├── .gitignore ├── Day-0 ├── Numpy-tutorial.ipynb ├── c-fortan.jpg ├── data.csv └── readme.md ├── Day-1 ├── Pandas_tutorial_part_1.ipynb ├── Pandas_tutorial_part_2.ipynb ├── Pandas_tutorial_part_3.ipynb ├── Pandas_tutorial_part_4.ipynb └── readme.md ├── Day-10 ├── data │ ├── age_data.csv │ ├── developers_salary.csv │ └── train.csv ├── matplotlib_tutorial_part_5.ipynb ├── matplotlib_tutorial_part_6.ipynb ├── overview.md ├── readme.md └── titanic_data_analysis.ipynb ├── Day-11 ├── data │ └── train.csv ├── overview.md ├── readme.md └── titanic_data_analysis.ipynb ├── Day-12 ├── data │ └── train.csv ├── overview.md ├── readme.md └── titanic_data_analysis.ipynb ├── Day-13 ├── data │ └── train.csv ├── overview.md ├── readme.md └── titanic_data_analysis.ipynb ├── Day-14 ├── data │ └── yt-200trending.csv ├── matplotlib_tutorial_part_7.ipynb └── readme.md ├── Day-15 ├── data │ └── bitcoin_price.csv ├── matplotlib_tutorial_part_8.ipynb └── readme.md ├── Day-16 ├── L1 - Hello, Seaborn.ipynb ├── data │ ├── developers_salary.csv │ ├── fifa.csv │ └── random_data.csv ├── data_gen.py ├── dev_salaries.png ├── matplotlib_tutorial_part_10.ipynb ├── matplotlib_tutorial_part_9.ipynb └── readme.md ├── Day-17 ├── Data_analysis_project_3.ipynb ├── L2 - Line Charts.ipynb ├── L3 - Bar Charts and Heatmaps.ipynb ├── L4 - Scatter plots.ipynb ├── catplot.png ├── data │ ├── candy.csv │ ├── ign_scores.csv │ ├── medical_examination.csv │ └── museum_visitors.csv ├── heatmap.png └── readme.md ├── Day-18 ├── Box_plots.ipynb ├── Data_analysis_project_4.ipynb ├── L5 - Distributions (histograms & KDE).ipynb ├── L6 - Choosing plot types and custom styles.ipynb ├── L7 - Final project.ipynb ├── box_plot_box.jpg ├── box_plot_median.jpg ├── choosing-plot-types-and-custom-styles.ipynb ├── data │ ├── cancer.csv │ ├── drug200.csv │ ├── fcc_forum_pageviews.csv │ └── iris.csv └── readme.md ├── Day-19 ├── House_price_prediction-v1.ipynb ├── L2 - Explore_your_data.ipynb ├── L3 - Your_first_machine_learning_model.ipynb ├── L4 - Model_validation.ipynb ├── L5 - Underfitting_and_overfitting.ipynb ├── L6 - Random_forests.ipynb ├── L7 - Machine_learning_competitions.ipynb ├── data │ ├── data_description.txt │ ├── sample_submission.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-2 ├── Data_analysis_project_1.ipynb ├── Pandas_tutorial_part_5.ipynb ├── Pandas_tutorial_part_6.ipynb ├── Pandas_tutorial_part_7.ipynb └── readme.md ├── Day-20 ├── House_price_prediction_2.ipynb ├── House_price_prediction_3.ipynb ├── L1 - Introduction.ipynb ├── L2 - Missing_values.ipynb ├── L3 - Categorical_variables.ipynb ├── data │ ├── L1-submission.csv │ ├── L2-submission.csv │ ├── L3-submission.csv │ ├── data_description.txt │ ├── sample_submission.csv │ ├── submission_2.csv │ ├── submission_3.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-21 ├── House_price_prediction_4.ipynb ├── House_price_prediction_5.ipynb ├── House_price_prediction_6.ipynb ├── L4 - Pipelines.ipynb ├── L5 - Cross_validation.ipynb ├── L6 - Xgboost.ipynb ├── L7 - Data_leakage.ipynb ├── data │ ├── L4-submission.csv │ ├── data_description.txt │ ├── sample_submission.csv │ ├── submission_4.csv │ ├── submission_5.csv │ ├── submission_6.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-22 ├── House_price_prediction_7.ipynb ├── House_price_prediction_8.ipynb ├── data │ ├── data_description.txt │ ├── sample_submission.csv │ ├── submission_7.csv │ ├── submission_8.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-23 ├── House_price_prediction_10.ipynb ├── House_price_prediction_9.ipynb ├── data │ ├── data_description.txt │ ├── sample_submission.csv │ ├── submission_10.csv │ ├── submission_9.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-24 └── readme.md ├── Day-25 ├── House_price_prediction_11.ipynb ├── L2 - Mutual_information.ipynb ├── data │ ├── data_description.txt │ ├── sample_submission.csv │ ├── submission_11.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-26 ├── L3 - Creating_features.ipynb └── readme.md ├── Day-27 ├── House_price_prediction_12.ipynb ├── House_price_prediction_13.ipynb ├── L4 - Clustering_with_k-means.ipynb ├── data │ ├── data_description.txt │ ├── sample_submission.csv │ ├── submission_12.csv │ ├── submission_13.csv │ ├── test.csv │ └── train.csv ├── pipeline.py └── readme.md ├── Day-28 └── readme.md ├── Day-29 └── readme.md ├── Day-3 ├── Pandas_tutorial_part_8.ipynb └── readme.md ├── Day-30 ├── Titanic_survival_competition_1.ipynb ├── data │ ├── gender_submission.csv │ ├── submission_1.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-31 ├── Titanic_survival_competition_2.ipynb ├── Titanic_survival_competition_3.ipynb ├── Titanic_survival_competition_4.ipynb ├── data │ ├── gender_submission.csv │ ├── submission_2.csv │ ├── submission_3.csv │ ├── submission_4.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-32 ├── GHW_data_science_project.ipynb ├── Titanic_survival_competition_5.ipynb ├── data │ ├── Enrollment-in-school-2011-12-India.csv │ ├── gender_submission.csv │ ├── submission_5.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-33 ├── Titanic_survival_competition_6.ipynb ├── Titanic_survival_competition_7.ipynb ├── data │ ├── gender_submission.csv │ ├── submission_6.csv │ ├── submission_7.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-34 ├── Titanic_survival_compeittion_8.ipynb ├── Titanic_survival_competition_10.ipynb ├── Titanic_survival_competition_9.ipynb ├── data │ ├── gender_submission.csv │ ├── submission_10.csv │ ├── submission_8.csv │ ├── submission_9.csv │ ├── test.csv │ └── train.csv └── readme.md ├── Day-35 └── readme.md ├── Day-36 └── readme.md ├── Day-37 └── readme.md ├── Day-38 └── readme.md ├── Day-39 └── readme.md ├── Day-4 ├── Pandas_tutorial_part_10.ipynb ├── Pandas_tutorial_part_9.ipynb └── readme.md ├── Day-40 └── readme.md ├── Day-41 └── readme.md ├── Day-42 └── readme.md ├── Day-43 └── readme.md ├── Day-44 └── readme.md ├── Day-45 └── readme.md ├── Day-46 └── readme.md ├── Day-47 └── readme.md ├── Day-48 └── readme.md ├── Day-49 └── readme.md ├── Day-5 ├── Data_analysis_project_2.ipynb ├── Pandas_tutorial_part_11.ipynb └── readme.md ├── Day-50 └── readme.md ├── Day-6 ├── Data_analysis_project_2.ipynb └── readme.md ├── Day-7 ├── data │ └── language_knows.csv ├── matplotlib_tutorial_part_1.ipynb ├── matplotlib_tutorial_part_2.ipynb ├── plot.png └── readme.md ├── Day-8 ├── data │ └── language_popularity.csv ├── matplotlib_tutorial_part_3.ipynb ├── matplotlib_tutorial_part_4.ipynb └── readme.md ├── Day-9 ├── data │ └── medical_examination.csv ├── data_analysis_project_3.ipynb └── readme.md └── readme.md /.gitignore: -------------------------------------------------------------------------------- 1 | venv/ -------------------------------------------------------------------------------- /Day-0/c-fortan.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Param302/100DaysOfCode-Python/44000a5ec5173c65c18810db68e11812baa2f0c4/Day-0/c-fortan.jpg -------------------------------------------------------------------------------- /Day-0/readme.md: -------------------------------------------------------------------------------- 1 | # Day 0 of [#100DaysofCode](https://twitter.com/Param3021/status/1531507810756067328?s=20&t=psaKuMNtRHbSmcQ7QQ0zuQ) in Python 2 | 3 | ## Task 4 | - Learn Numpy 5 | 6 | ### Resources 7 | - Numpy Crash Course by Patrick Loeber ([Video link](https://www.youtube.com/watch?v=9JUAPgtkKpI)) 8 | 9 | ### Software used 10 | - Jupyter Notebook 11 | - Python 3.10.2 12 | - Numpy 1.22.4 13 | 14 | ### My notebook 15 | - [Numpy-tutorial.ipynb](./Numpy-tutorial.ipynb) 16 | 17 | ### Topics I have learnt 18 | 1. Numpy Intro 19 | 2. Array Basics 20 | 3. Dot product 21 | 4. Multi-dimensional arrays 22 | 5. Array Indexing 23 | 6. Array Slicing 24 | 7. Boolean Indexing 25 | 8. Reshape 26 | 9. Concatenation 27 | 10. Broadcasting 28 | 11. Functions and Axes 29 | 12. Datatypes 30 | 13. Copying 31 | 14. Generating arrays 32 | 15. Random numbers 33 | 16. Linear Algebra 34 | - Eigenvalues 35 | - Solving Linear Systems 36 | 17. Creating arrays 37 | - Conversion from Python datastructure 38 | - Using numpy array creation functions like arange, zeroes 39 | - Replicating, concatenating & modifying existed arrays 40 | - Reading arrays from CSV files 41 | - Using special library functions like random 42 | 43 | ### Conclusion: 44 | Numpy is a really recommended library to learn. It's really fast compared to normal Python code. Useful to learn for mathematical calculations. -------------------------------------------------------------------------------- /Day-1/readme.md: -------------------------------------------------------------------------------- 1 | # Day 1 of [#100DaysofCode](https://twitter.com/Param3021/status/1531855558353080320?s=20&t=FPrzBL0UathYN2noQnodAg) 2 | 3 | ## Task 4 | - Learn Numpy 5 | - Learn Pandas 6 | 7 | # Resources 8 | - Numpy Tutorial (Iterate numpy array using nditer | numpy nditer) by Codebasics YT channel: ([Video link](https://youtu.be/XawR6CjAYV4)) 9 | - Python Pandas Tutorial Playlist by Corey Schafer YT channel: ([Playlist link](https://www.youtube.com/playlist?list=PL-osiE80TeTsWmV9i9c58mdDCSskIFdDS)) 10 | - Stack Overflow Developer Survey 2021 ([link](https://insights.stackoverflow.com/survey)) 11 | 12 | ### Software used 13 | - Jupyter Notebook 14 | - Python 3.10.2 15 | - Numpy 1.22.4 16 | - pandas 1.4.2 17 | 18 | ### My Notebooks 19 | - [Numpy-tutorial.ipynb](../Day-0/Numpy-tutorial.ipynb) 20 | - [Pandas_tutorial_part_1.ipynb](./Pandas_tutorial_part_1.ipynb) 21 | - [Pandas_tutorial_part_2.ipynb](./Pandas_tutorial_part_2.ipynb) 22 | - [Pandas_tutorial_part_3.ipynb](./Pandas_tutorial_part_3.ipynb) 23 | - [Pandas_tutorial_part_4.ipynb](./Pandas_tutorial_part_4.ipynb) 24 | 25 | ### Topics I have learnt 26 | 1. Splitting arrays in numpy 27 | 2. Iterating arrays efficiently using `np.nditer()` 28 | 3. Pandas Intro 29 | 4. DataFrame Basics 30 | 5. Series Basics 31 | 6. Reading Data from CSV file 32 | 7. Selecting rows & columns using loc & iloc 33 | 8. Custom Indexing 34 | 9. Sorting Data based on exercises 35 | 10. Condition Filtering on rows and columns 36 | 37 | ### Conclusion: 38 | Pandas is a huge library, and good for data analysis. So many topics of numpy needed to learn pandas like slicing is same as Numpy. 39 | -------------------------------------------------------------------------------- /Day-10/data/developers_salary.csv: -------------------------------------------------------------------------------- 1 | Age,All_Devs,Python,JavaScript 2 | 18,17784,20046,16446 3 | 19,16500,17100,16791 4 | 20,18012,20000,18942 5 | 21,20628,24744,21780 6 | 22,25206,30500,25704 7 | 23,30252,37732,29000 8 | 24,34368,41247,34372 9 | 25,38496,45372,37810 10 | 26,42000,48876,43515 11 | 27,46752,53850,46823 12 | 28,49320,57287,49293 13 | 29,53200,45000,53437 14 | 30,56000,50000,56373 15 | 31,62316,55000,62375 16 | 32,64928,70000,66674 17 | 33,67317,71496,68745 18 | 34,68748,75370,68746 19 | 35,73752,83640,74583 20 | 36,77232,84666,79000 21 | 37,78000,84392,78508 22 | 38,78508,78254,79996 23 | 39,79536,85000,80403 24 | 40,82488,87038,83820 25 | 41,88935,91991,88833 26 | 42,90000,100000,91660 27 | 43,90056,94796,87892 28 | 44,95000,97962,96243 29 | 45,90000,93302,90000 30 | 46,91633,99240,99313 31 | 47,91660,102736,91660 32 | 48,98150,112285,102264 33 | 49,98964,100771,100000 34 | 50,100000,104708,100000 35 | 51,98988,108423,91660 36 | 52,100000,101407,99240 37 | 53,108923,112542,108000 38 | 54,105000,122870,105000 39 | 55,103117,120000,104000 -------------------------------------------------------------------------------- /Day-10/overview.md: -------------------------------------------------------------------------------- 1 |

Overview

2 |

The data has been split into two groups:

3 | 7 |

The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the “ground truth”) for each passenger. Your model will be based on “features” like passengers’ gender and class. You can also use feature engineering to create new features.

8 |

The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic.

9 |

We also include gender_submission.csv, a set of predictions that assume all and only female passengers survive, as an example of what a submission file should look like.

10 |

Data Dictionary

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |
VariableDefinitionKey
survivalSurvival0 = No, 1 = Yes
pclassTicket class1 = 1st, 2 = 2nd, 3 = 3rd
sexSex
AgeAge in years
sibsp# of siblings / spouses aboard the Titanic
parch# of parents / children aboard the Titanic
ticketTicket number
farePassenger fare
cabinCabin number
embarkedPort of EmbarkationC = Cherbourg, Q = Queenstown, S = Southampton
66 |

Variable Notes

67 |

pclass: A proxy for socio-economic status (SES)
1st = Upper
2nd = Middle
3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...
Sibling = brother, sister, stepbrother, stepsister
Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...
Parent = mother, father
Child = daughter, son, stepdaughter, stepson
Some children travelled only with a nanny, therefore parch=0 for them.

-------------------------------------------------------------------------------- /Day-10/readme.md: -------------------------------------------------------------------------------- 1 | # Day 10 of [#100DaysOfCode](https://twitter.com/Param3021/status/1535168003729686528) 2 | 3 | ## Task 4 | 1. Matplotlib 5 | 2. Data Analysis with Pandas & matplotlib 6 | 7 | # Resources 8 | - Corey Schafer [Matplotlib Tutorial](https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_) Playlist 9 | - Kaggle [Titanic Dataset](https://www.kaggle.com/competitions/titanic/data?select=train.csv) 10 | 11 | ### Topics I have learnt 12 | 1. Matplotlib 13 | - - Histogram 14 | - - Filling areas in Line Plots 15 | 2. Did data cleaning in Titanic Dataset 16 | 17 | ### Software used 18 | - Jupyter Notebook 19 | - Python 3.10.2 20 | - Numpy 1.22.4 21 | - pandas 1.4.2 22 | - matplotlib 3.5.2 23 | 24 | ### My Notebooks 25 | - [matplotlib_tutorial_part_5.ipynb](./matplotlib_tutorial_part_5.ipynb) 26 | - [matplotlib_tutorial_part_6.ipynb](./matplotlib_tutorial_part_6.ipynb) 27 | - [titanic_data_analysis.ipynb](./titanic_data_analysis.ipynb) 28 | 29 | ### Conclusion: 30 | Today I learnt about Histograms and how to fill areas in Line plots. By Filling areas, line plots looks so interesting! Also did some data cleaning on Titanic Dataset. Tomorrow will do Data analysis, seems to interesting (have many ideas). -------------------------------------------------------------------------------- /Day-11/overview.md: -------------------------------------------------------------------------------- 1 |

Overview

2 |

The data has been split into two groups:

3 | 7 |

The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the “ground truth”) for each passenger. Your model will be based on “features” like passengers’ gender and class. You can also use feature engineering to create new features.

8 |

The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic.

9 |

We also include gender_submission.csv, a set of predictions that assume all and only female passengers survive, as an example of what a submission file should look like.

10 |

Data Dictionary

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |
VariableDefinitionKey
survivalSurvival0 = No, 1 = Yes
pclassTicket class1 = 1st, 2 = 2nd, 3 = 3rd
sexSex
AgeAge in years
sibsp# of siblings / spouses aboard the Titanic
parch# of parents / children aboard the Titanic
ticketTicket number
farePassenger fare
cabinCabin number
embarkedPort of EmbarkationC = Cherbourg, Q = Queenstown, S = Southampton
66 |

Variable Notes

67 |

pclass: A proxy for socio-economic status (SES)
1st = Upper
2nd = Middle
3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...
Sibling = brother, sister, stepbrother, stepsister
Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...
Parent = mother, father
Child = daughter, son, stepdaughter, stepson
Some children travelled only with a nanny, therefore parch=0 for them.

-------------------------------------------------------------------------------- /Day-11/readme.md: -------------------------------------------------------------------------------- 1 | # Day 11 of [#100DaysOfCode](https://twitter.com/Param3021/status/1535654375548682242) 2 | 3 | ## Task 4 | 1. Data Analysis with Pandas & matplotlib 5 | 6 | # Resources 7 | - Kaggle [Titanic Dataset](https://www.kaggle.com/competitions/titanic/data?select=train.csv) 8 | 9 | ### Topics I have learnt 10 | 1. Did data analysis on Titanic Dataset 11 | 12 | ### Software used 13 | - Jupyter Notebook 14 | - Python 3.10.2 15 | - Numpy 1.22.4 16 | - pandas 1.4.2 17 | - matplotlib 3.5.2 18 | 19 | ### My Notebooks 20 | - [titanic_data_analysis.ipynb](./titanic_data_analysis.ipynb) 21 | 22 | ### Conclusion: 23 | Today I did some analysis on Titanic dataset by Kaggle. -------------------------------------------------------------------------------- /Day-12/overview.md: -------------------------------------------------------------------------------- 1 |

Overview

2 |

The data has been split into two groups:

3 | 7 |

The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the “ground truth”) for each passenger. Your model will be based on “features” like passengers’ gender and class. You can also use feature engineering to create new features.

8 |

The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic.

9 |

We also include gender_submission.csv, a set of predictions that assume all and only female passengers survive, as an example of what a submission file should look like.

10 |

Data Dictionary

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |
VariableDefinitionKey
survivalSurvival0 = No, 1 = Yes
pclassTicket class1 = 1st, 2 = 2nd, 3 = 3rd
sexSex
AgeAge in years
sibsp# of siblings / spouses aboard the Titanic
parch# of parents / children aboard the Titanic
ticketTicket number
farePassenger fare
cabinCabin number
embarkedPort of EmbarkationC = Cherbourg, Q = Queenstown, S = Southampton
66 |

Variable Notes

67 |

pclass: A proxy for socio-economic status (SES)
1st = Upper
2nd = Middle
3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...
Sibling = brother, sister, stepbrother, stepsister
Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...
Parent = mother, father
Child = daughter, son, stepdaughter, stepson
Some children travelled only with a nanny, therefore parch=0 for them.

-------------------------------------------------------------------------------- /Day-12/readme.md: -------------------------------------------------------------------------------- 1 | # Day 12 of [#100DaysOfCode](https://twitter.com/Param3021/status/1535929391813115904) 2 | 3 | ## Task 4 | 1. Data Analysis with Pandas & matplotlib 5 | 6 | # Resources 7 | - Kaggle [Titanic Dataset](https://www.kaggle.com/competitions/titanic/data?select=train.csv) 8 | 9 | ### Topics I have learnt 10 | 1. Did little bit data analysis 11 | 12 | ### Software used 13 | - Jupyter Notebook 14 | - Python 3.10.2 15 | - Numpy 1.22.4 16 | - pandas 1.4.2 17 | - matplotlib 3.5.2 18 | 19 | ### My Notebooks 20 | - [titanic_data_analysis.ipynb](./titanic_data_analysis.ipynb) 21 | 22 | ### Conclusion: 23 | Today I did some analysis on Titanic dataset by Kaggle. From day-11 not doing much, but from tomorrow I will be free as my exams are over! -------------------------------------------------------------------------------- /Day-13/overview.md: -------------------------------------------------------------------------------- 1 |

Overview

2 |

The data has been split into two groups:

3 | 7 |

The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the “ground truth”) for each passenger. Your model will be based on “features” like passengers’ gender and class. You can also use feature engineering to create new features.

8 |

The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic.

9 |

We also include gender_submission.csv, a set of predictions that assume all and only female passengers survive, as an example of what a submission file should look like.

10 |

Data Dictionary

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |
VariableDefinitionKey
survivalSurvival0 = No, 1 = Yes
pclassTicket class1 = 1st, 2 = 2nd, 3 = 3rd
sexSex
AgeAge in years
sibsp# of siblings / spouses aboard the Titanic
parch# of parents / children aboard the Titanic
ticketTicket number
farePassenger fare
cabinCabin number
embarkedPort of EmbarkationC = Cherbourg, Q = Queenstown, S = Southampton
66 |

Variable Notes

67 |

pclass: A proxy for socio-economic status (SES)
1st = Upper
2nd = Middle
3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...
Sibling = brother, sister, stepbrother, stepsister
Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...
Parent = mother, father
Child = daughter, son, stepdaughter, stepson
Some children travelled only with a nanny, therefore parch=0 for them.

