├── .gitignore ├── 01_초판 ├── 1_First_Step │ └── 1_4_Python_Basic.ipynb ├── 2_Start_DataAnalysis │ ├── 2_1_Pandas.ipynb │ ├── 2_2_Crawling.ipynb │ └── files │ │ ├── sample.xlsx │ │ ├── sample_1.xlsx │ │ ├── sample_2.xlsx │ │ ├── sample_codemaster.xlsx │ │ └── sample_index_false.xlsx ├── 3_Tourists_Event │ ├── 3_2_Data_Preprocessing.ipynb │ ├── 3_3_Visulaization.ipynb │ └── files │ │ ├── kto_201001.xlsx │ │ ├── kto_201002.xlsx │ │ ├── kto_201003.xlsx │ │ ├── kto_201004.xlsx │ │ ├── kto_201005.xlsx │ │ ├── kto_201006.xlsx │ │ ├── kto_201007.xlsx │ │ ├── kto_201008.xlsx │ │ ├── kto_201009.xlsx │ │ ├── kto_201010.xlsx │ │ ├── kto_201011.xlsx │ │ ├── kto_201012.xlsx │ │ ├── kto_201101.xlsx │ │ ├── kto_201102.xlsx │ │ ├── kto_201103.xlsx │ │ ├── kto_201104.xlsx │ │ ├── kto_201105.xlsx │ │ ├── kto_201106.xlsx │ │ ├── kto_201107.xlsx │ │ ├── kto_201108.xlsx │ │ ├── kto_201109.xlsx │ │ ├── kto_201110.xlsx │ │ ├── kto_201111.xlsx │ │ ├── kto_201112.xlsx │ │ ├── kto_201201.xlsx │ │ ├── kto_201202.xlsx │ │ ├── kto_201203.xlsx │ │ ├── kto_201204.xlsx │ │ ├── kto_201205.xlsx │ │ ├── kto_201206.xlsx │ │ ├── kto_201207.xlsx │ │ ├── kto_201208.xlsx │ │ ├── kto_201209.xlsx │ │ ├── kto_201210.xlsx │ │ ├── kto_201211.xlsx │ │ ├── kto_201212.xlsx │ │ ├── kto_201301.xlsx │ │ ├── kto_201302.xlsx │ │ ├── kto_201303.xlsx │ │ ├── kto_201304.xlsx │ │ ├── kto_201305.xlsx │ │ ├── kto_201306.xlsx │ │ ├── kto_201307.xlsx │ │ ├── kto_201308.xlsx │ │ ├── kto_201309.xlsx │ │ ├── kto_201310.xlsx │ │ ├── kto_201311.xlsx │ │ ├── kto_201312.xlsx │ │ ├── kto_201401.xlsx │ │ ├── kto_201402.xlsx │ │ ├── kto_201403.xlsx │ │ ├── kto_201404.xlsx │ │ ├── kto_201405.xlsx │ │ ├── kto_201406.xlsx │ │ ├── kto_201407.xlsx │ │ ├── kto_201408.xlsx │ │ ├── kto_201409.xlsx │ │ ├── kto_201410.xlsx │ │ ├── kto_201411.xlsx │ │ ├── kto_201412.xlsx │ │ ├── kto_201501.xlsx │ │ ├── kto_201502.xlsx │ │ ├── kto_201503.xlsx │ │ ├── kto_201504.xlsx │ │ ├── kto_201505.xlsx │ │ ├── kto_201506.xlsx │ │ ├── kto_201507.xlsx │ │ ├── kto_201508.xlsx │ │ ├── kto_201509.xlsx │ │ ├── kto_201510.xlsx │ │ ├── kto_201511.xlsx │ │ ├── kto_201512.xlsx │ │ ├── kto_201601.xlsx │ │ ├── kto_201602.xlsx │ │ ├── kto_201603.xlsx │ │ ├── kto_201604.xlsx │ │ ├── kto_201605.xlsx │ │ ├── kto_201606.xlsx │ │ ├── kto_201607.xlsx │ │ ├── kto_201608.xlsx │ │ ├── kto_201609.xlsx │ │ ├── kto_201610.xlsx │ │ ├── kto_201611.xlsx │ │ ├── kto_201612.xlsx │ │ ├── kto_201701.xlsx │ │ ├── kto_201702.xlsx │ │ ├── kto_201703.xlsx │ │ ├── kto_201704.xlsx │ │ ├── kto_201705.xlsx │ │ ├── kto_201706.xlsx │ │ ├── kto_201707.xlsx │ │ ├── kto_201708.xlsx │ │ ├── kto_201709.xlsx │ │ ├── kto_201710.xlsx │ │ ├── kto_201711.xlsx │ │ ├── kto_201712.xlsx │ │ ├── kto_201801.xlsx │ │ ├── kto_201802.xlsx │ │ ├── kto_201803.xlsx │ │ ├── kto_201804.xlsx │ │ ├── kto_201805.xlsx │ │ ├── kto_201806.xlsx │ │ ├── kto_201807.xlsx │ │ ├── kto_201808.xlsx │ │ ├── kto_201809.xlsx │ │ ├── kto_201810.xlsx │ │ ├── kto_201811.xlsx │ │ ├── kto_201812.xlsx │ │ ├── kto_201901.xlsx │ │ ├── kto_201902.xlsx │ │ ├── kto_201903.xlsx │ │ ├── kto_201904.xlsx │ │ ├── kto_201905.xlsx │ │ ├── kto_201906.xlsx │ │ ├── kto_201907.xlsx │ │ └── kto_201908.xlsx ├── 4_Jeju_Hotplace │ ├── 4_1_Instagram_Crawling.ipynb │ ├── 4_2_WordCloud.ipynb │ ├── 4_3_Map.ipynb │ └── files │ │ ├── 3_1_crawling_jejuMatJip.xlsx │ │ ├── 3_1_crawling_jejuYeoHang.xlsx │ │ ├── 3_1_crawling_jejudoGwanGwang.xlsx │ │ ├── 3_1_crawling_jejudoMatJip.xlsx │ │ ├── 3_1_crawling_raw.xlsx │ │ ├── 3_2_tag-wordcloud.png │ │ ├── 3_3_jeju.html │ │ ├── 3_3_jeju_cluster.html │ │ ├── 3_3_location_counts.xlsx │ │ ├── 3_3_location_inform.xlsx │ │ └── 3_3_locations.xlsx ├── 5_Starbucks_Location │ ├── 5_1_1_Crawling_Starbucks_List.ipynb │ ├── 5_1_2_OpenData_API.ipynb │ ├── 5_2_1_Starbucks_Address.ipynb │ ├── 5_2_2_Starbucks_Data.ipynb │ ├── 5_3_1_Starbucks_Map.ipynb │ ├── 5_3_2_Starbucks_Location_Visualization.ipynb │ ├── 5_3_3&4_Starbucks_Locations_Analysis.ipynb │ ├── files │ │ ├── 4_1_seoul_starbucks_list.xlsx │ │ ├── 4_2_seoul_sgg_list.xlsx │ │ ├── 4_3_sgg_biz.xlsx │ │ ├── 4_3_sgg_pop.xlsx │ │ ├── 4_4_seoul_starbucks_list.xlsx │ │ └── 4_5_seoul_sgg_stat.xlsx │ └── maps │ │ └── seoul_sgg.geojson └── 6_Best_Product │ ├── 6_1&2_Crawling.ipynb │ ├── 6_3_preprocessing.ipynb │ ├── 6_4_Product_Analysis.ipynb │ └── files │ ├── 3_1_danawa_crawling_result.xlsx │ └── 3_2_danawa_data_final.xlsx ├── 02_개정판 ├── 1_First_Step │ └── 1_3_Python_Basic.ipynb ├── 2_Data_Analysis_Basic │ ├── 2_1_Pandas.ipynb │ ├── 2_2_Crawling.ipynb │ └── files │ │ ├── sample.xlsx │ │ ├── sample_1.xlsx │ │ ├── sample_2.xlsx │ │ ├── sample_codemaster.xlsx │ │ └── sample_index_false.xlsx ├── 3_Data_Analysis_Exercise │ ├── Chapter_3_1 │ │ ├── 3_1_1_MelOn_Crawling.ipynb │ │ ├── 3_1_2_Bugs_Crawling.ipynb │ │ ├── 3_1_3_Genie_Crawling.ipynb │ │ ├── 3_1_4_Excel_Merge.ipynb │ │ └── files │ │ │ ├── bugs.xlsx │ │ │ ├── genie.xlsx │ │ │ ├── melon.xlsx │ │ │ └── total.xlsx │ └── Chapter_3_2 │ │ ├── 3.2.1_유튜브.ipynb │ │ └── files │ │ └── youtube_rank.xlsx ├── 4_Tourists_Event │ ├── 4_2_Data_Preprocessing.ipynb │ ├── 4_3_Visulaization.ipynb │ └── files │ │ ├── [국적별 관광객 데이터] GCC.xlsx │ │ ├── [국적별 관광객 데이터] 교포.xlsx │ │ ├── [국적별 관광객 데이터] 구주 기타.xlsx │ │ ├── [국적별 관광객 데이터] 국적미상.xlsx │ │ ├── [국적별 관광객 데이터] 그리스.xlsx │ │ ├── [국적별 관광객 데이터] 남아프리카공화국.xlsx │ │ ├── [국적별 관광객 데이터] 네덜란드.xlsx │ │ ├── [국적별 관광객 데이터] 노르웨이.xlsx │ │ ├── [국적별 관광객 데이터] 뉴질랜드.xlsx │ │ ├── [국적별 관광객 데이터] 대만.xlsx │ │ ├── [국적별 관광객 데이터] 대양주 기타.xlsx │ │ ├── [국적별 관광객 데이터] 덴마크.xlsx │ │ ├── [국적별 관광객 데이터] 독일.xlsx │ │ ├── [국적별 관광객 데이터] 러시아.xlsx │ │ ├── [국적별 관광객 데이터] 루마니아.xlsx │ │ ├── [국적별 관광객 데이터] 마카오.xlsx │ │ ├── [국적별 관광객 데이터] 말레이시아.xlsx │ │ ├── [국적별 관광객 데이터] 멕시코.xlsx │ │ ├── [국적별 관광객 데이터] 몽골.xlsx │ │ ├── [국적별 관광객 데이터] 미국.xlsx │ │ ├── [국적별 관광객 데이터] 미얀마.xlsx │ │ ├── [국적별 관광객 데이터] 미주 기타.xlsx │ │ ├── [국적별 관광객 데이터] 방글라데시.xlsx │ │ ├── [국적별 관광객 데이터] 베트남.xlsx │ │ ├── [국적별 관광객 데이터] 벨기에.xlsx │ │ ├── [국적별 관광객 데이터] 불가리아.xlsx │ │ ├── [국적별 관광객 데이터] 브라질.xlsx │ │ ├── [국적별 관광객 데이터] 스리랑카.xlsx │ │ ├── [국적별 관광객 데이터] 스웨덴.xlsx │ │ ├── [국적별 관광객 데이터] 스위스.xlsx │ │ ├── [국적별 관광객 데이터] 스페인.xlsx │ │ ├── [국적별 관광객 데이터] 싱가포르.xlsx │ │ ├── [국적별 관광객 데이터] 아시아 기타.xlsx │ │ ├── [국적별 관광객 데이터] 아일랜드.xlsx │ │ ├── [국적별 관광객 데이터] 아프리카 기타.xlsx │ │ ├── [국적별 관광객 데이터] 영국.xlsx │ │ ├── [국적별 관광객 데이터] 오스트레일리아.xlsx │ │ ├── [국적별 관광객 데이터] 오스트리아.xlsx │ │ ├── [국적별 관광객 데이터] 우즈베키스탄.xlsx │ │ ├── [국적별 관광객 데이터] 우크라이나.xlsx │ │ ├── [국적별 관광객 데이터] 이란.xlsx │ │ ├── [국적별 관광객 데이터] 이스라엘.xlsx │ │ ├── [국적별 관광객 데이터] 이탈리아.xlsx │ │ ├── [국적별 관광객 데이터] 인도.xlsx │ │ ├── [국적별 관광객 데이터] 인도네시아.xlsx │ │ ├── [국적별 관광객 데이터] 일본.xlsx │ │ ├── [국적별 관광객 데이터] 중국.xlsx │ │ ├── [국적별 관광객 데이터] 카자흐스탄.xlsx │ │ ├── [국적별 관광객 데이터] 캄보디아.xlsx │ │ ├── [국적별 관광객 데이터] 캐나다.xlsx │ │ ├── [국적별 관광객 데이터] 크로아티아.xlsx │ │ ├── [국적별 관광객 데이터] 태국.xlsx │ │ ├── [국적별 관광객 데이터] 터키.xlsx │ │ ├── [국적별 관광객 데이터] 파키스탄.xlsx │ │ ├── [국적별 관광객 데이터] 포르투갈.xlsx │ │ ├── [국적별 관광객 데이터] 폴란드.xlsx │ │ ├── [국적별 관광객 데이터] 프랑스.xlsx │ │ ├── [국적별 관광객 데이터] 핀란드.xlsx │ │ ├── [국적별 관광객 데이터] 필리핀.xlsx │ │ ├── [국적별 관광객 데이터] 홍콩.xlsx │ │ ├── [국적별 외국인 관광객] GCC.xlsx │ │ ├── [국적별 외국인 관광객] 교포.xlsx │ │ ├── [국적별 외국인 관광객] 구주 기타.xlsx │ │ ├── [국적별 외국인 관광객] 국적미상.xlsx │ │ ├── [국적별 외국인 관광객] 그리스.xlsx │ │ ├── [국적별 외국인 관광객] 남아프리카공화국.xlsx │ │ ├── [국적별 외국인 관광객] 네덜란드.xlsx │ │ ├── [국적별 외국인 관광객] 노르웨이.xlsx │ │ ├── [국적별 외국인 관광객] 뉴질랜드.xlsx │ │ ├── [국적별 외국인 관광객] 대만.xlsx │ │ ├── [국적별 외국인 관광객] 대양주 기타.xlsx │ │ ├── [국적별 외국인 관광객] 덴마크.xlsx │ │ ├── [국적별 외국인 관광객] 독일.xlsx │ │ ├── [국적별 외국인 관광객] 러시아.xlsx │ │ ├── [국적별 외국인 관광객] 루마니아.xlsx │ │ ├── [국적별 외국인 관광객] 마카오.xlsx │ │ ├── [국적별 외국인 관광객] 말레이시아.xlsx │ │ ├── [국적별 외국인 관광객] 멕시코.xlsx │ │ ├── [국적별 외국인 관광객] 몽골.xlsx │ │ ├── [국적별 외국인 관광객] 미국.xlsx │ │ ├── [국적별 외국인 관광객] 미얀마.xlsx │ │ ├── [국적별 외국인 관광객] 미주 기타.xlsx │ │ ├── [국적별 외국인 관광객] 방글라데시.xlsx │ │ ├── [국적별 외국인 관광객] 베트남.xlsx │ │ ├── [국적별 외국인 관광객] 벨기에.xlsx │ │ ├── [국적별 외국인 관광객] 불가리아.xlsx │ │ ├── [국적별 외국인 관광객] 브라질.xlsx │ │ ├── [국적별 외국인 관광객] 스리랑카.xlsx │ │ ├── [국적별 외국인 관광객] 스웨덴.xlsx │ │ ├── [국적별 외국인 관광객] 스위스.xlsx │ │ ├── [국적별 외국인 관광객] 스페인.xlsx │ │ ├── [국적별 외국인 관광객] 싱가포르.xlsx │ │ ├── [국적별 외국인 관광객] 아시아 기타.xlsx │ │ ├── [국적별 외국인 관광객] 아일랜드.xlsx │ │ ├── [국적별 외국인 관광객] 아프리카 기타.xlsx │ │ ├── [국적별 외국인 관광객] 영국.xlsx │ │ ├── [국적별 외국인 관광객] 오스트레일리아.xlsx │ │ ├── [국적별 외국인 관광객] 오스트리아.xlsx │ │ ├── [국적별 외국인 관광객] 우즈베키스탄.xlsx │ │ ├── [국적별 외국인 관광객] 우크라이나.xlsx │ │ ├── [국적별 외국인 관광객] 이란.xlsx │ │ ├── [국적별 외국인 관광객] 이스라엘.xlsx │ │ ├── [국적별 외국인 관광객] 이탈리아.xlsx │ │ ├── [국적별 외국인 관광객] 인도.xlsx │ │ ├── [국적별 외국인 관광객] 인도네시아.xlsx │ │ ├── [국적별 외국인 관광객] 일본.xlsx │ │ ├── [국적별 외국인 관광객] 중국.xlsx │ │ ├── [국적별 외국인 관광객] 카자흐스탄.xlsx │ │ ├── [국적별 외국인 관광객] 캄보디아.xlsx │ │ ├── [국적별 외국인 관광객] 캐나다.xlsx │ │ ├── [국적별 외국인 관광객] 크로아티아.xlsx │ │ ├── [국적별 외국인 관광객] 태국.xlsx │ │ ├── [국적별 외국인 관광객] 터키.xlsx │ │ ├── [국적별 외국인 관광객] 파키스탄.xlsx │ │ ├── [국적별 외국인 관광객] 포르투갈.xlsx │ │ ├── [국적별 외국인 관광객] 폴란드.xlsx │ │ ├── [국적별 외국인 관광객] 프랑스.xlsx │ │ ├── [국적별 외국인 관광객] 핀란드.xlsx │ │ ├── [국적별 외국인 관광객] 필리핀.xlsx │ │ ├── [국적별 외국인 관광객] 홍콩.xlsx │ │ ├── kto_201001.xlsx │ │ ├── kto_201002.xlsx │ │ ├── kto_201003.xlsx │ │ ├── kto_201004.xlsx │ │ ├── kto_201005.xlsx │ │ ├── kto_201006.xlsx │ │ ├── kto_201007.xlsx │ │ ├── kto_201008.xlsx │ │ ├── kto_201009.xlsx │ │ ├── kto_201010.xlsx │ │ ├── kto_201011.xlsx │ │ ├── kto_201012.xlsx │ │ ├── kto_201101.xlsx │ │ ├── kto_201102.xlsx │ │ ├── kto_201103.xlsx │ │ ├── kto_201104.xlsx │ │ ├── kto_201105.xlsx │ │ ├── kto_201106.xlsx │ │ ├── kto_201107.xlsx │ │ ├── kto_201108.xlsx │ │ ├── kto_201109.xlsx │ │ ├── kto_201110.xlsx │ │ ├── kto_201111.xlsx │ │ ├── kto_201112.xlsx │ │ ├── kto_201201.xlsx │ │ ├── kto_201202.xlsx │ │ ├── kto_201203.xlsx │ │ ├── kto_201204.xlsx │ │ ├── kto_201205.xlsx │ │ ├── kto_201206.xlsx │ │ ├── kto_201207.xlsx │ │ ├── kto_201208.xlsx │ │ ├── kto_201209.xlsx │ │ ├── kto_201210.xlsx │ │ ├── kto_201211.xlsx │ │ ├── kto_201212.xlsx │ │ ├── kto_201301.xlsx │ │ ├── kto_201302.xlsx │ │ ├── kto_201303.xlsx │ │ ├── kto_201304.xlsx │ │ ├── kto_201305.xlsx │ │ ├── kto_201306.xlsx │ │ ├── kto_201307.xlsx │ │ ├── kto_201308.xlsx │ │ ├── kto_201309.xlsx │ │ ├── kto_201310.xlsx │ │ ├── kto_201311.xlsx │ │ ├── kto_201312.xlsx │ │ ├── kto_201401.xlsx │ │ ├── kto_201402.xlsx │ │ ├── kto_201403.xlsx │ │ ├── kto_201404.xlsx │ │ ├── kto_201405.xlsx │ │ ├── kto_201406.xlsx │ │ ├── kto_201407.xlsx │ │ ├── kto_201408.xlsx │ │ ├── kto_201409.xlsx │ │ ├── kto_201410.xlsx │ │ ├── kto_201411.xlsx │ │ ├── kto_201412.xlsx │ │ ├── kto_201501.xlsx │ │ ├── kto_201502.xlsx │ │ ├── kto_201503.xlsx │ │ ├── kto_201504.xlsx │ │ ├── kto_201505.xlsx │ │ ├── kto_201506.xlsx │ │ ├── kto_201507.xlsx │ │ ├── kto_201508.xlsx │ │ ├── kto_201509.xlsx │ │ ├── kto_201510.xlsx │ │ ├── kto_201511.xlsx │ │ ├── kto_201512.xlsx │ │ ├── kto_201601.xlsx │ │ ├── kto_201602.xlsx │ │ ├── kto_201603.xlsx │ │ ├── kto_201604.xlsx │ │ ├── kto_201605.xlsx │ │ ├── kto_201606.xlsx │ │ ├── kto_201607.xlsx │ │ ├── kto_201608.xlsx │ │ ├── kto_201609.xlsx │ │ ├── kto_201610.xlsx │ │ ├── kto_201611.xlsx │ │ ├── kto_201612.xlsx │ │ ├── kto_201701.xlsx │ │ ├── kto_201702.xlsx │ │ ├── kto_201703.xlsx │ │ ├── kto_201704.xlsx │ │ ├── kto_201705.xlsx │ │ ├── kto_201706.xlsx │ │ ├── kto_201707.xlsx │ │ ├── kto_201708.xlsx │ │ ├── kto_201709.xlsx │ │ ├── kto_201710.xlsx │ │ ├── kto_201711.xlsx │ │ ├── kto_201712.xlsx │ │ ├── kto_201801.xlsx │ │ ├── kto_201802.xlsx │ │ ├── kto_201803.xlsx │ │ ├── kto_201804.xlsx │ │ ├── kto_201805.xlsx │ │ ├── kto_201806.xlsx │ │ ├── kto_201807.xlsx │ │ ├── kto_201808.xlsx │ │ ├── kto_201809.xlsx │ │ ├── kto_201810.xlsx │ │ ├── kto_201811.xlsx │ │ ├── kto_201812.xlsx │ │ ├── kto_201901.xlsx │ │ ├── kto_201902.xlsx │ │ ├── kto_201903.xlsx │ │ ├── kto_201904.xlsx │ │ ├── kto_201905.xlsx │ │ ├── kto_201906.xlsx │ │ ├── kto_201907.xlsx │ │ ├── kto_201908.xlsx │ │ ├── kto_201909.xlsx │ │ ├── kto_201910.xlsx │ │ ├── kto_201911.xlsx │ │ ├── kto_201912.xlsx │ │ ├── kto_202001.xlsx │ │ ├── kto_202002.xlsx │ │ ├── kto_202003.xlsx │ │ ├── kto_202004.xlsx │ │ ├── kto_202005.xlsx │ │ ├── kto_china.xlsx │ │ ├── kto_total.xlsx │ │ └── 실습데이터.zip ├── 5_Jeju_Hotplace │ ├── 5_1_Instagram_Crawling.ipynb │ ├── 5_2_WordCloud.ipynb │ ├── 5_3_Map.ipynb │ ├── 5_4_Find_words.ipynb │ └── files │ │ ├── 1_crawling_jejuMatJip.xlsx │ │ ├── 1_crawling_jejuYeoHang.xlsx │ │ ├── 1_crawling_jejudoGwanGwang.xlsx │ │ ├── 1_crawling_jejudoMatJip.xlsx │ │ ├── 1_crawling_raw.xlsx │ │ ├── 2_tag-wordcloud.png │ │ ├── 3_jeju.html │ │ ├── 3_jeju_cluster.html │ │ ├── 3_location_counts.xlsx │ │ ├── 3_location_inform.xlsx │ │ ├── 3_locations.xlsx │ │ ├── 4_select_data_게스트하우스.xlsx │ │ ├── 4_select_data_박물관.xlsx │ │ ├── 4_select_data_섭지코지.xlsx │ │ ├── 4_select_data_해돋이.xlsx │ │ ├── 4_select_data_힐링.xlsx │ │ ├── insta_login_1.png │ │ └── insta_login_2.png ├── 6_Starbucks_Location │ ├── 6_1_1_Crawling_Starbucks_List.ipynb │ ├── 6_1_2_edit_OpenData_Download.ipynb │ ├── 6_2_1_Starbucks_Address.ipynb │ ├── 6_2_2_Starbucks_Data.ipynb │ ├── 6_3_1_Starbucks_Map.ipynb │ ├── 6_3_2_Starbucks_Location_Visualization.ipynb │ ├── 6_3_3&4_Starbucks_Locations_Analysis.ipynb │ ├── files │ │ ├── report.txt │ │ ├── report2.txt │ │ ├── seoul_sgg_list.xlsx │ │ ├── seoul_sgg_stat.xlsx │ │ ├── seoul_starbucks_list.xlsx │ │ ├── sgg_biz.xlsx │ │ └── sgg_pop.xlsx │ └── maps │ │ └── seoul_sgg.geojson └── 7_Best_Product │ ├── 7_1&2_Crawling.ipynb │ ├── 7_3_preprocessing.ipynb │ ├── 7_4_Product_Analysis.ipynb │ └── files │ ├── 1_danawa_crawling_result.xlsx │ └── 2_danawa_data_final.xlsx └── README.md /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | *.egg-info/ 24 | .installed.cfg 25 | *.egg 26 | MANIFEST 27 | 28 | # PyInstaller 29 | # Usually these files are written by a python script from a template 30 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 31 | *.manifest 32 | *.spec 33 | 34 | # Installer logs 35 | pip-log.txt 36 | pip-delete-this-directory.txt 37 | 38 | # Unit test / coverage reports 39 | htmlcov/ 40 | .tox/ 41 | .coverage 42 | .coverage.* 43 | .cache 44 | nosetests.xml 45 | coverage.xml 46 | *.cover 47 | .hypothesis/ 48 | .pytest_cache/ 49 | 50 | # Translations 51 | *.mo 52 | *.pot 53 | 54 | # Django stuff: 55 | *.log 56 | local_settings.py 57 | db.sqlite3 58 | 59 | # Flask stuff: 60 | instance/ 61 | .webassets-cache 62 | 63 | # Scrapy stuff: 64 | .scrapy 65 | 66 | # Sphinx documentation 67 | docs/_build/ 68 | 69 | # PyBuilder 70 | target/ 71 | 72 | # Jupyter Notebook 73 | .ipynb_checkpoints 74 | 75 | # pyenv 76 | .python-version 77 | 78 | # celery beat schedule file 79 | celerybeat-schedule 80 | 81 | # SageMath parsed files 82 | *.sage.py 83 | 84 | # Environments 85 | .env 86 | .venv 87 | env/ 88 | venv/ 89 | ENV/ 90 | env.bak/ 91 | venv.bak/ 92 | 93 | # Spyder project settings 94 | .spyderproject 95 | .spyproject 96 | 97 | # Rope project settings 98 | .ropeproject 99 | 100 | # mkdocs documentation 101 | /site 102 | 103 | # mypy 104 | .mypy_cache/ 105 | .DS_Store 106 | -------------------------------------------------------------------------------- /01_초판/2_Start_DataAnalysis/files/sample.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/2_Start_DataAnalysis/files/sample.xlsx -------------------------------------------------------------------------------- /01_초판/2_Start_DataAnalysis/files/sample_1.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/2_Start_DataAnalysis/files/sample_1.xlsx -------------------------------------------------------------------------------- /01_초판/2_Start_DataAnalysis/files/sample_2.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/2_Start_DataAnalysis/files/sample_2.xlsx -------------------------------------------------------------------------------- /01_초판/2_Start_DataAnalysis/files/sample_codemaster.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/2_Start_DataAnalysis/files/sample_codemaster.xlsx -------------------------------------------------------------------------------- /01_초판/2_Start_DataAnalysis/files/sample_index_false.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/2_Start_DataAnalysis/files/sample_index_false.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201001.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201001.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201002.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201002.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201003.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201003.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201004.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201004.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201005.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201005.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201006.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201006.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201007.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201007.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201008.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201008.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201009.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201009.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201010.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201010.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201011.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201011.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201012.