├── .gitignore
├── LICENSE
├── README.md
├── data
├── pass_stats.csv
└── tracab-like-frames.csv
└── notebooks
├── TidyData_PandasSeaborn.ipynb
├── Voronoi Reflection Trick.ipynb
└── glicko2.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 | MANIFEST
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 | .pytest_cache/
49 |
50 | # Translations
51 | *.mo
52 | *.pot
53 |
54 | # Django stuff:
55 | *.log
56 | local_settings.py
57 | db.sqlite3
58 |
59 | # Flask stuff:
60 | instance/
61 | .webassets-cache
62 |
63 | # Scrapy stuff:
64 | .scrapy
65 |
66 | # Sphinx documentation
67 | docs/_build/
68 |
69 | # PyBuilder
70 | target/
71 |
72 | # Jupyter Notebook
73 | .ipynb_checkpoints
74 |
75 | # pyenv
76 | .python-version
77 |
78 | # celery beat schedule file
79 | celerybeat-schedule
80 |
81 | # SageMath parsed files
82 | *.sage.py
83 |
84 | # Environments
85 | .env
86 | .venv
87 | env/
88 | venv/
89 | ENV/
90 | env.bak/
91 | venv.bak/
92 |
93 | # Spyder project settings
94 | .spyderproject
95 | .spyproject
96 |
97 | # Rope project settings
98 | .ropeproject
99 |
100 | # mkdocs documentation
101 | /site
102 |
103 | # mypy
104 | .mypy_cache/
105 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019 ProformAnalytics
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # tutorial_nbs
2 | Jupyter notebook tutorials for football analytics
3 |
--------------------------------------------------------------------------------
/data/tracab-like-frames.csv:
--------------------------------------------------------------------------------
1 | frame_id,H_01_tid,H_01_shirt,H_01_x,H_01_y,H_01_v,H_01_position,H_02_tid,H_02_shirt,H_02_x,H_02_y,H_02_v,H_02_position,H_03_tid,H_03_shirt,H_03_x,H_03_y,H_03_v,H_03_position,H_04_tid,H_04_shirt,H_04_x,H_04_y,H_04_v,H_04_position,H_05_tid,H_05_shirt,H_05_x,H_05_y,H_05_v,H_05_position,H_06_tid,H_06_shirt,H_06_x,H_06_y,H_06_v,H_06_position,H_07_tid,H_07_shirt,H_07_x,H_07_y,H_07_v,H_07_position,H_08_tid,H_08_shirt,H_08_x,H_08_y,H_08_v,H_08_position,H_09_tid,H_09_shirt,H_09_x,H_09_y,H_09_v,H_09_position,H_10_tid,H_10_shirt,H_10_x,H_10_y,H_10_v,H_10_position,H_11_tid,H_11_shirt,H_11_x,H_11_y,H_11_v,H_11_position,A_01_tid,A_01_shirt,A_01_x,A_01_y,A_01_v,A_01_position,A_02_tid,A_02_shirt,A_02_x,A_02_y,A_02_v,A_02_position,A_03_tid,A_03_shirt,A_03_x,A_03_y,A_03_v,A_03_position,A_04_tid,A_04_shirt,A_04_x,A_04_y,A_04_v,A_04_position,A_05_tid,A_05_shirt,A_05_x,A_05_y,A_05_v,A_05_position,A_06_tid,A_06_shirt,A_06_x,A_06_y,A_06_v,A_06_position,A_07_tid,A_07_shirt,A_07_x,A_07_y,A_07_v,A_07_position,A_08_tid,A_08_shirt,A_08_x,A_08_y,A_08_v,A_08_position,A_09_tid,A_09_shirt,A_09_x,A_09_y,A_09_v,A_09_position,A_10_tid,A_10_shirt,A_10_x,A_10_y,A_10_v,A_10_position,A_11_tid,A_11_shirt,A_11_x,A_11_y,A_11_v,A_11_position,B_x,B_y,B_z,B_v,poss_team,ball_status,dev_status,Half,Time
