├── 50_Startups.csv ├── Course Slides.pdf ├── Decision_tree.ipynb ├── K-means+algorithm+numpy&pandas+clustering.ipynb ├── KNN_Binary_Classification.ipynb ├── LICENSE ├── Movie_Id_Titles ├── MultipleLinearRegression.ipynb ├── README.md ├── Recommender+Systems+with+Python.ipynb ├── homeprices.csv ├── linear_regression_houseprice.ipynb ├── logistic_regression_Binary_Classification.ipynb ├── mall+customers+data.csv ├── mallCustomerData.txt ├── salaries.csv ├── u.data └── user+data.csv /50_Startups.csv: -------------------------------------------------------------------------------- 1 | R&D Spend,Administration,Marketing Spend,State,Profit 2 | 165349.2,136897.8,471784.1,New York,192261.83 3 | 162597.7,151377.59,443898.53,California,191792.06 4 | 153441.51,101145.55,407934.54,Florida,191050.39 5 | 144372.41,118671.85,383199.62,New York,182901.99 6 | 142107.34,91391.77,366168.42,Florida,166187.94 7 | 131876.9,99814.71,362861.36,New York,156991.12 8 | 134615.46,147198.87,127716.82,California,156122.51 9 | 130298.13,145530.06,323876.68,Florida,155752.6 10 | 120542.52,148718.95,311613.29,New York,152211.77 11 | 123334.88,108679.17,304981.62,California,149759.96 12 | 101913.08,110594.11,229160.95,Florida,146121.95 13 | 100671.96,91790.61,249744.55,California,144259.4 14 | 93863.75,127320.38,249839.44,Florida,141585.52 15 | 91992.39,135495.07,252664.93,California,134307.35 16 | 119943.24,156547.42,256512.92,Florida,132602.65 17 | 114523.61,122616.84,261776.23,New York,129917.04 18 | 78013.11,121597.55,264346.06,California,126992.93 19 | 94657.16,145077.58,282574.31,New York,125370.37 20 | 91749.16,114175.79,294919.57,Florida,124266.9 21 | 86419.7,153514.11,0,New York,122776.86 22 | 76253.86,113867.3,298664.47,California,118474.03 23 | 78389.47,153773.43,299737.29,New York,111313.02 24 | 73994.56,122782.75,303319.26,Florida,110352.25 25 | 67532.53,105751.03,304768.73,Florida,108733.99 26 | 77044.01,99281.34,140574.81,New York,108552.04 27 | 64664.71,139553.16,137962.62,California,107404.34 28 | 75328.87,144135.98,134050.07,Florida,105733.54 29 | 72107.6,127864.55,353183.81,New York,105008.31 30 | 66051.52,182645.56,118148.2,Florida,103282.38 31 | 65605.48,153032.06,107138.38,New York,101004.64 32 | 61994.48,115641.28,91131.24,Florida,99937.59 33 | 61136.38,152701.92,88218.23,New York,97483.56 34 | 63408.86,129219.61,46085.25,California,97427.84 35 | 55493.95,103057.49,214634.81,Florida,96778.92 36 | 46426.07,157693.92,210797.67,California,96712.8 37 | 46014.02,85047.44,205517.64,New York,96479.51 38 | 28663.76,127056.21,201126.82,Florida,90708.19 39 | 44069.95,51283.14,197029.42,California,89949.14 40 | 20229.59,65947.93,185265.1,New York,81229.06 41 | 38558.51,82982.09,174999.3,California,81005.76 42 | 28754.33,118546.05,172795.67,California,78239.91 43 | 27892.92,84710.77,164470.71,Florida,77798.83 44 | 23640.93,96189.63,148001.11,California,71498.49 45 | 15505.73,127382.3,35534.17,New York,69758.98 46 | 22177.74,154806.14,28334.72,California,65200.33 47 | 1000.23,124153.04,1903.93,New York,64926.08 48 | 1315.46,115816.21,297114.46,Florida,49490.75 49 | 0,135426.92,0,California,42559.73 50 | 542.05,51743.15,0,New York,35673.41 51 | 0,116983.8,45173.06,California,14681.4 52 | -------------------------------------------------------------------------------- /Course Slides.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/PacktPublishing/Python-for-Machine-Learning---The-Complete-Beginner-s-Course/2816065b1edc1409f50b944691315452770c931b/Course Slides.pdf -------------------------------------------------------------------------------- /Decision_tree.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "e8de2b1d", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "# Load libraries\n", 11 | "import pandas as pd\n", 12 | "from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier\n", 13 | "from sklearn.model_selection import train_test_split # Import train_test_split function\n", 14 | "from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation\n" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 2, 20 | "id": "53c95a37", 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "#Working with the dataset here\n", 25 | "\n", 26 | "col_names = ['company', 'job', 'degree', 'salary_more_then_100k']# load dataset\n", 27 | "data = pd.read_csv(\"salaries.csv\", header=None, names=col_names)" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 4, 33 | "id": "3331ccec", 34 | "metadata": {}, 35 | "outputs": [ 36 | { 37 | "data": { 38 | "text/html": [ 39 | "
\n", 40 | "\n", 53 | "\n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | "
companyjobdegreesalary_more_then_100k
0companyjobdegreesalary_more_then_100k
1googlesale exectivebachelaors0
2googlesale exectivemasters0
3googlebusiness managerbachelaors1
4googlebusiness managermasters1
5googlecomputer programmerbachelaors0
6googlecomputer programmermasters1
7abc pharmasale exectivemasters0
8abc pharmacomputer programmerbachelaors0
9abc pharmabusiness managerbachelaors0
\n", 136 | "
" 137 | ], 138 | "text/plain": [ 139 | " company job degree salary_more_then_100k\n", 140 | "0 company job degree salary_more_then_100k\n", 141 | "1 google sale exective bachelaors 0\n", 142 | "2 google sale exective masters 0\n", 143 | "3 google business manager bachelaors 1\n", 144 | "4 google business manager masters 1\n", 145 | "5 google computer programmer bachelaors 0\n", 146 | "6 google computer programmer masters 1\n", 147 | "7 abc pharma sale exective masters 0\n", 148 | "8 abc pharma computer programmer bachelaors 0\n", 149 | "9 abc pharma business manager bachelaors 0" 150 | ] 151 | }, 152 | "execution_count": 4, 153 | "metadata": {}, 154 | "output_type": "execute_result" 155 | } 156 | ], 157 | "source": [ 158 | "data.head(10)" 159 | ] 160 | }, 161 | { 162 | "cell_type": "code", 163 | "execution_count": 64, 164 | "id": "cd20f4ec", 165 | "metadata": {}, 166 | "outputs": [ 167 | { 168 | "name": "stdout", 169 | "output_type": "stream", 170 | "text": [ 171 | " company job degree salary_more_then_100k\n", 172 | "0 1 2 1 salary_more_then_100k\n", 173 | "1 3 3 0 0\n", 174 | "2 3 3 2 0\n", 175 | "3 3 0 0 1\n", 176 | "4 3 0 2 1\n" 177 | ] 178 | } 179 | ], 180 | "source": [ 181 | "# Import label encoder \n", 182 | "from sklearn import preprocessing\n", 183 | "# label_encoder object knows how to understand word labels. \n", 184 | "label_encoder = preprocessing.LabelEncoder()\n", 185 | "# Encode labels in column \n", 186 | "data['company']= label_encoder.fit_transform(data['company'])\n", 187 | "data['job']= label_encoder.fit_transform(data['job'])\n", 188 | "data['degree']= label_encoder.fit_transform(data['degree'])\n", 189 | "print(data.head())\n" 190 | ] 191 | }, 192 | { 193 | "cell_type": "code", 194 | "execution_count": 65, 195 | "id": "2308290f", 196 | "metadata": {}, 197 | "outputs": [ 198 | { 199 | "name": "stdout", 200 | "output_type": "stream", 201 | "text": [ 202 | " company job degree\n", 203 | "0 1 2 1\n", 204 | "1 3 3 0\n", 205 | "2 3 3 2\n", 206 | "3 3 0 0\n", 207 | "4 3 0 2\n", 208 | "5 3 1 0\n", 209 | "6 3 1 2\n", 210 | "7 0 3 2\n", 211 | "8 0 1 0\n", 212 | "9 0 0 0\n", 213 | "10 0 0 2\n", 214 | "11 2 3 0\n", 215 | "12 2 3 2\n", 216 | "13 2 0 0\n", 217 | "14 2 0 2\n", 218 | "15 2 1 0\n", 219 | "16 2 1 2\n", 220 | "0 salary_more_then_100k\n", 221 | "1 0\n", 222 | "2 0\n", 223 | "3 1\n", 224 | "4 1\n", 225 | "5 0\n", 226 | "6 1\n", 227 | "7 0\n", 228 | "8 0\n", 229 | "9 0\n", 230 | "10 1\n", 231 | "11 1\n", 232 | "12 1\n", 233 | "13 1\n", 234 | "14 1\n", 235 | "15 1\n", 236 | "16 1\n", 237 | "Name: salary_more_then_100k, dtype: object\n" 238 | ] 239 | } 240 | ], 241 | "source": [ 242 | "#Split the dataset in features and target variable\n", 243 | "feature_cols = ['company','job','degree']\n", 244 | "X = data[feature_cols]\n", 245 | "y = data['salary_more_then_100k']\n", 246 | "# X = data.values[1:,:3]\n", 247 | "# y = data.values[1:,3] # 1:,3 one means we are not using the header\n", 248 | "print(X)\n", 249 | "print(y)" 250 | ] 251 | }, 252 | { 253 | "cell_type": "code", 254 | "execution_count": null, 255 | "id": "6d0b5f1b", 256 | "metadata": {}, 257 | "outputs": [], 258 | "source": [] 259 | }, 260 | { 261 | "cell_type": "code", 262 | "execution_count": 66, 263 | "id": "d6fa9ecb", 264 | "metadata": {}, 265 | "outputs": [], 266 | "source": [ 267 | "# data = pd.get_dummies(data,columns=['company','job','degree','salary_more_then_100k'])\n", 268 | "# print(data)" 269 | ] 270 | }, 271 | { 272 | "cell_type": "code", 273 | "execution_count": 67, 274 | "id": "b09580a7", 275 | "metadata": {}, 276 | "outputs": [], 277 | "source": [ 278 | "X_train, X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=100)\n" 279 | ] 280 | }, 281 | { 282 | "cell_type": "code", 283 | "execution_count": 73, 284 | "id": "27908c92", 285 | "metadata": {}, 286 | "outputs": [ 287 | { 288 | "name": "stdout", 289 | "output_type": "stream", 290 | "text": [ 291 | "Accuracy: 0.3333333333333333\n" 292 | ] 293 | } 294 | ], 295 | "source": [ 296 | "# Create Decision Tree classifier object using entropy\n", 297 | "clf_entropy = DecisionTreeClassifier(criterion=\"entropy\", max_depth=3)\n", 298 | "# Train Decision Tree Classifier\n", 299 | "clf_entropy = clf_entropy.fit(X_train,y_train)\n", 300 | "#Predict the response for test dataset\n", 301 | "y_pred = clf_entropy.predict(X_test)\n", 302 | "\n", 303 | "\n", 304 | "# # Creating the classifier object using gini index\n", 305 | "# clf_gini = DecisionTreeClassifier(criterion = \"gini\",random_state = 100,max_depth=3, min_samples_leaf=5)\n", 306 | "# # Performing training\n", 307 | "# clf_gini.fit(X_train, y_train)\n", 308 | "# y_pred = clf_gini.predict(X_test)\n", 309 | "\n", 310 | "print(\"Accuracy:\", metrics.accuracy_score(y_test,y_pred))\n" 311 | ] 312 | }, 313 | { 314 | "cell_type": "code", 315 | "execution_count": 75, 316 | "id": "cc803539", 317 | "metadata": {}, 318 | "outputs": [ 319 | { 320 | "name": "stdout", 321 | "output_type": "stream", 322 | "text": [ 323 | "Collecting graphviz\n", 324 | " Downloading graphviz-0.18-py3-none-any.whl (38 kB)\n", 325 | "Installing collected packages: graphviz\n", 326 | "Successfully installed graphviz-0.18\n" 327 | ] 328 | } 329 | ], 330 | "source": [ 331 | "import sys \n", 332 | "!{sys.executable} -m pip install graphviz" 333 | ] 334 | }, 335 | { 336 | "cell_type": "code", 337 | "execution_count": 76, 338 | "id": "277f2449", 339 | "metadata": {}, 340 | "outputs": [ 341 | { 342 | "name": "stdout", 343 | "output_type": "stream", 344 | "text": [ 345 | "Collecting pydotplus\n", 346 | " Downloading pydotplus-2.0.2.tar.gz (278 kB)\n", 347 | "Requirement already satisfied: pyparsing>=2.0.1 in c:\\users\\jawad\\anaconda3\\lib\\site-packages (from pydotplus) (2.4.7)\n", 348 | "Building wheels for collected packages: pydotplus\n", 349 | " Building wheel for pydotplus (setup.py): started\n", 350 | " Building wheel for pydotplus (setup.py): finished with status 'done'\n", 351 | " Created wheel for pydotplus: filename=pydotplus-2.0.2-py3-none-any.whl size=24566 sha256=8337f121af41726ad19cab3b0280ef43a5a63e078e1b028da2cef1c1206d904a\n", 352 | " Stored in directory: c:\\users\\jawad\\appdata\\local\\pip\\cache\\wheels\\fe\\cd\\78\\a7e873cc049759194f8271f780640cf96b35e5a48bef0e2f36\n", 353 | "Successfully built pydotplus\n", 354 | "Installing collected packages: pydotplus\n", 355 | "Successfully installed pydotplus-2.0.2\n" 356 | ] 357 | } 358 | ], 359 | "source": [ 360 | "import sys \n", 361 | "!{sys.executable} -m pip install pydotplus" 362 | ] 363 | }, 364 | { 365 | "cell_type": "code", 366 | "execution_count": null, 367 | "id": "f516121e", 368 | "metadata": {}, 369 | "outputs": [], 370 | "source": [ 371 | "import sys \n", 372 | "!{sys.executable} -m pip install --upgrade scikit-learn==0.20.3" 373 | ] 374 | }, 375 | { 376 | "cell_type": "code", 377 | "execution_count": 77, 378 | "id": "1b902069", 379 | "metadata": {}, 380 | "outputs": [ 381 | { 382 | "ename": "ModuleNotFoundError", 383 | "evalue": "No module named 'sklearn.externals.six'", 384 | "output_type": "error", 385 | "traceback": [ 386 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", 387 | "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", 388 | "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtree\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mexport_graphviz\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexternals\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msix\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mpydotplus\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mdot_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", 389 | "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'sklearn.externals.six'" 390 | ] 391 | } 392 | ], 393 | "source": [ 394 | "from sklearn.tree import export_graphviz\n", 395 | "from sklearn.externals.six import StringIO \n", 396 | "from IPython.display import Image \n", 397 | "import pydotplus\n", 398 | "dot_data = StringIO()\n", 399 | "export_graphviz(clf, out_file=dot_data, \n", 400 | " filled=True, rounded=True,\n", 401 | " special_characters=True,feature_names = feature_cols,class_names=['0','1'])\n", 402 | "graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) \n", 403 | "graph.write_png('tree.png')\n", 404 | "Image(graph.create_png())" 405 | ] 406 | }, 407 | { 408 | "cell_type": "code", 409 | "execution_count": null, 410 | "id": "ff5d0a84", 411 | "metadata": {}, 412 | "outputs": [], 413 | "source": [] 414 | }, 415 | { 416 | "cell_type": "code", 417 | "execution_count": null, 418 | "id": "2c85a8dc", 419 | "metadata": {}, 420 | "outputs": [], 421 | "source": [] 422 | } 423 | ], 424 | "metadata": { 425 | "kernelspec": { 426 | "display_name": "Python 3 (ipykernel)", 427 | "language": "python", 428 | "name": "python3" 429 | }, 430 | "language_info": { 431 | "codemirror_mode": { 432 | "name": "ipython", 433 | "version": 3 434 | }, 435 | "file_extension": ".py", 436 | "mimetype": "text/x-python", 437 | "name": "python", 438 | "nbconvert_exporter": "python", 439 | "pygments_lexer": "ipython3", 440 | "version": "3.8.3" 441 | } 442 | }, 443 | "nbformat": 4, 444 | "nbformat_minor": 5 445 | } 446 | -------------------------------------------------------------------------------- /KNN_Binary_Classification.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "56ab457f", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "#Importing the libraries\n", 11 | "import numpy as np\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "import pandas as pd\n", 14 | "from sklearn.metrics import confusion_matrix" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 2, 20 | "id": "2438c0eb", 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "# Importing the dataset\n", 25 | "dataset = pd.read_csv('user data.csv')\n", 26 | "X = dataset.iloc[:, 2:4].values\n", 27 | "y = dataset.iloc[:, 4].values" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 7, 33 | "id": "14eebe92", 34 | "metadata": {}, 35 | "outputs": [ 36 | { 37 | "name": "stdout", 38 | "output_type": "stream", 39 | "text": [ 40 | "[[ 44 39000]\n", 41 | " [ 32 120000]\n", 42 | " [ 38 50000]\n", 43 | " [ 32 135000]\n", 44 | " [ 52 21000]\n", 45 | " [ 53 104000]\n", 46 | " [ 39 42000]\n", 47 | " [ 38 61000]\n", 48 | " [ 36 50000]\n", 49 | " [ 36 63000]\n", 50 | " [ 35 25000]\n", 51 | " [ 35 50000]\n", 52 | " [ 42 73000]\n", 53 | " [ 47 49000]\n", 54 | " [ 59 29000]\n", 55 | " [ 49 65000]\n", 56 | " [ 45 131000]\n", 57 | " [ 31 89000]\n", 58 | " [ 46 82000]\n", 59 | " [ 47 51000]\n", 60 | " [ 26 15000]\n", 61 | " [ 60 102000]\n", 62 | " [ 38 112000]\n", 63 | " [ 40 107000]\n", 64 | " [ 42 53000]\n", 65 | " [ 35 59000]\n", 66 | " [ 48 41000]\n", 67 | " [ 48 134000]\n", 68 | " [ 38 113000]\n", 69 | " [ 29 148000]\n", 70 | " [ 26 15000]\n", 71 | " [ 60 42000]\n", 72 | " [ 24 19000]\n", 73 | " [ 42 149000]\n", 74 | " [ 46 96000]\n", 75 | " [ 28 59000]\n", 76 | " [ 39 96000]\n", 77 | " [ 28 89000]\n", 78 | " [ 41 72000]\n", 79 | " [ 45 26000]\n", 80 | " [ 33 69000]\n", 81 | " [ 20 82000]\n", 82 | " [ 31 74000]\n", 83 | " [ 42 80000]\n", 84 | " [ 35 72000]\n", 85 | " [ 33 149000]\n", 86 | " [ 40 71000]\n", 87 | " [ 51 146000]\n", 88 | " [ 46 79000]\n", 89 | " [ 35 75000]\n", 90 | " [ 38 51000]\n", 91 | " [ 36 75000]\n", 92 | " [ 37 78000]\n", 93 | " [ 38 61000]\n", 94 | " [ 60 108000]\n", 95 | " [ 20 82000]\n", 96 | " [ 57 74000]\n", 97 | " [ 42 65000]\n", 98 | " [ 26 80000]\n", 99 | " [ 46 117000]\n", 100 | " [ 35 61000]\n", 101 | " [ 21 68000]\n", 102 | " [ 28 44000]\n", 103 | " [ 41 87000]\n", 104 | " [ 37 33000]\n", 105 | " [ 27 90000]\n", 106 | " [ 39 42000]\n", 107 | " [ 28 123000]\n", 108 | " [ 31 118000]\n", 109 | " [ 25 87000]\n", 110 | " [ 35 71000]\n", 111 | " [ 37 70000]\n", 112 | " [ 35 39000]\n", 113 | " [ 47 23000]\n", 114 | " [ 35 147000]\n", 115 | " [ 48 138000]\n", 116 | " [ 26 86000]\n", 117 | " [ 25 79000]\n", 118 | " [ 52 138000]\n", 119 | " [ 51 23000]\n", 120 | " [ 35 60000]\n", 121 | " [ 33 113000]\n", 122 | " [ 30 107000]\n", 123 | " [ 48 33000]\n", 124 | " [ 41 80000]\n", 125 | " [ 48 96000]\n", 126 | " [ 31 18000]\n", 127 | " [ 31 71000]\n", 128 | " [ 43 129000]\n", 129 | " [ 59 76000]\n", 130 | " [ 18 44000]\n", 131 | " [ 36 118000]\n", 132 | " [ 42 90000]\n", 133 | " [ 47 30000]\n", 134 | " [ 26 43000]\n", 135 | " [ 40 78000]\n", 136 | " [ 46 59000]\n", 137 | " [ 59 42000]\n", 138 | " [ 46 74000]\n", 139 | " [ 35 91000]\n", 140 | " [ 28 59000]\n", 141 | " [ 40 57000]\n", 142 | " [ 59 143000]\n", 143 | " [ 57 26000]\n", 144 | " [ 52 38000]\n", 145 | " [ 47 113000]\n", 146 | " [ 53 143000]\n", 147 | " [ 35 27000]\n", 148 | " [ 58 101000]\n", 149 | " [ 45 45000]\n", 150 | " [ 23 82000]\n", 151 | " [ 46 23000]\n", 152 | " [ 42 65000]\n", 153 | " [ 28 84000]\n", 154 | " [ 38 59000]\n", 155 | " [ 26 84000]\n", 156 | " [ 29 28000]\n", 157 | " [ 37 71000]\n", 158 | " [ 22 55000]\n", 159 | " [ 48 35000]\n", 160 | " [ 49 28000]\n", 161 | " [ 38 65000]\n", 162 | " [ 27 17000]\n", 163 | " [ 46 28000]\n", 164 | " [ 48 141000]\n", 165 | " [ 26 17000]\n", 166 | " [ 35 97000]\n", 167 | " [ 39 59000]\n", 168 | " [ 24 27000]\n", 169 | " [ 32 18000]\n", 170 | " [ 46 88000]\n", 171 | " [ 35 58000]\n", 172 | " [ 56 60000]\n", 173 | " [ 47 34000]\n", 174 | " [ 40 72000]\n", 175 | " [ 32 100000]\n", 176 | " [ 19 21000]\n", 177 | " [ 25 90000]\n", 178 | " [ 35 88000]\n", 179 | " [ 28 32000]\n", 180 | " [ 50 20000]\n", 181 | " [ 40 59000]\n", 182 | " [ 50 44000]\n", 183 | " [ 35 72000]\n", 