├── utils
├── __init__.py
├── aws
│ ├── __init__.py
│ ├── mime.sh
│ ├── resume.py
│ └── userdata.sh
├── wandb_logging
│ ├── __init__.py
│ ├── log_dataset.py
│ └── wandb_utils.py
├── google_app_engine
│ ├── additional_requirements.txt
│ ├── app.yaml
│ └── Dockerfile
├── activations.py
├── google_utils.py
├── add_nms.py
├── autoanchor.py
├── metrics.py
├── torch_utils.py
├── plots.py
└── general.py
├── models
├── __init__.py
└── experimental.py
├── requirements.txt
├── data
├── coco.yaml
├── hyp.scratch.p5.yaml
├── hyp.scratch.p6.yaml
├── hyp.scratch.custom.yaml
└── hyp.scratch.tiny.yaml
├── README.md
├── detect_and_crop.py
└── LICENSE
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/utils/aws/__init__.py:
--------------------------------------------------------------------------------
1 | #init
--------------------------------------------------------------------------------
/utils/wandb_logging/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/utils/google_app_engine/additional_requirements.txt:
--------------------------------------------------------------------------------
1 | # add these requirements in your app on top of the existing ones
2 | pip==18.1
3 | Flask==1.0.2
4 | gunicorn==19.9.0
5 |
--------------------------------------------------------------------------------
/utils/google_app_engine/app.yaml:
--------------------------------------------------------------------------------
1 | runtime: custom
2 | env: flex
3 |
4 | service: yolorapp
5 |
6 | liveness_check:
7 | initial_delay_sec: 600
8 |
9 | manual_scaling:
10 | instances: 1
11 | resources:
12 | cpu: 1
13 | memory_gb: 4
14 | disk_size_gb: 20
--------------------------------------------------------------------------------
/utils/aws/mime.sh:
--------------------------------------------------------------------------------
1 | # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2 | # This script will run on every instance restart, not only on first start
3 | # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4 |
5 | Content-Type: multipart/mixed; boundary="//"
6 | MIME-Version: 1.0
7 |
8 | --//
9 | Content-Type: text/cloud-config; charset="us-ascii"
10 | MIME-Version: 1.0
11 | Content-Transfer-Encoding: 7bit
12 | Content-Disposition: attachment; filename="cloud-config.txt"
13 |
14 | #cloud-config
15 | cloud_final_modules:
16 | - [scripts-user, always]
17 |
18 | --//
19 | Content-Type: text/x-shellscript; charset="us-ascii"
20 | MIME-Version: 1.0
21 | Content-Transfer-Encoding: 7bit
22 | Content-Disposition: attachment; filename="userdata.txt"
23 |
24 | #!/bin/bash
25 | # --- paste contents of userdata.sh here ---
26 | --//
27 |
--------------------------------------------------------------------------------
/utils/wandb_logging/log_dataset.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import yaml
4 |
5 | from wandb_utils import WandbLogger
6 |
7 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8 |
9 |
10 | def create_dataset_artifact(opt):
11 | with open(opt.data) as f:
12 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
13 | logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14 |
15 |
16 | if __name__ == '__main__':
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
19 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20 | parser.add_argument('--project', type=str, default='YOLOR', help='name of W&B Project')
21 | opt = parser.parse_args()
22 | opt.resume = False # Explicitly disallow resume check for dataset upload job
23 |
24 | create_dataset_artifact(opt)
25 |
--------------------------------------------------------------------------------
/utils/google_app_engine/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM gcr.io/google-appengine/python
2 |
3 | # Create a virtualenv for dependencies. This isolates these packages from
4 | # system-level packages.
5 | # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6 | RUN virtualenv /env -p python3
7 |
8 | # Setting these environment variables are the same as running
9 | # source /env/bin/activate.
10 | ENV VIRTUAL_ENV /env
11 | ENV PATH /env/bin:$PATH
12 |
13 | RUN apt-get update && apt-get install -y python-opencv
14 |
15 | # Copy the application's requirements.txt and run pip to install all
16 | # dependencies into the virtualenv.
17 | ADD requirements.txt /app/requirements.txt
18 | RUN pip install -r /app/requirements.txt
19 |
20 | # Add the application source code.
21 | ADD . /app
22 |
23 | # Run a WSGI server to serve the application. gunicorn must be declared as
24 | # a dependency in requirements.txt.
25 | CMD gunicorn -b :$PORT main:app
26 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # Usage: pip install -r requirements.txt
2 |
3 | # Base ----------------------------------------
4 | matplotlib>=3.2.2
5 | numpy>=1.18.5
6 | opencv-python>=4.1.1
7 | Pillow>=7.1.2
8 | PyYAML>=5.3.1
9 | requests>=2.23.0
10 | scipy>=1.4.1
11 | torch>=1.7.0,!=1.12.0
12 | torchvision>=0.8.1,!=0.13.0
13 | tqdm>=4.41.0
14 | protobuf<4.21.3
15 |
16 | # Logging -------------------------------------
17 | tensorboard>=2.4.1
18 | # wandb
19 |
20 | # Plotting ------------------------------------
21 | pandas>=1.1.4
22 | seaborn>=0.11.0
23 |
24 | # Export --------------------------------------
25 | # coremltools>=4.1 # CoreML export
26 | # onnx>=1.9.0 # ONNX export
27 | # onnx-simplifier>=0.3.6 # ONNX simplifier
28 | # scikit-learn==0.19.2 # CoreML quantization
29 | # tensorflow>=2.4.1 # TFLite export
30 | # tensorflowjs>=3.9.0 # TF.js export
31 | # openvino-dev # OpenVINO export
32 |
33 | # Extras --------------------------------------
34 | ipython # interactive notebook
35 | psutil # system utilization
36 | thop # FLOPs computation
37 | # albumentations>=1.0.3
38 | # pycocotools>=2.0 # COCO mAP
39 | # roboflow
40 |
--------------------------------------------------------------------------------
/utils/aws/resume.py:
--------------------------------------------------------------------------------
1 | # Resume all interrupted trainings in yolor/ dir including DDP trainings
2 | # Usage: $ python utils/aws/resume.py
3 |
4 | import os
5 | import sys
6 | from pathlib import Path
7 |
8 | import torch
9 | import yaml
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | port = 0 # --master_port
14 | path = Path('').resolve()
15 | for last in path.rglob('*/**/last.pt'):
16 | ckpt = torch.load(last)
17 | if ckpt['optimizer'] is None:
18 | continue
19 |
20 | # Load opt.yaml
21 | with open(last.parent.parent / 'opt.yaml') as f:
22 | opt = yaml.load(f, Loader=yaml.SafeLoader)
23 |
24 | # Get device count
25 | d = opt['device'].split(',') # devices
26 | nd = len(d) # number of devices
27 | ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28 |
29 | if ddp: # multi-GPU
30 | port += 1
31 | cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32 | else: # single-GPU
33 | cmd = f'python train.py --resume {last}'
34 |
35 | cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36 | print(cmd)
37 | os.system(cmd)
38 |
--------------------------------------------------------------------------------
/utils/aws/userdata.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3 | # This script will run only once on first instance start (for a re-start script see mime.sh)
4 | # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5 | # Use >300 GB SSD
6 |
7 | cd home/ubuntu
8 | if [ ! -d yolor ]; then
9 | echo "Running first-time script." # install dependencies, download COCO, pull Docker
10 | git clone -b paper https://github.com/WongKinYiu/yolor && sudo chmod -R 777 yolor
11 | cd yolor
12 | bash data/scripts/get_coco.sh && echo "Data done." &
13 | sudo docker pull nvcr.io/nvidia/pytorch:21.08-py3 && echo "Docker done." &
14 | python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15 | wait && echo "All tasks done." # finish background tasks
16 | else
17 | echo "Running re-start script." # resume interrupted runs
18 | i=0
19 | list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20 | while IFS= read -r id; do
21 | ((i++))
22 | echo "restarting container $i: $id"
23 | sudo docker start $id
24 | # sudo docker exec -it $id python train.py --resume # single-GPU
25 | sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26 | done <<<"$list"
27 | fi
28 |
--------------------------------------------------------------------------------
/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org
2 |
3 | # download command/URL (optional)
4 | download: bash ./scripts/get_coco.sh
5 |
6 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
7 | train: ./coco/train2017.txt # 118287 images
8 | val: ./coco/val2017.txt # 5000 images
9 | test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
10 |
11 | # number of classes
12 | nc: 80
13 |
14 | # class names
15 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
16 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
17 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
18 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
19 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
20 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
21 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
22 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
23 | 'hair drier', 'toothbrush' ]
24 |
--------------------------------------------------------------------------------
/data/hyp.scratch.p5.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.3 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 0.7 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | # anchors: 3 # anchors per output layer (0 to ignore)
16 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20 | degrees: 0.0 # image rotation (+/- deg)
21 | translate: 0.2 # image translation (+/- fraction)
22 | scale: 0.9 # image scale (+/- gain)
23 | shear: 0.0 # image shear (+/- deg)
24 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25 | flipud: 0.0 # image flip up-down (probability)
26 | fliplr: 0.5 # image flip left-right (probability)
27 | mosaic: 1.0 # image mosaic (probability)
28 | mixup: 0.15 # image mixup (probability)
29 | copy_paste: 0.0 # image copy paste (probability)
30 | paste_in: 0.15 # image copy paste (probability), use 0 for faster training
31 | loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
--------------------------------------------------------------------------------
/data/hyp.scratch.p6.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.3 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 0.7 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | # anchors: 3 # anchors per output layer (0 to ignore)
16 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20 | degrees: 0.0 # image rotation (+/- deg)
21 | translate: 0.2 # image translation (+/- fraction)
22 | scale: 0.9 # image scale (+/- gain)
23 | shear: 0.0 # image shear (+/- deg)
24 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25 | flipud: 0.0 # image flip up-down (probability)
26 | fliplr: 0.5 # image flip left-right (probability)
27 | mosaic: 1.0 # image mosaic (probability)
28 | mixup: 0.15 # image mixup (probability)
29 | copy_paste: 0.0 # image copy paste (probability)
30 | paste_in: 0.15 # image copy paste (probability), use 0 for faster training
31 | loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
--------------------------------------------------------------------------------
/data/hyp.scratch.custom.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.3 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 0.7 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | # anchors: 3 # anchors per output layer (0 to ignore)
16 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20 | degrees: 0.0 # image rotation (+/- deg)
21 | translate: 0.2 # image translation (+/- fraction)
22 | scale: 0.5 # image scale (+/- gain)
23 | shear: 0.0 # image shear (+/- deg)
24 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25 | flipud: 0.0 # image flip up-down (probability)
26 | fliplr: 0.5 # image flip left-right (probability)
27 | mosaic: 1.0 # image mosaic (probability)
28 | mixup: 0.0 # image mixup (probability)
29 | copy_paste: 0.0 # image copy paste (probability)
30 | paste_in: 0.0 # image copy paste (probability), use 0 for faster training
31 | loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
--------------------------------------------------------------------------------
/data/hyp.scratch.tiny.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.5 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 1.0 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | # anchors: 3 # anchors per output layer (0 to ignore)
16 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20 | degrees: 0.0 # image rotation (+/- deg)
21 | translate: 0.1 # image translation (+/- fraction)
22 | scale: 0.5 # image scale (+/- gain)
23 | shear: 0.0 # image shear (+/- deg)
24 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25 | flipud: 0.0 # image flip up-down (probability)
26 | fliplr: 0.5 # image flip left-right (probability)
27 | mosaic: 1.0 # image mosaic (probability)
28 | mixup: 0.05 # image mixup (probability)
29 | copy_paste: 0.0 # image copy paste (probability)
30 | paste_in: 0.05 # image copy paste (probability), use 0 for faster training
31 | loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
32 |
--------------------------------------------------------------------------------
/utils/activations.py:
--------------------------------------------------------------------------------
1 | # Activation functions
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 |
7 |
8 | # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9 | class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10 | @staticmethod
11 | def forward(x):
12 | return x * torch.sigmoid(x)
13 |
14 |
15 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16 | @staticmethod
17 | def forward(x):
18 | # return x * F.hardsigmoid(x) # for torchscript and CoreML
19 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20 |
21 |
22 | class MemoryEfficientSwish(nn.Module):
23 | class F(torch.autograd.Function):
24 | @staticmethod
25 | def forward(ctx, x):
26 | ctx.save_for_backward(x)
27 | return x * torch.sigmoid(x)
28 |
29 | @staticmethod
30 | def backward(ctx, grad_output):
31 | x = ctx.saved_tensors[0]
32 | sx = torch.sigmoid(x)
33 | return grad_output * (sx * (1 + x * (1 - sx)))
34 |
35 | def forward(self, x):
36 | return self.F.apply(x)
37 |
38 |
39 | # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40 | class Mish(nn.Module):
41 | @staticmethod
42 | def forward(x):
43 | return x * F.softplus(x).tanh()
44 |
45 |
46 | class MemoryEfficientMish(nn.Module):
47 | class F(torch.autograd.Function):
48 | @staticmethod
49 | def forward(ctx, x):
50 | ctx.save_for_backward(x)
51 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52 |
53 | @staticmethod
54 | def backward(ctx, grad_output):
55 | x = ctx.saved_tensors[0]
56 | sx = torch.sigmoid(x)
57 | fx = F.softplus(x).tanh()
58 | return grad_output * (fx + x * sx * (1 - fx * fx))
59 |
60 | def forward(self, x):
61 | return self.F.apply(x)
62 |
63 |
64 | # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65 | class FReLU(nn.Module):
66 | def __init__(self, c1, k=3): # ch_in, kernel
67 | super().__init__()
68 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69 | self.bn = nn.BatchNorm2d(c1)
70 |
71 | def forward(self, x):
72 | return torch.max(x, self.bn(self.conv(x)))
73 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # yolov7-object-cropping
2 |
3 | ### Steps to run Code
4 | - Clone the repository.