-------------------------------------------------------------------------------- /Day-13/readme.md: -------------------------------------------------------------------------------- 1 | # Day 13 of [#100DaysOfCode](https://twitter.com/Param3021/status/1536354694184206337) 2 | 3 | ## Task 4 | 1. Data Analysis with Pandas & matplotlib 5 | 6 | # Resources 7 | - Kaggle [Titanic Dataset](https://www.kaggle.com/competitions/titanic/data?select=train.csv) 8 | 9 | ### Topics I have learnt 10 | 1. Did some bit data analysis 11 | 12 | ### Software used 13 | - Jupyter Notebook 14 | - Python 3.10.2 15 | - Numpy 1.22.4 16 | - pandas 1.4.2 17 | - matplotlib 3.5.2 18 | 19 | ### My Notebooks 20 | - [titanic_data_analysis.ipynb](./titanic_data_analysis.ipynb) 21 | 22 | ### Conclusion: 23 | Today I did some analysis on Titanic dataset by Kaggle. Not did much cuz not well. -------------------------------------------------------------------------------- /Day-14/data/yt-200trending.csv: -------------------------------------------------------------------------------- 1 | view_count,likes,ratio 2 | 8036001,324742,96.91 3 | 9378067,562589,98.19 4 | 2182066,273650,99.38 5 | 6525864,94698,96.25 6 | 9481284,582481,97.22 7 | 1853121,89903,97.46 8 | 2875684,183163,94.52 9 | 483827,4864,91.53 10 | 1677046,103227,97.52 11 | 289756,2387,92.95 12 | 2561907,237728,98.8 13 | 468390,25346,98.34 14 | 18977153,768968,98.73 15 | 365731,5997,93.29 16 | 680701,41543,97.99 17 | 5748289,225966,99.17 18 | 3575950,374937,97.69 19 | 865788,31806,98.3 20 | 5433739,389145,98.84 21 | 3643458,369667,97.88 22 | 247602,1516,89.18 23 | 300443,25429,99.49 24 | 313500,56891,98.35 25 | 3525217,92948,95.29 26 | 195072,23832,98.97 27 | 142697,20708,98.91 28 | 456783,2625,94.53 29 | 601565,38792,98.34 30 | 6021472,342044,97.54 31 | 940583,14292,97.7 32 | 446569,7557,97.15 33 | 767900,11091,97.14 34 | 5895810,98088,95.87 35 | 381910,45178,99.21 36 | 2468645,188315,98.73 37 | 407859,19407,98.77 38 | 846399,29308,95.93 39 | 872092,27298,94.85 40 | 1279718,98471,99.06 41 | 1068377,92634,98.89 42 | 4691951,164807,98.93 43 | 1091006,55346,98.53 44 | 891230,30612,88.39 45 | 720734,35647,98.11 46 | 1025214,19926,94.86 47 | 505146,3309,59.69 48 | 265430,2124,91.99 49 | 3651318,283911,98.64 50 | 1290212,201881,99.3 51 | 420393,5434,95.99 52 | 655107,21485,96.16 53 | 1010207,23720,95.85 54 | 777547,9167,94.46 55 | 686703,34001,98.54 56 | 1625877,62101,98.35 57 | 2107926,59334,97.3 58 | 1564214,81581,97.96 59 | 2277765,53425,89.82 60 | 1558609,95695,98.23 61 | 1689305,88050,95.43 62 | 3382856,74078,93.32 63 | 4835746,276098,94.3 64 | 248754,2041,90.75 65 | 687182,63309,97.61 66 | 751948,24359,98.3 67 | 737756,23093,82.35 68 | 964229,18898,86.34 69 | 973121,22810,97.6 70 | 575508,16975,94.75 71 | 1114419,35208,94.3 72 | 722956,21843,97.6 73 | 1560200,38185,96.52 74 | 281397,3706,91.53 75 | 1122525,28232,97.23 76 | 20650480,212862,91.88 77 | 225207,1524,84.76 78 | 598367,24260,94.51 79 | 2117363,162960,99.12 80 | 1233027,16400,88.81 81 | 2566897,112005,54.67 82 | 11907188,1234111,83.49 83 | 1477059,36018,98.75 84 | 292469,5656,92.71 85 | 466862,47754,98.96 86 | 1055798,46122,97.84 87 | 1278142,26021,97.37 88 | 1938747,16942,87.66 89 | 338563,8416,96.46 90 | 645274,17943,94.67 91 | 730110,26868,92.31 92 | 1521090,19761,86.6 93 | 1719425,79646,98.33 94 | 3028604,75484,97.22 95 | 1236239,55409,96.0 96 | 906642,14128,91.88 97 | 1257902,20899,92.93 98 | 1163635,30173,89.82 99 | 1413936,90918,97.87 100 | 709519,6013,95.14 101 | 628111,41450,97.03 102 | 2478832,143686,98.28 103 | 2524598,32486,93.66 104 | 821547,18708,97.31 105 | 3016943,38294,95.76 106 | 743575,20181,89.7 107 | 919626,22114,95.84 108 | 2536083,538376,99.6 109 | 959442,13220,95.94 110 | 2044159,41080,92.48 111 | 1554417,67165,93.0 112 | 2181022,180132,98.19 113 | 1010899,13696,97.57 114 | 2620663,72681,96.68 115 | 5732609,189529,97.16 116 | 1187273,73120,99.24 117 | 1594532,85661,97.01 118 | 8403016,294629,96.97 119 | 5972754,133474,96.6 120 | 6189511,267690,99.03 121 | 1042734,23761,91.61 122 | 9476773,417402,97.8 123 | 8040754,789213,98.73 124 | 2724624,88968,91.74 125 | 1085592,27288,98.51 126 | 3393417,219213,95.68 127 | 16396012,208578,79.21 128 | 3226905,19814,91.77 129 | 6276301,286642,98.15 130 | 647094,19753,89.98 131 | 8081040,477122,98.81 132 | 886934,29360,98.46 133 | 1228396,29893,98.2 134 | 697471,6452,94.85 135 | 1605670,78364,96.63 136 | 2056991,121925,98.44 137 | 397981,6185,58.36 138 | 2760289,106828,97.14 139 | 3655043,54069,89.65 140 | 10662064,320959,97.89 141 | 3105500,108620,96.6 142 | 2238691,48825,96.77 143 | 1153518,25832,96.44 144 | 686228,24882,96.57 145 | 7523411,614901,98.87 146 | 2641916,49354,95.78 147 | 11657853,233343,97.82 148 | 5932061,172195,95.91 149 | 6313988,323119,98.18 150 | 2850316,218273,98.14 151 | 2620142,36637,93.99 152 | 854120,54821,98.05 153 | 13799864,317613,96.07 154 | 906841,35315,98.09 155 | 689607,20658,98.58 156 | 441729,14901,99.0 157 | 797800,14327,95.41 158 | 1682016,75706,98.17 159 | 1426251,57965,98.73 160 | 2268534,91796,97.75 161 | 750032,39406,98.19 162 | 4272799,26229,98.03 163 | 2449662,80825,97.54 164 | 5988592,512483,99.4 165 | 3662227,75552,97.46 166 | 725964,42700,98.98 167 | 1647440,111190,98.85 168 | 985104,12721,96.5 169 | 1665692,23961,92.37 170 | 2051794,81790,96.64 171 | 4112883,116481,93.46 172 | 33297045,1293427,99.07 173 | 1517628,19931,96.25 174 | 1675692,18803,72.76 175 | 3626738,173591,98.44 176 | 1169663,7766,92.99 177 | 446959,4923,89.48 178 | 6995153,195994,96.69 179 | 519706,18975,98.94 180 | 4373224,169228,93.01 181 | 4024087,73080,97.71 182 | 731349,42205,98.52 183 | 94366013,4539630,97.66 184 | 2458132,34337,95.52 185 | 1812670,17476,94.43 186 | 2028445,158178,97.94 187 | 1335703,12622,94.14 188 | 938717,17120,97.26 189 | 2926955,42554,97.73 190 | 4018930,32919,82.1 191 | 6439402,81148,51.58 192 | 5665790,166892,96.95 193 | 899728,28115,96.49 194 | 2792057,206926,96.99 195 | 12839663,722491,97.84 196 | 5694139,146797,98.19 197 | 1069693,3970,90.66 198 | 590760,70454,99.18 199 | 319347,1208,92.5 200 | 27594927,1351963,96.4 201 | 26993425,437561,97.42 -------------------------------------------------------------------------------- /Day-14/readme.md: -------------------------------------------------------------------------------- 1 | # Day 14 of [#100DaysOfCode](https://twitter.com/Param3021/status/1537358511981887489) 2 | 3 | ## Task 4 | 1. Explore Matplotlib library 5 | 6 | # Resources 7 | - Kaggle [Titanic Dataset](https://www.kaggle.com/competitions/titanic/data?select=train.csv) 8 | 9 | ### Topics I have learnt 10 | 1. Learned how to make scatter plots 11 | 2. Applying color maps to plots 12 | 13 | ### Software used 14 | - Jupyter Notebook 15 | - Python 3.10.2 16 | - Numpy 1.22.4 17 | - pandas 1.4.2 18 | - matplotlib 3.5.2 19 | 20 | ### My Notebooks 21 | - [matplotlib_tutorial_part_7.ipynb](./matplotlib_tutorial_part_7.ipynb) 22 | 23 | ### Conclusion: 24 | Today I learned how to plot scatter plots, also how to apply colormaps, and when to use which kind of plot. -------------------------------------------------------------------------------- /Day-15/data/bitcoin_price.csv: -------------------------------------------------------------------------------- 1 | Date,Open,High,Low,Close,Adj Close,Volume 2 | 2019-05-18,7266.080078,8281.660156,7257.259766,8193.139648,8193.139648,723011166 3 | 2019-05-19,8193.139648,8193.139648,7591.850098,7998.290039,7998.290039,637617163 4 | 2019-05-20,7998.290039,8102.319824,7807.770020,7947.930176,7947.930176,357803946 5 | 2019-05-21,7947.930176,8033.759766,7533.660156,7626.890137,7626.890137,424501866 6 | 2019-05-22,7626.890137,7971.259766,7478.740234,7876.500000,7876.500000,386766321 7 | 2019-05-23,7876.500000,8165.450195,7801.569824,7996.399902,7996.399902,413162746 8 | 2019-05-24,7996.399902,8140.819824,7948.680176,8059.129883,8059.129883,179206342 9 | 2019-05-25,8059.129883,8779.000000,7894.529785,8726.230469,8726.230469,483663699 10 | 2019-05-26,8726.230469,8931.530273,8668.459961,8785.169922,8785.169922,507164714 11 | 2019-05-27,8785.169922,8818.709961,8562.200195,8718.849609,8718.849609,360752199 12 | 2019-05-28,8718.849609,8760.480469,8444.099609,8664.559570,8664.559570,380343928 13 | 2019-05-29,8664.559570,9065.889648,8027.209961,8276.250000,8276.250000,815525590 14 | 2019-05-30,8276.250000,8570.780273,8116.000000,8560.080078,8560.080078,500141087 15 | 2019-05-31,8550.629883,8576.339844,8459.650391,8504.980469,8504.980469,69915456 -------------------------------------------------------------------------------- /Day-15/readme.md: -------------------------------------------------------------------------------- 1 | # Day 15 of [#100DaysOfCode](https://twitter.com/Param3021/status/1537738644928495616) 2 | 3 | ## Task 4 | 1. Subplots & Plotting live data in Matplotlib (50%) 5 | 2. Linear Algebra (Determinant) (not done) 6 | 7 | # Resources 8 | - Corey Schafer [Matplotlib Tutorial](https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_) Playlist 9 | 10 | ### Topics I have learnt 11 | 1. Learned how to plot Time Series data 12 | 13 | ### Software used 14 | - Jupyter Notebook 15 | - Python 3.10.2 16 | - Numpy 1.22.4 17 | - pandas 1.4.2 18 | - matplotlib 3.5.2 19 | 20 | ### My Notebooks 21 | - [matplotlib_tutorial_part_8.ipynb](./matplotlib_tutorial_part_8.ipynb) 22 | 23 | ### Conclusion: 24 | Today I learned how to plot Time Series data in matplotlib using `plt.plot_date()`. Also, format dates in axis using `matplotlib.dates.DateFormatter()`. -------------------------------------------------------------------------------- /Day-16/data/developers_salary.csv: -------------------------------------------------------------------------------- 1 | Age,All_Devs,Python,JavaScript 2 | 18,17784,20046,16446 3 | 19,16500,17100,16791 4 | 20,18012,20000,18942 5 | 21,20628,24744,21780 6 | 22,25206,30500,25704 7 | 23,30252,37732,29000 8 | 24,34368,41247,34372 9 | 25,38496,45372,37810 10 | 26,42000,48876,43515 11 | 27,46752,53850,46823 12 | 28,49320,57287,49293 13 | 29,53200,45000,53437 14 | 30,56000,50000,56373 15 | 31,62316,55000,62375 16 | 32,64928,70000,66674 17 | 33,67317,71496,68745 18 | 34,68748,75370,68746 19 | 35,73752,83640,74583 20 | 36,77232,84666,79000 21 | 37,78000,84392,78508 22 | 38,78508,78254,79996 23 | 39,79536,85000,80403 24 | 40,82488,87038,83820 25 | 41,88935,91991,88833 26 | 42,90000,100000,91660 27 | 43,90056,94796,87892 28 | 44,95000,97962,96243 29 | 45,90000,93302,90000 30 | 46,91633,99240,99313 31 | 47,91660,102736,91660 32 | 48,98150,112285,102264 33 | 49,98964,100771,100000 34 | 50,100000,104708,100000 35 | 51,98988,108423,91660 36 | 52,100000,101407,99240 37 | 53,108923,112542,108000 38 | 54,105000,122870,105000 39 | 55,103117,120000,104000 -------------------------------------------------------------------------------- /Day-16/data/random_data.csv: -------------------------------------------------------------------------------- 1 | x_value,total_1,total_2 2 | 0,1000,1000 3 | 1,1004,996 4 | 2,1010,995 5 | 3,1018,992 6 | 4,1017,988 7 | 5,1011,994 8 | 6,1014,998 9 | 7,1015,996 10 | 8,1014,997 11 | 9,1016,994 12 | 10,1023,994 13 | 11,1019,998 14 | 12,1014,993 15 | 13,1014,995 16 | 14,1010,1000 17 | 15,1017,1005 18 | 16,1021,1005 19 | 17,1029,1002 20 | 18,1032,1000 21 | 19,1030,1006 22 | 20,1028,1004 23 | 21,1032,1003 24 | 22,1031,1000 25 | 23,1037,1005 26 | 24,1034,1006 27 | 25,1036,1002 28 | 26,1041,1002 29 | 27,1038,1000 30 | 28,1032,1001 31 | 29,1031,1003 32 | 30,1031,1005 33 | 31,1027,1008 34 | 32,1021,1007 35 | 33,1021,1007 36 | 34,1016,1012 37 | 35,1021,1014 38 | 36,1017,1018 39 | 37,1020,1020 40 | 38,1017,1025 41 | 39,1025,1028 42 | 40,1033,1024 43 | 41,1035,1029 44 | 42,1030,1033 45 | 43,1025,1038 46 | 44,1022,1042 47 | 45,1021,1038 48 | 46,1025,1041 49 | 47,1019,1040 50 | 48,1027,1044 51 | 49,1030,1041 52 | 50,1029,1038 53 | 51,1024,1041 54 | 52,1032,1042 55 | 53,1029,1037 56 | 54,1032,1041 57 | 55,1033,1046 58 | 56,1030,1052 59 | 57,1033,1052 60 | 58,1030,1049 61 | 59,1033,1052 62 | 60,1034,1058 63 | 61,1038,1056 64 | 62,1039,1059 65 | 63,1045,1060 66 | 64,1048,1055 67 | 65,1055,1060 68 | 66,1058,1065 69 | 67,1061,1069 70 | 68,1068,1071 71 | 69,1065,1070 72 | 70,1073,1067 73 | 71,1073,1066 74 | 72,1073,1066 75 | 73,1079,1061 76 | 74,1081,1058 77 | 75,1089,1059 78 | 76,1086,1063 79 | 77,1080,1061 80 | 78,1081,1061 81 | 79,1082,1056 82 | 80,1076,1056 83 | 81,1077,1055 84 | 82,1078,1053 85 | 83,1081,1048 86 | 84,1079,1046 87 | 85,1081,1043 88 | 86,1087,1042 89 | 87,1093,1046 90 | 88,1090,1047 91 | 89,1096,1051 92 | 90,1101,1054 93 | 91,1102,1053 94 | -------------------------------------------------------------------------------- /Day-16/data_gen.py: -------------------------------------------------------------------------------- 1 | import csv 2 | import random 3 | import time 4 | 5 | x_value = 0 6 | total_1 = 1000 7 | total_2 = 1000 8 | 9 | fieldnames = ["x_value", "total_1", "total_2"] 10 | 11 | with open('./data/random_data.csv', 'w', newline="") as csv_file: 12 | csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames) 13 | csv_writer.writeheader() 14 | 15 | while True: 16 | 17 | with open('./data/random_data.csv', 'a', newline="") as csv_file: 18 | csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames) 19 | 20 | info = { 21 | "x_value": x_value, 22 | "total_1": total_1, 23 | "total_2": total_2 24 | } 25 | 26 | csv_writer.writerow(info) 27 | print(x_value, total_1, total_2) 28 | 29 | x_value += 1 30 | total_1 = total_1 + random.randint(-6, 8) 31 | total_2 = total_2 + random.randint(-5, 6) 32 | 33 | time.sleep(1) -------------------------------------------------------------------------------- /Day-16/dev_salaries.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Param302/100DaysOfCode-Python/44000a5ec5173c65c18810db68e11812baa2f0c4/Day-16/dev_salaries.png -------------------------------------------------------------------------------- /Day-16/readme.md: -------------------------------------------------------------------------------- 1 | # Day 16 of [#100DaysOfCode](https://twitter.com/Param3021/status/1538466881937756160) 2 | 3 | ## Task 4 | 1. Explore Seaborn 5 | 6 | # Resources 7 | - Corey Schafer [Matplotlib Tutorial](https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_) Playlist 8 | - kaggle [Data Visualization Course](https://www.kaggle.com/learn/data-visualization) 9 | - - Lesson 1: [Hello Seaborn](https://www.kaggle.com/code/alexisbcook/hello-seaborn) 10 | - - [My Notebook](https://www.kaggle.com/param302/exercise-hello-seaborn) 11 | 12 | ### Topics I have learnt 13 | 1. Plotting Live data in real-time in matplotlib 14 | 2. Subplots in matplotlib 15 | 3. Seaborn basics 16 | 4. Line plots in Seaborn 17 | 18 | ### Software used 19 | - Jupyter Notebook 20 | - Python 3.10.2 21 | - Numpy 1.22.4 22 | - pandas 1.4.2 23 | - matplotlib 3.5.2 24 | - seaborn 0.11.2 25 | 26 | ### My Notebooks 27 | - [matplotlib_tutorial_part_9.ipynb](./matplotlib_tutorial_part_9.ipynb) 28 | - [matplotlib_tutorial_part_10.ipynb](./matplotlib_tutorial_part_10.ipynb) 29 | - [L1 - Hello, Seaborn.ipynb](./L1%20-%20Hello,%20Seaborn.ipynb) 30 | 31 | ### Conclusion: 32 | Today I learned how to plot live data in real time and subplots in matplotlib. Also basics of seaborn and line plots in it. -------------------------------------------------------------------------------- /Day-17/catplot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Param302/100DaysOfCode-Python/44000a5ec5173c65c18810db68e11812baa2f0c4/Day-17/catplot.png -------------------------------------------------------------------------------- /Day-17/data/candy.csv: -------------------------------------------------------------------------------- 1 | id,competitorname,chocolate,fruity,caramel,peanutyalmondy,nougat,crispedricewafer,hard,bar,pluribus,sugarpercent,pricepercent,winpercent 2 | 0,100 Grand,Yes,No,Yes,No,No,Yes,No,Yes,No,0.73199999,0.86000001,66.971725 3 | 1,3 Musketeers,Yes,No,No,No,Yes,No,No,Yes,No,0.60399997,0.51099998,67.602936 4 | 2,Air Heads,No,Yes,No,No,No,No,No,No,No,0.90600002,0.51099998,52.341465 5 | 3,Almond Joy,Yes,No,No,Yes,No,No,No,Yes,No,0.465,0.76700002,50.347546 6 | 4,Baby Ruth,Yes,No,Yes,Yes,Yes,No,No,Yes,No,0.60399997,0.76700002,56.914547 7 | 5,Boston Baked Beans,No,No,No,Yes,No,No,No,No,Yes,0.31299999,0.51099998,23.417824 8 | 6,Candy Corn,No,No,No,No,No,No,No,No,Yes,0.90600002,0.32499999,38.010963000000004 9 | 7,Caramel Apple Pops,No,Yes,Yes,No,No,No,No,No,No,0.60399997,0.32499999,34.517681 10 | 8,Charleston Chew,Yes,No,No,No,Yes,No,No,Yes,No,0.60399997,0.51099998,38.975037 11 | 9,Chewey Lemonhead Fruit Mix,No,Yes,No,No,No,No,No,No,Yes,0.73199999,0.51099998,36.017628 12 | 10,Chiclets,No,Yes,No,No,No,No,No,No,Yes,0.046,0.32499999,24.524988 13 | 11,Dots,No,Yes,No,No,No,No,No,No,Yes,0.73199999,0.51099998,42.272076 14 | 12,Dum Dums,No,Yes,No,No,No,No,Yes,No,No,0.73199999,0.034000002,39.460556 15 | 13,Fruit Chews,No,Yes,No,No,No,No,No,No,Yes,0.127,0.034000002,43.088924 16 | 14,Fun Dip,No,Yes,No,No,No,No,Yes,No,No,0.73199999,0.32499999,39.185505 17 | 15,Gobstopper,No,Yes,No,No,No,No,Yes,No,Yes,0.90600002,0.45300001,46.783348 18 | 16,Haribo Gold Bears,No,Yes,No,No,No,No,No,No,Yes,0.465,0.465,57.11974 19 | 17,Haribo Happy Cola,No,No,No,No,No,No,No,No,Yes,0.465,0.465,34.158958 20 | 18,Haribo Sour Bears,No,Yes,No,No,No,No,No,No,Yes,0.465,0.465,51.41243 21 | 19,Haribo Twin Snakes,No,Yes,No,No,No,No,No,No,Yes,0.465,0.465,42.178771999999995 22 | 20,Hershey's Kisses,Yes,No,No,No,No,No,No,No,Yes,0.127,0.093000002,55.375454000000005 23 | 21,Hershey's Krackel,Yes,No,No,No,No,Yes,No,Yes,No,0.43000001,0.91799998,62.28448100000001 24 | 22,Hershey's Milk Chocolate,Yes,No,No,No,No,No,No,Yes,No,0.43000001,0.91799998,56.490501 25 | 23,Hershey's Special Dark,Yes,No,No,No,No,No,No,Yes,No,0.43000001,0.91799998,59.236121999999995 26 | 24,Jawbusters,No,Yes,No,No,No,No,Yes,No,Yes,0.093000002,0.51099998,28.127439000000003 27 | 25,Junior Mints,Yes,No,No,No,No,No,No,No,Yes,0.19699999999999998,0.51099998,57.21925 28 | 26,Kit Kat,Yes,No,No,No,No,Yes,No,Yes,No,0.31299999,0.51099998,76.7686 29 | 27,Laffy Taffy,No,Yes,No,No,No,No,No,No,No,0.22,0.11599999999999999,41.389557 30 | 28,Lemonhead,No,Yes,No,No,No,No,Yes,No,No,0.046,0.10400000000000001,39.141056 31 | 29,Lifesavers big ring gummies,No,Yes,No,No,No,No,No,No,No,0.26699999,0.27900001,52.911392000000006 32 | 30,Peanut butter M&M's,Yes,No,No,Yes,No,No,No,No,Yes,0.82499999,0.65100002,71.46505 33 | 31,M&M's,Yes,No,No,No,No,No,No,No,Yes,0.82499999,0.65100002,66.574585 34 | 32,Mike & Ike,No,Yes,No,No,No,No,No,No,Yes,0.87199998,0.32499999,46.411716 35 | 33,Milk Duds,Yes,No,Yes,No,No,No,No,No,Yes,0.30199999,0.51099998,55.064071999999996 36 | 34,Milky Way,Yes,No,Yes,No,Yes,No,No,Yes,No,0.60399997,0.65100002,73.099556 37 | 35,Milky Way Midnight,Yes,No,Yes,No,Yes,No,No,Yes,No,0.73199999,0.44100001,60.800701000000004 38 | 36,Milky Way Simply Caramel,Yes,No,Yes,No,No,No,No,Yes,No,0.96499997,0.86000001,64.35334 39 | 37,Mounds,Yes,No,No,No,No,No,No,Yes,No,0.31299999,0.86000001,47.829754 40 | 38,Mr Good Bar,Yes,No,No,Yes,No,No,No,Yes,No,0.31299999,0.91799998,54.526451 41 | 39,Nerds,No,Yes,No,No,No,No,Yes,No,Yes,0.84799999,0.32499999,55.354046 42 | 40,Nestle Butterfinger,Yes,No,No,Yes,No,No,No,Yes,No,0.60399997,0.76700002,70.735641 43 | 41,Nestle Crunch,Yes,No,No,No,No,Yes,No,Yes,No,0.31299999,0.76700002,66.47068 44 | 42,Nik L Nip,No,Yes,No,No,No,No,No,No,Yes,0.19699999999999998,0.97600001,22.445341 45 | 43,Now & Later,No,Yes,No,No,No,No,No,No,Yes,0.22,0.32499999,39.4468 46 | 44,Payday,No,No,No,Yes,Yes,No,No,Yes,No,0.465,0.76700002,46.296597 47 | 45,Peanut M&Ms,Yes,No,No,Yes,No,No,No,No,Yes,0.59299999,0.65100002,69.483788 48 | 46,Pixie Sticks,No,No,No,No,No,No,No,No,Yes,0.093000002,0.023,37.722336 49 | 47,Pop Rocks,No,Yes,No,No,No,No,Yes,No,Yes,0.60399997,0.83700001,41.265511 50 | 48,Red vines,No,Yes,No,No,No,No,No,No,Yes,0.58099997,0.11599999999999999,37.348521999999996 51 | 49,Reese's Miniatures,Yes,No,No,Yes,No,No,No,No,No,0.034000002,0.27900001,81.86625699999999 52 | 50,Reese's Peanut Butter cup,Yes,No,No,Yes,No,No,No,No,No,0.72000003,0.65100002,84.18029 53 | 51,Reese's pieces,Yes,No,No,Yes,No,No,No,No,Yes,0.40599999,0.65100002,73.43499 54 | 52,Reese's stuffed with pieces,Yes,No,No,Yes,No,No,No,No,No,0.98799998,0.65100002,72.887901 55 | 53,Ring pop,No,Yes,No,No,No,No,Yes,No,No,0.73199999,0.96499997,35.290756 56 | 54,Rolo,Yes,No,Yes,No,No,No,No,No,Yes,0.86000001,0.86000001,65.716286 57 | 55,Root Beer Barrels,No,No,No,No,No,No,Yes,No,Yes,0.73199999,0.06899999799999999,29.703691 58 | 56,Runts,No,Yes,No,No,No,No,Yes,No,Yes,0.87199998,0.27900001,42.849144 59 | 57,Sixlets,Yes,No,No,No,No,No,No,No,Yes,0.22,0.081,34.722 60 | 58,Skittles original,No,Yes,No,No,No,No,No,No,Yes,0.94099998,0.22,63.08514 61 | 59,Skittles wildberry,No,Yes,No,No,No,No,No,No,Yes,0.94099998,0.22,55.103694999999995 62 | 60,Nestle Smarties,Yes,No,No,No,No,No,No,No,Yes,0.26699999,0.97600001,37.887188 63 | 61,Smarties candy,No,Yes,No,No,No,No,Yes,No,Yes,0.26699999,0.11599999999999999,45.995827 64 | 62,Snickers,Yes,No,Yes,Yes,Yes,No,No,Yes,No,0.546,0.65100002,76.67378199999999 65 | 63,Snickers Crisper,Yes,No,Yes,Yes,No,Yes,No,Yes,No,0.60399997,0.65100002,59.529251 66 | 64,Sour Patch Kids,No,Yes,No,No,No,No,No,No,Yes,0.06899999799999999,0.11599999999999999,59.863997999999995 67 | 65,Sour Patch Tricksters,No,Yes,No,No,No,No,No,No,Yes,0.06899999799999999,0.11599999999999999,52.825947 68 | 66,Starburst,No,Yes,No,No,No,No,No,No,Yes,0.15099999,0.22,67.037628 69 | 67,Strawberry bon bons,No,Yes,No,No,No,No,Yes,No,Yes,0.56900001,0.057999998,34.578990999999995 70 | 68,Sugar