2 | 1906491,8,13,-3881,110,1.84,Goalkeeper,9,22,-328,-1410,5.16,Defender,24,3,-202,1935,3.08,Defender,25,14,-102,791,3.34,Midfielder,14,4,-907,-547,3.65,Defender,29,15,-1049,1803,1.48,Defender,12,21,1077,1123,4.02,Midfielder,21,8,649,-289,3.73,Midfielder,16,17,2850,51,2.55,Forward,18,5,1832,1741,3.25,Midfielder,15,16,2650,1930,2.39,Midfielder,26,13,4235,112,1.11,Goalkeeper,10,16,2668,1802,2.31,Defender,11,3,1702,-2024,4.55,Defender,17,6,2218,967,2.78,Midfielder,13,4,2967,530,2.49,Defender,2,24,2452,-473,2.66,Defender,6,9,1193,814,4.36,Midfielder,27,20,574,952,4,Midfielder,4,12,-913,-1962,3.86,Forward,1,11,-807,3098,3.47,Forward,19,17,318,-345,4.64,Midfielder,758,1102,7,459.61,A,Alive,NA,1,655.04
3 | 1906492,8,13,-3885,109,1.76,Goalkeeper,9,22,-349,-1408,5.16,Defender,24,3,-214,1936,3.07,Defender,25,14,-114,793,3.31,Midfielder,14,4,-915,-537,3.62,Defender,29,15,-1054,1805,1.47,Defender,12,21,1058,1123,4.21,Midfielder,21,8,635,-283,3.73,Midfielder,16,17,2839,53,2.58,Forward,18,5,1818,1741,3.25,Midfielder,15,16,2641,1932,2.39,Midfielder,26,13,4231,113,1.11,Goalkeeper,10,16,2659,1803,2.3,Defender,11,3,1685,-2027,4.5,Defender,17,6,2206,967,2.78,Midfielder,13,4,2959,532,2.46,Defender,2,24,2443,-470,2.63,Defender,6,9,1177,802,4.49,Midfielder,27,20,570,967,3.92,Midfielder,4,12,-925,-1952,3.87,Forward,1,11,-818,3102,3.47,Forward,19,17,303,-334,4.61,Midfielder,739,1100,6,463.19,A,Alive,NA,1,655.08
4 | 1906493,8,13,-3888,109,1.69,Goalkeeper,9,22,-369,-1406,5.12,Defender,24,3,-226,1936,3.07,Defender,25,14,-127,796,3.31,Midfielder,14,4,-924,-525,3.6,Defender,29,15,-1061,1807,1.49,Defender,12,21,1038,1122,4.33,Midfielder,21,8,621,-278,3.77,Midfielder,16,17,2827,55,2.62,Forward,18,5,1805,1741,3.21,Midfielder,15,16,2632,1933,2.39,Midfielder,26,13,4226,113,1.11,Goalkeeper,10,16,2649,1803,2.3,Defender,11,3,1669,-2029,4.45,Defender,17,6,2195,968,2.78,Midfielder,13,4,2950,536,2.47,Defender,2,24,2434,-467,2.59,Defender,6,9,1160,790,4.59,Midfielder,27,20,564,983,3.92,Midfielder,4,12,-938,-1941,3.87,Forward,1,11,-829,3106,3.45,Forward,19,17,289,-320,4.64,Midfielder,720,1097,6,468.66,A,Alive,NA,1,655.12
5 | 1906494,8,13,-3892,109,1.61,Goalkeeper,9,22,-389,-1404,5.13,Defender,24,3,-238,1937,3.07,Defender,25,14,-140,797,3.33,Midfielder,14,4,-933,-514,3.61,Defender,29,15,-1065,1809,1.47,Defender,12,21,1019,1122,4.37,Midfielder,21,8,607,-275,3.75,Midfielder,16,17,2816,56,2.66,Forward,18,5,1792,1742,3.25,Midfielder,15,16,2623,1933,2.39,Midfielder,26,13,4222,114,1.11,Goalkeeper,10,16,2639,1805,2.34,Defender,11,3,1652,-2031,4.4,Defender,17,6,2183,968,2.82,Midfielder,13,4,2941,539,2.47,Defender,2,24,2426,-466,2.52,Defender,6,9,1143,778,4.72,Midfielder,27,20,560,999,3.87,Midfielder,4,12,-949,-1931,3.87,Forward,1,11,-839,3112,3.42,Forward,19,17,274,-308,4.63,Midfielder,701,1100,5,476.26,A,Alive,NA,1,655.16
6 | 1906495,8,13,-3894,109,1.48,Goalkeeper,9,22,-409,-1402,5.09,Defender,24,3,-249,1936,3.07,Defender,25,14,-152,801,3.3,Midfielder,14,4,-940,-502,3.61,Defender,29,15,-1072,1813,1.48,Defender,12,21,999,1123,4.45,Midfielder,21,8,593,-269,3.71,Midfielder,16,17,2805,57,2.7,Forward,18,5,1780,1744,3.22,Midfielder,15,16,2615,1936,2.35,Midfielder,26,13,4217,115,1.11,Goalkeeper,10,16,2628,1804,2.34,Defender,11,3,1635,-2033,4.35,Defender,17,6,2173,968,2.82,Midfielder,13,4,2932,542,2.47,Defender,2,24,2418,-463,2.49,Defender,6,9,1125,766,4.8,Midfielder,27,20,555,1015,3.87,Midfielder,4,12,-961,-1920,3.89,Forward,1,11,-848,3116,3.34,Forward,19,17,259,-296,4.66,Midfielder,683,1102,3,466.28,A,Alive,NA,1,655.2
