├── Dataset.png
├── README.md
├── Segmentation.pdf
├── Segmentation.png
├── classification.pdf
├── classification.png
├── detection.pdf
├── detection.png
├── detection_bev.pdf
├── detection_bev.png
└── taxonomy.png
/Dataset.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/Dataset.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | [](https://arxiv.org/abs/1912.12033)
2 | [](https://github.com/QingyongHu/SoTA-Point-Cloud/graphs/commit-activity)
3 | [](https://GitHub.com/QingyongHu/SoTA-Point-Cloud/issues/)
4 | [](http://makeapullrequest.com)
5 |
6 |
7 | # Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)
8 |
9 | This is the official repository of **Deep Learning for 3D Point Clouds: A Survey** (IEEE TPAMI), a comprehensive survey
10 | of recent progress in deep learning methods for point clouds. For details, please refer to:
11 |
12 | **Deep Learning for 3D Point Clouds: A Survey**
13 |
14 | [Yulan Guo∗](http://yulanguo.me/),
15 | [Hanyun Wang∗](https://scholar.google.com.hk/citations?user=QG3LdUcAAAAJ&hl=zh-CN),
16 | [Qingyong Hu∗](https://qingyonghu.github.io/), Hao Liu∗,
17 | [Li Liu](http://www.ee.oulu.fi/~lili/LiLiuHomepage.html),
18 | and [Mohammed Bennamoun](http://staffhome.ecm.uwa.edu.au/~00051632/).
19 | (* *indicates equal contribution*)
20 |
21 | **[[Paper](https://arxiv.org/abs/1912.12033)] [[Blog](https://mp.weixin.qq.com/s/5RJAv_cOlhee1R9uZzkmHQ)]**
22 |
23 |
24 |
25 |
26 | ## Introduction
27 | We present a comprehensive review of recent deep learning methods for point clouds. It covers major tasks in 3D point cloud analysis,
28 | including 3D shape classification, 3D object detection, and 3D point cloud segmentation. It also presents comparative
29 | results on several publicly available datasets, together with insightful observations and inspiring future research directions.
30 | Please feel free to contact me
31 | or [create an issue](https://help.github.com/en/github/managing-your-work-on-github/creating-an-issue) on this page if you have new results to add or any suggestions!
32 |
33 | We will update this page on a regular basis! So stay tuned~ :tada::tada::tada:
34 |
35 | ### (1) Datasets
36 |
37 |
38 | ### (2) 3D Shape Classification
39 | #### Public Datasets
40 | - ModelNet (CVPR'15) [[paper]](http://3dvision.princeton.edu/projects/2014/3DShapeNets/paper.pdf) [[project page]](http://modelnet.cs.princeton.edu/)
41 | - ModelNet10 [[data]](http://3dvision.princeton.edu/projects/2014/3DShapeNets/ModelNet10.zip) [[results]](http://modelnet.cs.princeton.edu/)
42 | - ModelNet40 [[data]](http://modelnet.cs.princeton.edu/ModelNet40.zip) [[results]](http://modelnet.cs.princeton.edu/)
43 | - PartNet (CVPR'19) [[paper]](https://arxiv.org/abs/1812.02713) [[data]](https://github.com/daerduoCarey/partnet_dataset) [[project page]](https://cs.stanford.edu/~kaichun/partnet/)
44 | - ScanObjectNN (ICCV'19) [[paper]](https://arxiv.org/pdf/1908.04616.pdf) [[data]](https://github.com/hkust-vgd/scanobjectnn) [[project page]](https://hkust-vgd.github.io/scanobjectnn/)
45 |
46 | #### Benchmark Results
47 |
48 |
49 | ### (3) 3D Object Detection
50 | #### Public Datasets
51 | - KITTI (CVPR'12) [[paper]](http://www.cvlibs.net/publications/Geiger2012CVPR.pdf) [[project page]](http://www.cvlibs.net/datasets/kitti/eval_3dobject.php)
52 | - _3D objecct detection_ [[data]](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) [[results]](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d)
53 | - _BEV_ [[data]](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=bev) [[results]](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=bev)
54 | - ApolloScape (TPAMI'19) [[paper]](http://ad-apolloscape.bj.bcebos.com/public%2FApolloScape%20Dataset.pdf) [[data]](http://apolloscape.auto/tracking.html#to_data_href) [[results]](http://apolloscape.auto/leader_board.html)
55 | - Argoverse (CVPR'19) [[paper]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Chang_Argoverse_3D_Tracking_and_Forecasting_With_Rich_Maps_CVPR_2019_paper.pdf) [[data]](https://www.argoverse.org/data.html#download-link) [[project page]](https://www.argoverse.org/index.html)
56 | - A*3D (arXiv'19) [[paper]](https://arxiv.org/pdf/1909.07541) [[data]](https://github.com/I2RDL2/ASTAR-3D#Download) [[project page]](https://github.com/I2RDL2/ASTAR-3D)
57 | - Waymo (arXiv'19) [[paper]](https://arxiv.org/pdf/1912.04838) [[data]](https://waymo.com/open/licensing/) [[project page]](https://waymo.com/open/)
58 |
59 | #### Benchmark Results
60 |
61 |
62 |
63 |
64 | ### (4) 3D Point Cloud Segmentation
65 | #### Public Datasets
66 | - Semantic3D (ISPRS'17) [[paper]](https://www.ethz.ch/content/dam/ethz/special-interest/baug/igp/photogrammetry-remote-sensing-dam/documents/pdf/Papers/Hackel-etal-cmrt2017.pdf) [[project page]](http://www.semantic3d.net/)
67 | - _semantic-8_ [[data]](http://www.semantic3d.net/view_dbase.php?chl=1#download) [[results]](http://www.semantic3d.net/view_results.php?chl=1)
68 | - _reduced-8_ [[data]](http://www.semantic3d.net/view_dbase.php?chl=2#download) [[results]](http://www.semantic3d.net/view_results.php?chl=2)