184 | " [ 40 142000]\n", 185 | " [ 46 32000]\n", 186 | " [ 39 71000]\n", 187 | " [ 20 74000]\n", 188 | " [ 29 75000]\n", 189 | " [ 31 76000]\n", 190 | " [ 47 25000]\n", 191 | " [ 40 61000]\n", 192 | " [ 34 112000]\n", 193 | " [ 38 80000]\n", 194 | " [ 42 75000]\n", 195 | " [ 47 47000]\n", 196 | " [ 39 75000]\n", 197 | " [ 19 25000]\n", 198 | " [ 37 80000]\n", 199 | " [ 36 60000]\n", 200 | " [ 41 52000]\n", 201 | " [ 36 125000]\n", 202 | " [ 48 29000]\n", 203 | " [ 36 126000]\n", 204 | " [ 51 134000]\n", 205 | " [ 27 57000]\n", 206 | " [ 38 71000]\n", 207 | " [ 39 61000]\n", 208 | " [ 22 27000]\n", 209 | " [ 33 60000]\n", 210 | " [ 48 74000]\n", 211 | " [ 58 23000]\n", 212 | " [ 53 72000]\n", 213 | " [ 32 117000]\n", 214 | " [ 54 70000]\n", 215 | " [ 30 80000]\n", 216 | " [ 58 95000]\n", 217 | " [ 26 52000]\n", 218 | " [ 45 79000]\n", 219 | " [ 24 55000]\n", 220 | " [ 40 75000]\n", 221 | " [ 33 28000]\n", 222 | " [ 44 139000]\n", 223 | " [ 22 18000]\n", 224 | " [ 33 51000]\n", 225 | " [ 43 133000]\n", 226 | " [ 24 32000]\n", 227 | " [ 46 22000]\n", 228 | " [ 35 55000]\n", 229 | " [ 54 104000]\n", 230 | " [ 48 119000]\n", 231 | " [ 35 53000]\n", 232 | " [ 37 144000]\n", 233 | " [ 23 66000]\n", 234 | " [ 37 137000]\n", 235 | " [ 31 58000]\n", 236 | " [ 33 41000]\n", 237 | " [ 45 22000]\n", 238 | " [ 30 15000]\n", 239 | " [ 19 19000]\n", 240 | " [ 49 74000]\n", 241 | " [ 39 122000]\n", 242 | " [ 35 73000]\n", 243 | " [ 39 71000]\n", 244 | " [ 24 23000]\n", 245 | " [ 41 72000]\n", 246 | " [ 29 83000]\n", 247 | " [ 54 26000]\n", 248 | " [ 35 44000]\n", 249 | " [ 37 75000]\n", 250 | " [ 29 47000]\n", 251 | " [ 31 68000]\n", 252 | " [ 42 54000]\n", 253 | " [ 30 135000]\n", 254 | " [ 52 114000]\n", 255 | " [ 50 36000]\n", 256 | " [ 56 133000]\n", 257 | " [ 29 61000]\n", 258 | " [ 30 89000]\n", 259 | " [ 26 16000]\n", 260 | " [ 33 31000]\n", 261 | " [ 41 72000]\n", 262 | " [ 36 33000]\n", 263 | " [ 55 125000]\n", 264 | " [ 48 131000]\n", 265 | " [ 41 71000]\n", 266 | " [ 30 62000]\n", 267 | " [ 37 72000]\n", 268 | " [ 41 63000]\n", 269 | " [ 58 47000]\n", 270 | " [ 30 116000]\n", 271 | " [ 20 49000]\n", 272 | " [ 37 74000]\n", 273 | " [ 41 59000]\n", 274 | " [ 49 89000]\n", 275 | " [ 28 79000]\n", 276 | " [ 53 82000]\n", 277 | " [ 40 57000]\n", 278 | " [ 60 34000]\n", 279 | " [ 35 108000]\n", 280 | " [ 21 72000]\n", 281 | " [ 38 71000]\n", 282 | " [ 39 106000]\n", 283 | " [ 37 57000]\n", 284 | " [ 26 72000]\n", 285 | " [ 35 23000]\n", 286 | " [ 54 108000]\n", 287 | " [ 30 17000]\n", 288 | " [ 39 134000]\n", 289 | " [ 29 43000]\n", 290 | " [ 33 43000]\n", 291 | " [ 35 38000]\n", 292 | " [ 41 45000]\n", 293 | " [ 41 72000]\n", 294 | " [ 39 134000]\n", 295 | " [ 27 137000]\n", 296 | " [ 21 16000]\n", 297 | " [ 26 32000]\n", 298 | " [ 31 66000]\n", 299 | " [ 39 73000]\n", 300 | " [ 41 79000]\n", 301 | " [ 47 50000]\n", 302 | " [ 41 30000]\n", 303 | " [ 37 93000]\n", 304 | " [ 60 46000]\n", 305 | " [ 25 22000]\n", 306 | " [ 28 37000]\n", 307 | " [ 38 55000]\n", 308 | " [ 36 54000]\n", 309 | " [ 20 36000]\n", 310 | " [ 56 104000]\n", 311 | " [ 40 57000]\n", 312 | " [ 42 108000]\n", 313 | " [ 20 23000]\n", 314 | " [ 40 65000]\n", 315 | " [ 47 20000]\n", 316 | " [ 18 86000]\n", 317 | " [ 35 79000]\n", 318 | " [ 57 33000]\n", 319 | " [ 34 72000]\n", 320 | " [ 49 39000]\n", 321 | " [ 27 31000]\n", 322 | " [ 19 70000]\n", 323 | " [ 39 79000]\n", 324 | " [ 26 81000]\n", 325 | " [ 25 80000]\n", 326 | " [ 28 85000]\n", 327 | " [ 55 39000]\n", 328 | " [ 50 88000]\n", 329 | " [ 49 88000]\n", 330 | " [ 52 150000]\n", 331 | " [ 35 65000]\n", 332 | " [ 42 54000]\n", 333 | " [ 34 43000]\n", 334 | " [ 37 52000]\n", 335 | " [ 48 30000]\n", 336 | " [ 29 43000]\n", 337 | " [ 36 52000]\n", 338 | " [ 27 54000]\n", 339 | " [ 26 118000]]\n", 340 | "[[ 30 87000]\n", 341 | " [ 38 50000]\n", 342 | " [ 35 75000]\n", 343 | " [ 30 79000]\n", 344 | " [ 35 50000]\n", 345 | " [ 27 20000]\n", 346 | " [ 31 15000]\n", 347 | " [ 36 144000]\n", 348 | " [ 18 68000]\n", 349 | " [ 47 43000]\n", 350 | " [ 30 49000]\n", 351 | " [ 28 55000]\n", 352 | " [ 37 55000]\n", 353 | " [ 39 77000]\n", 354 | " [ 20 86000]\n", 355 | " [ 32 117000]\n", 356 | " [ 37 77000]\n", 357 | " [ 19 85000]\n", 358 | " [ 55 130000]\n", 359 | " [ 35 22000]\n", 360 | " [ 35 47000]\n", 361 | " [ 47 144000]\n", 362 | " [ 41 51000]\n", 363 | " [ 47 105000]\n", 364 | " [ 23 28000]\n", 365 | " [ 49 141000]\n", 366 | " [ 28 87000]\n", 367 | " [ 29 80000]\n", 368 | " [ 37 62000]\n", 369 | " [ 32 86000]\n", 370 | " [ 21 88000]\n", 371 | " [ 37 79000]\n", 372 | " [ 57 60000]\n", 373 | " [ 37 53000]\n", 374 | " [ 24 58000]\n", 375 | " [ 18 52000]\n", 376 | " [ 22 81000]\n", 377 | " [ 34 43000]\n", 378 | " [ 31 34000]\n", 379 | " [ 49 36000]\n", 380 | " [ 27 88000]\n", 381 | " [ 41 52000]\n", 382 | " [ 27 84000]\n", 383 | " [ 35 20000]\n", 384 | " [ 43 112000]\n", 385 | " [ 27 58000]\n", 386 | " [ 37 80000]\n", 387 | " [ 52 90000]\n", 388 | " [ 26 30000]\n", 389 | " [ 49 86000]\n", 390 | " [ 57 122000]\n", 391 | " [ 34 25000]\n", 392 | " [ 35 57000]\n", 393 | " [ 34 115000]\n", 394 | " [ 59 88000]\n", 395 | " [ 45 32000]\n", 396 | " [ 29 83000]\n", 397 | " [ 26 80000]\n", 398 | " [ 49 28000]\n", 399 | " [ 23 20000]\n", 400 | " [ 32 18000]\n", 401 | " [ 60 42000]\n", 402 | " [ 19 76000]\n", 403 | " [ 36 99000]\n", 404 | " [ 19 26000]\n", 405 | " [ 60 83000]\n", 406 | " [ 24 89000]\n", 407 | " [ 27 58000]\n", 408 | " [ 40 47000]\n", 409 | " [ 42 70000]\n", 410 | " [ 32 150000]\n", 411 | " [ 35 77000]\n", 412 | " [ 22 63000]\n", 413 | " [ 45 22000]\n", 414 | " [ 27 89000]\n", 415 | " [ 18 82000]\n", 416 | " [ 42 79000]\n", 417 | " [ 40 60000]\n", 418 | " [ 53 34000]\n", 419 | " [ 47 107000]\n", 420 | " [ 58 144000]\n", 421 | " [ 59 83000]\n", 422 | " [ 24 55000]\n", 423 | " [ 26 35000]\n", 424 | " [ 58 38000]\n", 425 | " [ 42 80000]\n", 426 | " [ 40 75000]\n", 427 | " [ 59 130000]\n", 428 | " [ 46 41000]\n", 429 | " [ 41 60000]\n", 430 | " [ 42 64000]\n", 431 | " [ 37 146000]\n", 432 | " [ 23 48000]\n", 433 | " [ 25 33000]\n", 434 | " [ 24 84000]\n", 435 | " [ 27 96000]\n", 436 | " [ 23 63000]\n", 437 | " [ 48 33000]\n", 438 | " [ 48 90000]\n", 439 | " [ 42 104000]]\n" 440 | ] 441 | } 442 | ], 443 | "source": [ 444 | "#Training and Testing Data (divide the data into two part)\n", 445 | "from sklearn.model_selection import train_test_split\n", 446 | "X_train, X_test, y_train, y_test =train_test_split(X,y,test_size= 0.25, random_state=0)\n", 447 | "\n", 448 | "print(X_train)" 449 | ] 450 | }, 451 | { 452 | "cell_type": "code", 453 | "execution_count": 9, 454 | "id": "952c4e44", 455 | "metadata": {}, 456 | "outputs": [ 457 | { 458 | "name": "stdout", 459 | "output_type": "stream", 460 | "text": [ 461 | "[[ 0.58164944 -0.88670699]\n", 462 | " [-0.60673761 1.46173768]\n", 463 | " [-0.01254409 -0.5677824 ]\n", 464 | " [-0.60673761 1.89663484]\n", 465 | " [ 1.37390747 -1.40858358]\n", 466 | " [ 1.47293972 0.99784738]\n", 467 | " [ 0.08648817 -0.79972756]\n", 468 | " [-0.01254409 -0.24885782]\n", 469 | " [-0.21060859 -0.5677824 ]\n", 470 | " [-0.21060859 -0.19087153]\n", 471 | " [-0.30964085 -1.29261101]\n", 472 | " [-0.30964085 -0.5677824 ]\n", 473 | " [ 0.38358493 0.09905991]\n", 474 | " [ 0.8787462 -0.59677555]\n", 475 | " [ 2.06713324 -1.17663843]\n", 476 | " [ 1.07681071 -0.13288524]\n", 477 | " [ 0.68068169 1.78066227]\n", 478 | " [-0.70576986 0.56295021]\n", 479 | " [ 0.77971394 0.35999821]\n", 480 | " [ 0.8787462 -0.53878926]\n", 481 | " [-1.20093113 -1.58254245]\n", 482 | " [ 2.1661655 0.93986109]\n", 483 | " [-0.01254409 1.22979253]\n", 484 | " [ 0.18552042 1.08482681]\n", 485 | " [ 0.38358493 -0.48080297]\n", 486 | " [-0.30964085 -0.30684411]\n", 487 | " [ 0.97777845 -0.8287207 ]\n", 488 | " [ 0.97777845 1.8676417 ]\n", 489 | " [-0.01254409 1.25878567]\n", 490 | " [-0.90383437 2.27354572]\n", 491 | " [-1.20093113 -1.58254245]\n", 492 | " [ 2.1661655 -0.79972756]\n", 493 | " [-1.39899564 -1.46656987]\n", 494 | " [ 0.38358493 2.30253886]\n", 495 | " [ 0.77971394 0.76590222]\n", 496 | " [-1.00286662 -0.30684411]\n", 497 | " [ 0.08648817 0.76590222]\n", 498 | " [-1.00286662 0.56295021]\n", 499 | " [ 0.28455268 0.07006676]\n", 500 | " [ 0.68068169 -1.26361786]\n", 501 | " [-0.50770535 -0.01691267]\n", 502 | " [-1.79512465 0.35999821]\n", 503 | " [-0.70576986 0.12805305]\n", 504 | " [ 0.38358493 0.30201192]\n", 505 | " [-0.30964085 0.07006676]\n", 506 | " [-0.50770535 2.30253886]\n", 507 | " [ 0.18552042 0.04107362]\n", 508 | " [ 1.27487521 2.21555943]\n", 509 | " [ 0.77971394 0.27301877]\n", 510 | " [-0.30964085 0.1570462 ]\n", 511 | " [-0.01254409 -0.53878926]\n", 512 | " [-0.21060859 0.1570462 ]\n", 513 | " [-0.11157634 0.24402563]\n", 514 | " [-0.01254409 -0.24885782]\n", 515 | " [ 2.1661655 1.11381995]\n", 516 | " [-1.79512465 0.35999821]\n", 517 | " [ 1.86906873 0.12805305]\n", 518 | " [ 0.38358493 -0.13288524]\n", 519 | " [-1.20093113 0.30201192]\n", 520 | " [ 0.77971394 1.37475825]\n", 521 | " [-0.30964085 -0.24885782]\n", 522 | " [-1.6960924 -0.04590581]\n", 523 | " [-1.00286662 -0.74174127]\n", 524 | " [ 0.28455268 0.50496393]\n", 525 | " [-0.11157634 -1.06066585]\n", 526 | " [-1.10189888 0.59194336]\n", 527 | " [ 0.08648817 -0.79972756]\n", 528 | " [-1.00286662 1.54871711]\n", 529 | " [-0.70576986 1.40375139]\n", 530 | " [-1.29996338 0.50496393]\n", 531 | " [-0.30964085 0.04107362]\n", 532 | " [-0.11157634 0.01208048]\n", 533 | " [-0.30964085 -0.88670699]\n", 534 | " [ 0.8787462 -1.3505973 ]\n", 535 | " [-0.30964085 2.24455257]\n", 536 | " [ 0.97777845 1.98361427]\n", 537 | " [-1.20093113 0.47597078]\n", 538 | " [-1.29996338 0.27301877]\n", 539 | " [ 1.37390747 1.98361427]\n", 540 | " [ 1.27487521 -1.3505973 ]\n", 541 | " [-0.30964085 -0.27785096]\n", 542 | " [-0.50770535 1.25878567]\n", 543 | " [-0.80480212 1.08482681]\n", 544 | " [ 0.97777845 -1.06066585]\n", 545 | " [ 0.28455268 0.30201192]\n", 546 | " [ 0.97777845 0.76590222]\n", 547 | " [-0.70576986 -1.49556302]\n", 548 | " [-0.70576986 0.04107362]\n", 549 | " [ 0.48261718 1.72267598]\n", 550 | " [ 2.06713324 0.18603934]\n", 551 | " [-1.99318916 -0.74174127]\n", 552 | " [-0.21060859 1.40375139]\n", 553 | " [ 0.38358493 0.59194336]\n", 554 | " [ 0.8787462 -1.14764529]\n", 555 | " [-1.20093113 -0.77073441]\n", 556 | " [ 0.18552042 0.24402563]\n", 557 | " [ 0.77971394 -0.30684411]\n", 558 | " [ 2.06713324 -0.79972756]\n", 559 | " [ 0.77971394 0.12805305]\n", 560 | " [-0.30964085 0.6209365 ]\n", 561 | " [-1.00286662 -0.30684411]\n", 562 | " [ 0.18552042 -0.3648304 ]\n", 563 | " [ 2.06713324 2.12857999]\n", 564 | " [ 1.86906873 -1.26361786]\n", 565 | " [ 1.37390747 -0.91570013]\n", 566 | " [ 0.8787462 1.25878567]\n", 567 | " [ 1.47293972 2.12857999]\n", 568 | " [-0.30964085 -1.23462472]\n", 569 | " [ 1.96810099 0.91086794]\n", 570 | " [ 0.68068169 -0.71274813]\n", 571 | " [-1.49802789 0.35999821]\n", 572 | " [ 0.77971394 -1.3505973 ]\n", 573 | " [ 0.38358493 -0.13288524]\n", 574 | " [-1.00286662 0.41798449]\n", 575 | " [-0.01254409 -0.30684411]\n", 576 | " [-1.20093113 0.41798449]\n", 577 | " [-0.90383437 -1.20563157]\n", 578 | " [-0.11157634 0.04107362]\n", 579 | " [-1.59706014 -0.42281668]\n", 580 | " [ 0.97777845 -1.00267957]\n", 581 | " [ 1.07681071 -1.20563157]\n", 582 | " [-0.01254409 -0.13288524]\n", 583 | " [-1.10189888 -1.52455616]\n", 584 | " [ 0.77971394 -1.20563157]\n", 585 | " [ 0.97777845 2.07059371]\n", 586 | " [-1.20093113 -1.52455616]\n", 587 | " [-0.30964085 0.79489537]\n", 588 | " [ 0.08648817 -0.30684411]\n", 589 | " [-1.39899564 -1.23462472]\n", 590 | " [-0.60673761 -1.49556302]\n", 591 | " [ 0.77971394 0.53395707]\n", 592 | " [-0.30964085 -0.33583725]\n", 593 | " [ 1.77003648 -0.27785096]\n", 594 | " [ 0.8787462 -1.03167271]\n", 595 | " [ 0.18552042 0.07006676]\n", 596 | " [-0.60673761 0.8818748 ]\n", 597 | " [-1.89415691 -1.40858358]\n", 598 | " [-1.29996338 0.59194336]\n", 599 | " [-0.30964085 0.53395707]\n", 600 | " [-1.00286662 -1.089659 ]\n", 601 | " [ 1.17584296 -1.43757673]\n", 602 | " [ 0.18552042 -0.30684411]\n", 603 | " [ 1.17584296 -0.74174127]\n", 604 | " [-0.30964085 0.07006676]\n", 605 | " [ 0.18552042 2.09958685]\n", 606 | " [ 0.77971394 -1.089659 ]\n", 607 | " [ 0.08648817 0.04107362]\n", 608 | " [-1.79512465 0.12805305]\n", 609 | " [-0.90383437 0.1570462 ]\n", 610 | " [-0.70576986 0.18603934]\n", 611 | " [ 0.8787462 -1.29261101]\n", 612 | " [ 0.18552042 -0.24885782]\n", 613 | " [-0.4086731 1.22979253]\n", 614 | " [-0.01254409 0.30201192]\n", 615 | " [ 0.38358493 0.1570462 ]\n", 616 | " [ 0.8787462 -0.65476184]\n", 617 | " [ 0.08648817 0.1570462 ]\n", 618 | " [-1.89415691 -1.29261101]\n", 619 | " [-0.11157634 0.30201192]\n", 620 | " [-0.21060859 -0.27785096]\n", 621 | " [ 0.28455268 -0.50979612]\n", 622 | " [-0.21060859 1.6067034 ]\n", 623 | " [ 0.97777845 -1.17663843]\n", 624 | " [-0.21060859 1.63569655]\n", 625 | " [ 1.27487521 1.8676417 ]\n", 626 | " [-1.10189888 -0.3648304 ]\n", 627 | " [-0.01254409 0.04107362]\n", 628 | " [ 0.08648817 -0.24885782]\n", 629 | " [-1.59706014 -1.23462472]\n", 630 | " [-0.50770535 -0.27785096]\n", 631 | " [ 0.97777845 0.12805305]\n", 632 | " [ 1.96810099 -1.3505973 ]\n", 633 | " [ 1.47293972 0.07006676]\n", 634 | " [-0.60673761 1.37475825]\n", 635 | " [ 1.57197197 0.01208048]\n", 636 | " [-0.80480212 0.30201192]\n", 637 | " [ 1.96810099 0.73690908]\n", 638 | " [-1.20093113 -0.50979612]\n", 639 | " [ 0.68068169 0.27301877]\n", 640 | " [-1.39899564 -0.42281668]\n", 641 | " [ 0.18552042 0.1570462 ]\n", 642 | " [-0.50770535 -1.20563157]\n", 643 | " [ 0.58164944 2.01260742]\n", 644 | " [-1.59706014 -1.49556302]\n", 645 | " [-0.50770535 -0.53878926]\n", 646 | " [ 0.48261718 1.83864855]\n", 647 | " [-1.39899564 -1.089659 ]\n", 648 | " [ 0.77971394 -1.37959044]\n", 649 | " [-0.30964085 -0.42281668]\n", 650 | " [ 1.57197197 0.99784738]\n", 651 | " [ 0.97777845 1.43274454]\n", 652 | " [-0.30964085 -0.48080297]\n", 653 | " [-0.11157634 2.15757314]\n", 654 | " [-1.49802789 -0.1038921 ]\n", 655 | " [-0.11157634 1.95462113]\n", 656 | " [-0.70576986 -0.33583725]\n", 657 | " [-0.50770535 -0.8287207 ]\n", 658 | " [ 0.68068169 -1.37959044]\n", 659 | " [-0.80480212 -1.58254245]\n", 660 | " [-1.89415691 -1.46656987]\n", 661 | " [ 1.07681071 0.12805305]\n", 662 | " [ 0.08648817 1.51972397]\n", 663 | " [-0.30964085 0.09905991]\n", 664 | " [ 0.08648817 0.04107362]\n", 665 | " [-1.39899564 -1.3505973 ]\n", 666 | " [ 0.28455268 0.07006676]\n", 667 | " [-0.90383437 0.38899135]\n", 668 | " [ 1.57197197 -1.26361786]\n", 669 | " [-0.30964085 -0.74174127]\n", 670 | " [-0.11157634 0.1570462 ]\n", 671 | " [-0.90383437 -0.65476184]\n", 672 | " [-0.70576986 -0.04590581]\n", 673 | " [ 0.38358493 -0.45180983]\n", 674 | " [-0.80480212 1.89663484]\n", 675 | " [ 1.37390747 1.28777882]\n", 676 | " [ 1.17584296 -0.97368642]\n", 677 | " [ 1.77003648 1.83864855]\n", 678 | " [-0.90383437 -0.24885782]\n", 679 | " [-0.80480212 0.56295021]\n", 680 | " [-1.20093113 -1.5535493 ]\n", 681 | " [-0.50770535 -1.11865214]\n", 682 | " [ 0.28455268 0.07006676]\n", 683 | " [-0.21060859 -1.06066585]\n", 684 | " [ 1.67100423 1.6067034 ]\n", 685 | " [ 0.97777845 1.78066227]\n", 686 | " [ 0.28455268 0.04107362]\n", 687 | " [-0.80480212 -0.21986468]\n", 688 | " [-0.11157634 0.07006676]\n", 689 | " [ 0.28455268 -0.19087153]\n", 690 | " [ 1.96810099 -0.65476184]\n", 691 | " [-0.80480212 1.3457651 ]\n", 692 | " [-1.79512465 -0.59677555]\n", 693 | " [-0.11157634 0.12805305]\n", 694 | " [ 0.28455268 -0.30684411]\n", 695 | " [ 1.07681071 0.56295021]\n", 696 | " [-1.00286662 0.27301877]\n", 697 | " [ 1.47293972 0.35999821]\n", 698 | " [ 0.18552042 -0.3648304 ]\n", 699 | " [ 2.1661655 -1.03167271]\n", 700 | " [-0.30964085 1.11381995]\n", 701 | " [-1.6960924 0.07006676]\n", 702 | " [-0.01254409 0.04107362]\n", 703 | " [ 0.08648817 1.05583366]\n", 704 | " [-0.11157634 -0.3648304 ]\n", 705 | " [-1.20093113 0.07006676]\n", 706 | " [-0.30964085 -1.3505973 ]\n", 707 | " [ 1.57197197 1.11381995]\n", 708 | " [-0.80480212 -1.52455616]\n", 709 | " [ 0.08648817 1.8676417 ]\n", 710 | " [-0.90383437 -0.77073441]\n", 711 | " [-0.50770535 -0.77073441]\n", 712 | " [-0.30964085 -0.91570013]\n", 713 | " [ 0.28455268 -0.71274813]\n", 714 | " [ 0.28455268 0.07006676]\n", 715 | " [ 0.08648817 1.8676417 ]\n", 716 | " [-1.10189888 1.95462113]\n", 717 | " [-1.6960924 -1.5535493 ]\n", 718 | " [-1.20093113 -1.089659 ]\n", 719 | " [-0.70576986 -0.1038921 ]\n", 720 | " [ 0.08648817 0.09905991]\n", 721 | " [ 0.28455268 0.27301877]\n", 722 | " [ 0.8787462 -0.5677824 ]\n", 723 | " [ 0.28455268 -1.14764529]\n", 724 | " [-0.11157634 0.67892279]\n", 725 | " [ 2.1661655 -0.68375498]\n", 726 | " [-1.29996338 -1.37959044]\n", 727 | " [-1.00286662 -0.94469328]\n", 728 | " [-0.01254409 -0.42281668]\n", 729 | " [-0.21060859 -0.45180983]\n", 730 | " [-1.79512465 -0.97368642]\n", 731 | " [ 1.77003648 0.99784738]\n", 732 | " [ 0.18552042 -0.3648304 ]\n", 733 | " [ 0.38358493 1.11381995]\n", 734 | " [-1.79512465 -1.3505973 ]\n", 735 | " [ 0.18552042 -0.13288524]\n", 736 | " [ 0.8787462 -1.43757673]\n", 737 | " [-1.99318916 0.47597078]\n", 738 | " [-0.30964085 0.27301877]\n", 739 | " [ 1.86906873 -1.06066585]\n", 740 | " [-0.4086731 0.07006676]\n", 741 | " [ 1.07681071 -0.88670699]\n", 742 | " [-1.10189888 -1.11865214]\n", 743 | " [-1.89415691 0.01208048]\n", 744 | " [ 0.08648817 0.27301877]\n", 745 | " [-1.20093113 0.33100506]\n", 746 | " [-1.29996338 0.30201192]\n", 747 | " [-1.00286662 0.44697764]\n", 748 | " [ 1.67100423 -0.88670699]\n", 749 | " [ 1.17584296 0.53395707]\n", 750 | " [ 1.07681071 0.53395707]\n", 751 | " [ 1.37390747 2.331532 ]\n", 752 | " [-0.30964085 -0.13288524]\n", 753 | " [ 0.38358493 -0.45180983]\n", 754 | " [-0.4086731 -0.77073441]\n", 755 | " [-0.11157634 -0.50979612]\n", 756 | " [ 0.97777845 -1.14764529]\n", 757 | " [-0.90383437 -0.77073441]\n", 758 | " [-0.21060859 -0.50979612]\n", 759 | " [-1.10189888 -0.45180983]\n", 760 | " [-1.20093113 1.40375139]]\n" 761 | ] 762 | } 763 | ], 764 | "source": [ 765 | "from sklearn.preprocessing import StandardScaler\n", 766 | "sc_X = StandardScaler()\n", 767 | "X_train = sc_X.fit_transform(X_train)\n", 768 | "X_test = sc_X.fit_transform(X_test)\n", 769 | "\n", 770 | "print(X_train)" 771 | ] 772 | }, 773 | { 774 | "cell_type": "code", 775 | "execution_count": 5, 776 | "id": "6ae4bddc", 777 | "metadata": {}, 778 | "outputs": [ 779 | { 780 | "data": { 781 | "text/plain": [ 782 | "KNeighborsClassifier()" 783 | ] 784 | }, 785 | "execution_count": 5, 786 | "metadata": {}, 787 | "output_type": "execute_result" 788 | } 789 | ], 790 | "source": [ 791 | "from sklearn.neighbors import KNeighborsClassifier\n", 792 | "classifer=KNeighborsClassifier(n_neighbors=5, metric=\"minkowski\", p=2)\n", 793 | "classifer.fit(X_train,y_train)" 794 | ] 795 | }, 796 | { 797 | "cell_type": "code", 798 | "execution_count": 6, 799 | "id": "23fd4aec", 800 | "metadata": { 801 | "scrolled": true 802 | }, 803 | "outputs": [ 804 | { 805 | "name": "stdout", 806 | "output_type": "stream", 807 | "text": [ 808 | "[[64 3]\n", 809 | " [ 4 29]]\n" 810 | ] 811 | } 812 | ], 813 | "source": [ 814 | "y_pred = classifer.predict(X_test)\n", 815 | "\n", 816 | "# Making the Confusion Matrix\n", 817 | "cm = confusion_matrix(y_pred, y_test)\n", 818 | "print(cm)" 819 | ] 820 | }, 821 | { 822 | "cell_type": "code", 823 | "execution_count": null, 824 | "id": "ab42b07a", 825 | "metadata": {}, 826 | "outputs": [], 827 | "source": [] 828 | }, 829 | { 830 | "cell_type": "code", 831 | "execution_count": null, 832 | "id": "84f25d32", 833 | "metadata": {}, 834 | "outputs": [], 835 | "source": [] 836 | } 837 | ], 838 | "metadata": { 839 | "kernelspec": { 840 | "display_name": "Python 3", 841 | "language": "python", 842 | "name": "python3" 843 | }, 844 | "language_info": { 845 | "codemirror_mode": { 846 | "name": "ipython", 847 | "version": 3 848 | }, 849 | "file_extension": ".py", 850 | "mimetype": "text/x-python", 851 | "name": "python", 852 | "nbconvert_exporter": "python", 853 | "pygments_lexer": "ipython3", 854 | "version": "3.8.8" 855 | } 856 | }, 857 | "nbformat": 4, 858 | "nbformat_minor": 5 859 | } 860 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2022 Packt 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /Movie_Id_Titles: -------------------------------------------------------------------------------- 1 | item_id,title 2 | 1,Toy Story (1995) 3 | 2,GoldenEye (1995) 4 | 3,Four Rooms (1995) 5 | 4,Get Shorty (1995) 6 | 5,Copycat (1995) 7 | 6,Shanghai Triad (Yao a yao yao dao waipo qiao) (1995) 8 | 7,Twelve Monkeys (1995) 9 | 8,Babe (1995) 10 | 9,Dead Man Walking (1995) 11 | 10,Richard III (1995) 12 | 11,Seven (Se7en) (1995) 13 | 12,"Usual Suspects, The (1995)" 14 | 13,Mighty Aphrodite (1995) 15 | 14,"Postino, Il (1994)" 16 | 15,Mr. Holland's Opus (1995) 17 | 16,French Twist (Gazon maudit) (1995) 18 | 17,From Dusk Till Dawn (1996) 19 | 18,"White Balloon, The (1995)" 20 | 19,Antonia's Line (1995) 21 | 20,Angels and Insects (1995) 22 | 21,Muppet Treasure Island (1996) 23 | 22,Braveheart (1995) 24 | 23,Taxi Driver (1976) 25 | 24,Rumble in the Bronx (1995) 26 | 25,"Birdcage, The (1996)" 27 | 26,"Brothers McMullen, The (1995)" 28 | 27,Bad Boys (1995) 29 | 28,Apollo 13 (1995) 30 | 29,Batman Forever (1995) 31 | 30,Belle de jour (1967) 32 | 31,Crimson Tide (1995) 33 | 32,Crumb (1994) 34 | 33,Desperado (1995) 35 | 34,"Doom Generation, The (1995)" 36 | 35,Free Willy 2: The Adventure Home (1995) 37 | 36,Mad Love (1995) 38 | 37,Nadja (1994) 39 | 38,"Net, The (1995)" 40 | 39,Strange Days (1995) 41 | 40,"To Wong Foo, Thanks for Everything! Julie Newmar (1995)" 42 | 41,Billy Madison (1995) 43 | 42,Clerks (1994) 44 | 43,Disclosure (1994) 45 | 44,Dolores Claiborne (1994) 46 | 45,Eat Drink Man Woman (1994) 47 | 46,Exotica (1994) 48 | 47,Ed Wood (1994) 49 | 48,Hoop Dreams (1994) 50 | 49,I.Q. (1994) 51 | 50,Star Wars (1977) 52 | 51,Legends of the Fall (1994) 53 | 52,"Madness of King George, The (1994)" 54 | 53,Natural Born Killers (1994) 55 | 54,Outbreak (1995) 56 | 55,"Professional, The (1994)" 57 | 56,Pulp Fiction (1994) 58 | 57,Priest (1994) 59 | 58,Quiz Show (1994) 60 | 59,Three Colors: Red (1994) 61 | 60,Three Colors: Blue (1993) 62 | 61,Three Colors: White (1994) 63 | 62,Stargate (1994) 64 | 63,"Santa Clause, The (1994)" 65 | 64,"Shawshank Redemption, The (1994)" 66 | 65,What's Eating Gilbert Grape (1993) 67 | 66,While You Were Sleeping (1995) 68 | 67,Ace Ventura: Pet Detective (1994) 69 | 68,"Crow, The (1994)" 70 | 69,Forrest Gump (1994) 71 | 70,Four Weddings and a Funeral (1994) 72 | 71,"Lion King, The (1994)" 73 | 72,"Mask, The (1994)" 74 | 73,Maverick (1994) 75 | 74,Faster Pussycat! Kill! Kill! (1965) 76 | 75,Brother Minister: The Assassination of Malcolm X (1994) 77 | 76,Carlito's Way (1993) 78 | 77,"Firm, The (1993)" 79 | 78,Free Willy (1993) 80 | 79,"Fugitive, The (1993)" 81 | 80,Hot Shots! Part Deux (1993) 82 | 81,"Hudsucker Proxy, The (1994)" 83 | 82,Jurassic Park (1993) 84 | 83,Much Ado About Nothing (1993) 85 | 84,Robert A. Heinlein's The Puppet Masters (1994) 86 | 85,"Ref, The (1994)" 87 | 86,"Remains of the Day, The (1993)" 88 | 87,Searching for Bobby Fischer (1993) 89 | 88,Sleepless in Seattle (1993) 90 | 89,Blade Runner (1982) 91 | 90,So I Married an Axe Murderer (1993) 92 | 91,"Nightmare Before Christmas, The (1993)" 93 | 92,True Romance (1993) 94 | 93,Welcome to the Dollhouse (1995) 95 | 94,Home Alone (1990) 96 | 95,Aladdin (1992) 97 | 96,Terminator 2: Judgment Day (1991) 98 | 97,Dances with Wolves (1990) 99 | 98,"Silence of the Lambs, The (1991)" 100 | 99,Snow White and the Seven Dwarfs (1937) 101 | 100,Fargo (1996) 102 | 101,Heavy Metal (1981) 103 | 102,"Aristocats, The (1970)" 104 | 103,All Dogs Go to Heaven 2 (1996) 105 | 104,Theodore Rex (1995) 106 | 105,Sgt. Bilko (1996) 107 | 106,Diabolique (1996) 108 | 107,Moll Flanders (1996) 109 | 108,Kids in the Hall: Brain Candy (1996) 110 | 109,Mystery Science Theater 3000: The Movie (1996) 111 | 110,Operation Dumbo Drop (1995) 112 | 111,"Truth About Cats & Dogs, The (1996)" 113 | 112,Flipper (1996) 114 | 113,"Horseman on the Roof, The (Hussard sur le toit, Le) (1995)" 115 | 114,Wallace & Gromit: The Best of Aardman Animation (1996) 116 | 115,"Haunted World of Edward D. Wood Jr., The (1995)" 117 | 116,Cold Comfort Farm (1995) 118 | 117,"Rock, The (1996)" 119 | 118,Twister (1996) 120 | 119,Maya Lin: A Strong Clear Vision (1994) 121 | 120,Striptease (1996) 122 | 121,Independence Day (ID4) (1996) 123 | 122,"Cable Guy, The (1996)" 124 | 123,"Frighteners, The (1996)" 125 | 124,Lone Star (1996) 126 | 125,Phenomenon (1996) 127 | 126,"Spitfire Grill, The (1996)" 128 | 127,"Godfather, The (1972)" 129 | 128,Supercop (1992) 130 | 129,Bound (1996) 131 | 130,Kansas City (1996) 132 | 131,Breakfast at Tiffany's (1961) 133 | 132,"Wizard of Oz, The (1939)" 134 | 133,Gone with the Wind (1939) 135 | 134,Citizen Kane (1941) 136 | 135,2001: A Space Odyssey (1968) 137 | 136,Mr. Smith Goes to Washington (1939) 138 | 137,Big Night (1996) 139 | 138,D3: The Mighty Ducks (1996) 140 | 139,"Love Bug, The (1969)" 141 | 140,Homeward Bound: The Incredible Journey (1993) 142 | 141,"20,000 Leagues Under the Sea (1954)" 143 | 142,Bedknobs and Broomsticks (1971) 144 | 143,"Sound of Music, The (1965)" 145 | 144,Die Hard (1988) 146 | 145,"Lawnmower Man, The (1992)" 147 | 146,Unhook the Stars (1996) 148 | 147,"Long Kiss Goodnight, The (1996)" 149 | 148,"Ghost and the Darkness, The (1996)" 150 | 149,Jude (1996) 151 | 150,Swingers (1996) 152 | 151,Willy Wonka and the Chocolate Factory (1971) 153 | 152,Sleeper (1973) 154 | 153,"Fish Called Wanda, A (1988)" 155 | 154,Monty Python's Life of Brian (1979) 156 | 155,Dirty Dancing (1987) 157 | 156,Reservoir Dogs (1992) 158 | 157,Platoon (1986) 159 | 158,Weekend at Bernie's (1989) 160 | 159,Basic Instinct (1992) 161 | 160,Glengarry Glen Ross (1992) 162 | 161,Top Gun (1986) 163 | 162,On Golden Pond (1981) 164 | 163,"Return of the Pink Panther, The (1974)" 165 | 164,"Abyss, The (1989)" 166 | 165,Jean de Florette (1986) 167 | 166,Manon of the Spring (Manon des sources) (1986) 168 | 167,Private Benjamin (1980) 169 | 168,Monty Python and the Holy Grail (1974) 170 | 169,"Wrong Trousers, The (1993)" 171 | 170,Cinema Paradiso (1988) 172 | 171,Delicatessen (1991) 173 | 172,"Empire Strikes Back, The (1980)" 174 | 173,"Princess Bride, The (1987)" 175 | 174,Raiders of the Lost Ark (1981) 176 | 175,Brazil (1985) 177 | 176,Aliens (1986) 178 | 177,"Good, The Bad and The Ugly, The (1966)" 179 | 178,12 Angry Men (1957) 180 | 179,"Clockwork Orange, A (1971)" 181 | 180,Apocalypse Now (1979) 182 | 181,Return of the Jedi (1983) 183 | 182,GoodFellas (1990) 184 | 183,Alien (1979) 185 | 184,Army of Darkness (1993) 186 | 185,Psycho (1960) 187 | 186,"Blues Brothers, The (1980)" 188 | 187,"Godfather: Part II, The (1974)" 189 | 188,Full Metal Jacket (1987) 190 | 189,"Grand Day Out, A (1992)" 191 | 190,Henry V (1989) 192 | 191,Amadeus (1984) 193 | 192,Raging Bull (1980) 194 | 193,"Right Stuff, The (1983)" 195 | 194,"Sting, The (1973)" 196 | 195,"Terminator, The (1984)" 197 | 196,Dead Poets Society (1989) 198 | 197,"Graduate, The (1967)" 199 | 198,Nikita (La Femme Nikita) (1990) 200 | 199,"Bridge on the River Kwai, The (1957)" 201 | 200,"Shining, The (1980)" 202 | 201,Evil Dead II (1987) 203 | 202,Groundhog Day (1993) 204 | 203,Unforgiven (1992) 205 | 204,Back to the Future (1985) 206 | 205,Patton (1970) 207 | 206,Akira (1988) 208 | 207,Cyrano de Bergerac (1990) 209 | 208,Young Frankenstein (1974) 210 | 209,This Is Spinal Tap (1984) 211 | 210,Indiana Jones and the Last Crusade (1989) 212 | 211,M*A*S*H (1970) 213 | 212,"Unbearable Lightness of Being, The (1988)" 214 | 213,"Room with a View, A (1986)" 215 | 214,Pink Floyd - The Wall (1982) 216 | 215,Field of Dreams (1989) 217 | 216,When Harry Met Sally... (1989) 218 | 217,Bram Stoker's Dracula (1992) 219 | 218,Cape Fear (1991) 220 | 219,"Nightmare on Elm Street, A (1984)" 221 | 220,"Mirror Has Two Faces, The (1996)" 222 | 221,Breaking the Waves (1996) 223 | 222,Star Trek: First Contact (1996) 224 | 223,Sling Blade (1996) 225 | 224,Ridicule (1996) 226 | 225,101 Dalmatians (1996) 227 | 226,Die Hard 2 (1990) 228 | 227,Star Trek VI: The Undiscovered Country (1991) 229 | 228,Star Trek: The Wrath of Khan (1982) 230 | 229,Star Trek III: The Search for Spock (1984) 231 | 230,Star Trek IV: The Voyage Home (1986) 232 | 231,Batman Returns (1992) 233 | 232,Young Guns (1988) 234 | 233,Under Siege (1992) 235 | 234,Jaws (1975) 236 | 235,Mars Attacks! (1996) 237 | 236,Citizen Ruth (1996) 238 | 237,Jerry Maguire (1996) 239 | 238,Raising Arizona (1987) 240 | 239,Sneakers (1992) 241 | 240,Beavis and Butt-head Do America (1996) 242 | 241,"Last of the Mohicans, The (1992)" 243 | 242,Kolya (1996) 244 | 243,Jungle2Jungle (1997) 245 | 244,Smilla's Sense of Snow (1997) 246 | 245,"Devil's Own, The (1997)" 247 | 246,Chasing Amy (1997) 248 | 247,Turbo: A Power Rangers Movie (1997) 249 | 248,Grosse Pointe Blank (1997) 250 | 249,Austin Powers: International Man of Mystery (1997) 251 | 250,"Fifth Element, The (1997)" 252 | 251,Shall We Dance? (1996) 253 | 252,"Lost World: Jurassic Park, The (1997)" 254 | 253,"Pillow Book, The (1995)" 255 | 254,Batman & Robin (1997) 256 | 255,My Best Friend's Wedding (1997) 257 | 256,When the Cats Away (Chacun cherche son chat) (1996) 258 | 257,Men in Black (1997) 259 | 258,Contact (1997) 260 | 259,George of the Jungle (1997) 261 | 260,Event Horizon (1997) 262 | 261,Air Bud (1997) 263 | 262,In the Company of Men (1997) 264 | 263,Steel (1997) 265 | 264,Mimic (1997) 266 | 265,"Hunt for Red October, The (1990)" 267 | 266,Kull the Conqueror (1997) 268 | 267,unknown 269 | 268,Chasing Amy (1997) 270 | 269,"Full Monty, The (1997)" 271 | 270,Gattaca (1997) 272 | 271,Starship Troopers (1997) 273 | 272,Good Will Hunting (1997) 274 | 273,Heat (1995) 275 | 274,Sabrina (1995) 276 | 275,Sense and Sensibility (1995) 277 | 276,Leaving Las Vegas (1995) 278 | 277,Restoration (1995) 279 | 278,Bed of Roses (1996) 280 | 279,Once Upon a Time... When We Were Colored (1995) 281 | 280,Up Close and Personal (1996) 282 | 281,"River Wild, The (1994)" 283 | 282,"Time to Kill, A (1996)" 284 | 283,Emma (1996) 285 | 284,Tin Cup (1996) 286 | 285,Secrets & Lies (1996) 287 | 286,"English Patient, The (1996)" 288 | 287,Marvin's Room (1996) 289 | 288,Scream (1996) 290 | 289,Evita (1996) 291 | 290,Fierce Creatures (1997) 292 | 291,Absolute Power (1997) 293 | 292,Rosewood (1997) 294 | 293,Donnie Brasco (1997) 295 | 294,Liar Liar (1997) 296 | 295,Breakdown (1997) 297 | 296,"Promesse, La (1996)" 298 | 297,Ulee's Gold (1997) 299 | 298,Face/Off (1997) 300 | 299,Hoodlum (1997) 301 | 300,Air Force One (1997) 302 | 301,In & Out (1997) 303 | 302,L.A. Confidential (1997) 304 | 303,Ulee's Gold (1997) 305 | 304,Fly Away Home (1996) 306 | 305,"Ice Storm, The (1997)" 307 | 306,"Mrs. Brown (Her Majesty, Mrs. Brown) (1997)" 308 | 307,"Devil's Advocate, The (1997)" 309 | 308,FairyTale: A True Story (1997) 310 | 309,Deceiver (1997) 311 | 310,"Rainmaker, The (1997)" 312 | 311,"Wings of the Dove, The (1997)" 313 | 312,Midnight in the Garden of Good and Evil (1997) 314 | 313,Titanic (1997) 315 | 314,3 Ninjas: High Noon At Mega Mountain (1998) 316 | 315,Apt Pupil (1998) 317 | 316,As Good As It Gets (1997) 318 | 317,In the Name of the Father (1993) 319 | 318,Schindler's List (1993) 320 | 319,Everyone Says I Love You (1996) 321 | 320,Paradise Lost: The Child Murders at Robin Hood Hills (1996) 322 | 321,Mother (1996) 323 | 322,Murder at 1600 (1997) 324 | 323,Dante's Peak (1997) 325 | 324,Lost Highway (1997) 326 | 325,Crash (1996) 327 | 326,G.I. Jane (1997) 328 | 327,Cop Land (1997) 329 | 328,Conspiracy Theory (1997) 330 | 329,Desperate Measures (1998) 331 | 330,187 (1997) 332 | 331,"Edge, The (1997)" 333 | 332,Kiss the Girls (1997) 334 | 333,"Game, The (1997)" 335 | 334,U Turn (1997) 336 | 335,How to Be a Player (1997) 337 | 336,Playing God (1997) 338 | 337,"House of Yes, The (1997)" 339 | 338,Bean (1997) 340 | 339,Mad City (1997) 341 | 340,Boogie Nights (1997) 342 | 341,Critical Care (1997) 343 | 342,"Man Who Knew Too Little, The (1997)" 344 | 343,Alien: Resurrection (1997) 345 | 344,"Apostle, The (1997)" 346 | 345,Deconstructing Harry (1997) 347 | 346,Jackie Brown (1997) 348 | 347,Wag the Dog (1997) 349 | 348,Desperate Measures (1998) 350 | 349,Hard Rain (1998) 351 | 350,Fallen (1998) 352 | 351,"Prophecy II, The (1998)" 353 | 352,Spice World (1997) 354 | 353,Deep Rising (1998) 355 | 354,"Wedding Singer, The (1998)" 356 | 355,Sphere (1998) 357 | 356,"Client, The (1994)" 358 | 357,One Flew Over the Cuckoo's Nest (1975) 359 | 358,Spawn (1997) 360 | 359,"Assignment, The (1997)" 361 | 360,Wonderland (1997) 362 | 361,Incognito (1997) 363 | 362,Blues Brothers 2000 (1998) 364 | 363,Sudden Death (1995) 365 | 364,Ace Ventura: When Nature Calls (1995) 366 | 365,Powder (1995) 367 | 366,Dangerous Minds (1995) 368 | 367,Clueless (1995) 369 | 368,Bio-Dome (1996) 370 | 369,Black Sheep (1996) 371 | 370,Mary Reilly (1996) 372 | 371,"Bridges of Madison County, The (1995)" 373 | 372,Jeffrey (1995) 374 | 373,Judge Dredd (1995) 375 | 374,Mighty Morphin Power Rangers: The Movie (1995) 376 | 375,Showgirls (1995) 377 | 376,Houseguest (1994) 378 | 377,Heavyweights (1994) 379 | 378,Miracle on 34th Street (1994) 380 | 379,Tales From the Crypt Presents: Demon Knight (1995) 381 | 380,Star Trek: Generations (1994) 382 | 381,Muriel's Wedding (1994) 383 | 382,"Adventures of Priscilla, Queen of the Desert, The (1994)" 384 | 383,"Flintstones, The (1994)" 385 | 384,Naked Gun 33 1/3: The Final Insult (1994) 386 | 385,True Lies (1994) 387 | 386,Addams Family Values (1993) 388 | 387,"Age of Innocence, The (1993)" 389 | 388,Beverly Hills Cop III (1994) 390 | 389,Black Beauty (1994) 391 | 390,Fear of a Black Hat (1993) 392 | 391,Last Action Hero (1993) 393 | 392,"Man Without a Face, The (1993)" 394 | 393,Mrs. Doubtfire (1993) 395 | 394,Radioland Murders (1994) 396 | 395,Robin Hood: Men in Tights (1993) 397 | 396,Serial Mom (1994) 398 | 397,Striking Distance (1993) 399 | 398,Super Mario Bros. (1993) 400 | 399,"Three Musketeers, The (1993)" 401 | 400,"Little Rascals, The (1994)" 402 | 401,"Brady Bunch Movie, The (1995)" 403 | 402,Ghost (1990) 404 | 403,Batman (1989) 405 | 404,Pinocchio (1940) 406 | 405,Mission: Impossible (1996) 407 | 406,Thinner (1996) 408 | 407,Spy Hard (1996) 409 | 408,"Close Shave, A (1995)" 410 | 409,Jack (1996) 411 | 410,Kingpin (1996) 412 | 411,"Nutty Professor, The (1996)" 413 | 412,"Very Brady Sequel, A (1996)" 414 | 413,Tales from the Crypt Presents: Bordello of Blood (1996) 415 | 414,My Favorite Year (1982) 416 | 415,"Apple Dumpling Gang, The (1975)" 417 | 416,Old Yeller (1957) 418 | 417,"Parent Trap, The (1961)" 419 | 418,Cinderella (1950) 420 | 419,Mary Poppins (1964) 421 | 420,Alice in Wonderland (1951) 422 | 421,William Shakespeare's Romeo and Juliet (1996) 423 | 422,Aladdin and the King of Thieves (1996) 424 | 423,E.T. the Extra-Terrestrial (1982) 425 | 424,Children of the Corn: The Gathering (1996) 426 | 425,Bob Roberts (1992) 427 | 426,"Transformers: The Movie, The (1986)" 428 | 427,To Kill a Mockingbird (1962) 429 | 428,Harold and Maude (1971) 430 | 429,"Day the Earth Stood Still, The (1951)" 431 | 430,Duck Soup (1933) 432 | 431,Highlander (1986) 433 | 432,Fantasia (1940) 434 | 433,Heathers (1989) 435 | 434,Forbidden Planet (1956) 436 | 435,Butch Cassidy and the Sundance Kid (1969) 437 | 436,"American Werewolf in London, An (1981)" 438 | 437,Amityville 1992: It's About Time (1992) 439 | 438,Amityville 3-D (1983) 440 | 439,Amityville: A New Generation (1993) 441 | 440,Amityville II: The Possession (1982) 442 | 441,"Amityville Horror, The (1979)" 443 | 442,"Amityville Curse, The (1990)" 444 | 443,"Birds, The (1963)" 445 | 444,"Blob, The (1958)" 446 | 445,"Body Snatcher, The (1945)" 447 | 446,Burnt Offerings (1976) 448 | 447,Carrie (1976) 449 | 448,"Omen, The (1976)" 450 | 449,Star Trek: The Motion Picture (1979) 451 | 450,Star Trek V: The Final Frontier (1989) 452 | 451,Grease (1978) 453 | 452,Jaws 2 (1978) 454 | 453,Jaws 3-D (1983) 455 | 454,Bastard Out of Carolina (1996) 456 | 455,Jackie Chan's First Strike (1996) 457 | 456,Beverly Hills Ninja (1997) 458 | 457,Free Willy 3: The Rescue (1997) 459 | 458,Nixon (1995) 460 | 459,"Cry, the Beloved Country (1995)" 461 | 460,"Crossing Guard, The (1995)" 462 | 461,Smoke (1995) 463 | 462,Like Water For Chocolate (Como agua para chocolate) (1992) 464 | 463,"Secret of Roan Inish, The (1994)" 465 | 464,Vanya on 42nd Street (1994) 466 | 465,"Jungle Book, The (1994)" 467 | 466,Red Rock West (1992) 468 | 467,"Bronx Tale, A (1993)" 469 | 468,Rudy (1993) 470 | 469,Short Cuts (1993) 471 | 470,Tombstone (1993) 472 | 471,Courage Under Fire (1996) 473 | 472,Dragonheart (1996) 474 | 473,James and the Giant Peach (1996) 475 | 474,Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963) 476 | 475,Trainspotting (1996) 477 | 476,"First Wives Club, The (1996)" 478 | 477,Matilda (1996) 479 | 