├── .gitignore
├── Thumbs.db
├── image_postprocess
├── __init__.py
├── utils
│ ├── exif.py
│ ├── gaussian_noise.py
│ ├── perturbation.py
│ ├── __init__.py
│ ├── autowb.py
│ ├── clahe.py
│ ├── non_semantic_unmarker.py
│ ├── lbp_normalization.py
│ ├── glcm_normalization.py
│ ├── fourier_pipeline.py
│ ├── fourier_pipeline_new_algo.py
│ ├── blend.py
│ └── color_lut.py
├── camera_pipeline.py
└── processor.py
├── __init__.py
├── ui_utils
├── __init__.py
├── worker.py
├── collapsible_box.py
├── theme.py
├── analysis_panel.py
└── main_window.py
├── nodes_utils
├── __init__.py
├── ns_opt.py
└── cam_opt.py
├── run.sh
├── requirements.txt
├── run.py
├── config.ini
├── utils.py
├── README.md
├── nodes.py
└── LICENSE
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | .vscode/
--------------------------------------------------------------------------------
/Thumbs.db:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PurinNyova/Image-Detection-Bypass-Utility/HEAD/Thumbs.db
--------------------------------------------------------------------------------
/image_postprocess/__init__.py:
--------------------------------------------------------------------------------
1 | from .processor import process_image
2 |
3 | __all__ = ['process_image']
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
1 | from .nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
2 |
3 | __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']
--------------------------------------------------------------------------------
/ui_utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .main_window import MainWindow
2 | from .theme import apply_dark_palette
3 |
4 | __all__ = ['MainWindow', 'apply_dark_palette']
--------------------------------------------------------------------------------
/nodes_utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .cam_opt import CameraOptionsNode
2 | from .ns_opt import NSOptionsNode
3 |
4 | __all__ = [
5 | "CameraOptionsNode",
6 | "NSOptionsNode",
7 | ]
--------------------------------------------------------------------------------
/image_postprocess/utils/exif.py:
--------------------------------------------------------------------------------
1 | from PIL import Image
2 |
3 | def remove_exif_pil(img: Image.Image) -> Image.Image:
4 | data = img.tobytes()
5 | new = Image.frombytes(img.mode, img.size, data)
6 | return new
--------------------------------------------------------------------------------
/run.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | pip install pyqt5 pillow numpy matplotlib piexif lpips
3 | pip install torch torchvision --index-url https://download.pytorch.org/whl/cu126
4 | pip install torch torchvision
5 | pip install scikit-image
6 | python run.py
7 |
8 |
9 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | scikit-image
2 | pyqt5
3 | pillow
4 | numpy
5 | matplotlib
6 | scikit-image
7 | piexif
8 | opencv-python
9 | --extra-index-url https://download.pytorch.org/whl/cu126
10 | torch==2.8.0+cu126
11 | torchvision==0.23.0+cu126
12 | scipy
13 | lpips
14 |
--------------------------------------------------------------------------------
/image_postprocess/utils/gaussian_noise.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def add_gaussian_noise(img_arr: np.ndarray, std_frac=0.02, seed=None) -> np.ndarray:
4 | if seed is not None:
5 | np.random.seed(seed)
6 | std = std_frac * 255.0
7 | noise = np.random.normal(loc=0.0, scale=std, size=img_arr.shape)
8 | out = img_arr.astype(np.float32) + noise
9 | out = np.clip(out, 0, 255).astype(np.uint8)
10 | return out
--------------------------------------------------------------------------------
/image_postprocess/utils/perturbation.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def randomized_perturbation(img_arr: np.ndarray, magnitude_frac=0.008, seed=None) -> np.ndarray:
4 | if seed is not None:
5 | np.random.seed(seed)
6 | mag = magnitude_frac * 255.0
7 | perturb = np.random.uniform(low=-mag, high=mag, size=img_arr.shape)
8 | out = img_arr.astype(np.float32) + perturb
9 | out = np.clip(out, 0, 255).astype(np.uint8)
10 | return out
--------------------------------------------------------------------------------
/image_postprocess/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .autowb import auto_white_balance_ref
2 | from .clahe import clahe_color_correction
3 | from .color_lut import load_lut, apply_lut
4 | from .exif import remove_exif_pil
5 | from .fourier_pipeline import fourier_match_spectrum
6 | from .gaussian_noise import add_gaussian_noise
7 | from .perturbation import randomized_perturbation
8 | from .glcm_normalization import glcm_normalize
9 | from .lbp_normalization import lbp_normalize
10 | from .non_semantic_unmarker import attack_non_semantic
11 | from .blend import blend_colors
12 |
13 | __all__ = [
14 | 'auto_white_balance_ref',
15 | 'clahe_color_correction',
16 | 'load_lut',
17 | 'apply_lut',
18 | 'remove_exif_pil',
19 | 'fourier_match_spectrum',
20 | 'add_gaussian_noise',
21 | 'randomized_perturbation',
22 | 'glcm_normalize',
23 | 'lbp_normalize',
24 | 'attack_non_semantic',
25 | 'blend_colors',
26 | ]
--------------------------------------------------------------------------------
/image_postprocess/utils/autowb.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def auto_white_balance_ref(img_arr: np.ndarray, ref_img_arr: np.ndarray = None) -> np.ndarray:
4 | """
5 | Auto white-balance correction using a reference image.
6 | If ref_img_arr is None, uses a gray-world assumption instead.
7 | """
8 | img = img_arr.astype(np.float32)
9 |
10 | if ref_img_arr is not None:
11 | ref = ref_img_arr.astype(np.float32)
12 | ref_mean = ref.reshape(-1, 3).mean(axis=0)
13 | else:
14 | # Gray-world assumption: target is neutral gray
15 | ref_mean = np.array([128.0, 128.0, 128.0], dtype=np.float32)
16 |
17 | img_mean = img.reshape(-1, 3).mean(axis=0)
18 |
19 | # Avoid divide-by-zero
20 | eps = 1e-6
21 | scale = (ref_mean + eps) / (img_mean + eps)
22 |
23 | corrected = img * scale
24 | corrected = np.clip(corrected, 0, 255).astype(np.uint8)
25 |
26 | return corrected
--------------------------------------------------------------------------------
/image_postprocess/utils/clahe.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from PIL import Image, ImageOps
3 |
4 | try:
5 | import cv2
6 | _HAS_CV2 = True
7 | except Exception:
8 | cv2 = None
9 | _HAS_CV2 = False
10 |
11 | def clahe_color_correction(img_arr: np.ndarray, clip_limit=2.0, tile_grid_size=(8,8)) -> np.ndarray:
12 | if _HAS_CV2:
13 | lab = cv2.cvtColor(img_arr, cv2.COLOR_RGB2LAB)
14 | l, a, b = cv2.split(lab)
15 | clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
16 | l2 = clahe.apply(l)
17 | lab2 = cv2.merge((l2, a, b))
18 | out = cv2.cvtColor(lab2, cv2.COLOR_LAB2RGB)
19 | return out
20 | else:
21 | pil = Image.fromarray(img_arr)
22 | channels = pil.split()
23 | new_ch = []
24 | for ch in channels:
25 | eq = ImageOps.equalize(ch)
26 | new_ch.append(eq)
27 | merged = Image.merge('RGB', new_ch)
28 | return np.array(merged)
--------------------------------------------------------------------------------
/run.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | """
3 | Entry point for Image Postprocess GUI (camera simulator).
4 | Handles the import check for image_postprocess and launches the MainWindow.
5 | """
6 |
7 | import sys
8 | from pathlib import Path
9 | from PyQt5.QtWidgets import QApplication, QMessageBox
10 |
11 | try:
12 | from image_postprocess import process_image
13 | except Exception as e:
14 | IMPORT_ERROR = str(e)
15 | else:
16 | IMPORT_ERROR = None
17 |
18 | from ui_utils import MainWindow, apply_dark_palette
19 |
20 | def main():
21 | app = QApplication([])
22 | apply_dark_palette(app)
23 |
24 | if IMPORT_ERROR:
25 | msg = QMessageBox(QMessageBox.Critical, "Import error",
26 | "Could not import image_postprocess module:\n" + IMPORT_ERROR)
27 | msg.setStyleSheet("QLabel{ color: black; } QPushButton{ color: black; }")
28 | msg.exec_()
29 |
30 | w = MainWindow()
31 | w.show()
32 | sys.exit(app.exec_())
33 |
34 | if __name__ == '__main__':
35 | main()
36 |
--------------------------------------------------------------------------------
/ui_utils/worker.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | """
3 | Worker thread for image processing.
4 | """
5 |
6 | from PyQt5.QtCore import QThread, pyqtSignal
7 | import traceback
8 |
9 | try:
10 | from image_postprocess import process_image
11 | except Exception:
12 | process_image = None
13 | IMPORT_ERROR = "Could not import process_image module"
14 | else:
15 | IMPORT_ERROR = None
16 |
17 | class Worker(QThread):
18 | finished = pyqtSignal(str)
19 | error = pyqtSignal(str, str) # error message + traceback
20 |
21 | def __init__(self, inpath, outpath, args):
22 | super().__init__()
23 | self.inpath = inpath
24 | self.outpath = outpath
25 | self.args = args
26 |
27 | def run(self):
28 | try:
29 | if process_image is None:
30 | raise RuntimeError("Could not import process_image: " + (IMPORT_ERROR or "unknown"))
31 | process_image(self.inpath, self.outpath, self.args)
32 | self.finished.emit(self.outpath)
33 | except Exception as e:
34 | tb = traceback.format_exc()
35 | self.error.emit(str(e), tb)
--------------------------------------------------------------------------------
/ui_utils/collapsible_box.py:
--------------------------------------------------------------------------------
1 | from PyQt5.QtWidgets import QWidget, QToolButton, QVBoxLayout
2 | from PyQt5.QtCore import Qt
3 |
4 | class CollapsibleBox(QWidget):
5 | """A simple collapsible container widget with a chevron arrow."""
6 | def __init__(self, title: str = "", parent=None):
7 | super().__init__(parent)
8 | self.toggle = QToolButton(text=title, checkable=True, checked=True)
9 | self.toggle.setToolButtonStyle(Qt.ToolButtonTextBesideIcon)
10 | self.toggle.setArrowType(Qt.DownArrow)
11 | self.toggle.clicked.connect(self.on_toggled)
12 | self.toggle.setStyleSheet("QToolButton { border: none; font-weight:600; padding:6px; }")
13 |
14 | self.content = QWidget()
15 | self.content_layout = QVBoxLayout()
16 | self.content_layout.setContentsMargins(8, 4, 8, 8)
17 | self.content.setLayout(self.content_layout)
18 |
19 | lay = QVBoxLayout(self)
20 | lay.setSpacing(0)
21 | lay.setContentsMargins(0, 0, 0, 0)
22 | lay.addWidget(self.toggle)
23 | lay.addWidget(self.content)
24 |
25 | def on_toggled(self):
26 | checked = self.toggle.isChecked()
27 | self.toggle.setArrowType(Qt.DownArrow if checked else Qt.RightArrow)
28 | self.content.setVisible(checked)
--------------------------------------------------------------------------------
/config.ini:
--------------------------------------------------------------------------------
1 | [General]
2 | auto_mode = false
3 |
4 | [AutoMode]
5 | strength = 25
6 |
7 | [Blend]
8 | enabled = true
9 | tolerance = 2
10 | min_region = 5
11 | max_samples = 100000
12 | n_jobs = 4
13 |
14 | [AINormalizer]
15 | enabled = true
16 | iterations = 500
17 | learning_rate = 0.0002
18 | t_lpips = 0.0404
19 | t_l2 = 0.00001
20 | c_lpips = 0.01
21 | c_l2 = 1.0
22 | grad_clip = 0.05
23 |
24 | [ManualParameters]
25 | noise_enable = false
26 | clahe_enable = false
27 | fft_enable = true
28 | perturb_enable = true
29 | noise_std = 0.02
30 | clahe_clip = 1.0
31 | tile = 4
32 | cutoff = 0.6
33 | fstrength = 0.8
34 | randomness = 0.07
35 | phase_perturb = 0.1
36 | radial_smooth = 2
37 | fft_mode = auto
38 | fft_alpha = 1.0
39 | perturb = 0.01
40 | seed = 1
41 |
42 | [AWB]
43 | enabled = false
44 |
45 | [CameraSimulator]
46 | enabled = true
47 | bayer = true
48 | jpeg_cycles = 4
49 | jpeg_qmin = 43
50 | jpeg_qmax = 75
51 | vignette_strength = 0.1
52 | chroma_strength = 1.0
53 | iso_scale = 1.0
54 | read_noise = 2.0
55 | hot_pixel_prob = 0.000001
56 | banding_strength = 0.0
57 | motion_blur_kernel = 2
58 |
59 | [LUT]
60 | enabled = false
61 | file =
62 | strength = 1.0
63 |
64 | [TextureNormalization]
65 | glcm_enabled = false
66 | glcm_distances = 1
67 | glcm_angles = 0 0.785 1.571 2.356
68 | glcm_levels = 256
69 | glcm_strength = 0.4
70 | lbp_enabled = false
71 | lbp_radius = 3
72 | lbp_n_points = 24
73 | lbp_method = uniform
74 | lbp_strength = 0.9
--------------------------------------------------------------------------------
/ui_utils/theme.py:
--------------------------------------------------------------------------------
1 | from PyQt5.QtWidgets import QApplication
2 | from PyQt5.QtGui import QPalette, QColor
3 |
4 | def apply_dark_palette(app: QApplication):
5 | pal = QPalette()
6 | # base
7 | pal.setColor(QPalette.Window, QColor(18, 18, 19))
8 | pal.setColor(QPalette.WindowText, QColor(220, 220, 220))
9 | pal.setColor(QPalette.Base, QColor(28, 28, 30))
10 | pal.setColor(QPalette.AlternateBase, QColor(24, 24, 26))
11 | pal.setColor(QPalette.ToolTipBase, QColor(220, 220, 220))
12 | pal.setColor(QPalette.ToolTipText, QColor(220, 220, 220))
13 | pal.setColor(QPalette.Text, QColor(230, 230, 230))
14 | pal.setColor(QPalette.Button, QColor(40, 40, 42))
15 | pal.setColor(QPalette.ButtonText, QColor(230, 230, 230))
16 | pal.setColor(QPalette.Highlight, QColor(70, 130, 180))
17 | pal.setColor(QPalette.HighlightedText, QColor(255, 255, 255))
18 | app.setPalette(pal)
19 |
20 | # global stylesheet for a modern gray look
21 | app.setStyleSheet(r"""
22 | QWidget { font-family: 'Segoe UI', Roboto, Arial, sans-serif; font-size:11pt }
23 | QToolButton { padding:6px; }
24 | QLineEdit, QSpinBox, QDoubleSpinBox, QComboBox { background: #1e1e1f; border: 1px solid #333; padding:4px; border-radius:6px }
25 | QPushButton { background: #2a2a2c; border: 1px solid #3a3a3c; padding:6px 10px; border-radius:8px }
26 | QPushButton:hover { background: #333336 }
27 | QPushButton:pressed { background: #232325 }
28 | QProgressBar { background: #222; border: 1px solid #333; border-radius:6px; text-align:center }
29 | QProgressBar::chunk { background: qlineargradient(x1:0, y1:0, x2:1, y2:0, stop:0 #4b9bd6, stop:1 #3b83c0); }
30 | QLabel { color: #ffffff }
31 | QCheckBox { padding:4px }
32 | QGroupBox { color : #e6e6e6; }
33 | QGroupBox:title { color : #e6e6e6; }
34 | """)
--------------------------------------------------------------------------------
/nodes_utils/ns_opt.py:
--------------------------------------------------------------------------------
1 | import json
2 |
3 | class NSOptionsNode:
4 | """
5 | Node that encapsulates non-semantic attack parameters. Returns a JSON string
6 | that can be connected to the main NovaNodes node's "NS_Opt" input.
7 | """
8 |
9 | @classmethod
10 | def INPUT_TYPES(s):
11 | return {
12 | "required": {
13 | "non_semantic": ("BOOLEAN", {"default": False}),
14 | "ns_iterations": ("INT", {"default": 500, "min": 1, "max": 10000, "step": 1}),
15 | "ns_learning_rate": ("FLOAT", {"default": 3e-4, "min": 1e-6, "max": 1.0, "step": 1e-6}),
16 | "ns_t_lpips": ("FLOAT", {"default": 4e-2, "min": 0.0, "max": 1.0, "step": 1e-4}),
17 | "ns_t_l2": ("FLOAT", {"default": 3e-5, "min": 0.0, "max": 1.0, "step": 1e-6}),
18 | "ns_c_lpips": ("FLOAT", {"default": 1e-2, "min": 0.0, "max": 1.0, "step": 1e-4}),
19 | "ns_c_l2": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 10.0, "step": 1e-3}),
20 | "ns_grad_clip": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 1.0, "step": 1e-4}),
21 | }
22 | }
23 |
24 | RETURN_TYPES = ("NONSEMANTICOP",)
25 | RETURN_NAMES = ("NS_OPT",)
26 | FUNCTION = "get_ns_opts"
27 | CATEGORY = "postprocessing"
28 |
29 | def get_ns_opts(self,
30 | non_semantic=False,
31 | ns_iterations=500,
32 | ns_learning_rate=3e-4,
33 | ns_t_lpips=4e-2,
34 | ns_t_l2=3e-5,
35 | ns_c_lpips=1e-2,
36 | ns_c_l2=0.6,
37 | ns_grad_clip=0.05,
38 | ):
39 | ns_opts = {
40 | "non_semantic": bool(non_semantic),
41 | "ns_iterations": int(ns_iterations),
42 | "ns_learning_rate": float(ns_learning_rate),
43 | "ns_t_lpips": float(ns_t_lpips),
44 | "ns_t_l2": float(ns_t_l2),
45 | "ns_c_lpips": float(ns_c_lpips),
46 | "ns_c_l2": float(ns_c_l2),
47 | "ns_grad_clip": float(ns_grad_clip),
48 | }
49 | return (json.dumps(ns_opts),)
50 |
--------------------------------------------------------------------------------
/nodes_utils/cam_opt.py:
--------------------------------------------------------------------------------
1 | import json
2 |
3 | class CameraOptionsNode:
4 | """
5 | Node that encapsulates camera simulation / JPEG / vignette / chromatic aberration / noise
6 | settings. Returns a JSON string that can be connected to the main NovaNodes node's "Cam_Opt" input.
7 | """
8 |
9 | @classmethod
10 | def INPUT_TYPES(s):
11 | return {
12 | "required": {
13 | "enable_bayer": ("BOOLEAN", {"default": True}),
14 | "apply_jpeg_cycles_o": ("BOOLEAN", {"default": True}),
15 | "jpeg_cycles": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}),
16 | "jpeg_quality": ("INT", {"default": 88, "min": 10, "max": 100, "step": 1}),
17 | "jpeg_qmax": ("INT", {"default": 96, "min": 10, "max": 100, "step": 1}),
18 | "apply_vignette_o": ("BOOLEAN", {"default": True}),
19 | "vignette_strength": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.01}),
20 | "apply_chromatic_aberration_o": ("BOOLEAN", {"default": True}),
21 | "ca_shift": ("FLOAT", {"default": 1.20, "min": 0.0, "max": 5.0, "step": 0.1}),
22 | "iso_scale": ("FLOAT", {"default": 1.00, "min": 0.1, "max": 16.0, "step": 0.1}),
23 | "read_noise": ("FLOAT", {"default": 2.00, "min": 0.0, "max": 50.0, "step": 0.1}),
24 | "hot_pixel_prob": ("FLOAT", {"default": 1e-7, "min": 0.0, "max": 1e-3, "step": 1e-7}),
25 | "apply_banding_o": ("BOOLEAN", {"default": True}),
26 | "banding_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
27 | "apply_motion_blur_o": ("BOOLEAN", {"default": True}),
28 | "motion_blur_ksize": ("INT", {"default": 1, "min": 1, "max": 31, "step": 2}),
29 | }
30 | }
31 |
32 | RETURN_TYPES = ("CAMERAOPT",)
33 | RETURN_NAMES = ("CAM_OPT",)
34 | FUNCTION = "get_cam_opts"
35 | CATEGORY = "postprocessing"
36 |
37 | def get_cam_opts(self,
38 | enable_bayer=True,
39 | apply_jpeg_cycles_o=True,
40 | jpeg_cycles=1,
41 | jpeg_quality=88,
42 | jpeg_qmax=96,
43 | apply_vignette_o=True,
44 | vignette_strength=0.35,
45 | apply_chromatic_aberration_o=True,
46 | ca_shift=1.20,
47 | iso_scale=1.0,
48 | read_noise=2.0,
49 | hot_pixel_prob=1e-7,
50 | apply_banding_o=True,
51 | banding_strength=0.0,
52 | apply_motion_blur_o=True,
53 | motion_blur_ksize=1,
54 | ):
55 | cam_opts = {
56 | "enable_bayer": bool(enable_bayer),
57 | "apply_jpeg_cycles_o": bool(apply_jpeg_cycles_o),
58 | "jpeg_cycles": int(jpeg_cycles),
59 | "jpeg_quality": int(jpeg_quality),
60 | "jpeg_qmax": int(jpeg_qmax),
61 | "apply_vignette_o": bool(apply_vignette_o),
62 | "vignette_strength": float(vignette_strength),
63 | "apply_chromatic_aberration_o": bool(apply_chromatic_aberration_o),
64 | "ca_shift": float(ca_shift),
65 | "iso_scale": float(iso_scale),
66 | "read_noise": float(read_noise),
67 | "hot_pixel_prob": float(hot_pixel_prob),
68 | "apply_banding_o": bool(apply_banding_o),
69 | "banding_strength": float(banding_strength),
70 | "apply_motion_blur_o": bool(apply_motion_blur_o),
71 | "motion_blur_ksize": int(motion_blur_ksize),
72 | }
73 | return (json.dumps(cam_opts),)
74 |
--------------------------------------------------------------------------------
/image_postprocess/utils/non_semantic_unmarker.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.optim as optim
3 | import lpips
4 | import torchvision.transforms as transforms
5 | import numpy as np
6 |
7 | def attack_non_semantic(img_arr: np.ndarray,
8 | iterations: int = 500,
9 | learning_rate: float = 3e-4,
10 | t_lpips: float = 4e-2,
11 | t_l2: float = 3e-5,
12 | c_lpips: float = 1e-2,
13 | c_l2: float = 0.6,
14 | grad_clip_value: float = 0.05
15 | ) -> np.ndarray:
16 | """
17 | Implements the non-semantic attack from the UnMarker paper using numpy input/output.
18 |
19 | Args:
20 | img_arr: Input image as a numpy array (H, W, 3) in range [0, 255].
21 | iterations: Number of optimization iterations.
22 | learning_rate: Learning rate for the optimizer.
23 | t_lpips: Threshold for LPIPS loss.
24 | t_l2: Threshold for L2 loss.
25 | c_lpips: LPIPS loss weight constant.
26 | c_l2: L2 loss weight constant.
27 | grad_clip_value: Gradient clipping value.
28 |
29 | Returns:
30 | Attacked image as a numpy array (H, W, 3) in range [0, 255].
