├── .gitattributes
├── .gitignore
├── LICENSE
├── README.md
├── RandLANet.py
├── compile_op.sh
├── helper_ply.py
├── helper_requirements.txt
├── helper_tf_util.py
├── helper_tool.py
├── imgs
├── S3DIS_area2.gif
├── S3DIS_area3.gif
├── Semantic3D-1.gif
├── Semantic3D-3.gif
├── Semantic3D-4.gif
└── SemanticKITTI-2.gif
├── jobs_6_fold_cv_s3dis.sh
├── jobs_test_semantickitti.sh
├── main_S3DIS.py
├── main_Semantic3D.py
├── main_SemanticKITTI.py
├── tester_S3DIS.py
├── tester_Semantic3D.py
├── tester_SemanticKITTI.py
└── utils
├── 6_fold_cv.py
├── cpp_wrappers
├── compile_wrappers.sh
├── cpp_subsampling
│ ├── grid_subsampling
│ │ ├── grid_subsampling.cpp
│ │ └── grid_subsampling.h
│ ├── setup.py
│ └── wrapper.cpp
└── cpp_utils
│ ├── cloud
│ ├── cloud.cpp
│ └── cloud.h
│ └── nanoflann
│ └── nanoflann.hpp
├── data_prepare_s3dis.py
├── data_prepare_semantic3d.py
├── data_prepare_semantickitti.py
├── download_semantic3d.sh
├── meta
├── anno_paths.txt
└── class_names.txt
├── nearest_neighbors
├── KDTreeTableAdaptor.h
├── knn.pyx
├── knn_.cxx
├── knn_.h
├── nanoflann.hpp
├── setup.py
└── test.py
└── semantic-kitti.yaml
/.gitattributes:
--------------------------------------------------------------------------------
1 | *.sh linguist-language=python
2 | *.h linguist-language=python
3 | *.hpp linguist-language=python
4 |
5 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .idea
2 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 |
2 | # Attribution-NonCommercial-ShareAlike 4.0 International
3 |
4 | Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.
5 |
6 | ### Using Creative Commons Public Licenses
7 |
8 | Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses.
9 |
10 | * __Considerations for licensors:__ Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. [More considerations for licensors](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors).
11 |
12 | * __Considerations for the public:__ By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. [More considerations for the public](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees).
13 |
14 | ## Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License
15 |
16 | By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.
17 |
18 | ### Section 1 – Definitions.
19 |
20 | a. __Adapted Material__ means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
21 |
22 | b. __Adapter's License__ means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.
23 |
24 | c. __BY-NC-SA Compatible License__ means a license listed at [creativecommons.org/compatiblelicenses](http://creativecommons.org/compatiblelicenses), approved by Creative Commons as essentially the equivalent of this Public License.
25 |
26 | d. __Copyright and Similar Rights__ means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
27 |
28 | e. __Effective Technological Measures__ means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
29 |
30 | f. __Exceptions and Limitations__ means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
31 |
32 | g. __License Elements__ means the license attributes listed in the name of a Creative Commons Public License. The License Elements of this Public License are Attribution, NonCommercial, and ShareAlike.
33 |
34 | h. __Licensed Material__ means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
35 |
36 | i. __Licensed Rights__ means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
37 |
38 | j. __Licensor__ means the individual(s) or entity(ies) granting rights under this Public License.
39 |
40 | k. __NonCommercial__ means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.
41 |
42 | l. __Share__ means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
43 |
44 | m. __Sui Generis Database Rights__ means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
45 |
46 | n. __You__ means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.
47 |
48 | ### Section 2 – Scope.
49 |
50 | a. ___License grant.___
51 |
52 | 1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
53 |
54 | A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
55 |
56 | B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.
57 |
58 | 2. __Exceptions and Limitations.__ For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
59 |
60 | 3. __Term.__ The term of this Public License is specified in Section 6(a).
61 |
62 | 4. __Media and formats; technical modifications allowed.__ The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
63 |
64 | 5. __Downstream recipients.__
65 |
66 | A. __Offer from the Licensor – Licensed Material.__ Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
67 |
68 | B. __Additional offer from the Licensor – Adapted Material.__ Every recipient of Adapted Material from You automatically receives an offer from the Licensor to exercise the Licensed Rights in the Adapted Material under the conditions of the Adapter’s License You apply.
69 |
70 | C. __No downstream restrictions.__ You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
71 |
72 | 6. __No endorsement.__ Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).
73 |
74 | b. ___Other rights.___
75 |
76 | 1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
77 |
78 | 2. Patent and trademark rights are not licensed under this Public License.
79 |
80 | 3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.
81 |
82 | ### Section 3 – License Conditions.
83 |
84 | Your exercise of the Licensed Rights is expressly made subject to the following conditions.
85 |
86 | a. ___Attribution.___
87 |
88 | 1. If You Share the Licensed Material (including in modified form), You must:
89 |
90 | A. retain the following if it is supplied by the Licensor with the Licensed Material:
91 |
92 | i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
93 |
94 | ii. a copyright notice;
95 |
96 | iii. a notice that refers to this Public License;
97 |
98 | iv. a notice that refers to the disclaimer of warranties;
99 |
100 | v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
101 |
102 | B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
103 |
104 | C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
105 |
106 | 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
107 |
108 | 3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
109 |
110 | b. ___ShareAlike.___
111 |
112 | In addition to the conditions in Section 3(a), if You Share Adapted Material You produce, the following conditions also apply.
113 |
114 | 1. The Adapter’s License You apply must be a Creative Commons license with the same License Elements, this version or later, or a BY-NC-SA Compatible License.
115 |
116 | 2. You must include the text of, or the URI or hyperlink to, the Adapter's License You apply. You may satisfy this condition in any reasonable manner based on the medium, means, and context in which You Share Adapted Material.
117 |
118 | 3. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, Adapted Material that restrict exercise of the rights granted under the Adapter's License You apply.
119 |
120 | ### Section 4 – Sui Generis Database Rights.
121 |
122 | Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:
123 |
124 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;
125 |
126 | b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material, including for purposes of Section 3(b); and
127 |
128 | c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.
129 |
130 | For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.
131 |
132 | ### Section 5 – Disclaimer of Warranties and Limitation of Liability.
133 |
134 | a. __Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.__
135 |
136 | b. __To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.__
137 |
138 | c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
139 |
140 | ### Section 6 – Term and Termination.
141 |
142 | a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.
143 |
144 | b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
145 |
146 | 1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
147 |
148 | 2. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
149 |
150 | For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
151 |
152 | c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
153 |
154 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
155 |
156 | ### Section 7 – Other Terms and Conditions.
157 |
158 | a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
159 |
160 | b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.
161 |
162 | ### Section 8 – Interpretation.
163 |
164 | a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
165 |
166 | b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
167 |
168 | c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
169 |
170 | d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.
171 |
172 | ```
173 | Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at [creativecommons.org/policies](http://creativecommons.org/policies), Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.
174 |
175 | Creative Commons may be contacted at [creativecommons.org](http://creativecommons.org/).
176 | ```
177 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | [](https://paperswithcode.com/sota/semantic-segmentation-on-semantic3d?p=191111236)
2 | [](https://paperswithcode.com/sota/3d-semantic-segmentation-on-semantickitti?p=191111236)
3 | [](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode)
4 |
5 | # RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020)
6 |
7 | This is the official implementation of **RandLA-Net** (CVPR2020, Oral presentation), a simple and efficient neural architecture for semantic segmentation of large-scale 3D point clouds. For technical details, please refer to:
8 |
9 | **RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds**
10 | [Qingyong Hu](https://www.cs.ox.ac.uk/people/qingyong.hu/), [Bo Yang*](https://yang7879.github.io/), [Linhai Xie](https://www.cs.ox.ac.uk/people/linhai.xie/), [Stefano Rosa](https://www.cs.ox.ac.uk/people/stefano.rosa/), [Yulan Guo](http://yulanguo.me/), [Zhihua Wang](https://www.cs.ox.ac.uk/people/zhihua.wang/), [Niki Trigoni](https://www.cs.ox.ac.uk/people/niki.trigoni/), [Andrew Markham](https://www.cs.ox.ac.uk/people/andrew.markham/).
11 | **[[Paper](https://arxiv.org/abs/1911.11236)] [[Video](https://youtu.be/Ar3eY_lwzMk)] [[Blog](https://zhuanlan.zhihu.com/p/105433460)] [[Project page](http://randla-net.cs.ox.ac.uk/)]**
12 |
13 |
14 |
15 |
16 |
17 |
18 | ### (1) Setup
19 | This code has been tested with Python 3.5, Tensorflow 1.11, CUDA 9.0 and cuDNN 7.4.1 on Ubuntu 16.04.
20 |
21 | - Clone the repository
22 | ```
23 | git clone --depth=1 https://github.com/QingyongHu/RandLA-Net && cd RandLA-Net
24 | ```
25 | - Setup python environment
26 | ```
27 | conda create -n randlanet python=3.5
28 | source activate randlanet
29 | pip install -r helper_requirements.txt
30 | sh compile_op.sh
31 | ```
32 |
33 | **Update 03/21/2020, pre-trained models and results are available now.**
34 | You can download the pre-trained models and results [here](https://drive.google.com/open?id=1iU8yviO3TP87-IexBXsu13g6NklwEkXB).
35 | Note that, please specify the model path in the main function (e.g., `main_S3DIS.py`) if you want to use the pre-trained model and have a quick try of our RandLA-Net.
36 |
37 | ### (2) S3DIS
38 | S3DIS dataset can be found
39 | here.
40 | Download the files named "Stanford3dDataset_v1.2_Aligned_Version.zip". Uncompress the folder and move it to
41 | `/data/S3DIS`.
42 |
43 | - Preparing the dataset:
44 | ```
45 | python utils/data_prepare_s3dis.py
46 | ```
47 | - Start 6-fold cross validation:
48 | ```
49 | sh jobs_6_fold_cv_s3dis.sh
50 | ```
51 | - Move all the generated results (*.ply) in `/test` folder to `/data/S3DIS/results`, calculate the final mean IoU results:
52 | ```
53 | python utils/6_fold_cv.py
54 | ```
55 |
56 | Quantitative results of different approaches on S3DIS dataset (6-fold cross-validation):
57 |
58 | 
59 |
60 | Qualitative results of our RandLA-Net:
61 |
62 | |  |  |
63 | | ------------------------------ | ---------------------------- |
64 |
65 |
66 |
67 | ### (3) Semantic3D
68 | 7zip is required to uncompress the raw data in this dataset, to install p7zip:
69 | ```
70 | sudo apt-get install p7zip-full
71 | ```
72 | - Download and extract the dataset. First, please specify the path of the dataset by changing the `BASE_DIR` in "download_semantic3d.sh"
73 | ```
74 | sh utils/download_semantic3d.sh
75 | ```
76 | - Preparing the dataset:
77 | ```
78 | python utils/data_prepare_semantic3d.py
79 | ```
80 | - Start training:
81 | ```
82 | python main_Semantic3D.py --mode train --gpu 0
83 | ```
84 | - Evaluation:
85 | ```
86 | python main_Semantic3D.py --mode test --gpu 0
87 | ```
88 | Quantitative results of different approaches on Semantic3D (reduced-8):
89 |
90 | 
91 |
92 | Qualitative results of our RandLA-Net:
93 |
94 | |  |  |
95 | | -------------------------------- | ------------------------------- |
96 | |  |  |
97 |
98 |
99 |
100 | **Note:**
101 | - Preferably with more than 64G RAM to process this dataset due to the large volume of point cloud
102 |
103 |
104 | ### (4) SemanticKITTI
105 |
106 | SemanticKITTI dataset can be found here. Download the files
107 | related to semantic segmentation and extract everything into the same folder. Uncompress the folder and move it to
108 | `/data/semantic_kitti/dataset`.
109 |
110 | - Preparing the dataset:
111 | ```
112 | python utils/data_prepare_semantickitti.py
113 | ```
114 |
115 | - Start training:
116 | ```
117 | python main_SemanticKITTI.py --mode train --gpu 0
118 | ```
119 |
120 | - Evaluation:
121 | ```
122 | sh jobs_test_semantickitti.sh
123 | ```
124 |
125 | Quantitative results of different approaches on SemanticKITTI dataset:
126 |
127 | 
128 |
129 | Qualitative results of our RandLA-Net:
130 |
131 | 
132 |
133 |
134 | ### (5) Demo
135 |
136 |
137 |
138 |
139 | ### Citation
140 | If you find our work useful in your research, please consider citing:
141 |
142 | @article{hu2019randla,
143 | title={RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds},
144 | author={Hu, Qingyong and Yang, Bo and Xie, Linhai and Rosa, Stefano and Guo, Yulan and Wang, Zhihua and Trigoni, Niki and Markham, Andrew},
145 | journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
146 | year={2020}
147 | }
148 |
149 | @article{hu2021learning,
150 | title={Learning Semantic Segmentation of Large-Scale Point Clouds with Random Sampling},
151 | author={Hu, Qingyong and Yang, Bo and Xie, Linhai and Rosa, Stefano and Guo, Yulan and Wang, Zhihua and Trigoni, Niki and Markham, Andrew},
152 | journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
153 | year={2021},
154 | publisher={IEEE}
155 | }
156 |
157 |
158 | ### Acknowledgment
159 | - Part of our code refers to nanoflann library and the the recent work KPConv.
160 | - We use blender to make the video demo.
161 |
162 |
163 | ### License
164 | Licensed under the CC BY-NC-SA 4.0 license, see [LICENSE](./LICENSE).
165 |
166 |
167 | ### Updates
168 | * 21/03/2020: Updating all experimental results
169 | * 21/03/2020: Adding pretrained models and results
170 | * 02/03/2020: Code available!
171 | * 15/11/2019: Initial release!