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201012.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201101.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201101.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201102.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201102.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201103.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201103.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201104.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201104.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201105.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201105.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201106.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201106.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201107.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201107.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201108.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201108.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201109.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201109.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201110.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201110.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201111.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201111.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201112.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201112.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201201.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201201.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201202.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201202.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201203.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201203.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201204.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201204.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201205.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201205.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201206.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201206.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201207.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201207.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201208.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201208.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201209.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201209.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201210.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201210.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201211.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201211.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201212.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201212.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201301.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201301.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201302.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201302.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201303.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201303.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201304.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201304.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201305.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201305.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201306.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201306.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201307.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201307.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201308.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201308.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201309.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201309.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201310.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201310.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201311.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201311.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201312.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201312.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201401.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201401.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201402.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201402.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201403.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201403.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201404.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201404.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201405.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201405.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201406.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201406.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201407.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201407.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201408.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201408.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201409.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201409.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201410.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201410.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201411.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201411.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201412.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201412.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201501.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201501.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201502.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201502.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201503.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201503.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201504.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201504.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201505.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201505.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201506.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201506.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201507.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201507.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201508.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201508.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201509.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201509.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201510.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201510.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201511.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201511.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201512.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201512.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201601.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201601.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201602.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201602.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201603.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201603.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201604.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201604.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201605.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201605.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201606.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201606.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201607.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201607.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201608.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201608.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201609.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201609.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201610.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201610.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201611.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201611.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201612.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201612.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201701.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201701.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201702.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201702.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201703.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201703.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201704.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201704.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201705.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201705.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201706.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201706.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201707.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201707.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201708.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201708.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201709.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201709.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201710.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201710.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201711.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201711.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201712.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201712.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201801.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201801.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201802.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201802.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201803.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201803.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201804.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201804.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201805.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201805.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201806.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201806.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201807.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201807.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201808.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201808.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201809.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201809.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201810.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201810.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201811.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201811.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201812.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201812.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201901.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201901.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201902.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201902.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201903.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201903.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201904.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201904.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201905.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201905.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201906.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201906.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201907.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201907.xlsx -------------------------------------------------------------------------------- /01_초판/3_Tourists_Event/files/kto_201908.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/3_Tourists_Event/files/kto_201908.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/4_2_WordCloud.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# 4.2 워드클라우드" 8 | ] 9 | }, 10 | { 11 | "cell_type": "markdown", 12 | "metadata": {}, 13 | "source": [ 14 | "### 4.2.1 워드 클라우드를 만드는 과정" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": null, 20 | "metadata": { 21 | "scrolled": true 22 | }, 23 | "outputs": [], 24 | "source": [ 25 | "# 예제 4-10 크롤링 결과 중 해시태그 데이터 불러오기\n", 26 | "import pandas as pd\n", 27 | "raw_total = pd.read_excel('./files/3_1_crawling_raw.xlsx')\n", 28 | "raw_total['tags'] [:3]" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": null, 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [ 37 | "# 예제 4-11 해시태그 통합 저장하기\n", 38 | "tags_total = []\n", 39 | "\n", 40 | "for tags in raw_total['tags']:\n", 41 | " tags_list = tags[2:-2].split(\"', '\")\n", 42 | " for tag in tags_list:\n", 43 | " tags_total.append(tag)" 44 | ] 45 | }, 46 | { 47 | "cell_type": "markdown", 48 | "metadata": {}, 49 | "source": [ 50 | "### 4.2.3 해시태그 출현 빈도 집계" 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": null, 56 | "metadata": {}, 57 | "outputs": [], 58 | "source": [ 59 | "# 예제 4-12 빈도수 집계하기(Counter)\n", 60 | "from collections import Counter\n", 61 | "tag_counts = Counter(tags_total)" 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": null, 67 | "metadata": { 68 | "scrolled": true 69 | }, 70 | "outputs": [], 71 | "source": [ 72 | "# 예제 4-13 가장 많이 사용된 해시태그 살펴보기 \n", 73 | "tag_counts.most_common(50)" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": null, 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "# 예제 4-14 데이터 정제하기\n", 83 | "STOPWORDS = ['#일상', '#선팔', '#제주도', '#jeju', '#반영구', '#제주자연눈썹',\n", 84 | "'#서귀포눈썹문신', '#제주눈썹문신', '#소통', '#맞팔']\n", 85 | "\n", 86 | "tag_total_selected = []\n", 87 | "for tag in tags_total:\n", 88 | " if tag not in STOPWORDS:\n", 89 | " tag_total_selected.append(tag)\n", 90 | " \n", 91 | "tag_counts_selected = Counter(tag_total_selected)\n", 92 | "tag_counts_selected.most_common(10)\n" 93 | ] 94 | }, 95 | { 96 | "cell_type": "markdown", 97 | "metadata": {}, 98 | "source": [ 99 | "### 4.2.4 막대차트로 해시태그 살펴보기" 100 | ] 101 | }, 102 | { 103 | "cell_type": "code", 104 | "execution_count": null, 105 | "metadata": {}, 106 | "outputs": [], 107 | "source": [ 108 | "# 예제 4-15 시각화 라이브러리 호출 및 환경 설정(한글 폰트)\n", 109 | "import matplotlib.pyplot as plt\n", 110 | "import seaborn as sns\n", 111 | "from matplotlib import font_manager, rc\n", 112 | "import sys\n", 113 | "\n", 114 | "if sys.platform in [\"win32\", \"win64\"]:\n", 115 | " font_name = \"malgun gothic\"\n", 116 | "elif sys.platform == \"darwin\":\n", 117 | " font_name = \"AppleGothic\"\n", 118 | "\n", 119 | "rc('font',family=font_name)\n" 120 | ] 121 | }, 122 | { 123 | "cell_type": "code", 124 | "execution_count": null, 125 | "metadata": {}, 126 | "outputs": [], 127 | "source": [ 128 | "# 예제 4-16 데이터 준비하기\n", 129 | "tag_counts_df = pd.DataFrame(tag_counts_selected.most_common(30))\n", 130 | "tag_counts_df.columns = ['tags', 'counts']" 131 | ] 132 | }, 133 | { 134 | "cell_type": "code", 135 | "execution_count": null, 136 | "metadata": {}, 137 | "outputs": [], 138 | "source": [ 139 | "# 예제 4-17 막대 차트 그리기\n", 140 | "plt.figure(figsize=(10,8)) \n", 141 | "sns.barplot(x='counts', y='tags', data = tag_counts_df)" 142 | ] 143 | }, 144 | { 145 | "cell_type": "markdown", 146 | "metadata": {}, 147 | "source": [ 148 | "### 4.2.5 워드 클라우드 그리기" 149 | ] 150 | }, 151 | { 152 | "cell_type": "code", 153 | "execution_count": null, 154 | "metadata": {}, 155 | "outputs": [], 156 | "source": [ 157 | "# 예제 4-18 워드클라우드 라이브러리 불러오기\n", 158 | "import matplotlib.pyplot as plt\n", 159 | "from wordcloud import WordCloud\n", 160 | "import platform\n", 161 | "\n", 162 | "if platform.system() == 'Windows': #윈도우의 경우\n", 163 | " font_path = \"c:/Windows/Fonts/malgun.ttf\"\n", 164 | "elif platform.system() == \"Darwin\": #Mac 의 경우\n", 165 | " font_path = \"/Users/$USER/Library/Fonts/AppleGothic.ttf\"\n" 166 | ] 167 | }, 168 | { 169 | "cell_type": "code", 170 | "execution_count": null, 171 | "metadata": {}, 172 | "outputs": [], 173 | "source": [ 174 | "# 예제 4-19 워드클라우드 만들기\n", 175 | "wordcloud=WordCloud(font_path= font_path, \n", 176 | " background_color=\"white\",\n", 177 | " max_words=100,\n", 178 | " relative_scaling= 0.3,\n", 179 | " width = 800,\n", 180 | " height = 400\n", 181 | " ).generate_from_frequencies(tag_counts_selected) \n", 182 | "plt.figure(figsize=(15,10))\n", 183 | "plt.imshow(wordcloud)\n", 184 | "plt.axis('off')\n", 185 | "plt.savefig('./files/3_2_tag-wordcloud.png') " 186 | ] 187 | } 188 | ], 189 | "metadata": { 190 | "kernelspec": { 191 | "display_name": "Python 3", 192 | "language": "python", 193 | "name": "python3" 194 | }, 195 | "language_info": { 196 | "codemirror_mode": { 197 | "name": "ipython", 198 | "version": 3 199 | }, 200 | "file_extension": ".py", 201 | "mimetype": "text/x-python", 202 | "name": "python", 203 | "nbconvert_exporter": "python", 204 | "pygments_lexer": "ipython3", 205 | "version": "3.7.4" 206 | } 207 | }, 208 | "nbformat": 4, 209 | "nbformat_minor": 2 210 | } 211 | -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejuMatJip.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejuMatJip.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejuYeoHang.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejuYeoHang.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejudoGwanGwang.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejudoGwanGwang.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejudoMatJip.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_1_crawling_jejudoMatJip.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_1_crawling_raw.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_1_crawling_raw.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_2_tag-wordcloud.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_2_tag-wordcloud.png -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_3_location_counts.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_3_location_counts.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_3_location_inform.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_3_location_inform.xlsx -------------------------------------------------------------------------------- /01_초판/4_Jeju_Hotplace/files/3_3_locations.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/4_Jeju_Hotplace/files/3_3_locations.xlsx -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/5_1_1_Crawling_Starbucks_List.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# 예제 5-1 라이브러리 임포트\n", 10 | "from selenium import webdriver\n", 11 | "from bs4 import BeautifulSoup\n", 12 | "import pandas as pd" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": null, 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "# 예제 5-2 webdriver 실행 후 스타벅스의 지역별 매장 검색 화면에 접속\n", 22 | "browser = webdriver.Chrome('c:/playwithdata/chromedriver.exe')\n", 23 | "url = 'https://www.istarbucks.co.kr/store/store_map.do?disp=locale'\n", 24 | "browser.get(url)" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": null, 30 | "metadata": {}, 31 | "outputs": [], 32 | "source": [ 33 | "# 예제 5-3 webdriver로 ‘서울’ 버튼 요소를 찾아 클릭\n", 34 | "seoul_btn = '#container > div > form > fieldset > div > section > article.find_store_cont > article > article:nth-child(4) > div.loca_step1 > div.loca_step1_cont > ul > li:nth-child(1) > a'\n", 35 | "browser.find_element_by_css_selector(seoul_btn).click()" 36 | ] 37 | }, 38 | { 39 | "cell_type": "code", 40 | "execution_count": null, 41 | "metadata": {}, 42 | "outputs": [], 43 | "source": [ 44 | "# 예제 5-4 webdriver로 ‘전체’ 버튼 요소를 찾아 클릭\n", 45 | "all_btn = '#mCSB_2_container > ul > li:nth-child(1) > a'\n", 46 | "browser.find_element_by_css_selector(all_btn).click()" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": null, 52 | "metadata": {}, 53 | "outputs": [], 54 | "source": [ 55 | "# 예제 5-5 BeautifulSoup으로 HTML 파서 만들기\n", 56 | "html = browser.page_source\n", 57 | "soup = BeautifulSoup(html, 'html.parser')" 58 | ] 59 | }, 60 | { 61 | "cell_type": "code", 62 | "execution_count": null, 63 | "metadata": {}, 64 | "outputs": [], 65 | "source": [ 66 | "# 예제 5-6 select()를 이용해 원하는 HTML 태그를 모두 찾아오기\n", 67 | "starbucks_soup_list = soup.select('li.quickResultLstCon')\n", 68 | "print(len(starbucks_soup_list))" 69 | ] 70 | }, 71 | { 72 | "cell_type": "code", 73 | "execution_count": null, 74 | "metadata": {}, 75 | "outputs": [], 76 | "source": [ 77 | "# 예제 5-7 태그 문자열 살펴보기\n", 78 | "starbucks_soup_list[0]" 79 | ] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "execution_count": null, 84 | "metadata": {}, 85 | "outputs": [], 86 | "source": [ 87 | "# 예제 5-8 스타벅스 매장 정보 샘플 확인\n", 88 | "startbucks_store = starbucks_soup_list[0]\n", 89 | "name = startbucks_store.select('strong')[0].text.strip()\n", 90 | "lat = startbucks_store['data-lat'].strip()\n", 91 | "lng = startbucks_store['data-long'].strip()\n", 92 | "store_type = startbucks_store.select('i')[0]['class'][0][4:]\n", 93 | "address = str(startbucks_store.select('p.result_details')[0]).split('
')[0].split('>')[1]\n", 94 | "tel = str(startbucks_store.select('p.result_details')[0]).split('
')[1].split('<')[0]\n", 95 | "\n", 96 | "print(name) # 매장명\n", 97 | "print(lat) # 위도\n", 98 | "print(lng) # 경도\n", 99 | "print(store_type) # 매장 타입\n", 100 | "print(address) # 주소\n", 101 | "print(tel) # 전화번호" 102 | ] 103 | }, 104 | { 105 | "cell_type": "code", 106 | "execution_count": null, 107 | "metadata": {}, 108 | "outputs": [], 109 | "source": [ 110 | "# 예제 5-9 서울시 스타벅스 매장 목록 데이터 만들기\n", 111 | "starbucks_list = []\n", 112 | "for item in starbucks_soup_list:\n", 113 | " name = item.select('strong')[0].text.strip();\n", 114 | " lat = item['data-lat'].strip()\n", 115 | " lng = item['data-long'].strip()\n", 116 | " store_type = item.select('i')[0]['class'][0][4:]\n", 117 | " address = str(item.select('p.result_details')[0]).split('
')[0].split('>')[1]\n", 118 | " tel = str(item.select('p.result_details')[0]).split('
')[1].split('<')[0]\n", 119 | " \n", 120 | " starbucks_list.append( [ name, lat, lng, store_type, address, tel])" 121 | ] 122 | }, 123 | { 124 | "cell_type": "code", 125 | "execution_count": null, 126 | "metadata": {}, 127 | "outputs": [], 128 | "source": [ 129 | "# 예제 5-10 pandas의 데이터프레임 생성\n", 130 | "columns = ['매장명','위도','경도','매장타입', '주소','전화번호']\n", 131 | "seoul_starbucks_df = pd.DataFrame(starbucks_list, columns = columns)\n", 132 | "seoul_starbucks_df.head()" 133 | ] 134 | }, 135 | { 136 | "cell_type": "code", 137 | "execution_count": null, 138 | "metadata": {}, 139 | "outputs": [], 140 | "source": [ 141 | "# 예제 5-11 데이터프레임의 요약 정보 확인\n", 142 | "seoul_starbucks_df.info()" 143 | ] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": null, 148 | "metadata": {}, 149 | "outputs": [], 150 | "source": [ 151 | "# 예제 5-12 엑셀로 저장\n", 152 | "seoul_starbucks_df.to_excel('./files/4_1_seoul_starbucks_list.xlsx', index=False)" 153 | ] 154 | }, 155 | { 156 | "cell_type": "code", 157 | "execution_count": null, 158 | "metadata": {}, 159 | "outputs": [], 160 | "source": [] 161 | } 162 | ], 163 | "metadata": { 164 | "kernelspec": { 165 | "display_name": "Python 3", 166 | "language": "python", 167 | "name": "python3" 168 | }, 169 | "language_info": { 170 | "codemirror_mode": { 171 | "name": "ipython", 172 | "version": 3 173 | }, 174 | "file_extension": ".py", 175 | "mimetype": "text/x-python", 176 | "name": "python", 177 | "nbconvert_exporter": "python", 178 | "pygments_lexer": "ipython3", 179 | "version": "3.6.7" 180 | } 181 | }, 182 | "nbformat": 4, 183 | "nbformat_minor": 2 184 | } 185 | -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/5_2_1_Starbucks_Address.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# 예제 5-39 서울시 스타벅스 매장 목록이 담긴 엑셀 파일 불러오기\n", 10 | "import pandas as pd\n", 11 | "seoul_starbucks = pd.read_excel('./files/4_1_seoul_starbucks_list.xlsx', header=0)\n", 12 | "seoul_starbucks.head()" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": null, 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "# 예제 5-40 스타벅스 주소 정보에서 시군구명 추출\n", 22 | "sgg_names = []\n", 23 | "for address in seoul_starbucks['주소']:\n", 24 | " sgg = address.split()[1]\n", 25 | " sgg_names.append(sgg)\n", 26 | "seoul_starbucks['시군구명'] = sgg_names\n", 27 | "seoul_starbucks.head()" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": null, 33 | "metadata": {}, 34 | "outputs": [], 35 | "source": [ 36 | "# 예제 5-41 엑셀로 저장\n", 37 | "seoul_starbucks.to_excel('./files/4_4_seoul_starbucks_list.xlsx', index=False)" 38 | ] 39 | } 40 | ], 41 | "metadata": { 42 | "kernelspec": { 43 | "display_name": "Python 3", 44 | "language": "python", 45 | "name": "python3" 46 | }, 47 | "language_info": { 48 | "codemirror_mode": { 49 | "name": "ipython", 50 | "version": 3 51 | }, 52 | "file_extension": ".py", 53 | "mimetype": "text/x-python", 54 | "name": "python", 55 | "nbconvert_exporter": "python", 56 | "pygments_lexer": "ipython3", 57 | "version": "3.6.7" 58 | } 59 | }, 60 | "nbformat": 4, 61 | "nbformat_minor": 2 62 | } 63 | -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/5_2_2_Starbucks_Data.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# 예제 5-42 라이브러리 임포트\n", 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": null, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "# 예제 5-43 시군구 목록 데이터 불러오기\n", 20 | "seoul_sgg = pd.read_excel('./files/4_2_seoul_sgg_list.xlsx')\n", 21 | "seoul_sgg.head()" 22 | ] 23 | }, 24 | { 25 | "cell_type": "code", 26 | "execution_count": null, 27 | "metadata": {}, 28 | "outputs": [], 29 | "source": [ 30 | "# 예제 5-44 서울시 스타벅스 매장 목록 데이터 불러오기\n", 31 | "seoul_starbucks = pd.read_excel('./files/4_4_seoul_starbucks_list.xlsx')\n", 32 | "seoul_starbucks.head()" 33 | ] 34 | }, 35 | { 36 | "cell_type": "code", 37 | "execution_count": null, 38 | "metadata": {}, 39 | "outputs": [], 40 | "source": [ 41 | "# 예제 5-45 시군구별 스타벅스 매장 수 세기\n", 42 | "starbucks_sgg_count = seoul_starbucks.pivot_table(\n", 43 | " index = '시군구명', \n", 44 | " values='매장명', \n", 45 | " aggfunc='count'\n", 46 | " ).rename(columns={'매장명':'스타벅스_매장수'})\n", 47 | "starbucks_sgg_count.head()" 48 | ] 49 | }, 50 | { 51 | "cell_type": "code", 52 | "execution_count": null, 53 | "metadata": {}, 54 | "outputs": [], 55 | "source": [ 56 | "# 예제 5-46 서울시 시군구 목록 데이터에 스타벅스 매장 수 데이터를 병합\n", 57 | "seoul_sgg = pd.merge(seoul_sgg, starbucks_sgg_count, how='left', on='시군구명')\n", 58 | "seoul_sgg.head()" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": null, 64 | "metadata": {}, 65 | "outputs": [], 66 | "source": [ 67 | "# 예제 5-47 서울시 시군구별 인구통계 데이터 불러오기\n", 68 | "seoul_sgg_pop = pd.read_excel('./files/4_3_sgg_pop.xlsx')\n", 69 | "seoul_sgg_pop.head()" 70 | ] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "execution_count": null, 75 | "metadata": {}, 76 | "outputs": [], 77 | "source": [ 78 | "# 예제 5-48 서울시 시군구 목록 데이터에 서울시 시군구별 인구통계 데이터를 병합\n", 79 | "seoul_sgg = pd.merge(seoul_sgg, seoul_sgg_pop, how='left', on='시군구명')\n", 80 | "seoul_sgg.head()" 81 | ] 82 | }, 83 | { 84 | "cell_type": "code", 85 | "execution_count": null, 86 | "metadata": {}, 87 | "outputs": [], 88 | "source": [ 89 | "# 예제 5-49 서울시 시군구 목록 데이터에 서울시 시군구별 사업체 수 통계 데이터를 병합\n", 90 | "seoul_sgg_biz = pd.read_excel('./files/4_3_sgg_biz.xlsx')\n", 91 | "seoul_sgg = pd.merge(\n", 92 | " seoul_sgg, \n", 93 | " seoul_sgg_biz,\n", 94 | " how='left',\n", 95 | " on='시군구명'\n", 96 | ")\n", 97 | "seoul_sgg.head()" 98 | ] 99 | }, 100 | { 101 | "cell_type": "code", 102 | "execution_count": null, 103 | "metadata": {}, 104 | "outputs": [], 105 | "source": [ 106 | "# 예제 5-50 병합 결과를 엑셀 파일로 저장\n", 107 | "seoul_sgg.to_excel('./files/4_5_seoul_sgg_stat.xlsx', index=False)" 108 | ] 109 | } 110 | ], 111 | "metadata": { 112 | "kernelspec": { 113 | "display_name": "Python 3", 114 | "language": "python", 115 | "name": "python3" 116 | }, 117 | "language_info": { 118 | "codemirror_mode": { 119 | "name": "ipython", 120 | "version": 3 121 | }, 122 | "file_extension": ".py", 123 | "mimetype": "text/x-python", 124 | "name": "python", 125 | "nbconvert_exporter": "python", 126 | "pygments_lexer": "ipython3", 127 | "version": "3.6.7" 128 | } 129 | }, 130 | "nbformat": 4, 131 | "nbformat_minor": 2 132 | } 133 | -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/5_3_1_Starbucks_Map.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# 예제 5-51 라이브러리 임포트\n", 10 | "import pandas as pd\n", 11 | "import folium\n", 12 | "import json" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": null, 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "# 예제 5-52 folium 설치\n", 22 | "! pip install folium" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": null, 28 | "metadata": {}, 29 | "outputs": [], 30 | "source": [ 31 | "# 예제 5-53 서울시 스타벅스 매장 목록 데이터 불러오기\n", 32 | "seoul_starbucks = pd.read_excel('./files/4_4_seoul_starbucks_list.xlsx')\n", 33 | "seoul_starbucks.head()" 34 | ] 35 | }, 36 | { 37 | "cell_type": "code", 38 | "execution_count": null, 39 | "metadata": {}, 40 | "outputs": [], 41 | "source": [ 42 | "# 예제 5-54 folium을 이용한 지도 생성\n", 43 | "starbucks_map = folium.Map(\n", 44 | " location=[37.573050, 126.979189],\n", 45 | " tiles='Stamen Terrain',\n", 46 | " zoom_start=11\n", 47 | ")\n", 48 | "starbucks_map" 49 | ] 50 | }, 51 | { 52 | "cell_type": "code", 53 | "execution_count": null, 54 | "metadata": {}, 55 | "outputs": [], 56 | "source": [ 57 | "# 예제 5-55 지도에 스타벅스 매장 위치를 나타내는 서클 마커 그리기\n", 58 | "for idx in seoul_starbucks.index:\n", 59 | " lat = seoul_starbucks.loc[idx, '위도']\n", 60 | " lng = seoul_starbucks.loc[idx, '경도']\n", 61 | "\n", 62 | " folium.CircleMarker(\n", 63 | " location=[lat, lng],\n", 64 | " fill = True, \n", 65 | " fill_color='green', \n", 66 | " fill_opacity=1,\n", 67 | " color='yellow', \n", 68 | " weight=1,\n", 69 | " radius=3\n", 70 | " ).add_to(starbucks_map)\n", 71 | "\n", 72 | "starbucks_map" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": null, 78 | "metadata": {}, 79 | "outputs": [], 80 | "source": [ 81 | "# 예제 5-56 스타벅스 매장 타입별 위치 서클 마커 그리기\n", 82 | "starbucks_map2 = folium.Map(\n", 83 | " location=[37.573050, 126.979189],\n", 84 | " tiles='Stamen Terrain',\n", 85 | " zoom_start=11\n", 86 | ")\n", 87 | "\n", 88 | "for idx in seoul_starbucks.index:\n", 89 | " lat = seoul_starbucks.loc[idx, '위도']\n", 90 | " lng = seoul_starbucks.loc[idx, '경도']\n", 91 | " store_type = seoul_starbucks.loc[idx, '매장타입']\n", 92 | " \n", 93 | " # 매장 타입별 색상 선택을 위한 조건문\n", 94 | " fillColor = ''\n", 95 | " if store_type == 'general':\n", 96 | " fillColor = 'gray'\n", 97 | " size = 1\n", 98 | " elif store_type == 'reserve':\n", 99 | " fillColor = 'blue'\n", 100 | " size = 5\n", 101 | " elif store_type == 'generalDT':\n", 102 | " fillColor = 'red'\n", 103 | " size = 5\n", 104 | "\n", 105 | " folium.CircleMarker(\n", 106 | " location=[lat, lng],\n", 107 | " color=fillColor,\n", 108 | " fill = True,\n", 109 | " fill_color = fillColor, \n", 110 | " fill_opacity = 1,\n", 111 | " weight = 1,\n", 112 | " radius = size\n", 113 | " ).add_to(starbucks_map2)\n", 114 | "\n", 115 | "starbucks_map2" 116 | ] 117 | } 118 | ], 119 | "metadata": { 120 | "kernelspec": { 121 | "display_name": "Python 3", 122 | "language": "python", 123 | "name": "python3" 124 | }, 125 | "language_info": { 126 | "codemirror_mode": { 127 | "name": "ipython", 128 | "version": 3 129 | }, 130 | "file_extension": ".py", 131 | "mimetype": "text/x-python", 132 | "name": "python", 133 | "nbconvert_exporter": "python", 134 | "pygments_lexer": "ipython3", 135 | "version": "3.6.7" 136 | } 137 | }, 138 | "nbformat": 4, 139 | "nbformat_minor": 2 140 | } 141 | -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/5_3_3&4_Starbucks_Locations_Analysis.