31 | """
32 | # Build configuration dictionary from parameters
33 | config = {
34 | 'iterations': iterations,
35 | 'learning_rate': learning_rate,
36 | 't_lpips': t_lpips,
37 | 't_l2': t_l2,
38 | 'c_lpips': c_lpips,
39 | 'c_l2': c_l2,
40 | 'grad_clip_value': grad_clip_value
41 | }
42 |
43 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
44 |
45 | # Preprocess: Convert numpy array to tensor and normalize to [-1, 1]
46 | transform = transforms.Compose([
47 | transforms.ToTensor(),
48 | transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
49 | ])
50 | img_tensor = transform(img_arr).unsqueeze(0).to(device)
51 |
52 | # Initialize perturbation
53 | delta = (torch.randn_like(img_tensor) * 1e-5).requires_grad_(True).to(device)
54 |
55 | # Setup optimizer and LPIPS model
56 | optimizer = optim.Adam([delta], lr=config['learning_rate'])
57 | lpips_model = lpips.LPIPS(net='alex').to(device)
58 |
59 | # Precompute FFT of input image
60 | img_fft = torch.fft.fft2(img_tensor)
61 |
62 | # Optimization loop
63 | for i in range(config['iterations']):
64 | optimizer.zero_grad()
65 |
66 | # Perturbed image
67 | x_nw = img_tensor + delta
68 | x_nw = torch.clamp(x_nw, -1, 1)
69 |
70 | # Spectral Loss (DFL)
71 | x_nw_fft = torch.fft.fft2(x_nw)
72 | loss_dfl = -torch.abs(x_nw_fft - img_fft).sum()
73 |
74 | # Perceptual Loss (LPIPS)
75 | loss_lpips = lpips_model(x_nw, img_tensor).mean()
76 |
77 | # Geometric Loss (L2 Norm)
78 | loss_l2 = torch.linalg.norm(delta)
79 |
80 | # Combine losses
81 | lpips_penalty = config['c_lpips'] * torch.relu(loss_lpips - config['t_lpips'])
82 | l2_penalty = config['c_l2'] * torch.relu(loss_l2 - config['t_l2'])
83 | total_loss = loss_dfl + lpips_penalty + l2_penalty
84 |
85 | # Backpropagation
86 | total_loss.backward()
87 |
88 | # Gradient clipping
89 | if delta.grad is not None:
90 | delta.grad.data.clamp_(-config['grad_clip_value'], config['grad_clip_value'])
91 |
92 | optimizer.step()
93 |
94 | # Postprocess: Convert back to numpy array
95 | final_x_nw = torch.clamp(img_tensor + delta, -1, 1)
96 | final_x_nw = final_x_nw.squeeze(0).cpu().detach()
97 | final_x_nw = (final_x_nw + 1) / 2 # Denormalize to [0, 1]
98 | final_x_nw = final_x_nw.permute(1, 2, 0) # (C, H, W) to (H, W, C)
99 | final_x_nw = final_x_nw.clamp(0, 1) * 255 # Scale to [0, 255]
100 | result = final_x_nw.numpy().astype(np.uint8)
101 |
102 | return result
--------------------------------------------------------------------------------
/image_postprocess/utils/lbp_normalization.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from skimage.feature import local_binary_pattern
3 | from PIL import Image
4 |
5 | def lbp_normalize(img_arr: np.ndarray,
6 | ref_img_arr: np.ndarray = None,
7 | radius: int = 3,
8 | n_points: int = 24,
9 | method: str = 'uniform',
10 | strength: float = 0.9,
11 | seed: int = None,
12 | eps: float = 1e-8):
13 | """
14 | Optimized LBP histogram normalization.
15 |
16 | Key optimizations:
17 | - compute LBP and its histogram once (not per channel)
18 | - use np.bincount (faster) instead of np.histogram for integer LBP
19 | - compute mapping & per-bin operations once, then apply vectorized indexing
20 | - generate noise once for all channels
21 | - fewer temporaries, consistent dtypes
22 | """
23 | if seed is not None:
24 | rng = np.random.default_rng(seed)
25 | else:
26 | rng = np.random.default_rng()
27 |
28 | img = np.asarray(img_arr)
29 | h, w = img.shape[:2]
30 | n_bins = n_points + 2 if method == 'uniform' else 2 ** n_points
31 |
32 | # Grayscale conversion (float32)
33 | img_gray = np.mean(img.astype(np.float32), axis=2) if img.ndim == 3 else img.astype(np.float32)
34 |
35 | # Compute LBP for input (float or int result)
36 | lbp_img = local_binary_pattern(img_gray, n_points, radius, method=method)
37 | # Convert LBP to integer indices for bincount (safe cast)
38 | lbp_int = np.rint(lbp_img).astype(np.int32)
39 | # Use bincount for integer labels which is faster than histogram
40 | lbp_counts = np.bincount(lbp_int.ravel(), minlength=n_bins).astype(np.float64)
41 | lbp_hist = lbp_counts / (lbp_counts.sum() + eps)
42 |
43 | ref_lbp_hist = None
44 | if ref_img_arr is not None:
45 | ref = np.asarray(ref_img_arr)
46 | # Resize reference only once if needed
47 | if ref.shape[0] != h or ref.shape[1] != w:
48 | ref_img = Image.fromarray(ref).resize((w, h), resample=Image.BICUBIC)
49 | ref = np.array(ref_img)
50 | ref_gray = np.mean(ref.astype(np.float32), axis=2) if ref.ndim == 3 else ref.astype(np.float32)
51 | ref_lbp = local_binary_pattern(ref_gray, n_points, radius, method=method)
52 | ref_int = np.rint(ref_lbp).astype(np.int32)
53 | ref_counts = np.bincount(ref_int.ravel(), minlength=n_bins).astype(np.float64)
54 | ref_lbp_hist = ref_counts / (ref_counts.sum() + eps)
55 |
56 | out = np.empty_like(img, dtype=np.float32)
57 | channels = img.shape[2] if img.ndim == 3 else 1
58 |
59 | # Precompute mapping and scale-image-level arrays only once
60 | if ref_lbp_hist is not None:
61 | cdf_img = np.cumsum(lbp_hist)
62 | cdf_ref = np.cumsum(ref_lbp_hist)
63 | # Vectorized mapping: for each possible lbp bin value find target bin
64 | mapping = np.searchsorted(cdf_ref, cdf_img, side='left')
65 | mapping = np.clip(mapping, 0, n_bins - 1).astype(np.float32)
66 | # mapping_per_pixel (h,w)
67 | mapping_per_pixel = mapping[lbp_int]
68 | # denom per pixel (avoid divide by zero)
69 | denom = (lbp_int.astype(np.float32) + eps)
70 | # precompute scale per pixel
71 | scale_per_pixel = mapping_per_pixel / denom
72 | else:
73 | # Unused but create placeholders to keep code simpler
74 | scale_per_pixel = None
75 |
76 | # Prepare noise for all channels at once (if needed)
77 | if strength > 0.0:
78 | noise_all = rng.normal(loc=0.0, scale=0.02 * strength, size=(h, w, channels)).astype(np.float32) * 255.0
79 | else:
80 | noise_all = np.zeros((h, w, channels), dtype=np.float32)
81 |
82 | # Process channels: mostly vectorized
83 | if channels == 1:
84 | channel = img.astype(np.float32)
85 | if scale_per_pixel is not None:
86 | adjusted = channel * scale_per_pixel
87 | blended = (1.0 - strength) * channel + strength * adjusted
88 | else:
89 | blended = channel
90 | blended += noise_all[:, :, 0]
91 | out[:, :] = blended
92 | else:
93 | for c in range(channels):
94 | channel = img[:, :, c].astype(np.float32)
95 | if scale_per_pixel is not None:
96 | # vectorized multiply
97 | adjusted = channel * scale_per_pixel
98 | blended = (1.0 - strength) * channel + strength * adjusted
99 | else:
100 | blended = channel
101 | blended += noise_all[:, :, c]
102 | out[:, :, c] = blended
103 |
104 | out = np.clip(out, 0, 255).astype(np.uint8)
105 | return out
106 |
--------------------------------------------------------------------------------
/image_postprocess/utils/glcm_normalization.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from skimage.feature import graycomatrix, graycoprops
3 | from scipy.ndimage import gaussian_filter
4 | from PIL import Image
5 |
6 | def glcm_normalize(img_arr: np.ndarray,
7 | ref_img_arr: np.ndarray = None,
8 | distances: list = [1],
9 | angles: list = [0, np.pi/4, np.pi/2, 3*np.pi/4],
10 | levels: int = 256,
11 | strength: float = 0.9,
12 | seed: int = None,
13 | max_levels_for_speed: int = None,
14 | eps: float = 1e-8):
15 | """
16 | Optimized GLCM normalization.
17 |
18 | Key optimizations:
19 | - quantize grayscale to fewer levels if max_levels_for_speed is provided (speeds up graycomatrix drastically)
20 | - compute glcm / properties once (not per channel)
21 | - use gaussian_filter (single multi-dimensional filter) instead of two gaussian_filter1d calls
22 | - generate noise once for all channels
23 | """
24 | if seed is not None:
25 | rng = np.random.default_rng(seed)
26 | else:
27 | rng = np.random.default_rng()
28 |
29 | img = np.asarray(img_arr)
30 | h, w = img.shape[:2]
31 | channels = img.shape[2] if img.ndim == 3 else 1
32 |
33 | # Grayscale and quantization
34 | img_gray_f = np.mean(img.astype(np.float32), axis=2) if img.ndim == 3 else img.astype(np.float32)
35 | img_gray = (img_gray_f / 255.0 * (levels - 1)).astype(np.int32)
36 |
37 | # Optionally reduce levels for speed (safe; only if caller requests)
38 | use_levels = levels
39 | if max_levels_for_speed is not None and max_levels_for_speed < levels:
40 | use_levels = max_levels_for_speed
41 | # quantize into `use_levels` bins
42 | img_gray = np.floor(img_gray_f / 255.0 * (use_levels - 1)).astype(np.uint8)
43 | else:
44 | img_gray = img_gray.astype(np.uint8)
45 |
46 | # Compute GLCM and properties (image-level)
47 | glcm = graycomatrix(img_gray, distances=distances, angles=angles,
48 | levels=use_levels, symmetric=True, normed=True)
49 | contrast = graycoprops(glcm, 'contrast').mean()
50 | homogeneity = graycoprops(glcm, 'homogeneity').mean()
51 |
52 | ref_contrast = None
53 | ref_homogeneity = None
54 | if ref_img_arr is not None:
55 | ref = np.asarray(ref_img_arr)
56 | # Resize reference only once if needed
57 | if ref.shape[0] != h or ref.shape[1] != w:
58 | ref_img = Image.fromarray(ref).resize((w, h), resample=Image.BICUBIC)
59 | ref = np.array(ref_img)
60 | ref_gray_f = np.mean(ref.astype(np.float32), axis=2) if ref.ndim == 3 else ref.astype(np.float32)
61 | if max_levels_for_speed is not None and max_levels_for_speed < levels:
62 | ref_gray = np.floor(ref_gray_f / 255.0 * (use_levels - 1)).astype(np.uint8)
63 | else:
64 | ref_gray = (ref_gray_f / 255.0 * (use_levels - 1)).astype(np.uint8)
65 | ref_glcm = graycomatrix(ref_gray, distances=distances, angles=angles,
66 | levels=use_levels, symmetric=True, normed=True)
67 | ref_contrast = graycoprops(ref_glcm, 'contrast').mean()
68 | ref_homogeneity = graycoprops(ref_glcm, 'homogeneity').mean()
69 |
70 | out = np.empty_like(img, dtype=np.float32)
71 |
72 | # Pre-generate noise if needed for all channels
73 | if strength > 0.0:
74 | noise_all = rng.normal(loc=0.0, scale=0.02 * strength, size=(h, w, channels)).astype(np.float32) * 255.0
75 | else:
76 | noise_all = np.zeros((h, w, channels), dtype=np.float32)
77 |
78 | # If reference features exist, precompute global transforms
79 | if (ref_contrast is not None) and (ref_homogeneity is not None):
80 | contrast_ratio = ref_contrast / (contrast + eps)
81 | homogeneity_ratio = ref_homogeneity / (homogeneity + eps)
82 | # contrast adjustment uses sqrt scaling
83 | contrast_scale = np.sqrt(contrast_ratio).astype(np.float32)
84 | # homogeneity: sigma for smoothing - keep within reasonable bounds
85 | sigma = float(np.clip(1.0 / (homogeneity_ratio + eps), 0.5, 5.0))
86 | else:
87 | contrast_scale = None
88 | sigma = None
89 |
90 | # Apply per-channel transforms (vectorized where possible)
91 | if channels == 1:
92 | channel = img.astype(np.float32)
93 | if contrast_scale is not None:
94 | adjusted = channel * contrast_scale
95 | # single multi-dimensional gaussian instead of two 1D passes
96 | adjusted = gaussian_filter(adjusted, sigma=(sigma, sigma))
97 | blended = (1.0 - strength) * channel + strength * adjusted
98 | else:
99 | blended = channel
100 | blended += noise_all[:, :, 0]
101 | out[:, :] = blended
102 | else:
103 | for c in range(channels):
104 | channel = img[:, :, c].astype(np.float32)
105 | if contrast_scale is not None:
106 | adjusted = channel * contrast_scale
107 | adjusted = gaussian_filter(adjusted, sigma=(sigma, sigma))
108 | blended = (1.0 - strength) * channel + strength * adjusted
109 | else:
110 | blended = channel
111 | blended += noise_all[:, :, c]
112 | out[:, :, c] = blended
113 |
114 | out = np.clip(out, 0, 255).astype(np.uint8)
115 | return out
116 |
--------------------------------------------------------------------------------
/image_postprocess/utils/fourier_pipeline.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from scipy.ndimage import gaussian_filter1d
3 | from PIL import Image
4 |
5 | def radial_profile(mag: np.ndarray, center=None, nbins=None):
6 | h, w = mag.shape
7 | if center is None:
8 | cy, cx = h // 2, w // 2
9 | else:
10 | cy, cx = center
11 |
12 | if nbins is None:
13 | nbins = int(max(h, w) / 2)
14 | nbins = max(1, int(nbins))
15 |
16 | y = np.arange(h) - cy
17 | x = np.arange(w) - cx
18 | X, Y = np.meshgrid(x, y)
19 | R = np.sqrt(X * X + Y * Y)
20 |
21 | Rmax = R.max()
22 | if Rmax <= 0:
23 | Rnorm = R
24 | else:
25 | Rnorm = R / (Rmax + 1e-12)
26 | Rnorm = np.minimum(Rnorm, 1.0 - 1e-12)
27 |
28 | bin_edges = np.linspace(0.0, 1.0, nbins + 1)
29 | bin_idx = np.digitize(Rnorm.ravel(), bin_edges) - 1
30 | bin_idx = np.clip(bin_idx, 0, nbins - 1)
31 |
32 | sums = np.bincount(bin_idx, weights=mag.ravel(), minlength=nbins)
33 | counts = np.bincount(bin_idx, minlength=nbins)
34 |
35 | radial_mean = np.zeros(nbins, dtype=np.float64)
36 | nonzero = counts > 0
37 | radial_mean[nonzero] = sums[nonzero] / counts[nonzero]
38 |
39 | bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
40 | return bin_centers, radial_mean
41 |
42 | def fourier_match_spectrum(img_arr: np.ndarray,
43 | ref_img_arr: np.ndarray = None,
44 | mode='auto',
45 | alpha=1.0,
46 | cutoff=0.25,
47 | strength=0.9,
48 | randomness=0.05,
49 | phase_perturb=0.08,
50 | radial_smooth=5,
51 | seed=None):
52 | if seed is not None:
53 | rng = np.random.default_rng(seed)
54 | else:
55 | rng = np.random.default_rng()
56 |
57 | h, w = img_arr.shape[:2]
58 | cy, cx = h // 2, w // 2
59 | nbins = max(8, int(max(h, w) / 2))
60 |
61 | if mode == 'auto':
62 | mode = 'ref' if ref_img_arr is not None else 'model'
63 |
64 | bin_centers_src = np.linspace(0.0, 1.0, nbins)
65 |
66 | model_radial = None
67 | if mode == 'model':
68 | eps = 1e-8
69 | model_radial = (1.0 / (bin_centers_src + eps)) ** (alpha / 2.0)
70 | lf = max(1, nbins // 8)
71 | model_radial = model_radial / (np.median(model_radial[:lf]) + 1e-12)
72 | model_radial = gaussian_filter1d(model_radial, sigma=max(1, radial_smooth))
73 |
74 | ref_radial = None
75 | ref_bin_centers = None
76 | if mode == 'ref' and ref_img_arr is not None:
77 | if ref_img_arr.shape[0] != h or ref_img_arr.shape[1] != w:
78 | ref_img = Image.fromarray(ref_img_arr).resize((w, h), resample=Image.BICUBIC)
79 | ref_img_arr = np.array(ref_img)
80 | ref_gray = np.mean(ref_img_arr.astype(np.float32), axis=2) if ref_img_arr.ndim == 3 else ref_img_arr.astype(np.float32)
81 | Fref = np.fft.fftshift(np.fft.fft2(ref_gray))
82 | Mref = np.abs(Fref)
83 | ref_bin_centers, ref_radial = radial_profile(Mref, center=(h // 2, w // 2), nbins=nbins)
84 | ref_radial = gaussian_filter1d(ref_radial, sigma=max(1, radial_smooth))
85 |
86 | out = np.zeros_like(img_arr, dtype=np.float32)
87 |
88 | y = np.linspace(-1, 1, h, endpoint=False)[:, None]
89 | x = np.linspace(-1, 1, w, endpoint=False)[None, :]
90 | r = np.sqrt(x * x + y * y)
91 | r = np.clip(r, 0.0, 1.0 - 1e-6)
92 |
93 | for c in range(img_arr.shape[2]):
94 | channel = img_arr[:, :, c].astype(np.float32)
95 | F = np.fft.fft2(channel)
96 | Fshift = np.fft.fftshift(F)
97 | mag = np.abs(Fshift)
98 | phase = np.angle(Fshift)
99 |
100 | bin_centers_src_calc, src_radial = radial_profile(mag, center=(h // 2, w // 2), nbins=nbins)
101 | src_radial = gaussian_filter1d(src_radial, sigma=max(1, radial_smooth))
102 | bin_centers_src = bin_centers_src_calc
103 |
104 | if mode == 'ref' and ref_radial is not None:
105 | ref_interp = np.interp(bin_centers_src, ref_bin_centers, ref_radial)
106 | eps = 1e-8
107 | ratio = (ref_interp + eps) / (src_radial + eps)
108 | desired_radial = src_radial * ratio
109 | elif mode == 'model' and model_radial is not None:
110 | lf = max(1, nbins // 8)
111 | scale = (np.median(src_radial[:lf]) + 1e-12) / (np.median(model_radial[:lf]) + 1e-12)
112 | desired_radial = model_radial * scale
113 | else:
114 | desired_radial = src_radial.copy()
115 |
116 | eps = 1e-8
117 | multiplier_1d = (desired_radial + eps) / (src_radial + eps)
118 | multiplier_1d = np.clip(multiplier_1d, 0.2, 5.0)
119 | mult_2d = np.interp(r.ravel(), bin_centers_src, multiplier_1d).reshape(h, w)
120 |
121 | edge = 0.05 + 0.02 * (1.0 - cutoff) if 'cutoff' in globals() else 0.05
122 | edge = max(edge, 1e-6)
123 | weight = np.where(r <= 0.25, 1.0,
124 | np.where(r <= 0.25 + edge,
125 | 0.5 * (1 + np.cos(np.pi * (r - 0.25) / edge)),
126 | 0.0))
127 |
128 | final_multiplier = 1.0 + (mult_2d - 1.0) * (weight * strength)
129 |
130 | if randomness and randomness > 0.0:
131 | noise = rng.normal(loc=1.0, scale=randomness, size=final_multiplier.shape)
132 | final_multiplier *= (1.0 + (noise - 1.0) * weight)
133 |
134 | mag2 = mag * final_multiplier
135 |
136 | if phase_perturb and phase_perturb > 0.0:
137 | phase_sigma = phase_perturb * np.clip((r - 0.25) / (1.0 - 0.25 + 1e-6), 0.0, 1.0)
138 | phase_noise = rng.standard_normal(size=phase_sigma.shape) * phase_sigma
139 | phase2 = phase + phase_noise
140 | else:
141 | phase2 = phase
142 |
143 | Fshift2 = mag2 * np.exp(1j * phase2)
144 | F_ishift = np.fft.ifftshift(Fshift2)
145 | img_back = np.fft.ifft2(F_ishift)
146 | img_back = np.real(img_back)
147 |
148 | blended = (1.0 - strength) * channel + strength * img_back
149 | out[:, :, c] = blended
150 |
151 | out = np.clip(out, 0, 255).astype(np.uint8)
152 | return out
--------------------------------------------------------------------------------
/image_postprocess/utils/fourier_pipeline_new_algo.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from scipy.ndimage import gaussian_filter1d
3 | from PIL import Image
4 |
5 | def radial_profile(mag: np.ndarray, center=None, nbins=None):
6 | h, w = mag.shape
7 | if center is None:
8 | cy, cx = h // 2, w // 2
9 | else:
10 | cy, cx = center
11 |
12 | if nbins is None:
13 | nbins = int(max(h, w) / 2)
14 | nbins = max(1, int(nbins))
15 |
16 | y = np.arange(h) - cy
17 | x = np.arange(w) - cx
18 | X, Y = np.meshgrid(x, y)
19 | R = np.sqrt(X * X + Y * Y)
20 |
21 | Rmax = R.max()
22 | if Rmax <= 0:
23 | Rnorm = R
24 | else:
25 | Rnorm = R / (Rmax + 1e-12)
26 | Rnorm = np.minimum(Rnorm, 1.0 - 1e-12)
27 |
28 | bin_edges = np.linspace(0.0, 1.0, nbins + 1)
29 | bin_idx = np.digitize(Rnorm.ravel(), bin_edges) - 1
30 | bin_idx = np.clip(bin_idx, 0, nbins - 1)
31 |
32 | sums = np.bincount(bin_idx, weights=mag.ravel(), minlength=nbins)
33 | counts = np.bincount(bin_idx, minlength=nbins)
34 |
35 | radial_mean = np.zeros(nbins, dtype=np.float64)
36 | nonzero = counts > 0
37 | radial_mean[nonzero] = sums[nonzero] / counts[nonzero]
38 |
39 | bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
40 | return bin_centers, radial_mean
41 |
42 | def fourier_match_spectrum(img_arr: np.ndarray,
43 | ref_img_arr: np.ndarray = None,
44 | mode='auto',
45 | alpha=1.0,
46 | cutoff=0.25,
47 | strength=0.9,
48 | randomness=0.05,
49 | phase_perturb=0.08,
50 | radial_smooth=5,
51 | seed=None):
52 | if seed is not None:
53 | rng = np.random.default_rng(seed)
54 | else:
55 | rng = np.random.default_rng()
56 |
57 | # Ensure image well defined
58 | if img_arr.ndim == 2:
59 | h, w = img_arr.shape
60 | nch = 1
61 | elif img_arr.ndim == 3:
62 | h, w, nch = img_arr.shape
63 | else:
64 | raise ValueError("img_arr must be 2D or 3D")
65 |
66 | nbins = max(8, int(max(h, w) / 2))
67 |
68 | # Determine mode if auto: use 'ref' if reference image is provided, else 'model'
69 | if mode == 'auto':
70 | mode = 'ref' if ref_img_arr is not None else 'model'
71 |
72 | # Create a coordinate grid for building a 2D radial map
73 | y = np.linspace(-1, 1, h, endpoint=False)[:, None]
74 | x = np.linspace(-1, 1, w, endpoint=False)[None, :]
75 | r = np.sqrt(x * x + y * y)
76 | r = np.clip(r, 0.0, 1.0 - 1e-6)
77 |
78 | # Compute luminance (or gray) from img_arr once.
79 | if nch == 1:
80 | src_gray = img_arr.astype(np.float32)
81 | else:
82 | # Using simple average; optionally use luma weights (0.2126,0.7152,0.0722)
83 | src_gray = np.mean(img_arr.astype(np.float32), axis=2)
84 |
85 | # FFT of the source luminance & compute radial profile
86 | Fsrc = np.fft.fftshift(np.fft.fft2(src_gray))
87 | Msrc = np.abs(Fsrc)
88 | bin_centers_src, src_radial = radial_profile(Msrc, center=(h//2, w//2), nbins=nbins)
89 | src_radial = gaussian_filter1d(src_radial, sigma=max(1, radial_smooth))
90 |
91 | model_radial = None
92 | if mode == 'model':
93 | eps = 1e-8
94 | model_radial = (1.0 / (bin_centers_src + eps)) ** (alpha / 2.0)
95 | lf = max(1, nbins // 8)
96 | model_radial = model_radial / (np.median(model_radial[:lf]) + 1e-12)
97 | model_radial = gaussian_filter1d(model_radial, sigma=max(1, radial_smooth))
98 |
99 | ref_radial = None
100 | ref_bin_centers = None
101 | if mode == 'ref' and ref_img_arr is not None:
102 | # Resize ref image if needed
103 | if ref_img_arr.shape[0] != h or ref_img_arr.shape[1] != w:
104 | ref_img = Image.fromarray(ref_img_arr).resize((w, h), resample=Image.BICUBIC)
105 | ref_img_arr = np.array(ref_img)
106 | # Convert ref image to grayscale
107 | if ref_img_arr.ndim == 3:
108 | ref_gray = np.mean(ref_img_arr.astype(np.float32), axis=2)
109 | else:
110 | ref_gray = ref_img_arr.astype(np.float32)
111 | Fref = np.fft.fftshift(np.fft.fft2(ref_gray))
112 | Mref = np.abs(Fref)
113 | ref_bin_centers, ref_radial = radial_profile(Mref, center=(h//2, w//2), nbins=nbins)
114 | ref_radial = gaussian_filter1d(ref_radial, sigma=max(1, radial_smooth))
115 |
116 | # Compute desired radial profile based on mode
117 | eps = 1e-8
118 | if mode == 'ref' and ref_radial is not None:
119 | ref_interp = np.interp(bin_centers_src, ref_bin_centers, ref_radial)
120 | lf = max(1, nbins // 8)
121 | scale = (np.median(src_radial[:lf]) + eps) / (np.median(ref_interp[:lf]) + eps)
122 | ref_interp *= scale
123 | desired_radial = ref_interp.copy()
124 | elif mode == 'model' and model_radial is not None:
125 | lf = max(1, nbins // 8)
126 | scale = (np.median(src_radial[:lf]) + eps) / (np.median(model_radial[:lf]) + eps)
127 | desired_radial = model_radial * scale
128 | else:
129 | desired_radial = src_radial.copy()
130 |
131 | # Compute 1D multiplier and clip
132 | eps = 1e-8
133 | # adjust clip range and re-introduce strength into multiplier
134 | multiplier_1d = (desired_radial + eps) / (src_radial + eps)
135 | multiplier_1d = np.clip(multiplier_1d, 0.05, 10.0) # wider range -> stronger effect
136 |
137 | # Build the 2D multiplier map (weight remains computed as before)
138 | edge = 0.05 + 0.02 * (1.0 - cutoff)
139 | edge = max(edge, 1e-6)
140 | weight = np.where(r <= cutoff, 1.0,
141 | np.where(r <= cutoff + edge,
142 | 0.5 * (1 + np.cos(np.pi * (r - cutoff) / edge)),
143 | 0.0))
144 | mult_2d = np.interp(r.ravel(), bin_centers_src, multiplier_1d).reshape(h, w)
145 | # include strength in multiplier application (stronger spectral change)
146 | final_multiplier = 1.0 + (mult_2d - 1.0) * (weight * strength)
147 |
148 | # optional randomness (kept weighted)
149 | if randomness and randomness > 0.0:
150 | noise = rng.normal(loc=1.0, scale=randomness, size=final_multiplier.shape)
151 | final_multiplier *= (1.0 + (noise - 1.0) * weight)
152 |
153 | # Prepare output buffer.