172 |
173 | ## Related Repos
174 | 1. [SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey](https://github.com/QingyongHu/SoTA-Point-Cloud) 
175 | 2. [SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds](https://github.com/QingyongHu/SpinNet) 
176 | 3. [3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds](https://github.com/Yang7879/3D-BoNet) 
177 | 4. [SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration](https://github.com/QingyongHu/SpinNet) 
178 | 5. [SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels](https://github.com/QingyongHu/SQN) 
179 |
180 |
181 |
--------------------------------------------------------------------------------
/RandLANet.py:
--------------------------------------------------------------------------------
1 | from os.path import exists, join
2 | from os import makedirs
3 | from sklearn.metrics import confusion_matrix
4 | from helper_tool import DataProcessing as DP
5 | import tensorflow as tf
6 | import numpy as np
7 | import helper_tf_util
8 | import time
9 |
10 |
11 | def log_out(out_str, f_out):
12 | f_out.write(out_str + '\n')
13 | f_out.flush()
14 | print(out_str)
15 |
16 |
17 | class Network:
18 | def __init__(self, dataset, config):
19 | flat_inputs = dataset.flat_inputs
20 | self.config = config
21 | # Path of the result folder
22 | if self.config.saving:
23 | if self.config.saving_path is None:
24 | self.saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
25 | else:
26 | self.saving_path = self.config.saving_path
27 | makedirs(self.saving_path) if not exists(self.saving_path) else None
28 |
29 | with tf.variable_scope('inputs'):
30 | self.inputs = dict()
31 | num_layers = self.config.num_layers
32 | self.inputs['xyz'] = flat_inputs[:num_layers]
33 | self.inputs['neigh_idx'] = flat_inputs[num_layers: 2 * num_layers]
34 | self.inputs['sub_idx'] = flat_inputs[2 * num_layers:3 * num_layers]
35 | self.inputs['interp_idx'] = flat_inputs[3 * num_layers:4 * num_layers]
36 | self.inputs['features'] = flat_inputs[4 * num_layers]
37 | self.inputs['labels'] = flat_inputs[4 * num_layers + 1]
38 | self.inputs['input_inds'] = flat_inputs[4 * num_layers + 2]
39 | self.inputs['cloud_inds'] = flat_inputs[4 * num_layers + 3]
40 |
41 | self.labels = self.inputs['labels']
42 | self.is_training = tf.placeholder(tf.bool, shape=())
43 | self.training_step = 1
44 | self.training_epoch = 0
45 | self.correct_prediction = 0
46 | self.accuracy = 0
47 | self.mIou_list = [0]
48 | self.class_weights = DP.get_class_weights(dataset.name)
49 | self.Log_file = open('log_train_' + dataset.name + str(dataset.val_split) + '.txt', 'a')
50 |
51 | with tf.variable_scope('layers'):
52 | self.logits = self.inference(self.inputs, self.is_training)
53 |
54 | #####################################################################
55 | # Ignore the invalid point (unlabeled) when calculating the loss #
56 | #####################################################################
57 | with tf.variable_scope('loss'):
58 | self.logits = tf.reshape(self.logits, [-1, config.num_classes])
59 | self.labels = tf.reshape(self.labels, [-1])
60 |
61 | # Boolean mask of points that should be ignored
62 | ignored_bool = tf.zeros_like(self.labels, dtype=tf.bool)
63 | for ign_label in self.config.ignored_label_inds:
64 | ignored_bool = tf.logical_or(ignored_bool, tf.equal(self.labels, ign_label))
65 |
66 | # Collect logits and labels that are not ignored
67 | valid_idx = tf.squeeze(tf.where(tf.logical_not(ignored_bool)))
68 | valid_logits = tf.gather(self.logits, valid_idx, axis=0)
69 | valid_labels_init = tf.gather(self.labels, valid_idx, axis=0)
70 |
71 | # Reduce label values in the range of logit shape
72 | reducing_list = tf.range(self.config.num_classes, dtype=tf.int32)
73 | inserted_value = tf.zeros((1,), dtype=tf.int32)
74 | for ign_label in self.config.ignored_label_inds:
75 | reducing_list = tf.concat([reducing_list[:ign_label], inserted_value, reducing_list[ign_label:]], 0)
76 | valid_labels = tf.gather(reducing_list, valid_labels_init)
77 |
78 | self.loss = self.get_loss(valid_logits, valid_labels, self.class_weights)
79 |
80 | with tf.variable_scope('optimizer'):
81 | self.learning_rate = tf.Variable(config.learning_rate, trainable=False, name='learning_rate')
82 | self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
83 | self.extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
84 |
85 | with tf.variable_scope('results'):
86 | self.correct_prediction = tf.nn.in_top_k(valid_logits, valid_labels, 1)
87 | self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
88 | self.prob_logits = tf.nn.softmax(self.logits)
89 |
90 | tf.summary.scalar('learning_rate', self.learning_rate)
91 | tf.summary.scalar('loss', self.loss)
92 | tf.summary.scalar('accuracy', self.accuracy)
93 |
94 | my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
95 | self.saver = tf.train.Saver(my_vars, max_to_keep=100)
96 | c_proto = tf.ConfigProto()
97 | c_proto.gpu_options.allow_growth = True
98 | self.sess = tf.Session(config=c_proto)
99 | self.merged = tf.summary.merge_all()
100 | self.train_writer = tf.summary.FileWriter(config.train_sum_dir, self.sess.graph)
101 | self.sess.run(tf.global_variables_initializer())
102 |
103 | def inference(self, inputs, is_training):
104 |
105 | d_out = self.config.d_out
106 | feature = inputs['features']
107 | feature = tf.layers.dense(feature, 8, activation=None, name='fc0')
108 | feature = tf.nn.leaky_relu(tf.layers.batch_normalization(feature, -1, 0.99, 1e-6, training=is_training))
109 | feature = tf.expand_dims(feature, axis=2)
110 |
111 | # ###########################Encoder############################
112 | f_encoder_list = []
113 | for i in range(self.config.num_layers):
114 | f_encoder_i = self.dilated_res_block(feature, inputs['xyz'][i], inputs['neigh_idx'][i], d_out[i],
115 | 'Encoder_layer_' + str(i), is_training)
116 | f_sampled_i = self.random_sample(f_encoder_i, inputs['sub_idx'][i])
117 | feature = f_sampled_i
118 | if i == 0:
119 | f_encoder_list.append(f_encoder_i)
120 | f_encoder_list.append(f_sampled_i)
121 | # ###########################Encoder############################
122 |
123 | feature = helper_tf_util.conv2d(f_encoder_list[-1], f_encoder_list[-1].get_shape()[3].value, [1, 1],
124 | 'decoder_0',
125 | [1, 1], 'VALID', True, is_training)
126 |
127 | # ###########################Decoder############################
128 | f_decoder_list = []
129 | for j in range(self.config.num_layers):
130 | f_interp_i = self.nearest_interpolation(feature, inputs['interp_idx'][-j - 1])
131 | f_decoder_i = helper_tf_util.conv2d_transpose(tf.concat([f_encoder_list[-j - 2], f_interp_i], axis=3),
132 | f_encoder_list[-j - 2].get_shape()[-1].value, [1, 1],
133 | 'Decoder_layer_' + str(j), [1, 1], 'VALID', bn=True,
134 | is_training=is_training)
135 | feature = f_decoder_i
136 | f_decoder_list.append(f_decoder_i)
137 | # ###########################Decoder############################
138 |
139 | f_layer_fc1 = helper_tf_util.conv2d(f_decoder_list[-1], 64, [1, 1], 'fc1', [1, 1], 'VALID', True, is_training)
140 | f_layer_fc2 = helper_tf_util.conv2d(f_layer_fc1, 32, [1, 1], 'fc2', [1, 1], 'VALID', True, is_training)
141 | f_layer_drop = helper_tf_util.dropout(f_layer_fc2, keep_prob=0.5, is_training=is_training, scope='dp1')
142 | f_layer_fc3 = helper_tf_util.conv2d(f_layer_drop, self.config.num_classes, [1, 1], 'fc', [1, 1], 'VALID', False,
143 | is_training, activation_fn=None)
144 | f_out = tf.squeeze(f_layer_fc3, [2])
145 | return f_out
146 |
147 | def train(self, dataset):
148 | log_out('****EPOCH {}****'.format(self.training_epoch), self.Log_file)
149 | self.sess.run(dataset.train_init_op)
150 | while self.training_epoch < self.config.max_epoch:
151 | t_start = time.time()
152 | try:
153 | ops = [self.train_op,
154 | self.extra_update_ops,
155 | self.merged,
156 | self.loss,
157 | self.logits,
158 | self.labels,
159 | self.accuracy]
160 | _, _, summary, l_out, probs, labels, acc = self.sess.run(ops, {self.is_training: True})
161 | self.train_writer.add_summary(summary, self.training_step)
162 | t_end = time.time()
163 | if self.training_step % 50 == 0:
164 | message = 'Step {:08d} L_out={:5.3f} Acc={:4.2f} ''---{:8.2f} ms/batch'
165 | log_out(message.format(self.training_step, l_out, acc, 1000 * (t_end - t_start)), self.Log_file)
166 | self.training_step += 1
167 |
168 | except tf.errors.OutOfRangeError:
169 |
170 | m_iou = self.evaluate(dataset)
171 | if m_iou > np.max(self.mIou_list):
172 | # Save the best model
173 | snapshot_directory = join(self.saving_path, 'snapshots')
174 | makedirs(snapshot_directory) if not exists(snapshot_directory) else None
175 | self.saver.save(self.sess, snapshot_directory + '/snap', global_step=self.training_step)
176 | self.mIou_list.append(m_iou)
177 | log_out('Best m_IoU is: {:5.3f}'.format(max(self.mIou_list)), self.Log_file)
178 |
179 | self.training_epoch += 1
180 | self.sess.run(dataset.train_init_op)
181 | # Update learning rate
182 | op = self.learning_rate.assign(tf.multiply(self.learning_rate,
183 | self.config.lr_decays[self.training_epoch]))
184 | self.sess.run(op)
185 | log_out('****EPOCH {}****'.format(self.training_epoch), self.Log_file)
186 |
187 | except tf.errors.InvalidArgumentError as e:
188 |
189 | print('Caught a NaN error :')
190 | print(e.error_code)
191 | print(e.message)
192 | print(e.op)
193 | print(e.op.name)
194 | print([t.name for t in e.op.inputs])
195 | print([t.name for t in e.op.outputs])
196 |
197 | a = 1 / 0
198 |
199 | print('finished')
200 | self.sess.close()
201 |
202 | def evaluate(self, dataset):
203 |
204 | # Initialise iterator with validation data
205 | self.sess.run(dataset.val_init_op)
206 |
207 | gt_classes = [0 for _ in range(self.config.num_classes)]
208 | positive_classes = [0 for _ in range(self.config.num_classes)]
209 | true_positive_classes = [0 for _ in range(self.config.num_classes)]
210 | val_total_correct = 0
211 | val_total_seen = 0
212 |
213 | for step_id in range(self.config.val_steps):
214 | if step_id % 50 == 0:
215 | print(str(step_id) + ' / ' + str(self.config.val_steps))
216 | try:
217 | ops = (self.prob_logits, self.labels, self.accuracy)
218 | stacked_prob, labels, acc = self.sess.run(ops, {self.is_training: False})
219 | pred = np.argmax(stacked_prob, 1)
220 | if not self.config.ignored_label_inds:
221 | pred_valid = pred
222 | labels_valid = labels
223 | else:
224 | invalid_idx = np.where(labels == self.config.ignored_label_inds)[0]
225 | labels_valid = np.delete(labels, invalid_idx)
226 | labels_valid = labels_valid - 1
227 | pred_valid = np.delete(pred, invalid_idx)
228 |
229 | correct = np.sum(pred_valid == labels_valid)
230 | val_total_correct += correct
231 | val_total_seen += len(labels_valid)
232 |
233 | conf_matrix = confusion_matrix(labels_valid, pred_valid, np.arange(0, self.config.num_classes, 1))
234 | gt_classes += np.sum(conf_matrix, axis=1)
235 | positive_classes += np.sum(conf_matrix, axis=0)
236 | true_positive_classes += np.diagonal(conf_matrix)
237 |
238 | except tf.errors.OutOfRangeError:
239 | break
240 |
241 | iou_list = []
242 | for n in range(0, self.config.num_classes, 1):
243 | iou = true_positive_classes[n] / float(gt_classes[n] + positive_classes[n] - true_positive_classes[n])
244 | iou_list.append(iou)
245 | mean_iou = sum(iou_list) / float(self.config.num_classes)
246 |
247 | log_out('eval accuracy: {}'.format(val_total_correct / float(val_total_seen)), self.Log_file)
248 | log_out('mean IOU:{}'.format(mean_iou), self.Log_file)
249 |
250 | mean_iou = 100 * mean_iou
251 | log_out('Mean IoU = {:.1f}%'.format(mean_iou), self.Log_file)
252 | s = '{:5.2f} | '.format(mean_iou)
253 | for IoU in iou_list:
254 | s += '{:5.2f} '.format(100 * IoU)
255 | log_out('-' * len(s), self.Log_file)
256 | log_out(s, self.Log_file)
257 | log_out('-' * len(s) + '\n', self.Log_file)
258 | return mean_iou
259 |
260 | def get_loss(self, logits, labels, pre_cal_weights):
261 | # calculate the weighted cross entropy according to the inverse frequency
262 | class_weights = tf.convert_to_tensor(pre_cal_weights, dtype=tf.float32)
263 | one_hot_labels = tf.one_hot(labels, depth=self.config.num_classes)
264 | weights = tf.reduce_sum(class_weights * one_hot_labels, axis=1)
265 | unweighted_losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=one_hot_labels)
266 | weighted_losses = unweighted_losses * weights
267 | output_loss = tf.reduce_mean(weighted_losses)
268 | return output_loss
269 |
270 | def dilated_res_block(self, feature, xyz, neigh_idx, d_out, name, is_training):
271 | f_pc = helper_tf_util.conv2d(feature, d_out // 2, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
272 | f_pc = self.building_block(xyz, f_pc, neigh_idx, d_out, name + 'LFA', is_training)
273 | f_pc = helper_tf_util.conv2d(f_pc, d_out * 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training,
274 | activation_fn=None)
275 | shortcut = helper_tf_util.conv2d(feature, d_out * 2, [1, 1], name + 'shortcut', [1, 1], 'VALID',
276 | activation_fn=None, bn=True, is_training=is_training)
277 | return tf.nn.leaky_relu(f_pc + shortcut)
278 |
279 | def building_block(self, xyz, feature, neigh_idx, d_out, name, is_training):
280 | d_in = feature.get_shape()[-1].value
281 | f_xyz = self.relative_pos_encoding(xyz, neigh_idx)
282 | f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
283 | f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2), neigh_idx)
284 | f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
285 | f_pc_agg = self.att_pooling(f_concat, d_out // 2, name + 'att_pooling_1', is_training)
286 |
287 | f_xyz = helper_tf_util.conv2d(f_xyz, d_out // 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training)
288 | f_neighbours = self.gather_neighbour(tf.squeeze(f_pc_agg, axis=2), neigh_idx)
289 | f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
290 | f_pc_agg = self.att_pooling(f_concat, d_out, name + 'att_pooling_2', is_training)
291 | return f_pc_agg
292 |
293 | def relative_pos_encoding(self, xyz, neigh_idx):
294 | neighbor_xyz = self.gather_neighbour(xyz, neigh_idx)
295 | xyz_tile = tf.tile(tf.expand_dims(xyz, axis=2), [1, 1, tf.shape(neigh_idx)[-1], 1])
296 | relative_xyz = xyz_tile - neighbor_xyz
297 | relative_dis = tf.sqrt(tf.reduce_sum(tf.square(relative_xyz), axis=-1, keepdims=True))
298 | relative_feature = tf.concat([relative_dis, relative_xyz, xyz_tile, neighbor_xyz], axis=-1)
299 | return relative_feature
300 |
301 | @staticmethod
302 | def random_sample(feature, pool_idx):
303 | """
304 | :param feature: [B, N, d] input features matrix
305 | :param pool_idx: [B, N', max_num] N' < N, N' is the selected position after pooling
306 | :return: pool_features = [B, N', d] pooled features matrix
307 | """
308 | feature = tf.squeeze(feature, axis=2)
309 | num_neigh = tf.shape(pool_idx)[-1]
310 | d = feature.get_shape()[-1]
311 | batch_size = tf.shape(pool_idx)[0]
312 | pool_idx = tf.reshape(pool_idx, [batch_size, -1])
313 | pool_features = tf.batch_gather(feature, pool_idx)
314 | pool_features = tf.reshape(pool_features, [batch_size, -1, num_neigh, d])
315 | pool_features = tf.reduce_max(pool_features, axis=2, keepdims=True)
316 | return pool_features
317 |
318 | @staticmethod
319 | def nearest_interpolation(feature, interp_idx):
320 | """
321 | :param feature: [B, N, d] input features matrix
322 | :param interp_idx: [B, up_num_points, 1] nearest neighbour index
323 | :return: [B, up_num_points, d] interpolated features matrix
324 | """
325 | feature = tf.squeeze(feature, axis=2)
326 | batch_size = tf.shape(interp_idx)[0]
327 | up_num_points = tf.shape(interp_idx)[1]
328 | interp_idx = tf.reshape(interp_idx, [batch_size, up_num_points])
329 | interpolated_features = tf.batch_gather(feature, interp_idx)
330 | interpolated_features = tf.expand_dims(interpolated_features, axis=2)
331 | return interpolated_features
332 |
333 | @staticmethod
334 | def gather_neighbour(pc, neighbor_idx):
335 | # gather the coordinates or features of neighboring points
336 | batch_size = tf.shape(pc)[0]
337 | num_points = tf.shape(pc)[1]
338 | d = pc.get_shape()[2].value
339 | index_input = tf.reshape(neighbor_idx, shape=[batch_size, -1])
340 | features = tf.batch_gather(pc, index_input)
341 | features = tf.reshape(features, [batch_size, num_points, tf.shape(neighbor_idx)[-1], d])
342 | return features
343 |
344 | @staticmethod
345 | def att_pooling(feature_set, d_out, name, is_training):
346 | batch_size = tf.shape(feature_set)[0]
347 | num_points = tf.shape(feature_set)[1]
348 | num_neigh = tf.shape(feature_set)[2]
349 | d = feature_set.get_shape()[3].value
350 | f_reshaped = tf.reshape(feature_set, shape=[-1, num_neigh, d])
351 | att_activation = tf.layers.dense(f_reshaped, d, activation=None, use_bias=False, name=name + 'fc')
352 | att_scores = tf.nn.softmax(att_activation, axis=1)
353 | f_agg = f_reshaped * att_scores
354 | f_agg = tf.reduce_sum(f_agg, axis=1)
355 | f_agg = tf.reshape(f_agg, [batch_size, num_points, 1, d])
356 | f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp', [1, 1], 'VALID', True, is_training)
357 | return f_agg
358 |
--------------------------------------------------------------------------------
/compile_op.sh:
--------------------------------------------------------------------------------
1 | cd utils/nearest_neighbors
2 | python setup.py install --home="."
3 | cd ../../
4 |
5 | cd utils/cpp_wrappers
6 | sh compile_wrappers.sh
7 | cd ../../../
--------------------------------------------------------------------------------
/helper_ply.py:
--------------------------------------------------------------------------------
1 | #
2 | #
3 | # 0===============================0
4 | # | PLY files reader/writer |
5 | # 0===============================0
6 | #
7 | #
8 | # ----------------------------------------------------------------------------------------------------------------------
9 | #
10 | # function to read/write .ply files
11 | #
12 | # ----------------------------------------------------------------------------------------------------------------------
13 | #
14 | # Hugues THOMAS - 10/02/2017
15 | #
16 |
17 |
18 | # ----------------------------------------------------------------------------------------------------------------------
19 | #
20 | # Imports and global variables
21 | # \**********************************/
22 | #
23 |
24 |
25 | # Basic libs
26 | import numpy as np
27 | import sys
28 |
29 |
30 | # Define PLY types
31 | ply_dtypes = dict([
32 | (b'int8', 'i1'),
33 | (b'char', 'i1'),
34 | (b'uint8', 'u1'),
35 | (b'uchar', 'u1'),
36 | (b'int16', 'i2'),
37 | (b'short', 'i2'),
38 | (b'uint16', 'u2'),
39 | (b'ushort', 'u2'),
40 | (b'int32', 'i4'),
41 | (b'int', 'i4'),
42 | (b'uint32', 'u4'),
43 | (b'uint', 'u4'),
44 | (b'float32', 'f4'),
45 | (b'float', 'f4'),
46 | (b'float64', 'f8'),
47 | (b'double', 'f8')
48 | ])
49 |
50 | # Numpy reader format
51 | valid_formats = {'ascii': '', 'binary_big_endian': '>',
52 | 'binary_little_endian': '<'}
53 |
54 |
55 | # ----------------------------------------------------------------------------------------------------------------------
56 | #
57 | # Functions
58 | # \***************/
59 | #
60 |
61 |
62 | def parse_header(plyfile, ext):
63 | # Variables
64 | line = []
65 | properties = []
66 | num_points = None
67 |
68 | while b'end_header' not in line and line != b'':
69 | line = plyfile.readline()
70 |
71 | if b'element' in line:
72 | line = line.split()
73 | num_points = int(line[2])
74 |
75 | elif b'property' in line:
76 | line = line.split()
77 | properties.append((line[2].decode(), ext + ply_dtypes[line[1]]))
78 |
79 | return num_points, properties
80 |
81 |
82 | def parse_mesh_header(plyfile, ext):
83 | # Variables
84 | line = []
85 | vertex_properties = []
86 | num_points = None
87 | num_faces = None
88 | current_element = None
89 |
90 |
91 | while b'end_header' not in line and line != b'':
92 | line = plyfile.readline()
93 |
94 | # Find point element
95 | if b'element vertex' in line:
96 | current_element = 'vertex'
97 | line = line.split()
98 | num_points = int(line[2])
99 |
100 | elif b'element face' in line:
101 | current_element = 'face'
102 | line = line.split()
103 | num_faces = int(line[2])
104 |
105 | elif b'property' in line:
106 | if current_element == 'vertex':
107 | line = line.split()
108 | vertex_properties.append((line[2].decode(), ext + ply_dtypes[line[1]]))
109 | elif current_element == 'vertex':
110 | if not line.startswith('property list uchar int'):
111 | raise ValueError('Unsupported faces property : ' + line)
112 |
113 | return num_points, num_faces, vertex_properties
114 |
115 |
116 | def read_ply(filename, triangular_mesh=False):
117 | """
118 | Read ".ply" files
119 |
120 | Parameters
121 | ----------
122 | filename : string
123 | the name of the file to read.