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "### 5.3.3 스타벅스 매장 수와 인구수 비교" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# 예제 5-65 라이브러리 임포트\n", 17 | "import pandas as pd\n", 18 | "import json\n", 19 | "import folium" 20 | ] 21 | }, 22 | { 23 | "cell_type": "code", 24 | "execution_count": null, 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "# 예제 5-66 서울시 시군구별 통계 데이터 불러오기\n", 29 | "seoul_sgg_stat = pd.read_excel('./files/4_5_seoul_sgg_stat.xlsx')\n", 30 | "seoul_sgg_stat.head()" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": null, 36 | "metadata": {}, 37 | "outputs": [], 38 | "source": [ 39 | "# 예제 5-67 서울시 시군구 행정 경계 지도 파일 불러오기\n", 40 | "sgg_geojson_file_path = './maps/seoul_sgg.geojson'\n", 41 | "seoul_sgg_geo_2 = json.load(open(sgg_geojson_file_path, encoding='utf-8'))" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": null, 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "# 예제 5-68 서울시 시군구별 주민등록인구수 단계구분도 지도 시각화\n", 51 | "starbucks_choropleth = folium.Map(\n", 52 | " location=[37.573050, 126.979189],\n", 53 | " tiles='CartoDB dark_matter',\n", 54 | " zoom_start=11\n", 55 | ")\n", 56 | "\n", 57 | "folium.Choropleth(\n", 58 | " geo_data=seoul_sgg_geo_2,\n", 59 | " data=seoul_sgg_stat,\n", 60 | " columns=['시군구명', '주민등록인구'],\n", 61 | " fill_color = 'YlGn',\n", 62 | " fill_opacity=0.7,\n", 63 | " line_opacity=0.5,\n", 64 | " key_on='properties.SIG_KOR_NM'\n", 65 | " ).add_to(starbucks_choropleth)\n", 66 | "\n", 67 | "starbucks_choropleth" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": null, 73 | "metadata": {}, 74 | "outputs": [], 75 | "source": [ 76 | "# 예제 5-69 인구 만 명당 스타벅스 매장 수 칼럼 추가\n", 77 | "seoul_sgg_stat['만명당_매장수'] = seoul_sgg_stat['스타벅스_매장수']/(seoul_sgg_stat['주민등록인구']/10000)" 78 | ] 79 | }, 80 | { 81 | "cell_type": "code", 82 | "execution_count": null, 83 | "metadata": {}, 84 | "outputs": [], 85 | "source": [ 86 | "# 예제 5-70 인구 만 명당 스타벅스 매장 수 지도 시각화\n", 87 | "SGG_GEOJSON_FILE_PATH = './maps/seoul_sgg.geojson'\n", 88 | "seoul_sgg_geo_1 = json.load(open(SGG_GEOJSON_FILE_PATH, encoding='utf-8'))\n", 89 | "\n", 90 | "viz_map_1 = folium.Map(\n", 91 | " location=[37.573050, 126.979189],\n", 92 | " tiles='CartoDB dark_matter',\n", 93 | " zoom_start=11\n", 94 | ")\n", 95 | "\n", 96 | "# 지도 스타일 지정 함수\n", 97 | "def style_function(feature):\n", 98 | " return {\n", 99 | " 'opacity': 0.7,\n", 100 | " 'weight': 1,\n", 101 | " 'fillOpacity':0,\n", 102 | " }\n", 103 | "\n", 104 | "folium.GeoJson(\n", 105 | " seoul_sgg_geo_2,\n", 106 | " style_function=style_function,\n", 107 | ").add_to(viz_map_1)\n", 108 | "# 만명당 매장수 기준 상위 10% 추출 값\n", 109 | "top = seoul_sgg_stat ['만명당_매장수'].quantile(0.9)\n", 110 | "for idx in seoul_sgg_stat.index:\n", 111 | " lat = seoul_sgg_stat.loc[idx, '위도']\n", 112 | " lng = seoul_sgg_stat.loc[idx, '경도']\n", 113 | " r = seoul_sgg_stat.loc[idx, '만명당_매장수']\n", 114 | " if r > top:\n", 115 | " fillColor = '#FF3300' # (Red)\n", 116 | " else:\n", 117 | " fillColor = '#CCFF33' # (Green)\n", 118 | " \n", 119 | " folium.CircleMarker(\n", 120 | " location=[lat, lng], \n", 121 | " color='#FFFF00', # (Yellow)\n", 122 | " fill_color=fillColor, \n", 123 | " fill_opacity=0.7,\n", 124 | " weight=1.5,\n", 125 | " radius= r * 10\n", 126 | " ).add_to(viz_map_1)\n", 127 | "\n", 128 | "viz_map_1" 129 | ] 130 | }, 131 | { 132 | "cell_type": "markdown", 133 | "metadata": {}, 134 | "source": [ 135 | "### 5.3.4 스타벅스 매장 수와 사업체 수 비교" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "execution_count": null, 141 | "metadata": {}, 142 | "outputs": [], 143 | "source": [ 144 | "# 예제 5-71 신규 칼럼을 생성해 값 입력\n", 145 | "seoul_sgg_stat['종사자수_만명당_매장수'] = seoul_sgg_stat['스타벅스_매장수']/(seoul_sgg_stat['종사자수']/10000)\n", 146 | "seoul_sgg_stat.head()" 147 | ] 148 | }, 149 | { 150 | "cell_type": "code", 151 | "execution_count": null, 152 | "metadata": {}, 153 | "outputs": [], 154 | "source": [ 155 | "# 예제 5-72 종사자 수 1만 명당 스타벅스 매장 수 시각화\n", 156 | "seoul_sgg_geo_1 = json.load(open(SGG_GEOJSON_FILE_PATH, encoding='utf-8'))\n", 157 | "\n", 158 | "viz_map_1 = folium.Map(\n", 159 | " location=[37.573050, 126.979189],\n", 160 | " tiles='CartoDB dark_matter',\n", 161 | " zoom_start=11\n", 162 | ")\n", 163 | "\n", 164 | "folium.GeoJson(\n", 165 | " seoul_sgg_geo_1,\n", 166 | " style_function=style_function,\n", 167 | ").add_to(viz_map_1)\n", 168 | "\n", 169 | "top = seoul_sgg_stat['종사자수_만명당_매장수'].quantile(0.9)\n", 170 | "for idx in seoul_sgg_stat.index:\n", 171 | " name = seoul_sgg_stat.at[idx, '시군구명']\n", 172 | " lat = seoul_sgg_stat.loc[idx, '위도']\n", 173 | " lng = seoul_sgg_stat.loc[idx, '경도']\n", 174 | " r = seoul_sgg_stat.loc[idx, '종사자수_만명당_매장수']\n", 175 | " \n", 176 | " if r > top:\n", 177 | " fillColor = '#FF3300'\n", 178 | " else:\n", 179 | " fillColor = '#CCFF33'\n", 180 | " \n", 181 | " folium.CircleMarker(\n", 182 | " location=[lat, lng], \n", 183 | " color='#FFFF00', \n", 184 | " fill_color=fillColor, \n", 185 | " fill_opacity=0.7,\n", 186 | " weight=1.5,\n", 187 | " radius= r * 10\n", 188 | " ).add_to(viz_map_1)\n", 189 | "\n", 190 | "viz_map_1" 191 | ] 192 | } 193 | ], 194 | "metadata": { 195 | "kernelspec": { 196 | "display_name": "Python 3", 197 | "language": "python", 198 | "name": "python3" 199 | }, 200 | "language_info": { 201 | "codemirror_mode": { 202 | "name": "ipython", 203 | "version": 3 204 | }, 205 | "file_extension": ".py", 206 | "mimetype": "text/x-python", 207 | "name": "python", 208 | "nbconvert_exporter": "python", 209 | "pygments_lexer": "ipython3", 210 | "version": "3.6.7" 211 | } 212 | }, 213 | "nbformat": 4, 214 | "nbformat_minor": 2 215 | } 216 | -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/files/4_1_seoul_starbucks_list.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/5_Starbucks_Location/files/4_1_seoul_starbucks_list.xlsx -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/files/4_2_seoul_sgg_list.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/5_Starbucks_Location/files/4_2_seoul_sgg_list.xlsx -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/files/4_3_sgg_biz.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/5_Starbucks_Location/files/4_3_sgg_biz.xlsx -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/files/4_3_sgg_pop.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/5_Starbucks_Location/files/4_3_sgg_pop.xlsx -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/files/4_4_seoul_starbucks_list.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/5_Starbucks_Location/files/4_4_seoul_starbucks_list.xlsx -------------------------------------------------------------------------------- /01_초판/5_Starbucks_Location/files/4_5_seoul_sgg_stat.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/5_Starbucks_Location/files/4_5_seoul_sgg_stat.xlsx -------------------------------------------------------------------------------- /01_초판/6_Best_Product/files/3_1_danawa_crawling_result.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/6_Best_Product/files/3_1_danawa_crawling_result.xlsx -------------------------------------------------------------------------------- /01_초판/6_Best_Product/files/3_2_danawa_data_final.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/01_초판/6_Best_Product/files/3_2_danawa_data_final.xlsx -------------------------------------------------------------------------------- /02_개정판/2_Data_Analysis_Basic/files/sample.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/2_Data_Analysis_Basic/files/sample.xlsx -------------------------------------------------------------------------------- /02_개정판/2_Data_Analysis_Basic/files/sample_1.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/2_Data_Analysis_Basic/files/sample_1.xlsx -------------------------------------------------------------------------------- /02_개정판/2_Data_Analysis_Basic/files/sample_2.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/2_Data_Analysis_Basic/files/sample_2.xlsx -------------------------------------------------------------------------------- /02_개정판/2_Data_Analysis_Basic/files/sample_codemaster.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/2_Data_Analysis_Basic/files/sample_codemaster.xlsx -------------------------------------------------------------------------------- /02_개정판/2_Data_Analysis_Basic/files/sample_index_false.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/2_Data_Analysis_Basic/files/sample_index_false.xlsx -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/3_1_1_MelOn_Crawling.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## 3.1.1 멜론 크롤링 결과를 엑셀로 저장하기" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# 예제 3-1 멜론 사이트 접속하기 \n", 17 | "from selenium import webdriver\n", 18 | "from bs4 import BeautifulSoup\n", 19 | "\n", 20 | "driver = webdriver.Chrome('c:/playwithdata/chromedriver.exe')\n", 21 | "url = 'http://www.melon.com/chart/index.htm'\n", 22 | "driver.get(url) \n", 23 | "\n", 24 | "html = driver.page_source\n", 25 | "soup = BeautifulSoup(html, 'html.parser') " 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 2, 31 | "metadata": {}, 32 | "outputs": [], 33 | "source": [ 34 | "# 예제 3-2 반복문을 이용해 곡과 가수명을 song_data에 저장하기 \n", 35 | "song_data = []\n", 36 | "rank = 1\n", 37 | "\n", 38 | "songs = soup.select('table > tbody > tr')\n", 39 | "for song in songs: \n", 40 | " title = song.select('div.rank01 > span > a')[0].text\n", 41 | " singer = song.select('div.rank02 > a')[0].text\n", 42 | " song_data.append(['Melon', rank, title, singer])\n", 43 | " rank = rank + 1" 44 | ] 45 | }, 46 | { 47 | "cell_type": "code", 48 | "execution_count": 3, 49 | "metadata": {}, 50 | "outputs": [ 51 | { 52 | "data": { 53 | "text/html": [ 54 | "
\n", 55 | "\n", 68 | "\n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | "
서비스순위타이틀가수
0Melon1Dynamite방탄소년단
1Melon2DON'T TOUCH ME환불원정대
2Melon3Lovesick GirlsBLACKPINK
3Melon4힘든 건 사랑이 아니다임창정
4Melon5취기를 빌려 (취향저격 그녀 X 산들)산들
\n", 116 | "
" 117 | ], 118 | "text/plain": [ 119 | " 서비스 순위 타이틀 가수\n", 120 | "0 Melon 1 Dynamite 방탄소년단\n", 121 | "1 Melon 2 DON'T TOUCH ME 환불원정대\n", 122 | "2 Melon 3 Lovesick Girls BLACKPINK\n", 123 | "3 Melon 4 힘든 건 사랑이 아니다 임창정\n", 124 | "4 Melon 5 취기를 빌려 (취향저격 그녀 X 산들) 산들" 125 | ] 126 | }, 127 | "execution_count": 3, 128 | "metadata": {}, 129 | "output_type": "execute_result" 130 | } 131 | ], 132 | "source": [ 133 | "# 예제 3-3 song_data 리스트를 이용해 데이터프레임 만들기 \n", 134 | "import pandas as pd\n", 135 | "columns = ['서비스', '순위', '타이틀', '가수']\n", 136 | "pd_data = pd.DataFrame(song_data, columns = columns)\n", 137 | "pd_data.head()" 138 | ] 139 | }, 140 | { 141 | "cell_type": "code", 142 | "execution_count": 5, 143 | "metadata": {}, 144 | "outputs": [], 145 | "source": [ 146 | "# 예제 3-4 크롤링 결과를 엑셀파일로 저장하기 \n", 147 | "pd_data.to_excel('./files/melon.xlsx', index=False)" 148 | ] 149 | }, 150 | { 151 | "cell_type": "code", 152 | "execution_count": null, 153 | "metadata": {}, 154 | "outputs": [], 155 | "source": [] 156 | } 157 | ], 158 | "metadata": { 159 | "anaconda-cloud": {}, 160 | "kernelspec": { 161 | "display_name": "Python 3.8.3 ('base')", 162 | "language": "python", 163 | "name": "python3" 164 | }, 165 | "language_info": { 166 | "codemirror_mode": { 167 | "name": "ipython", 168 | "version": 3 169 | }, 170 | "file_extension": ".py", 171 | "mimetype": "text/x-python", 172 | "name": "python", 173 | "nbconvert_exporter": "python", 174 | "pygments_lexer": "ipython3", 175 | "version": "3.8.3" 176 | }, 177 | "vscode": { 178 | "interpreter": { 179 | "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186" 180 | } 181 | } 182 | }, 183 | "nbformat": 4, 184 | "nbformat_minor": 1 185 | } 186 | -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/3_1_3_Genie_Crawling.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## 3.1.3 지니 크롤링 결과를 엑셀 파일로 저장하기" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# 예제 3-22 지니 사이트에 접속하기\n", 17 | "from selenium import webdriver\n", 18 | "from bs4 import BeautifulSoup\n", 19 | "\n", 20 | "driver = webdriver.Chrome('c:/playwithdata/chromedriver.exe')\n", 21 | "url = 'https://www.genie.co.kr/chart/top200'\n", 22 | "driver.get(url) \n", 23 | "\n", 24 | "html = driver.page_source\n", 25 | "soup = BeautifulSoup(html, 'html.parser')" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": null, 31 | "metadata": {}, 32 | "outputs": [], 33 | "source": [ 34 | "# 예제 3-23 지니 사이트에서 곡 정보 찾기\n", 35 | "songs = soup.select('table > tbody > tr')\n", 36 | "len(songs)" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": null, 42 | "metadata": {}, 43 | "outputs": [], 44 | "source": [ 45 | "# 예제 3-24 songs 태그 중 첫 번째 태그 출력해보기\n", 46 | "print(songs[0])" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": null, 52 | "metadata": {}, 53 | "outputs": [], 54 | "source": [ 55 | "# 예제 3-25 한 개의 곡 정보 저장하기\n", 56 | "song = songs[0]" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": null, 62 | "metadata": {}, 63 | "outputs": [], 64 | "source": [ 65 | "# 예제 3-26 지니 사이트에서 곡 제목 찾기\n", 66 | "title = song.select('a.title')\n", 67 | "len(title)" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": null, 73 | "metadata": {}, 74 | "outputs": [], 75 | "source": [ 76 | "# 예제 3-27 지니 사이트의 곡 제목 출력해보기 1\n", 77 | "title = song.select('a.title')[0].text\n", 78 | "title" 79 | ] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "execution_count": null, 84 | "metadata": {}, 85 | "outputs": [], 86 | "source": [ 87 | "# 예제 3-28 지니 사이트의 곡 제목 출력해보기 2\n", 88 | "title = song.select('a.title')[0].text.strip()\n", 89 | "title" 90 | ] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "execution_count": null, 95 | "metadata": {}, 96 | "outputs": [], 97 | "source": [ 98 | "# 예제 3-29 지니 사이트의 가수명 찾기\n", 99 | "singer = song.select('a.artist')\n", 100 | "len(singer)" 101 | ] 102 | }, 103 | { 104 | "cell_type": "code", 105 | "execution_count": null, 106 | "metadata": {}, 107 | "outputs": [], 108 | "source": [ 109 | "# 예제 3-30 지니 사이트의 가수명 출력해보기 1\n", 110 | "singer = song.select('a.artist')[0].text\n", 111 | "singer " 112 | ] 113 | }, 114 | { 115 | "cell_type": "code", 116 | "execution_count": null, 117 | "metadata": {}, 118 | "outputs": [], 119 | "source": [ 120 | "# 예제 3-31 지니 사이트의 가수명 출력해보기 2\n", 121 | "songs = soup.select('tbody > tr')\n", 122 | "for song in songs:\n", 123 | " title = song.select('a.title')[0].text.strip()\n", 124 | " singer = song.select('a.artist')[0].text\n", 125 | " print(title, singer, sep = '|')" 126 | ] 127 | }, 128 | { 129 | "cell_type": "code", 130 | "execution_count": null, 131 | "metadata": {}, 132 | "outputs": [], 133 | "source": [ 134 | "# 예제 3-32 반복문을 이용해 곡과 가수명을 song_data에 저장하기 \n", 135 | "song_data = []\n", 136 | "rank = 1\n", 137 | "songs = soup.select('table > tbody > tr')\n", 138 | "for song in songs:\n", 139 | " title = song.select('a.title')[0].text.strip()\n", 140 | " singer = song.select('a.artist')[0].text.strip()\n", 141 | " song_data.append(['Genie', rank, title, singer])\n", 142 | " rank = rank + 1 " 143 | ] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": null, 148 | "metadata": {}, 149 | "outputs": [], 150 | "source": [ 151 | "# 예제 3-33 song_data 리스트를 이용해 엑셀 파일로 저장하기 \n", 152 | "import pandas as pd\n", 153 | "\n", 154 | "columns = ['서비스', '순위', '타이틀', '가수']\n", 155 | "pd_data = pd.DataFrame(song_data, columns = columns)\n", 156 | "pd_data.to_excel('./files/genie.xlsx', index=False)" 157 | ] 158 | }, 159 | { 160 | "cell_type": "code", 161 | "execution_count": null, 162 | "metadata": {}, 163 | "outputs": [], 164 | "source": [ 165 | "# 예제 3-34 지니 인기차트를 크롤링한 결과를 엑셀 파일로 저장하기(전체코드)\n", 166 | "from selenium import webdriver \n", 167 | "from bs4 import BeautifulSoup \n", 168 | "import pandas as pd\n", 169 | "\n", 170 | "driver = webdriver.Chrome('c:/playwithdata/chromedriver.exe')\n", 171 | "url = 'https://www.genie.co.kr/chart/top200'\n", 172 | "driver.get(url)\n", 173 | "\n", 174 | "html = driver.page_source\n", 175 | "soup = BeautifulSoup(html, 'html.parser')\n", 176 | "\n", 177 | "song_data = []\n", 178 | "rank = 1\n", 179 | "songs = soup.select('tbody > tr') \n", 180 | "for song in songs:\n", 181 | " title = song.select('a.title')[0].text.strip() \n", 182 | " singer = song.select('a.artist')[0].text \n", 183 | " song_data.append(['Genie', rank, title, singer]) \n", 184 | " rank = rank + 1\n", 185 | "\n", 186 | "columns = ['서비스', '순위', '타이틀', '가수']\n", 187 | "pd_data = pd.DataFrame(song_data, columns = columns) \n", 188 | "pd_data.to_excel('./files/genie.xlsx', index=False)" 189 | ] 190 | } 191 | ], 192 | "metadata": { 193 | "kernelspec": { 194 | "display_name": "Python 3.8.3 ('base')", 195 | "language": "python", 196 | "name": "python3" 197 | }, 198 | "language_info": { 199 | "codemirror_mode": { 200 | "name": "ipython", 201 | "version": 3 202 | }, 203 | "file_extension": ".py", 204 | "mimetype": "text/x-python", 205 | "name": "python", 206 | "nbconvert_exporter": "python", 207 | "pygments_lexer": "ipython3", 208 | "version": "3.8.3" 209 | }, 210 | "vscode": { 211 | "interpreter": { 212 | "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186" 213 | } 214 | } 215 | }, 216 | "nbformat": 4, 217 | "nbformat_minor": 2 218 | } 219 | -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/3_1_4_Excel_Merge.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# 3.1.4 멜론, 벅스, 지니 크롤링 엑셀 파일 통합하기" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# 예제 3-35 크롤링 결과가 담긴 엑셀 파일 통합하기 \n", 17 | "import pandas as pd\n", 18 | "excel_names = ['./files/melon.xlsx', './files/bugs.xlsx', './files/genie.xlsx']\n", 19 | "\n", 20 | "appended_data = pd.DataFrame()\n", 21 | "for name in excel_names:\n", 22 | " pd_data = pd.read_excel(name)\n", 23 | " appended_data = appended_data.append(pd_data)" 24 | ] 25 | }, 26 | { 27 | "cell_type": "code", 28 | "execution_count": null, 29 | "metadata": {}, 30 | "outputs": [], 31 | "source": [ 32 | "# 예제 3-36 크롤링 결과 확인하기\n", 33 | "appended_data.info()" 34 | ] 35 | }, 36 | { 37 | "cell_type": "code", 38 | "execution_count": 8, 39 | "metadata": {}, 40 | "outputs": [], 41 | "source": [ 42 | "# 예제 3-37 통합한 크롤링 결과를 엑셀 파일로 저장하기 \n", 43 | "appended_data.to_excel('./files/total.xlsx', index=False)" 44 | ] 45 | }, 46 | { 47 | "cell_type": "code", 48 | "execution_count": null, 49 | "metadata": {}, 50 | "outputs": [], 51 | "source": [] 52 | } 53 | ], 54 | "metadata": { 55 | "kernelspec": { 56 | "display_name": "Python 3", 57 | "language": "python", 58 | "name": "python3" 59 | }, 60 | "language_info": { 61 | "codemirror_mode": { 62 | "name": "ipython", 63 | "version": 3 64 | }, 65 | "file_extension": ".py", 66 | "mimetype": "text/x-python", 67 | "name": "python", 68 | "nbconvert_exporter": "python", 69 | "pygments_lexer": "ipython3", 70 | "version": "3.7.3" 71 | } 72 | }, 73 | "nbformat": 4, 74 | "nbformat_minor": 2 75 | } 76 | -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/bugs.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/bugs.xlsx -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/genie.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/genie.xlsx -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/melon.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/melon.xlsx -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/total.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/3_Data_Analysis_Exercise/Chapter_3_1/files/total.xlsx -------------------------------------------------------------------------------- /02_개정판/3_Data_Analysis_Exercise/Chapter_3_2/files/youtube_rank.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/3_Data_Analysis_Exercise/Chapter_3_2/files/youtube_rank.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] GCC.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] GCC.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 교포.