├── .github
└── workflows
│ ├── ci.yml
│ ├── dependabot.yml
│ ├── dockerpublish.yml
│ └── pythonpublish.yml
├── .gitignore
├── .readthedocs.yml
├── .travis.yml
├── Dockerfile
├── LICENSE
├── MANIFEST.in
├── README.md
├── assets
├── PyProphet_Logo.png
├── PyProphet_Logo_paths.svg
└── PyProphet_Logo_transparent_bg.png
├── dist-scripts
├── create-manylinux.sh
└── manylinux.patch
├── docs
├── Makefile
├── README.md
├── _static
│ └── custom.css
├── api
│ ├── config.rst
│ ├── index.rst
│ ├── io.rst
│ ├── ipf.rst
│ ├── levels_context.rst
│ └── scoring.rst
├── cli.rst
├── conf.py
├── file_formats.rst
├── index.rst
├── templates
│ └── class.rst
└── user_guide
│ ├── file_conversion.rst
│ ├── index.rst
│ └── pyprophet_workflow.rst
├── pyproject.toml
├── pyprophet
├── __init__.py
├── _base.py
├── _config.py
├── cli
│ ├── __init__.py
│ ├── export.py
│ ├── ipf.py
│ ├── levels_context.py
│ ├── merge.py
│ ├── score.py
│ └── util.py
├── export
│ ├── __init__.py
│ ├── export_compound.py
│ └── export_report.py
├── filter.py
├── glyco
│ ├── __init__.py
│ ├── export.py
│ ├── glycoform.py
│ ├── pepmass
│ │ ├── __init__.py
│ │ ├── glycomass.py
│ │ ├── modmass.py
│ │ └── pepmass.py
│ ├── report.py
│ ├── scoring.py
│ └── stats.py
├── io
│ ├── __init__.py
│ ├── _base.py
│ ├── dispatcher.py
│ ├── export
│ │ ├── __init__.py
│ │ ├── osw.py
│ │ ├── parquet.py
│ │ ├── split_parquet.py
│ │ └── sqmass.py
│ ├── ipf
│ │ ├── __init__.py
│ │ ├── osw.py
│ │ ├── parquet.py
│ │ ├── split_parquet.py
│ │ └── tsv.py
│ ├── levels_context
│ │ ├── __init__.py
│ │ ├── osw.py
│ │ ├── parquet.py
│ │ └── split_parquet.py
│ ├── scoring
│ │ ├── __init__.py
│ │ ├── osw.py
│ │ ├── parquet.py
│ │ ├── split_parquet.py
│ │ └── tsv.py
│ └── util.py
├── ipf.py
├── levels_contexts.py
├── main.py
├── report.py
├── scoring
│ ├── __init__.py
│ ├── _optimized.c
│ ├── _optimized.pyx
│ ├── classifiers.py
│ ├── data_handling.py
│ ├── optimized.py
│ ├── pyprophet.py
│ ├── runner.py
│ └── semi_supervised.py
├── split.py
├── stats.py
└── util.py
├── requirements.txt
├── sandbox
├── compare.py
├── createFakeOSW.ipynb
├── dummyOSWScoredData.osw
├── export_parquet.py
├── fakeLib.tsv
├── generate_storey_ref_data.R
├── ludovic.py
├── p_values.txt
├── reproduce_r.sh
├── test_pyprophet_export_parquet.py
└── test_qvalue_ref_data.csv
├── setup.cfg
├── setup.py
└── tests
├── .gitignore
├── Create_OSW_test.ipynb
├── README.md
├── __init__.py
├── _regtest_outputs
├── test_pyprophet_export.test_compound_0.out
├── test_pyprophet_export.test_compound_1.out
├── test_pyprophet_export.test_compound_ms1.out
├── test_pyprophet_export.test_compound_ms2.out
├── test_pyprophet_export.test_compound_unscored.out
├── test_pyprophet_export.test_ipf_0.out
├── test_pyprophet_export.test_ipf_1.out
├── test_pyprophet_export.test_ipf_2.out
├── test_pyprophet_export.test_ipf_3.out
├── test_pyprophet_export.test_ipf_analysis[False-augmented].out
├── test_pyprophet_export.test_ipf_analysis[False-disable].out
├── test_pyprophet_export.test_ipf_analysis[False-peptidoform].out
├── test_pyprophet_export.test_ipf_analysis[True-disable].out
├── test_pyprophet_export.test_osw_0.out
├── test_pyprophet_export.test_osw_1.out
├── test_pyprophet_export.test_osw_2.out
├── test_pyprophet_export.test_osw_3.out
├── test_pyprophet_export.test_osw_analysis[osw-False-False-False].out
├── test_pyprophet_export.test_osw_analysis[osw-False-False-True].out
├── test_pyprophet_export.test_osw_analysis[osw-False-True-False].out
├── test_pyprophet_export.test_osw_analysis[osw-True-False-False].out
├── test_pyprophet_export.test_osw_analysis[parquet-False-False-False].out
├── test_pyprophet_export.test_osw_analysis[parquet-False-False-True].out
├── test_pyprophet_export.test_osw_analysis[parquet-False-True-False].out
├── test_pyprophet_export.test_osw_analysis[parquet-True-False-False].out
├── test_pyprophet_export.test_osw_analysis[split_parquet-False-False-False].out
├── test_pyprophet_export.test_osw_analysis[split_parquet-False-False-True].out
├── test_pyprophet_export.test_osw_analysis[split_parquet-False-True-False].out
├── test_pyprophet_export.test_osw_analysis[split_parquet-True-False-False].out
├── test_pyprophet_export.test_osw_unscored.out
├── test_pyprophet_export.test_osw_unscored[osw].out
├── test_pyprophet_export.test_osw_unscored[parquet].out
├── test_pyprophet_export.test_osw_unscored[split_parquet].out
├── test_pyprophet_export_parquet.test_osw_to_parquet_scoring_format_0.out
├── test_pyprophet_export_parquet.test_osw_to_parquet_scoring_format_1.out
├── test_pyprophet_export_parquet.test_osw_to_parquet_scoring_format_2.out
├── test_pyprophet_export_parquet.test_osw_to_parquet_scoring_format_3.out
├── test_pyprophet_ipf.test_ipf_0.out
├── test_pyprophet_ipf.test_ipf_1.out
├── test_pyprophet_ipf.test_ipf_2.out
├── test_pyprophet_ipf.test_ipf_3.out
├── test_pyprophet_ipf.test_ipf_4.out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_off-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_off-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_on-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_on-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_off-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_off-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_on-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_on-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_off-ms2_off-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_off-ms2_off-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_off-ms2_on-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_off-ms2_on-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_on-ms2_off-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_on-ms2_off-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_on-ms2_on-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[parquet-h0_on-ms2_on-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_off-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_off-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_on-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_on-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_off-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_off-ms1_on].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_on-ms1_off].out
├── test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_on-ms1_on].out
├── test_pyprophet_levels_contexts.test_ipf_1.out
├── test_pyprophet_levels_contexts.test_levels_contexts_0.out
├── test_pyprophet_levels_contexts.test_peptide_levels[osw-experiment-wide].out
├── test_pyprophet_levels_contexts.test_peptide_levels[osw-global].out
├── test_pyprophet_levels_contexts.test_peptide_levels[osw-run-specific].out
├── test_pyprophet_levels_contexts.test_peptide_levels[parquet-experiment-wide].out
├── test_pyprophet_levels_contexts.test_peptide_levels[parquet-global].out
├── test_pyprophet_levels_contexts.test_peptide_levels[parquet-run-specific].out
├── test_pyprophet_levels_contexts.test_peptide_levels[split_parquet-experiment-wide].out
├── test_pyprophet_levels_contexts.test_peptide_levels[split_parquet-global].out
├── test_pyprophet_levels_contexts.test_peptide_levels[split_parquet-run-specific].out
├── test_pyprophet_levels_contexts.test_protein_levels[osw-experiment-wide].out
├── test_pyprophet_levels_contexts.test_protein_levels[osw-global].out
├── test_pyprophet_levels_contexts.test_protein_levels[osw-run-specific].out
├── test_pyprophet_levels_contexts.test_protein_levels[parquet-experiment-wide].out
├── test_pyprophet_levels_contexts.test_protein_levels[parquet-global].out
├── test_pyprophet_levels_contexts.test_protein_levels[parquet-run-specific].out
├── test_pyprophet_levels_contexts.test_protein_levels[split_parquet-experiment-wide].out
├── test_pyprophet_levels_contexts.test_protein_levels[split_parquet-global].out
├── test_pyprophet_levels_contexts.test_protein_levels[split_parquet-run-specific].out
├── test_pyprophet_score.test_multi_split_parquet_0.out
├── test_pyprophet_score.test_multi_split_parquet_1.out
├── test_pyprophet_score.test_multi_split_parquet_2.out
├── test_pyprophet_score.test_multi_split_parquet_3.out
├── test_pyprophet_score.test_multi_split_parquet_6.out
├── test_pyprophet_score.test_multi_split_parquet_7.out
├── test_pyprophet_score.test_multi_split_parquet_8.out
├── test_pyprophet_score.test_multi_split_parquet_9.out
├── test_pyprophet_score.test_multi_split_parquet_apply_weights.out
├── test_pyprophet_score.test_osw_0.out
├── test_pyprophet_score.test_osw_1.out
├── test_pyprophet_score.test_osw_10.out
├── test_pyprophet_score.test_osw_2.out
├── test_pyprophet_score.test_osw_3.out
├── test_pyprophet_score.test_osw_4.out
├── test_pyprophet_score.test_osw_5.out
├── test_pyprophet_score.test_osw_6.out
├── test_pyprophet_score.test_osw_7.out
├── test_pyprophet_score.test_osw_8.out
├── test_pyprophet_score.test_osw_9.out
├── test_pyprophet_score.test_parquet_0.out
├── test_pyprophet_score.test_parquet_1.out
├── test_pyprophet_score.test_parquet_2.out
├── test_pyprophet_score.test_parquet_3.out
├── test_pyprophet_score.test_parquet_6.out
├── test_pyprophet_score.test_parquet_7.out
├── test_pyprophet_score.test_parquet_8.out
├── test_pyprophet_score.test_parquet_9.out
├── test_pyprophet_score.test_parquet_apply_weights.out
├── test_pyprophet_score.test_split_parquet_0.out
├── test_pyprophet_score.test_split_parquet_1.out
├── test_pyprophet_score.test_split_parquet_2.out
├── test_pyprophet_score.test_split_parquet_3.out
├── test_pyprophet_score.test_split_parquet_6.out
├── test_pyprophet_score.test_split_parquet_7.out
├── test_pyprophet_score.test_split_parquet_8.out
├── test_pyprophet_score.test_split_parquet_9.out
├── test_pyprophet_score.test_split_parquet_apply_weights.out
├── test_pyprophet_score.test_tsv_0.out
├── test_pyprophet_score.test_tsv_1.out
├── test_pyprophet_score.test_tsv_2.out
├── test_pyprophet_score.test_tsv_3.out
├── test_pyprophet_score.test_tsv_apply_weights.out
├── test_stats.test_lfdr.out
├── test_stats.test_qvalue.out
├── test_stats.test_random.out
└── test_stats.test_stat_metrics.out
├── data
├── test_data.osw
├── test_data.oswpq
│ ├── precursors_features.parquet
│ └── transition_features.parquet
├── test_data.oswpqd
│ └── napedro_L120420_010_SW.oswpq
│ │ ├── precursors_features.parquet
│ │ └── transition_features.parquet
├── test_data.parquet
├── test_data.txt
├── test_data_compound.osw
├── test_data_compound_ms1.tsv
├── test_data_compound_ms2.tsv
├── test_invalid_data.txt
├── test_lfdr_ref_data.csv
└── test_qvalue_ref_data.csv
├── test.ipynb
├── test_data_handling.py
├── test_io_ipf.py
├── test_io_levels_contexts.py
├── test_io_scoring.py
├── test_ipf.py
├── test_optimized.py
├── test_pyprophet_export.py
├── test_pyprophet_ipf.py
├── test_pyprophet_levels_contexts.py
├── test_pyprophet_score.py
└── test_stats.py
/.github/workflows/ci.yml:
--------------------------------------------------------------------------------
1 | name: continuous-integration
2 |
3 | on: [push]
4 |
5 | jobs:
6 | test:
7 | # Add concurrency to cancel previous runs
8 | concurrency:
9 | group: ${{ github.workflow }}-${{ github.ref }}
10 | cancel-in-progress: true
11 |
12 | runs-on: ${{ matrix.os }}
13 | strategy:
14 | matrix:
15 | os: [ubuntu-latest]
16 | # Requirements file generated with python=3.11
17 | python-version: ["3.11"]
18 | steps:
19 | - uses: actions/checkout@v4
20 |
21 | - name: Set up Python ${{ matrix.python-version }}
22 | uses: actions/setup-python@v5
23 | with:
24 | python-version: ${{ matrix.python-version }}
25 | - name: Install dependencies
26 | run: |
27 | python -m pip install --upgrade pip
28 | pip install -r requirements.txt # test with requirements file so can easily bump with dependabot
29 | pip install .
30 |
31 | - name: Compile cython module
32 | run: python setup.py build_ext --inplace
33 |
34 | - name: Test
35 | run: |
36 | python -m pytest -n auto tests/
--------------------------------------------------------------------------------
/.github/workflows/dependabot.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 | updates:
3 | - package-ecosystem: "pip"
4 | directory: "/" # Location of your pyproject.toml or requirements.txt
5 | schedule:
6 | interval: "weekly" # Checks for updates every week
7 | commit-message:
8 | prefix: "deps" # Prefix for pull request titles
9 | open-pull-requests-limit: 5 # Limit the number of open PRs at a time
10 |
--------------------------------------------------------------------------------
/.github/workflows/dockerpublish.yml:
--------------------------------------------------------------------------------
1 | name: Upload Docker image
2 |
3 | on:
4 | release:
5 | types: [published]
6 |
7 | jobs:
8 | push_to_registries:
9 | name: Push Docker image to multiple registries
10 | runs-on: ubuntu-latest
11 | permissions:
12 | packages: write
13 | contents: read
14 | steps:
15 | - name: Check out the repo
16 | uses: actions/checkout@v3
17 |
18 | - name: Log in to Docker Hub
19 | uses: docker/login-action@f054a8b539a109f9f41c372932f1ae047eff08c9
20 | with:
21 | username: ${{ secrets.DOCKER_USERNAME }}
22 | password: ${{ secrets.DOCKER_PASSWORD }}
23 |
24 | - name: Log in to the Container registry
25 | uses: docker/login-action@f054a8b539a109f9f41c372932f1ae047eff08c9
26 | with:
27 | registry: ghcr.io
28 | username: ${{ github.actor }}
29 | password: ${{ secrets.GITHUB_TOKEN }}
30 |
31 | - name: Extract metadata (tags, labels) for Docker
32 | id: meta
33 | uses: docker/metadata-action@98669ae865ea3cffbcbaa878cf57c20bbf1c6c38
34 | with:
35 | images: |
36 | pyprophet/pyprophet
37 | ghcr.io/${{ github.repository }}
38 |
39 | - name: Build and push Docker images
40 | uses: docker/build-push-action@ad44023a93711e3deb337508980b4b5e9bcdc5dc
41 | with:
42 | context: .
43 | push: true
44 | tags: ${{ steps.meta.outputs.tags }}
45 | labels: ${{ steps.meta.outputs.labels }}
46 |
--------------------------------------------------------------------------------
/.github/workflows/pythonpublish.yml:
--------------------------------------------------------------------------------
1 | name: Upload Python Package
2 |
3 | on:
4 | release:
5 | types: [published]
6 |
7 | jobs:
8 | deploy:
9 | runs-on: ubuntu-latest
10 | steps:
11 | - uses: actions/checkout@v1
12 | - name: Set up Python
13 | uses: actions/setup-python@v1
14 | with:
15 | python-version: '3.x'
16 | - name: Install dependencies
17 | run: |
18 | python -m pip install --upgrade pip numpy cython
19 | pip install setuptools wheel twine
20 | - name: Build and publish
21 | env:
22 | TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
23 | TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
24 | run: |
25 | python setup.py sdist
26 | twine upload dist/*
27 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.py[cod]
2 |
3 | # C extensions
4 | *.so
5 |
6 | # Packages
7 | *.egg
8 | *.egg-info
9 | dist
10 | build
11 | eggs
12 | parts
13 | bin
14 | var
15 | sdist
16 | develop-eggs
17 | .installed.cfg
18 | lib
19 | lib64
20 |
21 | # Installer logs
22 | pip-log.txt
23 |
24 | # Unit test / coverage reports
25 | .coverage
26 | .tox
27 | nosetests.xml
28 |
29 | # Translations
30 | *.mo
31 |
32 | # Mr Developer
33 | .mr.developer.cfg
34 | .project
35 | .pydevproject
36 |
37 | # vim
38 | *.sw[opqrs]
39 | *~
40 |
41 | # docs
42 | docs/_build/*
43 | docs/api/generated/*
--------------------------------------------------------------------------------
/.readthedocs.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 | build:
3 | os: ubuntu-22.04
4 | tools:
5 | python: "3.10"
6 | sphinx:
7 | configuration: docs/conf.py
8 | python:
9 | install:
10 | - requirements: requirements.txt
11 | - method: pip
12 | path: .
13 | extra_requirements:
14 | - docs
--------------------------------------------------------------------------------
/.travis.yml:
--------------------------------------------------------------------------------
1 | sudo: required
2 | dist: xenial
3 | language: python
4 | python:
5 | - "3.6"
6 | - "3.7"
7 | - "3.8"
8 | before_install:
9 | - sudo apt-get update
10 | install:
11 | - pip install -U setuptools
12 | - pip install -U pytest
13 | - pip install -U pytest-regtest
14 | - pip install -U Click
15 | - pip install -U numpy
16 | - pip install -U scipy
17 | - pip install -U cython
18 | - pip install -U pandas
19 | - pip install -U scikit-learn
20 | - pip install -U numexpr
21 | - pip install -U statsmodels
22 | - pip install -U matplotlib
23 | - pip install -U networkx
24 | - travis_retry python setup.py develop
25 | script:
26 | - if [[ $TRAVIS_PYTHON_VERSION == 3.6* ]]; then py.test tests/; fi
27 | - if [[ $TRAVIS_PYTHON_VERSION == 3.7* ]]; then py.test tests/; fi
28 | - if [[ $TRAVIS_PYTHON_VERSION == 3.8* ]]; then py.test tests/; fi
29 | cache: pip
30 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | # PyProphet Dockerfile
2 | FROM python:3.9.1
3 |
4 | # install numpy & cython
5 | RUN pip install numpy cython
6 |
7 | # install duckdb and its extensions before pyprophet
8 | RUN pip install duckdb
9 | RUN pip install seaborn
10 | RUN pip install psutil
11 |
12 |
13 | # install PyProphet and dependencies
14 | ADD . /pyprophet
15 | WORKDIR /pyprophet
16 | # RUN python setup.py install
17 | RUN pip install .
18 | RUN python -c "import duckdb; conn = duckdb.connect(); conn.execute(\"INSTALL 'sqlite_scanner'\"); conn.execute(\"LOAD 'sqlite_scanner'\");"
19 | # import duckdb
20 | # conn = duckdb.connect()
21 | # conn.execute("INSTALL 'sqlite_scanner'")
22 | # conn.execute("LOAD 'sqlite_scanner'")
23 | WORKDIR /
24 | RUN rm -rf /pyprophet
25 |
26 | # Set final working directory, useful for when binding to a local mount
27 | WORKDIR /data/
28 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Copyright (c) 2013, Uwe Schmitt, mineway GmbH All rights reserved.
2 |
3 | Redistribution and use in source and binary forms, with or without
4 | modification, are permitted provided that the following conditions are met:
5 |
6 | Redistributions of source code must retain the above copyright notice, this
7 | list of conditions and the following disclaimer.
8 |
9 | Redistributions in binary form must reproduce the above copyright notice, this
10 | list of conditions and the following disclaimer in the documentation and/or
11 | other materials provided with the distribution.
12 |
13 | Neither the name of the mineway GmbH nor the names of its contributors may be
14 | used to endorse or promote products derived from this software without specific
15 | prior written permission.
