├── .gitignore ├── 2022-statistical-modeling.Rproj ├── MES计算 ├── 1数据预处理(python) │ └── 收益率权重计算.ipynb ├── 2MES计算(R) │ └── MES计算-终.R └── 3MES时空维度分析(python) │ └── MES时空维度分析.ipynb ├── README.md ├── 主要分析结果(数据见README.md分享链接) ├── 蓄意攻击下相对网络效率变化.jpg ├── 蓄意攻击下网络最大连通子图尺寸变化.jpg ├── 边际期望损失.jpg ├── 阈值选取参考-终.jpg ├── 随机攻击下相对网络效率变化.jpg └── 随机攻击下网络最大连通子图尺寸变化.jpg └── 复杂网络抗毁性分析 └── 统计建模1343家企业网络.ipynb /.gitignore: -------------------------------------------------------------------------------- 1 | .Rproj.user 2 | .Rhistory 3 | .RData 4 | .Ruserdata 5 | -------------------------------------------------------------------------------- /2022-statistical-modeling.Rproj: -------------------------------------------------------------------------------- 1 | Version: 1.0 2 | 3 | RestoreWorkspace: Default 4 | SaveWorkspace: Default 5 | AlwaysSaveHistory: Default 6 | 7 | EnableCodeIndexing: Yes 8 | UseSpacesForTab: Yes 9 | NumSpacesForTab: 2 10 | Encoding: UTF-8 11 | 12 | RnwWeave: Sweave 13 | LaTeX: pdfLaTeX 14 | -------------------------------------------------------------------------------- /MES计算/1数据预处理(python)/收益率权重计算.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 70, 6 | "id": "a12d812d", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "import numpy as np" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 71, 17 | "id": "9186df9c", 18 | "metadata": { 19 | "scrolled": false 20 | }, 21 | "outputs": [], 22 | "source": [ 23 | "data=pd.read_excel(\"回归数据.xlsx\")\n", 24 | "data=data[[\"证券名称\",\"总资产(元)\"]]\n", 25 | "for i in range(len(data)):\n", 26 | " if data[\"总资产(元)\"][i]=='——':\n", 27 | " data[\"总资产(元)\"][i]=data[\"总资产(元)\"][i-1]" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 72, 33 | "id": "9d08476a", 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [ 37 | "names=[]\n", 38 | "for i in data.drop_duplicates(subset='证券名称', keep='first', inplace=False)[\"证券名称\"]:\n", 39 | " names.append(i)" 40 | ] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "execution_count": 73, 45 | "id": "a0100b6c", 46 | "metadata": {}, 47 | "outputs": [], 48 | "source": [ 49 | "meandata={}\n", 50 | "for i in names:\n", 51 | " meandata[i]=data[data[\"证券名称\"]==i][\"总资产(元)\"].mean()" 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "execution_count": 74, 57 | "id": "eff48f8a", 58 | "metadata": {}, 59 | "outputs": [], 60 | "source": [ 61 | "weightdata={}\n", 62 | "for i in meandata:\n", 63 | " weightdata[i]=meandata[i]/sum(meandata.values())" 64 | ] 65 | }, 66 | { 67 | "cell_type": "code", 68 | "execution_count": 75, 69 | "id": "8fcc138b", 70 | "metadata": {}, 71 | "outputs": [], 72 | "source": [ 73 | "returndata=pd.read_excel(\"收益率.xlsx\")" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": 76, 79 | "id": "53d51694", 80 | "metadata": { 81 | "scrolled": true 82 | }, 83 | "outputs": [], 84 | "source": [ 85 | "renames=names" 86 | ] 87 | }, 88 | { 89 | "cell_type": "code", 90 | "execution_count": 77, 91 | "id": "c52a26da", 92 | "metadata": {}, 93 | "outputs": [], 94 | "source": [ 95 | "renames.insert(0,\"rm\")" 96 | ] 97 | }, 98 | { 99 | "cell_type": "code", 100 | "execution_count": 78, 101 | "id": "0504fc33", 102 | "metadata": {}, 103 | "outputs": [], 104 | "source": [ 105 | "renames.insert(0,\"time\")" 106 | ] 107 | }, 108 | { 109 | "cell_type": "code", 110 | "execution_count": 79, 111 | "id": "1d76c507", 112 | "metadata": {}, 113 | "outputs": [], 114 | "source": [ 115 | "returndata_rename=returndata" 