├── README.md └── VectorPlot.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # IPython-Jupyter 2 | 3 | [This link](http://bogotobogo.com/python/IPython/IPython_Jupyter_Install_iPython_Notebook_Matplotlib_Publishing_it_to_Github.php/) has introductory materials on Jupyter. 4 | -------------------------------------------------------------------------------- /VectorPlot.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 4, 6 | "metadata": { 7 | "collapsed": false 8 | }, 9 | "outputs": [ 10 | { 11 | "data": { 12 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHvpJREFUeJzt3Xt0VPW99/H3l3CRu1Dk8ohcVXwsrZTHcilqUvEoiVKt\nWjlij0i1Wi+oq7aVHj0LTo9afJatNyggtke8sNDaWkEF0cJQqYo+chEsaBQBERJAQEq4GJLv88cM\nOSHMQJLZyZ6Z/XmtNSsze/8y++vPYT7Zl++MuTsiIhJNTcIuQEREwqMQEBGJMIWAiEiEKQRERCJM\nISAiEmEKARGRCEs7BMysu5ktNLMPzGyVmd2aYtwjZlZsZivMbEC62xURkfQ1DeA5DgI/dfcVZtYG\neM/MFrj72kMDzKwQ6Ovup5jZYGAaMCSAbYuISBrS3hNw9xJ3X5G4vwdYA5xYY9jFwJOJMUuB9mbW\nJd1ti4hIegI9J2BmvYABwNIaq04EPqv2+HOODAoREWlkgYVA4lDQ88BtiT0CERHJcEGcE8DMmhIP\ngKfc/cUkQz4HTqr2uHtiWbLn0ocZiYjUkbtbfX4vqD2BPwD/cPeHU6yfA1wNYGZDgF3uXprqydw9\no28TJkwIvQbVqTpVp+o8dEtH2nsCZjYMuApYZWbLAQf+HegZfz/3x9z9FTMrMrOPgTJgbLrbFRGR\n9KUdAu7+dyCvFuNuSXdbIiISLHUM10NBQUHYJdSK6gyW6gyW6swMlu7xpKCZmWdaTSIimczM8JBP\nDIuISBZSCIiIRJhCQEQkwhQCIiIRphAQEYkwhYCISIQpBEREIkwhICISYQoBEZEIUwiIiESYQkBE\nJMIUAiIiEaYQEBGJMIWAiEiEKQRERCJMISAiEmEKARGRCFMIiIhEmEJARCTCFAIiIhGmEBARiTCF\ngIhIhCkEREQiTCEgIhJhCgERkQhTCIiIRFggIWBmvzezUjN7P8X6fDPbZWbLEre7g9iuiIikp2lA\nz/PfwKPAk0cZ8zd3/15A2xMRkQAEsifg7kuAnccYZkFsS0REgtOY5wSGmtkKM3vZzE5vxO2KiEgK\nQR0OOpb3gB7uvtfMCoG/AKc20rZFRCSFRgkBd99T7f48M/udmXV09x3Jxk+cOLHqfkFBAQUFBQ1e\no4hItojFYsRisUCey9w9mCcy6wXMdfdvJFnXxd1LE/cHAc+5e68Uz+NB1SQiEgVmhrvX67xrIHsC\nZjYLKAC+ZmYbgQlAc8Dd/THgcjO7ESgH9gGjgtiuiIikJ7A9gaBoT0BEpG7S2RNQx3BU7CuBkr+G\nXYVIoEr2lPDXdXpdp0MhEBWV5fDuTVBZEXYlIoEpryjnplduokKv63rT4aBcsX4WfDwDLMUeYWU5\n7FgGJ46Es2Y3bm0i9TRr1SxmLJuBpeg1La8sZ9mWZYw8dSSzL4/u6zr0E8OSAXqNjt9S+X/jYPub\ncNwJjVeTSJpGf2M0o7+R+nU97pVxvPnZm5zQSq/r+tKeQBT88xN4qR8MmQm9rwq7GpFAfLLjE/pN\n7sfMS2Zy1Tej/bpOZ09AIRAFB8ugdDGcWBR2JSKBKfuqjMUbFlN0il7XCgGRDFFSAh98AMOHh12J\nRIkuERXJEOXlcNNNUKGLVSRL6MSwSB3MmgUzjnIRVnk5bNoEV10Fs6N7sYpkEYVArit5HVb8OxzY\nHr8NngE99akd9TV6dPyWyrhx8OabcIIuVglU4TOFbNi1gS/2fUH/zv3569VqEAuKDgflus75cNZz\n0Ko7VJTB1waHXVHO+uQTmDoVnnwSHn007Gpyy8xLZnLjmTeyrWwb3/5f3w67nJyiPYFc16QZtOkV\n3wto1SN+XxpE164wZw4U6WKVwHVu3ZlKr8TMyO+ZH3Y5OUV7AlGwfyvsXhvfK5AG07q1AqAhxTbE\nyLM8zu55dtil5BSFQBRsXRz/2eW74dYhkoY3NrzBgK4DaNO8Tdil5BSFQBSUxuKXs3QpCLsSkXpZ\nVbqKHft28N1e+kMmaDonkGs2PAcfPgTu0LQl/J+H43sCrXpC655hV5dz1q+HX/8ali+Hdu2gQwe4\n4AK47rqwK8stsfUxzIzTTzid6+ZcR/GOYr7Y+wU//OYPGX/W+LDLy2oKgVyy7Gfw8TQ493XoNAT2\nb4M3LoXda6D31WFXl3PmzIEf/hD+4z9g+vT4sosvhp/8BM45B049Ndz6csniDYtxd55Y+QTTLpxG\nv079WLdzHadNPo2WTVty25Dbwi4xa+lwUK5Y8wCs/S2cOSUeABD/xNCu58Xvdy4IrbRc9MorcOml\ncO218POfx5d9+SW89hp06aI+gaD9bcPf6Na2G89e/iz9OvUDoE+HPpzR9Qx++/ZvQ64uuykEckHZ\nBnh/AnQ4A/qMOXzd/m3xnzopHJidO2HsWOjcGSZN+p/l7dtDaWm8X6BDh/DqyzUfbP2A7Xu3c80Z\n19C5defD1lVUVrBp9yZ27d8VUnXZTyGQCz58BCr3Q68kH6e7NZY4H9Cj0cvKVY89Btu2wfXXQ4sW\nh69r2xaOOy6cunLVofMB+b0Ov8TZ3flk5ycANM9rHkZpOUEhkAs2/jH+s9uIw5fv3w5f/kNXBQXs\nj3+MX2z1ve+FXUk0vLXpLfIsj7N6nHXY8lVbV/HPA/+k9/G9adWsVUjVZT+FQLYr3wN7N0HTdnB8\n/8PXHeoP0PmAQBUXQ/Pm8K1vhV1JNHz4xYd8o8s3jnijf6X4FQAu+9+XhVFWzlAIZDs/GP/ZLsml\nKKWLDu8PWHJFo5WVy5o2jZ8PSPVJops3xw8XSTC+qviKUzqecsTyp95/ipbNWjJu8LgQqsodCoFs\n1/z4+IfDWY2rfXethg2zoGX3+PmA/duhWbtwaswxZ58dPzlcWXnkuq1b4yeNDx5s/Lpy1ddP+DoH\nKg4ctuyZ959h7fa13HvuvXRv1z2kynKDQiAXnH4n7FwePywEsHMlvHdr/LOC8hJnKT+anPzEsdTZ\nf/1XPAAefvh/lu3bB088Af/2b/FPEO3WLbTycs6tg28ltj5G6Z5SABZ+upCfvPwTbh98O7cPuT3k\n6rKfvl4yV7w/ETY+B8d1hranwrfuh8py+PtoKN8NHb4Jgx8Pu8qcsXw5jB8Pu3fHPziuRYt438CY\nMfHDRRKsx5c9zqPvPErb5m3Ja5LHz4b+jJH9RoZdVsbQdwyLiESYvmNYRETqRSEgIhJhgYSAmf3e\nzErN7P2jjHnEzIrNbIWZDQhiuyIikp6g9gT+G7gg1UozKwT6uvspwA3AtIC2KyIiaQgkBNx9CbDz\nKEMuBp5MjF0KtDezLkFsW0RE6q+xzgmcCHxW7fHniWUiIhKijLyieeLEiVX3CwoKKCgoCK2WbDZ3\n7lzWrVvHddddR+vWrcMuJ6utWrWKNm3a0Lt377BLyWq7d+9m+vTpDBw4kOHDh4ddTtaKxWLEYrFA\nniuwPgEz6wnMdfdvJlk3DVjk7s8mHq8F8t29NMlY9QkEpKKigsGDB/Ppp59yyy23MG7cODp16hR2\nWVnpvvvuo23btowbp8+pqY+SkhIefvhhpk6dyoABA1i0aBGW6sOXpM4ypU/AErdk5gBXA5jZEGBX\nsgCQYOXl5TF9+nR27drFr371K3r06MG4ceNYv3592KVlnblz5zJ37tywy8g6xcXF3HDDDfTq1YtJ\nkyaxd+9epk6dqgDIJO6e9g2YBWwGDgAbgbHErwK6vtqYycDHwEpg4FGeyyVY48aNc6DqlpeX56NH\nj/aVK1eGXVpWKC0tdTPzZs2a+Zdffhl2OVnh3Xff9csvv9zN7LDX3l133RV2aTkp8b5Zv/fv+v5i\nQ90UAsHbtWuXd+vW7bB/jIduhYWFHovFvLKyMuwyM9Yf/vCHqvl6/vnnwy4nY1VWVvqrr77q5557\nbtLXWp8+fXzv3r1hl5mT0gkBdQxHQPv27XnooYeSrps3bx4FBQXcdtttVFRUNHJl2aH6YSAdEkqu\nvLyca6+9lgsuuICFCxcmHTNlyhRatmzZyJXJsegD5CLC3SksLOTVV189bHnPnj154YUX+Ja+Jiup\n/fv306lTJ8rKygDo1KkTJSUl5OXlhVxZ5nF33nnnHS655BJKSkoOW/eDH/yA5557LqTKcl+mnBiW\nDGZmTJkyhRY1vhl9w4YNPPbYY9oLSGHx4sVVAQCwfft2li5dGmJFmau8vJwpU6YcEQBt27blwQcf\nDKkqORaFQIT07duXu+++G4CuXbvSvXv8G5mmTZvGZZddxt69e8MsLyMlO/yjQ0JH2r17NxdeeCFP\nPfUUEH+tdejQAYB77rmHE09Ub2jGqu/JhIa6oRPDDWr//v3er18///GPf+yfffaZ9+/fv+rE3ZAh\nQ3zbtm1hl5gxKisrvUePHkec4Ozfv3/YpWWUzZs3+4ABA6rm58wzz/TS0lIfNWqUDxw40MvLy8Mu\nMeehE8NSWy1atGDq1Kmcf/75dO/enTfeeKOqI/vtt99m2LBhfPrpp+EWmSFWrVrFxo0bj1i+evVq\n9VokrF27lqFDh7JixQoAioqKWLRoEZ07d2bEiBFMmzaNpvqqtcxW3/RoqBvaE2gUBw8erLq/f/9+\nHzVqVNVfcl26dPH33nsvxOoywz333OMnnXSSX3311VVzc+2113rXrl39kUceCbu80C1ZssQ7dux4\n2NxU/6u/+mtMGhbaE5C6qn51S4sWLZg1axZ33HEHAKWlpeTn5x9xJVHUnHPOORQXF3PllVdWLRs7\ndizr1q1j4MCBIVYWvhdeeIHzzjuPHTt2ADBhwgRmzJhx2F/9uoIqOygEBIAmTZrwwAMP8OCDD2Jm\n7Nmzh4suuoiZM2eGXVpozj777COupgJo2bIlw4YNC6GizDBlyhQuu+wy9u/fT15eHjNmzGDixIn6\nKIgspRCQw9x+++3Mnj2b5s2bc/DgQa655hruu+++Q4fqJMLcnV/+8pfccsstuDutWrXixRdf5Lrr\nrgu7NEmDQkCOcMUVV7BgwQLat28PwF133cVNN92kXoII++qrrxgzZgyTJk0C4k1zixYt4sILLwy5\nMkmXQkCSys/PZ8mSJeolkKQ9AG+99RaDBg0KuTIJgkJAUurfvz9vvfUW/fv3B+DFF19k+PDhbN++\nPeTKpLFs2bKF/Px8Xn/9dQDOPPNM3nzzTU4++eSQK5OgKATkqNRLEF1H6wGQ3KEQkGM6/vjjmT9/\nPqNGjQLgo48+YujQoSxbtizkyqSh/P3vf2fYsGFs2LABgGuvvZYXX3yRNm3ahFyZBE0hILWiXoLo\nqE0PgOQOhYDUmnoJcp96AKJHISB1pl6C3KMegOhSCEi9qJcgd6gHINoUAlJv6iXIfuoBEIWApEW9\nBNlLPQACCgEJgHoJso96AOQQhYAEQr0E2UM9AFKdQkACo16CzKceAKlJISCBUi9B5lIPgCSjEJAG\noV6CzKEeADkahYA0GPUShE89AHIsCgFpUOolCI96AKQ2AgkBMxthZmvN7CMzuzPJ+nwz22VmyxK3\nu4PYrmQH9RI0PvUASG2lHQJm1gSYDFwAfB240sxOSzL0b+4+MHG7J93tSnZRL0HjUQ+A1EUQewKD\ngGJ33+Du5cBs4OIk43QJQsSpl6DhqQdA6iqIEDgR+Kza402JZTUNNbMVZvaymZ0ewHYlC6mXoOGo\nB0Dqo7FeHe8BPdx9r5kVAn8BTk01eOLEiVX3CwoKqg4hSG441EvQvXt3fvrTn1b1Ejz++OOMGTMm\n7PKy0pQpUxg3bhzuTl5eHtOmTdMloDksFosRi8WCeTJ3T+sGDAHmV3s8HrjzGL/zKdAxxTqX6Hj2\n2We9efPmDjjg9957r1dWVoZd1mHmzZtXVd+SJUvCLucwlZWVPn78+Kr6WrVq5S+99FLYZUkjS7xv\n1us9PIjDQe8CJ5tZTzNrDvwrMKf6ADPrUu3+IMDcfUcA25Ysp16C+lMPgAQh7RBw9wrgFmAB8AEw\n293XmNkNZnZ9YtjlZrbazJYDDwGj0t2u5I5kvQSXXnqpegmOQj0AEhTzDGvjNzPPtJqkcWzatInC\nwkJWr14NwJAhQ5g7dy6dOnUKta758+dTWFgIwJIlSxg2bFio9WzevJmioiJWrlwJxHsAXn75ZV0C\nGmFmhrvX6wpMdQxLxkjWS/Cd73yHdevWhVtYBlmzZg1Dhw6tCgD1AEi6FAKSUWr2EhQXFzN06FDe\ne++9kCsL36EegI0bNwLqAZBgKAQk49TsJdi6dSv5+fnMnz8/5MrCc6gHYOfOnYB6ACQ4CgHJSDW/\nl6CsrIyRI0fyxBNPhF1ao5s8ebK+B0AajEJAMlrN7yUYO3Ys9957byS+l6CyspLx48dXNYHpewCk\nISgEJOPV7CW4++67ufHGGzl48GDIlTWcQz0A999/P6AeAGk4CgHJCjV7CaZPn56z30twqAfg6aef\nBtQDAEBJCfz1r2FXkZMUApI1an4vwZw5c3Luewk2b97MOeeco+8BqKm8HG66CdRJHjhdWiBZ5VAv\nwfe//31isVhVL8H8+fPp06dP2OWlZc2aNYwYMaLqEtCioiKeffbZaFwCOmsWzJgBqU52l5fDpk1w\n1VUwe3bj1pbjtCcgWScXewki3wMwejQsWgQLFya/DRgA+/fDCSeEXWnOUQhIVsqlXgL1ABzDJ5/A\n1Knw5JPw6KNhV5NzFAKStXKhl0A9ALXQtSvMmRM/FCSBUwhI1svGXgL1ANRB69ZQVBR2FTlLISA5\nIZt6CdQDIJlEISA5Ixt6CdQDIJlGISA5JZN7CdQDUAvPPQff+Q4MHQrf/S68/z4sXQpr14ZdWc5S\nCEjOycTvJdD3ANTCz34GP/oR/Pa38NZb8PzzcOutMHx4fJk0CIWA5KRM6iWIfA9AbTzwQPyNfsoU\nGDIkvuxrX4OCAti3L75nIA1CISA5KxN6CdQDUAsbNsCECXDGGTBmzOHrtm2L/0zs1UnwFAKS08Ls\nJVAPQC098ki8GzhZH8DixXDSSdC7d+PXFREKAYmExuwlUA9AHf3xj/GfI0Ycvnz7dvjHP+IniKXB\nKAQkMhqjl0A9AHW0Z0/8g+HatYPEFV1VFi+O/9ShoAalEJBIacheAvUA1MOhAD711CPXxWLxTxU9\nFAJXXNFYVUWKQkAipyF6CdQDUE/HHw/du0PNE+WrV8Mzz8Q/N6hnz/ihoXbtwqkxxykEJJKC7CVQ\nD0Ca7rwTli+PHxYCWLky3h+Qnx//3CCAyZP1AXINRCEgkRVEL4F6AAJw883wi1/A+efHD/1MmQJ/\n+hNMnw49esCgQfGA0AnihuHuGXWLlyTSeCoqKvyOO+5wwAFv3bq1z5s3r2r9vHnzqtYtWbKkavmf\n//xnP+6446rWTZgwwSsrK8P4T5CIS7xv1us9V3sCEnn16SVQD4DkikBCwMxGmNlaM/vIzO5MMeYR\nMys2sxVmNiCI7YoEqTa9BOoBSG7VqlWUl5eHXYbUR313IQ7diAfJx0BPoBmwAjitxphC4OXE/cHA\n20d5vgbaYRKpnVgs5u3bt686zFNUVFR1//zzz6+636lTJ1+6dGnY5WaEBx54wNu3b++jRo3yp59+\n2r/44ouwS4oU0jgcZJ5mx6SZDQEmuHth4vH4REH3VxszDVjk7s8mHq8BCty9NMnzebo1iaRr9erV\nFBYWsunQFSs19O3bl/nz5+sS0ISysjL69OnD1q1bgfghtmHDhjFy5EhGjhxJv379dKisAZkZ7l6v\nCQ4iBC4DLnD36xOPfwgMcvdbq42ZC/za3d9MPH4d+IW7L0vyfAoByQibNm2isLCQ1atXH7a8RYsW\ndOvWTR8CV8OWLVsoKytLuu7kk0/moosuYuTIkZx99tk0a9askavLbemEQEa+iidOnFh1v6CgoOpa\nbpHGdKiXoKioiHXr1lFaGt9xPXDgAOvXrw+3uCzz8ccf89BDD/Hoo49y0UUX8Zvf/Ia+ffuGXVbW\nisVixGKxQJ4rqMNBE919ROJxbQ4HrQXydThIssGBAwfYtm0bN998My1atKBJE11Ul8zixYspKSk5\nYnn79u0pLCxk5MiRjBgxgo4dO4ZQXW4L+3BQHvAhMBzYArwDXOnua6qNKQJudvcLE6HxkLsPSfF8\nCgGRLFNaWkrv3r3Zt28fAKecckrV+YBhw4bp8E8DC/VwkLtXmNktwALiVwr93t3XmNkN8dX+mLu/\nYmZFZvYxUAaMTXe7IpI5HnzwQb797W8fdiJYskPaewJB056ASPYpKyuj9aHP+ZFGF+rhoKApBERE\n6iadENAZLhGRCFMIiIhEmEJARCTCFAIiIhGmEBARiTCFgIhIhCkEREQiTCEgIhJhCgERkQhTCIiI\nRJhCQEQkwhQCIiIRphAQEYkwhYCISIQpBEREIkwhICISYQoBEZEIUwiIiESYQkBEJMIUAiIiEaYQ\nEBGJMIWAiEiEKQRERCJMISAiEmEKARGRCFMIiIhEmEJARCTCmqbzy2bWAXgW6AmsB65w9y+TjFsP\nfAlUAuXuPiid7YqISDDS3RMYD7zu7v2AhcAvU4yrBArc/VsKABGRzJFuCFwMzEzcnwlckmKcBbAt\nEREJWLpvzJ3dvRTA3UuAzinGOfCamb1rZj9Oc5siIhKQY54TMLPXgC7VFxF/U787yXBP8TTD3H2L\nmZ1APAzWuPuSOlcrIiKBOmYIuPu/pFpnZqVm1sXdS82sK7A1xXNsSfzcZmYvAIOAlCEwceLEqvsF\