├── .gitignore
├── LICENSE
└── README.md
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 |
27 | # PyInstaller
28 | # Usually these files are written by a python script from a template
29 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
30 | *.manifest
31 | *.spec
32 |
33 | # Installer logs
34 | pip-log.txt
35 | pip-delete-this-directory.txt
36 |
37 | # Unit test / coverage reports
38 | htmlcov/
39 | .tox/
40 | .coverage
41 | .coverage.*
42 | .cache
43 | nosetests.xml
44 | coverage.xml
45 | *,cover
46 | .hypothesis/
47 |
48 | # Translations
49 | *.mo
50 | *.pot
51 |
52 | # Django stuff:
53 | *.log
54 | local_settings.py
55 |
56 | # Flask stuff:
57 | instance/
58 | .webassets-cache
59 |
60 | # Scrapy stuff:
61 | .scrapy
62 |
63 | # Sphinx documentation
64 | docs/_build/
65 |
66 | # PyBuilder
67 | target/
68 |
69 | # IPython Notebook
70 | .ipynb_checkpoints
71 |
72 | # pyenv
73 | .python-version
74 |
75 | # celery beat schedule file
76 | celerybeat-schedule
77 |
78 | # dotenv
79 | .env
80 |
81 | # virtualenv
82 | venv/
83 | ENV/
84 |
85 | # Spyder project settings
86 | .spyderproject
87 |
88 | # Rope project settings
89 | .ropeproject
90 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2016 Raúl Peralta Lozada
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Awesome Gaussian Processes
2 |
3 | A list of resources for understanding Gaussian Processes. Inspired by [Awesome Normalizing Flows](https://github.com/janosh/awesome-normalizing-flows) list.
4 |
5 |
6 |
7 | ## Table of Contents
8 |
9 | 1. [📘 Books](#-books)
10 | 2. [🌐 Blog Posts](#-blog-posts)
11 | 3. [📺 Videos](#-videos)
12 | 4. [📦 Packages](#-packages)
13 | 5. [📝 Publications](#-publications)
14 | 6. [📌 Meetups](#-meetups)
15 | 7. [🎉 Open to Suggestions!](#-open-to-suggestions)
16 |
17 |
18 |
19 | ## 📘 Books
20 |
21 | * [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/)
22 | * [Pattern Recognition and Machine Learning - Chapter 6.4](https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)
23 | * [Bayesian Data Analysis 3rd Edition - Chapter 21](http://www.stat.columbia.edu/~gelman/book/)
24 | * [Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences](https://bookdown.org/rbg/surrogates/)
25 | * [Machine Learning: a Probabilistic Perspective - Chapter 15](https://www.cs.ubc.ca/~murphyk/MLbook/)
26 | * [Applied Stochastic Differential Equations](https://users.aalto.fi/~ssarkka/pub/sde_book.pdf)
27 |
28 | ### Thesis
29 |
30 | * [Automatic Model Construction with Gaussian Processes](https://www.cs.toronto.edu/~duvenaud/thesis.pdf) by David K. Duvenaud
31 | * [Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian processes](http://www.cs.cmu.edu/~andrewgw/andrewgwthesis.pdf) by Andrew G. Wilson
32 |
33 | ### Other resources
34 |
35 | * [Gaussian Process Model Zoo](https://jejjohnson.github.io/gp_model_zoo/) by J. Emmanuel Johnson
36 |
37 | ## 🌐 Blog Posts
38 |
39 | ### Introductory
40 |
41 | * [A Visual Exploration of Gaussian Processes](https://distill.pub/2019/visual-exploration-gaussian-processes/)
42 | * [Gaussian process introductory tutorial in Python¶](http://adamian.github.io/talks/Damianou_GP_tutorial.html)
43 | * [Gaussian Processes, not quite for dummies](https://thegradient.pub/gaussian-process-not-quite-for-dummies/)
44 | * [Robust Gaussian Process Modeling](https://betanalpha.github.io/assets/case_studies/gaussian_processes.html)
45 | * [The Kernel Cookbook](http://www.cs.toronto.edu/~duvenaud/cookbook/index.html)
46 | * [Interactive Gaussian Process Visualization](http://www.infinitecuriosity.org/vizgp/)
47 |
48 | ### Applications
49 |
50 | * [Gaussian process demonstration with Stan](https://avehtari.github.io/casestudies/Motorcycle/motorcycle_gpcourse.html) by Aki Vehtari
51 | * [Gaussian Process Classification Model in various PPLs](https://luiarthur.github.io/TuringBnpBenchmarks/gpclassify)
52 | * [Exploring Bayesian Optimization](https://distill.pub/2020/bayesian-optimization/)
53 | * [Random effects in Gaussian Processes](https://martiningram.github.io/gp-random-effects/)
54 |
55 | ## 📺 Videos
56 | * [Gaussian Process Summer Schools](http://gpss.cc/)
