0,0,0,0,0,0,1,684.0,0.2
325 | 3773000,6930,4,1,2,0,0,0,0,0,1,0,0,0,1732.5,0.25
326 | 4200000,3520,3,1,2,1,0,0,0,0,0,1,1,0,1173.3333333333333,0.3333333333333333
327 | 5600000,10500,2,1,1,1,0,0,0,0,1,0,1,0,5250.0,0.5
328 | 3850000,2176,2,1,2,1,1,0,0,0,0,1,1,0,1088.0,0.5
329 | 4375000,3900,3,1,2,1,0,0,0,0,0,0,0,1,1300.0,0.3333333333333333
330 | 5215000,4500,4,2,1,0,0,1,0,1,2,0,1,0,1125.0,0.5
331 | 8190000,5960,3,3,2,1,1,1,0,0,1,0,0,1,1986.666666666667,1.0
332 | 2310000,3180,2,1,1,1,0,0,0,0,0,0,0,1,1590.0,0.5
333 | 3115000,3000,3,1,1,0,0,0,0,1,0,0,0,1,1000.0,0.3333333333333333
334 | 3990000,6480,3,1,2,0,0,0,0,1,1,0,1,0,2160.0,0.3333333333333333
335 | 4620000,5680,3,1,2,1,1,0,0,1,1,0,1,0,1893.333333333333,0.3333333333333333
336 | 4095000,4040,2,1,2,1,0,0,0,0,1,0,1,0,2020.0,0.5
337 | 2940000,4960,2,1,1,1,0,0,0,0,0,0,0,1,2480.0,0.5
338 | 6405000,4800,3,2,4,1,1,0,0,1,0,0,0,0,1600.0,0.6666666666666666
339 | 4193000,8250,3,1,1,1,0,1,0,0,3,0,1,0,2750.0,0.3333333333333333
340 | 5530000,3300,3,3,2,1,0,1,0,0,0,0,1,0,1100.0,1.0
341 | 4165000,4840,3,1,2,1,0,0,0,0,1,0,1,0,1613.333333333333,0.3333333333333333
342 | 4900000,12900,3,1,1,1,0,0,0,0,2,0,0,0,4300.0,0.3333333333333333
343 | 4655000,3745,3,1,2,1,0,1,0,0,0,0,0,0,1248.3333333333333,0.3333333333333333
344 | 3773000,2520,5,2,1,0,0,1,0,1,1,0,0,0,504.0,0.4
345 | 3150000,4095,2,1,1,1,0,0,0,0,2,0,1,0,2047.5,0.5
346 | 5460000,6210,4,1,4,1,1,0,0,1,0,0,0,0,1552.5,0.25
347 | 4900000,4770,3,1,1,1,1,1,0,0,0,0,1,0,1590.0,0.3333333333333333
348 | 5040000,3540,2,1,1,0,1,1,0,0,0,0,1,0,1770.0,0.5
349 | 4340000,1905,5,1,2,0,0,1,0,0,0,0,1,0,381.0,0.2
350 | 5600000,10500,4,2,2,1,0,0,0,0,1,0,1,0,2625.0,0.5
351 | 4270000,4360,4,1,2,1,0,0,0,0,0,0,0,0,1090.0,0.25
352 | 4200000,7000,3,1,1,1,0,0,0,0,3,0,0,0,2333.333333333333,0.3333333333333333
353 | 4270000,6360,2,1,2,1,0,0,0,0,0,0,0,1,3180.0,0.5
354 | 2940000,3150,3,1,2,0,0,0,0,0,0,0,0,1,1050.0,0.3333333333333333
355 | 3143000,4500,3,1,2,1,0,0,0,1,0,0,0,1,1500.0,0.3333333333333333
356 | 4585000,4000,3,1,2,1,0,0,0,0,1,0,0,0,1333.3333333333333,0.3333333333333333
357 | 3080000,2160,3,1,2,0,0,1,0,0,0,0,1,0,720.0,0.3333333333333333
358 | 3150000,9000,3,1,2,1,0,0,0,0,2,0,1,0,3000.0,0.3333333333333333
359 | 4690000,5400,2,1,2,1,0,0,0,0,0,1,1,0,2700.0,0.5
360 | 4270000,2175,3,1,2,0,1,1,0,1,0,0,0,1,725.0,0.3333333333333333
361 | 2450000,3240,2,1,1,0,1,0,0,0,1,0,0,1,1620.0,0.5
362 | 4760000,9166,2,1,1,1,0,1,0,1,2,0,1,0,4583.0,0.5
