├── 01. Preliminary experiment (selection of impact factors) ├── 01.Single factor perturbation method (preliminary elimination) │ ├── Stratified sampling.py │ └── Summary table of single factor perturbation method.xlsx └── 02.Global sensitivity analysis (global validation) │ ├── Morris method sampling.py │ ├── Morris sampling calculation results.xlsx │ ├── Results │ ├── Code global sensitivity analysis (after factor normalization).xlsx │ ├── Sampling result calculation.py │ └── morris_sensitivity_plot_with_quadrants.png │ └── ~$Morris取样计算结果.xlsx ├── 02.Formal database ├── 01.Latin Hypercube Sampling.py ├── 02.Normalization of sampling results.py ├── 03.Dataset distribution.py ├── 04.Pearson correlation analysis.py ├── A.Latin hypercube sampling results (after normalization of input factors).xlsx ├── B.Latin hypercube sampling results.xlsx └── END.Full dataset.xlsx ├── 03.Training of base learners, meta-learners, and comparison models ├── 00.Elastic Net Regression, ENR │ ├── Optimal hyperparameter training.py │ ├── SMA-ENR.py │ └── final_enr_model_refit_on_full_train.pkl ├── 01.Decision Tree Regression, DTR │ ├── Optimal hyperparameter training.py │ ├── SMA-DTR.py │ └── final_dtr_model_refit_on_full_train.pkl ├── 02.K nearest neighbor regression, KNNR │ ├── Optimal hyperparameter training.py │ ├── SMA-KNNR.py │ └── final_knnr_model_refit_on_full_train.pkl ├── 03.Multilayer Perceptron Regression, MLPR │ ├── Optimal hyperparameter training.py │ ├── SMA-MLPR.py │ └── final_mlpr_model_refit_on_full_train.pkl ├── 04.Support Vector Regression,SVR │ ├── Optimal hyperparameter training.py │ ├── SMA-SVR.py │ └── final_svmr_model_refit_on_full_train.pkl ├── 05.(Bagging Integration)Random Forest │ ├── Optimal hyperparameter training.py │ ├── SMA-RF.py │ └── final_rf_model_refit_on_full_train.pkl ├── 06.(Boosting Integration)XGBoost │ ├── Optimal hyperparameter training.py │ ├── SMA-XGBoost.py │ └── final_xgb_model_refit_on_full_train.pkl ├── 07.(Stacking Integration-New method)SHAP-Transformer │ ├── Optimal hyperparameter training.py │ ├── SMA-Transformer.py │ └── transformer_regressor_cv_refit.pt ├── END.Model evaluation metrics.xlsx ├── Input dataset for 00-06.xlsx ├── Test input dataset for 07.xlsx └── Training input dataset for 07.xlsx ├── 04.Final model ensemble construction ├── 00.Integrated framework packaging.py ├── 01.Testing the framework after packaging.py ├── Prediction and error results of the packaged model.xlsx └── SHAP-Transformer heterogeneous ensemble method.pkl ├── 05.SHAP analysis ├── Global SHAP analysis general.py ├── Input dataset for base learner SHAP analysis.xlsx ├── Input dataset for meta-learner SHAP analysis.xlsx ├── SHAP-SVMR.py ├── SHAP-SVMR │ ├── decision_plot.png │ ├── global_contribution_bar.png │ ├── sample_0_waterfall.png │ └── summary_beeswarm.png ├── SHAP-Transformer.py └── SHAP-Transformer │ ├── decision_plot.png │ ├── global_contribution_bar.png │ ├── sample_0_waterfall.png │ └── summary_beeswarm.png ├── 99.(Under update...) Optimization of Ensemble Learning Algorithms in the calculation of slope stability coefficients └── 2025.9.15-V0.10.py ├── LICENSE └── README.md /01. Preliminary experiment (selection of impact factors)/01.Single factor perturbation method (preliminary elimination)/Stratified sampling.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/01.Single factor perturbation method (preliminary elimination)/Stratified sampling.py -------------------------------------------------------------------------------- /01. Preliminary experiment (selection of impact factors)/01.Single factor perturbation method (preliminary elimination)/Summary table of single factor perturbation method.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/01.Single factor perturbation method (preliminary elimination)/Summary table of single factor perturbation method.xlsx -------------------------------------------------------------------------------- /01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Morris method sampling.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Morris method sampling.py -------------------------------------------------------------------------------- /01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Morris sampling calculation results.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Morris sampling calculation results.xlsx -------------------------------------------------------------------------------- /01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Results/Code global sensitivity analysis (after factor normalization).xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Results/Code global sensitivity analysis (after factor normalization).xlsx -------------------------------------------------------------------------------- /01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Results/Sampling result calculation.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Results/Sampling result calculation.py -------------------------------------------------------------------------------- /01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Results/morris_sensitivity_plot_with_quadrants.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/Results/morris_sensitivity_plot_with_quadrants.png -------------------------------------------------------------------------------- /01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/~$Morris取样计算结果.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/01. Preliminary experiment (selection of impact factors)/02.Global sensitivity analysis (global validation)/~$Morris取样计算结果.xlsx -------------------------------------------------------------------------------- /02.Formal database/01.Latin Hypercube Sampling.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/02.Formal database/01.Latin Hypercube Sampling.py -------------------------------------------------------------------------------- /02.Formal database/02.Normalization of sampling results.