├── .gitignore
├── HoVW
├── build_master_dir.sh
├── classification
│ ├── __init__.py
│ ├── classify-nodes.py
│ ├── kmeans-nodes-test.py
│ ├── meanshift-test.py
│ └── split-train-test.py
├── executions.py
├── pipeline.bat
├── pipeline.sh
├── requirements.txt
├── src
│ ├── __init__.py
│ ├── assign-node-label.py
│ ├── assign-tree-label.py
│ ├── centers_dendrogram.py
│ ├── clusters.py
│ ├── descriptors.py
│ ├── fit.py
│ ├── image.py
│ ├── index.py
│ ├── kmeans-nodes-test.py
│ ├── kmeans-nodes.py
│ ├── meanshift-graphs-test.py
│ ├── meanshift-graphs.py
│ ├── pickle4reducer.py
│ ├── tree.py
│ ├── trees-distance.py
│ └── utils.py
└── views
│ ├── find_clusters_neighbor.py
│ ├── reveal_clusters-graphs.py
│ ├── reveal_clusters-nodes.py
│ ├── visualize_graph_spatial_distribution.py
│ └── visualize_node_spatial_distribution.py
├── LICENSE
├── README.md
└── wheels
└── mahotas-1.4.4-cp36-cp36m-win_amd64.whl
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_STORE
2 | hovw-ce2
3 | docs/code
4 | datasets/ce2/*
5 | datasets/mpeg7-png/*
6 | # HoVW
7 | HoVW/API
8 | HoVW/databases
9 | HoVW/evaluation
10 | HoVW/exec
11 | HoVW/manifolds
12 | HoVW/others
13 | HoVW/Master/clusters
14 | HoVW/Master/images
15 | HoVW/Master/data/*
16 | HoVW/Master/dataset/*
17 | HoVW/Master/datasetOutput/*
18 | HoVW/src/precison_recall_test*
19 | HoVW/src/others
20 | HoVW/executions.py
21 | *.png
22 | *.jpg
23 | *.jpeg
24 | *.tiff
25 | *.tif
26 | *.pickle
27 | *.clr
28 | *.dict
29 | *.npy
30 | *.npz
31 | *.cb
32 | *.descriptor
33 | *.log
34 | *.codeword
35 | *.bagw
36 | *.txt
37 | !requirements.txt
38 | *.potato
39 | *.zip
40 |
41 | # Windows
42 | desktop.ini
43 | *.exe
44 |
45 | # VScode
46 | .vscode/
47 |
48 | # Byte-compiled / optimized / DLL files
49 | __pycache__/
50 | *.py[cod]
51 | *$py.class
52 |
53 | # C extensions
54 | *.so
55 |
56 | # Distribution / packaging
57 | .Python
58 | build/
59 | develop-eggs/
60 | dist/
61 | downloads/
62 | eggs/
63 | .eggs/
64 | lib/
65 | lib64/
66 | parts/
67 | sdist/
68 | var/
69 | *.egg-info/
70 | .installed.cfg
71 | *.egg
72 | MANIFEST
73 |
74 | # PyInstaller
75 | # Usually these files are written by a python script from a template
76 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
77 | *.manifest
78 | *.spec
79 |
80 | # Installer logs
81 | pip-log.txt
82 | pip-delete-this-directory.txt
83 |
84 | # Unit test / coverage reports
85 | htmlcov/
86 | .tox/
87 | .coverage
88 | .coverage.*
89 | .cache
90 | nosetests.xml
91 | coverage.xml
92 | *.cover
93 | .hypothesis/
94 | .pytest_cache/
95 |
96 | # Translations
97 | *.mo
98 | *.pot
99 |
100 | # Django stuff:
101 | *.log
102 | local_settings.py
103 | db.sqlite3
104 |
105 | # Flask stuff:
106 | instance/
107 | .webassets-cache
108 |
109 | # Scrapy stuff:
110 | .scrapy
111 |
112 | # Sphinx documentation
113 | docs/_build/
114 |
115 | # PyBuilder
116 | target/
117 |
118 | # Jupyter Notebook
119 | .ipynb_checkpoints
120 |
121 | # pyenv
122 | .python-version
123 |
124 | # celery beat schedule file
125 | celerybeat-schedule
126 |
127 | # SageMath parsed files
128 | *.sage.py
129 |
130 | # Environments
131 | .env
132 | .venv
133 | env/
134 | venv/
135 | ENV/
136 | env.bak/
137 | venv.bak/
138 |
139 | # Spyder project settings
140 | .spyderproject
141 | .spyproject
142 |
143 | # Rope project settings
144 | .ropeproject
145 |
146 | # mkdocs documentation
147 | /site
148 |
149 | # mypy
150 | .mypy_cache/
151 |
--------------------------------------------------------------------------------
/HoVW/build_master_dir.sh:
--------------------------------------------------------------------------------
1 | MASTER='Master'
2 | DIR_IMAGES=$MASTER'/images'
3 | DIR_DATASET=$MASTER'/dataset'
4 | DIR_DATA=$MASTER'/data'
5 |
6 | DIR_TRAIN=$DIR_DATASET'/train'
7 | DIR_TEST=$DIR_DATASET'/test'
8 |
9 | DIR_OUT=$MASTER'/datasetOutput'
10 |
11 | DIR_BOW=$DIR_OUT'/BOW'
12 | DIR_ASS_KME=$DIR_BOW'/assignment-kme'
13 | DIR_ASS_MSH=$DIR_BOW'/assignment-msh'
14 | DIR_BAG_KME=$DIR_BOW'/bag-kme'
15 | DIR_BAG_MSH=$DIR_BOW'/bag-msh'
16 |
17 | DIR_LOGS=$DIR_OUT'/logs'
18 | DIRC=$DIR_OUT'/descriptor'
19 |
20 | if [ ! -d "$MASTER" ]; then
21 | mkdir $MASTER
22 | echo "mkdir "$MASTER
23 | fi
24 |
25 | if [ ! -d "$DIR_IMAGES" ]; then
26 | mkdir $DIR_IMAGES
27 | echo "mkdir "$DIR_IMAGES
28 | fi
29 |
30 | if [ ! -d "$DIR_DATASET" ]; then
31 | mkdir $DIR_DATASET
32 | echo "mkdir "$DIR_DATASET
33 | fi
34 |
35 | if [ ! -d "$DIR_DATA" ]; then
36 | mkdir $DIR_DATA
37 | echo "mkdir "$DIR_DATA
38 | fi
39 |
40 | if [ ! -d "$DIR_TRAIN" ]; then
41 | mkdir $DIR_TRAIN
42 | echo "mkdir "$DIR_TRAIN
43 | fi
44 |
45 | if [ ! -d "$DIR_TEST" ]; then
46 | mkdir $DIR_TEST
47 | echo "mkdir "$DIR_TEST
48 | fi
49 |
50 | if [ ! -d "$DIR_OUT" ]; then
51 | mkdir $DIR_OUT
52 | echo "mkdir "$DIR_OUT
53 | fi
54 |
55 | if [ ! -d "$DIR_BOW" ]; then
56 | mkdir $DIR_BOW
57 | echo "mkdir "$DIR_BOW
58 | fi
59 |
60 | if [ -d "$DIR_ASS_KME" ]; then
61 | rm -rf $DIR_ASS_KME
62 | mkdir $DIR_ASS_KME
63 | echo "rm -rf | mkdir "$DIR_ASS_KME
64 | else
65 | mkdir $DIR_ASS_KME
66 | echo "mkdir "$DIR_ASS_KME
67 | fi
68 |
69 | if [ -d "$DIR_ASS_MSH" ]; then
70 | rm -rf $DIR_ASS_MSH
71 | mkdir $DIR_ASS_MSH
72 | echo "rm -rf | mkdir "$DIR_ASS_MSH
73 | else
74 | mkdir $DIR_ASS_MSH
75 | echo "mkdir "$DIR_ASS_MSH
76 | fi
77 |
78 | if [ -d "$DIR_BAG_KME" ]; then
79 | rm -rf $DIR_BAG_KME
80 | mkdir $DIR_BAG_KME
81 | echo "rm -rf | mkdir "$DIR_BAG_KME
82 | else
83 | mkdir $DIR_BAG_KME
84 | echo "mkdir "$DIR_BAG_KME
85 | fi
86 |
87 | if [ -d "$DIR_BAG_MSH" ]; then
88 | rm -rf $DIR_BAG_MSH
89 | mkdir $DIR_BAG_MSH
90 | echo "rm -rf | mkdir "$DIR_BAG_MSH
91 | else
92 | mkdir $DIR_BAG_MSH
93 | echo "mkdir "$DIR_DIR_BAG_MSHIMAGES
94 | fi
95 |
96 | if [ -d "$DIR_LOGS" ]; then
97 | rm -rf $DIR_LOGS
98 | mkdir $DIR_LOGS
99 | echo "rm -rf | mkdir "$DIR_LOGS
100 | else
101 | mkdir $DIR_LOGS
102 | echo "mkdir "$DIR_LOGS
103 | fi
104 |
105 | if [ -d "$DIRC" ]; then
106 | rm -rf $DIRC
107 | mkdir $DIRC
108 | echo "rm -rf | mkdir "$DIRC
109 | else
110 | mkdir $DIRC
111 | echo "mkdir "$DIRC
112 | fi
113 |
114 | DIR_OUT=$DIR_OUT'/test'
115 | DIR_BOW=$DIR_OUT'/BOW'
116 | DIR_ASS_KME=$DIR_BOW'/assignment-kme'
117 | DIR_ASS_MSH=$DIR_BOW'/assignment-msh'
118 | DIR_BAG_KME=$DIR_BOW'/bag-kme'
119 | DIR_BAG_MSH=$DIR_BOW'/bag-msh'
120 |
121 | if [ ! -d "$DIR_OUT" ]; then
122 | mkdir $DIR_OUT
123 | fi
124 |
125 | if [ ! -d "$DIR_BOW" ]; then
126 | mkdir $DIR_BOW
127 | fi
128 |
129 | if [ -d "$DIR_ASS_KME" ]; then
130 | rm -rf $DIR_ASS_KME
131 | mkdir $DIR_ASS_KME
132 | echo "rm -rf | mkdir "$DIR_ASS_KME
133 | else
134 | mkdir $DIR_ASS_KME
135 | echo "mkdir "$DIR_ASS_KME
136 | fi
137 |
138 | if [ -d "$DIR_ASS_MSH" ]; then
139 | rm -rf $DIR_ASS_MSH
140 | mkdir $DIR_ASS_MSH
141 | echo "rm -rf | mkdir "$DIR_ASS_MSH
142 | else
143 | mkdir $DIR_ASS_MSH
144 | echo "mkdir "$DIR_ASS_MSH
145 | fi
146 |
147 | if [ -d "$DIR_BAG_KME" ]; then
148 | rm -rf $DIR_BAG_KME
149 | mkdir $DIR_BAG_KME
150 | echo "rm -rf | mkdir "$DIR_BAG_KME
151 | else
152 | mkdir $DIR_BAG_KME
153 | echo "mkdir "$DIR_BAG_KME
154 | fi
155 |
156 | if [ -d "$DIR_BAG_MSH" ]; then
157 | rm -rf $DIR_BAG_MSH
158 | mkdir $DIR_BAG_MSH
159 | echo "rm -rf | mkdir "$DIR_BAG_MSH
160 | else
161 | mkdir $DIR_BAG_MSH
162 | echo "mkdir "$DIR_BAG_MSH
163 | fi
--------------------------------------------------------------------------------
/HoVW/classification/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Prograf-UFF/HoVW/4cb3ee59f9a91da877da83504cb4f8a61d1f7951/HoVW/classification/__init__.py
--------------------------------------------------------------------------------
/HoVW/classification/classify-nodes.py:
--------------------------------------------------------------------------------
1 | import argparse, pickle, re
2 | from sklearn.svm import LinearSVC
3 |
4 | parser = argparse.ArgumentParser()
5 | parser.add_argument('-i', help='path with data train')
6 | parser.add_argument('-o', help='path with data test')
7 | args = parser.parse_args()
8 |
9 | i_path = args.i
10 | o_path = args.o
11 |
12 | objects = []
13 | with (open(i_path, "rb")) as openfile:
14 | while True:
15 | try:
16 | objects.append(pickle.load(openfile))
17 | except EOFError:
18 | break
19 |
20 | im_features = objects[1]
21 |
22 | im_names = []
23 | for name in objects[0]:
24 | im_names.append(re.sub('-.*', '', objects[0][name]))
25 |
26 | print(im_features.shape, len(im_names))
27 |
28 | clf = LinearSVC()
29 | clf.fit(im_features, im_names)
30 |
31 | objects = []
32 | with (open(o_path, "rb")) as openfile:
33 | while True:
34 | try:
35 | objects.append(pickle.load(openfile))
36 | except EOFError:
37 | break
38 |
39 | im_features = objects[1]
40 |
41 | im_names = []
42 | for name in objects[0]:
43 | im_names.append(re.sub('-.*', '', objects[0][name]))
44 |
45 | print(im_features.shape, len(im_names))
46 |
47 | print(clf.score(im_features, im_names))
48 |
--------------------------------------------------------------------------------
/HoVW/classification/kmeans-nodes-test.py:
--------------------------------------------------------------------------------
1 | from sklearn.cluster import KMeans
2 | import numpy as np
3 | from os import listdir, path
4 | import argparse, time, re, pickle
5 |
6 | parser = argparse.ArgumentParser()
7 | parser.add_argument('-i', help='path with images')
8 | parser.add_argument('-o', help='output path')
9 | parser.add_argument('-c', help='clusters')
10 | parser.add_argument('-l', help='logs directory')
11 |
12 | args = parser.parse_args()
13 |
14 | i_path = args.i
15 | o_path = args.o
16 | logs_path = args.l
17 | k_clusters = -1
18 | c_path = args.c
19 | X = np.asarray([[None]*29], dtype=np.float_) #HARD-CODED TEM QUE LER ESSE 29 DO ARQUIVO
20 | y = []
21 |
22 | for dfile in listdir(i_path):
23 | try:
24 | with open(i_path+dfile, 'r') as f:
25 | print("Reading from " + f.name)
26 | content = f.readlines()
27 |
28 | for i in range(int(content[1])):
29 | X = np.append(X,
30 | [np.array(list(np.float_(e) for e in content[2+i].split(' ')), dtype=np.float_)],
31 | axis=0)
32 | y.append(re.sub('\..*', '', dfile))
33 |
34 | except KeyboardInterrupt as err:
35 | print("Ctrl + c interruption")
36 | break
37 | except Exception as e:
38 | print("ERROR: " + dfile)
39 | print(e)
40 | break
41 | continue
42 |
43 | X = np.delete(X, 0, 0)
44 |
45 | objects=[]
46 | with (open(c_path, "rb")) as openfile:
47 | while True:
48 | try:
49 | objects.append(pickle.load(openfile))
50 | except EOFError:
51 | break
52 |
53 | ###Assignment --- Vector quantization
54 |
55 | #PRECISA SER TESTADO EM MAIS CASOS-------
56 | oufl = []
57 | past = None
58 | count = 0
59 | for i in range(len(y)):
60 | if(y[i] != past):
61 | oufl.append((past, count))
62 | count = 1
63 | past = y[i]
64 | else: count+=1
65 | past = y[i]
66 | oufl.append((past, count))
67 | oufl = oufl[1:]
68 | #-----
69 | cluster = objects[0]
70 | k_clusters = cluster.get_params()['n_clusters']
71 | quantization = cluster.predict(X)
72 |
73 | j = 0
74 | im_names = {}
75 | im_features = np.zeros((len(oufl), k_clusters), np.float_)
76 | name_c = 0
77 |
78 | for e in oufl:
79 | bag = [0] * k_clusters
80 | with open(path.join(o_path, 'BOW/assignment-kme/' + e[0] + '.codeword'), 'w') as fa, \
81 | open(path.join(o_path, 'BOW/bag-kme/' + e[0] + '.bagw'), 'w') as fb:
82 | #print("Writing " + fa.name + " and " + fb.name)
83 | for i in range(e[1]):
84 | vq = quantization[j]
85 | bag[int(vq)] += 1
86 | ###
87 | im_names[name_c] = e[0]
88 | im_features[name_c][int(vq)] += 1
89 | ###
90 | fa.write(str(vq) + ' ')
91 | fa.write(' '.join(str(k) for k in cluster.cluster_centers_[vq].tolist()) + '\n')
92 | j += 1
93 | ###
94 | name_c += 1
95 | ###
96 | bagf = [k/sum(bag) for k in bag]
97 | fb.write(' '.join(str(k) for k in bagf))
98 |
99 | with open('Master/data/classf_data-test.pickle', 'wb') as handle:
100 | pickle.dump(im_names, handle, protocol=pickle.HIGHEST_PROTOCOL)
101 | pickle.dump(im_features, handle, protocol=pickle.HIGHEST_PROTOCOL)
--------------------------------------------------------------------------------
/HoVW/classification/meanshift-test.py:
--------------------------------------------------------------------------------
1 | from sklearn.cluster import MeanShift
2 | import numpy as np
3 | from os import listdir
4 | import argparse, time, re, pickle
5 |
6 | parser = argparse.ArgumentParser()
7 | parser.add_argument('-i', help='path with images')
8 | parser.add_argument('-o', help='output path')
9 | parser.add_argument('-c', help='clusters')
10 | parser.add_argument('-l', help='logs directory')
11 |
12 | args = parser.parse_args()
13 |
14 | i_path = args.i
15 | o_path = args.o
16 | logs_path = args.l
17 | c_path = args.c
18 | X = np.asarray([[None]*29], dtype=np.float_) #HARD-CODED TEM QUE LER ESSE 29 DO ARQUIVO
19 | y = []
20 | log = open(logs_path + '/error-clustering-msh.log', 'w')
21 | T_START = time.time()
22 |
23 | for dfile in listdir(i_path):
24 | try:
25 | with open(i_path+dfile, 'r') as f:
26 | print("Reading from " + f.name)
27 | content = f.readlines()
28 |
29 | for i in range(int(content[1])):
30 | X = np.append(X,
31 | [np.array(list(np.float_(e) for e in content[2+i].split(' ')), dtype=np.float_)],
32 | axis=0)
33 | y.append(re.sub('\..*', '', dfile))
34 |
35 | except KeyboardInterrupt as err:
36 | print("Ctrl + c interruption")
37 | break
38 | except Exception as e:
39 | log.write(dfile + '\n')
40 | print("ERROR: " + dfile)
41 | print(e)
42 | break
43 | continue
44 |
45 | X = np.delete(X, 0, 0)
46 |
47 | objects=[]
48 | with (open(c_path, "rb")) as openfile:
49 | while True:
50 | try:
51 | objects.append(pickle.load(openfile))
52 | except EOFError:
53 | break
54 |
55 | oufl = []
56 | past = None
57 | count = 0
58 | for i in range(len(y)):
59 | if(y[i] != past):
60 | oufl.append((past, count))
61 | count = 1
62 | past = y[i]
63 | else: count+=1
64 | past = y[i]
65 | oufl.append((past, count))
66 | oufl = oufl[1:]
67 |
68 | cluster_count = len(objects[0].cluster_centers_)+1
69 | quantization = objects[0].predict(X)
70 |
71 | j = 0
72 | im_names = {}
73 | im_features = np.zeros((len(oufl), cluster_count), np.float_)
74 | name_c = 0
75 |
76 | for e in oufl:
77 | for i in range(e[1]):
78 | vq = quantization[j]
79 | im_names[name_c] = e[0]
80 | im_features[name_c][int(vq)] += 1
81 | j += 1
82 | name_c += 1
83 |
84 | with open('classf_data-test.pickle', 'wb') as handle:
85 | pickle.dump(im_names, handle, protocol=pickle.HIGHEST_PROTOCOL)
86 | pickle.dump(im_features, handle, protocol=pickle.HIGHEST_PROTOCOL)
--------------------------------------------------------------------------------
/HoVW/classification/split-train-test.py:
--------------------------------------------------------------------------------
1 | import os, argparse, random
2 |
3 | parser = argparse.ArgumentParser()
4 | parser.add_argument('-i', help='path with images')
5 | parser.add_argument('-o', help='path with images')
6 | args = parser.parse_args()
7 |
8 | i_path = args.i
9 | o_path = args.o
10 |
11 | images = os.listdir(i_path)
12 |
13 | test_size = int(len(images) * 0.3)
14 | test_index = random.sample(range(len(images)), k=test_size)
15 |
16 | testgroup = []
17 | removed = 0
18 | for i in test_index:
19 | testgroup.append(images.pop(i-removed))
20 | removed += 1
21 |
22 | # val_size = int(len(images) * 0.2) + 1
23 | # val_index = random.sample(range(len(images)), k=val_size)
24 |
25 | # valgroup = []
26 | # removed = 0
27 | # for i in test_index:
28 | # valgroup.append(images.pop(i-removed))
29 | # removed += 1
30 |
31 | traingroup = images
32 |
33 | try:
34 | train_folder = o_path + "/train"
35 | print("Creating " + train_folder)
36 | if not os.path.exists(train_folder):
37 | os.makedirs(train_folder)
38 | test_folder = o_path + "/test"
39 | print("Creating " + test_folder)
40 | if not os.path.exists(test_folder):
41 | os.makedirs(test_folder)
42 | # test_folder = o_path + "/validation"
43 | # print("Creating " + test_folder)
44 | # if not os.path.exists(test_folder):
45 | # os.makedirs(test_folder)
46 | except Exception as e:
47 | print("Error:", e)
48 |
49 | print("Creating Train Set")
50 | for i in traingroup:
51 | try:
52 | print("Moving ", i)
53 | os.rename(i_path + "/" + i, train_folder + "/" + i)
54 | except Exception as e:
55 | print("Error:", e)
56 |
57 | print("Creating Test Set")
58 | for i in testgroup:
59 | try:
60 | print("Moving ", i)
61 | os.rename(i_path + "/" + i, test_folder + "/" + i)
62 | except Exception as e:
63 | print("Error:", e)
64 |
65 | # print("Creating Validation Set")
66 | # for i in valgroup:
67 | # try:
68 | # print("Moving ", i)
69 | # os.rename(i_path + "/" + i, test_folder + "/" + i)
70 | # except Exception as e:
71 | # print("Error:", e)
72 |
73 |
74 | print("Train size ", len(traingroup))
75 | print("Test size ", len(testgroup))
76 | # print("Validation size ", len(valgroup))
77 |
--------------------------------------------------------------------------------
/HoVW/executions.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 |
4 | k_list = np.arange(100, 1300, 100)
5 | k_list = [100]
6 | for k in k_list:
7 | with open('exec/results-batch.txt', 'a') as f:
8 | f.write("-- K = {}\n".format(k))
9 | with open('exec/results-batch2.txt', 'a') as f:
10 | f.write("-- K = {}\n".format(k))
11 |
12 | q1 = """python src/kmeans-nodes.py -i "Master/datasetOutput/descriptor/" -o "Master/datasetOutput" -c {} -l "Master/datasetOutput/logs" """.format(k)
13 | print(q1);os.system(q1)
14 |
15 | q2 = """python src/kmeans-nodes-test.py -i "Master/datasetOutput/test/descriptor/" -o "Master/datasetOutput/test" -c "Master/data/kme-clusters2.clr" -l "Master/datasetOutput/logs" """
16 | print(q2);os.system(q2)
17 |
18 | q3 = """python src/assign-node-label.py -i "Master/data/img_trees-train.pickle" -c "Master/datasetOutput/BOW/assignment-kme" -d "Master/data" -t "train" """
19 | print(q3);os.system(q3)
20 |
21 | q4 = """python src/assign-node-label.py -i "Master/data/img_trees-test.pickle" -c "Master/datasetOutput/test/BOW/assignment-kme" -d "Master/data" -t "test" """
22 | print(q4);os.system(q4)
23 |
24 | q5 = """python src/trees-distance.py -i "Master/data/img_trees_labeled-train.pickle" -c "Master/data/kme-clusters-cdm.npy" -m "Master/data/tree_distances_matrix-train.npy" -d "Master/data/apted_custom_dist.pickle" -p 4 """
25 | print(q5);os.system(q5)
26 |
27 | #bw_list = [None, 0.3, 0.1, 0.01]
28 | bw_list = [0.01, 0.1, 0.3, 0.5, None,0.7]
29 | bw_list = [0.7]
30 | for bw in bw_list:
31 | with open('exec/results-batch.txt', 'a') as f:
32 | f.write("-- Bandwidth = {}\n".format(bw))
33 | with open('exec/results-batch2.txt', 'a') as f:
34 | f.write("-- Bandwidth = {}\n".format(bw))
35 |
36 | #ATENCAO: ADICIONEI NO CODIGO PARA ESCREVER O BANDWIDTH no arquivo de batch
37 | q6 = """python src/meanshift-graphs.py "Master/data/tree_distances_matrix-train.npy" "Master/data/trees_clustered" {} "Master/data/img_trees_labeled-train.pickle" """.format(bw)
38 | print(q6);os.system(q6)
39 |
40 | q7 = """python src/assign-tree-label.py "Master/data/img_trees_labeled-train.pickle" "Master/data/trees_clustered_vq-train.npy" """
41 | print(q7);os.system(q7)
42 |
43 | q8 = """python src/meanshift-graphs-test.py "Master/data/img_trees_labeled-test.pickle" "Master/data/trees_clustered_codebook.npz" "Master/data/kme-clusters-cdm.npy" "Master/data/trees_clustered_centers.npy" """
44 | print(q8);os.system(q8)
45 |
46 | q9 = """python src/centers_dendrogram.py -d "Master/data/tree_distances_matrix-train.npy" -c "Master/data/trees_clustered_centers.npy" -o "Master/data/" """
47 | print(q9);os.system(q9)
48 |
49 | q10 = """python views/reveal_clusters-graphs.py"""
50 | print(q10);os.system(q10)
51 |
52 | # # p_list = [20, 15, 10, 5, 1]
53 | # p_list = [20]
54 | # for p in p_list:
55 | # q11 = """python src/precison_recall_test2.py {}""".format(p)
56 | # print(q11);os.system(q11)
57 |
58 |
--------------------------------------------------------------------------------
/HoVW/pipeline.bat:
--------------------------------------------------------------------------------
1 | :: sh build_master_dir.sh
2 |
3 | SET K=250
4 | SET BANDWIDTH=0.3
5 | SET PROCESS=2
6 |
7 | :: python classification/split-train-test.py -i "Master/images" -o "Master/dataset"
8 |
9 | python src/index.py -i "Master/dataset/train/" -o "Master/datasetOutput" -l "Master/datasetOutput/logs" -d "Master/data" -t "train"
10 | :: python src/index.py -i "Master/dataset/test/" -o "Master/datasetOutput/test" -l "Master/datasetOutput/logs" -d "Master/data" -t "test"
11 |
12 | python src/kmeans-nodes.py -i "Master/datasetOutput/descriptor/" -o "Master/datasetOutput" -c %K% -l "Master/datasetOutput/logs"
13 | :: python classification/kmeans-nodes-test.py -i "Master/datasetOutput/test/descriptor/" -o "Master/datasetOutput/test" -c "Master/data/kme-clusters.clr" -l "Master/datasetOutput/logs"
14 |
15 | :: python src/others/meanshift-nodes.py -i "Master/datasetOutput/descriptor/" -o "Master/datasetOutput" -b 0.3 -l "Master/datasetOutput/logs"
16 | :: python classification/meanshift-test.py -i "Master/datasetOutput/test/descriptor/" -o "Master/datasetOutput/test" -c "msh-clusters.clr" -l "Master/datasetOutput/logs"
17 |
18 | python src/assign-node-label.py -i "Master/data/img_trees-train.pickle" -c "Master/datasetOutput/BOW/assignment-kme" -d "Master/data" -t "train"
19 | :: python src/assign-node-label.py -i "Master/data/img_trees-test.pickle" -c "Master/datasetOutput/test/BOW/assignment-kme" -d "Master/data" -t "test"
20 |
21 | python src/trees-distance.py -i "Master/data/img_trees_labeled-train.pickle" -c "Master/data/kme-clusters-cdm.npy" -m "Master/data/tree_distances_matrix-train.npy" -d "Master/data/apted_custom_dist.pickle" -p %PROCESS%
22 |
23 | python src/meanshift-graphs.py "Master/data/tree_distances_matrix-train.npy" "Master/data/trees_clustered" %BANDWIDTH% "Master/data/img_trees_labeled-train.pickle"
24 |
25 | python src/assign-tree-label.py "Master/data/img_trees_labeled-train.pickle" "Master/data/trees_clustered_vq-train.npy"
26 | :: python src/others/meanshift-graphs-test.py "Master/data/img_trees_labeled-test.pickle" "Master/data/trees_clustered_codebook.npz" "Master/data/kme-clusters-cdm.npy" "Master/data/trees_clustered_centers.npy"
27 |
28 | python src/centers_dendrogram.py -d "Master/data/tree_distances_matrix-train.npy" -c "Master/data/trees_clustered_centers.npy" -o "Master/data/"
29 |
30 | ::EXTRAS -- visualization only, ignore on the main pipeline
31 |
32 | :: python databases/populate.py -f "Master/data/img_trees_labeled_full-train.pickle"
33 | :: python classification/classify-nodes.py -i "Master/data/classf_data-train.pickle" -o "Master/data/classf_data-test.pickle"
34 | python views/reveal_clusters-graphs.py
35 | python views/reveal_clusters-nodes.py
36 | :: python views/visualize_graph_spatial_distribution.py
37 |
38 | ::FIT
39 | :: python src/fit.py -i "Master/images/olho.png" -o "Master/images/tmp/clusters.potato" -l "Master/datasetOutput/logs" -a "Master/data/kme-clusters.clr" -t "Master/data/trees_clustered_codebook.npz" -d "Master/data/apted_custom_dist.pickle" -z "Master/data/dendogram.npy"
--------------------------------------------------------------------------------
/HoVW/pipeline.sh:
--------------------------------------------------------------------------------
1 | # python classification/split-train-test.py -i "Master/images" -o "Master/dataset"
2 |
3 | python src/index.py -i "Master/dataset/train/" -o "Master/datasetOutput" -l "Master/datasetOutput/logs" -d "Master/data" -t "train"
4 | # python src/index.py -i "Master/dataset/test/" -o "Master/datasetOutput/test" -l "Master/datasetOutput/logs" -d "Master/data" -t "test"
5 |
6 | python src/kmeans-nodes.py -i "Master/datasetOutput/descriptor/" -o "Master/datasetOutput" -c 300 -l "Master/datasetOutput/logs"
7 | # python src/kmeans-nodes-test.py -i "Master/datasetOutput/test/descriptor/" -o "Master/datasetOutput/test" -c "Master/data/kme-clusters2.clr" -l "Master/datasetOutput/logs"
8 |
9 | # python src/others/meanshift-nodes.py -i "Master/datasetOutput/descriptor/" -o "Master/datasetOutput" -b 0.3 -l "Master/datasetOutput/logs"
10 | # python classification/meanshift-test.py -i "Master/datasetOutput/test/descriptor/" -o "Master/datasetOutput/test" -c "msh-clusters.clr" -l "Master/datasetOutput/logs"
11 |
12 | python src/assign-node-label.py -i "Master/data/img_trees-train.pickle" -c "Master/datasetOutput/BOW/assignment-kme" -d "Master/data" -t "train"
13 | # python src/assign-node-label.py -i "Master/data/img_trees-test.pickle" -c "Master/datasetOutput/test/BOW/assignment-kme" -d "Master/data" -t "test"
14 |
15 | python src/trees-distance.py -i "Master/data/img_trees_labeled-train.pickle" -c "Master/data/kme-clusters-cdm.npy" -m "Master/data/tree_distances_matrix-train.npy" -d "Master/data/apted_custom_dist.pickle" -p 4
16 |
17 | python src/meanshift-graphs.py "Master/data/tree_distances_matrix-train.npy" "Master/data/trees_clustered" 0.3 "Master/data/img_trees_labeled-train.pickle"
18 |
19 | python src/assign-tree-label.py "Master/data/img_trees_labeled-train.pickle" "Master/data/trees_clustered_vq-train.npy"
20 | python src/meanshift-graphs-test.py "Master/data/img_trees_labeled-test.pickle" "Master/data/trees_clustered_codebook.npz" "Master/data/kme-clusters-cdm.npy" "Master/data/trees_clustered_centers.npy"
21 |
22 | python src/centers_dendrogram.py -d "Master/data/tree_distances_matrix-train.npy" -c "Master/data/trees_clustered_centers.npy" -o "Master/data/"
23 |
24 | # python databases/populate.py -f "Master/data/img_trees_labeled_full-train.pickle"
25 |
26 | #EXTRAS -- apenas visualização, não levar em consideração no pipeline
27 | # python classification/classify-nodes.py -i "Master/data/classf_data-train.pickle" -o "Master/data/classf_data-test.pickle"
28 | python views/reveal_clusters-graphs.py
29 | python views/reveal_clusters-nodes.py
30 | # python views/visualize_graph_spatial_distribution.py
31 |
32 | #FIT
33 | python src/fit.py -i "Master/images/olho.png" -o "Master/images/tmp/clusters.potato" -l "Master/datasetOutput/logs" -a "Master/data/kme-clusters.clr" -t "Master/data/trees_clustered_codebook.npz" -d "Master/data/apted_custom_dist.pickle" -z "Master/data/dendogram.npy"
34 |
35 | python src/precison_recall_test.py 20
--------------------------------------------------------------------------------
/HoVW/requirements.txt:
--------------------------------------------------------------------------------
1 | opencv-python>=3.4.2.16
2 | mahotas
3 | numpy
4 |
--------------------------------------------------------------------------------