154 | if nch == 1:
155 | out = np.zeros((h, w), dtype=np.uint8)
156 | else:
157 | out = np.zeros((h, w, nch), dtype=np.uint8)
158 |
159 | # Process each channel (for grayscale, loop once)
160 | for c in range(nch):
161 | if nch == 1:
162 | channel = img_arr.astype(np.float32)
163 | else:
164 | channel = img_arr[:, :, c].astype(np.float32)
165 |
166 | F = np.fft.fft2(channel)
167 | Fshift = np.fft.fftshift(F)
168 | mag = np.abs(Fshift)
169 | phase = np.angle(Fshift)
170 |
171 | # Apply final multiplier computed from luminance.
172 | mag2 = mag * final_multiplier
173 |
174 | # Apply phase perturbation using cutoff instead of hard-coded value.
175 | if phase_perturb and phase_perturb > 0.0:
176 | phase_sigma = phase_perturb * np.clip((r - cutoff) / (1.0 - cutoff + 1e-6), 0.0, 1.0)
177 | phase_noise = rng.standard_normal(size=phase_sigma.shape) * phase_sigma
178 | phase2 = phase + phase_noise
179 | else:
180 | phase2 = phase
181 |
182 | Fshift2 = mag2 * np.exp(1j * phase2)
183 | F_ishift = np.fft.ifftshift(Fshift2)
184 | img_back = np.fft.ifft2(F_ishift)
185 | img_back = np.real(img_back)
186 |
187 | # Blend lightly (so you still can dial strength)
188 | blended = (1.0 - min(0.5, 1.0 - strength)) * channel + min(1.0, strength + 0.2) * img_back
189 |
190 | if nch == 1:
191 | out[:, :] = np.clip(blended, 0, 255).astype(np.uint8)
192 | else:
193 | out[:, :, c] = np.clip(blended, 0, 255).astype(np.uint8)
194 |
195 | return out
--------------------------------------------------------------------------------
/image_postprocess/utils/blend.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from scipy.cluster.vq import kmeans2
3 | from scipy.ndimage import label, mean as ndi_mean
4 | from scipy.spatial import cKDTree
5 | import os
6 | from concurrent.futures import ThreadPoolExecutor, as_completed
7 |
8 | # Vectorized color conversions
9 | def rgb_to_hsv(rgb: np.ndarray) -> np.ndarray:
10 | """
11 | Vectorized RGB->[H(0..360), S(0..1), V(0..1)].
12 | rgb: (..., 3) in [0,255]
13 | """
14 | rgb = rgb.astype(np.float32) / 255.0
15 | r = rgb[..., 0]
16 | g = rgb[..., 1]
17 | b = rgb[..., 2]
18 |
19 | maxc = np.maximum(np.maximum(r, g), b)
20 | minc = np.minimum(np.minimum(r, g), b)
21 | delta = maxc - minc
22 |
23 | # Hue
24 | h = np.zeros_like(maxc)
25 | nonzero = delta > 1e-8
26 |
27 | # r is max
28 | mask = nonzero & (maxc == r)
29 | h[mask] = ((g[mask] - b[mask]) / delta[mask]) % 6
30 | # g is max
31 | mask = nonzero & (maxc == g)
32 | h[mask] = ((b[mask] - r[mask]) / delta[mask]) + 2
33 | # b is max
34 | mask = nonzero & (maxc == b)
35 | h[mask] = ((r[mask] - g[mask]) / delta[mask]) + 4
36 |
37 | h = h * 60.0 # degrees
38 | h[~nonzero] = 0.0
39 |
40 | # Saturation
41 | s = np.zeros_like(maxc)
42 | nonzero_max = maxc > 1e-8
43 | s[nonzero_max] = delta[nonzero_max] / maxc[nonzero_max]
44 |
45 | v = maxc
46 | hsv = np.stack([h, s, v], axis=-1)
47 | return hsv
48 |
49 | def hsv_to_rgb(hsv: np.ndarray) -> np.ndarray:
50 | """
51 | Vectorized HSV->[0..255] RGB.
52 | hsv: (...,3) with H in [0,360], S,V in [0,1]
53 | """
54 | h = hsv[..., 0] / 60.0 # sector
55 | s = hsv[..., 1]
56 | v = hsv[..., 2]
57 |
58 | c = v * s
59 | x = c * (1 - np.abs((h % 2) - 1))
60 | m = v - c
61 |
62 | rp = np.zeros_like(h)
63 | gp = np.zeros_like(h)
64 | bp = np.zeros_like(h)
65 |
66 | seg0 = (0 <= h) & (h < 1)
67 | seg1 = (1 <= h) & (h < 2)
68 | seg2 = (2 <= h) & (h < 3)
69 | seg3 = (3 <= h) & (h < 4)
70 | seg4 = (4 <= h) & (h < 5)
71 | seg5 = (5 <= h) & (h < 6)
72 |
73 | rp[seg0] = c[seg0]; gp[seg0] = x[seg0]; bp[seg0] = 0
74 | rp[seg1] = x[seg1]; gp[seg1] = c[seg1]; bp[seg1] = 0
75 | rp[seg2] = 0; gp[seg2] = c[seg2]; bp[seg2] = x[seg2]
76 | rp[seg3] = 0; gp[seg3] = x[seg3]; bp[seg3] = c[seg3]
77 | rp[seg4] = x[seg4]; gp[seg4] = 0; bp[seg4] = c[seg4]
78 | rp[seg5] = c[seg5]; gp[seg5] = 0; bp[seg5] = x[seg5]
79 |
80 | r = (rp + m)
81 | g = (gp + m)
82 | b = (bp + m)
83 |
84 | rgb = np.stack([r, g, b], axis=-1)
85 | rgb = np.clip(rgb * 255.0, 0, 255).astype(np.uint8)
86 | return rgb
87 |
88 | # Main blending pipeline
89 |
90 | def blend_colors(image: np.ndarray, tolerance: float = 10.0, min_region_size: int = 50,
91 | max_kmeans_samples: int = 100000, n_jobs: int | None = None) -> np.ndarray:
92 | """
93 | Parallelized version of blend_colors.
94 | n_jobs: number of worker threads (None -> os.cpu_count()).
95 | """
96 | if not isinstance(image, np.ndarray) or image.dtype != np.uint8 or image.ndim != 3:
97 | raise ValueError("Input must be a 3D NumPy array with uint8 dtype (H, W, C)")
98 |
99 | height, width, channels = image.shape
100 | assert channels == 3
101 |
102 | img_f = image.astype(np.float32)
103 | pixels = img_f.reshape(-1, 3)
104 | n_pixels = pixels.shape[0]
105 |
106 | num_clusters = max(1, int(256 / tolerance))
107 |
108 | # Subsample for kmeans
109 | rng = np.random.default_rng(seed=12345)
110 | if n_pixels > max_kmeans_samples:
111 | sample_idx = rng.choice(n_pixels, size=max_kmeans_samples, replace=False)
112 | else:
113 | sample_idx = np.arange(n_pixels)
114 | sample_data = pixels[sample_idx]
115 |
116 | centroids, _ = kmeans2(sample_data, num_clusters, minit='points')
117 |
118 | # Assign every pixel to nearest centroid in chunks (same as original)
119 | labels_all = np.empty(n_pixels, dtype=np.int32)
120 | chunk = 1_000_000
121 | for start in range(0, n_pixels, chunk):
122 | end = min(start + chunk, n_pixels)
123 | block = pixels[start:end] # (M,3)
124 | a2 = np.sum(block * block, axis=1)[:, None]
125 | b2 = np.sum(centroids * centroids, axis=1)[None, :]
126 | ab = block.dot(centroids.T)
127 | d2 = a2 + b2 - 2 * ab
128 | labels_all[start:end] = np.argmin(d2, axis=1)
129 |
130 | label_map = labels_all.reshape(height, width)
131 | output_image = image.copy()
132 |
133 | structure = np.ones((3, 3), dtype=np.int8)
134 |
135 | # Worker for a single cluster (runs in thread)
136 | def process_cluster(cluster_id: int):
137 | cluster_mask = (label_map == cluster_id).astype(np.uint8)
138 | if cluster_mask.sum() == 0:
139 | return 0 # nothing done
140 |
141 | labeled_array, num_features = label(cluster_mask, structure=structure)
142 | if num_features == 0:
143 | return 0
144 |
145 | counts = np.bincount(labeled_array.ravel())
146 | valid_ids = np.nonzero(counts >= min_region_size)[0]
147 | valid_ids = valid_ids[valid_ids != 0]
148 | if valid_ids.size == 0:
149 | return 0
150 |
151 | idx_list = valid_ids.tolist()
152 | means_r = ndi_mean(img_f[..., 0], labels=labeled_array, index=idx_list)
153 | means_g = ndi_mean(img_f[..., 1], labels=labeled_array, index=idx_list)
154 | means_b = ndi_mean(img_f[..., 2], labels=labeled_array, index=idx_list)
155 | region_means = np.stack([means_r, means_g, means_b], axis=-1) # float 0..255
156 |
157 | # convert region means to HSV and generate new colors per region
158 | region_mean_hsv = rgb_to_hsv(region_means[np.newaxis, :, :].reshape(-1, 3))
159 | # iterate regions (small loop per region; still OK)
160 | for i, region_label in enumerate(idx_list):
161 | seed_val = 42 + cluster_id + int(region_label)
162 | rng_region = np.random.default_rng(seed_val)
163 | shifts = rng_region.uniform(-0.05, 0.05, size=3)
164 | hsv = region_mean_hsv[i].copy()
165 | hsv += shifts * np.array([10.0, 0.1, 0.1])
166 | hsv[0] = np.clip(hsv[0], 0, 360)
167 | hsv[1] = np.clip(hsv[1], 0, 1)
168 | hsv[2] = np.clip(hsv[2], 0, 1)
169 | rgb_new = hsv_to_rgb(hsv[np.newaxis, :])[0]
170 |
171 | mask = (labeled_array == int(region_label))
172 | # assign directly into shared output_image; clusters don't overlap so this is safe
173 | output_image[mask] = rgb_new
174 |
175 | return 1 # done something
176 |
177 | # Run cluster processing in thread pool
178 | if n_jobs is None:
179 | n_jobs = os.cpu_count() or 1
180 | n_jobs = max(1, int(n_jobs))
181 |
182 | with ThreadPoolExecutor(max_workers=n_jobs) as ex:
183 | futures = [ex.submit(process_cluster, cid) for cid in range(num_clusters)]
184 | # optional: iterate to ensure completion
185 | for _ in as_completed(futures):
186 | pass
187 |
188 | # Island absorbtion (parallelize KD-tree queries by chunking queries)
189 | changed_mask = np.any(output_image != image, axis=2)
190 | if not np.all(changed_mask) and changed_mask.any():
191 | changed_coords = np.column_stack(np.nonzero(changed_mask)) # (M,2)
192 | changed_colors = output_image[changed_mask] # (M,3)
193 | unchanged_coords = np.column_stack(np.nonzero(~changed_mask)) # (U,2)
194 |
195 | if changed_coords.shape[0] > 0 and unchanged_coords.shape[0] > 0:
196 | tree = cKDTree(changed_coords)
197 |
198 | # We'll chunk the unchanged coords and parallel query
199 | def query_chunk(start_end):
200 | s, e = start_end
201 | sub = unchanged_coords[s:e]
202 | _, idxs = tree.query(sub, k=1)
203 | return (s, e, idxs)
204 |
205 | # prepare ranges
206 | U = unchanged_coords.shape[0]
207 | qchunk = max(1_000, U // (n_jobs * 4) + 1)
208 | ranges = [(i, min(i + qchunk, U)) for i in range(0, U, qchunk)]
209 |
210 | nearest_colors = np.empty((U, 3), dtype=np.uint8)
211 | with ThreadPoolExecutor(max_workers=n_jobs) as ex:
212 | futures = [ex.submit(query_chunk, r) for r in ranges]
213 | for fut in as_completed(futures):
214 | s, e, idxs = fut.result()
215 | nearest_colors[s:e] = changed_colors[idxs]
216 |
217 | # assign back
218 | # flatten indexing: map (r,c) to flat index
219 | flat_idx = unchanged_coords[:, 0] * width + unchanged_coords[:, 1]
220 | out_flat = output_image.reshape(-1, 3)
221 | out_flat[flat_idx] = nearest_colors
222 |
223 | return output_image
224 |
--------------------------------------------------------------------------------
/ui_utils/analysis_panel.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | """
3 | Analysis panel for histogram, FFT, radial profile, GLCM, and LBP plots.
4 | Designed to plug straight into the provided run.py / MainWindow.
5 |
6 | Exposes AnalysisPanel(title: str) with method update_from_path(path)
7 | and clear_plots(). Uses helpers from utils:
8 | - compute_gray_array(path) -> 2D numpy.ndarray (grayscale 0-255)
9 | - compute_fft_magnitude(gray) -> (mag, mag_log)
10 | - radial_profile(mag) -> (centers, radial)
11 | - compute_glcm(gray) -> (glcm, features)
12 | - compute_lbp(gray) -> (lbp, hist)
13 | - make_canvas(width, height) -> (FigureCanvas, Axes)
14 | """
15 |
16 | from PyQt5.QtWidgets import QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QSizePolicy, QLabel
17 | from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
18 | import numpy as np
19 | import os
20 |
21 | from utils import compute_gray_array, compute_fft_magnitude, radial_profile, compute_glcm, compute_lbp, make_canvas
22 |
23 |
24 | class AnalysisPanel(QWidget):
25 | def __init__(self, title: str = "Analysis", parent=None):
26 | super().__init__(parent)
27 | self.setMinimumHeight(360) # Increased to accommodate additional plots
28 |
29 | # Top-level layout + framed group
30 | v = QVBoxLayout(self)
31 | box = QGroupBox(title)
32 | vbox = QVBoxLayout()
33 | box.setLayout(vbox)
34 |
35 | # Two rows of plots: top row for histogram/FFT/radial, bottom for GLCM/LBP
36 | row1 = QHBoxLayout()
37 | row2 = QHBoxLayout()
38 |
39 | # Create canvases using project's make_canvas helper
40 | self.hist_canvas, self.hist_ax = make_canvas(width=3, height=2)
41 | self.fft_canvas, self.fft_ax = make_canvas(width=3, height=2)
42 | self.radial_canvas, self.radial_ax = make_canvas(width=3, height=2)
43 | self.glcm_canvas, self.glcm_ax = make_canvas(width=4.5, height=2) # Wider for multiple features
44 | self.lbp_canvas, self.lbp_ax = make_canvas(width=4.5, height=2)
45 |
46 | # Configure size policy and margins for all canvases
47 | for c in (self.hist_canvas, self.fft_canvas, self.radial_canvas, self.glcm_canvas, self.lbp_canvas):
48 | c.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
49 | try:
50 | c.figure.subplots_adjust(top=0.88, bottom=0.12, left=0.12, right=0.96)
51 | except Exception:
52 | pass
53 |
54 | # Add to layouts
55 | row1.addWidget(self.hist_canvas)
56 | row1.addWidget(self.fft_canvas)
57 | row1.addWidget(self.radial_canvas)
58 | row2.addWidget(self.glcm_canvas)
59 | row2.addWidget(self.lbp_canvas)
60 |
61 | vbox.addLayout(row1)
62 | vbox.addLayout(row2)
63 |
64 | # Status label for diagnostics
65 | self.status_label = QLabel("")
66 | self.status_label.setWordWrap(True)
67 | self.status_label.setVisible(False)
68 | vbox.addWidget(self.status_label)
69 |
70 | v.addWidget(box)
71 |
72 | def update_from_path(self, path: str):
73 | """Update all five plots using the image at `path`.
74 |
75 | If path is invalid or an error occurs, plots are cleared and a status message is shown.
76 | """
77 | if not path or not os.path.exists(path):
78 | self.status_label.setText(f"No image: {path}")
79 | self.status_label.setVisible(True)
80 | self.clear_plots()
81 | return
82 |
83 | try:
84 | gray = compute_gray_array(path)
85 | if gray is None:
86 | raise ValueError("compute_gray_array returned None")
87 | gray = np.asarray(gray)
88 | if gray.ndim != 2:
89 | raise ValueError("expected 2D grayscale array")
90 | except Exception as e:
91 | self.status_label.setText(f"Failed to load image: {e}")
92 | self.status_label.setVisible(True)
93 | self.clear_plots()
94 | return
95 |
96 | self.status_label.setVisible(False)
97 |
98 | # -------------------- Histogram --------------------
99 | try:
100 | self.hist_ax.cla()
101 | self.hist_ax.set_title('Grayscale histogram')
102 | self.hist_ax.set_xlabel('Intensity')
103 | self.hist_ax.set_ylabel('Count')
104 | flat = gray.ravel()
105 | if flat.dtype.kind == 'f' and flat.max() <= 1.0:
106 | flat = (flat * 255.0).astype(np.uint8)
107 | self.hist_ax.hist(flat, bins=256, range=(0, 255))
108 | self.hist_canvas.draw()
109 | except Exception as e:
110 | self.hist_ax.cla()
111 | self.hist_canvas.draw()
112 | self.status_label.setText(f"Histogram error: {e}")
113 | self.status_label.setVisible(True)
114 |
115 | # -------------------- FFT magnitude --------------------
116 | try:
117 | mag, mag_log = compute_fft_magnitude(gray)
118 | if mag_log is None:
119 | raise ValueError("compute_fft_magnitude returned None")
120 | self.fft_ax.cla()
121 | self.fft_ax.set_title('FFT magnitude (log)')
122 | self.fft_ax.imshow(mag_log, origin='lower', aspect='auto', cmap='inferno')
123 | self.fft_ax.set_xticks([])
124 | self.fft_ax.set_yticks([])
125 | try:
126 | self.fft_canvas.figure.subplots_adjust(right=0.92)
127 | except Exception:
128 | pass
129 | self.fft_canvas.draw()
130 | except Exception as e:
131 | self.fft_ax.cla()
132 | self.fft_canvas.draw()
133 | self.status_label.setText(f"FFT error: {e}")
134 | self.status_label.setVisible(True)
135 |
136 | # -------------------- Radial profile --------------------
137 | try:
138 | centers, radial = radial_profile(mag)
139 | if centers is None or radial is None:
140 | raise ValueError("radial_profile returned invalid data")
141 | self.radial_ax.cla()
142 | self.radial_ax.set_title('Radial freq profile')
143 | self.radial_ax.set_xlabel('Normalized radius')
144 | self.radial_ax.set_ylabel('Mean magnitude')
145 | self.radial_ax.plot(centers, radial)
146 | self.radial_canvas.draw()
147 | except Exception as e:
148 | self.radial_ax.cla()
149 | self.radial_canvas.draw()
150 | self.status_label.setText(f"Radial profile error: {e}")
151 | self.status_label.setVisible(True)
152 |
153 | # -------------------- GLCM Features --------------------
154 | try:
155 | _, features = compute_glcm(gray)
156 | if features is None:
157 | raise ValueError("compute_glcm returned None")
158 | self.glcm_ax.cla()
159 | self.glcm_ax.set_title('GLCM Features')
160 | self.glcm_ax.set_xlabel('Offset')
161 | self.glcm_ax.set_ylabel('Value')
162 | offsets = ['(0,1)', '(1,0)', '(1,1)', '(-1,1)']
163 | x = np.arange(len(offsets))
164 | for feature in ['contrast', 'correlation', 'energy', 'homogeneity']:
165 | self.glcm_ax.plot(x, features[feature], label=feature, marker='o')
166 | self.glcm_ax.set_xticks(x)
167 | self.glcm_ax.set_xticklabels(offsets)
168 | self.glcm_ax.legend()
169 | self.glcm_canvas.draw()
170 | except Exception as e:
171 | self.glcm_ax.cla()
172 | self.glcm_canvas.draw()
173 | self.status_label.setText(f"GLCM error: {e}")
174 | self.status_label.setVisible(True)
175 |
176 | # -------------------- LBP Histogram --------------------
177 | try:
178 | _, hist = compute_lbp(gray)
179 | if hist is None:
180 | raise ValueError("compute_lbp returned None")
181 | self.lbp_ax.cla()
182 | self.lbp_ax.set_title('LBP Histogram')
183 | self.lbp_ax.set_xlabel('Pattern')
184 | self.lbp_ax.set_ylabel('Frequency')
185 | self.lbp_ax.bar(range(len(hist)), hist)
186 | self.lbp_ax.set_xticks(range(len(hist)))
187 | self.lbp_canvas.draw()
188 | except Exception as e:
189 | self.lbp_ax.cla()
190 | self.lbp_canvas.draw()
191 | self.status_label.setText(f"LBP error: {e}")
192 | self.status_label.setVisible(True)
193 |
194 | def clear_plots(self):
195 | """Clear all axes and redraw empty canvases."""
196 | for ax, canvas in (
197 | (self.hist_ax, self.hist_canvas),
198 | (self.fft_ax, self.fft_canvas),
199 | (self.radial_ax, self.radial_canvas),
200 | (self.glcm_ax, self.glcm_canvas),
201 | (self.lbp_ax, self.lbp_canvas)
202 | ):
203 | try:
204 | ax.cla()
205 | if ax is self.hist_ax:
206 | ax.text(0.5, 0.5, 'No image', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
207 | canvas.draw()
208 | except Exception:
209 | pass
--------------------------------------------------------------------------------
/image_postprocess/utils/color_lut.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import re, os
3 | from PIL import Image
4 |
5 | def apply_1d_lut(img_arr: np.ndarray, lut: np.ndarray, strength: float = 1.0) -> np.ndarray:
6 | """
7 | Apply a 1D LUT to an image.
8 | - img_arr: HxWx3 uint8
9 | - lut: either shape (256,) (applied equally to all channels), (256,3) (per-channel),
10 | or (N,) / (N,3) (interpolated across [0..255])
11 | - strength: 0..1 blending between original and LUT result
12 | Returns uint8 array.
13 | """
14 | if img_arr.ndim != 3 or img_arr.shape[2] != 3:
15 | raise ValueError("apply_1d_lut expects an HxWx3 image array")
16 |
17 | # Normalize indices 0..255
18 | arr = img_arr.astype(np.float32)
19 | # Prepare LUT as float in 0..255 range if necessary
20 | lut_arr = np.array(lut, dtype=np.float32)
21 |
22 | # If single channel LUT (N,) expand to three channels
23 | if lut_arr.ndim == 1:
24 | lut_arr = np.stack([lut_arr, lut_arr, lut_arr], axis=1) # (N,3)
25 |
26 | if lut_arr.shape[1] != 3:
27 | raise ValueError("1D LUT must have shape (N,) or (N,3)")
28 |
29 | # Build index positions in source LUT space (0..255)
30 | N = lut_arr.shape[0]
31 | src_positions = np.linspace(0, 255, N)
32 |
33 | # Flatten and interpolate per channel
34 | out = np.empty_like(arr)
35 | for c in range(3):
36 | channel = arr[..., c].ravel()
37 | mapped = np.interp(channel, src_positions, lut_arr[:, c])
38 | out[..., c] = mapped.reshape(arr.shape[0], arr.shape[1])
39 |
40 | out = np.clip(out, 0, 255).astype(np.uint8)
41 | if strength >= 1.0:
42 | return out
43 | else:
44 | blended = ((1.0 - strength) * img_arr.astype(np.float32) + strength * out.astype(np.float32))
45 | return np.clip(blended, 0, 255).astype(np.uint8)
46 |
47 | def _trilinear_sample_lut(img_float: np.ndarray, lut: np.ndarray) -> np.ndarray:
48 | """
49 | Vectorized trilinear sampling of 3D LUT.