Babies,No,No,Yes,No,No,No,No,No,Yes,0.96499997,0.76700002,33.43755 71 | 69,Sugar Daddy,No,No,Yes,No,No,No,No,No,No,0.41800001,0.32499999,32.230995 72 | 70,Super Bubble,No,Yes,No,No,No,No,No,No,No,0.162,0.11599999999999999,27.303865000000002 73 | 71,Swedish Fish,No,Yes,No,No,No,No,No,No,Yes,0.60399997,0.755,54.861111 74 | 72,Tootsie Pop,Yes,Yes,No,No,No,No,Yes,No,No,0.60399997,0.32499999,48.982651000000004 75 | 73,Tootsie Roll Juniors,Yes,No,No,No,No,No,No,No,No,0.31299999,0.51099998,43.068897 76 | 74,Tootsie Roll Midgies,Yes,No,No,No,No,No,No,No,Yes,0.17399999,0.011000000000000001,45.736748 77 | 75,Tootsie Roll Snack Bars,Yes,No,No,No,No,No,No,Yes,No,0.465,0.32499999,49.653503 78 | 76,Trolli Sour Bites,No,Yes,No,No,No,No,No,No,Yes,0.31299999,0.255,47.173229 79 | 77,Twix,Yes,No,Yes,No,No,Yes,No,Yes,No,0.546,0.90600002,81.642914 80 | 78,Twizzlers,No,Yes,No,No,No,No,No,No,No,0.22,0.11599999999999999,45.466282 81 | 79,Warheads,No,Yes,No,No,No,No,Yes,No,No,0.093000002,0.11599999999999999,39.011897999999995 82 | 80,Welch's Fruit Snacks,No,Yes,No,No,No,No,No,No,Yes,0.31299999,0.31299999,44.375519 83 | 81,Werther's Original Caramel,No,No,Yes,No,No,No,Yes,No,No,0.18600000000000003,0.26699999,41.904308 84 | 82,Whoppers,Yes,No,No,No,No,Yes,No,No,Yes,0.87199998,0.84799999,49.524113 85 | -------------------------------------------------------------------------------- /Day-17/data/ign_scores.csv: -------------------------------------------------------------------------------- 1 | Platform,Action,"Action, Adventure",Adventure,Fighting,Platformer,Puzzle,RPG,Racing,Shooter,Simulation,Sports,Strategy 2 | Dreamcast,6.8828571428571435,7.51111111111111,6.281818181818181,8.2,8.34,8.088888888888889,7.7,7.0424999999999995,7.616666666666668,7.628571428571428,7.272222222222222,6.433333333333333 3 | Game Boy Advance,6.373076923076922,7.507692307692309,6.057142857142857,6.226315789473684,6.970588235294118,6.5321428571428575,7.542857142857143,6.6571428571428575,6.444444444444445,6.928571428571429,6.694444444444444,7.175000000000001 4 | Game Boy Color,6.2727272727272725,8.166666666666666,5.3076923076923075,4.5,6.352941176470588,6.583333333333333,7.285714285714286,5.897435897435898,4.5,5.9,5.790697674418604,7.4 5 | GameCube,6.5325842696629195,7.608333333333334,6.753846153846154,7.422222222222222,6.665714285714286,6.133333333333333,7.890909090909091,6.85263157894737,6.981818181818183,8.028571428571428,7.4813186813186805,7.116666666666667 6 | Nintendo 3DS,6.670833333333333,7.4818181818181815,7.414285714285713,6.614285714285714,7.50344827586207,7.999999999999999,7.71923076923077,6.9,7.033333333333332,7.7,6.388888888888889,7.900000000000001 7 | Nintendo 64,6.649056603773586,8.25,7.0,5.6812499999999995,6.889655172413795,7.461538461538462,6.050000000000001,6.939622641509434,8.042857142857143,5.675,6.967857142857146,6.9 8 | Nintendo DS,5.90360824742268,7.239999999999999,6.259803921568627,6.32,6.839999999999999,6.604615384615385,7.222619047619048,6.038636363636365,6.965217391304347,5.874358974358975,5.936666666666668,6.644736842105263 9 | Nintendo DSi,6.827027027027027,8.5,6.090909090909091,7.5,7.25,6.810526315789474,7.166666666666667,6.5636363636363635,6.5,5.195652173913044,5.644444444444444,6.566666666666667 10 | PC,6.805790645879736,7.334745762711864,7.13679775280899,7.166666666666667,7.4109375,6.924705882352943,7.759930313588847,7.032417582417583,7.0848780487804905,7.104888888888888,6.9024242424242415,7.310207336523128 11 | PlayStation,6.016406249999999,7.933333333333334,6.31372549019608,6.553731343283583,6.57906976744186,6.757894736842106,7.909999999999999,6.773387096774193,6.4239999999999995,6.918181818181818,6.751219512195119,6.496875 12 | PlayStation 2,6.467361111111114,7.249999999999999,6.315151515151516,7.306349206349208,7.06842105263158,6.354545454545455,7.473076923076923,6.585064935064935,6.6416666666666675,7.152631578947367,7.197826086956523,7.23888888888889 13 | PlayStation 3,6.853819444444444,7.306153846153846,6.820987654320987,7.710937500000001,7.735714285714285,7.3500000000000005,7.436111111111111,6.978571428571429,7.219553072625698,7.142857142857143,7.485815602836878,7.355172413793104 14 | PlayStation 4,7.55,7.8352941176470585,7.388571428571429,7.279999999999999,8.39090909090909,7.3999999999999995,7.944,7.589999999999999,7.804444444444443,9.25,7.4300000000000015,6.566666666666666 15 | PlayStation Portable,6.467796610169487,7.0,6.938095238095237,6.822222222222222,7.194736842105263,6.726666666666666,6.817777777777777,6.401960784313726,7.071052631578948,6.761538461538462,6.956790123456789,6.550000000000001 16 | PlayStation Vita,7.173076923076923,6.133333333333334,8.057142857142859,7.527272727272727,8.56875,8.25,7.3375,6.3,7.659999999999999,5.725,7.130000000000001,8.9 17 | Wii,6.262717770034842,7.294642857142857,6.23404255319149,6.733333333333333,7.054255319148935,6.426984126984126,7.410344827586206,5.011666666666668,6.47979797979798,6.327027027027026,5.9669014084507035,6.9750000000000005 18 | Wireless,7.041698841698844,7.3125,6.972413793103448,6.739999999999999,7.509090909090909,7.360550458715593,8.26,6.898305084745762,6.906779661016946,7.802857142857143,7.417699115044249,7.5428571428571445 19 | Xbox,6.819512195121949,7.4790322580645165,6.821428571428571,7.02962962962963,7.3034482758620705,5.125,8.277777777777779,7.021590909090909,7.485416666666668,7.155555555555556,7.884397163120564,7.3133333333333335 20 | Xbox 360,6.719047619047618,7.137837837837838,6.857352941176469,7.552238805970149,7.559574468085106,7.141025641025641,7.6499999999999995,6.996153846153845,7.338152610441768,7.325,7.31785714285714,7.112244897959185 21 | Xbox One,7.702857142857144,7.566666666666667,7.254545454545454,7.171428571428571,6.7333333333333325,8.1,8.291666666666666,8.163636363636364,8.019999999999998,7.733333333333333,7.331818181818182,8.5 22 | iPhone,6.865445026178009,7.764285714285714,7.745833333333334,6.0875,7.471929824561404,7.810784313725489,7.185185185185185,7.315789473684211,6.995588235294116,7.328571428571428,7.1521739130434785,7.534920634920634 23 | -------------------------------------------------------------------------------- /Day-17/data/museum_visitors.csv: -------------------------------------------------------------------------------- 1 | Date,Avila Adobe,Firehouse Museum,Chinese American Museum,America Tropical Interpretive Center 2 | 2014-01-01,24778,4486,1581,6602 3 | 2014-02-01,18976,4172,1785,5029 4 | 2014-03-01,25231,7082,3229,8129 5 | 2014-04-01,26989,6756,2129,2824 6 | 2014-05-01,36883,10858,3676,10694 7 | 2014-06-01,29487,5751,2121,11036 8 | 2014-07-01,32378,5406,2239,13490 9 | 2014-08-01,37680,8619,1769,9139 10 | 2014-09-01,28473,61192,1073,5661 11 | 2014-10-01,27995,6488,1979,7356 12 | 2014-11-01,25691,4189,2404,9773 13 | 2014-12-01,18754,4339,1319,7184 14 | 2015-01-01,20438,3858,1823,6250 15 | 2015-02-01,15578,3742,1558,5907 16 | 2015-03-01,21297,5390,2336,9884 17 | 2015-04-01,26670,7000,3057,7254 18 | 2015-05-01,34383,12528,4009,13207 19 | 2015-06-01,30569,5377,2544,11102 20 | 2015-07-01,41242,6111,3057,11072 21 | 2015-08-01,30700,5383,2415,12096 22 | 2015-09-01,20967,5746,1398,6608 23 | 2015-10-01,29764,8882,2237,12524 24 | 2015-11-01,24483,6848,2850,6677 25 | 2015-12-01,21426,4502,2075,5967 26 | 2016-01-01,19659,4377,2150,6587 27 | 2016-02-01,17378,3675,2547,6955 28 | 2016-03-01,20322,6334,7702,9979 29 | 2016-04-01,24521,6509,3485,5113 30 | 2016-05-01,31728,9315,4565,7757 31 | 2016-06-01,23696,4918,3034,6751 32 | 2016-07-01,31689,5602,2776,12188 33 | 2016-08-01,25987,5181,2153,6245 34 | 2016-09-01,22897,4736,1754,6977 35 | 2016-10-01,25040,6145,2607,6282 36 | 2016-11-01,17760,3930,2248,6365 37 | 2016-12-01,20107,3911,2263,5223 38 | 2017-01-01,18792,3551,2531,4929 39 | 2017-02-01,14035,3491,2139,4493 40 | 2017-03-01,20680,5273,5966,6271 41 | 2017-04-01,25234,5320,3273,6685 42 | 2017-05-01,30029,8733,5585,7556 43 | 2017-06-01,22169,4862,2946,6818 44 | 2017-07-01,30831,5242,2939,8675 45 | 2017-08-01,27009,5379,1784,6212 46 | 2017-09-01,23403,4484,1704,4607 47 | 2017-10-01,22164,4822,2419,6097 48 | 2017-11-01,17629,4613,2685,6757 49 | 2017-12-01,18339,4448,2768,6780 50 | 2018-01-01,16265,3910,2477,5837 51 | 2018-02-01,14718,3306,2710,5705 52 | 2018-03-01,19001,5225,4529,4909 53 | 2018-04-01,18966,4535,2750,4650 54 | 2018-05-01,25173,8013,4960,5626 55 | 2018-06-01,22171,4635,2518,4694 56 | 2018-07-01,23136,4191,2620,4718 57 | 2018-08-01,20815,4866,2409,3891 58 | 2018-09-01,21020,4956,2146,3180 59 | 2018-10-01,19280,4622,2364,3775 60 | 2018-11-01,17163,4082,2385,4562 61 | -------------------------------------------------------------------------------- /Day-17/heatmap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Param302/100DaysOfCode-Python/44000a5ec5173c65c18810db68e11812baa2f0c4/Day-17/heatmap.png -------------------------------------------------------------------------------- /Day-17/readme.md: -------------------------------------------------------------------------------- 1 | # Day 17 of [#100DaysOfCode](https://twitter.com/Param3021/status/1538797665042980866) 2 | 3 | ## Task 4 | 1. Data Visualization on Seaborn (80%) 5 | 2. Linear Algebra (Determinants) (not done) 6 | 7 | # Resources 8 | - kaggle [Data Visualization Course](https://www.kaggle.com/learn/data-visualization) 9 | - - Chapter 2: [Line Charts](https://www.kaggle.com/code/alexisbcook/line-charts) - [My Notebook](https://www.kaggle.com/param302/exercise-hello-seaborn) 10 | - - Chapter 3: [Bar Charts and Heatmaps](https://www.kaggle.com/code/alexisbcook/bar-charts-and-heatmaps) - [My Notebook](https://www.kaggle.com/param302/exercise-bar-charts-and-heatmaps) 11 | - - Chapter 4: [Scatter Plots](https://www.kaggle.com/code/alexisbcook/scatter-plots) - [Notebook](https://www.kaggle.com/param302/exercise-scatter-plots) 12 | - FreeCodeCamp Data Analysis with Python project 3 [Medical Data Visualizer](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/medical-data-visualizer) 13 | 14 | ### Topics I have learnt 15 | 1. Seaborn 16 | - Line charts 17 | - Bar charts 18 | - Heatmaps 19 | - Scatter plots 20 | 2. Data Analysis project 21 | 22 | ### Software used 23 | - Jupyter Notebook 24 | - Python 3.10.2 25 | - Numpy 1.22.4 26 | - pandas 1.4.2 27 | - matplotlib 3.5.2 28 | - seaborn 0.11.2 29 | 30 | ### My Notebooks 31 | - [L2 - Line Charts.ipynb](./L2%20-%20Line%20Charts.ipynb) 32 | - [L3 - Bar Charts and Heatmaps.ipynb](./L3%20-%20Bar%20Charts%20and%20Heatmaps.ipynb) 33 | - [L4 - Scatter plots.ipynb](./L4%20-%20Scatter%20plots.ipynb) 34 | 35 | 36 | ### Conclusion: 37 | Today I learned how to plot line charts, bar charts, heatmaps, scatter plots in seaborn. Also completed FCC's Medical Data Visualizer project. 38 | 39 | 40 | 41 | -------------------------------------------------------------------------------- /Day-18/box_plot_box.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Param302/100DaysOfCode-Python/44000a5ec5173c65c18810db68e11812baa2f0c4/Day-18/box_plot_box.jpg -------------------------------------------------------------------------------- /Day-18/box_plot_median.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Param302/100DaysOfCode-Python/44000a5ec5173c65c18810db68e11812baa2f0c4/Day-18/box_plot_median.jpg -------------------------------------------------------------------------------- /Day-18/data/drug200.csv: -------------------------------------------------------------------------------- 1 | Age,Sex,BP,Cholesterol,Na_to_K,Drug 2 | 23,F,HIGH,HIGH,25.355,DrugY 3 | 47,M,LOW,HIGH,13.093,drugC 4 | 47,M,LOW,HIGH,10.114,drugC 5 | 28,F,NORMAL,HIGH,7.798,drugX 6 | 61,F,LOW,HIGH,18.043,DrugY 7 | 22,F,NORMAL,HIGH,8.607,drugX 8 | 49,F,NORMAL,HIGH,16.275,DrugY 9 | 41,M,LOW,HIGH,11.037,drugC 10 | 60,M,NORMAL,HIGH,15.171,DrugY 11 | 43,M,LOW,NORMAL,19.368,DrugY 12 | 47,F,LOW,HIGH,11.767,drugC 13 | 34,F,HIGH,NORMAL,19.199,DrugY 14 | 43,M,LOW,HIGH,15.376,DrugY 15 | 74,F,LOW,HIGH,20.942,DrugY 16 | 50,F,NORMAL,HIGH,12.703,drugX 17 | 16,F,HIGH,NORMAL,15.516,DrugY 18 | 69,M,LOW,NORMAL,11.455,drugX 19 | 43,M,HIGH,HIGH,13.972,drugA 20 | 23,M,LOW,HIGH,7.298,drugC 21 | 32,F,HIGH,NORMAL,25.974,DrugY 22 | 57,M,LOW,NORMAL,19.128,DrugY 23 | 63,M,NORMAL,HIGH,25.917,DrugY 24 | 47,M,LOW,NORMAL,30.568,DrugY 25 | 48,F,LOW,HIGH,15.036,DrugY 26 | 33,F,LOW,HIGH,33.486,DrugY 27 | 28,F,HIGH,NORMAL,18.809,DrugY 28 | 31,M,HIGH,HIGH,30.366,DrugY 29 | 49,F,NORMAL,NORMAL,9.381,drugX 30 | 39,F,LOW,NORMAL,22.697,DrugY 31 | 45,M,LOW,HIGH,17.951,DrugY 32 | 18,F,NORMAL,NORMAL,8.75,drugX 33 | 74,M,HIGH,HIGH,9.567,drugB 34 | 49,M,LOW,NORMAL,11.014,drugX 35 | 65,F,HIGH,NORMAL,31.876,DrugY 36 | 53,M,NORMAL,HIGH,14.133,drugX 37 | 46,M,NORMAL,NORMAL,7.285,drugX 38 | 32,M,HIGH,NORMAL,9.445,drugA 39 | 39,M,LOW,NORMAL,13.938,drugX 40 | 39,F,NORMAL,NORMAL,9.709,drugX 41 | 15,M,NORMAL,HIGH,9.084,drugX 42 | 73,F,NORMAL,HIGH,19.221,DrugY 43 | 58,F,HIGH,NORMAL,14.239,drugB 44 | 50,M,NORMAL,NORMAL,15.79,DrugY 45 | 23,M,NORMAL,HIGH,12.26,drugX 46 | 50,F,NORMAL,NORMAL,12.295,drugX 47 | 66,F,NORMAL,NORMAL,8.107,drugX 48 | 37,F,HIGH,HIGH,13.091,drugA 49 | 68,M,LOW,HIGH,10.291,drugC 50 | 23,M,NORMAL,HIGH,31.686,DrugY 51 | 28,F,LOW,HIGH,19.796,DrugY 52 | 58,F,HIGH,HIGH,19.416,DrugY 53 | 67,M,NORMAL,NORMAL,10.898,drugX 54 | 62,M,LOW,NORMAL,27.183,DrugY 55 | 24,F,HIGH,NORMAL,18.457,DrugY 56 | 68,F,HIGH,NORMAL,10.189,drugB 57 | 26,F,LOW,HIGH,14.16,drugC 58 | 65,M,HIGH,NORMAL,11.34,drugB 59 | 40,M,HIGH,HIGH,27.826,DrugY 60 | 60,M,NORMAL,NORMAL,10.091,drugX 61 | 34,M,HIGH,HIGH,18.703,DrugY 62 | 38,F,LOW,NORMAL,29.875,DrugY 63 | 24,M,HIGH,NORMAL,9.475,drugA 64 | 67,M,LOW,NORMAL,20.693,DrugY 65 | 45,M,LOW,NORMAL,8.37,drugX 66 | 60,F,HIGH,HIGH,13.303,drugB 67 | 68,F,NORMAL,NORMAL,27.05,DrugY 68 | 29,M,HIGH,HIGH,12.856,drugA 69 | 17,M,NORMAL,NORMAL,10.832,drugX 70 | 54,M,NORMAL,HIGH,24.658,DrugY 71 | 18,F,HIGH,NORMAL,24.276,DrugY 72 | 70,M,HIGH,HIGH,13.967,drugB 73 | 28,F,NORMAL,HIGH,19.675,DrugY 74 | 24,F,NORMAL,HIGH,10.605,drugX 75 | 41,F,NORMAL,NORMAL,22.905,DrugY 76 | 31,M,HIGH,NORMAL,17.069,DrugY 77 | 26,M,LOW,NORMAL,20.909,DrugY 78 | 36,F,HIGH,HIGH,11.198,drugA 79 | 26,F,HIGH,NORMAL,19.161,DrugY 80 | 19,F,HIGH,HIGH,13.313,drugA 81 | 32,F,LOW,NORMAL,10.84,drugX 82 | 60,M,HIGH,HIGH,13.934,drugB 83 | 64,M,NORMAL,HIGH,7.761,drugX 84 | 32,F,LOW,HIGH,9.712,drugC 85 | 38,F,HIGH,NORMAL,11.326,drugA 86 | 47,F,LOW,HIGH,10.067,drugC 87 | 59,M,HIGH,HIGH,13.935,drugB 88 | 51,F,NORMAL,HIGH,13.597,drugX 89 | 69,M,LOW,HIGH,15.478,DrugY 90 | 37,F,HIGH,NORMAL,23.091,DrugY 91 | 50,F,NORMAL,NORMAL,17.211,DrugY 92 | 62,M,NORMAL,HIGH,16.594,DrugY 93 | 41,M,HIGH,NORMAL,15.156,DrugY 94 | 29,F,HIGH,HIGH,29.45,DrugY 95 | 42,F,LOW,NORMAL,29.271,DrugY 96 | 56,M,LOW,HIGH,15.015,DrugY 97 | 36,M,LOW,NORMAL,11.424,drugX 98 | 58,F,LOW,HIGH,38.247,DrugY 99 | 56,F,HIGH,HIGH,25.395,DrugY 100 | 20,M,HIGH,NORMAL,35.639,DrugY 101 | 15,F,HIGH,NORMAL,16.725,DrugY 102 | 31,M,HIGH,NORMAL,11.871,drugA 103 | 45,F,HIGH,HIGH,12.854,drugA 104 | 28,F,LOW,HIGH,13.127,drugC 105 | 56,M,NORMAL,HIGH,8.966,drugX 106 | 22,M,HIGH,NORMAL,28.294,DrugY 107 | 37,M,LOW,NORMAL,8.968,drugX 108 | 22,M,NORMAL,HIGH,11.953,drugX 109 | 42,M,LOW,HIGH,20.013,DrugY 110 | 72,M,HIGH,NORMAL,9.677,drugB 111 | 23,M,NORMAL,HIGH,16.85,DrugY 112 | 50,M,HIGH,HIGH,7.49,drugA 113 | 47,F,NORMAL,NORMAL,6.683,drugX 114 | 35,M,LOW,NORMAL,9.17,drugX 115 | 65,F,LOW,NORMAL,13.769,drugX 116 | 20,F,NORMAL,NORMAL,9.281,drugX 117 | 51,M,HIGH,HIGH,18.295,DrugY 118 | 67,M,NORMAL,NORMAL,9.514,drugX 119 | 40,F,NORMAL,HIGH,10.103,drugX 120 | 32,F,HIGH,NORMAL,10.292,drugA 121 | 61,F,HIGH,HIGH,25.475,DrugY 122 | 28,M,NORMAL,HIGH,27.064,DrugY 123 | 15,M,HIGH,NORMAL,17.206,DrugY 124 | 34,M,NORMAL,HIGH,22.456,DrugY 125 | 36,F,NORMAL,HIGH,16.753,DrugY 126 | 53,F,HIGH,NORMAL,12.495,drugB 127 | 19,F,HIGH,NORMAL,25.969,DrugY 128 | 66,M,HIGH,HIGH,16.347,DrugY 129 | 35,M,NORMAL,NORMAL,7.845,drugX 130 | 47,M,LOW,NORMAL,33.542,DrugY 131 | 32,F,NORMAL,HIGH,7.477,drugX 132 | 70,F,NORMAL,HIGH,20.489,DrugY 133 | 52,M,LOW,NORMAL,32.922,DrugY 134 | 49,M,LOW,NORMAL,13.598,drugX 135 | 24,M,NORMAL,HIGH,25.786,DrugY 136 | 42,F,HIGH,HIGH,21.036,DrugY 137 | 74,M,LOW,NORMAL,11.939,drugX 138 | 55,F,HIGH,HIGH,10.977,drugB 139 | 35,F,HIGH,HIGH,12.894,drugA 140 | 51,M,HIGH,NORMAL,11.343,drugB 141 | 69,F,NORMAL,HIGH,10.065,drugX 142 | 49,M,HIGH,NORMAL,6.269,drugA 143 | 64,F,LOW,NORMAL,25.741,DrugY 144 | 60,M,HIGH,NORMAL,8.621,drugB 145 | 74,M,HIGH,NORMAL,15.436,DrugY 146 | 39,M,HIGH,HIGH,9.664,drugA 147 | 61,M,NORMAL,HIGH,9.443,drugX 148 | 37,F,LOW,NORMAL,12.006,drugX 149 | 26,F,HIGH,NORMAL,12.307,drugA 150 | 61,F,LOW,NORMAL,7.34,drugX 151 | 22,M,LOW,HIGH,8.151,drugC 152 | 49,M,HIGH,NORMAL,8.7,drugA 153 | 68,M,HIGH,HIGH,11.009,drugB 154 | 55,M,NORMAL,NORMAL,7.261,drugX 155 | 72,F,LOW,NORMAL,14.642,drugX 156 | 37,M,LOW,NORMAL,16.724,DrugY 157 | 49,M,LOW,HIGH,10.537,drugC 158 | 31,M,HIGH,NORMAL,11.227,drugA 159 | 53,M,LOW,HIGH,22.963,DrugY 160 | 59,F,LOW,HIGH,10.444,drugC 161 | 34,F,LOW,NORMAL,12.923,drugX 162 | 30,F,NORMAL,HIGH,10.443,drugX 163 | 57,F,HIGH,NORMAL,9.945,drugB 164 | 43,M,NORMAL,NORMAL,12.859,drugX 165 | 21,F,HIGH,NORMAL,28.632,DrugY 166 | 16,M,HIGH,NORMAL,19.007,DrugY 167 | 38,M,LOW,HIGH,18.295,DrugY 168 | 58,F,LOW,HIGH,26.645,DrugY 169 | 57,F,NORMAL,HIGH,14.216,drugX 170 | 51,F,LOW,NORMAL,23.003,DrugY 171 | 20,F,HIGH,HIGH,11.262,drugA 172 | 28,F,NORMAL,HIGH,12.879,drugX 173 | 45,M,LOW,NORMAL,10.017,drugX 174 | 39,F,NORMAL,NORMAL,17.225,DrugY 175 | 41,F,LOW,NORMAL,18.739,DrugY 176 | 42,M,HIGH,NORMAL,12.766,drugA 177 | 73,F,HIGH,HIGH,18.348,DrugY 178 | 48,M,HIGH,NORMAL,10.446,drugA 179 | 25,M,NORMAL,HIGH,19.011,DrugY 180 | 39,M,NORMAL,HIGH,15.969,DrugY 181 | 67,F,NORMAL,HIGH,15.891,DrugY 182 | 22,F,HIGH,NORMAL,22.818,DrugY 183 | 59,F,NORMAL,HIGH,13.884,drugX 184 | 20,F,LOW,NORMAL,11.686,drugX 185 | 36,F,HIGH,NORMAL,15.49,DrugY 186 | 18,F,HIGH,HIGH,37.188,DrugY 187 | 57,F,NORMAL,NORMAL,25.893,DrugY 188 | 70,M,HIGH,HIGH,9.849,drugB 189 | 47,M,HIGH,HIGH,10.403,drugA 190 | 65,M,HIGH,NORMAL,34.997,DrugY 191 | 64,M,HIGH,NORMAL,20.932,DrugY 192 | 58,M,HIGH,HIGH,18.991,DrugY 193 | 23,M,HIGH,HIGH,8.011,drugA 194 | 72,M,LOW,HIGH,16.31,DrugY 195 | 72,M,LOW,HIGH,6.769,drugC 196 | 46,F,HIGH,HIGH,34.686,DrugY 197 | 56,F,LOW,HIGH,11.567,drugC 198 | 16,M,LOW,HIGH,12.006,drugC 199 | 52,M,NORMAL,HIGH,9.894,drugX 200 | 23,M,NORMAL,NORMAL,14.02,drugX 201 | 40,F,LOW,NORMAL,11.349,drugX 202 | -------------------------------------------------------------------------------- /Day-18/data/iris.csv: -------------------------------------------------------------------------------- 1 | Id,Sepal Length (cm),Sepal Width (cm),Petal Length (cm),Petal Width (cm),Species 2 | 1,5.1,3.5,1.4,0.2,Iris-setosa 3 | 2,4.9,3.0,1.4,0.2,Iris-setosa 4 | 3,4.7,3.2,1.3,0.2,Iris-setosa 5 | 4,4.6,3.1,1.5,0.2,Iris-setosa 6 | 5,5.0,3.6,1.4,0.2,Iris-setosa 7 | 6,5.4,3.9,1.7,0.4,Iris-setosa 8 | 7,4.6,3.4,1.4,0.3,Iris-setosa 9 | 8,5.0,3.4,1.5,0.2,Iris-setosa 10 | 9,4.4,2.9,1.4,0.2,Iris-setosa 11 | 10,4.9,3.1,1.5,0.1,Iris-setosa 12 | 11,5.4,3.7,1.5,0.2,Iris-setosa 13 | 12,4.8,3.4,1.6,0.2,Iris-setosa 14 | 13,4.8,3.0,1.4,0.1,Iris-setosa 15 | 14,4.3,3.0,1.1,0.1,Iris-setosa 16 | 15,5.8,4.0,1.2,0.2,Iris-setosa 17 | 16,5.7,4.4,1.5,0.4,Iris-setosa 18 | 17,5.4,3.9,1.3,0.4,Iris-setosa 19 | 18,5.1,3.5,1.4,0.3,Iris-setosa 20 | 19,5.7,3.8,1.7,0.3,Iris-setosa 21 | 20,5.1,3.8,1.5,0.3,Iris-setosa 22 | 21,5.4,3.4,1.7,0.2,Iris-setosa 23 | 22,5.1,3.7,1.5,0.4,Iris-setosa 24 | 23,4.6,3.6,1.0,0.2,Iris-setosa 25 | 24,5.1,3.3,1.7,0.5,Iris-setosa 26 | 25,4.8,3.4,1.9,0.2,Iris-setosa 27 | 26,5.0,3.0,1.6,0.2,Iris-setosa 28 | 27,5.0,3.4,1.6,0.4,Iris-setosa 29 | 28,5.2,3.5,1.5,0.2,Iris-setosa 30 | 29,5.2,3.4,1.4,0.2,Iris-setosa 31 | 30,4.7,3.2,1.6,0.2,Iris-setosa 32 | 31,4.8,3.1,1.6,0.2,Iris-setosa 33 | 32,5.4,3.4,1.5,0.4,Iris-setosa 34 | 33,5.2,4.1,1.5,0.1,Iris-setosa 35 | 34,5.5,4.2,1.4,0.2,Iris-setosa 36 | 35,4.9,3.1,1.5,0.1,Iris-setosa 37 | 36,5.0,3.2,1.2,0.2,Iris-setosa 38 | 37,5.5,3.5,1.3,0.2,Iris-setosa 39 | 38,4.9,3.1,1.5,0.1,Iris-setosa 40 | 39,4.4,3.0,1.3,0.2,Iris-setosa 41 | 40,5.1,3.4,1.5,0.2,Iris-setosa 42 | 41,5.0,3.5,1.3,0.3,Iris-setosa 43 | 42,4.5,2.3,1.3,0.3,Iris-setosa 44 | 43,4.4,3.2,1.3,0.2,Iris-setosa 45 | 44,5.0,3.5,1.6,0.6,Iris-setosa 46 | 45,5.1,3.8,1.9,0.4,Iris-setosa 47 | 46,4.8,3.0,1.4,0.3,Iris-setosa 48 | 47,5.1,3.8,1.6,0.2,Iris-setosa 49 | 48,4.6,3.2,1.4,0.2,Iris-setosa 50 | 49,5.3,3.7,1.5,0.2,Iris-setosa 51 | 50,5.0,3.3,1.4,0.2,Iris-setosa 52 | 51,7.0,3.2,4.7,1.4,Iris-versicolor 53 | 52,6.4,3.2,4.5,1.5,Iris-versicolor 54 | 53,6.9,3.1,4.9,1.5,Iris-versicolor 55 | 54,5.5,2.3,4.0,1.3,Iris-versicolor 56 | 55,6.5,2.8,4.6,1.5,Iris-versicolor 57 | 56,5.7,2.8,4.5,1.3,Iris-versicolor 58 | 57,6.3,3.3,4.7,1.6,Iris-versicolor 59 | 58,4.9,2.4,3.3,1.0,Iris-versicolor 60 | 59,6.6,2.9,4.6,1.3,Iris-versicolor 61 | 60,5.2,2.7,3.9,1.4,Iris-versicolor 62 | 61,5.0,2.0,3.5,1.0,Iris-versicolor 63 | 62,5.9,3.0,4.2,1.5,Iris-versicolor 64 | 63,6.0,2.2,4.0,1.0,Iris-versicolor 65 | 64,6.1,2.9,4.7,1.4,Iris-versicolor 66 | 65,5.6,2.9,3.6,1.3,Iris-versicolor 67 | 66,6.7,3.1,4.4,1.4,Iris-versicolor 68 | 67,5.6,3.0,4.5,1.5,Iris-versicolor 69 | 68,5.8,2.7,4.1,1.0,Iris-versicolor 70 | 69,6.2,2.2,4.5,1.5,Iris-versicolor 71 | 70,5.6,2.5,3.9,1.1,Iris-versicolor 72 | 71,5.9,3.2,4.8,1.8,Iris-versicolor 73 | 72,6.1,2.8,4.0,1.3,Iris-versicolor 74 | 73,6.3,2.5,4.9,1.5,Iris-versicolor 75 | 74,6.1,2.8,4.7,1.2,Iris-versicolor 76 | 75,6.4,2.9,4.3,1.3,Iris-versicolor 77 | 76,6.6,3.0,4.4,1.4,Iris-versicolor 78 | 77,6.8,2.8,4.8,1.4,Iris-versicolor 79 | 78,6.7,3.0,5.0,1.7,Iris-versicolor 80 | 79,6.0,2.9,4.5,1.5,Iris-versicolor 81 | 80,5.7,2.6,3.5,1.0,Iris-versicolor 82 | 81,5.5,2.4,3.8,1.1,Iris-versicolor 83 | 82,5.5,2.4,3.7,1.0,Iris-versicolor 84 | 