124 |
125 | Returns
126 | -------
127 | result : array
128 | data stored in the file
129 |
130 | Examples
131 | --------
132 | Store data in file
133 |
134 | >>> points = np.random.rand(5, 3)
135 | >>> values = np.random.randint(2, size=10)
136 | >>> write_ply('example.ply', [points, values], ['x', 'y', 'z', 'values'])
137 |
138 | Read the file
139 |
140 | >>> data = read_ply('example.ply')
141 | >>> values = data['values']
142 | array([0, 0, 1, 1, 0])
143 |
144 | >>> points = np.vstack((data['x'], data['y'], data['z'])).T
145 | array([[ 0.466 0.595 0.324]
146 | [ 0.538 0.407 0.654]
147 | [ 0.850 0.018 0.988]
148 | [ 0.395 0.394 0.363]
149 | [ 0.873 0.996 0.092]])
150 |
151 | """
152 |
153 | with open(filename, 'rb') as plyfile:
154 |
155 |
156 | # Check if the file start with ply
157 | if b'ply' not in plyfile.readline():
158 | raise ValueError('The file does not start whith the word ply')
159 |
160 | # get binary_little/big or ascii
161 | fmt = plyfile.readline().split()[1].decode()
162 | if fmt == "ascii":
163 | raise ValueError('The file is not binary')
164 |
165 | # get extension for building the numpy dtypes
166 | ext = valid_formats[fmt]
167 |
168 | # PointCloud reader vs mesh reader
169 | if triangular_mesh:
170 |
171 | # Parse header
172 | num_points, num_faces, properties = parse_mesh_header(plyfile, ext)
173 |
174 | # Get point data
175 | vertex_data = np.fromfile(plyfile, dtype=properties, count=num_points)
176 |
177 | # Get face data
178 | face_properties = [('k', ext + 'u1'),
179 | ('v1', ext + 'i4'),
180 | ('v2', ext + 'i4'),
181 | ('v3', ext + 'i4')]
182 | faces_data = np.fromfile(plyfile, dtype=face_properties, count=num_faces)
183 |
184 | # Return vertex data and concatenated faces
185 | faces = np.vstack((faces_data['v1'], faces_data['v2'], faces_data['v3'])).T
186 | data = [vertex_data, faces]
187 |
188 | else:
189 |
190 | # Parse header
191 | num_points, properties = parse_header(plyfile, ext)
192 |
193 | # Get data
194 | data = np.fromfile(plyfile, dtype=properties, count=num_points)
195 |
196 | return data
197 |
198 |
199 | def header_properties(field_list, field_names):
200 |
201 | # List of lines to write
202 | lines = []
203 |
204 | # First line describing element vertex
205 | lines.append('element vertex %d' % field_list[0].shape[0])
206 |
207 | # Properties lines
208 | i = 0
209 | for fields in field_list:
210 | for field in fields.T:
211 | lines.append('property %s %s' % (field.dtype.name, field_names[i]))
212 | i += 1
213 |
214 | return lines
215 |
216 |
217 | def write_ply(filename, field_list, field_names, triangular_faces=None):
218 | """
219 | Write ".ply" files
220 |
221 | Parameters
222 | ----------
223 | filename : string
224 | the name of the file to which the data is saved. A '.ply' extension will be appended to the
225 | file name if it does no already have one.
226 |
227 | field_list : list, tuple, numpy array
228 | the fields to be saved in the ply file. Either a numpy array, a list of numpy arrays or a
229 | tuple of numpy arrays. Each 1D numpy array and each column of 2D numpy arrays are considered
230 | as one field.
231 |
232 | field_names : list
233 | the name of each fields as a list of strings. Has to be the same length as the number of
234 | fields.
235 |
236 | Examples
237 | --------
238 | >>> points = np.random.rand(10, 3)
239 | >>> write_ply('example1.ply', points, ['x', 'y', 'z'])
240 |
241 | >>> values = np.random.randint(2, size=10)
242 | >>> write_ply('example2.ply', [points, values], ['x', 'y', 'z', 'values'])
243 |
244 | >>> colors = np.random.randint(255, size=(10,3), dtype=np.uint8)
245 | >>> field_names = ['x', 'y', 'z', 'red', 'green', 'blue', values']
246 | >>> write_ply('example3.ply', [points, colors, values], field_names)
247 |
248 | """
249 |
250 | # Format list input to the right form
251 | field_list = list(field_list) if (type(field_list) == list or type(field_list) == tuple) else list((field_list,))
252 | for i, field in enumerate(field_list):
253 | if field.ndim < 2:
254 | field_list[i] = field.reshape(-1, 1)
255 | if field.ndim > 2:
256 | print('fields have more than 2 dimensions')
257 | return False
258 |
259 | # check all fields have the same number of data
260 | n_points = [field.shape[0] for field in field_list]
261 | if not np.all(np.equal(n_points, n_points[0])):
262 | print('wrong field dimensions')
263 | return False
264 |
265 | # Check if field_names and field_list have same nb of column
266 | n_fields = np.sum([field.shape[1] for field in field_list])
267 | if (n_fields != len(field_names)):
268 | print('wrong number of field names')
269 | return False
270 |
271 | # Add extension if not there
272 | if not filename.endswith('.ply'):
273 | filename += '.ply'
274 |
275 | # open in text mode to write the header
276 | with open(filename, 'w') as plyfile:
277 |
278 | # First magical word
279 | header = ['ply']
280 |
281 | # Encoding format
282 | header.append('format binary_' + sys.byteorder + '_endian 1.0')
283 |
284 | # Points properties description
285 | header.extend(header_properties(field_list, field_names))
286 |
287 | # Add faces if needded
288 | if triangular_faces is not None:
289 | header.append('element face {:d}'.format(triangular_faces.shape[0]))
290 | header.append('property list uchar int vertex_indices')
291 |
292 | # End of header
293 | header.append('end_header')
294 |
295 | # Write all lines
296 | for line in header:
297 | plyfile.write("%s\n" % line)
298 |
299 | # open in binary/append to use tofile
300 | with open(filename, 'ab') as plyfile:
301 |
302 | # Create a structured array
303 | i = 0
304 | type_list = []
305 | for fields in field_list:
306 | for field in fields.T:
307 | type_list += [(field_names[i], field.dtype.str)]
308 | i += 1
309 | data = np.empty(field_list[0].shape[0], dtype=type_list)
310 | i = 0
311 | for fields in field_list:
312 | for field in fields.T:
313 | data[field_names[i]] = field
314 | i += 1
315 |
316 | data.tofile(plyfile)
317 |
318 | if triangular_faces is not None:
319 | triangular_faces = triangular_faces.astype(np.int32)
320 | type_list = [('k', 'uint8')] + [(str(ind), 'int32') for ind in range(3)]
321 | data = np.empty(triangular_faces.shape[0], dtype=type_list)
322 | data['k'] = np.full((triangular_faces.shape[0],), 3, dtype=np.uint8)
323 | data['0'] = triangular_faces[:, 0]
324 | data['1'] = triangular_faces[:, 1]
325 | data['2'] = triangular_faces[:, 2]
326 | data.tofile(plyfile)
327 |
328 | return True
329 |
330 |
331 | def describe_element(name, df):
332 | """ Takes the columns of the dataframe and builds a ply-like description
333 |
334 | Parameters
335 | ----------
336 | name: str
337 | df: pandas DataFrame
338 |
339 | Returns
340 | -------
341 | element: list[str]
342 | """
343 | property_formats = {'f': 'float', 'u': 'uchar', 'i': 'int'}
344 | element = ['element ' + name + ' ' + str(len(df))]
345 |
346 | if name == 'face':
347 | element.append("property list uchar int points_indices")
348 |
349 | else:
350 | for i in range(len(df.columns)):
351 | # get first letter of dtype to infer format
352 | f = property_formats[str(df.dtypes[i])[0]]
353 | element.append('property ' + f + ' ' + df.columns.values[i])
354 |
355 | return element
356 |
357 |
--------------------------------------------------------------------------------
/helper_requirements.txt:
--------------------------------------------------------------------------------
1 | numpy==1.16.1
2 | h5py==2.10.0
3 | cython==0.29.15
4 | open3d-python==0.3.0
5 | pandas==0.25.3
6 | scikit-learn==0.21.3
7 | scipy==1.4.1
8 | PyYAML==5.4
9 |
--------------------------------------------------------------------------------
/helper_tool.py:
--------------------------------------------------------------------------------
1 | from open3d import linux as open3d
2 | from os.path import join
3 | import numpy as np
4 | import colorsys, random, os, sys
5 | import pandas as pd
6 |
7 | os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
8 |
9 | BASE_DIR = os.path.dirname(os.path.abspath(__file__))
10 |
11 | sys.path.append(BASE_DIR)
12 | sys.path.append(os.path.join(BASE_DIR, 'utils'))
13 |
14 | import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling
15 | import nearest_neighbors.lib.python.nearest_neighbors as nearest_neighbors
16 |
17 |
18 | class ConfigSemanticKITTI:
19 | k_n = 16 # KNN
20 | num_layers = 4 # Number of layers
21 | num_points = 4096 * 11 # Number of input points
22 | num_classes = 19 # Number of valid classes
23 | sub_grid_size = 0.06 # preprocess_parameter
24 |
25 | batch_size = 6 # batch_size during training
26 | val_batch_size = 20 # batch_size during validation and test
27 | train_steps = 500 # Number of steps per epochs
28 | val_steps = 100 # Number of validation steps per epoch
29 |
30 | sub_sampling_ratio = [4, 4, 4, 4] # sampling ratio of random sampling at each layer
31 | d_out = [16, 64, 128, 256] # feature dimension
32 | num_sub_points = [num_points // 4, num_points // 16, num_points // 64, num_points // 256]
33 |
34 | noise_init = 3.5 # noise initial parameter
35 | max_epoch = 100 # maximum epoch during training
36 | learning_rate = 1e-2 # initial learning rate
37 | lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
38 |
39 | train_sum_dir = 'train_log'
40 | saving = True
41 | saving_path = None
42 |
43 |
44 | class ConfigS3DIS:
45 | k_n = 16 # KNN
46 | num_layers = 5 # Number of layers
47 | num_points = 40960 # Number of input points
48 | num_classes = 13 # Number of valid classes
49 | sub_grid_size = 0.04 # preprocess_parameter
50 |
51 | batch_size = 6 # batch_size during training
52 | val_batch_size = 20 # batch_size during validation and test
53 | train_steps = 500 # Number of steps per epochs
54 | val_steps = 100 # Number of validation steps per epoch
55 |
56 | sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer
57 | d_out = [16, 64, 128, 256, 512] # feature dimension
58 |
59 | noise_init = 3.5 # noise initial parameter
60 | max_epoch = 100 # maximum epoch during training
61 | learning_rate = 1e-2 # initial learning rate
62 | lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
63 |
64 | train_sum_dir = 'train_log'
65 | saving = True
66 | saving_path = None
67 |
68 |
69 | class ConfigSemantic3D:
70 | k_n = 16 # KNN
71 | num_layers = 5 # Number of layers
72 | num_points = 65536 # Number of input points
73 | num_classes = 8 # Number of valid classes
74 | sub_grid_size = 0.06 # preprocess_parameter
75 |
76 | batch_size = 4 # batch_size during training
77 | val_batch_size = 16 # batch_size during validation and test
78 | train_steps = 500 # Number of steps per epochs
79 | val_steps = 100 # Number of validation steps per epoch
80 |
81 | sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer
82 | d_out = [16, 64, 128, 256, 512] # feature dimension
83 |
84 | noise_init = 3.5 # noise initial parameter
85 | max_epoch = 100 # maximum epoch during training
86 | learning_rate = 1e-2 # initial learning rate
87 | lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
88 |
89 | train_sum_dir = 'train_log'
90 | saving = True
91 | saving_path = None
92 |
93 | augment_scale_anisotropic = True
94 | augment_symmetries = [True, False, False]
95 | augment_rotation = 'vertical'
96 | augment_scale_min = 0.8
97 | augment_scale_max = 1.2
98 | augment_noise = 0.001
99 | augment_occlusion = 'none'
100 | augment_color = 0.8
101 |
102 |
103 | class DataProcessing:
104 | @staticmethod
105 | def load_pc_semantic3d(filename):
106 | pc_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.float16)
107 | pc = pc_pd.values
108 | return pc
109 |
110 | @staticmethod
111 | def load_label_semantic3d(filename):
112 | label_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.uint8)
113 | cloud_labels = label_pd.values
114 | return cloud_labels
115 |
116 | @staticmethod
117 | def load_pc_kitti(pc_path):
118 | scan = np.fromfile(pc_path, dtype=np.float32)
119 | scan = scan.reshape((-1, 4))
120 | points = scan[:, 0:3] # get xyz
121 | return points
122 |
123 | @staticmethod
124 | def load_label_kitti(label_path, remap_lut):
125 | label = np.fromfile(label_path, dtype=np.uint32)
126 | label = label.reshape((-1))
127 | sem_label = label & 0xFFFF # semantic label in lower half
128 | inst_label = label >> 16 # instance id in upper half
129 | assert ((sem_label + (inst_label << 16) == label).all())
130 | sem_label = remap_lut[sem_label]
131 | return sem_label.astype(np.int32)
132 |
133 | @staticmethod
134 | def get_file_list(dataset_path, test_scan_num):
135 | seq_list = np.sort(os.listdir(dataset_path))
136 |
137 | train_file_list = []
138 | test_file_list = []
139 | val_file_list = []
140 | for seq_id in seq_list:
141 | seq_path = join(dataset_path, seq_id)
142 | pc_path = join(seq_path, 'velodyne')
143 | if seq_id == '08':
144 | val_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
145 | if seq_id == test_scan_num:
146 | test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
147 | elif int(seq_id) >= 11 and seq_id == test_scan_num:
148 | test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
149 | elif seq_id in ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']:
150 | train_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
151 |
152 | train_file_list = np.concatenate(train_file_list, axis=0)
153 | val_file_list = np.concatenate(val_file_list, axis=0)
154 | test_file_list = np.concatenate(test_file_list, axis=0)
155 | return train_file_list, val_file_list, test_file_list
156 |
157 | @staticmethod
158 | def knn_search(support_pts, query_pts, k):
159 | """
160 | :param support_pts: points you have, B*N1*3
161 | :param query_pts: points you want to know the neighbour index, B*N2*3
162 | :param k: Number of neighbours in knn search
163 | :return: neighbor_idx: neighboring points indexes, B*N2*k
164 | """
165 |
166 | neighbor_idx = nearest_neighbors.knn_batch(support_pts, query_pts, k, omp=True)
167 | return neighbor_idx.astype(np.int32)
168 |
169 | @staticmethod
170 | def data_aug(xyz, color, labels, idx, num_out):
171 | num_in = len(xyz)
172 | dup = np.random.choice(num_in, num_out - num_in)
173 | xyz_dup = xyz[dup, ...]
174 | xyz_aug = np.concatenate([xyz, xyz_dup], 0)
175 | color_dup = color[dup, ...]
176 | color_aug = np.concatenate([color, color_dup], 0)
177 | idx_dup = list(range(num_in)) + list(dup)
178 | idx_aug = idx[idx_dup]
179 | label_aug = labels[idx_dup]
180 | return xyz_aug, color_aug, idx_aug, label_aug
181 |
182 | @staticmethod
183 | def shuffle_idx(x):
184 | # random shuffle the index
185 | idx = np.arange(len(x))
186 | np.random.shuffle(idx)
187 | return x[idx]
188 |
189 | @staticmethod
190 | def shuffle_list(data_list):
191 | indices = np.arange(np.shape(data_list)[0])
192 | np.random.shuffle(indices)
193 | data_list = data_list[indices]
194 | return data_list
195 |
196 | @staticmethod
197 | def grid_sub_sampling(points, features=None, labels=None, grid_size=0.1, verbose=0):
198 | """
199 | CPP wrapper for a grid sub_sampling (method = barycenter for points and features
200 | :param points: (N, 3) matrix of input points
201 | :param features: optional (N, d) matrix of features (floating number)
202 | :param labels: optional (N,) matrix of integer labels
203 | :param grid_size: parameter defining the size of grid voxels
204 | :param verbose: 1 to display
205 | :return: sub_sampled points, with features and/or labels depending of the input
206 | """
207 |
208 | if (features is None) and (labels is None):
209 | return cpp_subsampling.compute(points, sampleDl=grid_size, verbose=verbose)
210 | elif labels is None:
211 | return cpp_subsampling.compute(points, features=features, sampleDl=grid_size, verbose=verbose)
212 | elif features is None:
213 | return cpp_subsampling.compute(points, classes=labels, sampleDl=grid_size, verbose=verbose)
214 | else:
215 | return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=grid_size,
216 | verbose=verbose)
217 |
218 | @staticmethod
219 | def IoU_from_confusions(confusions):
220 | """
221 | Computes IoU from confusion matrices.
