├── .github
├── ISSUE_TEMPLATE
│ ├── bug_report.md
│ └── feature_request.md
├── PULL_REQUEST_TEMPLATE.md
└── workflows
│ ├── code-style.yml
│ ├── flake8-lint.yml
│ └── python-publish.yml
├── .gitignore
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── MANIFEST.in
├── README.md
├── _config.yml
├── examples
├── gctf_horses_v_humans.ipynb
└── gctf_mnist.ipynb
├── gctf
├── __init__.py
├── centralized_gradients.py
├── optimizers.py
└── version.py
├── images
├── gctf.png
├── illutstration.png
└── projected_grad.png
└── setup.py
/.github/ISSUE_TEMPLATE/bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug report
3 | about: Create a report to help us improve
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Describe the bug**
11 | A clear and concise description of what the bug is.
12 |
13 | **To Reproduce**
14 | Steps to reproduce the behavior:
15 | 1. Go to '...'
16 | 2. Click on '....'
17 | 3. Scroll down to '....'
18 | 4. See error
19 |
20 | **Expected behavior**
21 | A clear and concise description of what you expected to happen.
22 |
23 | **Screenshots**
24 | If applicable, add screenshots to help explain your problem.
25 |
26 | **Desktop (please complete the following information):**
27 | - OS: [e.g. iOS]
28 | - Browser [e.g. chrome, safari]
29 | - Version [e.g. 22]
30 |
31 | **Smartphone (please complete the following information):**
32 | - Device: [e.g. iPhone6]
33 | - OS: [e.g. iOS8.1]
34 | - Browser [e.g. stock browser, safari]
35 | - Version [e.g. 22]
36 |
37 | **Additional context**
38 | Add any other context about the problem here.
39 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Feature request
3 | about: Suggest an idea for this project
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Is your feature request related to a problem? Please describe.**
11 | A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12 |
13 | **Describe the solution you'd like**
14 | A clear and concise description of what you want to happen.
15 |
16 | **Describe alternatives you've considered**
17 | A clear and concise description of any alternative solutions or features you've considered.
18 |
19 | **Additional context**
20 | Add any other context or screenshots about the feature request here.
21 |
--------------------------------------------------------------------------------
/.github/PULL_REQUEST_TEMPLATE.md:
--------------------------------------------------------------------------------
1 | ## :camera: Screenshots
2 |
3 |
4 | ## :page_facing_up: Context
5 |
6 |
7 | ## :pencil: Changes
8 |
9 |
10 | ## :paperclip: Related PR
11 |
12 |
13 | ## :no_entry_sign: Breaking
14 |
15 |
16 | ## :stopwatch: Next steps
17 |
18 |
--------------------------------------------------------------------------------
/.github/workflows/code-style.yml:
--------------------------------------------------------------------------------
1 | name: Format python code
2 | on: push
3 | jobs:
4 | autopep8:
5 | runs-on: ubuntu-latest
6 | steps:
7 | - uses: actions/checkout@v2
8 | - name: autopep8
9 | uses: peter-evans/autopep8@v1
10 | with:
11 | args: --recursive --in-place --aggressive --aggressive .
12 | - name: Create Pull Request
13 | uses: peter-evans/create-pull-request@v3
14 | with:
15 | commit-message: autopep8 action fixes
16 | title: Fixes by autopep8 action
17 | body: This is an auto-generated PR with fixes by autopep8.
18 | labels: autopep8
19 | reviewers: Rishit-dagli
20 | branch: autopep8-patches
21 |
--------------------------------------------------------------------------------
/.github/workflows/flake8-lint.yml:
--------------------------------------------------------------------------------
1 | name: Flake8 Lint
2 |
3 | on:
4 | push:
5 | branches: [ main ]
6 | pull_request:
7 | branches: [ main ]
8 |
9 | jobs:
10 | build:
11 |
12 | runs-on: ubuntu-latest
13 | strategy:
14 | matrix:
15 | python-version: [3.7, 3.8, 3.9]
16 |
17 | steps:
18 | - uses: actions/checkout@v2
19 |
20 | - name: Set up Python ${{ matrix.python-version }}
21 | uses: actions/setup-python@v2
22 | with:
23 | python-version: ${{ matrix.python-version }}
24 |
25 | - name: Install dependencies
26 | run: |
27 | python -m pip install --upgrade pip
28 | python -m pip install flake8
29 | if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
30 |
31 | - name: Lint with flake8
32 | run: |
33 | # stop the build if there are Python syntax errors or undefined names
34 | flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
35 | flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
36 |
--------------------------------------------------------------------------------
/.github/workflows/python-publish.yml:
--------------------------------------------------------------------------------
1 | # This workflow will upload a Python Package using Twine when a release is created
2 | # For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
3 |
4 | name: Upload Python Package
5 |
6 | on:
7 | release:
8 | types: [created]
9 | workflow_dispatch:
10 |
11 | jobs:
12 | deploy:
13 |
14 | runs-on: ubuntu-latest
15 |
16 | steps:
17 | - uses: actions/checkout@v2
18 |
19 | - name: Set up Python 🐍
20 | uses: actions/setup-python@v2
21 | with:
22 | python-version: '3.x'
23 |
24 | - name: Cache pip
25 | uses: actions/cache@v2
26 | with:
27 | path: ~/.cache/pip
28 | # Look to see if there is a cache hit for the corresponding requirements file
29 | key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}
30 | restore-keys: |
31 | ${{ runner.os }}-pip-
32 | ${{ runner.os }}-
33 |
34 | - name: Install dependencies
35 | run: |
36 | python -m pip install --upgrade pip
37 | pip install setuptools wheel twine
38 |
39 | - name: Build and publish 🚀
40 | env:
41 | TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
42 | TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
43 | run: |
44 | python setup.py sdist bdist_wheel
45 | twine upload dist/*
46 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Contributor Covenant Code of Conduct
2 |
3 | ## Our Pledge
4 |
5 | In the interest of fostering an open and welcoming environment, we as
6 | contributors and maintainers pledge to making participation in our project and
7 | our community a harassment-free experience for everyone, regardless of age, body
8 | size, disability, ethnicity, sex characteristics, gender identity and expression,
9 | level of experience, education, socio-economic status, nationality, personal
10 | appearance, race, religion, or sexual identity and orientation.
11 |
12 | ## Our Standards
13 |
14 | Examples of behavior that contributes to creating a positive environment
15 | include:
16 |
17 | * Using welcoming and inclusive language
18 | * Being respectful of differing viewpoints and experiences
19 | * Gracefully accepting constructive criticism
20 | * Focusing on what is best for the community
21 | * Showing empathy towards other community members
22 |
23 | Examples of unacceptable behavior by participants include:
24 |
25 | * The use of sexualized language or imagery and unwelcome sexual attention or
26 | advances
27 | * Trolling, insulting/derogatory comments, and personal or political attacks
28 | * Public or private harassment
29 | * Publishing others' private information, such as a physical or electronic
30 | address, without explicit permission
31 | * Other conduct which could reasonably be considered inappropriate in a
32 | professional setting
33 |
34 | ## Our Responsibilities
35 |
36 | Project maintainers are responsible for clarifying the standards of acceptable
37 | behavior and are expected to take appropriate and fair corrective action in
38 | response to any instances of unacceptable behavior.
39 |
40 | Project maintainers have the right and responsibility to remove, edit, or
41 | reject comments, commits, code, wiki edits, issues, and other contributions
42 | that are not aligned to this Code of Conduct, or to ban temporarily or
43 | permanently any contributor for other behaviors that they deem inappropriate,
44 | threatening, offensive, or harmful.
45 |
46 | ## Scope
47 |
48 | This Code of Conduct applies both within project spaces and in public spaces
49 | when an individual is representing the project or its community. Examples of
50 | representing a project or community include using an official project e-mail
51 | address, posting via an official social media account, or acting as an appointed
52 | representative at an online or offline event. Representation of a project may be
53 | further defined and clarified by project maintainers.
54 |
55 | ## Enforcement
56 |
57 | Instances of abusive, harassing, or otherwise unacceptable behavior may be
58 | reported by contacting the project team at rishit.dagli@gmail.com. All
59 | complaints will be reviewed and investigated and will result in a response that
60 | is deemed necessary and appropriate to the circumstances. The project team is
61 | obligated to maintain confidentiality with regard to the reporter of an incident.
62 | Further details of specific enforcement policies may be posted separately.
63 |
64 | Project maintainers who do not follow or enforce the Code of Conduct in good
65 | faith may face temporary or permanent repercussions as determined by other
66 | members of the project's leadership.