--------------------------------------------------------------------------------
/notebooks/glicko2.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 15,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import numpy as np\n",
10 | "import pandas as pd"
11 | ]
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "metadata": {},
16 | "source": [
17 | "#### Introduction\n",
18 | "\n",
19 | "[Glicko2](https://en.wikipedia.org/wiki/Glicko_rating_system) is a rating system for assessing the relative strength of players in games of skill. The inventor, M. Glickman, produced an example document covering the basic implementation of the Glicko2 system that can be read [here](http://www.glicko.net/glicko/glicko2.pdf).\n",
20 | "\n",
21 | "This notebook contains a Python implementation of the code in Glickman's example document. This notebook alone likely doesn't make a great deal of sense, it should be read alongside Glickman's example."
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "#### Constants\n",
29 | "\n",
30 | "Here $\\tau$ is defined as at the end of pg. 4."
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": 16,
36 | "metadata": {},
37 | "outputs": [],
38 | "source": [
39 | "# Tau constrains the change in volatility over time\n",
40 | "TAU = 0.5 \n",
41 | "#For numerical convergence\n",
42 | "EPSILON = 0.0000001 "
43 | ]
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "metadata": {},
48 | "source": [
49 | "#### Functions\n",
50 | "\n",
51 | "I've pulled these out to the start of the notebook either because they're used in several places or they're understood better in isolation."
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 17,
57 | "metadata": {},
58 | "outputs": [],
59 | "source": [
60 | "def convert_to_g2(r, RD):\n",
61 | " \"\"\"\n",
62 | " This method is Step 2 of the example\n",
63 | " \"\"\"\n",
64 | " mu = (r-1500) / 173.7178\n",
65 | " phi = RD / 173.7178\n",
66 | " return mu, phi\n",
67 | "\n",
68 | "def convert_from_g2(mu, phi):\n",
69 | " \"\"\"\n",
70 | " This method is Step 8 of the example\n",
71 | " \"\"\"\n",
72 | " r = 173.7178*mu + 1500\n",
73 | " RD = 173.7178*phi\n",
74 | " return r, RD\n",
75 | "\n",
76 | "def g_fun(phi):\n",
77 | " \"\"\"\n",
78 | " This is the function g defined in Step 3\n",
79 | " \"\"\"\n",
80 | " den = np.sqrt(1 + (3*phi**2)/(np.pi**2))\n",
81 | " return 1./den\n",
82 | "\n",
83 | "def E_fun(mu, mu_j, phi_j):\n",
84 | " \"\"\"\n",
85 | " This is the function E defined in step 3\n",
86 | " \"\"\"\n",
87 | " den = 1 + np.exp(-g_fun(phi_j)*(mu - mu_j))\n",
88 | " return 1./den"
89 | ]
90 | },
91 | {
92 | "cell_type": "markdown",
93 | "metadata": {},
94 | "source": [
95 | "#### The example data\n",
96 | "\n",
97 | "This is the data defined in the **Example calculation** outlined at the bottom of page 4. Putting together this example is Step 1 in the procedure."