222 | :param confusions: ([..., n_c, n_c] np.int32). Can be any dimension, the confusion matrices should be described by
223 | the last axes. n_c = number of classes
224 | :return: ([..., n_c] np.float32) IoU score
225 | """
226 |
227 | # Compute TP, FP, FN. This assume that the second to last axis counts the truths (like the first axis of a
228 | # confusion matrix), and that the last axis counts the predictions (like the second axis of a confusion matrix)
229 | TP = np.diagonal(confusions, axis1=-2, axis2=-1)
230 | TP_plus_FN = np.sum(confusions, axis=-1)
231 | TP_plus_FP = np.sum(confusions, axis=-2)
232 |
233 | # Compute IoU
234 | IoU = TP / (TP_plus_FP + TP_plus_FN - TP + 1e-6)
235 |
236 | # Compute mIoU with only the actual classes
237 | mask = TP_plus_FN < 1e-3
238 | counts = np.sum(1 - mask, axis=-1, keepdims=True)
239 | mIoU = np.sum(IoU, axis=-1, keepdims=True) / (counts + 1e-6)
240 |
241 | # If class is absent, place mIoU in place of 0 IoU to get the actual mean later
242 | IoU += mask * mIoU
243 | return IoU
244 |
245 | @staticmethod
246 | def get_class_weights(dataset_name):
247 | # pre-calculate the number of points in each category
248 | num_per_class = []
249 | if dataset_name is 'S3DIS':
250 | num_per_class = np.array([3370714, 2856755, 4919229, 318158, 375640, 478001, 974733,
251 | 650464, 791496, 88727, 1284130, 229758, 2272837], dtype=np.int32)
252 | elif dataset_name is 'Semantic3D':
253 | num_per_class = np.array([5181602, 5012952, 6830086, 1311528, 10476365, 946982, 334860, 269353],
254 | dtype=np.int32)
255 | elif dataset_name is 'SemanticKITTI':
256 | num_per_class = np.array([55437630, 320797, 541736, 2578735, 3274484, 552662, 184064, 78858,
257 | 240942562, 17294618, 170599734, 6369672, 230413074, 101130274, 476491114,
258 | 9833174, 129609852, 4506626, 1168181])
259 | weight = num_per_class / float(sum(num_per_class))
260 | ce_label_weight = 1 / (weight + 0.02)
261 | return np.expand_dims(ce_label_weight, axis=0)
262 |
263 |
264 | class Plot:
265 | @staticmethod
266 | def random_colors(N, bright=True, seed=0):
267 | brightness = 1.0 if bright else 0.7
268 | hsv = [(0.15 + i / float(N), 1, brightness) for i in range(N)]
269 | colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
270 | random.seed(seed)
271 | random.shuffle(colors)
272 | return colors
273 |
274 | @staticmethod
275 | def draw_pc(pc_xyzrgb):
276 | pc = open3d.PointCloud()
277 | pc.points = open3d.Vector3dVector(pc_xyzrgb[:, 0:3])
278 | if pc_xyzrgb.shape[1] == 3:
279 | open3d.draw_geometries([pc])
280 | return 0
281 | if np.max(pc_xyzrgb[:, 3:6]) > 20: ## 0-255
282 | pc.colors = open3d.Vector3dVector(pc_xyzrgb[:, 3:6] / 255.)
283 | else:
284 | pc.colors = open3d.Vector3dVector(pc_xyzrgb[:, 3:6])
285 | open3d.draw_geometries([pc])
286 | return 0
287 |
288 | @staticmethod
289 | def draw_pc_sem_ins(pc_xyz, pc_sem_ins, plot_colors=None):
290 | """
291 | pc_xyz: 3D coordinates of point clouds
292 | pc_sem_ins: semantic or instance labels
293 | plot_colors: custom color list
294 | """
295 | if plot_colors is not None:
296 | ins_colors = plot_colors
297 | else:
298 | ins_colors = Plot.random_colors(len(np.unique(pc_sem_ins)) + 1, seed=2)
299 |
300 | ##############################
301 | sem_ins_labels = np.unique(pc_sem_ins)
302 | sem_ins_bbox = []
303 | Y_colors = np.zeros((pc_sem_ins.shape[0], 3))
304 | for id, semins in enumerate(sem_ins_labels):
305 | valid_ind = np.argwhere(pc_sem_ins == semins)[:, 0]
306 | if semins <= -1:
307 | tp = [0, 0, 0]
308 | else:
309 | if plot_colors is not None:
310 | tp = ins_colors[semins]
311 | else:
312 | tp = ins_colors[id]
313 |
314 | Y_colors[valid_ind] = tp
315 |
316 | ### bbox
317 | valid_xyz = pc_xyz[valid_ind]
318 |
319 | xmin = np.min(valid_xyz[:, 0]);
320 | xmax = np.max(valid_xyz[:, 0])
321 | ymin = np.min(valid_xyz[:, 1]);
322 | ymax = np.max(valid_xyz[:, 1])
323 | zmin = np.min(valid_xyz[:, 2]);
324 | zmax = np.max(valid_xyz[:, 2])
325 | sem_ins_bbox.append(
326 | [[xmin, ymin, zmin], [xmax, ymax, zmax], [min(tp[0], 1.), min(tp[1], 1.), min(tp[2], 1.)]])
327 |
328 | Y_semins = np.concatenate([pc_xyz[:, 0:3], Y_colors], axis=-1)
329 | Plot.draw_pc(Y_semins)
330 | return Y_semins
331 |
--------------------------------------------------------------------------------
/imgs/S3DIS_area2.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/RandLA-Net/6b5445f5f279d33d2335e85ed39ca8b68cb1c57e/imgs/S3DIS_area2.gif
--------------------------------------------------------------------------------
/imgs/S3DIS_area3.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/RandLA-Net/6b5445f5f279d33d2335e85ed39ca8b68cb1c57e/imgs/S3DIS_area3.gif
--------------------------------------------------------------------------------
/imgs/Semantic3D-1.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/RandLA-Net/6b5445f5f279d33d2335e85ed39ca8b68cb1c57e/imgs/Semantic3D-1.gif
--------------------------------------------------------------------------------
/imgs/Semantic3D-3.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/RandLA-Net/6b5445f5f279d33d2335e85ed39ca8b68cb1c57e/imgs/Semantic3D-3.gif
--------------------------------------------------------------------------------
/imgs/Semantic3D-4.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/RandLA-Net/6b5445f5f279d33d2335e85ed39ca8b68cb1c57e/imgs/Semantic3D-4.gif
--------------------------------------------------------------------------------
/imgs/SemanticKITTI-2.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/RandLA-Net/6b5445f5f279d33d2335e85ed39ca8b68cb1c57e/imgs/SemanticKITTI-2.gif
--------------------------------------------------------------------------------
/jobs_6_fold_cv_s3dis.sh:
--------------------------------------------------------------------------------
1 | python -B main_S3DIS.py --gpu 0 --mode train --test_area 1
2 | python -B main_S3DIS.py --gpu 0 --mode test --test_area 1
3 | python -B main_S3DIS.py --gpu 0 --mode train --test_area 2
4 | python -B main_S3DIS.py --gpu 0 --mode test --test_area 2
5 | python -B main_S3DIS.py --gpu 0 --mode train --test_area 3
6 | python -B main_S3DIS.py --gpu 0 --mode test --test_area 3
7 | python -B main_S3DIS.py --gpu 0 --mode train --test_area 4
8 | python -B main_S3DIS.py --gpu 0 --mode test --test_area 4
9 | python -B main_S3DIS.py --gpu 0 --mode train --test_area 5
10 | python -B main_S3DIS.py --gpu 0 --mode test --test_area 5
11 | python -B main_S3DIS.py --gpu 0 --mode train --test_area 6
12 | python -B main_S3DIS.py --gpu 0 --mode test --test_area 6
13 |
14 |
15 |
--------------------------------------------------------------------------------
/jobs_test_semantickitti.sh:
--------------------------------------------------------------------------------
1 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 11
2 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 12
3 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 13
4 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 14
5 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 15
6 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 16
7 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 17
8 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 18
9 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 19
10 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 20
11 | python -B main_SemanticKITTI.py --gpu 0 --mode test --test_area 21
12 |
13 |
--------------------------------------------------------------------------------
/main_S3DIS.py:
--------------------------------------------------------------------------------
1 | from os.path import join
2 | from RandLANet import Network
3 | from tester_S3DIS import ModelTester
4 | from helper_ply import read_ply
5 | from helper_tool import ConfigS3DIS as cfg
6 | from helper_tool import DataProcessing as DP
7 | from helper_tool import Plot
8 | import tensorflow as tf
9 | import numpy as np
10 | import time, pickle, argparse, glob, os
11 |
12 |
13 | class S3DIS:
14 | def __init__(self, test_area_idx):
15 | self.name = 'S3DIS'
16 | self.path = '/data/S3DIS'
17 | self.label_to_names = {0: 'ceiling',
18 | 1: 'floor',
19 | 2: 'wall',
20 | 3: 'beam',
21 | 4: 'column',
22 | 5: 'window',
23 | 6: 'door',
24 | 7: 'table',
25 | 8: 'chair',
26 | 9: 'sofa',
27 | 10: 'bookcase',
28 | 11: 'board',
29 | 12: 'clutter'}
30 | self.num_classes = len(self.label_to_names)
31 | self.label_values = np.sort([k for k, v in self.label_to_names.items()])
32 | self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
33 | self.ignored_labels = np.array([])
34 |
35 | self.val_split = 'Area_' + str(test_area_idx)
36 | self.all_files = glob.glob(join(self.path, 'original_ply', '*.ply'))
37 |
38 | # Initiate containers
39 | self.val_proj = []
40 | self.val_labels = []
41 | self.possibility = {}
42 | self.min_possibility = {}
43 | self.input_trees = {'training': [], 'validation': []}
44 | self.input_colors = {'training': [], 'validation': []}
45 | self.input_labels = {'training': [], 'validation': []}
46 | self.input_names = {'training': [], 'validation': []}
47 | self.load_sub_sampled_clouds(cfg.sub_grid_size)
48 |
49 | def load_sub_sampled_clouds(self, sub_grid_size):
50 | tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size))
51 | for i, file_path in enumerate(self.all_files):
52 | t0 = time.time()
53 | cloud_name = file_path.split('/')[-1][:-4]
54 | if self.val_split in cloud_name:
55 | cloud_split = 'validation'
56 | else:
57 | cloud_split = 'training'
58 |
59 | # Name of the input files
60 | kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name))
61 | sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name))
62 |
63 | data = read_ply(sub_ply_file)
64 | sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T
65 | sub_labels = data['class']
66 |
67 | # Read pkl with search tree
68 | with open(kd_tree_file, 'rb') as f:
69 | search_tree = pickle.load(f)
70 |
71 | self.input_trees[cloud_split] += [search_tree]
72 | self.input_colors[cloud_split] += [sub_colors]
73 | self.input_labels[cloud_split] += [sub_labels]
74 | self.input_names[cloud_split] += [cloud_name]
75 |
76 | size = sub_colors.shape[0] * 4 * 7
77 | print('{:s} {:.1f} MB loaded in {:.1f}s'.format(kd_tree_file.split('/')[-1], size * 1e-6, time.time() - t0))
78 |
79 | print('\nPreparing reprojected indices for testing')
80 |
81 | # Get validation and test reprojected indices
82 | for i, file_path in enumerate(self.all_files):
83 | t0 = time.time()
84 | cloud_name = file_path.split('/')[-1][:-4]
85 |
86 | # Validation projection and labels
87 | if self.val_split in cloud_name:
88 | proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
89 | with open(proj_file, 'rb') as f:
90 | proj_idx, labels = pickle.load(f)
91 | self.val_proj += [proj_idx]
92 | self.val_labels += [labels]
93 | print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0))
94 |
95 | # Generate the input data flow
96 | def get_batch_gen(self, split):
97 | if split == 'training':
98 | num_per_epoch = cfg.train_steps * cfg.batch_size
99 | elif split == 'validation':
100 | num_per_epoch = cfg.val_steps * cfg.val_batch_size
101 |
102 | self.possibility[split] = []
103 | self.min_possibility[split] = []
104 | # Random initialize
105 | for i, tree in enumerate(self.input_colors[split]):
106 | self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]
107 | self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))]
108 |
109 | def spatially_regular_gen():
110 | # Generator loop
111 | for i in range(num_per_epoch):
112 |
113 | # Choose the cloud with the lowest probability
114 | cloud_idx = int(np.argmin(self.min_possibility[split]))
115 |
116 | # choose the point with the minimum of possibility in the cloud as query point
117 | point_ind = np.argmin(self.possibility[split][cloud_idx])
118 |
119 | # Get all points within the cloud from tree structure
120 | points = np.array(self.input_trees[split][cloud_idx].data, copy=False)
121 |
122 | # Center point of input region
123 | center_point = points[point_ind, :].reshape(1, -1)
124 |
125 | # Add noise to the center point
126 | noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape)
127 | pick_point = center_point + noise.astype(center_point.dtype)
128 |
129 | # Check if the number of points in the selected cloud is less than the predefined num_points
130 | if len(points) < cfg.num_points:
131 | # Query all points within the cloud
132 | queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=len(points))[1][0]
133 | else:
134 | # Query the predefined number of points
135 | queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0]
136 |
137 | # Shuffle index
138 | queried_idx = DP.shuffle_idx(queried_idx)
139 | # Get corresponding points and colors based on the index
140 | queried_pc_xyz = points[queried_idx]
141 | queried_pc_xyz = queried_pc_xyz - pick_point
142 | queried_pc_colors = self.input_colors[split][cloud_idx][queried_idx]
143 | queried_pc_labels = self.input_labels[split][cloud_idx][queried_idx]
144 |
145 | # Update the possibility of the selected points
146 | dists = np.sum(np.square((points[queried_idx] - pick_point).astype(np.float32)), axis=1)
147 | delta = np.square(1 - dists / np.max(dists))
148 | self.possibility[split][cloud_idx][queried_idx] += delta
149 | self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx]))
150 |
151 | # up_sampled with replacement
152 | if len(points) < cfg.num_points:
153 | queried_pc_xyz, queried_pc_colors, queried_idx, queried_pc_labels = \
154 | DP.data_aug(queried_pc_xyz, queried_pc_colors, queried_pc_labels, queried_idx, cfg.num_points)
155 |
156 | if True:
157 | yield (queried_pc_xyz.astype(np.float32),
158 | queried_pc_colors.astype(np.float32),
159 | queried_pc_labels,
160 | queried_idx.astype(np.int32),
161 | np.array([cloud_idx], dtype=np.int32))
162 |
163 | gen_func = spatially_regular_gen
164 | gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32)
165 | gen_shapes = ([None, 3], [None, 3], [None], [None], [None])
166 | return gen_func, gen_types, gen_shapes
167 |
168 | @staticmethod
169 | def get_tf_mapping2():
170 | # Collect flat inputs
171 | def tf_map(batch_xyz, batch_features, batch_labels, batch_pc_idx, batch_cloud_idx):
172 | batch_features = tf.concat([batch_xyz, batch_features], axis=-1)
173 | input_points = []
174 | input_neighbors = []
175 | input_pools = []
176 | input_up_samples = []
177 |
178 | for i in range(cfg.num_layers):
179 | neighbour_idx = tf.py_func(DP.knn_search, [batch_xyz, batch_xyz, cfg.k_n], tf.int32)
180 | sub_points = batch_xyz[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
181 | pool_i = neighbour_idx[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
182 | up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz, 1], tf.int32)
183 | input_points.append(batch_xyz)
184 | input_neighbors.append(neighbour_idx)
185 | input_pools.append(pool_i)
186 | input_up_samples.append(up_i)
187 | batch_xyz = sub_points
188 |
189 | input_list = input_points + input_neighbors + input_pools + input_up_samples
190 | input_list += [batch_features, batch_labels, batch_pc_idx, batch_cloud_idx]
191 |
192 | return input_list
193 |
194 | return tf_map
195 |
196 | def init_input_pipeline(self):
197 | print('Initiating input pipelines')
198 | cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
199 | gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
200 | gen_function_val, _, _ = self.get_batch_gen('validation')
201 | self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
202 | self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
203 |
204 | self.batch_train_data = self.train_data.batch(cfg.batch_size)
205 | self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
206 | map_func = self.get_tf_mapping2()
207 |
208 | self.batch_train_data = self.batch_train_data.map(map_func=map_func)
209 | self.batch_val_data = self.batch_val_data.map(map_func=map_func)
210 |
211 | self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
212 | self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
213 |
214 | iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
215 | self.flat_inputs = iter.get_next()
216 | self.train_init_op = iter.make_initializer(self.batch_train_data)
217 | self.val_init_op = iter.make_initializer(self.batch_val_data)
218 |
219 |
220 | if __name__ == '__main__':
221 | parser = argparse.ArgumentParser()
222 | parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
223 | parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test, option: 1-6 [default: 5]')
224 | parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
225 | parser.add_argument('--model_path', type=str, default='None', help='pretrained model path')
226 | FLAGS = parser.parse_args()
227 |
228 | os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
229 | os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
230 | os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
231 | Mode = FLAGS.mode
232 |
233 | test_area = FLAGS.test_area
234 | dataset = S3DIS(test_area)
235 | dataset.init_input_pipeline()
236 |
237 | if Mode == 'train':
238 | model = Network(dataset, cfg)