363 | 6685000,6600,2,2,4,1,0,1,0,0,0,1,0,0,3300.0,1.0
364 | 1890000,3649,2,1,1,1,0,0,0,0,0,0,0,1,1824.5,0.5
365 | 4200000,5850,2,1,1,1,1,1,0,0,2,0,1,0,2925.0,0.5
366 | 3850000,7152,3,1,2,1,0,0,0,1,0,0,0,0,2384.0,0.3333333333333333
367 | 2450000,4840,2,1,2,1,0,0,0,0,0,0,0,1,2420.0,0.5
368 | 3150000,3986,2,2,1,0,1,1,0,0,1,0,0,1,1993.0,1.0
369 | 3010000,3630,4,1,2,1,0,0,0,0,3,0,1,0,907.5,0.25
370 | 3395000,3640,2,1,1,1,0,0,0,0,0,0,0,0,1820.0,0.5
371 | 4900000,4095,3,1,2,0,1,1,0,1,0,0,1,0,1365.0,0.3333333333333333
372 | 3150000,3450,3,1,2,1,0,1,0,0,0,0,1,0,1150.0,0.3333333333333333
373 | 2835000,2640,2,1,1,0,0,0,0,0,1,0,0,0,1320.0,0.5
374 | 2100000,3000,4,1,2,1,0,0,0,0,0,0,0,1,750.0,0.25
375 | 3885000,3780,2,1,2,1,1,1,0,0,0,0,1,0,1890.0,0.5
376 | 2590000,4400,2,1,1,1,0,0,0,0,0,0,0,1,2200.0,0.5
377 | 7350000,6000,3,1,2,1,0,0,0,1,1,0,0,1,2000.0,0.3333333333333333
378 | 9310000,6550,4,2,2,1,0,0,0,1,1,1,1,0,1637.5,0.5
379 | 2450000,3000,2,1,1,1,0,0,0,0,1,0,0,1,1500.0,0.5
380 | 2345000,3640,2,1,1,1,0,0,0,0,0,0,0,1,1820.0,0.5
381 | 3129000,5495,3,1,1,1,0,1,0,0,0,0,0,1,1831.666666666667,0.3333333333333333
382 | 3003000,8050,2,1,1,1,0,0,0,0,0,0,0,1,4025.0,0.5
383 | 5873000,5500,3,1,3,1,1,0,0,1,1,0,0,0,1833.333333333333,0.3333333333333333
384 | 6020000,6900,3,2,1,1,1,1,0,0,0,1,0,1,2300.0,0.6666666666666666
385 | 5215000,3180,3,2,2,1,0,0,0,0,2,0,1,0,1060.0,0.6666666666666666
386 | 6160000,4500,3,1,4,1,0,0,0,1,0,0,0,1,1500.0,0.3333333333333333
387 | 4095000,3680,3,2,2,1,0,0,0,0,0,0,1,0,1226.6666666666667,0.6666666666666666
388 | 5873000,11460,3,1,3,1,0,0,0,0,2,1,1,0,3820.0,0.3333333333333333
389 | 5600000,5000,3,1,4,1,0,0,0,0,0,0,0,0,1666.666666666667,0.3333333333333333
390 | 4585000,3840,3,1,2,1,0,0,0,0,1,1,1,0,1280.0,0.3333333333333333
391 | 5740000,6360,3,1,1,1,1,1,0,1,2,1,0,0,2120.0,0.3333333333333333
392 | 4473000,3162,3,1,2,1,0,0,0,1,1,0,0,0,1054.0,0.3333333333333333
393 | 4550000,3640,3,1,2,1,0,0,0,1,0,0,0,0,1213.3333333333333,0.3333333333333333
394 | 4767000,3420,4,2,2,1,0,0,0,0,0,0,1,0,855.0,0.5
395 | 5390000,6710,3,2,2,1,1,1,0,0,1,1,0,0,2236.6666666666665,0.6666666666666666
396 | 2730000,6800,2,1,1,1,0,0,0,0,0,0,0,1,3400.0,0.5
397 | 3500000,4240,3,1,2,1,0,0,0,1,0,0,1,0,1413.333333333333,0.3333333333333333
398 | 4165000,4046,3,1,2,1,0,1,0,0,1,0,1,0,1348.6666666666667,0.3333333333333333
399 | 3703000,5450,2,1,1,1,0,0,0,0,0,0,0,0,2725.0,0.5
400 | 9800000,13200,3,1,2,1,0,1,0,1,2,1,0,0,4400.0,0.3333333333333333
