├── Allen_Cahn
└── AC.ipynb
├── KS
├── chaotic_KS.py
└── regular_KS.py
├── LICENSE
├── Lorentz
└── Causal_PINNs_lorentz.py
├── NS
└── NS.py
├── README.md
├── animations
├── AC.mp4
├── KS.mp4
├── NS.mp4
└── Readme.md
├── data
├── AC.mat
├── NS.npy
├── ks_chaotic.mat
└── ks_simple.mat
└── requirements.txt
/KS/chaotic_KS.py:
--------------------------------------------------------------------------------
1 | import numpy as onp
2 | import jax.numpy as np
3 | from jax import random, grad, vmap, jit, jacfwd, jacrev
4 | from jax.example_libraries import optimizers
5 | from jax.experimental.ode import odeint
6 | from jax.experimental.jet import jet
7 | from jax.nn import relu
8 | from jax.config import config
9 | from jax import lax
10 | from jax.flatten_util import ravel_pytree
11 | import itertools
12 | from functools import partial
13 | from torch.utils import data
14 | from tqdm import trange
15 |
16 | import scipy.io
17 | from scipy.interpolate import griddata
18 | import matplotlib.pyplot as plt
19 |
20 |
21 | # Define the neural net
22 | def modified_MLP(layers, L=1.0, M_t=1, M_x=1, activation=relu):
23 | def xavier_init(key, d_in, d_out):
24 | glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
25 | W = glorot_stddev * random.normal(key, (d_in, d_out))
26 | b = np.zeros(d_out)
27 | return W, b
28 |
29 | # Define input encoding function
30 | def input_encoding(t, x):
31 | w = 2 * np.pi / L
32 | k_t = np.power(10, np.arange(-M_t//2, M_t//2))
33 | k_x = np.arange(1, M_x + 1)
34 |
35 | out = np.hstack([k_t * t ,
36 | 1, np.cos(k_x * w * x), np.sin(k_x * w * x)])
37 | return out
38 |
39 |
40 | def init(rng_key):
41 | U1, b1 = xavier_init(random.PRNGKey(12345), layers[0], layers[1])
42 | U2, b2 = xavier_init(random.PRNGKey(54321), layers[0], layers[1])
43 | def init_layer(key, d_in, d_out):
44 | k1, k2 = random.split(key)
45 | W, b = xavier_init(k1, d_in, d_out)
46 | return W, b
47 | key, *keys = random.split(rng_key, len(layers))
48 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
49 | return (params, U1, b1, U2, b2)
50 |
51 | def apply(params, inputs):
52 | params, U1, b1, U2, b2 = params
53 |
54 | t = inputs[0]
55 | x = inputs[1]
56 | inputs = input_encoding(t, x)
57 | U = activation(np.dot(inputs, U1) + b1)
58 | V = activation(np.dot(inputs, U2) + b2)
59 | for W, b in params[:-1]:
60 | outputs = activation(np.dot(inputs, W) + b)
61 | inputs = np.multiply(outputs, U) + np.multiply(1 - outputs, V)
62 | W, b = params[-1]
63 | outputs = np.dot(inputs, W) + b
64 | return outputs
65 | return init, apply
66 |
67 |
68 | class DataGenerator(data.Dataset):
69 | def __init__(self, t0, t1, n_t=10, n_x=64, rng_key=random.PRNGKey(1234)):
70 | 'Initialization'
71 | self.t0 = t0
72 | self.t1 = (1 + 0.01) * t1
73 | self.n_t = n_t
74 | self.n_x = n_x
75 | self.key = rng_key
76 |
77 | def __getitem__(self, index):
78 | 'Generate one batch of data'
79 | self.key, subkey = random.split(self.key)
80 | batch = self.__data_generation(subkey)
81 | return batch
82 |
83 | @partial(jit, static_argnums=(0,))
84 | def __data_generation(self, key):
85 | 'Generates data containing batch_size samples'
86 | subkeys = random.split(key, 2)
87 | t_r = random.uniform(subkeys[0], shape=(self.n_t,), minval=self.t0, maxval=self.t1).sort()
88 | x_r = random.uniform(subkeys[1], shape=(self.n_x,), minval=0.0, maxval=2.0*np.pi)
89 | batch = (t_r, x_r)
90 | return batch
91 |
92 |
93 | # Define the model
94 | class PINN:
95 | def __init__(self, key, u_exact, arch, layers, M_t, M_x, state0, t0, t1, n_t, n_x, tol):
96 |
97 | self.u_exact = u_exact
98 |
99 | self.M_t = M_t
100 | self.M_x = M_x
101 |
102 | # grid
103 | self.n_t = n_t
104 | self.n_x = n_x
105 |
106 | self.t0 = t0
107 | self.t1 = t1
108 | eps = 0.01 * self.t1
109 | self.t_r = np.linspace(self.t0, self.t1 + eps, n_t)
110 | self.x_r = np.linspace(0, 2.0 * np.pi, n_x)
111 |
112 | # IC
113 | t_ic = np.zeros((x_star.shape[0], 1))
114 | x_ic = x_star.reshape(-1, 1)
115 | self.X_ic = np.hstack([t_ic, x_ic])
116 | self.Y_ic = state0
117 |
118 | # Weight matrix
119 | self.M = np.triu(np.ones((n_t, n_t)), k=1).T
120 | self.tol = tol
121 |
122 |
123 | d0 = 2 * M_x + M_t + 1
124 | layers = [d0] + layers
125 | self.init, self.apply = modified_MLP(layers, L=2.0*np.pi, M_t=self.M_t, M_x=self.M_x, activation=np.tanh)
126 | params = self.init(rng_key = key)
127 |
128 | # Use optimizers to set optimizer initialization and update functions
129 | self.opt_init, self.opt_update, self.get_params = optimizers.adam(optimizers.exponential_decay(1e-3,
130 | decay_steps=5000,
131 | decay_rate=0.9))
132 | self.opt_state = self.opt_init(params)
133 | _, self.unravel = ravel_pytree(params)
134 |
135 |
136 | self.u_pred_fn = vmap(vmap(self.neural_net, (None, 0, None)), (None, None, 0)) # consistent with the dataset
137 | self.r_pred_fn = vmap(vmap(self.residual_net, (None, None, 0)), (None, 0, None))
138 |
139 | # Logger
140 | self.itercount = itertools.count()
141 |
142 | self.l2_error_log = []
143 | self.loss_log = []
144 | self.loss_ics_log = []
145 | self.loss_res_log = []
146 |
147 | def neural_net(self, params, t, x):
148 | z = np.stack([t, x])
149 | outputs = self.apply(params, z)
150 | return outputs[0]
151 |
152 | def residual_net(self, params, t, x):
153 | u = self.neural_net(params, t, x)
154 | u_t = grad(self.neural_net, argnums=1)(params, t, x)
155 |
156 | u_fn = lambda x: self.neural_net(params, t, x)
157 | _, (u_x, u_xx, u_xxx, u_xxxx) = jet(u_fn, (x, ), [[1.0, 0.0, 0.0, 0.0]])
158 |
159 | return u_t + 100.0 / 16.0 * u * u_x + 100.0 / 16.0**2 * u_xx + 100.0 / 16.0**4 * u_xxxx
160 |
161 |
162 | @partial(jit, static_argnums=(0,))
163 | def residuals_and_weights(self, params, batch, tol):
164 | t_r, x_r = batch
165 | L_0 = 1e4 * self.loss_ics(params)
166 | r_pred = self.r_pred_fn(params, t_r, x_r)
167 | L_t = np.mean(r_pred**2, axis=1)
168 | W = lax.stop_gradient(np.exp(- tol * (self.M @ L_t + L_0) ))
169 | return L_0, L_t, W
170 |
171 | @partial(jit, static_argnums=(0,))
172 | def loss_ics(self, params):
173 | # Compute forward pass
174 | u_pred = vmap(self.neural_net, (None, 0, 0))(params, self.X_ic[:,0], self.X_ic[:,1])
175 | # Compute loss
176 | loss_ics = np.mean((self.Y_ic.flatten() - u_pred.flatten())**2)
177 | return loss_ics
178 |
179 |
180 | @partial(jit, static_argnums=(0,))
181 | def loss_res(self, params, batch):
182 | t_r, x_r = batch
183 | # Compute forward pass
184 | r_pred = self.r_pred_fn(params, t_r, x_r)
185 | # Compute loss
186 | loss_r = np.mean(r_pred**2)
187 | return loss_r
188 |
189 | @partial(jit, static_argnums=(0,))
190 | def loss(self, params, batch):
191 | L_0, L_t, W = self.residuals_and_weights(params, batch, self.tol)
192 | # Compute loss
193 | loss = np.mean(W * L_t + L_0)
194 | return loss
195 |
196 | @partial(jit, static_argnums=(0,))
197 | def compute_l2_error(self, params):
198 | u_pred = self.u_pred_fn(params, t_star[:num_step], x_star)
199 | l2_error = np.linalg.norm(u_pred - self.u_exact) / np.linalg.norm(self.u_exact)
200 | return l2_error
201 |
202 | # Define a compiled update step
203 | @partial(jit, static_argnums=(0,))
204 | def step(self, i, opt_state, batch):
205 | params = self.get_params(opt_state)
206 | g = grad(self.loss)(params, batch)
207 |
208 | return self.opt_update(i, g, opt_state)
209 |
210 | # Optimize parameters in a loop
211 | def train(self, dataset, nIter = 10000):
212 | res_data = iter(dataset)
213 | pbar = trange(nIter)
214 | # Main training loop
215 | for it in pbar:
216 | batch= next(res_data)
217 | self.current_count = next(self.itercount)
218 | self.opt_state = self.step(self.current_count, self.opt_state, batch)
219 |
220 | if it % 1000 == 0:
221 | params = self.get_params(self.opt_state)
222 |
223 |
224 | l2_error_value = self.compute_l2_error(params)
225 | loss_value = self.loss(params, batch)
226 |
227 | loss_ics_value = self.loss_ics(params)
228 | loss_res_value = self.loss_res(params, batch)
229 |
230 | _, _, W_value = self.residuals_and_weights(params, batch, self.tol)
231 |
232 | self.l2_error_log.append(l2_error_value)
233 | self.loss_log.append(loss_value)
234 | self.loss_ics_log.append(loss_ics_value)
235 | self.loss_res_log.append(loss_res_value)
236 |
237 | pbar.set_postfix({'l2 error': l2_error_value,
238 | 'Loss': loss_value,
239 | 'loss_ics' : loss_ics_value,
240 | 'loss_res': loss_res_value,
241 | 'W_min' : W_value.min()})
242 |
243 | if W_value.min() > 0.99:
244 | break
245 |
246 | # Evaluates predictions at test points
247 | @partial(jit, static_argnums=(0,))
248 | def predict_u(self, params, X_star):
249 | u_pred = vmap(self.u_net, (None, 0, 0))(params, X_star[:,0], X_star[:,1])
250 | return u_pred
251 |
252 |
253 | data = scipy.io.loadmat('../ks_chaotic.mat')
254 | # Test data
255 | usol = data['usol']
256 |
257 | t_star = data['t'][0]
258 | x_star = data['x'][0]
259 | TT, XX = np.meshgrid(t_star, x_star)
260 | X_star = np.hstack((TT.flatten()[:, None], XX.flatten()[:, None]))