16 |
17 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
18 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
21 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
24 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | global-include *.pyx
2 |
--------------------------------------------------------------------------------
/assets/PyProphet_Logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/assets/PyProphet_Logo.png
--------------------------------------------------------------------------------
/assets/PyProphet_Logo_transparent_bg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/assets/PyProphet_Logo_transparent_bg.png
--------------------------------------------------------------------------------
/dist-scripts/create-manylinux.sh:
--------------------------------------------------------------------------------
1 | # Create manylinux packages from current release using the docker image
2 | #
3 | # based on https://github.com/pypa/python-manylinux-demo/blob/master/travis/build-wheels.sh
4 | #
5 | # Execute as:
6 | #
7 | # sudo docker run --net=host -v `pwd`:/data quay.io/pypa/manylinux1_x86_64 /bin/bash /data/create-manylinux.sh
8 | #
9 |
10 | git clone https://github.com/PyProphet/pyprophet.git
11 | cd pyprophet
12 | # Apply patch that sets dependency to matplotlib 1.5.3 which does not depend on
13 | # subprocess32 (which cannot be properly installed under CentOS 5).
14 | # See https://github.com/matplotlib/matplotlib/issues/8361
15 | # See https://github.com/google/python-subprocess32/issues/12
16 | git apply /data/manylinux.patch
17 |
18 | # Compile wheels
19 | for PYBIN in /opt/python/cp27*/bin /opt/python/cp3[4-9]*/bin; do
20 | "${PYBIN}/pip" install Cython
21 | "${PYBIN}/pip" install numpy
22 | "${PYBIN}/pip" install pandas
23 | "${PYBIN}/pip" wheel . -w wheelhouse_tmp/
24 | done
25 |
26 | # Bundle external shared libraries into the wheels
27 | for whl in wheelhouse_tmp/pyprophet*.whl; do
28 | auditwheel repair "$whl" -w wheelhouse/
29 | done
30 |
31 | # upload / store result
32 | mv wheelhouse /data/
33 |
34 |
35 |
--------------------------------------------------------------------------------
/dist-scripts/manylinux.patch:
--------------------------------------------------------------------------------
1 | diff --git a/setup.py b/setup.py
2 | index 23412c3..383f23d 100644
3 | --- a/setup.py
4 | +++ b/setup.py
5 | @@ -47,8 +47,7 @@ setup(name='pyprophet',
6 | "scipy >= 0.9.0",
7 | "numexpr >= 2.1",
8 | "scikit-learn >= 0.17",
9 | - "matplotlib",
10 | - "seaborn"
11 | + "matplotlib == 1.5.3"
12 | ],
13 | entry_points={
14 | 'console_scripts': [
15 |
--------------------------------------------------------------------------------
/docs/Makefile:
--------------------------------------------------------------------------------
1 | # Minimal makefile for Sphinx documentation
2 | #
3 |
4 | # You can set these variables from the command line, and also
5 | # from the environment for the first two.
6 | SPHINXOPTS ?=
7 | SPHINXBUILD ?= sphinx-build
8 | SOURCEDIR = source
9 | BUILDDIR = build
10 |
11 | # Put it first so that "make" without argument is like "make help".
12 | help:
13 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
14 |
15 | .PHONY: help Makefile
16 |
17 | # Catch-all target: route all unknown targets to Sphinx using the new
18 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
19 | %: Makefile
20 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
21 |
--------------------------------------------------------------------------------
/docs/README.md:
--------------------------------------------------------------------------------
1 | # Building locally
2 |
3 | To build the documentation locally
4 |
5 | ```bash
6 | # In the docs directory
7 | sphinx-build -b html ./ ./_build
8 | ```
--------------------------------------------------------------------------------
/docs/_static/custom.css:
--------------------------------------------------------------------------------
1 | /* Style for badge container */
2 | .badge-container {
3 | margin: 1em 0;
4 | text-align: center;
5 | }
6 |
7 | .badge-container img {
8 | display: inline-block;
9 | margin: 0 5px 5px 0;
10 | height: 20px;
11 | }
--------------------------------------------------------------------------------
/docs/api/config.rst:
--------------------------------------------------------------------------------
1 | Configuration Data Classes
2 | =====================================================
3 |
4 | For scoring, IPF and levels context inference, PyProphet uses configuration data classes to manage settings and parameters. These classes are designed to be easily extensible and provide a structured way to handle configuration options.
5 |
6 | .. automodule:: pyprophet._base
7 | :no-members:
8 | :no-inherited-members:
9 |
10 | Abstract Base Classes
11 | ---------------------
12 |
13 | .. currentmodule:: pyprophet._base
14 |
15 | .. autosummary::
16 | :nosignatures:
17 | :toctree: generated/
18 | :template: class.rst
19 |
20 | BaseIOConfig
21 |
22 |
23 | Scoring Configuration
24 | ----------------------
25 |
26 | .. automodule:: pyprophet._config
27 | :no-members:
28 | :no-inherited-members:
29 |
30 | .. currentmodule:: pyprophet._config
31 |
32 | .. autosummary::
33 | :nosignatures:
34 | :toctree: generated/
35 | :template: class.rst
36 |
37 | RunnerIOConfig
38 | RunnerConfig
39 | ErrorEstimationConfig
40 |
41 | IPF Configuration
42 | -----------------
43 |
44 | .. currentmodule:: pyprophet._config
45 |
46 | .. autosummary::
47 | :nosignatures:
48 | :toctree: generated/
49 | :template: class.rst
50 |
51 | IPFIOConfig
52 |
53 | Levels Context Configuration
54 | ----------------------------
55 |
56 | .. currentmodule:: pyprophet._config
57 |
58 | .. autosummary::
59 | :nosignatures:
60 | :toctree: generated/
61 | :template: class.rst
62 |
63 | LevelContextIOConfig
64 |
65 | Export Configuration
66 | ----------------------
67 |
68 | .. currentmodule:: pyprophet._config
69 |
70 | .. autosummary::
71 | :nosignatures:
72 | :toctree: generated/
73 | :template: class.rst
74 |
75 | ExportIOConfig
--------------------------------------------------------------------------------
/docs/api/index.rst:
--------------------------------------------------------------------------------
1 | API Reference
2 | =============
3 |
4 | .. toctree::
5 | :maxdepth: 2
6 |
7 | io
8 | config
9 | scoring
10 | ipf
11 | levels_context
--------------------------------------------------------------------------------
/docs/api/io.rst:
--------------------------------------------------------------------------------
1 | IO: Reading and Writing Data
2 | =====================================================
3 |
4 |
5 |
6 | .. automodule:: pyprophet.io
7 | :members:
8 | :inherited-members:
9 |
10 | Abstract Base Classes
11 | ----------------------
12 |
13 | .. currentmodule:: pyprophet.io
14 |
15 | .. autosummary::
16 | :nosignatures:
17 | :toctree: generated/
18 | :template: class.rst
19 |
20 | _base.BaseReader
21 | _base.BaseWriter
22 | _base.BaseOSWReader
23 | _base.BaseOSWWriter
24 | _base.BaseParquetReader
25 | _base.BaseParquetWriter
26 | _base.BaseSplitParquetReader
27 | _base.BaseSplitParquetWriter
28 | dispatcher.ReaderDispatcher
29 | dispatcher.WriterDispatcher
30 |
31 | These submodules provide specific implementations for reading and writing data for specific algorithms.
32 |
33 | Scoring
34 | ----------------------
35 |
36 | .. automodule:: pyprophet.io.scoring
37 | :no-members:
38 | :no-inherited-members:
39 |
40 | .. currentmodule:: pyprophet.io.scoring
41 |
42 | .. autosummary::
43 | :nosignatures:
44 | :toctree: generated/
45 | :template: class.rst
46 |
47 | osw.OSWReader
48 | osw.OSWWriter
49 | parquet.ParquetReader
50 | parquet.ParquetWriter
51 | split_parquet.SplitParquetReader
52 | split_parquet.SplitParquetWriter
53 | tsv.TSVReader
54 | tsv.TSVWriter
55 |
56 | IPF
57 | ----------------------
58 |
59 | .. automodule:: pyprophet.io.ipf
60 | :no-members:
61 | :no-inherited-members:
62 |
63 | .. currentmodule:: pyprophet.io.ipf
64 |
65 | .. autosummary::
66 | :nosignatures:
67 | :toctree: generated/
68 | :template: class.rst
69 |
70 | osw.OSWReader
71 | osw.OSWWriter
72 | parquet.ParquetReader
73 | parquet.ParquetWriter
74 | split_parquet.SplitParquetReader
75 | split_parquet.SplitParquetWriter
76 |
77 | Levels Context
78 | ----------------------
79 |
80 | .. automodule:: pyprophet.io.levels_context
81 | :no-members:
82 | :no-inherited-members:
83 |
84 | .. currentmodule:: pyprophet.io.levels_context
85 |
86 | .. autosummary::
87 | :nosignatures:
88 | :toctree: generated/
89 | :template: class.rst
90 |
91 | osw.OSWReader
92 | osw.OSWWriter
93 | parquet.ParquetReader
94 | parquet.ParquetWriter
95 | split_parquet.SplitParquetReader
96 | split_parquet.SplitParquetWriter
97 |
98 | Export
99 | ----------------------
100 |
101 | .. automodule:: pyprophet.io.export
102 | :no-members:
103 | :no-inherited-members:
104 |
105 | .. currentmodule:: pyprophet.io.export
106 |
107 | .. autosummary::
108 | :nosignatures:
109 | :toctree: generated/
110 | :template: class.rst
111 |
112 | osw.OSWReader
113 | osw.OSWWriter
114 | parquet.ParquetReader
115 | parquet.ParquetWriter
116 | split_parquet.SplitParquetReader
117 | split_parquet.SplitParquetWriter
--------------------------------------------------------------------------------
/docs/api/ipf.rst:
--------------------------------------------------------------------------------
1 | Inference of Peptidoforms Documentation
2 | ==========================
3 |
4 | .. automodule:: pyprophet.ipf
5 | :no-members:
6 | :no-inherited-members:
7 |
8 | .. currentmodule:: pyprophet.ipf
9 |
10 | .. autosummary::
11 | :nosignatures:
12 | :toctree: generated/
13 | :template: class.rst
14 |
15 | infer_peptidoforms
16 | peptidoform_inference
17 | precursor_inference
18 | apply_bm
19 | prepare_transition_bm
20 | transfer_confident_evidence_across_runs
21 | prepare_precursor_bm
22 | compute_model_fdr
--------------------------------------------------------------------------------
/docs/api/levels_context.rst:
--------------------------------------------------------------------------------
1 | Context and FDR Estimation Documentation
2 | ========================================
3 |
4 | .. automodule:: pyprophet.levels_contexts
5 | :no-members:
6 | :no-inherited-members:
7 |
8 | .. currentmodule:: pyprophet.levels_contexts
9 |
10 | .. autosummary::
11 | :nosignatures:
12 | :toctree: generated/
13 | :template: class.rst
14 |
15 | statistics_report
16 | infer_peptides
17 | infer_glycopeptides
18 | infer_proteins
19 | infer_genes
--------------------------------------------------------------------------------
/docs/api/scoring.rst:
--------------------------------------------------------------------------------
1 | Semi-Supervised Scoring Documentation
2 | ==========================
3 |
4 | .. automodule:: pyprophet.scoring
5 | :no-members:
6 | :no-inherited-members:
7 |
8 | .. currentmodule:: pyprophet.scoring
9 |
10 | .. autosummary::
11 | :nosignatures:
12 | :toctree: generated/
13 | :template: class.rst
14 |
15 | scoring
16 |
17 | Runner
18 | ----------------
19 |
20 | .. currentmodule:: pyprophet.scoring.runner
21 |
22 | .. autosummary::
23 | :nosignatures:
24 | :toctree: generated/
25 | :template: class.rst
26 |
27 | PyProphetRunner
28 | PyProphetLearner
29 | PyProphetWeightApplier
30 |
31 | PyProphet
32 | ----------------
33 |
34 | .. currentmodule:: pyprophet.scoring.pyprophet
35 |
36 | .. autosummary::
37 | :nosignatures:
38 | :toctree: generated/
39 | :template: class.rst
40 |
41 | PyProphet
42 | Scorer
43 |
44 | Semi-Supervised
45 | ----------------
46 |
47 | .. currentmodule:: pyprophet.scoring.semi_supervised
48 |
49 | .. autosummary::
50 | :nosignatures:
51 | :toctree: generated/
52 | :template: class.rst
53 |
54 | AbstractSemiSupervisedLearner
55 | StandardSemiSupervisedLearner
56 |
57 | Classifiers
58 | ----------------
59 |
60 | .. currentmodule:: pyprophet.scoring.classifiers
61 |
62 | .. autosummary::
63 | :nosignatures:
64 | :toctree: generated/
65 | :template: class.rst
66 |
67 | AbstractLearner
68 | LinearLearner
69 | LDALearner
70 | SVMLearner
71 | XGBLearner
72 |
73 | Data Handling
74 | ----------------
75 |
76 | .. currentmodule:: pyprophet.scoring.data_handling
77 |
78 | .. autosummary::
79 | :nosignatures:
80 | :toctree: generated/
81 | :template: class.rst
82 |
83 | Experiment
84 | prepare_data_table
85 | cleanup_and_check
86 | check_for_unique_blocks
87 | update_chosen_main_score_in_table
88 | use_metabolomics_scores
--------------------------------------------------------------------------------
/docs/index.rst:
--------------------------------------------------------------------------------
1 | .. PyProphet documentation master file
2 |
3 | .. raw:: html
4 |
5 |
6 |
7 | PyProphet
8 | =========
9 |
10 | .. raw:: html
11 |
12 |
13 |
14 | .. image:: https://raw.githubusercontent.com/PyProphet/pyprophet/master/assets/PyProphet_Logo.png
15 | :width: 300px
16 | :align: center
17 | :target: https://github.com/PyProphet/pyprophet
18 | :alt: PyProphet Logo
19 |
20 | .. container:: badge-container
21 |
22 | .. image:: https://github.com/PyProphet/pyprophet/actions/workflows/ci.yml/badge.svg?branch=master
23 | :target: https://github.com/PyProphet/pyprophet/actions/workflows/ci.yml
24 | :alt: Continuous Integration
25 |
26 | .. image:: https://www.openhub.net/p/PyProphet/widgets/project_thin_badge.gif
27 | :target: https://www.openhub.net/p/PyProphet
28 | :alt: Project Stats
29 |
30 | .. image:: https://img.shields.io/pypi/pyversions/pyprophet
31 | :target: https://pypi.org/project/pyprophet/
32 | :alt: Python Versions
33 |
34 | .. image:: https://img.shields.io/pypi/v/pyprophet
35 | :target: https://pypi.org/project/pyprophet/
36 | :alt: PyPI Version
37 |
38 | .. image:: https://img.shields.io/docker/v/pyprophet/pyprophet?label=Docker
39 | :target: https://hub.docker.com/r/pyprophet/pyprophet
40 | :alt: Docker Version
41 |
42 | .. image:: https://img.shields.io/readthedocs/pyprophet/latest
43 | :target: https://pyprophet.readthedocs.io/en/latest/index.html
44 | :alt: Documentation Status
45 |
46 | PyProphet is a Python package designed for scoring and post-processing of DIA-MS data, particularly in the context of OpenSWATH and related workflows. It provides tools for scoring, inference of levels context, and exporting results in various formats. For more information on the general usage of pyprophet, consult the `OpenSWATH website `_.
47 |
48 | .. toctree::
49 | :maxdepth: 2
50 |
51 | user_guide/index.rst
52 | file_formats
53 | cli
54 | api/index.rst
55 |
56 |
--------------------------------------------------------------------------------
/docs/templates/class.rst:
--------------------------------------------------------------------------------
1 | ..
2 | The empty line below should not be removed. It is added such that the `rst_prolog`
3 | is added before the :mod: directive. Otherwise, the rendering will show as a
4 | paragraph instead of a header.
5 |
6 | {{objname}}
7 | {{ underline }}==============
8 |
9 | .. currentmodule:: {{ module }}
10 |
11 | .. autoclass:: {{ objname }}
12 | :members:
13 | :special-members:
14 | :private-members:
15 | :show-inheritance:
16 |
17 |
--------------------------------------------------------------------------------
/docs/user_guide/file_conversion.rst:
--------------------------------------------------------------------------------
1 | File Conversion
2 | =========================================
3 |
4 |
5 | Feature File Conversion
6 | -----------------------------------------
7 |
8 | The output from OpenSWATH is usually an sqlite-based (.osw) file, which is great for storing different levels of information and data. However, if you have a large input peptide query parameter and a lot of data, the OSW file can become very large and unwieldy. In such cases, you may benefit from converting the OSW file to a parquet file, which is a columnar storage format that is more efficient for large datasets. This can be acheived using with pyprophet using the following command:
9 |
10 | .. code-block:: bash
11 |
12 | $ pyprophet export parquet --in input.osw --out output.parquet
13 |
14 |
15 | This will convert the OSW file to a single parquet file, containing precursor metadata and feature data, as well as transition metadata and feature data. See the :ref:`Parquet file format documentation ` for more information on the structure of the parquet file.
16 |
17 | If your OSW file is really large, you may want to split the precursor and transition data into separate parquet files. This can be done using the following command:
18 |
19 | .. code-block:: bash
20 |
21 | $ pyprophet export parquet --in input.osw --out output.oswpq --split_transition_data
22 |
23 | This will create two parquet files in the `output.oswpq` directory: `precursors_features.parquet` and `transition_features.parquet`. The `precursors_features.parquet` file contains precursor metadata and feature data, while the `transition_features.parquet` file contains transition metadata and feature data. This can be useful if you want to work with the precursor and transition data separately. The transition data will generally be much larger than the precursor data, so splitting the data can help with performance and memory usage. See the :ref:`Split parquet file format documentation ` for more information on the structure of the parquet files.
24 |
25 | If you have multiple runs in your OSW file, you can further split the data by run. This can be done using the following command:
26 |
27 | .. code-block:: bash
28 |
29 | $ pyprophet export parquet --in input.osw --out output.oswpqd --split_transition_data --split_runs
30 |
31 | This will create a directory for each run in the `output.oswpqd` directory, with the precursor and transition data split into separate parquet files for each run. See the :ref:`Split parquet file format documentation ` for more information on the structure of the parquet files.
32 |
33 |
34 | Extracted Ion Chromatogram File Conversion
35 | ------------------------------------------
36 |
37 | If you run OpenSWATH and output an XIC file, it will typically be in an sqlite-based format (.sqMass). Similar to the OSW file, this file can become quite large if you have a lot of data. PyProphet provides a way to convert this XIC file to a parquet file, which can be more efficient for large datasets. This can be done using the following command:
38 |
39 | .. code-block:: bash
40 |
41 | $ pyprophet export parquet --in input.sqMass --out output.parquet
--------------------------------------------------------------------------------
/docs/user_guide/index.rst:
--------------------------------------------------------------------------------
1 | User Guide
2 | =============
3 |
4 | Some useful guides to help you get started with some functionalities of PyProphet.
5 |
6 | .. toctree::
7 | :maxdepth: 2
8 |
9 | file_conversion
10 | pyprophet_workflow
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [build-system]
2 | requires = ["setuptools", "wheel", "numpy", "cython"] # Dependencies needed to build the package
3 | build-backend = "setuptools.build_meta"
4 |
5 | [project]
6 | name = "pyprophet"
7 | version = "3.0.0"
8 | description = "PyProphet: Semi-supervised learning and scoring of OpenSWATH results."
