├── iphone_price.csv └── predict_iphone_price.py /iphone_price.csv: -------------------------------------------------------------------------------- 1 | version,price 2 | 1,499 3 | 2,599 4 | 3,599 5 | 4,649 6 | 5,649 7 | 6,749 8 | 7,769 9 | 8,799 10 | 9,949 11 | 10,999 12 | 11,1249 13 | 12,1399 -------------------------------------------------------------------------------- /predict_iphone_price.py: -------------------------------------------------------------------------------- 1 | import pandas 2 | import matplotlib.pyplot as plt 3 | from sklearn.linear_model import LinearRegression 4 | data = pandas.read_csv('iphone_price.csv') 5 | plt.scatter(data['version'], data['price']) 6 | plt.show() 7 | model = LinearRegression() 8 | model.fit(data[['version']], data[['price']]) 9 | print(model.predict([[30]])) --------------------------------------------------------------------------------