83,5.8,2.7,3.9,1.2,Iris-versicolor 85 | 84,6.0,2.7,5.1,1.6,Iris-versicolor 86 | 85,5.4,3.0,4.5,1.5,Iris-versicolor 87 | 86,6.0,3.4,4.5,1.6,Iris-versicolor 88 | 87,6.7,3.1,4.7,1.5,Iris-versicolor 89 | 88,6.3,2.3,4.4,1.3,Iris-versicolor 90 | 89,5.6,3.0,4.1,1.3,Iris-versicolor 91 | 90,5.5,2.5,4.0,1.3,Iris-versicolor 92 | 91,5.5,2.6,4.4,1.2,Iris-versicolor 93 | 92,6.1,3.0,4.6,1.4,Iris-versicolor 94 | 93,5.8,2.6,4.0,1.2,Iris-versicolor 95 | 94,5.0,2.3,3.3,1.0,Iris-versicolor 96 | 95,5.6,2.7,4.2,1.3,Iris-versicolor 97 | 96,5.7,3.0,4.2,1.2,Iris-versicolor 98 | 97,5.7,2.9,4.2,1.3,Iris-versicolor 99 | 98,6.2,2.9,4.3,1.3,Iris-versicolor 100 | 99,5.1,2.5,3.0,1.1,Iris-versicolor 101 | 100,5.7,2.8,4.1,1.3,Iris-versicolor 102 | 101,6.3,3.3,6.0,2.5,Iris-virginica 103 | 102,5.8,2.7,5.1,1.9,Iris-virginica 104 | 103,7.1,3.0,5.9,2.1,Iris-virginica 105 | 104,6.3,2.9,5.6,1.8,Iris-virginica 106 | 105,6.5,3.0,5.8,2.2,Iris-virginica 107 | 106,7.6,3.0,6.6,2.1,Iris-virginica 108 | 107,4.9,2.5,4.5,1.7,Iris-virginica 109 | 108,7.3,2.9,6.3,1.8,Iris-virginica 110 | 109,6.7,2.5,5.8,1.8,Iris-virginica 111 | 110,7.2,3.6,6.1,2.5,Iris-virginica 112 | 111,6.5,3.2,5.1,2.0,Iris-virginica 113 | 112,6.4,2.7,5.3,1.9,Iris-virginica 114 | 113,6.8,3.0,5.5,2.1,Iris-virginica 115 | 114,5.7,2.5,5.0,2.0,Iris-virginica 116 | 115,5.8,2.8,5.1,2.4,Iris-virginica 117 | 116,6.4,3.2,5.3,2.3,Iris-virginica 118 | 117,6.5,3.0,5.5,1.8,Iris-virginica 119 | 118,7.7,3.8,6.7,2.2,Iris-virginica 120 | 119,7.7,2.6,6.9,2.3,Iris-virginica 121 | 120,6.0,2.2,5.0,1.5,Iris-virginica 122 | 121,6.9,3.2,5.7,2.3,Iris-virginica 123 | 122,5.6,2.8,4.9,2.0,Iris-virginica 124 | 123,7.7,2.8,6.7,2.0,Iris-virginica 125 | 124,6.3,2.7,4.9,1.8,Iris-virginica 126 | 125,6.7,3.3,5.7,2.1,Iris-virginica 127 | 126,7.2,3.2,6.0,1.8,Iris-virginica 128 | 127,6.2,2.8,4.8,1.8,Iris-virginica 129 | 128,6.1,3.0,4.9,1.8,Iris-virginica 130 | 129,6.4,2.8,5.6,2.1,Iris-virginica 131 | 130,7.2,3.0,5.8,1.6,Iris-virginica 132 | 131,7.4,2.8,6.1,1.9,Iris-virginica 133 | 132,7.9,3.8,6.4,2.0,Iris-virginica 134 | 133,6.4,2.8,5.6,2.2,Iris-virginica 135 | 134,6.3,2.8,5.1,1.5,Iris-virginica 136 | 135,6.1,2.6,5.6,1.4,Iris-virginica 137 | 136,7.7,3.0,6.1,2.3,Iris-virginica 138 | 137,6.3,3.4,5.6,2.4,Iris-virginica 139 | 138,6.4,3.1,5.5,1.8,Iris-virginica 140 | 139,6.0,3.0,4.8,1.8,Iris-virginica 141 | 140,6.9,3.1,5.4,2.1,Iris-virginica 142 | 141,6.7,3.1,5.6,2.4,Iris-virginica 143 | 142,6.9,3.1,5.1,2.3,Iris-virginica 144 | 143,5.8,2.7,5.1,1.9,Iris-virginica 145 | 144,6.8,3.2,5.9,2.3,Iris-virginica 146 | 145,6.7,3.3,5.7,2.5,Iris-virginica 147 | 146,6.7,3.0,5.2,2.3,Iris-virginica 148 | 147,6.3,2.5,5.0,1.9,Iris-virginica 149 | 148,6.5,3.0,5.2,2.0,Iris-virginica 150 | 149,6.2,3.4,5.4,2.3,Iris-virginica 151 | 150,5.9,3.0,5.1,1.8,Iris-virginica 152 | -------------------------------------------------------------------------------- /Day-18/readme.md: -------------------------------------------------------------------------------- 1 | # Day 18 of [#100DaysOfCode](https://twitter.com/Param3021/status/1539153638094159872) 2 | 3 | ## Task 4 | 1. Data Visualization on Seaborn 5 | 2. Data analysis 6 | 7 | # Resources 8 | - kaggle [Data Visualization Course](https://www.kaggle.com/learn/data-visualization) 9 | - - Chapter 5: [Distributions (Histograms & KDE plots)](https://www.kaggle.com/code/alexisbcook/distributions) - [My Notebook](https://www.kaggle.com/param302/exercise-distributions) 10 | - - Chapter 6: [Choosing plot types and custom styles](https://www.kaggle.com/code/alexisbcook/choosing-plot-types-and-custom-styles) - [My Notebook](https://www.kaggle.com/param302/exercise-choosing-plot-types-and-custom-styles) 11 | - - Chapter 7: [Final Project](https://www.kaggle.com/code/alexisbcook/final-project) - [My Notebook](https://www.kaggle.com/code/param302/exercise-final-project) 12 | - Box Plots in Seaborn by @akshay_pachaar [Tweet](https://twitter.com/akshay_pachaar/status/1538823345625395207), StatQuest with Josh Starmer - [Boxplots are Awesome](https://www.youtube.com/watch?v=fHLhBnmwUM0) Video and Seaborn [boxplot](https://seaborn.pydata.org/generated/seaborn.boxplot.html) docs 13 | - FreeCodeCamp Data Analysis with Python project 4 [Page View Time Series Analyzer](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/page-view-time-series-visualizer) 14 | 15 | ### Topics I have learnt 16 | 1. Seaborn 17 | - Histograms 18 | - KDE plots 19 | - Custom plot styles in Seaborn & Choosing right plot for the situation 20 | 2. Data Analysis 21 | - Kaggle's Data Visualization course Final project upon Drug Classification 22 | - FreeCodeCamp's Data Analysis with Python project 4 23 | 24 | ### Software used 25 | - Jupyter Notebook 26 | - Python 3.10.2 27 | - Numpy 1.22.4 28 | - pandas 1.4.2 29 | - matplotlib 3.5.2 30 | - seaborn 0.11.2 31 | 32 | ### My Notebooks 33 | - [L5 - Distributions (histograms & KDE).ipynb](./L5%20-%20Distributions%20(histograms%20&%20KDE).ipynb) 34 | - [L6 - Choosing plot types and custom styles.ipynb](./L6%20-%20-Choosing%20plot%20types%20and%20custom%20styles.ipynb) 35 | - [L7 - Final project](./L7%20-%20Final%20project.ipynb) 36 | 37 | 38 | ### Conclusion: 39 | Today I learned how to plot Histograms, KDE plots and how to choose right plot based upon data and changing seaborn styles. Also did data analysis on FCC's Page View Time Series Visualizer project and some on Drug Classification dataset. 40 | -------------------------------------------------------------------------------- /Day-19/readme.md: -------------------------------------------------------------------------------- 1 | # Day 19 of [#100DaysOfCode](https://twitter.com/Param3021/status/1539545151580041216) 2 | 3 | ## Task 4 | 1. Intro to Machine Learning Course 5 | 2. Intermediate Machine Learning Course (not done) 6 | 7 | # Resources 8 | - Kaggle's [Intro to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning) course 9 | - - Lesson 1: [How Models Work](https://www.kaggle.com/code/dansbecker/how-models-work) 10 | - - Lesson 2: [Basic Data Exploration](https://www.kaggle.com/code/dansbecker/basic-data-exploration) - [My Notebok](https://www.kaggle.com/param302/exercise-explore-your-data) 11 | - - Lesson 3: [Your First Machine Learning Model](https://www.kaggle.com/code/dansbecker/your-first-machine-learning-model) - [My Notebok](https://www.kaggle.com/param302/exercise-your-first-machine-learning-model) 12 | - - Lesson 4: [Model Validation](https://www.kaggle.com/code/dansbecker/model-validation) - [My Notebok](https://www.kaggle.com/param302/exercise-model-validation) 13 | - - Lesson 5: [Underfitting and Overfitting](https://www.kaggle.com/code/dansbecker/underfitting-and-overfitting) - [My Notebok](https://www.kaggle.com/param302/exercise-underfitting-and-overfitting) 14 | - - Lesson 6: [Random Forests](https://www.kaggle.com/code/dansbecker/random-forests) - [My Notebok](https://www.kaggle.com/param302/exercise-random-forests) 15 | - - Lesson 7: [Machine Learning Competition](https://www.kaggle.com/code/alexisbcook/machine-learning-competitions) - [My Notebok](https://www.kaggle.com/param302/exercise-machine-learning-competitions) 16 | 17 | - Kaggle [House price prediction Challenge](https://www.kaggle.com/competitions/home-data-for-ml-course/) 18 | - - [My Notebook](https://www.kaggle.com/param302/house-price-prediction-v1) 19 | 20 | ### Topics I have learnt 21 | 1. Intro to Machine Learning Course 22 | - How Models Work 23 | - Exploring data 24 | - Decision Trees (DecisionTreeRegressor) 25 | - Random Forest (RandomForestRegressor) 26 | - Overfitting and Underfitting data 27 | - Model Validation using MAE (mean absolute error) 28 | 2. Also did house price prediction 29 | 30 | ### Software used 31 | - Jupyter Notebook 32 | - Python 3.10.2 33 | - Numpy 1.22.4 34 | - pandas 1.4.2 35 | - scikit-learn 1.1.1 36 | 37 | ### My Notebooks 38 | - [L2 - Explore_your_data.ipynb](./L2%20-%20Explore_your_data.ipynb) 39 | - [L3 - Your_first_machine_learning_model.ipynb](./L3%20-%20Your_first_machine_learning_model.ipynb) 40 | - [L4 - Model_validation.ipynb](./L4%20-%20Model_validation.ipynb) 41 | - [L5 - Underfitting_and_Overfitting.ipynb](./L5%20-%20Underfitting_and_overfitting.ipynb) 42 | - [L6 - Random_forests.ipynb](./L6%20-%20Random_forests.ipynb) 43 | - [L7 - Machine_learning_competitions.ipynb](./L7%20-%20Machine_learning_competitions.ipynb) 44 | - [House_price_prediction_v1.ipynb](./House_price_prediction_v1.ipynb) 45 | 46 | 47 | ### Conclusion: 48 | Today I learned how models work - DecisionTreeRegressor, RandomForestRegressor, overfitting & underfitting data and model validation using MAE. Also did house price prediction. 49 | Actually I have done both Intro to ML and Intermediate ML course a year ago, but I forgot almost everything, so doing it again, now doing it seriously. 50 | Not did Intermediate ML course today, rather did some house price prediction on things which I have learnt. 51 | -------------------------------------------------------------------------------- /Day-2/Data_analysis_project_1.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# FreeCodeCamp Data Analysis with Python Course\n", 8 | "### Project 1: [Mean-Variance-Standard Deviation Calculator](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/mean-variance-standard-deviation-calculator)" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 1, 14 | "metadata": {}, 15 | "outputs": [], 16 | "source": [ 17 | "import numpy as np" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 2, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | "\"\"\"Answer format:\n", 27 | "{\n", 28 | " 'mean': [axis1, axis2, flattened],\n", 29 | " 'variance': [axis1, axis2, flattened],\n", 30 | " 'standard deviation': [axis1, axis2, flattened],\n", 31 | " 'max': [axis1, axis2, flattened],\n", 32 | " 'min': [axis1, axis2, flattened],\n", 33 | " 'sum': [axis1, axis2, flattened]\n", 34 | "}\"\"\"\n", 35 | "def calculate(arr):\n", 36 | " \"\"\"Convert array into 3x3 matrix.\n", 37 | " Calculate mean, variance, standard deviation, max, min, sum \n", 38 | " based on whole matrix, axis=0 (rows) & axis=1 (columns)\n", 39 | " \"\"\"\n", 40 | " # reshaping arr into matrix\n", 41 | " if len(arr) != 9:\n", 42 | " raise ValueError(\"List must contain nine numbers.\")\n", 43 | " \n", 44 | " matrix = np.array(arr).reshape(3, 3)\n", 45 | " # mean\n", 46 | " mean = np.mean(matrix)\n", 47 | " mean_0 = list(np.mean(matrix, axis=0))\n", 48 | " mean_1 = list(np.mean(matrix, axis=1))\n", 49 | " # variance\n", 50 | " variance = np.var(matrix)\n", 51 | " variance_0 = list(np.var(matrix, axis=0))\n", 52 | " variance_1 = list(np.var(matrix, axis=1))\n", 53 | " # standard deviation\n", 54 | " std = np.std(matrix)\n", 55 | " std_0 = list(np.std(matrix, axis=0))\n", 56 | " std_1 = list(np.std(matrix, axis=1))\n", 57 | " # max\n", 58 | " arr_max = matrix.max()\n", 59 | " max_0 = list(matrix.max(axis=0))\n", 60 | " max_1 = list(matrix.max(axis=1))\n", 61 | " # min\n", 62 | " arr_min = matrix.min()\n", 63 | " min_0 = list(matrix.min(axis=0))\n", 64 | " min_1 = list(matrix.min(axis=1))\n", 65 | " # sum\n", 66 | " arr_sum = matrix.sum()\n", 67 | " sum_0 = list(matrix.sum(axis=0))\n", 68 | " sum_1 = list(matrix.sum(axis=1))\n", 69 | "\n", 70 | " calculations = {\n", 71 | " \"mean\" : [mean_0, mean_1, mean],\n", 72 | " \"variance\" : [variance_0, variance_1, variance],\n", 73 | " \"standard deviation\" : [std_0, std_1, std],\n", 74 | " \"max\" : [max_0, max_1, arr_max],\n", 75 | " \"min\" : [min_0, min_1, arr_min],\n", 76 | " \"sum\" : [sum_0, sum_1, arr_sum]\n", 77 | " }\n", 78 | " \n", 79 | " return calculations" 80 | ] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "execution_count": 3, 85 | "metadata": {}, 86 | "outputs": [ 87 | { 88 | "data": { 89 | "text/plain": [ 90 | "{'mean': [[3.0, 4.0, 5.0], [1.0, 4.0, 7.0], 4.0],\n", 91 | " 'variance': [[6.0, 6.0, 6.0],\n", 92 | " [0.6666666666666666, 0.6666666666666666, 0.6666666666666666],\n", 93 | " 6.666666666666667],\n", 94 | " 'standard deviation': [[2.449489742783178,\n", 95 | " 2.449489742783178,\n", 96 | " 2.449489742783178],\n", 97 | " [0.816496580927726, 0.816496580927726, 0.816496580927726],\n", 98 | " 2.581988897471611],\n", 99 | " 'max': [[6, 7, 8], [2, 5, 8], 8],\n", 100 | " 'min': [[0, 1, 2], [0, 3, 6], 0],\n", 101 | " 'sum': [[9, 12, 15], [3, 12, 21], 36]}" 102 | ] 103 | }, 104 | "execution_count": 3, 105 | "metadata": {}, 106 | "output_type": "execute_result" 107 | } 108 | ], 109 | "source": [ 110 | "\"\"\"Answer:\n", 111 | "{\n", 112 | " 'mean': [[3.0, 4.0, 5.0], [1.0, 4.0, 7.0], 4.0],\n", 113 | " 'variance': [[6.0, 6.0, 6.0], [0.6666666666666666, 0.6666666666666666, 0.6666666666666666], 6.666666666666667],\n", 114 | " 'standard deviation': [[2.449489742783178, 2.449489742783178, 2.449489742783178], [0.816496580927726, 0.816496580927726, 0.816496580927726], 2.581988897471611],\n", 115 | " 'max': [[6, 7, 8], [2, 5, 8], 8],\n", 116 | " 'min': [[0, 1, 2], [0, 3, 6], 0],\n", 117 | " 'sum': [[9, 12, 15], [3, 12, 21], 36]\n", 118 | "}\"\"\"\n", 119 | "calculate([0,1,2,3,4,5,6,7,8])" 120 | ] 121 | } 122 | ], 123 | "metadata": { 124 | "interpreter": { 125 | "hash": "d88aeb6bf73c3e2735560d04f72b234e9e70c0b4c2e9aa8924f896649b343841" 126 | }, 127 | "kernelspec": { 128 | "display_name": "Python 3.10.2 64-bit", 129 | "language": "python", 130 | "name": "python3" 131 | }, 132 | "language_info": { 133 | "codemirror_mode": { 134 | "name": "ipython", 135 | "version": 3 136 | }, 137 | "file_extension": ".py", 138 | "mimetype": "text/x-python", 139 | "name": "python", 140 | "nbconvert_exporter": "python", 141 | "pygments_lexer": "ipython3", 142 | "version": "3.10.2" 143 | }, 144 | "orig_nbformat": 4 145 | }, 146 | "nbformat": 4, 147 | "nbformat_minor": 2 148 | } 149 | -------------------------------------------------------------------------------- /Day-2/readme.md: -------------------------------------------------------------------------------- 1 | # Day 2 of [#100DaysOfCode](https://twitter.com/Param3021/status/1532218403754496002?s=20&t=nDDm68WQNwG12Y2JdK2pxw) 2 | 3 | ## Task 4 | - Learn Pandas 5 | - Learn Linear Algebra (not done) 6 | 7 | # Resources 8 | - Python Pandas Tutorial Playlist by Corey Schafer YT channel: ([Playlist link](https://www.youtube.com/playlist?list=PL-osiE80TeTsWmV9i9c58mdDCSskIFdDS)) 9 | - Stack Overflow Developer Survey 2021 ([link]((https://insights.stackoverflow.com/survey))) 10 | - FreeCodeCamp Data Anlysis with Python Project - 1 [Mean-Variance-Standard Deviation Calculator](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/mean-variance-standard-deviation-calculator) 11 | 12 | ### Software used 13 | - Jupyter Notebook 14 | - Python 3.10.2 15 | - Numpy 1.22.4 16 | - pandas 1.4.2 17 | 18 | ### My Notebooks 19 | - [Pandas_tutorial_part_5.ipynb](./Pandas_tutorial_part_5.ipynb) 20 | - [Pandas_tutorial_part_6.ipynb](./Pandas_tutorial_part_6.ipynb) 21 | - [Pandas_tutorial_part_7.ipynb](./Pandas_tutorial_part_7.ipynb) 22 | - [Data_analysis_project_1.ipynb](./Data_analysis_project_1.ipynb) 23 | 24 | ### Topics I have learnt 25 | 1. Updating Rows & Columns 26 | 2. Adding Rows & Columns 27 | 3. Sorting Data 28 | 4. Data analysis project on *Mean-Variance-Standard Deviation Calculator* 29 | 30 | ### Conclusion: 31 | Today I learnt how to add, modify and sort the data in pandas. Also did a Data analysis project on "Mean-Variance-Standard Deviation Calculator" from FreeCodeCamp but didn't started mathematics. 32 | -------------------------------------------------------------------------------- /Day-20/readme.md: -------------------------------------------------------------------------------- 1 | # Day 20 of [#100DaysOfCode](https://twitter.com/Param3021/status/1539895073093353472) 2 | 3 | ## Task 4 | 1. Intermediate Machine Learning Course (40% done) 5 | 2. House price prediction 6 | 7 | # Resources 8 | - Kaggle's [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning) course 9 | - - Lesson 1: [Introduction](https://www.kaggle.com/code/alexisbcook/introduction) - [My Notebook](https://www.kaggle.com/code/param302/exercise-introduction/) 10 | - - Lesson 2: [Missing Values](https://www.kaggle.com/code/alexisbcook/missing-values) - [My Notebook](https://www.kaggle.com/code/param302/exercise-missing-values) 11 | - Lesson 3: [Categorical Variables](https://www.kaggle.com/code/alexisbcook/categorical-variables) - [My Notebook](https://www.kaggle.com/code/param302/exercise-categorical-variables) 12 | 13 | - Kaggle [House price prediction Challenge](https://www.kaggle.com/competitions/home-data-for-ml-course/) 14 | - - [My Notebook 1](./House_price_prediction_2.ipynb) 15 | - - [My Notebook 2](./House_price_prediction_3.ipynb) 16 | - - [My Notebook 3](https://www.kaggle.com/code/param302/exercise-categorical-variables) 17 | 18 | ### Topics I have learnt 19 | 1. Intermediate Machine Learning Course 20 | - Handling Missing values in data 21 | - - by dropping columns 22 | - - by imputing the mean values of the columns 23 | - - by imputing the mean values and adding another column having True/False for respected imputed values 24 | - Handling Categorical columns in data 25 | - - by dropping categorical columns 26 | - - Changing them to numbers using **Ordinal Encoder** 27 | - - Creating each numerical column for every unique value using **One Hot Encoding** 28 | 2. Also House price prediction 29 | - One by dropping missing columns using `DecisionTreeRegressor`. 30 | - One by dropping missing columns using `RandomForestRegressor`. 31 | - One by Imputing missing values, doing Ordinal Encoding using `RandomForestRegressor`. 32 | 33 | ### Software used 34 | - Jupyter Notebook 35 | - Python 3.10.2 36 | - Numpy 1.22.4 37 | - pandas 1.4.2 38 | - scikit-learn 1.1.1 39 | 40 | ### My Notebooks 41 | - [L1 - Introduction.ipynb](./L1%20-%20Introduction.ipynb) 42 | - [L2 - Missing_values.ipynb](./L2%20-%20Missing_values.ipynb) 43 | - [L3 - Categorical_variables.ipynb](./L4%20-%20Categorical_variables.ipynb) 44 | - [House_price_prediction_2.ipynb](./House_price_prediction_2.ipynb) 45 | - [House_price_prediction_3.ipynb](./House_price_prediction_3.ipynb) 46 | - [House_price_prediction_4.ipynb](https://www.kaggle.com/code/param302/exercise-categorical-variables) 47 | 48 | ### Conclusion: 49 | Today I learned how to handle misisng values using SimpleImputer and categorical columns using One Hot Encoding & Ordinal Encoding. Also, did house price prediction using `DecisionTreeRegressor` and `RandomForestRegressor` applied imputer & ordinal encoding too. Today was great!!! 50 | -------------------------------------------------------------------------------- /Day-21/readme.md: -------------------------------------------------------------------------------- 1 | # Day 21 of [#100DaysOfCode](https://twitter.com/Param3021/status/1540276365777580032) 2 | 3 | ## Task 4 | 1. Intermediate Machine Learning Course 5 | 2. House price prediction 6 | 7 | # Resources 8 | - Kaggle's [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning) course 9 | - - Lesson 4: [Pipelines](https://www.kaggle.com/code/alexisbcook/pipelines) - [My Notebook](https://www.kaggle.com/code/param302/exercise-pipelines) 10 | - - Lesson 5: [Cross Validation](https://www.kaggle.com/code/alexisbcook/cross-validation) - [My Notebook](https://www.kaggle.com/code/param302/exercise-cross-validation) 11 | - - Lesson 6: [XGBoost](https://www.kaggle.com/code/alexisbcook/xgboost) - [My Notebook](https://www.kaggle.com/code/param302/exercise-xgboost) 12 | - - Lesson 7: [Data Leakage](https://www.kaggle.com/code/alexisbcook/data-leakage) - [My Notebook](https://www.kaggle.com/code/param302/exercise-data-leakage) 13 | 14 | - Kaggle [House price prediction Challenge](https://www.kaggle.com/competitions/home-data-for-ml-course/) 15 | - - [My Notebook 1](./House_price_prediction_4.ipynb) 16 | - - [My Notebook 2](https://www.kaggle.com/code/param302/house-price-prediction-5) 17 | - - [My Notebook 3](https://www.kaggle.com/code/param302/house-price-prediction-6) 18 | 19 | ### Topics I have learnt 20 | 1. Intermediate Machine Learning Course 21 | - Using Pipelines to write structural code 22 | - Cross validation using `cross_val_score`, (use when data is less, takes more time than `train_test_split`) 23 | - XGBoost using `XtremeGradientRegressor` aka `XGBRegressor` 24 | - Data Leakage, how to handle data leakage 25 | 2. House price prediction 26 | - One by Imputing missing values, doing Ordinal Encoding using `RandomForestRegressor`. 27 | - One mostly same as above but used more features 28 | - One using `Cross Validation` and `Pipelines` with `RandomForestRegressor`. 29 | 30 | ### Software used 31 | - Jupyter Notebook 32 | - Python 3.10.2 33 | - Numpy 1.22.4 34 | - pandas 1.4.2 35 | - Matplotlib 3.5.2 36 | - Seaborn 0.11.2 37 | - scikit-learn 1.1.1 38 | - XGBoost 1.6.1 39 | 40 | ### My Notebooks 41 | - [L4 - Pipelines.ipynb](./L4%20-%20Pipelines.ipynb) 42 | - [L5 - Cross_validation.ipynb](./L5%20-%20Cross_validation.ipynb) 43 | - [L6 - XGBoost.ipynb](./L6%20-%20XGBoost.ipynb) 44 | - [L7 - Data_leakage.ipynb](./L7%20-%20Data_leakage.ipynb) 45 | - [House_price_prediction_4.ipynb](./House_price_prediction_4.ipynb) 46 | - [House_price_prediction_5.ipynb](./House_price_prediction_5.ipynb) 47 | - [House_price_prediction_6.ipynb](./House_price_prediction_6.ipynb) 48 | 49 | ### Conclusion: 50 | Today I learned how to use pipelines to write cleaner code, cross validation using cross_val_score, XGBRegressor and how to handle data(Target) leakage and train_test_contamination. Also, did house price prediction using cross validation. 