9 | readme = { file = "README.md", content-type = "text/markdown" }
10 | license = { text = "BSD" }
11 | authors = [{ name = "The PyProphet Developers", email = "rocksportrocker@gmail.com" }]
12 | classifiers = [
13 | "Development Status :: 3 - Alpha",
14 | "Environment :: Console",
15 | "Intended Audience :: Science/Research",
16 | "License :: OSI Approved :: BSD License",
17 | "Operating System :: OS Independent",
18 | "Topic :: Scientific/Engineering :: Bio-Informatics",
19 | "Topic :: Scientific/Engineering :: Chemistry"
20 | ]
21 | keywords = ["bioinformatics", "openSWATH", "mass spectrometry"]
22 | requires-python = ">=3.9, <=3.13"
23 |
24 | # Dependencies required for runtime
25 | dependencies = [
26 | "Click",
27 | "loguru",
28 | "duckdb",
29 | "duckdb-extensions",
30 | "duckdb-extension-sqlite-scanner",
31 | "numpy >= 1.26.4",
32 | "scipy",
33 | "pandas >= 2.0",
34 | "polars >= 1.28.1",
35 | "cython",
36 | "numexpr >= 2.10.1",
37 | "scikit-learn >= 1.5",
38 | "xgboost >= 2.1.4",
39 | "statsmodels >= 0.8.0",
40 | "matplotlib",
41 | "seaborn",
42 | "tabulate",
43 | "pyarrow",
44 | "pypdf",
45 | "psutil",
46 | "pyopenms"
47 | ]
48 |
49 | # Optional dependencies
50 | [project.optional-dependencies]
51 | testing = ["pytest", "pytest-regtest", "pytest-xdist"]
52 | docs = ["sphinx", "sphinx-copybutton", "sphinx_rtd_theme", "pydata_sphinx_theme", "sphinx-click"]
53 |
54 | # Define console entry points
55 | [project.scripts]
56 | pyprophet = "pyprophet.main:cli"
57 |
58 | [tool.setuptools]
59 | packages = { find = { exclude = ["ez_setup", "examples", "tests"] } }
60 | include-package-data = true
61 | zip-safe = false
62 |
--------------------------------------------------------------------------------
/pyprophet/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/__init__.py
--------------------------------------------------------------------------------
/pyprophet/cli/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/cli/__init__.py
--------------------------------------------------------------------------------
/pyprophet/export/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/export/__init__.py
--------------------------------------------------------------------------------
/pyprophet/glyco/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/glyco/__init__.py
--------------------------------------------------------------------------------
/pyprophet/glyco/pepmass/__init__.py:
--------------------------------------------------------------------------------
1 | from .pepmass import PeptideMassCalculator
2 | from .modmass import ModifiedPeptideMassCalculator
3 | from .glycomass import GlycoPeptideMassCalculator
--------------------------------------------------------------------------------
/pyprophet/io/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | The `io` module provides tools and utilities for handling input and output operations
3 | in PyProphet. It supports various file formats, including SQLite (OSW),
4 | Parquet, Split Parquet, and TSV, and provides functionality for reading, writing,
5 | and validating data.
6 |
7 | Submodules:
8 | -----------
9 | - `util`: Contains utility functions for file validation, schema inspection, and logging.
10 | - `dispatcher`: Provides dispatcher classes for routing I/O configurations to the appropriate
11 | reader and writer implementations based on file type and context.
12 | - `_base`: Defines abstract base classes and utility methods for implementing custom readers
13 | and writers for different data formats.
14 |
15 | Dependencies:
16 | -------------
17 | - `pandas`
18 | - `pyarrow`
19 | - `duckdb`
20 | - `sqlite3`
21 | - `loguru`
22 | - `click`
23 |
24 | """
25 |
--------------------------------------------------------------------------------
/pyprophet/io/export/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/io/export/__init__.py
--------------------------------------------------------------------------------
/pyprophet/io/ipf/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/io/ipf/__init__.py
--------------------------------------------------------------------------------
/pyprophet/io/ipf/tsv.py:
--------------------------------------------------------------------------------
1 | from typing import Literal
2 | import pandas as pd
3 | import click
4 |
5 | from .._base import BaseReader, BaseWriter
6 | from ..._config import IPFIOConfig
7 |
8 |
9 | class TSVReader(BaseReader):
10 | """
11 | Class for reading and processing data from OpenSWATH results stored in a tsv format.
12 |
13 | The TSVReader class provides methods to read different levels of data from the split parquet files and process it accordingly.
14 | It supports reading data for semi-supervised learning, IPF analysis, context level analysis.
15 |
16 | Attributes:
17 | infile (str): Input file path.
18 | outfile (str): Output file path.
19 | classifier (str): Classifier used for semi-supervised learning.
20 | level (str): Level used in semi-supervised learning (e.g., 'ms1', 'ms2', 'ms1ms2', 'transition', 'alignment'), or context level used peptide/protein/gene inference (e.g., 'global', 'experiment-wide', 'run-specific').
21 | glyco (bool): Flag indicating whether analysis is glycoform-specific.
22 |
23 | Methods:
24 | read(): Read data from the input file based on the alogorithm.
25 | """
26 |
27 | def __init__(self, config: IPFIOConfig):
28 | super().__init__(config)
29 |
30 | def read(
31 | self, level: Literal["peakgroup_precursor", "transition", "alignment"]
32 | ) -> pd.DataFrame:
33 | raise NotImplementedError("IPF read method is not implemented for TSVReader")
34 |
35 |
36 | class TSVWriter(BaseWriter):
37 | """
38 | Class for writing OpenSWATH results to a tsv format.
39 |
40 | Attributes:
41 | infile (str): Input file path.
42 | outfile (str): Output file path.
43 | classifier (str): Classifier used for semi-supervised learning.
44 | level (str): Level used in semi-supervised learning (e.g., 'ms1', 'ms2', 'ms1ms2', 'transition', 'alignment'), or context level used peptide/protein/gene inference (e.g., 'global', 'experiment-wide', 'run-specific').
45 | glyco (bool): Flag indicating whether analysis is glycoform-specific.
46 |
47 | Methods:
48 | save_results(result, pi0): Save the results to the output file based on the module using this class.
49 | save_weights(weights): Save the weights to the output file.
50 | """
51 |
52 | def __init__(self, config: IPFIOConfig):
53 | super().__init__(config)
54 |
55 | def save_results(self, result):
56 | raise NotImplementedError(
57 | "IPF save_results method is not implemented for TSVWriter"
58 | )
59 |
--------------------------------------------------------------------------------
/pyprophet/io/levels_context/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/io/levels_context/__init__.py
--------------------------------------------------------------------------------
/pyprophet/io/scoring/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/pyprophet/io/scoring/__init__.py
--------------------------------------------------------------------------------
/pyprophet/scoring/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | This module provides the main tools for statistical scoring, error estimation, and hypothesis testing
3 | in targeted proteomics and glycoproteomics workflows. It includes modules for semi-supervised
4 | learning, feature scaling, classifier integration, and context-specific inference.
5 |
6 | Submodules:
7 | -----------
8 | - `data_handling`: Utilities for handling and processing data, including feature scaling,
9 | ranking, and validation.
10 | - `classifiers`: Implements various classifiers (e.g., LDA, SVM, XGBoost) for scoring.
11 | - `semi_supervised`: Implements semi-supervised learning workflows for iterative scoring.
12 | - `runner`: Defines workflows for running PyProphet, including learning and weight application.
13 | - `pyprophet`: Core functionality for orchestrating scoring and error estimation workflows.
14 |
15 | Dependencies:
16 | -------------
17 | - `numpy`
18 | - `pandas`
19 | - `scikit-learn`
20 | - `xgboost`
21 | - `loguru`
22 | - `click`
23 | """
24 |
--------------------------------------------------------------------------------
/pyprophet/scoring/optimized.py:
--------------------------------------------------------------------------------
1 | from ._optimized import *
2 |
--------------------------------------------------------------------------------
/sandbox/compare.py:
--------------------------------------------------------------------------------
1 | # encoding: utf-8
2 | from __future__ import print_function
3 |
4 | import math
5 |
6 | import numpy as np
7 | import pandas as pd
8 |
9 | """
10 | We compare the implementaion of FDR in pyprophet to the one from Johan Telemann.
11 |
12 | """
13 |
14 | p_values = np.loadtxt("p_values.txt")
15 | p_values = np.sort((p_values))[::-1]
16 |
17 | from pyprophet.stats import get_error_table_from_pvalues_new
18 |
19 |
20 | def calc(pvalues, lamb):
21 | """ meaning pvalues presorted i descending order"""
22 |
23 | m = len(pvalues)
24 | pi0 = (pvalues > lamb).sum() / ((1 - lamb)*m)
25 |
26 | pFDR = np.ones(m)
27 | print("pFDR y Pr fastPow")
28 | for i in range(m):
29 | y = pvalues[i]
30 | Pr = max(1, m - i) / float(m)
31 | pFDR[i] = (pi0 * y) / (Pr * (1 - math.pow(1-y, m)))
32 | print(i, pFDR[i], y, Pr, 1.0 - math.pow(1-y, m))
33 |
34 |
35 | num_null = pi0*m
36 | num_alt = m - num_null
37 | num_negs = np.array(range(m))
38 | num_pos = m - num_negs
39 | pp = num_pos / float(m)
40 |
41 | qvalues = np.ones(m)
42 | qvalues[0] = pFDR[0]
43 | for i in range(m-1):
44 | qvalues[i+1] = min(qvalues[i], pFDR[i+1])
45 |
46 | sens = ((1.0 - qvalues) * num_pos) / num_alt
47 | sens[sens > 1.0] = 1.0
48 |
49 | df = pd.DataFrame(dict(
50 | pvalue=pvalues,
51 | qvalue=qvalues,
52 | FDR=pFDR,
53 | percentile_positive=pp,
54 | sens=sens
55 | ))
56 |
57 | df["svalue"] = df.sens[::-1].cummax()[::-1]
58 |
59 | return df, num_null, m
60 |
61 | errstat = get_error_table_from_pvalues_new(p_values, 0.4, True)
62 | fdr_pyprophet = errstat.df["FDR"]
63 | df, __, __ = calc(p_values, 0.4)
64 | fdr_storey = df["FDR"]
65 | fdrs = pd.DataFrame(dict(fdr_pp=fdr_pyprophet, fdr_storey=fdr_storey))
66 | print(fdrs[:34])
67 | print(fdrs[:])
68 |
--------------------------------------------------------------------------------
/sandbox/dummyOSWScoredData.osw:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/sandbox/dummyOSWScoredData.osw
--------------------------------------------------------------------------------
/sandbox/fakeLib.tsv:
--------------------------------------------------------------------------------
1 | PrecursorMz ProductMz LibraryIntensity NormalizedRetentionTime ProteinId PeptideSequence ModifiedPeptideSequence PrecursorCharge FragmentType FragmentSeriesNumber ProductCharge GeneName LibraryDriftTime Decoy
2 | 100 101 101 10 ProtY YYYYYYYYYYYK YYYYYYYYYYYK 2 b 1 2 Y 10 0
3 | 100 102 201 10 ProtY YYYYYYYYYYYK YYYYYYYYYYYK 2 y 2 2 Y 10 0
4 | 100 103 301 10 ProtY YYYYYYYYYYYK YYYYYYYYYYYK 2 b 3 2 Y 10 0
5 | 200 201 102 20 ProtY YYYYYR YYYYYR 2 b 1 2 Y 20 0
6 | 200 202 202 20 ProtY YYYYYR YYYYYR 2 y 2 2 Y 20 0
7 | 200 203 302 20 ProtY YYYYYR YYYYYR 2 b 3 2 Y 20 0
8 | 220 221 122 20 ProtY YYYYYR YYYYYR 3 b 1 2 Y 20 0
9 | 220 222 222 20 ProtY YYYYYR YYYYYR 3 y 2 2 Y 20 0
10 | 400 401 104 40 ProtG GGGGGGGGGGR GGGGGGGGGGR 4 b 1 2 G 40 0
11 | 400 402 204 40 ProtG GGGGGGGGGGR GGGGGGGGGGR 4 y 2 2 G 40 0
12 | 400 403 403 40 ProtG GGGGGGGGGGR GGGGGGGGGGR 4 b 3 2 G 40 0
13 | 400 404 404 40 ProtG GGGGGGGGGGR GGGGGGGGGGR 4 y 4 2 G 40 0
14 | 500 501 105 50 ProtT TTTTTTTR TTTTTTTR 2 b 1 2 T 50 0
15 | 500 502 205 50 ProtT TTTTTTTR TTTTTTTR 2 y 2 2 T 50 0
16 | 500 503 305 50 ProtT TTTTTTTR TTTTTTTR 2 b 3 2 T 50 0
17 | 600 601 106 60 ProtT TTTTTTTTTTTTK TTTTTTTTTTTTK 2 b 1 2 T 60 0
18 | 600 602 206 60 ProtT TTTTTTTTTTTTK TTTTTTTTTTTTK 2 y 2 2 T 60 0
19 | 700 701 107 70 ProtT TTR TTR 3 b 1 3 T 70 0
20 | 700 702 207 70 ProtT TTR TTR 3 y 2 3 T 70 0
21 | 700 703 307 70 ProtT TTR TTR 3 b 3 3 T 70 0
22 | 800 801 808 80 Decoy_ProtT TTK TTK 3 b 1 3 Decoy_T 80 1
23 | 800 802 808 80 Decoy_ProtT TTK TTK 3 y 2 3 Decoy_T 80 1
24 | 800 803 808 80 Decoy_ProtT TTK TTK 3 b 3 3 Decoy_T 80 1
25 |
--------------------------------------------------------------------------------
/sandbox/generate_storey_ref_data.R:
--------------------------------------------------------------------------------
1 | library(qvalue)
2 | data(hedenfalk)
3 | p <- hedenfalk$p
4 | pi0<-pi0est(p)$pi0 # 0.669926
5 |
6 | # qvalue validation
7 | qv_q<-qvalue(p)
8 | qv_q_pfdr<-qvalue(p, pfdr=TRUE)
9 |
10 | qvalue_ref_data<-data.frame("p"=p, "q_default"=qv_q$qvalues, "q_pfdr"=qv_q_pfdr$qvalues)
11 | write.csv(qvalue_ref_data, file="test_qvalue_ref_data.csv", row.names=FALSE)
12 |
13 | # pi0est validation
14 | nullRatio <- pi0est(p)$pi0
15 | nullRatioS <- pi0est(p, lambda=seq(0.40, 0.95, 0.05), smooth.log.pi0="TRUE")$pi0
16 | nullRatioM <- pi0est(p, pi0.method="bootstrap")$pi0
17 |
18 | # lfdr validation
19 | lfdr_default <- lfdr(p,pi0)
20 | lfdr_monotone_false <- lfdr(p, pi0, monotone=FALSE)
21 | lfdr_transf_logit <- lfdr(p, pi0, transf="logit")
22 | lfdr_eps <- lfdr(p, pi0, eps=10^-2)
23 |
24 | lfdr_ref_data<-data.frame("p"=p, "lfdr_default"=lfdr_default, "lfdr_monotone_false"=lfdr_monotone_false, "lfdr_transf_logit"=lfdr_transf_logit, "lfdr_eps"=lfdr_eps)
25 | write.csv(lfdr_ref_data, file="test_lfdr_ref_data.csv", row.names=FALSE)
26 |
--------------------------------------------------------------------------------
/sandbox/ludovic.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import pylab
3 | import pyprophet.stats as stats
4 | import random
5 | import numpy as np
6 |
7 | path = sys.argv[1]
8 |
9 | lines = open(path).readlines()
10 | header = [h.lower() for h in lines[0].split()]
11 |
12 | data_lines = [line.split() for line in lines[1:]]
13 |
14 | if header == ["decoy", "score"]:
15 | data_lines = [(np.log(float(s.strip())), l.strip()) for (l, s) in data_lines]
16 | targets = [s for (s, l) in data_lines if l.upper() == "FALSE"]
17 | decoys = [s for (s, l) in data_lines if l.upper() == "TRUE"]
18 | invalid = [(s, l) for (s, l) in data_lines if l.upper() not in ("FALSE", "TRUE")]
19 | elif header == ["score", "decoy"]:
20 | data_lines = [(np.log(float(s.strip())), l.strip()) for (s, l) in data_lines]
21 | targets = [s for (s, l) in data_lines if l.upper() == "FALSE"]
22 | decoys = [s for (s, l) in data_lines if l.upper() == "TRUE"]
23 | invalid = [(s, l) for (s, l) in data_lines if l.upper() not in ("FALSE", "TRUE")]
24 | else:
25 | raise NotImplementedError("this kind of header %r not supported yet" % header)
26 |
27 |
28 | print
29 | print "COUNTS"
30 | print
31 | print "targets =", len(targets)
32 | print "decoys =", len(decoys)
33 | print "targests + decoys =", len(targets) + len(decoys)
34 | print "data lines =", len(data_lines)
35 | print "invalid lines =", len(invalid)
36 |
37 | df, __, __ = stats.get_error_stat_from_null(targets, decoys, 0.4)
38 |
39 | errt= stats.summary_err_table(df, (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, .08, .09, .1,
40 | .15, .2, .3, .4, .5))
41 |
42 | errt["exp_cutoff"] = np.exp(errt.cutoff.values.astype(float))
43 |
44 | print
45 | print "STATS"
46 | print
47 | print errt.to_string() # avoid line break
48 |
--------------------------------------------------------------------------------
/sandbox/reproduce_r.sh:
--------------------------------------------------------------------------------
1 | NUM_XVAL=20
2 | NUM_FRACTION=0.5
3 | NUM_SEMISV_ITER=5
4 |
5 |
6 | pyprophet --xeval.num_processes=10 \
7 | --xeval.num_iter=$NUM_XVAL\
8 | --xeval.fraction=$NUM_FRACTION\
9 | --target.overwrite=1\
10 | --semi_supervised_learner.num_iter=$NUM_SEMISV_ITER\
11 | --is_test=0\
12 | ../orig_r_code/testfile.csv
13 |
14 |
15 | cp ../orig_r_code/testfile_with_dscore.csv ../orig_r_code/testfile_with_dscore2.csv
16 |
17 | pyprophet --xeval.num_processes=1 \
18 | --xeval.num_iter=$NUM_XVAL\
19 | --xeval.fraction=$NUM_FRACTION\
20 | --target.overwrite=1\
21 | --semi_supervised_learner.num_iter=$NUM_SEMISV_ITER\
22 | --is_test=0\
23 | ../orig_r_code/testfile.csv
24 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | [nosetests]
2 | logging-level = INFO
3 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup, Extension, find_packages
2 | from Cython.Build import cythonize
3 | import numpy
4 |
5 | try:
6 | from Cython.Build import cythonize
7 | except ImportError:
8 | use_cython = False
9 | else:
10 | use_cython = True
11 |
12 | ext_modules = []
13 | if use_cython:
14 | ext_modules += [
15 | Extension("pyprophet.scoring._optimized", ["pyprophet/scoring/_optimized.pyx"])
16 | ]
17 | ext_modules = cythonize(ext_modules)
18 | else:
19 | ext_modules += [
20 | Extension("pyprophet.scoring._optimized", ["pyprophet/scoring/_optimized.c"])
21 | ]
22 |
23 | setup(name="pyprophet", ext_modules=ext_modules, include_dirs=[numpy.get_include()])
24 |
--------------------------------------------------------------------------------
/tests/.gitignore:
--------------------------------------------------------------------------------
1 | *.csv
2 | *.pdf
3 | *.bin
4 |
--------------------------------------------------------------------------------
/tests/README.md:
--------------------------------------------------------------------------------
1 | README
2 | ======
3 |
4 | The scripts should be run with `py.test` (>=3.4.1) with installed plugin `pytest-regest`
5 | (>=1.0.14 see https://pypi.python.org/pypi/pytest-regtest).
6 |
7 | The plugin allows recording of approved output so that later test runs will check if
8 | the output is still the same. It is simple to use as you can see in `test_via_regression.py`.
9 |
10 | In order to record output you have to use the `regtest` fixture like in the following example.
11 | This `regtest` behaves like a file handle, so you can write to it as usual:
12 |
13 | ````
14 | def test_0(regtest):
15 | print >> regtest, "this is the recorded output"
16 | ````
17 |
18 | If you now create a new test function `test_0` in a file `test_xyz.py`, first run
19 |
20 | ````
21 | $ py.test tests/test_xyz.py::test_0
22 | ````
23 |
24 | which will show you the yet not approved output. You can approve this output using
25 |
26 | ````
27 | $ py.test --regtest-reset tests/test_xyz.py::test_0
28 | ````
29 |
30 | Which will create a file in `tests/_regtest_outputs/test_xyz.test_0.out` which you should not forget to
31 | commit with `git`.
32 |
33 |
34 | Later runs like
35 | ````
36 | $ py.test tests/test_xyz.py
37 | ````
38 |
39 | will then check if the recorded output is still the same.