401 | 5320000,7800,3,1,1,1,0,1,0,1,2,1,0,1,2600.0,0.3333333333333333
402 | 4970000,4410,4,3,2,1,0,1,0,0,2,0,1,0,1102.5,0.75
403 | 3255000,4500,2,1,1,0,0,0,0,0,0,0,1,0,2250.0,0.5
404 | 4165000,4080,3,1,2,1,0,0,0,0,2,0,1,0,1360.0,0.3333333333333333
405 | 2604000,2910,2,1,1,0,0,0,0,0,0,0,0,1,1455.0,0.5
406 | 3920000,3000,3,1,2,1,0,0,0,0,0,0,1,0,1000.0,0.3333333333333333
407 | 4007500,3460,4,1,2,1,0,0,0,1,0,0,1,0,865.0,0.25
408 | 3920000,3290,2,1,1,1,0,0,1,0,1,0,0,0,1645.0,0.5
409 | 6195000,5500,3,2,1,1,1,1,0,0,2,1,0,0,1833.333333333333,0.6666666666666666
410 | 3010000,3240,3,1,2,1,0,0,0,0,2,0,1,0,1080.0,0.3333333333333333
411 | 5530000,6100,3,2,1,1,0,1,0,0,2,1,0,0,2033.333333333333,0.6666666666666666
412 | 1750000,3620,2,1,1,1,0,0,0,0,0,0,0,1,1810.0,0.5
413 | 8463000,6000,3,2,4,1,1,1,0,1,0,1,1,0,2000.0,0.6666666666666666
414 | 4473000,6360,2,1,1,1,0,1,0,1,1,0,0,0,3180.0,0.5
415 | 6300000,7200,3,2,1,1,0,1,0,1,3,0,1,0,2400.0,0.6666666666666666
416 | 2940000,3600,3,1,2,0,0,0,0,0,1,0,0,1,1200.0,0.3333333333333333
417 | 6230000,5500,3,1,3,1,0,0,0,0,1,1,0,1,1833.333333333333,0.3333333333333333
418 | 3990000,4500,3,2,2,0,0,1,0,1,0,0,1,0,1500.0,0.6666666666666666
419 | 3920000,5500,4,1,2,1,1,1,0,0,0,0,1,0,1375.0,0.25
420 | 3150000,1650,3,1,2,0,0,1,0,0,0,0,0,1,550.0,0.3333333333333333
421 | 5530000,3650,3,2,2,1,0,0,0,0,2,0,1,0,1216.6666666666667,0.6666666666666666
422 | 5810000,4800,3,1,3,1,0,0,0,1,0,0,0,1,1600.0,0.3333333333333333
423 | 8295000,4880,4,2,2,1,0,0,0,1,1,1,0,0,1220.0,0.5
424 | 5880000,7160,3,1,1,1,0,1,0,0,2,1,0,1,2386.6666666666665,0.3333333333333333
425 | 1890000,1700,3,1,2,1,0,0,0,0,0,0,0,1,566.6666666666666,0.3333333333333333
426 | 4690000,9667,4,2,2,1,1,1,0,0,1,0,1,0,2416.75,0.5
427 | 2520000,3180,3,1,1,0,0,0,0,0,0,0,0,1,1060.0,0.3333333333333333
428 | 7035000,6360,4,2,3,1,0,0,0,1,2,1,0,0,1590.0,0.5
429 | 3640000,3570,3,1,2,1,0,1,0,0,0,0,1,0,1190.0,0.3333333333333333
430 | 5250000,3800,3,1,2,1,1,1,0,0,1,1,0,1,1266.6666666666667,0.3333333333333333
431 | 6650000,5700,3,1,1,1,1,1,0,1,2,1,0,0,1900.0,0.3333333333333333
432 | 5565000,4400,4,1,2,1,0,0,0,1,2,1,1,0,1100.0,0.25
433 | 7420000,6325,3,1,4,1,0,0,0,1,1,0,0,1,2108.333333333333,0.3333333333333333
434 | 2380000,3264,2,1,1,1,0,0,0,0,0,0,0,1,1632.0,0.5
435 | 5600000,5500,3,2,2,1,0,0,0,0,1,0,1,0,1833.333333333333,0.6666666666666666
436 | 5565000,5400,5,1,2,1,1,1,0,1,0,1,0,0,1080.0,0.2
437 | 4900000,2970,3,1,3,1,0,0,0,0,0,0,1,0,990.0,0.3333333333333333