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/02.Formal database/02.Normalization of sampling results.py -------------------------------------------------------------------------------- /02.Formal database/03.Dataset distribution.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/02.Formal database/03.Dataset distribution.py -------------------------------------------------------------------------------- /02.Formal database/04.Pearson correlation analysis.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/02.Formal database/04.Pearson correlation analysis.py -------------------------------------------------------------------------------- /02.Formal database/A.Latin hypercube sampling results (after normalization of input factors).xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/02.Formal database/A.Latin hypercube sampling results (after normalization of input factors).xlsx -------------------------------------------------------------------------------- /02.Formal database/B.Latin hypercube sampling results.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/02.Formal database/B.Latin hypercube sampling results.xlsx -------------------------------------------------------------------------------- /02.Formal database/END.Full dataset.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/02.Formal database/END.Full dataset.xlsx -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/00.Elastic Net Regression, ENR/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/00.Elastic Net Regression, ENR/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/00.Elastic Net Regression, ENR/SMA-ENR.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/00.Elastic Net Regression, ENR/SMA-ENR.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/00.Elastic Net Regression, ENR/final_enr_model_refit_on_full_train.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/00.Elastic Net Regression, ENR/final_enr_model_refit_on_full_train.pkl -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/01.Decision Tree Regression, DTR/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/01.Decision Tree Regression, DTR/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/01.Decision Tree Regression, DTR/SMA-DTR.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/01.Decision Tree Regression, DTR/SMA-DTR.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/01.Decision Tree Regression, DTR/final_dtr_model_refit_on_full_train.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/01.Decision Tree Regression, DTR/final_dtr_model_refit_on_full_train.pkl -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/02.K nearest neighbor regression, KNNR/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/02.K nearest neighbor regression, KNNR/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/02.K nearest neighbor regression, KNNR/SMA-KNNR.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/02.K nearest neighbor regression, KNNR/SMA-KNNR.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/02.K nearest neighbor regression, KNNR/final_knnr_model_refit_on_full_train.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/02.K nearest neighbor regression, KNNR/final_knnr_model_refit_on_full_train.pkl -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/03.Multilayer Perceptron Regression, MLPR/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/03.Multilayer Perceptron Regression, MLPR/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/03.Multilayer Perceptron Regression, MLPR/SMA-MLPR.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/03.Multilayer Perceptron Regression, MLPR/SMA-MLPR.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/03.Multilayer Perceptron Regression, MLPR/final_mlpr_model_refit_on_full_train.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/03.Multilayer Perceptron Regression, MLPR/final_mlpr_model_refit_on_full_train.pkl -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/04.Support Vector Regression,SVR/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/04.Support Vector Regression,SVR/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/04.Support Vector Regression,SVR/SMA-SVR.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/04.Support Vector Regression,SVR/SMA-SVR.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/04.Support Vector Regression,SVR/final_svmr_model_refit_on_full_train.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/04.Support Vector Regression,SVR/final_svmr_model_refit_on_full_train.pkl -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/05.(Bagging Integration)Random Forest/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/05.(Bagging Integration)Random Forest/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/05.(Bagging Integration)Random Forest/SMA-RF.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/05.(Bagging Integration)Random Forest/SMA-RF.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/05.(Bagging Integration)Random Forest/final_rf_model_refit_on_full_train.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/05.(Bagging Integration)Random Forest/final_rf_model_refit_on_full_train.pkl -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/06.(Boosting Integration)XGBoost/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/06.(Boosting Integration)XGBoost/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/06.(Boosting Integration)XGBoost/SMA-XGBoost.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/06.(Boosting Integration)XGBoost/SMA-XGBoost.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/06.(Boosting Integration)XGBoost/final_xgb_model_refit_on_full_train.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/06.(Boosting Integration)XGBoost/final_xgb_model_refit_on_full_train.pkl -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/07.