51 | -------------------------------------------------------------------------------- /Day-22/readme.md: -------------------------------------------------------------------------------- 1 | # Day 22 of [#100DaysOfCode](https://twitter.com/Param3021/status/1540665095495520256) 2 | 3 | ## Task 4 | 1. Linear Algebra 5 | 2. Statistics for ML (not done) 6 | 3. House price prediction 7 | 8 | # Resources 9 | - 3 Blue 1 Brown [Linear Aglebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) playlist 10 | - Linear Algebra notes [link](https://hacobe.github.io/notes/linear_algebra_3blue1brown.html) 11 | - Kaggle [House price prediction Challenge](https://www.kaggle.com/competitions/home-data-for-ml-course/) 12 | - - [My Notebook 1](https://www.kaggle.com/code/param302/house-price-prediction-7) 13 | - - [My Notebook 2](https://www.kaggle.com/code/param302/house-price-prediction-8) 14 | 15 | ### Topics I have learnt 16 | 1. Linear Algebra 17 | - 3-d Linear Transformations 18 | - Determinants 19 | 2. House price prediction 20 | - One with 50 features using `XGBRegressor` 21 | - One with data cleaning (removed outliers) & 41 features using `XGBRegressor` 22 | 23 | ### Software used 24 | - Jupyter Notebook 25 | - Python 3.10.2 26 | - Numpy 1.22.4 27 | - pandas 1.4.2 28 | - Matplotlib 3.5.2 29 | - Seaborn 0.11.2 30 | - scikit-learn 1.1.1 31 | - XGBoost 1.6.1 32 | 33 | ### My Notebooks 34 | - [House_price_prediction_7.ipynb](./House_price_prediction_7.ipynb) 35 | - [House_price_prediction_8.ipynb](./House_price_prediction_8.ipynb) 36 | 37 | ### Conclusion: 38 | Today I learned about 3-d linear transformations and determinants. Also did house price prediction using XGBRegressor. 39 | -------------------------------------------------------------------------------- /Day-23/readme.md: -------------------------------------------------------------------------------- 1 | # Day 23 of [#100DaysOfCode](https://twitter.com/Param3021/status/1541008865059565568) 2 | 3 | ## Task 4 | 1. Statistics for ML 5 | 2. House price prediction 6 | 7 | # Resources 8 | - StatQuest with Josh Starmer [Machine Learning](https://www.youtube.com/playlist?list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF) Playlist 9 | - Kaggle [House price prediction Challenge](https://www.kaggle.com/competitions/home-data-for-ml-course/) 10 | - - [My Notebook 1](https://www.kaggle.com/code/param302/house-price-prediction-9) 11 | - - [My Notebook 2](https://www.kaggle.com/code/param302/house-price-prediction-10) 12 | 13 | ### Topics I have learnt 14 | 1. Statistics for ML 15 | - ML Intro 16 | - Cross Validation 17 | - The Confusion Matrix 18 | - Senstivity and Specificity 19 | 2. House price prediction 20 | - Used `XGBRegressor`, `cross-validation` & `OrdinalEncoding` 21 | 22 | 23 | ### Software used 24 | - Jupyter Notebook 25 | - Python 3.10.2 26 | - Numpy 1.22.4 27 | - pandas 1.4.2 28 | - Matplotlib 3.5.2 29 | - Seaborn 0.11.2 30 | - scikit-learn 1.1.1 31 | - XGBoost 1.6.1 32 | 33 | ### My Notebooks 34 | - [House_price_prediction_9.ipynb](./House_price_prediction_9.ipynb) 35 | - [House_price_prediction_10.ipynb](./House_price_prediction_10.ipynb) 36 | 37 | ### Conclusion: 38 | Today I learned about Confusion Matrix & Senstivity and Specificity in Statistics. Also did house price prediction. 39 | -------------------------------------------------------------------------------- /Day-24/readme.md: -------------------------------------------------------------------------------- 1 | # Day 24 of [#100DaysOfCode](https://twitter.com/Param3021/status/1541402854761541632) 2 | 3 | ## Task 4 | 1. Linear Algebra 5 | 2. Statistics for ML 6 | 3. EDA on house price prediction challenge. (not done) 7 | 8 | # Resources 9 | - 3Blue1Brown [Linear Algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) 10 | - StatQuest with Josh Starmer [Machine Learning](https://www.youtube.com/playlist?list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF) Playlist 11 | 12 | ### Topics I have learnt 13 | 1. Linear Algebra 14 | - Rank 15 | - null space 16 | - Column space 17 | - Inverse matrices 18 | 2. Statistics for ML 19 | - Bias & Variance 20 | 21 | ### Conclusion: 22 | Today I not did EDA. But learned about Inverse matrices, Column space, rank, null space in Linear Algebra and Bias & variance in statistics. -------------------------------------------------------------------------------- /Day-25/readme.md: -------------------------------------------------------------------------------- 1 | # Day 25 of [#100DaysOfCode](https://twitter.com/Param3021/status/1541716679163789312) 2 | 3 | ## Task 4 | 1. Feature Engineering Course 5 | 2. House price prediction 6 | 7 | # Resources 8 | - Kaggle's [Feature Engineering Course](https://www.kaggle.com/learn/feature-engineering) 9 | - - Lesson 1: [What is Feature Engineering](https://www.kaggle.com/code/ryanholbrook/what-is-feature-engineering) 10 | - - Lesson 2: [Mutual Information](https://www.kaggle.com/code/ryanholbrook/mutual-information) - [My Notebook](https://www.kaggle.com/param302/exercise-mutual-information) 11 | 12 | - Kaggle [House price prediction Challenge](https://www.kaggle.com/competitions/home-data-for-ml-course/) 13 | - - [My Notebook 1](https://www.kaggle.com/param302/house-price-prediction-11) 14 | 15 | 16 | ### Topics I have learnt 17 | 1. Feature Engineering 18 | - What is Feature Engineering 19 | - How is it useful for making Models 20 | - Mutual Information (shows every kind of relation in data with target) 21 | 2. Did house price prediction 22 | - With `XGBRegressor` & Mutual Information (high MI 50 columns) 23 | 24 | ### Software used 25 | - Jupyter Notebook 26 | - Python 3.10.2 27 | - Numpy 1.22.4 28 | - pandas 1.4.2 29 | - Matplotlib 3.5.2 30 | - Seaborn 0.11.2 31 | - scikit-learn 1.1.1 32 | - XGBoost 1.6.1 33 | 34 | ### My Notebooks 35 | - [L2 - Mutual Information](./L2%20-%20Mutual_information.ipynb) 36 | - [House_price_prediction_9.ipynb](./House_price_prediction_11.ipynb) 37 | 38 | ### Conclusion: 39 | Today I learned What is Feature Engineering, How to make data better for ML models and Mutual Information. Also did house price prediction using Mutual Information of 50 columns having high MI. 40 | -------------------------------------------------------------------------------- /Day-26/readme.md: -------------------------------------------------------------------------------- 1 | # Day 26 of [#100DaysOfCode](https://twitter.com/Param3021/status/1542076146296459265) 2 | 3 | ## Task 4 | 1. Feature Engineering Course 5 | 2. House price prediction (not done) 6 | 7 | # Resources 8 | - Kaggle's [Feature Engineering Course](https://www.kaggle.com/learn/feature-engineering) 9 | - - Lesson 3: [Creating Features](https://www.kaggle.com/code/ryanholbrook/creating-features) - [My Notebook](https://www.kaggle.com/code/param302/exercise-creating-features/) 10 | 11 | ### Topics I have learnt 12 | 1. Feature Engineering 13 | - Creating Features 14 | - - creating new features 15 | 16 | ### Software used 17 | - Jupyter Notebook 18 | - Python 3.10.2 19 | - Numpy 1.22.4 20 | - pandas 1.4.2 21 | - Matplotlib 3.5.2 22 | - Seaborn 0.11.2 23 | - scikit-learn 1.1.1 24 | - XGBoost 1.6.1 25 | 26 | ### My Notebooks 27 | - [L3 - Creating_features.ipynb](./L3%20-%20Creating_features.ipynb) 28 | 29 | ### Conclusion: 30 | Today I learned how to create new features based on old features which helps our model like creating ratios, count features, splitting features into different sub-features, also grouped transformers. Not did house price prediction. 31 | -------------------------------------------------------------------------------- /Day-27/pipeline.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | from xgboost import XGBRegressor 3 | from sklearn.pipeline import Pipeline 4 | from sklearn.impute import SimpleImputer 5 | from sklearn.compose import ColumnTransformer 6 | from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder 7 | 8 | 9 | class CreatePipeline: 10 | """Create Pipeline 11 | methods: 12 | pipeline: Create Final Pipeline 13 | 14 | create_model: Create the provided model 15 | 16 | numerical_transformer: Transform numerical cols 17 | 18 | categorical_transformer: Transform categorical cols \ 19 | OneHotEncoding / OrdinalEncoding 20 | 21 | data_preprocessor: Preprocess the data using ColumnTransformer 22 | """ 23 | 24 | def pipeline(self, *, preprocessor, model, verbose=False): 25 | """Creates pipeline 26 | params: 27 | preprocessor 28 | model 29 | """ 30 | steps = [("preprocessor", preprocessor), 31 | ("model", model)] 32 | return Pipeline(steps=steps, verbose=verbose) 33 | 34 | 35 | def numerical_transformer(self, *, strategy="mean", **params): 36 | """Transform numerical columns using `SimpleImputer`. 37 | params: 38 | strategy: "mean" | "median" | "most_frequent" | "constant" 39 | **params: extra keyword args for SimpleImputer""" 40 | 41 | transformer = SimpleImputer(strategy=strategy, **params) 42 | return transformer 43 | 44 | 45 | def categorical_transformer(self, *, 46 | imp_strategy="most_frequent", 47 | encoder_type="Ordinal", 48 | imp_params={}, encoder_params={}): 49 | """Transform categorical columns by making Pipeline 50 | `SimpleImputer` | `OneHotEncoder` | `OrdinalEncoder`. 51 | args: 52 | imp_strategy: strategy for imputer values can be 53 | "most_frequent" | "constant" 54 | encoder_type: encoder type, 55 | "Ordinal" | "OneHot" 56 | kwargs: 57 | imp_params: keyword args for `SimpleImputer`. 58 | encoder_params: keyword args for encoder.` 59 | """ 60 | if not encoder_type in ("Ordinal", "OneHot"): 61 | raise ValueError(f"Inappropriate value for encoder_type passed: {encoder_type}\ 62 | Takes one of 'Ordinal' | 'OneHot'.") 63 | 64 | encoder = OrdinalEncoder if encoder_type=="Ordinal" else OneHotEncoder 65 | transformer = Pipeline(steps=[ 66 | ("imputer", SimpleImputer(strategy=imp_strategy, **imp_params)), 67 | (encoder_type, encoder(**encoder_params)) 68 | ]) 69 | return transformer 70 | 71 | 72 | def data_preprocessor(self, *, transformers): 73 | """Preprocess the data using `ColumnTransformer`. 74 | Pass extact list of transformers 75 | to be passed in `ColumnTransformer`. 76 | each tuple consist of: (transformer_name, 77 | transformer, 78 | list_of_columns).""" 79 | preprocessor = ColumnTransformer(transformers=transformers) 80 | return preprocessor 81 | 82 | 83 | def create_model(self, *, model, random_state=0, n_estimators=1000, **kwargs): 84 | """Creates the model. 85 | **kwargs: keyword args for model.""" 86 | my_model = model(random_state=random_state, n_estimators=n_estimators, **kwargs) 87 | return my_model 88 | 89 | 90 | if __name__ == "__main__": 91 | # Loading data 92 | house_data = pd.read_csv("./data/train.csv", index_col="Id") 93 | test_data = pd.read_csv("./data/test.csv", index_col="Id") 94 | X = house_data.drop(columns="SalePrice") 95 | Y = house_data["SalePrice"] 96 | num_cols = X.select_dtypes(exclude="object").columns 97 | cat_cols = X.select_dtypes("object").columns 98 | print("Data loaded and ready") 99 | 100 | print("Creating Pipeline") 101 | # Creating Pipeline class 102 | cp = CreatePipeline() 103 | num_transformer = cp.numerical_transformer() 104 | cat_transformer = cp.categorical_transformer( 105 | encoder_params={ 106 | "handle_unknown":"use_encoded_value", 107 | "unknown_value":-1 108 | }) 109 | print("Preprocessing data") 110 | # preprocessor 111 | preprocessor = cp.data_preprocessor( 112 | transformers=[("num", num_transformer, num_cols), 113 | ("cat", cat_transformer, cat_cols) 114 | ]) 115 | 116 | print("Creating model (XGBRgressor)") 117 | # Creating model (XGBRgressor) 118 | model = cp.create_model(model=XGBRegressor, n_estimators=500, learning_rate=0.05) 119 | pipeline = cp.pipeline(preprocessor=preprocessor, model=model) 120 | 121 | print("Training my model") 122 | pipeline.fit(X, Y) 123 | 124 | print("Predictions are:") 125 | test_preds = pipeline.predict(test_data) 126 | print(test_preds) -------------------------------------------------------------------------------- /Day-27/readme.md: -------------------------------------------------------------------------------- 1 | # Day 27 of [#100DaysOfCode](https://twitter.com/Param3021/status/1542445802865696770) 2 | 3 | ## Task 4 | 1. Clustering with K-means 5 | 2. PCA (only video) 6 | 3. House price prediction 7 | 8 | --- 9 | 10 | ## Created `CreatePipeline` for creating pipeline and making model [🔗](./pipeline.py) 11 | ```python 12 | class CreatePipeline: 13 | """Create Pipeline 14 | methods: 15 | pipeline: Create Final Pipeline 16 | 17 | create_model: Create the provided model 18 | 19 | numerical_transformer: Transform numerical cols 20 | 21 | categorical_transformer: Transform categorical cols \ 22 | OneHotEncoding / OrdinalEncoding 23 | 24 | data_preprocessor: Preprocess the data using ColumnTransformer 25 | """ 26 | 27 | def pipeline(self, *, preprocessor, model, verbose=False): 28 | """Creates pipeline 29 | params: 30 | preprocessor 31 | model 32 | """ 33 | steps = [("preprocessor", preprocessor), 34 | ("model", model)] 35 | return Pipeline(steps=steps, verbose=verbose) 36 | 37 | 38 | def numerical_transformer(self, *, strategy="mean", **params): 39 | """Transform numerical columns using `SimpleImputer`. 40 | params: 41 | strategy: "mean" | "median" | "most_frequent" | "constant" 42 | **params: extra keyword args for SimpleImputer""" 43 | 44 | transformer = SimpleImputer(strategy=strategy, **params) 45 | return transformer 46 | 47 | 48 | def categorical_transformer(self, *, 49 | imp_strategy="most_frequent", 50 | encoder_type="Ordinal", 51 | imp_params={}, encoder_params={}): 52 | """Transform categorical columns by making Pipeline 53 | `SimpleImputer` | `OneHotEncoder` | `OrdinalEncoder`. 54 | args: 55 | imp_strategy: strategy for imputer values can be 56 | "most_frequent" | "constant" 57 | encoder_type: encoder type, 58 | "Ordinal" | "OneHot" 59 | kwargs: 60 | imp_params: keyword args for `SimpleImputer`. 61 | encoder_params: keyword args for encoder.` 62 | """ 63 | if not encoder_type in ("Ordinal", "OneHot"): 64 | raise ValueError(f"Inappropriate value for encoder_type passed: {encoder_type}\ 65 | Takes one of 'Ordinal' | 'OneHot'.") 66 | 67 | encoder = OrdinalEncoder if encoder_type=="Ordinal" else OneHotEncoder 68 | transformer = Pipeline(steps=[ 69 | ("imputer", SimpleImputer(strategy=imp_strategy, **imp_params)), 70 | (encoder_type, encoder(**encoder_params)) 71 | ]) 72 | return transformer 73 | 74 | 75 | def data_preprocessor(self, *, transformers): 76 | """Preprocess the data using `ColumnTransformer`. 77 | Pass extact list of transformers 78 | to be passed in `ColumnTransformer`. 79 | each tuple consist of: (transformer_name, 80 | transformer, 81 | list_of_columns).""" 82 | preprocessor = ColumnTransformer(transformers=transformers) 83 | return preprocessor 84 | 85 | 86 | def create_model(self, *, model, random_state=0, n_estimators=1000, **kwargs): 87 | """Creates the model. 88 | **kwargs: keyword args for model.""" 89 | my_model = model(random_state=random_state, n_estimators=n_estimators, **kwargs) 90 | return my_model 91 | ``` 92 | - It will create transformers, preprocessors and model and final pipeline, so that all the process from data preprocessing (imputing / transforming) done in 1 place. 93 | - Link of python file [🔗](./pipeline.py) 94 | 95 | --- 96 | 97 | # Resources 98 | - Kaggle's [Feature Engineering Course](https://www.kaggle.com/learn/feature-engineering) 99 | - - Lesson 4: [Clustering with K-means](https://www.kaggle.com/code/ryanholbrook/clustering-with-k-means) - [My Notebook](https://www.kaggle.com/code/param302/exercise-clustering-with-k-means/) 100 | 101 | - Kaggle [House price prediction Challenge](https://www.kaggle.com/competitions/home-data-for-ml-course/) 102 | - - [My Notebook 1](https://www.kaggle.com/param302/house-price-prediction-12) 103 | - - [My Notebook 1](https://www.kaggle.com/param302/house-price-prediction-13) 104 | 105 | ### Topics I have learnt 106 | 1. Clustering with K-means 107 | 2. PCA 108 | 3. House price prediction 109 | - One with Mutual Information and used `XGBRegressor` (Score: 14900.48264) 110 | - One with creating new features and used `XGBRegressor` (Score: 15078.56818) 111 | 112 | ### Software used 113 | - Jupyter Notebook 114 | - Python 3.10.2 115 | - Numpy 1.22.4 116 | - pandas 1.4.2 117 | - Matplotlib 3.5.2 118 | - Seaborn 0.11.2 119 | - scikit-learn 1.1.1 120 | - XGBoost 1.6.1 121 | 122 | ### My Notebooks 123 | - [House_price_prediction_12.ipynb](./House_price_prediction_12.ipynb) 124 | - [House_price_prediction_13.ipynb](./House_price_prediction_13.ipynb) 125 | - [L4 - Clustering_with_K-means.ipynb](./L4%20-%20Clustering_with_k-means.ipynb) 126 | 127 | ### Conclusion: 128 | Today I learned about K-means clustering and PCA. Also did house price prediction with `XGBRegressor` and feature engineering. 129 | -------------------------------------------------------------------------------- /Day-28/readme.md: -------------------------------------------------------------------------------- 1 | # Day 28 of [#100DaysOfCode](https://twitter.com/Param3021/status/1542790975499538432) 2 | 3 | ## Task 4 | 1. Feature Engineering 5 | 2. Statistics 6 | 7 | # Resources 8 | - Kaggle's [Feature Engineering Course](https://www.kaggle.com/learn/feature-engineering) 9 | - - Lesson 4: [PCA](https://www.kaggle.com/code/ryanholbrook/principal-component-analysis) 10 | - StatQuest with Josh Stamer [PCA](https://www.youtube.com/watch?v=FgakZw6K1QQ) YT video 11 | 12 | ### Topics I have learnt 13 | 1. PCA 14 | 15 | ### Software used 16 | - Jupyter Notebook 17 | - Python 3.10.2 18 | - Numpy 1.22.4 19 | - pandas 1.4.2 20 | - Matplotlib 3.5.2 21 | - Seaborn 0.11.2 22 | - scikit-learn 1.1.1 23 | 24 | 25 | ### Conclusion: 26 | Today I revised Linear Algebra and learned about PCA. Not did much. I think I should learn stats for ML. -------------------------------------------------------------------------------- /Day-29/readme.md: -------------------------------------------------------------------------------- 1 | # Day 29 of [#100DaysOfCode](https://twitter.com/Param3021/status/1543136477663883265) 2 | 3 | ## Task 4 | 1. Linaer Algebra 5 | 2. Statistics 6 | 7 | # Resources 8 | - StatQuest with Josh Stamer [Entropy](https://www.youtube.com/watch?v=YtebGVx-Fxw) YT video 9 | - 3Blue1Brown [Inverse Matrices](https://www.youtube.com/watch?v=uQhTuRlWMxw&t=330s) YT Video 10 | 11 | ### Topics I have learnt 12 | 1. Linear Algebra 13 | - Inverse matrices 14 | 2. Statistics 15 | - Entropy 16 | 17 | ### Conclusion: 18 | Today I learnt Inverse matrices and Entropy today. Days are going lazy.. -------------------------------------------------------------------------------- /Day-3/readme.md: -------------------------------------------------------------------------------- 1 | # Day 3 of [#100DaysOfCode](https://twitter.com/Param3021/status/1532678152941862912) 2 | 3 | ## Task 4 | 1. Learn Pandas 5 | - Grouping 6 | - Aggregating 7 | - CLeaning data (not done) 8 | 9 | # Resources 10 | - Python Pandas Tutorial Playlist by Corey Schafer YT channel: ([Playlist link](https://www.youtube.com/playlist?list=PL-osiE80TeTsWmV9i9c58mdDCSskIFdDS)) 11 | - Stack Overflow Developer Survey 2021 ([link](https://insights.stackoverflow.com/survey)) 12 | 13 | ### Software used 14 | - Jupyter Notebook 15 | - Python 3.10.2 16 | - Numpy 1.22.4 17 | - pandas 1.4.2 18 | 19 | ### My Notebooks 20 | - [Pandas_tutorial_part_8.ipynb](./Pandas_tutorial_part_8.ipynb) 21 | 22 | ### Topics I have learnt 23 | 1. Grouping data in pandas 24 | 2. How to use Aggregate functions on data 25 | 26 | ### Conclusion: 27 | Today I learnt how to group data using `groupby()` and use it also, how to use Aggregate functions on data. Today I am not well, hope tomorrow will be good :) . 28 | -------------------------------------------------------------------------------- /Day-30/data/gender_submission.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,1 36 | 926,0 37 | 927,0 38 | 928,1 39 | 929,1 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,1 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,1 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,1 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,0 199 | 1089,1 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,1 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,1 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,1 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-30/data/submission_1.