438 | 2835000,3300,3,1,2,0,0,0,0,0,1,0,1,0,1100.0,0.3333333333333333
439 | 3500000,9500,3,1,2,1,0,0,0,0,3,1,0,1,3166.666666666666,0.3333333333333333
440 | 5110000,6100,3,1,1,1,0,1,0,1,0,1,1,0,2033.333333333333,0.3333333333333333
441 | 4007500,4500,3,1,2,0,0,1,0,1,0,0,1,0,1500.0,0.3333333333333333
442 | 4340000,4075,3,1,1,1,1,1,0,0,2,0,1,0,1358.3333333333333,0.3333333333333333
443 | 2695000,4000,2,1,1,1,0,0,0,0,0,0,0,1,2000.0,0.5
444 | 3640000,2275,3,1,3,1,0,0,1,1,0,1,1,0,758.3333333333335,0.3333333333333333
445 | 4515000,3510,3,1,3,1,0,0,0,0,0,0,1,0,1170.0,0.3333333333333333
446 | 6419000,6750,2,1,1,1,1,1,0,0,2,1,0,0,3375.0,0.5
447 | 8400000,8875,3,1,1,1,0,0,0,0,1,0,1,0,2958.333333333333,0.3333333333333333
448 | 3640000,5960,3,1,2,1,1,1,0,0,0,0,0,1,1986.666666666667,0.3333333333333333
449 | 8575000,8800,3,2,2,1,0,0,0,1,2,0,0,0,2933.333333333333,0.6666666666666666
450 | 4620000,5010,3,1,2,1,0,1,0,0,0,0,1,0,1670.0,0.3333333333333333
451 | 3710000,4050,2,1,1,1,0,0,0,0,0,0,0,0,2025.0,0.5
452 | 5250000,6540,4,2,2,0,0,0,0,1,0,0,1,0,1635.0,0.5
453 | 2520000,3000,2,1,2,1,0,0,0,0,0,0,0,0,1500.0,0.5
454 | 7350000,6000,3,2,2,1,1,0,0,1,1,0,1,0,2000.0,0.6666666666666666
455 | 4200000,4410,2,1,1,0,0,0,0,0,1,0,0,1,2205.0,0.5
456 | 5460000,6600,4,2,2,1,1,1,0,0,0,1,1,0,1650.0,0.5
457 | 4130000,5985,3,1,1,1,0,1,0,0,0,0,1,0,1995.0,0.3333333333333333
458 | 6300000,4100,3,2,3,1,0,0,0,1,2,0,1,0,1366.6666666666667,0.6666666666666666
459 | 4060000,4340,3,1,1,1,0,0,0,0,0,0,1,0,1446.666666666667,0.3333333333333333
460 | 3465000,5320,2,1,1,1,0,0,0,0,1,1,0,1,2660.0,0.5
461 | 5866000,4800,3,1,1,1,1,1,0,0,0,0,0,1,1600.0,0.3333333333333333
462 | 6629000,6000,3,1,2,1,0,0,1,0,1,1,1,0,2000.0,0.3333333333333333
463 | 2100000,2400,3,1,2,1,0,0,0,0,0,0,0,1,800.0,0.3333333333333333
464 | 3780000,8400,2,1,1,1,0,0,0,0,1,0,0,0,4200.0,0.5
465 | 5250000,8400,3,1,2,1,1,1,0,1,2,1,0,1,2800.0,0.3333333333333333
466 | 3500000,3036,3,1,2,1,0,1,0,0,0,0,1,0,1012.0,0.3333333333333333
467 | 3640000,3000,2,1,2,1,0,0,0,1,0,0,0,0,1500.0,0.5
468 | 6293000,6600,3,2,3,1,0,0,0,1,0,1,0,1,2200.0,0.6666666666666666
469 | 12215000,7500,4,2,2,1,0,1,0,1,3,1,0,0,1875.0,0.5
470 | 8855000,6420,3,2,2,1,0,0,0,1,1,1,1,0,2140.0,0.6666666666666666
471 | 12250000,9960,3,2,2,1,0,1,0,0,2,1,1,0,3320.0,0.6666666666666666
472 | 1750000,3850,3,1,2,1,0,0,0,0,0,0,0,1,1283.3333333333333,0.3333333333333333
473 | 4550000,2550,3,1,2,1,0,1,0,0,0,0,0,0,850.0,0.3333333333333333