239 | model.train(dataset)
240 | elif Mode == 'test':
241 | cfg.saving = False
242 | model = Network(dataset, cfg)
243 | if FLAGS.model_path is not 'None':
244 | chosen_snap = FLAGS.model_path
245 | else:
246 | chosen_snapshot = -1
247 | logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
248 | chosen_folder = logs[-1]
249 | snap_path = join(chosen_folder, 'snapshots')
250 | snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
251 | chosen_step = np.sort(snap_steps)[-1]
252 | chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
253 | tester = ModelTester(model, dataset, restore_snap=chosen_snap)
254 | tester.test(model, dataset)
255 | else:
256 | ##################
257 | # Visualize data #
258 | ##################
259 |
260 | with tf.Session() as sess:
261 | sess.run(tf.global_variables_initializer())
262 | sess.run(dataset.train_init_op)
263 | while True:
264 | flat_inputs = sess.run(dataset.flat_inputs)
265 | pc_xyz = flat_inputs[0]
266 | sub_pc_xyz = flat_inputs[1]
267 | labels = flat_inputs[21]
268 | Plot.draw_pc_sem_ins(pc_xyz[0, :, :], labels[0, :])
269 | Plot.draw_pc_sem_ins(sub_pc_xyz[0, :, :], labels[0, 0:np.shape(sub_pc_xyz)[1]])
270 |
--------------------------------------------------------------------------------
/main_Semantic3D.py:
--------------------------------------------------------------------------------
1 | from os.path import join, exists
2 | from RandLANet import Network
3 | from tester_Semantic3D import ModelTester
4 | from helper_ply import read_ply
5 | from helper_tool import Plot
6 | from helper_tool import DataProcessing as DP
7 | from helper_tool import ConfigSemantic3D as cfg
8 | import tensorflow as tf
9 | import numpy as np
10 | import pickle, argparse, os
11 |
12 |
13 | class Semantic3D:
14 | def __init__(self):
15 | self.name = 'Semantic3D'
16 | self.path = '/data/semantic3d'
17 | self.label_to_names = {0: 'unlabeled',
18 | 1: 'man-made terrain',
19 | 2: 'natural terrain',
20 | 3: 'high vegetation',
21 | 4: 'low vegetation',
22 | 5: 'buildings',
23 | 6: 'hard scape',
24 | 7: 'scanning artefacts',
25 | 8: 'cars'}
26 | self.num_classes = len(self.label_to_names)
27 | self.label_values = np.sort([k for k, v in self.label_to_names.items()])
28 | self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
29 | self.ignored_labels = np.sort([0])
30 |
31 | self.original_folder = join(self.path, 'original_data')
32 | self.full_pc_folder = join(self.path, 'original_ply')
33 | self.sub_pc_folder = join(self.path, 'input_{:.3f}'.format(cfg.sub_grid_size))
34 |
35 | # Following KPConv to do the train-validation split
36 | self.all_splits = [0, 1, 4, 5, 3, 4, 3, 0, 1, 2, 3, 4, 2, 0, 5]
37 | self.val_split = 1
38 |
39 | # Initial training-validation-testing files
40 | self.train_files = []
41 | self.val_files = []
42 | self.test_files = []
43 | cloud_names = [file_name[:-4] for file_name in os.listdir(self.original_folder) if file_name[-4:] == '.txt']
44 | for pc_name in cloud_names:
45 | if exists(join(self.original_folder, pc_name + '.labels')):
46 | self.train_files.append(join(self.sub_pc_folder, pc_name + '.ply'))
47 | else:
48 | self.test_files.append(join(self.full_pc_folder, pc_name + '.ply'))
49 |
50 | self.train_files = np.sort(self.train_files)
51 | self.test_files = np.sort(self.test_files)
52 |
53 | for i, file_path in enumerate(self.train_files):
54 | if self.all_splits[i] == self.val_split:
55 | self.val_files.append(file_path)
56 |
57 | self.train_files = np.sort([x for x in self.train_files if x not in self.val_files])
58 |
59 | # Initiate containers
60 | self.val_proj = []
61 | self.val_labels = []
62 | self.test_proj = []
63 | self.test_labels = []
64 |
65 | self.possibility = {}
66 | self.min_possibility = {}
67 | self.class_weight = {}
68 | self.input_trees = {'training': [], 'validation': [], 'test': []}
69 | self.input_colors = {'training': [], 'validation': [], 'test': []}
70 | self.input_labels = {'training': [], 'validation': []}
71 |
72 | # Ascii files dict for testing
73 | self.ascii_files = {
74 | 'MarketplaceFeldkirch_Station4_rgb_intensity-reduced.ply': 'marketsquarefeldkirch4-reduced.labels',
75 | 'sg27_station10_rgb_intensity-reduced.ply': 'sg27_10-reduced.labels',
76 | 'sg28_Station2_rgb_intensity-reduced.ply': 'sg28_2-reduced.labels',
77 | 'StGallenCathedral_station6_rgb_intensity-reduced.ply': 'stgallencathedral6-reduced.labels',
78 | 'birdfountain_station1_xyz_intensity_rgb.ply': 'birdfountain1.labels',
79 | 'castleblatten_station1_intensity_rgb.ply': 'castleblatten1.labels',
80 | 'castleblatten_station5_xyz_intensity_rgb.ply': 'castleblatten5.labels',
81 | 'marketplacefeldkirch_station1_intensity_rgb.ply': 'marketsquarefeldkirch1.labels',
82 | 'marketplacefeldkirch_station4_intensity_rgb.ply': 'marketsquarefeldkirch4.labels',
83 | 'marketplacefeldkirch_station7_intensity_rgb.ply': 'marketsquarefeldkirch7.labels',
84 | 'sg27_station10_intensity_rgb.ply': 'sg27_10.labels',
85 | 'sg27_station3_intensity_rgb.ply': 'sg27_3.labels',
86 | 'sg27_station6_intensity_rgb.ply': 'sg27_6.labels',
87 | 'sg27_station8_intensity_rgb.ply': 'sg27_8.labels',
88 | 'sg28_station2_intensity_rgb.ply': 'sg28_2.labels',
89 | 'sg28_station5_xyz_intensity_rgb.ply': 'sg28_5.labels',
90 | 'stgallencathedral_station1_intensity_rgb.ply': 'stgallencathedral1.labels',
91 | 'stgallencathedral_station3_intensity_rgb.ply': 'stgallencathedral3.labels',
92 | 'stgallencathedral_station6_intensity_rgb.ply': 'stgallencathedral6.labels'}
93 |
94 | self.load_sub_sampled_clouds(cfg.sub_grid_size)
95 |
96 | def load_sub_sampled_clouds(self, sub_grid_size):
97 |
98 | tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size))
99 | files = np.hstack((self.train_files, self.val_files, self.test_files))
100 |
101 | for i, file_path in enumerate(files):
102 | cloud_name = file_path.split('/')[-1][:-4]
103 | print('Load_pc_' + str(i) + ': ' + cloud_name)
104 | if file_path in self.val_files:
105 | cloud_split = 'validation'
106 | elif file_path in self.train_files:
107 | cloud_split = 'training'
108 | else:
109 | cloud_split = 'test'
110 |
111 | # Name of the input files
112 | kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name))
113 | sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name))
114 |
115 | # read ply with data
116 | data = read_ply(sub_ply_file)
117 | sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T
118 | if cloud_split == 'test':
119 | sub_labels = None
120 | else:
121 | sub_labels = data['class']
122 |
123 | # Read pkl with search tree
124 | with open(kd_tree_file, 'rb') as f:
125 | search_tree = pickle.load(f)
126 |
127 | self.input_trees[cloud_split] += [search_tree]
128 | self.input_colors[cloud_split] += [sub_colors]
129 | if cloud_split in ['training', 'validation']:
130 | self.input_labels[cloud_split] += [sub_labels]
131 |
132 | # Get validation and test re_projection indices
133 | print('\nPreparing reprojection indices for validation and test')
134 |
135 | for i, file_path in enumerate(files):
136 |
137 | # get cloud name and split
138 | cloud_name = file_path.split('/')[-1][:-4]
139 |
140 | # Validation projection and labels
141 | if file_path in self.val_files:
142 | proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
143 | with open(proj_file, 'rb') as f:
144 | proj_idx, labels = pickle.load(f)
145 | self.val_proj += [proj_idx]
146 | self.val_labels += [labels]
147 |
148 | # Test projection
149 | if file_path in self.test_files:
150 | proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
151 | with open(proj_file, 'rb') as f:
152 | proj_idx, labels = pickle.load(f)
153 | self.test_proj += [proj_idx]
154 | self.test_labels += [labels]
155 | print('finished')
156 | return
157 |
158 | # Generate the input data flow
159 | def get_batch_gen(self, split):
160 | if split == 'training':
161 | num_per_epoch = cfg.train_steps * cfg.batch_size
162 | elif split == 'validation':
163 | num_per_epoch = cfg.val_steps * cfg.val_batch_size
164 | elif split == 'test':
165 | num_per_epoch = cfg.val_steps * cfg.val_batch_size
166 |
167 | # Reset possibility
168 | self.possibility[split] = []
169 | self.min_possibility[split] = []
170 | self.class_weight[split] = []
171 |
172 | # Random initialize
173 | for i, tree in enumerate(self.input_trees[split]):
174 | self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]
175 | self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))]
176 |
177 | if split != 'test':
178 | _, num_class_total = np.unique(np.hstack(self.input_labels[split]), return_counts=True)
179 | self.class_weight[split] += [np.squeeze([num_class_total / np.sum(num_class_total)], axis=0)]
180 |
181 | def spatially_regular_gen():
182 |
183 | # Generator loop
184 | for i in range(num_per_epoch): # num_per_epoch
185 |
186 | # Choose the cloud with the lowest probability
187 | cloud_idx = int(np.argmin(self.min_possibility[split]))
188 |
189 | # choose the point with the minimum of possibility in the cloud as query point
190 | point_ind = np.argmin(self.possibility[split][cloud_idx])
191 |
192 | # Get all points within the cloud from tree structure
193 | points = np.array(self.input_trees[split][cloud_idx].data, copy=False)
194 |
195 | # Center point of input region
196 | center_point = points[point_ind, :].reshape(1, -1)
197 |
198 | # Add noise to the center point
199 | noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape)
200 | pick_point = center_point + noise.astype(center_point.dtype)
201 | query_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0]
202 |
203 | # Shuffle index
204 | query_idx = DP.shuffle_idx(query_idx)
205 |
206 | # Get corresponding points and colors based on the index
207 | queried_pc_xyz = points[query_idx]
208 | queried_pc_xyz[:, 0:2] = queried_pc_xyz[:, 0:2] - pick_point[:, 0:2]
209 | queried_pc_colors = self.input_colors[split][cloud_idx][query_idx]
210 | if split == 'test':
211 | queried_pc_labels = np.zeros(queried_pc_xyz.shape[0])
212 | queried_pt_weight = 1
213 | else:
214 | queried_pc_labels = self.input_labels[split][cloud_idx][query_idx]
215 | queried_pc_labels = np.array([self.label_to_idx[l] for l in queried_pc_labels])
216 | queried_pt_weight = np.array([self.class_weight[split][0][n] for n in queried_pc_labels])
217 |
218 | # Update the possibility of the selected points
219 | dists = np.sum(np.square((points[query_idx] - pick_point).astype(np.float32)), axis=1)
220 | delta = np.square(1 - dists / np.max(dists)) * queried_pt_weight
221 | self.possibility[split][cloud_idx][query_idx] += delta
222 | self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx]))
223 |
224 | if True:
225 | yield (queried_pc_xyz,
226 | queried_pc_colors.astype(np.float32),
227 | queried_pc_labels,
228 | query_idx.astype(np.int32),
229 | np.array([cloud_idx], dtype=np.int32))
230 |
231 | gen_func = spatially_regular_gen
232 | gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32)
233 | gen_shapes = ([None, 3], [None, 3], [None], [None], [None])
234 | return gen_func, gen_types, gen_shapes
235 |
236 | def get_tf_mapping(self):
237 | # Collect flat inputs
238 | def tf_map(batch_xyz, batch_features, batch_labels, batch_pc_idx, batch_cloud_idx):
239 | batch_features = tf.map_fn(self.tf_augment_input, [batch_xyz, batch_features], dtype=tf.float32)
240 | input_points = []
241 | input_neighbors = []
242 | input_pools = []
243 | input_up_samples = []
244 |
245 | for i in range(cfg.num_layers):
246 | neigh_idx = tf.py_func(DP.knn_search, [batch_xyz, batch_xyz, cfg.k_n], tf.int32)
247 | sub_points = batch_xyz[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
248 | pool_i = neigh_idx[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
249 | up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz, 1], tf.int32)
250 | input_points.append(batch_xyz)
251 | input_neighbors.append(neigh_idx)
252 | input_pools.append(pool_i)
253 | input_up_samples.append(up_i)
254 | batch_xyz = sub_points
255 |
256 | input_list = input_points + input_neighbors + input_pools + input_up_samples
257 | input_list += [batch_features, batch_labels, batch_pc_idx, batch_cloud_idx]
258 |
259 | return input_list
260 |
261 | return tf_map
262 |
263 | # data augmentation
264 | @staticmethod
265 | def tf_augment_input(inputs):
266 | xyz = inputs[0]
267 | features = inputs[1]
268 | theta = tf.random_uniform((1,), minval=0, maxval=2 * np.pi)
269 | # Rotation matrices
270 | c, s = tf.cos(theta), tf.sin(theta)
271 | cs0 = tf.zeros_like(c)
272 | cs1 = tf.ones_like(c)
273 | R = tf.stack([c, -s, cs0, s, c, cs0, cs0, cs0, cs1], axis=1)
274 | stacked_rots = tf.reshape(R, (3, 3))
275 |
276 | # Apply rotations
277 | transformed_xyz = tf.reshape(tf.matmul(xyz, stacked_rots), [-1, 3])
278 | # Choose random scales for each example
279 | min_s = cfg.augment_scale_min
280 | max_s = cfg.augment_scale_max
281 | if cfg.augment_scale_anisotropic:
282 | s = tf.random_uniform((1, 3), minval=min_s, maxval=max_s)
283 | else:
284 | s = tf.random_uniform((1, 1), minval=min_s, maxval=max_s)
285 |
286 | symmetries = []
287 | for i in range(3):
288 | if cfg.augment_symmetries[i]:
289 | symmetries.append(tf.round(tf.random_uniform((1, 1))) * 2 - 1)
290 | else:
291 | symmetries.append(tf.ones([1, 1], dtype=tf.float32))
292 | s *= tf.concat(symmetries, 1)
293 |
294 | # Create N x 3 vector of scales to multiply with stacked_points
295 | stacked_scales = tf.tile(s, [tf.shape(transformed_xyz)[0], 1])
296 |
297 | # Apply scales
298 | transformed_xyz = transformed_xyz * stacked_scales
299 |
300 | noise = tf.random_normal(tf.shape(transformed_xyz), stddev=cfg.augment_noise)
301 | transformed_xyz = transformed_xyz + noise
302 | rgb = features[:, :3]
303 | stacked_features = tf.concat([transformed_xyz, rgb], axis=-1)
304 | return stacked_features
305 |
306 | def init_input_pipeline(self):
307 | print('Initiating input pipelines')
308 | cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
309 | gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
310 | gen_function_val, _, _ = self.get_batch_gen('validation')
311 | gen_function_test, _, _ = self.get_batch_gen('test')
312 | self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
313 | self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
314 | self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes)
315 |
316 | self.batch_train_data = self.train_data.batch(cfg.batch_size)
317 | self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
318 | self.batch_test_data = self.test_data.batch(cfg.val_batch_size)
319 | map_func = self.get_tf_mapping()
320 |
321 | self.batch_train_data = self.batch_train_data.map(map_func=map_func)
322 | self.batch_val_data = self.batch_val_data.map(map_func=map_func)
323 | self.batch_test_data = self.batch_test_data.map(map_func=map_func)
324 |
325 | self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
326 | self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
327 | self.batch_test_data = self.batch_test_data.prefetch(cfg.val_batch_size)
328 |
329 | iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
330 | self.flat_inputs = iter.get_next()
331 | self.train_init_op = iter.make_initializer(self.batch_train_data)
332 | self.val_init_op = iter.make_initializer(self.batch_val_data)
333 | self.test_init_op = iter.make_initializer(self.batch_test_data)
334 |
335 |
336 | if __name__ == '__main__':
337 | parser = argparse.ArgumentParser()
338 | parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
339 | parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
340 | parser.add_argument('--model_path', type=str, default='None', help='pretrained model path')
341 | FLAGS = parser.parse_args()
342 |
343 | GPU_ID = FLAGS.gpu
344 | os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
345 | os.environ['CUDA_VISIBLE_DEVICES'] = str(GPU_ID)
346 | os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
347 |
348 | Mode = FLAGS.mode
349 | dataset = Semantic3D()
350 | dataset.init_input_pipeline()
351 |
352 | if Mode == 'train':
353 | model = Network(dataset, cfg)
354 | model.train(dataset)
355 | elif Mode == 'test':
356 | cfg.saving = False
357 | model = Network(dataset, cfg)
358 | if FLAGS.model_path is not 'None':
359 | chosen_snap = FLAGS.model_path
360 | else:
361 | chosen_snapshot = -1
362 | logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
363 | chosen_folder = logs[-1]
364 | snap_path = join(chosen_folder, 'snapshots')
365 | snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
366 | chosen_step = np.sort(snap_steps)[-1]
367 | chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
368 | tester = ModelTester(model, dataset, restore_snap=chosen_snap)
369 | tester.test(model, dataset)
370 |
371 | else:
372 | ##################
373 | # Visualize data #
374 | ##################
375 |
376 | with tf.Session() as sess:
377 | sess.run(tf.global_variables_initializer())
378 | sess.run(dataset.train_init_op)
379 | while True:
380 | flat_inputs = sess.run(dataset.flat_inputs)
381 | pc_xyz = flat_inputs[0]
382 | sub_pc_xyz = flat_inputs[1]
383 | labels = flat_inputs[21]
384 | Plot.draw_pc_sem_ins(pc_xyz[0, :, :], labels[0, :])