261 |
262 |
263 |
264 | # Hpyer-parameters
265 | key = random.PRNGKey(1234)
266 | M_t = 6
267 | M_x = 5
268 | layers = [128, 128, 128, 128, 128, 128, 128, 128, 1]
269 | num_step = 25
270 | t0 = 0.0
271 | t1 = t_star[num_step]
272 | n_t = 32
273 | n_x = 256
274 |
275 | tol = 1.0
276 | tol_list = [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2]
277 | time_step = 0
278 |
279 | state0 = usol[:, time_step:time_step+1]
280 | t_star = data['t'][0][:num_step]
281 | x_star = data['x'][0]
282 |
283 | # Create data set
284 | dataset = DataGenerator(t0, t1, n_t, n_x)
285 |
286 |
287 | # arch = 'MLP'
288 | arch = 'modified_MLP'
289 | print('Arch:', arch)
290 | print('Alg: temporal reweighting, Random collocation points')
291 |
292 |
293 | N = 250 // num_step
294 |
295 | u_pred_list = []
296 | params_list = []
297 | losses_list = []
298 |
299 | for k in range(N):
300 | # Initialize model
301 | u_exact = usol[:, time_step + k * num_step:time_step + (k+1) * num_step] # (512, num_step)
302 | print('Final Time: {}'.format(k + 1))
303 | model = PINN(key, u_exact, arch, layers, M_t, M_x, state0, t0, t1, n_t, n_x, tol)
304 |
305 | # Train
306 | for tol in tol_list:
307 | model.tol = tol
308 | print('tol: ', tol)
309 | # Train
310 | model.train(dataset, nIter=200000)
311 |
312 | # Store
313 | params = model.get_params(model.opt_state)
314 | u_pred = model.u_pred_fn(params, t_star, x_star)
315 | u_pred_list.append(u_pred)
316 | flat_params, _ = ravel_pytree(params)
317 | params_list.append(flat_params)
318 | losses_list.append([model.loss_log, model.loss_ics_log, model.loss_res_log])
319 |
320 |
321 | np.save(arch + '_u_pred_list.npy', u_pred_list)
322 | np.save(arch + '_params_list.npy', params_list)
323 | np.save(arch + '_losses_list.npy', losses_list)
324 |
325 | u_preds = np.hstack(u_pred_list)
326 | error = np.linalg.norm(u_preds - usol[:, time_step:time_step + (k+1) * num_step]) / np.linalg.norm(usol[:, time_step:time_step + (k+1) * num_step])
327 | print('Relative l2 error: {:.3e}'.format(error))
328 |
329 | params = model.get_params(model.opt_state)
330 | u0_pred = vmap(model.neural_net, (None, None, 0))(params, t1, x_star)
331 | state0 = u0_pred
332 |
333 |
--------------------------------------------------------------------------------
/KS/regular_KS.py:
--------------------------------------------------------------------------------
1 | import jax.numpy as np
2 | from jax import random, grad, vmap, jit, jacfwd, jacrev
3 | from jax.example_libraries import optimizers
4 | from jax.experimental.jet import jet
5 | from jax.nn import relu
6 | from jax.config import config
7 | from jax import lax
8 | from jax.flatten_util import ravel_pytree
9 | import itertools
10 | from functools import partial
11 | from torch.utils import data
12 | from tqdm import trange
13 |
14 | import scipy.io
15 |
16 |
17 |
18 | # Define MLP
19 | def MLP(layers, L=1.0, M=1, activation=relu):
20 | # Define input encoding function
21 | def input_encoding(t, x):
22 | w = 2.0 * np.pi / L
23 | k = np.arange(1, M + 1)
24 | out = np.hstack([t, 1,
25 | np.cos(k * w * x), np.sin(k * w * x)])
26 | return out
27 |
28 | def init(rng_key):
29 | def init_layer(key, d_in, d_out):
30 | k1, k2 = random.split(key)
31 | glorot_stddev = 1.0 / np.sqrt((d_in + d_out) / 2.)
32 | W = glorot_stddev * random.normal(k1, (d_in, d_out))
33 | b = np.zeros(d_out)
34 | return W, b
35 | key, *keys = random.split(rng_key, len(layers))
36 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
37 | return params
38 | def apply(params, inputs):
39 | t = inputs[0]
40 | x = inputs[1]
41 | H = input_encoding(t, x)
42 | for W, b in params[:-1]:
43 | outputs = np.dot(H, W) + b
44 | H = activation(outputs)
45 | W, b = params[-1]
46 | outputs = np.dot(H, W) + b
47 | return outputs
48 | return init, apply
49 |
50 |
51 | # Define modified MLP
52 | def modified_MLP(layers, L=1.0, M=1, activation=relu):
53 | def xavier_init(key, d_in, d_out):
54 | glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
55 | W = glorot_stddev * random.normal(key, (d_in, d_out))
56 | b = np.zeros(d_out)
57 | return W, b
58 |
59 | # Define input encoding function
60 | def input_encoding(t, x):
61 | w = 2 * np.pi / L
62 | k = np.arange(1, M + 1)
63 | out = np.hstack([t, 1,
64 | np.cos(k * w * x), np.sin(k * w * x)])
65 | return out
66 |
67 |
68 | def init(rng_key):
69 | U1, b1 = xavier_init(random.PRNGKey(12345), layers[0], layers[1])
70 | U2, b2 = xavier_init(random.PRNGKey(54321), layers[0], layers[1])
71 | def init_layer(key, d_in, d_out):
72 | k1, k2 = random.split(key)
73 | W, b = xavier_init(k1, d_in, d_out)
74 | return W, b
75 | key, *keys = random.split(rng_key, len(layers))
76 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
77 | return (params, U1, b1, U2, b2)
78 |
79 | def apply(params, inputs):
80 | params, U1, b1, U2, b2 = params
81 |
82 | t = inputs[0]
83 | x = inputs[1]
84 | inputs = input_encoding(t, x)
85 | U = activation(np.dot(inputs, U1) + b1)
86 | V = activation(np.dot(inputs, U2) + b2)
87 | for W, b in params[:-1]:
88 | outputs = activation(np.dot(inputs, W) + b)
89 | inputs = np.multiply(outputs, U) + np.multiply(1 - outputs, V)
90 | W, b = params[-1]
91 | outputs = np.dot(inputs, W) + b
92 | return outputs
93 | return init, apply
94 |
95 |
96 | class DataGenerator(data.Dataset):
97 | def __init__(self, t0, t1, n_t=10, n_x=64, rng_key=random.PRNGKey(1234)):
98 | 'Initialization'
99 | self.t0 = t0
100 | self.t1 = t1
101 | self.n_t = n_t
102 | self.n_x = n_x
103 | self.key = rng_key
104 |
105 | def __getitem__(self, index):
106 | 'Generate one batch of data'
107 | self.key, subkey = random.split(self.key)
108 | batch = self.__data_generation(subkey)
109 | return batch
110 |
111 | @partial(jit, static_argnums=(0,))
112 | def __data_generation(self, key):
113 | 'Generates data containing batch_size samples'
114 | subkeys = random.split(key, 2)
115 | t_r = random.uniform(subkeys[0], shape=(self.n_t,), minval=self.t0, maxval=self.t1).sort()
116 | x_r = random.uniform(subkeys[1], shape=(self.n_x,), minval=-1.0, maxval=1.0)
117 | batch = (t_r, x_r)
118 | return batch
119 |
120 |
121 |
122 | # Define the model
123 | class PINN:
124 | def __init__(self, key, arch, layers, M_x, state0, t0, t1, n_t, n_x, tol=1.0):
125 |
126 | # grid
127 | eps = 0.01 * t1
128 | self.t_r = np.linspace(t0, t1 + eps, n_t)
129 | self.x_r = np.linspace(-1.0, 1.0, n_x)
130 |
131 | # IC
132 | t_ic = np.zeros((x_star.shape[0], 1))
133 | x_ic = x_star.reshape(-1, 1)
134 | self.X_ic = np.hstack([t_ic, x_ic])
135 | self.Y_ic = state0
136 |
137 | # Weight matrix and causal parameter
138 | self.M = np.triu(np.ones((n_t, n_t)), k=1).T
139 | self.tol = tol
140 |
141 | if arch == 'MLP':
142 | d0 = 2 * M_x + 2
143 | layers = [d0] + layers
144 | self.init, self.apply = MLP(layers, L=2.0, M=M_x, activation=np.tanh)
145 | params = self.init(rng_key = key)
146 |
147 | if arch == 'modified_MLP':
148 | d0 = 2 * M_x + 2
149 | layers = [d0] + layers
150 | self.init, self.apply = modified_MLP(layers, L=2.0, M=M_x, activation=np.tanh)
151 | params = self.init(rng_key = key)
152 |
153 |
154 | # Use optimizers to set optimizer initialization and update functions
155 | lr = optimizers.exponential_decay(1e-3, decay_steps=5000, decay_rate=0.9)
156 | self.opt_init, self.opt_update, self.get_params = optimizers.adam(lr)
157 | self.opt_state = self.opt_init(params)
158 | _, self.unravel = ravel_pytree(params)
159 |
160 | # Evaluate functions over a grid
161 | self.u_pred_fn = vmap(vmap(self.neural_net, (None, 0, None)), (None, None, 0)) # consistent with the dataset
162 | self.r_pred_fn = vmap(vmap(self.residual_net, (None, None, 0)), (None, 0, None))
163 |
164 | # Logger
165 | self.loss_log = []
166 | self.loss_ics_log = []
167 | self.loss_res_log = []
168 |
169 | self.itercount = itertools.count()
170 |
171 |
172 | def neural_net(self, params, t, x):
173 | z = np.stack([t, x])
174 | outputs = self.apply(params, z)
175 | return outputs[0]
176 |
177 | def residual_net(self, params, t, x):
178 | u = self.neural_net(params, t, x)
179 | u_t = grad(self.neural_net, argnums=1)(params, t, x)
180 | u_fn = lambda x: self.neural_net(params, t, x) # For using Taylor-mode AD
181 | _, (u_x, u_xx, u_xxx, u_xxxx) = jet(u_fn, (x, ), [[1.0, 0.0, 0.0, 0.0]]) # Taylor-mode AD
182 | return u_t + 5 * u * u_x + 0.5 * u_xx + 0.005 * u_xxxx
183 |
184 | # Compute the temporal weights
185 | @partial(jit, static_argnums=(0,))
186 | def residuals_and_weights(self, params, batch, tol):
187 | t_r, x_r = batch
188 | L_0 = 1e3 * self.loss_ics(params)
189 | r_pred = self.r_pred_fn(params, t_r, x_r)
190 | L_t = np.mean(r_pred**2, axis=1)
191 | W = lax.stop_gradient(np.exp(- tol * (self.M @ L_t + L_0) ))
192 | return L_0, L_t, W
193 |
194 | # Initial condition loss
195 | @partial(jit, static_argnums=(0,))
196 | def loss_ics(self, params):
197 | # Compute forward pass