50 | - img_float: HxWx3 floats in [0,1]
51 | - lut: SxSxS x 3 floats in [0,1]
52 | Returns HxWx3 floats in [0,1]
53 | """
54 | S = lut.shape[0]
55 | if lut.shape[0] != lut.shape[1] or lut.shape[1] != lut.shape[2]:
56 | raise ValueError("3D LUT must be cubic (SxSxSx3)")
57 |
58 | # map [0,1] -> [0, S-1]
59 | idx = img_float * (S - 1)
60 | r_idx = idx[..., 0]
61 | g_idx = idx[..., 1]
62 | b_idx = idx[..., 2]
63 |
64 | r0 = np.floor(r_idx).astype(np.int32)
65 | g0 = np.floor(g_idx).astype(np.int32)
66 | b0 = np.floor(b_idx).astype(np.int32)
67 |
68 | r1 = np.clip(r0 + 1, 0, S - 1)
69 | g1 = np.clip(g0 + 1, 0, S - 1)
70 | b1 = np.clip(b0 + 1, 0, S - 1)
71 |
72 | dr = (r_idx - r0)[..., None]
73 | dg = (g_idx - g0)[..., None]
74 | db = (b_idx - b0)[..., None]
75 |
76 | # gather 8 corners: c000 ... c111
77 | c000 = lut[r0, g0, b0]
78 | c001 = lut[r0, g0, b1]
79 | c010 = lut[r0, g1, b0]
80 | c011 = lut[r0, g1, b1]
81 | c100 = lut[r1, g0, b0]
82 | c101 = lut[r1, g0, b1]
83 | c110 = lut[r1, g1, b0]
84 | c111 = lut[r1, g1, b1]
85 |
86 | # interpolate along b
87 | c00 = c000 * (1 - db) + c001 * db
88 | c01 = c010 * (1 - db) + c011 * db
89 | c10 = c100 * (1 - db) + c101 * db
90 | c11 = c110 * (1 - db) + c111 * db
91 |
92 | # interpolate along g
93 | c0 = c00 * (1 - dg) + c01 * dg
94 | c1 = c10 * (1 - dg) + c11 * dg
95 |
96 | # interpolate along r
97 | c = c0 * (1 - dr) + c1 * dr
98 |
99 | return c # float in same range as lut (expected [0,1])
100 |
101 | def apply_3d_lut(img_arr: np.ndarray, lut3d: np.ndarray, strength: float = 1.0) -> np.ndarray:
102 | """
103 | Apply a 3D LUT to the image.
104 | - img_arr: HxWx3 uint8
105 | - lut3d: SxSxSx3 float (expected range 0..1)
106 | - strength: blending 0..1
107 | Returns uint8 image.
108 | """
109 | if img_arr.ndim != 3 or img_arr.shape[2] != 3:
110 | raise ValueError("apply_3d_lut expects an HxWx3 image array")
111 |
112 | img_float = img_arr.astype(np.float32) / 255.0
113 | sampled = _trilinear_sample_lut(img_float, lut3d) # HxWx3 floats in [0,1]
114 | out = np.clip(sampled * 255.0, 0, 255).astype(np.uint8)
115 | if strength >= 1.0:
116 | return out
117 | else:
118 | blended = ((1.0 - strength) * img_arr.astype(np.float32) + strength * out.astype(np.float32))
119 | return np.clip(blended, 0, 255).astype(np.uint8)
120 |
121 | def apply_lut(img_arr: np.ndarray, lut: np.ndarray, strength: float = 1.0) -> np.ndarray:
122 | """
123 | Auto-detect LUT type and apply.
124 | - If lut.ndim in (1,2) treat as 1D LUT (per-channel if shape (N,3)).
125 | - If lut.ndim == 4 treat as 3D LUT (SxSxSx3) in [0,1].
126 | """
127 | lut = np.array(lut)
128 | if lut.ndim == 4 and lut.shape[3] == 3:
129 | # 3D LUT (assumed normalized [0..1])
130 | # If lut is in 0..255, normalize
131 | if lut.dtype != np.float32 and lut.max() > 1.0:
132 | lut = lut.astype(np.float32) / 255.0
133 | return apply_3d_lut(img_arr, lut, strength=strength)
134 | elif lut.ndim in (1, 2):
135 | return apply_1d_lut(img_arr, lut, strength=strength)
136 | else:
137 | raise ValueError("Unsupported LUT shape: {}".format(lut.shape))
138 |
139 | def load_cube_lut(path: str) -> np.ndarray:
140 | """
141 | Parse a .cube file and return a 3D LUT array of shape (S,S,S,3) with float values in [0,1].
142 | Note: .cube file order sometimes varies; this function assumes standard ordering
143 | where data lines are triples of floats and LUT_3D_SIZE specifies S.
144 | """
145 | with open(path, 'r', encoding='utf-8', errors='ignore') as f:
146 | lines = [ln.strip() for ln in f if ln.strip() and not ln.strip().startswith('#')]
147 |
148 | size = None
149 | data = []
150 | domain_min = np.array([0.0, 0.0, 0.0], dtype=np.float32)
151 | domain_max = np.array([1.0, 1.0, 1.0], dtype=np.float32)
152 |
153 | for ln in lines:
154 | if ln.upper().startswith('LUT_3D_SIZE'):
155 | parts = ln.split()
156 | if len(parts) >= 2:
157 | size = int(parts[1])
158 | elif ln.upper().startswith('DOMAIN_MIN'):
159 | parts = ln.split()
160 | domain_min = np.array([float(p) for p in parts[1:4]], dtype=np.float32)
161 | elif ln.upper().startswith('DOMAIN_MAX'):
162 | parts = ln.split()
163 | domain_max = np.array([float(p) for p in parts[1:4]], dtype=np.float32)
164 | elif re.match(r'^-?\d+(\.\d+)?\s+-?\d+(\.\d+)?\s+-?\d+(\.\d+)?$', ln):
165 | parts = [float(x) for x in ln.split()]
166 | data.append(parts)
167 |
168 | if size is None:
169 | raise ValueError("LUT_3D_SIZE not found in .cube file: {}".format(path))
170 |
171 | data = np.array(data, dtype=np.float32)
172 | if data.shape[0] != size**3:
173 | raise ValueError("Cube LUT data length does not match size^3 (got {}, expected {})".format(data.shape[0], size**3))
174 |
175 | # Data ordering in many .cube files is: for r in 0..S-1: for g in 0..S-1: for b in 0..S-1: write RGB
176 | # We'll reshape into (S,S,S,3) with indices [r,g,b]
177 | lut = data.reshape((size, size, size, 3))
178 | # Map domain_min..domain_max to 0..1 if domain specified (rare)
179 | if not np.allclose(domain_min, [0.0, 0.0, 0.0]) or not np.allclose(domain_max, [1.0, 1.0, 1.0]):
180 | # scale lut values from domain range into 0..1
181 | lut = (lut - domain_min) / (domain_max - domain_min + 1e-12)
182 | lut = np.clip(lut, 0.0, 1.0)
183 | else:
184 | # ensure LUT is in [0,1] if not already
185 | if lut.max() > 1.0 + 1e-6:
186 | lut = lut / 255.0
187 | return lut.astype(np.float32)
188 |
189 | def load_lut(path: str) -> np.ndarray:
190 | """
191 | Load a LUT from:
192 | - .npy (numpy saved array)
193 | - .cube (3D LUT)
194 | - image (PNG/JPG) that is a 1D LUT strip (common 256x1 or 1x256)
195 | Returns numpy array (1D, 2D, or 4D LUT).
196 | """
197 | ext = os.path.splitext(path)[1].lower()
198 | if ext == '.npy':
199 | return np.load(path)
200 | elif ext == '.cube':
201 | return load_cube_lut(path)
202 | else:
203 | # try interpreting as image-based 1D LUT
204 | try:
205 | im = Image.open(path).convert('RGB')
206 | arr = np.array(im)
207 | h, w = arr.shape[:2]
208 | # 256x1 or 1x256 typical 1D LUT
209 | if (w == 256 and h == 1) or (h == 256 and w == 1):
210 | if h == 1:
211 | lut = arr[0, :, :].astype(np.float32)
212 | else:
213 | lut = arr[:, 0, :].astype(np.float32)
214 | return lut # shape (256,3)
215 | # sometimes embedded as 512x16 or other tile layouts; attempt to flatten
216 | # fallback: flatten and try to build (N,3)
217 | flat = arr.reshape(-1, 3).astype(np.float32)
218 | # if length is perfect power-of-two and <= 1024, assume 1D
219 | L = flat.shape[0]
220 | if L <= 4096:
221 | return flat # (L,3)
222 | raise ValueError("Image LUT not recognized size")
223 | except Exception as e:
224 | raise ValueError(f"Unsupported LUT file or parse error for {path}: {e}")
225 |
--------------------------------------------------------------------------------
/image_postprocess/camera_pipeline.py:
--------------------------------------------------------------------------------
1 | """
2 | camera_pipeline.py
3 |
4 | Functions for simulating a realistic camera pipeline, including Bayer mosaic/demosaic,
5 | chromatic aberration, vignette, sensor noise, hot pixels, banding, motion blur, and JPEG recompression.
6 | """
7 |
8 | from io import BytesIO
9 | from PIL import Image
10 | import numpy as np
11 | try:
12 | import cv2
13 | _HAS_CV2 = True
14 | except Exception:
15 | cv2 = None
16 | _HAS_CV2 = False
17 | from scipy.ndimage import convolve
18 |
19 | def _bayer_mosaic(img: np.ndarray, pattern='RGGB') -> np.ndarray:
20 | """Create a single-channel Bayer mosaic from an RGB image.
21 |
22 | pattern currently supports 'RGGB' (most common). Returns uint8 2D array.
23 | """
24 | h, w = img.shape[:2]
25 | mosaic = np.zeros((h, w), dtype=np.uint8)
26 |
27 | # pattern mapping for RGGB:
28 | # (0,0) R, (0,1) G
29 | # (1,0) G, (1,1) B
30 | R = img[:, :, 0]
31 | G = img[:, :, 1]
32 | B = img[:, :, 2]
33 |
34 | # fill mosaic according to RGGB
35 | mosaic[0::2, 0::2] = R[0::2, 0::2]
36 | mosaic[0::2, 1::2] = G[0::2, 1::2]
37 | mosaic[1::2, 0::2] = G[1::2, 0::2]
38 | mosaic[1::2, 1::2] = B[1::2, 1::2]
39 | return mosaic
40 |
41 | def _demosaic_bilinear(mosaic: np.ndarray) -> np.ndarray:
42 | """Simple bilinear demosaic fallback (no cv2). Outputs RGB uint8 image.
43 |
44 | Not perfect but good enough to add demosaic artifacts.
45 | """
46 | h, w = mosaic.shape
47 | # Work in float to avoid overflow
48 | m = mosaic.astype(np.float32)
49 |
50 | # We'll compute each channel by averaging available mosaic samples
51 | R = np.zeros_like(m)
52 | G = np.zeros_like(m)
53 | B = np.zeros_like(m)
54 |
55 | # RGGB pattern
56 | R[0::2, 0::2] = m[0::2, 0::2]
57 | G[0::2, 1::2] = m[0::2, 1::2]
58 | G[1::2, 0::2] = m[1::2, 0::2]
59 | B[1::2, 1::2] = m[1::2, 1::2]
60 |
61 | # Convolution kernels for interpolation (simple)
62 | k_cross = np.array([[0, 1, 0], [1, 4, 1], [0, 1, 0]], dtype=np.float32) / 8.0
63 | k_diag = np.array([[1, 0, 1], [0, 0, 0], [1, 0, 1]], dtype=np.float32) / 4.0
64 |
65 | # convolve using scipy.ndimage.convolve
66 | R_interp = convolve(R, k_cross, mode='mirror')
67 | G_interp = convolve(G, k_cross, mode='mirror')
68 | B_interp = convolve(B, k_cross, mode='mirror')
69 |
70 | out = np.stack((R_interp, G_interp, B_interp), axis=2)
71 | out = np.clip(out, 0, 255).astype(np.uint8)
72 | return out
73 |
74 | def _apply_chromatic_aberration(img: np.ndarray, strength=1.0, seed=None):
75 | """Shift R and B channels slightly in opposite directions to emulate CA.
76 |
77 | strength is in pixels (float). Uses cv2.warpAffine if available; integer
78 | fallback uses np.roll.
79 | """
80 | if seed is not None:
81 | rng = np.random.default_rng(seed)
82 | else:
83 | rng = np.random.default_rng()
84 |
85 | h, w = img.shape[:2]
86 | max_shift = max(1.0, strength)
87 | # small random subpixel shift sampled from normal distribution
88 | shift_r = rng.normal(loc=0.0, scale=max_shift * 0.6)
89 | shift_b = rng.normal(loc=0.0, scale=max_shift * 0.6)
90 | # apply opposite horizontal shifts to R and B for lateral CA
91 | r_x = shift_r
92 | r_y = rng.normal(scale=0.3 * abs(shift_r))
93 | b_x = -shift_b
94 | b_y = rng.normal(scale=0.3 * abs(shift_b))
95 |
96 | out = img.copy().astype(np.float32)
97 | if _HAS_CV2:
98 | def warp_channel(ch, tx, ty):
99 | M = np.array([[1, 0, tx], [0, 1, ty]], dtype=np.float32)
100 | return cv2.warpAffine(ch, M, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT)
101 | out[:, :, 0] = warp_channel(out[:, :, 0], r_x, r_y)
102 | out[:, :, 2] = warp_channel(out[:, :, 2], b_x, b_y)
103 | else:
104 | # integer fallback
105 | ix_r = int(round(r_x))
106 | iy_r = int(round(r_y))
107 | ix_b = int(round(b_x))
108 | iy_b = int(round(b_y))
109 | out[:, :, 0] = np.roll(out[:, :, 0], shift=(iy_r, ix_r), axis=(0, 1))
110 | out[:, :, 2] = np.roll(out[:, :, 2], shift=(iy_b, ix_b), axis=(0, 1))
111 |
112 | out = np.clip(out, 0, 255).astype(np.uint8)
113 | return out
114 |
115 | def _apply_vignette(img: np.ndarray, strength=0.4):
116 | h, w = img.shape[:2]
117 | y = np.linspace(-1, 1, h)[:, None]
118 | x = np.linspace(-1, 1, w)[None, :]
119 | r = np.sqrt(x * x + y * y)
120 | mask = 1.0 - (r ** 2) * strength
121 | mask = np.clip(mask, 0.0, 1.0)
122 | out = (img.astype(np.float32) * mask[:, :, None])
123 | out = np.clip(out, 0, 255).astype(np.uint8)
124 | return out
125 |
126 | def _add_poisson_gaussian_noise(img: np.ndarray, iso_scale=1.0, read_noise_std=2.0, seed=None):
127 | """Poisson-Gaussian sensor noise model.
128 |
129 | iso_scale scales the signal before Poisson sampling (higher -> more Poisson),
130 | read_noise_std is the sigma (in DN) of additive Gaussian read noise.
131 | """
132 | if seed is not None:
133 | rng = np.random.default_rng(seed)
134 | else:
135 | rng = np.random.default_rng()
136 |
137 | img_f = img.astype(np.float32)
138 | # scale to simulate exposure/iso
139 | scaled = img_f * iso_scale
140 | # Poisson: we need integer counts; scale to a reasonable photon budget
141 | # choose scale so that typical pixel values map to ~[0..2000] photons
142 | photon_scale = 4.0
143 | lam = np.clip(scaled * photon_scale, 0, 1e6)
144 | noisy = rng.poisson(lam).astype(np.float32) / photon_scale
145 | # add read noise
146 | noisy += rng.normal(loc=0.0, scale=read_noise_std, size=noisy.shape)
147 | noisy = np.clip(noisy, 0, 255).astype(np.uint8)
148 | return noisy
149 |
150 | def _add_hot_pixels_and_banding(img: np.ndarray, hot_pixel_prob=1e-6, banding_strength=0.0, seed=None):
151 | if seed is not None:
152 | rng = np.random.default_rng(seed)
153 | else:
154 | rng = np.random.default_rng()
155 |
156 | h, w = img.shape[:2]
157 | out = img.copy().astype(np.float32)
158 | # hot pixels
159 | n_pixels = int(h * w * hot_pixel_prob)
160 | if n_pixels > 0:
161 | ys = rng.integers(0, h, size=n_pixels)
162 | xs = rng.integers(0, w, size=n_pixels)
163 | vals = rng.integers(200, 256, size=n_pixels)
164 | for y, x, v in zip(ys, xs, vals):
165 | out[y, x, :] = v
166 | # banding: add low-amplitude sinusoidal horizontal banding
167 | if banding_strength > 0.0:
168 | rows = np.arange(h)[:, None]
169 | band = (np.sin(rows * 0.5) * 255.0 * banding_strength)
170 | out += band[:, :, None]
171 | out = np.clip(out, 0, 255).astype(np.uint8)
172 | return out
173 |
174 | def _motion_blur(img: np.ndarray, kernel_size=5):
175 | if kernel_size <= 1:
176 | return img
177 | # simple linear motion kernel horizontally
178 | kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
179 | kernel[kernel_size // 2, :] = 1.0 / kernel_size
180 | out = np.zeros_like(img)
181 | for c in range(3):
182 | out[:, :, c] = convolve(img[:, :, c].astype(np.float32), kernel, mode='mirror')
183 | out = np.clip(out, 0, 255).astype(np.uint8)
184 | return out
185 |
186 | def _jpeg_recompress(img: np.ndarray, quality=90) -> np.ndarray:
187 | pil = Image.fromarray(img)
188 | buf = BytesIO()
189 | pil.save(buf, format='JPEG', quality=int(quality), optimize=False)
190 | buf.seek(0)
191 | rec = Image.open(buf).convert('RGB')
192 | return np.array(rec)
193 |
194 | def simulate_camera_pipeline(img_arr: np.ndarray,
195 | bayer=True,
196 | jpeg_cycles=1,
197 | jpeg_quality_range=(88, 96),
198 | vignette_strength=0.35,
199 | chroma_aberr_strength=1.2,
200 | iso_scale=1.0,
201 | read_noise_std=2.0,
202 | hot_pixel_prob=1e-6,
203 | banding_strength=0.0,
204 | motion_blur_kernel=1,
205 | seed=None):
206 | """Apply a set of realistic camera/capture artifacts to img_arr (RGB uint8).
207 |
208 | Returns an RGB uint8 image.
209 | """
210 | if seed is not None:
211 | rng = np.random.default_rng(seed)
212 | else:
213 | rng = np.random.default_rng()
214 |
215 | out = img_arr.copy()
216 |
217 | # 1) Bayer mosaic + demosaic (if enabled)
218 | if bayer:
219 | try:
220 | mosaic = _bayer_mosaic(out[:, :, ::-1]) # we built mosaic assuming R,G,B order; send RGB
221 | if _HAS_CV2:
222 | # cv2 expects a single-channel Bayer and provides demosaicing codes
223 | # We'll use RGGB code (COLOR_BAYER_RG2BGR) so convert back to RGB after
224 | dem = cv2.demosaicing(mosaic, cv2.COLOR_BAYER_RG2BGR)
225 | # cv2 returns BGR
226 | dem = dem[:, :, ::-1]
227 | out = dem
228 | else:
229 | out = _demosaic_bilinear(mosaic)
230 | except Exception:
231 | # if anything fails, keep original
232 | out = img_arr.copy()
233 |
234 | # 2) chromatic aberration
235 | out = _apply_chromatic_aberration(out, strength=chroma_aberr_strength, seed=seed)
236 |
237 | # 3) vignette
238 | out = _apply_vignette(out, strength=vignette_strength)
239 |
240 | # 4) noise (Poisson-Gaussian)
241 | out = _add_poisson_gaussian_noise(out, iso_scale=iso_scale, read_noise_std=read_noise_std, seed=seed)
242 |
243 | # 5) hot pixels and banding
244 | out = _add_hot_pixels_and_banding(out, hot_pixel_prob=hot_pixel_prob, banding_strength=banding_strength, seed=seed)
245 |
246 | # 6) motion blur
247 | if motion_blur_kernel and motion_blur_kernel > 1:
248 | out = _motion_blur(out, kernel_size=motion_blur_kernel)
249 |
250 | # 7) JPEG recompression cycles
251 | for i in range(max(1, int(jpeg_cycles))):
252 | q = int(rng.integers(jpeg_quality_range[0], jpeg_quality_range[1] + 1))
253 | out = _jpeg_recompress(out, quality=q)
254 |
255 | return out
--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | """
3 | Utility functions for image processing GUI.
4 | """
5 |
6 | from PyQt5.QtGui import QPixmap
7 | from PyQt5.QtCore import Qt
8 | from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
9 | from matplotlib.figure import Figure
10 | from PIL import Image
11 | import numpy as np
12 | from concurrent.futures import ThreadPoolExecutor
13 |
14 | def qpixmap_from_path(p: str, max_size=(480, 360)) -> QPixmap:
15 | """
16 | Load an image from a path into a QPixmap, scaled to a maximum size.
17 |
18 | Parameters:
19 | - p (str): The file path of the image.
20 | - max_size (tuple): A tuple (width, height) for the maximum dimensions.
21 |
22 | Returns:
23 | - QPixmap: The scaled pixmap. Returns an empty QPixmap if the path is invalid.
24 | """
25 | pix = QPixmap(p)
26 | if pix.isNull():
27 | return QPixmap()
28 | w, h = max_size
29 | return pix.scaled(w, h, Qt.KeepAspectRatio, Qt.SmoothTransformation)
30 |
31 | def make_canvas(width=4, height=3, dpi=100):
32 | """
33 | Create a Matplotlib canvas and axes for embedding in a PyQt GUI.
34 |
35 | Parameters:
36 | - width (int): The width of the figure in inches.
37 | - height (int): The height of the figure in inches.
38 | - dpi (int): The resolution of the figure in dots per inch.
39 |
40 | Returns:
41 | - tuple: A tuple containing the FigureCanvas and the Axes object (canvas, ax).
42 | """
43 | fig = Figure(figsize=(width, height), dpi=dpi)
44 | canvas = FigureCanvas(fig)
45 | ax = fig.add_subplot(111)
46 | fig.tight_layout()
47 | return canvas, ax
48 |
49 | def compute_gray_array(path):
50 | """
51 | Open an image, convert it to grayscale, and return it as a NumPy array.
52 |
53 | The conversion uses the luminosity method: Y = 0.299*R + 0.587*G + 0.114*B.
54 |
55 | Parameters:
56 | - path (str): The file path of the image.
57 |
58 | Returns:
59 | - np.ndarray: A 2D NumPy array of type float32 representing the grayscale image.
60 | """
61 | img = Image.open(path).convert('RGB')
62 | arr = np.array(img)
63 | gray = (0.299 * arr[:, :, 0] + 0.587 * arr[:, :, 1] + 0.114 * arr[:, :, 2]).astype(np.float32)
64 | return gray
65 |
66 | def compute_fft_magnitude(gray_arr, eps=1e-8):
67 | """
68 | Compute the 2D FFT magnitude spectrum of a grayscale image.
69 |
70 | This function calculates the Fast Fourier Transform, shifts the zero-frequency
71 | component to the center, and returns both the absolute magnitude and a
72 | log-scaled version for better visualization.
73 |
74 | Parameters:
75 | - gray_arr (np.ndarray): The input 2D grayscale image array.
76 | - eps (float): A small epsilon value (currently unused in the implementation).
77 |
78 | Returns:
79 | - tuple: A tuple containing:
80 | - mag (np.ndarray): The centered FFT magnitude spectrum.
81 | - mag_log (np.ndarray): The log-scaled magnitude spectrum (log(1 + mag)).
82 | """
83 | f = np.fft.fft2(gray_arr)
84 | fshift = np.fft.fftshift(f)
85 | mag = np.abs(fshift)
86 | mag_log = np.log1p(mag)
87 | return mag, mag_log
88 |
89 | def radial_profile(mag, center=None, nbins=100):
90 | """
91 | Compute the radially averaged profile of a 2D array (e.g., FFT magnitude).
92 |
93 | This calculates the average value in concentric rings starting from a center point.
94 |
95 | Parameters:
96 | - mag (np.ndarray): The 2D input array.
97 | - center (tuple, optional): The (y, x) coordinates of the center. If None,
98 | the geometric center of the array is used.
99 | - nbins (int): The number of radial bins to use.
100 |
101 | Returns:
102 | - tuple: A tuple containing:
103 | - centers (np.ndarray): The normalized radial distance for each bin (0 to 1).