5 | ```
6 | git clone https://github.com/RizwanMunawar/yolov7-object-cropping.git
7 | ```
8 | - Goto the cloned folder.
9 | ```
10 | cd yolov7-object-cropping
11 | ```
12 | - Create a virtual envirnoment (Recommended, If you dont want to disturb python packages)
13 | ```
14 | # For Linux Users
15 | python3 -m venv yolov7objcropping
16 | source yolov7objcropping/bin/activate
17 |
18 | # For Window Users
19 | python3 -m venv yolov7objcropping
20 | cd yolov7objcropping
21 | cd Scripts
22 | activate
23 | cd ..
24 | cd ..
25 | ```
26 | - Upgrade pip with mentioned command below.
27 | ```
28 | pip install --upgrade pip
29 | ```
30 | - Install requirements with mentioned command below.
31 | ```
32 | pip install -r requirements.txt
33 | ```
34 | - Download [yolov7](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) object detection weights from link and move them to the working directory {yolov7-object-cropping}
35 | - Run the code with mentioned command below.
36 | ```
37 | # Change source file
38 | python detect_and_crop.py --weights yolov7.pt --source "your video.mp4"
39 |
40 | # For specific class (person)
41 | python detect_and_crop.py --weights yolov7.pt --source "your video.mp4" -classes 0
42 | ```
43 | - Cropped Objects will be stored in "working-dir/crop" folder.
44 |
45 | ### Results
46 |
47 |
48 | | Objects Cropped 1 |
49 | Objects Cropped 2 |
50 | Objects Cropped 3 |
51 | Objects Cropped 4 |
52 | Objects Cropped 5 |
53 | Objects Cropped 6 |
54 | Objects Cropped 7 |
55 |
56 |
57 |  |
58 |  |
59 |  |
60 |  |
61 |  |
62 |  |
63 |  |
64 |
65 |
66 |
67 | ### References
68 | - https://github.com/WongKinYiu/yolov7
69 | - https://opencv.org/
70 |
71 | ### My Medium Articles
72 | - https://medium.com/augmented-startups/yolov7-training-on-custom-data-b86d23e6623
73 | - https://medium.com/augmented-startups/roadmap-for-computer-vision-engineer-45167b94518c
74 | - https://medium.com/augmented-startups/yolor-or-yolov5-which-one-is-better-2f844d35e1a1
75 | - https://medium.com/augmented-startups/train-yolor-on-custom-data-f129391bd3d6
76 | - https://medium.com/augmented-startups/develop-an-analytics-dashboard-using-streamlit-e6282fa5e0f
77 |
78 | For more details, you can reach out to me on [Medium](https://muhammadrizwanmunawar.medium.com/) or can connect with me on [LinkedIn](https://www.linkedin.com/in/muhammadrizwanmunawar/)
79 |
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 |
3 | import os
4 | import platform
5 | import subprocess
6 | import time
7 | from pathlib import Path
8 |
9 | import requests
10 | import torch
11 |
12 |
13 | def gsutil_getsize(url=''):
14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 |
18 |
19 | def attempt_download(file, repo='WongKinYiu/yolov7'):
20 | # Attempt file download if does not exist
21 | file = Path(str(file).strip().replace("'", '').lower())
22 |
23 | if not file.exists():
24 | try:
25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26 | assets = [x['name'] for x in response['assets']] # release assets
27 | tag = response['tag_name'] # i.e. 'v1.0'
28 | except: # fallback plan
29 | assets = ['yolov7.pt', 'yolov7-tiny.pt', 'yolov7x.pt', 'yolov7-d6.pt', 'yolov7-e6.pt',
30 | 'yolov7-e6e.pt', 'yolov7-w6.pt']
31 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
32 |
33 | name = file.name
34 | if name in assets:
35 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
36 | redundant = False # second download option
37 | try: # GitHub
38 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
39 | print(f'Downloading {url} to {file}...')
40 | torch.hub.download_url_to_file(url, file)
41 | assert file.exists() and file.stat().st_size > 1E6 # check
42 | except Exception as e: # GCP
43 | print(f'Download error: {e}')
44 | assert redundant, 'No secondary mirror'
45 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
46 | print(f'Downloading {url} to {file}...')
47 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
48 | finally:
49 | if not file.exists() or file.stat().st_size < 1E6: # check
50 | file.unlink(missing_ok=True) # remove partial downloads
51 | print(f'ERROR: Download failure: {msg}')
52 | print('')
53 | return
54 |
55 |
56 | def gdrive_download(id='', file='tmp.zip'):
57 | # Downloads a file from Google Drive. from yolov7.utils.google_utils import *; gdrive_download()
58 | t = time.time()
59 | file = Path(file)
60 | cookie = Path('cookie') # gdrive cookie
61 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
62 | file.unlink(missing_ok=True) # remove existing file
63 | cookie.unlink(missing_ok=True) # remove existing cookie
64 |
65 | # Attempt file download
66 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
67 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
68 | if os.path.exists('cookie'): # large file
69 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
70 | else: # small file
71 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
72 | r = os.system(s) # execute, capture return
73 | cookie.unlink(missing_ok=True) # remove existing cookie
74 |
75 | # Error check
76 | if r != 0:
77 | file.unlink(missing_ok=True) # remove partial
78 | print('Download error ') # raise Exception('Download error')
79 | return r
80 |
81 | # Unzip if archive
82 | if file.suffix == '.zip':
83 | print('unzipping... ', end='')
84 | os.system(f'unzip -q {file}') # unzip
85 | file.unlink() # remove zip to free space
86 |
87 | print(f'Done ({time.time() - t:.1f}s)')
88 | return r
89 |
90 |
91 | def get_token(cookie="./cookie"):
92 | with open(cookie) as f:
93 | for line in f:
94 | if "download" in line:
95 | return line.split()[-1]
96 | return ""
97 |
98 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
99 | # # Uploads a file to a bucket
100 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
101 | #
102 | # storage_client = storage.Client()
103 | # bucket = storage_client.get_bucket(bucket_name)
104 | # blob = bucket.blob(destination_blob_name)
105 | #
106 | # blob.upload_from_filename(source_file_name)
107 | #
108 | # print('File {} uploaded to {}.'.format(
109 | # source_file_name,
110 | # destination_blob_name))
111 | #
112 | #
113 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
114 | # # Uploads a blob from a bucket
115 | # storage_client = storage.Client()
116 | # bucket = storage_client.get_bucket(bucket_name)
117 | # blob = bucket.blob(source_blob_name)
118 | #
119 | # blob.download_to_filename(destination_file_name)
120 | #
121 | # print('Blob {} downloaded to {}.'.format(
122 | # source_blob_name,
123 | # destination_file_name))
124 |
--------------------------------------------------------------------------------
/utils/add_nms.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import onnx
3 | from onnx import shape_inference
4 | try:
5 | import onnx_graphsurgeon as gs
6 | except Exception as e:
7 | print('Import onnx_graphsurgeon failure: %s' % e)
8 |
9 | import logging
10 |
11 | LOGGER = logging.getLogger(__name__)
12 |
13 | class RegisterNMS(object):
14 | def __init__(
15 | self,
16 | onnx_model_path: str,
17 | precision: str = "fp32",
18 | ):
19 |
20 | self.graph = gs.import_onnx(onnx.load(onnx_model_path))
21 | assert self.graph
22 | LOGGER.info("ONNX graph created successfully")
23 | # Fold constants via ONNX-GS that PyTorch2ONNX may have missed
24 | self.graph.fold_constants()
25 | self.precision = precision
26 | self.batch_size = 1
27 | def infer(self):
28 | """
29 | Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
30 | and fold constant inputs values. When possible, run shape inference on the
31 | ONNX graph to determine tensor shapes.
32 | """
33 | for _ in range(3):
34 | count_before = len(self.graph.nodes)
35 |
36 | self.graph.cleanup().toposort()
37 | try:
38 | for node in self.graph.nodes:
39 | for o in node.outputs:
40 | o.shape = None
41 | model = gs.export_onnx(self.graph)
42 | model = shape_inference.infer_shapes(model)
43 | self.graph = gs.import_onnx(model)
44 | except Exception as e:
45 | LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
46 | try:
47 | self.graph.fold_constants(fold_shapes=True)
48 | except TypeError as e:
49 | LOGGER.error(
50 | "This version of ONNX GraphSurgeon does not support folding shapes, "
51 | f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
52 | )
53 | raise
54 |
55 | count_after = len(self.graph.nodes)
56 | if count_before == count_after:
57 | # No new folding occurred in this iteration, so we can stop for now.
58 | break
59 |
60 | def save(self, output_path):
61 | """
62 | Save the ONNX model to the given location.
63 | Args:
64 | output_path: Path pointing to the location where to write
65 | out the updated ONNX model.
66 | """
67 | self.graph.cleanup().toposort()
68 | model = gs.export_onnx(self.graph)
69 | onnx.save(model, output_path)
70 | LOGGER.info(f"Saved ONNX model to {output_path}")
71 |
72 | def register_nms(
73 | self,
74 | *,
75 | score_thresh: float = 0.25,
76 | nms_thresh: float = 0.45,
77 | detections_per_img: int = 100,
78 | ):
79 | """
80 | Register the ``EfficientNMS_TRT`` plugin node.
81 | NMS expects these shapes for its input tensors:
82 | - box_net: [batch_size, number_boxes, 4]
83 | - class_net: [batch_size, number_boxes, number_labels]
84 | Args:
85 | score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
86 | nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
87 | overlap with previously selected boxes are removed).
88 | detections_per_img (int): Number of best detections to keep after NMS.
89 | """
90 |
91 | self.infer()
92 | # Find the concat node at the end of the network
93 | op_inputs = self.graph.outputs
94 | op = "EfficientNMS_TRT"
95 | attrs = {
96 | "plugin_version": "1",
97 | "background_class": -1, # no background class
98 | "max_output_boxes": detections_per_img,
99 | "score_threshold": score_thresh,
100 | "iou_threshold": nms_thresh,
101 | "score_activation": False,
102 | "box_coding": 0,
103 | }
104 |
105 | if self.precision == "fp32":
106 | dtype_output = np.float32
107 | elif self.precision == "fp16":
108 | dtype_output = np.float16
109 | else:
110 | raise NotImplementedError(f"Currently not supports precision: {self.precision}")
111 |
112 | # NMS Outputs
113 | output_num_detections = gs.Variable(
114 | name="num_dets",
115 | dtype=np.int32,
116 | shape=[self.batch_size, 1],
117 | ) # A scalar indicating the number of valid detections per batch image.
118 | output_boxes = gs.Variable(
119 | name="det_boxes",
120 | dtype=dtype_output,
121 | shape=[self.batch_size, detections_per_img, 4],
122 | )
123 | output_scores = gs.Variable(
124 | name="det_scores",
125 | dtype=dtype_output,
126 | shape=[self.batch_size, detections_per_img],
127 | )
128 | output_labels = gs.Variable(
129 | name="det_classes",
130 | dtype=np.int32,
131 | shape=[self.batch_size, detections_per_img],
132 | )
133 |
134 | op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
135 |
136 | # Create the NMS Plugin node with the selected inputs. The outputs of the node will also
137 | # become the final outputs of the graph.
138 | self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
139 | LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
140 |
141 | self.graph.outputs = op_outputs
142 |
143 | self.infer()
144 |
145 | def save(self, output_path):
146 | """
147 | Save the ONNX model to the given location.
148 | Args:
149 | output_path: Path pointing to the location where to write
150 | out the updated ONNX model.
151 | """
152 | self.graph.cleanup().toposort()
153 | model = gs.export_onnx(self.graph)
154 | onnx.save(model, output_path)
155 | LOGGER.info(f"Saved ONNX model to {output_path}")
156 |
--------------------------------------------------------------------------------
/utils/autoanchor.py:
--------------------------------------------------------------------------------
1 | # Auto-anchor utils
2 |
3 | import numpy as np
4 | import torch
5 | import yaml
6 | from scipy.cluster.vq import kmeans
7 | from tqdm import tqdm
8 |
9 | from utils.general import colorstr
10 |
11 |
12 | def check_anchor_order(m):
13 | # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14 | a = m.anchor_grid.prod(-1).view(-1) # anchor area
15 | da = a[-1] - a[0] # delta a
16 | ds = m.stride[-1] - m.stride[0] # delta s
17 | if da.sign() != ds.sign(): # same order
18 | print('Reversing anchor order')
19 | m.anchors[:] = m.anchors.flip(0)
20 | m.anchor_grid[:] = m.anchor_grid.flip(0)
21 |
22 |
23 | def check_anchors(dataset, model, thr=4.0, imgsz=640):
24 | # Check anchor fit to data, recompute if necessary
25 | prefix = colorstr('autoanchor: ')
26 | print(f'\n{prefix}Analyzing anchors... ', end='')
27 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31 |
32 | def metric(k): # compute metric
33 | r = wh[:, None] / k[None]
34 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35 | best = x.max(1)[0] # best_x
36 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37 | bpr = (best > 1. / thr).float().mean() # best possible recall
38 | return bpr, aat
39 |
40 | anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41 | bpr, aat = metric(anchors)
42 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43 | if bpr < 0.98: # threshold to recompute
44 | print('. Attempting to improve anchors, please wait...')