198 | u_pred = vmap(self.neural_net, (None, 0, 0))(params, self.X_ic[:,0], self.X_ic[:,1])
199 | # Compute loss
200 | loss_ics = np.mean((self.Y_ic.flatten() - u_pred.flatten())**2)
201 | return loss_ics
202 |
203 | # Residual loss
204 | @partial(jit, static_argnums=(0,))
205 | def loss_res(self, params, batch):
206 | t_r, x_r = batch
207 | # Compute forward pass
208 | r_pred = self.r_pred_fn(params, t_r, x_r)
209 | # Compute loss
210 | loss_r = np.mean(r_pred**2)
211 | return loss_r
212 |
213 | # Total loss
214 | @partial(jit, static_argnums=(0,))
215 | def loss(self, params, batch):
216 | L_0, L_t, W = self.residuals_and_weights(params, batch, self.tol)
217 | # Compute loss
218 | loss = np.mean(W * L_t + L_0)
219 | return loss
220 |
221 | # Define a compiled update step
222 | @partial(jit, static_argnums=(0,))
223 | def step(self, i, opt_state, batch):
224 | params = self.get_params(opt_state)
225 | g = grad(self.loss)(params, batch)
226 | return self.opt_update(i, g, opt_state)
227 |
228 | # Optimize parameters in a loop
229 | def train(self, dataset, nIter = 10000):
230 | res_data = iter(dataset)
231 | pbar = trange(nIter)
232 | # Main training loop
233 | for it in pbar:
234 | # Get batch
235 | batch= next(res_data)
236 | self.current_count = next(self.itercount)
237 | self.opt_state = self.step(self.current_count, self.opt_state, batch)
238 |
239 | if it % 1000 == 0:
240 | params = self.get_params(self.opt_state)
241 |
242 | loss_value = self.loss(params, batch)
243 | loss_ics_value = self.loss_ics(params)
244 | loss_res_value = self.loss_res(params, batch)
245 | _, _, W_value = self.residuals_and_weights(params, batch, self.tol)
246 |
247 | self.loss_log.append(loss_value)
248 | self.loss_ics_log.append(loss_ics_value)
249 | self.loss_res_log.append(loss_res_value)
250 |
251 | pbar.set_postfix({'Loss': loss_value,
252 | 'loss_ics' : loss_ics_value,
253 | 'loss_res': loss_res_value,
254 | 'W_min' : W_value.min()})
255 |
256 | if W_value.min() > 0.99:
257 | break
258 |
259 |
260 | # Load data
261 | data = scipy.io.loadmat('ks_simple.mat')
262 | # Test data
263 | usol = data['usol']
264 |
265 |
266 | # Hpyer-parameters
267 | key = random.PRNGKey(1234)
268 | M_t = 2
269 | M_x = 5
270 | t0 = 0.0
271 | t1 = 0.1
272 | n_t = 32
273 | n_x = 64
274 | tol_list = [1e-2, 1e-1, 1e0, 1e1, 1e2]
275 | layers = [256, 256, 256, 1] # using Fourier embedding so it is not 1
276 |
277 | # Initial state
278 | state0 = usol[:, 0:1]
279 | dt = 1 / 250
280 | idx = int(t1 / dt)
281 | t_star = data['t'][0][:idx]
282 | x_star = data['x'][0]
283 |
284 | # Create data set
285 | dataset = DataGenerator(t0, t1, n_t, n_x)
286 |
287 | arch = 'modified_MLP'
288 | print('arch:', arch)
289 |
290 | N = 10
291 | u_pred_list = []
292 | params_list = []
293 | losses_list = []
294 |
295 |
296 | # Time marching
297 | for k in range(N):
298 | # Initialize model
299 | print('Final Time: {}'.format((k + 1) * t1))
300 | model = PINN(key, arch, layers, M_x, state0, t0, t1, n_t, n_x)
301 |
302 | # Train
303 | for tol in tol_list:
304 | model.tol = tol
305 | print("tol:", model.tol)
306 | # Train
307 | model.train(dataset, nIter=200000)
308 |
309 | # Store
310 | params = model.get_params(model.opt_state)
311 | u_pred = model.u_pred_fn(params, t_star, x_star)
312 | u_pred_list.append(u_pred)
313 | flat_params, _ = ravel_pytree(params)
314 | params_list.append(flat_params)
315 | losses_list.append([model.loss_log, model.loss_ics_log, model.loss_res_log])
316 |
317 |
318 | np.save('u_pred_list.npy', u_pred_list)
319 | np.save('params_list.npy', params_list)
320 | np.save('losses_list.npy', losses_list)
321 |
322 | # error
323 | u_preds = np.hstack(u_pred_list)
324 | error = np.linalg.norm(u_preds - usol[:, :(k+1) * idx]) / np.linalg.norm(usol[:, :(k+1) * idx])
325 | print('Relative l2 error: {:.3e}'.format(error))
326 |
327 | params = model.get_params(model.opt_state)
328 | u0_pred = vmap(model.neural_net, (None, None, 0))(params, t1, x_star)
329 | state0 = u0_pred
330 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Attribution-NonCommercial-ShareAlike 4.0 International
2 |
3 | =======================================================================
4 |
5 | Creative Commons Corporation ("Creative Commons") is not a law firm and
6 | does not provide legal services or legal advice. Distribution of
7 | Creative Commons public licenses does not create a lawyer-client or
8 | other relationship. Creative Commons makes its licenses and related
9 | information available on an "as-is" basis. Creative Commons gives no
10 | warranties regarding its licenses, any material licensed under their
11 | terms and conditions, or any related information. Creative Commons
12 | disclaims all liability for damages resulting from their use to the
13 | fullest extent possible.
14 |
15 | Using Creative Commons Public Licenses
16 |
17 | Creative Commons public licenses provide a standard set of terms and
18 | conditions that creators and other rights holders may use to share
19 | original works of authorship and other material subject to copyright
20 | and certain other rights specified in the public license below. The
21 | following considerations are for informational purposes only, are not
22 | exhaustive, and do not form part of our licenses.
23 |
24 | Considerations for licensors: Our public licenses are
25 | intended for use by those authorized to give the public
26 | permission to use material in ways otherwise restricted by
27 | copyright and certain other rights. Our licenses are
28 | irrevocable. Licensors should read and understand the terms
29 | and conditions of the license they choose before applying it.
30 | Licensors should also secure all rights necessary before
31 | applying our licenses so that the public can reuse the
32 | material as expected. Licensors should clearly mark any
33 | material not subject to the license. This includes other CC-
34 | licensed material, or material used under an exception or
35 | limitation to copyright. More considerations for licensors:
36 | wiki.creativecommons.org/Considerations_for_licensors
37 |
38 | Considerations for the public: By using one of our public
39 | licenses, a licensor grants the public permission to use the
40 | licensed material under specified terms and conditions. If
41 | the licensor's permission is not necessary for any reason--for
42 | example, because of any applicable exception or limitation to
43 | copyright--then that use is not regulated by the license. Our
44 | licenses grant only permissions under copyright and certain
45 | other rights that a licensor has authority to grant. Use of
46 | the licensed material may still be restricted for other
47 | reasons, including because others have copyright or other
48 | rights in the material. A licensor may make special requests,
49 | such as asking that all changes be marked or described.
50 | Although not required by our licenses, you are encouraged to
51 | respect those requests where reasonable. More considerations
52 | for the public:
53 | wiki.creativecommons.org/Considerations_for_licensees
54 |
55 | =======================================================================
56 |
57 | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
58 | Public License
59 |
60 | By exercising the Licensed Rights (defined below), You accept and agree
61 | to be bound by the terms and conditions of this Creative Commons
62 | Attribution-NonCommercial-ShareAlike 4.0 International Public License
63 | ("Public License"). To the extent this Public License may be
64 | interpreted as a contract, You are granted the Licensed Rights in
65 | consideration of Your acceptance of these terms and conditions, and the
66 | Licensor grants You such rights in consideration of benefits the
67 | Licensor receives from making the Licensed Material available under
68 | these terms and conditions.
69 |
70 |
71 | Section 1 -- Definitions.
72 |
73 | a. Adapted Material means material subject to Copyright and Similar
74 | Rights that is derived from or based upon the Licensed Material
75 | and in which the Licensed Material is translated, altered,
76 | arranged, transformed, or otherwise modified in a manner requiring
77 | permission under the Copyright and Similar Rights held by the
78 | Licensor. For purposes of this Public License, where the Licensed
79 | Material is a musical work, performance, or sound recording,
80 | Adapted Material is always produced where the Licensed Material is
81 | synched in timed relation with a moving image.
82 |
83 | b. Adapter's License means the license You apply to Your Copyright
84 | and Similar Rights in Your contributions to Adapted Material in
85 | accordance with the terms and conditions of this Public License.
86 |
87 | c. BY-NC-SA Compatible License means a license listed at
88 | creativecommons.org/compatiblelicenses, approved by Creative
89 | Commons as essentially the equivalent of this Public License.