69 | - S3DIS (CVPR'17) [[paper]](http://buildingparser.stanford.edu/images/3D_Semantic_Parsing.pdf) [[data]](https://docs.google.com/forms/d/e/1FAIpQLScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1) [[project page]](http://buildingparser.stanford.edu/dataset.html#Download)
70 | - ScanNet (CVPR'17) [[paper]](https://arxiv.org/pdf/1702.04405) [[data]](https://github.com/ScanNet/ScanNet) [[project page]](http://www.scan-net.org/) [[results]](http://kaldir.vc.in.tum.de/scannet_benchmark/)
71 | - NPM3D (IJRR'18) [[paper]](https://arxiv.org/pdf/1712.00032) [[data]](https://cloud.mines-paristech.fr/index.php/s/JhIxgyt0ALgRZ1O) [[project page]](http://npm3d.fr/) [[results]](http://npm3d.fr/paris-lille-3d)
72 | - DublinCity (BMVC'19) [[paper]](https://arxiv.org/abs/1909.03613) [[data]](https://v-sense.scss.tcd.ie/dublincity/) [[project page]](https://v-sense.scss.tcd.ie/dublincity/)
73 | - SemanticKITTI (ICCV'19) [[paper]](https://arxiv.org/pdf/1904.01416) [[data]](http://semantic-kitti.org/dataset.html#download) [[project page]](http://semantic-kitti.org/index.html) [[results]](https://competitions.codalab.org/competitions/20331#results)
74 | - nuScenes (CVPR'20) [[paper]](https://arxiv.org/abs/1903.11027) [[data]](https://www.nuscenes.org/lidar-segmentation) [[project page]](https://www.nuscenes.org/lidar-segmentation) [[results]](https://www.nuscenes.org/lidar-segmentation)
75 | - Toronto-3D (CVPRW'20) [[paper]](https://arxiv.org/abs/2003.08284) [[data]](https://github.com/WeikaiTan/Toronto-3D) [[project page]](https://github.com/WeikaiTan/Toronto-3D) [[results]](https://github.com/WeikaiTan/Toronto-3D)
76 | - DALES (CVPRW'20) [[paper]](https://arxiv.org/abs/2004.11985) [[data]](https://docs.google.com/forms/d/e/1FAIpQLSe3IaTxCS7wKH01SHn_o7U86ToIw9K26vc0bkwiELn6wwh8gg/viewform) [[project page]](https://udayton.edu/engineering/research/centers/vision_lab/research/was_data_analysis_and_processing/dale.php) [[results]](https://arxiv.org/abs/2004.11985)
77 | - Campus3D (ACM MM'20) [[paper]](https://arxiv.org/abs/2008.04968) [[data]](https://3d.dataset.site/) [[project page]](https://github.com/shinke-li/Campus3D) [[results]](https://arxiv.org/abs/2008.04968)
78 | - SensatUrban (CVPR'21) [[paper]](https://arxiv.org/abs/2009.03137) [data][[project page]](http://point-cloud-analysis.cs.ox.ac.uk/) [[results]](https://arxiv.org/abs/2009.03137)
79 |
80 |
81 | #### Benchmark Results
82 |
83 |
84 |
85 | ### Citation
86 | If you find our work useful in your research, please consider citing:
87 |
88 | @article{guo2020deep,
89 | title={Deep learning for 3d point clouds: A survey},
90 | author={Guo, Yulan and Wang, Hanyun and Hu, Qingyong and Liu, Hao and Liu, Li and Bennamoun, Mohammed},
91 | journal={IEEE transactions on pattern analysis and machine intelligence},
92 | year={2020},
93 | publisher={IEEE}
94 | }
95 |
96 | ## Updates
97 | * 26/02/2020: Adding the dataset information
98 | * 27/12/2019: Initial release.
99 |
100 |
101 | ## Related Repos
102 | 1. [RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds](https://github.com/QingyongHu/RandLA-Net) 
103 | 2. [SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds](https://github.com/QingyongHu/SensatUrban) 
104 | 3. [3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds](https://github.com/Yang7879/3D-BoNet) 
105 | 4. [SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration](https://github.com/QingyongHu/SpinNet) 
106 | 5. [SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels](https://github.com/QingyongHu/SQN) 
107 |
108 |
109 |
110 |
--------------------------------------------------------------------------------
/Segmentation.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/Segmentation.pdf
--------------------------------------------------------------------------------
/Segmentation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/Segmentation.png
--------------------------------------------------------------------------------
/classification.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/classification.pdf
--------------------------------------------------------------------------------
/classification.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/classification.png
--------------------------------------------------------------------------------
/detection.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/detection.pdf
--------------------------------------------------------------------------------
/detection.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/detection.png
--------------------------------------------------------------------------------
/detection_bev.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/detection_bev.pdf
--------------------------------------------------------------------------------
/detection_bev.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/detection_bev.png
--------------------------------------------------------------------------------
/taxonomy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/QingyongHu/SoTA-Point-Cloud/7e9db6b05a5cd643bc24ee0252f898e133032a2f/taxonomy.png
--------------------------------------------------------------------------------