45 | na = m.anchor_grid.numel() // 2 # number of anchors
46 | try:
47 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48 | except Exception as e:
49 | print(f'{prefix}ERROR: {e}')
50 | new_bpr = metric(anchors)[0]
51 | if new_bpr > bpr: # replace anchors
52 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53 | m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54 | check_anchor_order(m)
55 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57 | else:
58 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59 | print('') # newline
60 |
61 |
62 | def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63 | """ Creates kmeans-evolved anchors from training dataset
64 |
65 | Arguments:
66 | path: path to dataset *.yaml, or a loaded dataset
67 | n: number of anchors
68 | img_size: image size used for training
69 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70 | gen: generations to evolve anchors using genetic algorithm
71 | verbose: print all results
72 |
73 | Return:
74 | k: kmeans evolved anchors
75 |
76 | Usage:
77 | from utils.autoanchor import *; _ = kmean_anchors()
78 | """
79 | thr = 1. / thr
80 | prefix = colorstr('autoanchor: ')
81 |
82 | def metric(k, wh): # compute metrics
83 | r = wh[:, None] / k[None]
84 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85 | # x = wh_iou(wh, torch.tensor(k)) # iou metric
86 | return x, x.max(1)[0] # x, best_x
87 |
88 | def anchor_fitness(k): # mutation fitness
89 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90 | return (best * (best > thr).float()).mean() # fitness
91 |
92 | def print_results(k):
93 | k = k[np.argsort(k.prod(1))] # sort small to large
94 | x, best = metric(k, wh0)
95 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99 | for i, x in enumerate(k):
100 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101 | return k
102 |
103 | if isinstance(path, str): # *.yaml file
104 | with open(path) as f:
105 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106 | from utils.datasets import LoadImagesAndLabels
107 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108 | else:
109 | dataset = path # dataset
110 |
111 | # Get label wh
112 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114 |
115 | # Filter
116 | i = (wh0 < 3.0).any(1).sum()
117 | if i:
118 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121 |
122 | # Kmeans calculation
123 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124 | s = wh.std(0) # sigmas for whitening
125 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126 | assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127 | k *= s
128 | wh = torch.tensor(wh, dtype=torch.float32) # filtered
129 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130 | k = print_results(k)
131 |
132 | # Plot
133 | # k, d = [None] * 20, [None] * 20
134 | # for i in tqdm(range(1, 21)):
135 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137 | # ax = ax.ravel()
138 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140 | # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141 | # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142 | # fig.savefig('wh.png', dpi=200)
143 |
144 | # Evolve
145 | npr = np.random
146 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148 | for _ in pbar:
149 | v = np.ones(sh)
150 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151 | v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152 | kg = (k.copy() * v).clip(min=2.0)
153 | fg = anchor_fitness(kg)
154 | if fg > f:
155 | f, k = fg, kg.copy()
156 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157 | if verbose:
158 | print_results(k)
159 |
160 | return print_results(k)
161 |
--------------------------------------------------------------------------------
/utils/metrics.py:
--------------------------------------------------------------------------------
1 | # Model validation metrics
2 |
3 | from pathlib import Path
4 |
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import torch
8 |
9 | from . import general
10 |
11 |
12 | def fitness(x):
13 | # Model fitness as a weighted combination of metrics
14 | w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15 | return (x[:, :4] * w).sum(1)
16 |
17 |
18 | def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
19 | """ Compute the average precision, given the recall and precision curves.
20 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21 | # Arguments
22 | tp: True positives (nparray, nx1 or nx10).
23 | conf: Objectness value from 0-1 (nparray).
24 | pred_cls: Predicted object classes (nparray).
25 | target_cls: True object classes (nparray).
26 | plot: Plot precision-recall curve at mAP@0.5
27 | save_dir: Plot save directory
28 | # Returns
29 | The average precision as computed in py-faster-rcnn.
30 | """
31 |
32 | # Sort by objectness
33 | i = np.argsort(-conf)
34 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35 |
36 | # Find unique classes
37 | unique_classes = np.unique(target_cls)
38 | nc = unique_classes.shape[0] # number of classes, number of detections
39 |
40 | # Create Precision-Recall curve and compute AP for each class
41 | px, py = np.linspace(0, 1, 1000), [] # for plotting
42 | ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43 | for ci, c in enumerate(unique_classes):
44 | i = pred_cls == c
45 | n_l = (target_cls == c).sum() # number of labels
46 | n_p = i.sum() # number of predictions
47 |
48 | if n_p == 0 or n_l == 0:
49 | continue
50 | else:
51 | # Accumulate FPs and TPs
52 | fpc = (1 - tp[i]).cumsum(0)
53 | tpc = tp[i].cumsum(0)
54 |
55 | # Recall
56 | recall = tpc / (n_l + 1e-16) # recall curve
57 | r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58 |
59 | # Precision
60 | precision = tpc / (tpc + fpc) # precision curve
61 | p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62 |
63 | # AP from recall-precision curve
64 | for j in range(tp.shape[1]):
65 | ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
66 | if plot and j == 0:
67 | py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68 |
69 | # Compute F1 (harmonic mean of precision and recall)
70 | f1 = 2 * p * r / (p + r + 1e-16)
71 | if plot:
72 | plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73 | plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74 | plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75 | plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76 |
77 | i = f1.mean(0).argmax() # max F1 index
78 | return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79 |
80 |
81 | def compute_ap(recall, precision):
82 | """ Compute the average precision, given the recall and precision curves
83 | # Arguments
84 | recall: The recall curve (list)
85 | precision: The precision curve (list)
86 | # Returns
87 | Average precision, precision curve, recall curve
88 | """
89 |
90 | # Append sentinel values to beginning and end
91 | mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
92 | mpre = np.concatenate(([1.], precision, [0.]))
93 |
94 | # Compute the precision envelope
95 | mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
96 |
97 | # Integrate area under curve
98 | method = 'interp' # methods: 'continuous', 'interp'
99 | if method == 'interp':
100 | x = np.linspace(0, 1, 101) # 101-point interp (COCO)
101 | ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
102 | else: # 'continuous'
103 | i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
104 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
105 |
106 | return ap, mpre, mrec
107 |
108 |
109 | class ConfusionMatrix:
110 | # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
111 | def __init__(self, nc, conf=0.25, iou_thres=0.45):
112 | self.matrix = np.zeros((nc + 1, nc + 1))
113 | self.nc = nc # number of classes
114 | self.conf = conf
115 | self.iou_thres = iou_thres
116 |
117 | def process_batch(self, detections, labels):
118 | """
119 | Return intersection-over-union (Jaccard index) of boxes.
120 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
121 | Arguments:
122 | detections (Array[N, 6]), x1, y1, x2, y2, conf, class
123 | labels (Array[M, 5]), class, x1, y1, x2, y2
124 | Returns:
125 | None, updates confusion matrix accordingly
126 | """
127 | detections = detections[detections[:, 4] > self.conf]
128 | gt_classes = labels[:, 0].int()
129 | detection_classes = detections[:, 5].int()
130 | iou = general.box_iou(labels[:, 1:], detections[:, :4])
131 |
132 | x = torch.where(iou > self.iou_thres)
133 | if x[0].shape[0]:
134 | matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
135 | if x[0].shape[0] > 1:
136 | matches = matches[matches[:, 2].argsort()[::-1]]
137 | matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
138 | matches = matches[matches[:, 2].argsort()[::-1]]
139 | matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
140 | else:
141 | matches = np.zeros((0, 3))
142 |
143 | n = matches.shape[0] > 0
144 | m0, m1, _ = matches.transpose().astype(np.int16)
145 | for i, gc in enumerate(gt_classes):
146 | j = m0 == i
147 | if n and sum(j) == 1:
148 | self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
149 | else:
150 | self.matrix[self.nc, gc] += 1 # background FP
151 |
152 | if n:
153 | for i, dc in enumerate(detection_classes):
154 | if not any(m1 == i):
155 | self.matrix[dc, self.nc] += 1 # background FN
156 |
157 | def matrix(self):
158 | return self.matrix
159 |
160 | def plot(self, save_dir='', names=()):
161 | try:
162 | import seaborn as sn
163 |
164 | array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
165 | array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
166 |
167 | fig = plt.figure(figsize=(12, 9), tight_layout=True)
168 | sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
169 | labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
170 | sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
171 | xticklabels=names + ['background FP'] if labels else "auto",
172 | yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
173 | fig.axes[0].set_xlabel('True')
174 | fig.axes[0].set_ylabel('Predicted')
175 | fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
176 | except Exception as e:
177 | pass
178 |
179 | def print(self):
180 | for i in range(self.nc + 1):
181 | print(' '.join(map(str, self.matrix[i])))
182 |
183 |
184 | # Plots ----------------------------------------------------------------------------------------------------------------
185 |
186 | def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
187 | # Precision-recall curve
188 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
189 | py = np.stack(py, axis=1)
190 |
191 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
192 | for i, y in enumerate(py.T):
193 | ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
194 | else:
195 | ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
196 |
197 | ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
198 | ax.set_xlabel('Recall')
199 | ax.set_ylabel('Precision')
200 | ax.set_xlim(0, 1)
201 | ax.set_ylim(0, 1)
202 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
203 | fig.savefig(Path(save_dir), dpi=250)
204 |
205 |
206 | def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
207 | # Metric-confidence curve
208 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
209 |
210 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
211 | for i, y in enumerate(py):
212 | ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
213 | else:
214 | ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
215 |
216 | y = py.mean(0)
217 | ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
218 | ax.set_xlabel(xlabel)
219 | ax.set_ylabel(ylabel)
220 | ax.set_xlim(0, 1)
221 | ax.set_ylim(0, 1)
222 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
223 | fig.savefig(Path(save_dir), dpi=250)
224 |
--------------------------------------------------------------------------------
/detect_and_crop.py:
--------------------------------------------------------------------------------
1 | # Object Cropping Using YOLOv7 (Object Detection + OpenCV)
2 |
3 | import argparse
4 | import time
5 | from pathlib import Path
6 | import os
7 | import cv2
8 | import torch
9 | import torch.backends.cudnn as cudnn
10 | from numpy import random
11 |
12 | from models.experimental import attempt_load
13 | from utils.datasets import LoadStreams, LoadImages
14 | from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
15 | scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
16 | from utils.plots import plot_one_box
17 | from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
18 |
19 |
20 | def detect(save_img=False):
21 | source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
22 | save_img = not opt.nosave and not source.endswith('.txt') # save inference images
23 | webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
24 | ('rtsp://', 'rtmp://', 'http://', 'https://'))
25 |
26 | #make crop folder
27 |
28 | if not os.path.exists("crop"):
29 | os.mkdir("crop")
30 | crp_cnt = 0
31 |
32 | # Directories
33 | save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
34 | (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
35 |
36 | # Initialize
37 | set_logging()
38 | device = select_device(opt.device)
39 | half = device.type != 'cpu' # half precision only supported on CUDA
40 |
41 | # Load model
42 | model = attempt_load(weights, map_location=device) # load FP32 model
43 | stride = int(model.stride.max()) # model stride
44 | imgsz = check_img_size(imgsz, s=stride) # check img_size
45 |
46 | if trace:
47 | model = TracedModel(model, device, opt.img_size)
48 |
49 | if half:
50 | model.half() # to FP16
51 |
52 | # Second-stage classifier
53 | classify = False
54 | if classify:
55 | modelc = load_classifier(name='resnet101', n=2) # initialize
56 | modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
57 |
58 | # Set Dataloader
59 | vid_path, vid_writer = None, None
60 | if webcam:
61 | view_img = check_imshow()
62 | cudnn.benchmark = True # set True to speed up constant image size inference
63 | dataset = LoadStreams(source, img_size=imgsz, stride=stride)
64 | else:
65 | dataset = LoadImages(source, img_size=imgsz, stride=stride)
66 |
67 | # Get names and colors
68 | names = model.module.names if hasattr(model, 'module') else model.names
69 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
70 |
71 | # Run inference
72 | if device.type != 'cpu':
73 | model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
74 | old_img_w = old_img_h = imgsz
75 | old_img_b = 1
76 |
77 | t0 = time.time()
78 | for path, img, im0s, vid_cap in dataset:
79 | img = torch.from_numpy(img).to(device)
80 | img = img.half() if half else img.float() # uint8 to fp16/32