90 |
91 | d. Copyright and Similar Rights means copyright and/or similar rights
92 | closely related to copyright including, without limitation,
93 | performance, broadcast, sound recording, and Sui Generis Database
94 | Rights, without regard to how the rights are labeled or
95 | categorized. For purposes of this Public License, the rights
96 | specified in Section 2(b)(1)-(2) are not Copyright and Similar
97 | Rights.
98 |
99 | e. Effective Technological Measures means those measures that, in the
100 | absence of proper authority, may not be circumvented under laws
101 | fulfilling obligations under Article 11 of the WIPO Copyright
102 | Treaty adopted on December 20, 1996, and/or similar international
103 | agreements.
104 |
105 | f. Exceptions and Limitations means fair use, fair dealing, and/or
106 | any other exception or limitation to Copyright and Similar Rights
107 | that applies to Your use of the Licensed Material.
108 |
109 | g. License Elements means the license attributes listed in the name
110 | of a Creative Commons Public License. The License Elements of this
111 | Public License are Attribution, NonCommercial, and ShareAlike.
112 |
113 | h. Licensed Material means the artistic or literary work, database,
114 | or other material to which the Licensor applied this Public
115 | License.
116 |
117 | i. Licensed Rights means the rights granted to You subject to the
118 | terms and conditions of this Public License, which are limited to
119 | all Copyright and Similar Rights that apply to Your use of the
120 | Licensed Material and that the Licensor has authority to license.
121 |
122 | j. Licensor means the individual(s) or entity(ies) granting rights
123 | under this Public License.
124 |
125 | k. NonCommercial means not primarily intended for or directed towards
126 | commercial advantage or monetary compensation. For purposes of
127 | this Public License, the exchange of the Licensed Material for
128 | other material subject to Copyright and Similar Rights by digital
129 | file-sharing or similar means is NonCommercial provided there is
130 | no payment of monetary compensation in connection with the
131 | exchange.
132 |
133 | l. Share means to provide material to the public by any means or
134 | process that requires permission under the Licensed Rights, such
135 | as reproduction, public display, public performance, distribution,
136 | dissemination, communication, or importation, and to make material
137 | available to the public including in ways that members of the
138 | public may access the material from a place and at a time
139 | individually chosen by them.
140 |
141 | m. Sui Generis Database Rights means rights other than copyright
142 | resulting from Directive 96/9/EC of the European Parliament and of
143 | the Council of 11 March 1996 on the legal protection of databases,
144 | as amended and/or succeeded, as well as other essentially
145 | equivalent rights anywhere in the world.
146 |
147 | n. You means the individual or entity exercising the Licensed Rights
148 | under this Public License. Your has a corresponding meaning.
149 |
150 |
151 | Section 2 -- Scope.
152 |
153 | a. License grant.
154 |
155 | 1. Subject to the terms and conditions of this Public License,
156 | the Licensor hereby grants You a worldwide, royalty-free,
157 | non-sublicensable, non-exclusive, irrevocable license to
158 | exercise the Licensed Rights in the Licensed Material to:
159 |
160 | a. reproduce and Share the Licensed Material, in whole or
161 | in part, for NonCommercial purposes only; and
162 |
163 | b. produce, reproduce, and Share Adapted Material for
164 | NonCommercial purposes only.
165 |
166 | 2. Exceptions and Limitations. For the avoidance of doubt, where
167 | Exceptions and Limitations apply to Your use, this Public
168 | License does not apply, and You do not need to comply with
169 | its terms and conditions.
170 |
171 | 3. Term. The term of this Public License is specified in Section
172 | 6(a).
173 |
174 | 4. Media and formats; technical modifications allowed. The
175 | Licensor authorizes You to exercise the Licensed Rights in
176 | all media and formats whether now known or hereafter created,
177 | and to make technical modifications necessary to do so. The
178 | Licensor waives and/or agrees not to assert any right or
179 | authority to forbid You from making technical modifications
180 | necessary to exercise the Licensed Rights, including
181 | technical modifications necessary to circumvent Effective
182 | Technological Measures. For purposes of this Public License,
183 | simply making modifications authorized by this Section 2(a)
184 | (4) never produces Adapted Material.
185 |
186 | 5. Downstream recipients.
187 |
188 | a. Offer from the Licensor -- Licensed Material. Every
189 | recipient of the Licensed Material automatically
190 | receives an offer from the Licensor to exercise the
191 | Licensed Rights under the terms and conditions of this
192 | Public License.
193 |
194 | b. Additional offer from the Licensor -- Adapted Material.
195 | Every recipient of Adapted Material from You
196 | automatically receives an offer from the Licensor to
197 | exercise the Licensed Rights in the Adapted Material
198 | under the conditions of the Adapter's License You apply.
199 |
200 | c. No downstream restrictions. You may not offer or impose
201 | any additional or different terms or conditions on, or
202 | apply any Effective Technological Measures to, the
203 | Licensed Material if doing so restricts exercise of the
204 | Licensed Rights by any recipient of the Licensed
205 | Material.
206 |
207 | 6. No endorsement. Nothing in this Public License constitutes or
208 | may be construed as permission to assert or imply that You
209 | are, or that Your use of the Licensed Material is, connected
210 | with, or sponsored, endorsed, or granted official status by,
211 | the Licensor or others designated to receive attribution as
212 | provided in Section 3(a)(1)(A)(i).
213 |
214 | b. Other rights.
215 |
216 | 1. Moral rights, such as the right of integrity, are not
217 | licensed under this Public License, nor are publicity,
218 | privacy, and/or other similar personality rights; however, to
219 | the extent possible, the Licensor waives and/or agrees not to
220 | assert any such rights held by the Licensor to the limited
221 | extent necessary to allow You to exercise the Licensed
222 | Rights, but not otherwise.
223 |
224 | 2. Patent and trademark rights are not licensed under this
225 | Public License.
226 |
227 | 3. To the extent possible, the Licensor waives any right to
228 | collect royalties from You for the exercise of the Licensed
229 | Rights, whether directly or through a collecting society
230 | under any voluntary or waivable statutory or compulsory
231 | licensing scheme. In all other cases the Licensor expressly
232 | reserves any right to collect such royalties, including when
233 | the Licensed Material is used other than for NonCommercial
234 | purposes.
235 |
236 |
237 | Section 3 -- License Conditions.
238 |
239 | Your exercise of the Licensed Rights is expressly made subject to the
240 | following conditions.
241 |
242 | a. Attribution.
243 |
244 | 1. If You Share the Licensed Material (including in modified
245 | form), You must:
246 |
247 | a. retain the following if it is supplied by the Licensor
248 | with the Licensed Material:
249 |
250 | i. identification of the creator(s) of the Licensed
251 | Material and any others designated to receive
252 | attribution, in any reasonable manner requested by
253 | the Licensor (including by pseudonym if
254 | designated);
255 |
256 | ii. a copyright notice;
257 |
258 | iii. a notice that refers to this Public License;
259 |
260 | iv. a notice that refers to the disclaimer of
261 | warranties;
262 |
263 | v. a URI or hyperlink to the Licensed Material to the
264 | extent reasonably practicable;
265 |
266 | b. indicate if You modified the Licensed Material and
267 | retain an indication of any previous modifications; and
268 |
269 | c. indicate the Licensed Material is licensed under this
270 | Public License, and include the text of, or the URI or
271 | hyperlink to, this Public License.
272 |
273 | 2. You may satisfy the conditions in Section 3(a)(1) in any
274 | reasonable manner based on the medium, means, and context in
275 | which You Share the Licensed Material. For example, it may be
276 | reasonable to satisfy the conditions by providing a URI or
277 | hyperlink to a resource that includes the required
278 | information.
279 | 3. If requested by the Licensor, You must remove any of the
280 | information required by Section 3(a)(1)(A) to the extent
281 | reasonably practicable.
282 |
283 | b. ShareAlike.
284 |
285 | In addition to the conditions in Section 3(a), if You Share
286 | Adapted Material You produce, the following conditions also apply.
287 |
288 | 1. The Adapter's License You apply must be a Creative Commons
289 | license with the same License Elements, this version or
290 | later, or a BY-NC-SA Compatible License.
291 |
292 | 2. You must include the text of, or the URI or hyperlink to, the
293 | Adapter's License You apply. You may satisfy this condition
294 | in any reasonable manner based on the medium, means, and
295 | context in which You Share Adapted Material.
296 |
297 | 3. You may not offer or impose any additional or different terms
298 | or conditions on, or apply any Effective Technological
299 | Measures to, Adapted Material that restrict exercise of the
300 | rights granted under the Adapter's License You apply.
301 |
302 |
303 | Section 4 -- Sui Generis Database Rights.
304 |
305 | Where the Licensed Rights include Sui Generis Database Rights that
306 | apply to Your use of the Licensed Material:
307 |
308 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right
309 | to extract, reuse, reproduce, and Share all or a substantial
310 | portion of the contents of the database for NonCommercial purposes
311 | only;
312 |
313 | b. if You include all or a substantial portion of the database
314 | contents in a database in which You have Sui Generis Database
315 | Rights, then the database in which You have Sui Generis Database
316 | Rights (but not its individual contents) is Adapted Material,
317 | including for purposes of Section 3(b); and
318 |
319 | c. You must comply with the conditions in Section 3(a) if You Share
320 | all or a substantial portion of the contents of the database.
321 |
322 | For the avoidance of doubt, this Section 4 supplements and does not
323 | replace Your obligations under this Public License where the Licensed
324 | Rights include other Copyright and Similar Rights.
325 |
326 |
327 | Section 5 -- Disclaimer of Warranties and Limitation of Liability.
328 |
329 | a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
330 | EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
331 | AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
332 | ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
333 | IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
334 | WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
335 | PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
336 | ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
337 | KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
338 | ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
339 |
340 | b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
341 | TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
342 | NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
343 | INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
344 | COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
345 | USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
346 | ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
347 | DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
348 | IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
349 |
350 | c. The disclaimer of warranties and limitation of liability provided
351 | above shall be interpreted in a manner that, to the extent
352 | possible, most closely approximates an absolute disclaimer and
353 | waiver of all liability.
354 |
355 |
356 | Section 6 -- Term and Termination.
357 |
358 | a. This Public License applies for the term of the Copyright and
359 | Similar Rights licensed here. However, if You fail to comply with
360 | this Public License, then Your rights under this Public License
361 | terminate automatically.
362 |
363 | b. Where Your right to use the Licensed Material has terminated under
364 | Section 6(a), it reinstates:
365 |
366 | 1. automatically as of the date the violation is cured, provided
367 | it is cured within 30 days of Your discovery of the
368 | violation; or
369 |
370 | 2. upon express reinstatement by the Licensor.