67 |
68 | ## Attribution
69 |
70 | This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71 | available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72 |
73 | [homepage]: https://www.contributor-covenant.org
74 |
75 | For answers to common questions about this code of conduct, see
76 | https://www.contributor-covenant.org/faq
77 |
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | ## Feeling Awesome! Thanks for thinking about this.
2 |
3 | You can contribute us by filing issues, bugs and PRs. You can also take a look at active issues and fix them. We love your input! We want to make contributing to this project as easy and transparent as possible, whether it's:
4 |
5 | - Reporting a bug
6 | - Discussing the current state of the code
7 | - Submitting a fix
8 | - Proposing new features
9 | - Becoming a maintainer
10 |
11 | If you want to discuss on something then feel free to present your opinions, views or any other relevant comment on [discussions](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/discussions).
12 | Please note we have a [code of conduct](CODE_OF_CONDUCT.md), please follow it in all your interactions with the project.
13 |
14 | ### Code contribution
15 |
16 | - Open issue regarding proposed change.
17 | - If your proposed change is approved, Fork this repo and do changes.
18 | - Open PR against latest *development* branch. Add nice description in PR.
19 | - You're done!
20 |
21 | ### Code contribution checklist
22 |
23 | - New code addition/deletion should not break existing flow of a system.
24 | - Ensure any install or build dependencies are removed before the end of the layer when doing a build.
25 | - Update the [README.md](README.md) if the change requires with details of changes to the interface.
26 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include LICENSE
2 | recursive-include gctf *.py
3 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Gradient Centralization TensorFlow [](https://twitter.com/intent/tweet?text=Wow:&url=https%3A%2F%2Fgithub.com%2FRishit-dagli%2FGradient-Centralization-TensorFlow)
2 |
3 | [](https://pypi.org/project/gradient-centralization-tf/)
4 | [](https://doi.org/10.5281/zenodo.4570279)
5 | [](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/actions/workflows/python-publish.yml)
6 | [](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/actions/workflows/flake8-lint.yml)
7 | 
8 |
9 | [](https://mybinder.org/v2/gh/Rishit-dagli/Gradient-Centralization-TensorFlow/HEAD)
10 | [](https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow)
11 |
12 | [](LICENSE)
13 | [](https://www.python.org/dev/peps/pep-0008/)
14 | [](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/stargazers)
15 | [](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/network)
16 | [](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/watchers)
17 |
18 | This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique for
19 | Deep Neural Networks as suggested by Yong et al. in the paper
20 | [Gradient Centralization: A New Optimization Technique for Deep Neural Networks](https://arxiv.org/abs/2004.01461). It can both speedup training
21 | process and improve the final generalization performance of DNNs.
22 |
23 | 
24 |
25 | ## Installation
26 |
27 | Run the following to install:
28 |
29 | ```bash
30 | pip install gradient-centralization-tf
31 | ```
32 |
33 | ## About the Examples
34 |
35 | ### [`gctf_mnist.ipynb`](examples/gctf_mnist.ipynb)
36 | [](https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_mnist.ipynb)
37 | [](https://mybinder.org/v2/gh/Rishit-dagli/Gradient-Centralization-TensorFlow/c4c1b0f947b0ae6de0a2964b2fcb5c37faa6c72b?filepath=examples%2Fgctf_mnist.ipynb)
38 |
39 | This notebook shows the the process of using the [`gradient-centralization-tf`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow)
40 | Python package to train on the [Fashion MNIST](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist)
41 | dataset availaible from [`tf.keras.datasets`](https://www.tensorflow.org/api_docs/python/tf/keras/datasets). It further
42 | also compares using `gctf` and performance without using `gctf`.
43 |
44 | ### [`gctf_horses_v_humans.ipynb`](examples/gctf_horses_v_humans.ipynb)
45 |
46 | [](https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_horses_v_humans.ipynb)
47 | [](https://mybinder.org/v2/gh/Rishit-dagli/Gradient-Centralization-TensorFlow/c4c1b0f947b0ae6de0a2964b2fcb5c37faa6c72b?filepath=examples%2Fgctf_horses_v_humans.ipynb)
48 |
49 | This notebook shows the the process of using the [`gradient-centralization-tf`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow)
50 | Python package to train on the [Horses vs Humans](http://www.laurencemoroney.com/horses-or-humans-dataset/) dataset by
51 | [Laurence Moroney](https://twitter.com/lmoroney). It further also compares using `gctf` and performance without using
52 | `gctf`.
53 |
54 | ## Usage
55 |
56 | ### [`gctf.centralized_gradients_for_optimizer`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/gctf/centralized_gradients.py#L45-L55)
57 |
58 | Create a centralized gradients functions for a specified optimizer.
59 |
60 | #### Arguments:
61 | - `optimizer`: a `tf.keras.optimizers.Optimizer` object. The optimizer you are using.
62 |
63 | #### Example:
64 |
65 | ```py
66 | >>> opt = tf.keras.optimizers.Adam(learning_rate=0.1)
67 | >>> opt.get_gradients = gctf.centralized_gradients_for_optimizer(opt)
68 | >>> model.compile(optimizer = opt, ...)
69 | ```
70 |
71 | #### Returns:
72 | A `tf.keras.optimizers.Optimizer` object.
73 |
74 | ### [`gctf.get_centralized_gradients`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/a7c5226dad86ca42341061e3fafc8c8d1ec3f51f/gctf/centralized_gradients.py#L5-L42)
75 |
76 | Computes the centralized gradients.
77 |
78 | This function is ideally not meant to be used directly unless you are building a custom optimizer, in which case you
79 | could point `get_gradients` to this function. This is a modified version of
80 | `tf.keras.optimizers.Optimizer.get_gradients`.
81 |
82 | #### Arguments:
83 | - `optimizer`: a `tf.keras.optimizers.Optimizer` object. The optimizer you are using.
84 | - `loss`: Scalar tensor to minimize.
85 | - `params`: List of variables.
86 |
87 | #### Returns:
88 | A gradients tensor.
89 |
90 | ### [`gctf.optimizers`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/gctf/optimizers.py)
91 |
92 | Pre built updated optimizers implementing GC.
93 |
94 | This module is speciially built for testing out GC and in most cases you would be using [`gctf.centralized_gradients_for_optimizer`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow#gctfcentralized_gradients_for_optimizer) though this module implements `gctf.centralized_gradients_for_optimizer`. You can directly use all optimizers with [`tf.keras.optimizers`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers) updated for GC.
95 |
96 | #### Example:
97 |
98 | ```py
99 | >>> model.compile(optimizer = gctf.optimizers.adam(learning_rate = 0.01), ...)
100 | >>> model.compile(optimizer = gctf.optimizers.rmsprop(learning_rate = 0.01, rho = 0.91), ...)
101 | >>> model.compile(optimizer = gctf.optimizers.sgd(), ...)
102 | ```
103 |
104 | #### Returns:
105 | A `tf.keras.optimizers.Optimizer` object.
106 |
107 | ## Developing `gctf`
108 |
109 | To install `gradient-centralization-tf`, along with tools you need to develop and test, run the following in your
110 | virtualenv:
111 |
112 | ```bash
113 | git clone https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow
114 | # or clone your own fork
115 |
116 | pip install -e .[dev]
117 | ```
118 |
119 | ## Want to Contribute 🙋♂️?
120 |
121 | Awesome! If you want to contribute to this project, you're always welcome! See [Contributing Guidelines](CONTRIBUTING.md). You can also take a look at [open issues](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/issues) for getting more information about current or upcoming tasks.
122 |
123 | ## Want to discuss? 💬
124 |
125 | Have any questions, doubts or want to present your opinions, views? You're always welcome. You can [start discussions](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/discussions).
126 |
127 | ## License
128 |
129 | ```
130 | Copyright 2020 Rishit Dagli
131 |
132 | Licensed under the Apache License, Version 2.0 (the "License");
133 | you may not use this file except in compliance with the License.
134 | You may obtain a copy of the License at
135 |
136 | http://www.apache.org/licenses/LICENSE-2.0
137 |
138 | Unless required by applicable law or agreed to in writing, software
139 | distributed under the License is distributed on an "AS IS" BASIS,
140 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
141 | See the License for the specific language governing permissions and
142 | limitations under the License.