nBQUUFBQcq0wRkciIxWLEYrFAnsvcU/3xXotfNrsf2OHu95vZnUAHdx9fY0wroIm77zGz1sAC4D/d\nfUGK5/R0ahIRiRozw92tXr+bZgh0BJ4DTgI2EL9EdJeZdQNmuPtFZtYbeIH4oaKmwDPuPukoz6kQ\nEBGpg9BCoCEoBERE6iadENBlmyIiEaYQEBGJMIWAiEiEKQRERCJMISAiEmEKARGRCFMIiIhEmEJA\nRCTCFAIiIhGmEBARiTCFgIhIhCkEREQiTCEgIhJhCgERkQhTCIiIRJhCQEQkwhQCIiIRphAQEYkw\nhYCISIQpBEREIkwhICISYQoBEZEIUwiIiESYQkBEJMIUAiIiEaYQEBGJMIWAiEiEKQRERCIsrRAw\ns8vNbLWZVZjZwKOMG2Fma83sIzO7M51tiohIcNLdE1gFfB9YnGqAmTUBJgMXAF8HrjSz09Lcbqhi\nsVjYJdSK6gyW6gyW6swMaYWAu3/o7sWAHWXYIKDY3Te4ezkwG7g4ne2GLVteFKozWKozWKozMzTG\nOYETgc+qPd6UWCYiIiFreqwBZvYa0KX6IsCBu9x9bkMVJiIiDc/cPf0nMVsE3OHuy5KsGwJMdPcR\nicfjAXf3+1M8V/oFiYhEjLsf7bB8SsfcE6iDVAW8C5xsZj2BLcC/AlemepL6/oeIiEjdpXuJ6CVm\n9hkwBHjJzOYllnczs5cA3L0CuAVYAHwAzHb3NemVLSIiQQjkcJCIiGSnUDuGzez/mtkaM1thZn8y\ns3YpxoXabFaHprj1ZrbSzJab2TuNWWNi+1nRvGdmHcxsgZl9aGavmln7FONCmc/azI+ZPWJmxYnX\n7oDGqq22NZpZvpntMrNlidvdjV1joo7fm1mpmb1/lDGhzmWihqPWmQnzaWbdzWyhmX1gZqvM7NYU\n4+o2n+4e2g04D2iSuD8J+HWSMU2Aj4GeQDNgBXBaI9fZDzgFWAgMPMq4dUCHEOfzmHVmyHzeD/wi\ncf9OYFKmzGdt5gcoBF5O3B8MvJ2BNeYDc8J4Hdao4yxgAPB+ivWhzmUd6gx9PoGuwIDE/TbAh0G8\nNkPdE3D31929MvHwbaB7kmGhN5t57ZriSKwPbU5rWWfo85nY3szE/ZnAJSnGhTGftZmfi4EnAdx9\nKdDezLrQeGr7/zD0iyzcfQmw8yhDwp5LEts+Vp0Q8ny6e4m7r0jc3wOs4cieqzrPZyZ9gNyPgHlJ\nlmdTs5kDr5nZu2b247CLSSET5rOzu5dC/IUNdE4xLoz5rM381BzzeZIxDam2/w+HJg4JvGxmpzdO\naXUW9lzWRcbMp5n1Ir7nsrTGqjrPZ5CXiCZVm2YzM7sLKHf3WQ1dTyoBNcUNc/ctZnYC8TevNYm/\nMDKtzgZ3lDqTHUtNdXVCg89nDnsP6OHue82sEPgLcGrINWWzjJlPM2sDPA/cltgjSEuDh4C7/8vR\n1pvZNUARcG6KIZ8DPao97p5YFqhj1VnL59iS+LnNzF4gvtse6JtWAHWGPp+JE3Bd3L3UzLoCW1M8\nR4PPZxK1mZ/PgZOOMaYhHbPG6m8O7j7PzH5nZh3dfUcj1VhbYc9lrWTKfJpZU+IB8JS7v5hkSJ3n\nM+yrg0YAPwe+5+4HUgyrajYzs+bEm83mNFaNSSQ9LmhmrRIJjZm1Bs4HVjdmYTVLSrE8E+ZzDnBN\n4v4Y4IgXc4jzWZv5mQNcnahtCLDr0OGtRnLMGqsfBzazQcQvBw8rAIzUr8ew57K6lHVm0Hz+AfiH\nuz+cYn3d5zPks93FwAZgWeL2u8TybsBL1caNIH4mvBgYH0KdlxA/zraPeNfzvJp1Ar2JX6WxnPhH\nbGdknRkynx2B1xM1LACOz6T5TDY/wA3A9dXGTCZ+hc5KjnLFWFg1AjcTD83lwJvA4MauMVHHLGAz\ncADYCIzNtLmsTZ2ZMJ/AMKCi2r+LZYnXQVrzqWYxEZEIy6Srg0REpJEpBEREIkwhICISYQoBEZEI\nUwiIiESYQkBEJMIUAiIiEaYQEBGJsP8PZr1W48YOcvkAAAAASUVORK5CYII=\n", 