385 | Plot.draw_pc_sem_ins(sub_pc_xyz[0, :, :], labels[0, 0:np.shape(sub_pc_xyz)[1]])
386 |
--------------------------------------------------------------------------------
/main_SemanticKITTI.py:
--------------------------------------------------------------------------------
1 | from helper_tool import DataProcessing as DP
2 | from helper_tool import ConfigSemanticKITTI as cfg
3 | from helper_tool import Plot
4 | from os.path import join
5 | from RandLANet import Network
6 | from tester_SemanticKITTI import ModelTester
7 | import tensorflow as tf
8 | import numpy as np
9 | import os, argparse, pickle
10 |
11 |
12 | class SemanticKITTI:
13 | def __init__(self, test_id):
14 | self.name = 'SemanticKITTI'
15 | self.dataset_path = '/data/semantic_kitti/dataset/sequences_0.06'
16 | self.label_to_names = {0: 'unlabeled',
17 | 1: 'car',
18 | 2: 'bicycle',
19 | 3: 'motorcycle',
20 | 4: 'truck',
21 | 5: 'other-vehicle',
22 | 6: 'person',
23 | 7: 'bicyclist',
24 | 8: 'motorcyclist',
25 | 9: 'road',
26 | 10: 'parking',
27 | 11: 'sidewalk',
28 | 12: 'other-ground',
29 | 13: 'building',
30 | 14: 'fence',
31 | 15: 'vegetation',
32 | 16: 'trunk',
33 | 17: 'terrain',
34 | 18: 'pole',
35 | 19: 'traffic-sign'}
36 | self.num_classes = len(self.label_to_names)
37 | self.label_values = np.sort([k for k, v in self.label_to_names.items()])
38 | self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
39 | self.ignored_labels = np.sort([0])
40 |
41 | self.val_split = '08'
42 |
43 | self.seq_list = np.sort(os.listdir(self.dataset_path))
44 | self.test_scan_number = str(test_id)
45 | self.train_list, self.val_list, self.test_list = DP.get_file_list(self.dataset_path,
46 | self.test_scan_number)
47 | self.train_list = DP.shuffle_list(self.train_list)
48 | self.val_list = DP.shuffle_list(self.val_list)
49 |
50 | self.possibility = []
51 | self.min_possibility = []
52 |
53 | # Generate the input data flow
54 | def get_batch_gen(self, split):
55 | if split == 'training':
56 | num_per_epoch = int(len(self.train_list) / cfg.batch_size) * cfg.batch_size
57 | path_list = self.train_list
58 | elif split == 'validation':
59 | num_per_epoch = int(len(self.val_list) / cfg.val_batch_size) * cfg.val_batch_size
60 | cfg.val_steps = int(len(self.val_list) / cfg.batch_size)
61 | path_list = self.val_list
62 | elif split == 'test':
63 | num_per_epoch = int(len(self.test_list) / cfg.val_batch_size) * cfg.val_batch_size * 4
64 | path_list = self.test_list
65 | for test_file_name in path_list:
66 | points = np.load(test_file_name)
67 | self.possibility += [np.random.rand(points.shape[0]) * 1e-3]
68 | self.min_possibility += [float(np.min(self.possibility[-1]))]
69 |
70 | def spatially_regular_gen():
71 | # Generator loop
72 | for i in range(num_per_epoch):
73 | if split != 'test':
74 | cloud_ind = i
75 | pc_path = path_list[cloud_ind]
76 | pc, tree, labels = self.get_data(pc_path)
77 | # crop a small point cloud
78 | pick_idx = np.random.choice(len(pc), 1)
79 | selected_pc, selected_labels, selected_idx = self.crop_pc(pc, labels, tree, pick_idx)
80 | else:
81 | cloud_ind = int(np.argmin(self.min_possibility))
82 | pick_idx = np.argmin(self.possibility[cloud_ind])
83 | pc_path = path_list[cloud_ind]
84 | pc, tree, labels = self.get_data(pc_path)
85 | selected_pc, selected_labels, selected_idx = self.crop_pc(pc, labels, tree, pick_idx)
86 |
87 | # update the possibility of the selected pc
88 | dists = np.sum(np.square((selected_pc - pc[pick_idx]).astype(np.float32)), axis=1)
89 | delta = np.square(1 - dists / np.max(dists))
90 | self.possibility[cloud_ind][selected_idx] += delta
91 | self.min_possibility[cloud_ind] = np.min(self.possibility[cloud_ind])
92 |
93 | if True:
94 | yield (selected_pc.astype(np.float32),
95 | selected_labels.astype(np.int32),
96 | selected_idx.astype(np.int32),
97 | np.array([cloud_ind], dtype=np.int32))
98 |
99 | gen_func = spatially_regular_gen
100 | gen_types = (tf.float32, tf.int32, tf.int32, tf.int32)
101 | gen_shapes = ([None, 3], [None], [None], [None])
102 |
103 | return gen_func, gen_types, gen_shapes
104 |
105 | def get_data(self, file_path):
106 | seq_id = file_path.split('/')[-3]
107 | frame_id = file_path.split('/')[-1][:-4]
108 | kd_tree_path = join(self.dataset_path, seq_id, 'KDTree', frame_id + '.pkl')
109 | # Read pkl with search tree
110 | with open(kd_tree_path, 'rb') as f:
111 | search_tree = pickle.load(f)
112 | points = np.array(search_tree.data, copy=False)
113 | # Load labels
114 | if int(seq_id) >= 11:
115 | labels = np.zeros(np.shape(points)[0], dtype=np.uint8)
116 | else:
117 | label_path = join(self.dataset_path, seq_id, 'labels', frame_id + '.npy')
118 | labels = np.squeeze(np.load(label_path))
119 | return points, search_tree, labels
120 |
121 | @staticmethod
122 | def crop_pc(points, labels, search_tree, pick_idx):
123 | # crop a fixed size point cloud for training
124 | center_point = points[pick_idx, :].reshape(1, -1)
125 | select_idx = search_tree.query(center_point, k=cfg.num_points)[1][0]
126 | select_idx = DP.shuffle_idx(select_idx)
127 | select_points = points[select_idx]
128 | select_labels = labels[select_idx]
129 | return select_points, select_labels, select_idx
130 |
131 | @staticmethod
132 | def get_tf_mapping2():
133 |
134 | def tf_map(batch_pc, batch_label, batch_pc_idx, batch_cloud_idx):
135 | features = batch_pc
136 | input_points = []
137 | input_neighbors = []
138 | input_pools = []
139 | input_up_samples = []
140 |
141 | for i in range(cfg.num_layers):
142 | neighbour_idx = tf.py_func(DP.knn_search, [batch_pc, batch_pc, cfg.k_n], tf.int32)
143 | sub_points = batch_pc[:, :tf.shape(batch_pc)[1] // cfg.sub_sampling_ratio[i], :]
144 | pool_i = neighbour_idx[:, :tf.shape(batch_pc)[1] // cfg.sub_sampling_ratio[i], :]
145 | up_i = tf.py_func(DP.knn_search, [sub_points, batch_pc, 1], tf.int32)
146 | input_points.append(batch_pc)
147 | input_neighbors.append(neighbour_idx)
148 | input_pools.append(pool_i)
149 | input_up_samples.append(up_i)
150 | batch_pc = sub_points
151 |
152 | input_list = input_points + input_neighbors + input_pools + input_up_samples
153 | input_list += [features, batch_label, batch_pc_idx, batch_cloud_idx]
154 |
155 | return input_list
156 |
157 | return tf_map
158 |
159 | def init_input_pipeline(self):
160 | print('Initiating input pipelines')
161 | cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
162 | gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
163 | gen_function_val, _, _ = self.get_batch_gen('validation')
164 | gen_function_test, _, _ = self.get_batch_gen('test')
165 |
166 | self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
167 | self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
168 | self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes)
169 |
170 | self.batch_train_data = self.train_data.batch(cfg.batch_size)
171 | self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
172 | self.batch_test_data = self.test_data.batch(cfg.val_batch_size)
173 |
174 | map_func = self.get_tf_mapping2()
175 |
176 | self.batch_train_data = self.batch_train_data.map(map_func=map_func)
177 | self.batch_val_data = self.batch_val_data.map(map_func=map_func)
178 | self.batch_test_data = self.batch_test_data.map(map_func=map_func)
179 |
180 | self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
181 | self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
182 | self.batch_test_data = self.batch_test_data.prefetch(cfg.val_batch_size)
183 |
184 | iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
185 | self.flat_inputs = iter.get_next()
186 | self.train_init_op = iter.make_initializer(self.batch_train_data)
187 | self.val_init_op = iter.make_initializer(self.batch_val_data)
188 | self.test_init_op = iter.make_initializer(self.batch_test_data)
189 |
190 |
191 | if __name__ == '__main__':
192 | parser = argparse.ArgumentParser()
193 | parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
194 | parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
195 | parser.add_argument('--test_area', type=str, default='14', help='options: 08, 11,12,13,14,15,16,17,18,19,20,21')
196 | parser.add_argument('--model_path', type=str, default='None', help='pretrained model path')
197 | FLAGS = parser.parse_args()
198 |
199 | os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
200 | os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
201 | os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
202 | Mode = FLAGS.mode
203 |
204 | test_area = FLAGS.test_area
205 | dataset = SemanticKITTI(test_area)
206 | dataset.init_input_pipeline()
207 |
208 | if Mode == 'train':
209 | model = Network(dataset, cfg)
210 | model.train(dataset)
211 | elif Mode == 'test':
212 | cfg.saving = False
213 | model = Network(dataset, cfg)
214 | if FLAGS.model_path is not 'None':
215 | chosen_snap = FLAGS.model_path
216 | else:
217 | chosen_snapshot = -1
218 | logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
219 | chosen_folder = logs[-1]
220 | snap_path = join(chosen_folder, 'snapshots')
221 | snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
222 | chosen_step = np.sort(snap_steps)[-1]
223 | chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
224 | tester = ModelTester(model, dataset, restore_snap=chosen_snap)
225 | tester.test(model, dataset)
226 | else:
227 | ##################
228 | # Visualize data #
229 | ##################
230 |
231 | with tf.Session() as sess:
232 | sess.run(tf.global_variables_initializer())
233 | sess.run(dataset.train_init_op)
234 | while True:
235 | flat_inputs = sess.run(dataset.flat_inputs)
236 | pc_xyz = flat_inputs[0]
237 | sub_pc_xyz = flat_inputs[1]
238 | labels = flat_inputs[17]
239 | Plot.draw_pc_sem_ins(pc_xyz[0, :, :], labels[0, :])
240 | Plot.draw_pc_sem_ins(sub_pc_xyz[0, :, :], labels[0, 0:np.shape(sub_pc_xyz)[1]])
241 |
--------------------------------------------------------------------------------
/tester_S3DIS.py:
--------------------------------------------------------------------------------
1 | from os import makedirs
2 | from os.path import exists, join
3 | from helper_ply import write_ply
4 | from sklearn.metrics import confusion_matrix
5 | from helper_tool import DataProcessing as DP
6 | import tensorflow as tf
7 | import numpy as np
8 | import time
9 |
10 |
11 | def log_out(out_str, log_f_out):
12 | log_f_out.write(out_str + '\n')
13 | log_f_out.flush()
14 | print(out_str)
15 |
16 |
17 | class ModelTester:
18 | def __init__(self, model, dataset, restore_snap=None):
19 | my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
20 | self.saver = tf.train.Saver(my_vars, max_to_keep=100)
21 | self.Log_file = open('log_test_' + str(dataset.val_split) + '.txt', 'a')
22 |
23 | # Create a session for running Ops on the Graph.
24 | on_cpu = False
25 | if on_cpu:
26 | c_proto = tf.ConfigProto(device_count={'GPU': 0})
27 | else:
28 | c_proto = tf.ConfigProto()
29 | c_proto.gpu_options.allow_growth = True
30 | self.sess = tf.Session(config=c_proto)
31 | self.sess.run(tf.global_variables_initializer())
32 |
33 | # Load trained model
34 | if restore_snap is not None:
35 | self.saver.restore(self.sess, restore_snap)
36 | print("Model restored from " + restore_snap)
37 |
38 | self.prob_logits = tf.nn.softmax(model.logits)
39 |
40 | # Initiate global prediction over all test clouds
41 | self.test_probs = [np.zeros(shape=[l.shape[0], model.config.num_classes], dtype=np.float32)
42 | for l in dataset.input_labels['validation']]
43 |
44 | def test(self, model, dataset, num_votes=100):
45 |
46 | # Smoothing parameter for votes
47 | test_smooth = 0.95
48 |
49 | # Initialise iterator with validation/test data
50 | self.sess.run(dataset.val_init_op)
51 |
52 | # Number of points per class in validation set
53 | val_proportions = np.zeros(model.config.num_classes, dtype=np.float32)
54 | i = 0
55 | for label_val in dataset.label_values:
56 | if label_val not in dataset.ignored_labels:
57 | val_proportions[i] = np.sum([np.sum(labels == label_val) for labels in dataset.val_labels])
58 | i += 1
59 |
60 | # Test saving path
61 | saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
62 | test_path = join('test', saving_path.split('/')[-1])
63 | makedirs(test_path) if not exists(test_path) else None
64 | makedirs(join(test_path, 'val_preds')) if not exists(join(test_path, 'val_preds')) else None
65 |
66 | step_id = 0
67 | epoch_id = 0
68 | last_min = -0.5
69 |
70 | while last_min < num_votes:
71 | try:
72 | ops = (self.prob_logits,
73 | model.labels,
74 | model.inputs['input_inds'],
75 | model.inputs['cloud_inds'],
76 | )
77 |
78 | stacked_probs, stacked_labels, point_idx, cloud_idx = self.sess.run(ops, {model.is_training: False})
79 | correct = np.sum(np.argmax(stacked_probs, axis=1) == stacked_labels)
80 | acc = correct / float(np.prod(np.shape(stacked_labels)))
81 | print('step' + str(step_id) + ' acc:' + str(acc))
82 | stacked_probs = np.reshape(stacked_probs, [model.config.val_batch_size, model.config.num_points,
83 | model.config.num_classes])
84 |
85 | for j in range(np.shape(stacked_probs)[0]):
86 | probs = stacked_probs[j, :, :]
87 | p_idx = point_idx[j, :]
88 | c_i = cloud_idx[j][0]
89 | self.test_probs[c_i][p_idx] = test_smooth * self.test_probs[c_i][p_idx] + (1 - test_smooth) * probs
90 | step_id += 1
91 |
92 | except tf.errors.OutOfRangeError:
93 |
94 | new_min = np.min(dataset.min_possibility['validation'])
95 | log_out('Epoch {:3d}, end. Min possibility = {:.1f}'.format(epoch_id, new_min), self.Log_file)
96 |
97 | if last_min + 1 < new_min:
98 |
99 | # Update last_min
100 | last_min += 1
101 |
102 | # Show vote results (On subcloud so it is not the good values here)
103 | log_out('\nConfusion on sub clouds', self.Log_file)
104 | confusion_list = []
105 |
106 | num_val = len(dataset.input_labels['validation'])
107 |
108 | for i_test in range(num_val):
109 | probs = self.test_probs[i_test]
110 | preds = dataset.label_values[np.argmax(probs, axis=1)].astype(np.int32)
111 | labels = dataset.input_labels['validation'][i_test]
112 |
113 | # Confs
114 | confusion_list += [confusion_matrix(labels, preds, dataset.label_values)]
115 |
116 | # Regroup confusions
117 | C = np.sum(np.stack(confusion_list), axis=0).astype(np.float32)
118 |
119 | # Rescale with the right number of point per class
120 | C *= np.expand_dims(val_proportions / (np.sum(C, axis=1) + 1e-6), 1)
121 |
122 | # Compute IoUs
123 | IoUs = DP.IoU_from_confusions(C)
124 | m_IoU = np.mean(IoUs)
125 | s = '{:5.2f} | '.format(100 * m_IoU)
126 | for IoU in IoUs:
127 | s += '{:5.2f} '.format(100 * IoU)
128 | log_out(s + '\n', self.Log_file)
129 |
130 | if int(np.ceil(new_min)) % 1 == 0:
131 |
132 | # Project predictions
133 | log_out('\nReproject Vote #{:d}'.format(int(np.floor(new_min))), self.Log_file)
134 | proj_probs_list = []
135 |
136 | for i_val in range(num_val):
137 | # Reproject probs back to the evaluations points
138 | proj_idx = dataset.val_proj[i_val]
139 | probs = self.test_probs[i_val][proj_idx, :]
140 | proj_probs_list += [probs]
141 |
142 | # Show vote results
143 | log_out('Confusion on full clouds', self.Log_file)
144 | confusion_list = []
145 | for i_test in range(num_val):
146 | # Get the predicted labels
147 | preds = dataset.label_values[np.argmax(proj_probs_list[i_test], axis=1)].astype(np.uint8)
148 |
149 | # Confusion
150 | labels = dataset.val_labels[i_test]
151 | acc = np.sum(preds == labels) / len(labels)
152 | log_out(dataset.input_names['validation'][i_test] + ' Acc:' + str(acc), self.Log_file)
153 |
154 | confusion_list += [confusion_matrix(labels, preds, dataset.label_values)]
155 | name = dataset.input_names['validation'][i_test] + '.ply'
156 | write_ply(join(test_path, 'val_preds', name), [preds, labels], ['pred', 'label'])
157 |
158 | # Regroup confusions
159 | C = np.sum(np.stack(confusion_list), axis=0)
160 |
161 | IoUs = DP.IoU_from_confusions(C)
162 | m_IoU = np.mean(IoUs)
163 | s = '{:5.2f} | '.format(100 * m_IoU)
164 | for IoU in IoUs:
165 | s += '{:5.2f} '.format(100 * IoU)
166 | log_out('-' * len(s), self.Log_file)
167 | log_out(s, self.Log_file)
168 | log_out('-' * len(s) + '\n', self.Log_file)
169 | print('finished \n')
170 | self.sess.close()
171 | return
172 |
173 | self.sess.run(dataset.val_init_op)
174 | epoch_id += 1
175 | step_id = 0
176 | continue
177 |
178 | return
179 |
--------------------------------------------------------------------------------
/tester_Semantic3D.py:
--------------------------------------------------------------------------------
1 | from os import makedirs
2 | from os.path import exists, join
3 | from helper_ply import read_ply, write_ply
4 | import tensorflow as tf
5 | import numpy as np
6 | import time
7 |
8 |
9 | def log_string(out_str, log_out):
10 | log_out.write(out_str + '\n')
11 | log_out.flush()
12 | print(out_str)
13 |
14 |
15 | class ModelTester:
16 | def __init__(self, model, dataset, restore_snap=None):
17 | # Tensorflow Saver definition
18 | my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
19 | self.saver = tf.train.Saver(my_vars, max_to_keep=100)
20 |
21 | # Create a session for running Ops on the Graph.