143 | ```
144 |
--------------------------------------------------------------------------------
/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-cayman
--------------------------------------------------------------------------------
/examples/gctf_horses_v_humans.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "gctf-horses-v-humans.ipynb",
7 | "provenance": [],
8 | "include_colab_link": true
9 | },
10 | "kernelspec": {
11 | "name": "python3",
12 | "display_name": "Python 3"
13 | },
14 | "accelerator": "GPU"
15 | },
16 | "cells": [
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {
20 | "id": "view-in-github",
21 | "colab_type": "text"
22 | },
23 | "source": [
24 | "
"
25 | ]
26 | },
27 | {
28 | "cell_type": "markdown",
29 | "metadata": {
30 | "id": "IieqPex4O3eJ"
31 | },
32 | "source": [
33 | "# GCTF Horses vs Humans\r\n",
34 | "\r\n",
35 | "This notebook shows the the process of using the [`gradient-centralization-tf`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow) Python package to train on the [Horses vs Humans](http://www.laurencemoroney.com/horses-or-humans-dataset/) dataset by [Laurence Moroney](https://twitter.com/lmoroney). Gradient Centralization is a simple and effective optimization technique for Deep Neural Networks as suggested by Yong et al. in the paper \r\n",
36 | "[Gradient Centralization: A New Optimization Technique for Deep Neural Networks](https://arxiv.org/abs/2004.01461). It can both speedup training \r\n",
37 | " process and improve the final generalization performance of DNNs.\r\n",
38 | "\r\n",
39 | "If you find this useful please consider giving a ⭐ to [the repo](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/).\r\n",
40 | "\r\n",
41 | "## A bit about GC\r\n",
42 | "\r\n",
43 | "Gradient Centralization operates directly on gradients by centralizing the gradient vectors to have zero mean. It can both speedup training process and improve the final generalization performance of DNNs. Here is an Illustration of the GC operation on gradient matrix/tensor of weights in the fully-connected layer (left) and convolutional layer (right). GC computes the column/slice mean of gradient matrix/tensor and centralizes each column/slice to have zero mean.\r\n",
44 | "\r\n",
45 | "\r\n",
46 | "\r\n",
47 | "GC can be viewed as a projected gradient descent method with a constrained loss function. The geometrical interpretation of GC. The gradient is projected on a hyperplane $e^T(w-w^t)=0$, where the projected gradient is used to update the weight.\r\n",
48 | "\r\n",
49 | ""
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {
55 | "id": "WcpkfjkwSjmv"
56 | },
57 | "source": [
58 | "## Setup"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "metadata": {
64 | "id": "XjTQqCEaTSSG"
65 | },
66 | "source": [
67 | "import tensorflow as tf\r\n",
68 | "from time import time"
69 | ],
70 | "execution_count": 1,
71 | "outputs": []
72 | },
73 | {
74 | "cell_type": "markdown",
75 | "metadata": {
76 | "id": "32NuQrDdSpP3"
77 | },
78 | "source": [
79 | "### Install the package\r\n"
80 | ]
81 | },
82 | {
83 | "cell_type": "code",
84 | "metadata": {
85 | "colab": {
86 | "base_uri": "https://localhost:8080/"
87 | },
88 | "id": "Qce8MP-42vkt",
89 | "outputId": "571100f0-5735-42eb-d9c5-1868db53e755"
90 | },
91 | "source": [
92 | "!pip install gradient-centralization-tf"
93 | ],
94 | "execution_count": 2,
95 | "outputs": [
96 | {
97 | "output_type": "stream",
98 | "text": [
99 | "Collecting gradient-centralization-tf\n",
100 | " Downloading https://files.pythonhosted.org/packages/58/4c/6253587b8f6ccdf03fd4830de2574cbda48a1a84bc660d5dd8978d0f94fb/gradient_centralization_tf-0.0.2-py3-none-any.whl\n",
101 | "Requirement already satisfied: tensorflow~=2.4.0 in /usr/local/lib/python3.6/dist-packages (from gradient-centralization-tf) (2.4.1)\n",
102 | "Requirement already satisfied: keras~=2.4.0 in /usr/local/lib/python3.6/dist-packages (from gradient-centralization-tf) (2.4.3)\n",
103 | "Requirement already satisfied: h5py~=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (2.10.0)\n",
104 | "Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.1.2)\n",
105 | "Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.3.3)\n",
106 | "Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.2.0)\n",
107 | "Requirement already satisfied: grpcio~=1.32.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.32.0)\n",
108 | "Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (3.3.0)\n",
109 | "Requirement already satisfied: typing-extensions~=3.7.4 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (3.7.4.3)\n",
110 | "Requirement already satisfied: absl-py~=0.10 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.10.0)\n",
111 | "Requirement already satisfied: numpy~=1.19.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.19.5)\n",
112 | "Requirement already satisfied: six~=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.15.0)\n",
113 | "Requirement already satisfied: termcolor~=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.1.0)\n",
114 | "Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (3.12.4)\n",
115 | "Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.36.2)\n",
116 | "Requirement already satisfied: tensorflow-estimator<2.5.0,>=2.4.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (2.4.0)\n",
117 | "Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.12.1)\n",
118 | "Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.12)\n",
119 | "Requirement already satisfied: tensorboard~=2.4 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (2.4.1)\n",
120 | "Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.6.3)\n",
121 | "Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from keras~=2.4.0->gradient-centralization-tf) (1.4.1)\n",
122 | "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from keras~=2.4.0->gradient-centralization-tf) (3.13)\n",
123 | "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.9.2->tensorflow~=2.4.0->gradient-centralization-tf) (53.0.0)\n",
124 | "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.8.0)\n",
125 | "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (0.4.2)\n",
126 | "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.3.3)\n",
127 | "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (2.23.0)\n",
128 | "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.0.1)\n",
129 | "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.25.0)\n",
130 | "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.3.0)\n",
131 | "Requirement already satisfied: importlib-metadata; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.4.0)\n",
132 | "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.24.3)\n",
133 | "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (2020.12.5)\n",
134 | "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.0.4)\n",
135 | "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (2.10)\n",
136 | "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (4.2.1)\n",
137 | "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (0.2.8)\n",
138 | "Requirement already satisfied: rsa<5,>=3.1.4; python_version >= \"3.6\" in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (4.7)\n",
139 | "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.1.0)\n",
140 | "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < \"3.8\"->markdown>=2.6.8->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.4.0)\n",
141 | "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (0.4.8)\n",
142 | "Installing collected packages: gradient-centralization-tf\n",
143 | "Successfully installed gradient-centralization-tf-0.0.2\n"
144 | ],
145 | "name": "stdout"
146 | }
147 | ]
148 | },
149 | {
150 | "cell_type": "markdown",
151 | "metadata": {
152 | "id": "-lVvc6uKHDYI"