104 | - radial_mean (np.ndarray): The mean value for each radial bin.
105 | """
106 | h, w = mag.shape
107 | if center is None:
108 | center = (int(h / 2), int(w / 2))
109 | y, x = np.indices((h, w))
110 | r = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2)
111 | r_flat = r.ravel()
112 | mag_flat = mag.ravel()
113 | max_r = np.max(r_flat)
114 | if max_r <= 0:
115 | return np.linspace(0, 1, nbins), np.zeros(nbins)
116 | bins = np.linspace(0, max_r, nbins + 1)
117 | inds = np.digitize(r_flat, bins) - 1
118 | radial_mean = np.zeros(nbins)
119 | for i in range(nbins):
120 | sel = inds == i
121 | if np.any(sel):
122 | radial_mean[i] = mag_flat[sel].mean()
123 | else:
124 | radial_mean[i] = 0.0
125 | centers = 0.5 * (bins[:-1] + bins[1:]) / max_r
126 | return centers, radial_mean
127 |
128 |
129 | def compute_glcm(gray_arr, levels=8, offsets=[(0, 1), (1, 0), (1, 1), (-1, 1)], eps=1e-8):
130 | """
131 | Vectorized Gray-Level Co-occurrence Matrix (GLCM) computation.
132 |
133 | Replaces per-pixel Python loops with NumPy-indexed operations and
134 | np.bincount to accumulate co-occurrence counts. This yields large
135 | speedups for typical image sizes.
136 | """
137 | # Quantize grayscale image to 'levels' bins
138 | gray = gray_arr.astype(np.float32)
139 | gray_min, gray_max = gray.min(), gray.max()
140 | if gray_max > gray_min:
141 | gray_quant = np.floor((gray - gray_min) / (gray_max - gray_min + eps) * (levels - 1)).astype(np.int32)
142 | else:
143 | gray_quant = np.zeros_like(gray, dtype=np.int32)
144 |
145 | h, w = gray_quant.shape
146 | glcm = np.zeros((levels, levels, len(offsets)), dtype=np.float32)
147 | features = {
148 | 'contrast': np.zeros(len(offsets), dtype=np.float32),
149 | 'correlation': np.zeros(len(offsets), dtype=np.float32),
150 | 'energy': np.zeros(len(offsets), dtype=np.float32),
151 | 'homogeneity': np.zeros(len(offsets), dtype=np.float32)
152 | }
153 |
154 | # Precompute index grids
155 | rows, cols = np.indices((h, w))
156 |
157 | # Precompute i,j matrices for feature computation
158 | i_idx = np.arange(levels).reshape(levels, 1)
159 | j_idx = np.arange(levels).reshape(1, levels)
160 |
161 | for k, (dy, dx) in enumerate(offsets):
162 | r2 = rows + dy
163 | c2 = cols + dx
164 | valid = (r2 >= 0) & (r2 < h) & (c2 >= 0) & (c2 < w)
165 | if not np.any(valid):
166 | continue
167 |
168 | q1 = gray_quant[rows[valid], cols[valid]]
169 | q2 = gray_quant[r2[valid], c2[valid]]
170 |
171 | # Flatten pair indices to accumulate with bincount (fast C loop)
172 | pairs = q1 * levels + q2
173 | counts = np.bincount(pairs, minlength=levels * levels).astype(np.float32)
174 | glcm_k = counts.reshape((levels, levels))
175 |
176 | # Normalize
177 | total = glcm_k.sum()
178 | if total > 0:
179 | glcm_k /= total
180 |
181 | # Features
182 | contrast = np.sum((i_idx - j_idx) ** 2 * glcm_k)
183 | mu_i = np.sum(i_idx * glcm_k)
184 | mu_j = np.sum(j_idx * glcm_k)
185 | sigma_i = np.sqrt(np.sum((i_idx - mu_i) ** 2 * glcm_k) + eps)
186 | sigma_j = np.sqrt(np.sum((j_idx - mu_j) ** 2 * glcm_k) + eps)
187 | if sigma_i > 0 and sigma_j > 0:
188 | correlation = np.sum((i_idx - mu_i) * (j_idx - mu_j) * glcm_k) / (sigma_i * sigma_j)
189 | else:
190 | correlation = 0.0
191 | energy = np.sum(glcm_k ** 2)
192 | homogeneity = np.sum(glcm_k / (1.0 + np.abs(i_idx - j_idx) + eps))
193 |
194 | glcm[:, :, k] = glcm_k
195 | features['contrast'][k] = contrast
196 | features['correlation'][k] = correlation
197 | features['energy'][k] = energy
198 | features['homogeneity'][k] = homogeneity
199 |
200 | return glcm, features
201 |
202 |
203 | # ---------------------- Optimized LBP ----------------------
204 |
205 | def compute_lbp(gray_arr, radius=1, n_points=8, eps=1e-8):
206 | """
207 | Vectorized Local Binary Pattern (uniform, rotation-invariant).
208 |
209 | Uses NumPy operations to sample all neighbor points at once and
210 | build LBP codes without explicit per-pixel Python loops.
211 | """
212 | gray = gray_arr.astype(np.float32)
213 | h, w = gray.shape
214 |
215 | # Pad to avoid boundary checks during interpolation
216 | pad = int(np.ceil(radius)) + 1
217 | padded = np.pad(gray, pad_width=pad, mode='edge')
218 |
219 | # Center coordinates in padded image
220 | Y, X = np.indices((h, w))
221 | Y = Y + pad
222 | X = X + pad
223 |
224 | angles = np.linspace(0, 2 * np.pi, n_points, endpoint=False)
225 | lbp = np.zeros((h, w), dtype=np.uint32)
226 |
227 | for k, theta in enumerate(angles):
228 | # Note: y increases downward in image coordinates
229 | dy = -radius * np.sin(theta)
230 | dx = radius * np.cos(theta)
231 |
232 | sample_y = Y.astype(np.float32) + dy
233 | sample_x = X.astype(np.float32) + dx
234 |
235 | # Bilinear interpolation indices and weights
236 | y0 = np.floor(sample_y).astype(np.int32)
237 | x0 = np.floor(sample_x).astype(np.int32)
238 | y1 = y0 + 1
239 | x1 = x0 + 1
240 |
241 | wy = sample_y - y0
242 | wx = sample_x - x0
243 |
244 | # Gather values
245 | v00 = padded[y0, x0]
246 | v10 = padded[y1, x0]
247 | v01 = padded[y0, x1]
248 | v11 = padded[y1, x1]
249 |
250 | vals = (1 - wy) * (1 - wx) * v00 + wy * (1 - wx) * v10 + (1 - wy) * wx * v01 + wy * wx * v11
251 |
252 | # Compare with center
253 | center = padded[Y, X]
254 | bit = (vals >= center).astype(np.uint32)
255 | lbp |= (bit << k)
256 |
257 | # Map to rotation-invariant uniform patterns
258 | n_codes = 1 << n_points
259 | codes = np.arange(n_codes, dtype=np.uint32)
260 | bits = ((codes[:, None] >> np.arange(n_points)) & 1).astype(np.uint8)
261 | transitions = np.sum(bits != np.roll(bits, -1, axis=1), axis=1)
262 | uniform_mask = transitions <= 2
263 |
264 | lbp_map = np.full(n_codes, n_points + 1, dtype=np.int32)
265 | lbp_map[uniform_mask] = np.arange(np.count_nonzero(uniform_mask), dtype=np.int32)[np.argsort(np.nonzero(uniform_mask)[0])]
266 | # The above ensures uniform codes get unique indices from 0..(num_uniform-1)
267 |
268 | lbp_mapped = lbp_map[lbp]
269 |
270 | n_bins = lbp_map.max() + 1
271 | hist = np.bincount(lbp_mapped.ravel(), minlength=n_bins).astype(np.float32)
272 | hist /= (hist.sum() + eps)
273 |
274 | return lbp_mapped, hist
275 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Image Detection Bypass Utility
2 |
3 | Circumvention of AI Detection — all wrapped in a clean, user-friendly interface.
4 |
5 | 
6 | 
7 | 
8 | 
9 | 
10 | 
11 | 
12 | 
13 | 
14 | 
15 | 
16 |
17 |
18 | ---
19 |
20 | ## Screenshot
21 |
22 | 
23 |
24 | ## Notice
25 | Due to the nature of this project, future updates will be under AGPL V3 license to ensure this project and its derivatives remains Open Source.
26 |
27 | ## Features
28 |
29 | * Select input, optional auto white-balance reference, optional FFT reference, and output paths with live previews.
30 | * **Auto Mode**: one slider to control an expressive preset of postprocess parameters.
31 | * **Manual Mode**: full access to noise, CLAHE, FFT, phase perturbation, pixel perturbation, etc.
32 | * Camera pipeline simulator: Bayer/demosaic, JPEG cycles/quality, vignette, chromatic aberration, motion blur, hot pixels, read-noise, banding.
33 | * Input / output analysis panels (via `AnalysisPanel`) to inspect images before/after processing.
34 | * Background worker thread with progress reporting and rich error dialog (traceback viewer).
35 |
36 | ---
37 |
38 | ## ComfyUI Integration
39 |
40 | 
41 |
42 | Use ComfyUI Manager and install via GitHub link.
43 | Or manually clone to custom\_nodes folder.
44 |
45 | ```bash
46 | git clone https://github.com/PurinNyova/Image-Detection-Bypass-Utility
47 | ```
48 |
49 | then
50 |
51 | ```bash
52 | cd Image-Detection-Bypass-Utility
53 | pip install -r requirements.txt
54 | ```
55 |
56 | Thanks to u/Race88 for the help on the ComfyUI code.
57 |
58 | ### Requirements
59 |
60 | * Python 3.8+ recommended
61 | * PyPI packages:
62 |
63 | ```bash
64 | pip install pyqt5 pillow numpy matplotlib piexif lpips
65 | # optional but recommended for extra functionality:
66 | pip install opencv-python
67 | # optional but needed for AI Normalizer (Install CPU OR Cuda)
68 | #Torch Cuda 12.6
69 | pip install torch torchvision --index-url https://download.pytorch.org/whl/cu126
70 | #Torch CPU
71 | pip install torch torchvision
72 |
73 | ```
74 |
75 | OR
76 |
77 | ```bash
78 | pip install -r requirements.txt
79 | ```
80 |
81 | ### Files expected in the same folder
82 |
83 | * `image_postprocess` — your processing logic (export `process_image(...)` or compatible API).
84 | * `worker.py` — Worker thread wrapper used to run the pipeline in background.
85 | * `analysis_panel.py` — UI widget used for input/output analysis.
86 | * `utils.py` — must provide `qpixmap_from_path(path, max_size=(w,h))`.
87 |
88 | ### Run
89 |
90 | ```bash
91 | python run.py
92 |
93 | # Alternatively, if you're having issues, a "run.sh" script has been created that will also install dependencies
94 | # properly and run the GUI
95 | ./run.sh # also installs dependencies before running `python run.py`
96 | ```
97 |
98 | ---
99 |
100 | ## Using the GUI (at-a-glance)
101 |
102 | 1. **Choose Input** — opens file dialog; sets suggested output path automatically.
103 | 2. *(optional)* **Choose Reference** — used for FFT/color reference (OpenCV-based color match supported).
104 | 3. *(optional)* **Choose Auto White-Balance Reference** — used for auto white-balance correction (applied before CLAHE).
105 | 4. **Choose Output** — where processed image will be written.
106 | 5. **Auto Mode** — enable for a single slider to control a bundled preset.
107 | 6. **Manual Mode** — tune individual parameters in the Parameters group.
108 | 7. **Camera Simulator** — enable to reveal camera-specific controls (Bayer, JPEG cycles, vignette, chroma, etc.).
109 | 8. Click **Run — Process Image** to start. The GUI disables controls while running and shows progress.
110 | 9. When finished, the output preview and Output analysis panel update automatically.
111 |
112 | ---
113 |
114 | ## Parameter Explanation
115 |
116 | This section documents every manual parameter exposed by the GUI and gives guidance for usage.
117 |
118 | ---
119 |
120 | ## Manual Parameters
121 |
122 | When **Auto Mode** is disabled, you can fine-tune the image post-processing pipeline manually using the following parameters:
123 |
124 | ### Noise & Contrast
125 |
126 | * **Noise std (0–0.1)**
127 | Standard deviation of Gaussian noise applied to the image. Higher values introduce more noise, useful for simulating sensor artifacts.
128 |
129 | * **CLAHE clip**
130 | Clip limit for Contrast Limited Adaptive Histogram Equalization (CLAHE). Controls the amount of contrast enhancement.
131 |
132 | * **CLAHE tile**
133 | Number of tiles used in CLAHE grid. Larger values give finer local contrast adjustments.
134 |
135 | ---
136 |
137 | ### Fourier Domain Controls
138 |
139 | * **Fourier cutoff (0–1)**
140 | Frequency cutoff threshold. Lower values preserve only low frequencies (smoothing), higher values retain more high-frequency detail.
141 |
142 | * **Fourier strength (0–1)**
143 | Blending ratio for Fourier-domain filtering. At 1.0, full effect is applied; at 0.0, no effect.
144 |
145 | * **Fourier randomness**
146 | Amount of stochastic variation introduced in the Fourier transform domain to simulate non-uniform distortions.
147 |
148 | * **Phase perturb (rad)**
149 | Random perturbation of phase in the Fourier spectrum, measured in radians. Adds controlled irregularity to frequency response.
150 |
151 | * **Radial smooth (bins)**
152 | Number of bins used for radial frequency smoothing. Higher values smooth the frequency response more aggressively.
153 |
154 | * **FFT mode**
155 | Mode selection for FFT-based processing (e.g., `auto`, `ref`, `model`).
156 | `auto` will choose the most appropriate mode automatically.
157 | `ref` uses your FFT reference image as a reference.
158 | `model` uses a preset mathematical formula to find a natural FFT spectrum.
159 |
160 | * **FFT alpha (model)**
161 | Scaling factor for FFT filtering. Controls how strongly frequency components are weighted. Only affects model mode.
162 |
163 | ---
164 |
165 | ### Pixel-Level Perturbations
166 |
167 | * **Pixel perturb**
168 | Standard deviation of per-pixel perturbations applied in the spatial domain. Adds small jitter to pixel intensities.
169 |
170 | ---
171 |
172 | ### Texture-based Normalization (GLCM)
173 |
174 | * **What it is** — Gray-Level Co-occurrence Matrix (GLCM) features capture second-order texture statistics (how often pairs of gray levels occur at specified distances and angles). GLCM normalization aims to match these texture statistics between the input and an FFT reference image, producing more realistic-looking sensor/textural artifacts.
175 |
176 | * **When to use** — Use GLCM when the goal is to emulate or match textural properties (fine-grain patterns, structural noise) of a reference image. It is complementary to Fourier-domain matching: FFT shapes the spectral envelope while GLCM shapes spatial texture statistics.
177 |
178 | * **Controls**
179 |
180 | * **Distances** — distance(s) in pixels used when building GLCM (default `[1]`). Use larger distances to capture coarser texture.
181 | * **Angles** — angles (radians) for directional co-occurrence (default `[0, π/4, π/2, 3π/4]`). More angles give rotation-robust matching.
182 | * **Levels** — number of quantized gray levels used for GLCM (default `256`). Lower values are faster and smooth the texture statistics.
183 | * **Strength** — blending factor (0..1) controlling how strongly GLCM features from the reference influence the output (default `0.9`). Lower values apply subtler texture matching.
184 |
185 | * **Practical tips**
186 |
187 | * Combine moderate `glcm_strength` (0.4–0.8) with FFT matching for subtle realism.
188 | * Use fewer `glcm_levels` (e.g., 64 or 32) for speed and to avoid overfitting to noisy reference images.
189 |
190 | ---
191 |
192 | ### Local Binary Patterns (LBP)
193 |
194 | * **What it is** — Local Binary Patterns encode a small neighbourhood around each pixel as a binary pattern, creating histograms that are very effective at characterizing micro-texture and local structure.
195 |
196 | * **When to use** — LBP histogram matching is useful when you want to replicate micro-textural characteristics like sensor grain, cloth weave, or repetitive fine structure from a reference image.
197 |
198 | * **Controls**
199 |
200 | * **Radius** — radius of the circular neighbourhood (in pixels) used to compute LBP (default `3`). Larger radii capture coarser patterns.
201 | * **N points** — number of sampling points around the circle (default `24`). More points increase descriptor resolution.
202 | * **Method** — one of `default`, `ror` (rotation invariant), `uniform` (compact uniform patterns), or `var` (variance-based). Use `uniform` for compact, robust histograms by default.
203 | * **Strength** — blending factor (0..1) controlling how strongly the LBP histogram from the reference influences the output (default `0.9`).
204 |
205 | * **Practical tips**
206 |
207 | * Use `lbp_method='uniform'` and `lbp_n_points` 8–24 for stable results across natural images.
208 | * Decrease `lbp_strength` for subtle grain matching; increase it if the output needs to closely follow the reference micro-texture.
209 |
210 | ---
211 |
212 | ### Randomization
213 |
214 | * **Seed (0=none)**
215 | Random seed for reproducibility.
216 |
217 | * `0` → fully random each run
218 | * Any other integer → deterministic output for given settings
219 |
220 | ---
221 |
222 | Use these parameters to experiment with different looks.
223 |
224 | Generally:
225 | For **Minimum destructiveness**, keep noise and perturb values low.
226 | For **Increased Evation**, increase Fourier randomness, Fourier Strength, phase perturb, and pixel perturb.
227 |
228 | ---
229 |
230 | ## AI Normalizer
231 |
232 | When enabled, the AI Normalizer applies a non-semantic attack using PyTorch and LPIPS to subtly modify the image without introducing perceptible artifacts. The following parameters control its behavior:
233 |
234 | * **Iterations** — Number of optimization steps to perform.
235 | * **Learning Rate** — Step size for the optimizer.
236 | * **T LPIPS** — Threshold for the LPIPS perceptual loss. If the LPIPS loss exceeds this threshold, it is penalized.
237 | * **T L2** — Threshold for the L2 loss on the perturbation.
238 | * **C LPIPS** — Weighting factor for the LPIPS loss penalty.
239 | * **C L2** — Weighting factor for the L2 loss penalty.
240 | * **Gradient Clip** — Maximum allowed gradient value during optimization to prevent exploding gradients.
241 |
242 | ---
243 |
244 | ## Contributing
245 |
246 | * PRs welcome. If you modify UI layout or parameter names, keep the `args` mapping consistent or update `README` and `worker.py` accordingly.
247 | * Add unit tests for `worker.py` and the parameter serialization if you intend to refactor.
248 |
249 | ---
250 |
251 | ## Paper Used
252 |
253 | This project credits and draws inspiration from:
254 |
255 | **UnMarker: A Universal Attack on Defensive Image Watermarking**
256 | Andre Kassis, Urs Hengartner
257 |
258 | ## License
259 |
260 | MIT — free to use and adapt. Please include attribution if you fork or republish.
261 |
262 | ---
263 |
--------------------------------------------------------------------------------
/image_postprocess/processor.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | """
3 | processor.py
4 |
5 | Main pipeline for image postprocessing with an optional realistic camera-pipeline simulator.
6 | Added support for applying 1D PNG/.npy LUTs and .cube 3D LUTs via --lut.
7 | Added GLCM and LBP normalization using the same reference as FFT.
8 | """
9 |
10 | import argparse
11 | import os
12 | from PIL import Image
13 | import numpy as np
14 | import piexif
15 | from datetime import datetime
16 |
17 | from .utils import (
18 | add_gaussian_noise,
19 | clahe_color_correction,
20 | randomized_perturbation,
21 | fourier_match_spectrum,
22 | auto_white_balance_ref,
23 | load_lut,
24 | apply_lut,
25 | glcm_normalize,
26 | lbp_normalize,
27 | attack_non_semantic,
28 | blend_colors
29 |
30 | )
31 | from .camera_pipeline import simulate_camera_pipeline
32 |
33 |
34 | def add_fake_exif():
35 | """
36 | Generates a plausible set of fake EXIF data.
37 | Returns:
38 | bytes: The EXIF data as a byte string, ready for insertion.
39 | """
40 | now = datetime.now()
41 | datestamp = now.strftime("%Y:%m:%d %H:%M:%S")
42 |
43 | zeroth_ifd = {
44 | piexif.ImageIFD.Make: b"PurinCamera",
45 | piexif.ImageIFD.Model: b"Model420X",
46 | piexif.ImageIFD.Software: b"NovaImageProcessor",
47 | piexif.ImageIFD.DateTime: datestamp.encode('utf-8'),
48 | }
49 | exif_ifd = {
50 | piexif.ExifIFD.DateTimeOriginal: datestamp.encode('utf-8'),
51 | piexif.ExifIFD.DateTimeDigitized: datestamp.encode('utf-8'),
52 | piexif.ExifIFD.ExposureTime: (1, 125), # 1/125s
53 | piexif.ExifIFD.FNumber: (28, 10), # F/2.8
54 | piexif.ExifIFD.ISOSpeedRatings: 200,
55 | piexif.ExifIFD.FocalLength: (50, 1), # 50mm
56 | }
57 | gps_ifd = {}
58 |
59 | exif_dict = {"0th": zeroth_ifd, "Exif": exif_ifd, "GPS": gps_ifd, "1st": {}, "thumbnail": None}
60 | exif_bytes = piexif.dump(exif_dict)
61 | return exif_bytes
62 |
63 |
64 | def process_image(path_in, path_out, args):
65 | img = Image.open(path_in).convert('RGB')
66 | arr = np.array(img)
67 |
68 | # Load FFT reference independently (used for FFT, GLCM, and LBP)
69 | ref_arr_fft = None
70 | if args.fft_ref:
71 | try:
72 | ref_img_fft = Image.open(args.fft_ref).convert('RGB')
73 | ref_arr_fft = np.array(ref_img_fft)
74 | except Exception as e:
75 | print(f"Warning: failed to load FFT reference '{args.fft_ref}': {e}. Skipping FFT reference matching.")
76 | ref_arr_fft = None
77 |
78 | # blend system
79 | if args.blend:
80 | try:
81 | arr = blend_colors(arr, tolerance=args.blend_tolerance, min_region_size=args.blend_min_region,
82 | max_kmeans_samples=args.blend_max_samples, n_jobs=args.blend_n_jobs)
83 | except Exception as e:
84 | print(f"Warning: Blending failed: {e}. Skipping blending.")
85 |
86 | # --- Non-semantic attack (if enabled) executed first ---
87 | if args.non_semantic:
88 | print("Applying non-semantic attack...")
89 | try:
90 | arr = attack_non_semantic(
91 | arr,
92 | iterations=args.ns_iterations,
93 | learning_rate=args.ns_learning_rate,
94 | t_lpips=args.ns_t_lpips,
95 | t_l2=args.ns_t_l2,
96 | c_lpips=args.ns_c_lpips,
97 | c_l2=args.ns_c_l2,
98 | grad_clip_value=args.ns_grad_clip
99 | )
100 | except Exception as e:
101 | print(f"Warning: Non-semantic attack failed: {e}. Skipping non-semantic attack.")
102 |
103 | # --- CLAHE color correction (if enabled) ---
104 | if args.clahe:
105 | arr = clahe_color_correction(arr, clip_limit=args.clahe_clip, tile_grid_size=(args.tile, args.tile))
106 |
107 | # --- FFT spectral matching (if enabled) ---
108 | if args.fft:
109 | arr = fourier_match_spectrum(arr, ref_img_arr=ref_arr_fft, mode=args.fft_mode,
110 | alpha=args.fft_alpha, cutoff=args.cutoff,
111 | strength=args.fstrength, randomness=args.randomness,
112 | phase_perturb=args.phase_perturb, radial_smooth=args.radial_smooth,
113 | seed=args.seed)
114 |
115 | # GLCM normalization
116 | if args.glcm:
117 | arr = glcm_normalize(arr, ref_img_arr=ref_arr_fft, distances=args.glcm_distances,
118 | angles=args.glcm_angles, levels=args.glcm_levels,
119 | strength=args.glcm_strength, seed=args.seed)
120 |
121 | # LBP normalization
122 | if args.lbp:
123 | arr = lbp_normalize(arr, ref_img_arr=ref_arr_fft, radius=args.lbp_radius,
124 | n_points=args.lbp_n_points, method=args.lbp_method,
125 | strength=args.lbp_strength, seed=args.seed)
126 |
127 | # Gaussian noise addition
128 | if args.noise:
129 | arr = add_gaussian_noise(arr, std_frac=args.noise_std, seed=args.seed)
130 |
131 | # Randomized perturbation
132 | if args.perturb:
133 | arr = randomized_perturbation(arr, magnitude_frac=args.perturb_magnitude, seed=args.seed)
134 |
135 | # call the camera simulator if requested
136 | if args.sim_camera:
137 | arr = simulate_camera_pipeline(arr,
138 | bayer=not args.no_no_bayer,
139 | jpeg_cycles=args.jpeg_cycles,
140 | jpeg_quality_range=(args.jpeg_qmin, args.jpeg_qmax),
141 | vignette_strength=args.vignette_strength,
142 | chroma_aberr_strength=args.chroma_strength,
143 | iso_scale=args.iso_scale,
144 | read_noise_std=args.read_noise,
145 | hot_pixel_prob=args.hot_pixel_prob,
146 | banding_strength=args.banding_strength,
147 | motion_blur_kernel=args.motion_blur_kernel,
148 | seed=args.seed)
149 |
150 | # --- Auto white-balance (if enabled) ---
151 | if args.awb:
152 | if args.ref:
153 | try:
154 | ref_img_awb = Image.open(args.ref).convert('RGB')
155 | ref_arr_awb = np.array(ref_img_awb)
156 | arr = auto_white_balance_ref(arr, ref_arr_awb)
157 | except Exception as e:
158 | print(f"Warning: failed to load AWB reference '{args.ref}': {e}. Skipping AWB.")