22 | on_cpu = False
23 | if on_cpu:
24 | c_proto = tf.ConfigProto(device_count={'GPU': 0})
25 | else:
26 | c_proto = tf.ConfigProto()
27 | c_proto.gpu_options.allow_growth = True
28 | self.sess = tf.Session(config=c_proto)
29 | self.sess.run(tf.global_variables_initializer())
30 |
31 | if restore_snap is not None:
32 | self.saver.restore(self.sess, restore_snap)
33 | print("Model restored from " + restore_snap)
34 |
35 | # Add a softmax operation for predictions
36 | self.prob_logits = tf.nn.softmax(model.logits)
37 | self.test_probs = [np.zeros((l.data.shape[0], model.config.num_classes), dtype=np.float16)
38 | for l in dataset.input_trees['test']]
39 |
40 | self.log_out = open('log_test_' + dataset.name + '.txt', 'a')
41 |
42 | def test(self, model, dataset, num_votes=100):
43 |
44 | # Smoothing parameter for votes
45 | test_smooth = 0.98
46 |
47 | # Initialise iterator with train data
48 | self.sess.run(dataset.test_init_op)
49 |
50 | # Test saving path
51 | saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
52 | test_path = join('test', saving_path.split('/')[-1])
53 | makedirs(test_path) if not exists(test_path) else None
54 | makedirs(join(test_path, 'predictions')) if not exists(join(test_path, 'predictions')) else None
55 | makedirs(join(test_path, 'probs')) if not exists(join(test_path, 'probs')) else None
56 |
57 | #####################
58 | # Network predictions
59 | #####################
60 |
61 | step_id = 0
62 | epoch_id = 0
63 | last_min = -0.5
64 |
65 | while last_min < num_votes:
66 |
67 | try:
68 | ops = (self.prob_logits,
69 | model.labels,
70 | model.inputs['input_inds'],
71 | model.inputs['cloud_inds'],)
72 |
73 | stacked_probs, stacked_labels, point_idx, cloud_idx = self.sess.run(ops, {model.is_training: False})
74 | stacked_probs = np.reshape(stacked_probs, [model.config.val_batch_size, model.config.num_points,
75 | model.config.num_classes])
76 |
77 | for j in range(np.shape(stacked_probs)[0]):
78 | probs = stacked_probs[j, :, :]
79 | inds = point_idx[j, :]
80 | c_i = cloud_idx[j][0]
81 | self.test_probs[c_i][inds] = test_smooth * self.test_probs[c_i][inds] + (1 - test_smooth) * probs
82 | step_id += 1
83 | log_string('Epoch {:3d}, step {:3d}. min possibility = {:.1f}'.format(epoch_id, step_id, np.min(
84 | dataset.min_possibility['test'])), self.log_out)
85 |
86 | except tf.errors.OutOfRangeError:
87 |
88 | # Save predicted cloud
89 | new_min = np.min(dataset.min_possibility['test'])
90 | log_string('Epoch {:3d}, end. Min possibility = {:.1f}'.format(epoch_id, new_min), self.log_out)
91 |
92 | if last_min + 4 < new_min:
93 |
94 | print('Saving clouds')
95 |
96 | # Update last_min
97 | last_min = new_min
98 |
99 | # Project predictions
100 | print('\nReproject Vote #{:d}'.format(int(np.floor(new_min))))
101 | t1 = time.time()
102 | files = dataset.test_files
103 | i_test = 0
104 | for i, file_path in enumerate(files):
105 | # Get file
106 | points = self.load_evaluation_points(file_path)
107 | points = points.astype(np.float16)
108 |
109 | # Reproject probs
110 | probs = np.zeros(shape=[np.shape(points)[0], 8], dtype=np.float16)
111 | proj_index = dataset.test_proj[i_test]
112 |
113 | probs = self.test_probs[i_test][proj_index, :]
114 |
115 | # Insert false columns for ignored labels
116 | probs2 = probs
117 | for l_ind, label_value in enumerate(dataset.label_values):
118 | if label_value in dataset.ignored_labels:
119 | probs2 = np.insert(probs2, l_ind, 0, axis=1)
120 |
121 | # Get the predicted labels
122 | preds = dataset.label_values[np.argmax(probs2, axis=1)].astype(np.uint8)
123 |
124 | # Save plys
125 | cloud_name = file_path.split('/')[-1]
126 |
127 | # Save ascii preds
128 | ascii_name = join(test_path, 'predictions', dataset.ascii_files[cloud_name])
129 | np.savetxt(ascii_name, preds, fmt='%d')
130 | log_string(ascii_name + 'has saved', self.log_out)
131 | i_test += 1
132 |
133 | t2 = time.time()
134 | print('Done in {:.1f} s\n'.format(t2 - t1))
135 | self.sess.close()
136 | return
137 |
138 | self.sess.run(dataset.test_init_op)
139 | epoch_id += 1
140 | step_id = 0
141 | continue
142 | return
143 |
144 | @staticmethod
145 | def load_evaluation_points(file_path):
146 | data = read_ply(file_path)
147 | return np.vstack((data['x'], data['y'], data['z'])).T
148 |
--------------------------------------------------------------------------------
/tester_SemanticKITTI.py:
--------------------------------------------------------------------------------
1 | from os import makedirs
2 | from os.path import exists, join, isfile, dirname, abspath
3 | from helper_tool import DataProcessing as DP
4 | from sklearn.metrics import confusion_matrix
5 | import tensorflow as tf
6 | import numpy as np
7 | import yaml
8 | import pickle
9 |
10 | BASE_DIR = dirname(abspath(__file__))
11 |
12 | data_config = join(BASE_DIR, 'utils', 'semantic-kitti.yaml')
13 | DATA = yaml.safe_load(open(data_config, 'r'))
14 | remap_dict = DATA["learning_map_inv"]
15 |
16 | # make lookup table for mapping
17 | max_key = max(remap_dict.keys())
18 | remap_lut = np.zeros((max_key + 100), dtype=np.int32)
19 | remap_lut[list(remap_dict.keys())] = list(remap_dict.values())
20 |
21 | remap_dict_val = DATA["learning_map"]
22 | max_key = max(remap_dict_val.keys())
23 | remap_lut_val = np.zeros((max_key + 100), dtype=np.int32)
24 | remap_lut_val[list(remap_dict_val.keys())] = list(remap_dict_val.values())
25 |
26 |
27 | def log_out(out_str, f_out):
28 | f_out.write(out_str + '\n')
29 | f_out.flush()
30 | print(out_str)
31 |
32 |
33 | class ModelTester:
34 | def __init__(self, model, dataset, restore_snap=None):
35 | my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
36 | self.saver = tf.train.Saver(my_vars, max_to_keep=100)
37 | self.Log_file = open('log_test_' + dataset.name + '.txt', 'a')
38 |
39 | # Create a session for running Ops on the Graph.
40 | on_cpu = False
41 | if on_cpu:
42 | c_proto = tf.ConfigProto(device_count={'GPU': 0})
43 | else:
44 | c_proto = tf.ConfigProto()
45 | c_proto.gpu_options.allow_growth = True
46 | self.sess = tf.Session(config=c_proto)
47 | self.sess.run(tf.global_variables_initializer())
48 |
49 | # Name of the snapshot to restore to (None if you want to start from beginning)
50 | if restore_snap is not None:
51 | self.saver.restore(self.sess, restore_snap)
52 | print("Model restored from " + restore_snap)
53 |
54 | self.prob_logits = tf.nn.softmax(model.logits)
55 | self.test_probs = 0
56 | self.idx = 0
57 |
58 | def test(self, model, dataset):
59 |
60 | # Initialise iterator with train data
61 | self.sess.run(dataset.test_init_op)
62 | self.test_probs = [np.zeros(shape=[len(l), model.config.num_classes], dtype=np.float16)
63 | for l in dataset.possibility]
64 |
65 | test_path = join('test', 'sequences')
66 | makedirs(test_path) if not exists(test_path) else None
67 | save_path = join(test_path, dataset.test_scan_number, 'predictions')
68 | makedirs(save_path) if not exists(save_path) else None
69 | test_smooth = 0.98
70 | epoch_ind = 0
71 |
72 | while True:
73 | try:
74 | ops = (self.prob_logits,
75 | model.labels,
76 | model.inputs['input_inds'],
77 | model.inputs['cloud_inds'])
78 | stacked_probs, labels, point_inds, cloud_inds = self.sess.run(ops, {model.is_training: False})
79 | if self.idx % 10 == 0:
80 | print('step ' + str(self.idx))
81 | self.idx += 1
82 | stacked_probs = np.reshape(stacked_probs, [model.config.val_batch_size,
83 | model.config.num_points,
84 | model.config.num_classes])
85 | for j in range(np.shape(stacked_probs)[0]):
86 | probs = stacked_probs[j, :, :]
87 | inds = point_inds[j, :]
88 | c_i = cloud_inds[j][0]
89 | self.test_probs[c_i][inds] = test_smooth * self.test_probs[c_i][inds] + (1 - test_smooth) * probs
90 |
91 | except tf.errors.OutOfRangeError:
92 | new_min = np.min(dataset.min_possibility)
93 | log_out('Epoch {:3d}, end. Min possibility = {:.1f}'.format(epoch_ind, new_min), self.Log_file)
94 | if np.min(dataset.min_possibility) > 0.5: # 0.5
95 | log_out(' Min possibility = {:.1f}'.format(np.min(dataset.min_possibility)), self.Log_file)
96 | print('\nReproject Vote #{:d}'.format(int(np.floor(new_min))))
97 |
98 | # For validation set
99 | num_classes = 19
100 | gt_classes = [0 for _ in range(num_classes)]
101 | positive_classes = [0 for _ in range(num_classes)]
102 | true_positive_classes = [0 for _ in range(num_classes)]
103 | val_total_correct = 0
104 | val_total_seen = 0
105 |
106 | for j in range(len(self.test_probs)):
107 | test_file_name = dataset.test_list[j]
108 | frame = test_file_name.split('/')[-1][:-4]
109 | proj_path = join(dataset.dataset_path, dataset.test_scan_number, 'proj')
110 | proj_file = join(proj_path, str(frame) + '_proj.pkl')
111 | if isfile(proj_file):
112 | with open(proj_file, 'rb') as f:
113 | proj_inds = pickle.load(f)
114 | probs = self.test_probs[j][proj_inds[0], :]
115 | pred = np.argmax(probs, 1)
116 | if dataset.test_scan_number == '08':
117 | label_path = join(dirname(dataset.dataset_path), 'sequences', dataset.test_scan_number,
118 | 'labels')
119 | label_file = join(label_path, str(frame) + '.label')
120 | labels = DP.load_label_kitti(label_file, remap_lut_val)
121 | invalid_idx = np.where(labels == 0)[0]
122 | labels_valid = np.delete(labels, invalid_idx)
123 | pred_valid = np.delete(pred, invalid_idx)
124 | labels_valid = labels_valid - 1
125 | correct = np.sum(pred_valid == labels_valid)
126 | val_total_correct += correct
127 | val_total_seen += len(labels_valid)
128 | conf_matrix = confusion_matrix(labels_valid, pred_valid, np.arange(0, num_classes, 1))
129 | gt_classes += np.sum(conf_matrix, axis=1)
130 | positive_classes += np.sum(conf_matrix, axis=0)
131 | true_positive_classes += np.diagonal(conf_matrix)
132 | else:
133 | store_path = join(test_path, dataset.test_scan_number, 'predictions',
134 | str(frame) + '.label')
135 | pred = pred + 1
136 | pred = pred.astype(np.uint32)
137 | upper_half = pred >> 16 # get upper half for instances
138 | lower_half = pred & 0xFFFF # get lower half for semantics
139 | lower_half = remap_lut[lower_half] # do the remapping of semantics
140 | pred = (upper_half << 16) + lower_half # reconstruct full label
141 | pred = pred.astype(np.uint32)
142 | pred.tofile(store_path)
143 | log_out(str(dataset.test_scan_number) + ' finished', self.Log_file)
144 | if dataset.test_scan_number=='08':
145 | iou_list = []
146 | for n in range(0, num_classes, 1):
147 | iou = true_positive_classes[n] / float(
148 | gt_classes[n] + positive_classes[n] - true_positive_classes[n])
149 | iou_list.append(iou)
150 | mean_iou = sum(iou_list) / float(num_classes)
151 |
152 | log_out('eval accuracy: {}'.format(val_total_correct / float(val_total_seen)), self.Log_file)
153 | log_out('mean IOU:{}'.format(mean_iou), self.Log_file)
154 |
155 | mean_iou = 100 * mean_iou
156 | print('Mean IoU = {:.1f}%'.format(mean_iou))
157 | s = '{:5.2f} | '.format(mean_iou)
158 | for IoU in iou_list:
159 | s += '{:5.2f} '.format(100 * IoU)
160 | print('-' * len(s))
161 | print(s)
162 | print('-' * len(s) + '\n')
163 | self.sess.close()
164 | return
165 | self.sess.run(dataset.test_init_op)
166 | epoch_ind += 1
167 | continue
168 |
--------------------------------------------------------------------------------
/utils/6_fold_cv.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import glob, os, sys
3 |
4 | BASE_DIR = os.path.dirname(os.path.abspath(__file__))
5 | ROOT_DIR = os.path.dirname(BASE_DIR)
6 | sys.path.append(ROOT_DIR)
7 | from helper_ply import read_ply
8 | from helper_tool import Plot
9 |
10 | if __name__ == '__main__':
11 | base_dir = '/data/S3DIS/results'
12 | original_data_dir = '/data/S3DIS/original_ply'
13 | data_path = glob.glob(os.path.join(base_dir, '*.ply'))
14 | data_path = np.sort(data_path)
15 |
16 | test_total_correct = 0
17 | test_total_seen = 0
18 | gt_classes = [0 for _ in range(13)]
19 | positive_classes = [0 for _ in range(13)]
20 | true_positive_classes = [0 for _ in range(13)]
21 | visualization = False
22 |
23 | for file_name in data_path:
24 | pred_data = read_ply(file_name)
25 | pred = pred_data['pred']
26 | original_data = read_ply(os.path.join(original_data_dir, file_name.split('/')[-1][:-4] + '.ply'))
27 | labels = original_data['class']
28 | points = np.vstack((original_data['x'], original_data['y'], original_data['z'])).T
29 |
30 | ##################
31 | # Visualize data #
32 | ##################
33 | if visualization:
34 | colors = np.vstack((original_data['red'], original_data['green'], original_data['blue'])).T
35 | xyzrgb = np.concatenate([points, colors], axis=-1)
36 | Plot.draw_pc(xyzrgb) # visualize raw point clouds
37 | Plot.draw_pc_sem_ins(points, labels) # visualize ground-truth
38 | Plot.draw_pc_sem_ins(points, pred) # visualize prediction
39 |
40 | correct = np.sum(pred == labels)
41 | print(str(file_name.split('/')[-1][:-4]) + '_acc:' + str(correct / float(len(labels))))
42 | test_total_correct += correct
43 | test_total_seen += len(labels)
44 |
45 | for j in range(len(labels)):
46 | gt_l = int(labels[j])
47 | pred_l = int(pred[j])
48 | gt_classes[gt_l] += 1
49 | positive_classes[pred_l] += 1
50 | true_positive_classes[gt_l] += int(gt_l == pred_l)
51 |
52 | iou_list = []
53 | for n in range(13):
54 | iou = true_positive_classes[n] / float(gt_classes[n] + positive_classes[n] - true_positive_classes[n])
55 | iou_list.append(iou)
56 | mean_iou = sum(iou_list) / 13.0
57 | print('eval accuracy: {}'.format(test_total_correct / float(test_total_seen)))
58 | print('mean IOU:{}'.format(mean_iou))
59 | print(iou_list)
60 |
61 | acc_list = []
62 | for n in range(13):
63 | acc = true_positive_classes[n] / float(gt_classes[n])
64 | acc_list.append(acc)
65 | mean_acc = sum(acc_list) / 13.0
66 | print('mAcc value is :{}'.format(mean_acc))
67 |
--------------------------------------------------------------------------------
/utils/cpp_wrappers/compile_wrappers.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Compile cpp subsampling
4 | cd cpp_subsampling
5 | python3 setup.py build_ext --inplace
6 | cd ..