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,1 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,0 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,1 39 | 929,1 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,1 49 | 939,0 50 | 940,1 51 | 941,0 52 | 942,1 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,1 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,1 76 | 966,1 77 | 967,1 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,1 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,1 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,1 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,1 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,1 147 | 1037,0 148 | 1038,1 149 | 1039,0 150 | 1040,1 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,1 161 | 1051,1 162 | 1052,1 163 | 1053,1 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,1 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,1 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,1 197 | 1087,0 198 | 1088,1 199 | 1089,1 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,1 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,1 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,1 245 | 1135,0 246 | 1136,0 247 | 1137,1 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,1 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,1 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,1 283 | 1173,1 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,1 290 | 1180,0 291 | 1181,0 292 | 1182,1 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,1 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,1 309 | 1199,1 310 | 1200,1 311 | 1201,0 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,1 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,1 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,1 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,1 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,1 406 | 1296,1 407 | 1297,0 408 | 1298,0 409 | 1299,1 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-30/readme.md: -------------------------------------------------------------------------------- 1 | # Day 30 of [#100DaysOfCode](https://twitter.com/Param3021/status/1543909519679705091) 2 | 3 | ## Task 4 | 1. Titanic dataset challenge 5 | 2. Maths with ML (not done) 6 | 7 | # Resources 8 | - Kaggle [Titanic - Machine Learning from Disaster](https://www.kaggle.com/competitions/titanic/) 9 | - - [My Notebook](https://www.kaggle.com/code/param302/titanic-survival-competition-1) 10 | 11 | ### Topics I have learnt 12 | 1. Titanic dataset challenge 13 | - Used `XGBClassifier` with `Cross-validation` 14 | 15 | 2. Also participated in MLH Global Hack Week INIT 2023 [🔗](https://ghw.mlh.io/) 16 | - Did 3 challenges 17 | - And made **Wikipedia Searcher**[🔗](https://github.com/AnantLuthra/wikipedia_searcher) with [Anant Luthra](https://github.com/AnantLuthra) 18 | 19 | ### Software used 20 | - Jupyter Notebook 21 | - Python 3.10.2 22 | - Numpy 1.22.4 23 | - pandas 1.4.2 24 | - Matplotlib 3.5.2 25 | - Seaborn 0.11.2 26 | - scikit-learn 1.1.1 27 | 28 | ### My Notebooks 29 | - [Titanic_survival_competition_1.ipynb](./Titanic_survival_competition_1.ipynb) 30 | 31 | ### Conclusion: 32 | Today I did little bit of prediction on titanic dataset using `RandomForestClassifier` and did hyper parameter tuning on it with `cross-validation`. -------------------------------------------------------------------------------- /Day-31/data/gender_submission.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,1 36 | 926,0 37 | 927,0 38 | 928,1 39 | 929,1 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,1 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,1 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,1 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,0 199 | 1089,1 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,1 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,1 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,1 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-31/data/submission_2.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,0 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,0 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,0 35 | 925,0 36 | 926,0 37 | 927,0 38 | 928,0 39 | 929,0 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,1 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,0 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,0 90 | 980,1 91 | 981,1 92 | 982,0 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,0 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,0 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,1 199 | 1089,0 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,0 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,0 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,0 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,0 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,0 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,0 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,0 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-31/data/submission_3.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,0 4 | 894,0 5 | 895,0 6 | 896,0 7 | 897,0 8 | 898,0 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,0 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,1 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,1 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,0 39 | 929,0 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,1 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,1 92 | 982,0 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,1 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,1 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,1 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,1 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,1 161 | 1051,1 162 | 1052,1 163 | 1053,1 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,0 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,1 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,1 197 | 1087,0 198 | 1088,1 199 | 1089,1 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,1 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,0 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,0 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,1 237 | 1127,0 238 | 1128,0 239 | 1129,1 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,0 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,1 284 | 1174,1 285 | 1175,0 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,0 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,1 310 | 1200,0 311 | 1201,0 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,0 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,1 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,0 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,0 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-31/data/submission_4.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,0 4 | 894,0 5 | 895,0 6 | 896,0 7 | 897,0 8 | 898,0 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,0 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,1 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,1 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,0 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,0 39 | 929,0 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,0 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,1 83 | 973,0 84 | 974,1 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,1 92 | 982,0 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,1 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,1 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,1 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,1 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,0 160 | 1050,1 161 | 1051,1 162 | 1052,1 163 | 1053,1 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,0 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,1 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,0 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,1 197 | 1087,0 198 | 1088,1 199 | 1089,0 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,1 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,1 208 | 1098,0 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,0 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,1 237 | 1127,0 238 | 1128,0 239 | 1129,1 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,0 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,1 284 | 1174,1 285 | 1175,0 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,0 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,1 310 | 1200,0 311 | 1201,0 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,0 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,1 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,0 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,0 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,0 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,0 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-31/readme.md: -------------------------------------------------------------------------------- 1 | # Day 31 of [#100DaysOfCode](https://twitter.com/Param3021/status/1544261582565568512) 2 | 3 | ## Task 4 | 1. Titanic dataset prediction challenge 5 | 6 | # Resources 7 | - Kaggle [Titanic - Machine Learning from Disaster](https://www.kaggle.com/competitions/titanic/) 8 | - - [My Notebook 1](https://www.kaggle.com/code/param302/titanic-survival-competition-2) 9 | - - [My Notebook 2](https://www.kaggle.com/code/param302/titanic-survival-competition-3) 10 | 11 | 12 | ### Topics I have learnt 13 | 1. Titanic dataset prediction 14 | - One with `RandomForestClassifier` and `OneHotEncoding` 15 | - One with `XGBClassifier` and `OneHotEncoding` 16 | - One with same as above but removed Outliers from data. 17 | 18 | 2. Also participated in MLH Global Hack Week INIT 2023 [🔗](https://ghw.mlh.io/) 19 | - Did 1 challenge 20 | - And tried to make discord bot but failed 21 | 22 | ### Software used 23 | - Jupyter Notebook 24 | - Python 3.10.2 25 | - Numpy 1.22.4 26 | - pandas 1.4.2 27 | - Matplotlib 3.5.2 28 | - Seaborn 0.11.2 29 | - scikit-learn 1.1.1 30 | - XGBoost 1.6.1 31 | 32 | ### My Notebooks 33 | - [Titanic_survival_competition_2.ipynb](./Titanic_survival_competition_2.ipynb) 34 | - [Titanic_survival_competition_3.ipynb](./Titanic_survival_competition_3.ipynb) 35 | - [Titanic_survival_competition_4.ipynb](./Titanic_survival_competition_4.ipynb) 36 | 37 | ### Conclusion: 38 | Today I did titanic survival compeition prediction 3 times, one time I scored better. I have used `XGBClassifier`, `RandomForestClassifier`. -------------------------------------------------------------------------------- /Day-32/data/gender_submission.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,1 36 | 926,0 37 | 927,0 38 | 928,1 39 | 929,1 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,1 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,1 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,1 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,0 199 | 1089,1 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,1 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,1 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,1 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-32/data/submission_5.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,0 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,1 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,0 39 | 929,0 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,1 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,1 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,1 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,1 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,0 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,0 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,1 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,1 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,1 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,1 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,1 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,1 199 | 1089,1 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,0 204 | 1094,1 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,1 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,0 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,1 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,1 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,0 271 | 1161,0 272 | 1162,1 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,0 284 | 1174,1 285 | 1175,0 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,0 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,1 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,1 311 | 1201,0 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,1 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,0 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,1 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,1 408 | 1298,0 409 | 1299,1 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-32/readme.md: -------------------------------------------------------------------------------- 1 | # Day 32 of [#100DaysOfCode](https://twitter.com/ossia/status/1544733677300613121) 2 | 3 | ## Task 4 | 1. Titanic dataset prediction challenge 5 | 2. Data Science project challenge in GHW 6 | 7 | # Resources 8 | - Kaggle [Titanic - Machine Learning from Disaster](https://www.kaggle.com/competitions/titanic/) 9 | - - [My Notebook 1](https://www.kaggle.com/code/param302/titanic-survival-competition-5) 10 | 11 | - MLH - [Global Hack Week](https://ghw.mlh.io/) INIT 2023 hackathon 12 | - - [Data Science project](https://github.com/Param302/MLH-GHW-2023/tree/master/Data%20Science%20project) 13 | 14 | ### Topics I have learnt 15 | 1. Titanic dataset prediction 16 | - With `XGBClassifier` and did `Feature Engineering` using Mutual Information. 17 | 18 | 2. Also participated in MLH Global Hack Week INIT 2023 [🔗](https://ghw.mlh.io/) 19 | - Did 4 challenges 20 | 21 | ### Software used 22 | - Jupyter Notebook 23 | - Python 3.10.2 24 | - Numpy 1.22.4 25 | - pandas 1.4.2 26 | - Matplotlib 3.5.2 27 | - Seaborn 0.11.2 28 | - scikit-learn 1.1.1 29 | - XGBoost 1.6.1 30 | 31 | ### My Notebooks 32 | - [Titanic_survival_competition_5.ipynb](./Titanic_survival_competition_5.ipynb) 33 | - [GHW_data_science_project.ipynb](./GHW_data_science_project.ipynb) 34 | 35 | ### Conclusion: 36 | Today I did titanic survival compeition and participated in Global Hack Week hackathon and completed 4 challenges. -------------------------------------------------------------------------------- /Day-33/data/gender_submission.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,1 36 | 926,0 37 | 927,0 38 | 928,1 39 | 929,1 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,1 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,1 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,1 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,0 199 | 1089,1 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,1 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,1 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,1 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-33/data/submission_6.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,0 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,0 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,0 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,1 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,0 39 | 929,0 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,1 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,0 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,0 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,1 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,0 90 | 980,1 91 | 981,1 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,1 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,0 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,1 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,1 161 | 1051,1 162 | 1052,1 163 | 1053,1 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,1 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,1 197 | 1087,0 198 | 1088,1 199 | 1089,1 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,0 217 | 1107,0 218 | 1108,1 219 | 1109,1 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,0 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,1 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,1 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,0 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,0 284 | 1174,1 285 | 1175,0 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,0 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,1 309 | 1199,1 310 | 1200,1 311 | 1201,0 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,1 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,1 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,0 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,1 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,1 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,1 420 | -------------------------------------------------------------------------------- /Day-33/data/submission_7.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,0 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,1 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,0 39 | 929,0 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,1 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,1 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,1 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,1 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,0 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,1 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,0 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,1 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,1 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,1 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,1 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,1 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,1 199 | 1089,1 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,0 204 | 1094,1 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,1 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,0 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,1 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,0 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,0 284 | 1174,1 285 | 1175,0 286 | 1176,0 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,0 294 | 1184,0 295 | 1185,1 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,1 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,1 311 | 1201,0 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,1 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,0 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,1 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,1 408 | 1298,0 409 | 1299,1 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-33/readme.md: -------------------------------------------------------------------------------- 1 | # Day 33 of [#100DaysOfCode](https://twitter.com/Param3021/status/1545020574178902016) 2 | 3 | ## Task 4 | 1. Titanic dataset prediction challenge 5 | 2. Data Science project challenge in GHW 6 | 7 | # Resources 8 | - Kaggle [Titanic - Machine Learning from Disaster](https://www.kaggle.com/competitions/titanic/) 9 | - - [My Notebook 1](https://www.kaggle.com/code/param302/titanic-survival-competition-6) 10 | - - [My Notebook 2](https://www.kaggle.com/code/param302/titanic-survival-competition-7) 11 | 12 | - MLH - [Global Hack Week](https://ghw.mlh.io/) INIT 2023 hackathon 13 | - - [Create an Animation](https://github.com/Param302/MLH-GHW-2023/tree/master/Day-4%20CSS) 14 | 15 | ### Topics I have learnt 16 | 1. Titanic dataset prediction 17 | - With `XGBClassifier` and did `Feature Engineering` using Mutual Information and by creating new features. 18 | - Same as above but used less features. 19 | 20 | 1. Also participated in MLH Global Hack Week INIT 2023 [🔗](https://ghw.mlh.io/) 21 | - Did 1 challenge created An Aquarium animation 22 | 23 | ### Software used 24 | - Jupyter Notebook 25 | - Python 3.10.2 26 | - Numpy 1.22.4 27 | - pandas 1.4.2 28 | - Matplotlib 3.5.2 29 | - Seaborn 0.11.2 30 | - scikit-learn 1.1.1 31 | - XGBoost 1.6.1 32 | - HTML5 33 | - CSS3 34 | 35 | ### My Notebooks 36 | - [Titanic_survival_competition_6.ipynb](./Titanic_survival_competition_6.ipynb) 37 | - [Titanic_survival_competition_7.ipynb](./Titanic_survival_competition_7.ipynb) 38 | - [GHW - Create an Animation]([./GHW_data_science_project.ipynb](https://github.com/Param302/MLH-GHW-2023/tree/master/Day-4%20CSS)) 39 | 40 | ### Conclusion: 41 | Today I did titanic survival compeition & scored better by creating new features and participated in Global Hack Week hackathon & completed Create an Animation challenge. -------------------------------------------------------------------------------- /Day-34/data/gender_submission.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,1 36 | 926,0 37 | 927,0 38 | 928,1 39 | 929,1 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,1 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,1 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,1 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,0 199 | 1089,1 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,1 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,1 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,1 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-34/data/submission_10.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,0 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,0 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,0 37 | 927,0 38 | 928,0 39 | 929,0 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,1 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,0 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,0 90 | 980,1 91 | 981,1 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,0 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,0 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,1 199 | 1089,0 200 | 1090,0 201 | 1091,0 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,0 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,1 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,1 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,0 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,1 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,0 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,0 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /Day-34/data/submission_8.