13 | "text/plain": [ 14 | "" 15 | ] 16 | }, 17 | "metadata": {}, 18 | "output_type": "display_data" 19 | } 20 | ], 21 | "source": [ 22 | "%matplotlib inline\n", 23 | "import numpy as np\n", 24 | "import matplotlib.pyplot as plt\n", 25 | "soa =np.array( [ [0,0,1,0], [0,0,1,1],[0,0,0,1], [0,0,-1,1]]) \n", 26 | "X,Y,U,V = zip(*soa)\n", 27 | "plt.figure()\n", 28 | "ax = plt.gca()\n", 29 | "ax.quiver(X,Y,U,V,angles='xy',scale_units='xy',scale=1)\n", 30 | "ax.set_xlim([-2,2])\n", 31 | "ax.set_ylim([-1,2])\n", 32 | "plt.text(1.0, 0.1, r'$\\vec a$', fontsize=24, color='red', fontweight='bold')\n", 33 | "plt.text(1.1, 1.1, r'$\\vec b$', fontsize=24, color='green', fontweight='bold')\n", 34 | "plt.text(0.0, 1.1, r'$\\vec c$', fontsize=24, color='blue', fontweight='bold')\n", 35 | "plt.text(-1.1, 1.1, r'$\\vec d$', fontsize=24, color='orange', fontweight='bold')\n", 36 | "plt.draw()\n", 37 | "plt.show()" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "execution_count": null, 43 | "metadata": { 44 | "collapsed": true 45 | }, 46 | "outputs": [], 47 | "source": [] 48 | } 49 | ], 50 | "metadata": { 51 | "kernelspec": { 52 | "display_name": "Python 3", 53 | "language": "python", 54 | "name": "python3" 55 | }, 56 | "language_info": { 57 | "codemirror_mode": { 58 | "name": "ipython", 59 | "version": 3 60 | }, 61 | "file_extension": ".py", 62 | "mimetype": "text/x-python", 63 | "name": "python", 64 | "nbconvert_exporter": "python", 65 | "pygments_lexer": "ipython3", 66 | "version": "3.5.1" 67 | } 68 | }, 69 | "nbformat": 4, 70 | "nbformat_minor": 0 71 | } 72 | --------------------------------------------------------------------------------