478,"Philadelphia Story, The (1940)" 480 | 479,Vertigo (1958) 481 | 480,North by Northwest (1959) 482 | 481,"Apartment, The (1960)" 483 | 482,Some Like It Hot (1959) 484 | 483,Casablanca (1942) 485 | 484,"Maltese Falcon, The (1941)" 486 | 485,My Fair Lady (1964) 487 | 486,Sabrina (1954) 488 | 487,Roman Holiday (1953) 489 | 488,Sunset Blvd. (1950) 490 | 489,Notorious (1946) 491 | 490,To Catch a Thief (1955) 492 | 491,"Adventures of Robin Hood, The (1938)" 493 | 492,East of Eden (1955) 494 | 493,"Thin Man, The (1934)" 495 | 494,His Girl Friday (1940) 496 | 495,Around the World in 80 Days (1956) 497 | 496,It's a Wonderful Life (1946) 498 | 497,Bringing Up Baby (1938) 499 | 498,"African Queen, The (1951)" 500 | 499,Cat on a Hot Tin Roof (1958) 501 | 500,Fly Away Home (1996) 502 | 501,Dumbo (1941) 503 | 502,Bananas (1971) 504 | 503,"Candidate, The (1972)" 505 | 504,Bonnie and Clyde (1967) 506 | 505,Dial M for Murder (1954) 507 | 506,Rebel Without a Cause (1955) 508 | 507,"Streetcar Named Desire, A (1951)" 509 | 508,"People vs. Larry Flynt, The (1996)" 510 | 509,My Left Foot (1989) 511 | 510,"Magnificent Seven, The (1954)" 512 | 511,Lawrence of Arabia (1962) 513 | 512,Wings of Desire (1987) 514 | 513,"Third Man, The (1949)" 515 | 514,Annie Hall (1977) 516 | 515,"Boot, Das (1981)" 517 | 516,Local Hero (1983) 518 | 517,Manhattan (1979) 519 | 518,Miller's Crossing (1990) 520 | 519,"Treasure of the Sierra Madre, The (1948)" 521 | 520,"Great Escape, The (1963)" 522 | 521,"Deer Hunter, The (1978)" 523 | 522,Down by Law (1986) 524 | 523,Cool Hand Luke (1967) 525 | 524,"Great Dictator, The (1940)" 526 | 525,"Big Sleep, The (1946)" 527 | 526,Ben-Hur (1959) 528 | 527,Gandhi (1982) 529 | 528,"Killing Fields, The (1984)" 530 | 529,My Life as a Dog (Mitt liv som hund) (1985) 531 | 530,"Man Who Would Be King, The (1975)" 532 | 531,Shine (1996) 533 | 532,Kama Sutra: A Tale of Love (1996) 534 | 533,"Daytrippers, The (1996)" 535 | 534,Traveller (1997) 536 | 535,Addicted to Love (1997) 537 | 536,Ponette (1996) 538 | 537,My Own Private Idaho (1991) 539 | 538,Anastasia (1997) 540 | 539,Mouse Hunt (1997) 541 | 540,Money Train (1995) 542 | 541,Mortal Kombat (1995) 543 | 542,Pocahontas (1995) 544 | 543,"Misérables, Les (1995)" 545 | 544,Things to Do in Denver when You're Dead (1995) 546 | 545,Vampire in Brooklyn (1995) 547 | 546,Broken Arrow (1996) 548 | 547,"Young Poisoner's Handbook, The (1995)" 549 | 548,"NeverEnding Story III, The (1994)" 550 | 549,Rob Roy (1995) 551 | 550,Die Hard: With a Vengeance (1995) 552 | 551,Lord of Illusions (1995) 553 | 552,Species (1995) 554 | 553,"Walk in the Clouds, A (1995)" 555 | 554,Waterworld (1995) 556 | 555,White Man's Burden (1995) 557 | 556,Wild Bill (1995) 558 | 557,Farinelli: il castrato (1994) 559 | 558,Heavenly Creatures (1994) 560 | 559,Interview with the Vampire (1994) 561 | 560,"Kid in King Arthur's Court, A (1995)" 562 | 561,Mary Shelley's Frankenstein (1994) 563 | 562,"Quick and the Dead, The (1995)" 564 | 563,Stephen King's The Langoliers (1995) 565 | 564,Tales from the Hood (1995) 566 | 565,Village of the Damned (1995) 567 | 566,Clear and Present Danger (1994) 568 | 567,Wes Craven's New Nightmare (1994) 569 | 568,Speed (1994) 570 | 569,Wolf (1994) 571 | 570,Wyatt Earp (1994) 572 | 571,Another Stakeout (1993) 573 | 572,Blown Away (1994) 574 | 573,Body Snatchers (1993) 575 | 574,Boxing Helena (1993) 576 | 575,City Slickers II: The Legend of Curly's Gold (1994) 577 | 576,Cliffhanger (1993) 578 | 577,Coneheads (1993) 579 | 578,Demolition Man (1993) 580 | 579,Fatal Instinct (1993) 581 | 580,"Englishman Who Went Up a Hill, But Came Down a Mountain, The (1995)" 582 | 581,Kalifornia (1993) 583 | 582,"Piano, The (1993)" 584 | 583,Romeo Is Bleeding (1993) 585 | 584,"Secret Garden, The (1993)" 586 | 585,Son in Law (1993) 587 | 586,Terminal Velocity (1994) 588 | 587,"Hour of the Pig, The (1993)" 589 | 588,Beauty and the Beast (1991) 590 | 589,"Wild Bunch, The (1969)" 591 | 590,Hellraiser: Bloodline (1996) 592 | 591,Primal Fear (1996) 593 | 592,True Crime (1995) 594 | 593,Stalingrad (1993) 595 | 594,Heavy (1995) 596 | 595,"Fan, The (1996)" 597 | 596,"Hunchback of Notre Dame, The (1996)" 598 | 597,Eraser (1996) 599 | 598,"Big Squeeze, The (1996)" 600 | 599,Police Story 4: Project S (Chao ji ji hua) (1993) 601 | 600,Daniel Defoe's Robinson Crusoe (1996) 602 | 601,For Whom the Bell Tolls (1943) 603 | 602,"American in Paris, An (1951)" 604 | 603,Rear Window (1954) 605 | 604,It Happened One Night (1934) 606 | 605,Meet Me in St. Louis (1944) 607 | 606,All About Eve (1950) 608 | 607,Rebecca (1940) 609 | 608,Spellbound (1945) 610 | 609,Father of the Bride (1950) 611 | 610,Gigi (1958) 612 | 611,Laura (1944) 613 | 612,Lost Horizon (1937) 614 | 613,My Man Godfrey (1936) 615 | 614,Giant (1956) 616 | 615,"39 Steps, The (1935)" 617 | 616,Night of the Living Dead (1968) 618 | 617,"Blue Angel, The (Blaue Engel, Der) (1930)" 619 | 618,Picnic (1955) 620 | 619,Extreme Measures (1996) 621 | 620,"Chamber, The (1996)" 622 | 621,"Davy Crockett, King of the Wild Frontier (1955)" 623 | 622,Swiss Family Robinson (1960) 624 | 623,Angels in the Outfield (1994) 625 | 624,"Three Caballeros, The (1945)" 626 | 625,"Sword in the Stone, The (1963)" 627 | 626,So Dear to My Heart (1949) 628 | 627,Robin Hood: Prince of Thieves (1991) 629 | 628,Sleepers (1996) 630 | 629,Victor/Victoria (1982) 631 | 630,"Great Race, The (1965)" 632 | 631,"Crying Game, The (1992)" 633 | 632,Sophie's Choice (1982) 634 | 633,"Christmas Carol, A (1938)" 635 | 634,Microcosmos: Le peuple de l'herbe (1996) 636 | 635,"Fog, The (1980)" 637 | 636,Escape from New York (1981) 638 | 637,"Howling, The (1981)" 639 | 638,"Return of Martin Guerre, The (Retour de Martin Guerre, Le) (1982)" 640 | 639,"Tin Drum, The (Blechtrommel, Die) (1979)" 641 | 640,"Cook the Thief His Wife & Her Lover, The (1989)" 642 | 641,Paths of Glory (1957) 643 | 642,"Grifters, The (1990)" 644 | 643,The Innocent (1994) 645 | 644,"Thin Blue Line, The (1988)" 646 | 645,Paris Is Burning (1990) 647 | 646,Once Upon a Time in the West (1969) 648 | 647,Ran (1985) 649 | 648,"Quiet Man, The (1952)" 650 | 649,Once Upon a Time in America (1984) 651 | 650,"Seventh Seal, The (Sjunde inseglet, Det) (1957)" 652 | 651,Glory (1989) 653 | 652,Rosencrantz and Guildenstern Are Dead (1990) 654 | 653,Touch of Evil (1958) 655 | 654,Chinatown (1974) 656 | 655,Stand by Me (1986) 657 | 656,M (1931) 658 | 657,"Manchurian Candidate, The (1962)" 659 | 658,Pump Up the Volume (1990) 660 | 659,Arsenic and Old Lace (1944) 661 | 660,Fried Green Tomatoes (1991) 662 | 661,High Noon (1952) 663 | 662,Somewhere in Time (1980) 664 | 663,Being There (1979) 665 | 664,"Paris, Texas (1984)" 666 | 665,Alien 3 (1992) 667 | 666,Blood For Dracula (Andy Warhol's Dracula) (1974) 668 | 667,Audrey Rose (1977) 669 | 668,Blood Beach (1981) 670 | 669,Body Parts (1991) 671 | 670,Body Snatchers (1993) 672 | 671,Bride of Frankenstein (1935) 673 | 672,Candyman (1992) 674 | 673,Cape Fear (1962) 675 | 674,Cat People (1982) 676 | 675,"Nosferatu (Nosferatu, eine Symphonie des Grauens) (1922)" 677 | 676,"Crucible, The (1996)" 678 | 677,Fire on the Mountain (1996) 679 | 678,Volcano (1997) 680 | 679,Conan the Barbarian (1981) 681 | 680,Kull the Conqueror (1997) 682 | 681,Wishmaster (1997) 683 | 682,I Know What You Did Last Summer (1997) 684 | 683,Rocket Man (1997) 685 | 684,In the Line of Fire (1993) 686 | 685,Executive Decision (1996) 687 | 686,"Perfect World, A (1993)" 688 | 687,McHale's Navy (1997) 689 | 688,Leave It to Beaver (1997) 690 | 689,"Jackal, The (1997)" 691 | 690,Seven Years in Tibet (1997) 692 | 691,Dark City (1998) 693 | 692,"American President, The (1995)" 694 | 693,Casino (1995) 695 | 694,Persuasion (1995) 696 | 695,Kicking and Screaming (1995) 697 | 696,City Hall (1996) 698 | 697,"Basketball Diaries, The (1995)" 699 | 698,"Browning Version, The (1994)" 700 | 699,Little Women (1994) 701 | 700,Miami Rhapsody (1995) 702 | 701,"Wonderful, Horrible Life of Leni Riefenstahl, The (1993)" 703 | 702,Barcelona (1994) 704 | 703,Widows' Peak (1994) 705 | 704,"House of the Spirits, The (1993)" 706 | 705,Singin' in the Rain (1952) 707 | 706,Bad Moon (1996) 708 | 707,Enchanted April (1991) 709 | 708,"Sex, Lies, and Videotape (1989)" 710 | 709,Strictly Ballroom (1992) 711 | 710,Better Off Dead... (1985) 712 | 711,"Substance of Fire, The (1996)" 713 | 712,Tin Men (1987) 714 | 713,Othello (1995) 715 | 714,Carrington (1995) 716 | 715,To Die For (1995) 717 | 716,Home for the Holidays (1995) 718 | 717,"Juror, The (1996)" 719 | 718,In the Bleak Midwinter (1995) 720 | 719,Canadian Bacon (1994) 721 | 720,First Knight (1995) 722 | 721,Mallrats (1995) 723 | 722,Nine Months (1995) 724 | 723,Boys on the Side (1995) 725 | 724,Circle of Friends (1995) 726 | 725,Exit to Eden (1994) 727 | 726,Fluke (1995) 728 | 727,Immortal Beloved (1994) 729 | 728,Junior (1994) 730 | 729,Nell (1994) 731 | 730,"Queen Margot (Reine Margot, La) (1994)" 732 | 731,"Corrina, Corrina (1994)" 733 | 732,Dave (1993) 734 | 733,Go Fish (1994) 735 | 734,Made in America (1993) 736 | 735,Philadelphia (1993) 737 | 736,Shadowlands (1993) 738 | 737,Sirens (1994) 739 | 738,Threesome (1994) 740 | 739,Pretty Woman (1990) 741 | 740,Jane Eyre (1996) 742 | 741,"Last Supper, The (1995)" 743 | 742,Ransom (1996) 744 | 743,"Crow: City of Angels, The (1996)" 745 | 744,Michael Collins (1996) 746 | 745,"Ruling Class, The (1972)" 747 | 746,Real Genius (1985) 748 | 747,Benny & Joon (1993) 749 | 748,"Saint, The (1997)" 750 | 749,"MatchMaker, The (1997)" 751 | 750,Amistad (1997) 752 | 751,Tomorrow Never Dies (1997) 753 | 752,"Replacement Killers, The (1998)" 754 | 753,Burnt By the Sun (1994) 755 | 754,Red Corner (1997) 756 | 755,Jumanji (1995) 757 | 756,Father of the Bride Part II (1995) 758 | 757,Across the Sea of Time (1995) 759 | 758,Lawnmower Man 2: Beyond Cyberspace (1996) 760 | 759,Fair Game (1995) 761 | 760,Screamers (1995) 762 | 761,Nick of Time (1995) 763 | 762,Beautiful Girls (1996) 764 | 763,Happy Gilmore (1996) 765 | 764,If Lucy Fell (1996) 766 | 765,Boomerang (1992) 767 | 766,Man of the Year (1995) 768 | 767,"Addiction, The (1995)" 769 | 768,Casper (1995) 770 | 769,Congo (1995) 771 | 770,Devil in a Blue Dress (1995) 772 | 771,Johnny Mnemonic (1995) 773 | 772,Kids (1995) 774 | 773,Mute Witness (1994) 775 | 774,"Prophecy, The (1995)" 776 | 775,Something to Talk About (1995) 777 | 776,Three Wishes (1995) 778 | 777,Castle Freak (1995) 779 | 778,Don Juan DeMarco (1995) 780 | 779,Drop Zone (1994) 781 | 780,Dumb & Dumber (1994) 782 | 781,French Kiss (1995) 783 | 782,Little Odessa (1994) 784 | 783,Milk Money (1994) 785 | 784,Beyond Bedlam (1993) 786 | 785,Only You (1994) 787 | 786,"Perez Family, The (1995)" 788 | 787,Roommates (1995) 789 | 788,Relative Fear (1994) 790 | 789,Swimming with Sharks (1995) 791 | 790,Tommy Boy (1995) 792 | 791,"Baby-Sitters Club, The (1995)" 793 | 792,Bullets Over Broadway (1994) 794 | 793,Crooklyn (1994) 795 | 794,It Could Happen to You (1994) 796 | 795,Richie Rich (1994) 797 | 796,Speechless (1994) 798 | 797,Timecop (1994) 799 | 798,Bad Company (1995) 800 | 799,Boys Life (1995) 801 | 800,In the Mouth of Madness (1995) 802 | 801,"Air Up There, The (1994)" 803 | 802,Hard Target (1993) 804 | 803,Heaven & Earth (1993) 805 | 804,Jimmy Hollywood (1994) 806 | 805,Manhattan Murder Mystery (1993) 807 | 806,Menace II Society (1993) 808 | 807,Poetic Justice (1993) 809 | 808,"Program, The (1993)" 810 | 809,Rising Sun (1993) 811 | 810,"Shadow, The (1994)" 812 | 811,Thirty-Two Short Films About Glenn Gould (1993) 813 | 812,Andre (1994) 814 | 813,"Celluloid Closet, The (1995)" 815 | 814,"Great Day in Harlem, A (1994)" 816 | 815,One Fine Day (1996) 817 | 816,Candyman: Farewell to the Flesh (1995) 818 | 817,Frisk (1995) 819 | 818,Girl 6 (1996) 820 | 819,Eddie (1996) 821 | 820,Space Jam (1996) 822 | 821,Mrs. Winterbourne (1996) 823 | 822,Faces (1968) 824 | 823,Mulholland Falls (1996) 825 | 824,"Great White Hype, The (1996)" 826 | 825,"Arrival, The (1996)" 827 | 826,"Phantom, The (1996)" 828 | 827,Daylight (1996) 829 | 828,Alaska (1996) 830 | 829,Fled (1996) 831 | 830,Power 98 (1995) 832 | 831,Escape from L.A. (1996) 833 | 832,Bogus (1996) 834 | 833,Bulletproof (1996) 835 | 834,Halloween: The Curse of Michael Myers (1995) 836 | 835,"Gay Divorcee, The (1934)" 837 | 836,Ninotchka (1939) 838 | 837,Meet John Doe (1941) 839 | 838,In the Line of Duty 2 (1987) 840 | 839,Loch Ness (1995) 841 | 840,Last Man Standing (1996) 842 | 841,"Glimmer Man, The (1996)" 843 | 842,Pollyanna (1960) 844 | 843,"Shaggy Dog, The (1959)" 845 | 844,Freeway (1996) 846 | 845,That Thing You Do! (1996) 847 | 846,To Gillian on Her 37th Birthday (1996) 848 | 847,Looking for Richard (1996) 849 | 848,"Murder, My Sweet (1944)" 850 | 849,Days of Thunder (1990) 851 | 850,"Perfect Candidate, A (1996)" 852 | 851,Two or Three Things I Know About Her (1966) 853 | 852,"Bloody Child, The (1996)" 854 | 853,Braindead (1992) 855 | 854,Bad Taste (1987) 856 | 855,Diva (1981) 857 | 856,Night on Earth (1991) 858 | 857,Paris Was a Woman (1995) 859 | 858,Amityville: Dollhouse (1996) 860 | 859,April Fool's Day (1986) 861 | 860,"Believers, The (1987)" 862 | 861,Nosferatu a Venezia (1986) 863 | 862,Jingle All the Way (1996) 864 | 863,"Garden of Finzi-Contini, The (Giardino dei Finzi-Contini, Il) (1970)" 865 | 864,My Fellow Americans (1996) 866 | 865,"Ice Storm, The (1997)" 867 | 866,Michael (1996) 868 | 867,"Whole Wide World, The (1996)" 869 | 868,Hearts and Minds (1996) 870 | 869,Fools Rush In (1997) 871 | 870,Touch (1997) 872 | 871,Vegas Vacation (1997) 873 | 872,Love Jones (1997) 874 | 873,Picture Perfect (1997) 875 | 874,Career Girls (1997) 876 | 875,She's So Lovely (1997) 877 | 876,Money Talks (1997) 878 | 877,Excess Baggage (1997) 879 | 878,That Darn Cat! (1997) 880 | 879,"Peacemaker, The (1997)" 881 | 880,Soul Food (1997) 882 | 881,Money Talks (1997) 883 | 882,Washington Square (1997) 884 | 883,Telling Lies in America (1997) 885 | 884,Year of the Horse (1997) 886 | 885,Phantoms (1998) 887 | 886,"Life Less Ordinary, A (1997)" 888 | 887,Eve's Bayou (1997) 889 | 888,One Night Stand (1997) 890 | 889,"Tango Lesson, The (1997)" 891 | 890,Mortal Kombat: Annihilation (1997) 892 | 891,Bent (1997) 893 | 892,Flubber (1997) 894 | 893,For Richer or Poorer (1997) 895 | 894,Home Alone 3 (1997) 896 | 895,Scream 2 (1997) 897 | 896,"Sweet Hereafter, The (1997)" 898 | 897,Time Tracers (1995) 899 | 898,"Postman, The (1997)" 900 | 899,"Winter Guest, The (1997)" 901 | 900,Kundun (1997) 902 | 901,Mr. Magoo (1997) 903 | 902,"Big Lebowski, The (1998)" 904 | 903,Afterglow (1997) 905 | 904,Ma vie en rose (My Life in Pink) (1997) 906 | 905,Great Expectations (1998) 907 | 906,Oscar & Lucinda (1997) 908 | 907,Vermin (1998) 909 | 908,Half Baked (1998) 910 | 909,Dangerous Beauty (1998) 911 | 910,Nil By Mouth (1997) 912 | 911,Twilight (1998) 913 | 912,U.S. Marshalls (1998) 914 | 913,Love and Death on Long Island (1997) 915 | 914,Wild Things (1998) 916 | 915,Primary Colors (1998) 917 | 916,Lost in Space (1998) 918 | 917,Mercury Rising (1998) 919 | 918,City of Angels (1998) 920 | 919,"City of Lost Children, The (1995)" 921 | 920,Two Bits (1995) 922 | 921,Farewell My Concubine (1993) 923 | 922,Dead Man (1995) 924 | 923,Raise the Red Lantern (1991) 925 | 924,White Squall (1996) 926 | 925,Unforgettable (1996) 927 | 926,Down Periscope (1996) 928 | 927,"Flower of My Secret, The (Flor de mi secreto, La) (1995)" 929 | 928,"Craft, The (1996)" 930 | 929,Harriet the Spy (1996) 931 | 930,Chain Reaction (1996) 932 | 931,"Island of Dr. Moreau, The (1996)" 933 | 932,First Kid (1996) 934 | 933,"Funeral, The (1996)" 935 | 934,"Preacher's Wife, The (1996)" 936 | 935,Paradise Road (1997) 937 | 936,Brassed Off (1996) 938 | 937,"Thousand Acres, A (1997)" 939 | 938,"Smile Like Yours, A (1997)" 940 | 939,Murder in the First (1995) 941 | 940,Airheads (1994) 942 | 941,With Honors (1994) 943 | 942,What's Love Got to Do with It (1993) 944 | 943,Killing Zoe (1994) 945 | 944,Renaissance Man (1994) 946 | 945,Charade (1963) 947 | 946,"Fox and the Hound, The (1981)" 948 | 947,"Big Blue, The (Grand bleu, Le) (1988)" 949 | 948,Booty Call (1997) 950 | 949,How to Make an American Quilt (1995) 951 | 950,Georgia (1995) 952 | 951,"Indian in the Cupboard, The (1995)" 953 | 952,Blue in the Face (1995) 954 | 953,Unstrung Heroes (1995) 955 | 954,Unzipped (1995) 956 | 955,Before Sunrise (1995) 957 | 956,Nobody's Fool (1994) 958 | 957,Pushing Hands (1992) 959 | 958,To Live (Huozhe) (1994) 960 | 959,Dazed and Confused (1993) 961 | 960,Naked (1993) 962 | 961,Orlando (1993) 963 | 962,Ruby in Paradise (1993) 964 | 963,Some Folks Call It a Sling Blade (1993) 965 | 964,"Month by the Lake, A (1995)" 966 | 965,Funny Face (1957) 967 | 966,"Affair to Remember, An (1957)" 968 | 967,Little Lord Fauntleroy (1936) 969 | 968,"Inspector General, The (1949)" 970 | 969,Winnie the Pooh and the Blustery Day (1968) 971 | 970,Hear My Song (1991) 972 | 971,Mediterraneo (1991) 973 | 972,Passion Fish (1992) 974 | 973,Grateful Dead (1995) 975 | 974,Eye for an Eye (1996) 976 | 975,Fear (1996) 977 | 976,Solo (1996) 978 | 977,"Substitute, The (1996)" 979 | 978,Heaven's Prisoners (1996) 980 | 979,"Trigger Effect, The (1996)" 981 | 980,Mother Night (1996) 982 | 981,Dangerous Ground (1997) 983 | 982,Maximum Risk (1996) 984 | 983,"Rich Man's Wife, The (1996)" 985 | 984,Shadow Conspiracy (1997) 986 | 985,Blood & Wine (1997) 987 | 986,Turbulence (1997) 988 | 987,Underworld (1997) 989 | 988,"Beautician and the Beast, The (1997)" 990 | 989,Cats Don't Dance (1997) 991 | 990,Anna Karenina (1997) 992 | 991,Keys to Tulsa (1997) 993 | 992,Head Above Water (1996) 994 | 993,Hercules (1997) 995 | 994,"Last Time I Committed Suicide, The (1997)" 996 | 995,"Kiss Me, Guido (1997)" 997 | 996,"Big Green, The (1995)" 998 | 997,Stuart Saves His Family (1995) 999 | 998,Cabin Boy (1994) 1000 | 999,Clean Slate (1994) 1001 | 1000,Lightning Jack (1994) 1002 | 1001,"Stupids, The (1996)" 1003 | 1002,"Pest, The (1997)" 1004 | 1003,That Darn Cat! (1997) 1005 | 1004,Geronimo: An American Legend (1993) 1006 | 1005,"Double vie de Véronique, La (Double Life of Veronique, The) (1991)" 1007 | 1006,Until the End of the World (Bis ans Ende der Welt) (1991) 1008 | 1007,Waiting for Guffman (1996) 1009 | 1008,I Shot Andy Warhol (1996) 1010 | 1009,Stealing Beauty (1996) 1011 | 1010,Basquiat (1996) 1012 | 1011,2 Days in the Valley (1996) 1013 | 1012,Private Parts (1997) 1014 | 1013,Anaconda (1997) 1015 | 1014,Romy and Michele's High School