/HoVW/src/__init__.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
--------------------------------------------------------------------------------
/HoVW/src/assign-node-label.py:
--------------------------------------------------------------------------------
1 | import pickle, argparse, collections, re
2 | from os import listdir, path
3 | import matplotlib.pyplot as plt
4 |
5 | def init_args():
6 | """Input Parameters"""
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('-i', help='images idx file')
9 | parser.add_argument('-c', help='codewords dir')
10 | parser.add_argument('-d', help='data file path')
11 | parser.add_argument('-t', help='train or test')
12 |
13 | return parser.parse_args()
14 |
15 | def distribuition_plot(agg_dict, dfile_path):
16 | plt.bar(range(len(agg_dict)), agg_dict.keys(), align="center")
17 | xitcks = []
18 | for i in agg_dict.values():
19 | xitcks.append(len(i))
20 | plt.xticks(range(len(agg_dict)), xitcks, rotation='vertical')
21 |
22 | plt.xlabel("Count of clusters")
23 | plt.ylabel("Elements in cluster")
24 |
25 | plt.rcParams["figure.figsize"] = [600,600]
26 | for a,b in zip(range(len(agg_dict)), agg_dict.keys()):
27 | plt.text(a-0.5, b, b)
28 | plt.savefig(path.join(dfile_path, 'nodes-distribuition-plot.png'))
29 | # plt.show()
30 |
31 | def main():
32 | args = init_args()
33 | i_file = args.i
34 | cw_dir = args.c
35 | t_type = args.t
36 | dfile_path = args.d
37 | hist_l = {}
38 | images = []
39 |
40 | # TODO: Dá para otimizar o uso da memória. Basta, ao invés, de armazenar
41 | # tudo em images [] ler do arquivo e processar ou upar para memória em batch
42 | with open(i_file, 'rb') as f:
43 | while True:
44 | try:
45 | images.append(pickle.load(f))
46 | except EOFError:
47 | break
48 |
49 | for im in images:
50 | cw = re.sub('.*\/', '', im.tree.name)
51 | cw = re.sub('\..*', '', cw) + '.codeword'
52 | print("Working on", cw, "and", im.tree.name)
53 | labels = []
54 | with open(path.join(cw_dir,cw), 'r') as f:
55 | for line in f:
56 | label = int(line.split(" ")[0])
57 | if(label not in hist_l): hist_l[label] = 1
58 | else: hist_l[label] += 1
59 | labels.append(label)
60 |
61 | # TODO: juntar as duas funções abaixo; elas deveriam ser feitas juntas
62 | im.tree.set_labels(labels)
63 | im.tree.set_nodes_depth()
64 |
65 | with open(path.join(dfile_path, 'img_trees_labeled-' + t_type + '.pickle'), 'wb') as handle:
66 | for img in images:
67 | pickle.dump(img, handle, protocol=pickle.HIGHEST_PROTOCOL)
68 |
69 | agg_dict = {}
70 | for i in hist_l.keys():
71 | if(hist_l[i] in agg_dict): agg_dict[hist_l[i]].append(i)
72 | else: agg_dict[hist_l[i]] = [i]
73 |
74 | agg_dict = collections.OrderedDict(sorted(agg_dict.items(), key=lambda t: t[0]))
75 |
76 | mask_count = 0
77 | with open(path.join(dfile_path, 'codeword-count-{}.dict'.format(t_type)), 'w') as f:
78 | for de in agg_dict:
79 | mask_count += de*len(agg_dict[de])
80 | f_string = str(de) + ': '
81 | f_string += ' '.join(str(dv) for dv in agg_dict[de]) + '\n'
82 | f.write(f_string)
83 | print(mask_count)
84 |
85 | distribuition_plot(agg_dict, dfile_path)
86 |
87 | main()
--------------------------------------------------------------------------------
/HoVW/src/assign-tree-label.py:
--------------------------------------------------------------------------------
1 | import sys, os, pickle
2 | import numpy as np
3 | import image as Image
4 |
5 | trees_file = sys.argv[1]
6 | vq_file = sys.argv[2]
7 |
8 | vq_list = np.load(vq_file)
9 |
10 | img_trees = []
11 | test = []
12 | with open(trees_file, 'rb') as f:
13 | while True:
14 | try:
15 | img_trees.append(pickle.load(f))
16 | except EOFError:
17 | break
18 |
19 | for img, vq in zip(img_trees, vq_list):
20 | print(img.tree.name, int(vq))
21 | test.append((img.tree.name, int(vq)))
22 | img.tree.label = int(vq)
23 | '''
24 | print("----")
25 | for a in test:
26 | if (a[1] == 85):
27 | print(a[0])
28 | '''
29 | with open('Master/data/img_trees_labeled_full-train.pickle', 'wb') as handle:
30 | for img_tree in img_trees:
31 | pickle.dump(img_tree, handle, protocol=pickle.HIGHEST_PROTOCOL)
32 |
--------------------------------------------------------------------------------
/HoVW/src/centers_dendrogram.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import numpy as np
3 | import matplotlib.pyplot as plt
4 | from scipy.cluster import hierarchy
5 |
6 | def init_args():
7 | """Input Parameters"""
8 | parser = argparse.ArgumentParser()
9 | parser.add_argument('-d', help="trees' distances matrix")
10 | parser.add_argument('-c', help="trees' clustered centers")
11 | parser.add_argument('-o', help="dendogram output path")
12 |
13 | return parser.parse_args()
14 |
15 | def main():
16 |
17 | args = init_args()
18 |
19 | A = np.load(args.d)
20 | C = np.load(args.c)
21 | output_path = args.o
22 |
23 | centers_distance_matrix = np.zeros((len(C), len(C)), dtype=np.float_)
24 |
25 | for c1, i in zip(C, range(len(C))):
26 | for c2, j in zip(C, range(len(C))):
27 | centers_distance_matrix[i][j] = A[c1][c2]
28 |
29 | print(centers_distance_matrix)
30 |
31 | Z = hierarchy.linkage(centers_distance_matrix)
32 |
33 | np.save(output_path + "dendogram.npy", Z)
34 |
35 | fig = plt.figure()
36 |
37 | plt.title('Hierarchical Clustering Dendrogram (truncated)')
38 | plt.xlabel('sample index or (cluster size)')
39 | plt.ylabel('distance')
40 |
41 | hierarchy.dendrogram(Z)
42 |
43 | plt.savefig(output_path + "dendogram_view.png")
44 | # plt.show()
45 |
46 | main()
--------------------------------------------------------------------------------
/HoVW/src/clusters.py:
--------------------------------------------------------------------------------
1 | import os, argparse, time, re, pickle, gc
2 | import numpy as np
3 | from sklearn.cluster import KMeans, MiniBatchKMeans, MeanShift
4 | from scipy.spatial import distance_matrix
5 | from scipy.spatial.distance import cdist
6 | from klepto.archives import file_archive
7 | from utils import Log
8 |
9 |
10 | class Cluster(MiniBatchKMeans, MeanShift):
11 | """A general class which includes others SKLearn.Cluster
12 | http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
13 |
14 | Now, we implment both KMeans and MeanShift.
15 |
16 | Parameters
17 | ----------
18 | cnt: Shape's contour.
19 | outline: Shape's outline.
20 |
21 | Attributes
22 | ----------
23 | All attributes available on parental classes.
24 | centroids_distance: array, shape = [codebook size, codebook size]
25 | Dissimilarity matrix (distances) between clusters centroids.
26 | """
27 |
28 | def __init__(self, **kwargs):
29 | self.centroids_distance = None
30 | if 'load' in kwargs:
31 | self._load(kwargs['load'])
32 | else:
33 | try:
34 | method = kwargs['method']
35 | del kwargs['method']
36 | except KeyError as ke:
37 | print(kr)
38 | raise
39 |
40 | if method == 'KMeans' or method == 'MiniBatchKMeans':
41 | MiniBatchKMeans.__init__(self,**kwargs)
42 | elif method == 'MeanShift':
43 | MeanShift.__init__(self,**kwargs)
44 | else:
45 | e = "No method '{}' avaiable. Please use KMeans or MeanShift".format(method)
46 | log = Log(path='.', name='cluster_class')
47 | log.write(error=e, data=self)
48 | raise ValueError(e)
49 |
50 | def load(self, path):
51 | """Load the model object from a serialized file.
52 |
53 | Parameters
54 | ----------
55 | path: string
56 | Path where the file is in.
57 | """
58 |
59 | with open(path, 'rb') as f:
60 | self.__dict__.update(pickle.load(f))
61 |
62 | def save(self, path, name=None):
63 | """Save the model object in a serialized file.
64 |
65 | Parameters
66 | ----------
67 | path: string
68 | Path where the file should be save.
69 | name: string, default = None
70 | Name of the file.
71 | """
72 | #TODO: centroids_distance nao deve ser aqui
73 |
74 | self.centroids_distance = self._centroids_distance_matrix()
75 |
76 | print("Saving", name, "in", path)
77 | arch = file_archive('{}.clr'.format(os.path.join(path, name)))
78 | for d in self.__dict__:
79 | arch[d] = self.__dict__[d]
80 | arch.dump()
81 |
82 | with open(os.path.join(path, name) + '2.clr', 'wb') as f:
83 | pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL)
84 |
85 | print("Exporting", name + "-cdm", "in", path)
86 | np.save(os.path.join(path, name + "-cdm") + '.npy', self.centroids_distance)
87 |
88 | def _centroids_distance_matrix(self):
89 | """Generate the dissimilarity matrix of the clusters centroids.
90 | In a Bag-of-Words apporach the codebook is iqual the
91 | number of clusters in the model.
92 |
93 | Returns
94 | -------
95 | Array, shape = [codebook size, codebook size]
96 | Dissimilarity matrix (distances) between clusters centroids.
97 | """
98 |
99 | return distance_matrix(self.cluster_centers_, self.cluster_centers_)
100 |
101 | _load = load
--------------------------------------------------------------------------------
/HoVW/src/descriptors.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import mahotas
3 | import numpy as np
4 |
5 | class ZernikeMoments:
6 | """The Zernike Moments descriptor invariant to scale, rotation and
7 | translation (interface for Mahotas Zernike moment's application).
8 |
9 | Parameters
10 | ----------
11 | degree: int, default = 8
12 | The degree of the polynomial moment (default corresponds 21
13 | polynoms).
14 | """
15 |
16 | def __init__(self, degree=8):
17 | self.degree = degree
18 |
19 | def describe(self, shape, radius):
20 | """Describe the Zernike Moments of self.degree order.
21 |
22 | Parameters
23 | ----------
24 | shape: Contour of shape to be described.
25 | radius: Radius of circumference which circumscribes the
26 | shape.
27 |
28 | Returns
29 | -------
30 | List of float
31 | The fist moments of order self.degree.
32 | """
33 |
34 | return mahotas.features.zernike_moments(shape, radius, self.degree)
35 |
36 | class GeometricDescriptors:
37 | """Geometric descriptors. Implements multiple geometric descriptors
38 | statically.
39 | """
40 | @staticmethod
41 | def compactness(area, perimeter):
42 | """Calculate the Compactness of a shape.
43 |
44 | compactness = (4 * PI * Area) / (Perimeter ** 2)
45 |
46 | Parameters
47 | ----------
48 | area: area of the shape.
49 | perimeter: perimeter of the shape.
50 |
51 | Returns
52 | -------
53 | Float
54 | Compactness of the shape.
55 | """
56 |
57 | return (4*np.pi*area)/(perimeter**2)
58 |
59 | @staticmethod
60 | def convexity(contour, perimeter):
61 | """Calculate the Convexity of a shape.
62 |
63 | convexity = Perimeter of Hull / Perimeter
64 |
65 | Parameters
66 | ----------
67 | contour: contour of the shape.
68 | perimeter: perimeter of the shape.
69 |
70 | Returns
71 | -------
72 | Float
73 | Convexity of the shape.
74 | """
75 |
76 | phull = cv2.arcLength(cv2.convexHull(contour),True) #perimeter of hull
77 |
78 | return phull/perimeter
79 |
80 | @staticmethod
81 | def eccentricity(contour, centroid):
82 | """Calculate the Eccentricity of a shape.
83 |
84 | Parameters
85 | ----------
86 | contour: contour of the shape.
87 | centroid: perimeter of the shape.
88 |
89 | Returns
90 | -------
91 | Float
92 | Eccentricity of the shape.
93 | """
94 |
95 | def _covariance_matrix(contour, centroid):
96 | """Calculate the Covariance Matrix of a shape.
97 | covariance marix = 1/N *
98 | sum(i=0;N-1) ([xi - cx][yi - cy]) *
99 | ([xi - cx][yi - cy])^T =
100 | ([cxx, cxy][cyx, cyy])
101 |
102 | cxy = cyx (happens beacuse of the derivation)
103 |
104 | Parameters
105 | ----------
106 | contour: contour of the shape.
107 | centroid: perimeter of the shape.
108 |
109 | Returns
110 | -------
111 | List of floats representing the covariance matrix of
112 | the shape.
113 | """
114 |
115 | cxx = cxy = cyy = 0.0
116 | for point in contour:
117 | point = point[0]
118 | l1 = point[0] - centroid[0]
119 | l2 = point[1] - centroid[1]
120 | cxx += l1*l1
121 | cxy += l1*l2
122 | cyy += l2*l2
123 |
124 | return [cxx, cxy, cyy]
125 |
126 | covM = _covariance_matrix(contour, centroid)
127 | bSqrt = np.sqrt((covM[0] + covM[2])*(covM[0] + covM[2])
128 | - 4 * (covM[0] * covM[2] - covM[1]*covM[1]))
129 |
130 | lambda1 = 1/2 * (covM[0] + covM[2] + bSqrt)
131 | lambda2 = 1/2 * (covM[0] + covM[2] - bSqrt)
132 |
133 | return lambda2/lambda1
134 |
135 | @staticmethod
136 | def ellipse_variance():
137 | raise NotImplementedError('ellipse_variance not implemented')
138 |
139 | @staticmethod
140 | def circle_variance():
141 | raise NotImplementedError('circle_variance not implemented')
142 |
143 | @staticmethod
144 | def rectangularity(area, contour):
145 | """Calculate the Rectangularity of a shape.
146 |
147 | rectangularity = area / minimum rectangle
148 |
149 | Parameters
150 | ----------
151 | area: area of the shape.
152 | contour: contour of the shape.
153 |
154 | Returns
155 | -------
156 | Float
157 | Rectangularity of the shape.
158 | """
159 |
160 | rectangle = cv2.minAreaRect(contour)
161 |
162 | return area/rectangle
163 |
164 | @staticmethod
165 | def avg_bending_energy(contour, step=1):
166 | """Calculate the Average Bending Energy of a shape.
167 | ref: https://stackoverflow.com/posts/34678359/revisions
168 |
169 | Parameters
170 | ----------
171 | contour: contour of the shape.
172 | step: ? (default: 1).
173 |
174 | Returns
175 | -------
176 | Float
177 | Average bending energy of the shape.