153 | },
154 | "source": [
155 | "## Get the data"
156 | ]
157 | },
158 | {
159 | "cell_type": "code",
160 | "metadata": {
161 | "id": "5lEoHGCV61Bv",
162 | "colab": {
163 | "base_uri": "https://localhost:8080/"
164 | },
165 | "outputId": "87e66434-eaba-4892-d2b1-99972e63305a"
166 | },
167 | "source": [
168 | "!wget --no-check-certificate \\\r\n",
169 | " https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip \\\r\n",
170 | " -O /tmp/horse-or-human.zip\r\n",
171 | "\r\n",
172 | "!wget --no-check-certificate \\\r\n",
173 | " https://storage.googleapis.com/laurencemoroney-blog.appspot.com/validation-horse-or-human.zip \\\r\n",
174 | " -O /tmp/validation-horse-or-human.zip\r\n",
175 | " \r\n",
176 | "import os\r\n",
177 | "import zipfile\r\n",
178 | "\r\n",
179 | "local_zip = '/tmp/horse-or-human.zip'\r\n",
180 | "zip_ref = zipfile.ZipFile(local_zip, 'r')\r\n",
181 | "zip_ref.extractall('/tmp/horse-or-human')\r\n",
182 | "local_zip = '/tmp/validation-horse-or-human.zip'\r\n",
183 | "zip_ref = zipfile.ZipFile(local_zip, 'r')\r\n",
184 | "zip_ref.extractall('/tmp/validation-horse-or-human')\r\n",
185 | "zip_ref.close()\r\n",
186 | "# Directory with our training horse pictures\r\n",
187 | "train_horse_dir = os.path.join('/tmp/horse-or-human/horses')\r\n",
188 | "\r\n",
189 | "# Directory with our training human pictures\r\n",
190 | "train_human_dir = os.path.join('/tmp/horse-or-human/humans')\r\n",
191 | "\r\n",
192 | "# Directory with our training horse pictures\r\n",
193 | "validation_horse_dir = os.path.join('/tmp/validation-horse-or-human/horses')\r\n",
194 | "\r\n",
195 | "# Directory with our training human pictures\r\n",
196 | "validation_human_dir = os.path.join('/tmp/validation-horse-or-human/humans')"
197 | ],
198 | "execution_count": 3,
199 | "outputs": [
200 | {
201 | "output_type": "stream",
202 | "text": [
203 | "--2021-02-21 12:08:31-- https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip\n",
204 | "Resolving storage.googleapis.com (storage.googleapis.com)... 172.253.115.128, 172.253.122.128, 142.250.31.128, ...\n",
205 | "Connecting to storage.googleapis.com (storage.googleapis.com)|172.253.115.128|:443... connected.\n",
206 | "HTTP request sent, awaiting response... 200 OK\n",
207 | "Length: 149574867 (143M) [application/zip]\n",
208 | "Saving to: ‘/tmp/horse-or-human.zip’\n",
209 | "\n",
210 | "/tmp/horse-or-human 100%[===================>] 142.65M 262MB/s in 0.5s \n",
211 | "\n",
212 | "2021-02-21 12:08:31 (262 MB/s) - ‘/tmp/horse-or-human.zip’ saved [149574867/149574867]\n",
213 | "\n",
214 | "--2021-02-21 12:08:32-- https://storage.googleapis.com/laurencemoroney-blog.appspot.com/validation-horse-or-human.zip\n",
215 | "Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.164.144, 142.250.73.208, 172.253.62.128, ...\n",
216 | "Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.164.144|:443... connected.\n",
217 | "HTTP request sent, awaiting response... 200 OK\n",
218 | "Length: 11480187 (11M) [application/zip]\n",
219 | "Saving to: ‘/tmp/validation-horse-or-human.zip’\n",
220 | "\n",
221 | "/tmp/validation-hor 100%[===================>] 10.95M --.-KB/s in 0.1s \n",
222 | "\n",
223 | "2021-02-21 12:08:32 (93.0 MB/s) - ‘/tmp/validation-horse-or-human.zip’ saved [11480187/11480187]\n",
224 | "\n"
225 | ],
226 | "name": "stdout"
227 | }
228 | ]
229 | },
230 | {
231 | "cell_type": "markdown",
232 | "metadata": {
233 | "id": "UsLyqydwHPOZ"
234 | },
235 | "source": [
236 | "## Image Augmentation\r\n",
237 | "\r\n",
238 | "We will perform a couple of augmentations on the image"
239 | ]
240 | },
241 | {
242 | "cell_type": "code",
243 | "metadata": {
244 | "colab": {
245 | "base_uri": "https://localhost:8080/"
246 | },
247 | "id": "JUagrOo6wHJP",
248 | "outputId": "873ec40e-58a0-4aa6-91d0-4d80cd810947"
249 | },
250 | "source": [
251 | "from tensorflow.keras.preprocessing.image import ImageDataGenerator\r\n",
252 | "\r\n",
253 | "# All images will be rescaled by 1./255\r\n",
254 | "train_datagen = ImageDataGenerator(\r\n",
255 | " rescale=1./255,\r\n",
256 | " rotation_range=40,\r\n",
257 | " width_shift_range=0.2,\r\n",
258 | " height_shift_range=0.2,\r\n",
259 | " shear_range=0.2,\r\n",
260 | " zoom_range=0.2,\r\n",
261 | " horizontal_flip=True,\r\n",
262 | " fill_mode='nearest')\r\n",
263 | "\r\n",
264 | "validation_datagen = ImageDataGenerator(rescale=1/255)\r\n",
265 | "\r\n",
266 | "# Flow training images in batches of 128 using train_datagen generator\r\n",
267 | "train_generator = train_datagen.flow_from_directory(\r\n",
268 | " '/tmp/horse-or-human/', # This is the source directory for training images\r\n",
269 | " target_size=(300, 300), # All images will be resized to 150x150\r\n",
270 | " batch_size=128,\r\n",
271 | " # Since we use binary_crossentropy loss, we need binary labels\r\n",
272 | " class_mode='binary')\r\n",
273 | "\r\n",
274 | "# Flow training images in batches of 128 using train_datagen generator\r\n",
275 | "validation_generator = validation_datagen.flow_from_directory(\r\n",
276 | " '/tmp/validation-horse-or-human/', # This is the source directory for training images\r\n",
277 | " target_size=(300, 300), # All images will be resized to 150x150\r\n",
278 | " batch_size=32,\r\n",
279 | " # Since we use binary_crossentropy loss, we need binary labels\r\n",
280 | " class_mode='binary')"
281 | ],
282 | "execution_count": 4,
283 | "outputs": [
284 | {
285 | "output_type": "stream",
286 | "text": [
287 | "Found 1027 images belonging to 2 classes.\n",
288 | "Found 256 images belonging to 2 classes.\n"
289 | ],
290 | "name": "stdout"
291 | }
292 | ]
293 | },
294 | {
295 | "cell_type": "markdown",
296 | "metadata": {
297 | "id": "JCcBZ1UTHVc3"
298 | },
299 | "source": [
300 | "## Training the model\r\n",
301 | "\r\n",
302 | "Here we have built a very simple model with 5 Convolutional for this example. "
303 | ]
304 | },
305 | {
306 | "cell_type": "code",
307 | "metadata": {
308 | "id": "LuW4o9yyvlg_"
309 | },
310 | "source": [
311 | "model = tf.keras.models.Sequential([\r\n",
312 | " # Note the input shape is the desired size of the image 300x300 with 3 bytes color\r\n",
313 | " # This is the first convolution\r\n",
314 | " tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),\r\n",
315 | " tf.keras.layers.MaxPooling2D(2, 2),\r\n",
316 | " # The second convolution\r\n",
317 | " tf.keras.layers.Conv2D(32, (3,3), activation='relu'),\r\n",
318 | " tf.keras.layers.Dropout(0.5),\r\n",
319 | " tf.keras.layers.MaxPooling2D(2,2),\r\n",
320 | " # The third convolution\r\n",
321 | " tf.keras.layers.Conv2D(64, (3,3), activation='relu'),\r\n",
322 | " tf.keras.layers.Dropout(0.5),\r\n",
323 | " tf.keras.layers.MaxPooling2D(2,2),\r\n",
324 | " # The fourth convolution\r\n",
325 | " tf.keras.layers.Conv2D(64, (3,3), activation='relu'),\r\n",
326 | " tf.keras.layers.MaxPooling2D(2,2),\r\n",
327 | " # The fifth convolution\r\n",
328 | " tf.keras.layers.Conv2D(64, (3,3), activation='relu'),\r\n",
329 | " tf.keras.layers.MaxPooling2D(2,2),\r\n",
330 | " # Flatten the results to feed into a DNN\r\n",
331 | " \r\n",
332 | " tf.keras.layers.Flatten(),\r\n",
333 | " tf.keras.layers.Dropout(0.5),\r\n",
334 | " # 512 neuron hidden layer\r\n",
335 | " tf.keras.layers.Dense(512, activation='relu'),\r\n",
336 | " # Only 1 output neuron. It will contain a value from 0-1 where 0 for 1 class ('horses') and 1 for the other ('humans')\r\n",
337 | " tf.keras.layers.Dense(1, activation='sigmoid')\r\n",
338 | "])"
339 | ],
340 | "execution_count": 5,
341 | "outputs": []
342 | },
343 | {
344 | "cell_type": "markdown",
345 | "metadata": {
346 | "id": "pMBGO9JbHgWG"
347 | },
348 | "source": [
349 | "On the same note since we are interested in comparing results we will create a callback which allows us to compute the training time."