371 |
372 | For the avoidance of doubt, this Section 6(b) does not affect any
373 | right the Licensor may have to seek remedies for Your violations
374 | of this Public License.
375 |
376 | c. For the avoidance of doubt, the Licensor may also offer the
377 | Licensed Material under separate terms or conditions or stop
378 | distributing the Licensed Material at any time; however, doing so
379 | will not terminate this Public License.
380 |
381 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
382 | License.
383 |
384 |
385 | Section 7 -- Other Terms and Conditions.
386 |
387 | a. The Licensor shall not be bound by any additional or different
388 | terms or conditions communicated by You unless expressly agreed.
389 |
390 | b. Any arrangements, understandings, or agreements regarding the
391 | Licensed Material not stated herein are separate from and
392 | independent of the terms and conditions of this Public License.
393 |
394 |
395 | Section 8 -- Interpretation.
396 |
397 | a. For the avoidance of doubt, this Public License does not, and
398 | shall not be interpreted to, reduce, limit, restrict, or impose
399 | conditions on any use of the Licensed Material that could lawfully
400 | be made without permission under this Public License.
401 |
402 | b. To the extent possible, if any provision of this Public License is
403 | deemed unenforceable, it shall be automatically reformed to the
404 | minimum extent necessary to make it enforceable. If the provision
405 | cannot be reformed, it shall be severed from this Public License
406 | without affecting the enforceability of the remaining terms and
407 | conditions.
408 |
409 | c. No term or condition of this Public License will be waived and no
410 | failure to comply consented to unless expressly agreed to by the
411 | Licensor.
412 |
413 | d. Nothing in this Public License constitutes or may be interpreted
414 | as a limitation upon, or waiver of, any privileges and immunities
415 | that apply to the Licensor or You, including from the legal
416 | processes of any jurisdiction or authority.
417 |
418 | =======================================================================
419 |
420 | Creative Commons is not a party to its public
421 | licenses. Notwithstanding, Creative Commons may elect to apply one of
422 | its public licenses to material it publishes and in those instances
423 | will be considered the “Licensor.” The text of the Creative Commons
424 | public licenses is dedicated to the public domain under the CC0 Public
425 | Domain Dedication. Except for the limited purpose of indicating that
426 | material is shared under a Creative Commons public license or as
427 | otherwise permitted by the Creative Commons policies published at
428 | creativecommons.org/policies, Creative Commons does not authorize the
429 | use of the trademark "Creative Commons" or any other trademark or logo
430 | of Creative Commons without its prior written consent including,
431 | without limitation, in connection with any unauthorized modifications
432 | to any of its public licenses or any other arrangements,
433 | understandings, or agreements concerning use of licensed material. For
434 | the avoidance of doubt, this paragraph does not form part of the
435 | public licenses.
436 |
437 | Creative Commons may be contacted at creativecommons.org.
438 |
--------------------------------------------------------------------------------
/Lorentz/Causal_PINNs_lorentz.py:
--------------------------------------------------------------------------------
1 |
2 | # Commented out IPython magic to ensure Python compatibility.
3 | import numpy as onp
4 | import jax.numpy as np
5 | from jax import random, grad, vmap, jit, jacfwd, jacrev
6 | from jax.experimental import optimizers
7 | from jax.experimental.ode import odeint
8 | from jax.nn import relu
9 | from jax.config import config
10 | from jax import lax
11 | from jax.flatten_util import ravel_pytree
12 | import itertools
13 | from functools import partial
14 | from torch.utils import data
15 | from tqdm import trange
16 |
17 | import scipy.io
18 | from scipy.interpolate import griddata
19 | from scipy.linalg import lstsq
20 | from scipy.optimize import lsq_linear
21 | from sklearn.linear_model import RidgeCV
22 | import matplotlib.pyplot as plt
23 | import scipy.optimize
24 | from scipy.optimize import least_squares
25 |
26 | from scipy.integrate import odeint as scipy_odeint
27 | from mpl_toolkits.mplot3d import Axes3D
28 |
29 | # Define the neural net
30 | def init_layer(key, d_in, d_out):
31 | k1, k2 = random.split(key)
32 | glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
33 | W = glorot_stddev * random.normal(k1, (d_in, d_out))
34 | b = np.zeros(d_out)
35 | return W, b
36 |
37 | def MLP(layers, activation=relu):
38 | ''' Vanilla MLP'''
39 | def init(rng_key):
40 | key, *keys = random.split(rng_key, len(layers))
41 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
42 | return params
43 | def apply(params, inputs):
44 | for W, b in params[:-1]:
45 | outputs = np.dot(inputs, W) + b
46 | inputs = activation(outputs)
47 | W, b = params[-1]
48 | outputs = np.dot(inputs, W) + b
49 | return outputs
50 | return init, apply
51 |
52 |
53 | # Define the neural net
54 | def modified_MLP(layers, activation=relu):
55 | def xavier_init(key, d_in, d_out):
56 | glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
57 | W = glorot_stddev * random.normal(key, (d_in, d_out))
58 | b = np.zeros(d_out)
59 | return W, b
60 |
61 | def init(rng_key):
62 | U1, b1 = xavier_init(random.PRNGKey(12345), layers[0], layers[1])
63 | U2, b2 = xavier_init(random.PRNGKey(54321), layers[0], layers[1])
64 | def init_layer(key, d_in, d_out):
65 | k1, k2 = random.split(key)
66 | W, b = xavier_init(k1, d_in, d_out)
67 | return W, b
68 | key, *keys = random.split(rng_key, len(layers))
69 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
70 | return (params, U1, b1, U2, b2)
71 |
72 | def apply(params, inputs):
73 | params, U1, b1, U2, b2 = params
74 | U = activation(np.dot(inputs, U1) + b1)
75 | V = activation(np.dot(inputs, U2) + b2)
76 | for W, b in params[:-1]:
77 | outputs = activation(np.dot(inputs, W) + b)
78 | inputs = np.multiply(outputs, U) + np.multiply(1 - outputs, V)
79 | W, b = params[-1]
80 | outputs = np.dot(inputs, W) + b
81 | return outputs
82 | return init, apply
83 |
84 | # Define Fourier feature net
85 | def MLP_FF(layers, sigma=1.0, activation=relu):
86 | # Define input encoding function
87 | def input_encoding(x, w):
88 | out = np.hstack([np.sin(np.dot(x, w)),
89 | np.cos(np.dot(x, w))])
90 | return out
91 | freqs = sigma * random.normal(random.PRNGKey(0), (layers[0], layers[1]//2))
92 | def init(rng_key):
93 | def init_layer(key, d_in, d_out):
94 | k1, k2 = random.split(key)
95 | glorot_stddev = 1.0 / np.sqrt((d_in + d_out) / 2.)
96 | W = glorot_stddev * random.normal(k1, (d_in, d_out))
97 | b = np.zeros(d_out)
98 | return W, b
99 | key, *keys = random.split(rng_key, len(layers))
100 | params = list(map(init_layer, keys, layers[1:-1], layers[2:]))
101 | return params
102 | def apply(params, inputs):
103 | H = input_encoding(inputs, freqs)
104 | for W, b in params[:-1]:
105 | outputs = np.dot(H, W) + b
106 | H = activation(outputs)
107 | W, b = params[-1]
108 | outputs = np.dot(H, W) + b
109 | return outputs
110 | return init, apply
111 |
112 |
113 | # Define the model
114 | class PINN:
115 | def __init__(self, layers, states0, t0, t1, tol):
116 |
117 | self.states0 = states0
118 | self.t0 = t0
119 | self.t1 = t1
120 |
121 | # Grid
122 | n_t = 300
123 | eps = 0.1 * self.t1
124 | self.t = np.linspace(self.t0, self.t1 + eps, n_t)
125 |
126 | self.M = np.triu(np.ones((n_t, n_t)), k=1).T
127 | self.tol = tol
128 |
129 | self.rho = 28.0
130 | self.sigma = 10.0
131 | self.beta = 8.0 / 3.0
132 |
133 | self.init, self.apply = MLP(layers, activation=np.tanh)
134 | # self.init, self.apply = modified_MLP(layers, activation=np.tanh)
135 | params = self.init(random.PRNGKey(1234))
136 |
137 | # Use optimizers to set optimizer initialization and update functions
138 | self.opt_init, \
139 | self.opt_update, \
140 | self.get_params = optimizers.adam(optimizers.exponential_decay(1e-3,
141 | decay_steps=5000,
142 | decay_rate=0.9))
143 | self.opt_state = self.opt_init(params)
144 | _, self.unravel = ravel_pytree(params)
145 |
146 | # Logger
147 | self.itercount = itertools.count()
148 |
149 | self.loss_log = []
150 | self.loss_ics_log = []
151 | self.loss_res_log = []
152 |
153 | def neural_net(self, params, t):
154 | t = np.stack([t])
155 | outputs = self.apply(params, t) * t
156 | x = outputs[0] + self.states0[0]
157 | y = outputs[1] + self.states0[1]
158 | z = outputs[2] + self.states0[2]
159 | return x, y, z
160 |
161 | def x_fn(self, params, t):