116 | ] 117 | }, 118 | { 119 | "cell_type": "code", 120 | "execution_count": 80, 121 | "id": "a8eb6b46", 122 | "metadata": {}, 123 | "outputs": [], 124 | "source": [ 125 | "returndata_rename.columns=renames" 126 | ] 127 | }, 128 | { 129 | "cell_type": "code", 130 | "execution_count": 81, 131 | "id": "2da313be", 132 | "metadata": {}, 133 | "outputs": [], 134 | "source": [ 135 | "rm=[]\n", 136 | "for j in range(len(returndata_rename)):\n", 137 | " a={}\n", 138 | " for i in weightdata:\n", 139 | " a[i]=weightdata[i]*returndata_rename[i][j]\n", 140 | " rm.append(sum(a.values()))\n", 141 | " " 142 | ] 143 | }, 144 | { 145 | "cell_type": "code", 146 | "execution_count": 82, 147 | "id": "035c253f", 148 | "metadata": {}, 149 | "outputs": [], 150 | "source": [ 151 | "returndata_rename[\"rm\"]=rm" 152 | ] 153 | }, 154 | { 155 | "cell_type": "code", 156 | "execution_count": 87, 157 | "id": "44732500", 158 | "metadata": { 159 | "scrolled": true 160 | }, 161 | "outputs": [ 162 | { 163 | "data": { 164 | "text/html": [ 165 | "
\n", 166 | "\n", 179 | "\n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | "
timerm万科AST国华ST星源深振业A*ST全新神州高铁中国宝安深物业A...平煤股份潞安环能中海油服中国石油中远海发招商轮船新集能源中远海控大唐发电出版传媒
02008-01-020.8035030.5238841.8774000.5462900.8876881.3083860.4179290.1907791.050627...-0.498708-0.7692230.000000-0.5363470.0000000.6031960.1633712.7130650.0000002.984877
12008-01-030.612735-1.0541651.1537911.598811-0.2938852.078884-0.104106-0.6576190.927590...0.103977-1.1167562.2788290.704353-0.9029321.052090-0.4644910.4850380.000000-0.544261
22008-01-040.2920651.1284920.565601-0.5264242.063507-0.0534522.1354710.0276010.130910...0.4414840.8634870.2035290.3202060.580035-0.4899950.4644912.1315380.0000000.363598
32008-01-070.5566171.3741871.4214541.2185411.7453732.139300-0.801181-1.004839-0.163700...1.5874374.0603470.000000-0.3062351.1022390.3924371.835882-0.7172580.0000000.260718
42008-01-08-0.702735-0.433864-0.744411-1.159734-1.248321-0.153011-1.091764-1.377007-2.082863...-1.373016-1.597612-0.892996-0.153931-1.791898-1.021141-1.7815620.3374060.0000002.937630
..................................................................
34002021-12-270.174558-0.044248-0.5514920.3860420.492962-0.667588-3.728908-0.589619-0.259060...-0.301944-0.407443-0.2355500.0878250.0000000.1063140.0907620.796893-0.509442-0.466629
34012021-12-28-0.2158260.1326091.6784230.572704-0.492962-0.678010-2.7829091.080006-0.485250...-1.699294-1.3992410.847859-0.1758280.3954150.000000-1.7577682.041446-1.8316340.267259
34022021-12-29-0.218549-0.667132-0.2902000.0000000.0990410.377978-1.4613160.060911-0.339147...0.4700770.1151470.000000-0.176543-0.263210-0.2128900.562809-0.333647-1.357281-0.738957
34032021-12-300.138935-0.5865880.4678260.000000-0.0990411.0411671.937695-0.274774-0.075727...-0.104023-0.346360-0.700490-0.088541-0.3978300.106575-0.562809-1.7078000.6839424.133109
34042021-12-310.3728671.429905-0.4006850.1892350.7860751.3029812.9014640.7590100.751393...0.1559410.2696290.7004900.088541-0.1334240.212369-0.570198-0.0232310.539503-0.309108
\n", 473 | "

3405 rows × 1345 columns

\n", 474 | "