(Stacking Integration-New method)SHAP-Transformer/Optimal hyperparameter training.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/07.(Stacking Integration-New method)SHAP-Transformer/Optimal hyperparameter training.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/07.(Stacking Integration-New method)SHAP-Transformer/SMA-Transformer.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/07.(Stacking Integration-New method)SHAP-Transformer/SMA-Transformer.py -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/07.(Stacking Integration-New method)SHAP-Transformer/transformer_regressor_cv_refit.pt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/07.(Stacking Integration-New method)SHAP-Transformer/transformer_regressor_cv_refit.pt -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/END.Model evaluation metrics.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/END.Model evaluation metrics.xlsx -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/Input dataset for 00-06.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/Input dataset for 00-06.xlsx -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/Test input dataset for 07.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/Test input dataset for 07.xlsx -------------------------------------------------------------------------------- /03.Training of base learners, meta-learners, and comparison models/Training input dataset for 07.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/03.Training of base learners, meta-learners, and comparison models/Training input dataset for 07.xlsx -------------------------------------------------------------------------------- /04.Final model ensemble construction/00.Integrated framework packaging.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/04.Final model ensemble construction/00.Integrated framework packaging.py -------------------------------------------------------------------------------- /04.Final model ensemble construction/01.Testing the framework after packaging.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/04.Final model ensemble construction/01.Testing the framework after packaging.py -------------------------------------------------------------------------------- /04.Final model ensemble construction/Prediction and error results of the packaged model.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/04.Final model ensemble construction/Prediction and error results of the packaged model.xlsx -------------------------------------------------------------------------------- /04.Final model ensemble construction/SHAP-Transformer heterogeneous ensemble method.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/04.Final model ensemble construction/SHAP-Transformer heterogeneous ensemble method.pkl -------------------------------------------------------------------------------- /05.SHAP analysis/Global SHAP analysis general.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/Global SHAP analysis general.py -------------------------------------------------------------------------------- /05.SHAP analysis/Input dataset for base learner SHAP analysis.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/Input dataset for base learner SHAP analysis.xlsx -------------------------------------------------------------------------------- /05.SHAP analysis/Input dataset for meta-learner SHAP analysis.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/Input dataset for meta-learner SHAP analysis.xlsx -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-SVMR.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-SVMR.py -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-SVMR/decision_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-SVMR/decision_plot.png -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-SVMR/global_contribution_bar.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-SVMR/global_contribution_bar.png -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-SVMR/sample_0_waterfall.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-SVMR/sample_0_waterfall.png -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-SVMR/summary_beeswarm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-SVMR/summary_beeswarm.png -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-Transformer.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-Transformer.py -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-Transformer/decision_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-Transformer/decision_plot.png -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-Transformer/global_contribution_bar.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-Transformer/global_contribution_bar.png -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-Transformer/sample_0_waterfall.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-Transformer/sample_0_waterfall.png -------------------------------------------------------------------------------- /05.SHAP analysis/SHAP-Transformer/summary_beeswarm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/05.SHAP analysis/SHAP-Transformer/summary_beeswarm.png -------------------------------------------------------------------------------- /99.(Under update...) Optimization of Ensemble Learning Algorithms in the calculation of slope stability coefficients/2025.9.15-V0.10.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/99.(Under update...) Optimization of Ensemble Learning Algorithms in the calculation of slope stability coefficients/2025.9.15-V0.10.py -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/LICENSE -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/QiningDeng/An-interpretable-machine-learning-framework-for-slope-stability-analysis/HEAD/README.md --------------------------------------------------------------------------------