178 | """
179 | curvature = []
180 | if(len(contour) < step):
181 | return -1
182 |
183 | isClosed = max(np.absolute(contour[0][0]-contour[len(contour)-1][0])) <= 1
184 | for i in range(len(contour)):
185 | pos = contour[i][0]
186 | maxStep = step
187 | if(not isClosed):
188 | maxStep = min(min(step,i), len(contour)-1-i)
189 | if(maxStep == 0):
190 | curvature2D = np.inf
191 | curvature2D = 0
192 | curvature.append(curvature2D)
193 | continue
194 |
195 | iminus = i - maxStep
196 | iplus = i + maxStep
197 | pminus = contour[iminus + len(contour) if iminus < 0 else iminus][0]
198 | pplus = contour[iplus - len(contour) if iplus >= len(contour) else iplus][0]
199 |
200 | f1stDerivative = (pplus - pminus)/(iplus-iminus)
201 | f2ndDerivative = (pplus - 2*pos + pminus) / ((iplus-iminus)/2*(iplus-iminus)/2)
202 |
203 | divisor = f1stDerivative*f1stDerivative
204 | divisor = divisor[0] + divisor[1]
205 | if(np.absolute(divisor) > 10e-8):
206 | curvature2D = np.absolute(f1stDerivative[0]*f2ndDerivative[1] - f1stDerivative[1]*f2ndDerivative[0])
207 | curvature2D = curvature2D/pow(divisor, 3/2)
208 | else:
209 | curvature2D = np.inf
210 | curvature2D = 0
211 |
212 | curvature.append(curvature2D)
213 |
214 | return np.sum(curvature)/len(curvature)
215 |
--------------------------------------------------------------------------------
/HoVW/src/fit.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | import pickle, argparse
4 | import numpy as np
5 | from apted import APTED, Config
6 | from utils import Log
7 | from image import Image
8 | from clusters import Cluster
9 |
10 |
11 | # TODO: Mesma classe que em trees-distance; precisa colocar em um .py separado
12 | class ImageTreeDistance(Config):
13 | def __init__(self, centroids_matrix):
14 | self.centroids_matrix = centroids_matrix
15 | self.centroids_mean = centroids_matrix.mean()
16 |
17 | def delete(self, node):
18 | """Calculates the cost of deleting a node"""
19 | a = np.max([np.log2(node.neighbors), np.log2(node.depth)])
20 | a = 1/a if a > 0 else 0
21 | return self.centroids_mean * a
22 |
23 | def insert(self, node):
24 | """Calculates the cost of inserting a node"""
25 | return self.delete(node)
26 |
27 | def rename(self, node1, node2):
28 | """Compares attribute .value of trees"""
29 | # ATTENTION: if the node is a root node and if try to relabeled
30 | # it the cost is zero
31 | if node1.label == None or node2.label == None:
32 | return 0
33 |
34 | return self.centroids_matrix[node1.label][node2.label]
35 |
36 | def children(self, node):
37 | return node.childs
38 |
39 | def init_args():
40 | parser = argparse.ArgumentParser()
41 | parser.add_argument('-i', help='image')
42 | parser.add_argument('-o', help='output path')
43 | parser.add_argument('-l', help='logs directory')
44 | parser.add_argument('-a', help="artifacts' codebook")
45 | parser.add_argument('-t', help="trees' codebook")
46 | parser.add_argument('-d', help='apted custom distance')
47 | parser.add_argument('-z', help="center's dendogram")
48 |
49 | return parser.parse_args()
50 |
51 | def calc_dist_trees(t1, t2, apted_dist):
52 | #print(t1.tree.name, t2.tree.name)
53 | return APTED(t1.tree.root, t2.tree.root, apted_dist).compute_edit_distance()
54 |
55 | def compute_label(X):
56 | return np.argwhere(X == np.min(X))[0][0]
57 |
58 | def compute_hierarchy(X):
59 | return np.argwhere(X == np.min(X))[0][0]
60 |
61 | def gabi_do_the_math(dendogram, cluster):
62 | """Computes cluster's neighborhood based on clusters centers' dendogram.
63 | Author: Gabriela Gomes"""
64 |
65 | def find_index(dendogram, n):
66 | i = 0
67 | dendogram_size = dendogram.shape[0]
68 | while i < dendogram_size and dendogram[i][0] != n and dendogram[i][1] != n: i += 1
69 | if i == dendogram_size:
70 | return -1 #no raiz
71 | return i
72 |
73 | def build_top(dendogram):
74 | top_info = {}
75 | alt = {}
76 | dendogram_size = dendogram.shape[0]
77 | for d in range(dendogram_size):
78 | top = find_index(dendogram, dendogram_size + d + 1)
79 | t = dendogram[top]
80 |
81 | if top in top_info:
82 | top_info[top].append(d)
83 | else:
84 | top_info[top] = [d]
85 |
86 | alt[d] = -1 if top == -1 else top
87 |
88 | return top_info, alt
89 |
90 | def busca1(dendogram, top_info, alt, index, brotherhood):
91 | dendogram_size = dendogram.shape[0]
92 | if index == -1:
93 | return brotherhood
94 |
95 | i, j, dendogram[index][2] = dendogram[index][0], dendogram[index][1], 1
96 | if i < dendogram_size: brotherhood.append(int(i))
97 | if j < dendogram_size: brotherhood.append(int(j))
98 | if index in top_info.keys():
99 | filhos = top_info[index]
100 | for f in filhos:
101 | if dendogram[f][2] == 0:
102 | brotherhood = busca1(dendogram, top_info, alt, f, brotherhood)
103 | if dendogram[alt[index]][2] == 0:
104 | brotherhood = busca1(dendogram, top_info, alt, alt[index], brotherhood)
105 |
106 | elif dendogram[alt[index]][2] == 0:
107 | brotherhood = busca1(dendogram, top_info, alt, alt[index], brotherhood)
108 |
109 | return brotherhood
110 |
111 | dendogram[:,2] = 0
112 |
113 | top_info, alt = build_top(dendogram)
114 |
115 | return busca1(dendogram, top_info, alt, find_index(dendogram, cluster), [])
116 |
117 | def main():
118 | args = init_args()
119 | o_path = args.o
120 | log = Log(path=args.l, name='query_image')
121 |
122 | dendogram = np.load(args.z)
123 | query_img = Image(path=args.i)
124 | artifacts_clusters = Cluster(load=args.a)
125 | trees_codebook = np.load(args.t)
126 | with open(args.d, 'rb') as f:
127 | apted_dist = pickle.load(f)
128 |
129 | artifacts = query_img.tree.get_tree_masks()[1:]
130 |
131 | artifacts_labels = []
132 | for artifact in artifacts:
133 | artifacts_labels.append(artifacts_clusters.predict(artifact.feature_vector.reshape(1, -1))[0])
134 |
135 | # TODO: juntar as duas funções abaixo; elas deveriam ser feitas juntas
136 | query_img.tree.set_labels(artifacts_labels)
137 | query_img.tree.set_nodes_depth()
138 |
139 | M = np.zeros(len(trees_codebook['trees']), np.float_)
140 | for t1,i in zip(trees_codebook['trees'],range(len(trees_codebook['trees']))):
141 | M[i] = calc_dist_trees(t1, query_img, apted_dist)
142 |
143 | query_img.tree.label = compute_label(M)
144 |
145 | label_brotherhood = gabi_do_the_math(dendogram, query_img.tree.label)
146 | #print(label_brotherhood)
147 | with open('Master/images/olha_aqui.pickle', 'wb') as f:
148 | pickle.dump(query_img, f)
149 |
150 | with open(o_path, 'wb') as f:
151 | pickle.dump({"label":label_brotherhood}, f, protocol=pickle.HIGHEST_PROTOCOL)
152 |
153 | main()
--------------------------------------------------------------------------------
/HoVW/src/image.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import operator
3 | import numpy as np
4 | from tree import ImageTree
5 | from descriptors import ZernikeMoments as ZM, GeometricDescriptors as GD
6 |
7 | class Mask:
8 | """The mask represents a shape of the image.
9 |
10 | Parameters
11 | ----------
12 | cnt: Shape's contour.
13 | outline: Shape's outline.
14 |
15 | Attributes
16 | ----------
17 | contour: array, shape = [list of points, point, point's coordinates]
18 | Shape's contour edges points.
19 | center_radius: tuple = (x, y, radius)
20 | Geometric center (point) of the shape and the radius between
21 | this point and the farthest edge point.
22 | centroid_radius: tuple = (x, y, radius)
23 | Center of mass (point) of the shape and the radius between
24 | this point and the farthest edge point.
25 | outline: array, shape = [height, width]
26 | Shape's outline.
27 | area: float
28 | Shape's area.
29 | perimeter: float
30 | Shape's perimeter.
31 | feature_vector: array, shape = [features]
32 | Features which describes the shape.
33 | """
34 |
35 | def __init__(self, cnt, outline):
36 | self.contour = cnt
37 | self.outline = outline
38 | self.center_radius = self._center_radius()
39 | self.centroid_radius = self._centroid_radius()
40 | self.area = cv2.contourArea(self.contour)
41 | self.perimeter = cv2.arcLength(self.contour,True)
42 | self.feature_vector = self._build_feature_vector()
43 |
44 | def _center_radius(self):
45 | center,radius = cv2.minEnclosingCircle(self.contour)
46 |
47 | return (center[0], center[1],radius)
48 |
49 | def _centroid_radius(self):
50 | moment = cv2.moments(self.contour)
51 | cx = int(moment['m10']/moment['m00'])
52 | cy = int(moment['m01']/moment['m00'])
53 |
54 | ext = []
55 | ext.append(tuple(self.contour[self.contour[:, :, 0].argmin()][0])) #left
56 | ext.append(tuple(self.contour[self.contour[:, :, 0].argmax()][0])) #Right
57 | ext.append(tuple(self.contour[self.contour[:, :, 1].argmin()][0])) #Top
58 | ext.append(tuple(self.contour[self.contour[:, :, 1].argmax()][0])) #Bottom
59 | r = -1
60 | for e in ext:
61 | x = np.sqrt((cx-e[0])**2 + (cy-e[1])**2)
62 | r = x if x>r else r
63 |
64 | return (cx, cy, r)
65 |
66 | def _build_feature_vector(self):
67 | """Build the feature vector.
68 |
69 | Format:
70 | convexity, compactness, eccentricity, avg_bending_energy, ZMs
71 |
72 | Returns
73 | -------
74 | array, shape = [features]
75 | Array with the features.
76 | """
77 |
78 | convexity = np.array([GD.convexity(self.contour, self.perimeter)])
79 | compactness = np.array([GD.compactness(self.area, self.perimeter)])
80 | eccentricity = np.array([GD.eccentricity(self.contour,
81 | (self.centroid_radius[0], self.centroid_radius[1]))])
82 | avg_bending_energy = np.array(
83 | [GD.avg_bending_energy(self.contour, 1)])
84 |
85 | geo_vec = np.append(convexity, [compactness, eccentricity,
86 | avg_bending_energy])
87 |
88 | desc = ZM()
89 | zernike_moments = desc.describe(self.outline, self.center_radius[2])
90 |
91 | return np.append(geo_vec, zernike_moments)
92 |
93 | def show(self, overload=False):
94 | """Show shape.
95 |
96 | Parameters
97 | ----------
98 | overload: Show circles relating to center and center of mass.
99 | """
100 |
101 | header = 'Mask'
102 | img = self.outline
103 |
104 | if overload:
105 | header = 'Mask Complete'
106 | img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
107 | cv2.circle(img, (int(self.centroid_radius[0]),int(self.centroid_radius[1])),\
108 | int(self.centroid_radius[2]), (0,0,255))
109 | cv2.circle(img, (int(self.centroid_radius[0]),int(self.centroid_radius[1])),\
110 | 2, (0, 0, 255), -1)
111 |
112 | cv2.circle(img, (int(self.center_radius[0]),int(self.center_radius[1])),\
113 | int(self.center_radius[2]), (0,255,0))
114 | cv2.circle(img, (int(self.center_radius[0]),int(self.center_radius[1])),\
115 | 2, (0,255,0), -1)
116 |
117 | cv2.imshow(header, img)
118 | cv2.waitKey(0)
119 |
120 | def draw(self, output=None, header=None, overload=False):
121 | """Draw the shape.
122 |
123 | Parameters
124 | ----------
125 | overload: Show circles relating to center and center of mass.
126 | output: Path where the image should be drawn.
127 | header: Final image's name.
128 | """
129 |
130 | final_header = 'mask'
131 | img = self.outline
132 |
133 | if overload:
134 | final_header = 'mask-complete'
135 | img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
136 | cv2.circle(img, (int(self.centroid_radius[0]),int(self.centroid_radius[1])), \
137 | 2, (0, 0, 255), -1)
138 | cv2.circle(img, (int(self.centroid_radius[0]),int(self.centroid_radius[1])), \
139 | int(self.centroid_radius[2]), (0, 0, 255))
140 |
141 | cv2.circle(img, (int(self.center_radius[0]),int(self.center_radius[1])), \
142 | 2, (0, 255, 0), -1)
143 | cv2.circle(img, (int(self.center_radius[0]),int(self.center_radius[1])), \
144 | int(self.center_radius[2]), (0, 255, 0))
145 |
146 |
147 | if header: final_header = header
148 | if output: final_header = output + final_header
149 |
150 | final_header += '.png'
151 | cv2.imwrite(final_header, img)
152 |
153 | class Image:
154 | """Image representation.
155 |
156 | Parameters
157 | ----------
158 | path: Path where the image is located.
159 |
160 | Attributes
161 | ----------
162 | path: string
163 | Original image's path.
164 | original: array, shape = [height, width, channels]
165 | Image itself.
166 | grayscale: array, shape = [height, width]
167 | Image grayscale version.
168 | threshold: array, shape = [height, width]
169 | Image binary threshold.
170 | tree: ImageTree
171 | Hierarchical (tree) representation of the image,
172 | segmented by its shapes.
173 | """
174 |
175 | def __init__(self, path):
176 | self.path = path
177 | self.original = cv2.imread(path)
178 | self.grayscale = cv2.cvtColor(self.original, cv2.COLOR_BGR2GRAY)
179 | self.threshold = self._get_threshold()
180 | self.tree = self._set_tree()
181 |
182 | def _get_threshold(self):
183 | blur = cv2.medianBlur(self.grayscale, 5)
184 | blur = cv2.bilateralFilter(blur,9,75,75)
185 | _,threshold = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
186 | #THRESH_BINARY = fundo preto or THRESH_BINARY_INV = fundo branco
187 |
188 | return threshold
189 |
190 | def _get_hierarchy_masks(self):
191 |
192 | outline = np.zeros(self.grayscale.shape, dtype = "uint8")
193 |
194 | (_, cnts, hierarchy) = cv2.findContours(self.threshold.copy(),
195 | cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
196 | masks = []
197 | i = 0
198 | hierarchy = hierarchy[0]
199 | alter_hie = []
200 | for cnt in cnts:
201 | if(cv2.contourArea(cnt) > 0):
202 | masks.append([cnt, cv2.drawContours(outline.copy(),
203 | [cnt], -1, 255, -1)]) #contour, outline
204 | alter_hie.append(np.append(hierarchy[i], 1))
205 | else:
206 | alter_hie.append(np.append(hierarchy[i], 0))
207 | i += 1
208 | hierarchy = np.array([alter_hie])
209 |
210 | return (hierarchy[0], masks)
211 |
212 | def _set_tree(self):
213 | (hierarchy, shapes) = self._get_hierarchy_masks()
214 | masks = []
215 | for mask in shapes:
216 | masks.append(Mask(mask[0],mask[1]))
217 |
218 | tree = ImageTree(hierarchy, masks, self.path)
219 |
220 | # 1 = acima da metade; #0 = toda a imagem
221 | tree.cut_off(0.2)
222 |
223 | return tree
224 |
225 | def draw(self, output=None):
226 | """Draw the image by its shapes.
227 |
228 | Parameters
229 | ----------
230 | output: Path where the image should be drawn.