474 | 6650000,6420,3,2,3,1,0,0,0,1,0,1,0,0,2140.0,0.6666666666666666
475 | 6580000,6000,3,2,4,1,0,0,0,1,0,0,1,0,2000.0,0.6666666666666666
476 | 5950000,3700,4,1,2,1,1,0,0,1,0,0,0,0,925.0,0.25
477 | 3150000,3500,2,1,1,0,0,1,0,0,0,0,1,0,1750.0,0.5
478 | 2660000,2800,3,1,1,1,0,0,0,0,0,0,0,1,933.3333333333335,0.3333333333333333
479 | 5110000,3000,3,2,2,1,1,1,0,0,0,0,0,0,1000.0,0.6666666666666666
480 | 3465000,2145,3,1,3,1,0,0,0,0,0,1,0,0,715.0,0.3333333333333333
481 | 4193000,3450,3,1,2,1,0,0,0,0,1,0,1,0,1150.0,0.3333333333333333
482 | 5250000,4260,4,1,2,1,0,1,0,1,0,0,0,0,1065.0,0.25
483 | 5600000,5136,3,1,2,1,1,1,0,1,0,1,0,1,1712.0,0.3333333333333333
484 | 3360000,3720,2,1,1,0,0,0,0,1,0,0,0,1,1860.0,0.5
485 | 2961000,3000,2,1,2,1,0,0,0,0,0,0,1,0,1500.0,0.5
486 | 3836000,3350,3,1,2,1,0,0,0,0,0,0,0,1,1116.6666666666667,0.3333333333333333
487 | 6510000,3760,3,1,2,1,0,0,1,0,2,0,1,0,1253.3333333333333,0.3333333333333333
488 | 4305000,10360,2,1,1,1,0,0,0,0,1,1,1,0,5180.0,0.5
489 | 5950000,6525,3,2,4,1,0,0,0,0,1,0,0,0,2175.0,0.6666666666666666
490 | 4403000,2880,3,1,2,1,0,0,0,0,0,1,1,0,960.0,0.3333333333333333
491 | 2380000,2475,3,1,2,1,0,0,0,0,0,0,0,0,825.0,0.3333333333333333
492 | 3150000,3450,1,1,1,1,0,0,0,0,0,0,0,0,3450.0,1.0
493 | 3360000,4750,2,1,1,1,0,0,0,0,0,0,0,1,2375.0,0.5
494 | 4830000,4815,2,1,1,1,0,0,0,1,0,1,1,0,2407.5,0.5
495 | 6475000,7410,3,1,1,1,1,1,0,1,2,1,0,1,2470.0,0.3333333333333333
496 | 4445000,3750,2,1,1,1,1,1,0,0,0,0,1,0,1875.0,0.5
497 | 3570000,4500,4,2,2,1,0,1,0,0,2,0,0,0,1125.0,0.5
498 | 9240000,3500,4,2,2,1,0,0,1,0,2,0,0,0,875.0,0.5
499 | 4270000,6360,2,1,1,1,0,0,0,0,0,0,0,0,3180.0,0.5
500 | 10150000,8580,4,3,4,1,0,0,0,1,2,1,1,0,2145.0,0.75
501 | 4900000,5400,4,1,2,1,0,0,0,0,0,0,1,0,1350.0,0.25
502 | 3850000,4080,2,1,1,1,0,0,0,0,0,0,1,0,2040.0,0.5
503 | 7350000,5150,3,2,4,1,0,0,0,1,2,0,1,0,1716.666666666667,0.6666666666666666
504 | 5040000,7600,4,1,2,1,0,0,0,1,2,0,0,0,1900.0,0.25
505 | 3430000,1950,3,2,2,1,0,1,0,0,0,1,0,1,650.0,0.6666666666666666
506 | 4277000,3400,3,1,2,1,0,1,0,0,2,1,1,0,1133.3333333333333,0.3333333333333333
507 | 5495000,7980,3,1,1,1,0,0,0,0,2,0,1,0,2660.0,0.3333333333333333
508 | 9100000,6600,4,2,2,1,1,1,0,1,1,1,0,1,1650.0,0.5
509 | 8400000,7000,3,1,4,1,0,0,0,1,2,0,1,0,2333.333333333333,0.3333333333333333
510 | 2135000,3000,2,1,1,0,0,0,0,0,0,0,0,1,1500.0,0.5
511 | 9240000,7800,3,2,2,1,0,0,0,0,0,1,1,0,2600.0,0.6666666666666666