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 교포.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 구주 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 구주 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 국적미상.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 국적미상.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 그리스.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 그리스.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 남아프리카공화국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 남아프리카공화국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 네덜란드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 네덜란드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 노르웨이.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 노르웨이.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 뉴질랜드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 뉴질랜드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 대만.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 대만.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 대양주 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 대양주 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 덴마크.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 덴마크.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 독일.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 독일.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 러시아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 러시아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 루마니아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 루마니아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 마카오.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 마카오.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 말레이시아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 말레이시아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 멕시코.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 멕시코.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 몽골.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 몽골.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 미국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 미국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 미얀마.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 미얀마.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 미주 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 미주 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 방글라데시.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 방글라데시.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 베트남.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 베트남.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 벨기에.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 벨기에.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 불가리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 불가리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 브라질.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 브라질.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스리랑카.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스리랑카.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스웨덴.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스웨덴.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스위스.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스위스.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스페인.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 스페인.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 싱가포르.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 싱가포르.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 아시아 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 아시아 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 아일랜드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 아일랜드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 아프리카 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 아프리카 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 영국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 영국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 오스트레일리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 오스트레일리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 오스트리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 오스트리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 우즈베키스탄.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 우즈베키스탄.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 우크라이나.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 우크라이나.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 이란.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 이란.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 이스라엘.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 이스라엘.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 이탈리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 이탈리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 인도.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 인도.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 인도네시아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 인도네시아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 일본.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 일본.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 중국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 중국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 카자흐스탄.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 카자흐스탄.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 캄보디아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 캄보디아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 캐나다.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 캐나다.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 크로아티아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 크로아티아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 태국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 태국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 터키.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 터키.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 파키스탄.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 파키스탄.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 포르투갈.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 포르투갈.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 폴란드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 폴란드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 프랑스.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 프랑스.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 핀란드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 핀란드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 필리핀.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 필리핀.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 홍콩.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 관광객 데이터] 홍콩.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] GCC.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] GCC.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 교포.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 교포.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 구주 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 구주 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 국적미상.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 국적미상.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 그리스.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 그리스.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 남아프리카공화국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 남아프리카공화국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 네덜란드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 네덜란드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 노르웨이.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 노르웨이.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 뉴질랜드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 뉴질랜드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 대만.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 대만.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 대양주 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 대양주 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 덴마크.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 덴마크.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 독일.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 독일.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 러시아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 러시아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 루마니아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 루마니아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 마카오.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 마카오.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 말레이시아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 말레이시아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 멕시코.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 멕시코.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 몽골.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 몽골.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 미국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 미국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 미얀마.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 미얀마.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 미주 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 미주 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 방글라데시.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 방글라데시.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 베트남.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 베트남.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 벨기에.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 벨기에.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 불가리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 불가리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 브라질.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 브라질.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스리랑카.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스리랑카.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스웨덴.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스웨덴.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스위스.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스위스.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스페인.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 스페인.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 싱가포르.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 싱가포르.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 아시아 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 아시아 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 아일랜드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 아일랜드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 아프리카 기타.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 아프리카 기타.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 영국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 영국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 오스트레일리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 오스트레일리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 오스트리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 오스트리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 우즈베키스탄.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 우즈베키스탄.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 우크라이나.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 우크라이나.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 이란.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 이란.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 이스라엘.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 이스라엘.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 이탈리아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 이탈리아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 인도.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 인도.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 인도네시아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 인도네시아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 일본.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 일본.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 중국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 중국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 카자흐스탄.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 카자흐스탄.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 캄보디아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 캄보디아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 캐나다.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 캐나다.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 크로아티아.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 크로아티아.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 태국.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 태국.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 터키.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 터키.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 파키스탄.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 파키스탄.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 포르투갈.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 포르투갈.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 폴란드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 폴란드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 프랑스.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 프랑스.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 핀란드.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 핀란드.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 필리핀.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 필리핀.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 홍콩.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/[국적별 외국인 관광객] 홍콩.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201001.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201001.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201002.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201002.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201003.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201003.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201004.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201004.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201005.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201005.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201006.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201006.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201007.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201007.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201008.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201008.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201009.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201009.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201010.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201010.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201011.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201011.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201012.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201012.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201101.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201101.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201102.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201102.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201103.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201103.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201104.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201104.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201105.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201105.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201106.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201106.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201107.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201107.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201108.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201108.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201109.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201109.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201110.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201110.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201111.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201111.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201112.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201112.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201201.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201201.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201202.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201202.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201203.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201203.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201204.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201204.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201205.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201205.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201206.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201206.