40 |
41 | If you want to only run certain tests and certain combination of fixture paramaters, you can use the `-k` option of `py.test`:
42 |
43 | ````
44 | # Run all combinations for OSW input only
45 | pytest -k "test_ipf_scoring and osw"
46 |
47 | # Run specific parameter combination
48 | pytest -k "test_ipf_scoring and ms1_on and ms2_off and h0_on"
49 |
50 | # Run all peptide tests for OSW input
51 | pytest -k "test_peptide_levels and osw"
52 |
53 | # Run protein tests for specific context
54 | pytest -k "test_protein_levels and experiment-wide"
55 |
56 | # Run all tests for parquet input
57 | pytest -k "parquet"
58 | ````
59 |
60 | To run tests in parallel, you need the `pytest-xdist` plugin. You can then use the `-n` option to specify the number of parallel workers:
61 |
62 | ````
63 | pytest -n 4
64 | ````
--------------------------------------------------------------------------------
/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/__init__.py
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_export.test_osw_3.out:
--------------------------------------------------------------------------------
1 | Empty DataFrame
2 | Columns: [Charge, FullPeptideName, Intensity, ProteinName, RT, Sequence, aggr_prec_Peak_Apex, aggr_prec_Peak_Area, assay_iRT, assay_rt, d_score, decoy, delta_iRT, delta_rt, filename, iRT, id, leftWidth, m_score, m_score_protein_experiment_wide, m_score_protein_global, m_score_protein_run_specific, mz, peak_group_rank, rightWidth, run_id, transition_group_id]
3 | Index: []
4 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_export.test_osw_analysis[osw-False-False-True].out:
--------------------------------------------------------------------------------
1 | Empty DataFrame
2 | Columns: [Charge, FullPeptideName, Intensity, ProteinName, RT, Sequence, aggr_prec_Peak_Apex, aggr_prec_Peak_Area, assay_iRT, assay_rt, d_score, decoy, delta_iRT, delta_rt, filename, iRT, id, leftWidth, m_score, m_score_protein_experiment_wide, m_score_protein_global, m_score_protein_run_specific, mz, peak_group_rank, rightWidth, run_id, transition_group_id]
3 | Index: []
4 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_0.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -4409520928686189639 0.0003 0.0031 0.0063
3 | 1 -7771919224870429764 0.0003 0.0031 0.0007
4 | 2 -1732939685941081620 0.0003 0.0031 0.0007
5 | 3 -7157712673420189723 0.0003 0.0031 0.0133
6 | 4 909047282828920049 0.0003 0.0031 0.0147
7 | .. ... ... ... ...
8 | 95 6840593155190879143 0.0003 0.0031 0.0017
9 | 96 -6764315401363298084 0.0003 0.0031 0.0007
10 | 97 8943629340769664660 1.0000 0.0225 0.0121
11 | 98 -6034887541083502974 0.0003 0.0031 0.0017
12 | 99 7291105701317857435 0.0261 0.0031 0.0541
13 |
14 | [100 rows x 4 columns]
15 | feature_id pep pvalue qvalue rank score transition_id
16 | 0 -4409520928686189639 0.0063 0.0047 0.0016 1 2.1349 1334
17 | 1 -4409520928686189639 1.0000 0.6411 0.1162 1 -0.3597 1335
18 | 2 -4409520928686189639 1.0000 0.5897 0.1075 1 -0.1966 1336
19 | 3 -4409520928686189639 0.0161 0.0121 0.0033 1 1.9360 1337
20 | 4 -4409520928686189639 0.2419 0.1084 0.0226 1 1.2209 1343
21 | .. ... ... ... ... ... ... ...
22 | 95 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0916 1451
23 | 96 -1732939685941081620 0.0097 0.0075 0.0023 1 2.0680 1455
24 | 97 -1732939685941081620 0.5444 0.2206 0.0434 1 0.8410 1456
25 | 98 -1732939685941081620 0.3426 0.1477 0.0299 1 1.0588 1457
26 | 99 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0930 1461
27 |
28 | [100 rows x 7 columns]
29 | feature_id pep peptide_id precursor_peakgroup_pep qvalue
30 | 0 -9078977811506172301 0.0 305 7.2449e-09 0.0
31 | 1 -9009602369958523731 0.0 309 6.4212e-08 0.0
32 | 2 -8990894093332793487 0.0 1169 7.2449e-09 0.0
33 | 3 -8915955323477460297 0.0 1214 1.1667e-08 0.0
34 | 4 -8858715981476206597 0.0 862 7.0822e-10 0.0
35 | .. ... ... ... ... ...
36 | 95 -3196707605593292319 0.0 1355 6.0432e-09 0.0
37 | 96 -3129995828656718688 0.0 590 4.6346e-09 0.0
38 | 97 -3096050638984928024 0.0 1365 1.5983e-09 0.0
39 | 98 -2959420398616195477 0.0 1254 8.3354e-09 0.0
40 | 99 -2912234918591861719 0.0 1029 7.0822e-10 0.0
41 |
42 | [100 rows x 5 columns]
43 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_1.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -4409520928686189639 0.0003 0.0031 0.0063
3 | 1 -7771919224870429764 0.0003 0.0031 0.0007
4 | 2 -1732939685941081620 0.0003 0.0031 0.0007
5 | 3 -7157712673420189723 0.0003 0.0031 0.0133
6 | 4 909047282828920049 0.0003 0.0031 0.0147
7 | .. ... ... ... ...
8 | 95 6840593155190879143 0.0003 0.0031 0.0017
9 | 96 -6764315401363298084 0.0003 0.0031 0.0007
10 | 97 8943629340769664660 1.0000 0.0225 0.0121
11 | 98 -6034887541083502974 0.0003 0.0031 0.0017
12 | 99 7291105701317857435 0.0261 0.0031 0.0541
13 |
14 | [100 rows x 4 columns]
15 | feature_id pep pvalue qvalue rank score transition_id
16 | 0 -4409520928686189639 0.0063 0.0047 0.0016 1 2.1349 1334
17 | 1 -4409520928686189639 1.0000 0.6411 0.1162 1 -0.3597 1335
18 | 2 -4409520928686189639 1.0000 0.5897 0.1075 1 -0.1966 1336
19 | 3 -4409520928686189639 0.0161 0.0121 0.0033 1 1.9360 1337
20 | 4 -4409520928686189639 0.2419 0.1084 0.0226 1 1.2209 1343
21 | .. ... ... ... ... ... ... ...
22 | 95 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0916 1451
23 | 96 -1732939685941081620 0.0097 0.0075 0.0023 1 2.0680 1455
24 | 97 -1732939685941081620 0.5444 0.2206 0.0434 1 0.8410 1456
25 | 98 -1732939685941081620 0.3426 0.1477 0.0299 1 1.0588 1457
26 | 99 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0930 1461
27 |
28 | [100 rows x 7 columns]
29 | feature_id pep peptide_id precursor_peakgroup_pep qvalue
30 | 0 -9078977811506172301 0.0 305 2.3908e-05 0.0
31 | 1 -9009602369958523731 0.0 309 2.1186e-04 0.0
32 | 2 -8990894093332793487 0.0 1169 2.3908e-05 0.0
33 | 3 -8915955323477460297 0.0 1214 3.8501e-05 0.0
34 | 4 -8858715981476206597 0.0 862 2.3372e-06 0.0
35 | .. ... ... ... ... ...
36 | 95 -3196707605593292319 0.0 1355 1.9943e-05 0.0
37 | 96 -3129995828656718688 0.0 590 1.5294e-05 0.0
38 | 97 -3096050638984928024 0.0 1365 5.2745e-06 0.0
39 | 98 -2959420398616195477 0.0 1254 2.7507e-05 0.0
40 | 99 -2912234918591861719 0.0 1029 2.3372e-06 0.0
41 |
42 | [100 rows x 5 columns]
43 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_2.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -4409520928686189639 0.0003 0.0031 0.0063
3 | 1 -7771919224870429764 0.0003 0.0031 0.0007
4 | 2 -1732939685941081620 0.0003 0.0031 0.0007
5 | 3 -7157712673420189723 0.0003 0.0031 0.0133
6 | 4 909047282828920049 0.0003 0.0031 0.0147
7 | .. ... ... ... ...
8 | 95 6840593155190879143 0.0003 0.0031 0.0017
9 | 96 -6764315401363298084 0.0003 0.0031 0.0007
10 | 97 8943629340769664660 1.0000 0.0225 0.0121
11 | 98 -6034887541083502974 0.0003 0.0031 0.0017
12 | 99 7291105701317857435 0.0261 0.0031 0.0541
13 |
14 | [100 rows x 4 columns]
15 | feature_id pep pvalue qvalue rank score transition_id
16 | 0 -4409520928686189639 0.0063 0.0047 0.0016 1 2.1349 1334
17 | 1 -4409520928686189639 1.0000 0.6411 0.1162 1 -0.3597 1335
18 | 2 -4409520928686189639 1.0000 0.5897 0.1075 1 -0.1966 1336
19 | 3 -4409520928686189639 0.0161 0.0121 0.0033 1 1.9360 1337
20 | 4 -4409520928686189639 0.2419 0.1084 0.0226 1 1.2209 1343
21 | .. ... ... ... ... ... ... ...
22 | 95 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0916 1451
23 | 96 -1732939685941081620 0.0097 0.0075 0.0023 1 2.0680 1455
24 | 97 -1732939685941081620 0.5444 0.2206 0.0434 1 0.8410 1456
25 | 98 -1732939685941081620 0.3426 0.1477 0.0299 1 1.0588 1457
26 | 99 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0930 1461
27 |
28 | [100 rows x 7 columns]
29 | feature_id pep peptide_id precursor_peakgroup_pep qvalue
30 | 0 -9078977811506172301 0.0 305 9.5518e-07 0.0
31 | 1 -9009602369958523731 0.0 309 9.5518e-07 0.0
32 | 2 -8990894093332793487 0.0 1169 9.5518e-07 0.0
33 | 3 -8915955323477460297 0.0 1214 9.5518e-07 0.0
34 | 4 -8858715981476206597 0.0 862 9.5518e-07 0.0
35 | .. ... ... ... ... ...
36 | 95 -3836935184308268027 0.0 327 9.5518e-07 0.0
37 | 96 -3751206597519588606 0.0 922 9.5518e-07 0.0
38 | 97 -3723393495768556771 0.0 1218 9.5518e-07 0.0
39 | 98 -3691251994571895144 0.0 448 9.5518e-07 0.0
40 | 99 -3689374433140347909 0.0 688 9.5518e-07 0.0
41 |
42 | [100 rows x 5 columns]
43 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_3.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -4409520928686189639 0.0003 0.0031 0.0063
3 | 1 -7771919224870429764 0.0003 0.0031 0.0007
4 | 2 -1732939685941081620 0.0003 0.0031 0.0007
5 | 3 -7157712673420189723 0.0003 0.0031 0.0133
6 | 4 909047282828920049 0.0003 0.0031 0.0147
7 | .. ... ... ... ...
8 | 95 6840593155190879143 0.0003 0.0031 0.0017
9 | 96 -6764315401363298084 0.0003 0.0031 0.0007
10 | 97 8943629340769664660 1.0000 0.0225 0.0121
11 | 98 -6034887541083502974 0.0003 0.0031 0.0017
12 | 99 7291105701317857435 0.0261 0.0031 0.0541
13 |
14 | [100 rows x 4 columns]
15 | feature_id pep pvalue qvalue rank score transition_id
16 | 0 -4409520928686189639 0.0063 0.0047 0.0016 1 2.1349 1334
17 | 1 -4409520928686189639 1.0000 0.6411 0.1162 1 -0.3597 1335
18 | 2 -4409520928686189639 1.0000 0.5897 0.1075 1 -0.1966 1336
19 | 3 -4409520928686189639 0.0161 0.0121 0.0033 1 1.9360 1337
20 | 4 -4409520928686189639 0.2419 0.1084 0.0226 1 1.2209 1343
21 | .. ... ... ... ... ... ... ...
22 | 95 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0916 1451
23 | 96 -1732939685941081620 0.0097 0.0075 0.0023 1 2.0680 1455
24 | 97 -1732939685941081620 0.5444 0.2206 0.0434 1 0.8410 1456
25 | 98 -1732939685941081620 0.3426 0.1477 0.0299 1 1.0588 1457
26 | 99 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0930 1461
27 |
28 | [100 rows x 7 columns]
29 | feature_id pep peptide_id precursor_peakgroup_pep qvalue
30 | 0 -9078977811506172301 0.0 305 0.0031 0.0
31 | 1 -9009602369958523731 0.0 309 0.0031 0.0
32 | 2 -8990894093332793487 0.0 1169 0.0031 0.0
33 | 3 -8915955323477460297 0.0 1214 0.0031 0.0
34 | 4 -8858715981476206597 0.0 862 0.0031 0.0
35 | .. ... ... ... ... ...
36 | 95 -4029731266955352788 0.0 1240 0.0031 0.0
37 | 96 -3993387312722337069 0.0 489 0.0031 0.0
38 | 97 -3836935184308268027 0.0 327 0.0031 0.0
39 | 98 -3751206597519588606 0.0 922 0.0031 0.0
40 | 99 -3723393495768556771 0.0 1218 0.0031 0.0
41 |
42 | [100 rows x 5 columns]
43 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_4.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -4409520928686189639 0.0003 0.0031 0.0063
3 | 1 -7771919224870429764 0.0003 0.0031 0.0007
4 | 2 -1732939685941081620 0.0003 0.0031 0.0007
5 | 3 -7157712673420189723 0.0003 0.0031 0.0133
6 | 4 909047282828920049 0.0003 0.0031 0.0147
7 | .. ... ... ... ...
8 | 95 6840593155190879143 0.0003 0.0031 0.0017
9 | 96 -6764315401363298084 0.0003 0.0031 0.0007
10 | 97 8943629340769664660 1.0000 0.0225 0.0121
11 | 98 -6034887541083502974 0.0003 0.0031 0.0017
12 | 99 7291105701317857435 0.0261 0.0031 0.0541
13 |
14 | [100 rows x 4 columns]
15 | feature_id pep pvalue qvalue rank score transition_id
16 | 0 -4409520928686189639 0.0063 0.0047 0.0016 1 2.1349 1334
17 | 1 -4409520928686189639 1.0000 0.6411 0.1162 1 -0.3597 1335
18 | 2 -4409520928686189639 1.0000 0.5897 0.1075 1 -0.1966 1336
19 | 3 -4409520928686189639 0.0161 0.0121 0.0033 1 1.9360 1337
20 | 4 -4409520928686189639 0.2419 0.1084 0.0226 1 1.2209 1343
21 | .. ... ... ... ... ... ... ...
22 | 95 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0916 1451
23 | 96 -1732939685941081620 0.0097 0.0075 0.0023 1 2.0680 1455
24 | 97 -1732939685941081620 0.5444 0.2206 0.0434 1 0.8410 1456
25 | 98 -1732939685941081620 0.3426 0.1477 0.0299 1 1.0588 1457
26 | 99 -1732939685941081620 0.0075 0.0056 0.0019 1 2.0930 1461
27 |
28 | [100 rows x 7 columns]
29 | feature_id pep peptide_id precursor_peakgroup_pep qvalue
30 | 0 -9078977811506172301 0.0 305 7.2449e-09 0.0
31 | 1 -9009602369958523731 0.0 309 6.4212e-08 0.0
32 | 2 -8990894093332793487 0.0 1169 7.2449e-09 0.0
33 | 3 -8915955323477460297 0.0 1214 1.1667e-08 0.0
34 | 4 -8858715981476206597 0.0 862 7.0822e-10 0.0
35 | .. ... ... ... ... ...
36 | 95 -3196707605593292319 0.0 1355 6.0432e-09 0.0
37 | 96 -3129995828656718688 0.0 590 4.6346e-09 0.0
38 | 97 -3096050638984928024 0.0 1365 1.5983e-09 0.0
39 | 98 -2959420398616195477 0.0 1254 8.3354e-09 0.0
40 | 99 -2912234918591861719 0.0 1029 7.0822e-10 0.0
41 |
42 | [100 rows x 5 columns]
43 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_off-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031
4 | 1 -9059007664292712863 0.3615
5 | 2 -9009602369958523731 0.0031
6 | 3 -8990894093332793487 0.0031
7 | 4 -8915955323477460297 0.0031
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031
10 | 96 -4495976808403190115 0.0031
11 | 97 -4474179539802460946 0.0031
12 | 98 -4409520928686189639 0.0031
13 | 99 -4399716566495748799 0.0031
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 0.0031 0.0 0.0
34 | 1 -9009602369958523731 309 0.0031 0.0 0.0
35 | 2 -8990894093332793487 1169 0.0031 0.0 0.0
36 | 3 -8915955323477460297 1214 0.0031 0.0 0.0
37 | 4 -8858715981476206597 862 0.0031 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -4029731266955352788 1240 0.0031 0.0 0.0
40 | 96 -3993387312722337069 489 0.0031 0.0 0.0
41 | 97 -3836935184308268027 327 0.0031 0.0 0.0
42 | 98 -3751206597519588606 922 0.0031 0.0 0.0
43 | 99 -3723393495768556771 1218 0.0031 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_off-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003
4 | 1 -9059007664292712863 0.3615 0.2419
5 | 2 -9009602369958523731 0.0031 0.0003
6 | 3 -8990894093332793487 0.0031 0.0003
7 | 4 -8915955323477460297 0.0031 0.0003
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0003
10 | 96 -4495976808403190115 0.0031 0.0003
11 | 97 -4474179539802460946 0.0031 0.0003
12 | 98 -4409520928686189639 0.0031 0.0003
13 | 99 -4399716566495748799 0.0031 0.0003
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 9.5518e-07 0.0 0.0
34 | 1 -9009602369958523731 309 9.5518e-07 0.0 0.0
35 | 2 -8990894093332793487 1169 9.5518e-07 0.0 0.0
36 | 3 -8915955323477460297 1214 9.5518e-07 0.0 0.0
37 | 4 -8858715981476206597 862 9.5518e-07 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -3836935184308268027 327 9.5518e-07 0.0 0.0
40 | 96 -3751206597519588606 922 9.5518e-07 0.0 0.0
41 | 97 -3723393495768556771 1218 9.5518e-07 0.0 0.0
42 | 98 -3691251994571895144 448 9.5518e-07 0.0 0.0
43 | 99 -3689374433140347909 688 9.5518e-07 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_on-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0075
4 | 1 -9009602369958523731 0.0031 0.0630
5 | 2 -8990894093332793487 0.0031 0.0075
6 | 3 -8915955323477460297 0.0031 0.0121
7 | 4 -8858715981476206597 0.0031 0.0007
8 | .. ... ... ... ...
9 | 95 -3220457216356394124 0.0031 0.0007
10 | 96 -3212703409469281429 0.0031 0.0017
11 | 97 -3196707605593292319 0.0031 0.0063
12 | 98 -3129995828656718688 0.0031 0.0048
13 | 99 -3096050638984928024 0.0031 0.0017
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 2.3908e-05 0.0 0.0
34 | 1 -9009602369958523731 309 2.1186e-04 0.0 0.0
35 | 2 -8990894093332793487 1169 2.3908e-05 0.0 0.0
36 | 3 -8915955323477460297 1214 3.8501e-05 0.0 0.0
37 | 4 -8858715981476206597 862 2.3372e-06 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -3196707605593292319 1355 1.9943e-05 0.0 0.0
40 | 96 -3129995828656718688 590 1.5294e-05 0.0 0.0
41 | 97 -3096050638984928024 1365 5.2745e-06 0.0 0.0
42 | 98 -2959420398616195477 1254 2.7507e-05 0.0 0.0
43 | 99 -2912234918591861719 1029 2.3372e-06 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_off-ms2_on-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003 0.0075
4 | 1 -9009602369958523731 0.0031 0.0003 0.0630
5 | 2 -8990894093332793487 0.0031 0.0003 0.0075
6 | 3 -8915955323477460297 0.0031 0.0003 0.0121
7 | 4 -8858715981476206597 0.0031 0.0003 0.0007
8 | .. ... ... ... ...