Reunion (1997) 1016 | 1015,Shiloh (1997) 1017 | 1016,Con Air (1997) 1018 | 1017,Trees Lounge (1996) 1019 | 1018,Tie Me Up! Tie Me Down! (1990) 1020 | 1019,"Die xue shuang xiong (Killer, The) (1989)" 1021 | 1020,Gaslight (1944) 1022 | 1021,8 1/2 (1963) 1023 | 1022,"Fast, Cheap & Out of Control (1997)" 1024 | 1023,Fathers' Day (1997) 1025 | 1024,Mrs. Dalloway (1997) 1026 | 1025,Fire Down Below (1997) 1027 | 1026,"Lay of the Land, The (1997)" 1028 | 1027,"Shooter, The (1995)" 1029 | 1028,Grumpier Old Men (1995) 1030 | 1029,Jury Duty (1995) 1031 | 1030,"Beverly Hillbillies, The (1993)" 1032 | 1031,Lassie (1994) 1033 | 1032,Little Big League (1994) 1034 | 1033,Homeward Bound II: Lost in San Francisco (1996) 1035 | 1034,"Quest, The (1996)" 1036 | 1035,Cool Runnings (1993) 1037 | 1036,Drop Dead Fred (1991) 1038 | 1037,Grease 2 (1982) 1039 | 1038,Switchback (1997) 1040 | 1039,Hamlet (1996) 1041 | 1040,Two if by Sea (1996) 1042 | 1041,Forget Paris (1995) 1043 | 1042,Just Cause (1995) 1044 | 1043,Rent-a-Kid (1995) 1045 | 1044,"Paper, The (1994)" 1046 | 1045,Fearless (1993) 1047 | 1046,Malice (1993) 1048 | 1047,Multiplicity (1996) 1049 | 1048,She's the One (1996) 1050 | 1049,House Arrest (1996) 1051 | 1050,"Ghost and Mrs. Muir, The (1947)" 1052 | 1051,"Associate, The (1996)" 1053 | 1052,Dracula: Dead and Loving It (1995) 1054 | 1053,Now and Then (1995) 1055 | 1054,Mr. Wrong (1996) 1056 | 1055,"Simple Twist of Fate, A (1994)" 1057 | 1056,Cronos (1992) 1058 | 1057,"Pallbearer, The (1996)" 1059 | 1058,"War, The (1994)" 1060 | 1059,Don't Be a Menace to South Central While Drinking Your Juice in the Hood (1996) 1061 | 1060,"Adventures of Pinocchio, The (1996)" 1062 | 1061,"Evening Star, The (1996)" 1063 | 1062,Four Days in September (1997) 1064 | 1063,"Little Princess, A (1995)" 1065 | 1064,Crossfire (1947) 1066 | 1065,Koyaanisqatsi (1983) 1067 | 1066,Balto (1995) 1068 | 1067,Bottle Rocket (1996) 1069 | 1068,"Star Maker, The (Uomo delle stelle, L') (1995)" 1070 | 1069,Amateur (1994) 1071 | 1070,Living in Oblivion (1995) 1072 | 1071,Party Girl (1995) 1073 | 1072,"Pyromaniac's Love Story, A (1995)" 1074 | 1073,Shallow Grave (1994) 1075 | 1074,Reality Bites (1994) 1076 | 1075,"Man of No Importance, A (1994)" 1077 | 1076,"Pagemaster, The (1994)" 1078 | 1077,Love and a .45 (1994) 1079 | 1078,Oliver & Company (1988) 1080 | 1079,Joe's Apartment (1996) 1081 | 1080,Celestial Clockwork (1994) 1082 | 1081,Curdled (1996) 1083 | 1082,Female Perversions (1996) 1084 | 1083,Albino Alligator (1996) 1085 | 1084,Anne Frank Remembered (1995) 1086 | 1085,Carried Away (1996) 1087 | 1086,It's My Party (1995) 1088 | 1087,Bloodsport 2 (1995) 1089 | 1088,Double Team (1997) 1090 | 1089,Speed 2: Cruise Control (1997) 1091 | 1090,Sliver (1993) 1092 | 1091,Pete's Dragon (1977) 1093 | 1092,Dear God (1996) 1094 | 1093,Live Nude Girls (1995) 1095 | 1094,"Thin Line Between Love and Hate, A (1996)" 1096 | 1095,High School High (1996) 1097 | 1096,Commandments (1997) 1098 | 1097,"Hate (Haine, La) (1995)" 1099 | 1098,Flirting With Disaster (1996) 1100 | 1099,"Red Firecracker, Green Firecracker (1994)" 1101 | 1100,What Happened Was... (1994) 1102 | 1101,Six Degrees of Separation (1993) 1103 | 1102,Two Much (1996) 1104 | 1103,Trust (1990) 1105 | 1104,C'est arrivé près de chez vous (1992) 1106 | 1105,Firestorm (1998) 1107 | 1106,"Newton Boys, The (1998)" 1108 | 1107,Beyond Rangoon (1995) 1109 | 1108,Feast of July (1995) 1110 | 1109,Death and the Maiden (1994) 1111 | 1110,Tank Girl (1995) 1112 | 1111,Double Happiness (1994) 1113 | 1112,Cobb (1994) 1114 | 1113,Mrs. Parker and the Vicious Circle (1994) 1115 | 1114,Faithful (1996) 1116 | 1115,Twelfth Night (1996) 1117 | 1116,"Mark of Zorro, The (1940)" 1118 | 1117,Surviving Picasso (1996) 1119 | 1118,Up in Smoke (1978) 1120 | 1119,Some Kind of Wonderful (1987) 1121 | 1120,I'm Not Rappaport (1996) 1122 | 1121,"Umbrellas of Cherbourg, The (Parapluies de Cherbourg, Les) (1964)" 1123 | 1122,They Made Me a Criminal (1939) 1124 | 1123,"Last Time I Saw Paris, The (1954)" 1125 | 1124,"Farewell to Arms, A (1932)" 1126 | 1125,"Innocents, The (1961)" 1127 | 1126,"Old Man and the Sea, The (1958)" 1128 | 1127,"Truman Show, The (1998)" 1129 | 1128,Heidi Fleiss: Hollywood Madam (1995) 1130 | 1129,Chungking Express (1994) 1131 | 1130,Jupiter's Wife (1994) 1132 | 1131,Safe (1995) 1133 | 1132,Feeling Minnesota (1996) 1134 | 1133,Escape to Witch Mountain (1975) 1135 | 1134,Get on the Bus (1996) 1136 | 1135,"Doors, The (1991)" 1137 | 1136,Ghosts of Mississippi (1996) 1138 | 1137,Beautiful Thing (1996) 1139 | 1138,Best Men (1997) 1140 | 1139,Hackers (1995) 1141 | 1140,"Road to Wellville, The (1994)" 1142 | 1141,"War Room, The (1993)" 1143 | 1142,When We Were Kings (1996) 1144 | 1143,Hard Eight (1996) 1145 | 1144,"Quiet Room, The (1996)" 1146 | 1145,Blue Chips (1994) 1147 | 1146,Calendar Girl (1993) 1148 | 1147,My Family (1995) 1149 | 1148,Tom & Viv (1994) 1150 | 1149,Walkabout (1971) 1151 | 1150,Last Dance (1996) 1152 | 1151,Original Gangstas (1996) 1153 | 1152,In Love and War (1996) 1154 | 1153,Backbeat (1993) 1155 | 1154,Alphaville (1965) 1156 | 1155,"Rendezvous in Paris (Rendez-vous de Paris, Les) (1995)" 1157 | 1156,Cyclo (1995) 1158 | 1157,"Relic, The (1997)" 1159 | 1158,"Fille seule, La (A Single Girl) (1995)" 1160 | 1159,Stalker (1979) 1161 | 1160,Love! Valour! Compassion! (1997) 1162 | 1161,Palookaville (1996) 1163 | 1162,Phat Beach (1996) 1164 | 1163,"Portrait of a Lady, The (1996)" 1165 | 1164,Zeus and Roxanne (1997) 1166 | 1165,Big Bully (1996) 1167 | 1166,Love & Human Remains (1993) 1168 | 1167,"Sum of Us, The (1994)" 1169 | 1168,Little Buddha (1993) 1170 | 1169,Fresh (1994) 1171 | 1170,Spanking the Monkey (1994) 1172 | 1171,Wild Reeds (1994) 1173 | 1172,"Women, The (1939)" 1174 | 1173,Bliss (1997) 1175 | 1174,Caught (1996) 1176 | 1175,Hugo Pool (1997) 1177 | 1176,Welcome To Sarajevo (1997) 1178 | 1177,Dunston Checks In (1996) 1179 | 1178,Major Payne (1994) 1180 | 1179,Man of the House (1995) 1181 | 1180,I Love Trouble (1994) 1182 | 1181,"Low Down Dirty Shame, A (1994)" 1183 | 1182,Cops and Robbersons (1994) 1184 | 1183,"Cowboy Way, The (1994)" 1185 | 1184,"Endless Summer 2, The (1994)" 1186 | 1185,In the Army Now (1994) 1187 | 1186,"Inkwell, The (1994)" 1188 | 1187,Switchblade Sisters (1975) 1189 | 1188,Young Guns II (1990) 1190 | 1189,Prefontaine (1997) 1191 | 1190,That Old Feeling (1997) 1192 | 1191,"Letter From Death Row, A (1998)" 1193 | 1192,"Boys of St. Vincent, The (1993)" 1194 | 1193,Before the Rain (Pred dozhdot) (1994) 1195 | 1194,Once Were Warriors (1994) 1196 | 1195,Strawberry and Chocolate (Fresa y chocolate) (1993) 1197 | 1196,"Savage Nights (Nuits fauves, Les) (1992)" 1198 | 1197,"Family Thing, A (1996)" 1199 | 1198,Purple Noon (1960) 1200 | 1199,Cemetery Man (Dellamorte Dellamore) (1994) 1201 | 1200,Kim (1950) 1202 | 1201,Marlene Dietrich: Shadow and Light (1996) 1203 | 1202,"Maybe, Maybe Not (Bewegte Mann, Der) (1994)" 1204 | 1203,Top Hat (1935) 1205 | 1204,To Be or Not to Be (1942) 1206 | 1205,"Secret Agent, The (1996)" 1207 | 1206,Amos & Andrew (1993) 1208 | 1207,Jade (1995) 1209 | 1208,Kiss of Death (1995) 1210 | 1209,Mixed Nuts (1994) 1211 | 1210,Virtuosity (1995) 1212 | 1211,Blue Sky (1994) 1213 | 1212,Flesh and Bone (1993) 1214 | 1213,Guilty as Sin (1993) 1215 | 1214,In the Realm of the Senses (Ai no corrida) (1976) 1216 | 1215,Barb Wire (1996) 1217 | 1216,Kissed (1996) 1218 | 1217,Assassins (1995) 1219 | 1218,Friday (1995) 1220 | 1219,"Goofy Movie, A (1995)" 1221 | 1220,Higher Learning (1995) 1222 | 1221,When a Man Loves a Woman (1994) 1223 | 1222,Judgment Night (1993) 1224 | 1223,King of the Hill (1993) 1225 | 1224,"Scout, The (1994)" 1226 | 1225,Angus (1995) 1227 | 1226,Night Falls on Manhattan (1997) 1228 | 1227,"Awfully Big Adventure, An (1995)" 1229 | 1228,Under Siege 2: Dark Territory (1995) 1230 | 1229,Poison Ivy II (1995) 1231 | 1230,Ready to Wear (Pret-A-Porter) (1994) 1232 | 1231,Marked for Death (1990) 1233 | 1232,Madonna: Truth or Dare (1991) 1234 | 1233,Nénette et Boni (1996) 1235 | 1234,Chairman of the Board (1998) 1236 | 1235,"Big Bang Theory, The (1994)" 1237 | 1236,"Other Voices, Other Rooms (1997)" 1238 | 1237,Twisted (1996) 1239 | 1238,Full Speed (1996) 1240 | 1239,Cutthroat Island (1995) 1241 | 1240,Ghost in the Shell (Kokaku kidotai) (1995) 1242 | 1241,"Van, The (1996)" 1243 | 1242,"Old Lady Who Walked in the Sea, The (Vieille qui marchait dans la mer, La) (1991)" 1244 | 1243,Night Flier (1997) 1245 | 1244,Metro (1997) 1246 | 1245,Gridlock'd (1997) 1247 | 1246,Bushwhacked (1995) 1248 | 1247,Bad Girls (1994) 1249 | 1248,Blink (1994) 1250 | 1249,For Love or Money (1993) 1251 | 1250,Best of the Best 3: No Turning Back (1995) 1252 | 1251,A Chef in Love (1996) 1253 | 1252,"Contempt (Mépris, Le) (1963)" 1254 | 1253,"Tie That Binds, The (1995)" 1255 | 1254,Gone Fishin' (1997) 1256 | 1255,Broken English (1996) 1257 | 1256,"Designated Mourner, The (1997)" 1258 | 1257,"Designated Mourner, The (1997)" 1259 | 1258,Trial and Error (1997) 1260 | 1259,Pie in the Sky (1995) 1261 | 1260,Total Eclipse (1995) 1262 | 1261,"Run of the Country, The (1995)" 1263 | 1262,Walking and Talking (1996) 1264 | 1263,Foxfire (1996) 1265 | 1264,Nothing to Lose (1994) 1266 | 1265,Star Maps (1997) 1267 | 1266,Bread and Chocolate (Pane e cioccolata) (1973) 1268 | 1267,Clockers (1995) 1269 | 1268,Bitter Moon (1992) 1270 | 1269,Love in the Afternoon (1957) 1271 | 1270,Life with Mikey (1993) 1272 | 1271,North (1994) 1273 | 1272,Talking About Sex (1994) 1274 | 1273,Color of Night (1994) 1275 | 1274,Robocop 3 (1993) 1276 | 1275,Killer (Bulletproof Heart) (1994) 1277 | 1276,Sunset Park (1996) 1278 | 1277,Set It Off (1996) 1279 | 1278,Selena (1997) 1280 | 1279,Wild America (1997) 1281 | 1280,Gang Related (1997) 1282 | 1281,Manny & Lo (1996) 1283 | 1282,"Grass Harp, The (1995)" 1284 | 1283,Out to Sea (1997) 1285 | 1284,Before and After (1996) 1286 | 1285,Princess Caraboo (1994) 1287 | 1286,Shall We Dance? (1937) 1288 | 1287,Ed (1996) 1289 | 1288,Denise Calls Up (1995) 1290 | 1289,Jack and Sarah (1995) 1291 | 1290,Country Life (1994) 1292 | 1291,Celtic Pride (1996) 1293 | 1292,"Simple Wish, A (1997)" 1294 | 1293,Star Kid (1997) 1295 | 1294,Ayn Rand: A Sense of Life (1997) 1296 | 1295,Kicked in the Head (1997) 1297 | 1296,Indian Summer (1996) 1298 | 1297,Love Affair (1994) 1299 | 1298,"Band Wagon, The (1953)" 1300 | 1299,Penny Serenade (1941) 1301 | 1300,'Til There Was You (1997) 1302 | 1301,Stripes (1981) 1303 | 1302,Late Bloomers (1996) 1304 | 1303,"Getaway, The (1994)" 1305 | 1304,New York Cop (1996) 1306 | 1305,National Lampoon's Senior Trip (1995) 1307 | 1306,Delta of Venus (1994) 1308 | 1307,Carmen Miranda: Bananas Is My Business (1994) 1309 | 1308,Babyfever (1994) 1310 | 1309,"Very Natural Thing, A (1974)" 1311 | 1310,"Walk in the Sun, A (1945)" 1312 | 1311,Waiting to Exhale (1995) 1313 | 1312,"Pompatus of Love, The (1996)" 1314 | 1313,Palmetto (1998) 1315 | 1314,Surviving the Game (1994) 1316 | 1315,Inventing the Abbotts (1997) 1317 | 1316,"Horse Whisperer, The (1998)" 1318 | 1317,"Journey of August King, The (1995)" 1319 | 1318,Catwalk (1995) 1320 | 1319,"Neon Bible, The (1995)" 1321 | 1320,Homage (1995) 1322 | 1321,Open Season (1996) 1323 | 1322,Metisse (Café au Lait) (1993) 1324 | 1323,"Wooden Man's Bride, The (Wu Kui) (1994)" 1325 | 1324,Loaded (1994) 1326 | 1325,August (1996) 1327 | 1326,Boys (1996) 1328 | 1327,Captives (1994) 1329 | 1328,Of Love and Shadows (1994) 1330 | 1329,"Low Life, The (1994)" 1331 | 1330,An Unforgettable Summer (1994) 1332 | 1331,"Last Klezmer: Leopold Kozlowski, His Life and Music, The (1995)" 1333 | 1332,My Life and Times With Antonin Artaud (En compagnie d'Antonin Artaud) (1993) 1334 | 1333,Midnight Dancers (Sibak) (1994) 1335 | 1334,Somebody to Love (1994) 1336 | 1335,American Buffalo (1996) 1337 | 1336,Kazaam (1996) 1338 | 1337,Larger Than Life (1996) 1339 | 1338,Two Deaths (1995) 1340 | 1339,Stefano Quantestorie (1993) 1341 | 1340,"Crude Oasis, The (1995)" 1342 | 1341,Hedd Wyn (1992) 1343 | 1342,"Convent, The (Convento, O) (1995)" 1344 | 1343,Lotto Land (1995) 1345 | 1344,"Story of Xinghua, The (1993)" 1346 | 1345,"Day the Sun Turned Cold, The (Tianguo niezi) (1994)" 1347 | 1346,Dingo (1992) 1348 | 1347,"Ballad of Narayama, The (Narayama Bushiko) (1958)" 1349 | 1348,Every Other Weekend (1990) 1350 | 1349,Mille bolle blu (1993) 1351 | 1350,Crows and Sparrows (1949) 1352 | 1351,Lover's Knot (1996) 1353 | 1352,Shadow of Angels (Schatten der Engel) (1976) 1354 | 1353,1-900 (1994) 1355 | 1354,Venice/Venice (1992) 1356 | 1355,Infinity (1996) 1357 | 1356,Ed's Next Move (1996) 1358 | 1357,For the Moment (1994) 1359 | 1358,The Deadly Cure (1996) 1360 | 1359,Boys in Venice (1996) 1361 | 1360,"Sexual Life of the Belgians, The (1994)" 1362 | 1361,"Search for One-eye Jimmy, The (1996)" 1363 | 1362,American Strays (1996) 1364 | 1363,"Leopard Son, The (1996)" 1365 | 1364,Bird of Prey (1996) 1366 | 1365,Johnny 100 Pesos (1993) 1367 | 1366,JLG/JLG - autoportrait de décembre (1994) 1368 | 1367,Faust (1994) 1369 | 1368,Mina Tannenbaum (1994) 1370 | 1369,"Forbidden Christ, The (Cristo proibito, Il) (1950)" 1371 | 1370,I Can't Sleep (J'ai pas sommeil) (1994) 1372 | 1371,"Machine, The (1994)" 1373 | 1372,"Stranger, The (1994)" 1374 | 1373,Good Morning (1971) 1375 | 1374,Falling in Love Again (1980) 1376 | 1375,"Cement Garden, The (1993)" 1377 | 1376,Meet Wally Sparks (1997) 1378 | 1377,Hotel de Love (1996) 1379 | 1378,Rhyme & Reason (1997) 1380 | 1379,Love and Other Catastrophes (1996) 1381 | 1380,Hollow Reed (1996) 1382 | 1381,Losing Chase (1996) 1383 | 1382,"Bonheur, Le (1965)" 1384 | 1383,"Second Jungle Book: Mowgli & Baloo, The (1997)" 1385 | 1384,Squeeze (1996) 1386 | 1385,Roseanna's Grave (For Roseanna) (1997) 1387 | 1386,Tetsuo II: Body Hammer (1992) 1388 | 1387,Fall (1997) 1389 | 1388,Gabbeh (1996) 1390 | 1389,Mondo (1996) 1391 | 1390,"Innocent Sleep, The (1995)" 1392 | 1391,For Ever Mozart (1996) 1393 | 1392,"Locusts, The (1997)" 1394 | 1393,Stag (1997) 1395 | 1394,Swept from the Sea (1997) 1396 | 1395,Hurricane Streets (1998) 1397 | 1396,Stonewall (1995) 1398 | 1397,Of Human Bondage (1934) 1399 | 1398,Anna (1996) 1400 | 1399,Stranger in the House (1997) 1401 | 1400,Picture Bride (1995) 1402 | 1401,M. Butterfly (1993) 1403 | 1402,"Ciao, Professore! (1993)" 1404 | 1403,Caro Diario (Dear Diary) (1994) 1405 | 1404,Withnail and I (1987) 1406 | 1405,Boy's Life 2 (1997) 1407 | 1406,When Night Is Falling (1995) 1408 | 1407,"Specialist, The (1994)" 1409 | 1408,Gordy (1995) 1410 | 1409,"Swan Princess, The (1994)" 1411 | 1410,Harlem (1993) 1412 | 1411,Barbarella (1968) 1413 | 1412,Land Before Time III: The Time of the Great Giving (1995) (V) 1414 | 1413,Street Fighter (1994) 1415 | 1414,Coldblooded (1995) 1416 | 1415,"Next Karate Kid, The (1994)" 1417 | 1416,No Escape (1994) 1418 | 1417,"Turning, The (1992)" 1419 | 1418,"Joy Luck Club, The (1993)" 1420 | 1419,Highlander III: The Sorcerer (1994) 1421 | 1420,Gilligan's Island: The Movie (1998) 1422 | 1421,My Crazy Life (Mi vida loca) (1993) 1423 | 1422,Suture (1993) 1424 | 1423,"Walking Dead, The (1995)" 1425 | 1424,I Like It Like That (1994) 1426 | 1425,I'll Do Anything (1994) 1427 | 1426,Grace of My Heart (1996) 1428 | 1427,Drunks (1995) 1429 | 1428,SubUrbia (1997) 1430 | 1429,Sliding Doors (1998) 1431 | 1430,Ill Gotten Gains (1997) 1432 | 1431,Legal Deceit (1997) 1433 | 1432,"Mighty, The (1998)" 1434 | 1433,Men of Means (1998) 1435 | 1434,Shooting Fish (1997) 1436 | 1435,"Steal Big, Steal Little (1995)" 1437 | 1436,Mr. Jones (1993) 1438 | 1437,House Party 3 (1994) 1439 | 1438,Panther (1995) 1440 | 1439,Jason's Lyric (1994) 1441 | 1440,Above the Rim (1994) 1442 | 1441,Moonlight and Valentino (1995) 1443 | 1442,"Scarlet Letter, The (1995)" 1444 | 1443,8 Seconds (1994) 1445 | 1444,That Darn Cat! (1965) 1446 | 1445,Ladybird Ladybird (1994) 1447 | 1446,"Bye Bye, Love (1995)" 1448 | 1447,Century (1993) 1449 | 1448,My Favorite Season (1993) 1450 | 1449,Pather Panchali (1955) 1451 | 1450,Golden Earrings (1947) 1452 | 1451,Foreign Correspondent (1940) 1453 | 1452,Lady of Burlesque (1943) 1454 | 1453,Angel on My Shoulder (1946) 1455 | 1454,Angel and the Badman (1947) 1456 | 1455,"Outlaw, The (1943)" 1457 | 1456,Beat the Devil (1954) 1458 | 1457,Love Is All There Is (1996) 1459 | 1458,"Damsel in Distress, A (1937)" 1460 | 1459,Madame Butterfly (1995) 1461 | 1460,Sleepover (1995) 1462 | 1461,Here Comes Cookie (1935) 1463 | 1462,"Thieves (Voleurs, Les) (1996)" 1464 | 1463,"Boys, Les (1997)" 1465 | 1464,"Stars Fell on Henrietta, The (1995)" 1466 | 1465,Last Summer in the Hamptons (1995) 1467 | 1466,Margaret's Museum (1995) 1468 | 1467,"Saint of Fort Washington, The (1993)" 1469 | 1468,"Cure, The (1995)" 1470 | 1469,Tom and Huck (1995) 1471 | 1470,Gumby: The Movie (1995) 1472 | 1471,Hideaway (1995) 1473 | 1472,"Visitors, The (Visiteurs, Les) (1993)" 1474 | 1473,"Little Princess, The (1939)" 1475 | 1474,Nina Takes a Lover (1994) 1476 | 1475,Bhaji on the Beach (1993) 1477 | 1476,Raw Deal (1948) 1478 | 1477,Nightwatch (1997) 1479 | 1478,Dead Presidents (1995) 1480 | 1479,Reckless (1995) 1481 | 1480,Herbie Rides Again (1974) 1482 | 1481,S.F.W. (1994) 1483 | 1482,"Gate of Heavenly Peace, The (1995)" 1484 | 1483,"Man in the Iron Mask, The (1998)" 1485 | 1484,"Jerky Boys, The (1994)" 1486 | 1485,"Colonel Chabert, Le (1994)" 1487 | 1486,Girl in the Cadillac (1995) 1488 | 1487,Even Cowgirls Get the Blues (1993) 1489 | 1488,Germinal (1993) 1490 | 1489,Chasers (1994) 1491 | 1490,Fausto (1993) 1492 | 1491,Tough and Deadly (1995) 1493 | 1492,Window to Paris (1994) 1494 | 1493,"Modern Affair, A (1995)" 1495 | 1494,"Mostro, Il (1994)" 1496 | 1495,Flirt (1995) 1497 | 1496,Carpool (1996) 1498 | 1497,"Line King: Al Hirschfeld, The (1996)" 1499 | 1498,Farmer & Chase (1995) 1500 | 1499,Grosse Fatigue (1994) 1501 | 1500,Santa with Muscles (1996) 1502 | 1501,Prisoner of the Mountains (Kavkazsky Plennik) (1996) 1503 | 1502,Naked in New York (1994) 1504 | 1503,Gold Diggers: The Secret of Bear Mountain (1995) 1505 | 1504,"Bewegte Mann, Der (1994)" 1506 | 1505,Killer: A Journal of Murder (1995) 1507 | 1506,Nelly & Monsieur Arnaud (1995) 1508 | 1507,Three Lives and Only One Death (1996) 1509 | 1508,"Babysitter, The (1995)" 1510 | 1509,Getting Even with Dad (1994) 1511 | 1510,Mad Dog Time (1996) 1512 | 1511,Children of the Revolution (1996) 1513 | 1512,"World of Apu, The (Apur Sansar) (1959)" 1514 | 1513,Sprung (1997) 1515 | 1514,Dream With the Fishes (1997) 1516 | 1515,Wings of Courage (1995) 1517 | 1516,"Wedding Gift, The (1994)" 1518 | 1517,Race the Sun (1996) 1519 | 1518,Losing Isaiah (1995) 1520 | 1519,New Jersey Drive (1995) 1521 | 1520,"Fear, The (1995)" 1522 | 1521,Mr. Wonderful (1993) 1523 | 1522,Trial by Jury (1994) 1524 | 1523,"Good Man in Africa, A (1994)" 1525 | 1524,Kaspar Hauser (1993) 1526 | 1525,"Object of My Affection, The (1998)" 1527 | 1526,Witness (1985) 1528 | 1527,Senseless (1998) 1529 | 1528,Nowhere (1997) 1530 | 1529,Underground (1995) 1531 | 1530,Jefferson in Paris (1995) 1532 | 1531,Far From Home: The Adventures of Yellow Dog (1995) 1533 | 1532,Foreign Student (1994) 1534 | 1533,I Don't Want to Talk About It (De eso no se habla) (1993) 1535 | 1534,Twin Town (1997) 1536 | 1535,"Enfer, L' (1994)" 1537 | 1536,Aiqing wansui (1994) 1538 | 1537,Cosi (1996) 1539 | 1538,All Over Me (1997) 1540 | 1539,Being Human (1993) 1541 | 1540,"Amazing Panda Adventure, The (1995)" 1542 | 1541,"Beans of Egypt, Maine, The (1994)" 1543 | 1542,"Scarlet Letter, The (1926)" 1544 | 1543,Johns (1996) 1545 | 1544,It Takes Two (1995) 1546 | 1545,Frankie Starlight (1995) 1547 | 1546,Shadows (Cienie) (1988) 1548 | 1547,"Show, The (1995)" 1549 | 1548,The Courtyard (1995) 1550 | 1549,Dream Man (1995) 1551 | 1550,Destiny Turns on the Radio (1995) 1552 | 1551,"Glass Shield, The (1994)" 1553 | 1552,"Hunted, The (1995)" 1554 | 1553,"Underneath, The (1995)" 1555 | 1554,Safe Passage (1994) 1556 | 1555,"Secret Adventures of Tom Thumb, The (1993)" 1557 | 1556,Condition Red (1995) 1558 | 1557,Yankee Zulu (1994) 1559 | 1558,Aparajito (1956) 1560 | 1559,Hostile Intentions (1994) 1561 | 1560,Clean Slate (Coup de Torchon) (1981) 1562 | 1561,Tigrero: A Film That Was Never Made (1994) 1563 | 1562,"Eye of Vichy, The (Oeil de Vichy, L') (1993)" 1564 | 1563,"Promise, The (Versprechen, Das) (1994)" 1565 | 1564,To Cross the Rubicon (1991) 1566 | 1565,Daens (1992) 1567 | 1566,"Man from Down Under, The (1943)" 1568 | 1567,Careful (1992) 1569 | 1568,Vermont Is For Lovers (1992) 1570 | 1569,"Vie est belle, La (Life is Rosey) (1987)" 1571 | 1570,Quartier Mozart (1992) 1572 | 1571,Touki Bouki (Journey of the Hyena) (1973) 1573 | 1572,Wend Kuuni (God's Gift) (1982) 1574 | 1573,Spirits of the Dead (Tre passi nel delirio) (1968) 1575 | 1574,Pharaoh's Army (1995) 1576 | 1575,"I, Worst of All (Yo, la peor de todas) (1990)" 1577 | 1576,"Hungarian Fairy Tale, A (1987)" 1578 | 1577,"Death in the Garden (Mort en ce jardin, La) (1956)" 1579 | 1578,"Collectionneuse, La (1967)" 1580 | 1579,Baton Rouge (1988) 1581 | 1580,Liebelei (1933) 1582 | 1581,"Woman in Question, The (1950)" 1583 | 1582,T-Men (1947) 1584 | 1583,"Invitation, The (Zaproszenie) (1986)" 1585 | 1584,"Symphonie pastorale, La (1946)" 1586 | 1585,American Dream (1990) 1587 | 1586,Lashou shentan (1992) 1588 | 1587,Terror in a Texas Town (1958) 1589 | 1588,Salut cousin! (1996) 1590 | 1589,Schizopolis (1996) 1591 | 1590,"To Have, or Not (1995)" 1592 | 1591,Duoluo tianshi (1995) 1593 | 1592,"Magic Hour, The (1998)" 1594 | 1593,Death in Brunswick (1991) 1595 | 1594,Everest (1998) 1596 | 1595,Shopping (1994) 1597 | 1596,Nemesis 2: Nebula (1995) 1598 | 1597,Romper Stomper (1992) 1599 | 1598,City of Industry (1997) 1600 | 1599,Someone Else's America (1995) 1601 | 1600,Guantanamera (1994) 1602 | 1601,Office Killer (1997) 1603 | 1602,"Price Above Rubies, A (1998)" 1604 | 1603,Angela (1995) 1605 | 1604,He Walked by Night (1948) 1606 | 1605,Love Serenade (1996) 1607 | 1606,Deceiver (1997) 1608 | 1607,Hurricane Streets (1998) 1609 | 1608,Buddy (1997) 1610 | 1609,B*A*P*S (1997) 1611 | 1610,"Truth or Consequences, N.M. (1997)" 1612 | 1611,Intimate Relations (1996) 1613 | 1612,"Leading Man, The (1996)" 1614 | 1613,Tokyo Fist (1995) 1615 | 1614,"Reluctant Debutante, The (1958)" 1616 | 1615,Warriors of Virtue (1997) 1617 | 1616,Desert Winds (1995) 1618 | 1617,Hugo Pool (1997) 1619 | 1618,King of New York (1990) 1620 | 1619,All Things Fair (1996) 1621 | 1620,"Sixth Man, The (1997)" 1622 | 1621,Butterfly Kiss (1995) 1623 | 1622,"Paris, France (1993)" 1624 | 1623,"Cérémonie, La (1995)" 1625 | 1624,Hush (1998) 1626 | 1625,Nightwatch (1997) 1627 | 1626,Nobody Loves Me (Keiner liebt mich) (1994) 1628 | 1627,"Wife, The (1995)" 1629 | 1628,Lamerica (1994) 1630 | 1629,Nico Icon (1995) 1631 | 1630,"Silence of the Palace, The (Saimt el Qusur) (1994)" 1632 | 1631,"Slingshot, The (1993)" 1633 | 1632,Land and Freedom (Tierra y libertad) (1995) 1634 | 1633,Á köldum klaka (Cold Fever) (1994) 1635 | 1634,Etz Hadomim Tafus (Under the Domin Tree) (1994) 1636 | 1635,Two Friends (1986) 1637 | 1636,Brothers in Trouble (1995) 1638 | 1637,Girls Town (1996) 1639 | 1638,Normal Life (1996) 1640 | 1639,Bitter Sugar (Azucar Amargo) (1996) 1641 | 1640,"Eighth Day, The (1996)" 1642 | 1641,Dadetown (1995) 1643 | 1642,Some Mother's Son (1996) 1644 | 1643,Angel Baby (1995) 1645 | 1644,Sudden Manhattan (1996) 1646 | 1645,"Butcher Boy, The (1998)" 1647 | 1646,Men With Guns (1997) 1648 | 1647,Hana-bi (1997) 1649 | 1648,"Niagara, Niagara (1997)" 1650 | 1649,"Big One, The (1997)" 1651 | 1650,"Butcher Boy, The (1998)" 1652 | 1651,"Spanish Prisoner, The (1997)" 1653 | 1652,Temptress Moon (Feng Yue) (1996) 1654 | 1653,Entertaining Angels: The Dorothy Day Story (1996) 1655 | 1654,Chairman of the Board (1998) 1656 | 1655,"Favor, The (1994)" 1657 | 1656,Little City (1998) 1658 | 1657,Target (1995) 1659 | 1658,"Substance of Fire, The (1996)" 1660 | 1659,Getting Away With Murder (1996) 1661 | 1660,Small Faces (1995) 1662 | 1661,"New Age, The (1994)" 1663 | 1662,Rough Magic (1995) 1664 | 1663,Nothing Personal (1995) 1665 | 1664,8 Heads in a Duffel Bag (1997) 1666 | 1665,"Brother's Kiss, A (1997)" 1667 | 1666,Ripe (1996) 1668 | 1667,"Next Step, The (1995)" 1669 | 1668,Wedding Bell Blues (1996) 1670 | 1669,MURDER and murder (1996) 1671 | 1670,Tainted (1998) 1672 | 1671,"Further Gesture, A (1996)" 1673 | 1672,Kika (1993) 1674 | 1673,Mirage (1995) 1675 | 1674,Mamma Roma (1962) 1676 | 1675,"Sunchaser, The (1996)" 1677 | 1676,"War at Home, The (1996)" 1678 | 1677,Sweet Nothing (1995) 1679 | 1678,Mat' i syn (1997) 1680 | 1679,B. Monkey (1998) 1681 | 1680,Sliding Doors (1998) 1682 | 1681,You So Crazy (1994) 1683 | 1682,Scream of Stone (Schrei aus Stein) (1991) 1684 | -------------------------------------------------------------------------------- /MultipleLinearRegression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "id": "6ddb1a51", 7 | "metadata": { 8 | "scrolled": true 9 | }, 10 | "outputs": [ 11 | { 12 | "data": { 13 | "text/html": [ 14 | "
\n", 15 | "\n", 28 | "\n", 29 | " \n", 30 | " \n", 31 | " \n", 32 | " \n", 33 | " \n", 34 | " \n", 35 | " \n", 36 | " \n", 37 | " \n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | "
R&D SpendAdministrationMarketing SpendStateProfit
0165349.20136897.80471784.10New York192261.83
1162597.70151377.59443898.53California191792.06
2153441.51101145.55407934.54Florida191050.39
3144372.41118671.85383199.62New York182901.99
4142107.3491391.77366168.42Florida166187.94
\n", 82 | "
" 83 | ], 84 | "text/plain": [ 85 | " R&D Spend Administration Marketing Spend State Profit\n", 86 | "0 165349.20 136897.80 471784.10 New York 192261.83\n", 87 | "1 162597.70 151377.59 443898.53 California 191792.06\n", 88 | "2 153441.51 101145.55 407934.54 Florida 191050.39\n", 89 | "3 144372.41 118671.85 383199.62 New York 182901.99\n", 90 | "4 142107.34 91391.77 366168.42 Florida 166187.94" 91 | ] 92 | }, 93 | "execution_count": 2, 94 | "metadata": {}, 95 | "output_type": "execute_result" 96 | } 97 | ], 98 | "source": [ 99 | "#import the libraries\n", 100 | "import numpy as np\n", 101 | "import matplotlib.pyplot as plt\n", 102 | "import pandas as pd\n", 103 | "\n", 104 | "#reading the dataset\n", 105 | "dataset = pd.read_csv('50_Startups.csv')\n", 106 | "X = dataset.iloc[:, :-1].values\n", 107 | "y = dataset.iloc[:, -1].values\n", 108 | "dataset.head(5)" 109 | ] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "execution_count": 3, 114 | "id": "16b28f9a", 115 | "metadata": { 116 | "scrolled": true 117 | }, 118 | "outputs": [], 119 | "source": [ 120 | "from sklearn.compose import ColumnTransformer\n", 121 | "from sklearn.preprocessing import OneHotEncoder\n", 122 | "ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])], remainder='passthrough')\n", 123 | "X = np.array(ct.fit_transform(X))\n" 124 | ] 125 | }, 126 | { 127 | "cell_type": "code", 128 | "execution_count": 4, 129 | "id": "a1434493", 130 | "metadata": {}, 131 | "outputs": [], 132 | "source": [ 133 | "from sklearn.model_selection import train_test_split\n", 134 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)" 135 | ] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "execution_count": 5, 140 | "id": "baa2281b", 141 | "metadata": {}, 142 | "outputs": [ 143 | { 144 | "data": { 145 | "text/plain": [ 146 | "LinearRegression()" 147 | ] 148 | }, 149 | "execution_count": 5, 150 | "metadata": {}, 151 | "output_type": "execute_result" 152 | } 153 | ], 154 | "source": [ 155 | "from sklearn.linear_model import LinearRegression\n", 156 | "regressor = LinearRegression()\n", 157 | "regressor.fit(X_train, y_train)" 158 | ] 159 | }, 160 | { 161 | "cell_type": "code", 162 | "execution_count": 6, 163 | "id": "1e03e915", 164 | "metadata": {}, 165 | "outputs": [], 166 | "source": [ 167 | "y_pred = regressor.predict(X_test)" 168 | ] 169 | }, 170 | { 171 | "cell_type": "code", 172 | "execution_count": 7, 173 | "id": "d1612497", 174 | "metadata": {}, 175 | "outputs": [ 176 | { 177 | "data": { 178 | "text/html": [ 179 | "
\n", 180 | "\n", 193 | "\n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | "
Real ValuesPredicted Values
0155752.60162085.051813
1146121.95137621.884189
2192261.83190067.226260
396778.92100662.330085
499937.59102927.822474
5105733.54114343.551214
681005.7685736.312989
7110352.25117233.468264
814681.4052207.411731
9132602.65152331.104809
\n", 254 | "
" 255 | ], 256 | "text/plain": [ 257 | " Real Values Predicted Values\n", 258 | "0 155752.60 162085.051813\n", 259 | "1 146121.95 137621.884189\n", 260 | "2 192261.83 190067.226260\n", 261 | "3 96778.92 100662.330085\n", 262 | "4 99937.59 102927.822474\n", 263 | "5 105733.54 114343.551214\n", 264 | "6 81005.76 85736.312989\n", 265 | "7 110352.25 117233.468264\n", 266 | "8 14681.40 52207.411731\n", 267 | "9 132602.65 152331.104809" 268 | ] 269 | }, 270 | "execution_count": 7, 271 | "metadata": {}, 272 | "output_type": "execute_result" 273 | } 274 | ], 275 | "source": [ 276 | "df = pd.DataFrame({'Real Values':y_test, 'Predicted Values':y_pred})\n", 277 | "df" 278 | ] 279 | }, 280 | { 281 | "cell_type": "code", 282 | "execution_count": 8, 283 | "id": "a3ca2230", 284 | "metadata": {}, 285 | "outputs": [ 286 | { 287 | "name": "stdout", 288 | "output_type": "stream", 289 | "text": [ 290 | "14430.747692019655\n" 291 | ] 292 | } 293 | ], 294 | "source": [ 295 | "# RMSE\n", 296 | "from sklearn import metrics\n", 297 | "print(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))" 298 | ] 299 | }, 300 | { 301 | "cell_type": "code", 302 | "execution_count": null, 303 | "id": "589a20a8", 304 | "metadata": {}, 305 | "outputs": [], 306 | "source": [] 307 | } 308 | ], 309 | "metadata": { 310 | "kernelspec": { 311 | "display_name": "Python 3", 312 | "language": "python", 313 | "name": "python3" 314 | }, 315 | "language_info": { 316 | "codemirror_mode": { 317 | "name": "ipython", 318 | "version": 3 319 | }, 320 | "file_extension": ".py", 321 | "mimetype": "text/x-python", 322 | "name": "python", 323 | "nbconvert_exporter": "python", 324 | "pygments_lexer": "ipython3", 325 | "version": "3.8.8" 326 | } 327 | }, 328 | "nbformat": 4, 329 | "nbformat_minor": 5 330 | } 331 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | # Python-for-Machine-Learning---The-Complete-Beginner-s-Course -------------------------------------------------------------------------------- /homeprices.csv: -------------------------------------------------------------------------------- 1 | Area,Price 2 | 2600,550000 3 | 3000,565000 4 | 3200,610000 5 | 3600,680000 6 | 4000,725000 7 | -------------------------------------------------------------------------------- /linear_regression_houseprice.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "6f74d316", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "import numpy as np\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "from sklearn.linear_model import LinearRegression" 14 | ] 15 | }, 16 | { 17 | "cell_type": "code", 18 | "execution_count": 2, 19 | "id": "0993f3d3", 20 | "metadata": {}, 21 | "outputs": [ 22 | { 23 | "data": { 24 | "text/html": [ 25 | "
\n", 26 | "\n", 39 | "\n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | "
AreaPrice
02600550000
13000565000
23200610000
33600680000
44000725000
\n", 75 | "
" 76 | ], 77 | "text/plain": [ 78 | " Area Price\n", 79 | "0 2600 550000\n", 80 | "1 3000 565000\n", 81 | "2 3200 610000\n", 82 | "3 3600 680000\n", 83 | "4 4000 725000" 84 | ] 85 | }, 86 | "execution_count": 2, 87 | "metadata": {}, 88 | "output_type": "execute_result" 89 | } 90 | ], 91 | "source": [ 92 | "df = pd.read_csv(\"homeprices.csv\")\n", 93 | "df" 94 | ] 95 | }, 96 | { 97 | "cell_type": "code", 98 | "execution_count": 3, 99 | "id": "0c0fa991", 100 | "metadata": {}, 101 | "outputs": [ 102 | { 103 | "data": { 104 | "text/plain": [ 105 | "" 106 | ] 107 | }, 108 | "execution_count": 3, 109 | "metadata": {}, 110 | "output_type": "execute_result" 111 | }, 112 | { 113 | "data": { 114 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEGCAYAAABYV4NmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAg2ElEQVR4nO3df5RU5Z3n8fcnEBGdoIBoDJCgQc2qa1BqiFmjgyED6OSImSUjbmYkkbNE13jW5OzO6HHPkODObIxxHV03ZIkk/og/w4yRzQliRwPZ2VG0W4j4M7S/QgvR1kZl1DUD+e4f9yn7dlP9C/qp7iKf1zn31K3vvc9T3yotvv3c59a9igjMzMwG2/uGOgEzM9s3ucCYmVkWLjBmZpaFC4yZmWXhAmNmZlmMHOoEhotDDjkkpkyZMtRpmJk1lJaWllcjYkKtbS4wyZQpU2hubh7qNMzMGoqkF3va5kNkZmaWhQuMmZll4QJjZmZZuMCYmVkWLjBmZpZFtgIj6RhJG0vLm5IukXSVpKclPSbpbkkHp/2nSHqntP93S31Nl7RJUquk6yQpxUdJujPF10uaUmqzUNLmtCzM9T7NzBrazJnFkkG2AhMRz0TEtIiYBkwH3gbuBpqA4yPiBOBXwGWlZs9W20TEBaX4MmAxcFRa5qb4ImB7REwFrgGuBJA0DlgCfAKYASyRNDbPOzUzs1rq9TuYWRTF40WgfM70Q8D83hpKOhwYExEPpuc3A2cDq4F5wNfTriuB69PoZg7QFBEdqU0TRVG6fZDej5lZY6uOWtat6/p87dpBe4l6zcEsoPY/7udTFIqqIyRtkLRO0qkpNhFoK+3TlmLVbVsAImIn8AYwvhyv0eY9khZLapbU3N7ePvB3ZWZmPco+gpG0H3AWXQ+FIelyYCdwawptAz4cEa9Jmg78WNJxgGp0W71LWk/bemvTGYhYDiwHqFQqvvOamf3+qI5UMoxcquoxgjkDeDQiXq4G0qT7Z4EvRLqlZkS8GxGvpfUW4FngaIrRx6RSf5OArWm9DZic+hwJHAR0lOM12piZWR3Uo8CcS+nwmKS5wF8BZ0XE26X4BEkj0vqRFJP5z0XENmCHpJPT/Mp5wD2p2SqgeobYfOCBVLDWALMljU2T+7NTzMzMytauzTJ6gcyHyCQdAPwx8OVS+HpgFNCUzjZ+KJ0xdhqwVNJOYBdwQXWSHrgQuBEYTTFnU523WQHcIqmVYuSyACAiOiRdATyS9lta6svMzOpA6QjV771KpRK+mrKZ2cBIaomISq1t/iW/mZll4QJjZmZZuMCYmVkWLjBmZpaFC4yZmWXhAmNmZlm4wJiZWRYuMGZmloULjJmZZeECY2ZmWbjAmJlZFi4wZmaWhQuMmZll4QJjZmZZuMCYmVkWLjBmZpaFC4yZmWXhAmNmZlm4wJiZWRbZCoykYyRtLC1vSrpE0jhJTZI2p8expTaXSWqV9IykOaX4dEmb0rbrJCnFR0m6M8XXS5pSarMwvcZmSQtzvU8zM6stW4GJiGciYlpETAOmA28DdwOXAvdHxFHA/ek5ko4FFgDHAXOB70gakbpbBiwGjkrL3BRfBGyPiKnANcCVqa9xwBLgE8AMYEm5kJmZWX71OkQ2C3g2Il4E5gE3pfhNwNlpfR5wR0S8GxHPA63ADEmHA2Mi4sGICODmbm2qfa0EZqXRzRygKSI6ImI70ERnUTIzszqoV4FZANye1g+LiG0A6fHQFJ8IbCm1aUuxiWm9e7xLm4jYCbwBjO+lry4kLZbULKm5vb19j9+cmZntLnuBkbQfcBbwo752rRGLXuJ72qYzELE8IioRUZkwYUIf6ZmZ2UDUYwRzBvBoRLycnr+cDnuRHl9J8TZgcqndJGBrik+qEe/SRtJI4CCgo5e+zMysTupRYM6l8/AYwCqgelbXQuCeUnxBOjPsCIrJ/IfTYbQdkk5O8yvndWtT7Ws+8ECap1kDzJY0Nk3uz04xMzOrk5E5O5d0APDHwJdL4W8Cd0laBPwa+DxARDwh6S7gSWAncFFE7EptLgRuBEYDq9MCsAK4RVIrxchlQeqrQ9IVwCNpv6UR0ZHlTZqZWU0q/uC3SqUSzc3NQ52GmVlDkdQSEZVa2/xLfjMzy8IFxszMsnCBMTOzLFxgzMwsCxcYMzPLwgXGzMyycIExM7MsXGDMzCwLFxgzM8vCBcbMzLJwgTEzsyxcYMzMLAsXGDMzy8IFxszMsnCBMbPhb+bMYrGG4gJjZmZZZL2jpZnZXqmOWtat6/p87dohSMYGyiMYMzPLwiMYMxu+qiMVj1wakkcwZmaWRdYCI+lgSSslPS3pKUmflHSnpI1peUHSxrTvFEnvlLZ9t9TPdEmbJLVKuk6SUnxU6q9V0npJU0ptFkranJaFOd+nmWW2dq1HLw0o9yGya4F7I2K+pP2AAyLinOpGSVcDb5T2fzYiptXoZxmwGHgI+CkwF1gNLAK2R8RUSQuAK4FzJI0DlgAVIIAWSasiYvugv0MzM6sp2whG0hjgNGAFQET8NiJeL20X8GfA7X30czgwJiIejIgAbgbOTpvnATel9ZXArNTvHKApIjpSUWmiKEpmZlYnOQ+RHQm0Az+QtEHSDZIOLG0/FXg5IjaXYkekfddJOjXFJgJtpX3aUqy6bQtAROykGA2NL8drtHmPpMWSmiU1t7e37/EbNTOz3eUsMCOBk4BlEXEi8BZwaWn7uXQdvWwDPpz2/RpwWxoFqUbfkR572tZbm85AxPKIqEREZcKECX29HzMzG4CcBaYNaIuI9en5SoqCg6SRwJ8Cd1Z3joh3I+K1tN4CPAscnfqZVOp3ErC19BqTS30eBHSU4zXamJlZHWQrMBHxG2CLpGNSaBbwZFr/DPB0RLx36EvSBEkj0vqRwFHAcxGxDdgh6eQ0v3IecE9qtgqoniE2H3ggzdOsAWZLGitpLDA7xczMrE5yn0V2MXBrOoPsOeBLKb6A3Sf3TwOWStoJ7AIuiIiOtO1C4EZgNMXZY6tTfAVwi6RWipHLAoCI6JB0BfBI2m9pqS8zM6sDFX/wW6VSiebm5qFOw8ysoUhqiYhKrW3+Jb+ZmWXhAmNmZlm4wJiZWRYuMGZmloULjJmZZeECY2ZmWbjAmJlZFi4wZmaWhQuMmZll4QJjZmZZuMCYmVkWLjBmZpaFC4yZmWXR78v1S6pQ3Ob4Q8A7wOPAz3wZfDMzq6XPEYykL0p6FLiM4n4szwCvAJ8CmiTdJOnDedM0M7NG058RzIHAKRHxTq2NkqZR3H3y14OYl5mZNbg+C0xE/M8+tm8ctGzMzGyf0a9JfkmHSjowrY+WdLmkb0o6PG96ZmbWqPp7FtkdwPi0/g1gKrAduC1HUmZm1vj6M8m/EPgoMDOtnwM0A78BPiLpPEkn9ND2YEkrJT0t6SlJn5T0dUkvSdqYljNL+18mqVXSM5LmlOLTJW1K266TpBQfJenOFF8vaUo5b0mb07JwDz8fMzPbQ/0ZwaylOC35KeAl4GXgf6f4a+nxxR7aXgvcGxEfAz6e+gC4JiKmpeWnAJKOBRYAxwFzge9IGpH2XwYspjiZ4Ki0HWARsD0ipgLXAFemvsYBS4BPADOAJZLG9uO9mpnZIOmzwETEixSF4ifAXcDSiPg1EMCrEfHriHijeztJY4DTgBWpn99GxOu9vNQ84I6IeDcingdagRlpnmdMRDwYEQHcDJxdanNTWl8JzEqjmzlAU0R0RMR2oInOomRmZnXQrzmYiFhGcZhsUkT8JIVfBc7tpdmRQDvwA0kbJN1QPVEA+IqkxyR9vzSymAhsKbVvS7GJab17vEubiNgJvEExV9RTX11IWiypWVJze3t7L2/FzMwGqj9zMAdIen9E/HNEvC3pGElfBeb2MSIZCZwELIuIE4G3gEspDnd9FJgGbAOurr5UjT6il/ietukMRCyPiEpEVCZMmNDzOzEzswHrzwjmXmAKgKSpwIMUo5OLJP23Xtq1AW0RsT49XwmcFBEvR8SuiPgd8D2KOZLq/pNL7ScBW1N8Uo14lzaSRgIHAR299GVmZnXSnwIzNiI2p/WFwO0RcTFwBvDZnhpFxG+ALZKOSaFZwJPdfjvzOYprmgGsAhakM8OOoJjMfzgitgE7JJ2c5lfOA+4ptameITYfeCDN06wBZksamw7BzU4xMzOrk/5cKqZ8aOnTwFVQTNpL+l0fbS8GbpW0H/Ac8CXgunR5mQBeAL6c+ntC0l3Ak8BO4KKI2JX6uRC4keJaaKvTAsUJBLdIaqUYuSxIfXVIugJ4JO231BflNDOrLxV/8Peyg/RDit+8vEQxh3JEmos5GFgXER/PnmUdVCqVaG5uHuo0zMwaiqSWiKjU2tafQ2T/nuKMsSnA7Ih4O8WPBb49KBmamdk+pz8Xu3wH+GaN+D8B/5QjKTMza3x9FhhJm+g6DxMUI5qfA9+OiP+XKTczM2tg/Znkr3Wm2DiKs7f+B8UhNDMzsy76c4is1nXGXgQ2SNow+CmZmdm+oL+X68/V3szM9lH9mYM5qUZ4LPDnwC8GPSMzM9sn9GcO5upuz4POy/QvH+yEzMxs39CfOZjT65GImZntW/pzNeU/r95BsoftH5X0qcFNy8zMGl1/DpGNBzZKagFaKO7xsj8wFfgjit/EXJotQzMza0j9OUR2raTrKS50eQpwAp23UP6LdHdLMzOzLvozgiFd1bgpLWZmZn3q9+9YJB0t6X5Jj6fnJ0j6L/lSMzOzRjaQH0p+D7gM+BeAiHiMdP8VMzOz7gZSYA6IiIe7xXYOZjJmZrbvGEiBeVXSR0lXVpY0H9iWJSszM2t4/ZrkTy6i+OX+xyS9BDxPcbkYMzOz3fS7wETEc8BnJB0IvC8iduRLy8zMGt1AziL7W0kHR8RbEbFD0lhJ/7WPNgdLWinpaUlPSfqkpKvS88ck3S3p4LTvFEnvSNqYlu+W+pkuaZOkVknXVa8sIGmUpDtTfL2kKaU2CyVtTsvCgX4wZma2dwYyB3NGRLxefRIR24Ez+2hzLXBvRHwM+DjFjzObgOMj4gTgVxRnplU9GxHT0nJBKb4MWAwclZa5Kb4I2B4RU4FrgCsBJI0DlgCfAGYASySNHcB7NTOzvTSQAjNC0qjqE0mjgVE97SxpDHAasAIgIn4bEa9HxH0RUT377CFgUm8vKulwYExEPBgRAdwMnJ02zwNuSusrgVlpdDMHaIqIjlQIm+gsSmZmVgcDKTA/BO6XtEjS+RT/aN/Uy/5HUly37AeSNki6Ic3flJ0PrC49PyLtu07SqSk2EWgr7dOWYtVtWwBS0XqD4tpp78VrtHmPpMWSmiU1t7e39/JWzMxsoPpdYCLiW8DfAP8KOA64IsV6MhI4CVgWEScCb1G6KKakyyl+R3NrCm0DPpz2/RpwWxoF1bqSc1S76WFbb23K72l5RFQiojJhwoRe3oqZmQ3UQE5TJiJW03XE0Zs2oC0i1qfnK0kFJk26fxaYlQ57ERHvAu+m9RZJzwJHp37Kh9EmAVtLrzEZaJM0EjgI6Ejxmd3arO3v+zQzs73Xn/vB/GN63CHpzdKyQ9KbPbWLiN8AWyQdk0KzgCclzQX+CjgrIt4uvc4ESSPS+pEUk/nPRcQ2YIekk9P8ynnAPanZKqB6hth84IFUsNYAs9OZbmOB2SlmZmZ10p/L9X8qPX5gD/q/GLhV0n7Ac8CXgEcoTg5oSmcbP5TOGDsNWCppJ7ALuCAiOlI/FwI3AqMpRlDVUdQK4BZJrRQjlwUp1w5JV6TXAlha6svMzOpA6QhV7ztJ7wMei4jj86c0NCqVSjQ3Nw91GmZmDUVSS0RUam3r1yR/RPwO+KWkDw9qZmZmts8ayCT/4cATkh6mOCMMgIg4a9CzMjOzhjeQAvONbFmYmdk+p88CI2l/4AJgKrAJWFH6Jb6ZmVlN/ZmDuQmoUBSXM4Crs2ZkZmb7hP4cIjs2Iv41gKQVQPe7WpqZme2mPyOYf6mu+NCYmZn1V39GMB8v/WJfwOj0XEBExJhs2ZmZWcPqzy/5R9QjEbOGN3Nm8bh27VBmYTZsDORy/WZmZv02oKspm1kN1ZHLunVdn3skY7/nPIIxM7MsPIIx21vVkYpHLmZdeARjZmZZeARjNlg8cjHrwiMYMzPLwgXGzMyycIExM7MsXGDMzCyLrAVG0sGSVkp6WtJTkj4paZykJkmb0+PY0v6XSWqV9IykOaX4dEmb0rbrJCnFR0m6M8XXS5pSarMwvcZmSQtzvk8zM9td7hHMtcC9EfEx4OPAU8ClwP0RcRRwf3qOpGOBBcBxwFzgO5Kq10FbBiwGjkrL3BRfBGyPiKnANcCVqa9xwBLgE8AMYEm5kJmZWX7ZCoykMcBpwAqAiPhtRLwOzKO4iRnp8ey0Pg+4IyLejYjngVZghqTDgTER8WBEBHBztzbVvlYCs9LoZg7QFBEdEbEdaKKzKJmZWR3kHMEcCbQDP5C0QdINkg4EDouIbQDp8dC0/0RgS6l9W4pNTOvd413apHvVvAGM76WvLiQtltQsqbm9vX1v3quZmXWTs8CMBE4ClkXEicBbpMNhPVCNWPQS39M2nYGI5RFRiYjKhAkTeknNzMwGKmeBaQPaImJ9er6SouC8nA57kR5fKe0/udR+ErA1xSfViHdpI2kkcBDQ0UtfZmZWJ9kKTET8Btgi6ZgUmgU8CawCqmd1LQTuSeurgAXpzLAjKCbzH06H0XZIOjnNr5zXrU21r/nAA2meZg0wW9LYNLk/O8XMzKxOcl+L7GLgVkn7Ac8BX6IoandJWgT8Gvg8QEQ8IekuiiK0E7goInalfi4EbgRGA6vTAsUJBLdIaqUYuSxIfXVIugJ4JO23NCI6cr5RMzPrSsUf/FapVKK5uXmo0zAzayiSWiKiUmubf8lvZmZZuMCYmVkWLjBmZpaFC4yZmWXhAmNmZlm4wJiZWRYuMGZmloULjJmZZeECY2ZmWbjAmJlZFi4wZmaWhQuMmZll4QJjZmZZuMCYmVkWLjBmZpaFC4yZmWXhAmNmZlm4wJiZWRYuMGZmloULjJmZZZG1wEh6QdImSRslNafYnen5xrR9Y4pPkfROadt3S/1MT/20SrpOklJ8VOqvVdJ6SVNKbRZK2pyWhTnfp5mZ7W5kHV7j9Ih4tfokIs6prku6GnijtO+zETGtRh/LgMXAQ8BPgbnAamARsD0ipkpaAFwJnCNpHLAEqAABtEhaFRHbB/WdmZlZj4bsEFkahfwZcHsf+x0OjImIByMigJuBs9PmecBNaX0lMCv1OwdoioiOVFSaKIqSmZnVSe4CE8B9klokLe627VTg5YjYXIodIWmDpHWSTk2xiUBbaZ+2FKtu2wIQETspRkPjy/Eabd4jabGkZknN7e3te/YOzcysptyHyE6JiK2SDgWaJD0dEb9I286l6+hlG/DhiHhN0nTgx5KOA1Sj30iPPW3rrU1nIGI5sBygUqnstt3MzPZc1hFMRGxNj68AdwMzACSNBP4UuLO077sR8VpabwGeBY6mGH1MKnU7Cdia1tuAyaU+DwI6yvEabczMrA6yFRhJB0r6QHUdmA08njZ/Bng6ItpK+0+QNCKtHwkcBTwXEduAHZJOTvMr5wH3pGargOoZYvOBB9I8zRpgtqSxksam116T672amdnuch4iOwy4O51RPBK4LSLuTdsWsPvk/mnAUkk7gV3ABRHRkbZdCNwIjKY4e2x1iq8AbpHUSjFyWQAQER2SrgAeSfstLfVlZmZ1oOIPfqtUKtHc3DzUaZiZNRRJLRFRqbXNv+Q3M7MsXGDMzCwLFxgb3mbOLBYzazguMGZmlkU9rkVmNnDVUcu6dV2fr107BMmY2Z7wCMbMzLLwCMaGp+pIxSMXs4blEYyZmWXhEYwNbx65mDUsj2DMzCwLFxgzM8vCBcbMzLJwgTEzsyxcYMzMLAsXGDMzy8IFxszMsnCBMTOzLFxgzMwsCxcYMzPLImuBkfSCpE2SNkpqTrGvS3opxTZKOrO0/2WSWiU9I2lOKT499dMq6TpJSvFRku5M8fWSppTaLJS0OS0Lc75P3xTLzGx39bgW2ekR8Wq32DUR8e1yQNKxwALgOOBDwM8kHR0Ru4BlwGLgIeCnwFxgNbAI2B4RUyUtAK4EzpE0DlgCVIAAWiStiojt2d6lmZl1MZwudjkPuCMi3gWel9QKzJD0AjAmIh4EkHQzcDZFgZkHfD21Xwlcn0Y3c4CmiOhIbZooitLtg5qxb4plZtaj3HMwAdwnqUXS4lL8K5Iek/R9SWNTbCKwpbRPW4pNTOvd413aRMRO4A1gfC99dSFpsaRmSc3t7e17+h7NzKyG3COYUyJiq6RDgSZJT1Mc7rqCovhcAVwNnA+oRvvoJc4etukMRCwHlgNUKpXdtvfJN8UyM+tR1hFMRGxNj68AdwMzIuLliNgVEb8DvgfMSLu3AZNLzScBW1N8Uo14lzaSRgIHAR299GVmZnWSrcBIOlDSB6rrwGzgcUmHl3b7HPB4Wl8FLEhnhh0BHAU8HBHbgB2STk7zK+cB95TaVM8Qmw88EBEBrAFmSxqbDsHNTrE81q716MXMrJuch8gOA+5OZxSPBG6LiHsl3SJpGsUhqxeALwNExBOS7gKeBHYCF6UzyAAuBG4ERlNM7q9O8RXALemEgA6Ks9CIiA5JVwCPpP2WVif8zcysPlT8wW+VSiWam5uHOg0zs4YiqSUiKrW2+Zf8ZmaWhQuMmZll4QJjZmZZuMCYmVkWnuRPJLUDL+5FF4cA3a+5Nlw1Uq7QWPk2Uq7QWPk2Uq7QWPnuTa4fiYgJtTa4wAwSSc09nUkx3DRSrtBY+TZSrtBY+TZSrtBY+ebK1YfIzMwsCxcYMzPLwgVm8Cwf6gQGoJFyhcbKt5FyhcbKt5FyhcbKN0uunoMxM7MsPIIxM7MsXGDMzCwLF5geSJos6eeSnpL0hKT/WNp2saRnUvxbpfhlklrTtjml+HRJm9K269JtB7LnKmmapIckbUx37pxRajMkuabX2F/Sw5J+mfL9RoqPk9QkaXN6HFtqM1SfbU+5XiXp6XRn1rslHTzUufaWb2n7f5IUkg4Z6nx7y3W4fcd6y3e4fs/S64yQtEHST9Lz+n7HIsJLjQU4HDgprX8A+BVwLHA68DNgVNp2aHo8FvglMAo4AngWGJG2PQx8kuJOm6uBM+qU633V1wLOBNYOda7pNQT8QVp/P7AeOBn4FnBpil8KXDnU+faS62xgZIpfORxy7S3f9HwyxX2RXgQOGep8e/lsh913rI98h+X3LL3O14DbgJ+k53X9jnkE04OI2BYRj6b1HcBTwESKe9N8MyLeTdteSU3mAXdExLsR8TzQCsxQcYO1MRHxYBT/tW4Gzq5TrgGMSbsdROddPYcs15RjRMQ/p6fvT0ukvG5K8ZtKrz2Un23NXCPivojYmeIP0XnX1eH62QJcA/wlXW8fPuw+W4bhd6yPfIfl90zSJOBPgBtK4bp+x1xg+kHSFOBEir9YjgZOlbRe0jpJf5h2mwhsKTVrS7GJab17vB65XgJcJWkL8G3gsuGSaxq6bwReAZoiYj1wWBR3MCU9Hjoc8u0h17Lz6bwJ3rD8bCWdBbwUEb/stvtw/GyH7Xesh3wvYXh+z/6O4g+K35Vidf2OucD0QdIfAH8PXBIRb1LcnXMsxdD4PwN3pWOStY5LRi/xeuR6IfDViJgMfJXiDqAMh1wjYldETKP4y3+GpON72X1I8+0tV0mXU9yB9dZqqIechvKzPQG4HPjrGrsPx8922H7Hesh32H3PJH0WeCUiWvrbpEZsr3N1gemFpPdT/IN9a0T8Qwq3Af+QhssPU/x1cEiKTy41n0QxVG6j8/BJOV6PXBcC1fUfAdXJxyHNtSwiXgfWAnOBl9OQnPRYPTQyLPLtliuSFgKfBb6QDh8Mm1y75TuP4rj6LyW9kF77UUkfHC75dvtsh+V3rJd8h+P37BTgrPTf+w7g05J+SL2/Yz1Nzvy+LxSV+2bg77rFLwCWpvWjKYaVAo6j6yTZc3ROkj1C8ddYdZLszDrl+hQwM63PAlrS+pDlml5jAnBwWh8N/B+Kf6ivousE5LeGOt9ecp0LPAlM6Lb/sPxsu+3zAp2T/MPxsx1237E+8h2W37NS3jPpnOSv63csyxvaFxbgUxRDwceAjWk5E9gP+CHwOPAo8OlSm8spzr54htKZFkAl7f8scD3pCgp1yPVTQEv6H2c9MH2oc02vcQKwIeX7OPDXKT4euB/YnB7HDXW+veTaSvEPX/Xz/u5Q59pbvt32eYFUYIbpZzvsvmN95Dssv2el15pJZ4Gp63fMl4oxM7MsPAdjZmZZuMCYmVkWLjBmZpaFC4yZmWXhAmNmZlm4wJjtIUmfU3Fl4o8Ncr+j0yVSRgxmv6nv21VcAfqrki6RdEBp28/KV9c121suMGZ77lzgH4EFtTbuRYE4n+KX7Lv2NLH0+iO7Pf8g8G8i4oSIuIbiGloHlHa5BfgPe/OaZmUuMGZ7IF337RRgEaUCI2mminvz3AZsShdHvErSI2nk8OVqe0n3S3o03WtjXqn7LwD3pP0Ol/SLdK+RxyWdmuJfkvSrNNL5nqTrU/xGSf9d0s8pbiNQdh9waOprCfAh4OdpX4BVFEXTbFCM7HsXM6vhbODeiPiVpA5JJ0W6ZQLFtaiOj4jnJS0G3oiIP5Q0Cvi/ku6juArA5yLiTRU3/3pI0iqKS8AfGREvpL7+HbAmIv4mjYgOSNeQ+gYwHXgD+DnFL8yrjgY+U2MEdBbFL7qnQVGkgNMj4lWAiNguaZSk8RHx2mB9UPb7ywXGbM+cS3E5dCguJnguxWVNAB6O4p4aUNyY7ARJ89Pzg4CjKC4i+LeSTqO4mONE4DCKowqvl17nEeD76WKmP46IjZJmUdzUqh1A0p0URaXqR3txeO0VipGNC4ztNRcYswGSNB74NHC8pABGACHpL9Mub5V3By6OiDXd+vgixcUTp0fEv6Sr3u5PMSLZv7pfRPwiFaE/AW6RdBXwJr1fMv2tXrb1ZX/gnb1ob/Yez8GYDdx84OaI+EhETIniPiDPU1z0sLs1wIVpBIKkoyUdSDGSeSUVl9OBj0BxmAoYIWn/tP9H0n7fo7jPyEkUF1ScKWl86vfze/g+dlDcYpv0WgI+SHExTLO95gJjNnDnAnd3i/09xXxJdzdQXNb/UUmPA/+L4sjBrUBFUjPFpP7TpTb30VmsZgIbJW0A/i1wbRR3Ivw68CDFvesfZc8sB1aXJvmnAw9F562gzfaKr6ZsNsxIOhH4WkT8RT/3/yJQiYiv7OXrXgusioj796YfsyqPYMyGmYjYQHH68KD/0LIPj7u42GDyCMbMzLLwCMbMzLJwgTEzsyxcYMzMLAsXGDMzy8IFxszMsvj/GD9mJD1/jIYAAAAASUVORK5CYII=\n", 115 | "text/plain": [ 116 | "
" 117 | ] 118 | }, 119 | "metadata": { 120 | "needs_background": "light" 121 | }, 122 | "output_type": "display_data" 123 | } 124 | ], 125 | "source": [ 126 | "plt.xlabel('Area(sqr ft)')\n", 127 | "plt.ylabel('Price(US$)')\n", 128 | "plt.scatter(df.Area, df.Price, color = 'red', marker='+')" 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "execution_count": 4, 134 | "id": "52cc86e4", 135 | "metadata": {}, 136 | "outputs": [ 137 | { 138 | "data": { 139 | "text/plain": [ 140 | "LinearRegression()" 141 | ] 142 | }, 143 | "execution_count": 4, 144 | "metadata": {}, 145 | "output_type": "execute_result" 146 | } 147 | ], 148 | "source": [ 149 | "reg = LinearRegression()\n", 150 | "reg.fit(df[['Area']], df.Price)" 151 | ] 152 | }, 153 | { 154 | "cell_type": "code", 155 | "execution_count": 5, 156 | "id": "0683d1c9", 157 | "metadata": {}, 158 | "outputs": [ 159 | { 160 | "data": { 161 | "text/plain": [ 162 | "array([628715.75342466])" 163 | ] 164 | }, 165 | "execution_count": 5, 166 | "metadata": {}, 167 | "output_type": "execute_result" 168 | } 169 | ], 170 | "source": [ 171 | "reg.predict([[3300]])" 172 | ] 173 | }, 174 | { 175 | "cell_type": "code", 176 | "execution_count": 6, 177 | "id": "de657f27", 178 | "metadata": {}, 179 | "outputs": [ 180 | { 181 | "data": { 182 | "text/plain": [ 183 | "180616.43835616432" 184 | ] 185 | }, 186 | "execution_count": 6, 187 | "metadata": {}, 188 | "output_type": "execute_result" 189 | } 190 | ], 191 | "source": [ 192 | "reg.intercept_" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": 7, 198 | "id": "7161a6a0", 199 | "metadata": {}, 200 | "outputs": [ 201 | { 202 | "data": { 203 | "text/plain": [ 204 | "array([135.78767123])" 205 | ] 206 | }, 207 | "execution_count": 7, 208 | "metadata": {}, 209 | "output_type": "execute_result" 210 | } 211 | ], 212 | "source": [ 213 | "reg.coef_" 214 | ] 215 | }, 216 | { 217 | "cell_type": "code", 218 | "execution_count": 8, 219 | "id": "c442387c", 220 | "metadata": {}, 221 | "outputs": [ 222 | { 223 | "data": { 224 | "text/plain": [ 225 | "628716.838" 226 | ] 227 | }, 228 | "execution_count": 8, 229 | "metadata": {}, 230 | "output_type": "execute_result" 231 | } 232 | ], 233 | "source": [ 234 | "135.788 * 3300 + 180616.438" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": null, 240 | "id": "3d8aa840", 241 | "metadata": {}, 242 | "outputs": [], 243 | "source": [] 244 | } 245 | ], 246 | "metadata": { 247 | "kernelspec": { 248 | "display_name": "Python 3", 249 | "language": "python", 250 | "name": "python3" 251 | }, 252 | "language_info": { 253 | "codemirror_mode": { 254 | "name": "ipython", 255 | "version": 3 256 | }, 257 | "file_extension": ".py", 258 | "mimetype": "text/x-python", 259 | "name": "python", 260 | "nbconvert_exporter": "python", 261 | "pygments_lexer": "ipython3", 262 | "version": "3.8.8" 263 | } 264 | }, 265 | "nbformat": 4, 266 | "nbformat_minor": 5 267 | } 268 | -------------------------------------------------------------------------------- /logistic_regression_Binary_Classification.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "56ab457f", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "#Importing the libraries\n", 11 | "import numpy as np\n", 12 | "import matplotlib.pyplot as plt\n", 13 | "import pandas as pd\n", 14 | "from sklearn.metrics import confusion_matrix" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 2, 20 | "id": "2438c0eb", 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "# Importing the dataset\n", 25 | "dataset = pd.read_csv('user data.csv')\n", 26 | "X = dataset.iloc[:, [2,4]].values\n", 27 | "y = dataset.iloc[:, 4].values" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 3, 33 | "id": "14eebe92", 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [ 37 | "#Training and Testing Data (divide the data into two part)\n", 38 | "from sklearn.model_selection import train_test_split\n", 39 | "X_train, X_test, y_train, y_test =train_test_split(X,y,test_size= 0.25, random_state=0)" 40 | ] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "execution_count": 4, 45 | "id": "952c4e44", 46 | "metadata": {}, 47 | "outputs": [], 48 | "source": [ 49 | "from sklearn.preprocessing import StandardScaler\n", 50 | "sc_X = StandardScaler()\n", 51 | "X_train = sc_X.fit_transform(X_train)\n", 52 | "X_test = sc_X.fit_transform(X_test)" 53 | ] 54 | }, 55 | { 56 | "cell_type": "code", 57 | "execution_count": 8, 58 | "id": "6ae4bddc", 59 | "metadata": {}, 60 | "outputs": [ 61 | { 62 | "data": { 63 | "text/plain": [ 64 | "LogisticRegression(random_state=0)" 65 | ] 66 | }, 67 | "execution_count": 8, 68 | "metadata": {}, 69 | "output_type": "execute_result" 70 | } 71 | ], 72 | "source": [ 73 | "from sklearn.linear_model import LogisticRegression\n", 74 | "classifer=LogisticRegression(random_state=0)\n", 75 | "classifer.fit(X_train,y_train)" 76 | ] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "execution_count": 9, 81 | "id": "23fd4aec", 82 | "metadata": { 83 | "scrolled": true 84 | }, 85 | "outputs": [ 86 | { 87 | "name": "stdout", 88 | "output_type": "stream", 89 | "text": [ 90 | "[[68 0]\n", 91 | " [ 0 32]]\n" 92 | ] 93 | } 94 | ], 95 | "source": [ 96 | "y_pred = classifer.predict(X_test)\n", 97 | "\n", 98 | "# Making the Confusion Matrix\n", 99 | "cm = confusion_matrix(y_pred, y_test)\n", 100 | "print(cm)" 101 | ] 102 | }, 103 | { 104 | "cell_type": "code", 105 | "execution_count": null, 106 | "id": "fca8cace", 107 | "metadata": {}, 108 | "outputs": [], 109 | "source": [] 110 | } 111 | ], 112 | "metadata": { 113 | "kernelspec": { 114 | "display_name": "Python 3", 115 | "language": "python", 116 | "name": "python3" 117 | }, 118 | "language_info": { 119 | "codemirror_mode": { 120 | "name": "ipython", 121 | "version": 3 122 | }, 123 | "file_extension": ".py", 124 | "mimetype": "text/x-python", 125 | "name": "python", 126 | "nbconvert_exporter": "python", 127 | "pygments_lexer": "ipython3", 128 | "version": "3.8.8" 129 | } 130 | }, 131 | "nbformat": 4, 132 | "nbformat_minor": 5 133 | } 134 | -------------------------------------------------------------------------------- /mall+customers+data.csv: -------------------------------------------------------------------------------- 1 | "CustomerID,Gender,Age,Annual Income (k$),Spending Score (1-100)" 2 | "1,Male,19,15,39" 3 | "2,Male,21,15,81" 4 | "3,Female,20,16,6" 5 | "4,Female,23,16,77" 6 | "5,Female,31,17,40" 7 | "6,Female,22,17,76" 8 | "7,Female,35,18,6" 9 | "8,Female,23,18,94" 10 | "9,Male,64,19,3" 11 | "10,Female,30,19,72" 12 | "11,Male,67,19,14" 13 | "12,Female,35,19,99" 14 | "13,Female,58,20,15" 15 | "14,Female,24,20,77" 16 | "15,Male,37,20,13" 17 | "16,Male,22,20,79" 18 | "17,Female,35,21,35" 19 | "18,Male,20,21,66" 20 | "19,Male,52,23,29" 21 | "20,Female,35,23,98" 22 | "21,Male,35,24,35" 23 | "22,Male,25,24,73" 24 | "23,Female,46,25,5" 25 | "24,Male,31,25,73" 26 | "25,Female,54,28,14" 27 | "26,Male,29,28,82" 28 | "27,Female,45,28,32" 29 | "28,Male,35,28,61" 30 | "29,Female,40,29,31" 31 | "30,Female,23,29,87" 32 | "31,Male,60,30,4" 33 | "32,Female,21,30,73" 34 | "33,Male,53,33,4" 35 | "34,Male,18,33,92" 36 | "35,Female,49,33,14" 37 | "36,Female,21,33,81" 38 | "37,Female,42,34,17" 39 | "38,Female,30,34,73" 40 | "39,Female,36,37,26" 41 | "40,Female,20,37,75" 42 | "41,Female,65,38,35" 43 | "42,Male,24,38,92" 44 | "43,Male,48,39,36" 45 | "44,Female,31,39,61" 46 | "45,Female,49,39,28" 47 | "46,Female,24,39,65" 48 | "47,Female,50,40,55" 49 | "48,Female,27,40,47" 50 | "49,Female,29,40,42" 51 | "50,Female,31,40,42" 52 | "51,Female,49,42,52" 53 | "52,Male,33,42,60" 54 | "53,Female,31,43,54" 55 | "54,Male,59,43,60" 56 | "55,Female,50,43,45" 57 | "56,Male,47,43,41" 58 | "57,Female,51,44,50" 59 | "58,Male,69,44,46" 60 | "59,Female,27,46,51" 61 | "60,Male,53,46,46" 62 | "61,Male,70,46,56" 63 | "62,Male,19,46,55" 64 | "63,Female,67,47,52" 65 | "64,Female,54,47,59" 66 | "65,Male,63,48,51" 67 | "66,Male,18,48,59" 68 | "67,Female,43,48,50" 69 | "68,Female,68,48,48" 70 | "69,Male,19,48,59" 71 | "70,Female,32,48,47" 72 | "71,Male,70,49,55" 73 | "72,Female,47,49,42" 74 | "73,Female,60,50,49" 75 | "74,Female,60,50,56" 76 | "75,Male,59,54,47" 77 | "76,Male,26,54,54" 78 | "77,Female,45,54,53" 79 | "78,Male,40,54,48" 80 | "79,Female,23,54,52" 81 | "80,Female,49,54,42" 82 | "81,Male,57,54,51" 83 | "82,Male,38,54,55" 84 | "83,Male,67,54,41" 85 | "84,Female,46,54,44" 86 | "85,Female,21,54,57" 87 | "86,Male,48,54,46" 88 | "87,Female,55,57,58" 89 | "88,Female,22,57,55" 90 | "89,Female,34,58,60" 91 | "90,Female,50,58,46" 92 | "91,Female,68,59,55" 93 | "92,Male,18,59,41" 94 | "93,Male,48,60,49" 95 | "94,Female,40,60,40" 96 | "95,Female,32,60,42" 97 | "96,Male,24,60,52" 98 | "97,Female,47,60,47" 99 | "98,Female,27,60,50" 100 | "99,Male,48,61,42" 101 | "100,Male,20,61,49" 102 | "101,Female,23,62,41" 103 | "102,Female,49,62,48" 104 | "103,Male,67,62,59" 105 | "104,Male,26,62,55" 106 | "105,Male,49,62,56" 107 | "106,Female,21,62,42" 108 | "107,Female,66,63,50" 109 | "108,Male,54,63,46" 110 | "109,Male,68,63,43" 111 | "110,Male,66,63,48" 112 | "111,Male,65,63,52" 113 | "112,Female,19,63,54" 114 | "113,Female,38,64,42" 115 | "114,Male,19,64,46" 116 | "115,Female,18,65,48" 117 | "116,Female,19,65,50" 118 | "117,Female,63,65,43" 119 | "118,Female,49,65,59" 120 | "119,Female,51,67,43" 121 | "120,Female,50,67,57" 122 | "121,Male,27,67,56" 123 | "122,Female,38,67,40" 124 | "123,Female,40,69,58" 125 | "124,Male,39,69,91" 126 | "125,Female,23,70,29" 127 | "126,Female,31,70,77" 128 | "127,Male,43,71,35" 129 | "128,Male,40,71,95" 130 | "129,Male,59,71,11" 131 | "130,Male,38,71,75" 132 | "131,Male,47,71,9" 133 | "132,Male,39,71,75" 134 | "133,Female,25,72,34" 135 | "134,Female,31,72,71" 136 | "135,Male,20,73,5" 137 | "136,Female,29,73,88" 138 | "137,Female,44,73,7" 139 | "138,Male,32,73,73" 140 | "139,Male,19,74,10" 141 | "140,Female,35,74,72" 142 | "141,Female,57,75,5" 143 | "142,Male,32,75,93" 144 | "143,Female,28,76,40" 145 | "144,Female,32,76,87" 146 | "145,Male,25,77,12" 147 | "146,Male,28,77,97" 148 | "147,Male,48,77,36" 149 | "148,Female,32,77,74" 150 | "149,Female,34,78,22" 151 | "150,Male,34,78,90" 152 | "151,Male,43,78,17" 153 | "152,Male,39,78,88" 154 | "153,Female,44,78,20" 155 | "154,Female,38,78,76" 156 | "155,Female,47,78,16" 157 | "156,Female,27,78,89" 158 | "157,Male,37,78,1" 159 | "158,Female,30,78,78" 160 | "159,Male,34,78,1" 161 | "160,Female,30,78,73" 162 | "161,Female,56,79,35" 163 | "162,Female,29,79,83" 164 | "163,Male,19,81,5" 165 | "164,Female,31,81,93" 166 | "165,Male,50,85,26" 167 | "166,Female,36,85,75" 168 | "167,Male,42,86,20" 169 | "168,Female,33,86,95" 170 | "169,Female,36,87,27" 171 | "170,Male,32,87,63" 172 | "171,Male,40,87,13" 173 | "172,Male,28,87,75" 174 | "173,Male,36,87,10" 175 | "174,Male,36,87,92" 176 | "175,Female,52,88,13" 177 | "176,Female,30,88,86" 178 | "177,Male,58,88,15" 179 | "178,Male,27,88,69" 180 | "179,Male,59,93,14" 181 | "180,Male,35,93,90" 182 | "181,Female,37,97,32" 183 | "182,Female,32,97,86" 184 | "183,Male,46,98,15" 185 | "184,Female,29,98,88" 186 | "185,Female,41,99,39" 187 | "186,Male,30,99,97" 188 | "187,Female,54,101,24" 189 | "188,Male,28,101,68" 190 | "189,Female,41,103,17" 191 | "190,Female,36,103,85" 192 | "191,Female,34,103,23" 193 | "192,Female,32,103,69" 194 | "193,Male,33,113,8" 195 | "194,Female,38,113,91" 196 | "195,Female,47,120,16" 197 | "196,Female,35,120,79" 198 | "197,Female,45,126,28" 199 | "198,Male,32,126,74" 200 | "199,Male,32,137,18" 201 | "200,Male,30,137,83" 202 | -------------------------------------------------------------------------------- /mallCustomerData.txt: -------------------------------------------------------------------------------- 1 | CustomerID,Gender,Age,Annual Income (k$),Spending Score (1-100) 2 | 1,Male,19,15,39 3 | 2,Male,21,15,81 4 | 3,Female,20,16,6 5 | 4,Female,23,16,77 6 | 5,Female,31,17,40 7 | 6,Female,22,17,76 8 | 7,Female,35,18,6 9 | 8,Female,23,18,94 10 | 9,Male,64,19,3 11 | 10,Female,30,19,72 12 | 11,Male,67,19,14 13 | 12,Female,35,19,99 14 | 13,Female,58,20,15 15 | 14,Female,24,20,77 