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201207.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201207.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201208.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201208.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201209.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201209.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201210.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201210.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201211.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201211.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201212.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201212.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201301.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201301.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201302.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201302.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201303.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201303.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201304.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201304.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201305.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201305.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201306.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201306.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201307.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201307.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201308.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201308.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201309.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201309.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201310.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201310.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201311.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201311.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201312.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201312.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201401.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201401.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201402.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201402.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201403.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201403.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201404.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201404.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201405.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201405.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201406.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201406.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201407.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201407.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201408.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201408.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201409.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201409.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201410.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201410.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201411.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201411.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201412.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201412.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201501.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201501.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201502.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201502.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201503.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201503.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201504.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201504.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201505.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201505.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201506.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201506.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201507.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201507.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201508.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201508.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201509.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201509.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201510.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201510.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201511.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201511.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201512.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201512.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201601.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201601.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201602.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201602.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201603.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201603.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201604.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201604.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201605.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201605.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201606.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201606.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201607.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201607.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201608.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201608.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201609.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201609.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201610.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201610.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201611.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201611.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201612.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201612.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201701.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201701.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201702.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201702.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201703.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201703.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201704.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201704.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201705.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201705.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201706.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201706.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201707.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201707.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201708.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201708.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201709.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201709.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201710.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201710.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201711.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201711.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201712.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201712.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201801.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201801.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201802.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201802.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201803.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201803.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201804.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201804.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201805.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201805.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201806.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201806.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201807.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201807.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201808.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201808.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201809.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201809.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201810.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201810.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201811.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201811.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201812.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201812.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201901.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201901.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201902.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201902.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201903.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201903.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201904.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201904.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201905.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201905.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201906.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201906.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201907.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201907.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201908.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201908.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201909.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201909.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201910.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201910.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201911.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201911.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_201912.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_201912.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_202001.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_202001.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_202002.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_202002.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_202003.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_202003.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_202004.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_202004.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_202005.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_202005.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_china.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_china.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/kto_total.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/kto_total.xlsx -------------------------------------------------------------------------------- /02_개정판/4_Tourists_Event/files/실습데이터.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/4_Tourists_Event/files/실습데이터.zip -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/5_2_WordCloud.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# 5.2 워드클라우드" 8 | ] 9 | }, 10 | { 11 | "cell_type": "markdown", 12 | "metadata": {}, 13 | "source": [ 14 | "### 5.2.2 해시태그 데이터 불러오기" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 1, 20 | "metadata": { 21 | "scrolled": true 22 | }, 23 | "outputs": [ 24 | { 25 | "data": { 26 | "text/plain": [ 27 | "0 ['#제주핫플레이스', '#제주여행', '#제주여행', '#제주도여행', '#제주가...\n", 28 | "1 ['#제주핫플', '#제주여행', '#제주', '#제주도', '#제주도맛집', '#...\n", 29 | "2 ['#honestin', '#어니스틴', '#제주여행', '#제주', '#제주도',...\n", 30 | "Name: tags, dtype: object" 31 | ] 32 | }, 33 | "execution_count": 1, 34 | "metadata": {}, 35 | "output_type": "execute_result" 36 | } 37 | ], 38 | "source": [ 39 | "# 예제 5-14 크롤링 결과 중 해시태그 데이터 불러오기\n", 40 | "import pandas as pd\n", 41 | "raw_total = pd.read_excel('./files/1_crawling_raw.xlsx')\n", 42 | "raw_total['tags'] [:3]" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": 2, 48 | "metadata": {}, 49 | "outputs": [], 50 | "source": [ 51 | "# 예제 5-15 해시태그 통합 저장하기\n", 52 | "tags_total = []\n", 53 | "\n", 54 | "for tags in raw_total['tags']:\n", 55 | " tags_list = tags[2:-2].split(\"', '\")\n", 56 | " for tag in tags_list:\n", 57 | " tags_total.append(tag)" 58 | ] 59 | }, 60 | { 61 | "cell_type": "markdown", 62 | "metadata": {}, 63 | "source": [ 64 | "### 5.2.3 해시태그 출현 빈도 집계" 65 | ] 66 | }, 67 | { 68 | "cell_type": "code", 69 | "execution_count": null, 70 | "metadata": {}, 71 | "outputs": [], 72 | "source": [ 73 | "# 예제 5-16 빈도수 집계하기(Counter)\n", 74 | "from collections import Counter\n", 75 | "tag_counts = Counter(tags_total)" 76 | ] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "execution_count": null, 81 | "metadata": { 82 | "scrolled": true 83 | }, 84 | "outputs": [], 85 | "source": [ 86 | "# 예제 5-17 가장 많이 사용된 해시태그 살펴보기 \n", 87 | "tag_counts.most_common(50)" 88 | ] 89 | }, 90 | { 91 | "cell_type": "code", 92 | "execution_count": null, 93 | "metadata": {}, 94 | "outputs": [], 95 | "source": [ 96 | "# 예제 5-18 데이터 정제하기\n", 97 | "STOPWORDS = ['#일상', '#선팔', '#제주도', '#jeju', '#반영구', '#제주자연눈썹',\n", 98 | "'#서귀포눈썹문신', '#제주눈썹문신', '#소통', '#맞팔']\n", 99 | "\n", 100 | "tag_total_selected = []\n", 101 | "for tag in tags_total:\n", 102 | " if tag not in STOPWORDS:\n", 103 | " tag_total_selected.append(tag)\n", 104 | " \n", 105 | "tag_counts_selected = Counter(tag_total_selected)\n", 106 | "tag_counts_selected.most_common(50)\n" 107 | ] 108 | }, 109 | { 110 | "cell_type": "markdown", 111 | "metadata": {}, 112 | "source": [ 113 | "### 5.2.4 막대차트로 해시태그 살펴보기" 114 | ] 115 | }, 116 | { 117 | "cell_type": "code", 118 | "execution_count": null, 119 | "metadata": {}, 120 | "outputs": [], 121 | "source": [ 122 | "# 예제 5-19 시각화 라이브러리 호출 및 환경 설정(한글 폰트)\n", 123 | "import matplotlib.pyplot as plt\n", 124 | "import seaborn as sns\n", 125 | "from matplotlib import font_manager, rc\n", 126 | "import sys\n", 127 | "\n", 128 | "if sys.platform in [\"win32\", \"win64\"]:\n", 129 | " font_name = \"malgun gothic\"\n", 130 | "elif sys.platform == \"darwin\":\n", 131 | " font_name = \"AppleGothic\"\n", 132 | "\n", 133 | "rc('font',family=font_name)\n" 134 | ] 135 | }, 136 | { 137 | "cell_type": "code", 138 | "execution_count": null, 139 | "metadata": {}, 140 | "outputs": [], 141 | "source": [ 142 | "# 예제 5-20 데이터 준비하기\n", 143 | "tag_counts_df = pd.DataFrame(tag_counts_selected.most_common(30))\n", 144 | "tag_counts_df.columns = ['tags', 'counts']" 145 | ] 146 | }, 147 | { 148 | "cell_type": "code", 149 | "execution_count": null, 150 | "metadata": {}, 151 | "outputs": [], 152 | "source": [ 153 | "# 예제 5-21 막대 차트 그리기\n", 154 | "plt.figure(figsize=(10,8)) \n", 155 | "sns.barplot(x='counts', y='tags', data = tag_counts_df)" 156 | ] 157 | }, 158 | { 159 | "cell_type": "markdown", 160 | "metadata": {}, 161 | "source": [ 162 | "### 5.2.5 워드 클라우드 그리기" 163 | ] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "execution_count": null, 168 | "metadata": {}, 169 | "outputs": [], 170 | "source": [ 171 | "# 예제 5-22 워드클라우드 라이브러리 불러오기\n", 172 | "import matplotlib.pyplot as plt\n", 173 | "from wordcloud import WordCloud # 에러시 ! pip install wordcloud 실행\n", 174 | "import platform\n", 175 | "\n", 176 | "if platform.system() == 'Windows': #윈도우의 경우\n", 177 | " font_path = \"c:/Windows/Fonts/malgun.ttf\"\n", 178 | "elif platform.system() == \"Darwin\": #Mac 의 경우\n", 179 | " font_path = \"/Users/$USER/Library/Fonts/AppleGothic.ttf\"\n" 180 | ] 181 | }, 182 | { 183 | "cell_type": "code", 184 | "execution_count": null, 185 | "metadata": {}, 186 | "outputs": [], 187 | "source": [ 188 | "# 예제 5-23 워드클라우드 만들기\n", 189 | "wordcloud=WordCloud(font_path= font_path, \n", 190 | " background_color=\"white\",\n", 191 | " max_words=100,\n", 192 | " relative_scaling= 0.3,\n", 193 | " width = 800,\n", 194 | " height = 400\n", 195 | " ).generate_from_frequencies(tag_counts_selected) \n", 196 | "plt.figure(figsize=(15,10))\n", 197 | "plt.imshow(wordcloud)\n", 198 | "plt.axis('off')\n", 199 | "plt.savefig('./files/2_tag-wordcloud.png') " 200 | ] 201 | } 202 | ], 203 | "metadata": { 204 | "kernelspec": { 205 | "display_name": "Python 3", 206 | "language": "python", 207 | "name": "python3" 208 | }, 209 | "language_info": { 210 | "codemirror_mode": { 211 | "name": "ipython", 212 | "version": 3 213 | }, 214 | "file_extension": ".py", 215 | "mimetype": "text/x-python", 216 | "name": "python", 217 | "nbconvert_exporter": "python", 218 | "pygments_lexer": "ipython3", 219 | "version": "3.7.4" 220 | } 221 | }, 222 | "nbformat": 4, 223 | "nbformat_minor": 2 224 | } 225 | -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/1_crawling_jejuMatJip.