9 | 95 -3220457216356394124 0.0031 0.0003 0.0007
10 | 96 -3212703409469281429 0.0031 0.0003 0.0017
11 | 97 -3196707605593292319 0.0031 0.0003 0.0063
12 | 98 -3129995828656718688 0.0031 0.0003 0.0048
13 | 99 -3096050638984928024 0.0031 0.0003 0.0017
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 7.2449e-09 0.0 0.0
34 | 1 -9009602369958523731 309 6.4212e-08 0.0 0.0
35 | 2 -8990894093332793487 1169 7.2449e-09 0.0 0.0
36 | 3 -8915955323477460297 1214 1.1667e-08 0.0 0.0
37 | 4 -8858715981476206597 862 7.0822e-10 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -3196707605593292319 1355 6.0432e-09 0.0 0.0
40 | 96 -3129995828656718688 590 4.6346e-09 0.0 0.0
41 | 97 -3096050638984928024 1365 1.5983e-09 0.0 0.0
42 | 98 -2959420398616195477 1254 8.3354e-09 0.0 0.0
43 | 99 -2912234918591861719 1029 7.0822e-10 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_off-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031
4 | 1 -9059007664292712863 0.3615
5 | 2 -9009602369958523731 0.0031
6 | 3 -8990894093332793487 0.0031
7 | 4 -8915955323477460297 0.0031
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031
10 | 96 -4495976808403190115 0.0031
11 | 97 -4474179539802460946 0.0031
12 | 98 -4409520928686189639 0.0031
13 | 99 -4399716566495748799 0.0031
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 0.0031 0.0 0.0
34 | 1 -9009602369958523731 309 0.0031 0.0 0.0
35 | 2 -8990894093332793487 1169 0.0031 0.0 0.0
36 | 3 -8915955323477460297 1214 0.0031 0.0 0.0
37 | 4 -8858715981476206597 862 0.0031 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -4029731266955352788 1240 0.0031 0.0 0.0
40 | 96 -3993387312722337069 489 0.0031 0.0 0.0
41 | 97 -3836935184308268027 327 0.0031 0.0 0.0
42 | 98 -3751206597519588606 922 0.0031 0.0 0.0
43 | 99 -3723393495768556771 1218 0.0031 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_off-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003
4 | 1 -9059007664292712863 0.3615 0.2419
5 | 2 -9009602369958523731 0.0031 0.0003
6 | 3 -8990894093332793487 0.0031 0.0003
7 | 4 -8915955323477460297 0.0031 0.0003
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0003
10 | 96 -4495976808403190115 0.0031 0.0003
11 | 97 -4474179539802460946 0.0031 0.0003
12 | 98 -4409520928686189639 0.0031 0.0003
13 | 99 -4399716566495748799 0.0031 0.0003
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 9.5518e-07 0.0 0.0
34 | 1 -9009602369958523731 309 9.5518e-07 0.0 0.0
35 | 2 -8990894093332793487 1169 9.5518e-07 0.0 0.0
36 | 3 -8915955323477460297 1214 9.5518e-07 0.0 0.0
37 | 4 -8858715981476206597 862 9.5518e-07 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -3836935184308268027 327 9.5518e-07 0.0 0.0
40 | 96 -3751206597519588606 922 9.5518e-07 0.0 0.0
41 | 97 -3723393495768556771 1218 9.5518e-07 0.0 0.0
42 | 98 -3691251994571895144 448 9.5518e-07 0.0 0.0
43 | 99 -3689374433140347909 688 9.5518e-07 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_on-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0075
4 | 1 -9009602369958523731 0.0031 0.0630
5 | 2 -8990894093332793487 0.0031 0.0075
6 | 3 -8915955323477460297 0.0031 0.0121
7 | 4 -8858715981476206597 0.0031 0.0007
8 | .. ... ... ... ...
9 | 95 -3220457216356394124 0.0031 0.0007
10 | 96 -3212703409469281429 0.0031 0.0017
11 | 97 -3196707605593292319 0.0031 0.0063
12 | 98 -3129995828656718688 0.0031 0.0048
13 | 99 -3096050638984928024 0.0031 0.0017
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 2.3908e-05 0.0 0.0
34 | 1 -9009602369958523731 309 2.1186e-04 0.0 0.0
35 | 2 -8990894093332793487 1169 2.3908e-05 0.0 0.0
36 | 3 -8915955323477460297 1214 3.8501e-05 0.0 0.0
37 | 4 -8858715981476206597 862 2.3372e-06 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -3196707605593292319 1355 1.9943e-05 0.0 0.0
40 | 96 -3129995828656718688 590 1.5294e-05 0.0 0.0
41 | 97 -3096050638984928024 1365 5.2745e-06 0.0 0.0
42 | 98 -2959420398616195477 1254 2.7507e-05 0.0 0.0
43 | 99 -2912234918591861719 1029 2.3372e-06 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[osw-h0_on-ms2_on-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003 0.0075
4 | 1 -9009602369958523731 0.0031 0.0003 0.0630
5 | 2 -8990894093332793487 0.0031 0.0003 0.0075
6 | 3 -8915955323477460297 0.0031 0.0003 0.0121
7 | 4 -8858715981476206597 0.0031 0.0003 0.0007
8 | .. ... ... ... ...
9 | 95 -3220457216356394124 0.0031 0.0003 0.0007
10 | 96 -3212703409469281429 0.0031 0.0003 0.0017
11 | 97 -3196707605593292319 0.0031 0.0003 0.0063
12 | 98 -3129995828656718688 0.0031 0.0003 0.0048
13 | 99 -3096050638984928024 0.0031 0.0003 0.0017
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9078977811506172301 305 7.2449e-09 0.0 0.0
34 | 1 -9009602369958523731 309 6.4212e-08 0.0 0.0
35 | 2 -8990894093332793487 1169 7.2449e-09 0.0 0.0
36 | 3 -8915955323477460297 1214 1.1667e-08 0.0 0.0
37 | 4 -8858715981476206597 862 7.0822e-10 0.0 0.0
38 | .. ... ... ... ... ...
39 | 95 -3196707605593292319 1355 6.0432e-09 0.0 0.0
40 | 96 -3129995828656718688 590 4.6346e-09 0.0 0.0
41 | 97 -3096050638984928024 1365 1.5983e-09 0.0 0.0
42 | 98 -2959420398616195477 1254 8.3354e-09 0.0 0.0
43 | 99 -2912234918591861719 1029 7.0822e-10 0.0 0.0
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[parquet-h0_off-ms2_off-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031
4 | 1 -9059007664292712863 0.3615
5 | 2 -9009602369958523731 0.0031
6 | 3 -8990894093332793487 0.0031
7 | 4 -8915955323477460297 0.0031
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031
10 | 96 -4495976808403190115 0.0031
11 | 97 -4474179539802460946 0.0031
12 | 98 -4409520928686189639 0.0031
13 | 99 -4399716566495748799 0.0031
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | run_id feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -8670811102654833664 -9211032279639747584 976 NaN NaN NaN
34 | 1 -8670811102654833664 -9209834744278113280 1157 NaN NaN NaN
35 | 2 -8670811102654833664 -9204568338203973632 76 NaN NaN NaN
36 | 3 -8670811102654833664 -9202066408251325440 547 NaN NaN NaN
37 | 4 -8670811102654833664 -9194114845888269312 562 NaN NaN NaN
38 | .. ... ... ... ... ... ...
39 | 95 -8670811102654833664 -8647629181891982336 661 NaN NaN NaN
40 | 96 -8670811102654833664 -8646966398648626176 529 NaN NaN NaN
41 | 97 -8670811102654833664 -8646066421910515712 431 0.0031 0.0 0.0
42 | 98 -8670811102654833664 -8638785506020690944 409 NaN NaN NaN
43 | 99 -8670811102654833664 -8630914225771745280 578 NaN NaN NaN
44 |
45 | [100 rows x 6 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[parquet-h0_off-ms2_on-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | Empty DataFrame
3 | Columns: [feature_id, ms2_peakgroup_pep, ms1_precursor_pep, ms2_precursor_pep]
4 | Index: []
5 | Transition Data:
6 | feature_id transition_id pep peptide_id bmask num_peptidoforms
7 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
8 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
9 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
10 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
11 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
12 | .. ... ... ... ... ... ...
13 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
14 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
15 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
16 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
17 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
18 |
19 | [100 rows x 6 columns]
20 | IPF Data:
21 | run_id feature_id peptide_id precursor_peakgroup_pep qvalue pep
22 | 0 -8670811102654833664 -9211032279639747584 976 NaN NaN NaN
23 | 1 -8670811102654833664 -9209834744278113280 1157 NaN NaN NaN
24 | 2 -8670811102654833664 -9204568338203973632 76 NaN NaN NaN
25 | 3 -8670811102654833664 -9202066408251325440 547 NaN NaN NaN
26 | 4 -8670811102654833664 -9194114845888269312 562 NaN NaN NaN
27 | .. ... ... ... ... ... ...
28 | 95 -8670811102654833664 -8647629181891982336 661 NaN NaN NaN
29 | 96 -8670811102654833664 -8646966398648626176 529 NaN NaN NaN
30 | 97 -8670811102654833664 -8646066421910515712 431 NaN NaN NaN
31 | 98 -8670811102654833664 -8638785506020690944 409 NaN NaN NaN
32 | 99 -8670811102654833664 -8630914225771745280 578 NaN NaN NaN
33 |
34 | [100 rows x 6 columns]
35 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[parquet-h0_off-ms2_on-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | Empty DataFrame
3 | Columns: [feature_id, ms2_peakgroup_pep, ms1_precursor_pep, ms2_precursor_pep]
4 | Index: []
5 | Transition Data:
6 | feature_id transition_id pep peptide_id bmask num_peptidoforms
7 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
8 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
9 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
10 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
11 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
12 | .. ... ... ... ... ... ...
13 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
14 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
15 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
16 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
17 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
18 |
19 | [100 rows x 6 columns]
20 | IPF Data:
21 | run_id feature_id peptide_id precursor_peakgroup_pep qvalue pep
22 | 0 -8670811102654833664 -9211032279639747584 976 NaN NaN NaN
23 | 1 -8670811102654833664 -9209834744278113280 1157 NaN NaN NaN
24 | 2 -8670811102654833664 -9204568338203973632 76 NaN NaN NaN
25 | 3 -8670811102654833664 -9202066408251325440 547 NaN NaN NaN
26 | 4 -8670811102654833664 -9194114845888269312 562 NaN NaN NaN
27 | .. ... ... ... ... ... ...
28 | 95 -8670811102654833664 -8647629181891982336 661 NaN NaN NaN
29 | 96 -8670811102654833664 -8646966398648626176 529 NaN NaN NaN
30 | 97 -8670811102654833664 -8646066421910515712 431 NaN NaN NaN
31 | 98 -8670811102654833664 -8638785506020690944 409 NaN NaN NaN
32 | 99 -8670811102654833664 -8630914225771745280 578 NaN NaN NaN
33 |
34 | [100 rows x 6 columns]
35 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[parquet-h0_on-ms2_on-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | Empty DataFrame
3 | Columns: [feature_id, ms2_peakgroup_pep, ms1_precursor_pep, ms2_precursor_pep]
4 | Index: []
5 | Transition Data:
6 | feature_id transition_id pep peptide_id bmask num_peptidoforms
7 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
8 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
9 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
10 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
11 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
12 | .. ... ... ... ... ... ...
13 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
14 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
15 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
16 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
17 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
18 |
19 | [100 rows x 6 columns]
20 | IPF Data:
21 | run_id feature_id peptide_id precursor_peakgroup_pep qvalue pep
22 | 0 -8670811102654833664 -9211032279639747584 976 NaN NaN NaN
23 | 1 -8670811102654833664 -9209834744278113280 1157 NaN NaN NaN
24 | 2 -8670811102654833664 -9204568338203973632 76 NaN NaN NaN
25 | 3 -8670811102654833664 -9202066408251325440 547 NaN NaN NaN
26 | 4 -8670811102654833664 -9194114845888269312 562 NaN NaN NaN
27 | .. ... ... ... ... ... ...
28 | 95 -8670811102654833664 -8647629181891982336 661 NaN NaN NaN
29 | 96 -8670811102654833664 -8646966398648626176 529 NaN NaN NaN
30 | 97 -8670811102654833664 -8646066421910515712 431 NaN NaN NaN
31 | 98 -8670811102654833664 -8638785506020690944 409 NaN NaN NaN
32 | 99 -8670811102654833664 -8630914225771745280 578 NaN NaN NaN
33 |
34 | [100 rows x 6 columns]
35 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[parquet-h0_on-ms2_on-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | Empty DataFrame
3 | Columns: [feature_id, ms2_peakgroup_pep, ms1_precursor_pep, ms2_precursor_pep]
4 | Index: []
5 | Transition Data:
6 | feature_id transition_id pep peptide_id bmask num_peptidoforms
7 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
8 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
9 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
10 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
11 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
12 | .. ... ... ... ... ... ...
13 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
14 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
15 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
16 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
17 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
18 |
19 | [100 rows x 6 columns]
20 | IPF Data:
21 | run_id feature_id peptide_id precursor_peakgroup_pep qvalue pep
22 | 0 -8670811102654833664 -9211032279639747584 976 NaN NaN NaN
23 | 1 -8670811102654833664 -9209834744278113280 1157 NaN NaN NaN
24 | 2 -8670811102654833664 -9204568338203973632 76 NaN NaN NaN
25 | 3 -8670811102654833664 -9202066408251325440 547 NaN NaN NaN
26 | 4 -8670811102654833664 -9194114845888269312 562 NaN NaN NaN
27 | .. ... ... ... ... ... ...
28 | 95 -8670811102654833664 -8647629181891982336 661 NaN NaN NaN
29 | 96 -8670811102654833664 -8646966398648626176 529 NaN NaN NaN
30 | 97 -8670811102654833664 -8646066421910515712 431 NaN NaN NaN
31 | 98 -8670811102654833664 -8638785506020690944 409 NaN NaN NaN
32 | 99 -8670811102654833664 -8630914225771745280 578 NaN NaN NaN
33 |
34 | [100 rows x 6 columns]
35 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_off-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031
4 | 1 -9059007664292712863 0.3615
5 | 2 -9009602369958523731 0.0031
6 | 3 -8990894093332793487 0.0031
7 | 4 -8915955323477460297 0.0031
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031
10 | 96 -4495976808403190115 0.0031
11 | 97 -4474179539802460946 0.0031
12 | 98 -4409520928686189639 0.0031
13 | 99 -4399716566495748799 0.0031
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 0.0031 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_off-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003
4 | 1 -9059007664292712863 0.3615 0.2419
5 | 2 -9009602369958523731 0.0031 0.0003
6 | 3 -8990894093332793487 0.0031 0.0003
7 | 4 -8915955323477460297 0.0031 0.0003
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0003
10 | 96 -4495976808403190115 0.0031 0.0003
11 | 97 -4474179539802460946 0.0031 0.0003
12 | 98 -4409520928686189639 0.0031 0.0003
13 | 99 -4399716566495748799 0.0031 0.0003
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 9.5518e-07 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_on-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0075
4 | 1 -9059007664292712863 0.3615 NaN
5 | 2 -9009602369958523731 0.0031 0.0630
6 | 3 -8990894093332793487 0.0031 0.0075
7 | 4 -8915955323477460297 0.0031 0.0121
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0121
10 | 96 -4495976808403190115 0.0031 0.0007
11 | 97 -4474179539802460946 0.0031 0.0048
12 | 98 -4409520928686189639 0.0031 0.0063
13 | 99 -4399716566495748799 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 1.5294e-05 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_off-ms2_on-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003 0.0075
4 | 1 -9059007664292712863 0.3615 0.2419 NaN
5 | 2 -9009602369958523731 0.0031 0.0003 0.0630
6 | 3 -8990894093332793487 0.0031 0.0003 0.0075
7 | 4 -8915955323477460297 0.0031 0.0003 0.0121
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0003 0.0121
10 | 96 -4495976808403190115 0.0031 0.0003 0.0007
11 | 97 -4474179539802460946 0.0031 0.0003 0.0048
12 | 98 -4409520928686189639 0.0031 0.0003 0.0063
13 | 99 -4399716566495748799 0.0031 0.0003 NaN
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 4.6346e-09 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_off-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031
4 | 1 -9059007664292712863 0.3615
5 | 2 -9009602369958523731 0.0031
6 | 3 -8990894093332793487 0.0031
7 | 4 -8915955323477460297 0.0031
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031
10 | 96 -4495976808403190115 0.0031
11 | 97 -4474179539802460946 0.0031
12 | 98 -4409520928686189639 0.0031
13 | 99 -4399716566495748799 0.0031
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 0.0031 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_off-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003
4 | 1 -9059007664292712863 0.3615 0.2419
5 | 2 -9009602369958523731 0.0031 0.0003
6 | 3 -8990894093332793487 0.0031 0.0003
7 | 4 -8915955323477460297 0.0031 0.0003
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0003
10 | 96 -4495976808403190115 0.0031 0.0003
11 | 97 -4474179539802460946 0.0031 0.0003
12 | 98 -4409520928686189639 0.0031 0.0003
13 | 99 -4399716566495748799 0.0031 0.0003
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 9.5518e-07 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_on-ms1_off].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0075
4 | 1 -9059007664292712863 0.3615 NaN
5 | 2 -9009602369958523731 0.0031 0.0630
6 | 3 -8990894093332793487 0.0031 0.0075
7 | 4 -8915955323477460297 0.0031 0.0121
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0121
10 | 96 -4495976808403190115 0.0031 0.0007
11 | 97 -4474179539802460946 0.0031 0.0048
12 | 98 -4409520928686189639 0.0031 0.0063
13 | 99 -4399716566495748799 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 1.5294e-05 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_ipf.test_ipf_scoring[split_parquet-h0_on-ms2_on-ms1_on].out:
--------------------------------------------------------------------------------
1 | Precursor Data:
2 | feature_id ms2_peakgroup_pep ms1_precursor_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0031 0.0003 0.0075
4 | 1 -9059007664292712863 0.3615 0.2419 NaN
5 | 2 -9009602369958523731 0.0031 0.0003 0.0630
6 | 3 -8990894093332793487 0.0031 0.0003 0.0075
7 | 4 -8915955323477460297 0.0031 0.0003 0.0121
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0031 0.0003 0.0121
10 | 96 -4495976808403190115 0.0031 0.0003 0.0007
11 | 97 -4474179539802460946 0.0031 0.0003 0.0048
12 | 98 -4409520928686189639 0.0031 0.0003 0.0063
13 | 99 -4399716566495748799 0.0031 0.0003 NaN
14 |
15 | [100 rows x 4 columns]
16 | Transition Data:
17 | feature_id transition_id pep peptide_id bmask num_peptidoforms
18 | 0 -9078977811506172301 3275 0.0075 -1 0.0 1
19 | 1 -9078977811506172301 3275 0.0075 305 1.0 1
20 | 2 -9078977811506172301 3276 0.0133 -1 0.0 1
21 | 3 -9078977811506172301 3276 0.0133 305 1.0 1
22 | 4 -9078977811506172301 3277 0.0048 -1 0.0 1
23 | .. ... ... ... ... ... ...
24 | 95 -8858715981476206597 7986 0.0017 862 1.0 1
25 | 96 -8858715981476206597 7990 0.0017 -1 0.0 1
26 | 97 -8858715981476206597 7990 0.0017 862 1.0 1
27 | 98 -8858715981476206597 7991 0.0007 -1 0.0 1
28 | 99 -8858715981476206597 7991 0.0007 862 1.0 1
29 |
30 | [100 rows x 6 columns]
31 | IPF Data:
32 | feature_id peptide_id precursor_peakgroup_pep qvalue pep
33 | 0 -9211032279639747263 976 NaN NaN NaN
34 | 1 -9209834744278112856 1157 NaN NaN NaN
35 | 2 -9204568338203974043 76 NaN NaN NaN
36 | 3 -9202066408251325127 547 NaN NaN NaN
37 | 4 -9194114845888269381 562 NaN NaN NaN
38 | .. ... ... ... ... ...
39 | 95 -8647629181891982027 661 NaN NaN NaN
40 | 96 -8646966398648626586 529 NaN NaN NaN
41 | 97 -8646066421910515352 431 4.6346e-09 0.0 0.0
42 | 98 -8638785506020691374 409 NaN NaN NaN
43 | 99 -8630914225771744781 578 NaN NaN NaN
44 |
45 | [100 rows x 5 columns]
46 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_ipf_1.out:
--------------------------------------------------------------------------------
1 | context pep protein_id pvalue qvalue run_id score
2 | 0 run-specific 0.3674 9 0.0625 0.0625 -8.6708e+18 6.0052
3 | 1 run-specific 0.3674 8 0.0625 0.0625 -8.6708e+18 5.9861
4 | 2 run-specific 0.3674 1 0.0625 0.0625 -8.6708e+18 5.9765
5 | 3 run-specific 0.3674 13 0.0625 0.0625 -8.6708e+18 5.9682
6 | 4 run-specific 0.3674 12 0.0625 0.0625 -8.6708e+18 5.9529
7 | .. ... ... ... ... ... ... ...