81 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
82 | if img.ndimension() == 3:
83 | img = img.unsqueeze(0)
84 |
85 | # Warmup
86 | if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
87 | old_img_b = img.shape[0]
88 | old_img_h = img.shape[2]
89 | old_img_w = img.shape[3]
90 | for i in range(3):
91 | model(img, augment=opt.augment)[0]
92 |
93 | # Inference
94 | t1 = time_synchronized()
95 | pred = model(img, augment=opt.augment)[0]
96 | t2 = time_synchronized()
97 |
98 | # Apply NMS
99 | pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
100 | t3 = time_synchronized()
101 |
102 | # Apply Classifier
103 | if classify:
104 | pred = apply_classifier(pred, modelc, img, im0s)
105 |
106 | # Process detections
107 | for i, det in enumerate(pred): # detections per image
108 | if webcam: # batch_size >= 1
109 | p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
110 | else:
111 | p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
112 |
113 | p = Path(p) # to Path
114 | save_path = str(save_dir / p.name) # img.jpg
115 | txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
116 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
117 | if len(det):
118 | # Rescale boxes from img_size to im0 size
119 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
120 |
121 | # Print results
122 | for c in det[:, -1].unique():
123 | n = (det[:, -1] == c).sum() # detections per class
124 | s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
125 |
126 | # Write results
127 | for *xyxy, conf, cls in reversed(det):
128 |
129 | #crop an image based on coordinates
130 | object_coordinates = [int(xyxy[0]),int(xyxy[1]),int(xyxy[2]),int(xyxy[3])]
131 | cropobj = im0[int(xyxy[1]):int(xyxy[3]),int(xyxy[0]):int(xyxy[2])]
132 |
133 | #save crop part
134 | crop_file_path = os.path.join("crop",str(crp_cnt)+".jpg")
135 | cv2.imwrite(crop_file_path,cropobj)
136 | crp_cnt = crp_cnt+1
137 | if save_txt: # Write to file
138 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
139 | line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
140 | with open(txt_path + '.txt', 'a') as f:
141 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
142 |
143 | if view_img: # Add bbox to image
144 | label = f'{names[int(cls)]} {conf:.2f}'
145 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
146 |
147 | # Print time (inference + NMS)
148 | print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
149 |
150 | # Stream results
151 | if view_img:
152 | cv2.imshow(str(p), im0)
153 | cv2.waitKey(1) # 1 millisecond
154 |
155 | # Save results (image with detections)
156 | if save_img:
157 | if dataset.mode == 'image':
158 | cv2.imwrite(save_path, im0)
159 | print(f" The image with the result is saved in: {save_path}")
160 | else: # 'video' or 'stream'
161 | if vid_path != save_path: # new video
162 | vid_path = save_path
163 | if isinstance(vid_writer, cv2.VideoWriter):
164 | vid_writer.release() # release previous video writer
165 | if vid_cap: # video
166 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
167 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
168 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
169 | else: # stream
170 | fps, w, h = 30, im0.shape[1], im0.shape[0]
171 | save_path += '.mp4'
172 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
173 | vid_writer.write(im0)
174 |
175 | if save_txt or save_img:
176 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
177 | #print(f"Results saved to {save_dir}{s}")
178 |
179 | print(f'Done. ({time.time() - t0:.3f}s)')
180 |
181 |
182 | if __name__ == '__main__':
183 | parser = argparse.ArgumentParser()
184 | parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
185 | parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
186 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
187 | parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
188 | parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
189 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
190 | parser.add_argument('--view-img', action='store_true', help='display results')
191 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
192 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
193 | parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
194 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
195 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
196 | parser.add_argument('--augment', action='store_true', help='augmented inference')
197 | parser.add_argument('--update', action='store_true', help='update all models')
198 | parser.add_argument('--project', default='runs/detect', help='save results to project/name')
199 | parser.add_argument('--name', default='exp', help='save results to project/name')
200 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
201 | parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
202 | opt = parser.parse_args()
203 | print(opt)
204 | #check_requirements(exclude=('pycocotools', 'thop'))
205 |
206 | with torch.no_grad():
207 | if opt.update: # update all models (to fix SourceChangeWarning)
208 | for opt.weights in ['yolov7.pt']:
209 | detect()
210 | strip_optimizer(opt.weights)
211 | else:
212 | detect()
213 |
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 | import torch
4 | import torch.nn as nn
5 |
6 | from models.common import Conv, DWConv
7 | from utils.google_utils import attempt_download
8 |
9 |
10 | class CrossConv(nn.Module):
11 | # Cross Convolution Downsample
12 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14 | super(CrossConv, self).__init__()
15 | c_ = int(c2 * e) # hidden channels
16 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
17 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18 | self.add = shortcut and c1 == c2
19 |
20 | def forward(self, x):
21 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22 |
23 |
24 | class Sum(nn.Module):
25 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26 | def __init__(self, n, weight=False): # n: number of inputs
27 | super(Sum, self).__init__()
28 | self.weight = weight # apply weights boolean
29 | self.iter = range(n - 1) # iter object
30 | if weight:
31 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32 |
33 | def forward(self, x):
34 | y = x[0] # no weight
35 | if self.weight:
36 | w = torch.sigmoid(self.w) * 2
37 | for i in self.iter:
38 | y = y + x[i + 1] * w[i]
39 | else:
40 | for i in self.iter:
41 | y = y + x[i + 1]
42 | return y
43 |
44 |
45 | class MixConv2d(nn.Module):
46 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48 | super(MixConv2d, self).__init__()
49 | groups = len(k)
50 | if equal_ch: # equal c_ per group
51 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53 | else: # equal weight.numel() per group
54 | b = [c2] + [0] * groups
55 | a = np.eye(groups + 1, groups, k=-1)
56 | a -= np.roll(a, 1, axis=1)
57 | a *= np.array(k) ** 2
58 | a[0] = 1
59 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60 |
61 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62 | self.bn = nn.BatchNorm2d(c2)
63 | self.act = nn.LeakyReLU(0.1, inplace=True)
64 |
65 | def forward(self, x):
66 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67 |
68 |
69 | class Ensemble(nn.ModuleList):
70 | # Ensemble of models
71 | def __init__(self):
72 | super(Ensemble, self).__init__()
73 |
74 | def forward(self, x, augment=False):
75 | y = []
76 | for module in self:
77 | y.append(module(x, augment)[0])
78 | # y = torch.stack(y).max(0)[0] # max ensemble
79 | # y = torch.stack(y).mean(0) # mean ensemble
80 | y = torch.cat(y, 1) # nms ensemble
81 | return y, None # inference, train output
82 |
83 |
84 |
85 |
86 |
87 | class ORT_NMS(torch.autograd.Function):
88 | '''ONNX-Runtime NMS operation'''
89 | @staticmethod
90 | def forward(ctx,
91 | boxes,
92 | scores,
93 | max_output_boxes_per_class=torch.tensor([100]),
94 | iou_threshold=torch.tensor([0.45]),
95 | score_threshold=torch.tensor([0.25])):
96 | device = boxes.device
97 | batch = scores.shape[0]
98 | num_det = random.randint(0, 100)
99 | batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100 | idxs = torch.arange(100, 100 + num_det).to(device)
101 | zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102 | selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103 | selected_indices = selected_indices.to(torch.int64)
104 | return selected_indices
105 |
106 | @staticmethod
107 | def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108 | return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109 |
110 |
111 | class TRT_NMS(torch.autograd.Function):
112 | '''TensorRT NMS operation'''
113 | @staticmethod
114 | def forward(
115 | ctx,
116 | boxes,
117 | scores,
118 | background_class=-1,
119 | box_coding=1,
120 | iou_threshold=0.45,
121 | max_output_boxes=100,
122 | plugin_version="1",
123 | score_activation=0,
124 | score_threshold=0.25,
125 | ):
126 | batch_size, num_boxes, num_classes = scores.shape
127 | num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128 | det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129 | det_scores = torch.randn(batch_size, max_output_boxes)
130 | det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131 | return num_det, det_boxes, det_scores, det_classes
132 |
133 | @staticmethod
134 | def symbolic(g,
135 | boxes,
136 | scores,
137 | background_class=-1,
138 | box_coding=1,
139 | iou_threshold=0.45,
140 | max_output_boxes=100,
141 | plugin_version="1",
142 | score_activation=0,
143 | score_threshold=0.25):
144 | out = g.op("TRT::EfficientNMS_TRT",
145 | boxes,
146 | scores,
147 | background_class_i=background_class,
148 | box_coding_i=box_coding,
149 | iou_threshold_f=iou_threshold,
150 | max_output_boxes_i=max_output_boxes,
151 | plugin_version_s=plugin_version,
152 | score_activation_i=score_activation,
153 | score_threshold_f=score_threshold,
154 | outputs=4)
155 | nums, boxes, scores, classes = out
156 | return nums, boxes, scores, classes
157 |
158 |
159 | class ONNX_ORT(nn.Module):
160 | '''onnx module with ONNX-Runtime NMS operation.'''
161 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None):
162 | super().__init__()
163 | self.device = device if device else torch.device("cpu")
164 | self.max_obj = torch.tensor([max_obj]).to(device)
165 | self.iou_threshold = torch.tensor([iou_thres]).to(device)
166 | self.score_threshold = torch.tensor([score_thres]).to(device)
167 | self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168 | self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169 | dtype=torch.float32,
170 | device=self.device)
171 |
172 | def forward(self, x):
173 | boxes = x[:, :, :4]
174 | conf = x[:, :, 4:5]
175 | scores = x[:, :, 5:]
176 | scores *= conf
177 | boxes @= self.convert_matrix
178 | max_score, category_id = scores.max(2, keepdim=True)
179 | dis = category_id.float() * self.max_wh
180 | nmsbox = boxes + dis
181 | max_score_tp = max_score.transpose(1, 2).contiguous()
182 | selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
183 | X, Y = selected_indices[:, 0], selected_indices[:, 2]
184 | selected_boxes = boxes[X, Y, :]
185 | selected_categories = category_id[X, Y, :].float()
186 | selected_scores = max_score[X, Y, :]
187 | X = X.unsqueeze(1).float()
188 | return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
189 |
190 | class ONNX_TRT(nn.Module):
191 | '''onnx module with TensorRT NMS operation.'''
192 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None):
193 | super().__init__()
194 | assert max_wh is None
195 | self.device = device if device else torch.device('cpu')
196 | self.background_class = -1,
197 | self.box_coding = 1,
198 | self.iou_threshold = iou_thres
199 | self.max_obj = max_obj
200 | self.plugin_version = '1'
201 | self.score_activation = 0
202 | self.score_threshold = score_thres
203 |
204 | def forward(self, x):
205 | boxes = x[:, :, :4]
206 | conf = x[:, :, 4:5]
207 | scores = x[:, :, 5:]
208 | scores *= conf
209 | num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
210 | self.iou_threshold, self.max_obj,
211 | self.plugin_version, self.score_activation,
212 | self.score_threshold)
213 | return num_det, det_boxes, det_scores, det_classes
214 |
215 |
216 | class End2End(nn.Module):
217 | '''export onnx or tensorrt model with NMS operation.'''
218 | def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None):
219 | super().__init__()
220 | device = device if device else torch.device('cpu')
221 | assert isinstance(max_wh,(int)) or max_wh is None
222 | self.model = model.to(device)
223 | self.model.model[-1].end2end = True
224 | self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
225 | self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device)
226 | self.end2end.eval()
227 |
228 | def forward(self, x):
229 | x = self.model(x)
230 | x = self.end2end(x)
231 | return x
232 |
233 |
234 |
235 |
236 |
237 | def attempt_load(weights, map_location=None):
238 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
239 | model = Ensemble()
240 | for w in weights if isinstance(weights, list) else [weights]:
241 | # attempt_download(w)
242 | ckpt = torch.load(w, map_location=map_location) # load
243 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
244 |
245 | # Compatibility updates
246 | for m in model.modules():
247 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
248 | m.inplace = True # pytorch 1.7.0 compatibility
249 | elif type(m) is nn.Upsample:
250 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
251 | elif type(m) is Conv:
252 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
253 |
254 | if len(model) == 1:
255 | return model[-1] # return model
256 | else:
257 | print('Ensemble created with %s\n' % weights)
258 | for k in ['names', 'stride']:
259 | setattr(model, k, getattr(model[-1], k))
260 | return model # return ensemble
261 |
262 |
263 |
--------------------------------------------------------------------------------
/utils/torch_utils.py:
--------------------------------------------------------------------------------
1 | # YOLOR PyTorch utils
2 |
3 | import datetime
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import subprocess
9 | import time
10 | from contextlib import contextmanager
11 | from copy import deepcopy
12 | from pathlib import Path
13 |
14 | import torch
15 | import torch.backends.cudnn as cudnn
16 | import torch.nn as nn
17 | import torch.nn.functional as F
18 | import torchvision
19 |
20 | try:
21 | import thop # for FLOPS computation
22 | except ImportError:
23 | thop = None
24 | logger = logging.getLogger(__name__)
25 |
26 |
27 | @contextmanager
28 | def torch_distributed_zero_first(local_rank: int):
29 | """
30 | Decorator to make all processes in distributed training wait for each local_master to do something.