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/1_crawling_jejuMatJip.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/1_crawling_jejuYeoHang.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/1_crawling_jejuYeoHang.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/1_crawling_jejudoGwanGwang.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/1_crawling_jejudoGwanGwang.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/1_crawling_jejudoMatJip.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/1_crawling_jejudoMatJip.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/1_crawling_raw.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/1_crawling_raw.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/2_tag-wordcloud.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/2_tag-wordcloud.png -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/3_location_counts.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/3_location_counts.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/3_location_inform.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/3_location_inform.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/3_locations.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/3_locations.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/4_select_data_게스트하우스.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/4_select_data_게스트하우스.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/4_select_data_박물관.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/4_select_data_박물관.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/4_select_data_섭지코지.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/4_select_data_섭지코지.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/4_select_data_해돋이.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/4_select_data_해돋이.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/4_select_data_힐링.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/4_select_data_힐링.xlsx -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/insta_login_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/insta_login_1.png -------------------------------------------------------------------------------- /02_개정판/5_Jeju_Hotplace/files/insta_login_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/5_Jeju_Hotplace/files/insta_login_2.png -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/6_1_1_Crawling_Starbucks_List.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# 6.1 데이터 수집\n", 8 | "## 6.1.1 크롤링을 이용한 서울시 스타벅스 매장 목록 데이터 생성" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": null, 14 | "metadata": {}, 15 | "outputs": [], 16 | "source": [ 17 | "# 예제 6-1 라이브러리 임포트\n", 18 | "from selenium import webdriver\n", 19 | "from bs4 import BeautifulSoup\n", 20 | "import pandas as pd" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": {}, 27 | "outputs": [], 28 | "source": [ 29 | "# 예제 6-2 webdriver 실행 후 스타벅스의 지역별 매장 검색 화면에 접속\n", 30 | "driver = webdriver.Chrome('c:/playwithdata/chromedriver.exe')\n", 31 | "# driver = webdriver.Chrome('../chromedriver')\n", 32 | "url = 'https://www.istarbucks.co.kr/store/store_map.do?disp=locale'\n", 33 | "driver.get(url)" 34 | ] 35 | }, 36 | { 37 | "cell_type": "code", 38 | "execution_count": null, 39 | "metadata": {}, 40 | "outputs": [], 41 | "source": [ 42 | "# 예제 6-3 webdriver로 ‘서울’ 버튼 요소를 찾아 클릭\n", 43 | "seoul_btn = '#container > div > form > fieldset > div > section > article.find_store_cont > article > article:nth-child(4) > div.loca_step1 > div.loca_step1_cont > ul > li:nth-child(1) > a'\n", 44 | "driver.find_element('css selector', seoul_btn).click() # selenium 명령어 변경으로 인한 코드 수정 (updated 2022.10.03)" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": null, 50 | "metadata": {}, 51 | "outputs": [], 52 | "source": [ 53 | "# 예제 6-4 webdriver로 ‘전체’ 버튼 요소를 찾아 클릭\n", 54 | "all_btn = '#mCSB_2_container > ul > li:nth-child(1) > a'\n", 55 | "driver.find_element('css selector', all_btn).click() # selenium 명령어 변경으로 인한 코드 수정 (updated 2022.10.03)" 56 | ] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "execution_count": null, 61 | "metadata": {}, 62 | "outputs": [], 63 | "source": [] 64 | }, 65 | { 66 | "cell_type": "code", 67 | "execution_count": null, 68 | "metadata": {}, 69 | "outputs": [], 70 | "source": [ 71 | "# 예제 6-5 BeautifulSoup으로 HTML 파서 만들기\n", 72 | "html = driver.page_source\n", 73 | "soup = BeautifulSoup(html, 'html.parser')" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": null, 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "# 예제 6-6 select()를 이용해 원하는 HTML 태그를 모두 찾아오기\n", 83 | "starbucks_soup_list = soup.select('li.quickResultLstCon')\n", 84 | "print(len(starbucks_soup_list))" 85 | ] 86 | }, 87 | { 88 | "cell_type": "code", 89 | "execution_count": null, 90 | "metadata": {}, 91 | "outputs": [], 92 | "source": [ 93 | "# 예제 6-7 태그 문자열 살펴보기\n", 94 | "starbucks_soup_list[0]" 95 | ] 96 | }, 97 | { 98 | "cell_type": "code", 99 | "execution_count": null, 100 | "metadata": {}, 101 | "outputs": [], 102 | "source": [ 103 | "# 예제 6-8 스타벅스 매장 정보 샘플 확인\n", 104 | "startbucks_store = starbucks_soup_list[0]\n", 105 | "name = startbucks_store.select('strong')[0].text.strip()\n", 106 | "lat = startbucks_store['data-lat'].strip()\n", 107 | "lng = startbucks_store['data-long'].strip()\n", 108 | "store_type = startbucks_store.select('i')[0]['class'][0][4:]\n", 109 | "address = str(startbucks_store.select('p.result_details')[0]).split('
')[0].split('>')[1]\n", 110 | "tel = str(startbucks_store.select('p.result_details')[0]).split('
')[1].split('<')[0]\n", 111 | "\n", 112 | "print(name) # 매장명\n", 113 | "print(lat) # 위도\n", 114 | "print(lng) # 경도\n", 115 | "print(store_type) # 매장 타입\n", 116 | "print(address) # 주소\n", 117 | "print(tel) # 전화번호" 118 | ] 119 | }, 120 | { 121 | "cell_type": "code", 122 | "execution_count": null, 123 | "metadata": {}, 124 | "outputs": [], 125 | "source": [ 126 | "# 예제 6-9 서울시 스타벅스 매장 목록 데이터 만들기\n", 127 | "starbucks_list = []\n", 128 | "for item in starbucks_soup_list:\n", 129 | " name = item.select('strong')[0].text.strip();\n", 130 | " lat = item['data-lat'].strip()\n", 131 | " lng = item['data-long'].strip()\n", 132 | " store_type = item.select('i')[0]['class'][0][4:]\n", 133 | " address = str(item.select('p.result_details')[0]).split('
')[0].split('>')[1]\n", 134 | " tel = str(item.select('p.result_details')[0]).split('
')[1].split('<')[0]\n", 135 | " \n", 136 | " starbucks_list.append( [ name, lat, lng, store_type, address, tel])" 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "execution_count": null, 142 | "metadata": {}, 143 | "outputs": [], 144 | "source": [ 145 | "# 예제 6-10 pandas의 데이터프레임 생성\n", 146 | "columns = ['매장명','위도','경도','매장타입', '주소','전화번호']\n", 147 | "seoul_starbucks_df = pd.DataFrame(starbucks_list, columns = columns)\n", 148 | "seoul_starbucks_df.head()" 149 | ] 150 | }, 151 | { 152 | "cell_type": "code", 153 | "execution_count": null, 154 | "metadata": {}, 155 | "outputs": [], 156 | "source": [ 157 | "# 예제 6-11 데이터프레임의 요약 정보 확인\n", 158 | "seoul_starbucks_df.info()" 159 | ] 160 | }, 161 | { 162 | "cell_type": "code", 163 | "execution_count": null, 164 | "metadata": {}, 165 | "outputs": [], 166 | "source": [ 167 | "# 예제 6-12 엑셀로 저장\n", 168 | "seoul_starbucks_df.to_excel('./files/seoul_starbucks_list.xlsx', index=False)" 169 | ] 170 | } 171 | ], 172 | "metadata": { 173 | "kernelspec": { 174 | "display_name": "Python 3.8.3 ('base')", 175 | "language": "python", 176 | "name": "python3" 177 | }, 178 | "language_info": { 179 | "codemirror_mode": { 180 | "name": "ipython", 181 | "version": 3 182 | }, 183 | "file_extension": ".py", 184 | "mimetype": "text/x-python", 185 | "name": "python", 186 | "nbconvert_exporter": "python", 187 | "pygments_lexer": "ipython3", 188 | "version": "3.8.3" 189 | }, 190 | "vscode": { 191 | "interpreter": { 192 | "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186" 193 | } 194 | } 195 | }, 196 | "nbformat": 4, 197 | "nbformat_minor": 2 198 | } 199 | -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/6_2_1_Starbucks_Address.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# 6.2 데이터 전처리\n", 8 | "## 6.2.1 서울시 스타벅스 매장 목록, 인구, 사업체 데이터에 시군구명, 시군구코드 추가" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": null, 14 | "metadata": {}, 15 | "outputs": [], 16 | "source": [ 17 | "# 예제 6-39 서울시 스타벅스 매장 목록이 담긴 엑셀 파일 불러오기\n", 18 | "import pandas as pd\n", 19 | "seoul_starbucks = pd.read_excel('./files/seoul_starbucks_list.xlsx', header=0)\n", 20 | "seoul_starbucks.head()" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": {}, 27 | "outputs": [], 28 | "source": [ 29 | "# 예제 6-40 스타벅스 주소 정보에서 시군구명 추출\n", 30 | "sgg_names = []\n", 31 | "for address in seoul_starbucks['주소']:\n", 32 | " sgg = address.split()[1]\n", 33 | " sgg_names.append(sgg)\n", 34 | "seoul_starbucks['시군구명'] = sgg_names\n", 35 | "seoul_starbucks.head()" 36 | ] 37 | }, 38 | { 39 | "cell_type": "code", 40 | "execution_count": null, 41 | "metadata": {}, 42 | "outputs": [], 43 | "source": [ 44 | "# 예제 6-41 엑셀로 저장\n", 45 | "seoul_starbucks.to_excel('./files/seoul_starbucks_list.xlsx', index=False)" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": null, 51 | "metadata": {}, 52 | "outputs": [], 53 | "source": [] 54 | } 55 | ], 56 | "metadata": { 57 | "kernelspec": { 58 | "display_name": "Python 3", 59 | "language": "python", 60 | "name": "python3" 61 | }, 62 | "language_info": { 63 | "codemirror_mode": { 64 | "name": "ipython", 65 | "version": 3 66 | }, 67 | "file_extension": ".py", 68 | "mimetype": "text/x-python", 69 | "name": "python", 70 | "nbconvert_exporter": "python", 71 | "pygments_lexer": "ipython3", 72 | "version": "3.7.4" 73 | } 74 | }, 75 | "nbformat": 4, 76 | "nbformat_minor": 2 77 | } 78 | -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/6_2_2_Starbucks_Data.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## 6.2.2 스타벅스 분석 데이터 만들기" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# 예제 6-42 라이브러리 임포트\n", 17 | "import pandas as pd" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": null, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | "# 예제 6-43 시군구 목록 데이터 불러오기\n", 27 | "seoul_sgg = pd.read_excel('./files/seoul_sgg_list.xlsx')\n", 28 | "seoul_sgg.head()" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": null, 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [ 37 | "# 예제 6-44 서울시 스타벅스 매장 목록 데이터 불러오기\n", 38 | "seoul_starbucks = pd.read_excel('./files/seoul_starbucks_list.xlsx')\n", 39 | "seoul_starbucks.head()" 40 | ] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "execution_count": null, 45 | "metadata": {}, 46 | "outputs": [], 47 | "source": [ 48 | "# 예제 6-45 시군구별 스타벅스 매장 수 세기\n", 49 | "starbucks_sgg_count = seoul_starbucks.pivot_table(\n", 50 | " index = '시군구명', \n", 51 | " values='매장명', \n", 52 | " aggfunc='count'\n", 53 | " ).rename(columns={'매장명':'스타벅스_매장수'})\n", 54 | "starbucks_sgg_count.head()" 55 | ] 56 | }, 57 | { 58 | "cell_type": "code", 59 | "execution_count": null, 60 | "metadata": {}, 61 | "outputs": [], 62 | "source": [ 63 | "# 예제 6-46 서울시 시군구 목록 데이터에 스타벅스 매장 수 데이터를 병합\n", 64 | "seoul_sgg = pd.merge(seoul_sgg, starbucks_sgg_count, how='left', on='시군구명')\n", 65 | "seoul_sgg.head()" 66 | ] 67 | }, 68 | { 69 | "cell_type": "code", 70 | "execution_count": null, 71 | "metadata": {}, 72 | "outputs": [], 73 | "source": [ 74 | "# 예제 6-47 서울시 시군구별 인구통계 데이터 불러오기\n", 75 | "seoul_sgg_pop = pd.read_excel('./files/sgg_pop.xlsx')\n", 76 | "seoul_sgg_pop.head()" 77 | ] 78 | }, 79 | { 80 | "cell_type": "code", 81 | "execution_count": null, 82 | "metadata": {}, 83 | "outputs": [], 84 | "source": [ 85 | "# 예제 6-48 서울시 시군구 목록 데이터에 서울시 시군구별 인구통계 데이터를 병합\n", 86 | "seoul_sgg = pd.merge(seoul_sgg, seoul_sgg_pop, how='left', on='시군구명')\n", 87 | "seoul_sgg.head()" 88 | ] 89 | }, 90 | { 91 | "cell_type": "code", 92 | "execution_count": null, 93 | "metadata": {}, 94 | "outputs": [], 95 | "source": [ 96 | "# 예제 6-49 서울시 시군구 목록 데이터에 서울시 시군구별 사업체 수 통계 데이터를 병합\n", 97 | "seoul_sgg_biz = pd.read_excel('./files/sgg_biz.xlsx')\n", 98 | "seoul_sgg = pd.merge(\n", 99 | " seoul_sgg, \n", 100 | " seoul_sgg_biz,\n", 101 | " how='left',\n", 102 | " on='시군구명'\n", 103 | ")\n", 104 | "seoul_sgg.head()" 105 | ] 106 | }, 107 | { 108 | "cell_type": "code", 109 | "execution_count": null, 110 | "metadata": {}, 111 | "outputs": [], 112 | "source": [ 113 | "# 예제 6-50 병합 결과를 엑셀 파일로 저장\n", 114 | "seoul_sgg.to_excel('./files/seoul_sgg_stat.xlsx', index=False)" 115 | ] 116 | } 117 | ], 118 | "metadata": { 119 | "kernelspec": { 120 | "display_name": "Python 3", 121 | "language": "python", 122 | "name": "python3" 123 | }, 124 | "language_info": { 125 | "codemirror_mode": { 126 | "name": "ipython", 127 | "version": 3 128 | }, 129 | "file_extension": ".py", 130 | "mimetype": "text/x-python", 131 | "name": "python", 132 | "nbconvert_exporter": "python", 133 | "pygments_lexer": "ipython3", 134 | "version": "3.7.4" 135 | } 136 | }, 137 | "nbformat": 4, 138 | "nbformat_minor": 2 139 | } 140 | -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/6_3_1_Starbucks_Map.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# 6.3 데이터 시각화\n", 8 | "## 6.3.1 스타벅스 매장분포 시각화" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": null, 14 | "metadata": {}, 15 | "outputs": [], 16 | "source": [ 17 | "# 예제 6-51 라이브러리 임포트\n", 18 | "import pandas as pd\n", 19 | "import folium\n", 20 | "import json" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": {}, 27 | "outputs": [], 28 | "source": [ 29 | "# 예제 6-52 folium 설치\n", 30 | "! pip install folium" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": null, 36 | "metadata": {}, 37 | "outputs": [], 38 | "source": [ 39 | "# 예제 6-53 서울시 스타벅스 매장 목록 데이터 불러오기\n", 40 | "seoul_starbucks = pd.read_excel('./files/seoul_starbucks_list.xlsx')\n", 41 | "seoul_starbucks.head()" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": null, 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "# 예제 6-54 folium을 이용한 지도 생성\n", 51 | "starbucks_map = folium.Map(\n", 52 | " location=[37.573050, 126.979189],\n", 53 | " tiles='Stamen Terrain',\n", 54 | " zoom_start=11\n", 55 | ")\n", 56 | "starbucks_map" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": null, 62 | "metadata": {}, 63 | "outputs": [], 64 | "source": [ 65 | "# 예제 6-55 지도에 스타벅스 매장 위치를 나타내는 서클 마커 그리기\n", 66 | "for idx in seoul_starbucks.index:\n", 67 | " lat = seoul_starbucks.loc[idx, '위도']\n", 68 | " lng = seoul_starbucks.loc[idx, '경도']\n", 69 | "\n", 70 | " folium.CircleMarker(\n", 71 | " location=[lat, lng],\n", 72 | " fill = True, \n", 73 | " fill_color='green', \n", 74 | " fill_opacity=1,\n", 75 | " color='yellow', \n", 76 | " weight=1,\n", 77 | " radius=3\n", 78 | " ).add_to(starbucks_map)\n", 79 | "\n", 80 | "starbucks_map" 81 | ] 82 | }, 83 | { 84 | "cell_type": "code", 85 | "execution_count": null, 86 | "metadata": {}, 87 | "outputs": [], 88 | "source": [ 89 | "# 예제 6-56 스타벅스 매장 타입별 위치 서클 마커 그리기\n", 90 | "starbucks_map2 = folium.Map(\n", 91 | " location=[37.573050, 126.979189],\n", 92 | " tiles='Stamen Terrain',\n", 93 | " zoom_start=11\n", 94 | ")\n", 95 | "\n", 96 | "for idx in seoul_starbucks.index:\n", 97 | " lat = seoul_starbucks.loc[idx, '위도']\n", 98 | " lng = seoul_starbucks.loc[idx, '경도']\n", 99 | " store_type = seoul_starbucks.loc[idx, '매장타입']\n", 100 | " \n", 101 | " # 매장 타입별 색상 선택을 위한 조건문\n", 102 | " fillColor = ''\n", 103 | " if store_type == 'general':\n", 104 | " fillColor = 'gray'\n", 105 | " size = 1\n", 106 | " elif store_type == 'reserve':\n", 107 | " fillColor = 'blue'\n", 108 | " size = 5\n", 109 | " elif store_type == 'generalDT':\n", 110 | " fillColor = 'red'\n", 111 | " size = 5\n", 112 | "\n", 113 | " folium.CircleMarker(\n", 114 | " location=[lat, lng],\n", 115 | " color=fillColor,\n", 116 | " fill = True,\n", 117 | " fill_color = fillColor, \n", 118 | " fill_opacity = 1,\n", 119 | " weight = 1,\n", 120 | " radius = size\n", 121 | " ).add_to(starbucks_map2)\n", 122 | "\n", 123 | "starbucks_map2" 124 | ] 125 | } 126 | ], 127 | "metadata": { 128 | "kernelspec": { 129 | "display_name": "Python 3", 130 | "language": "python", 131 | "name": "python3" 132 | }, 133 | "language_info": { 134 | "codemirror_mode": { 135 | "name": "ipython", 136 | "version": 3 137 | }, 138 | "file_extension": ".py", 139 | "mimetype": "text/x-python", 140 | "name": "python", 141 | "nbconvert_exporter": "python", 142 | "pygments_lexer": "ipython3", 143 | "version": "3.7.4" 144 | } 145 | }, 146 | "nbformat": 4, 147 | "nbformat_minor": 2 148 | } 149 | -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/6_3_2_Starbucks_Location_Visualization.