8 | 91 global 0.3674 25 0.0625 0.0625 NaN 1.3888
9 | 92 global 0.3674 20 0.0625 0.0625 NaN 1.3329
10 | 93 global 0.3674 16 0.0625 0.0625 NaN 0.9266
11 | 94 global 0.3674 22 0.0625 0.0625 NaN 0.7471
12 | 95 global 0.3674 23 0.0625 0.0625 NaN 0.7306
13 |
14 | [96 rows x 7 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_levels_contexts_0.out:
--------------------------------------------------------------------------------
1 | context pep peptide_id pvalue qvalue run_id score
2 | 0 run-specific 0.0031 1116 0.0029 0.0033 -8670811102654834151 6.0052
3 | 1 run-specific 0.0031 485 0.0029 0.0033 -8670811102654834151 5.9964
4 | 2 run-specific 0.0031 504 0.0029 0.0033 -8670811102654834151 5.9861
5 | 3 run-specific 0.0031 831 0.0029 0.0033 -8670811102654834151 5.9765
6 | 4 run-specific 0.0031 1239 0.0029 0.0033 -8670811102654834151 5.9719
7 | .. ... ... ... ... ... ... ...
8 | 95 run-specific 0.0031 13 0.0029 0.0033 -8670811102654834151 5.6965
9 | 96 run-specific 0.0031 431 0.0029 0.0033 -8670811102654834151 5.6964
10 | 97 run-specific 0.0031 1255 0.0029 0.0033 -8670811102654834151 5.6963
11 | 98 run-specific 0.0031 1360 0.0029 0.0033 -8670811102654834151 5.6930
12 | 99 run-specific 0.0031 882 0.0029 0.0033 -8670811102654834151 5.6918
13 |
14 | [100 rows x 7 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[osw-experiment-wide].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | context run_id peptide_id score pvalue qvalue pep
3 | 0 experiment-wide -8670811102654834151 2 5.5390 0.0029 0.0033 0.0031
4 | 1 experiment-wide -8670811102654834151 3 0.1314 0.3988 0.4000 1.0000
5 | 2 experiment-wide -8670811102654834151 5 5.8582 0.0029 0.0033 0.0031
6 | 3 experiment-wide -8670811102654834151 7 0.3975 0.2493 0.2507 1.0000
7 | 4 experiment-wide -8670811102654834151 8 -0.4131 0.4692 0.4692 1.0000
8 | .. ... ... ... ... ... ... ...
9 | 95 experiment-wide -8670811102654834151 243 0.7509 0.1994 0.2018 1.0000
10 | 96 experiment-wide -8670811102654834151 244 0.9504 0.1994 0.2018 1.0000
11 | 97 experiment-wide -8670811102654834151 248 5.5804 0.0029 0.0033 0.0031
12 | 98 experiment-wide -8670811102654834151 250 5.5397 0.0029 0.0033 0.0031
13 | 99 experiment-wide -8670811102654834151 251 0.1822 0.3988 0.4000 1.0000
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[osw-global].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | context run_id peptide_id score pvalue qvalue pep
3 | 0 global None 2 5.5390 0.0029 0.0033 0.0031
4 | 1 global None 3 0.1314 0.3988 0.4000 1.0000
5 | 2 global None 5 5.8582 0.0029 0.0033 0.0031
6 | 3 global None 7 0.3975 0.2493 0.2507 1.0000
7 | 4 global None 8 -0.4131 0.4692 0.4692 1.0000
8 | .. ... ... ... ... ... ... ...
9 | 95 global None 243 0.7509 0.1994 0.2018 1.0000
10 | 96 global None 244 0.9504 0.1994 0.2018 1.0000
11 | 97 global None 248 5.5804 0.0029 0.0033 0.0031
12 | 98 global None 250 5.5397 0.0029 0.0033 0.0031
13 | 99 global None 251 0.1822 0.3988 0.4000 1.0000
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[osw-run-specific].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | context run_id peptide_id score pvalue qvalue pep
3 | 0 run-specific -8670811102654834151 2 5.5390 0.0029 0.0033 0.0031
4 | 1 run-specific -8670811102654834151 3 0.1314 0.3988 0.4000 1.0000
5 | 2 run-specific -8670811102654834151 5 5.8582 0.0029 0.0033 0.0031
6 | 3 run-specific -8670811102654834151 7 0.3975 0.2493 0.2507 1.0000
7 | 4 run-specific -8670811102654834151 8 -0.4131 0.4692 0.4692 1.0000
8 | .. ... ... ... ... ... ... ...
9 | 95 run-specific -8670811102654834151 243 0.7509 0.1994 0.2018 1.0000
10 | 96 run-specific -8670811102654834151 244 0.9504 0.1994 0.2018 1.0000
11 | 97 run-specific -8670811102654834151 248 5.5804 0.0029 0.0033 0.0031
12 | 98 run-specific -8670811102654834151 250 5.5397 0.0029 0.0033 0.0031
13 | 99 run-specific -8670811102654834151 251 0.1822 0.3988 0.4000 1.0000
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[parquet-experiment-wide].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | RUN_ID FEATURE_ID PEPTIDE_ID SCORE_PEPTIDE_EXPERIMENT_WIDE_SCORE SCORE_PEPTIDE_EXPERIMENT_WIDE_P_VALUE SCORE_PEPTIDE_EXPERIMENT_WIDE_Q_VALUE SCORE_PEPTIDE_EXPERIMENT_WIDE_PEP
3 | 0 -8670811102654833664 -9211032279639747584 976.0 5.0806 0.0029 0.0033 0.0031
4 | 1 -8670811102654833664 -9209834744278113280 1157.0 -0.2284 0.4692 0.4692 1.0000
5 | 2 -8670811102654833664 -9204568338203973632 76.0 0.1455 0.3988 0.4000 1.0000
6 | 3 -8670811102654833664 -9202066408251325440 547.0 5.8667 0.0029 0.0033 0.0031
7 | 4 -8670811102654833664 -9194114845888269312 562.0 5.2743 0.0029 0.0033 0.0031
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -8647629181891982336 661.0 0.0611 0.4692 0.4692 1.0000
10 | 96 -8670811102654833664 -8646966398648626176 529.0 5.8459 0.0029 0.0033 0.0031
11 | 97 -8670811102654833664 -8646066421910515712 431.0 5.6964 0.0029 0.0033 0.0031
12 | 98 -8670811102654833664 -8638785506020690944 409.0 0.9357 0.1994 0.2018 1.0000
13 | 99 -8670811102654833664 -8630914225771745280 578.0 -0.5617 0.4692 0.4692 1.0000
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[parquet-global].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | RUN_ID FEATURE_ID PEPTIDE_ID SCORE_PEPTIDE_GLOBAL_SCORE SCORE_PEPTIDE_GLOBAL_P_VALUE SCORE_PEPTIDE_GLOBAL_Q_VALUE SCORE_PEPTIDE_GLOBAL_PEP
3 | 0 -8670811102654833664 -9211032279639747584 976.0 5.0806 0.0029 0.0033 0.0031
4 | 1 -8670811102654833664 -9209834744278113280 1157.0 -0.2284 0.4692 0.4692 1.0000
5 | 2 -8670811102654833664 -9204568338203973632 76.0 0.1455 0.3988 0.4000 1.0000
6 | 3 -8670811102654833664 -9202066408251325440 547.0 5.8667 0.0029 0.0033 0.0031
7 | 4 -8670811102654833664 -9194114845888269312 562.0 5.2743 0.0029 0.0033 0.0031
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -8647629181891982336 661.0 0.0611 0.4692 0.4692 1.0000
10 | 96 -8670811102654833664 -8646966398648626176 529.0 5.8459 0.0029 0.0033 0.0031
11 | 97 -8670811102654833664 -8646066421910515712 431.0 5.6964 0.0029 0.0033 0.0031
12 | 98 -8670811102654833664 -8638785506020690944 409.0 0.9357 0.1994 0.2018 1.0000
13 | 99 -8670811102654833664 -8630914225771745280 578.0 -0.5617 0.4692 0.4692 1.0000
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[parquet-run-specific].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | RUN_ID FEATURE_ID PEPTIDE_ID SCORE_PEPTIDE_RUN_SPECIFIC_SCORE SCORE_PEPTIDE_RUN_SPECIFIC_P_VALUE SCORE_PEPTIDE_RUN_SPECIFIC_Q_VALUE SCORE_PEPTIDE_RUN_SPECIFIC_PEP
3 | 0 -8670811102654833664 -9211032279639747584 976.0 5.0806 0.0029 0.0033 0.0031
4 | 1 -8670811102654833664 -9209834744278113280 1157.0 -0.2284 0.4692 0.4692 1.0000
5 | 2 -8670811102654833664 -9204568338203973632 76.0 0.1455 0.3988 0.4000 1.0000
6 | 3 -8670811102654833664 -9202066408251325440 547.0 5.8667 0.0029 0.0033 0.0031
7 | 4 -8670811102654833664 -9194114845888269312 562.0 5.2743 0.0029 0.0033 0.0031
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -8647629181891982336 661.0 0.0611 0.4692 0.4692 1.0000
10 | 96 -8670811102654833664 -8646966398648626176 529.0 5.8459 0.0029 0.0033 0.0031
11 | 97 -8670811102654833664 -8646066421910515712 431.0 5.6964 0.0029 0.0033 0.0031
12 | 98 -8670811102654833664 -8638785506020690944 409.0 0.9357 0.1994 0.2018 1.0000
13 | 99 -8670811102654833664 -8630914225771745280 578.0 -0.5617 0.4692 0.4692 1.0000
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[split_parquet-experiment-wide].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | RUN_ID FEATURE_ID PEPTIDE_ID SCORE_PEPTIDE_EXPERIMENT_WIDE_SCORE SCORE_PEPTIDE_EXPERIMENT_WIDE_P_VALUE SCORE_PEPTIDE_EXPERIMENT_WIDE_Q_VALUE SCORE_PEPTIDE_EXPERIMENT_WIDE_PEP
3 | 0 -8670811102654833664 -9211032279639747584 976.0 5.0806 0.0029 0.0033 0.0031
4 | 1 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
5 | 2 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
6 | 3 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
7 | 4 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
10 | 96 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
11 | 97 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
12 | 98 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
13 | 99 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[split_parquet-global].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | RUN_ID FEATURE_ID PEPTIDE_ID SCORE_PEPTIDE_GLOBAL_SCORE SCORE_PEPTIDE_GLOBAL_P_VALUE SCORE_PEPTIDE_GLOBAL_Q_VALUE SCORE_PEPTIDE_GLOBAL_PEP
3 | 0 -8670811102654833664 -9211032279639747584 976.0 5.0806 0.0029 0.0033 0.0031
4 | 1 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
5 | 2 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
6 | 3 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
7 | 4 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
10 | 96 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
11 | 97 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
12 | 98 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
13 | 99 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_peptide_levels[split_parquet-run-specific].out:
--------------------------------------------------------------------------------
1 | Peptide Data:
2 | RUN_ID FEATURE_ID PEPTIDE_ID SCORE_PEPTIDE_RUN_SPECIFIC_SCORE SCORE_PEPTIDE_RUN_SPECIFIC_P_VALUE SCORE_PEPTIDE_RUN_SPECIFIC_Q_VALUE SCORE_PEPTIDE_RUN_SPECIFIC_PEP
3 | 0 -8670811102654833664 -9211032279639747584 976.0 5.0806 0.0029 0.0033 0.0031
4 | 1 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
5 | 2 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
6 | 3 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
7 | 4 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
10 | 96 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
11 | 97 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
12 | 98 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
13 | 99 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[osw-experiment-wide].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | context run_id protein_id score pvalue qvalue pep
3 | 0 experiment-wide -8670811102654834151 0 5.8401 0.0625 0.0625 0.3674
4 | 1 experiment-wide -8670811102654834151 1 5.9765 0.0625 0.0625 0.3674
5 | 2 experiment-wide -8670811102654834151 2 5.8995 0.0625 0.0625 0.3674
6 | 3 experiment-wide -8670811102654834151 3 5.8824 0.0625 0.0625 0.3674
7 | 4 experiment-wide -8670811102654834151 4 5.8600 0.0625 0.0625 0.3674
8 | 5 experiment-wide -8670811102654834151 5 5.8587 0.0625 0.0625 0.3674
9 | 6 experiment-wide -8670811102654834151 6 5.7515 0.0625 0.0625 0.3674
10 | 7 experiment-wide -8670811102654834151 7 5.8338 0.0625 0.0625 0.3674
11 | 8 experiment-wide -8670811102654834151 8 5.9861 0.0625 0.0625 0.3674
12 | 9 experiment-wide -8670811102654834151 9 6.0052 0.0625 0.0625 0.3674
13 | 10 experiment-wide -8670811102654834151 10 5.8290 0.0625 0.0625 0.3674
14 | 11 experiment-wide -8670811102654834151 11 5.8485 0.0625 0.0625 0.3674
15 | 12 experiment-wide -8670811102654834151 12 5.9529 0.0625 0.0625 0.3674
16 | 13 experiment-wide -8670811102654834151 13 5.9682 0.0625 0.0625 0.3674
17 | 14 experiment-wide -8670811102654834151 14 5.6069 0.0625 0.0625 0.3674
18 | 15 experiment-wide -8670811102654834151 15 5.9295 0.0625 0.0625 0.3674
19 | 16 experiment-wide -8670811102654834151 16 0.9266 0.0625 0.0625 0.3674
20 | 17 experiment-wide -8670811102654834151 17 2.3906 0.0625 0.0625 0.3674
21 | 18 experiment-wide -8670811102654834151 18 1.6554 0.0625 0.0625 0.3674
22 | 19 experiment-wide -8670811102654834151 19 2.0251 0.0625 0.0625 0.3674
23 | 20 experiment-wide -8670811102654834151 20 1.3329 0.0625 0.0625 0.3674
24 | 21 experiment-wide -8670811102654834151 21 1.5227 0.0625 0.0625 0.3674
25 | 22 experiment-wide -8670811102654834151 22 0.7471 0.0625 0.0625 0.3674
26 | 23 experiment-wide -8670811102654834151 23 0.7306 0.0625 0.0625 0.3674
27 | 24 experiment-wide -8670811102654834151 24 2.0202 0.0625 0.0625 0.3674
28 | 25 experiment-wide -8670811102654834151 25 1.3888 0.0625 0.0625 0.3674
29 | 26 experiment-wide -8670811102654834151 26 4.5483 0.0625 0.0625 0.3674
30 | 27 experiment-wide -8670811102654834151 27 2.3784 0.0625 0.0625 0.3674
31 | 28 experiment-wide -8670811102654834151 28 4.4832 0.0625 0.0625 0.3674
32 | 29 experiment-wide -8670811102654834151 29 1.6475 0.0625 0.0625 0.3674
33 | 30 experiment-wide -8670811102654834151 30 2.8909 0.0625 0.0625 0.3674
34 | 31 experiment-wide -8670811102654834151 31 1.9599 0.0625 0.0625 0.3674
35 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[osw-global].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | context run_id protein_id score pvalue qvalue pep
3 | 0 global None 0 5.8401 0.0625 0.0625 0.3674
4 | 1 global None 1 5.9765 0.0625 0.0625 0.3674
5 | 2 global None 2 5.8995 0.0625 0.0625 0.3674
6 | 3 global None 3 5.8824 0.0625 0.0625 0.3674
7 | 4 global None 4 5.8600 0.0625 0.0625 0.3674
8 | 5 global None 5 5.8587 0.0625 0.0625 0.3674
9 | 6 global None 6 5.7515 0.0625 0.0625 0.3674
10 | 7 global None 7 5.8338 0.0625 0.0625 0.3674
11 | 8 global None 8 5.9861 0.0625 0.0625 0.3674
12 | 9 global None 9 6.0052 0.0625 0.0625 0.3674
13 | 10 global None 10 5.8290 0.0625 0.0625 0.3674
14 | 11 global None 11 5.8485 0.0625 0.0625 0.3674
15 | 12 global None 12 5.9529 0.0625 0.0625 0.3674
16 | 13 global None 13 5.9682 0.0625 0.0625 0.3674
17 | 14 global None 14 5.6069 0.0625 0.0625 0.3674
18 | 15 global None 15 5.9295 0.0625 0.0625 0.3674
19 | 16 global None 16 0.9266 0.0625 0.0625 0.3674
20 | 17 global None 17 2.3906 0.0625 0.0625 0.3674
21 | 18 global None 18 1.6554 0.0625 0.0625 0.3674
22 | 19 global None 19 2.0251 0.0625 0.0625 0.3674
23 | 20 global None 20 1.3329 0.0625 0.0625 0.3674
24 | 21 global None 21 1.5227 0.0625 0.0625 0.3674
25 | 22 global None 22 0.7471 0.0625 0.0625 0.3674
26 | 23 global None 23 0.7306 0.0625 0.0625 0.3674
27 | 24 global None 24 2.0202 0.0625 0.0625 0.3674
28 | 25 global None 25 1.3888 0.0625 0.0625 0.3674
29 | 26 global None 26 4.5483 0.0625 0.0625 0.3674
30 | 27 global None 27 2.3784 0.0625 0.0625 0.3674
31 | 28 global None 28 4.4832 0.0625 0.0625 0.3674
32 | 29 global None 29 1.6475 0.0625 0.0625 0.3674
33 | 30 global None 30 2.8909 0.0625 0.0625 0.3674
34 | 31 global None 31 1.9599 0.0625 0.0625 0.3674
35 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[osw-run-specific].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | context run_id protein_id score pvalue qvalue pep
3 | 0 run-specific -8670811102654834151 0 5.8401 0.0625 0.0625 0.3674
4 | 1 run-specific -8670811102654834151 1 5.9765 0.0625 0.0625 0.3674
5 | 2 run-specific -8670811102654834151 2 5.8995 0.0625 0.0625 0.3674
6 | 3 run-specific -8670811102654834151 3 5.8824 0.0625 0.0625 0.3674
7 | 4 run-specific -8670811102654834151 4 5.8600 0.0625 0.0625 0.3674
8 | 5 run-specific -8670811102654834151 5 5.8587 0.0625 0.0625 0.3674
9 | 6 run-specific -8670811102654834151 6 5.7515 0.0625 0.0625 0.3674
10 | 7 run-specific -8670811102654834151 7 5.8338 0.0625 0.0625 0.3674
11 | 8 run-specific -8670811102654834151 8 5.9861 0.0625 0.0625 0.3674
12 | 9 run-specific -8670811102654834151 9 6.0052 0.0625 0.0625 0.3674
13 | 10 run-specific -8670811102654834151 10 5.8290 0.0625 0.0625 0.3674
14 | 11 run-specific -8670811102654834151 11 5.8485 0.0625 0.0625 0.3674
15 | 12 run-specific -8670811102654834151 12 5.9529 0.0625 0.0625 0.3674
16 | 13 run-specific -8670811102654834151 13 5.9682 0.0625 0.0625 0.3674
17 | 14 run-specific -8670811102654834151 14 5.6069 0.0625 0.0625 0.3674
18 | 15 run-specific -8670811102654834151 15 5.9295 0.0625 0.0625 0.3674
19 | 16 run-specific -8670811102654834151 16 0.9266 0.0625 0.0625 0.3674
20 | 17 run-specific -8670811102654834151 17 2.3906 0.0625 0.0625 0.3674
21 | 18 run-specific -8670811102654834151 18 1.6554 0.0625 0.0625 0.3674
22 | 19 run-specific -8670811102654834151 19 2.0251 0.0625 0.0625 0.3674
23 | 20 run-specific -8670811102654834151 20 1.3329 0.0625 0.0625 0.3674
24 | 21 run-specific -8670811102654834151 21 1.5227 0.0625 0.0625 0.3674
25 | 22 run-specific -8670811102654834151 22 0.7471 0.0625 0.0625 0.3674
26 | 23 run-specific -8670811102654834151 23 0.7306 0.0625 0.0625 0.3674
27 | 24 run-specific -8670811102654834151 24 2.0202 0.0625 0.0625 0.3674
28 | 25 run-specific -8670811102654834151 25 1.3888 0.0625 0.0625 0.3674
29 | 26 run-specific -8670811102654834151 26 4.5483 0.0625 0.0625 0.3674
30 | 27 run-specific -8670811102654834151 27 2.3784 0.0625 0.0625 0.3674
31 | 28 run-specific -8670811102654834151 28 4.4832 0.0625 0.0625 0.3674
32 | 29 run-specific -8670811102654834151 29 1.6475 0.0625 0.0625 0.3674
33 | 30 run-specific -8670811102654834151 30 2.8909 0.0625 0.0625 0.3674
34 | 31 run-specific -8670811102654834151 31 1.9599 0.0625 0.0625 0.3674
35 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[parquet-experiment-wide].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | RUN_ID FEATURE_ID PROTEIN_ID SCORE_PROTEIN_EXPERIMENT_WIDE_SCORE SCORE_PROTEIN_EXPERIMENT_WIDE_P_VALUE SCORE_PROTEIN_EXPERIMENT_WIDE_Q_VALUE SCORE_PROTEIN_EXPERIMENT_WIDE_PEP
3 | 0 -8670811102654833664 -9211032279639747584 2.0 5.8995 0.0625 0.0625 0.3674
4 | 1 -8670811102654833664 -9209834744278113280 21.0 1.5227 0.0625 0.0625 0.3674
5 | 2 -8670811102654833664 -9204568338203973632 31.0 1.9599 0.0625 0.0625 0.3674
6 | 3 -8670811102654833664 -9202066408251325440 12.0 5.9529 0.0625 0.0625 0.3674
7 | 4 -8670811102654833664 -9194114845888269312 10.0 5.8290 0.0625 0.0625 0.3674
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -8647629181891982336 31.0 1.9599 0.0625 0.0625 0.3674
10 | 96 -8670811102654833664 -8646966398648626176 15.0 5.9295 0.0625 0.0625 0.3674
11 | 97 -8670811102654833664 -8646066421910515712 4.0 5.8600 0.0625 0.0625 0.3674
12 | 98 -8670811102654833664 -8638785506020690944 27.0 2.3784 0.0625 0.0625 0.3674