162 | x, _, _ = self.neural_net(params, t)
163 | return x
164 |
165 | def y_fn(self, params, t):
166 | _, y, _ = self.neural_net(params, t)
167 | return y
168 |
169 | def z_fn(self, params, t):
170 | _, _, z = self.neural_net(params, t)
171 | return z
172 |
173 | def residual_net(self, params, t):
174 | x, y, z = self.neural_net(params, t)
175 | x_t = grad(self.x_fn, argnums=1)(params, t)
176 | y_t = grad(self.y_fn, argnums=1)(params, t)
177 | z_t = grad(self.z_fn, argnums=1)(params, t)
178 |
179 | res_1 = x_t - self.sigma * (y - x)
180 | res_2 = y_t - x * (self.rho - z) + y
181 | res_3 = z_t - x * y + self.beta * z
182 |
183 | return res_1, res_2, res_3
184 |
185 | def loss_ics(self, params):
186 | # Compute forward pass
187 | x_pred, y_pred, z_pred =self.neural_net(params, self.t0)
188 | # Compute loss
189 |
190 | loss_x_ic = np.mean((self.states0[0] - x_pred)**2)
191 | loss_y_ic = np.mean((self.states0[1] - y_pred)**2)
192 | loss_z_ic = np.mean((self.states0[2] - z_pred)**2)
193 | return loss_x_ic + loss_y_ic + loss_z_ic
194 |
195 | @partial(jit, static_argnums=(0,))
196 | def residuals_and_weights(self, params, tol):
197 | r1_pred, r2_pred, r3_pred = vmap(self.residual_net, (None, 0))(params, self.t)
198 | W = lax.stop_gradient(np.exp(- tol * self.M @ (r1_pred**2 + r2_pred**2 + r3_pred**2)))
199 | return r1_pred, r2_pred, r3_pred, W
200 |
201 | @partial(jit, static_argnums=(0,))
202 | def loss_res(self, params):
203 | # Compute forward pass
204 | r1_pred, r2_pred, r3_pred, W = self.residuals_and_weights(params, self.tol)
205 | # Compute loss
206 | loss_res = np.mean(W * (r1_pred**2 + r2_pred**2 + r3_pred**2))
207 | return loss_res
208 |
209 | @partial(jit, static_argnums=(0,))
210 | def loss(self, params):
211 |
212 | loss_res = self.loss_res(params)
213 |
214 | loss = loss_res
215 | return loss
216 |
217 | # Define a compiled update step
218 | @partial(jit, static_argnums=(0,))
219 | def step(self, i, opt_state):
220 | params = self.get_params(opt_state)
221 | g = grad(self.loss)(params)
222 | return self.opt_update(i, g, opt_state)
223 |
224 | # Optimize parameters in a loop
225 | def train(self, nIter = 10000):
226 | pbar = trange(nIter)
227 | # Main training loop
228 | for it in pbar:
229 | self.current_count = next(self.itercount)
230 | self.opt_state = self.step(self.current_count, self.opt_state)
231 |
232 | if it % 1000 == 0:
233 | params = self.get_params(self.opt_state)
234 |
235 | loss_value = self.loss(params)
236 | loss_ics_value = self.loss_ics(params)
237 | loss_res_value = self.loss_res(params)
238 | _, _, _, W_value = self.residuals_and_weights(params, self.tol)
239 |
240 | self.loss_log.append(loss_value)
241 | self.loss_ics_log.append(loss_ics_value)
242 | self.loss_res_log.append(loss_res_value)
243 |
244 | pbar.set_postfix({'Loss': loss_value,
245 | 'loss_ics' : loss_ics_value,
246 | 'loss_res': loss_res_value,
247 | 'W_min': W_value.min()} )
248 |
249 | if W_value.min() > 0.99:
250 | break
251 |
252 | # Evaluates predictions at test points
253 | @partial(jit, static_argnums=(0,))
254 | def predict_u(self, params, t_star):
255 | x_pred, y_pred, z_pred = vmap(self.neural_net, (None, 0))(params, t_star)
256 | return x_pred, y_pred, z_pred
257 |
258 | def f(state, t):
259 | x, y, z = state # Unpack the state vector
260 | return sigma * (y - x), x * (rho - z) - y, x * y - beta * z # Derivatives
261 |
262 | rho = 28.0
263 | sigma = 10.0
264 | beta = 8.0 / 3.0
265 |
266 | state0 = [1.0, 1.0, 1.0]
267 |
268 | T = 30
269 | t_star = onp.arange(0, T, 0.01)
270 | states = scipy_odeint(f, state0, t_star)
271 |
272 | # Create PINNs model
273 | t0 = 0.0
274 | t1 = 0.5
275 | tol = 0.1
276 |
277 | tol_list = [1e-3, 1e-2, 1e-1, 1e0, 1e1]
278 |
279 | layers = [1, 512, 512, 512, 3]
280 |
281 | x_pred_list = []
282 | y_pred_list = []
283 | z_pred_list = []
284 | params_list = []
285 | losses_list = []
286 |
287 | state0 = np.array([1.0, 1.0, 1.0])
288 | t = np.arange(t0, t1, 0.01)
289 | for k in range(int(T / t1)):
290 | # Initialize model
291 | print('Final Time: {}'.format( (k+1) * t1))
292 | model = PINN(layers, state0, t0, t1, tol)
293 |
294 | for tol in tol_list:
295 | model.tol = tol
296 | print('tol:', model.tol)
297 | # Train
298 | model.train(nIter=300000)
299 |
300 | params = model.get_params(model.opt_state)
301 | x_pred, y_pred, z_pred = model.predict_u(params, t)
302 | x0_pred, y0_pred, z0_pred = model.neural_net(params, model.t1)
303 | state0 = np.array([x0_pred, y0_pred, z0_pred])
304 |
305 | # Store predictions
306 | x_pred_list.append(x_pred)
307 | y_pred_list.append(y_pred)
308 | z_pred_list.append(z_pred)
309 | losses_list.append([model.loss_ics_log, model.loss_res_log])
310 |
311 | # Store params
312 | flat_params, _ = ravel_pytree(params)
313 | params_list.append(flat_params)
314 |
315 | np.save('x_pred_list.npy', x_pred_list)
316 | np.save('y_pred_list.npy', y_pred_list)
317 | np.save('z_pred_list.npy', z_pred_list)
318 | np.save('params_list.npy', params_list)
319 | np.save('losses_list.npy', losses_list)
320 |
321 | # Error
322 | t_star = onp.arange(t0, (k+1) * t1, 0.01)
323 | states = scipy_odeint(f, [1.0, 1.0, 1.0], t_star)
324 |
325 | x_preds = np.hstack(x_pred_list)
326 | y_preds = np.hstack(y_pred_list)
327 | z_preds = np.hstack(z_pred_list)
328 |
329 | error_x = np.linalg.norm(x_preds - states[:, 0]) / np.linalg.norm(states[:, 0])
330 | error_y = np.linalg.norm(y_preds - states[:, 1]) / np.linalg.norm(states[:, 1])
331 | error_z = np.linalg.norm(z_preds - states[:, 2]) / np.linalg.norm(states[:, 2])
332 | print('Relative l2 error x: {:.3e}'.format(error_x))
333 | print('Relative l2 error y: {:.3e}'.format(error_y))
334 | print('Relative l2 error z: {:.3e}'.format(error_z))
335 |
336 |
337 | # np.save('x_pred_list.npy', x_pred_list)
338 | # np.save('y_pred_list.npy', y_pred_list)
339 | # np.save('z_pred_list.npy', z_pred_list)
340 | # np.save('params_list.npy', params_list)
341 |
342 | # x_preds = np.hstack(x_pred_list)
343 | # y_preds = np.hstack(y_pred_list)
344 | # z_preds = np.hstack(z_pred_list)
345 |
346 | # error_x = np.linalg.norm(x_preds - states[:, 0]) / np.linalg.norm(states[:, 0])
347 | # error_y = np.linalg.norm(y_preds - states[:, 1]) / np.linalg.norm(states[:, 1])
348 | # error_z = np.linalg.norm(z_preds - states[:, 2]) / np.linalg.norm(states[:, 2])
349 | # print('Relative l2 error x: {:.3e}'.format(error_x))
350 | # print('Relative l2 error y: {:.3e}'.format(error_y))
351 | # print('Relative l2 error z: {:.3e}'.format(error_z))
352 |
353 |
354 |
355 |
356 |
--------------------------------------------------------------------------------
/NS/NS.py:
--------------------------------------------------------------------------------
1 | import numpy as onp
2 | import jax.numpy as np
3 | from jax import random, grad, vmap, jit, jacfwd, jacrev
4 | example_libraries
5 | from jax.nn import relu
6 | from jax import lax
7 | from jax.flatten_util import ravel_pytree
8 | import itertools
9 | from functools import partial
10 | from torch.utils import data
11 | from tqdm import trange
12 |
13 |
14 | # Define the neural net
15 | def init_layer(key, d_in, d_out):
16 | k1, k2 = random.split(key)
17 | glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
18 | W = glorot_stddev * random.normal(k1, (d_in, d_out))
19 | b = np.zeros(d_out)
20 | return W, b
21 |
22 |
23 | def MLP(layers, activation=relu):
24 | ''' Vanilla MLP'''
25 |
26 | def init(rng_key):
27 | key, *keys = random.split(rng_key, len(layers))
28 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
29 | return params
30 |
31 | def apply(params, inputs):
32 | for W, b in params[:-1]:
33 | outputs = np.dot(inputs, W) + b
34 | inputs = activation(outputs)
35 | W, b = params[-1]
36 | outputs = np.dot(inputs, W) + b
37 | return outputs
38 |
39 | return init, apply
40 |
41 |
42 | # Define the neural net
43 | def modified_MLP_II(layers, L_x=1.0, L_y=1.0, M_t=1, M_x=1, M_y=1, activation=relu):
44 | def xavier_init(key, d_in, d_out):
45 | glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
46 | W = glorot_stddev * random.normal(key, (d_in, d_out))
47 | b = np.zeros(d_out)
48 | return W, b
49 |
50 | w_x = 2.0 * np.pi / L_x
51 | w_y = 2.0 * np.pi / L_y
52 | k_x = np.arange(1, M_x + 1)
53 | k_y = np.arange(1, M_y + 1)
54 | k_xx, k_yy = np.meshgrid(k_x, k_y)
55 | k_xx = k_xx.flatten()
56 | k_yy = k_yy.flatten()
57 |
58 | # Define input encoding function
59 | def input_encoding(t, x, y):
60 | k_t = np.power(10.0, np.arange(0, M_t + 1))
61 | out = np.hstack([1, k_t * t,
62 | np.cos(k_x * w_x * x), np.cos(k_y * w_y * y),
63 | np.sin(k_x * w_x * x), np.sin(k_y * w_y * y),
64 | np.cos(k_xx * w_x * x) * np.cos(k_yy * w_y * y),
65 | np.cos(k_xx * w_x * x) * np.sin(k_yy * w_y * y),
66 | np.sin(k_xx * w_x * x) * np.cos(k_yy * w_y * y),
67 | np.sin(k_xx * w_x * x) * np.sin(k_yy * w_y * y)])