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## 6.3.2 시군구별 스타벅스 매장 수 시각화" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# 예제 6-57 라이브러리 임포트\n", 17 | "import pandas as pd\n", 18 | "import folium\n", 19 | "import json" 20 | ] 21 | }, 22 | { 23 | "cell_type": "code", 24 | "execution_count": null, 25 | "metadata": { 26 | "scrolled": true 27 | }, 28 | "outputs": [], 29 | "source": [ 30 | "# 예제 6-58 서울시 시군구별 통계 데이터 불러오기\n", 31 | "seoul_sgg_stat = pd.read_excel('./files/seoul_sgg_stat.xlsx', thousands = ',')\n", 32 | "seoul_sgg_stat.head()" 33 | ] 34 | }, 35 | { 36 | "cell_type": "code", 37 | "execution_count": null, 38 | "metadata": {}, 39 | "outputs": [], 40 | "source": [ 41 | "# 예제 6-59 서울시 시군구 행정 경계 지도 파일 불러오기\n", 42 | "sgg_geojson_file_path = './maps/seoul_sgg.geojson'\n", 43 | "seoul_sgg_geo = json.load(open(sgg_geojson_file_path, encoding='utf-8'))\n", 44 | "seoul_sgg_geo['features'][0]['properties']" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": null, 50 | "metadata": {}, 51 | "outputs": [], 52 | "source": [ 53 | "# 예제 6-60 folium 지도 생성\n", 54 | "starbucks_bubble = folium.Map(\n", 55 | " location=[37.573050, 126.979189], tiles ='CartoDB positron' , zoom_start=11 )\n", 56 | "# tiles='CartoDB dark_matter',\n", 57 | "# tiles='CartoDB',\n", 58 | " \n", 59 | "# )" 60 | ] 61 | }, 62 | { 63 | "cell_type": "code", 64 | "execution_count": null, 65 | "metadata": {}, 66 | "outputs": [], 67 | "source": [ 68 | "starbucks_bubble" 69 | ] 70 | }, 71 | { 72 | "cell_type": "code", 73 | "execution_count": null, 74 | "metadata": {}, 75 | "outputs": [], 76 | "source": [ 77 | "# 예제 6-61 서울시 시군구 경계 지도 그리기\n", 78 | "def style_function(feature):\n", 79 | " return {\n", 80 | " 'opacity': 0.7,\n", 81 | " 'weight': 1,\n", 82 | " 'color': 'white',\n", 83 | " 'fillOpacity':0,\n", 84 | " 'dashArray': '5, 5',\n", 85 | " }\n", 86 | "\n", 87 | "folium.GeoJson(\n", 88 | " seoul_sgg_geo,\n", 89 | " style_function=style_function\n", 90 | ").add_to(starbucks_bubble)\n", 91 | "\n", 92 | "starbucks_bubble" 93 | ] 94 | }, 95 | { 96 | "cell_type": "code", 97 | "execution_count": null, 98 | "metadata": {}, 99 | "outputs": [], 100 | "source": [ 101 | "# 예제 6-62 서울시 시군구별 스타벅스 평균 매장 수 계산\n", 102 | "starbucks_mean = seoul_sgg_stat['스타벅스_매장수'].mean()\n", 103 | "print(starbucks_mean)" 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "execution_count": null, 109 | "metadata": {}, 110 | "outputs": [], 111 | "source": [ 112 | "# 예제 6-63 서울시 시군구별 스타벅스 매장 수를 버블 지도로 시각화\n", 113 | "for idx in seoul_sgg_stat.index:\n", 114 | " lat = seoul_sgg_stat.loc[idx, '위도']\n", 115 | " lng = seoul_sgg_stat.loc[idx, '경도']\n", 116 | " count = seoul_sgg_stat.loc[idx, '스타벅스_매장수']\n", 117 | "\n", 118 | " if count > starbucks_mean:\n", 119 | " fillColor = 'red'\n", 120 | " else:\n", 121 | " fillColor = 'blue'\n", 122 | " \n", 123 | " folium.CircleMarker(\n", 124 | " location=[lat, lng], \n", 125 | " color='#FFFF00',\n", 126 | " fill_color=fillColor, \n", 127 | " fill_opacity=0.7,\n", 128 | " weight=1.5,\n", 129 | " radius=count/2\n", 130 | " ).add_to(starbucks_bubble)\n", 131 | "\n", 132 | "starbucks_bubble" 133 | ] 134 | }, 135 | { 136 | "cell_type": "code", 137 | "execution_count": null, 138 | "metadata": { 139 | "scrolled": false 140 | }, 141 | "outputs": [], 142 | "source": [ 143 | "# 예제 6-64 서울시 시군구별 스타벅스 매장 수를 단계구분도로 시각화\n", 144 | "sgg_geojson_file_path = './maps/seoul_sgg.geojson'\n", 145 | "seoul_sgg_geo_2 = json.load(open(sgg_geojson_file_path, encoding='utf-8'))\n", 146 | "starbucks_choropleth = folium.Map(\n", 147 | " location=[37.573050, 126.979189],\n", 148 | " tiles='CartoDB dark_matter',\n", 149 | " zoom_start=11\n", 150 | ")\n", 151 | "\n", 152 | "folium.Choropleth(\n", 153 | " geo_data=seoul_sgg_geo_2,\n", 154 | " data=seoul_sgg_stat,\n", 155 | " columns=['시군구명', '스타벅스_매장수'],\n", 156 | " fill_color = 'YlGn',\n", 157 | " fill_opacity=0.7,\n", 158 | " line_opacity=0.5,\n", 159 | " key_on='properties.SIG_KOR_NM'\n", 160 | " ).add_to(starbucks_choropleth)\n", 161 | "\n", 162 | "starbucks_choropleth" 163 | ] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "execution_count": null, 168 | "metadata": {}, 169 | "outputs": [], 170 | "source": [] 171 | } 172 | ], 173 | "metadata": { 174 | "kernelspec": { 175 | "display_name": "Python 3", 176 | "language": "python", 177 | "name": "python3" 178 | }, 179 | "language_info": { 180 | "codemirror_mode": { 181 | "name": "ipython", 182 | "version": 3 183 | }, 184 | "file_extension": ".py", 185 | "mimetype": "text/x-python", 186 | "name": "python", 187 | "nbconvert_exporter": "python", 188 | "pygments_lexer": "ipython3", 189 | "version": "3.7.4" 190 | } 191 | }, 192 | "nbformat": 4, 193 | "nbformat_minor": 2 194 | } 195 | -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/6_3_3&4_Starbucks_Locations_Analysis.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## 6.3.3 스타벅스 매장 수와 인구수 비교" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# 예제 5-65 라이브러리 임포트\n", 17 | "import pandas as pd\n", 18 | "import json\n", 19 | "import folium" 20 | ] 21 | }, 22 | { 23 | "cell_type": "code", 24 | "execution_count": null, 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "# 예제 6-66 서울시 시군구별 통계 데이터 불러오기\n", 29 | "seoul_sgg_stat = pd.read_excel('./files/seoul_sgg_stat.xlsx', thousands = ',')\n", 30 | "seoul_sgg_stat.head()" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": null, 36 | "metadata": {}, 37 | "outputs": [], 38 | "source": [ 39 | "# 예제 6-67 서울시 시군구 행정 경계 지도 파일 불러오기\n", 40 | "sgg_geojson_file_path = './maps/seoul_sgg.geojson'\n", 41 | "seoul_sgg_geo_2 = json.load(open(sgg_geojson_file_path, encoding='utf-8'))" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": null, 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "# 예제 6-68 서울시 시군구별 주민등록인구수 단계구분도 지도 시각화\n", 51 | "starbucks_choropleth = folium.Map(\n", 52 | " location=[37.573050, 126.979189],\n", 53 | " tiles='CartoDB dark_matter',\n", 54 | " zoom_start=11\n", 55 | ")\n", 56 | "\n", 57 | "folium.Choropleth(\n", 58 | " geo_data=seoul_sgg_geo_2,\n", 59 | " data=seoul_sgg_stat,\n", 60 | " columns=['시군구명', '주민등록인구'],\n", 61 | " fill_color = 'YlGn',\n", 62 | " fill_opacity=0.7,\n", 63 | " line_opacity=0.5,\n", 64 | " key_on='properties.SIG_KOR_NM'\n", 65 | " ).add_to(starbucks_choropleth)\n", 66 | "\n", 67 | "starbucks_choropleth" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": null, 73 | "metadata": {}, 74 | "outputs": [], 75 | "source": [ 76 | "# 예제 6-69 인구 만 명당 스타벅스 매장 수 칼럼 추가\n", 77 | "seoul_sgg_stat['만명당_매장수'] = seoul_sgg_stat['스타벅스_매장수']/(seoul_sgg_stat['주민등록인구']/10000)" 78 | ] 79 | }, 80 | { 81 | "cell_type": "code", 82 | "execution_count": null, 83 | "metadata": {}, 84 | "outputs": [], 85 | "source": [ 86 | "# 예제 6-70 인구 만 명당 스타벅스 매장 수 지도 시각화\n", 87 | "SGG_GEOJSON_FILE_PATH = './maps/seoul_sgg.geojson'\n", 88 | "seoul_sgg_geo_1 = json.load(open(SGG_GEOJSON_FILE_PATH, encoding='utf-8'))\n", 89 | "\n", 90 | "viz_map_1 = folium.Map(\n", 91 | " location=[37.573050, 126.979189],\n", 92 | " tiles='CartoDB dark_matter',\n", 93 | " zoom_start=11\n", 94 | ")\n", 95 | "\n", 96 | "# 지도 스타일 지정 함수\n", 97 | "def style_function(feature):\n", 98 | " return {\n", 99 | " 'opacity': 0.7,\n", 100 | " 'weight': 1,\n", 101 | " 'fillOpacity':0,\n", 102 | " }\n", 103 | "\n", 104 | "folium.GeoJson(\n", 105 | " seoul_sgg_geo_2,\n", 106 | " style_function=style_function,\n", 107 | ").add_to(viz_map_1)\n", 108 | "# 만명당 매장수 기준 상위 10% 추출 값\n", 109 | "top = seoul_sgg_stat ['만명당_매장수'].quantile(0.9)\n", 110 | "for idx in seoul_sgg_stat.index:\n", 111 | " lat = seoul_sgg_stat.loc[idx, '위도']\n", 112 | " lng = seoul_sgg_stat.loc[idx, '경도']\n", 113 | " r = seoul_sgg_stat.loc[idx, '만명당_매장수']\n", 114 | " if r > top:\n", 115 | " fillColor = '#FF3300' # (Red)\n", 116 | " else:\n", 117 | " fillColor = '#CCFF33' # (Green)\n", 118 | " \n", 119 | " folium.CircleMarker(\n", 120 | " location=[lat, lng], \n", 121 | " color='#FFFF00', # (Yellow)\n", 122 | " fill_color=fillColor, \n", 123 | " fill_opacity=0.7,\n", 124 | " weight=1.5,\n", 125 | " radius= r * 10\n", 126 | " ).add_to(viz_map_1)\n", 127 | "\n", 128 | "viz_map_1" 129 | ] 130 | }, 131 | { 132 | "cell_type": "markdown", 133 | "metadata": {}, 134 | "source": [ 135 | "## 6.3.4 스타벅스 매장 수와 사업체 수 비교" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "execution_count": null, 141 | "metadata": {}, 142 | "outputs": [], 143 | "source": [ 144 | "# 예제 6-71 신규 칼럼을 생성해 값 입력\n", 145 | "seoul_sgg_stat['종사자수_만명당_매장수'] = seoul_sgg_stat['스타벅스_매장수']/(seoul_sgg_stat['종사자수']/10000)\n", 146 | "seoul_sgg_stat.head()" 147 | ] 148 | }, 149 | { 150 | "cell_type": "code", 151 | "execution_count": null, 152 | "metadata": {}, 153 | "outputs": [], 154 | "source": [ 155 | "# 예제 6-72 종사자 수 1만 명당 스타벅스 매장 수 시각화\n", 156 | "seoul_sgg_geo_1 = json.load(open(SGG_GEOJSON_FILE_PATH, encoding='utf-8'))\n", 157 | "\n", 158 | "viz_map_1 = folium.Map(\n", 159 | " location=[37.573050, 126.979189],\n", 160 | " tiles='CartoDB dark_matter',\n", 161 | " zoom_start=11\n", 162 | ")\n", 163 | "\n", 164 | "folium.GeoJson(\n", 165 | " seoul_sgg_geo_1,\n", 166 | " style_function=style_function,\n", 167 | ").add_to(viz_map_1)\n", 168 | "\n", 169 | "top = seoul_sgg_stat['종사자수_만명당_매장수'].quantile(0.9)\n", 170 | "for idx in seoul_sgg_stat.index:\n", 171 | " name = seoul_sgg_stat.at[idx, '시군구명']\n", 172 | " lat = seoul_sgg_stat.loc[idx, '위도']\n", 173 | " lng = seoul_sgg_stat.loc[idx, '경도']\n", 174 | " r = seoul_sgg_stat.loc[idx, '종사자수_만명당_매장수']\n", 175 | " \n", 176 | " if r > top:\n", 177 | " fillColor = '#FF3300'\n", 178 | " else:\n", 179 | " fillColor = '#CCFF33'\n", 180 | " \n", 181 | " folium.CircleMarker(\n", 182 | " location=[lat, lng], \n", 183 | " color='#FFFF00', \n", 184 | " fill_color=fillColor, \n", 185 | " fill_opacity=0.7,\n", 186 | " weight=1.5,\n", 187 | " radius= r * 10\n", 188 | " ).add_to(viz_map_1)\n", 189 | "\n", 190 | "viz_map_1" 191 | ] 192 | } 193 | ], 194 | "metadata": { 195 | "kernelspec": { 196 | "display_name": "Python 3", 197 | "language": "python", 198 | "name": "python3" 199 | }, 200 | "language_info": { 201 | "codemirror_mode": { 202 | "name": "ipython", 203 | "version": 3 204 | }, 205 | "file_extension": ".py", 206 | "mimetype": "text/x-python", 207 | "name": "python", 208 | "nbconvert_exporter": "python", 209 | "pygments_lexer": "ipython3", 210 | "version": "3.7.4" 211 | } 212 | }, 213 | "nbformat": 4, 214 | "nbformat_minor": 2 215 | } 216 | -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/files/report.txt: -------------------------------------------------------------------------------- 1 | 기간 자치구 세대 인구 인구 인구 인구 인구 인구 인구 인구 인구 세대당인구 65세이상고령자 2 | 기간 자치구 세대 합계 합계 합계 한국인 한국인 한국인 등록외국인 등록외국인 등록외국인 세대당인구 65세이상고령자 3 | 기간 자치구 세대 계 남자 여자 계 남자 여자 계 남자 여자 세대당인구 65세이상고령자 4 | 2020.3/4 합계 4,405,833 9,953,009 4,840,912 5,112,097 9,699,232 4,719,170 4,980,062 253,777 121,742 132,035 2.2 1,552,356 5 | 2020.3/4 종로구 74,861 159,842 77,391 82,451 149,952 73,024 76,928 9,890 4,367 5,523 2 28,396 6 | 2020.3/4 중구 63,594 135,321 66,193 69,128 125,800 61,526 64,274 9,521 4,667 4,854 1.98 24,265 7 | 2020.3/4 용산구 112,451 244,953 119,074 125,879 229,786 110,604 119,182 15,167 8,470 6,697 2.04 39,995 8 | 2020.3/4 성동구 136,096 302,695 147,582 155,113 295,591 144,444 151,147 7,104 3,138 3,966 2.17 45,372 9 | 2020.3/4 광진구 166,857 361,923 174,077 187,846 348,064 168,095 179,969 13,859 5,982 7,877 2.09 50,047 10 | 2020.3/4 동대문구 167,232 358,679 176,433 182,246 344,416 170,748 173,668 14,263 5,685 8,578 2.06 61,408 11 | 2020.3/4 중랑구 185,109 400,989 198,012 202,977 395,997 195,981 200,016 4,992 2,031 2,961 2.14 68,658 12 | 2020.3/4 성북구 195,379 449,871 216,155 233,716 439,719 212,151 227,568 10,152 4,004 6,148 2.25 73,370 13 | 2020.3/4 강북구 145,790 313,550 152,458 161,092 309,996 151,117 158,879 3,554 1,341 2,213 2.13 62,951 14 | 2020.3/4 도봉구 139,029 329,300 160,526 168,774 327,248 159,723 167,525 2,052 803 1,249 2.35 61,388 15 | 2020.3/4 노원구 218,002 529,532 255,618 273,914 525,486 253,797 271,689 4,046 1,821 2,225 2.41 84,612 16 | 2020.3/4 은평구 213,039 485,842 233,104 252,738 481,546 231,364 250,182 4,296 1,740 2,556 2.26 84,353 17 | 2020.3/4 서대문구 144,494 323,860 153,763 170,097 313,212 149,993 163,219 10,648 3,770 6,878 2.17 53,869 18 | 2020.3/4 마포구 178,495 383,494 179,899 203,595 373,508 176,011 197,497 9,986 3,888 6,098 2.09 54,053 19 | 2020.3/4 양천구 180,309 460,048 225,596 234,452 456,240 223,889 232,351 3,808 1,707 2,101 2.53 64,804 20 | 2020.3/4 강서구 266,366 589,536 284,747 304,789 583,544 281,951 301,593 5,992 2,796 3,196 2.19 88,052 21 | 2020.3/4 구로구 179,792 435,751 217,380 218,371 405,579 200,268 205,311 30,172 17,112 13,060 2.26 69,312 22 | 2020.3/4 금천구 113,887 249,641 127,292 122,349 232,157 117,489 114,668 17,484 9,803 7,681 2.04 39,361 23 | 2020.3/4 영등포구 182,087 405,982 202,624 203,358 375,630 185,800 189,830 30,352 16,824 13,528 2.06 60,826 24 | 2020.3/4 동작구 184,193 404,617 195,373 209,244 393,554 190,422 203,132 11,063 4,951 6,112 2.14 64,674 25 | 2020.3/4 관악구 275,248 514,555 257,638 256,917 498,574 250,084 248,490 15,981 7,554 8,427 1.81 78,206 26 | 2020.3/4 서초구 173,483 429,995 205,671 224,324 426,009 203,686 222,323 3,986 1,985 2,001 2.46 59,495 27 | 2020.3/4 강남구 234,021 544,085 260,358 283,727 539,235 257,961 281,274 4,850 2,397 2,453 2.3 73,942 28 | 2020.3/4 송파구 281,417 676,673 326,602 350,071 670,331 323,646 346,685 6,342 2,956 3,386 2.38 92,149 29 | 2020.3/4 강동구 194,602 462,275 227,346 234,929 458,058 225,396 232,662 4,217 1,950 2,267 2.35 68,798 -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/files/seoul_sgg_list.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/6_Starbucks_Location/files/seoul_sgg_list.xlsx -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/files/seoul_sgg_stat.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/6_Starbucks_Location/files/seoul_sgg_stat.xlsx -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/files/seoul_starbucks_list.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/6_Starbucks_Location/files/seoul_starbucks_list.xlsx -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/files/sgg_biz.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/6_Starbucks_Location/files/sgg_biz.xlsx -------------------------------------------------------------------------------- /02_개정판/6_Starbucks_Location/files/sgg_pop.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/6_Starbucks_Location/files/sgg_pop.xlsx -------------------------------------------------------------------------------- /02_개정판/7_Best_Product/files/1_danawa_crawling_result.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/7_Best_Product/files/1_danawa_crawling_result.xlsx -------------------------------------------------------------------------------- /02_개정판/7_Best_Product/files/2_danawa_data_final.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Play-with-data/datasalon/245728355cda6bde037fa0ea75ac10cda1750080/02_개정판/7_Best_Product/files/2_danawa_data_final.xlsx -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 직장인을 위한 데이터 분석 실무 with 파이썬 2 | ## 마케팅, 영업, 기획 실무 담당자를 위한 데이터 분석의 기술 3 | 4 | 5 | ‘데이터 분석은 좋은 질문에서 시작합니다’ 6 | 7 | ### 책 보러 가기: https://wikibook.co.kr/pwdrev/ 8 | 9 | 이 책에서는 누구나 궁금했던 그 질문에 대해 데이터로 답해 봅니다. 10 | 11 | 12 | 이 책은 파이썬을 처음 접하는 마케팅, 영업, 기획 실무 담당자들이 파이썬을 활용한 데이터 분석에 재미있게 빠져들 수 있도록 실제 업무에 활용할 수 있거나 흥미로운 예제로 구성돼 있습니다. 13 | 14 | 15 | 이 책을 마치고 나면 데이터를 기반으로 좋은 질문에 답할 수 있는 실력을 키울 수 있을 것입니다. 16 | 17 | ★ 이 책에서 다루는 예제 ★ 18 | 19 | * 사드(THAAD) 배치의 영향으로 중국인 관광객이 얼마나 줄었을까? 20 | * 사회 이슈에 따른 외국인 관광객수 변화 분석 21 | 22 | * 가장 뜨는 제주도 핫플레이스는 어디일까? 23 | * 인스타그램으로 살펴보는 트렌드 분석 24 | 25 | * 왜 우리동네에는 스타벅스가 없을까? 26 | * 스타벅스 입지전략 분석 27 | 28 | * 어떤 무선청소기가 인기가 좋을까? 29 | * 다나와(가격비교 사이트)를 통한 무선청소기 브랜드별 제품 비교 분석 30 | 31 | 32 | 33 | 34 | ### `수정사항` 35 | 36 | - 2022.10.03 37 | - `추가 안내사항` : 크롤링 진행시 chromedriver.exe 파일을 매번 다운받기 귀찮으신 분들은 자동으로 버전 관리를 해주는 라이브러리 활용하시면 편하게 이용 가능합니다. [링크](https://blog.naver.com/kiddwannabe/222355619596)를 참고하세요 ( #chromedriver_autoinstaller ) 38 | 39 | 40 | - 2022.10.02 41 | - 크롤링 selenium 명령어 변경에 따른 코드 변경[참고](https://blog.naver.com/kiddwannabe/222559420797) 42 | - 변경전 : find_elements_by_css_selector('태그정보') 43 | - `변경후` : find_elements( 'css selector', '태그정보' ) 44 | - 인스타그램 사이트 개편에 따른 크롤링 코드 변경 45 | - tqdm 상태진행바 명령어 변경에 따른 코드 변경 46 | - 변경전 : from tqdm import tqdm_notebook 47 | - `변경후` : from tqdm.notebook import tqdm 48 | 49 | - 2022.05.19 50 | - 다나와 크롤링&데이터 전처리 수정 51 | - 수정부분 : 7-2 크롤링 부분, 7-3 데이터 전처리 부분 52 | 53 | 54 | - 2021.06.11 55 | - 인스타그램 로그인 페이지 오류 발생시 해결 방법 [링크 추가](https://www.notion.so/playwithdata/c02e510507504b42ae6073c1fbb46f29) 56 | 57 | 58 | - 2021.01.25 59 | - 브라우저 변수 명 변경 : browser → driver 60 | - 수정부분: 6-1 스타벅스 매장정보 크롤링 부분 61 | 62 | - 2021.01.07 63 | - 서울열린광장 인구데이터 API 서비스 종료에 따른 실습코드 변경 64 | - 수정부분: 6-1 인구데이터 자료 다운/정리 부분 65 | - 데이터 다운 및 정리 방법 정리 안내 페이지: http://bit.ly/pwd_seouldata_guide 66 | 67 | 68 | - 2020.11.6 69 | - 개정판 코드 업로드 70 | 71 | - 2020.08.20 72 | - 인스타그램 한글 자음/모음 분리현상이 생겨, 통합하는 코드 추가하였습니다. 73 | - 4-1 인스타그램 크롤링 부분 74 | 75 | 76 | - 2020.07.13 77 | - 멜론 사이트 개편에 따른 크롤링 코드 수정 진행하였습니다. 78 | - 수정부분: 2-2 멜론 크롤링부분 79 | 80 | 81 | 82 | - 2020.05.15 83 | - 인스타그램 크롤링 부분 코드 변경 및 안내사항 추가하였습니다. (다음 게시물 화살표 코드 변경, 오류시 대기 코드 추가, 2차인증 관련 안내사항 추가 등) 84 | - 수정부분 : 4-1 인스타그램 크롤링부분 85 | 86 | 87 | 88 | - 2020.05.07 89 | - 인스타그램이 로그인을 해야만 게시물을 볼 수 있도록 운영 정책이 변경되었습니다(2020.04.27) 90 | 91 | - 4장 인스타그램 크롤링 과정 중에 인스타그램 로그인 하는 부분을 추가하였습니다. 92 | 93 | - 수정부분 : 4-1 인스타그램 크롤링 부분 94 | 95 | 96 | - 2020.02.17 97 | 98 | - 네이버 지도 API 서비스 종료에 따라, 카카오 검색 API 활용으로 변경하였습니다. 99 | 100 | - 수정부분: 4-3 인스타 지도 시각화 부분 101 | 102 | - 카카오 API 활용 안내 가이드: http://bit.ly/pwd_kakaoAPI_guide 103 | 104 | 105 | 106 | 107 | ### PlaywithData 안내 ### 108 | 109 | - 워크샵/세미나 안내 페이지 : https://bit.ly/pwd_announce 110 | - 페이스북 그룹 : http://bit.ly/forPlaywithData 111 | --------------------------------------------------------------------------------