231 | """
232 | masks = self.tree.get_tree_masks()
233 | for m,i in zip(masks, range(len(masks))):
234 | if m: m.draw(output, str(i), 'c')
--------------------------------------------------------------------------------
/HoVW/src/index.py:
--------------------------------------------------------------------------------
1 | import pickle, argparse, re, sys
2 | from os import listdir, path
3 | from utils import Log
4 | from image import Image
5 |
6 | def img_structuring(img_path, descriptor_file):
7 | """Create the descriptor file of image's shapes"""
8 | try:
9 | img = Image(img_path)
10 | shapes = img.tree.get_tree_masks()[1:]
11 | with open(descriptor_file, 'w') as descriptor_file:
12 | print("Writing " + descriptor_file.name)
13 | descriptor_file.write(str(shapes[0].feature_vector.shape[0]) + '\n')
14 | descriptor_file.write(str(len(shapes)) + '\n')
15 | for shape in shapes:
16 | descriptor_file.write(' '.join(str(e) for e in shape.feature_vector.tolist()) + '\n')
17 | except: raise
18 |
19 | return img, len(shapes)
20 |
21 | def init_args():
22 | """Input Parameters"""
23 | parser = argparse.ArgumentParser()
24 | parser.add_argument('-i', help='path with images')
25 | parser.add_argument('-o', help='output path')
26 | parser.add_argument('-l', help='logs directory')
27 | parser.add_argument('-d', help='data file path')
28 | parser.add_argument('-t', help='train or test')
29 |
30 | return parser.parse_args()
31 |
32 | def main():
33 | args = init_args()
34 |
35 | i_path = args.i
36 | o_path = args.o
37 | d_path = path.join(o_path, 'descriptor')
38 | logs_path = args.l
39 | data_file = args.d
40 | t_type = args.t
41 |
42 | log = Log(path=logs_path, name='descriptor')
43 |
44 | with open(path.join(data_file, 'img_trees-' + t_type + '.pickle'), 'wb') as handle:
45 | print("Writing " + handle.name)
46 | total_shapes = 0
47 | i = 0
48 | for img_path in listdir(i_path):
49 | try:
50 | img_name = re.sub('\..*', '', img_path)
51 | img, count_shapes = img_structuring(path.join(i_path, img_path), path.join(d_path, img_name + '.descriptor'))
52 | total_shapes += count_shapes
53 | pickle.dump(img, handle, protocol=pickle.HIGHEST_PROTOCOL)
54 | i += 1
55 | except KeyboardInterrupt as err:
56 | log.write(error="Ctrl + c interruption", data=img_path)
57 | print("Ctrl + c interruption")
58 | break
59 | except Exception as e:
60 | log.write(error=e, data=img_path)
61 | print("ERROR: " + img_path)
62 | print(e)
63 | continue
64 |
65 | print("Images Count: {}; Images Considered {}; Shapes identified: {}".format(len(listdir(i_path)), i, total_shapes))
66 | log.close()
67 |
68 | if __name__ == "__main__":
69 | main()
--------------------------------------------------------------------------------
/HoVW/src/kmeans-nodes-test.py:
--------------------------------------------------------------------------------
1 | #from sklearn.cluster import KMeans
2 | from clusters import Cluster
3 | import numpy as np
4 | from os import listdir, path
5 | import argparse, time, re, pickle
6 |
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('-i', help='path with images')
9 | parser.add_argument('-o', help='output path')
10 | parser.add_argument('-c', help='clusters')
11 | parser.add_argument('-l', help='logs directory')
12 |
13 | args = parser.parse_args()
14 |
15 | i_path = args.i
16 | o_path = args.o
17 | logs_path = args.l
18 | k_clusters = -1
19 | c_path = args.c
20 | X = np.asarray([[None]*29], dtype=np.float_) #HARD-CODED TEM QUE LER ESSE 29 DO ARQUIVO
21 | y = []
22 |
23 | for dfile in listdir(i_path):
24 | try:
25 | with open(i_path+dfile, 'r') as f:
26 | print("Reading from " + f.name)
27 | content = f.readlines()
28 |
29 | for i in range(int(content[1])):
30 | X = np.append(X,
31 | [np.array(list(np.float_(e) for e in content[2+i].split(' ')), dtype=np.float_)],
32 | axis=0)
33 | y.append(re.sub('\..*', '', dfile))
34 |
35 | except KeyboardInterrupt as err:
36 | print("Ctrl + c interruption")
37 | break
38 | except Exception as e:
39 | print("ERROR: " + dfile)
40 | print(e)
41 | break
42 | continue
43 |
44 | X = np.delete(X, 0, 0)
45 |
46 | objects=[]
47 | with (open(c_path, "rb")) as openfile:
48 | while True:
49 | try:
50 | objects.append(pickle.load(openfile))
51 | except EOFError:
52 | break
53 |
54 | ###Assignment --- Vector quantization
55 |
56 | #PRECISA SER TESTADO EM MAIS CASOS-------
57 | oufl = []
58 | past = None
59 | count = 0
60 | for i in range(len(y)):
61 | if(y[i] != past):
62 | oufl.append((past, count))
63 | count = 1
64 | past = y[i]
65 | else: count+=1
66 | past = y[i]
67 | oufl.append((past, count))
68 | oufl = oufl[1:]
69 | #-----
70 | cluster = objects[0]
71 | k_clusters = cluster.n_clusters
72 | quantization = cluster.predict(X)
73 |
74 | j = 0
75 | im_names = {}
76 | im_features = np.zeros((len(oufl), k_clusters), np.float_)
77 | name_c = 0
78 |
79 | for e in oufl:
80 | bag = [0] * k_clusters
81 | with open(path.join(o_path, 'BOW/assignment-kme/' + e[0] + '.codeword'), 'w') as fa, \
82 | open(path.join(o_path, 'BOW/bag-kme/' + e[0] + '.bagw'), 'w') as fb:
83 | #print("Writing " + fa.name + " and " + fb.name)
84 | for i in range(e[1]):
85 | vq = quantization[j]
86 | bag[int(vq)] += 1
87 | ###
88 | im_names[name_c] = e[0]
89 | im_features[name_c][int(vq)] += 1
90 | ###
91 | fa.write(str(vq) + ' ')
92 | fa.write(' '.join(str(k) for k in cluster.cluster_centers_[vq].tolist()) + '\n')
93 | j += 1
94 | ###
95 | name_c += 1
96 | ###
97 | bagf = [k/sum(bag) for k in bag]
98 | fb.write(' '.join(str(k) for k in bagf))
99 |
100 | with open('Master/data/classf_data-test.pickle', 'wb') as handle:
101 | pickle.dump(im_names, handle, protocol=pickle.HIGHEST_PROTOCOL)
102 | pickle.dump(im_features, handle, protocol=pickle.HIGHEST_PROTOCOL)
--------------------------------------------------------------------------------
/HoVW/src/kmeans-nodes.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | import pickle, argparse, re, time
4 | from os import listdir, path
5 | import numpy as np
6 | from utils import Log
7 | from clusters import Cluster
8 |
9 | from sklearn import metrics
10 | from sklearn.metrics import pairwise_distances
11 | import matplotlib.pyplot as plt
12 |
13 | def init_args():
14 | """Input Parameters"""
15 | parser = argparse.ArgumentParser()
16 | parser.add_argument('-i', help="path with image's descriptors")
17 | parser.add_argument('-o', help='output path')
18 | parser.add_argument('-c', help='codebook size')
19 | parser.add_argument('-l', help='logs directory')
20 |
21 | return parser.parse_args()
22 |
23 | def read_image_descriptors(i_path, log):
24 | """Retrive all features from all image's descriptor file and build
25 | the train set X"""
26 | X = np.asarray([[None]*29], dtype=np.float_) #HARD-CODED 29 Features
27 | y = []
28 | for dfile in listdir(i_path):
29 | try:
30 | with open(path.join(i_path, dfile), 'r') as f:
31 | print("Reading from " + f.name)
32 | content = f.readlines()
33 | for i in range(int(content[1])):
34 | X = np.append(X,
35 | [np.array(list(np.float_(e) for e in content[2+i].split(' ')), dtype=np.float_)],
36 | axis=0)
37 | y.append(re.sub('\..*', '', dfile))
38 | except KeyboardInterrupt as err:
39 | print("Ctrl + c interruption")
40 | break
41 | except Exception as e:
42 | log.write(error=e, data=dfile)
43 | print("ERROR: " + dfile)
44 | print(e)
45 | break
46 | continue
47 |
48 | print(X.shape)
49 | return X, y
50 |
51 | def main():
52 | args = init_args()
53 |
54 | i_path = args.i
55 | o_path = args.o
56 | logs_path = args.l
57 | k_clusters = int(args.c)
58 |
59 | log = Log(logs_path, 'clustering-kme')
60 |
61 | X, y = read_image_descriptors(i_path, log)
62 |
63 | X = np.delete(X, 0, 0)
64 |
65 | # TODO: SEPARAR AVALIAÇÃO EM UM OUTRO ARQUIVO. ATUALMENTE SE QUISER
66 | # AVALIAÇÃO OU EXECUÇÃO NECESSITA APENAS COMENTAR/DESCOMENTAR A SEÇÃO
67 |
68 | #AVALIAÇÃO
69 | # #--- supervisionada
70 | # sls = []
71 | # chs = []
72 |
73 | #--- não supervisionada
74 | # inertia_list = []
75 |
76 | # kc = [1000, 1500, 2000, 2500, 3000]
77 | # for k_clusters in kc:
78 | # print(k_clusters)
79 | # kmeans = Cluster(method='KMeans', init='k-means++', n_clusters=k_clusters, random_state=42, max_iter=300)
80 | # kmeans.fit(X)
81 |
82 | # #--- supervisionada
83 | # labels = kmeans.labels_
84 | # sls.append(metrics.silhouette_score(X, labels, metric='mahalanobis'))
85 | # chs.append(metrics.calinski_harabaz_score(X, labels))
86 |
87 | #--- não supervisionada
88 | # inertia_list.append(kmeans.inertia_)
89 |
90 | # fig = plt.figure()
91 |
92 | # #--- supervisionada
93 | # plt.subplot(1,1,1)
94 | # plt.title('silhouette_score')
95 | # plt.xlabel('codebook size')
96 | # plt.plot(kc, sls, 'r')
97 |
98 | # plt.subplot(2,1,2)
99 | # plt.title('calinski_harabaz_score')
100 | # plt.xlabel('codebook size')
101 | # plt.plot(kc, chs, 'b')
102 |
103 | # print(sls)
104 | # print(chs)
105 |
106 | #--- não supervisionada supervisionada
107 | # plt.subplot(1,1,1)
108 | # plt.title('inertia')
109 | # plt.xlabel('codebook size')
110 | # plt.plot(kc, inertia_list, 'r')
111 |
112 | # print(inertia_list)
113 |
114 | # plt.savefig('kmeans-scores.png')
115 | # plt.show()
116 |
117 | # EXECUÇÃO
118 | kmeans = Cluster(method='KMeans', init='k-means++', n_clusters=k_clusters, batch_size=X.shape[0], random_state=42, max_iter=300)
119 | print("Learning...")
120 | kmeans.fit(X)
121 |
122 | kmeans.save('Master/data/', 'kme-clusters')
123 |
124 | # with open(path.join(o_path, 'codebook-bovw-kme.cb'), 'w') as f:
125 | # print("Writing " + f.name)
126 | # f.write(str(kmeans.cluster_centers_.shape[1]) + '\n' +
127 | # str(kmeans.cluster_centers_.shape[0]) + '\n')
128 | # for c_center in kmeans.cluster_centers_:
129 | # f.write(' '.join(str(e) for e in c_center.tolist()) + '\n')
130 |
131 | log.close()
132 |
133 | ###Assignment --- Vector quantization
134 | log = Log(logs_path, 'bag-assignment-kme')
135 |
136 | #PRECISA SER TESTADO EM MAIS CASOS-------
137 | oufl = []
138 | past = None
139 | count = 0
140 | for i in range(len(y)):
141 | if(y[i] != past):
142 | oufl.append((past, count))
143 | count = 1
144 | past = y[i]
145 | else: count+=1
146 | past = y[i]
147 | oufl.append((past, count))
148 | oufl = oufl[1:]
149 | #-----
150 |
151 | # ### TODO:data for classifier -- em um ambiente não supervisionado deve estar comentado
152 | im_names = {}
153 | im_features = np.zeros((len(oufl), k_clusters), np.float_)
154 | name_c = 0
155 | # ###
156 |
157 | quantization = kmeans.predict(X)
158 | j = 0
159 |
160 | t0 = time.time()
161 | for e in oufl:
162 | bag = [0] * k_clusters
163 | with open(path.join(o_path, 'BOW/assignment-kme/' + e[0] + '.codeword'), 'w') as fa, \
164 | open(path.join(o_path, 'BOW/bag-kme/' + e[0] + '.bagw'), 'w') as fb:
165 | print("Writing " + fa.name + " and " + fb.name)
166 | for i in range(e[1]):
167 | vq = quantization[j]
168 | j += 1
169 | bag[int(vq)] += 1
170 | # ### ### TODO:data for classifier
171 | im_names[name_c] = e[0]
172 | im_features[name_c][int(vq)] += 1
173 | # ###
174 | fa_string = str(vq) + ' '
175 | fa_string += ' '.join(str(k) for k in kmeans.cluster_centers_[vq]) + '\n'
176 | fa.write(fa_string)
177 | # ### ### TODO:data for classifier
178 | name_c += 1
179 | # ###
180 | sum_bag = sum(bag)
181 | fb.write(' '.join(str(k/sum_bag) for k in bag))
182 |
183 | # ### ### TODO:data for classifier
184 | with open('Master/data/classf_data-train.pickle', 'wb') as handle:
185 | pickle.dump(im_names, handle, protocol=pickle.HIGHEST_PROTOCOL)
186 | pickle.dump(im_features, handle, protocol=pickle.HIGHEST_PROTOCOL)
187 | ###
188 |
189 |
190 | log.close()
191 |
192 | if __name__ == "__main__":
193 | main()
--------------------------------------------------------------------------------
/HoVW/src/meanshift-graphs-test.py:
--------------------------------------------------------------------------------
1 | import sys, os, pickle
2 | import numpy as np
3 | from image import Image
4 | from apted import APTED, Config
5 | from apted.helpers import Tree
6 | from apted import APTED, PerEditOperationConfig
7 |
8 | class my_distance(Config):
9 | def __init__(self, centroids_matrix):
10 | self.centroids_matrix = centroids_matrix
11 | self.centroids_mean = centroids_matrix.mean()
12 |
13 | def delete(self, node):
14 | """Calculates the cost of deleting a node"""
15 | a = np.max([np.log2(node.neighbors), np.log2(node.depth)])
16 | a = 1/a if a > 0 else 0
17 | return self.centroids_mean * a
18 |
19 | def insert(self, node):
20 | """Calculates the cost of inserting a node"""
21 | return self.delete(node)
22 |
23 | def rename(self, node1, node2):
24 | """Compares attribute .value of trees"""
25 | if node1.label == None or node2.label == None:
26 | return 0 #atenção aqui, se for raiz e tentar renomear a raiz dá zero. precisa ser melhor pensado
27 | return self.centroids_matrix[node1.label][node2.label]
28 |
29 | def children(self, node):
30 | return node.childs
31 |
32 | def compute_kneighbors(X):
33 | labels = []
34 | for x in X:
35 | l = np.argwhere(x == np.min(x))[0][0]
36 | labels.append(l)
37 |
38 | return labels
39 |
40 | def compute_distance_matrix(test_imgs, codebook_trees, cmdist):
41 | M = np.zeros((len(test_imgs), len(codebook_trees)), np.float_)
42 | for i in range(len(test_imgs)):
43 | print(i)
44 | t1 = test_imgs[i]
45 | M[i] = ([APTED(t1.tree.root, t2.tree.root, my_distance(cmdist)).compute_edit_distance() for t2 in codebook_trees])
46 |
47 | return M
48 |
49 | def assign_labels(test_imgs, labels, output):
50 | print("Assigning labels")
51 | with open(output, 'wb') as handle:
52 | for t, l in zip(test_imgs, labels):
53 | t.tree.label = l
54 | print(t.tree.name, l)
55 | pickle.dump(t, handle, protocol=pickle.HIGHEST_PROTOCOL)
56 |
57 | def main():
58 |
59 | test_file = sys.argv[1]
60 | codebook_file = sys.argv[2]
61 | cdist_file = sys.argv[3]
62 | cluster_centers_file = sys.argv[4]
63 |
64 | test_imgs = []
65 | with open(test_file, 'rb') as f:
66 | while True:
67 | try:
68 | test_imgs.append(pickle.load(f))
69 | except EOFError:
70 | break
71 | codebook = np.load(codebook_file)
72 | codebook_map = codebook['map']
73 | codebook_trees = codebook['trees']
74 | a = np.load(cdist_file)
75 | cluster_centers = np.load(cluster_centers_file)
76 |
77 | M = compute_distance_matrix(test_imgs, codebook_trees, a)
78 |
79 | labels = compute_kneighbors(M)
80 |
81 | assign_labels(test_imgs, labels, 'Master/data/img_trees_labeled_full-test.pickle')
82 |
83 | if __name__ == '__main__':
84 | main()
85 |
86 |
--------------------------------------------------------------------------------
/HoVW/src/meanshift-graphs.py:
--------------------------------------------------------------------------------
1 | import sys, os, pickle, math
2 | import numpy as np
3 | from sklearn.utils import check_random_state
4 | from sklearn.neighbors import NearestNeighbors
5 |
6 | from sklearn import metrics
7 | from sklearn.metrics import pairwise_distances
8 |
9 | '''
10 | sklearn source code with some changes in relation to the distance metric
11 |
12 | http://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html#example-cluster-plot-mean-shift-py
13 |
14 |
15 | @article{scikit-learn,
16 | title={Scikit-learn: Machine Learning in {P}ython},
17 | author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
18 | and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
19 | and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
20 | Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
21 | journal={Journal of Machine Learning Research},
22 | volume={12},
23 | pages={2825--2830},
24 | year={2011}
25 | }
26 | '''
27 |
28 | def get_mean_node(points, M):
29 |
30 | dist = np.zeros((points.shape[0],))
31 |
32 | for i in range(points.shape[0]):
33 | D = M[points[i],points]
34 | dist[i] = np.sum(D)
35 |
36 | pos=np.argmin(dist)
37 |
38 | return points[pos]
39 |
40 | def compute_kneighbors(X, k, Y=None):
41 |
42 | dist = X
43 | if Y is not None:
44 | dist = X[:,Y]
45 |
46 | S = np.argsort(dist, axis=1)
47 |
48 | idx = S[:,range(k)]
49 |
50 | M = np.zeros((idx.shape))
51 | i=0
52 | for sa in S:
53 | M[i,:] = dist[i,sa[:k]]
54 | i+=1
55 |
56 | return M, idx
57 |
58 | def estimate_bandwidth(X):
59 | """Estimate the bandwidth to use with MeanShift algorithm
60 |
61 | Parameters
62 | ----------
63 | X : array [n_samples, n_features]
64 | Input points.