13 | 99 -8670811102654833664 -8630914225771745280 23.0 0.7306 0.0625 0.0625 0.3674
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[parquet-global].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | RUN_ID FEATURE_ID PROTEIN_ID SCORE_PROTEIN_GLOBAL_SCORE SCORE_PROTEIN_GLOBAL_P_VALUE SCORE_PROTEIN_GLOBAL_Q_VALUE SCORE_PROTEIN_GLOBAL_PEP
3 | 0 -8670811102654833664 -9211032279639747584 2.0 5.8995 0.0625 0.0625 0.3674
4 | 1 -8670811102654833664 -9209834744278113280 21.0 1.5227 0.0625 0.0625 0.3674
5 | 2 -8670811102654833664 -9204568338203973632 31.0 1.9599 0.0625 0.0625 0.3674
6 | 3 -8670811102654833664 -9202066408251325440 12.0 5.9529 0.0625 0.0625 0.3674
7 | 4 -8670811102654833664 -9194114845888269312 10.0 5.8290 0.0625 0.0625 0.3674
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -8647629181891982336 31.0 1.9599 0.0625 0.0625 0.3674
10 | 96 -8670811102654833664 -8646966398648626176 15.0 5.9295 0.0625 0.0625 0.3674
11 | 97 -8670811102654833664 -8646066421910515712 4.0 5.8600 0.0625 0.0625 0.3674
12 | 98 -8670811102654833664 -8638785506020690944 27.0 2.3784 0.0625 0.0625 0.3674
13 | 99 -8670811102654833664 -8630914225771745280 23.0 0.7306 0.0625 0.0625 0.3674
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[parquet-run-specific].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | RUN_ID FEATURE_ID PROTEIN_ID SCORE_PROTEIN_RUN_SPECIFIC_SCORE SCORE_PROTEIN_RUN_SPECIFIC_P_VALUE SCORE_PROTEIN_RUN_SPECIFIC_Q_VALUE SCORE_PROTEIN_RUN_SPECIFIC_PEP
3 | 0 -8670811102654833664 -9211032279639747584 2.0 5.8995 0.0625 0.0625 0.3674
4 | 1 -8670811102654833664 -9209834744278113280 21.0 1.5227 0.0625 0.0625 0.3674
5 | 2 -8670811102654833664 -9204568338203973632 31.0 1.9599 0.0625 0.0625 0.3674
6 | 3 -8670811102654833664 -9202066408251325440 12.0 5.9529 0.0625 0.0625 0.3674
7 | 4 -8670811102654833664 -9194114845888269312 10.0 5.8290 0.0625 0.0625 0.3674
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -8647629181891982336 31.0 1.9599 0.0625 0.0625 0.3674
10 | 96 -8670811102654833664 -8646966398648626176 15.0 5.9295 0.0625 0.0625 0.3674
11 | 97 -8670811102654833664 -8646066421910515712 4.0 5.8600 0.0625 0.0625 0.3674
12 | 98 -8670811102654833664 -8638785506020690944 27.0 2.3784 0.0625 0.0625 0.3674
13 | 99 -8670811102654833664 -8630914225771745280 23.0 0.7306 0.0625 0.0625 0.3674
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[split_parquet-experiment-wide].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | RUN_ID FEATURE_ID PROTEIN_ID SCORE_PROTEIN_EXPERIMENT_WIDE_SCORE SCORE_PROTEIN_EXPERIMENT_WIDE_P_VALUE SCORE_PROTEIN_EXPERIMENT_WIDE_Q_VALUE SCORE_PROTEIN_EXPERIMENT_WIDE_PEP
3 | 0 -8670811102654833664 -9211032279639747584 2.0 5.8995 0.0625 0.0625 0.3674
4 | 1 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
5 | 2 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
6 | 3 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
7 | 4 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
10 | 96 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
11 | 97 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
12 | 98 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
13 | 99 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[split_parquet-global].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | RUN_ID FEATURE_ID PROTEIN_ID SCORE_PROTEIN_GLOBAL_SCORE SCORE_PROTEIN_GLOBAL_P_VALUE SCORE_PROTEIN_GLOBAL_Q_VALUE SCORE_PROTEIN_GLOBAL_PEP
3 | 0 -8670811102654833664 -9211032279639747584 2.0 5.8995 0.0625 0.0625 0.3674
4 | 1 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
5 | 2 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
6 | 3 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
7 | 4 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
10 | 96 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
11 | 97 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
12 | 98 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
13 | 99 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_levels_contexts.test_protein_levels[split_parquet-run-specific].out:
--------------------------------------------------------------------------------
1 | Protein Data:
2 | RUN_ID FEATURE_ID PROTEIN_ID SCORE_PROTEIN_RUN_SPECIFIC_SCORE SCORE_PROTEIN_RUN_SPECIFIC_P_VALUE SCORE_PROTEIN_RUN_SPECIFIC_Q_VALUE SCORE_PROTEIN_RUN_SPECIFIC_PEP
3 | 0 -8670811102654833664 -9211032279639747584 2.0 5.8995 0.0625 0.0625 0.3674
4 | 1 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
5 | 2 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
6 | 3 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
7 | 4 -8670811102654833664 -9211032279639747584 NaN NaN NaN NaN NaN
8 | .. ... ... ... ... ... ... ...
9 | 95 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
10 | 96 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
11 | 97 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
12 | 98 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
13 | 99 -8670811102654833664 -9202066408251325440 NaN NaN NaN NaN NaN
14 |
15 | [100 rows x 7 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_0.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_1.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0005 9.9581e-08 0.1118
4 | 1 -9059007664292712863 1.0000 8.6993e-01 NaN
5 | 2 -9009602369958523731 0.0005 8.9398e-07 0.4155
6 | 3 -8990894093332793487 0.0005 2.8346e-07 0.0409
7 | 4 -8915955323477460297 0.0003 1.8926e-07 0.0181
8 | .. ... ... ... ...
9 | 95 -4554654845515399609 0.0003 3.8685e-08 NaN
10 | 96 -4539808410625597778 0.0094 1.2626e-06 0.0352
11 | 97 -4495976808403190115 0.0002 3.8685e-08 0.0378
12 | 98 -4474179539802460946 0.0002 3.8685e-08 0.0157
13 | 99 -4409520928686189639 0.0002 3.8685e-08 0.1650
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_2.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_3.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_6.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0034 0.0997
4 | 1 -9009602369958523731 0.0064 0.0034 0.4270
5 | 2 -8990894093332793487 0.0064 0.0034 0.0463
6 | 3 -8915955323477460297 0.0064 0.0034 0.0089
7 | 4 -8858715981476206597 0.0064 0.0034 0.0089
8 | .. ... ... ... ...
9 | 95 -4213710682827324837 0.0064 0.0034 0.0089
10 | 96 -4209714083879967850 0.5256 0.0218 NaN
11 | 97 -4195322252177179725 0.0064 0.0034 0.0227
12 | 98 -4146541955602089926 0.0064 0.0034 0.0463
13 | 99 -4109405113780929799 0.0064 0.0034 0.0050
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_7.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0034 0.0997
4 | 1 -9009602369958523731 0.0064 0.0034 0.4270
5 | 2 -8990894093332793487 0.0064 0.0034 0.0463
6 | 3 -8915955323477460297 0.0064 0.0034 0.0089
7 | 4 -8858715981476206597 0.0064 0.0034 0.0089
8 | .. ... ... ... ...
9 | 95 -4213710682827324837 0.0064 0.0034 0.0089
10 | 96 -4209714083879967850 0.5256 0.0218 NaN
11 | 97 -4195322252177179725 0.0064 0.0034 0.0227
12 | 98 -4146541955602089926 0.0064 0.0034 0.0463
13 | 99 -4109405113780929799 0.0064 0.0034 0.0050
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_8.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 | 96259
17 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
18 | 0 -9078977811506172301 0.0064 0.0031 0.0987
19 | 1 -9059007664292712863 1.0000 0.3615 NaN
20 | 2 -9009602369958523731 0.0064 0.0031 0.4402
21 | 3 -8990894093332793487 0.0064 0.0031 0.0460
22 | 4 -8915955323477460297 0.0064 0.0031 0.0090
23 | .. ... ... ... ...
24 | 95 -4539808410625597778 0.0064 0.0031 0.0460
25 | 96 -4495976808403190115 0.0064 0.0031 0.0227
26 | 97 -4474179539802460946 0.0064 0.0031 0.0090
27 | 98 -4409520928686189639 0.0064 0.0031 0.1062
28 | 99 -4399716566495748799 0.0064 0.0031 NaN
29 |
30 | [100 rows x 4 columns]
31 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_9.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_multi_split_parquet_apply_weights.out:
--------------------------------------------------------------------------------
1 | 3410
2 | 96259
3 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
4 | 0 -9211032279639747263 1.5282e-01
5 | 1 -9202066408251325127 6.6976e-02
6 | 2 -9194114845888269381 1.5282e-01
7 | 3 -9157656806856886367 1.5282e-01
8 | 4 -9154199948799956056 1.5282e-01
9 | .. ... ... ... ...
10 | 95 -7954403927701730016 1.5358e-05
11 | 96 -7945183889919201418 1.5282e-01
12 | 97 -7921043005244251597 5.9199e-02
13 | 98 -7915076791408573751 1.5282e-01
14 | 99 -7898872943061400987 1.1083e-02
15 |
16 | [100 rows x 4 columns]
17 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_0.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0064 0.0031 0.0987
3 | 1 -9009602369958523731 0.0064 0.0031 0.4402
4 | 2 -8990894093332793487 0.0064 0.0031 0.0460
5 | 3 -8915955323477460297 0.0064 0.0031 0.0090
6 | 4 -8858715981476206597 0.0064 0.0031 0.0090
7 | .. ... ... ... ...
8 | 95 -3220457216356394124 0.0064 0.0031 0.0090
9 | 96 -3212703409469281429 0.0064 0.0031 0.0090
10 | 97 -3196707605593292319 0.0064 0.0031 0.0460
11 | 98 -3129995828656718688 0.0064 0.0031 0.0460
12 | 99 -3096050638984928024 0.0064 0.0031 0.0227
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_1.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0005 9.9581e-08 0.1118
3 | 1 -9009602369958523731 0.0005 8.9398e-07 0.4155
4 | 2 -8990894093332793487 0.0005 2.8346e-07 0.0409
5 | 3 -8915955323477460297 0.0003 1.8926e-07 0.0181
6 | 4 -8858715981476206597 0.0002 3.8685e-08 0.0144
7 | .. ... ... ... ...
8 | 95 -3220457216356394124 0.0002 4.4892e-08 0.0274
9 | 96 -3212703409469281429 0.0008 7.2903e-07 0.0154
10 | 97 -3196707605593292319 0.0002 4.1300e-08 0.0483
11 | 98 -3129995828656718688 0.0002 3.8685e-08 0.0435
12 | 99 -3096050638984928024 0.0002 9.0820e-08 0.0420
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_10.out:
--------------------------------------------------------------------------------
1 | level score weight
2 | 0 ms1 main_var_xcorr_shape 3.6907e+00
3 | 1 ms1ms2 main_var_xcorr_shape 1.6380e+00
4 | 2 ms1ms2 var_intensity_score 2.8489e+00
5 | 3 ms1 var_isotope_correlation_score 2.8452e-02
6 | 4 ms1ms2 var_isotope_correlation_score 9.0028e-01
7 | 5 ms1 var_isotope_overlap_score -5.8129e-02
8 | 6 ms1ms2 var_isotope_overlap_score -3.5869e-01
9 | 7 ms1ms2 var_library_corr 9.1134e-01
10 | 8 ms1 var_massdev_score 2.1145e-02
11 | 9 ms1ms2 var_massdev_score -3.1249e-02
12 | 10 ms1ms2 var_ms1_isotope_correlation_score 3.8243e-02
13 | 11 ms1ms2 var_ms1_isotope_overlap_score 5.8031e-02
14 | 12 ms1ms2 var_ms1_massdev_score -5.9398e-05
15 | 13 ms1ms2 var_ms1_xcorr_coelution -9.5609e-02
16 | 14 ms1ms2 var_norm_rt_score -3.7204e+01
17 | 15 ms1 var_xcorr_coelution -5.1548e-02
18 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_2.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0064 0.0031 0.0987
3 | 1 -9009602369958523731 0.0064 0.0031 0.4402
4 | 2 -8990894093332793487 0.0064 0.0031 0.0460
5 | 3 -8915955323477460297 0.0064 0.0031 0.0090
6 | 4 -8858715981476206597 0.0064 0.0031 0.0090
7 | .. ... ... ... ...
8 | 95 -3220457216356394124 0.0064 0.0031 0.0090
9 | 96 -3212703409469281429 0.0064 0.0031 0.0090
10 | 97 -3196707605593292319 0.0064 0.0031 0.0460
11 | 98 -3129995828656718688 0.0064 0.0031 0.0460
12 | 99 -3096050638984928024 0.0064 0.0031 0.0227
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_3.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0064 0.0031 0.0987
3 | 1 -9009602369958523731 0.0064 0.0031 0.4402
4 | 2 -8990894093332793487 0.0064 0.0031 0.0460
5 | 3 -8915955323477460297 0.0064 0.0031 0.0090
6 | 4 -8858715981476206597 0.0064 0.0031 0.0090
7 | .. ... ... ... ...
8 | 95 -3220457216356394124 0.0064 0.0031 0.0090
9 | 96 -3212703409469281429 0.0064 0.0031 0.0090
10 | 97 -3196707605593292319 0.0064 0.0031 0.0460
11 | 98 -3129995828656718688 0.0064 0.0031 0.0460
12 | 99 -3096050638984928024 0.0064 0.0031 0.0227
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_4.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0009 0.0024 0.3929
3 | 1 -9009602369958523731 0.0009 0.0024 0.0252
4 | 2 -8990894093332793487 0.0009 0.0024 0.1486
5 | 3 -8915955323477460297 0.0009 0.0024 0.0421
6 | 4 -8858715981476206597 0.0009 0.0024 0.3929
7 | .. ... ... ... ...
8 | 95 -2872329084347808160 0.0009 0.0024 0.3929
9 | 96 -2789098353857361973 0.0009 0.0024 0.3929
10 | 97 -2788620575140019858 0.0009 0.0024 0.3929
11 | 98 -2741276427609241638 0.0106 0.0024 0.1486
12 | 99 -2709746704397488063 0.0009 0.0024 0.3929
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_5.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0176 0.0048 0.5736
3 | 1 -9009602369958523731 0.0176 0.0048 0.1118
4 | 2 -8990894093332793487 0.0176 0.0048 0.3435
5 | 3 -8915955323477460297 0.0176 0.0048 0.1118
6 | 4 -8858715981476206597 0.0176 0.0048 0.5736
7 | .. ... ... ... ...
8 | 95 -3212703409469281429 0.0176 0.0048 0.1118
9 | 96 -3196707605593292319 0.0176 0.0048 0.5736
10 | 97 -3129995828656718688 0.0176 0.0048 0.5736
11 | 98 -3096050638984928024 0.0176 0.0048 0.5736
12 | 99 -2959420398616195477 1.0000 0.0048 0.5736
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_6.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0064 0.0034 0.0997
3 | 1 -9009602369958523731 0.0064 0.0034 0.4270
4 | 2 -8990894093332793487 0.0064 0.0034 0.0463
5 | 3 -8915955323477460297 0.0064 0.0034 0.0089
6 | 4 -8858715981476206597 0.0064 0.0034 0.0089
7 | .. ... ... ... ...
8 | 95 -3220457216356394124 0.0064 0.0034 0.0089
9 | 96 -3212703409469281429 0.0064 0.0034 0.0089
10 | 97 -3196707605593292319 0.0064 0.0034 0.0463
11 | 98 -3129995828656718688 0.0064 0.0034 0.0463
12 | 99 -3096050638984928024 0.0064 0.0034 0.0227
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_7.out:
--------------------------------------------------------------------------------
1 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
2 | 0 -9078977811506172301 0.0064 0.0034 0.0997
3 | 1 -9009602369958523731 0.0064 0.0034 0.4270
4 | 2 -8990894093332793487 0.0064 0.0034 0.0463
5 | 3 -8915955323477460297 0.0064 0.0034 0.0089
6 | 4 -8858715981476206597 0.0064 0.0034 0.0089
7 | .. ... ... ... ...
8 | 95 -3220457216356394124 0.0064 0.0034 0.0089
9 | 96 -3212703409469281429 0.0064 0.0034 0.0089
10 | 97 -3196707605593292319 0.0064 0.0034 0.0463
11 | 98 -3129995828656718688 0.0064 0.0034 0.0463
12 | 99 -3096050638984928024 0.0064 0.0034 0.0227
13 |
14 | [100 rows x 4 columns]
15 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_8.out:
--------------------------------------------------------------------------------
1 | level score weight
2 | 0 ms1 main_var_xcorr_shape 9.5599e-01
3 | 1 ms2 main_var_xcorr_shape -2.5707e+00
4 | 2 ms2 var_bseries_score 2.9013e-15
5 | 3 ms2 var_dotprod_score 4.8268e+00
6 | 4 ms2 var_intensity_score 1.8417e+00
7 | 5 ms1 var_isotope_correlation_score 9.9777e-02
8 | 6 ms2 var_isotope_correlation_score 3.4469e-01
9 | 7 ms1 var_isotope_overlap_score -8.4481e-02
10 | 8 ms2 var_isotope_overlap_score 1.5073e-01
11 | 9 ms2 var_library_corr 5.6312e-01
12 | 10 ms2 var_library_dotprod -7.0580e+00
13 | 11 ms2 var_library_manhattan -2.2549e+00
14 | 12 ms2 var_library_rmsd -6.9756e+00
15 | 13 ms2 var_library_rootmeansquare -1.0792e+01
16 | 14 ms2 var_library_sangle 6.1293e+00
17 | 15 ms2 var_log_sn_score 4.2718e-01
18 | 16 ms2 var_manhattan_score 7.6499e-01
19 | 17 ms1 var_massdev_score -1.8875e-03
20 | 18 ms2 var_massdev_score -1.7858e-02
21 | 19 ms2 var_massdev_score_weighted -1.4218e-02
22 | 20 ms2 var_norm_rt_score -6.1086e+01
23 | 21 ms1 var_xcorr_coelution -4.6643e-02
24 | 22 ms2 var_xcorr_coelution -6.4718e-02
25 | 23 ms1 var_xcorr_coelution_combined 1.2248e+00
26 | 24 ms1 var_xcorr_coelution_contrast -1.2179e+00
27 | 25 ms2 var_xcorr_coelution_weighted 1.3923e-01
28 | 26 ms1 var_xcorr_shape_combined -2.5555e+01
29 | 27 ms1 var_xcorr_shape_contrast 2.9255e+01
30 | 28 ms2 var_xcorr_shape_weighted 6.7453e-01
31 | 29 ms2 var_yseries_score 0.0000e+00
32 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_osw_9.out:
--------------------------------------------------------------------------------
1 | level score weight
2 | 0 ms1 main_var_xcorr_shape 3.6907
3 | 1 ms2 main_var_xcorr_shape 1.8019
4 | 2 ms2 var_intensity_score 2.9725
5 | 3 ms1 var_isotope_correlation_score 0.0285
6 | 4 ms2 var_isotope_correlation_score 0.7824
7 | 5 ms1 var_isotope_overlap_score -0.0581
8 | 6 ms2 var_isotope_overlap_score -0.3541
9 | 7 ms2 var_library_corr 0.9053
10 | 8 ms1 var_massdev_score 0.0211
11 | 9 ms2 var_massdev_score -0.0305
12 | 10 ms2 var_norm_rt_score -60.9504
13 | 11 ms1 var_xcorr_coelution -0.0515
14 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_0.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_1.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_2.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_3.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_6.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_7.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_8.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 | 97964
6 | Empty DataFrame
7 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
8 | Index: []
9 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_9.out:
--------------------------------------------------------------------------------
1 | 97964
2 | Empty DataFrame
3 | Columns: [feature_id, ms1_precursor_pep, ms2_peakgroup_pep, ms2_precursor_pep]
4 | Index: []
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_parquet_apply_weights.out:
--------------------------------------------------------------------------------
1 | 97964
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9211032279639747263 1.5282e-01
4 | 1 -9202066408251325127 6.6976e-02
5 | 2 -9194114845888269381 1.5282e-01
6 | 3 -9157656806856886367 1.5282e-01
7 | 4 -9154199948799956056 1.5282e-01
8 | .. ... ... ... ...