16 | 15,Male,37,20,13 17 | 16,Male,22,20,79 18 | 17,Female,35,21,35 19 | 18,Male,20,21,66 20 | 19,Male,52,23,29 21 | 20,Female,35,23,98 22 | 21,Male,35,24,35 23 | 22,Male,25,24,73 24 | 23,Female,46,25,5 25 | 24,Male,31,25,73 26 | 25,Female,54,28,14 27 | 26,Male,29,28,82 28 | 27,Female,45,28,32 29 | 28,Male,35,28,61 30 | 29,Female,40,29,31 31 | 30,Female,23,29,87 32 | 31,Male,60,30,4 33 | 32,Female,21,30,73 34 | 33,Male,53,33,4 35 | 34,Male,18,33,92 36 | 35,Female,49,33,14 37 | 36,Female,21,33,81 38 | 37,Female,42,34,17 39 | 38,Female,30,34,73 40 | 39,Female,36,37,26 41 | 40,Female,20,37,75 42 | 41,Female,65,38,35 43 | 42,Male,24,38,92 44 | 43,Male,48,39,36 45 | 44,Female,31,39,61 46 | 45,Female,49,39,28 47 | 46,Female,24,39,65 48 | 47,Female,50,40,55 49 | 48,Female,27,40,47 50 | 49,Female,29,40,42 51 | 50,Female,31,40,42 52 | 51,Female,49,42,52 53 | 52,Male,33,42,60 54 | 53,Female,31,43,54 55 | 54,Male,59,43,60 56 | 55,Female,50,43,45 57 | 56,Male,47,43,41 58 | 57,Female,51,44,50 59 | 58,Male,69,44,46 60 | 59,Female,27,46,51 61 | 60,Male,53,46,46 62 | 61,Male,70,46,56 63 | 62,Male,19,46,55 64 | 63,Female,67,47,52 65 | 64,Female,54,47,59 66 | 65,Male,63,48,51 67 | 66,Male,18,48,59 68 | 67,Female,43,48,50 69 | 68,Female,68,48,48 70 | 69,Male,19,48,59 71 | 70,Female,32,48,47 72 | 71,Male,70,49,55 73 | 72,Female,47,49,42 74 | 73,Female,60,50,49 75 | 74,Female,60,50,56 76 | 75,Male,59,54,47 77 | 76,Male,26,54,54 78 | 77,Female,45,54,53 79 | 78,Male,40,54,48 80 | 79,Female,23,54,52 81 | 80,Female,49,54,42 82 | 81,Male,57,54,51 83 | 82,Male,38,54,55 84 | 83,Male,67,54,41 85 | 84,Female,46,54,44 86 | 85,Female,21,54,57 87 | 86,Male,48,54,46 88 | 87,Female,55,57,58 89 | 88,Female,22,57,55 90 | 89,Female,34,58,60 91 | 90,Female,50,58,46 92 | 91,Female,68,59,55 93 | 92,Male,18,59,41 94 | 93,Male,48,60,49 95 | 94,Female,40,60,40 96 | 95,Female,32,60,42 97 | 96,Male,24,60,52 98 | 97,Female,47,60,47 99 | 98,Female,27,60,50 100 | 99,Male,48,61,42 101 | 100,Male,20,61,49 102 | 101,Female,23,62,41 103 | 102,Female,49,62,48 104 | 103,Male,67,62,59 105 | 104,Male,26,62,55 106 | 105,Male,49,62,56 107 | 106,Female,21,62,42 108 | 107,Female,66,63,50 109 | 108,Male,54,63,46 110 | 109,Male,68,63,43 111 | 110,Male,66,63,48 112 | 111,Male,65,63,52 113 | 112,Female,19,63,54 114 | 113,Female,38,64,42 115 | 114,Male,19,64,46 116 | 115,Female,18,65,48 117 | 116,Female,19,65,50 118 | 117,Female,63,65,43 119 | 118,Female,49,65,59 120 | 119,Female,51,67,43 121 | 120,Female,50,67,57 122 | 121,Male,27,67,56 123 | 122,Female,38,67,40 124 | 123,Female,40,69,58 125 | 124,Male,39,69,91 126 | 125,Female,23,70,29 127 | 126,Female,31,70,77 128 | 127,Male,43,71,35 129 | 128,Male,40,71,95 130 | 129,Male,59,71,11 131 | 130,Male,38,71,75 132 | 131,Male,47,71,9 133 | 132,Male,39,71,75 134 | 133,Female,25,72,34 135 | 134,Female,31,72,71 136 | 135,Male,20,73,5 137 | 136,Female,29,73,88 138 | 137,Female,44,73,7 139 | 138,Male,32,73,73 140 | 139,Male,19,74,10 141 | 140,Female,35,74,72 142 | 141,Female,57,75,5 143 | 142,Male,32,75,93 144 | 143,Female,28,76,40 145 | 144,Female,32,76,87 146 | 145,Male,25,77,12 147 | 146,Male,28,77,97 148 | 147,Male,48,77,36 149 | 148,Female,32,77,74 150 | 149,Female,34,78,22 151 | 150,Male,34,78,90 152 | 151,Male,43,78,17 153 | 152,Male,39,78,88 154 | 153,Female,44,78,20 155 | 154,Female,38,78,76 156 | 155,Female,47,78,16 157 | 156,Female,27,78,89 158 | 157,Male,37,78,1 159 | 158,Female,30,78,78 160 | 159,Male,34,78,1 161 | 160,Female,30,78,73 162 | 161,Female,56,79,35 163 | 162,Female,29,79,83 164 | 163,Male,19,81,5 165 | 164,Female,31,81,93 166 | 165,Male,50,85,26 167 | 166,Female,36,85,75 168 | 167,Male,42,86,20 169 | 168,Female,33,86,95 170 | 169,Female,36,87,27 171 | 170,Male,32,87,63 172 | 171,Male,40,87,13 173 | 172,Male,28,87,75 174 | 173,Male,36,87,10 175 | 174,Male,36,87,92 176 | 175,Female,52,88,13 177 | 176,Female,30,88,86 178 | 177,Male,58,88,15 179 | 178,Male,27,88,69 180 | 179,Male,59,93,14 181 | 180,Male,35,93,90 182 | 181,Female,37,97,32 183 | 182,Female,32,97,86 184 | 183,Male,46,98,15 185 | 184,Female,29,98,88 186 | 185,Female,41,99,39 187 | 186,Male,30,99,97 188 | 187,Female,54,101,24 189 | 188,Male,28,101,68 190 | 189,Female,41,103,17 191 | 190,Female,36,103,85 192 | 191,Female,34,103,23 193 | 192,Female,32,103,69 194 | 193,Male,33,113,8 195 | 194,Female,38,113,91 196 | 195,Female,47,120,16 197 | 196,Female,35,120,79 198 | 197,Female,45,126,28 199 | 198,Male,32,126,74 200 | 199,Male,32,137,18 201 | 200,Male,30,137,83 202 | -------------------------------------------------------------------------------- /salaries.csv: -------------------------------------------------------------------------------- 1 | company,job,degree,salary_more_then_100k 2 | google,sale exective,bachelaors,0 3 | google,sale exective,masters,0 4 | google,business manager,bachelaors,1 5 | google,business manager,masters,1 6 | google,computer programmer,bachelaors,0 7 | google,computer programmer,masters,1 8 | abc pharma,sale exective,masters,0 9 | abc pharma,computer programmer,bachelaors,0 10 | abc pharma,business manager,bachelaors,0 11 | abc pharma,business manager,masters,1 12 | facebook,sale exective,bachelaors,1 13 | facebook,sale exective,masters,1 14 | facebook,business manager,bachelaors,1 15 | facebook,business manager,masters,1 16 | facebook,computer programmer,bachelaors,1 17 | facebook,computer programmer,masters,1 18 | -------------------------------------------------------------------------------- /user+data.csv: -------------------------------------------------------------------------------- 1 | User ID,Gender,Age,EstimatedSalary,Purchased 2 | 15624510,Male,19,19000,0 3 | 15810944,Male,35,20000,0 4 | 15668575,Female,26,43000,0 5 | 15603246,Female,27,57000,0 6 | 15804002,Male,19,76000,0 7 | 15728773,Male,27,58000,0 8 | 15598044,Female,27,84000,0 9 | 15694829,Female,32,150000,1 10 | 15600575,Male,25,33000,0 11 | 15727311,Female,35,65000,0 12 | 15570769,Female,26,80000,0 13 | 15606274,Female,26,52000,0 14 | 15746139,Male,20,86000,0 15 | 15704987,Male,32,18000,0 16 | 15628972,Male,18,82000,0 17 | 15697686,Male,29,80000,0 18 | 15733883,Male,47,25000,1 19 | 15617482,Male,45,26000,1 20 | 15704583,Male,46,28000,1 21 | 15621083,Female,48,29000,1 22 | 15649487,Male,45,22000,1 23 | 15736760,Female,47,49000,1 24 | 15714658,Male,48,41000,1 25 | 15599081,Female,45,22000,1 26 | 15705113,Male,46,23000,1 27 | 15631159,Male,47,20000,1 28 | 15792818,Male,49,28000,1 29 | 15633531,Female,47,30000,1 30 | 15744529,Male,29,43000,0 31 | 15669656,Male,31,18000,0 32 | 15581198,Male,31,74000,0 33 | 15729054,Female,27,137000,1 34 | 15573452,Female,21,16000,0 35 | 15776733,Female,28,44000,0 36 | 15724858,Male,27,90000,0 37 | 15713144,Male,35,27000,0 38 | 15690188,Female,33,28000,0 39 | 15689425,Male,30,49000,0 40 | 15671766,Female,26,72000,0 41 | 15782806,Female,27,31000,0 42 | 15764419,Female,27,17000,0 43 | 15591915,Female,33,51000,0 44 | 15772798,Male,35,108000,0 45 | 15792008,Male,30,15000,0 46 | 15715541,Female,28,84000,0 47 | 15639277,Male,23,20000,0 48 | 15798850,Male,25,79000,0 49 | 15776348,Female,27,54000,0 50 | 15727696,Male,30,135000,1 51 | 15793813,Female,31,89000,0 52 | 15694395,Female,24,32000,0 53 | 15764195,Female,18,44000,0 54 | 15744919,Female,29,83000,0 55 | 15671655,Female,35,23000,0 56 | 15654901,Female,27,58000,0 57 | 15649136,Female,24,55000,0 58 | 15775562,Female,23,48000,0 59 | 15807481,Male,28,79000,0 60 | 15642885,Male,22,18000,0 61 | 15789109,Female,32,117000,0 62 | 15814004,Male,27,20000,0 63 | 15673619,Male,25,87000,0 64 | 15595135,Female,23,66000,0 65 | 15583681,Male,32,120000,1 66 | 15605000,Female,59,83000,0 67 | 15718071,Male,24,58000,0 68 | 15679760,Male,24,19000,0 69 | 15654574,Female,23,82000,0 70 | 15577178,Female,22,63000,0 71 | 15595324,Female,31,68000,0 72 | 15756932,Male,25,80000,0 73 | 15726358,Female,24,27000,0 74 | 15595228,Female,20,23000,0 75 | 15782530,Female,33,113000,0 76 | 15592877,Male,32,18000,0 77 | 15651983,Male,34,112000,1 78 | 15746737,Male,18,52000,0 79 | 15774179,Female,22,27000,0 80 | 15667265,Female,28,87000,0 81 | 15655123,Female,26,17000,0 82 | 15595917,Male,30,80000,0 83 | 15668385,Male,39,42000,0 84 | 15709476,Male,20,49000,0 85 | 15711218,Male,35,88000,0 86 | 15798659,Female,30,62000,0 87 | 15663939,Female,31,118000,1 88 | 15694946,Male,24,55000,0 89 | 15631912,Female,28,85000,0 90 | 15768816,Male,26,81000,0 91 | 15682268,Male,35,50000,0 92 | 15684801,Male,22,81000,0 93 | 15636428,Female,30,116000,0 94 | 15809823,Male,26,15000,0 95 | 15699284,Female,29,28000,0 96 | 15786993,Female,29,83000,0 97 | 15709441,Female,35,44000,0 98 | 15710257,Female,35,25000,0 99 | 15582492,Male,28,123000,1 100 | 15575694,Male,35,73000,0 101 | 15756820,Female,28,37000,0 102 | 15766289,Male,27,88000,0 103 | 15593014,Male,28,59000,0 104 | 15584545,Female,32,86000,0 105 | 15675949,Female,33,149000,1 106 | 15672091,Female,19,21000,0 107 | 15801658,Male,21,72000,0 108 | 15706185,Female,26,35000,0 109 | 15789863,Male,27,89000,0 110 | 15720943,Male,26,86000,0 111 | 15697997,Female,38,80000,0 112 | 15665416,Female,39,71000,0 113 | 15660200,Female,37,71000,0 114 | 15619653,Male,38,61000,0 115 | 15773447,Male,37,55000,0 116 | 15739160,Male,42,80000,0 117 | 15689237,Male,40,57000,0 118 | 15679297,Male,35,75000,0 119 | 15591433,Male,36,52000,0 120 | 15642725,Male,40,59000,0 121 | 15701962,Male,41,59000,0 122 | 15811613,Female,36,75000,0 123 | 15741049,Male,37,72000,0 124 | 15724423,Female,40,75000,0 125 | 15574305,Male,35,53000,0 126 | 15678168,Female,41,51000,0 127 | 15697020,Female,39,61000,0 128 | 15610801,Male,42,65000,0 129 | 15745232,Male,26,32000,0 130 | 15722758,Male,30,17000,0 131 | 15792102,Female,26,84000,0 132 | 15675185,Male,31,58000,0 133 | 15801247,Male,33,31000,0 134 | 15725660,Male,30,87000,0 135 | 15638963,Female,21,68000,0 136 | 15800061,Female,28,55000,0 137 | 15578006,Male,23,63000,0 138 | 15668504,Female,20,82000,0 139 | 15687491,Male,30,107000,1 140 | 15610403,Female,28,59000,0 141 | 15741094,Male,19,25000,0 142 | 15807909,Male,19,85000,0 143 | 15666141,Female,18,68000,0 144 | 15617134,Male,35,59000,0 145 | 15783029,Male,30,89000,0 146 | 15622833,Female,34,25000,0 147 | 15746422,Female,24,89000,0 148 | 15750839,Female,27,96000,1 149 | 15749130,Female,41,30000,0 150 | 15779862,Male,29,61000,0 151 | 15767871,Male,20,74000,0 152 | 15679651,Female,26,15000,0 153 | 15576219,Male,41,45000,0 154 | 15699247,Male,31,76000,0 155 | 15619087,Female,36,50000,0 156 | 15605327,Male,40,47000,0 157 | 15610140,Female,31,15000,0 158 | 15791174,Male,46,59000,0 159 | 15602373,Male,29,75000,0 160 | 15762605,Male,26,30000,0 161 | 15598840,Female,32,135000,1 162 | 15744279,Male,32,100000,1 163 | 15670619,Male,25,90000,0 164 | 15599533,Female,37,33000,0 165 | 15757837,Male,35,38000,0 166 | 15697574,Female,33,69000,0 167 | 15578738,Female,18,86000,0 168 | 15762228,Female,22,55000,0 169 | 15614827,Female,35,71000,0 170 | 15789815,Male,29,148000,1 171 | 15579781,Female,29,47000,0 172 | 15587013,Male,21,88000,0 173 | 15570932,Male,34,115000,0 174 | 15794661,Female,26,118000,0 175 | 15581654,Female,34,43000,0 176 | 15644296,Female,34,72000,0 177 | 15614420,Female,23,28000,0 178 | 15609653,Female,35,47000,0 179 | 15594577,Male,25,22000,0 180 | 15584114,Male,24,23000,0 181 | 15673367,Female,31,34000,0 182 | 15685576,Male,26,16000,0 183 | 15774727,Female,31,71000,0 184 | 15694288,Female,32,117000,1 185 | 15603319,Male,33,43000,0 186 | 15759066,Female,33,60000,0 187 | 15814816,Male,31,66000,0 188 | 15724402,Female,20,82000,0 189 | 15571059,Female,33,41000,0 190 | 15674206,Male,35,72000,0 191 | 15715160,Male,28,32000,0 192 | 15730448,Male,24,84000,0 193 | 15662067,Female,19,26000,0 194 | 15779581,Male,29,43000,0 195 | 15662901,Male,19,70000,0 196 | 15689751,Male,28,89000,0 197 | 15667742,Male,34,43000,0 198 | 15738448,Female,30,79000,0 199 | 15680243,Female,20,36000,0 200 | 15745083,Male,26,80000,0 201 | 15708228,Male,35,22000,0 202 | 15628523,Male,35,39000,0 203 | 15708196,Male,49,74000,0 204 | 15735549,Female,39,134000,1 205 | 15809347,Female,41,71000,0 206 | 15660866,Female,58,101000,1 207 | 15766609,Female,47,47000,0 208 | 15654230,Female,55,130000,1 209 | 15794566,Female,52,114000,0 210 | 15800890,Female,40,142000,1 211 | 15697424,Female,46,22000,0 212 | 15724536,Female,48,96000,1 213 | 15735878,Male,52,150000,1 214 | 15707596,Female,59,42000,0 215 | 15657163,Male,35,58000,0 216 | 15622478,Male,47,43000,0 217 | 15779529,Female,60,108000,1 218 | 15636023,Male,49,65000,0 219 | 15582066,Male,40,78000,0 220 | 15666675,Female,46,96000,0 221 | 15732987,Male,59,143000,1 222 | 15789432,Female,41,80000,0 223 | 15663161,Male,35,91000,1 224 | 15694879,Male,37,144000,1 225 | 15593715,Male,60,102000,1 226 | 15575002,Female,35,60000,0 227 | 15622171,Male,37,53000,0 228 | 15795224,Female,36,126000,1 229 | 15685346,Male,56,133000,1 230 | 15691808,Female,40,72000,0 231 | 15721007,Female,42,80000,1 232 | 15794253,Female,35,147000,1 233 | 15694453,Male,39,42000,0 234 | 15813113,Male,40,107000,1 235 | 15614187,Male,49,86000,1 236 | 15619407,Female,38,112000,0 237 | 15646227,Male,46,79000,1 238 | 15660541,Male,40,57000,0 239 | 15753874,Female,37,80000,0 240 | 15617877,Female,46,82000,0 241 | 15772073,Female,53,143000,1 242 | 15701537,Male,42,149000,1 243 | 15736228,Male,38,59000,0 244 | 15780572,Female,50,88000,1 245 | 15769596,Female,56,104000,1 246 | 15586996,Female,41,72000,0 247 | 15722061,Female,51,146000,1 248 | 15638003,Female,35,50000,0 249 | 15775590,Female,57,122000,1 250 | 15730688,Male,41,52000,0 251 | 15753102,Female,35,97000,1 252 | 15810075,Female,44,39000,0 253 | 15723373,Male,37,52000,0 254 | 15795298,Female,48,134000,1 255 | 15584320,Female,37,146000,1 256 | 15724161,Female,50,44000,0 257 | 15750056,Female,52,90000,1 258 | 15609637,Female,41,72000,0 259 | 15794493,Male,40,57000,0 260 | 15569641,Female,58,95000,1 261 | 15815236,Female,45,131000,1 262 | 15811177,Female,35,77000,0 263 | 15680587,Male,36,144000,1 264 | 15672821,Female,55,125000,1 265 | 15767681,Female,35,72000,0 266 | 15600379,Male,48,90000,1 267 | 15801336,Female,42,108000,1 268 | 15721592,Male,40,75000,0 269 | 15581282,Male,37,74000,0 270 | 15746203,Female,47,144000,1 271 | 15583137,Male,40,61000,0 272 | 15680752,Female,43,133000,0 273 | 15688172,Female,59,76000,1 274 | 15791373,Male,60,42000,1 275 | 15589449,Male,39,106000,1 276 | 15692819,Female,57,26000,1 277 | 15727467,Male,57,74000,1 278 | 15734312,Male,38,71000,0 279 | 15764604,Male,49,88000,1 280 | 15613014,Female,52,38000,1 281 | 15759684,Female,50,36000,1 282 | 15609669,Female,59,88000,1 283 | 15685536,Male,35,61000,0 284 | 15750447,Male,37,70000,1 285 | 15663249,Female,52,21000,1 286 | 15638646,Male,48,141000,0 287 | 15734161,Female,37,93000,1 288 | 15631070,Female,37,62000,0 289 | 15761950,Female,48,138000,1 290 | 15649668,Male,41,79000,0 291 | 15713912,Female,37,78000,1 292 | 15586757,Male,39,134000,1 293 | 15596522,Male,49,89000,1 294 | 15625395,Male,55,39000,1 295 | 15760570,Male,37,77000,0 296 | 15566689,Female,35,57000,0 297 | 15725794,Female,36,63000,0 298 | 15673539,Male,42,73000,1 299 | 15705298,Female,43,112000,1 300 | 15675791,Male,45,79000,0 301 | 15747043,Male,46,117000,1 302 | 15736397,Female,58,38000,1 303 | 15678201,Male,48,74000,1 304 | 15720745,Female,37,137000,1 305 | 15637593,Male,37,79000,1 306 | 15598070,Female,40,60000,0 307 | 15787550,Male,42,54000,0 308 | 15603942,Female,51,134000,0 309 | 15733973,Female,47,113000,1 310 | 15596761,Male,36,125000,1 311 | 15652400,Female,38,50000,0 312 | 15717893,Female,42,70000,0 313 | 15622585,Male,39,96000,1 314 | 15733964,Female,38,50000,0 315 | 15753861,Female,49,141000,1 316 | 15747097,Female,39,79000,0 317 | 15594762,Female,39,75000,1 318 | 15667417,Female,54,104000,1 319 | 15684861,Male,35,55000,0 320 | 15742204,Male,45,32000,1 321 | 15623502,Male,36,60000,0 322 | 15774872,Female,52,138000,1 323 | 15611191,Female,53,82000,1 324 | 15674331,Male,41,52000,0 325 | 15619465,Female,48,30000,1 326 | 15575247,Female,48,131000,1 327 | 15695679,Female,41,60000,0 328 | 15713463,Male,41,72000,0 329 | 15785170,Female,42,75000,0 330 | 15796351,Male,36,118000,1 331 | 15639576,Female,47,107000,1 332 | 15693264,Male,38,51000,0 333 | 15589715,Female,48,119000,1 334 | 15769902,Male,42,65000,0 335 | 15587177,Male,40,65000,0 336 | 15814553,Male,57,60000,1 337 | 15601550,Female,36,54000,0 338 | 15664907,Male,58,144000,1 339 | 15612465,Male,35,79000,0 340 | 15810800,Female,38,55000,0 341 | 15665760,Male,39,122000,1 342 | 15588080,Female,53,104000,1 343 | 15776844,Male,35,75000,0 344 | 15717560,Female,38,65000,0 345 | 15629739,Female,47,51000,1 346 | 15729908,Male,47,105000,1 347 | 15716781,Female,41,63000,0 348 | 15646936,Male,53,72000,1 349 | 15768151,Female,54,108000,1 350 | 15579212,Male,39,77000,0 351 | 15721835,Male,38,61000,0 352 | 15800515,Female,38,113000,1 353 | 15591279,Male,37,75000,0 354 | 15587419,Female,42,90000,1 355 | 15750335,Female,37,57000,0 356 | 15699619,Male,36,99000,1 357 | 15606472,Male,60,34000,1 358 | 15778368,Male,54,70000,1 359 | 15671387,Female,41,72000,0 360 | 15573926,Male,40,71000,1 361 | 15709183,Male,42,54000,0 362 | 15577514,Male,43,129000,1 363 | 15778830,Female,53,34000,1 364 | 15768072,Female,47,50000,1 365 | 15768293,Female,42,79000,0 366 | 15654456,Male,42,104000,1 367 | 15807525,Female,59,29000,1 368 | 15574372,Female,58,47000,1 369 | 15671249,Male,46,88000,1 370 | 15779744,Male,38,71000,0 371 | 15624755,Female,54,26000,1 372 | 15611430,Female,60,46000,1 373 | 15774744,Male,60,83000,1 374 | 15629885,Female,39,73000,0 375 | 15708791,Male,59,130000,1 376 | 15793890,Female,37,80000,0 377 | 15646091,Female,46,32000,1 378 | 15596984,Female,46,74000,0 379 | 15800215,Female,42,53000,0 380 | 15577806,Male,41,87000,1 381 | 15749381,Female,58,23000,1 382 | 15683758,Male,42,64000,0 383 | 15670615,Male,48,33000,1 384 | 15715622,Female,44,139000,1 385 | 15707634,Male,49,28000,1 386 | 15806901,Female,57,33000,1 387 | 15775335,Male,56,60000,1 388 | 15724150,Female,49,39000,1 389 | 15627220,Male,39,71000,0 390 | 15672330,Male,47,34000,1 391 | 15668521,Female,48,35000,1 392 | 15807837,Male,48,33000,1 393 | 15592570,Male,47,23000,1 394 | 15748589,Female,45,45000,1 395 | 15635893,Male,60,42000,1 396 | 15757632,Female,39,59000,0 397 | 15691863,Female,46,41000,1 398 | 15706071,Male,51,23000,1 399 | 15654296,Female,50,20000,1 400 | 15755018,Male,36,33000,0 401 | 15594041,Female,49,36000,1 --------------------------------------------------------------------------------