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,0 4 | 894,0 5 | 895,0 6 | 896,0 7 | 897,0 8 | 898,0 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,1 20 | 910,1 21 | 911,0 22 | 912,1 23 | 913,0 24 | 914,1 25 | 915,1 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,1 30 | 920,1 31 | 921,1 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,1 39 | 929,0 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,1 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,1 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,0 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,1 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,1 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,1 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,1 92 | 982,1 93 | 983,1 94 | 984,1 95 | 985,1 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,0 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,1 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,1 110 | 1000,1 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,1 121 | 1011,1 122 | 1012,1 123 | 1013,1 124 | 1014,1 125 | 1015,0 126 | 1016,1 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,1 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,1 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,1 151 | 1041,0 152 | 1042,1 153 | 1043,1 154 | 1044,0 155 | 1045,0 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,0 160 | 1050,1 161 | 1051,1 162 | 1052,1 163 | 1053,1 164 | 1054,1 165 | 1055,1 166 | 1056,0 167 | 1057,0 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,1 174 | 1064,0 175 | 1065,1 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,1 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,1 184 | 1074,1 185 | 1075,1 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,1 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,1 195 | 1085,0 196 | 1086,1 197 | 1087,0 198 | 1088,1 199 | 1089,0 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,1 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,0 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,1 214 | 1104,0 215 | 1105,1 216 | 1106,0 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,1 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,1 236 | 1126,1 237 | 1127,0 238 | 1128,0 239 | 1129,1 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,1 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,1 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,1 274 | 1164,1 275 | 1165,1 276 | 1166,1 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,1 284 | 1174,1 285 | 1175,0 286 | 1176,0 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,1 291 | 1181,0 292 | 1182,0 293 | 1183,0 294 | 1184,1 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,1 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,1 310 | 1200,0 311 | 1201,0 312 | 1202,0 313 | 1203,1 314 | 1204,0 315 | 1205,0 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,1 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,1 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,1 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,1 339 | 1229,0 340 | 1230,0 341 | 1231,1 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,0 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,1 360 | 1250,1 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,1 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,1 382 | 1272,1 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,1 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,1 419 | 1309,1 420 | -------------------------------------------------------------------------------- /Day-34/data/submission_9.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,0 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,0 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,1 20 | 910,1 21 | 911,0 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,1 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,0 36 | 926,1 37 | 927,0 38 | 928,1 39 | 929,0 40 | 930,0 41 | 931,1 42 | 932,0 43 | 933,1 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,1 50 | 940,1 51 | 941,1 52 | 942,1 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,1 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,0 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,1 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,1 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,1 92 | 982,1 93 | 983,1 94 | 984,1 95 | 985,1 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,1 105 | 995,0 106 | 996,0 107 | 997,0 108 | 998,0 109 | 999,1 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,1 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,1 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,0 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,1 139 | 1029,0 140 | 1030,0 141 | 1031,0 142 | 1032,0 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,1 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,1 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,1 161 | 1051,0 162 | 1052,1 163 | 1053,1 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,0 172 | 1062,0 173 | 1063,1 174 | 1064,0 175 | 1065,1 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,1 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,1 190 | 1080,0 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,1 195 | 1085,0 196 | 1086,1 197 | 1087,0 198 | 1088,1 199 | 1089,0 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,1 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,0 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,1 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,0 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,1 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,1 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,1 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,0 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,1 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,1 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,1 274 | 1164,1 275 | 1165,1 276 | 1166,1 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,0 283 | 1173,1 284 | 1174,1 285 | 1175,0 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,1 291 | 1181,0 292 | 1182,0 293 | 1183,0 294 | 1184,1 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,1 310 | 1200,0 311 | 1201,0 312 | 1202,0 313 | 1203,1 314 | 1204,0 315 | 1205,0 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,1 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,1 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,1 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,1 339 | 1229,0 340 | 1230,0 341 | 1231,1 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,0 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,0 357 | 1247,0 358 | 1248,1 359 | 1249,1 360 | 1250,1 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,0 368 | 1258,0 369 | 1259,0 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,0 379 | 1269,0 380 | 1270,0 381 | 1271,1 382 | 1272,1 383 | 1273,0 384 | 1274,0 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,1 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,1 419 | 1309,1 420 | -------------------------------------------------------------------------------- /Day-34/readme.md: -------------------------------------------------------------------------------- 1 | # Day 34 of [#100DaysOfCode](https://twitter.com/Param3021/status/1545334652915032064) 2 | 3 | ## Task 4 | 1. Titanic dataset prediction challenge 5 | 2. Global Hack Week challenges 6 | 7 | # Resources 8 | - Kaggle [Titanic - Machine Learning from Disaster](https://www.kaggle.com/competitions/titanic/) 9 | - - [My Notebook 1](https://www.kaggle.com/code/param302/titanic-survival-competition-8) 10 | - - [My Notebook 2](https://www.kaggle.com/code/param302/titanic-survival-competition-9) 11 | - - [My Notebook 3](https://www.kaggle.com/code/param302/titanic-survival-competition-10) 12 | 13 | - MLH - [Global Hack Week](https://ghw.mlh.io/) INIT 2023 hackathon 14 | - - [2022-Goal-sticker](https://github.com/Param302/MLH-GHW-2023/blob/master/2022-goal-sticker.png) 15 | - - [Bob Ross MS PAINT](https://github.com/Param302/MLH-GHW-2023/blob/master/Paint.png) 16 | - - [Code in Python](https://github.com/Param302/MLH-GHW-2023/blob/master/leap_year.py) 17 | - - [A project that uses Dataset](https://github.com/Param302/MLH-GHW-2023/tree/master/Day-5%20Titanic_dataset) 18 | - - [Show off Github Activity](https://github.com/Param302/MLH-GHW-2023/blob/master/github-activity.jpg) 19 | - - [Random Number Generator](https://github.com/Param302/MLH-GHW-2023/blob/master/generate_random.c) 20 | 21 | ### Topics I have learnt 22 | 1. Titanic dataset prediction 23 | - 1st with `XGBClassifier` and did `Feature Engineering` using Mutual Information and by creating new features. 24 | - 2nd same as above but added more columns. 25 | - 3rd with `RandomForestClassifier` and did `Feature Engineering` by creating new features & Mutual Information. 26 | 27 | 2. Also participated in MLH Global Hack Week INIT 2023 [🔗](https://ghw.mlh.io/) 28 | - Did 6 challenges 29 | - Created random number generator in `C`. 30 | - Made a leap year program in `Python`. 31 | - and much more.... 32 | 33 | ### Software used 34 | - Jupyter Notebook 35 | - Python 3.10.2 36 | - Numpy 1.22.4 37 | - pandas 1.4.2 38 | - Matplotlib 3.5.2 39 | - Seaborn 0.11.2 40 | - scikit-learn 1.1.1 41 | - XGBoost 1.6.1 42 | - HTML5 43 | - CSS3 44 | - C 45 | 46 | ### My Notebooks 47 | - [Titanic_survival_competition_8.ipynb](./Titanic_survival_competition_8.ipynb) 48 | - [Titanic_survival_competition_9.ipynb](./Titanic_survival_competition_9.ipynb) 49 | - [Titanic_survival_competition_10.ipynb](./Titanic_survival_competition_10.ipynb) 50 | - MLH - [Global Hack Week](https://ghw.mlh.io/) INIT 2023 hackathon 51 | - - [2022-Goal-sticker](https://github.com/Param302/MLH-GHW-2023/blob/master/2022-goal-sticker.png) 52 | - - [Bob Ross MS PAINT](https://github.com/Param302/MLH-GHW-2023/blob/master/Paint.png) 53 | - - [Code in Python](https://github.com/Param302/MLH-GHW-2023/blob/master/leap_year.py) 54 | - - [A project that uses Dataset](https://github.com/Param302/MLH-GHW-2023/tree/master/Day-5%20Titanic_dataset) 55 | - - [Show off Github Activity](https://github.com/Param302/MLH-GHW-2023/blob/master/github-activity.jpg) 56 | - - [Random Number Generator](https://github.com/Param302/MLH-GHW-2023/blob/master/generate_random.c) 57 | 58 | ### Conclusion: 59 | Today I did titanic survival compeition & scored much better by creating new features and participated in Global Hack Week hackathon & completed 6 challenges. -------------------------------------------------------------------------------- /Day-35/readme.md: -------------------------------------------------------------------------------- 1 | # Day 35 of [#100DaysOfCode](https://twitter.com/Param3021/status/1546079960171159553) 2 | 3 | ## Task 4 | 1. Learn more about Regression / Classification models 5 | 2. Revise Mathematics 6 | 3. Global Hack Week Challenge 7 | 8 | ## Resources 9 | - StatQuest With Josh Stamer 10 | - - [Regression Trees](https://www.youtube.com/watch?v=g9c66TUylZ4) YT Video 11 | - - [Decision and Classification Trees](https://www.youtube.com/watch?v=_L39rN6gz7Y) YT Video 12 | 13 | - MLH - [Global Hack Week](https://ghw.mlh.io/) INIT 2023 hackathon 14 | 15 | ### Topics I have learnt 16 | 1. Titanic dataset prediction 17 | - Regression Trees 18 | - Classification Trees 19 | 20 | 2. Also participated in MLH Global Hack Week INIT 2023 [🔗](https://ghw.mlh.io/) 21 | - Did 2 challenges (1 yesterday) 22 | - Designed a mascot for my guild **Young Devs** [🔗](https://twitter.com/Param3021/status/1545857632631951360) 23 | - Made a [Demo Video](https://youtu.be/ltYkbAh_8FU) on [Wikipedia Searcher App](https://github.com/AnantLuthra/wikipedia_searcher) with [Anant Luthra](https://github.com/AnantLuthra) 24 | 25 | 26 | ### Conclusion: 27 | Today I learned about more parameters in Decision Trees Regressor / Classifier. Didn't revised maths. Also, Made a [Demo Video](https://youtu.be/ltYkbAh_8FU) with with [Anant Luthra](https://github.com/AnantLuthra) on on [Wikipedia Searcher App](https://github.com/AnantLuthra/wikipedia_searcher) for Global Hack week hackathon. -------------------------------------------------------------------------------- /Day-36/readme.md: -------------------------------------------------------------------------------- 1 | # Day 36 of [#100DaysOfCode](https://twitter.com/Param3021/status/1546597597540139008) 2 | 3 | ## Task 4 | 1. Revised mathematics 5 | 2. Machine Learning Specialization Course by [Deeplearning.ai](https://www.deeplearning.ai/) on coursera. [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 6 | 7 | ## Resources 8 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 9 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 10 | 11 | ### Topics I have learnt 12 | 1. Overview of Machine Learning in Week 1 of Supervised machine course 1 13 | 2. Revised mathematics 14 | 15 | ### My notebooks 16 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 17 | 18 | ### Conclusion: 19 | Today I have started Machine learning specialization course by Andrew Ng sir on coursera. And revised mathematics. -------------------------------------------------------------------------------- /Day-37/readme.md: -------------------------------------------------------------------------------- 1 | # Day 37 of [#100DaysOfCode](https://twitter.com/Param3021/status/1546790848788336640) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Supervised vs Unsupervised learning 6 | 2. Regression model (not started) 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Supervised learning 14 | 2. Unsupervised learning 15 | 3. Regression 16 | 4. Classification 17 | 5. Clustering 18 | 6. Practice quiz on Supervised vs Unsupervised learning 19 | 20 | ### Software used: 21 | - Jupyter Notebook 22 | - Python 3.10.2 23 | 24 | ### My notebooks 25 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 26 | 27 | ### Conclusion: 28 | Today I have learned about Supervised and Unsupervised learning in ML. Also, definition of Regression, Classification and clustering. And I have made a repository having all my notes and codes of Machine Learning specialization course. 29 | -------------------------------------------------------------------------------- /Day-38/readme.md: -------------------------------------------------------------------------------- 1 | # Day 38 of [#100DaysOfCode](https://twitter.com/Param3021/status/1547126471931887616) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Regression model in ML course 6 | 2. Mathematics for ML book (not done) 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Regression model in ML course (definitions) 14 | - Linear Regression model 15 | - Notations in Machine learning 16 | 17 | ### Software used: 18 | - Jupyter Notebook 19 | - Python 3.10.2 20 | 21 | ### My notebooks 22 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 23 | 24 | ### Conclusion: 25 | Today I have learned about Linear Regression model and some notations in machine learning. Not did much today. -------------------------------------------------------------------------------- /Day-39/readme.md: -------------------------------------------------------------------------------- 1 | # Day 39 of [#100DaysOfCode](https://twitter.com/Param3021/status/1547520010939412481) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Linear Regression 6 | 2. Cost function 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Regression Model 14 | - Linear Regression 15 | - What is Cost function 16 | - Why to use cost function 17 | - formula of cost function 18 | - Code of linear regression 19 | 20 | ### Software used: 21 | - Jupyter Notebook 22 | - Python 3.10.2 23 | 24 | ### My notebooks 25 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 26 | 27 | ### Conclusion: 28 | Today I have learned about Linear Regression, what is cost function, why to use cost function and it's formula. Also code of linear regression in python. -------------------------------------------------------------------------------- /Day-4/readme.md: -------------------------------------------------------------------------------- 1 | # Day 4 of [#100DaysOfCode](https://twitter.com/Param3021/status/1533012411774803968) 2 | 3 | ## Task 4 | 1. Learn Pandas 5 | - Cleaning data & Handling missing values 6 | - Time Series data 7 | - Reading/Writing data to different formats (not done) 8 | 9 | # Resources 10 | - Python Pandas Tutorial Playlist by Corey Schafer YT channel: ([Playlist link](https://www.youtube.com/playlist?list=PL-osiE80TeTsWmV9i9c58mdDCSskIFdDS)) 11 | - Stack Overflow Developer Survey 2021 ([link](https://insights.stackoverflow.com/survey)) 12 | - Ethereum Historical Dataset on Kaggle ([link](https://www.kaggle.com/datasets/prasoonkottarathil/ethereum-historical-dataset?select=ETH_1H.csv)) 13 | 14 | ### Topics I have learnt 15 | 1. Cleaning data & Handling missing values 16 | 2. Working with Dates & Time Series Data (interesting !!!) 17 | 18 | ### Software used 19 | - Jupyter Notebook 20 | - Python 3.10.2 21 | - Numpy 1.22.4 22 | - pandas 1.4.2 23 | 24 | ### My Notebooks 25 | - [Pandas_tutorial_part_9.ipynb](Pandas_tutorial_part_9.ipynb) 26 | - [Pandas_tutorial_part_10.ipynb](Pandas_tutorial_part_10.ipynb) 27 | 28 | ### Conclusion: 29 | Today I learnt how to clean the dataset by handling NaN(missing) values. Also, how to work with dates & did some time series analysis. I think, I am being lazy. 30 | -------------------------------------------------------------------------------- /Day-40/readme.md: -------------------------------------------------------------------------------- 1 | # Day 40 of [#100DaysOfCode](https://twitter.com/Param3021/status/1547887157993680896) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Cost function 6 | 2. Gradient Descent (not done) 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Cost function 14 | - How cost function works 15 | - How weights `w` and `b` effect linear regression model 16 | - 2d/3d Contour plot (visualization of cost function) 17 | 18 | ### Software used: 19 | - Jupyter Notebook 20 | - Python 3.10.2 21 | 22 | ### My notebooks 23 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 24 | 25 | ### Conclusion: 26 | Today I completed Regression model part in week 1, and learned about cost function, and how weights w and b effect the linear regression function. Also learned about 3d contour plot, it's 🔥. -------------------------------------------------------------------------------- /Day-41/readme.md: -------------------------------------------------------------------------------- 1 | # Day 41 of [#100DaysOfCode](https://twitter.com/Param3021/status/1548234590695079936) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Gradient Descent 6 | 7 | ## Resources 8 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 9 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 10 | 11 | ### Topics I have learnt 12 | 1. Gradient Descent 13 | - What is gradient descent 14 | - What is the use of gradient descent 15 | - Working of gradient descent 16 | 17 | ### Software used: 18 | - Jupyter Notebook 19 | - Python 3.10.2 20 | 21 | ### My notebooks 22 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 23 | 24 | ### Conclusion: 25 | Today I learned about what Gradient descent is and how it works. 