350 | ]
351 | },
352 | {
353 | "cell_type": "code",
354 | "metadata": {
355 | "id": "Pfk5BFgewUfq"
356 | },
357 | "source": [
358 | "class TimeHistory(tf.keras.callbacks.Callback):\r\n",
359 | " def on_train_begin(self, logs={}):\r\n",
360 | " self.times = []\r\n",
361 | "\r\n",
362 | " def on_epoch_begin(self, batch, logs={}):\r\n",
363 | " self.epoch_time_start = time()\r\n",
364 | "\r\n",
365 | " def on_epoch_end(self, batch, logs={}):\r\n",
366 | " self.times.append(time() - self.epoch_time_start)"
367 | ],
368 | "execution_count": 6,
369 | "outputs": []
370 | },
371 | {
372 | "cell_type": "markdown",
373 | "metadata": {
374 | "id": "Xf1NPKe3HqVf"
375 | },
376 | "source": [
377 | "### Train a model without [`gctf`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/)"
378 | ]
379 | },
380 | {
381 | "cell_type": "code",
382 | "metadata": {
383 | "id": "m-_AtY2fwCDZ",
384 | "outputId": "38f19bc7-c7b1-4d9b-e543-4d31cbc51105",
385 | "colab": {
386 | "base_uri": "https://localhost:8080/"
387 | }
388 | },
389 | "source": [
390 | "from tensorflow.keras.optimizers import RMSprop\r\n",
391 | "\r\n",
392 | "time_callback_no_gctf = TimeHistory()\r\n",
393 | "model.compile(loss='binary_crossentropy',\r\n",
394 | " optimizer=RMSprop(lr=1e-4),\r\n",
395 | " metrics=['accuracy'])\r\n",
396 | "\r\n",
397 | "history_no_gctf = model.fit(\r\n",
398 | " train_generator,\r\n",
399 | " steps_per_epoch=8, \r\n",
400 | " epochs=10,\r\n",
401 | " verbose=1,\r\n",
402 | " validation_data = validation_generator,\r\n",
403 | " validation_steps=8,\r\n",
404 | " callbacks = [time_callback_no_gctf])"
405 | ],
406 | "execution_count": 7,
407 | "outputs": [
408 | {
409 | "output_type": "stream",
410 | "text": [
411 | "Epoch 1/10\n",
412 | "8/8 [==============================] - 27s 2s/step - loss: 0.7229 - accuracy: 0.4852 - val_loss: 0.6898 - val_accuracy: 0.5000\n",
413 | "Epoch 2/10\n",
414 | "8/8 [==============================] - 22s 3s/step - loss: 0.6871 - accuracy: 0.5560 - val_loss: 0.6858 - val_accuracy: 0.5234\n",
415 | "Epoch 3/10\n",
416 | "8/8 [==============================] - 22s 3s/step - loss: 0.6732 - accuracy: 0.6040 - val_loss: 0.6801 - val_accuracy: 0.5508\n",
417 | "Epoch 4/10\n",
418 | "8/8 [==============================] - 22s 3s/step - loss: 0.6343 - accuracy: 0.6694 - val_loss: 0.6916 - val_accuracy: 0.5000\n",
419 | "Epoch 5/10\n",
420 | "8/8 [==============================] - 21s 3s/step - loss: 0.6548 - accuracy: 0.6131 - val_loss: 0.6718 - val_accuracy: 0.8281\n",
421 | "Epoch 6/10\n",
422 | "8/8 [==============================] - 21s 3s/step - loss: 0.5896 - accuracy: 0.6966 - val_loss: 0.6733 - val_accuracy: 0.5000\n",
423 | "Epoch 7/10\n",
424 | "8/8 [==============================] - 21s 3s/step - loss: 0.5870 - accuracy: 0.7058 - val_loss: 0.6604 - val_accuracy: 0.6094\n",
425 | "Epoch 8/10\n",
426 | "8/8 [==============================] - 21s 3s/step - loss: 0.5534 - accuracy: 0.7235 - val_loss: 0.6887 - val_accuracy: 0.5000\n",
427 | "Epoch 9/10\n",
428 | "8/8 [==============================] - 23s 3s/step - loss: 0.5626 - accuracy: 0.7112 - val_loss: 0.6570 - val_accuracy: 0.5586\n",
429 | "Epoch 10/10\n",
430 | "8/8 [==============================] - 21s 3s/step - loss: 0.5607 - accuracy: 0.7258 - val_loss: 0.6463 - val_accuracy: 0.6016\n"
431 | ],
432 | "name": "stdout"
433 | }
434 | ]
435 | },
436 | {
437 | "cell_type": "markdown",
438 | "metadata": {
439 | "id": "96YKj6_GH5Yf"
440 | },
441 | "source": [
442 | "### Train a model with [`gctf`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow/)"
443 | ]
444 | },
445 | {
446 | "cell_type": "code",
447 | "metadata": {
448 | "id": "HRNC9FT0wjY0",
449 | "outputId": "e74de2a8-4ceb-4713-f35c-a7f88b84704b",
450 | "colab": {
451 | "base_uri": "https://localhost:8080/"
452 | }
453 | },
454 | "source": [
455 | "import gctf #import gctf\r\n",
456 | "\r\n",
457 | "time_callback_gctf = TimeHistory()\r\n",
458 | "model.compile(loss='binary_crossentropy',\r\n",
459 | " optimizer=gctf.optimizers.rmsprop(learning_rate = 1e-4),\r\n",
460 | " metrics=['accuracy'])\r\n",
461 | "\r\n",
462 | "history_gctf = model.fit(\r\n",
463 | " train_generator,\r\n",
464 | " steps_per_epoch=8, \r\n",
465 | " epochs=10,\r\n",
466 | " verbose=1,\r\n",
467 | " validation_data = validation_generator,\r\n",
468 | " validation_steps=8,\r\n",
469 | " callbacks = [time_callback_gctf])"
470 | ],
471 | "execution_count": 8,
472 | "outputs": [
473 | {
474 | "output_type": "stream",
475 | "text": [
476 | "Epoch 1/10\n",
477 | "8/8 [==============================] - 24s 3s/step - loss: 0.6394 - accuracy: 0.6779 - val_loss: 0.6885 - val_accuracy: 0.5000\n",
478 | "Epoch 2/10\n",
479 | "8/8 [==============================] - 21s 3s/step - loss: 0.5504 - accuracy: 0.7124 - val_loss: 0.6450 - val_accuracy: 0.5625\n",
480 | "Epoch 3/10\n",
481 | "8/8 [==============================] - 22s 3s/step - loss: 0.5050 - accuracy: 0.7673 - val_loss: 0.6163 - val_accuracy: 0.6094\n",
482 | "Epoch 4/10\n",
483 | "8/8 [==============================] - 21s 3s/step - loss: 0.5206 - accuracy: 0.7589 - val_loss: 0.5969 - val_accuracy: 0.6797\n",
484 | "Epoch 5/10\n",
485 | "8/8 [==============================] - 21s 3s/step - loss: 0.5175 - accuracy: 0.7506 - val_loss: 0.7745 - val_accuracy: 0.5000\n",
486 | "Epoch 6/10\n",
487 | "8/8 [==============================] - 23s 3s/step - loss: 0.6449 - accuracy: 0.6996 - val_loss: 0.6114 - val_accuracy: 0.5820\n",
488 | "Epoch 7/10\n",
489 | "8/8 [==============================] - 21s 3s/step - loss: 0.5059 - accuracy: 0.7551 - val_loss: 0.5494 - val_accuracy: 0.7461\n",
490 | "Epoch 8/10\n",
491 | "8/8 [==============================] - 21s 3s/step - loss: 0.4751 - accuracy: 0.7774 - val_loss: 0.5426 - val_accuracy: 0.7461\n",
492 | "Epoch 9/10\n",
493 | "8/8 [==============================] - 21s 3s/step - loss: 0.4755 - accuracy: 0.7816 - val_loss: 0.5948 - val_accuracy: 0.6172\n",
494 | "Epoch 10/10\n",
495 | "8/8 [==============================] - 21s 3s/step - loss: 0.4431 - accuracy: 0.7922 - val_loss: 0.7306 - val_accuracy: 0.5273\n"
496 | ],
497 | "name": "stdout"
498 | }
499 | ]
500 | },
501 | {
502 | "cell_type": "markdown",
503 | "metadata": {
504 | "id": "P6_aG1L_H-Ko"
505 | },
506 | "source": [
507 | "## Compare results\r\n",
508 | "\r\n",
509 | "In this example we are further interested in also comparing the results"
510 | ]
511 | },
512 | {
513 | "cell_type": "code",
514 | "metadata": {
515 | "id": "zOg1wLwrfpqd",
516 | "outputId": "2a00e0f6-c9b0-44bb-ce8d-e4f373777b38",
517 | "colab": {
518 | "base_uri": "https://localhost:8080/"
519 | }
520 | },
521 | "source": [
522 | "from tabulate import tabulate\r\n",
523 | "\r\n",
524 | "data = [[\"Model without gctf:\",sum(time_callback_no_gctf.times),history_no_gctf.history['accuracy'][-1],history_no_gctf.history['loss'][-1]],\r\n",
525 | " [\"Model with gctf\",sum(time_callback_gctf.times),history_gctf.history['accuracy'][-1],history_gctf.history['loss'][-1]]] \r\n",
526 | "\r\n",
527 | "print(tabulate(data, headers=[\"Type\",\"Execution time\", \"Accuracy\", \"Loss\"]))"
528 | ],
529 | "execution_count": 9,
530 | "outputs": [
531 | {
532 | "output_type": "stream",
533 | "text": [
534 | "Type Execution time Accuracy Loss\n",
535 | "------------------- ---------------- ---------- --------\n",
536 | "Model without gctf: 221.626 0.690768 0.625912\n",
537 | "Model with gctf 216.744 0.805339 0.426568\n"
538 | ],
539 | "name": "stdout"
540 | }
541 | ]
542 | },
543 | {
544 | "cell_type": "code",
545 | "metadata": {
546 | "id": "2Y5WxRlBf45e"
547 | },
548 | "source": [
549 | ""
550 | ],
551 | "execution_count": null,
552 | "outputs": []
553 | }
554 | ]
555 | }
556 |
--------------------------------------------------------------------------------