98 | ]
99 | },
100 | {
101 | "cell_type": "code",
102 | "execution_count": 18,
103 | "metadata": {},
104 | "outputs": [],
105 | "source": [
106 | "# Player in given example\n",
107 | "r, RD, sigma = 1500, 200, 0.06\n",
108 | "\n",
109 | "# Opponents from example (r, RD, s)\n",
110 | "opps = [\n",
111 | " (1400, 30, 1),\n",
112 | " (1550, 100, 0),\n",
113 | " (1700, 300, 0)\n",
114 | "]"
115 | ]
116 | },
117 | {
118 | "cell_type": "markdown",
119 | "metadata": {},
120 | "source": [
121 | "#### The Glicko 2 algorithm\n",
122 | "\n",
123 | "This is the code for Steps 2-8."
124 | ]
125 | },
126 | {
127 | "cell_type": "code",
128 | "execution_count": 19,
129 | "metadata": {},
130 | "outputs": [
131 | {
132 | "data": {
133 | "text/plain": [
134 | "(0.0, 1.1512924985234674)"
135 | ]
136 | },
137 | "execution_count": 19,
138 | "metadata": {},
139 | "output_type": "execute_result"
140 | }
141 | ],
142 | "source": [
143 | "# Step 2 convert player score\n",
144 | "mu, phi = convert_to_g2(r, RD)\n",
145 | "mu, phi"
146 | ]
147 | },
148 | {
149 | "cell_type": "code",
150 | "execution_count": 20,
151 | "metadata": {},
152 | "outputs": [
153 | {
154 | "data": {
155 | "text/html": [
156 | "
\n",
157 | "\n",
170 | "
\n",
171 | " \n",
172 | " \n",
173 | " | \n",
174 | " mu_j | \n",
175 | " phi_j | \n",
176 | " g_j | \n",
177 | " E_j | \n",
178 | " s_j | \n",
179 | "
\n",
180 | " \n",
181 | " \n",
182 | " \n",
183 | " 0 | \n",
184 | " -0.575646 | \n",
185 | " 0.172694 | \n",
186 | " 0.995498 | \n",
187 | " 0.639468 | \n",
188 | " 1 | \n",
189 | "
\n",
190 | " \n",
191 | " 1 | \n",
192 | " 0.287823 | \n",
193 | " 0.575646 | \n",
194 | " 0.953149 | \n",
195 | " 0.431842 | \n",
196 | " 0 | \n",
197 | "
\n",
198 | " \n",
199 | " 2 | \n",
200 | " 1.151292 | \n",
201 | " 1.726939 | \n",
202 | " 0.724235 | \n",
203 | " 0.302841 | \n",
204 | " 0 | \n",
205 | "
\n",
206 | " \n",
207 | "
\n",
208 | "
"
209 | ],
210 | "text/plain": [
211 | " mu_j phi_j g_j E_j s_j\n",
212 | "0 -0.575646 0.172694 0.995498 0.639468 1\n",
213 | "1 0.287823 0.575646 0.953149 0.431842 0\n",
214 | "2 1.151292 1.726939 0.724235 0.302841 0"
215 | ]
216 | },
217 | "execution_count": 20,
218 | "metadata": {},
219 | "output_type": "execute_result"
220 | }
221 | ],
222 | "source": [
223 | "# Step 2/3\n",
224 | "# This builds the example table at the top of page 5.\n",
225 | "data = []\n",
226 | "for j in [0,1,2]:\n",
227 | " rj, RDj, sj = opps[j] \n",
228 | " muj, phij = convert_to_g2(rj, RDj)\n",
229 | " \n",
230 | " gj = g_fun(phij)\n",
231 | " Ej = E_fun(mu, muj, phij)\n",
232 | " \n",
233 | " data.append([muj, phij, gj, Ej, sj])\n",
234 | " \n",
235 | "pd.DataFrame(data, columns = ['mu_j', 'phi_j', 'g_j', 'E_j', 's_j'])"
236 | ]
237 | },
238 | {
239 | "cell_type": "code",
240 | "execution_count": 21,
241 | "metadata": {},
242 | "outputs": [
243 | {
244 | "data": {