31 | """
32 | if local_rank not in [-1, 0]:
33 | torch.distributed.barrier()
34 | yield
35 | if local_rank == 0:
36 | torch.distributed.barrier()
37 |
38 |
39 | def init_torch_seeds(seed=0):
40 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41 | torch.manual_seed(seed)
42 | if seed == 0: # slower, more reproducible
43 | cudnn.benchmark, cudnn.deterministic = False, True
44 | else: # faster, less reproducible
45 | cudnn.benchmark, cudnn.deterministic = True, False
46 |
47 |
48 | def date_modified(path=__file__):
49 | # return human-readable file modification date, i.e. '2021-3-26'
50 | t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51 | return f'{t.year}-{t.month}-{t.day}'
52 |
53 |
54 | def git_describe(path=Path(__file__).parent): # path must be a directory
55 | # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56 | s = f'git -C {path} describe --tags --long --always'
57 | try:
58 | return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59 | except subprocess.CalledProcessError as e:
60 | return '' # not a git repository
61 |
62 |
63 | def select_device(device='', batch_size=None):
64 | # device = 'cpu' or '0' or '0,1,2,3'
65 | s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66 | cpu = device.lower() == 'cpu'
67 | if cpu:
68 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69 | elif device: # non-cpu device requested
70 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71 | assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72 |
73 | cuda = not cpu and torch.cuda.is_available()
74 | if cuda:
75 | n = torch.cuda.device_count()
76 | if n > 1 and batch_size: # check that batch_size is compatible with device_count
77 | assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78 | space = ' ' * len(s)
79 | for i, d in enumerate(device.split(',') if device else range(n)):
80 | p = torch.cuda.get_device_properties(i)
81 | s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82 | else:
83 | s += 'CPU\n'
84 |
85 | logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86 | return torch.device('cuda:0' if cuda else 'cpu')
87 |
88 |
89 | def time_synchronized():
90 | # pytorch-accurate time
91 | if torch.cuda.is_available():
92 | torch.cuda.synchronize()
93 | return time.time()
94 |
95 |
96 | def profile(x, ops, n=100, device=None):
97 | # profile a pytorch module or list of modules. Example usage:
98 | # x = torch.randn(16, 3, 640, 640) # input
99 | # m1 = lambda x: x * torch.sigmoid(x)
100 | # m2 = nn.SiLU()
101 | # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102 |
103 | device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104 | x = x.to(device)
105 | x.requires_grad = True
106 | print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107 | print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108 | for m in ops if isinstance(ops, list) else [ops]:
109 | m = m.to(device) if hasattr(m, 'to') else m # device
110 | m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111 | dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112 | try:
113 | flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114 | except:
115 | flops = 0
116 |
117 | for _ in range(n):
118 | t[0] = time_synchronized()
119 | y = m(x)
120 | t[1] = time_synchronized()
121 | try:
122 | _ = y.sum().backward()
123 | t[2] = time_synchronized()
124 | except: # no backward method
125 | t[2] = float('nan')
126 | dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127 | dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128 |
129 | s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130 | s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131 | p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132 | print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133 |
134 |
135 | def is_parallel(model):
136 | return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137 |
138 |
139 | def intersect_dicts(da, db, exclude=()):
140 | # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141 | return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142 |
143 |
144 | def initialize_weights(model):
145 | for m in model.modules():
146 | t = type(m)
147 | if t is nn.Conv2d:
148 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149 | elif t is nn.BatchNorm2d:
150 | m.eps = 1e-3
151 | m.momentum = 0.03
152 | elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153 | m.inplace = True
154 |
155 |
156 | def find_modules(model, mclass=nn.Conv2d):
157 | # Finds layer indices matching module class 'mclass'
158 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159 |
160 |
161 | def sparsity(model):
162 | # Return global model sparsity
163 | a, b = 0., 0.
164 | for p in model.parameters():
165 | a += p.numel()
166 | b += (p == 0).sum()
167 | return b / a
168 |
169 |
170 | def prune(model, amount=0.3):
171 | # Prune model to requested global sparsity
172 | import torch.nn.utils.prune as prune
173 | print('Pruning model... ', end='')
174 | for name, m in model.named_modules():
175 | if isinstance(m, nn.Conv2d):
176 | prune.l1_unstructured(m, name='weight', amount=amount) # prune
177 | prune.remove(m, 'weight') # make permanent
178 | print(' %.3g global sparsity' % sparsity(model))
179 |
180 |
181 | def fuse_conv_and_bn(conv, bn):
182 | # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183 | fusedconv = nn.Conv2d(conv.in_channels,
184 | conv.out_channels,
185 | kernel_size=conv.kernel_size,
186 | stride=conv.stride,
187 | padding=conv.padding,
188 | groups=conv.groups,
189 | bias=True).requires_grad_(False).to(conv.weight.device)
190 |
191 | # prepare filters
192 | w_conv = conv.weight.clone().view(conv.out_channels, -1)
193 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195 |
196 | # prepare spatial bias
197 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200 |
201 | return fusedconv
202 |
203 |
204 | def model_info(model, verbose=False, img_size=640):
205 | # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206 | n_p = sum(x.numel() for x in model.parameters()) # number parameters
207 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208 | if verbose:
209 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210 | for i, (name, p) in enumerate(model.named_parameters()):
211 | name = name.replace('module_list.', '')
212 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214 |
215 | try: # FLOPS
216 | from thop import profile
217 | stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218 | img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219 | flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220 | img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221 | fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222 | except (ImportError, Exception):
223 | fs = ''
224 |
225 | logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226 |
227 |
228 | def load_classifier(name='resnet101', n=2):
229 | # Loads a pretrained model reshaped to n-class output
230 | model = torchvision.models.__dict__[name](pretrained=True)
231 |
232 | # ResNet model properties
233 | # input_size = [3, 224, 224]
234 | # input_space = 'RGB'
235 | # input_range = [0, 1]
236 | # mean = [0.485, 0.456, 0.406]
237 | # std = [0.229, 0.224, 0.225]
238 |
239 | # Reshape output to n classes
240 | filters = model.fc.weight.shape[1]
241 | model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242 | model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243 | model.fc.out_features = n
244 | return model
245 |
246 |
247 | def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248 | # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249 | if ratio == 1.0:
250 | return img
251 | else:
252 | h, w = img.shape[2:]
253 | s = (int(h * ratio), int(w * ratio)) # new size
254 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255 | if not same_shape: # pad/crop img
256 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258 |
259 |
260 | def copy_attr(a, b, include=(), exclude=()):
261 | # Copy attributes from b to a, options to only include [...] and to exclude [...]
262 | for k, v in b.__dict__.items():
263 | if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264 | continue
265 | else:
266 | setattr(a, k, v)
267 |
268 |
269 | class ModelEMA:
270 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271 | Keep a moving average of everything in the model state_dict (parameters and buffers).
272 | This is intended to allow functionality like
273 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274 | A smoothed version of the weights is necessary for some training schemes to perform well.
275 | This class is sensitive where it is initialized in the sequence of model init,
276 | GPU assignment and distributed training wrappers.
277 | """
278 |
279 | def __init__(self, model, decay=0.9999, updates=0):
280 | # Create EMA
281 | self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282 | # if next(model.parameters()).device.type != 'cpu':
283 | # self.ema.half() # FP16 EMA
284 | self.updates = updates # number of EMA updates
285 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286 | for p in self.ema.parameters():
287 | p.requires_grad_(False)
288 |
289 | def update(self, model):
290 | # Update EMA parameters
291 | with torch.no_grad():
292 | self.updates += 1
293 | d = self.decay(self.updates)
294 |
295 | msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296 | for k, v in self.ema.state_dict().items():
297 | if v.dtype.is_floating_point:
298 | v *= d
299 | v += (1. - d) * msd[k].detach()
300 |
301 | def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302 | # Update EMA attributes
303 | copy_attr(self.ema, model, include, exclude)
304 |
305 |
306 | class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307 | def _check_input_dim(self, input):
308 | # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309 | # is this method that is overwritten by the sub-class
310 | # This original goal of this method was for tensor sanity checks
311 | # If you're ok bypassing those sanity checks (eg. if you trust your inference
312 | # to provide the right dimensional inputs), then you can just use this method
313 | # for easy conversion from SyncBatchNorm
314 | # (unfortunately, SyncBatchNorm does not store the original class - if it did
315 | # we could return the one that was originally created)
316 | return
317 |
318 | def revert_sync_batchnorm(module):
319 | # this is very similar to the function that it is trying to revert:
320 | # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321 | module_output = module
322 | if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323 | new_cls = BatchNormXd
324 | module_output = BatchNormXd(module.num_features,
325 | module.eps, module.momentum,
326 | module.affine,
327 | module.track_running_stats)
328 | if module.affine:
329 | with torch.no_grad():
330 | module_output.weight = module.weight
331 | module_output.bias = module.bias
332 | module_output.running_mean = module.running_mean
333 | module_output.running_var = module.running_var
334 | module_output.num_batches_tracked = module.num_batches_tracked
335 | if hasattr(module, "qconfig"):
336 | module_output.qconfig = module.qconfig
337 | for name, child in module.named_children():
338 | module_output.add_module(name, revert_sync_batchnorm(child))
339 | del module
340 | return module_output
341 |
342 |
343 | class TracedModel(nn.Module):
344 |
345 | def __init__(self, model=None, device=None, img_size=(640,640)):
346 | super(TracedModel, self).__init__()
347 |
348 | print(" Convert model to Traced-model... ")
349 | self.stride = model.stride
350 | self.names = model.names
351 | self.model = model
352 |
353 | self.model = revert_sync_batchnorm(self.model)
354 | self.model.to('cpu')
355 | self.model.eval()
356 |
357 | self.detect_layer = self.model.model[-1]
358 | self.model.traced = True
359 |
360 | rand_example = torch.rand(1, 3, img_size, img_size)
361 |
362 | traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363 | #traced_script_module = torch.jit.script(self.model)
364 | traced_script_module.save("traced_model.pt")
365 | print(" traced_script_module saved! ")
366 | self.model = traced_script_module
367 | self.model.to(device)
368 | self.detect_layer.to(device)
369 | print(" model is traced! \n")
370 |
371 | def forward(self, x, augment=False, profile=False):
372 | out = self.model(x)
373 | out = self.detect_layer(out)
374 | return out
--------------------------------------------------------------------------------
/utils/wandb_logging/wandb_utils.py:
--------------------------------------------------------------------------------
1 | import json
2 | import sys
3 | from pathlib import Path
4 |
5 | import torch
6 | import yaml
7 | from tqdm import tqdm
8 |
9 | sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
10 | from utils.datasets import LoadImagesAndLabels
11 | from utils.datasets import img2label_paths
12 | from utils.general import colorstr, xywh2xyxy, check_dataset
13 |
14 | try:
15 | import wandb
16 | from wandb import init, finish
17 | except ImportError:
18 | wandb = None
19 |
20 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
21 |
22 |
23 | def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
24 | return from_string[len(prefix):]
25 |
26 |
27 | def check_wandb_config_file(data_config_file):
28 | wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
29 | if Path(wandb_config).is_file():
30 | return wandb_config
31 | return data_config_file
32 |
33 |
34 | def get_run_info(run_path):
35 | run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
36 | run_id = run_path.stem
37 | project = run_path.parent.stem
38 | model_artifact_name = 'run_' + run_id + '_model'
39 | return run_id, project, model_artifact_name
40 |
41 |
42 | def check_wandb_resume(opt):
43 | process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
44 | if isinstance(opt.resume, str):
45 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
46 | if opt.global_rank not in [-1, 0]: # For resuming DDP runs
47 | run_id, project, model_artifact_name = get_run_info(opt.resume)
48 | api = wandb.Api()
49 | artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
50 | modeldir = artifact.download()
51 | opt.weights = str(Path(modeldir) / "last.pt")
52 | return True
53 | return None
54 |
55 |
56 | def process_wandb_config_ddp_mode(opt):
57 | with open(opt.data) as f:
58 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
59 | train_dir, val_dir = None, None
60 | if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
61 | api = wandb.Api()
62 | train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
63 | train_dir = train_artifact.download()
64 | train_path = Path(train_dir) / 'data/images/'
65 | data_dict['train'] = str(train_path)
66 |
67 | if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
68 | api = wandb.Api()
69 | val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
70 | val_dir = val_artifact.download()
71 | val_path = Path(val_dir) / 'data/images/'
72 | data_dict['val'] = str(val_path)
73 | if train_dir or val_dir:
74 | ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
75 | with open(ddp_data_path, 'w') as f:
76 | yaml.dump(data_dict, f)
77 | opt.data = ddp_data_path
78 |
79 |
80 | class WandbLogger():
81 | def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
82 | # Pre-training routine --
83 | self.job_type = job_type
84 | self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
85 | # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
86 | if isinstance(opt.resume, str): # checks resume from artifact
87 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
88 | run_id, project, model_artifact_name = get_run_info(opt.resume)
89 | model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
90 | assert wandb, 'install wandb to resume wandb runs'
91 | # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
92 | self.wandb_run = wandb.init(id=run_id, project=project, resume='allow')
93 | opt.resume = model_artifact_name
94 | elif self.wandb:
95 | self.wandb_run = wandb.init(config=opt,
96 | resume="allow",
97 | project='YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem,
98 | name=name,
99 | job_type=job_type,
100 | id=run_id) if not wandb.run else wandb.run
101 | if self.wandb_run:
102 | if self.job_type == 'Training':
103 | if not opt.resume:
104 | wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
105 | # Info useful for resuming from artifacts
106 | self.wandb_run.config.opt = vars(opt)
107 | self.wandb_run.config.data_dict = wandb_data_dict
108 | self.data_dict = self.setup_training(opt, data_dict)