159 | else:
160 | print("Applying AWB using grey-world assumption...")
161 | arr = auto_white_balance_ref(arr, None)
162 |
163 | # LUT application
164 | if args.lut:
165 | try:
166 | lut = load_lut(args.lut)
167 | arr_uint8 = np.clip(arr, 0, 255).astype(np.uint8)
168 | arr_lut = apply_lut(arr_uint8, lut, strength=args.lut_strength)
169 | arr = np.clip(arr_lut, 0, 255).astype(np.uint8)
170 | except Exception as e:
171 | print(f"Warning: failed to load/apply LUT '{args.lut}': {e}. Skipping LUT.")
172 |
173 | out_img = Image.fromarray(arr)
174 |
175 | # Generate fake EXIF data and save it with the image
176 | fake_exif_bytes = add_fake_exif()
177 | out_img.save(path_out, exif=fake_exif_bytes)
178 |
179 |
180 | def build_argparser():
181 | p = argparse.ArgumentParser(description="Image postprocessing pipeline with camera simulation, LUT support, GLCM, and LBP normalization")
182 | p.add_argument('input', help='Input image path')
183 | p.add_argument('output', help='Output image path')
184 |
185 | # AWB Options
186 | p.add_argument('--awb', action='store_true', default=False, help='Enable automatic white balancing. Uses grey-world if --ref is not provided.')
187 | p.add_argument('--ref', help='Optional reference image for auto white-balance (only used if --awb is enabled)', default=None)
188 |
189 | p.add_argument('--noise-std', type=float, default=0.02, help='Gaussian noise std fraction of 255 (0-0.1)')
190 | p.add_argument('--clahe-clip', type=float, default=2.0, help='CLAHE clip limit')
191 | p.add_argument('--tile', type=int, default=8, help='CLAHE tile grid size')
192 | p.add_argument('--cutoff', type=float, default=0.25, help='Fourier cutoff (0..1)')
193 | p.add_argument('--fstrength', type=float, default=0.9, help='Fourier blend strength (0..1)')
194 | p.add_argument('--randomness', type=float, default=0.05, help='Randomness for Fourier mask modulation')
195 | p.add_argument('--seed', type=int, default=None, help='Random seed for reproducibility')
196 |
197 | # FFT-matching options
198 | p.add_argument('--fft-ref', help='Optional reference image for FFT spectral matching, GLCM, and LBP', default=None)
199 | p.add_argument('--fft-mode', choices=('auto','ref','model'), default='auto', help='FFT mode: auto picks ref if available')
200 | p.add_argument('--fft-alpha', type=float, default=1.0, help='Alpha for 1/f model (spectrum slope)')
201 | p.add_argument('--phase-perturb', type=float, default=0.08, help='Phase perturbation strength (radians)')
202 | p.add_argument('--radial-smooth', type=int, default=5, help='Radial smoothing (bins) for spectrum profiles')
203 |
204 | # GLCM normalization options
205 | p.add_argument('--glcm', action='store_true', default=False, help='Enable GLCM normalization using FFT reference if available')
206 | p.add_argument('--glcm-distances', type=int, nargs='+', default=[1], help='Distances for GLCM computation')
207 | p.add_argument('--glcm-angles', type=float, nargs='+', default=[0, np.pi/4, np.pi/2, 3*np.pi/4], help='Angles for GLCM computation (in radians)')
208 | p.add_argument('--glcm-levels', type=int, default=256, help='Number of gray levels for GLCM')
209 | p.add_argument('--glcm-strength', type=float, default=0.9, help='Strength of GLCM feature matching (0..1)')
210 |
211 | # LBP normalization options
212 | p.add_argument('--lbp', action='store_true', default=False, help='Enable LBP normalization using FFT reference if available')
213 | p.add_argument('--lbp-radius', type=int, default=3, help='Radius of LBP operator')
214 | p.add_argument('--lbp-n-points', type=int, default=24, help='Number of circularly symmetric neighbor set points for LBP')
215 | p.add_argument('--lbp-method', choices=('default', 'ror', 'uniform', 'var'), default='uniform', help='LBP method')
216 | p.add_argument('--lbp-strength', type=float, default=0.9, help='Strength of LBP histogram matching (0..1)')
217 |
218 | # Non-semantic attack options
219 | p.add_argument('--non-semantic', action='store_true', default=False, help='Apply non-semantic attack on the image')
220 | p.add_argument('--ns-iterations', type=int, default=500, help='Iterations for non-semantic attack')
221 | p.add_argument('--ns-learning-rate', type=float, default=3e-4, help='Learning rate for non-semantic attack')
222 | p.add_argument('--ns-t-lpips', type=float, default=4e-2, help='LPIPS threshold for non-semantic attack')
223 | p.add_argument('--ns-t-l2', type=float, default=3e-5, help='L2 threshold for non-semantic attack')
224 | p.add_argument('--ns-c-lpips', type=float, default=1e-2, help='LPIPS constant for non-semantic attack')
225 | p.add_argument('--ns-c-l2', type=float, default=0.6, help='L2 constant for non-semantic attack')
226 | p.add_argument('--ns-grad-clip', type=float, default=0.05, help='Gradient clipping value for non-semantic attack')
227 |
228 | # Camera-simulator options
229 | p.add_argument('--sim-camera', action='store_true', default=False, help='Enable camera-pipeline simulation (Bayer, CA, vignette, JPEG cycles)')
230 | p.add_argument('--no-no-bayer', dest='no_no_bayer', action='store_false', help='Disable Bayer/demosaic step (double negative kept for backward compat)')
231 | p.set_defaults(no_no_bayer=True)
232 | p.add_argument('--jpeg-cycles', type=int, default=1, help='Number of JPEG recompression cycles to apply')
233 | p.add_argument('--jpeg-qmin', type=int, default=88, help='Min JPEG quality for recompression')
234 | p.add_argument('--jpeg-qmax', type=int, default=96, help='Max JPEG quality for recompression')
235 | p.add_argument('--vignette-strength', type=float, default=0.35, help='Vignette strength (0..1)')
236 | p.add_argument('--chroma-strength', type=float, default=1.2, help='Chromatic aberration strength (pixels)')
237 | p.add_argument('--iso-scale', type=float, default=1.0, help='ISO/exposure scale for Poisson noise')
238 | p.add_argument('--read-noise', type=float, default=2.0, help='Read noise sigma for sensor noise')
239 | p.add_argument('--hot-pixel-prob', type=float, default=1e-6, help='Per-pixel probability of hot pixel')
240 | p.add_argument('--banding-strength', type=float, default=0.0, help='Horizontal banding amplitude (0..1)')
241 | p.add_argument('--motion-blur-kernel', type=int, default=1, help='Motion blur kernel size (1 = none)')
242 |
243 | # LUT options
244 | p.add_argument('--lut', type=str, default=None, help='Path to a 1D PNG (256x1) or .npy LUT, or a .cube 3D LUT')
245 | p.add_argument('--lut-strength', type=float, default=0.1, help='Strength to blend LUT (0.0 = no effect, 1.0 = full LUT)')
246 |
247 | # New positive flags to enable utils functions
248 | p.add_argument('--noise', action='store_true', default=False, help='Enable Gaussian noise addition')
249 | p.add_argument('--clahe', action='store_true', default=False, help='Enable CLAHE color correction')
250 | p.add_argument('--fft', action='store_true', default=False, help='Enable FFT spectral matching')
251 | p.add_argument('--perturb', action='store_true', default=False, help='Enable randomized perturbation')
252 | p.add_argument('--perturb-magnitude', type=float, default=0.008, help='Randomized perturb magnitude fraction (0..0.05)')
253 |
254 | # Blending options
255 | p.add_argument('--blend', action='store_true', default=False, help='Enable color')
256 | p.add_argument('--blend-tolerance', type=float, default=10.0, help='Color tolerance for blending (smaller = more colors)')
257 | p.add_argument('--blend-min-region', type=int, default=50, help='Minimum region size to retain (in pixels)')
258 | p.add_argument('--blend-max-samples', type=int, default=100000, help='Maximum pixels to sample for k-means (for speed)')
259 | p.add_argument('--blend-n-jobs', type=int, default=None, help='Number of worker threads for blending (default: os.cpu_count())')
260 |
261 | return p
262 |
263 |
264 | if __name__ == "__main__":
265 | args = build_argparser().parse_args()
266 | if not os.path.exists(args.input):
267 | print("Input not found:", args.input)
268 | raise SystemExit(2)
269 | process_image(args.input, args.output, args)
270 | print("Saved:", args.output)
--------------------------------------------------------------------------------
/nodes.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from PIL import Image
3 | import numpy as np
4 | import os
5 | import tempfile
6 | from types import SimpleNamespace
7 | from typing import Tuple
8 | import json
9 |
10 | try:
11 | from .image_postprocess import process_image
12 | except Exception as e:
13 | process_image = None
14 | IMPORT_ERROR = str(e)
15 | else:
16 | IMPORT_ERROR = None
17 |
18 | from .nodes_utils import CameraOptionsNode, NSOptionsNode
19 |
20 | lut_extensions = ['png','npy','cube']
21 |
22 | # ---------- Helper utilities (kept from original) ----------
23 |
24 | def to_pil_from_any(inp):
25 | """Convert a torch tensor / numpy array of many shapes into a PIL RGB Image."""
26 | if isinstance(inp, torch.Tensor):
27 | arr = inp.detach().cpu().numpy()
28 | else:
29 | arr = np.asarray(inp)
30 | if arr.ndim == 4 and arr.shape[0] == 1:
31 | arr = arr[0]
32 | if arr.ndim == 3 and arr.shape[0] in (1, 3):
33 | arr = np.transpose(arr, (1, 2, 0))
34 | if arr.ndim == 2:
35 | arr = arr[:, :, None]
36 | if arr.ndim != 3:
37 | raise TypeError(f"Cannot convert array to HWC image, final ndim={arr.ndim}, shape={arr.shape}")
38 | if np.issubdtype(arr.dtype, np.floating):
39 | if arr.max() <= 1.0:
40 | arr = (arr * 255.0).clip(0, 255).astype(np.uint8)
41 | else:
42 | arr = np.clip(arr, 0, 255).astype(np.uint8)
43 | else:
44 | arr = arr.astype(np.uint8)
45 | if arr.shape[2] == 1:
46 | arr = np.repeat(arr, 3, axis=2)
47 | return Image.fromarray(arr)
48 |
49 | # utility parsers for list-like UI inputs
50 |
51 | def _parse_int_list(val):
52 | if isinstance(val, (list, tuple)):
53 | return [int(x) for x in val]
54 | if isinstance(val, (int, np.integer)):
55 | return [int(val)]
56 | s = str(val).strip()
57 | if s == "":
58 | return []
59 | parts = [p for p in s.replace(',', ' ').split() if p != ""]
60 | return [int(p) for p in parts]
61 |
62 |
63 | def _parse_float_list(val):
64 | if isinstance(val, (list, tuple)):
65 | return [float(x) for x in val]
66 | if isinstance(val, (float, int, np.floating, np.integer)):
67 | return [float(val)]
68 | s = str(val).strip()
69 | if s == "":
70 | return []
71 | parts = [p for p in s.replace(',', ' ').split() if p != ""]
72 | return [float(p) for p in parts]
73 |
74 | class NovaNodes:
75 | """
76 | ComfyUI node: Full post-processing chain using process_image from image_postprocess.
77 | This version expects two optional JSON inputs:
78 | - Cam_Opt: JSON string produced by CameraOptionsNode
79 | - NS_Opt: JSON string produced by NSOptionsNode
80 |
81 | If those are empty, default values will be used (matching prior defaults).
82 | """
83 |
84 | @classmethod
85 | def INPUT_TYPES(s):
86 | # Keep most of the core image-processing parameters here; camera/NS options have been moved out.
87 | return {
88 | "required": {
89 | "image": ("IMAGE",),
90 |
91 | # High-level toggles for using the external nodes
92 | "Cam_Opt": ("CAMERAOPT", ),
93 | "NS_Opt": ("NONSEMANTICOP", ),
94 |
95 | # Parameters (noise / clahe / fourier / etc.)
96 | "apply_noise_o": ("BOOLEAN", {"default": True}),
97 | "noise_std_frac": ("FLOAT", {"default": 0.02, "min": 0.0, "max": 0.1, "step": 0.001}),
98 | "apply_clahe_o": ("BOOLEAN", {"default": True}),
99 | "clahe_clip": ("FLOAT", {"default": 2.00, "min": 0.5, "max": 10.0, "step": 0.1}),
100 | "clahe_grid": ("INT", {"default": 8, "min": 2, "max": 32, "step": 1}),
101 | "fourier_cutoff": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}),
102 | "apply_fourier_o": ("BOOLEAN", {"default": True}),
103 | "fourier_strength": ("FLOAT", {"default": 0.90, "min": 0.0, "max": 1.0, "step": 0.01}),
104 | "fourier_randomness": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 0.5, "step": 0.01}),
105 | "fourier_phase_perturb": ("FLOAT", {"default": 0.08, "min": 0.0, "max": 0.5, "step": 0.01}),
106 | "fourier_radial_smooth": ("INT", {"default": 5, "min": 0, "max": 50, "step": 1}),
107 | "fourier_mode": (["auto", "ref", "model"], {"default": "auto"}),
108 | "fourier_alpha": ("FLOAT", {"default": 1.00, "min": 0.1, "max": 4.0, "step": 0.1}),
109 | "perturb_mag_frac": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 0.05, "step": 0.001}),
110 | "enable_awb": ("BOOLEAN", {"default": True}),
111 |
112 |
113 | "enable_lut": ("BOOLEAN", {"default": True}),
114 | "lut": ("STRING", {"default": "X://insert/path/here(.png/.npy/.cube)", "vhs_path_extensions": lut_extensions}),
115 | "lut_strength": ("FLOAT", {"default": 1.00, "min": 0.0, "max": 1.0, "step": 0.01}),
116 | "glcm": ("BOOLEAN", {"default": False}),
117 | "glcm_distances": ("STRING", {"default": "1"}),
118 | "glcm_angles": ("STRING", {"default": f"0,{np.pi/4},{np.pi/2},{3*np.pi/4}"}),
119 | "glcm_levels": ("INT", {"default": 256, "min": 2, "max": 65536, "step": 1}),
120 | "glcm_strength": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0, "step": 0.01}),
121 | "lbp": ("BOOLEAN", {"default": False}),
122 | "lbp_radius": ("INT", {"default": 3, "min": 1, "max": 50, "step": 1}),
123 | "lbp_n_points": ("INT", {"default": 24, "min": 1, "max": 512, "step": 1}),
124 | "lbp_method": (["default", "ror", "uniform", "var"], {"default": "uniform"}),
125 | "lbp_strength": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0, "step": 0.01}),
126 |
127 | # seed, exif
128 | "seed": ("INT", {"default": -1, "min": -1, "max": 2**31-1, "step": 1}),
129 | "apply_exif_o": ("BOOLEAN", {"default": True}),
130 | },
131 | "optional": {
132 | "awb_ref_image": ("IMAGE",),
133 | "fft_ref_image": ("IMAGE",),
134 | }
135 | }
136 |
137 | RETURN_TYPES = ("IMAGE", "STRING")
138 | RETURN_NAMES = ("IMAGE", "EXIF")
139 | FUNCTION = "process"
140 | CATEGORY = "postprocessing"
141 |
142 | # default blocks for Camera and NS so the main node works even if user doesn't plug the helper nodes
143 | CAM_DEFAULTS = {
144 | "enable_bayer": True,
145 | "apply_jpeg_cycles_o": True,
146 | "jpeg_cycles": 1,
147 | "jpeg_quality": 88,
148 | "jpeg_qmax": 96,
149 | "apply_vignette_o": True,
150 | "vignette_strength": 0.35,
151 | "apply_chromatic_aberration_o": True,
152 | "ca_shift": 1.20,
153 | "iso_scale": 1.0,
154 | "read_noise": 2.0,
155 | "hot_pixel_prob": 1e-7,
156 | "apply_banding_o": True,
157 | "banding_strength": 0.0,
158 | "apply_motion_blur_o": True,
159 | "motion_blur_ksize": 1,
160 | }
161 |
162 | NS_DEFAULTS = {
163 | "non_semantic": False,
164 | "ns_iterations": 500,
165 | "ns_learning_rate": 3e-4,
166 | "ns_t_lpips": 4e-2,
167 | "ns_t_l2": 3e-5,
168 | "ns_c_lpips": 1e-2,
169 | "ns_c_l2": 0.6,
170 | "ns_grad_clip": 0.05,
171 | }
172 |
173 | def process(self, image,
174 | apply_noise_o=True,
175 | noise_std_frac=0.02,
176 | apply_clahe_o=True,
177 | clahe_clip=2.0,
178 | clahe_grid=8,
179 | fourier_cutoff=0.25,
180 | apply_fourier_o=True,
181 | fourier_strength=0.9,
182 | fourier_randomness=0.05,
183 | fourier_phase_perturb=0.08,
184 | fourier_radial_smooth=5,
185 | fourier_mode="auto",
186 | fourier_alpha=1.0,
187 | perturb_mag_frac=0.01,
188 | enable_awb=True,
189 | Cam_Opt="",
190 | NS_Opt="",
191 | enable_lut=True,
192 | lut="",
193 | lut_strength=1.0,
194 | glcm=False,
195 | glcm_distances="1",
196 | glcm_angles=f"0,{np.pi/4},{np.pi/2},{3*np.pi/4}",
197 | glcm_levels=256,
198 | glcm_strength=0.9,
199 | lbp=False,
200 | lbp_radius=3,
201 | lbp_n_points=24,
202 | lbp_method="uniform",
203 | lbp_strength=0.9,
204 | seed=-1,
205 | apply_exif_o=True,
206 | awb_ref_image=None,
207 | fft_ref_image=None
208 | ):
209 |
210 | if process_image is None:
211 | raise ImportError(f"Could not import process_image function: {IMPORT_ERROR}")
212 |
213 | # Parse Cam_Opt and NS_Opt JSON strings into dicts and merge with defaults
214 | cam_opts = dict(self.CAM_DEFAULTS)
215 | if isinstance(Cam_Opt, str) and Cam_Opt.strip() != "":
216 | try:
217 | loaded = json.loads(Cam_Opt)
218 | if isinstance(loaded, dict):
219 | cam_opts.update(loaded)
220 | except Exception:
221 | pass
222 |
223 | ns_opts = dict(self.NS_DEFAULTS)
224 | if isinstance(NS_Opt, str) and NS_Opt.strip() != "":
225 | try:
226 | loaded = json.loads(NS_Opt)
227 | if isinstance(loaded, dict):
228 | ns_opts.update(loaded)
229 | except Exception:
230 | pass
231 |
232 | tmp_files = []
233 |
234 | try:
235 | # ---- Input image -> temporary input file ----
236 | pil_img = to_pil_from_any(image[0])
237 | with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_input:
238 | input_path = tmp_input.name
239 | pil_img.save(input_path)
240 | tmp_files.append(input_path)
241 |
242 | # ---- AWB reference image if present ----
243 | awb_ref_path = None
244 | if awb_ref_image is not None:
245 | pil_ref_awb = to_pil_from_any(awb_ref_image[0])
246 | with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_awb:
247 | awb_ref_path = tmp_ref_awb.name
248 | pil_ref_awb.save(awb_ref_path)
249 | tmp_files.append(awb_ref_path)
250 |
251 | # ---- FFT reference image if present ----
252 | fft_ref_path = None
253 | if fft_ref_image is not None:
254 | pil_ref_fft = to_pil_from_any(fft_ref_image[0])
255 | with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_fft:
256 | fft_ref_path = tmp_ref_fft.name
257 | pil_ref_fft.save(fft_ref_path)
258 | tmp_files.append(fft_ref_path)
259 |
260 | # ---- Output path ----
261 | with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_output:
262 | output_path = tmp_output.name
263 | tmp_files.append(output_path)
264 |
265 | # Parse list-like UI inputs into native lists
266 | parsed_glcm_distances = _parse_int_list(glcm_distances)
267 | parsed_glcm_angles = _parse_float_list(glcm_angles)
268 |
269 | # Prepare args for process_image with updated keys (matches build_argparser())
270 | args = SimpleNamespace(
271 | # positional
272 | input=input_path,
273 | output=output_path,
274 |
275 | # AWB / refs
276 | awb=bool(enable_awb),
277 | ref=awb_ref_path,
278 | fft_ref=fft_ref_path,
279 |
280 | # basic corrections / noise / CLAHE
281 | noise_std=float(noise_std_frac),
282 | noise=bool(apply_noise_o),
283 | clahe=bool(apply_clahe_o),
284 | clahe_clip=float(clahe_clip),
285 | tile=int(clahe_grid),
286 |
287 | # Fourier / FFT matching
288 | fft=bool(apply_fourier_o),
289 | fstrength=float(fourier_strength) if apply_fourier_o else 0.0,
290 | randomness=float(fourier_randomness),
291 | seed=(None if int(seed) < 0 else int(seed)),
292 | fft_mode=str(fourier_mode),
293 | fft_alpha=float(fourier_alpha),
294 | phase_perturb=float(fourier_phase_perturb),
295 | radial_smooth=int(fourier_radial_smooth),
296 | cutoff=float(fourier_cutoff),
297 |
298 | # GLCM
299 | glcm=bool(glcm),
300 | glcm_distances=parsed_glcm_distances,
301 | glcm_angles=parsed_glcm_angles,
302 | glcm_levels=int(glcm_levels),
303 | glcm_strength=float(glcm_strength),
304 |
305 | # LBP
306 | lbp=bool(lbp),
307 | lbp_radius=int(lbp_radius),
308 | lbp_n_points=int(lbp_n_points),
309 | lbp_method=str(lbp_method),
310 | lbp_strength=float(lbp_strength),
311 |
312 | # Non-semantic attack (from ns_opts)
313 | non_semantic=bool(ns_opts.get("non_semantic", False)),
314 | ns_iterations=int(ns_opts.get("ns_iterations", 500)),
315 | ns_learning_rate=float(ns_opts.get("ns_learning_rate", 3e-4)),
316 | ns_t_lpips=float(ns_opts.get("ns_t_lpips", 4e-2)),
317 | ns_t_l2=float(ns_opts.get("ns_t_l2", 3e-5)),
318 | ns_c_lpips=float(ns_opts.get("ns_c_lpips", 1e-2)),
319 | ns_c_l2=float(ns_opts.get("ns_c_l2", 0.6)),
320 | ns_grad_clip=float(ns_opts.get("ns_grad_clip", 0.05)),
321 |
322 | # Camera simulator options (from cam_opts)
323 | sim_camera=True,
324 | no_no_bayer=not bool(cam_opts.get("enable_bayer", True)),
325 | jpeg_cycles=int(cam_opts.get("jpeg_cycles", 1)) if bool(cam_opts.get("apply_jpeg_cycles_o", True)) else 1,
326 | jpeg_qmin=int(cam_opts.get("jpeg_quality", 88)),
327 | jpeg_qmax=int(cam_opts.get("jpeg_qmax", 96)),
328 | vignette_strength=float(cam_opts.get("vignette_strength", 0.35)) if bool(cam_opts.get("apply_vignette_o", True)) else 0.0,
329 | chroma_strength=float(cam_opts.get("ca_shift", 1.20)) if bool(cam_opts.get("apply_chromatic_aberration_o", True)) else 0.0,
330 | iso_scale=float(cam_opts.get("iso_scale", 1.0)),
331 | read_noise=float(cam_opts.get("read_noise", 2.0)),
332 | hot_pixel_prob=float(cam_opts.get("hot_pixel_prob", 1e-7)),
333 | banding_strength=float(cam_opts.get("banding_strength", 0.0)) if bool(cam_opts.get("apply_banding_o", True)) else 0.0,
334 | motion_blur_kernel=int(cam_opts.get("motion_blur_ksize", 1)) if bool(cam_opts.get("apply_motion_blur_o", True)) else 1,
335 |
336 | # LUT
337 | lut=(lut if enable_lut and lut != "" else None),
338 | lut_strength=float(lut_strength),
339 |
340 | # utility flags (positive-style equivalents)
341 | perturb=(True if perturb_mag_frac > 0 else False),
342 | perturb_magnitude=float(perturb_mag_frac),
343 | blend=False
344 | )
345 |
346 | # ---- Run the processing function ----
347 | process_image(input_path, output_path, args)
348 |
349 | # ---- Load result (force RGB) ----
350 | output_img = Image.open(output_path).convert("RGB")
351 | img_out = np.array(output_img)
352 |
353 | # ---- EXIF insertion (optional) ----
354 | new_exif = ""
355 | if apply_exif_o:
356 | try:
357 | output_img_with_exif, new_exif = self._add_fake_exif(output_img)
358 | output_img = output_img_with_exif
359 | img_out = np.array(output_img.convert("RGB"))
360 | except Exception:
361 | new_exif = ""
362 |
363 | # ---- Convert to FOOLAI-style tensor: (1, H, W, C), float32 in [0,1] ----
364 | img_float = img_out.astype(np.float32) / 255.0
365 | tensor_out = torch.from_numpy(img_float).to(dtype=torch.float32).unsqueeze(0)
366 | tensor_out = torch.clamp(tensor_out, 0.0, 1.0)
367 |
368 | return (tensor_out, new_exif)
369 |
370 | finally:
371 | for p in tmp_files:
372 | try:
373 | os.unlink(p)
374 | except Exception:
375 | pass
376 |
377 | def _add_fake_exif(self, img: Image.Image) -> Tuple[Image.Image, str]:
378 | """Insert random but realistic camera EXIF metadata."""