/examples/gctf_mnist.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "gctf-mnist.ipynb",
7 | "provenance": [],
8 | "include_colab_link": true
9 | },
10 | "kernelspec": {
11 | "name": "python3",
12 | "display_name": "Python 3"
13 | },
14 | "accelerator": "GPU"
15 | },
16 | "cells": [
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {
20 | "id": "view-in-github",
21 | "colab_type": "text"
22 | },
23 | "source": [
24 | "
"
25 | ]
26 | },
27 | {
28 | "cell_type": "markdown",
29 | "metadata": {
30 | "id": "IieqPex4O3eJ"
31 | },
32 | "source": [
33 | "# GCTF MNIST\r\n",
34 | "\r\n",
35 | "This notebook shows the the process of using the [`gradient-centralization-tf`](https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow) Python package to train on the [Fashion MNIST](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist) dataset availaible from [`tf.keras.datasets`](https://www.tensorflow.org/api_docs/python/tf/keras/datasets).Gradient Centralization is a simple and effective optimization technique for Deep Neural Networks as suggested by Yong et al. in the paper \r\n",
36 | "[Gradient Centralization: A New Optimization Technique for Deep Neural Networks](https://arxiv.org/abs/2004.01461). It can both speedup training \r\n",
37 | " process and improve the final generalization performance of DNNs.\r\n",
38 | "\r\n",
39 | "## A bit about GC\r\n",
40 | "\r\n",
41 | "Gradient Centralization operates directly on gradients by centralizing the gradient vectors to have zero mean. It can both speedup training process and improve the final generalization performance of DNNs. Here is an Illustration of the GC operation on gradient matrix/tensor of weights in the fully-connected layer (left) and convolutional layer (right). GC computes the column/slice mean of gradient matrix/tensor and centralizes each column/slice to have zero mean.\r\n",
42 | "\r\n",
43 | "\r\n",
44 | "\r\n",
45 | "GC can be viewed as a projected gradient descent method with a constrained loss function. The geometrical interpretation of GC. The gradient is projected on a hyperplane $e^T(w-w^t)=0$, where the projected gradient is used to update the weight.\r\n",
46 | "\r\n",
47 | ""
48 | ]
49 | },
50 | {
51 | "cell_type": "markdown",
52 | "metadata": {
53 | "id": "WcpkfjkwSjmv"
54 | },
55 | "source": [
56 | "## Setup"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "metadata": {
62 | "id": "XjTQqCEaTSSG"
63 | },
64 | "source": [
65 | "import tensorflow as tf\r\n",
66 | "from time import time"
67 | ],
68 | "execution_count": 1,
69 | "outputs": []
70 | },
71 | {
72 | "cell_type": "markdown",
73 | "metadata": {
74 | "id": "32NuQrDdSpP3"
75 | },
76 | "source": [
77 | "### Install the package"
78 | ]
79 | },
80 | {
81 | "cell_type": "code",
82 | "metadata": {
83 | "colab": {
84 | "base_uri": "https://localhost:8080/"
85 | },
86 | "id": "aFvPquvcOq1B",
87 | "outputId": "36ab7fcf-8561-4403-b216-76be2519c52b"
88 | },
89 | "source": [
90 | "!pip install gradient-centralization-tf"
91 | ],
92 | "execution_count": 2,
93 | "outputs": [
94 | {
95 | "output_type": "stream",
96 | "text": [
97 | "Collecting gradient-centralization-tf\n",
98 | " Downloading https://files.pythonhosted.org/packages/58/4c/6253587b8f6ccdf03fd4830de2574cbda48a1a84bc660d5dd8978d0f94fb/gradient_centralization_tf-0.0.2-py3-none-any.whl\n",
99 | "Requirement already satisfied: tensorflow~=2.4.0 in /usr/local/lib/python3.6/dist-packages (from gradient-centralization-tf) (2.4.1)\n",
100 | "Requirement already satisfied: keras~=2.4.0 in /usr/local/lib/python3.6/dist-packages (from gradient-centralization-tf) (2.4.3)\n",
101 | "Requirement already satisfied: numpy~=1.19.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.19.5)\n",
102 | "Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.12.1)\n",
103 | "Requirement already satisfied: absl-py~=0.10 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.10.0)\n",
104 | "Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (3.3.0)\n",
105 | "Requirement already satisfied: tensorflow-estimator<2.5.0,>=2.4.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (2.4.0)\n",
106 | "Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.2.0)\n",
107 | "Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.6.3)\n",
108 | "Requirement already satisfied: grpcio~=1.32.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.32.0)\n",
109 | "Requirement already satisfied: h5py~=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (2.10.0)\n",
110 | "Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.12)\n",
111 | "Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (3.12.4)\n",
112 | "Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.1.2)\n",
113 | "Requirement already satisfied: termcolor~=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.1.0)\n",
114 | "Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.36.2)\n",
115 | "Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (0.3.3)\n",
116 | "Requirement already satisfied: typing-extensions~=3.7.4 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (3.7.4.3)\n",
117 | "Requirement already satisfied: tensorboard~=2.4 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (2.4.1)\n",
118 | "Requirement already satisfied: six~=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow~=2.4.0->gradient-centralization-tf) (1.15.0)\n",
119 | "Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from keras~=2.4.0->gradient-centralization-tf) (1.4.1)\n",
120 | "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from keras~=2.4.0->gradient-centralization-tf) (3.13)\n",
121 | "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.9.2->tensorflow~=2.4.0->gradient-centralization-tf) (53.0.0)\n",
122 | "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.25.0)\n",
123 | "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.8.0)\n",
124 | "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.3.3)\n",
125 | "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (0.4.2)\n",
126 | "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (2.23.0)\n",
127 | "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.0.1)\n",
128 | "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (0.2.8)\n",
129 | "Requirement already satisfied: rsa<5,>=3.1.4; python_version >= \"3.6\" in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (4.7)\n",
130 | "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (4.2.1)\n",
131 | "Requirement already satisfied: importlib-metadata; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.4.0)\n",
132 | "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.3.0)\n",
133 | "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (2.10)\n",
134 | "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.0.4)\n",
135 | "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (2020.12.5)\n",
136 | "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (1.24.3)\n",
137 | "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (0.4.8)\n",
138 | "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < \"3.8\"->markdown>=2.6.8->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.4.0)\n",
139 | "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow~=2.4.0->gradient-centralization-tf) (3.1.0)\n",
140 | "Installing collected packages: gradient-centralization-tf\n",
141 | "Successfully installed gradient-centralization-tf-0.0.2\n"
142 | ],
143 | "name": "stdout"
144 | }
145 | ]
146 | },
147 | {
148 | "cell_type": "markdown",
149 | "metadata": {
150 | "id": "Okru2B3uTKRx"
151 | },
152 | "source": [
153 | "## Get the data and create model structure"
154 | ]
155 | },
156 | {
157 | "cell_type": "code",
158 | "metadata": {
159 | "id": "ywUm1ZYiOY8x",
160 | "colab": {
161 | "base_uri": "https://localhost:8080/"
162 | },
163 | "outputId": "630d7bff-15a4-487c-84c9-3c96bea42912"
164 | },
165 | "source": [