65 |
66 | quantile : float, default 0.3
67 | should be between [0, 1]
68 | 0.5 means that the median of all pairwise distances is used.
69 |
70 | n_samples : int
71 | The number of samples to use. If None, all samples are used.
72 |
73 | random_state : int or RandomState
74 | Pseudo number generator state used for random sampling.
75 |
76 | Returns
77 | -------
78 | bandwidth : float
79 | The bandwidth parameter.
80 | """
81 |
82 | quantile=0.3
83 | random_state=0
84 | random_state = check_random_state(random_state)
85 |
86 | knn = int(X.shape[0] * quantile)
87 | #nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile))
88 | #nbrs.fit(X)
89 |
90 | d, _ = compute_kneighbors(X, knn)
91 | bandwidth = np.mean(np.max(d, axis=1))
92 |
93 | return bandwidth
94 |
95 | def compute_radius_neighbors(X, M, radius, points=None):
96 | """Finds the neighbors within a given radius of a point or points.
97 |
98 | Returns indices of the neighbors of each point.
99 |
100 | Parameters
101 | ----------
102 | X : array-like, last dimension same as that of fit data
103 | The new point or points
104 |
105 | radius : float
106 | Limiting distance of neighbors to return.
107 | (default is the value passed to the constructor).
108 |
109 | return_distance : boolean, optional. Defaults to True.
110 | If False, distances will not be returned
111 |
112 | Returns
113 | -------
114 | dist : array
115 | Array representing the euclidean distances to each point,
116 | only present if return_distance=True.
117 |
118 | ind : array
119 | Indices of the nearest points in the population matrix.
120 |
121 | Examples
122 | --------
123 | In the following example, we construct a NeighborsClassifier
124 | class from an array representing our data set and ask who's
125 | the closest point to [1,1,1]
126 |
127 | >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
128 | >>> from sklearn.neighbors import NearestNeighbors
129 | >>> neigh = NearestNeighbors(radius=1.6)
130 | >>> neigh.fit(samples) # doctest: +ELLIPSIS
131 | NearestNeighbors(algorithm='auto', leaf_size=30, ...)
132 | >>> print(neigh.radius_neighbors([1., 1., 1.])) # doctest: +ELLIPSIS
133 | (array([[ 1.5, 0.5]]...), array([[1, 2]]...)
134 |
135 | The first array returned contains the distances to all points which
136 | are closer than 1.6, while the second array returned contains their
137 | indices. In general, multiple points can be queried at the same time.
138 |
139 | Notes
140 | -----
141 | Because the number of neighbors of each point is not necessarily
142 | equal, the results for multiple query points cannot be fit in a
143 | standard data array.
144 | For efficiency, `radius_neighbors` returns arrays of objects, where
145 | each object is a 1D array of indices or distances.
146 | """
147 |
148 | #X = atleast2d_or_csr(X)
149 | if points is None:
150 | points = range(M.shape[1])
151 |
152 | dist = M[X, points]
153 | neigh_ind = np.where(dist < radius)[0]
154 |
155 | # if there are the same number of neighbors for each point,
156 | # we can do a normal array. Otherwise, we return an object
157 | # array with elements that are numpy arrays
158 | try:
159 | neigh_ind = np.asarray(neigh_ind, dtype=int)
160 | dtype_F = float
161 | except ValueError:
162 | neigh_ind = np.asarray(neigh_ind, dtype='object')
163 | dtype_F = object
164 |
165 | return neigh_ind
166 |
167 | def mean_shift(X, bandwidth=None):
168 | """
169 | Perform MeanShift Clustering of data using a flat kernel
170 |
171 | Seed using a binning technique for scalability.
172 |
173 | Parameters
174 | ----------
175 |
176 | X : matrix of distance (source X source)
177 | Input data.
178 |
179 | bandwidth : float, optional
180 | Kernel bandwidth.
181 | If bandwidth is not defined, it is set using
182 | a heuristic given by the median of all pairwise distances.
183 |
184 | seeds : array [n_seeds, n_features]
185 | Point used as initial kernel locations.
186 |
187 | bin_seeding : boolean
188 | If true, initial kernel locations are not locations of all
189 | points, but rather the location of the discretized version of
190 | points, where points are binned onto a grid whose coarseness
191 | corresponds to the bandwidth. Setting this option to True will speed
192 | up the algorithm because fewer seeds will be initialized.
193 | default value: False
194 | Ignored if seeds argument is not None.
195 |
196 | min_bin_freq : int, optional
197 | To speed up the algorithm, accept only those bins with at least
198 | min_bin_freq points as seeds. If not defined, set to 1.
199 |
200 | Returns
201 | -------
202 |
203 | cluster_centers : array [n_clusters, n_features]
204 | Coordinates of cluster centers.
205 |
206 | labels : array [n_samples]
207 | Cluster labels for each point.
208 |
209 | Notes
210 | -----
211 | See examples/cluster/plot_meanshift.py for an example.
212 |
213 | """
214 |
215 | min_bin_freq=1
216 | max_iterations=300
217 | bandwidth = bandwidth if bandwidth != None else estimate_bandwidth(X)
218 | seeds = range(X.shape[0]) #get_bin_seeds(X, bandwidth, min_bin_freq)
219 |
220 | n_samples = X.shape[0]
221 | stop_thresh = 1e-3 * bandwidth # when mean has converged
222 | center_intensity_dict = {}
223 |
224 | #nbrs = NearestNeighbors(radius=bandwidth).fit(X)
225 |
226 | # For each seed, climb gradient until convergence or max_iterations
227 | for my_mean in seeds:
228 | completed_iterations = 0
229 |
230 | while True:
231 | # Find mean of points within bandwidth
232 | #i_nbrs =
233 | points_within = compute_radius_neighbors(my_mean, X, bandwidth)
234 |
235 |
236 | #points_within = X[i_nbrs]
237 | if points_within.size == 0:
238 | break # Depending on seeding strategy this condition may occur
239 | my_old_mean = my_mean # save the old mean
240 | my_mean = get_mean_node(points_within, X)
241 | # If converged or at max_iterations, addS the cluster
242 | if (X[my_mean, my_old_mean] < stop_thresh or
243 | completed_iterations == max_iterations):
244 | center_intensity_dict[my_mean] = points_within.size
245 | break
246 | completed_iterations += 1
247 |
248 | # POST PROCESSING: remove near duplicate points
249 | # If the distance between two kernels is less than the bandwidth,
250 | # then we have to remove one because it is a duplicate. Remove the
251 | # one with fewer points.
252 |
253 | sorted_by_intensity = sorted(center_intensity_dict.items(),
254 | key=lambda tup: tup[1], reverse=True)
255 |
256 | sorted_centers = np.array([tup[0] for tup in sorted_by_intensity])
257 |
258 | unique = np.ones(len(sorted_centers), dtype=np.bool)
259 |
260 | #nbrs = NearestNeighbors(radius=bandwidth).fit(sorted_centers)
261 | for i, center in enumerate(sorted_centers):
262 | if unique[i]:
263 | neighbor_idxs = compute_radius_neighbors(center, X, bandwidth, sorted_centers)
264 | unique[neighbor_idxs] = 0
265 | unique[i] = 1 # leave the current point as unique
266 | cluster_centers = sorted_centers[unique]
267 |
268 |
269 | # ASSIGN LABELS: a point belongs to the cluster that it is closest to
270 | #nbrs = NearestNeighbors(n_neighbors=1).fit(cluster_centers)
271 |
272 | # Not necessary
273 | labels = np.zeros(n_samples, dtype=np.int)
274 | distances, idxs = compute_kneighbors(X, 1, cluster_centers)
275 |
276 | labels = idxs.flatten() #cluster_all == True
277 | #labels.fill(-1) #cluster_all == False
278 |
279 | bool_selector = distances.flatten() <= bandwidth
280 | labels[bool_selector] = idxs.flatten()[bool_selector]
281 |
282 | '''
283 | #AVALIACAO
284 | D = X[~np.eye(X.shape[0],dtype=bool)].reshape(X.shape[0],-1)
285 | print("silhouette:", metrics.silhouette_score(D, labels, metric='mahalanobis'))
286 | print("calinski_harabaz:", metrics.calinski_harabaz_score(D, labels))
287 | '''
288 |
289 | return np.array(cluster_centers) , np.array(labels)
290 |
291 | def save_codebook(centers, labels, trees_file, output):
292 |
293 | img_trees = []
294 | with open(trees_file, 'rb') as f:
295 | while True:
296 | try:
297 | img_trees.append(pickle.load(f))
298 | except EOFError:
299 | break
300 |
301 | D = {}
302 | T = []
303 | for c in centers:
304 | D[labels[c]] = c
305 | img_trees[c].tree.label = labels[c] #já dá a label aqui msm
306 | T.append(img_trees[c])
307 |
308 |
309 | np.savez(output + '_codebook.npz', map=D, trees=T) #dict mapping C -> L
310 |
311 | return D, T
312 |
313 | def save_centers(centers, labels, output):
314 | np.save(output + '_centers.npy', centers)
315 | np.save(output + '_vq-train.npy', labels) #o index da lista de centroids corresponde a label associada
316 |
317 | def main():
318 |
319 | matrix_file = sys.argv[1]
320 | output = sys.argv[2]
321 |
322 | trees_file = sys.argv[4]
323 |
324 | M = np.load(matrix_file)
325 |
326 | bandwidth = estimate_bandwidth(M) if sys.argv[3] == 'None' else float(sys.argv[3])
327 |
328 | print("Bandwidth: {}".format(bandwidth))
329 | # with open('exec/results-batch.txt', 'a') as f:
330 | # f.write("- BWValue = {}\n".format(bandwidth))
331 | # with open('exec/results-batch2.txt', 'a') as f:
332 | # f.write("- asdBWValue = {}\n".format(bandwidth))
333 |
334 | C, L = mean_shift(M, bandwidth)
335 | with open('exec/results-batch.txt', 'a') as f:
336 | f.write('C_size = {}\n'.format(C.size))
337 | with open('exec/results-batch2.txt', 'a') as f:
338 | f.write('C_size = {}\n'.format(C.size))
339 |
340 | save_centers(C, L, output)
341 | D, T = save_codebook(C, L, trees_file, output)
342 |
343 | print(C, C.size)
344 | print(L, L.size)
345 | print(D, len(D))
346 |
347 |
348 | # TODO:Análise do cluster 0; todo código pode ser removido
349 | # cluster0_indexes = np.where(L == 0)[0]
350 | # cluster0_size = cluster0_indexes.shape[0]
351 | # cluster0_matrix = np.zeros((cluster0_size,cluster0_size), dtype=np.float_)
352 |
353 | # ai = 0
354 | # for x,i in zip(M,range(M.shape[0])):
355 | # aj = 0
356 | # if (i not in cluster0_indexes):
357 | # continue
358 | # for y,j in zip(x,range(M.shape[0])):
359 | # if(j not in cluster0_indexes):
360 | # continue
361 | # cluster0_matrix[ai,aj] = M[i,j]
362 | # aj += 1
363 | # ai += 1
364 |
365 | # print(cluster0_matrix[1])
366 |
367 | # cluster0_bandwidth = estimate_bandwidth(cluster0_matrix)
368 | # print("cluster0_bandwidth: {}".format(cluster0_bandwidth))
369 | # cluster0_C, cluster0_L = mean_shift(cluster0_matrix, cluster0_bandwidth)
370 | # print(cluster0_C, cluster0_C.size)
371 | # print(cluster0_L, cluster0_L.size)
372 | main()
373 |
--------------------------------------------------------------------------------
/HoVW/src/pickle4reducer.py:
--------------------------------------------------------------------------------
1 | from multiprocessing.reduction import ForkingPickler, AbstractReducer
2 |
3 | class ForkingPickler4(ForkingPickler):
4 | def __init__(self, *args):
5 | args = list(args)
6 | if len(args) > 1:
7 | args[1] = 2
8 | else:
9 | args.append(2)
10 |
11 | super().__init__(*args)
12 |
13 | @classmethod
14 | def dumps(cls, obj, protocol=4):
15 | return ForkingPickler.dumps(obj, protocol)
16 |
17 | def dump(obj, file, protocol=4):
18 | ForkingPickler4(file, protocol).dump(obj)
19 |
20 | class Pickle4Reducer(AbstractReducer):
21 | ForkingPickler = ForkingPickler4
22 | register = ForkingPickler4.register
23 | dump = dump
--------------------------------------------------------------------------------
/HoVW/src/tree.py:
--------------------------------------------------------------------------------
1 | class ImageTreeNode:
2 | def __init__(self, name, parent, label=None, data=None):
3 | self.name = name
4 | self.label = label
5 | self.parent = parent
6 | self.mask = data
7 | self.depth = -1 #nível da arvore
8 | self.neighbors = -1 #quantidade de nós no mesmo nível
9 | self.childs = []
10 |
11 | def add_child(self, child):
12 | self.childs.append(child)
13 |
14 | def remove_child(self, child):
15 | self.childs.remove(child)
16 |
17 | def set_label(self, label):
18 | self.label = label
19 |
20 | def print_node(self, indent=''):
21 | print(indent, "+ TreeNode(", self.name, "):")
22 | print(indent, "\t- label = ",
23 | ("Unlabeled" if self.label is None else self.label))
24 | print(indent, "\t- depth = ", str(self.depth))
25 | print(indent, "\t- neighbors count = ", str(self.neighbors))
26 | print(indent, "\t- parent =", (self.parent.name, self.parent)
27 | if(self.parent) else 'None')
28 | print(indent, "\t- mask =", self.mask)
29 | print(indent, "\t- childs =", [(c.name, c) for c in self.childs])
30 | print()
31 |
32 | class ImageTree:
33 | def __init__(self, hierarchy, masks, name='-1'):
34 | self.root = ImageTreeNode(name='-1', parent=None,
35 | label=None, data=None)
36 | self.total_nodes = 1#Setado em 1 pq tem a raiz
37 | #Atributo alterado em: _build_subtree;
38 | # _cut_off; _cut_off_none_child
39 | self._build_tree(hierarchy, masks)
40 | self.name = name
41 | self.label = None
42 |
43 | def _build_subtree(self, hierarchy, parent, index,
44 | brothers_list=[]):
45 | node = ImageTreeNode(name=str(index), parent=parent,
46 | label=None, data=hierarchy[index][5])
47 | self.total_nodes += 1
48 | if(hierarchy[index][2] == -1):