9 | 95 -7954403927701730016 1.5358e-05
10 | 96 -7945183889919201418 1.5282e-01
11 | 97 -7921043005244251597 5.9199e-02
12 | 98 -7915076791408573751 1.5282e-01
13 | 99 -7898872943061400987 1.1083e-02
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_0.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_1.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0005 9.9581e-08 0.1118
4 | 1 -9059007664292712863 1.0000 8.6993e-01 NaN
5 | 2 -9009602369958523731 0.0005 8.9398e-07 0.4155
6 | 3 -8990894093332793487 0.0005 2.8346e-07 0.0409
7 | 4 -8915955323477460297 0.0003 1.8926e-07 0.0181
8 | .. ... ... ... ...
9 | 95 -4554654845515399609 0.0003 3.8685e-08 NaN
10 | 96 -4539808410625597778 0.0094 1.2626e-06 0.0352
11 | 97 -4495976808403190115 0.0002 3.8685e-08 0.0378
12 | 98 -4474179539802460946 0.0002 3.8685e-08 0.0157
13 | 99 -4409520928686189639 0.0002 3.8685e-08 0.1650
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_2.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_3.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_6.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0034 0.0997
4 | 1 -9009602369958523731 0.0064 0.0034 0.4270
5 | 2 -8990894093332793487 0.0064 0.0034 0.0463
6 | 3 -8915955323477460297 0.0064 0.0034 0.0089
7 | 4 -8858715981476206597 0.0064 0.0034 0.0089
8 | .. ... ... ... ...
9 | 95 -4213710682827324837 0.0064 0.0034 0.0089
10 | 96 -4209714083879967850 0.5256 0.0218 NaN
11 | 97 -4195322252177179725 0.0064 0.0034 0.0227
12 | 98 -4146541955602089926 0.0064 0.0034 0.0463
13 | 99 -4109405113780929799 0.0064 0.0034 0.0050
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_7.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0034 0.0997
4 | 1 -9009602369958523731 0.0064 0.0034 0.4270
5 | 2 -8990894093332793487 0.0064 0.0034 0.0463
6 | 3 -8915955323477460297 0.0064 0.0034 0.0089
7 | 4 -8858715981476206597 0.0064 0.0034 0.0089
8 | .. ... ... ... ...
9 | 95 -4213710682827324837 0.0064 0.0034 0.0089
10 | 96 -4209714083879967850 0.5256 0.0218 NaN
11 | 97 -4195322252177179725 0.0064 0.0034 0.0227
12 | 98 -4146541955602089926 0.0064 0.0034 0.0463
13 | 99 -4109405113780929799 0.0064 0.0034 0.0050
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_8.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 | 96259
17 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
18 | 0 -9078977811506172301 0.0064 0.0031 0.0987
19 | 1 -9059007664292712863 1.0000 0.3615 NaN
20 | 2 -9009602369958523731 0.0064 0.0031 0.4402
21 | 3 -8990894093332793487 0.0064 0.0031 0.0460
22 | 4 -8915955323477460297 0.0064 0.0031 0.0090
23 | .. ... ... ... ...
24 | 95 -4539808410625597778 0.0064 0.0031 0.0460
25 | 96 -4495976808403190115 0.0064 0.0031 0.0227
26 | 97 -4474179539802460946 0.0064 0.0031 0.0090
27 | 98 -4409520928686189639 0.0064 0.0031 0.1062
28 | 99 -4399716566495748799 0.0064 0.0031 NaN
29 |
30 | [100 rows x 4 columns]
31 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_9.out:
--------------------------------------------------------------------------------
1 | 96259
2 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
3 | 0 -9078977811506172301 0.0064 0.0031 0.0987
4 | 1 -9059007664292712863 1.0000 0.3615 NaN
5 | 2 -9009602369958523731 0.0064 0.0031 0.4402
6 | 3 -8990894093332793487 0.0064 0.0031 0.0460
7 | 4 -8915955323477460297 0.0064 0.0031 0.0090
8 | .. ... ... ... ...
9 | 95 -4539808410625597778 0.0064 0.0031 0.0460
10 | 96 -4495976808403190115 0.0064 0.0031 0.0227
11 | 97 -4474179539802460946 0.0064 0.0031 0.0090
12 | 98 -4409520928686189639 0.0064 0.0031 0.1062
13 | 99 -4399716566495748799 0.0064 0.0031 NaN
14 |
15 | [100 rows x 4 columns]
16 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_pyprophet_score.test_split_parquet_apply_weights.out:
--------------------------------------------------------------------------------
1 | 3410
2 | 96259
3 | feature_id ms1_precursor_pep ms2_peakgroup_pep ms2_precursor_pep
4 | 0 -9211032279639747263 1.5282e-01
5 | 1 -9202066408251325127 6.6976e-02
6 | 2 -9194114845888269381 1.5282e-01
7 | 3 -9157656806856886367 1.5282e-01
8 | 4 -9154199948799956056 1.5282e-01
9 | .. ... ... ... ...
10 | 95 -7954403927701730016 1.5358e-05
11 | 96 -7945183889919201418 1.5282e-01
12 | 97 -7921043005244251597 5.9199e-02
13 | 98 -7915076791408573751 1.5282e-01
14 | 99 -7898872943061400987 1.1083e-02
15 |
16 | [100 rows x 4 columns]
17 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_stats.test_lfdr.out:
--------------------------------------------------------------------------------
1 | [0.00655898 0.00863043 0.00938367 ... 1. 1. 1. ]
2 | [0.00655898 0.00863043 0.00938367 ... 0.67595967 0.49910994 0.34936792]
3 | [0.00962478 0.01460633 0.01460633 ... 1. 1. 1. ]
4 | [0.10028765 0.10028765 0.10028765 ... 1. 1. 1. ]
5 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_stats.test_qvalue.out:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/_regtest_outputs/test_stats.test_qvalue.out
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_stats.test_random.out:
--------------------------------------------------------------------------------
1 | 1 1
2 | [1.]
3 | 1 2
4 | [1.]
5 | 1 5
6 | [1.]
7 | 1 10
8 | [0.3]
9 | 1 100
10 | [0.68]
11 | 2 1
12 | [1. 1.]
13 | 2 2
14 | [0.5 0.5]
15 | 2 5
16 | [0.4 0.2]
17 | 2 10
18 | [0.4 0.1]
19 | 2 100
20 | [0.99 0.89]
21 | 5 1
22 | [1. 1. 1. 1. 1.]
23 | 5 2
24 | [1. 1. 1. 0.5 0.5]
25 | 5 5
26 | [0.2 0.8 0.2 0.2 0.8]
27 | 5 10
28 | [0.1 0.5 1. 0.8 0.8]
29 | 5 100
30 | [0.27 0.49 0.23 0.43 0.54]
31 | 10 1
32 | [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
33 | 10 2
34 | [0.5 1. 1. 1. 0.5 1. 0.5 0.5 0.5 0.5]
35 | 10 5
36 | [0.8 0.2 0.4 1. 1. 1. 1. 0.4 1. 1. ]
37 | 10 10
38 | [0.6 0.6 0.3 0.6 0.3 0.9 0.4 0.9 0.5 0.9]
39 | 10 100
40 | [0.12 0.01 0.26 0.24 0.12 0.59 0.75 0.84 0.89 0.2 ]
41 | 100 1
42 | [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
43 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
44 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
45 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
46 | 1. 1. 1. 1.]
47 | 100 2
48 | [0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5
49 | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
50 | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
51 | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5
52 | 0.5 0.5 0.5 0.5 1. 0.5 1. 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
53 | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]
54 | 100 5
55 | [1. 0.6 0.8 0.4 0.8 0.4 0.6 0.4 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.8
56 | 0.2 0.6 0.8 0.4 0.6 0.8 0.4 0.8 0.8 0.8 0.6 0.8 0.4 0.8 0.8 0.8 0.4 0.4
57 | 0.8 0.6 0.4 0.8 0.4 0.8 0.6 0.6 0.8 1. 0.8 0.2 0.8 0.4 0.8 0.8 0.8 0.6
58 | 0.6 0.6 0.8 0.6 0.8 0.8 0.8 0.8 1. 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.4 0.8
59 | 0.8 0.8 0.8 0.8 0.8 0.8 0.4 0.4 0.8 0.6 0.8 0.8 0.8 0.4 0.6 0.6 0.8 0.8
60 | 0.2 0.2 0.6 0.8 0.6 0.8 0.8 0.8 0.6 0.4]
61 | 100 10
62 | [1. 1. 0.6 1. 0.3 1. 0.7 1. 0.2 0.3 0.6 1. 0.2 0.6 0.2 0.5 0.5 1.
63 | 0.3 0.6 0.9 0.6 0.6 0.5 0.1 0.6 0.2 0.3 0.1 0.6 0.9 0.1 1. 0.1 0.3 0.6
64 | 0.1 1. 0.5 1. 0.3 1. 0.3 0.1 0.2 0.5 0.2 0.2 0.5 0.5 1. 0.6 1. 0.2
65 | 0.5 0.5 0.1 0.5 0.6 0.8 1. 0.6 1. 0.7 0.5 0.1 1. 0.2 0.5 0.2 1. 1.
66 | 0.6 0.2 1. 0.2 0.7 1. 1. 0.6 0.6 0.3 1. 1. 1. 1. 0.3 0.6 0.7 0.3
67 | 0.1 0.2 0.2 0.1 1. 1. 0.5 0.6 0.1 0.5]
68 | 100 100
69 | [0.85 0.91 0.09 0.75 0.61 0.48 0.5 0.93 0.09 0.03 0.16 0.71 0.5 0.64
70 | 0.49 0.01 0.68 0.34 0.66 0.19 0.66 0.07 0.23 0.19 0.53 0.78 0.95 0.66
71 | 0.95 0.31 0.34 0.58 0.19 0.49 0.95 0.85 0.81 0.64 0.95 0.37 0.5 0.35
72 | 0.58 0.11 0.55 0.98 0.09 0.34 0.13 0.03 0.95 0.76 0.94 0.6 0.1 0.92
73 | 0.53 0.87 0.19 0.13 0.95 0.52 0.75 0.03 0.04 0.36 0.01 0.64 0.07 0.58
74 | 0.75 0.04 0.32 0.94 0.09 0.29 0.37 0.25 0.73 0.39 0.16 0.95 0.86 0.13
75 | 0.35 0.5 0.73 0.7 0.09 0.6 0.94 0.07 0.78 0.13 0.08 0.52 0.41 0.5
76 | 0.34 0.11]
77 |
--------------------------------------------------------------------------------
/tests/_regtest_outputs/test_stats.test_stat_metrics.out:
--------------------------------------------------------------------------------
1 | fdr fn fnr fp fpr svalue tn tp
2 | 0 2.1133e-06 -2123.6588 0.0000 0.0067 3.1546e-06 1.0 2123.6588 3169.9933
3 | 1 1.0570e-05 -2122.6320 0.0000 0.0335 1.5773e-05 1.0 2123.6320 3168.9665
4 | 2 1.4803e-05 -2121.6186 0.0000 0.0469 2.2082e-05 1.0 2123.6186 3167.9531
5 | 3 2.3269e-05 -2120.5918 0.0000 0.0737 3.4700e-05 1.0 2123.5918 3166.9263
6 | 4 2.5392e-05 -2119.5851 0.0000 0.0804 3.7855e-05 1.0 2123.5851 3165.9196
7 | ... ... ... ... ... ... ... ... ...
8 | 3165 1.0000e+00 3161.7576 0.9990 2120.4231 9.9847e-01 0.0 3.2424 -2115.4231
9 | 3166 1.0000e+00 3164.4458 0.9995 2122.1113 9.9927e-01 0.0 1.5542 -2118.1113
10 | 3167 1.0000e+00 3165.5463 0.9995 2122.2118 9.9932e-01 0.0 1.4537 -2119.2118
11 | 3168 1.0000e+00 3167.2765 0.9998 2122.9420 9.9966e-01 0.0 0.7235 -2120.9420
12 | 3169 1.0000e+00 3168.6851 0.9999 2123.3506 9.9985e-01 0.0 0.3149 -2122.3506
13 |
14 | [3170 rows x 8 columns]
15 | fdr fn fnr fp fpr svalue tn tp
16 | 0 0.0002 -2123.6588 0.0 0.0067 3.1546e-06 1.0 2123.6588 3169.9933
17 | 1 0.0002 -2122.6320 0.0 0.0335 1.5773e-05 1.0 2123.6320 3168.9665
18 | 2 0.0002 -2121.6186 0.0 0.0469 2.2082e-05 1.0 2123.6186 3167.9531
19 | 3 0.0002 -2120.5918 0.0 0.0737 3.4700e-05 1.0 2123.5918 3166.9263
20 | 4 0.0002 -2119.5851 0.0 0.0804 3.7855e-05 1.0 2123.5851 3165.9196
21 | ... ... ... ... ... ... ... ... ...
22 | 3165 1.0000 3161.7576 1.0 2120.4231 9.9847e-01 0.0 3.2424 -2115.4231
23 | 3166 1.0000 3164.4458 1.0 2122.1113 9.9927e-01 0.0 1.5542 -2118.1113
24 | 3167 1.0000 3165.5463 1.0 2122.2118 9.9932e-01 0.0 1.4537 -2119.2118
25 | 3168 1.0000 3167.2765 1.0 2122.9420 9.9966e-01 0.0 0.7235 -2120.9420
26 | 3169 1.0000 3168.6851 1.0 2123.3506 9.9985e-01 0.0 0.3149 -2122.3506
27 |
28 | [3170 rows x 8 columns]
29 |
--------------------------------------------------------------------------------
/tests/data/test_data.osw:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/data/test_data.osw
--------------------------------------------------------------------------------
/tests/data/test_data.oswpq/precursors_features.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/data/test_data.oswpq/precursors_features.parquet
--------------------------------------------------------------------------------
/tests/data/test_data.oswpq/transition_features.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/data/test_data.oswpq/transition_features.parquet
--------------------------------------------------------------------------------
/tests/data/test_data.oswpqd/napedro_L120420_010_SW.oswpq/precursors_features.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/data/test_data.oswpqd/napedro_L120420_010_SW.oswpq/precursors_features.parquet
--------------------------------------------------------------------------------
/tests/data/test_data.oswpqd/napedro_L120420_010_SW.oswpq/transition_features.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/data/test_data.oswpqd/napedro_L120420_010_SW.oswpq/transition_features.parquet
--------------------------------------------------------------------------------
/tests/data/test_data.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/data/test_data.parquet
--------------------------------------------------------------------------------
/tests/data/test_data_compound.osw:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/PyProphet/pyprophet/54e18bd69c91ce7c2dcc8bd2ee0ecd853fe3d297/tests/data/test_data_compound.osw
--------------------------------------------------------------------------------
/tests/test_data_handling.py:
--------------------------------------------------------------------------------
1 | # encoding: utf-8
2 | from __future__ import print_function
3 |
4 | from pyprophet.scoring.data_handling import check_for_unique_blocks
5 |
6 |
7 | def test_ok():
8 | assert check_for_unique_blocks([1]) is True
9 | assert check_for_unique_blocks([1, 1]) is True
10 | assert check_for_unique_blocks([1, 2]) is True
11 | assert check_for_unique_blocks([1, 2, 3, 4, 5]) is True
12 | assert check_for_unique_blocks([1, 2, 3, 4, 5, 5]) is True
13 | assert check_for_unique_blocks([1, 1, 1]) is True
14 | assert check_for_unique_blocks([1, 1, 1, 2]) is True
15 | assert check_for_unique_blocks([1, 2, 2, 2]) is True
16 | assert check_for_unique_blocks([1, 1, 2, 2, 3, 3, 4, 4]) is True
17 | assert check_for_unique_blocks([1, 1, 2, 2, 3, 3, 4, 4, 5]) is True
18 |
19 | assert check_for_unique_blocks(map(str, [1])) is True
20 | assert check_for_unique_blocks(map(str, [1, 1])) is True
21 | assert check_for_unique_blocks(map(str, [1, 2])) is True
22 | assert check_for_unique_blocks(map(str, [1, 2, 3, 4, 5])) is True
23 | assert check_for_unique_blocks(map(str, [1, 2, 3, 4, 5, 5])) is True
24 | assert check_for_unique_blocks(map(str, [1, 1, 1])) is True
25 | assert check_for_unique_blocks(map(str, [1, 1, 1, 2])) is True
26 | assert check_for_unique_blocks(map(str, [1, 2, 2, 2])) is True
27 | assert check_for_unique_blocks(map(str, [1, 1, 2, 2, 3, 3, 4, 4])) is True
28 | assert check_for_unique_blocks(map(str, [1, 1, 2, 2, 3, 3, 4, 4, 5])) is True
29 |
30 |
31 | def test_not_ok():
32 | assert check_for_unique_blocks([1, 2, 1]) is False
33 | assert check_for_unique_blocks([1, 2, 3, 4, 1]) is False
34 | assert check_for_unique_blocks([1, 2, 3, 4, 5, 1]) is False
35 | assert check_for_unique_blocks([1, 1, 2, 2, 1]) is False
36 | assert check_for_unique_blocks([1, 1, 1, 2, 1]) is False
37 | assert check_for_unique_blocks([1, 2, 2, 2, 1]) is False
38 | assert check_for_unique_blocks([1, 1, 2, 2, 3, 3, 4, 4, 3]) is False
39 | assert check_for_unique_blocks([1, 1, 2, 2, 3, 3, 4, 4, 5, 4]) is False
40 |
41 | assert check_for_unique_blocks(map(str, [1, 2, 1])) is False
42 | assert check_for_unique_blocks(map(str, [1, 2, 3, 4, 1])) is False
43 | assert check_for_unique_blocks(map(str, [1, 2, 3, 4, 5, 1])) is False
44 | assert check_for_unique_blocks(map(str, [1, 1, 2, 2, 1])) is False
45 | assert check_for_unique_blocks(map(str, [1, 1, 1, 2, 1])) is False
46 | assert check_for_unique_blocks(map(str, [1, 2, 2, 2, 1])) is False
47 | assert check_for_unique_blocks(map(str, [1, 1, 2, 2, 3, 3, 4, 4, 3])) is False
48 | assert check_for_unique_blocks(map(str, [1, 1, 2, 2, 3, 3, 4, 4, 5, 4])) is False
49 |
--------------------------------------------------------------------------------