166 | "mnist = tf.keras.datasets.fashion_mnist\r\n",
167 | "(training_images, training_labels), (test_images, test_labels) = mnist.load_data()\r\n",
168 | "training_images = training_images / 255.0\r\n",
169 | "test_images = test_images / 255.0\r\n",
170 | "\r\n",
171 | "# Model architecture\r\n",
172 | "model = tf.keras.models.Sequential([\r\n",
173 | " tf.keras.layers.Flatten(), \r\n",
174 | " tf.keras.layers.Dense(512, activation=tf.nn.relu),\r\n",
175 | " tf.keras.layers.Dense(256, activation=tf.nn.relu),\r\n",
176 | " tf.keras.layers.Dense(64, activation=tf.nn.relu),\r\n",
177 | " tf.keras.layers.Dense(512, activation=tf.nn.relu),\r\n",
178 | " tf.keras.layers.Dense(256, activation=tf.nn.relu),\r\n",
179 | " tf.keras.layers.Dense(64, activation=tf.nn.relu), \r\n",
180 | " tf.keras.layers.Dense(10, activation=tf.nn.softmax)])"
181 | ],
182 | "execution_count": 3,
183 | "outputs": [
184 | {
185 | "output_type": "stream",
186 | "text": [
187 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz\n",
188 | "32768/29515 [=================================] - 0s 0us/step\n",
189 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz\n",
190 | "26427392/26421880 [==============================] - 0s 0us/step\n",
191 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz\n",
192 | "8192/5148 [===============================================] - 0s 0us/step\n",
193 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz\n",
194 | "4423680/4422102 [==============================] - 0s 0us/step\n"
195 | ],
196 | "name": "stdout"
197 | }
198 | ]
199 | },
200 | {
201 | "cell_type": "markdown",
202 | "metadata": {
203 | "id": "_p_jknUHUILI"
204 | },
205 | "source": [
206 | "## Train a model without `gctf`"
207 | ]
208 | },
209 | {
210 | "cell_type": "markdown",
211 | "metadata": {
212 | "id": "4Us9_ZCBpD2a"
213 | },
214 | "source": [
215 | "Make a Callback to compute computation time\r\n"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "metadata": {
221 | "id": "ADdFS7OapCXZ"
222 | },
223 | "source": [
224 | "class TimeHistory(tf.keras.callbacks.Callback):\r\n",
225 | " def on_train_begin(self, logs={}):\r\n",
226 | " self.times = []\r\n",
227 | "\r\n",
228 | " def on_epoch_begin(self, batch, logs={}):\r\n",
229 | " self.epoch_time_start = time()\r\n",
230 | "\r\n",
231 | " def on_epoch_end(self, batch, logs={}):\r\n",
232 | " self.times.append(time() - self.epoch_time_start)"
233 | ],
234 | "execution_count": 4,
235 | "outputs": []
236 | },
237 | {
238 | "cell_type": "code",
239 | "metadata": {
240 | "colab": {
241 | "base_uri": "https://localhost:8080/"
242 | },
243 | "id": "BQXmGp4_Oj7l",
244 | "outputId": "407f4d3f-c422-439d-e26b-74eb90edf373"
245 | },
246 | "source": [
247 | "time_callback_no_gctf = TimeHistory()\r\n",
248 | "\r\n",
249 | "model.compile(optimizer = tf.keras.optimizers.Adam(),\r\n",
250 | " loss = 'sparse_categorical_crossentropy',\r\n",
251 | " metrics = ['accuracy'])\r\n",
252 | "\r\n",
253 | "history_no_gctf = model.fit(training_images, training_labels, epochs=5, callbacks = [time_callback_no_gctf])"
254 | ],
255 | "execution_count": 5,
256 | "outputs": [
257 | {
258 | "output_type": "stream",
259 | "text": [
260 | "Epoch 1/5\n",
261 | "1875/1875 [==============================] - 6s 2ms/step - loss: 0.6533 - accuracy: 0.7619\n",
262 | "Epoch 2/5\n",
263 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.3986 - accuracy: 0.8559\n",
264 | "Epoch 3/5\n",
265 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.3527 - accuracy: 0.8731\n",
266 | "Epoch 4/5\n",
267 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.3271 - accuracy: 0.8810\n",
268 | "Epoch 5/5\n",
269 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.3075 - accuracy: 0.8884\n"
270 | ],
271 | "name": "stdout"
272 | }
273 | ]
274 | },
275 | {
276 | "cell_type": "markdown",
277 | "metadata": {
278 | "id": "X_qW351shXgM"
279 | },
280 | "source": [
281 | "## Train a model with `gctf`"
282 | ]
283 | },
284 | {
285 | "cell_type": "code",
286 | "metadata": {
287 | "colab": {
288 | "base_uri": "https://localhost:8080/"
289 | },
290 | "id": "slHbE9hKWBWV",
291 | "outputId": "cfed8cb2-6260-4303-e749-ac1a71143949"
292 | },
293 | "source": [
294 | "import gctf #import gctf\r\n",
295 | "\r\n",
296 | "time_callback_gctf = TimeHistory()\r\n",
297 | "\r\n",
298 | "model.compile(optimizer = gctf.optimizers.adam(),\r\n",
299 | " loss = 'sparse_categorical_crossentropy',\r\n",
300 | " metrics=['accuracy'])\r\n",
301 | "\r\n",
302 | "history_gctf = model.fit(training_images, training_labels, epochs=5, callbacks=[time_callback_gctf])"
303 | ],
304 | "execution_count": 8,
305 | "outputs": [
306 | {
307 | "output_type": "stream",
308 | "text": [
309 | "Epoch 1/5\n",
310 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2572 - accuracy: 0.9063\n",
311 | "Epoch 2/5\n",
312 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2551 - accuracy: 0.9103\n",
313 | "Epoch 3/5\n",
314 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2330 - accuracy: 0.9133\n",
315 | "Epoch 4/5\n",
316 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2288 - accuracy: 0.9168\n",
317 | "Epoch 5/5\n",
318 | "1875/1875 [==============================] - 4s 2ms/step - loss: 0.2237 - accuracy: 0.9165\n"
319 | ],
320 | "name": "stdout"
321 | }
322 | ]
323 | },
324 | {
325 | "cell_type": "markdown",
326 | "metadata": {
327 | "id": "MhfeOw1FgLPE"
328 | },
329 | "source": [
330 | "## Compare results\r\n",
331 | "\r\n",
332 | "In this example we are further interested in also comparing the results"
333 | ]
334 | },
335 | {
336 | "cell_type": "code",
337 | "metadata": {
338 | "colab": {
339 | "base_uri": "https://localhost:8080/"
340 | },
341 | "id": "M-PfvMpCdhm6",
342 | "outputId": "16ed65f5-d958-45cc-bd61-c09dcd6e9c1d"
343 | },
344 | "source": [
345 | "#Compare Results\r\n",
346 | "from tabulate import tabulate\r\n",
347 | "\r\n",
348 | "data = [[\"Model without gctf:\",sum(time_callback_no_gctf.times),history_no_gctf.history['accuracy'][-1],history_no_gctf.history['loss'][-1]],\r\n",
349 | " [\"Model with gctf\",sum(time_callback_gctf.times),history_gctf.history['accuracy'][-1],history_gctf.history['loss'][-1]]] \r\n",
350 | "\r\n",
351 | "print(tabulate(data, headers=[\"Type\",\"Execution time\", \"Accuracy\", \"Loss\"]))"
352 | ],
353 | "execution_count": 9,
354 | "outputs": [
355 | {
356 | "output_type": "stream",
357 | "text": [
358 | "Type Execution time Accuracy Loss\n",
359 | "------------------- ---------------- ---------- --------\n",
360 | "Model without gctf: 20.183 0.887617 0.310299\n",
361 | "Model with gctf 18.464 0.916467 0.22555\n"
362 | ],
363 | "name": "stdout"
364 | }
365 | ]
366 | }
367 | ]
368 | }
369 |
--------------------------------------------------------------------------------
/gctf/__init__.py:
--------------------------------------------------------------------------------
1 | from .version import __version__
2 |
3 | from .centralized_gradients import get_centralized_gradients
4 | from .centralized_gradients import centralized_gradients_for_optimizer
5 | from .optimizers import *
6 |
--------------------------------------------------------------------------------
/gctf/centralized_gradients.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import keras.backend as K
3 |
4 |
5 | def get_centralized_gradients(optimizer, loss, params):
6 | """Compute the centralized gradients.
7 |
8 | This function is ideally not meant to be used directly unless you are building a custom optimizer, in which case you
9 | could point `get_gradients` to this function. This is a modified version of
10 | `tf.keras.optimizers.Optimizer.get_gradients`.
11 |
12 | # Arguments:
13 | optimizer: a `tf.keras.optimizers.Optimizer object`. The optimizer you are using.
14 | loss: Scalar tensor to minimize.
15 | params: List of variables.