379 | import random
380 | import io
381 | try:
382 | import piexif
383 | except Exception:
384 | raise
385 |
386 | exif_dict = {
387 | "0th": {
388 | piexif.ImageIFD.Make: random.choice(["Canon", "Nikon", "Sony", "Fujifilm", "Olympus", "Leica"]),
389 | piexif.ImageIFD.Model: random.choice([
390 | "EOS 5D Mark III", "D850", "Alpha 7R IV", "X-T4", "OM-D E-M1 Mark III", "Q2"
391 | ]),
392 | piexif.ImageIFD.Software: "Adobe Lightroom",
393 | },
394 | "Exif": {
395 | piexif.ExifIFD.FNumber: (random.randint(10, 22), 10),
396 | piexif.ExifIFD.ExposureTime: (1, random.randint(60, 4000)),
397 | piexif.ExifIFD.ISOSpeedRatings: random.choice([100, 200, 400, 800, 1600, 3200]),
398 | piexif.ExifIFD.FocalLength: (random.randint(24, 200), 1),
399 | },
400 | }
401 | exif_bytes = piexif.dump(exif_dict)
402 | output = io.BytesIO()
403 | img.save(output, format="JPEG", exif=exif_bytes)
404 | output.seek(0)
405 | return (Image.open(output), str(exif_bytes))
406 |
407 |
408 | # -------------
409 | # Registration
410 | # -------------
411 | NODE_CLASS_MAPPINGS = {
412 | "NovaNodes": NovaNodes,
413 | "CameraOptionsNode": CameraOptionsNode,
414 | "NSOptionsNode": NSOptionsNode,
415 | }
416 | NODE_DISPLAY_NAME_MAPPINGS = {
417 | "NovaNodes": "Image Postprocess (NOVA NODES)",
418 | "CameraOptionsNode": "Camera Options (NOVA)",
419 | "NSOptionsNode": "Non-semantic Options (NOVA)",
420 | }
421 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 |
633 | Copyright (C)
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------
/ui_utils/main_window.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | """
3 | MainWindow definition extracted from the original single-file GUI.
4 | All GUI wiring, widgets, and the MainWindow class live here.
5 | """
6 |
7 | import sys
8 | import os
9 | from pathlib import Path
10 | from PyQt5.QtWidgets import (
11 | QApplication, QMainWindow, QWidget, QLabel, QPushButton, QFileDialog,
12 | QHBoxLayout, QVBoxLayout, QFormLayout, QSlider, QSpinBox, QDoubleSpinBox,
13 | QProgressBar, QMessageBox, QLineEdit, QComboBox, QCheckBox, QToolButton, QScrollArea
14 | )
15 | from PyQt5.QtCore import Qt
16 | from PyQt5.QtGui import QPixmap
17 | from .worker import Worker
18 | from .analysis_panel import AnalysisPanel
19 | from .collapsible_box import CollapsibleBox
20 | from utils import qpixmap_from_path
21 | from .theme import apply_dark_palette
22 | import numpy as np
23 | import configparser
24 | import math
25 |
26 | class MainWindow(QMainWindow):
27 | def __init__(self):
28 | super().__init__()
29 |
30 | # --- Load config.ini ---
31 | config = configparser.ConfigParser()
32 | config.read(os.path.join(os.path.dirname(__file__), "..", "config.ini"))
33 |
34 | def get(section, key, default, cast=str):
35 | try:
36 | val = config.get(section, key)
37 | return cast(val)
38 | except Exception:
39 | return default
40 |
41 | def getbool(section, key, default):
42 | try:
43 | return config.getboolean(section, key)
44 | except Exception:
45 | return default
46 |
47 | # --- Window ---
48 | self.setWindowTitle("Image Detection Bypass Utility V1.4 Alpha 1")
49 | self.setMinimumSize(1200, 760)
50 |
51 | central = QWidget()
52 | self.setCentralWidget(central)
53 | main_h = QHBoxLayout(central)
54 |
55 | # Left: previews & file selection
56 | left_v = QVBoxLayout()
57 | main_h.addLayout(left_v, 2)
58 |
59 | # Input/Output collapsible
60 | io_box = CollapsibleBox("Input / Output")
61 | left_v.addWidget(io_box)
62 | in_layout = QFormLayout()
63 | io_container = QWidget()
64 | io_container.setLayout(in_layout)
65 | io_box.content_layout.addWidget(io_container)
66 |
67 | self.input_line = QLineEdit()
68 | self.input_btn = QPushButton("Choose Input")
69 | self.input_btn.clicked.connect(self.choose_input)
70 |
71 | self.ref_line = QLineEdit()
72 | self.ref_btn = QPushButton("Choose AWB Reference (optional)")
73 | self.ref_btn.clicked.connect(self.choose_ref)
74 |
75 | self.fft_ref_line = QLineEdit()
76 | self.fft_ref_btn = QPushButton("Choose Reference (FFT, GLCM, LBP) (Optional)")
77 | self.fft_ref_btn.clicked.connect(self.choose_fft_ref)
78 |
79 | self.output_line = QLineEdit()
80 | self.output_btn = QPushButton("Choose Output")
81 | self.output_btn.clicked.connect(self.choose_output)
82 |
83 | in_layout.addRow(self.input_btn, self.input_line)
84 | in_layout.addRow(self.ref_btn, self.ref_line)
85 | in_layout.addRow(self.fft_ref_btn, self.fft_ref_line)
86 | in_layout.addRow(self.output_btn, self.output_line)
87 |
88 | # Previews
89 | self.preview_in = QLabel(alignment=Qt.AlignCenter)
90 | self.preview_in.setFixedSize(480, 300)
91 | self.preview_in.setStyleSheet("background:#121213; border:1px solid #2b2b2b; color:#ddd; border-radius:6px")
92 | self.preview_in.setText("Input preview")
93 |
94 | self.preview_out = QLabel(alignment=Qt.AlignCenter)
95 | self.preview_out.setFixedSize(480, 300)
96 | self.preview_out.setStyleSheet("background:#121213; border:1px solid #2b2b2b; color:#ddd; border-radius:6px")
97 | self.preview_out.setText("Output preview")
98 |
99 | left_v.addWidget(self.preview_in)
100 | left_v.addWidget(self.preview_out)
101 |
102 | # Actions
103 | actions_h = QHBoxLayout()
104 | self.run_btn = QPushButton("Run — Process Image")
105 | self.run_btn.clicked.connect(self.on_run)
106 | self.open_out_btn = QPushButton("Open Output Folder")
107 | self.open_out_btn.clicked.connect(self.open_output_folder)
108 | actions_h.addWidget(self.run_btn)
109 | actions_h.addWidget(self.open_out_btn)
110 | left_v.addLayout(actions_h)
111 |
112 | self.progress = QProgressBar()
113 | self.progress.setTextVisible(True)
114 | self.progress.setRange(0, 100)
115 | self.progress.setValue(0)
116 | left_v.addWidget(self.progress)
117 |
118 | # Right: controls + analysis panels (with scroll area)
119 | scroll_area = QScrollArea()
120 | scroll_area.setWidgetResizable(True)
121 | scroll_area.setStyleSheet("QScrollArea { border: none; }")
122 | main_h.addWidget(scroll_area, 3)
123 |
124 | scroll_widget = QWidget()
125 | right_v = QVBoxLayout(scroll_widget)
126 | scroll_area.setWidget(scroll_widget)
127 |
128 | # Auto Mode toggle
129 | self.auto_mode_chk = QCheckBox("Enable Auto Mode")
130 | self.auto_mode_chk.setChecked(getbool("General", "auto_mode", False))
131 | self.auto_mode_chk.stateChanged.connect(self._on_auto_mode_toggled)
132 | right_v.addWidget(self.auto_mode_chk)
133 |
134 | # Auto Mode section collapsible
135 | self.auto_box = CollapsibleBox("Auto Mode")
136 | right_v.addWidget(self.auto_box)
137 | auto_layout = QFormLayout()
138 | auto_container = QWidget()
139 | auto_container.setLayout(auto_layout)
140 | self.auto_box.content_layout.addWidget(auto_container)
141 |
142 | strength_layout = QHBoxLayout()
143 | self.strength_slider = QSlider(Qt.Horizontal)
144 | self.strength_slider.setRange(0, 100)
145 | self.strength_slider.setValue(get("AutoMode", "strength", 25, int))
146 | self.strength_slider.valueChanged.connect(self._update_strength_label)
147 | self.strength_label = QLabel(str(self.strength_slider.value()))
148 | self.strength_label.setFixedWidth(30)
149 | strength_layout.addWidget(self.strength_slider)
150 | strength_layout.addWidget(self.strength_label)
151 | auto_layout.addRow("Aberration Strength", strength_layout)
152 |
153 | # Blend system
154 | self.blend_box = CollapsibleBox("Blend Color")
155 | right_v.addWidget(self.blend_box)
156 | blend_layout = QFormLayout()
157 | blend_container = QWidget()
158 | blend_container.setLayout(blend_layout)
159 | self.blend_box.content_layout.addWidget(blend_container)
160 |
161 | self.blend_chk = QCheckBox("Enable Color Blending")
162 | self.blend_chk.setToolTip("Color blending makes clusters of similar colors be one color")
163 | self.blend_chk.setChecked(getbool("Blend", "enabled", False))
164 | blend_layout.addRow(self.blend_chk)
165 |
166 | self.blend_tolerance = QSpinBox()
167 | self.blend_tolerance.setRange(1, 100)
168 | self.blend_tolerance.setValue(get("Blend", "tolerance", 10, int))
169 | self.blend_tolerance.setToolTip("Color tolerance for blending (smaller = more colors)")
170 | blend_layout.addRow("Color Tolerance", self.blend_tolerance)
171 |
172 | self.blend_min_region = QSpinBox()
173 | self.blend_min_region.setRange(1, 1000)
174 | self.blend_min_region.setValue(get("Blend", "min_region", 50, int))
175 | self.blend_min_region.setToolTip("Minimum region size to retain (in pixels)")
176 | blend_layout.addRow("Min Region Size", self.blend_min_region)
177 |
178 | self.blend_max_samples = QSpinBox()
179 | self.blend_max_samples.setRange(1000, 1000000)
180 | self.blend_max_samples.setValue(get("Blend", "max_samples", 100000, int))
181 | self.blend_max_samples.setToolTip("Maximum pixels to sample for k-means (for speed)")
182 | blend_layout.addRow("Max Samples", self.blend_max_samples)
183 |
184 | self.blend_n_jobs = QSpinBox()
185 | self.blend_n_jobs.setRange(1, os.cpu_count() or 4)
186 | self.blend_n_jobs.setValue(get("Blend", "n_jobs", os.cpu_count() or 4, int))
187 | self.blend_n_jobs.setToolTip("Number of worker threads for blending (default: os.cpu_count())")
188 | blend_layout.addRow("Worker Threads", self.blend_n_jobs)
189 |
190 | # AI Normalizer
191 | self.ai_norm_box = CollapsibleBox("AI Normalizer")
192 | right_v.addWidget(self.ai_norm_box)
193 | ai_layout = QFormLayout()
194 | ai_container = QWidget()
195 | ai_container.setLayout(ai_layout)
196 | self.ai_norm_box.content_layout.addWidget(ai_container)
197 |
198 | self.ns_chk = QCheckBox("Enable AI Normalizer (Torch Required)")
199 | self.ns_chk.setToolTip("Enable AI Normalizer. Requires PyTorch.")
200 | self.ns_chk.setChecked(getbool("AINormalizer", "enabled", False))
201 | ai_layout.addRow(self.ns_chk)
202 |
203 | self.ns_iterations_spin = QSpinBox()
204 | self.ns_iterations_spin.setRange(1, 10000)
205 | self.ns_iterations_spin.setValue(get("AINormalizer", "iterations", 500, int))
206 | self.ns_iterations_spin.setToolTip("Number of iterations for the AI Normalizer optimization.")
207 | ai_layout.addRow("Iterations", self.ns_iterations_spin)
208 |
209 | self.ns_lr_spin = QDoubleSpinBox()
210 | self.ns_lr_spin.setDecimals(6)
211 | self.ns_lr_spin.setRange(0.000001, 0.1)
212 | self.ns_lr_spin.setSingleStep(0.0001)
213 | self.ns_lr_spin.setValue(get("AINormalizer", "learning_rate", 0.0003, float))
214 | self.ns_lr_spin.setToolTip("Learning rate for the AI Normalizer optimization.")
215 | ai_layout.addRow("Learning Rate", self.ns_lr_spin)
216 |
217 | self.ns_t_lpips_spin = QDoubleSpinBox()
218 | self.ns_t_lpips_spin.setDecimals(6)
219 | self.ns_t_lpips_spin.setRange(0.000001, 1.0)
220 | self.ns_t_lpips_spin.setSingleStep(0.0001)
221 | self.ns_t_lpips_spin.setValue(get("AINormalizer", "t_lpips", 0.04, float))
222 | self.ns_t_lpips_spin.setToolTip("Temporally weighted LPIPS loss parameter.")
223 | ai_layout.addRow("T LPIPS", self.ns_t_lpips_spin)
224 |
225 | self.ns_t_l2_spin = QDoubleSpinBox()
226 | self.ns_t_l2_spin.setDecimals(6)
227 | self.ns_t_l2_spin.setRange(0.000001, 1.0)
228 | self.ns_t_l2_spin.setSingleStep(0.00001)
229 | self.ns_t_l2_spin.setValue(get("AINormalizer", "t_l2", 3e-05, float))
230 | self.ns_t_l2_spin.setToolTip("Temporally weighted L2 loss parameter.")
231 | ai_layout.addRow("T L2", self.ns_t_l2_spin)
232 |
233 | self.ns_c_lpips_spin = QDoubleSpinBox()
234 | self.ns_c_lpips_spin.setDecimals(6)
235 | self.ns_c_lpips_spin.setRange(0.000001, 1.0)
236 | self.ns_c_lpips_spin.setSingleStep(0.0001)
237 | self.ns_c_lpips_spin.setValue(get("AINormalizer", "c_lpips", 0.01, float))
238 | self.ns_c_lpips_spin.setToolTip("Content loss LPIPS weight.")
239 | ai_layout.addRow("C LPIPS", self.ns_c_lpips_spin)
240 |
241 | self.ns_c_l2_spin = QDoubleSpinBox()
242 | self.ns_c_l2_spin.setDecimals(6)
243 | self.ns_c_l2_spin.setRange(0.000001, 10.0)
244 | self.ns_c_l2_spin.setSingleStep(0.01)
245 | self.ns_c_l2_spin.setValue(get("AINormalizer", "c_l2", 0.6, float))
246 | self.ns_c_l2_spin.setToolTip("Content loss L2 weight.")
247 | ai_layout.addRow("C L2", self.ns_c_l2_spin)
248 |
249 | self.ns_grad_clip_spin = QDoubleSpinBox()
250 | self.ns_grad_clip_spin.setDecimals(6)
251 | self.ns_grad_clip_spin.setRange(0.000001, 1.0)
252 | self.ns_grad_clip_spin.setSingleStep(0.0001)
253 | self.ns_grad_clip_spin.setValue(get("AINormalizer", "grad_clip", 0.05, float))
254 | self.ns_grad_clip_spin.setToolTip("Gradient clipping threshold to stabilize training.")
255 | ai_layout.addRow("Gradient Clip", self.ns_grad_clip_spin)
256 |
257 | # Parameters (Manual Mode) collapsible
258 | self.params_box = CollapsibleBox("Parameters (Manual Mode)")
259 | right_v.addWidget(self.params_box)
260 | params_layout = QFormLayout()
261 | params_container = QWidget()
262 | params_container.setLayout(params_layout)
263 | self.params_box.content_layout.addWidget(params_container)
264 |
265 | # New optional flags for processing steps
266 | self.noise_enable_chk = QCheckBox("Enable Gaussian Noise")
267 | self.noise_enable_chk.setChecked(getbool("ManualParameters", "noise_enable", True))
268 | params_layout.addRow(self.noise_enable_chk)
269 |
270 | self.clahe_enable_chk = QCheckBox("Enable CLAHE Color Correction")
271 | self.clahe_enable_chk.setChecked(getbool("ManualParameters", "clahe_enable", True))
272 | params_layout.addRow(self.clahe_enable_chk)
273 |
274 | self.fft_enable_chk = QCheckBox("Enable FFT Spectral Matching")
275 | self.fft_enable_chk.setChecked(getbool("ManualParameters", "fft_enable", True))
276 | params_layout.addRow(self.fft_enable_chk)
277 |
278 | self.perturb_enable_chk = QCheckBox("Enable Randomized Perturbation")
279 | self.perturb_enable_chk.setChecked(getbool("ManualParameters", "perturb_enable", True))
280 | params_layout.addRow(self.perturb_enable_chk)
281 |
282 | # Noise-std
283 | self.noise_spin = QDoubleSpinBox()
284 | self.noise_spin.setRange(0.0, 0.1)
285 | self.noise_spin.setSingleStep(0.001)
286 | self.noise_spin.setValue(get("ManualParameters", "noise_std", 0.02, float))
287 | self.noise_spin.setToolTip("Gaussian noise std fraction of 255")
288 | params_layout.addRow("Noise std (0-0.1)", self.noise_spin)
289 |
290 | # CLAHE-clip
291 | self.clahe_spin = QDoubleSpinBox()
292 | self.clahe_spin.setRange(0.1, 10.0)
293 | self.clahe_spin.setSingleStep(0.1)
294 | self.clahe_spin.setValue(get("ManualParameters", "clahe_clip", 2.0, float))
295 | params_layout.addRow("CLAHE clip", self.clahe_spin)
296 |
297 | # Tile
298 | self.tile_spin = QSpinBox()
299 | self.tile_spin.setRange(1, 64)
300 | self.tile_spin.setValue(get("ManualParameters", "tile", 8, int))
301 | params_layout.addRow("CLAHE tile", self.tile_spin)
302 |
303 | # Cutoff
304 | self.cutoff_spin = QDoubleSpinBox()
305 | self.cutoff_spin.setRange(0.01, 1.0)
306 | self.cutoff_spin.setSingleStep(0.01)
307 | self.cutoff_spin.setValue(get("ManualParameters", "cutoff", 0.25, float))
308 | params_layout.addRow("Fourier cutoff (0-1)", self.cutoff_spin)
309 |
310 | # Fstrength
311 | self.fstrength_spin = QDoubleSpinBox()
312 | self.fstrength_spin.setRange(0.0, 1.0)
313 | self.fstrength_spin.setSingleStep(0.01)
314 | self.fstrength_spin.setValue(get("ManualParameters", "fstrength", 0.9, float))
315 | params_layout.addRow("Fourier strength (0-1)", self.fstrength_spin)
316 |
317 | # Randomness
318 | self.randomness_spin = QDoubleSpinBox()
319 | self.randomness_spin.setRange(0.0, 1.0)
320 | self.randomness_spin.setSingleStep(0.01)
321 | self.randomness_spin.setValue(get("ManualParameters", "randomness", 0.05, float))
322 | params_layout.addRow("Fourier randomness", self.randomness_spin)
323 |
324 | # Phase_perturb
325 | self.phase_perturb_spin = QDoubleSpinBox()
326 | self.phase_perturb_spin.setRange(0.0, 1.0)
327 | self.phase_perturb_spin.setSingleStep(0.001)
328 | self.phase_perturb_spin.setValue(get("ManualParameters", "phase_perturb", 0.08, float))
329 | self.phase_perturb_spin.setToolTip("Phase perturbation std (radians)")
330 | params_layout.addRow("Phase perturb (rad)", self.phase_perturb_spin)
331 |
332 | # Radial_smooth
333 | self.radial_smooth_spin = QSpinBox()
334 | self.radial_smooth_spin.setRange(0, 50)
335 | self.radial_smooth_spin.setValue(get("ManualParameters", "radial_smooth", 5, int))
336 | params_layout.addRow("Radial smooth (bins)", self.radial_smooth_spin)
337 |
338 | # FFT_mode
339 | self.fft_mode_combo = QComboBox()
340 | self.fft_mode_combo.addItems(["auto", "ref", "model"])
341 | self.fft_mode_combo.setCurrentText(get("ManualParameters", "fft_mode", "auto"))
342 | params_layout.addRow("FFT mode", self.fft_mode_combo)
343 |
344 | # FFT_alpha
345 | self.fft_alpha_spin = QDoubleSpinBox()
346 | self.fft_alpha_spin.setRange(0.1, 4.0)
347 | self.fft_alpha_spin.setSingleStep(0.1)
348 | self.fft_alpha_spin.setValue(get("ManualParameters", "fft_alpha", 1.0, float))
349 | self.fft_alpha_spin.setToolTip("Alpha exponent for 1/f model when using model mode")
350 | params_layout.addRow("FFT alpha (model)", self.fft_alpha_spin)
351 |
352 | # Perturb
353 | self.perturb_spin = QDoubleSpinBox()
354 | self.perturb_spin.setRange(0.0, 0.05)
355 | self.perturb_spin.setSingleStep(0.001)
356 | self.perturb_spin.setValue(get("ManualParameters", "perturb", 0.008, float))
357 | params_layout.addRow("Pixel perturb", self.perturb_spin)
358 |
359 | # Seed
360 | self.seed_spin = QSpinBox()
361 | self.seed_spin.setRange(0, 2 ** 31 - 1)
362 | self.seed_spin.setValue(get("ManualParameters", "seed", 0, int))
363 | params_layout.addRow("Seed (0=none)", self.seed_spin)
364 |
365 | # AWB checkbox
366 | self.awb_chk = QCheckBox("Enable auto white-balance (AWB)")
367 | self.awb_chk.setChecked(getbool("AWB", "enabled", False))
368 | self.awb_chk.setToolTip("If checked, AWB is applied. If a reference image is chosen, it will be used; otherwise gray-world AWB is applied.")