68 | return out
69 |
70 | def init(rng_key):
71 | U1, b1 = xavier_init(random.PRNGKey(12345), layers[0], layers[1])
72 | U2, b2 = xavier_init(random.PRNGKey(54321), layers[0], layers[1])
73 |
74 | def init_layer(key, d_in, d_out):
75 | k1, k2 = random.split(key)
76 | W, b = xavier_init(k1, d_in, d_out)
77 | return W, b
78 |
79 | key, *keys = random.split(rng_key, len(layers))
80 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
81 | return (params, U1, b1, U2, b2)
82 |
83 | def apply(params, inputs):
84 | params, U1, b1, U2, b2 = params
85 |
86 | t = inputs[0]
87 | x = inputs[1]
88 | y = inputs[2]
89 | inputs = input_encoding(t, x, y)
90 | U = activation(np.dot(inputs, U1) + b1)
91 | V = activation(np.dot(inputs, U2) + b2)
92 | for W, b in params[:-1]:
93 | outputs = activation(np.dot(inputs, W) + b)
94 | inputs = np.multiply(outputs, U) + np.multiply(1 - outputs, V)
95 | W, b = params[-1]
96 | outputs = np.dot(inputs, W) + b
97 | return outputs
98 |
99 | return init, apply
100 |
101 |
102 | # Define the neural net
103 | def modified_MLP_III(layers, L_x=1.0, L_y=1.0, M_t=1, M_x=1, M_y=1, activation=relu):
104 | def xavier_init(key, d_in, d_out):
105 | glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
106 | W = glorot_stddev * random.normal(key, (d_in, d_out))
107 | b = np.zeros(d_out)
108 | return W, b
109 |
110 | w_x = 2.0 * np.pi / L_x
111 | w_y = 2.0 * np.pi / L_y
112 | k_x = np.arange(1, M_x + 1)
113 | k_y = np.arange(1, M_y + 1)
114 | k_xx, k_yy = np.meshgrid(k_x, k_y)
115 | k_xx = k_xx.flatten()
116 | k_yy = k_yy.flatten()
117 |
118 | # Define input encoding function
119 | def spatial_encoding(x, y, M_x, M_y):
120 | out = np.hstack([1, np.cos(k_x * w_x * x), np.cos(k_y * w_y * y),
121 | np.sin(k_x * w_x * x), np.sin(k_y * w_y * y),
122 | np.cos(k_xx * w_x * x) * np.cos(k_yy * w_y * y),
123 | np.cos(k_xx * w_x * x) * np.sin(k_yy * w_y * y),
124 | np.sin(k_xx * w_x * x) * np.cos(k_yy * w_y * y),
125 | np.sin(k_xx * w_x * x) * np.sin(k_yy * w_y * y)])
126 | return out
127 |
128 | def temporal_encoding(t, M_t):
129 | k = np.power(10.0, np.arange(0, M_t + 1))
130 | out = k * t
131 | return out
132 |
133 | def init(rng_key):
134 | U1, b1 = xavier_init(random.PRNGKey(12345), M_t + 1, layers[1])
135 | U2, b2 = xavier_init(random.PRNGKey(54321), 2 * M_x + 2 * M_y + 4 * M_x * M_y + 1, layers[1])
136 |
137 | def init_layer(key, d_in, d_out):
138 | k1, k2 = random.split(key)
139 | W, b = xavier_init(k1, d_in, d_out)
140 | return W, b
141 |
142 | key, *keys = random.split(rng_key, len(layers))
143 | params = list(map(init_layer, keys, layers[:-1], layers[1:]))
144 | return (params, U1, b1, U2, b2)
145 |
146 | def apply(params, inputs):
147 | params, U1, b1, U2, b2 = params
148 | t = inputs[0]
149 | x = inputs[1]
150 | y = inputs[2]
151 | H_t = temporal_encoding(t, M_t)
152 | H_x = spatial_encoding(x, y, M_x, M_y)
153 | inputs = np.hstack([H_t, H_x])
154 | U = activation(np.dot(H_t, U1) + b1)
155 | V = activation(np.dot(H_x, U2) + b2)
156 | for W, b in params[:-1]:
157 | outputs = activation(np.dot(inputs, W) + b)
158 | inputs = np.multiply(outputs, U) + np.multiply(1 - outputs, V)
159 | W, b = params[-1]
160 | outputs = np.dot(inputs, W) + b
161 | return outputs
162 |
163 | return init, apply
164 |
165 |
166 | class DataGenerator(data.Dataset):
167 | def __init__(self, t0, t1, n_t=10, n_x=64, rng_key=random.PRNGKey(1234)):
168 | 'Initialization'
169 | self.t0 = t0
170 | self.t1 = t1 + 0.01 * t1
171 | self.n_t = n_t
172 | self.n_x = n_x
173 | self.key = rng_key
174 |
175 | def __getitem__(self, index):
176 | 'Generate one batch of data'
177 | self.key, subkey = random.split(self.key)
178 | batch = self.__data_generation(subkey)
179 | return batch
180 |
181 | @partial(jit, static_argnums=(0,))
182 | def __data_generation(self, key):
183 | 'Generates data containing batch_size samples'
184 | subkeys = random.split(key, 2)
185 | t_r = random.uniform(subkeys[0], shape=(self.n_t,), minval=self.t0, maxval=self.t1).sort()
186 | x_r = random.uniform(subkeys[1], shape=(self.n_x, 2), minval=0.0, maxval=2.0 * np.pi)
187 | batch = (t_r, x_r)
188 | return batch
189 |
190 |
191 | # Define the model
192 | class PINN:
193 | def __init__(self, key, w_exact, layers, M_t, M_x, M_y, state0, t0, t1, n_t, x_star, y_star, tol):
194 |
195 | self.w_exact = w_exact
196 |
197 | self.M_t = M_t
198 | self.M_x = M_x
199 | self.M_y = M_y
200 |
201 | # grid
202 | self.n_t = n_t
203 | self.t0 = t0
204 | self.t1 = t1
205 | eps = 0.01 * t1
206 | self.t = np.linspace(self.t0, self.t1 + eps, n_t)
207 | self.x_star = x_star
208 | self.y_star = y_star
209 |
210 | # initial state
211 | self.state0 = state0
212 |
213 | self.tol = tol
214 | self.M = np.triu(np.ones((n_t, n_t)), k=1).T
215 |
216 | self.init, self.apply = modified_MLP_II(layers, L_x=2 * np.pi, L_y=2 * np.pi, M_t=M_t, M_x=M_x, M_y=M_y,
217 | activation=np.tanh)
218 | params = self.init(rng_key=key)
219 |
220 | # Use optimizers to set optimizer initialization and update functions
221 | self.opt_init, self.opt_update, self.get_params = optimizers.adam(optimizers.exponential_decay(1e-3,
222 | decay_steps=10000,
223 | decay_rate=0.9))
224 | self.opt_state = self.opt_init(params)
225 | _, self.unravel = ravel_pytree(params)
226 |
227 | self.u0_pred_fn = vmap(vmap(self.u_net, (None, None, None, 0)), (None, None, 0, None))
228 | self.v0_pred_fn = vmap(vmap(self.v_net, (None, None, None, 0)), (None, None, 0, None))
229 | self.w0_pred_fn = vmap(vmap(self.vorticity_net, (None, None, None, 0)), (None, None, 0, None))
230 | self.u_pred_fn = vmap(vmap(vmap(self.u_net, (None, None, None, 0)), (None, None, 0, None)),
231 | (None, 0, None, None))
232 | self.v_pred_fn = vmap(vmap(vmap(self.v_net, (None, None, None, 0)), (None, None, 0, None)),
233 | (None, 0, None, None))
234 | self.w_pred_fn = vmap(vmap(vmap(self.vorticity_net, (None, None, None, 0)), (None, None, 0, None)),
235 | (None, 0, None, None))
236 | # self.r_pred_fn = vmap(vmap(vmap(self.residual_net, (None, None, None, 0)), (None, None, 0, None)), (None, 0, None, None))
237 | self.r_pred_fn = vmap(vmap(self.residual_net, (None, None, 0, 0)), (None, 0, None, None))
238 |
239 | # Logger
240 | self.itercount = itertools.count()
241 |
242 | self.loss_log = []
243 | self.loss_ics_log = []
244 | self.loss_u0_log = []
245 | self.loss_v0_log = []
246 | self.loss_w0_log = []
247 | self.loss_bcs_log = []
248 | self.loss_res_w_log = []
249 | self.loss_res_c_log = []
250 | self.l2_error_log = []
251 |
252 | def neural_net(self, params, t, x, y):
253 | z = np.stack([t, x, y])
254 | outputs = self.apply(params, z)
255 | u = outputs[0]
256 | v = outputs[1]
257 | return u, v
258 |
259 | def u_net(self, params, t, x, y):
260 | u, _ = self.neural_net(params, t, x, y)
261 | return u
262 |
263 | def v_net(self, params, t, x, y):
264 | _, v = self.neural_net(params, t, x, y)
265 | return v
266 |
267 | def vorticity_net(self, params, t, x, y):
268 | u_y = grad(self.u_net, argnums=3)(params, t, x, y)
269 | v_x = grad(self.v_net, argnums=2)(params, t, x, y)
270 | w = v_x - u_y
271 | return w
272 |
273 | def residual_net(self, params, t, x, y):
274 |
275 | u, v = self.neural_net(params, t, x, y)
276 |
277 | u_x = grad(self.u_net, argnums=2)(params, t, x, y)
278 | v_y = grad(self.v_net, argnums=3)(params, t, x, y)
279 |
280 | w_t = grad(self.vorticity_net, argnums=1)(params, t, x, y)
281 | w_x = grad(self.vorticity_net, argnums=2)(params, t, x, y)
282 | w_y = grad(self.vorticity_net, argnums=3)(params, t, x, y)
283 |
284 | w_xx = grad(grad(self.vorticity_net, argnums=2), argnums=2)(params, t, x, y)
285 | w_yy = grad(grad(self.vorticity_net, argnums=3), argnums=3)(params, t, x, y)
286 |
287 | res_w = w_t + u * w_x + v * w_y - nu * (w_xx + w_yy)
288 | res_c = u_x + v_y
289 |
290 | return res_w, res_c
291 |
292 | @partial(jit, static_argnums=(0,))
293 | def residuals_and_weights(self, params, tol, batch):
294 | t_r, x_r = batch
295 | loss_u0, loss_v0, loss_w0 = self.loss_ics(params)
296 | L_0 = 1e5 * (loss_u0 + loss_v0 + loss_w0)
297 | res_w_pred, res_c_pred = self.r_pred_fn(params, t_r, x_r[:, 0], x_r[:, 1])
298 | L_t = np.mean(res_w_pred ** 2 + 100 * res_c_pred ** 2, axis=1)
299 | W = lax.stop_gradient(np.exp(- tol * (self.M @ L_t + L_0)))
300 | return L_0, L_t, W
301 |
302 | @partial(jit, static_argnums=(0,))
303 | def loss_ics(self, params):
304 | # Compute forward pass
305 | u0_pred = self.u0_pred_fn(params, 0.0, self.x_star, self.y_star)
306 | v0_pred = self.v0_pred_fn(params, 0.0, self.x_star, self.y_star)
307 | w0_pred = self.w0_pred_fn(params, 0.0, self.x_star, self.y_star)
308 | # Compute loss
309 | loss_u0 = np.mean((u0_pred - self.state0[0, :, :]) ** 2)
310 | loss_v0 = np.mean((v0_pred - self.state0[1, :, :]) ** 2)
311 | loss_w0 = np.mean((w0_pred - self.state0[2, :, :]) ** 2)