109 | if self.job_type == 'Dataset Creation':
110 | self.data_dict = self.check_and_upload_dataset(opt)
111 | else:
112 | prefix = colorstr('wandb: ')
113 | print(f"{prefix}Install Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)")
114 |
115 | def check_and_upload_dataset(self, opt):
116 | assert wandb, 'Install wandb to upload dataset'
117 | check_dataset(self.data_dict)
118 | config_path = self.log_dataset_artifact(opt.data,
119 | opt.single_cls,
120 | 'YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem)
121 | print("Created dataset config file ", config_path)
122 | with open(config_path) as f:
123 | wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
124 | return wandb_data_dict
125 |
126 | def setup_training(self, opt, data_dict):
127 | self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
128 | self.bbox_interval = opt.bbox_interval
129 | if isinstance(opt.resume, str):
130 | modeldir, _ = self.download_model_artifact(opt)
131 | if modeldir:
132 | self.weights = Path(modeldir) / "last.pt"
133 | config = self.wandb_run.config
134 | opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
135 | self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
136 | config.opt['hyp']
137 | data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
138 | if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
139 | self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
140 | opt.artifact_alias)
141 | self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
142 | opt.artifact_alias)
143 | self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
144 | if self.train_artifact_path is not None:
145 | train_path = Path(self.train_artifact_path) / 'data/images/'
146 | data_dict['train'] = str(train_path)
147 | if self.val_artifact_path is not None:
148 | val_path = Path(self.val_artifact_path) / 'data/images/'
149 | data_dict['val'] = str(val_path)
150 | self.val_table = self.val_artifact.get("val")
151 | self.map_val_table_path()
152 | if self.val_artifact is not None:
153 | self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
154 | self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
155 | if opt.bbox_interval == -1:
156 | self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
157 | return data_dict
158 |
159 | def download_dataset_artifact(self, path, alias):
160 | if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
161 | dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
162 | assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
163 | datadir = dataset_artifact.download()
164 | return datadir, dataset_artifact
165 | return None, None
166 |
167 | def download_model_artifact(self, opt):
168 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
169 | model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
170 | assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
171 | modeldir = model_artifact.download()
172 | epochs_trained = model_artifact.metadata.get('epochs_trained')
173 | total_epochs = model_artifact.metadata.get('total_epochs')
174 | assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % (
175 | total_epochs)
176 | return modeldir, model_artifact
177 | return None, None
178 |
179 | def log_model(self, path, opt, epoch, fitness_score, best_model=False):
180 | model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
181 | 'original_url': str(path),
182 | 'epochs_trained': epoch + 1,
183 | 'save period': opt.save_period,
184 | 'project': opt.project,
185 | 'total_epochs': opt.epochs,
186 | 'fitness_score': fitness_score
187 | })
188 | model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
189 | wandb.log_artifact(model_artifact,
190 | aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
191 | print("Saving model artifact on epoch ", epoch + 1)
192 |
193 | def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
194 | with open(data_file) as f:
195 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
196 | nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
197 | names = {k: v for k, v in enumerate(names)} # to index dictionary
198 | self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
199 | data['train']), names, name='train') if data.get('train') else None
200 | self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
201 | data['val']), names, name='val') if data.get('val') else None
202 | if data.get('train'):
203 | data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
204 | if data.get('val'):
205 | data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
206 | path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
207 | data.pop('download', None)
208 | with open(path, 'w') as f:
209 | yaml.dump(data, f)
210 |
211 | if self.job_type == 'Training': # builds correct artifact pipeline graph
212 | self.wandb_run.use_artifact(self.val_artifact)
213 | self.wandb_run.use_artifact(self.train_artifact)
214 | self.val_artifact.wait()
215 | self.val_table = self.val_artifact.get('val')
216 | self.map_val_table_path()
217 | else:
218 | self.wandb_run.log_artifact(self.train_artifact)
219 | self.wandb_run.log_artifact(self.val_artifact)
220 | return path
221 |
222 | def map_val_table_path(self):
223 | self.val_table_map = {}
224 | print("Mapping dataset")
225 | for i, data in enumerate(tqdm(self.val_table.data)):
226 | self.val_table_map[data[3]] = data[0]
227 |
228 | def create_dataset_table(self, dataset, class_to_id, name='dataset'):
229 | # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
230 | artifact = wandb.Artifact(name=name, type="dataset")
231 | img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
232 | img_files = tqdm(dataset.img_files) if not img_files else img_files
233 | for img_file in img_files:
234 | if Path(img_file).is_dir():
235 | artifact.add_dir(img_file, name='data/images')
236 | labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
237 | artifact.add_dir(labels_path, name='data/labels')
238 | else:
239 | artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
240 | label_file = Path(img2label_paths([img_file])[0])
241 | artifact.add_file(str(label_file),
242 | name='data/labels/' + label_file.name) if label_file.exists() else None
243 | table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
244 | class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
245 | for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
246 | height, width = shapes[0]
247 | labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height])
248 | box_data, img_classes = [], {}
249 | for cls, *xyxy in labels[:, 1:].tolist():
250 | cls = int(cls)
251 | box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
252 | "class_id": cls,
253 | "box_caption": "%s" % (class_to_id[cls]),
254 | "scores": {"acc": 1},
255 | "domain": "pixel"})
256 | img_classes[cls] = class_to_id[cls]
257 | boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
258 | table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
259 | Path(paths).name)
260 | artifact.add(table, name)
261 | return artifact
262 |
263 | def log_training_progress(self, predn, path, names):
264 | if self.val_table and self.result_table:
265 | class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
266 | box_data = []
267 | total_conf = 0
268 | for *xyxy, conf, cls in predn.tolist():
269 | if conf >= 0.25:
270 | box_data.append(
271 | {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
272 | "class_id": int(cls),
273 | "box_caption": "%s %.3f" % (names[cls], conf),
274 | "scores": {"class_score": conf},
275 | "domain": "pixel"})
276 | total_conf = total_conf + conf
277 | boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
278 | id = self.val_table_map[Path(path).name]
279 | self.result_table.add_data(self.current_epoch,
280 | id,
281 | wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
282 | total_conf / max(1, len(box_data))
283 | )
284 |
285 | def log(self, log_dict):
286 | if self.wandb_run:
287 | for key, value in log_dict.items():
288 | self.log_dict[key] = value
289 |
290 | def end_epoch(self, best_result=False):
291 | if self.wandb_run:
292 | wandb.log(self.log_dict)
293 | self.log_dict = {}
294 | if self.result_artifact:
295 | train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
296 | self.result_artifact.add(train_results, 'result')
297 | wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch),
298 | ('best' if best_result else '')])
299 | self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
300 | self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
301 |
302 | def finish_run(self):
303 | if self.wandb_run:
304 | if self.log_dict:
305 | wandb.log(self.log_dict)
306 | wandb.run.finish()
307 |
--------------------------------------------------------------------------------
/utils/plots.py:
--------------------------------------------------------------------------------
1 | # Plotting utils
2 |
3 | import glob
4 | import math
5 | import os
6 | import random
7 | from copy import copy
8 | from pathlib import Path
9 |
10 | import cv2
11 | import matplotlib
12 | import matplotlib.pyplot as plt
13 | import numpy as np
14 | import pandas as pd
15 | import seaborn as sns
16 | import torch
17 | import yaml
18 | from PIL import Image, ImageDraw, ImageFont
19 | from scipy.signal import butter, filtfilt
20 |
21 | from utils.general import xywh2xyxy, xyxy2xywh
22 | from utils.metrics import fitness
23 |
24 | # Settings
25 | matplotlib.rc('font', **{'size': 11})
26 | matplotlib.use('Agg') # for writing to files only
27 |
28 |
29 | def color_list():
30 | # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31 | def hex2rgb(h):
32 | return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33 |
34 | return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
35 |
36 |
37 | def hist2d(x, y, n=100):
38 | # 2d histogram used in labels.png and evolve.png
39 | xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40 | hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41 | xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42 | yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43 | return np.log(hist[xidx, yidx])
44 |
45 |
46 | def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47 | # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48 | def butter_lowpass(cutoff, fs, order):
49 | nyq = 0.5 * fs
50 | normal_cutoff = cutoff / nyq
51 | return butter(order, normal_cutoff, btype='low', analog=False)
52 |
53 | b, a = butter_lowpass(cutoff, fs, order=order)
54 | return filtfilt(b, a, data) # forward-backward filter
55 |
56 |
57 | def plot_one_box(x, img, color=None, label=None, line_thickness=3):
58 | # Plots one bounding box on image img
59 | tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60 | color = color or [random.randint(0, 255) for _ in range(3)]
61 | c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62 | cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63 | if label:
64 | tf = max(tl - 1, 1) # font thickness
65 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66 | c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67 | cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68 | cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69 |
70 |
71 | def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
72 | img = Image.fromarray(img)
73 | draw = ImageDraw.Draw(img)
74 | line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
75 | draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
76 | if label:
77 | fontsize = max(round(max(img.size) / 40), 12)
78 | font = ImageFont.truetype("Arial.ttf", fontsize)
79 | txt_width, txt_height = font.getsize(label)
80 | draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
81 | draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
82 | return np.asarray(img)
83 |
84 |
85 | def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
86 | # Compares the two methods for width-height anchor multiplication
87 | # https://github.com/ultralytics/yolov3/issues/168
88 | x = np.arange(-4.0, 4.0, .1)
89 | ya = np.exp(x)
90 | yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
91 |
92 | fig = plt.figure(figsize=(6, 3), tight_layout=True)
93 | plt.plot(x, ya, '.-', label='YOLOv3')
94 | plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
95 | plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
96 | plt.xlim(left=-4, right=4)
97 | plt.ylim(bottom=0, top=6)
98 | plt.xlabel('input')
99 | plt.ylabel('output')
100 | plt.grid()
101 | plt.legend()
102 | fig.savefig('comparison.png', dpi=200)
103 |
104 |
105 | def output_to_target(output):
106 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
107 | targets = []
108 | for i, o in enumerate(output):
109 | for *box, conf, cls in o.cpu().numpy():
110 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
111 | return np.array(targets)
112 |
113 |
114 | def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
115 | # Plot image grid with labels
116 |
117 | if isinstance(images, torch.Tensor):
118 | images = images.cpu().float().numpy()
119 | if isinstance(targets, torch.Tensor):
120 | targets = targets.cpu().numpy()
121 |
122 | # un-normalise
123 | if np.max(images[0]) <= 1:
124 | images *= 255
125 |
126 | tl = 3 # line thickness
127 | tf = max(tl - 1, 1) # font thickness
128 | bs, _, h, w = images.shape # batch size, _, height, width
129 | bs = min(bs, max_subplots) # limit plot images
130 | ns = np.ceil(bs ** 0.5) # number of subplots (square)
131 |
132 | # Check if we should resize
133 | scale_factor = max_size / max(h, w)
134 | if scale_factor < 1:
135 | h = math.ceil(scale_factor * h)
136 | w = math.ceil(scale_factor * w)
137 |
138 | colors = color_list() # list of colors
139 | mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
140 | for i, img in enumerate(images):
141 | if i == max_subplots: # if last batch has fewer images than we expect
142 | break
143 |
144 | block_x = int(w * (i // ns))
145 | block_y = int(h * (i % ns))
146 |
147 | img = img.transpose(1, 2, 0)
148 | if scale_factor < 1:
149 | img = cv2.resize(img, (w, h))
150 |
151 | mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
152 | if len(targets) > 0:
153 | image_targets = targets[targets[:, 0] == i]
154 | boxes = xywh2xyxy(image_targets[:, 2:6]).T
155 | classes = image_targets[:, 1].astype('int')
156 | labels = image_targets.shape[1] == 6 # labels if no conf column
157 | conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
158 |
159 | if boxes.shape[1]:
160 | if boxes.max() <= 1.01: # if normalized with tolerance 0.01
161 | boxes[[0, 2]] *= w # scale to pixels
162 | boxes[[1, 3]] *= h
163 | elif scale_factor < 1: # absolute coords need scale if image scales
164 | boxes *= scale_factor
165 | boxes[[0, 2]] += block_x
166 | boxes[[1, 3]] += block_y
167 | for j, box in enumerate(boxes.T):
168 | cls = int(classes[j])
169 | color = colors[cls % len(colors)]
170 | cls = names[cls] if names else cls
171 | if labels or conf[j] > 0.25: # 0.25 conf thresh
172 | label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
173 | plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
174 |
175 | # Draw image filename labels
176 | if paths:
177 | label = Path(paths[i]).name[:40] # trim to 40 char
178 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
179 | cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
180 | lineType=cv2.LINE_AA)
181 |
182 | # Image border
183 | cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
184 |
185 | if fname:
186 | r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
187 | mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
188 | # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
189 | Image.fromarray(mosaic).save(fname) # PIL save
190 | return mosaic
191 |
192 |
193 | def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
194 | # Plot LR simulating training for full epochs
195 | optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
196 | y = []
197 | for _ in range(epochs):
198 | scheduler.step()
199 | y.append(optimizer.param_groups[0]['lr'])
200 | plt.plot(y, '.-', label='LR')
201 | plt.xlabel('epoch')
202 | plt.ylabel('LR')
203 | plt.grid()
204 | plt.xlim(0, epochs)
205 | plt.ylim(0)
206 | plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
207 | plt.close()
208 |
209 |
210 | def plot_test_txt(): # from utils.plots import *; plot_test()
211 | # Plot test.txt histograms
212 | x = np.loadtxt('test.txt', dtype=np.float32)
213 | box = xyxy2xywh(x[:, :4])
214 | cx, cy = box[:, 0], box[:, 1]
215 |
216 | fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
217 | ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
218 | ax.set_aspect('equal')
219 | plt.savefig('hist2d.png', dpi=300)