512 | 5075000,5720,2,1,2,1,0,0,0,1,0,1,0,1,2860.0,0.5
513 | 3430000,4000,2,1,1,1,0,0,0,0,0,0,0,1,2000.0,0.5
514 | 5803000,7000,3,1,1,1,0,1,0,0,2,1,1,0,2333.333333333333,0.3333333333333333
515 | 4900000,5800,2,1,1,1,1,1,0,1,0,0,1,0,2900.0,0.5
516 | 4760000,6321,3,1,2,1,0,1,0,1,1,0,0,0,2107.0,0.3333333333333333
517 | 4795000,8100,4,1,4,1,0,1,0,1,2,0,1,0,2025.0,0.25
518 | 3290000,3480,4,1,2,0,0,0,0,0,1,0,1,0,870.0,0.25
519 | 3850000,2015,3,1,2,1,0,1,0,0,0,1,1,0,671.6666666666666,0.3333333333333333
520 | 3353000,2700,3,1,1,0,0,0,0,0,0,0,0,0,900.0,0.3333333333333333
521 | 7245000,9000,4,2,4,1,1,0,0,1,1,1,0,0,2250.0,0.5
522 | 7350000,6000,4,2,4,1,1,0,0,1,1,0,0,0,1500.0,0.5
523 | 3118850,2398,3,1,1,1,0,0,0,0,0,1,1,0,799.3333333333335,0.3333333333333333
524 | 3780000,5830,2,1,1,1,0,0,0,0,2,0,0,1,2915.0,0.5
525 | 5600000,4700,4,1,2,1,1,1,0,1,1,0,0,0,1175.0,0.25
526 | 4235000,2787,3,1,1,1,0,1,0,0,0,1,0,0,929.0,0.3333333333333333
527 | 3395000,4785,3,1,2,1,1,1,0,1,1,0,0,0,1595.0,0.3333333333333333
528 | 5229000,7085,3,1,1,1,1,1,0,0,2,1,1,0,2361.6666666666665,0.3333333333333333
529 | 6195000,6350,3,2,3,1,1,0,0,1,0,0,0,0,2116.6666666666665,0.6666666666666666
530 | 3920000,8080,3,1,1,1,0,0,0,1,2,0,1,0,2693.333333333333,0.3333333333333333
531 | 4340000,3500,4,1,2,1,0,0,0,0,2,0,0,0,875.0,0.25
532 | 7070000,8880,2,1,1,1,0,0,0,1,1,0,1,0,4440.0,0.5
533 | 4473000,3510,3,1,2,1,0,0,0,0,0,0,1,0,1170.0,0.3333333333333333
534 | 5740000,4640,4,1,2,1,0,0,0,0,1,0,1,0,1160.0,0.25
535 | 8645000,4560,3,2,2,1,1,1,0,1,1,0,0,0,1520.0,0.6666666666666666
536 | 2660000,2430,3,1,1,0,0,0,0,0,0,0,0,1,810.0,0.3333333333333333
537 | 4270000,7770,2,1,1,1,0,0,0,0,1,0,0,0,3885.0,0.5
538 | 6615000,10500,3,2,1,1,0,1,0,1,1,1,0,0,3500.0,0.6666666666666666
539 | 8750000,4320,3,1,2,1,0,1,1,0,2,0,1,0,1440.0,0.3333333333333333
540 | 4760000,10240,2,1,1,1,0,0,0,1,2,1,0,1,5120.0,0.5
541 | 3220000,2684,2,1,1,1,0,0,0,1,1,0,0,1,1342.0,0.5
542 | 4403000,4880,3,1,1,1,0,0,0,0,2,1,0,1,1626.666666666667,0.3333333333333333
543 | 2660000,2000,2,1,2,1,0,0,0,0,0,0,1,0,1000.0,0.5
544 | 4480000,8250,3,1,1,1,0,0,0,0,0,0,0,0,2750.0,0.3333333333333333
545 | 5110000,11410,2,1,2,1,0,0,0,0,0,1,0,0,5705.0,0.5
546 | 4410000,3968,3,1,2,0,0,0,0,0,0,0,1,0,1322.6666666666667,0.3333333333333333
547 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Mastering-Machine-Learning-Algorithms-using-Python
--------------------------------------------------------------------------------