57 | * [Gaussian Process Basics](http://videolectures.net/gpip06_mackay_gpb/) by David MacKay
58 | * [Gaussian Processes](http://videolectures.net/mlss09uk_rasmussen_gp/) by Carl E. Rasmussen
59 | * [Introduction to Gaussian processes](https://youtu.be/4vGiHC35j9s) by Nando de Freitas
60 | * [ Open Data Science Initiative](https://www.youtube.com/channel/UCUjuEqUQbTrJ11f8nkWltQQ) channel
61 | * [MLSS 2013 Tübingen](http://mlss.tuebingen.mpg.de/2013/index.html) GP Tutorial
62 | - [Part 1](https://youtu.be/50Vgw11qn0o), [Part 2](https://youtu.be/TR0LCVslIIM), [Part 3](https://youtu.be/KRLW5abMV6s)
63 | * [MLSS 2015 Tübingen](http://mlss.tuebingen.mpg.de/2015/index.html) GP Tutorial
64 | - [Part 1](https://youtu.be/S9RbSCpy_pg), [Part 2](https://youtu.be/MxeQIKGEXb8), [Part 3](https://youtu.be/Ead4TivIOmU)
65 | * MLSS 2019 Africa GP tutorial
66 | - [Part 1](https://youtu.be/U85XFCt3Lak), [Part 2](https://youtu.be/b635kuSqLww)
67 | * [Machine Learning with Signal Processing (ICML 2020 Tutorial)](https://youtu.be/vTRD03_yReI)
68 | * [Gaussian processes for fun and profit: Probabilistic machine learning in industry](https://youtu.be/uq8VxqeHPj8)
69 | * [A Primer on Gaussian Processes for Regression Analysis | PyData NYC 2019](https://youtu.be/j7Ruu3Yu-70)
70 |
71 | ## 📦 Packages
72 |
73 | List of packages dedicated to Gaussian Processes or with Gaussian Processes functionalities.
74 |
75 | ### Python
76 |
77 | * [GPy](https://github.com/SheffieldML/GPy)
78 | * [celerite](https://celerite.readthedocs.io/en/stable/)
79 | * [GPyTorch](https://gpytorch.ai/)
80 | * [GPflow](https://github.com/GPflow/GPflow)
81 | * [BoTorch](https://botorch.org/)
82 | * [scikit-learn GP module](http://scikit-learn.org/stable/modules/gaussian_process.html)
83 | * [PyMC3](https://docs.pymc.io/Gaussian_Processes.html)
84 | * [Pyro](https://pyro.ai/examples/gp.html)
85 | * [GPJax](https://github.com/thomaspinder/GPJax)
86 | * [Emukit](https://github.com/EmuKit/emukit)
87 | * [Stheno](https://github.com/wesselb/stheno)
88 | * [JAX-BO](https://github.com/PredictiveIntelligenceLab/JAX-BO)
89 |
90 | ### Julia
91 |
92 | * [GaussianProcesses.jl](https://stor-i.github.io/GaussianProcesses.jl/latest/)
93 | * [Stheno.jl](https://github.com/willtebbutt/Stheno.jl)
94 |
95 | ### Stan
96 | * [Stan User's Guide - Gaussian Processes chapter](https://mc-stan.org/docs/2_26/stan-users-guide/gaussian-processes-chapter.html)
97 |
98 | ### Octave / Matlab
99 | * [GPstuff](https://research.cs.aalto.fi/pml/software/gpstuff/)
100 | * [GPML toolbox](http://www.gaussianprocess.org/gpml/code/matlab/doc/)
101 |
102 |
103 | ## 📝 Publications
104 |
105 | ### Bayesian Optimization
106 | * [A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning](https://arxiv.org/abs/1012.2599)
107 | * [Taking the Human Out of the Loop: A Review of Bayesian Optimization](https://www.cs.ox.ac.uk/people/nando.defreitas/publications/BayesOptLoop.pdf)
108 |
109 | ### Causality
110 | * [Causal Inference using Gaussian Processes with Structured Latent Confounders](http://proceedings.mlr.press/v119/witty20a/witty20a.pdf)
111 |
112 | ### Multiple-output Gaussian processes
113 | * [Kernels for Vector-Valued Functions: a Review](https://arxiv.org/abs/1106.6251)
114 |
115 | ### Survival Analysis
116 | * [Gaussian Processes for Survival Analysis](https://arxiv.org/abs/1611.00817)
117 |
118 | ### Time Series
119 | * [Gaussian processes for time-series modelling](http://rsta.royalsocietypublishing.org/content/371/1984/20110550)
120 |
121 |
122 | ## 📌 Meetups
123 |
124 | * [Gaussian Processes Cambridge](https://www.meetup.com/gaussian-processes-cambridge/)
125 | * [Resources](https://github.com/GaussianProcessesCambridge/meetup-resources)
126 |
127 | ## 🎉 Open to Suggestions!
128 | See something that's missing from this list? PRs welcome!
129 |
130 | If you're unsure if a paper or resource belongs in this list, feel free to open an issue and start a discussion. This repo is meant to be a community effort. So don't hesitate to voice an opinion.
131 |
--------------------------------------------------------------------------------