7 |
8 |
--------------------------------------------------------------------------------
/utils/cpp_wrappers/cpp_subsampling/grid_subsampling/grid_subsampling.cpp:
--------------------------------------------------------------------------------
1 |
2 | #include "grid_subsampling.h"
3 |
4 |
5 | void grid_subsampling(vector& original_points,
6 | vector& subsampled_points,
7 | vector& original_features,
8 | vector& subsampled_features,
9 | vector& original_classes,
10 | vector& subsampled_classes,
11 | float sampleDl,
12 | int verbose) {
13 |
14 | // Initiate variables
15 | // ******************
16 |
17 | // Number of points in the cloud
18 | size_t N = original_points.size();
19 |
20 | // Dimension of the features
21 | size_t fdim = original_features.size() / N;
22 | size_t ldim = original_classes.size() / N;
23 |
24 | // Limits of the cloud
25 | PointXYZ minCorner = min_point(original_points);
26 | PointXYZ maxCorner = max_point(original_points);
27 | PointXYZ originCorner = floor(minCorner * (1/sampleDl)) * sampleDl;
28 |
29 | // Dimensions of the grid
30 | size_t sampleNX = (size_t)floor((maxCorner.x - originCorner.x) / sampleDl) + 1;
31 | size_t sampleNY = (size_t)floor((maxCorner.y - originCorner.y) / sampleDl) + 1;
32 | //size_t sampleNZ = (size_t)floor((maxCorner.z - originCorner.z) / sampleDl) + 1;
33 |
34 | // Check if features and classes need to be processed
35 | bool use_feature = original_features.size() > 0;
36 | bool use_classes = original_classes.size() > 0;
37 |
38 |
39 | // Create the sampled map
40 | // **********************
41 |
42 | // Verbose parameters
43 | int i = 0;
44 | int nDisp = N / 100;
45 |
46 | // Initiate variables
47 | size_t iX, iY, iZ, mapIdx;
48 | unordered_map data;
49 |
50 | for (auto& p : original_points)
51 | {
52 | // Position of point in sample map
53 | iX = (size_t)floor((p.x - originCorner.x) / sampleDl);
54 | iY = (size_t)floor((p.y - originCorner.y) / sampleDl);
55 | iZ = (size_t)floor((p.z - originCorner.z) / sampleDl);
56 | mapIdx = iX + sampleNX*iY + sampleNX*sampleNY*iZ;
57 |
58 | // If not already created, create key
59 | if (data.count(mapIdx) < 1)
60 | data.emplace(mapIdx, SampledData(fdim, ldim));
61 |
62 | // Fill the sample map
63 | if (use_feature && use_classes)
64 | data[mapIdx].update_all(p, original_features.begin() + i * fdim, original_classes.begin() + i * ldim);
65 | else if (use_feature)
66 | data[mapIdx].update_features(p, original_features.begin() + i * fdim);
67 | else if (use_classes)
68 | data[mapIdx].update_classes(p, original_classes.begin() + i * ldim);
69 | else
70 | data[mapIdx].update_points(p);
71 |
72 | // Display
73 | i++;
74 | if (verbose > 1 && i%nDisp == 0)
75 | std::cout << "\rSampled Map : " << std::setw(3) << i / nDisp << "%";
76 |
77 | }
78 |
79 | // Divide for barycentre and transfer to a vector
80 | subsampled_points.reserve(data.size());
81 | if (use_feature)
82 | subsampled_features.reserve(data.size() * fdim);
83 | if (use_classes)
84 | subsampled_classes.reserve(data.size() * ldim);
85 | for (auto& v : data)
86 | {
87 | subsampled_points.push_back(v.second.point * (1.0 / v.second.count));
88 | if (use_feature)
89 | {
90 | float count = (float)v.second.count;
91 | transform(v.second.features.begin(),
92 | v.second.features.end(),
93 | v.second.features.begin(),
94 | [count](float f) { return f / count;});
95 | subsampled_features.insert(subsampled_features.end(),v.second.features.begin(),v.second.features.end());
96 | }
97 | if (use_classes)
98 | {
99 | for (int i = 0; i < ldim; i++)
100 | subsampled_classes.push_back(max_element(v.second.labels[i].begin(), v.second.labels[i].end(),
101 | [](const pair&a, const pair&b){return a.second < b.second;})->first);
102 | }
103 | }
104 |
105 | return;
106 | }
107 |
--------------------------------------------------------------------------------
/utils/cpp_wrappers/cpp_subsampling/grid_subsampling/grid_subsampling.h:
--------------------------------------------------------------------------------
1 |
2 |
3 | #include "../../cpp_utils/cloud/cloud.h"
4 |
5 | #include
6 | #include
7 |
8 | using namespace std;
9 |
10 | class SampledData
11 | {
12 | public:
13 |
14 | // Elements
15 | // ********
16 |
17 | int count;
18 | PointXYZ point;
19 | vector features;
20 | vector> labels;
21 |
22 |
23 | // Methods
24 | // *******
25 |
26 | // Constructor
27 | SampledData()
28 | {
29 | count = 0;
30 | point = PointXYZ();
31 | }
32 |
33 | SampledData(const size_t fdim, const size_t ldim)
34 | {
35 | count = 0;
36 | point = PointXYZ();
37 | features = vector(fdim);
38 | labels = vector>(ldim);
39 | }
40 |
41 | // Method Update
42 | void update_all(const PointXYZ p, vector::iterator f_begin, vector::iterator l_begin)
43 | {
44 | count += 1;
45 | point += p;
46 | transform (features.begin(), features.end(), f_begin, features.begin(), plus());
47 | int i = 0;
48 | for(vector::iterator it = l_begin; it != l_begin + labels.size(); ++it)
49 | {
50 | labels[i][*it] += 1;
51 | i++;
52 | }
53 | return;
54 | }
55 | void update_features(const PointXYZ p, vector::iterator f_begin)
56 | {
57 | count += 1;
58 | point += p;
59 | transform (features.begin(), features.end(), f_begin, features.begin(), plus());
60 | return;
61 | }
62 | void update_classes(const PointXYZ p, vector::iterator l_begin)
63 | {
64 | count += 1;
65 | point += p;
66 | int i = 0;
67 | for(vector::iterator it = l_begin; it != l_begin + labels.size(); ++it)
68 | {
69 | labels[i][*it] += 1;
70 | i++;
71 | }
72 | return;
73 | }
74 | void update_points(const PointXYZ p)
75 | {
76 | count += 1;
77 | point += p;
78 | return;
79 | }
80 | };
81 |
82 |
83 |
84 | void grid_subsampling(vector& original_points,
85 | vector& subsampled_points,
86 | vector& original_features,
87 | vector& subsampled_features,
88 | vector& original_classes,
89 | vector& subsampled_classes,
90 | float sampleDl,
91 | int verbose);
92 |
93 |
--------------------------------------------------------------------------------
/utils/cpp_wrappers/cpp_subsampling/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup, Extension
2 | import numpy.distutils.misc_util
3 |
4 | # Adding OpenCV to project
5 | # ************************
6 |
7 | # Adding sources of the project
8 | # *****************************
9 |
10 | m_name = "grid_subsampling"
11 |
12 | SOURCES = ["../cpp_utils/cloud/cloud.cpp",
13 | "grid_subsampling/grid_subsampling.cpp",
14 | "wrapper.cpp"]
15 |
16 | module = Extension(m_name,
17 | sources=SOURCES,
18 | extra_compile_args=['-std=c++11',
19 | '-D_GLIBCXX_USE_CXX11_ABI=0'])
20 |
21 | setup(ext_modules=[module], include_dirs=numpy.distutils.misc_util.get_numpy_include_dirs())
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
--------------------------------------------------------------------------------
/utils/cpp_wrappers/cpp_subsampling/wrapper.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include "grid_subsampling/grid_subsampling.h"
4 | #include
5 |
6 |
7 |
8 | // docstrings for our module
9 | // *************************
10 |
11 | static char module_docstring[] = "This module provides an interface for the subsampling of a pointcloud";
12 |
13 | static char compute_docstring[] = "function subsampling a pointcloud";
14 |
15 |
16 | // Declare the functions
17 | // *********************
18 |
19 | static PyObject *grid_subsampling_compute(PyObject *self, PyObject *args, PyObject *keywds);
20 |
21 |
22 | // Specify the members of the module
23 | // *********************************
24 |
25 | static PyMethodDef module_methods[] =
26 | {
27 | { "compute", (PyCFunction)grid_subsampling_compute, METH_VARARGS | METH_KEYWORDS, compute_docstring },
28 | {NULL, NULL, 0, NULL}
29 | };
30 |
31 |
32 | // Initialize the module
33 | // *********************
34 |
35 | static struct PyModuleDef moduledef =
36 | {
37 | PyModuleDef_HEAD_INIT,
38 | "grid_subsampling", // m_name
39 | module_docstring, // m_doc
40 | -1, // m_size
41 | module_methods, // m_methods
42 | NULL, // m_reload
43 | NULL, // m_traverse
44 | NULL, // m_clear
45 | NULL, // m_free
46 | };
47 |
48 | PyMODINIT_FUNC PyInit_grid_subsampling(void)
49 | {
50 | import_array();
51 | return PyModule_Create(&moduledef);
52 | }
53 |
54 |
55 | // Actual wrapper
56 | // **************
57 |
58 | static PyObject *grid_subsampling_compute(PyObject *self, PyObject *args, PyObject *keywds)
59 | {
60 |
61 | // Manage inputs
62 | // *************
63 |
64 | // Args containers
65 | PyObject *points_obj = NULL;
66 | PyObject *features_obj = NULL;
67 | PyObject *classes_obj = NULL;
68 |
69 | // Keywords containers
70 | static char *kwlist[] = {"points", "features", "classes", "sampleDl", "method", "verbose", NULL };
71 | float sampleDl = 0.1;
72 | const char *method_buffer = "barycenters";
73 | int verbose = 0;
74 |
75 | // Parse the input
76 | if (!PyArg_ParseTupleAndKeywords(args, keywds, "O|$OOfsi", kwlist, &points_obj, &features_obj, &classes_obj, &sampleDl, &method_buffer, &verbose))
77 | {
78 | PyErr_SetString(PyExc_RuntimeError, "Error parsing arguments");
79 | return NULL;
80 | }
81 |
82 | // Get the method argument
83 | string method(method_buffer);
84 |
85 | // Interpret method
86 | if (method.compare("barycenters") && method.compare("voxelcenters"))
87 | {
88 | PyErr_SetString(PyExc_RuntimeError, "Error parsing method. Valid method names are \"barycenters\" and \"voxelcenters\" ");
89 | return NULL;
90 | }
91 |
92 | // Check if using features or classes
93 | bool use_feature = true, use_classes = true;
94 | if (features_obj == NULL)
95 | use_feature = false;
96 | if (classes_obj == NULL)
97 | use_classes = false;
98 |
99 | // Interpret the input objects as numpy arrays.
100 | PyObject *points_array = PyArray_FROM_OTF(points_obj, NPY_FLOAT, NPY_IN_ARRAY);
101 | PyObject *features_array = NULL;
102 | PyObject *classes_array = NULL;
103 | if (use_feature)
104 | features_array = PyArray_FROM_OTF(features_obj, NPY_FLOAT, NPY_IN_ARRAY);
105 | if (use_classes)
106 | classes_array = PyArray_FROM_OTF(classes_obj, NPY_INT, NPY_IN_ARRAY);
107 |
108 | // Verify data was load correctly.
109 | if (points_array == NULL)
110 | {
111 | Py_XDECREF(points_array);
112 | Py_XDECREF(classes_array);
113 | Py_XDECREF(features_array);
114 | PyErr_SetString(PyExc_RuntimeError, "Error converting input points to numpy arrays of type float32");
115 | return NULL;
116 | }
117 | if (use_feature && features_array == NULL)
118 | {
119 | Py_XDECREF(points_array);
120 | Py_XDECREF(classes_array);
121 | Py_XDECREF(features_array);
122 | PyErr_SetString(PyExc_RuntimeError, "Error converting input features to numpy arrays of type float32");
123 | return NULL;
124 | }
125 | if (use_classes && classes_array == NULL)
126 | {
127 | Py_XDECREF(points_array);
128 | Py_XDECREF(classes_array);
129 | Py_XDECREF(features_array);
130 | PyErr_SetString(PyExc_RuntimeError, "Error converting input classes to numpy arrays of type int32");
131 | return NULL;
132 | }
133 |
134 | // Check that the input array respect the dims
135 | if ((int)PyArray_NDIM(points_array) != 2 || (int)PyArray_DIM(points_array, 1) != 3)
136 | {
137 | Py_XDECREF(points_array);
138 | Py_XDECREF(classes_array);
139 | Py_XDECREF(features_array);
140 | PyErr_SetString(PyExc_RuntimeError, "Wrong dimensions : points.shape is not (N, 3)");
141 | return NULL;
142 | }
143 | if (use_feature && ((int)PyArray_NDIM(features_array) != 2))
144 | {
145 | Py_XDECREF(points_array);
146 | Py_XDECREF(classes_array);
147 | Py_XDECREF(features_array);
148 | PyErr_SetString(PyExc_RuntimeError, "Wrong dimensions : features.shape is not (N, d)");
149 | return NULL;
150 | }
151 |
152 | if (use_classes && (int)PyArray_NDIM(classes_array) > 2)
153 | {
154 | Py_XDECREF(points_array);
155 | Py_XDECREF(classes_array);
156 | Py_XDECREF(features_array);
157 | PyErr_SetString(PyExc_RuntimeError, "Wrong dimensions : classes.shape is not (N,) or (N, d)");
158 | return NULL;
159 | }
160 |
161 | // Number of points
162 | int N = (int)PyArray_DIM(points_array, 0);
163 |
164 | // Dimension of the features
165 | int fdim = 0;
166 | if (use_feature)
167 | fdim = (int)PyArray_DIM(features_array, 1);
168 |
169 | //Dimension of labels
170 | int ldim = 1;
171 | if (use_classes && (int)PyArray_NDIM(classes_array) == 2)
172 | ldim = (int)PyArray_DIM(classes_array, 1);
173 |
174 | // Check that the input array respect the number of points
175 | if (use_feature && (int)PyArray_DIM(features_array, 0) != N)
176 | {
177 | Py_XDECREF(points_array);
178 | Py_XDECREF(classes_array);
179 | Py_XDECREF(features_array);
180 | PyErr_SetString(PyExc_RuntimeError, "Wrong dimensions : features.shape is not (N, d)");
181 | return NULL;
182 | }
183 | if (use_classes && (int)PyArray_DIM(classes_array, 0) != N)
184 | {
185 | Py_XDECREF(points_array);
186 | Py_XDECREF(classes_array);
187 | Py_XDECREF(features_array);
188 | PyErr_SetString(PyExc_RuntimeError, "Wrong dimensions : classes.shape is not (N,) or (N, d)");
189 | return NULL;
190 | }
191 |
192 |
193 | // Call the C++ function
194 | // *********************
195 |
196 | // Create pyramid
197 | if (verbose > 0)
198 | cout << "Computing cloud pyramid with support points: " << endl;
199 |
200 |
201 | // Convert PyArray to Cloud C++ class
202 | vector original_points;
203 | vector original_features;
204 | vector original_classes;
205 | original_points = vector((PointXYZ*)PyArray_DATA(points_array), (PointXYZ*)PyArray_DATA(points_array) + N);
206 | if (use_feature)
207 | original_features = vector((float*)PyArray_DATA(features_array), (float*)PyArray_DATA(features_array) + N*fdim);
208 | if (use_classes)
209 | original_classes = vector((int*)PyArray_DATA(classes_array), (int*)PyArray_DATA(classes_array) + N*ldim);
210 |
211 | // Subsample
212 | vector subsampled_points;
213 | vector subsampled_features;
214 | vector subsampled_classes;
215 | grid_subsampling(original_points,
216 | subsampled_points,
217 | original_features,
218 | subsampled_features,
219 | original_classes,
220 | subsampled_classes,
221 | sampleDl,
222 | verbose);
223 |
224 | // Check result
225 | if (subsampled_points.size() < 1)
226 | {
227 | PyErr_SetString(PyExc_RuntimeError, "Error");
228 | return NULL;
229 | }
230 |
231 | // Manage outputs
232 | // **************
233 |
234 | // Dimension of input containers
235 | npy_intp* point_dims = new npy_intp[2];
236 | point_dims[0] = subsampled_points.size();
237 | point_dims[1] = 3;
238 | npy_intp* feature_dims = new npy_intp[2];
239 | feature_dims[0] = subsampled_points.size();
240 | feature_dims[1] = fdim;
241 | npy_intp* classes_dims = new npy_intp[2];
242 | classes_dims[0] = subsampled_points.size();
243 | classes_dims[1] = ldim;
244 |
245 | // Create output array
246 | PyObject *res_points_obj = PyArray_SimpleNew(2, point_dims, NPY_FLOAT);
247 | PyObject *res_features_obj = NULL;
248 | PyObject *res_classes_obj = NULL;
249 | PyObject *ret = NULL;
250 |
251 | // Fill output array with values
252 | size_t size_in_bytes = subsampled_points.size() * 3 * sizeof(float);
253 | memcpy(PyArray_DATA(res_points_obj), subsampled_points.data(), size_in_bytes);
254 | if (use_feature)
255 | {
256 | size_in_bytes = subsampled_points.size() * fdim * sizeof(float);
257 | res_features_obj = PyArray_SimpleNew(2, feature_dims, NPY_FLOAT);
258 | memcpy(PyArray_DATA(res_features_obj), subsampled_features.data(), size_in_bytes);
259 | }
260 | if (use_classes)
261 | {
262 | size_in_bytes = subsampled_points.size() * ldim * sizeof(int);
263 | res_classes_obj = PyArray_SimpleNew(2, classes_dims, NPY_INT);
264 | memcpy(PyArray_DATA(res_classes_obj), subsampled_classes.data(), size_in_bytes);
265 | }
266 |
267 |
268 | // Merge results
269 | if (use_feature && use_classes)
270 | ret = Py_BuildValue("NNN", res_points_obj, res_features_obj, res_classes_obj);
271 | else if (use_feature)
272 | ret = Py_BuildValue("NN", res_points_obj, res_features_obj);
273 | else if (use_classes)
274 | ret = Py_BuildValue("NN", res_points_obj, res_classes_obj);
275 | else
276 | ret = Py_BuildValue("N", res_points_obj);
277 |
278 | // Clean up
279 | // ********
280 |
281 | Py_DECREF(points_array);
282 | Py_XDECREF(features_array);
283 | Py_XDECREF(classes_array);
284 |
285 | return ret;
286 | }
--------------------------------------------------------------------------------
/utils/cpp_wrappers/cpp_utils/cloud/cloud.cpp:
--------------------------------------------------------------------------------
1 | //
2 | //
3 | // 0==========================0
4 | // | Local feature test |
5 | // 0==========================0
6 | //
7 | // version 1.0 :
8 | // >
9 | //
10 | //---------------------------------------------------
11 | //
12 | // Cloud source :
13 | // Define usefull Functions/Methods
14 | //
15 | //----------------------------------------------------
16 | //
17 | // Hugues THOMAS - 10/02/2017
18 | //
19 |
20 |
21 | #include "cloud.h"
22 |
23 |
24 | // Getters
25 | // *******
26 |
27 | PointXYZ max_point(std::vector points)
28 | {
29 | // Initiate limits
30 | PointXYZ maxP(points[0]);
31 |
32 | // Loop over all points
33 | for (auto p : points)
34 | {
35 | if (p.x > maxP.x)
36 | maxP.x = p.x;
37 |
38 | if (p.y > maxP.y)
39 | maxP.y = p.y;
40 |
41 | if (p.z > maxP.z)
42 | maxP.z = p.z;
43 | }
44 |
45 | return maxP;
46 | }
47 |
48 | PointXYZ min_point(std::vector points)
49 | {
50 | // Initiate limits
51 | PointXYZ minP(points[0]);
52 |
53 | // Loop over all points
54 | for (auto p : points)
55 | {
56 | if (p.x < minP.x)
57 | minP.x = p.x;
58 |
59 | if (p.y < minP.y)
60 | minP.y = p.y;
61 |
62 | if (p.z < minP.z)
63 | minP.z = p.z;
64 | }
65 |
66 | return minP;
67 | }
--------------------------------------------------------------------------------
/utils/cpp_wrappers/cpp_utils/cloud/cloud.h:
--------------------------------------------------------------------------------
1 | //
2 | //
3 | // 0==========================0
4 | // | Local feature test |
5 | // 0==========================0
6 | //
7 | // version 1.0 :
8 | // >
9 | //
10 | //---------------------------------------------------
11 | //
12 | // Cloud header
13 | //
14 | //----------------------------------------------------
15 | //
16 | // Hugues THOMAS - 10/02/2017
17 | //
18 |
19 |
20 | # pragma once
21 |
22 | #include
23 | #include
24 | #include