369 | params_layout.addRow(self.awb_chk)
370 |
371 | # Camera simulator toggle
372 | self.sim_camera_chk = QCheckBox("Enable camera pipeline simulation")
373 | self.sim_camera_chk.setChecked(getbool("CameraSimulator", "enabled", False))
374 | self.sim_camera_chk.stateChanged.connect(self._on_sim_camera_toggled)
375 | params_layout.addRow(self.sim_camera_chk)
376 |
377 | # LUT support UI
378 | self.lut_chk = QCheckBox("Enable LUT")
379 | self.lut_chk.setChecked(getbool("LUT", "enabled", False))
380 | self.lut_chk.setToolTip("Enable applying a 1D/.npy/.cube LUT to the output image")
381 | self.lut_chk.stateChanged.connect(self._on_lut_toggled)
382 | params_layout.addRow(self.lut_chk)
383 |
384 | self.lut_line = QLineEdit(get("LUT", "file", ""))
385 | self.lut_btn = QPushButton("Choose LUT")
386 | self.lut_btn.clicked.connect(self.choose_lut)
387 | lut_box = QWidget()
388 | lut_box_layout = QHBoxLayout()
389 | lut_box_layout.setContentsMargins(0, 0, 0, 0)
390 | lut_box.setLayout(lut_box_layout)
391 | lut_box_layout.addWidget(self.lut_line)
392 | lut_box_layout.addWidget(self.lut_btn)
393 | self.lut_file_label = QLabel("LUT file (png/.npy/.cube)")
394 | params_layout.addRow(self.lut_file_label, lut_box)
395 |
396 | self.lut_strength_spin = QDoubleSpinBox()
397 | self.lut_strength_spin.setRange(0.0, 1.0)
398 | self.lut_strength_spin.setSingleStep(0.01)
399 | self.lut_strength_spin.setValue(get("LUT", "strength", 1.0, float))
400 | self.lut_strength_spin.setToolTip("Blend strength for LUT (0.0 = no effect, 1.0 = full LUT)")
401 | self.lut_strength_label = QLabel("LUT strength")
402 | params_layout.addRow(self.lut_strength_label, self.lut_strength_spin)
403 |
404 | # Initially hide LUT controls and their labels
405 | self.lut_file_label.setVisible(False)
406 | lut_box.setVisible(False)
407 | self.lut_strength_label.setVisible(False)
408 | self.lut_strength_spin.setVisible(False)
409 |
410 | self._lut_controls = (self.lut_file_label, lut_box, self.lut_strength_label, self.lut_strength_spin)
411 |
412 | # Texture Normalization collapsible group
413 | self.texture_box = CollapsibleBox("Texture Normalization")
414 | right_v.addWidget(self.texture_box)
415 | texture_layout = QFormLayout()
416 | texture_container = QWidget()
417 | texture_container.setLayout(texture_layout)
418 | self.texture_box.content_layout.addWidget(texture_container)
419 |
420 | # GLCM checkbox
421 | self.glcm_chk = QCheckBox("Enable GLCM Normalization")
422 | self.glcm_chk.setChecked(getbool("TextureNormalization", "glcm_enabled", False))
423 | self.glcm_chk.setToolTip("Enable GLCM normalization using FFT reference image")
424 | texture_layout.addRow(self.glcm_chk)
425 |
426 | # GLCM distances
427 | self.glcm_distances_line = QLineEdit(get("TextureNormalization", "glcm_distances", "1"))
428 | self.glcm_distances_line.setToolTip("Space-separated list of distances for GLCM computation (e.g., '1 2 3')")
429 | texture_layout.addRow("GLCM Distances", self.glcm_distances_line)
430 |
431 | # GLCM angles
432 | self.glcm_angles_line = QLineEdit(get("TextureNormalization", "glcm_angles", "0 0.785 1.571 2.356"))
433 | self.glcm_angles_line.setToolTip("Space-separated list of angles in radians for GLCM (e.g., '0 0.785 1.571 2.356')")
434 | texture_layout.addRow("GLCM Angles (rad)", self.glcm_angles_line)
435 |
436 | # GLCM levels
437 | self.glcm_levels_spin = QSpinBox()
438 | self.glcm_levels_spin.setRange(2, 256)
439 | self.glcm_levels_spin.setValue(get("TextureNormalization", "glcm_levels", 256, int))
440 | self.glcm_levels_spin.setToolTip("Number of gray levels for GLCM")
441 | texture_layout.addRow("GLCM Levels", self.glcm_levels_spin)
442 |
443 | # GLCM strength
444 | self.glcm_strength_spin = QDoubleSpinBox()
445 | self.glcm_strength_spin.setRange(0.0, 1.0)
446 | self.glcm_strength_spin.setSingleStep(0.01)
447 | self.glcm_strength_spin.setValue(get("TextureNormalization", "glcm_strength", 0.9, float))
448 | self.glcm_strength_spin.setToolTip("Strength of GLCM feature matching (0.0 = no effect, 1.0 = full effect)")
449 | texture_layout.addRow("GLCM Strength", self.glcm_strength_spin)
450 |
451 | # LBP checkbox
452 | self.lbp_chk = QCheckBox("Enable LBP Normalization")
453 | self.lbp_chk.setChecked(getbool("TextureNormalization", "lbp_enabled", False))
454 | self.lbp_chk.setToolTip("Enable LBP normalization using FFT reference image")
455 | texture_layout.addRow(self.lbp_chk)
456 |
457 | # LBP radius
458 | self.lbp_radius_spin = QSpinBox()
459 | self.lbp_radius_spin.setRange(1, 10)
460 | self.lbp_radius_spin.setValue(get("TextureNormalization", "lbp_radius", 3, int))
461 | self.lbp_radius_spin.setToolTip("Radius of LBP operator")
462 | texture_layout.addRow("LBP Radius", self.lbp_radius_spin)
463 |
464 | # LBP n_points
465 | self.lbp_n_points_spin = QSpinBox()
466 | self.lbp_n_points_spin.setRange(8, 64)
467 | self.lbp_n_points_spin.setValue(get("TextureNormalization", "lbp_n_points", 24, int))
468 | self.lbp_n_points_spin.setToolTip("Number of circularly symmetric neighbor set points for LBP")
469 | texture_layout.addRow("LBP N Points", self.lbp_n_points_spin)
470 |
471 | # LBP method
472 | self.lbp_method_combo = QComboBox()
473 | self.lbp_method_combo.addItems(["default", "ror", "uniform", "var"])
474 | self.lbp_method_combo.setCurrentText(get("TextureNormalization", "lbp_method", "uniform"))
475 | self.lbp_method_combo.setToolTip("LBP method: default, ror, uniform, or var")
476 | texture_layout.addRow("LBP Method", self.lbp_method_combo)
477 |
478 | # LBP strength
479 | self.lbp_strength_spin = QDoubleSpinBox()
480 | self.lbp_strength_spin.setRange(0.0, 1.0)
481 | self.lbp_strength_spin.setSingleStep(0.01)
482 | self.lbp_strength_spin.setValue(get("TextureNormalization", "lbp_strength", 0.9, float))
483 | self.lbp_strength_spin.setToolTip("Strength of LBP histogram matching (0.0 = no effect, 1.0 = full effect)")
484 | texture_layout.addRow("LBP Strength", self.lbp_strength_spin)
485 |
486 | # Camera simulator collapsible group
487 | self.camera_box = CollapsibleBox("Camera simulator options")
488 | right_v.addWidget(self.camera_box)
489 | cam_layout = QFormLayout()
490 | cam_container = QWidget()
491 | cam_container.setLayout(cam_layout)
492 | self.camera_box.content_layout.addWidget(cam_container)
493 |
494 | # Enable bayer
495 | self.bayer_chk = QCheckBox("Enable Bayer / demosaic (RGGB)")
496 | self.bayer_chk.setChecked(getbool("CameraSimulator", "bayer", True))
497 | cam_layout.addRow(self.bayer_chk)
498 |
499 | # JPEG cycles
500 | self.jpeg_cycles_spin = QSpinBox()
501 | self.jpeg_cycles_spin.setRange(0, 10)
502 | self.jpeg_cycles_spin.setValue(get("CameraSimulator", "jpeg_cycles", 1, int))
503 | cam_layout.addRow("JPEG cycles", self.jpeg_cycles_spin)
504 |
505 | # JPEG quality min/max
506 | self.jpeg_qmin_spin = QSpinBox()
507 | self.jpeg_qmin_spin.setRange(1, 100)
508 | self.jpeg_qmin_spin.setValue(get("CameraSimulator", "jpeg_qmin", 88, int))
509 | self.jpeg_qmax_spin = QSpinBox()
510 | self.jpeg_qmax_spin.setRange(1, 100)
511 | self.jpeg_qmax_spin.setValue(get("CameraSimulator", "jpeg_qmax", 96, int))
512 | qbox = QHBoxLayout()
513 | qbox.addWidget(self.jpeg_qmin_spin)
514 | qbox.addWidget(QLabel("to"))
515 | qbox.addWidget(self.jpeg_qmax_spin)
516 | cam_layout.addRow("JPEG quality (min to max)", qbox)
517 |
518 | # Vignette strength
519 | self.vignette_spin = QDoubleSpinBox()
520 | self.vignette_spin.setRange(0.0, 1.0)
521 | self.vignette_spin.setSingleStep(0.01)
522 | self.vignette_spin.setValue(get("CameraSimulator", "vignette_strength", 0.35, float))
523 | cam_layout.addRow("Vignette strength", self.vignette_spin)
524 |
525 | # Chromatic aberration strength
526 | self.chroma_spin = QDoubleSpinBox()
527 | self.chroma_spin.setRange(0.0, 10.0)
528 | self.chroma_spin.setSingleStep(0.1)
529 | self.chroma_spin.setValue(get("CameraSimulator", "chroma_strength", 1.2, float))
530 | cam_layout.addRow("Chromatic aberration (px)", self.chroma_spin)
531 |
532 | # ISO scale
533 | self.iso_spin = QDoubleSpinBox()
534 | self.iso_spin.setRange(0.1, 16.0)
535 | self.iso_spin.setSingleStep(0.1)
536 | self.iso_spin.setValue(get("CameraSimulator", "iso_scale", 1.0, float))
537 | cam_layout.addRow("ISO/exposure scale", self.iso_spin)
538 |
539 | # Read noise
540 | self.read_noise_spin = QDoubleSpinBox()
541 | self.read_noise_spin.setRange(0.0, 50.0)
542 | self.read_noise_spin.setSingleStep(0.1)
543 | self.read_noise_spin.setValue(get("CameraSimulator", "read_noise", 2.0, float))
544 | cam_layout.addRow("Read noise (DN)", self.read_noise_spin)
545 |
546 | # Hot pixel prob
547 | self.hot_pixel_spin = QDoubleSpinBox()
548 | self.hot_pixel_spin.setDecimals(9)
549 | self.hot_pixel_spin.setRange(0.0, 1.0)
550 | self.hot_pixel_spin.setSingleStep(1e-6)
551 | self.hot_pixel_spin.setValue(get("CameraSimulator", "hot_pixel_prob", 1e-6, float))
552 | cam_layout.addRow("Hot pixel prob", self.hot_pixel_spin)
553 |
554 | # Banding strength
555 | self.banding_spin = QDoubleSpinBox()
556 | self.banding_spin.setRange(0.0, 1.0)
557 | self.banding_spin.setSingleStep(0.01)
558 | self.banding_spin.setValue(get("CameraSimulator", "banding_strength", 0.0, float))
559 | cam_layout.addRow("Banding strength", self.banding_spin)
560 |
561 | # Motion blur kernel
562 | self.motion_blur_spin = QSpinBox()
563 | self.motion_blur_spin.setRange(1, 51)
564 | self.motion_blur_spin.setValue(get("CameraSimulator", "motion_blur_kernel", 1, int))
565 | cam_layout.addRow("Motion blur kernel", self.motion_blur_spin)
566 |
567 | self.camera_box.setVisible(getbool("CameraSimulator", "enabled", False))
568 | self.params_box.setVisible(not getbool("General", "auto_mode", True))
569 | self.texture_box.setVisible(not getbool("General", "auto_mode", True))
570 |
571 | self.ref_hint = QLabel("AWB uses the 'AWB reference' chooser. FFT spectral matching uses the 'FFT Reference' chooser.")
572 | right_v.addWidget(self.ref_hint)
573 |
574 | self.analysis_input = AnalysisPanel(title="Input analysis")
575 | self.analysis_output = AnalysisPanel(title="Output analysis")
576 | right_v.addWidget(self.analysis_input)
577 | right_v.addWidget(self.analysis_output)
578 |
579 | right_v.addStretch(1)
580 |
581 | # Status bar
582 | self.status = QLabel("Ready")
583 | self.status.setStyleSheet("color:#bdbdbd;padding:6px")
584 | self.status.setAlignment(Qt.AlignLeft)
585 | self.status.setFixedHeight(28)
586 | self.status.setContentsMargins(6, 6, 6, 6)
587 | self.statusBar().addWidget(self.status)
588 |
589 | self.worker = None
590 | self._on_auto_mode_toggled(self.auto_mode_chk.checkState())
591 |
592 | def _on_sim_camera_toggled(self, state):
593 | enabled = state == Qt.Checked
594 | self.camera_box.setVisible(enabled)
595 |
596 | def _on_auto_mode_toggled(self, state):
597 | is_auto = (state == Qt.Checked)
598 | self.auto_box.setVisible(is_auto)
599 | self.params_box.setVisible(not is_auto)
600 | self.texture_box.setVisible(not is_auto)
601 | self.camera_box.setVisible(not is_auto)
602 | self.blend_box.setVisible(not is_auto)
603 |
604 | def _update_strength_label(self, value):
605 | self.strength_label.setText(str(value))
606 |
607 | def choose_input(self):
608 | path, _ = QFileDialog.getOpenFileName(self, "Choose input image", str(Path.home()), "Images (*.png *.jpg *.jpeg *.bmp *.tif)")
609 | if path:
610 | self.input_line.setText(path)
611 | self.load_preview(self.preview_in, path)
612 | self.analysis_input.update_from_path(path)
613 | out_suggest = str(Path(path).with_name(Path(path).stem + "_out" + Path(path).suffix))
614 | if not self.output_line.text():
615 | self.output_line.setText(out_suggest)
616 |
617 | def choose_ref(self):
618 | path, _ = QFileDialog.getOpenFileName(self, "Choose AWB reference image", str(Path.home()), "Images (*.png *.jpg *.jpeg *.bmp *.tif)")
619 | if path:
620 | self.ref_line.setText(path)
621 |
622 | def choose_fft_ref(self):
623 | path, _ = QFileDialog.getOpenFileName(self, "Choose FFT reference image", str(Path.home()), "Images (*.png *.jpg *.jpeg *.bmp *.tif)")
624 | if path:
625 | self.fft_ref_line.setText(path)
626 |
627 | def choose_output(self):
628 | path, _ = QFileDialog.getSaveFileName(self, "Choose output path", str(Path.home()), "JPEG (*.jpg *.jpeg);;PNG (*.png);;TIFF (*.tif)")
629 | if path:
630 | self.output_line.setText(path)
631 |
632 | def choose_lut(self):
633 | path, _ = QFileDialog.getOpenFileName(self, "Choose LUT file", str(Path.home()), "LUTs (*.png *.npy *.cube);;All files (*)")
634 | if path:
635 | self.lut_line.setText(path)
636 |
637 | def _on_lut_toggled(self, state):
638 | visible = (state == Qt.Checked)
639 | for w in self._lut_controls:
640 | w.setVisible(visible)
641 |
642 | def load_preview(self, widget: QLabel, path: str):
643 | if not path or not os.path.exists(path):
644 | widget.setText("No image")
645 | widget.setPixmap(QPixmap())
646 | return
647 | pix = qpixmap_from_path(path, max_size=(widget.width(), widget.height()))
648 | widget.setPixmap(pix)
649 |
650 | def set_enabled_all(self, enabled: bool):
651 | for w in self.findChildren((QPushButton, QDoubleSpinBox, QSpinBox, QLineEdit, QComboBox, QCheckBox, QSlider, QToolButton)):
652 | w.setEnabled(enabled)
653 |
654 | def on_run(self):
655 | from types import SimpleNamespace
656 | inpath = self.input_line.text().strip()
657 | outpath = self.output_line.text().strip()
658 | if not inpath or not os.path.exists(inpath):
659 | QMessageBox.warning(self, "Missing input", "Please choose a valid input image.")
660 | return
661 | if not outpath:
662 | QMessageBox.warning(self, "Missing output", "Please choose an output path.")
663 | return
664 |
665 | awb_ref_val = self.ref_line.text() or None
666 | fft_ref_val = self.fft_ref_line.text() or None
667 | args = SimpleNamespace()
668 |
669 | if self.auto_mode_chk.isChecked():
670 | strength = self.strength_slider.value() / 100.0
671 | args.noise_std = strength * 0.04
672 | args.clahe_clip = 1.0 + strength * 3.0
673 | args.cutoff = max(0.01, 0.4 - strength * 0.3)
674 | args.fstrength = strength * 0.95
675 | args.phase_perturb = strength * 0.1
676 | args.perturb = True
677 | args.perturb_magnitude = strength * 0.015
678 | args.jpeg_cycles = int(strength * 2)
679 | args.jpeg_qmin = max(1, int(95 - strength * 35))
680 | args.jpeg_qmax = max(1, int(99 - strength * 25))
681 | args.vignette_strength = strength * 0.6
682 | args.chroma_strength = strength * 2.0
683 | args.motion_blur_kernel = 1 + 2 * int(strength * 6)
684 | args.banding_strength = strength * 0.1
685 | args.tile = 8
686 | args.randomness = 0.05
687 | args.radial_smooth = 5
688 | args.fft_mode = "auto"
689 | args.fft_alpha = 1.0
690 | args.alpha = 1.0
691 | args.glcm = False
692 | args.glcm_distances = [1]
693 | args.glcm_angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
694 | args.glcm_levels = 256
695 | args.glcm_strength = 0.9
696 | args.lbp = False
697 | args.lbp_radius = 3
698 | args.lbp_n_points = 24
699 | args.lbp_method = "uniform"
700 | args.lbp_strength = 0.9
701 | seed_val = int(self.seed_spin.value())
702 | args.seed = None if seed_val == 0 else seed_val
703 | args.sim_camera = True
704 | args.no_no_bayer = True
705 | args.iso_scale = 1.0
706 | args.read_noise = 2.0
707 | args.hot_pixel_prob = 1e-6
708 | args.clahe = True
709 | args.noise = True
710 | args.fft = True
711 | args.blend = True
712 | args.blend_tolerance = int(math.ceil(10*strength))
713 | args.blend_min_region = int(math.ceil(-5.1111 / max(strength, 0.1) + 55.1111))
714 | args.blend_max_samples = int(444444.4444 * min(max(strength, 0.1), 1.0) + 55555.5556)
715 | args.blend_n_jobs = os.cpu_count() or 4
716 | else:
717 | seed_val = int(self.seed_spin.value())
718 | args.seed = None if seed_val == 0 else seed_val
719 | sim_camera = bool(self.sim_camera_chk.isChecked())
720 | enable_bayer = bool(self.bayer_chk.isChecked())
721 | args.noise_std = float(self.noise_spin.value())
722 | args.clahe_clip = float(self.clahe_spin.value())
723 | args.tile = int(self.tile_spin.value())
724 | args.cutoff = float(self.cutoff_spin.value())
725 | args.fstrength = float(self.fstrength_spin.value())
726 | args.strength = float(self.fstrength_spin.value())
727 | args.randomness = float(self.randomness_spin.value())
728 | args.phase_perturb = float(self.phase_perturb_spin.value())
729 | args.fft_mode = self.fft_mode_combo.currentText()
730 | args.fft_alpha = float(self.fft_alpha_spin.value())
731 | args.alpha = float(self.fft_alpha_spin.value())
732 | args.radial_smooth = int(self.radial_smooth_spin.value())
733 | args.sim_camera = sim_camera
734 | args.no_no_bayer = bool(enable_bayer)
735 | args.jpeg_cycles = int(self.jpeg_cycles_spin.value())
736 | args.jpeg_qmin = int(self.jpeg_qmin_spin.value())
737 | args.jpeg_qmax = int(self.jpeg_qmax_spin.value())
738 | args.vignette_strength = float(self.vignette_spin.value())
739 | args.chroma_strength = float(self.chroma_spin.value())
740 | args.iso_scale = float(self.iso_spin.value())
741 | args.read_noise = float(self.read_noise_spin.value())
742 | args.hot_pixel_prob = float(self.hot_pixel_spin.value())
743 | args.banding_strength = float(self.banding_spin.value())
744 | args.motion_blur_kernel = int(self.motion_blur_spin.value())
745 | args.glcm = bool(self.glcm_chk.isChecked())
746 | args.glcm_distances = [int(x) for x in self.glcm_distances_line.text().split()]
747 | args.glcm_angles = [float(x) for x in self.glcm_angles_line.text().split()]
748 | args.glcm_levels = int(self.glcm_levels_spin.value())
749 | args.glcm_strength = float(self.glcm_strength_spin.value())
750 | args.lbp = bool(self.lbp_chk.isChecked())
751 | args.lbp_radius = int(self.lbp_radius_spin.value())
752 | args.lbp_n_points = int(self.lbp_n_points_spin.value())
753 | args.lbp_method = self.lbp_method_combo.currentText()
754 | args.lbp_strength = float(self.lbp_strength_spin.value())
755 | # Set the new optional processing flags based on checkboxes
756 | args.noise = self.noise_enable_chk.isChecked()
757 | args.clahe = self.clahe_enable_chk.isChecked()
758 | args.fft = self.fft_enable_chk.isChecked()
759 | args.perturb = self.perturb_enable_chk.isChecked()
760 | args.perturb_magnitude = float(self.perturb_spin.value())
761 | args.blend = bool(self.blend_chk.isChecked())
762 | args.blend_tolerance = int(self.blend_tolerance.value())
763 | args.blend_min_region = int(self.blend_min_region.value())
764 | args.blend_max_samples = int(self.blend_max_samples.value())
765 | args.blend_n_jobs = int(self.blend_n_jobs.value())
766 |
767 | # AI Normalizer
768 | args.non_semantic = bool(self.ns_chk.isChecked())
769 | if args.non_semantic:
770 | try:
771 | import torch
772 | except ImportError:
773 | QMessageBox.warning(self, "Missing Dependency", "Torch (PyTorch) is required for AI Normalizer but is not installed.")
774 | self.set_enabled_all(True)
775 | return
776 | args.ns_iterations = int(self.ns_iterations_spin.value())
777 | args.ns_learning_rate = float(self.ns_lr_spin.value())
778 | args.ns_t_lpips = float(self.ns_t_lpips_spin.value())
779 | args.ns_t_l2 = float(self.ns_t_l2_spin.value())
780 | args.ns_c_lpips = float(self.ns_c_lpips_spin.value())
781 | args.ns_c_l2 = float(self.ns_c_l2_spin.value())
782 | args.ns_grad_clip = float(self.ns_grad_clip_spin.value())
783 |
784 | # AWB handling
785 | if self.awb_chk.isChecked():
786 | args.awb = True
787 | args.ref = awb_ref_val
788 | else:
789 | args.awb = False
790 | args.ref = None
791 |
792 | # FFT spectral matching reference
793 | args.fft_ref = fft_ref_val
794 |
795 | # LUT handling
796 | if self.lut_chk.isChecked():
797 | lut_path = self.lut_line.text().strip()
798 | args.lut = lut_path if lut_path else None
799 | args.lut_strength = float(self.lut_strength_spin.value())
800 | else:
801 | args.lut = None
802 | args.lut_strength = 1.0
803 |
804 | self.worker = Worker(inpath, outpath, args)
805 | self.worker.finished.connect(self.on_finished)
806 | self.worker.error.connect(self.on_error)
807 | self.worker.started.connect(lambda: self.on_worker_started())
808 | self.worker.start()
809 |
810 | self.progress.setRange(0, 0)
811 | self.status.setText("Processing...")
812 | self.set_enabled_all(False)
813 |
814 | def on_worker_started(self):
815 | pass
816 |
817 | def on_finished(self, outpath):
818 | self.progress.setRange(0, 100)
819 | self.progress.setValue(100)
820 | self.status.setText("Done — saved to: " + outpath)
821 | self.load_preview(self.preview_out, outpath)
822 | self.analysis_output.update_from_path(outpath)
823 | self.set_enabled_all(True)
824 |
825 | def on_error(self, msg, traceback_text):
826 | from PyQt5.QtWidgets import QDialog, QTextEdit
827 | self.progress.setRange(0, 100)
828 | self.progress.setValue(0)
829 | self.status.setText("Error")
830 |
831 | dialog = QDialog(self)
832 | dialog.setWindowTitle("Processing Error")
833 | dialog.setMinimumSize(700, 480)
834 | layout = QVBoxLayout(dialog)
835 |
836 | error_label = QLabel(f"Error: {msg}")
837 | error_label.setWordWrap(True)
838 | layout.addWidget(error_label)
839 |
840 | traceback_edit = QTextEdit()
841 | traceback_edit.setReadOnly(True)
842 | traceback_edit.setText(traceback_text)
843 | traceback_edit.setStyleSheet("font-family: monospace; font-size: 12px;")
844 | layout.addWidget(traceback_edit)
845 |
846 | ok_button = QPushButton("OK")
847 | ok_button.clicked.connect(dialog.accept)
848 | layout.addWidget(ok_button)
849 |
850 | dialog.exec_()
851 | self.set_enabled_all(True)
852 |
853 | def open_output_folder(self):
854 | out = self.output_line.text().strip()
855 | if not out:
856 | QMessageBox.information(self, "No output", "No output path set yet.")
857 | return
858 | folder = os.path.dirname(os.path.abspath(out))
859 | if not os.path.exists(folder):
860 | QMessageBox.warning(self, "Not found", "Output folder does not exist: " + folder)
861 | return
862 | if sys.platform.startswith('darwin'):
863 | os.system(f'open "{folder}"')
864 | elif os.name == 'nt':
865 | os.startfile(folder)
--------------------------------------------------------------------------------