312 | return loss_u0, loss_v0, loss_w0
313 |
314 | @partial(jit, static_argnums=(0,))
315 | def loss_res(self, params, batch):
316 | t_r, x_r = batch
317 | # Compute forward pass
318 | res_w_pred, res_c_pred = self.r_pred_fn(params, t_r, x_r[:, 0], x_r[:, 1])
319 | # Compute loss
320 | loss_res_w = np.mean(res_w_pred ** 2)
321 | loss_res_c = np.mean(res_c_pred ** 2)
322 | return loss_res_w, loss_res_c
323 |
324 | @partial(jit, static_argnums=(0,))
325 | def loss(self, params, batch):
326 |
327 | L_0, L_t, W = self.residuals_and_weights(params, self.tol, batch)
328 | # Compute loss
329 | loss = np.mean(W * L_t + L_0)
330 | return loss
331 |
332 | @partial(jit, static_argnums=(0,))
333 | def compute_l2_error(self, params):
334 | w_pred = self.w_pred_fn(params, t_star[:num_step], x_star, y_star)
335 | l2_error = np.linalg.norm(w_pred - self.w_exact) / np.linalg.norm(self.w_exact)
336 | return l2_error
337 |
338 | # Define a compiled update step
339 | @partial(jit, static_argnums=(0,))
340 | def step(self, i, opt_state, batch):
341 | params = self.get_params(opt_state)
342 | g = grad(self.loss)(params, batch)
343 | return self.opt_update(i, g, opt_state)
344 |
345 | # Optimize parameters in a loop
346 | def train(self, dataset, nIter=10000):
347 | res_data = iter(dataset)
348 | pbar = trange(nIter)
349 | # Main training loop
350 | for it in pbar:
351 | batch = next(res_data)
352 | self.current_count = next(self.itercount)
353 | self.opt_state = self.step(self.current_count, self.opt_state, batch)
354 |
355 | if it % 1000 == 0:
356 | params = self.get_params(self.opt_state)
357 |
358 | l2_error_value = self.compute_l2_error(params)
359 |
360 | loss_value = self.loss(params, batch)
361 |
362 | loss_u0_value, loss_v0_value, loss_w0_value = self.loss_ics(params)
363 | loss_res_w_value, loss_res_c_value = self.loss_res(params, batch)
364 | _, _, W_value = self.residuals_and_weights(params, tol, batch)
365 |
366 | self.l2_error_log.append(l2_error_value)
367 | self.loss_log.append(loss_value)
368 | self.loss_u0_log.append(loss_u0_value)
369 | self.loss_v0_log.append(loss_v0_value)
370 | self.loss_w0_log.append(loss_w0_value)
371 | self.loss_res_w_log.append(loss_res_w_value)
372 | self.loss_res_c_log.append(loss_res_c_value)
373 |
374 | pbar.set_postfix({'l2 error': l2_error_value,
375 | 'Loss': loss_value,
376 | 'loss_u0': loss_u0_value,
377 | 'loss_v0': loss_v0_value,
378 | 'loss_w0': loss_w0_value,
379 | 'loss_res_w': loss_res_w_value,
380 | 'loss_res_c': loss_res_c_value,
381 | 'W_min': W_value.min()})
382 |
383 | if W_value.min() > 0.99:
384 | break
385 |
386 |
387 | data = np.load('../NS.npy', allow_pickle=True).item()
388 | # Test data
389 | sol = data['sol']
390 |
391 | t_star = data['t']
392 | x_star = data['x']
393 | y_star = data['y']
394 | nu = data['viscosity']
395 |
396 | # downsampling
397 | sol = sol
398 | x_star = x_star
399 | y_star = y_star
400 |
401 | # Create PINNs model
402 | key = random.PRNGKey(1234)
403 |
404 | u0 = data['u0']
405 | v0 = data['v0']
406 | w0 = data['w0']
407 | state0 = np.stack([u0, v0, w0])
408 | M_t = 2
409 | M_x = 5
410 | M_y = 5
411 | d0 = 2 * M_x + 2 * M_y + 4 * M_x * M_y + M_t + 2
412 | layers = [d0, 128, 128, 128, 128, 2]
413 |
414 | num_step = 10
415 | t0 = 0.0
416 | t1 = t_star[num_step]
417 | n_t = 32
418 | tol = 1.0
419 | tol_list = [1e-3, 1e-2, 1e-1, 1e0]
420 |
421 | # Create data set
422 | n_x = 256
423 | dataset = DataGenerator(t0, t1, n_t, n_x)
424 |
425 | N = 20
426 | w_pred_list = []
427 | params_list = []
428 | losses_list = []
429 |
430 | for k in range(N):
431 | # Initialize model
432 | print('Final Time: {}'.format(k + 1))
433 | w_exact = sol[num_step * k: num_step * (k + 1), :, :]
434 | model = PINN(key, w_exact, layers, M_t, M_x, M_y, state0, t0, t1, n_t, x_star, y_star, tol)
435 |
436 | # Train
437 | for tol in tol_list:
438 | model.tol = tol
439 | print('tol:', model.tol)
440 | # Train
441 | model.train(dataset, nIter=100000)
442 |
443 | # Store
444 | params = model.get_params(model.opt_state)
445 | w_pred = model.w_pred_fn(params, t_star[:num_step], x_star, y_star)
446 | w_pred_list.append(w_pred)
447 | flat_params, _ = ravel_pytree(params)
448 | params_list.append(flat_params)
449 | losses_list.append([model.l2_error_log,
450 | model.loss_log,
451 | model.loss_u0_log,
452 | model.loss_v0_log,
453 | model.loss_w0_log,
454 | model.loss_res_w_log,
455 | model.loss_res_c_log, ])
456 |
457 | np.save('causal_w_pred_list.npy', w_pred_list)
458 | np.save('causal_params_list.npy', params_list)
459 | np.save('causal_losses_list.npy', losses_list)
460 |
461 | # error
462 | w_preds = np.vstack(w_pred_list)
463 | error = np.linalg.norm(w_preds - sol[:num_step * (k + 1), :, :]) / np.linalg.norm(sol[:num_step * (k + 1), :, :])
464 | print('Relative l2 error: {:.3e}'.format(error))
465 |
466 | params = model.get_params(model.opt_state)
467 | u0_pred = model.u0_pred_fn(params, t1, x_star, y_star)
468 | v0_pred = model.v0_pred_fn(params, t1, x_star, y_star)
469 | w0_pred = model.w0_pred_fn(params, t1, x_star, y_star)
470 | state0 = np.stack([u0_pred, v0_pred, w0_pred])
471 |
472 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Respecting causality is all you need for training physics-informed neural networks
2 |
3 | # ⚠️The proposed causal training algorithm cannot be used for commercial purposes (protected by a patent at the University of Pennsylvania).⚠️
4 |
5 | Code and data (available upon request) accompanying the manuscript titled "[Respecting causality is all you need for training physics-informed neural networks](https://arxiv.org/abs/2203.07404)", authored by Sifan Wang, Shyam Sankaran, and Paris Perdikaris.
6 |
7 | # Abstract
8 |
9 | While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto–Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.
10 |
11 | # Citation
12 |
13 | @article{wang2024respecting,
14 | title={Respecting causality for training physics-informed neural networks},
15 | author={Wang, Sifan and Sankaran, Shyam and Perdikaris, Paris},
16 | journal={Computer Methods in Applied Mechanics and Engineering},
17 | volume={421},
18 | pages={116813},
19 | year={2024},
20 | publisher={Elsevier}
21 | }
22 |
23 |
24 | # Examples
25 |
26 | ### Allen–Cahn equation
27 |
28 | https://user-images.githubusercontent.com/70182613/160253357-7936e254-ba60-4a9d-abd6-de761e3075c9.mp4
29 |
30 | ### Kuramoto–Sivashinsky equation
31 |
32 | https://user-images.githubusercontent.com/3844367/152894380-3910ee92-6f9b-473b-9942-3d3919f2f22d.mp4
33 |
34 | ### Navier-Stokes equation
35 |
36 | https://user-images.githubusercontent.com/3844367/152894393-6fbc5e1e-f2b0-419e-aa74-3ecb17d0e23e.mp4
37 |
38 | # License
39 |
40 | 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
41 |
--------------------------------------------------------------------------------
/animations/AC.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PredictiveIntelligenceLab/CausalPINNs/0d1d83f87f6fa2d6756d0e35cac94a7be6183841/animations/AC.mp4
--------------------------------------------------------------------------------
/animations/KS.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PredictiveIntelligenceLab/CausalPINNs/0d1d83f87f6fa2d6756d0e35cac94a7be6183841/animations/KS.mp4
--------------------------------------------------------------------------------
/animations/NS.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PredictiveIntelligenceLab/CausalPINNs/0d1d83f87f6fa2d6756d0e35cac94a7be6183841/animations/NS.mp4
--------------------------------------------------------------------------------
/animations/Readme.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/data/AC.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PredictiveIntelligenceLab/CausalPINNs/0d1d83f87f6fa2d6756d0e35cac94a7be6183841/data/AC.mat
--------------------------------------------------------------------------------
/data/NS.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PredictiveIntelligenceLab/CausalPINNs/0d1d83f87f6fa2d6756d0e35cac94a7be6183841/data/NS.npy
--------------------------------------------------------------------------------
/data/ks_chaotic.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PredictiveIntelligenceLab/CausalPINNs/0d1d83f87f6fa2d6756d0e35cac94a7be6183841/data/ks_chaotic.mat
--------------------------------------------------------------------------------
/data/ks_simple.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PredictiveIntelligenceLab/CausalPINNs/0d1d83f87f6fa2d6756d0e35cac94a7be6183841/data/ks_simple.mat
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | jax==0.4.5
2 | matplotlib==3.5.2
3 | numpy==1.21.5
4 | scikit_learn==1.0.2
5 | scipy==1.9.1
6 | torch==1.13.1
7 | tqdm==4.64.1
8 |
--------------------------------------------------------------------------------