49 | if(hierarchy[index][0] == -1):
50 | return node
51 | elif(hierarchy[index][1] == -1): #first leaf
52 | brothers_list.append(node)
53 | bi = hierarchy[index][0]
54 | while(bi != -1 and parent != self.root):
55 | k = self._build_subtree(hierarchy, parent,
56 | bi, brothers_list)
57 | brothers_list.append(k)
58 | bi = hierarchy[bi][0]
59 |
60 | return brothers_list
61 | return node
62 | else:
63 | inf_tree = self._build_subtree(hierarchy, node,
64 | hierarchy[index][2], [])
65 | if(isinstance(inf_tree, list)):
66 | for st in inf_tree: node.add_child(st)
67 | else: node.add_child(inf_tree)
68 |
69 | return node
70 |
71 | def _build_tree(self, hierarchy, masks):
72 | '''
73 | hierarchy[i][0] = Next; .[1] = Previous; .[2] = First Child;
74 | hierarchy[i][3] = Parent; .[4] = Usable (1=T|0=F); .[5] = Mask
75 | '''
76 |
77 | def _merge_hierarchy_mask(hierarchy, masks):
78 | h = []
79 | mask_index = 0
80 | for i in range(len(hierarchy)):
81 | element = hierarchy[i].tolist()
82 | if(element[4] == 1):
83 | element.append(masks[mask_index])
84 | mask_index += 1
85 | else:
86 | element.append(None)
87 | h.append(element)
88 |
89 | return h
90 |
91 | def _build_stack(hierarchy):
92 | stack = []
93 | for i in range(len(hierarchy)):
94 | if(hierarchy[i][3] == -1):
95 | stack.append(i)
96 |
97 | return stack
98 |
99 | def _cut_off_none_child(node):
100 | for child in list(node.childs):
101 | if child.mask is None:
102 | node.childs.remove(child)
103 | self.total_nodes -= 1
104 | else:
105 | _cut_off_none_child(child)
106 |
107 | hierarchy = _merge_hierarchy_mask(hierarchy, masks)
108 | stack = _build_stack(hierarchy)
109 | while(stack):
110 | index = stack.pop()
111 | subtree = self._build_subtree(hierarchy, self.root, index, [])
112 | if(isinstance(subtree,list)):
113 | for st in subtree: self.root.add_child(st)
114 | else: self.root.add_child(subtree)
115 |
116 | _cut_off_none_child(self.root)
117 |
118 | def _cut_off(self, value, node):
119 | for child in list(node.childs):
120 | if(child.mask.area < value):
121 | self.total_nodes -= 1 + len(child.childs)
122 | node.childs.remove(child)
123 | else:
124 | self._cut_off(value, child)
125 |
126 | def cut_off(self, value):
127 | def _sum_nodes_area(node, total_area):
128 | try:
129 | total_area += node.mask.area
130 | except AttributeError as err:
131 | #print(err)
132 | pass
133 | for child in list(node.childs):
134 | total_area = _sum_nodes_area(child, total_area)
135 |
136 | return total_area
137 |
138 |
139 | value = value * _sum_nodes_area(self.root, 0) / self.total_nodes
140 | self._cut_off(value, self.root)
141 |
142 | def print_tree(self, simple=None):
143 | def _print_tree_node_simple(node, indent):
144 | print(indent, '[', node.name, ']')
145 | indent += '\t'
146 | for child in node.childs:
147 | _print_tree_node_simple(child, indent)
148 |
149 | def _print_tree_simple():
150 | print('[', self.root.name, ']')
151 | indent = '\t'
152 | for child in self.root.childs:
153 | _print_tree_node_simple(child, indent)
154 |
155 | def _print_tree_node_complete(node, indent):
156 | node.print_node(indent=indent)
157 | indent += '\t'
158 | for child in node.childs:
159 | _print_tree_node_complete(child, indent)
160 |
161 | def _print_tree_complete():
162 | self.root.print_node()
163 | indent = '\t'
164 | for child in self.root.childs:
165 | _print_tree_node_complete(child, indent)
166 |
167 | if simple:
168 | _print_tree_simple()
169 | else:
170 | _print_tree_complete()
171 |
172 | def _draw_tree(self, node, output):
173 | try:
174 | node.mask.draw('c', output, node.name)
175 | except AttributeError as err:
176 | #print(err)
177 | pass
178 | for child in list(node.childs):
179 | self._draw_tree(child, output)
180 |
181 | def draw_tree(self, output):
182 | self._draw_tree(self.root, output)
183 |
184 | def _get_tree_data(self, node, data):
185 | try:
186 | data.append(node)
187 | except AttributeError as err:
188 | #print(err)
189 | pass
190 | for child in list(node.childs):
191 | data = self._get_tree_data(child, data)
192 |
193 | return data
194 |
195 | def get_tree_data(self): #return list of nodes
196 | return self._get_tree_data(self.root, [])
197 |
198 | def _get_tree_masks(self, node, data):
199 | try:
200 | data.append(node.mask)
201 | except AttributeError as err:
202 | #print(err)
203 | pass
204 | for child in list(node.childs):
205 | data = self._get_tree_masks(child, data)
206 |
207 | return data
208 |
209 | def get_tree_masks(self): #return list of nodes
210 | return self._get_tree_masks(self.root, [])
211 |
212 | def _set_labels(self, node, labels):
213 | try:
214 | node.set_label(labels.pop(0))
215 | except AttributeError as err:
216 | #print(err)
217 | pass
218 | except IndexError as err:
219 | print("DEU UMA MERDA CABULOSA")
220 | print(err)
221 | exit(1)
222 | for child in list(node.childs):
223 | self._set_labels(child, labels)
224 |
225 | def set_labels(self, labels):
226 | '''
227 | root tem que ser vazio: [None] + labels
228 | '''
229 | labels = [None] + labels
230 | self._set_labels(self.root, labels)
231 |
232 | def _set_nodes_depth(self, node, depth, width):
233 | try:
234 | node.depth = depth
235 | if(depth not in width):
236 | width[depth] = 1
237 | else:
238 | width[depth] += 1
239 | except AttributeError as err:
240 | #print(err)
241 | pass
242 | except IndexError as err:
243 | print("DEU UMA MERDA CABULOSA")
244 | print(err)
245 | exit(1)
246 |
247 | for child in list(node.childs):
248 | _, width = self._set_nodes_depth(child, depth+1, width)
249 |
250 | node.neighbors = width[depth]
251 | return depth, width
252 |
253 | def set_nodes_depth(self):
254 | _, width = self._set_nodes_depth(self.root, 1, {})
255 | return width #dict depth : width
256 |
257 | def _get_apted(self, node, apted, depth, width):
258 | try:
259 | apted += '{'
260 | apted += str(node.label) if node.label != None else '-1'
261 |
262 | if(depth not in width):
263 | width[depth] = 1
264 | else:
265 | width[depth] += 1
266 | except AttributeError as err:
267 | #print(err)
268 | pass
269 | except IndexError as err:
270 | print("DEU UMA MERDA CABULOSA")
271 | print(err)
272 | exit(1)
273 |
274 | for child in list(node.childs):
275 | apted, _, width = self._get_apted(child, apted, depth+1, width)
276 | apted += '}'
277 |
278 | return apted, depth, width
279 |
280 | def set_apted(self):
281 |
282 | apted, _, width = self._get_apted(self.root, '', 1, {})
283 | apted += '}'
284 |
285 | return apted, width
--------------------------------------------------------------------------------
/HoVW/src/trees-distance.py:
--------------------------------------------------------------------------------
1 | import pickle, argparse, collections, time, multiprocessing, math
2 | from itertools import product, combinations, islice
3 | from functools import partial
4 | from os import listdir, path
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import pickle4reducer
8 | from scipy.spatial.distance import cdist
9 | from apted import APTED, Config, PerEditOperationConfig
10 | from apted.helpers import Tree
11 | from image import Image
12 |
13 | class ImageTreeDistance(Config):
14 | def __init__(self, centroids_matrix):
15 | self.centroids_matrix = centroids_matrix
16 | self.centroids_mean = centroids_matrix.mean()
17 |
18 | def delete(self, node):
19 | """Calculates the cost of deleting a node"""
20 | #a = np.max([(node.neighbors), (node.depth)])
21 | a = np.max([np.log2(node.neighbors), np.log2(node.depth)])
22 | a = 1/a if a > 0 else 0
23 | return self.centroids_mean * a
24 |
25 | def insert(self, node):
26 | """Calculates the cost of inserting a node"""
27 | return self.delete(node)
28 |
29 | def rename(self, node1, node2):
30 | """Compares attribute .value of trees"""
31 | # ATTENTION: if the node is a root node and if try to relabeled
32 | # it the cost is zero
33 | if node1.label == None or node2.label == None:
34 | return 0
35 |
36 | return self.centroids_matrix[node1.label][node2.label]
37 |
38 | def children(self, node):
39 | return node.childs
40 |
41 | def init_args():
42 | """Input Parameters"""
43 | parser = argparse.ArgumentParser()
44 | parser.add_argument('-i', help='images tree labeled file')
45 | parser.add_argument('-c', help='clusters distance file')
46 | parser.add_argument('-m', help='output trees distance matrix')
47 | parser.add_argument('-d', help='apted custom tree edit distance class')
48 | parser.add_argument('-p', help='qtd parallel process')
49 |
50 | return parser.parse_args()
51 |
52 | def heatmap_plot(distances):
53 | plt.imshow(distances, cmap='inferno', interpolation='nearest')
54 | plt.colorbar()
55 | plt.title("Hierarchies Distance Matrix Heatmap")
56 | plt.savefig("distance_heatmap.png")
57 |
58 | def calc_dist_trees(t1, t2, clusters_dist):
59 | print(t1.tree.name, t2.tree.name)
60 | return APTED(t1.tree.root, t2.tree.root,
61 | ImageTreeDistance(clusters_dist)).compute_edit_distance()
62 |
63 | def combinations_matrix(shape, combinations_list):
64 | A = np.zeros(shape, dtype=np.float_)
65 | limit = combinations_list.shape[0]-1
66 | b0 = 0
67 | for a,j in zip(A, range(A.shape[1]-1)):
68 | t = a.shape[0] - (j+1)
69 | b1 = b0 + t
70 | b1 = b1 if b1 < limit else limit
71 | if(b0 == b1): b1 += 1
72 | assign = combinations_list[b0:b1]
73 | a[j+1:] = assign
74 | A[j+1:,j] = assign
75 | b0 = b1
76 |
77 | return A
78 |
79 | def main():
80 | args = init_args()
81 |
82 | trees_path = args.i
83 | cdist_path = args.c
84 | apted_dist_save = args.d
85 | tmatrix_path = args.m
86 | qtd_process = int(args.p)
87 |
88 | img_trees = []
89 | with open(trees_path, 'rb') as f:
90 | while True:
91 | try:
92 | img_trees.append(pickle.load(f))
93 | except EOFError:
94 | break
95 |
96 | a = clusters_dist = np.load(cdist_path)
97 |
98 | i, j = np.argwhere(a == np.min(a[np.where(a > 0)]))[0]
99 | print("Min = A[%d,%d] = %.16f" % (i, j, a[i,j]))
100 |
101 | i,j = np.unravel_index(a.argmax(), a.shape)
102 | print("Max = A[%d,%d] = %.16f" % (i, j, a[i,j]))
103 |
104 | print("Mean(A) =", a.mean(), "\nMedian(A) =", np.median(a))
105 |
106 | with open(path.join(apted_dist_save), 'wb') as handle:
107 | pickle.dump(ImageTreeDistance(clusters_dist), handle, protocol=pickle.HIGHEST_PROTOCOL)
108 |
109 | calc_dist_trees_partial = partial(calc_dist_trees,clusters_dist=clusters_dist)
110 |
111 | #parallel
112 | t0 = time.time()
113 |
114 | repetition = 2
115 | comb_iter = combinations(img_trees, r=repetition)
116 |
117 | """
118 | n!/(r!*(n-r)!) = 1/r! * n * (n-1) * ... * (n-r+1)
119 | """
120 | comb_iter_size = len(img_trees)*(len(img_trees)-1)//math.factorial(repetition)
121 |
122 | tree_distances = []
123 | chuncks = 1
124 |
125 | # ctx = multiprocessing.get_context()
126 | # ctx.reducer = pickle4reducer.Pickle4Reducer()
127 |
128 | for i in range(chuncks):
129 | print("Chunck {}".format(i))
130 | comb_sliced = islice(comb_iter, 0, comb_iter_size//chuncks)
131 | with multiprocessing.Pool(processes=qtd_process) as pool:
132 | td = pool.starmap(calc_dist_trees_partial, comb_sliced)
133 | tree_distances += td
134 |
135 | tree_distances = combinations_matrix((len(img_trees),len(img_trees)), np.array(tree_distances))
136 |
137 |
138 | print("Parallel Time: ", time.time() - t0)
139 |
140 | # #sequential
141 | # tree_distances = np.zeros((len(img_trees), len(img_trees)), np.float_)
142 | # t0 = time.time()
143 |
144 | # for t1, i in zip(img_trees, range(len(img_trees))):
145 | # print(i)
146 | # tree_distances[i] = ([calc_dist_trees_partial(t1, t2) for t2 in img_trees])
147 |
148 | # print("Sequential Time: ", time.time() - t0)
149 |
150 | print(tree_distances)
151 | np.save(tmatrix_path, tree_distances)
152 |
153 | heatmap_plot(tree_distances)
154 |
155 | if __name__ == "__main__":
156 | main()
--------------------------------------------------------------------------------
/HoVW/src/utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | import os, time
4 |
5 | class Log(object):
6 | """General logs files management.
7 |
8 | Parameters
9 | ----------
10 | path: Path for log's file.
11 | name: Log's file name.
12 |
13 | Attributes
14 | ----------
15 | path: string
16 | Path where the log file is in.
17 | name: string, default = None
18 | Name of the log file.
19 | stime: time
20 | Object instantiation time.
21 | etime: time, default = None
22 | File closing time.
23 | log_file: file
24 | File object.
25 | """
26 |
27 | def __init__(self, path, name=None):
28 | self.path = path
29 | self.name = name + '.log' if name else '.log'
30 | self.stime = time.time()
31 | self.etime = None
32 | self.log_file = open(os.path.join(self.path, self.name), 'w')
33 |
34 | def write(self, **kwargs):
35 | """Write in log's file.
36 |
37 | Parameters
38 | ----------
39 | kwargs: Dictionary, key = signature, value = parameter
40 | Arbitrary sequence of parameters.
41 | """
42 |
43 | for a in kwargs:
44 | self.log_file.write(str(a.upper()) + ": ")
45 | self.log_file.write(str(kwargs[a]) + '\n')
46 |
47 | def close(self):
48 | """Closes the log's file.