245 | "text/plain": [
246 | "1.7789770897239976"
247 | ]
248 | },
249 | "execution_count": 21,
250 | "metadata": {},
251 | "output_type": "execute_result"
252 | }
253 | ],
254 | "source": [
255 | "# Step 3 - compute v\n",
256 | "# Note: this value differs from the example on pg. 5 because\n",
257 | "# that calculation rounds the values in the table first\n",
258 | "v = 1./np.sum([r[2]**2 * r[3] * (1-r[3]) for r in data])\n",
259 | "v "
260 | ]
261 | },
262 | {
263 | "cell_type": "code",
264 | "execution_count": 22,
265 | "metadata": {},
266 | "outputs": [
267 | {
268 | "data": {
269 | "text/plain": [
270 | "-0.4839332609836549"
271 | ]
272 | },
273 | "execution_count": 22,
274 | "metadata": {},
275 | "output_type": "execute_result"
276 | }
277 | ],
278 | "source": [
279 | "# Step 4 - compute Delta\n",
280 | "delta = v*np.sum([r[2]*(r[4] - r[3]) for r in data])\n",
281 | "delta"
282 | ]
283 | },
284 | {
285 | "cell_type": "code",
286 | "execution_count": 23,
287 | "metadata": {},
288 | "outputs": [
289 | {
290 | "name": "stdout",
291 | "output_type": "stream",
292 | "text": [
293 | "Init A: -5.626821433520073\n",
294 | "Init B: -6.126821433520073\n",
295 | "sigma_dash: 0.059995984286488495\n"
296 | ]
297 | },
298 | {
299 | "data": {
300 | "text/html": [
301 | "\n",
302 | "\n",
315 | "
\n",
316 | " \n",
317 | " \n",
318 | " | \n",
319 | " Iteration | \n",
320 | " A | \n",
321 | " B | \n",
322 | " fA | \n",
323 | " fB | \n",
324 | "
\n",
325 | " \n",
326 | " \n",
327 | " \n",
328 | " 0 | \n",
329 | " 0 | \n",
330 | " -5.626821 | \n",
331 | " -6.126821 | \n",
332 | " -0.000536 | \n",
333 | " 1.999675e+00 | \n",
334 | "
\n",
335 | " \n",
336 | " 1 | \n",
337 | " 1 | \n",
338 | " -5.626821 | \n",
339 | " -5.626955 | \n",
340 | " -0.000268 | \n",
341 | " 1.522830e-08 | \n",
342 | "
\n",
343 | " \n",
344 | "
\n",
345 | "
"
346 | ],
347 | "text/plain": [
348 | " Iteration A B fA fB\n",
349 | "0 0 -5.626821 -6.126821 -0.000536 1.999675e+00\n",
350 | "1 1 -5.626821 -5.626955 -0.000268 1.522830e-08"
351 | ]
352 | },
353 | "execution_count": 23,
354 | "metadata": {},
355 | "output_type": "execute_result"
356 | }
357 | ],
358 | "source": [
359 | "# Step 5 - Numerical iteration\n",
360 | "def f(x):\n",
361 | " lnum = np.exp(x)*(delta**2 - phi**2 - v - np.exp(x))\n",
362 | " lden = 2*(phi**2 + v + np.exp(x))**2\n",
363 | " \n",
364 | " rnum = (x-a)\n",
365 | " rden = TAU**2\n",
366 | " \n",
367 | " return lnum/lden - rnum/rden\n",
368 | "\n",
369 | "#Init params\n",
370 | "a = np.log(sigma**2)\n",
371 | "A = np.log(sigma**2)\n",
372 | "print('Init A:', A) \n",
373 | "\n",
374 | "#Get the initial B\n",
375 | "if delta**2 > phi**2 + v:\n",
376 | " B = np.log(delta**2 - phi**2 - v)\n",
377 | "else:\n",
378 | " k = 1\n",
379 | " while f(a - k*TAU) < 0:\n",
380 | " k+=1\n",
381 | " B = a-k*TAU\n",
382 | " \n",
383 | "print('Init B:', B)\n",