220 |
221 | fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
222 | ax[0].hist(cx, bins=600)
223 | ax[1].hist(cy, bins=600)
224 | plt.savefig('hist1d.png', dpi=200)
225 |
226 |
227 | def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
228 | # Plot targets.txt histograms
229 | x = np.loadtxt('targets.txt', dtype=np.float32).T
230 | s = ['x targets', 'y targets', 'width targets', 'height targets']
231 | fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
232 | ax = ax.ravel()
233 | for i in range(4):
234 | ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
235 | ax[i].legend()
236 | ax[i].set_title(s[i])
237 | plt.savefig('targets.jpg', dpi=200)
238 |
239 |
240 | def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
241 | # Plot study.txt generated by test.py
242 | fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
243 | # ax = ax.ravel()
244 |
245 | fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
246 | # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
247 | for f in sorted(Path(path).glob('study*.txt')):
248 | y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
249 | x = np.arange(y.shape[1]) if x is None else np.array(x)
250 | s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
251 | # for i in range(7):
252 | # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
253 | # ax[i].set_title(s[i])
254 |
255 | j = y[3].argmax() + 1
256 | ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
257 | label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
258 |
259 | ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
260 | 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
261 |
262 | ax2.grid(alpha=0.2)
263 | ax2.set_yticks(np.arange(20, 60, 5))
264 | ax2.set_xlim(0, 57)
265 | ax2.set_ylim(30, 55)
266 | ax2.set_xlabel('GPU Speed (ms/img)')
267 | ax2.set_ylabel('COCO AP val')
268 | ax2.legend(loc='lower right')
269 | plt.savefig(str(Path(path).name) + '.png', dpi=300)
270 |
271 |
272 | def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
273 | # plot dataset labels
274 | print('Plotting labels... ')
275 | c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
276 | nc = int(c.max() + 1) # number of classes
277 | colors = color_list()
278 | x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
279 |
280 | # seaborn correlogram
281 | sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
282 | plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
283 | plt.close()
284 |
285 | # matplotlib labels
286 | matplotlib.use('svg') # faster
287 | ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
288 | ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
289 | ax[0].set_ylabel('instances')
290 | if 0 < len(names) < 30:
291 | ax[0].set_xticks(range(len(names)))
292 | ax[0].set_xticklabels(names, rotation=90, fontsize=10)
293 | else:
294 | ax[0].set_xlabel('classes')
295 | sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
296 | sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
297 |
298 | # rectangles
299 | labels[:, 1:3] = 0.5 # center
300 | labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
301 | img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
302 | for cls, *box in labels[:1000]:
303 | ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
304 | ax[1].imshow(img)
305 | ax[1].axis('off')
306 |
307 | for a in [0, 1, 2, 3]:
308 | for s in ['top', 'right', 'left', 'bottom']:
309 | ax[a].spines[s].set_visible(False)
310 |
311 | plt.savefig(save_dir / 'labels.jpg', dpi=200)
312 | matplotlib.use('Agg')
313 | plt.close()
314 |
315 | # loggers
316 | for k, v in loggers.items() or {}:
317 | if k == 'wandb' and v:
318 | v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
319 |
320 |
321 | def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
322 | # Plot hyperparameter evolution results in evolve.txt
323 | with open(yaml_file) as f:
324 | hyp = yaml.load(f, Loader=yaml.SafeLoader)
325 | x = np.loadtxt('evolve.txt', ndmin=2)
326 | f = fitness(x)
327 | # weights = (f - f.min()) ** 2 # for weighted results
328 | plt.figure(figsize=(10, 12), tight_layout=True)
329 | matplotlib.rc('font', **{'size': 8})
330 | for i, (k, v) in enumerate(hyp.items()):
331 | y = x[:, i + 7]
332 | # mu = (y * weights).sum() / weights.sum() # best weighted result
333 | mu = y[f.argmax()] # best single result
334 | plt.subplot(6, 5, i + 1)
335 | plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
336 | plt.plot(mu, f.max(), 'k+', markersize=15)
337 | plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
338 | if i % 5 != 0:
339 | plt.yticks([])
340 | print('%15s: %.3g' % (k, mu))
341 | plt.savefig('evolve.png', dpi=200)
342 | print('\nPlot saved as evolve.png')
343 |
344 |
345 | def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
346 | # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
347 | ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
348 | s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
349 | files = list(Path(save_dir).glob('frames*.txt'))
350 | for fi, f in enumerate(files):
351 | try:
352 | results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
353 | n = results.shape[1] # number of rows
354 | x = np.arange(start, min(stop, n) if stop else n)
355 | results = results[:, x]
356 | t = (results[0] - results[0].min()) # set t0=0s
357 | results[0] = x
358 | for i, a in enumerate(ax):
359 | if i < len(results):
360 | label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
361 | a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
362 | a.set_title(s[i])
363 | a.set_xlabel('time (s)')
364 | # if fi == len(files) - 1:
365 | # a.set_ylim(bottom=0)
366 | for side in ['top', 'right']:
367 | a.spines[side].set_visible(False)
368 | else:
369 | a.remove()
370 | except Exception as e:
371 | print('Warning: Plotting error for %s; %s' % (f, e))
372 |
373 | ax[1].legend()
374 | plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
375 |
376 |
377 | def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
378 | # Plot training 'results*.txt', overlaying train and val losses
379 | s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
380 | t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
381 | for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
382 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
383 | n = results.shape[1] # number of rows
384 | x = range(start, min(stop, n) if stop else n)
385 | fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
386 | ax = ax.ravel()
387 | for i in range(5):
388 | for j in [i, i + 5]:
389 | y = results[j, x]
390 | ax[i].plot(x, y, marker='.', label=s[j])
391 | # y_smooth = butter_lowpass_filtfilt(y)
392 | # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
393 |
394 | ax[i].set_title(t[i])
395 | ax[i].legend()
396 | ax[i].set_ylabel(f) if i == 0 else None # add filename
397 | fig.savefig(f.replace('.txt', '.png'), dpi=200)
398 |
399 |
400 | def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
401 | # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
402 | fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
403 | ax = ax.ravel()
404 | s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
405 | 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
406 | if bucket:
407 | # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
408 | files = ['results%g.txt' % x for x in id]
409 | c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
410 | os.system(c)
411 | else:
412 | files = list(Path(save_dir).glob('results*.txt'))
413 | assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
414 | for fi, f in enumerate(files):
415 | try:
416 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
417 | n = results.shape[1] # number of rows
418 | x = range(start, min(stop, n) if stop else n)
419 | for i in range(10):
420 | y = results[i, x]
421 | if i in [0, 1, 2, 5, 6, 7]:
422 | y[y == 0] = np.nan # don't show zero loss values
423 | # y /= y[0] # normalize
424 | label = labels[fi] if len(labels) else f.stem
425 | ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
426 | ax[i].set_title(s[i])
427 | # if i in [5, 6, 7]: # share train and val loss y axes
428 | # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
429 | except Exception as e:
430 | print('Warning: Plotting error for %s; %s' % (f, e))
431 |
432 | ax[1].legend()
433 | fig.savefig(Path(save_dir) / 'results.png', dpi=200)
434 |
435 |
436 | def output_to_keypoint(output):
437 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
438 | targets = []
439 | for i, o in enumerate(output):
440 | kpts = o[:,6:]
441 | o = o[:,:6]
442 | for index, (*box, conf, cls) in enumerate(o.detach().cpu().numpy()):
443 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.detach().cpu().numpy()[index])])
444 | return np.array(targets)
445 |
446 |
447 | def plot_skeleton_kpts(im, kpts, steps, orig_shape=None):
448 | #Plot the skeleton and keypointsfor coco datatset
449 | palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
450 | [230, 230, 0], [255, 153, 255], [153, 204, 255],
451 | [255, 102, 255], [255, 51, 255], [102, 178, 255],
452 | [51, 153, 255], [255, 153, 153], [255, 102, 102],
453 | [255, 51, 51], [153, 255, 153], [102, 255, 102],
454 | [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],
455 | [255, 255, 255]])
456 |
457 | skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
458 | [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
459 | [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
460 |
461 | pose_limb_color = palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
462 | pose_kpt_color = palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
463 | radius = 5
464 | num_kpts = len(kpts) // steps
465 |
466 | for kid in range(num_kpts):
467 | r, g, b = pose_kpt_color[kid]
468 | x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]
469 | if not (x_coord % 640 == 0 or y_coord % 640 == 0):
470 | if steps == 3:
471 | conf = kpts[steps * kid + 2]
472 | if conf < 0.5:
473 | continue
474 | cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1)
475 |
476 | for sk_id, sk in enumerate(skeleton):
477 | r, g, b = pose_limb_color[sk_id]
478 | pos1 = (int(kpts[(sk[0]-1)*steps]), int(kpts[(sk[0]-1)*steps+1]))
479 | pos2 = (int(kpts[(sk[1]-1)*steps]), int(kpts[(sk[1]-1)*steps+1]))
480 | if steps == 3:
481 | conf1 = kpts[(sk[0]-1)*steps+2]
482 | conf2 = kpts[(sk[1]-1)*steps+2]
483 | if conf1<0.5 or conf2<0.5:
484 | continue
485 | if pos1[0]%640 == 0 or pos1[1]%640==0 or pos1[0]<0 or pos1[1]<0:
486 | continue
487 | if pos2[0] % 640 == 0 or pos2[1] % 640 == 0 or pos2[0]<0 or pos2[1]<0:
488 | continue
489 | cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)
490 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/utils/general.py:
--------------------------------------------------------------------------------
1 | # YOLOR general utils
2 |
3 | import glob
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import random
9 | import re
10 | import subprocess
11 | import time
12 | from pathlib import Path
13 |
14 | import cv2
15 | import numpy as np
16 | import pandas as pd
17 | import torch
18 | import torchvision
19 | import yaml
20 |
21 | from utils.google_utils import gsutil_getsize
22 | from utils.metrics import fitness
23 | from utils.torch_utils import init_torch_seeds
24 |
25 | # Settings
26 | torch.set_printoptions(linewidth=320, precision=5, profile='long')
27 | np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28 | pd.options.display.max_columns = 10
29 | cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30 | os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31 |
32 |
33 | def set_logging(rank=-1):
34 | logging.basicConfig(
35 | format="%(message)s",
36 | level=logging.INFO if rank in [-1, 0] else logging.WARN)
37 |
38 |
39 | def init_seeds(seed=0):
40 | # Initialize random number generator (RNG) seeds
41 | random.seed(seed)
42 | np.random.seed(seed)
43 | init_torch_seeds(seed)
44 |
45 |
46 | def get_latest_run(search_dir='.'):
47 | # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48 | last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49 | return max(last_list, key=os.path.getctime) if last_list else ''
50 |
51 |
52 | def isdocker():
53 | # Is environment a Docker container
54 | return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55 |
56 |
57 | def emojis(str=''):
58 | # Return platform-dependent emoji-safe version of string
59 | return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60 |
61 |
62 | def check_online():
63 | # Check internet connectivity
64 | import socket
65 | try:
66 | socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67 | return True
68 | except OSError:
69 | return False
70 |
71 |
72 | def check_git_status():
73 | # Recommend 'git pull' if code is out of date
74 | print(colorstr('github: '), end='')
75 | try:
76 | assert Path('.git').exists(), 'skipping check (not a git repository)'
77 | assert not isdocker(), 'skipping check (Docker image)'
78 | assert check_online(), 'skipping check (offline)'
79 |
80 | cmd = 'git fetch && git config --get remote.origin.url'
81 | url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82 | branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83 | n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84 | if n > 0:
85 | s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86 | f"Use 'git pull' to update or 'git clone {url}' to download latest."
87 | else:
88 | s = f'up to date with {url} ✅'
89 | print(emojis(s)) # emoji-safe
90 | except Exception as e:
91 | print(e)
92 |
93 |
94 | def check_requirements(requirements='requirements.txt', exclude=()):
95 | # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96 | import pkg_resources as pkg
97 | prefix = colorstr('red', 'bold', 'requirements:')
98 | if isinstance(requirements, (str, Path)): # requirements.txt file
99 | file = Path(requirements)
100 | if not file.exists():
101 | print(f"{prefix} {file.resolve()} not found, check failed.")
102 | return
103 | requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104 | else: # list or tuple of packages
105 | requirements = [x for x in requirements if x not in exclude]
106 |
107 | n = 0 # number of packages updates
108 | for r in requirements:
109 | try:
110 | pkg.require(r)
111 | except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112 | n += 1
113 | print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114 | print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115 |
116 | if n: # if packages updated
117 | source = file.resolve() if 'file' in locals() else requirements
118 | s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119 | f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120 | print(emojis(s)) # emoji-safe
121 |
122 |
123 | def check_img_size(img_size, s=32):
124 | # Verify img_size is a multiple of stride s
125 | new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126 | if new_size != img_size:
127 | print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128 | return new_size
129 |
130 |
131 | def check_imshow():
132 | # Check if environment supports image displays
133 | try:
134 | assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135 | cv2.imshow('test', np.zeros((1, 1, 3)))
136 | cv2.waitKey(1)
137 | cv2.destroyAllWindows()
138 | cv2.waitKey(1)
139 | return True
140 | except Exception as e:
141 | print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142 | return False
143 |
144 |
145 | def check_file(file):
146 | # Search for file if not found
147 | if Path(file).is_file() or file == '':
148 | return file
149 | else:
150 | files = glob.glob('./**/' + file, recursive=True) # find file
151 | assert len(files), f'File Not Found: {file}' # assert file was found
152 | assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153 | return files[0] # return file
154 |
155 |
156 | def check_dataset(dict):
157 | # Download dataset if not found locally
158 | val, s = dict.get('val'), dict.get('download')
159 | if val and len(val):
160 | val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161 | if not all(x.exists() for x in val):
162 | print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163 | if s and len(s): # download script
164 | print('Downloading %s ...' % s)
165 | if s.startswith('http') and s.endswith('.zip'): # URL
166 | f = Path(s).name # filename
167 | torch.hub.download_url_to_file(s, f)
168 | r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169 | else: # bash script
170 | r = os.system(s)
171 | print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172 | else:
173 | raise Exception('Dataset not found.')