" 475 | ], 476 | "text/plain": [ 477 | " time rm 万科A ST国华 ST星源 深振业A *ST全新 \\\n", 478 | "0 2008-01-02 0.803503 0.523884 1.877400 0.546290 0.887688 1.308386 \n", 479 | "1 2008-01-03 0.612735 -1.054165 1.153791 1.598811 -0.293885 2.078884 \n", 480 | "2 2008-01-04 0.292065 1.128492 0.565601 -0.526424 2.063507 -0.053452 \n", 481 | "3 2008-01-07 0.556617 1.374187 1.421454 1.218541 1.745373 2.139300 \n", 482 | "4 2008-01-08 -0.702735 -0.433864 -0.744411 -1.159734 -1.248321 -0.153011 \n", 483 | "... ... ... ... ... ... ... ... \n", 484 | "3400 2021-12-27 0.174558 -0.044248 -0.551492 0.386042 0.492962 -0.667588 \n", 485 | "3401 2021-12-28 -0.215826 0.132609 1.678423 0.572704 -0.492962 -0.678010 \n", 486 | "3402 2021-12-29 -0.218549 -0.667132 -0.290200 0.000000 0.099041 0.377978 \n", 487 | "3403 2021-12-30 0.138935 -0.586588 0.467826 0.000000 -0.099041 1.041167 \n", 488 | "3404 2021-12-31 0.372867 1.429905 -0.400685 0.189235 0.786075 1.302981 \n", 489 | "\n", 490 | " 神州高铁 中国宝安 深物业A ... 平煤股份 潞安环能 中海油服 \\\n", 491 | "0 0.417929 0.190779 1.050627 ... -0.498708 -0.769223 0.000000 \n", 492 | "1 -0.104106 -0.657619 0.927590 ... 0.103977 -1.116756 2.278829 \n", 493 | "2 2.135471 0.027601 0.130910 ... 0.441484 0.863487 0.203529 \n", 494 | "3 -0.801181 -1.004839 -0.163700 ... 1.587437 4.060347 0.000000 \n", 495 | "4 -1.091764 -1.377007 -2.082863 ... -1.373016 -1.597612 -0.892996 \n", 496 | "... ... ... ... ... ... ... ... \n", 497 | "3400 -3.728908 -0.589619 -0.259060 ... -0.301944 -0.407443 -0.235550 \n", 498 | "3401 -2.782909 1.080006 -0.485250 ... -1.699294 -1.399241 0.847859 \n", 499 | "3402 -1.461316 0.060911 -0.339147 ... 0.470077 0.115147 0.000000 \n", 500 | "3403 1.937695 -0.274774 -0.075727 ... -0.104023 -0.346360 -0.700490 \n", 501 | "3404 2.901464 0.759010 0.751393 ... 0.155941 0.269629 0.700490 \n", 502 | "\n", 503 | " 中国石油 中远海发 招商轮船 新集能源 中远海控 大唐发电 出版传媒 \n", 504 | "0 -0.536347 0.000000 0.603196 0.163371 2.713065 0.000000 2.984877 \n", 505 | "1 0.704353 -0.902932 1.052090 -0.464491 0.485038 0.000000 -0.544261 \n", 506 | "2 0.320206 0.580035 -0.489995 0.464491 2.131538 0.000000 0.363598 \n", 507 | "3 -0.306235 1.102239 0.392437 1.835882 -0.717258 0.000000 0.260718 \n", 508 | "4 -0.153931 -1.791898 -1.021141 -1.781562 0.337406 0.000000 2.937630 \n", 509 | "... ... ... ... ... ... ... ... \n", 510 | "3400 0.087825 0.000000 0.106314 0.090762 0.796893 -0.509442 -0.466629 \n", 511 | "3401 -0.175828 0.395415 0.000000 -1.757768 2.041446 -1.831634 0.267259 \n", 512 | "3402 -0.176543 -0.263210 -0.212890 0.562809 -0.333647 -1.357281 -0.738957 \n", 513 | "3403 -0.088541 -0.397830 0.106575 -0.562809 -1.707800 0.683942 4.133109 \n", 514 | "3404 0.088541 -0.133424 0.212369 -0.570198 -0.023231 0.539503 -0.309108 \n", 515 | "\n", 516 | "[3405 rows x 1345 columns]" 517 | ] 518 | }, 519 | "execution_count": 87, 520 | "metadata": {}, 521 | "output_type": "execute_result" 522 | } 523 | ], 524 | "source": [ 525 | "returndata_rename" 526 | ] 527 | }, 528 | { 529 | "cell_type": "code", 530 | "execution_count": 86, 531 | "id": "4df25879", 532 | "metadata": {}, 533 | "outputs": [], 534 | "source": [ 535 | "returndata_rename.to_excel(\"算MES数据.xlsx\",index = False)" 536 | ] 537 | }, 538 | { 539 | "cell_type": "code", 540 | "execution_count": null, 541 | "id": "e358d21c", 542 | "metadata": {}, 543 | "outputs": [], 544 | "source": [] 545 | } 546 | ], 547 | "metadata": { 548 | "kernelspec": { 549 | "display_name": "Python 3", 550 | "language": "python", 551 | "name": "python3" 552 | }, 553 | "language_info": { 554 | "codemirror_mode": { 555 | "name": "ipython", 556 | "version": 3 557 | }, 558 | "file_extension": ".py", 559 | "mimetype": "text/x-python", 560 | "name": "python", 561 | "nbconvert_exporter": "python", 562 | "pygments_lexer": "ipython3", 