384 | "\n",
385 | "# Numerical procedure \n",
386 | "# this records convergence history in c_rows\n",
387 | "c_rows, itr = [], 0\n",
388 | "fA, fB = f(A), f(B)\n",
389 | "while np.abs(B-A) > EPSILON:\n",
390 | " C = A + (A-B)*fA / (fB - fA)\n",
391 | " fC = f(C)\n",
392 | " c_rows.append([itr, A, B, fA, fB])\n",
393 | "\n",
394 | " if fC*fB < 0:\n",
395 | " A = B\n",
396 | " fA = fB\n",
397 | " else:\n",
398 | " fA = fA/2.\n",
399 | " \n",
400 | " B = C\n",
401 | " fB = fC\n",
402 | " itr+=1\n",
403 | " \n",
404 | "sigma_dash = np.exp(A/2)\n",
405 | "print(\"sigma_dash: \", sigma_dash)\n",
406 | "pd.DataFrame(c_rows, columns = ['Iteration', 'A', 'B','fA', 'fB'])"
407 | ]
408 | },
409 | {
410 | "cell_type": "code",
411 | "execution_count": 24,
412 | "metadata": {},
413 | "outputs": [
414 | {
415 | "data": {
416 | "text/plain": [
417 | "1.1528546895801364"
418 | ]
419 | },
420 | "execution_count": 24,
421 | "metadata": {},
422 | "output_type": "execute_result"
423 | }
424 | ],
425 | "source": [
426 | "#Step 6\n",
427 | "phi_star = np.sqrt(phi**2 + sigma_dash**2)\n",
428 | "phi_star"
429 | ]
430 | },
431 | {
432 | "cell_type": "code",
433 | "execution_count": 25,
434 | "metadata": {},
435 | "outputs": [
436 | {
437 | "data": {
438 | "text/plain": [
439 | "(0.8721991881307343, -0.20694096667525494)"
440 | ]
441 | },
442 | "execution_count": 25,
443 | "metadata": {},
444 | "output_type": "execute_result"
445 | }
446 | ],
447 | "source": [
448 | "#Step 7 \n",
449 | "phi_dash = 1./np.sqrt(1./phi_star**2 + 1./v)\n",
450 | "mu_dash = mu + (phi_dash**2)*np.sum([r[2]*(r[4] - r[3]) for r in data])\n",
451 | "\n",
452 | "phi_dash, mu_dash"
453 | ]
454 | },
455 | {
456 | "cell_type": "code",
457 | "execution_count": 27,
458 | "metadata": {},
459 | "outputs": [
460 | {
461 | "data": {
462 | "text/plain": [
463 | "(1464.0506705393013, 151.51652412385727, 0.059995984286488495)"
464 | ]
465 | },
466 | "execution_count": 27,
467 | "metadata": {},
468 | "output_type": "execute_result"
469 | }
470 | ],
471 | "source": [
472 | "#Step8 - convert back to r/RD form\n",
473 | "r_dash, RD_dash = convert_from_g2(mu_dash, phi_dash)\n",
474 | "\n",
475 | "# The fianl updated rating\n",
476 | "r_dash, RD_dash, sigma_dash"
477 | ]
478 | }
479 | ],
480 | "metadata": {
481 | "kernelspec": {
482 | "display_name": "Python 3",
483 | "language": "python",
484 | "name": "python3"
485 | },
486 | "language_info": {
487 | "codemirror_mode": {
488 | "name": "ipython",
489 | "version": 3
490 | },
491 | "file_extension": ".py",
492 | "mimetype": "text/x-python",
493 | "name": "python",
494 | "nbconvert_exporter": "python",
495 | "pygments_lexer": "ipython3",
496 | "version": "3.6.8"
497 | }
498 | },
499 | "nbformat": 4,
500 | "nbformat_minor": 2
501 | }
502 |
--------------------------------------------------------------------------------