49 | """
50 |
51 | self.etime = time.time()
52 | a = self.etime-self.stime
53 | ts = '%s s = %s m' % (a, a/60)
54 | self.write(start_time=self.stime, end_time=self.etime, timestamp=ts)
55 | self.log_file.close()
--------------------------------------------------------------------------------
/HoVW/views/find_clusters_neighbor.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from scipy.cluster import hierarchy
3 |
4 | Z = np.load("Master/data/dendogram.npy")
5 |
6 | clusters = []
7 | k = 34
8 |
9 | clusters.append(k)
10 | #print(clusters)
11 |
12 | asd = True
13 |
14 | while(asd == True):
15 | if(len(clusters)==458):
16 | break
17 | x = 1; y = 0
18 | for z,i in zip(Z, range(Z.shape[0])):
19 | if(int(z[0]) == k):
20 | if(z[1] < Z.shape[0]): #caso folha
21 | clusters.append(int(z[1]))
22 | #print(clusters)
23 | k = Z.shape[0] + i+1
24 | else:
25 | idx = int((z[1]%Z.shape[0])-1)
26 | if(Z[idx][0] < Z.shape[0] and Z[idx][1] < Z.shape[0]): # filhos folha-folha
27 | clusters.append(int(Z[idx][0]))
28 | clusters.append(int(Z[idx][1]))
29 | #print(clusters)
30 | k = Z.shape[0] + i+1
31 | elif(Z[idx][0] < Z.shape[0]): # filhos folha-nfolha
32 | clusters.append(int(Z[idx][0]))
33 | #print(clusters)
34 | k = int((Z[idx][1]%Z.shape[0])-1)
35 | elif(Z[idx][1] < Z.shape[0]): # filhos nfolha-folha
36 | clusters.append(int(Z[idx][1]))
37 | #print(clusters)
38 | k = int((Z[idx][0]%Z.shape[0])-1)
39 | else:
40 | k = int((Z[idx][x]%Z.shape[0])-1)
41 | print("saiu 1", x)
42 | x = 0
43 |
44 | elif(int(z[1]) == k):
45 | if(z[0] < Z.shape[0]): #caso folha
46 | clusters.append(int(z[0]))
47 | #print(clusters)
48 | k = Z.shape[0] + i+1
49 | else:
50 | idx = int((z[0]%Z.shape[0])-1)
51 | if(Z[idx][0] < Z.shape[0] and Z[idx][1] < Z.shape[0]): # caso folha-folha
52 | clusters.append(int(Z[idx][0]))
53 | clusters.append(int(Z[idx][1]))
54 | #print(clusters)
55 | k = Z.shape[0] + i+1
56 | elif(Z[idx][0] < Z.shape[0]): # filhos folha-nfolha
57 | clusters.append(int(Z[idx][0]))
58 | #print(clusters)
59 | k = int((Z[idx][1]%Z.shape[0])-1)
60 | elif(Z[idx][1] < Z.shape[0]): # filhos nfolha-folha
61 | clusters.append(int(Z[idx][1]))
62 | #print(clusters)
63 | k = int((Z[idx][0]%Z.shape[0])-1)
64 | else:
65 | k = int((Z[idx][y]%Z.shape[0])-1)
66 | print("saiu 2", y)
67 | y = 1
68 |
69 | print(clusters)
70 |
71 |
--------------------------------------------------------------------------------
/HoVW/views/reveal_clusters-graphs.py:
--------------------------------------------------------------------------------
1 | import os, shutil, pickle, sys, re, collections
2 | sys.path.insert(0, 'src')
3 | from image import Image
4 |
5 | def handle_tree(tree, path):
6 | name = tree.name
7 | label = str(tree.label)
8 |
9 | print(name, label)
10 |
11 | dst = os.path.join(path, label)
12 | if label not in os.listdir(path):
13 | os.mkdir(dst)
14 |
15 | dst += '/' + re.sub('.*\/', '', name)
16 |
17 | shutil.copyfile(name, dst)
18 |
19 | def retrive_imgs(font):
20 | img_trees = []
21 | for t in font:
22 | f_name = 'Master/data/img_trees_labeled_full-' + t + '.pickle'
23 | print("Reading from:", f_name)
24 | with open(f_name, 'rb') as f:
25 | while True:
26 | try:
27 | img_trees.append(pickle.load(f))
28 | except EOFError:
29 | break
30 |
31 | return img_trees
32 |
33 | def clusters_len(img_trees):
34 | d = {}
35 | for it in img_trees:
36 | l = it.tree.label
37 | if l not in d: d[l] = 1
38 | else: d[l] += 1
39 |
40 | return collections.OrderedDict(sorted(d.items(), key=lambda t: t[0]))
41 |
42 | def make_dir(root, relative):
43 |
44 | if 'clusters' not in os.listdir(root):
45 | os.mkdir(os.path.join(root, 'clusters'))
46 |
47 | clusters = os.path.join(root, 'clusters')
48 |
49 | if relative in os.listdir(clusters):
50 | shutil.rmtree(os.path.join(clusters, relative))
51 |
52 | root_clusters = os.path.join(clusters, relative)
53 | os.mkdir(root_clusters)
54 | os.mkdir(os.path.join(root_clusters, "full"))
55 | os.mkdir(os.path.join(root_clusters, "train"))
56 | os.mkdir(os.path.join(root_clusters, "test"))
57 |
58 | return root_clusters
59 |
60 | def log(font, d):
61 | f = open(font + '.txt', 'w')
62 | for k,v in d.items():
63 | f.write(str(k) + ":" + str(v) + '\n')
64 |
65 | def main():
66 |
67 | root = 'Master'
68 | relative = 'graphs'
69 | root_clusters = make_dir(root, relative)
70 |
71 | for t in [['train']]:#, ['test'], ['train', 'test']]:
72 | img_trees = retrive_imgs(t)
73 |
74 | dst = os.path.join(root_clusters, t[0]) \
75 | if len(t) == 1 else os.path.join(root_clusters, 'full')
76 |
77 | for it in img_trees:
78 | handle_tree(it.tree, dst)
79 |
80 | d = clusters_len(img_trees)
81 | print(d)
82 |
83 | log(os.path.join(dst, 'log'), d)
84 |
85 | if __name__ == '__main__':
86 | main()
--------------------------------------------------------------------------------
/HoVW/views/reveal_clusters-nodes.py:
--------------------------------------------------------------------------------
1 | import os, shutil, pickle, sys, re, collections
2 | sys.path.insert(0, 'src')
3 | from image import Image, Mask
4 | from tree import ImageTree, ImageTreeNode
5 |
6 | def handle_tree(tree, path):
7 |
8 | i = 0
9 | for n in tree.get_tree_data()[1:]:
10 | label = str(n.label)
11 |
12 | if label == None or n.mask == None:
13 | continue
14 |
15 | name = tree.name + ' ' + str(i)
16 |
17 | print(name, label)
18 |
19 | dst = os.path.join(path, label)
20 | if label not in os.listdir(path):
21 | os.mkdir(dst)
22 |
23 | dst += '/' + re.sub('.*\/', '', name)
24 | n.mask.draw(output=dst, header='-'+str(i))
25 | i += 1
26 |
27 | def retrive_imgs(font):
28 | img_trees = []
29 | for t in font:
30 | f_name = 'Master/data/img_trees_labeled_full-' + t + '.pickle'
31 | print("Reading from:", f_name)
32 | with open(f_name, 'rb') as f:
33 | while True:
34 | try:
35 | img_trees.append(pickle.load(f))
36 | except EOFError:
37 | break
38 |
39 | return img_trees
40 |
41 | def clusters_len(img_trees):
42 | d = {}
43 | for it in img_trees:
44 | for inode in it.tree.get_tree_data()[1:]:
45 | l = inode.label
46 | if l not in d: d[l] = 1
47 | else: d[l] += 1
48 | print(d)
49 | return collections.OrderedDict(sorted(d.items(), key=lambda t: t[0]))
50 |
51 | def make_dir(root, relative):
52 |
53 | if 'clusters' not in os.listdir(root):
54 | os.mkdir(os.path.join(root, 'clusters'))
55 |
56 | clusters = os.path.join(root, 'clusters')
57 |
58 | if relative in os.listdir(clusters):
59 | shutil.rmtree(os.path.join(clusters, relative))
60 |
61 | root_clusters = os.path.join(clusters, relative)
62 | os.mkdir(root_clusters)
63 | os.mkdir(os.path.join(root_clusters, "full"))
64 | os.mkdir(os.path.join(root_clusters, "train"))
65 | os.mkdir(os.path.join(root_clusters, "test"))
66 |
67 | return root_clusters
68 |
69 | def log(font, d):
70 | f = open(font + '.txt', 'w')
71 | for k,v in d.items():
72 | f.write(str(k) + ":" + str(v) + '\n')
73 |
74 | def main():
75 |
76 | root = 'Master'
77 | relative = 'nodes'
78 | root_clusters = make_dir(root, relative)
79 |
80 | for t in [['train'], ['test'], ['train', 'test']]:
81 | img_trees = retrive_imgs(t)
82 |
83 | dst = os.path.join(root_clusters, t[0]) \
84 | if len(t) == 1 else os.path.join(root_clusters, 'full')
85 |
86 | for it in img_trees:
87 | it.tree.root
88 | handle_tree(it.tree, dst)
89 |
90 | d = clusters_len(img_trees)
91 | print(d)
92 |
93 | log(os.path.join(dst, 'log'), d)
94 |
95 | if __name__ == '__main__':
96 | main()
--------------------------------------------------------------------------------
/HoVW/views/visualize_graph_spatial_distribution.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import matplotlib.pyplot as plt
4 | from mpl_toolkits.mplot3d import Axes3D
5 | import matplotlib.animation as animation
6 |
7 | class SpacePoint():
8 | def __init__(self, coordinates=None, index=None, label=None):
9 | if coordinates == None:
10 | self.coordinates = self._np_coordinates((-1,-1,-1))
11 | else:
12 | self.coordinates = self._np_coordinates(coordinates)
13 |
14 | if index == None:
15 | self.index = -1
16 | else:
17 | self.index = index
18 |
19 | if label == None:
20 | self.label = -1
21 | else:
22 | self.label = label
23 |
24 | def _np_coordinates(self,c):
25 | return np.array([c[0],c[1],c[2]], dtype=np.float_)
26 |
27 | def set_coordinates(self, c):
28 | self.coordinates = c
29 |
30 | def set_label(self, l):
31 | self.label = l
32 |
33 | def pprint(self):
34 | print("Point {} ; Label {}: \n\t- x: {}\n\t- y: {}\n\t- z: {}"
35 | .format(self.index, self.label, self.coordinates[0], self.coordinates[1], self.coordinates[2]))
36 |
37 |
38 | def update_lines(num, dataLines, lines):
39 | for line, data in zip(lines, dataLines):
40 | # NOTE: there is no .set_data() for 3 dim data...
41 | line.set_data(data[0:2, :num])
42 | line.set_3d_properties(data[2, :num])
43 | return lines
44 |
45 | def d2c(D):
46 | visited = []
47 | all_points = []
48 | #points are tuple of: ndarray for position and distance's matrix index
49 | p1 = SpacePoint((0,0,0), 0)
50 | visited.append(0)
51 |
52 | p1maxdist = np.amax(D[0])
53 | p2index = np.argwhere(D == p1maxdist)[0][1]
54 |
55 | p2 = SpacePoint((p1maxdist,0,0), p2index)
56 | visited.append(p2index)
57 |
58 | all_points.append(p1)
59 | all_points.append(p2)
60 |
61 | for i in range(D[0].shape[0]):
62 | if i not in visited:
63 | p3 = SpacePoint((-1,-1,-1), i)
64 | visited.append(i)
65 | break
66 |
67 | p3x = D[p1.index][p2.index] ** 2 + D[p1.index][p3.index] ** 2 - D[p2.index][p3.index] ** 2
68 | p3x = p3x/(2*D[p1.index][p2.index])
69 | p3y = np.sqrt(D[p1.index][p3.index] ** 2 - p3x ** 2)
70 |
71 | p3.set_coordinates((p3x, p3y, 0))
72 |
73 | all_points.append(p3)
74 |
75 | for i in range(D[0].shape[0]):
76 | if i not in visited:
77 | p4 = SpacePoint((-1,-1,-1), i)
78 | visited.append(i)
79 |
80 | p4x = D[p1.index][p2.index] ** 2 + D[p1.index][p4.index] ** 2 - D[p2.index][p4.index] ** 2
81 | p4x = p4x/(2*D[p1.index][p2.index])
82 |
83 | p4y = p3.coordinates[0] ** 2 + p3.coordinates[1] ** 2 - D[p1.index][p4.index] ** 2
84 | p4y = p4y - 2 * p3.coordinates[0] * p4x - D[p3.index][p4.index] ** 2
85 | p4y = p4y / (2 * p3.coordinates[1])
86 |
87 | p4z = np.sqrt(D[p1.index][p4.index] ** 2 - p4x - p4y)
88 |
89 | p4.set_coordinates((p4x, p4y, p4z))
90 |
91 | all_points.append(p4)
92 |
93 | return all_points
94 |
95 | if __name__ == '__main__':
96 | colors183 = ["#ff0000", "#ffc480", "#00b330", "#266399", "#621d73", "#f20000", "#8c6c46", "#004011", "#80c4ff", "#2e1a33", "#660000", "#59442d", "#264d30", "#001433", "#c299cc", "#330000", "#a6927c", "#608068", "#295ba6", "#47004d", "#994d4d", "#594f43", "#008c38", "#bfd9ff", "#d900ca", "#4c2626", "#ffaa00", "#1a3324", "#8698b3", "#ff80f6", "#331a1a", "#7f5500", "#a3d9b8", "#003de6", "#bf60b9", "#cc9999", "#593c00", "#00ff88", "#001b66", "#4d264a", "#b21800", "#bf8f30", "#33cc85", "#3662d9", "#4d394b", "#ff5940", "#a68a53", "#1a6642", "#1a2e66", "#b3008f", "#591f16", "#d9c7a3", "#29a67c", "#6c89d9", "#73005c", "#e58273", "#e5b800", "#73e6bf", "#2d3959", "#401036", "#663a33", "#403610", "#86b3a4", "#565e73", "#ffbff2", "#ffc8bf", "#f2da79", "#30403a", "#393e4d", "#997391", "#997873", "#736739", "#00ffcc", "#23318c", "#ff00aa", "#4d3c39", "#999173", "#bffff2", "#8091ff", "#994d80", "#731f00", "#bfb300", "#00f2e2", "#202440", "#33262f", "#cc5c33", "#8c8300", "#00998f", "#b6bef2", "#d90074", "#8c3f23", "#665f00", "#00403c", "#0000b3", "#660036", "#ffa280", "#a6a053", "#1d736d", "#0000a6", "#e5005c", "#b27159", "#333226", "#00eeff", "#000040", "#8c234d", "#7f5140", "#dae639", "#005359", "#737399", "#401023", "#d9b1a3", "#494d13", "#0d3033", "#262633", "#ff80b3", "#ff6600", "#d5d9a3", "#6cd2d9", "#3a29a6", "#592d3e", "#b24700", "#526600", "#4d9499", "#4100f2", "#d9a3b8", "#662900", "#b6f23d", "#00ccff", "#1b0066", "#735662", "#331400", "#9fbf60", "#23778c", "#170d33", "#ff0044", "#d97736", "#74b32d", "#bff2ff", "#896cd9", "#b20030", "#7f4620", "#57d900", "#566d73", "#7736d9", "#b22d50", "#ffb380", "#315916", "#0099e6", "#473366", "#8c4659", "#bf8660", "#1c330d", "#003c59", "#440080", "#cc001b", "#402d20", "#598040", "#23698c", "#754d99", "#990014", "#ffd9bf", "#4c5943", "#0d2633", "#655673", "#4c000a", "#ff8800", "#87a67c", "#609fbf", "#6f00a6", "#731d28", "#995200", "#0e6600", "#335566", "#2b0040", "#d96c7b", "#593000", "#90ff80", "#7c98a6", "#ca79f2", "#331b00", "#00ff00", "#262f33", "#b800e6", "#e59539", "#bfffbf", "#0088ff"]
97 | distances = np.genfromtxt("Master/data/tree_distances_matrix-train.npy")
98 | labels = np.load("Master/data/trees_clustered_vq-train.npy")
99 |
100 | points = d2c(distances)
101 |
102 | #assign labels to points
103 | for p in points:
104 | p.set_label(labels[p.index])
105 | p.pprint()
106 |
107 |
108 | fig = plt.figure()
109 | ax = fig.add_subplot(111, projection='3d')
110 |
111 | plt.savefig("3d-tree-distance-view.png")
112 |
113 | for p in points:
114 | x, y, z = p.coordinates
115 | ax.scatter(x, y, z, c=colors183[p.label])
116 |
117 | ax.set_xlabel('X')
118 | ax.set_ylabel('Y')
119 | ax.set_zlabel('Z')
120 |
121 | ax.set_title('Trees distance view')
122 |
123 | plt.show()
--------------------------------------------------------------------------------
/HoVW/views/visualize_node_spatial_distribution.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Prograf-UFF/HoVW/4cb3ee59f9a91da877da83504cb4f8a61d1f7951/HoVW/views/visualize_node_spatial_distribution.py
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Hierarchy-of-Visual-Words: a Learning-based Approach for Trademark Image Retrieval
2 | The Hierarchy-of-Visual-Words (HoVW) is a trademark image retrieval method that decomposes images into simpler geometric shapes and defines a descriptor for trademark image representation by encoding the hierarchical arrangement of component shapes. The proposed hierarchical organization of visual data stores each component shape as a visual word. It is capable of representing the geometry of individual elements and the topology of the trademark image, making the descriptor robust against linear as well as to some level of nonlinear transformation.
3 |
4 | ---
5 | ### Check out our paper at [arXiv](https://arxiv.org/abs/1908.02786).
6 |
7 | |
|:trophy: [Best Undergraduate Work Award]()
:trophy: [Best Computer Vision/Image Processing/Pattern Recognition Main Track Paper Award]()
at the [32nd Conference on Graphics, Patterns and Images (SIBGRAPI) 2019](http://www.mat.puc-rio.br/sibgrapi2019/)
8 | |:-:|:-|
9 |
10 | ## Cite
11 |
12 | ```
13 | @inproceedings{lourenco2019,
14 | title = {{Hierarchy-of-Visual-Words: a Learning-based Approach for Trademark Image Retrieval}},
15 | author = {Louren\c{c}o, V\'{i}tor N. and Silva, Gabriela G. and Fernandes, Leandro A. F.},
16 | booktitle = {Proceedings of the 32nd Conference on Graphics, Patterns and Images (SIBGRAPI)},
17 | year={2019},
18 | }
19 | ```
20 |
21 | ## Run
22 | To evaluate the HoVW framework follow the `HoVW/pipeline.sh` (Linux or MacOS) or `HoVW/pipeline.sh` (Windows).
23 |
24 | ## Licence
25 | All code is released under the [GNU General Public License](https://www.gnu.org/licenses/), version 3, or (at your option) any later version.
26 |
--------------------------------------------------------------------------------
/wheels/mahotas-1.4.4-cp36-cp36m-win_amd64.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Prograf-UFF/HoVW/4cb3ee59f9a91da877da83504cb4f8a61d1f7951/wheels/mahotas-1.4.4-cp36-cp36m-win_amd64.whl
--------------------------------------------------------------------------------