26 | It's really great, like finding best parameters for Cost function which makes it's value as minimum as possible. -------------------------------------------------------------------------------- /Day-42/readme.md: -------------------------------------------------------------------------------- 1 | # Day 42 of [#100DaysOfCode](https://twitter.com/Param3021/status/1548595765290754048) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Gradient Descent in ML 6 | 7 | ## Resources 8 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 9 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 10 | 11 | ### Topics I have learnt 12 | 1. Gradient Descent 13 | - Algorithm 14 | - Working of Gradient Descent 15 | - How *derivative* and *learning rate* effects *coefficients* 16 | - How *derivatives* are calculated 17 | - Gradient Descent in Action 18 | 19 | ### Software used: 20 | - Jupyter Notebook 21 | - Python 3.10.2 22 | 23 | ### My notebooks 24 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 25 | 26 | ### Conclusion: 27 | Finally!, Today I completed Week 1 of Superivsed Machine Learning course. Today I learned about Batch Gradient Descent algorithm in Linear Regression. -------------------------------------------------------------------------------- /Day-43/readme.md: -------------------------------------------------------------------------------- 1 | # Day 43 of [#100DaysOfCode](https://twitter.com/Param3021/status/1548964394042011648) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Linear Regression with multiple variables 6 | 2. Vectorization (not done) 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Linear regression with multiple features 14 | - formula of linear regression with multiple features using vectors 15 | 16 | ### My notebooks 17 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 18 | 19 | ### Conclusion: 20 | Today I learned about linear regression with mutliple variables, also it's formula, quite interesting ! It uses vectors for mutliple features and their weights. Not started Vectorization. -------------------------------------------------------------------------------- /Day-44/readme.md: -------------------------------------------------------------------------------- 1 | # Day 44 of [#100DaysOfCode](https://twitter.com/Param3021/status/1549295897414356992) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Vectorization 6 | 2. Gradient Descent for multiple linear regression 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Vectorization 14 | 2. Gradient Descent formula 15 | 16 | ### My notebooks 17 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 18 | 19 | ### Conclusion: 20 | Today I learned what is vectorization, how vectorization is faster than loop. Also, formula for gradient descent in multiple linear regression. -------------------------------------------------------------------------------- /Day-45/readme.md: -------------------------------------------------------------------------------- 1 | # Day 45 of [#100DaysOfCode](https://twitter.com/Param3021/status/1549677064823140353) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Feature Scaling 6 | 2. Checking gradient descent for convergence (not done) 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Feature Scaling 14 | - Max normalization 15 | - Mean normalization 16 | - Z-score normalization 17 | 18 | ### My notebooks 19 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 20 | 21 | ### Conclusion: 22 | Today I learned what is Feature Scaling, and why to do it. Also some feature scaling methods like dividing by max, mean normalization, Standardisation. -------------------------------------------------------------------------------- /Day-46/readme.md: -------------------------------------------------------------------------------- 1 | # Day 46 of [#100DaysOfCode](https://twitter.com/Param3021/status/1550023758597193729) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Check Gadient Descent for convergence 6 | 2. Choosing best learning rate 7 | 3. Simple Linear Regression code 8 | 9 | ## Resources 10 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 11 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 12 | 13 | ### Topics I have learnt 14 | 1. Check Gadient Descent for convergence 15 | 2. Choosing best learning rate 16 | 3. Also wrote Linear Regression code 17 | 18 | ### My notebooks 19 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 20 | 21 | ### Conclusion: 22 | Today I learned how to check that gradient descent is converged using learning curve and how to choose best learning rate. Also wrote code for simple linear regression. -------------------------------------------------------------------------------- /Day-47/readme.md: -------------------------------------------------------------------------------- 1 | # Day 47 of [#100DaysOfCode](https://twitter.com/Param3021/status/1550394454120747008) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Feature Engineering 6 | 2. Polynomial Regression 7 | 8 | ## Resources 9 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 10 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 11 | 12 | ### Topics I have learnt 13 | 1. Linear regression with multiple features 14 | - formula of linear regression with multiple features using vectors 15 | 16 | ### My notebooks 17 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 18 | 19 | ### Conclusion: 20 | Today I learned about Feature Engineering and polynomial regression to make non-linear curves which fits non-linear data well. -------------------------------------------------------------------------------- /Day-48/readme.md: -------------------------------------------------------------------------------- 1 | # Day 48 of [#100DaysOfCode](https://twitter.com/Param3021/status/1550780252980654080) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Linear Regression code with Gradient Descent in Python 6 | 7 | ## Resources 8 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 9 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 10 | 11 | ### Topics I have learnt 12 | 1. Ipmlemented Linear Regression code with Gradient Descent in Python (week 2 programming assignment) 13 | 14 | 15 | ### My notebooks 16 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 17 | 18 | ### Conclusion: 19 | Today I did programming assignment of linear regression and with this, Week 2 is completed 🥳. 20 | 21 | So far, my pace is good! 22 | 23 | Tomorrow, I will use all the things which I learned till now and make linear / polynomial regression model. -------------------------------------------------------------------------------- /Day-49/readme.md: -------------------------------------------------------------------------------- 1 | # Day 43 of [#100DaysOfCode](https://twitter.com/Param3021/status/1548964394042011648) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Code for Linear / Polynomial regression in Python. 6 | 7 | ## Resources 8 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 9 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 10 | 11 | ### Topics I have learnt 12 | 1. Linear regression code in Python 13 | 14 | ### My notebooks 15 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 16 | 17 | ### Conclusion: 18 | Today I wrote code for Multiple Linear Regression including it's cost function and gradient descent. 19 | Took so much time, but worked successfully! 20 | Also did some feature engineering and feature scaling with data. 21 | Not did Polynomial regression code. -------------------------------------------------------------------------------- /Day-5/readme.md: -------------------------------------------------------------------------------- 1 | # Day 5 of [#100DaysOfCode](https://twitter.com/Param3021/status/1533373019036721152) 2 | 3 | ## Task 4 | 1. Learn Pandas 5 | - Reading/Writing with different formats like json, excel, csv, sql etc... 6 | - Data Analysis Project (EDA) (70%) 7 | 8 | # Resources 9 | - Python Pandas Tutorial Playlist by Corey Schafer YT channel: ([Playlist link](https://www.youtube.com/playlist?list=PL-osiE80TeTsWmV9i9c58mdDCSskIFdDS)) 10 | - Stack Overflow Developer Survey 2021 ([link]((https://insights.stackoverflow.com/survey))) 11 | - FreeCodeCamp [Demographic Data Analyzer](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/demographic-data-analyzer) 12 | 13 | ### Topics I have learnt 14 | 1. Reading/Writing data in 15 | - CSV/TSV 16 | - JSON 17 | - EXCEL 18 | - SQL 19 | 2. FreeCodeCamp Demographic Data Analyzer project (70% done) 20 | 21 | ### Software used 22 | - Jupyter Notebook 23 | - Python 3.10.2 24 | - Numpy 1.22.4 25 | - pandas 1.4.2 26 | - SQLAlchemy 1.4.37 27 | - PyMySQL 1.0.2 28 | 29 | ### My Notebooks 30 | - [Pandas_tutorial_part_11.ipynb](Pandas_tutorial_part_11.ipynb) 31 | - [Data_analysis_project_2.ipynb](Data_analysis_project_2.ipynb) 32 | 33 | ### Conclusion: 34 | Today I learnt how to read and write data in different formats like csv, json, excel & sql. Also did EDA on FreeCodeCamp's Demographic Data Analyzer (70% done). Both things are so interesting. -------------------------------------------------------------------------------- /Day-50/readme.md: -------------------------------------------------------------------------------- 1 | # Day 50 of [#100DaysOfCode](https://twitter.com/Param3021/status/1551513162750767104) 2 | I have created a repository having all my notes and codes of Machine learning specialization course. [🔗](https://github.com/Param302/ML-specialization-notes) 3 | 4 | ## Task 5 | 1. Week 3 - Classification 6 | 7 | ## Resources 8 | - Machine Learning Specialization Course [🔗](https://www.deeplearning.ai/courses/machine-learning-specialization/) 9 | - - Course 1: Supervised Machine Learning: Regression and Classification [🔗](https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction) 10 | 11 | ### Topics I have learnt 12 | 1. Classification 13 | 2. Logistic Regression 14 | 3. Sigmoid function 15 | 16 | ### My notebooks 17 | - All of my notes of this course are in my ML speicalization notes repository. [🔗](https://github.com/Param302/ML-specialization-notes) 18 | 19 | ### Conclusion: 20 | Today I learnt about Classification, Logistic regression, it's algorithm Sigmoid function. -------------------------------------------------------------------------------- /Day-6/readme.md: -------------------------------------------------------------------------------- 1 | # Day 6 of [#100DaysOfCode](https://twitter.com/Param3021/status/1533737876563046400) 2 | 3 | ## Task 4 | 1. Linear Algebra 5 | 2. Data Analysis With Pandas 6 | 7 | # Resources 8 | - 3Blue1Brown [Linear Algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) 9 | - FreeCodeCamp [Demographic Data Analyzer](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/demographic-data-analyzer) 10 | 11 | ### Topics I have learnt 12 | 1. Linear Algebra 13 | - - Vector, Addition & Multiplication 14 | - - Linear Combinations, span, basis vectors 15 | 16 | 1. EDA on FreeCodeCamp's Demographic Data Analyzer. 17 | 18 | ### Software used 19 | - Jupyter Notebook 20 | - Python 3.10.2 21 | - Numpy 1.22.4 22 | - pandas 1.4.2 23 | 24 | ### My Notebooks 25 | - [Data_analysis_project_2.ipynb](Data_analysis_project_2.ipynb) 26 | 27 | ### Conclusion: 28 | Today I learnt basics about Vectors in Linear Algebra. And completed FreeCodeCamp's Demographic Data Analyzer project and did some pandas practice in Datacamp. -------------------------------------------------------------------------------- /Day-7/plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Param302/100DaysOfCode-Python/44000a5ec5173c65c18810db68e11812baa2f0c4/Day-7/plot.png -------------------------------------------------------------------------------- /Day-7/readme.md: -------------------------------------------------------------------------------- 1 | # Day 7 of [#100DaysOfCode](https://twitter.com/Param3021/status/1534075090111184897) 2 | 3 | ## Task 4 | 1. Matplotlib Library 5 | 2. Matrices in Linear Algebra (not done) 6 | 3. EDA with Pandas & matplotlib (not done) 7 | 8 | # Resources 9 | - Corey Schafer [Matplotlib Tutorial](https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_) Playlist 10 | 11 | 12 | ### Topics I have learnt 13 | 1. Matplotlib library 14 | - - Basics (title, labels, ticks, legends, grid) 15 | - - Line plots 16 | - - Bar plots (horizontal & vertical) 17 | - - Format line plots & bar plots 18 | - - Use different styles in plots 19 | - - Plotting multiple data 20 | - - Saving the figure in different formats 21 | 22 | ### Software used 23 | - Jupyter Notebook 24 | - Python 3.10.2 25 | - Numpy 1.22.4 26 | - pandas 1.4.2 27 | - matplotlib 3.5.2 28 | 29 | ### My Notebooks 30 | - [matplotlib_tutorial_part_1.ipynb](./matplotlib_tutorial_part_1.ipynb) 31 | - [matplotlib_tutorial_part_2.ipynb](./matplotlib_tutorial_part_2.ipynb) 32 | 33 | ### Conclusion: 34 | Today I learnt basics of matplotlib, and how to plot line & bar graphs. Also how to format the plots & change the style. -------------------------------------------------------------------------------- /Day-8/data/language_popularity.csv: -------------------------------------------------------------------------------- 1 | Language,Popularity 2 | C++,20057 3 | HTML/CSS,46259 4 | JavaScript,53587 5 | Objective-C,2310 6 | PHP,18130 7 | Swift,4204 8 | Python,39792 9 | Assembly,4632 10 | C,17329 11 | R,4185 12 | Rust,5799 13 | TypeScript,24909 14 | Bash/Shell,22385 15 | SQL,38835 16 | C#,22984 17 | Java,29162 18 | Node.js,27975 19 | PowerShell,8871 20 | Ruby,5569 21 | Perl,2028 22 | Matlab,3846 23 | Kotlin,6866 24 | Julia,1068 25 | Haskell,1749 26 | Delphi,1731 27 | Go,7879 28 | Scala,2148 29 | Dart,4965 30 | VBA,3847 31 | Groovy,2479 32 | Clojure,1552 33 | APL,536 34 | LISP,1096 35 | F#,804 36 | Elixir,1438 37 | Erlang,651 38 | Crystal,466 39 | COBOL,437 40 | -------------------------------------------------------------------------------- /Day-8/readme.md: -------------------------------------------------------------------------------- 1 | # Day 8 of [#100DaysOfCode](https://twitter.com/Param3021/status/1534450016978628608) 2 | 3 | ## Task 4 | 1. Matplotlib Library 5 | 2. EDA with Pandas & matplotlib (not done) 6 | 7 | # Resources 8 | - Corey Schafer [Matplotlib Tutorial](https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_) Playlist 9 | 10 | 11 | ### Topics I have learnt 12 | 1. Matplotlib library 13 | - - Pie chart 14 | - - Stack plot 15 | 16 | ### Software used 17 | - Jupyter Notebook 18 | - Python 3.10.2 19 | - Numpy 1.22.4 20 | - pandas 1.4.2 21 | - matplotlib 3.5.2 22 | 23 | ### My Notebooks 24 | - [matplotlib_tutorial_part_3.ipynb](./matplotlib_tutorial_part_3.ipynb) 25 | - [matplotlib_tutorial_part_4.ipynb](./matplotlib_tutorial_part_4.ipynb) 26 | 27 | ### Conclusion: 28 | Today I learnt how to plot Pie chart and Stackplot. -------------------------------------------------------------------------------- /Day-9/data_analysis_project_3.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# FreeCodeCamp Data Analysis with Python Course\n", 8 | "### Project 2: [Medical Data Visualizer](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/medical-data-visualizer)" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 4, 14 | "metadata": {}, 15 | "outputs": [], 16 | "source": [ 17 | "import pandas as pd\n", 18 | "# import seaborn as sns\n", 19 | "import matplotlib.pyplot as plt\n", 20 | "import numpy as np" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 6, 26 | "metadata": {}, 27 | "outputs": [], 28 | "source": [ 29 | "# Import data\n", 30 | "df = pd.read_csv(\"./data/medical_examination.csv\")\n", 31 | "\n", 32 | "# Add 'overweight' column\n", 33 | "bmi = df[\"weight\"] / (df[\"height\"] / 100)**2\n", 34 | "df['overweight'] = bmi.apply(lambda x: 1 if x>25 else 0)\n", 35 | "\n", 36 | "# Normalize data by making 0 always good and 1 always bad. If the value of 'cholesterol' or 'gluc' is 1, make the value 0. If the value is more than 1, make the value 1.\n", 37 | "df[\"cholesterol\"] = df[\"cholesterol\"].apply(lambda x: 1 if x==1 else 1)\n", 38 | "df[\"gluc\"] = df[\"gluc\"].apply(lambda x: 1 if x==1 else 1)\n", 39 | "\n", 40 | "# Draw Categorical Plot\n", 41 | "def draw_cat_plot():\n", 42 | " # Create DataFrame for cat plot using `pd.melt` using just the values from 'cholesterol', 'gluc', 'smoke', 'alco', 'active', and 'overweight'.\n", 43 | " df_cat = None\n", 44 | "\n", 45 | " # Group and reformat the data to split it by 'cardio'. Show the counts of each feature. You will have to rename one of the columns for the catplot to work correctly.\n", 46 | " df_cat = None\n", 47 | "\n", 48 | " # Draw the catplot with 'sns.catplot()'\n", 49 | "\n", 50 | " # Do not modify the next two lines\n", 51 | " fig.savefig('catplot.png')\n", 52 | " return fig\n", 53 | "\n", 54 | "\n", 55 | "# Draw Heat Map\n", 56 | "def draw_heat_map():\n", 57 | " # Clean the data\n", 58 | " df_heat = None\n", 59 | "\n", 60 | " # Calculate the correlation matrix\n", 61 | " corr = None\n", 62 | "\n", 63 | " # Generate a mask for the upper triangle\n", 64 | " mask = None\n", 65 | "\n", 66 | " # Set up the matplotlib figure\n", 67 | " fig, ax = None\n", 68 | "\n", 69 | " # Draw the heatmap with 'sns.heatmap()'\n", 70 | "\n", 71 | " # Do not modify the next two lines\n", 72 | " fig.savefig('heatmap.png')\n", 73 | " return fig\n" 74 | ] 75 | } 76 | ], 77 | "metadata": { 78 | "interpreter": { 79 | "hash": "7e2642ab4b747f3fe33eee77a3cca2e0983db70ec81f3eda854dde93e34ee41b" 80 | }, 81 | "kernelspec": { 82 | "display_name": "Python 3.10.2 ('venv': venv)", 83 | "language": "python", 84 | "name": "python3" 85 | }, 86 | "language_info": { 87 | "codemirror_mode": { 88 | "name": "ipython", 89 | "version": 3 90 | }, 91 | "file_extension": ".py", 92 | "mimetype": "text/x-python", 93 | "name": "python", 94 | "nbconvert_exporter": "python", 95 | "pygments_lexer": "ipython3", 96 | "version": "3.10.2" 97 | }, 98 | "orig_nbformat": 4 99 | }, 100 | "nbformat": 4, 101 | "nbformat_minor": 2 102 | } 103 | -------------------------------------------------------------------------------- /Day-9/readme.md: -------------------------------------------------------------------------------- 1 | # Day 9 of [#100DaysOfCode](https://twitter.com/Param3021/status/1534808911970451456) 2 | 3 | ## Task 4 | 1. Linear Algebra (Matrices) 5 | 2. Data Analysis with Pandas & matplotlib 6 | 7 | # Resources 8 | - 3 Blue 1 Brown [Linear Aglebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) playlist 9 | - Linear Algebra notes [link](https://hacobe.github.io/notes/linear_algebra_3blue1brown.html) 10 | - FreeCodeCamp Data Analysis with Python project 3 [Medical Data Visualizer](https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/medical-data-visualizer) 11 | 12 | ### Topics I have learnt 13 | 1. Linear Algebra - Matrices 14 | - - Linear Transformation 15 | - - Composition of matrices (matrix multiplication) 16 | 2. Data Analysis of Medical Data Visualizer (50% done) 17 | 3. FreeCodeCamp Data Analysis with Python all questions 18 | 19 | ### Software used 20 | - Jupyter Notebook 21 | - Python 3.10.2 22 | - Numpy 1.22.4 23 | - pandas 1.4.2 24 | - matplotlib 3.5.2 25 | 26 | ### My Notebooks 27 | - [data_analysis_project_part_3.ipynb](./data_analysis_project_part_3.ipynb) 28 | 29 | ### Conclusion: 30 | Today I learnt about Matrices, Linear Transformation & Composition of matrices (matrix multiplication), linear transformation is cool and must do for matrix. Also did 50% Data Analysis project of FreeCodeCamp And all exercises of Data Analysis with Python course. 31 | -------------------------------------------------------------------------------- /readme.md: -------------------------------------------------------------------------------- 1 | # [100 Days of Code in Python](https://twitter.com/Param3021/status/1531507810756067328?s=20&t=psaKuMNtRHbSmcQ7QQ0zuQ) 2 | I have started 100 days of code to document my coding journey and stay consistent also for accountability. 3 | 4 | I am doing Machine Learning starting from Scratch 5 | 6 | ## Daily Tasks 7 | 1. Day - 0 Numpy [🔗](./Day-0/) 8 | 2. Day - 1 Numpy, Pandas [🔗](./Day-1/) 9 | 3. Day - 2 Pandas, Data Analysis project [🔗](./Day-2/) 10 | 4. Day - 3 Pandas (Grouping & Aggregating Data [🔗](./Day-3/) 11 | 5. Day - 4 Pandas (Cleaning data & Time Series Analysis) [🔗](./Day-4/) 12 | 6. Day - 5 Pandas (Working with different data formats) & Data Analysis project [🔗](./Day-5/) 13 | 7. Day - 6 Linear Algebra (Vectors Basics) & Data Analysis project [🔗](./Day-6/) 14 | 8. Day - 7 Matplotlib library [🔗](./Day-7/) 15 | 9. Day - 8 Matplotlib Library [🔗](./Day-7/) 16 | 10. Day - 9 Linear Algebra (Matrices, Linear Transformations) & Data Analysis project [🔗](./Day-9/) 17 | 11. Day - 10 Matplotlib & Data analysis on Titanic Dataset [🔗](./Day-10/) 18 | 12. Day - 11 Data analysis on Titanic Dataset [🔗](./Day-11/) 19 | 13. Day - 12 Data analysis on Titanic Dataset [🔗](./Day-12/) 20 | 14. Day - 13 Data analysis on Titanic Dataset [🔗](./Day-13/) 21 | 15. Day - 14 Matplotlib Library [🔗](./Day-14/) 22 | 16. Day - 15 Matplotlib Library[🔗](./Day-15/) 23 | 17. Day - 16 Matplotlib & Seaborn Library [🔗](./Day-16/) 24 | 18. Day - 17 Seaborn Library & Data Analysis project [🔗](./Day-17/) 25 | 19. Day - 18 Seaborn Library & Data Analysis project [🔗](./Day-18/) 26 | 20. Day - 19 Intro to Machine Learning & House price prediction [🔗](./Day-19/) 27 | 21. Day - 20 Intermediate Machine Learning & House price prediction [🔗](./Day-20/) 28 | 22. Day - 21 Intermediate Machine Learning & House price prediction [🔗](./Day-21/) 29 | 23. Day - 22 Linear Algebra & House price prediction [🔗](./Day-22/) 30 | 24. Day - 23 Statistics & House price prediction [🔗](./Day-23/) 31 | 25. Day - 24 Linear Algebra & Statistics [🔗](./Day-24/) 32 | 26. Day - 25 Feature Engineering & House price preidction [🔗](./Day-25/) 33 | 27. Day - 26 Feature Engineering [🔗](./Day-26/) 34 | 28. Day - 27 Feature Engineering & House price prediction [🔗](./Day-27/) 35 | 29. Day - 28 Linear Algebra & PCA [🔗](./Day-28/) 36 | 30. Day - 29 Linear Algebra & Statistics [🔗](./Day-29/) 37 | 31. Day - 30 Titanic dataset prediction & GHW hackathon [🔗](./Day-30/) 38 | 32. Day - 31 Titanic dataset prediction & GHW hackathon [🔗](./Day-31/) 39 | 33. Day - 32 Titanic dataset prediction & GHW hackathon [🔗](./Day-32/) 40 | 34. Day - 33 Titanic dataset prediction & GHW hackathon [🔗](./Day-33/) 41 | 35. Day - 34 Titanic dataset prediction & GHW hackathon [🔗](./Day-34/) 42 | 36. Day - 35 Regression & Classification Random Forest [🔗](./Day-35/) 43 | 37. Day - 36 Started ML Speicalization course & Revised Mathematics [🔗](./Day-36/) 44 | 38. Day - 37 Supervised vs unsupervised learning and Regression model [🔗](./Day-37/) 45 | 39. Day - 38 Linear Regression and Notations in ML [🔗](./Day-38/) 46 | 40. Day - 39 Linear Regression and it's Cost function [🔗](./Day-39/) 47 | 41. Day - 40 Working of Cost function [🔗](./Day-40/) 48 | 42. Day - 41 Gradient Descent [🔗](./Day-41/) 49 | 43. Day - 42 Completed Week 1 of ML course & Gradient Descent [🔗](./Day-42/) 50 | 44. Day - 43 Linear regression with mutliple variables [🔗](./Day-43/) 51 | 45. Day - 44 Vectorization and Gradient Descent [🔗](./Day-44/) 52 | 46. Day - 45 Feature Scaling [🔗](./Day-45/) 53 | 47. Day - 46 Gradient Descent and Simple Linear Regression code [🔗](./Day-46/) 54 | 48. Day - 47 Feature Engineering and Polynomial Regression [🔗](./Day-47/) 55 | 49. Day - 48 (Week 2 assignment) Linear Regression with Gradient Descent code [🔗](./Day-48/) 56 | 50. Day - 49 Linear Regression code in Python [🔗](./Day-49/) 57 | 51. Day - 50 Logistic Regression and Sigmoid function [🔗](./Day-50/) --------------------------------------------------------------------------------