16 |
17 | # Returns:
18 | A gradients tensor.
19 |
20 | # Reference:
21 | [Yong et al., 2020](https://arxiv.org/abs/2004.01461)
22 | """
23 |
24 | # We here just provide a modified get_gradients() function since we are trying to just compute the centralized
25 | # gradients at this stage which can be used in other optimizers.
26 | grads = []
27 | for grad in K.gradients(loss, params):
28 | grad_len = len(grad.shape)
29 | if grad_len > 1:
30 | axis = list(range(grad_len - 1))
31 | grad -= tf.reduce_mean(grad,
32 | axis=axis,
33 | keep_dims=True)
34 | grads.append(grad)
35 |
36 | if None in grads:
37 | raise ValueError('An operation has `None` for gradient. '
38 | 'Please make sure that all of your ops have a '
39 | 'gradient defined (i.e. are differentiable). '
40 | 'Common ops without gradient: '
41 | 'K.argmax, K.round, K.eval.')
42 | if hasattr(optimizer, 'clipnorm') and optimizer.clipnorm > 0:
43 | norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
44 | grads = [
45 | tf.keras.optimizers.clip_norm(
46 | g,
47 | optimizer.clipnorm,
48 | norm) for g in grads]
49 | if hasattr(optimizer, 'clipvalue') and optimizer.clipvalue > 0:
50 | grads = [K.clip(g, -optimizer.clipvalue, optimizer.clipvalue)
51 | for g in grads]
52 | return grads
53 |
54 |
55 | def centralized_gradients_for_optimizer(optimizer):
56 | """Create a centralized gradients functions for a specified optimizer.
57 |
58 | # Arguments:
59 | optimizer: a `tf.keras.optimizers.Optimizer object`. The optimizer you are using.
60 |
61 | # Usage:
62 |
63 | ```py
64 | >>> opt = tf.keras.optimizers.Adam(learning_rate=0.1)
65 | >>> opt.get_gradients = gctf.centralized_gradients_for_optimizer(opt)
66 | >>> model.compile(optimizer = opt, ...)
67 | ```
68 | """
69 |
70 | def get_centralized_gradients_for_optimizer(loss, params):
71 | return get_centralized_gradients(optimizer, loss, params)
72 |
73 | return get_centralized_gradients_for_optimizer
74 |
--------------------------------------------------------------------------------
/gctf/optimizers.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 |
3 | from .centralized_gradients import centralized_gradients_for_optimizer
4 |
5 |
6 | def update_optimizer(optimizer):
7 | optimizer.get_gradients = centralized_gradients_for_optimizer(optimizer)
8 | return optimizer
9 |
10 |
11 | def adagrad(learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07):
12 | optimizer = tf.keras.optimizers.Adagrad(
13 | learning_rate=learning_rate,
14 | initial_accumulator_value=initial_accumulator_value,
15 | epsilon=epsilon)
16 | return update_optimizer(optimizer)
17 |
18 |
19 | def adadelta(learning_rate=0.001, rho=0.95, epsilon=1e-07):
20 | optimizer = tf.keras.optimizers.Adadelta(learning_rate=learning_rate,
21 | rho=rho,
22 | epsilon=epsilon)
23 | return update_optimizer(optimizer)
24 |
25 |
26 | def adam(
27 | learning_rate=0.001,
28 | beta_1=0.9,
29 | beta_2=0.999,
30 | epsilon=1e-7,
31 | amsgrad=False):
32 | optimizer = tf.keras.optimizers.Adam(
33 | learning_rate=learning_rate,
34 | beta_1=beta_1,
35 | beta_2=beta_2,
36 | epsilon=epsilon,
37 | amsgrad=amsgrad)
38 | return update_optimizer(optimizer)
39 |
40 |
41 | def adamax(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07):
42 | optimizer = tf.keras.optimizers.Adamax(learning_rate=learning_rate,
43 | beta_1=beta_1,
44 | beta_2=beta_2,
45 | epsilon=epsilon)
46 | return update_optimizer(optimizer)
47 |
48 |
49 | def ftrl(
50 | learning_rate=0.001,
51 | learning_rate_power=-0.5,
52 | initial_accumulator_value=0.1,
53 | l1_regularization_strength=0.0,
54 | l2_regularization_strength=0.0,
55 | l2_shrinkage_regularization_strength=0.0,
56 | beta=0.0):
57 | optimizer = tf.keras.optimizers.Adamax(
58 | learning_rate=learning_rate,
59 | learning_rate_power=learning_rate_power,
60 | initial_accumulator_value=initial_accumulator_value,
61 | l1_regularization_strength=l1_regularization_strength,
62 | l2_regularization_strength=l2_regularization_strength,
63 | l2_shrinkage_regularization_strength=l2_shrinkage_regularization_strength,
64 | beta=beta)
65 | return update_optimizer(optimizer)
66 |
67 |
68 | def nadam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07):
69 | optimizer = tf.keras.optimizers.Nadam(
70 | learning_rate=learning_rate,
71 | beta_1=beta_1,
72 | beta_2=beta_2,
73 | epsilon=epsilon)
74 | return update_optimizer(optimizer)
75 |
76 |
77 | def rmsprop(
78 | learning_rate=0.001,
79 | rho=0.9,
80 | momentum=0.0,
81 | epsilon=1e-07,
82 | centered=False):
83 | optimizer = tf.keras.optimizers.RMSprop(
84 | learning_rate=learning_rate,
85 | rho=rho,
86 | momentum=momentum,
87 | epsilon=epsilon,
88 | centered=centered)
89 | return update_optimizer(optimizer)
90 |
91 |
92 | def sgd(learning_rate=0.01, momentum=0.0, nesterov=False):
93 | optimizer = tf.keras.optimizers.SGD(
94 | learning_rate=learning_rate,
95 | momentum=momentum,
96 | nesterov=nesterov)
97 | return update_optimizer(optimizer)
98 |
--------------------------------------------------------------------------------
/gctf/version.py:
--------------------------------------------------------------------------------
1 | __version__ = '0.0.3'
2 |
--------------------------------------------------------------------------------
/images/gctf.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Rishit-dagli/Gradient-Centralization-TensorFlow/6fbb2e3f049665724a3cc87b7c9dde07830da6f1/images/gctf.png
--------------------------------------------------------------------------------
/images/illutstration.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Rishit-dagli/Gradient-Centralization-TensorFlow/6fbb2e3f049665724a3cc87b7c9dde07830da6f1/images/illutstration.png
--------------------------------------------------------------------------------
/images/projected_grad.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Rishit-dagli/Gradient-Centralization-TensorFlow/6fbb2e3f049665724a3cc87b7c9dde07830da6f1/images/projected_grad.png
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | exec(open('gctf/version.py').read())
4 |
5 | with open("README.md", "r") as fh:
6 | long_description = fh.read()
7 |
8 | setup(
9 | name="gradient-centralization-tf",
10 | version="0.0.3",
11 | description="Implement Gradient Centralization in TensorFlow",
12 | packages=["gctf"],
13 |
14 | long_description=long_description,
15 | long_description_content_type="text/markdown",
16 |
17 | classifiers=[
18 | "Development Status :: 4 - Beta",
19 | "Programming Language :: Python :: 3",
20 | "Programming Language :: Python :: 3 :: Only",
21 | "Programming Language :: Python :: 3.7",
22 | "Programming Language :: Python :: 3.8",
23 | "Programming Language :: Python :: 3.9",
24 | "License :: OSI Approved :: Apache Software License",
25 | "Intended Audience :: Developers",
26 | "Intended Audience :: Education",
27 | "Intended Audience :: Science/Research",
28 | "Topic :: Scientific/Engineering",
29 | "Topic :: Scientific/Engineering :: Artificial Intelligence",
30 | "Topic :: Software Development",
31 | "Topic :: Software Development :: Libraries",
32 | "Topic :: Software Development :: Libraries :: Python Modules",
33 | "Topic :: Scientific/Engineering :: Mathematics"
34 | ],
35 |
36 | url="https://github.com/Rishit-dagli/Gradient-Centralization-TensorFlow",
37 | author="Rishit Dagli",
38 | author_email="rishit.dagli@gmail.com",
39 |
40 | install_requires=[
41 | "tensorflow >= 2.2.0",
42 | "keras ~= 2.4.0",
43 | ],
44 |
45 | extras_require={
46 | "dev": [
47 | "check-manifest",
48 | "twine",
49 | "numpy"
50 | ],
51 | },
52 | )
53 |
--------------------------------------------------------------------------------