563 | "version": "3.8.8" 564 | } 565 | }, 566 | "nbformat": 4, 567 | "nbformat_minor": 5 568 | } 569 | -------------------------------------------------------------------------------- /MES计算/2MES计算(R)/MES计算-终.R: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QingTianLuo/2022-statistical-modeling/24cbe859bf35639c90b0798ebf2631f75af0c691/MES计算/2MES计算(R)/MES计算-终.R -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 2022-statistical-modeling 2 | 本项目主要是对2008年1月1日-2021年12月31日我国1343家非金融企业的系统性风险进行测度并对风险传染机制进行分析,其主要内容包含以下两个部分: 3 | (1)基于DCC-GARCH模型的系统性风险(MES)测度;(2)复杂网络的抗毁性分析。 4 | 其中系统性风险(MES)测度采用R语言完成,复杂网络抗毁性分析采用python完成,此外还涉及一些的数据预处理及分析内容采用python完成。 5 | 由于数据量较大,采用百度网盘形式分享(链接:https://pan.baidu.com/s/1UFV6Pq6XPud3QEvjO1qmHw 提取码:soso) 6 | 相关参考文献及链接如下: 7 | [1]https://www.zybuluo.com/fanxy/note/1654237 8 | [2]刘莹.基于MES测度的我国金融机构系统性风险研究[J].市场研究,2019(10):32-35.DOI:10.13999/j.cnki.scyj.2019.10.011. 9 | [3]卜林,李政.我国上市金融机构系统性风险溢出研究——基于CoVaR和MES的比较分析[J].当代财经,2015(06):55-65.DOI:10.13676/j.cnki.cn36-1030/f.2015.06.007. 10 | [4]宋宁宁,韩华,吴翎燕.一种基于阈值构建金融网络的新方法[J].计算机工程与应用,2015,51(06):249-253. 11 | [5]任英华,谢佳汇,周金龙,张洁莹.基于复杂网络的商业银行流动性风险评价[J].湖南大学学报(社会科学版),2020,34(04):65-73.DOI:10.16339/j.cnki.hdxbskb.2020.04.009. 12 | [6]党亚茹,丁飞雅,高峰.我国航班流网络抗毁性实证分析[J].交通运输系统工程与信息,2012,12(06):177-185.DOI:10.16097/j.cnki.1009-6744.2012.06.001. 13 | [7]赵静,韩永启,周继彪.蓄意攻击下城市轨道交通网络抗毁性分析[J].城市道桥与防洪,2020(06):203-206+25-26.DOI:10.16799/j.cnki.csdqyfh.2020.06.062. 14 | [8]赵军产,王少薇,陆君安,王敬童.疫情背景下全球股市网络的抗毁性及预警研究[J].复杂系统与复杂性科学,2022,19(01):52-59.DOI:10.13306/j.1672-3813.2022.01.007. 15 | [9]微信公众号:单哥的科研日常 -------------------------------------------------------------------------------- /主要分析结果(数据见README.md分享链接)/蓄意攻击下相对网络效率变化.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QingTianLuo/2022-statistical-modeling/24cbe859bf35639c90b0798ebf2631f75af0c691/主要分析结果(数据见README.md分享链接)/蓄意攻击下相对网络效率变化.jpg -------------------------------------------------------------------------------- /主要分析结果(数据见README.md分享链接)/蓄意攻击下网络最大连通子图尺寸变化.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QingTianLuo/2022-statistical-modeling/24cbe859bf35639c90b0798ebf2631f75af0c691/主要分析结果(数据见README.md分享链接)/蓄意攻击下网络最大连通子图尺寸变化.jpg -------------------------------------------------------------------------------- /主要分析结果(数据见README.md分享链接)/边际期望损失.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QingTianLuo/2022-statistical-modeling/24cbe859bf35639c90b0798ebf2631f75af0c691/主要分析结果(数据见README.md分享链接)/边际期望损失.jpg -------------------------------------------------------------------------------- /主要分析结果(数据见README.md分享链接)/阈值选取参考-终.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QingTianLuo/2022-statistical-modeling/24cbe859bf35639c90b0798ebf2631f75af0c691/主要分析结果(数据见README.md分享链接)/阈值选取参考-终.jpg -------------------------------------------------------------------------------- /主要分析结果(数据见README.md分享链接)/随机攻击下相对网络效率变化.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QingTianLuo/2022-statistical-modeling/24cbe859bf35639c90b0798ebf2631f75af0c691/主要分析结果(数据见README.md分享链接)/随机攻击下相对网络效率变化.jpg -------------------------------------------------------------------------------- /主要分析结果(数据见README.md分享链接)/随机攻击下网络最大连通子图尺寸变化.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QingTianLuo/2022-statistical-modeling/24cbe859bf35639c90b0798ebf2631f75af0c691/主要分析结果(数据见README.md分享链接)/随机攻击下网络最大连通子图尺寸变化.jpg --------------------------------------------------------------------------------