174 |
175 |
176 | def make_divisible(x, divisor):
177 | # Returns x evenly divisible by divisor
178 | return math.ceil(x / divisor) * divisor
179 |
180 |
181 | def clean_str(s):
182 | # Cleans a string by replacing special characters with underscore _
183 | return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
184 |
185 |
186 | def one_cycle(y1=0.0, y2=1.0, steps=100):
187 | # lambda function for sinusoidal ramp from y1 to y2
188 | return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189 |
190 |
191 | def colorstr(*input):
192 | # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193 | *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194 | colors = {'black': '\033[30m', # basic colors
195 | 'red': '\033[31m',
196 | 'green': '\033[32m',
197 | 'yellow': '\033[33m',
198 | 'blue': '\033[34m',
199 | 'magenta': '\033[35m',
200 | 'cyan': '\033[36m',
201 | 'white': '\033[37m',
202 | 'bright_black': '\033[90m', # bright colors
203 | 'bright_red': '\033[91m',
204 | 'bright_green': '\033[92m',
205 | 'bright_yellow': '\033[93m',
206 | 'bright_blue': '\033[94m',
207 | 'bright_magenta': '\033[95m',
208 | 'bright_cyan': '\033[96m',
209 | 'bright_white': '\033[97m',
210 | 'end': '\033[0m', # misc
211 | 'bold': '\033[1m',
212 | 'underline': '\033[4m'}
213 | return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214 |
215 |
216 | def labels_to_class_weights(labels, nc=80):
217 | # Get class weights (inverse frequency) from training labels
218 | if labels[0] is None: # no labels loaded
219 | return torch.Tensor()
220 |
221 | labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222 | classes = labels[:, 0].astype(np.int) # labels = [class xywh]
223 | weights = np.bincount(classes, minlength=nc) # occurrences per class
224 |
225 | # Prepend gridpoint count (for uCE training)
226 | # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227 | # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228 |
229 | weights[weights == 0] = 1 # replace empty bins with 1
230 | weights = 1 / weights # number of targets per class
231 | weights /= weights.sum() # normalize
232 | return torch.from_numpy(weights)
233 |
234 |
235 | def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236 | # Produces image weights based on class_weights and image contents
237 | class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
238 | image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239 | # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240 | return image_weights
241 |
242 |
243 | def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244 | # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245 | # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246 | # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247 | # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248 | # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249 | x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250 | 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251 | 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252 | return x
253 |
254 |
255 | def xyxy2xywh(x):
256 | # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258 | y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259 | y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260 | y[:, 2] = x[:, 2] - x[:, 0] # width
261 | y[:, 3] = x[:, 3] - x[:, 1] # height
262 | return y
263 |
264 |
265 | def xywh2xyxy(x):
266 | # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268 | y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269 | y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270 | y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271 | y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272 | return y
273 |
274 |
275 | def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276 | # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278 | y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279 | y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280 | y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281 | y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282 | return y
283 |
284 |
285 | def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286 | # Convert normalized segments into pixel segments, shape (n,2)
287 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288 | y[:, 0] = w * x[:, 0] + padw # top left x
289 | y[:, 1] = h * x[:, 1] + padh # top left y
290 | return y
291 |
292 |
293 | def segment2box(segment, width=640, height=640):
294 | # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295 | x, y = segment.T # segment xy
296 | inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297 | x, y, = x[inside], y[inside]
298 | return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299 |
300 |
301 | def segments2boxes(segments):
302 | # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303 | boxes = []
304 | for s in segments:
305 | x, y = s.T # segment xy
306 | boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307 | return xyxy2xywh(np.array(boxes)) # cls, xywh
308 |
309 |
310 | def resample_segments(segments, n=1000):
311 | # Up-sample an (n,2) segment
312 | for i, s in enumerate(segments):
313 | x = np.linspace(0, len(s) - 1, n)
314 | xp = np.arange(len(s))
315 | segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
316 | return segments
317 |
318 |
319 | def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
320 | # Rescale coords (xyxy) from img1_shape to img0_shape
321 | if ratio_pad is None: # calculate from img0_shape
322 | gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
323 | pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
324 | else:
325 | gain = ratio_pad[0][0]
326 | pad = ratio_pad[1]
327 |
328 | coords[:, [0, 2]] -= pad[0] # x padding
329 | coords[:, [1, 3]] -= pad[1] # y padding
330 | coords[:, :4] /= gain
331 | clip_coords(coords, img0_shape)
332 | return coords
333 |
334 |
335 | def clip_coords(boxes, img_shape):
336 | # Clip bounding xyxy bounding boxes to image shape (height, width)
337 | boxes[:, 0].clamp_(0, img_shape[1]) # x1
338 | boxes[:, 1].clamp_(0, img_shape[0]) # y1
339 | boxes[:, 2].clamp_(0, img_shape[1]) # x2
340 | boxes[:, 3].clamp_(0, img_shape[0]) # y2
341 |
342 |
343 | def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
344 | # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
345 | box2 = box2.T
346 |
347 | # Get the coordinates of bounding boxes
348 | if x1y1x2y2: # x1, y1, x2, y2 = box1
349 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
350 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
351 | else: # transform from xywh to xyxy
352 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
353 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
354 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
355 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
356 |
357 | # Intersection area
358 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
359 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
360 |
361 | # Union Area
362 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
363 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
364 | union = w1 * h1 + w2 * h2 - inter + eps
365 |
366 | iou = inter / union
367 |
368 | if GIoU or DIoU or CIoU:
369 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
370 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
371 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
372 | c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
373 | rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
374 | (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
375 | if DIoU:
376 | return iou - rho2 / c2 # DIoU
377 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
378 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
379 | with torch.no_grad():
380 | alpha = v / (v - iou + (1 + eps))
381 | return iou - (rho2 / c2 + v * alpha) # CIoU
382 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
383 | c_area = cw * ch + eps # convex area
384 | return iou - (c_area - union) / c_area # GIoU
385 | else:
386 | return iou # IoU
387 |
388 |
389 |
390 |
391 | def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
392 | # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
393 | box2 = box2.T
394 |
395 | # Get the coordinates of bounding boxes
396 | if x1y1x2y2: # x1, y1, x2, y2 = box1
397 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
398 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
399 | else: # transform from xywh to xyxy
400 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
401 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
402 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
403 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
404 |
405 | # Intersection area
406 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
407 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
408 |
409 | # Union Area
410 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
411 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
412 | union = w1 * h1 + w2 * h2 - inter + eps
413 |
414 | # change iou into pow(iou+eps)
415 | # iou = inter / union
416 | iou = torch.pow(inter/union + eps, alpha)
417 | # beta = 2 * alpha
418 | if GIoU or DIoU or CIoU:
419 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
420 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
421 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
422 | c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
423 | rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
424 | rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
425 | rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
426 | if DIoU:
427 | return iou - rho2 / c2 # DIoU
428 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
429 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
430 | with torch.no_grad():
431 | alpha_ciou = v / ((1 + eps) - inter / union + v)
432 | # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
433 | return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
434 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
435 | # c_area = cw * ch + eps # convex area
436 | # return iou - (c_area - union) / c_area # GIoU
437 | c_area = torch.max(cw * ch + eps, union) # convex area
438 | return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
439 | else:
440 | return iou # torch.log(iou+eps) or iou
441 |
442 |
443 | def box_iou(box1, box2):
444 | # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
445 | """
446 | Return intersection-over-union (Jaccard index) of boxes.
447 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
448 | Arguments:
449 | box1 (Tensor[N, 4])
450 | box2 (Tensor[M, 4])
451 | Returns:
452 | iou (Tensor[N, M]): the NxM matrix containing the pairwise
453 | IoU values for every element in boxes1 and boxes2
454 | """
455 |
456 | def box_area(box):
457 | # box = 4xn
458 | return (box[2] - box[0]) * (box[3] - box[1])
459 |
460 | area1 = box_area(box1.T)
461 | area2 = box_area(box2.T)
462 |
463 | # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
464 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
465 | return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
466 |
467 |
468 | def wh_iou(wh1, wh2):
469 | # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
470 | wh1 = wh1[:, None] # [N,1,2]
471 | wh2 = wh2[None] # [1,M,2]
472 | inter = torch.min(wh1, wh2).prod(2) # [N,M]
473 | return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
474 |
475 |
476 | def box_giou(box1, box2):
477 | """
478 | Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
479 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
480 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
481 | Args:
482 | boxes1 (Tensor[N, 4]): first set of boxes
483 | boxes2 (Tensor[M, 4]): second set of boxes
484 | Returns:
485 | Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
486 | for every element in boxes1 and boxes2
487 | """
488 |
489 | def box_area(box):
490 | # box = 4xn
491 | return (box[2] - box[0]) * (box[3] - box[1])
492 |
493 | area1 = box_area(box1.T)
494 | area2 = box_area(box2.T)
495 |
496 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
497 | union = (area1[:, None] + area2 - inter)
498 |
499 | iou = inter / union
500 |
501 | lti = torch.min(box1[:, None, :2], box2[:, :2])
502 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
503 |
504 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
505 | areai = whi[:, :, 0] * whi[:, :, 1]
506 |
507 | return iou - (areai - union) / areai
508 |
509 |
510 | def box_ciou(box1, box2, eps: float = 1e-7):
511 | """
512 | Return complete intersection-over-union (Jaccard index) between two sets of boxes.
513 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
514 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
515 | Args:
516 | boxes1 (Tensor[N, 4]): first set of boxes
517 | boxes2 (Tensor[M, 4]): second set of boxes
518 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
519 | Returns:
520 | Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
521 | for every element in boxes1 and boxes2
522 | """
523 |
524 | def box_area(box):
525 | # box = 4xn
526 | return (box[2] - box[0]) * (box[3] - box[1])
527 |
528 | area1 = box_area(box1.T)
529 | area2 = box_area(box2.T)
530 |
531 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
532 | union = (area1[:, None] + area2 - inter)
533 |
534 | iou = inter / union
535 |
536 | lti = torch.min(box1[:, None, :2], box2[:, :2])
537 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
538 |
539 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
540 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
541 |
542 | # centers of boxes
543 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
544 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
545 | x_g = (box2[:, 0] + box2[:, 2]) / 2
546 | y_g = (box2[:, 1] + box2[:, 3]) / 2
547 | # The distance between boxes' centers squared.
548 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
549 |
550 | w_pred = box1[:, None, 2] - box1[:, None, 0]
551 | h_pred = box1[:, None, 3] - box1[:, None, 1]
552 |
553 | w_gt = box2[:, 2] - box2[:, 0]
554 | h_gt = box2[:, 3] - box2[:, 1]
555 |
556 | v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
557 | with torch.no_grad():
558 | alpha = v / (1 - iou + v + eps)
559 | return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
560 |
561 |
562 | def box_diou(box1, box2, eps: float = 1e-7):
563 | """
564 | Return distance intersection-over-union (Jaccard index) between two sets of boxes.
565 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
566 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
567 | Args:
568 | boxes1 (Tensor[N, 4]): first set of boxes
569 | boxes2 (Tensor[M, 4]): second set of boxes
570 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
571 | Returns:
572 | Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
573 | for every element in boxes1 and boxes2
574 | """
575 |
576 | def box_area(box):
577 | # box = 4xn
578 | return (box[2] - box[0]) * (box[3] - box[1])
579 |
580 | area1 = box_area(box1.T)
581 | area2 = box_area(box2.T)
582 |
583 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
584 | union = (area1[:, None] + area2 - inter)
585 |
586 | iou = inter / union
587 |
588 | lti = torch.min(box1[:, None, :2], box2[:, :2])
589 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
590 |
591 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
592 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
593 |
594 | # centers of boxes
595 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
596 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
597 | x_g = (box2[:, 0] + box2[:, 2]) / 2
598 | y_g = (box2[:, 1] + box2[:, 3]) / 2
599 | # The distance between boxes' centers squared.
600 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
601 |
602 | # The distance IoU is the IoU penalized by a normalized
603 | # distance between boxes' centers squared.
604 | return iou - (centers_distance_squared / diagonal_distance_squared)
605 |
606 |
607 | def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
608 | labels=()):
609 | """Runs Non-Maximum Suppression (NMS) on inference results
610 |
611 | Returns:
612 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
613 | """
614 |
615 | nc = prediction.shape[2] - 5 # number of classes
616 | xc = prediction[..., 4] > conf_thres # candidates
617 |
618 | # Settings
619 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
620 | max_det = 300 # maximum number of detections per image
621 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
622 | time_limit = 10.0 # seconds to quit after
623 | redundant = True # require redundant detections
624 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
625 | merge = False # use merge-NMS
626 |
627 | t = time.time()
628 | output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
629 | for xi, x in enumerate(prediction): # image index, image inference
630 | # Apply constraints
631 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
632 | x = x[xc[xi]] # confidence
633 |
634 | # Cat apriori labels if autolabelling
635 | if labels and len(labels[xi]):
636 | l = labels[xi]
637 | v = torch.zeros((len(l), nc + 5), device=x.device)
638 | v[:, :4] = l[:, 1:5] # box
639 | v[:, 4] = 1.0 # conf
640 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
641 | x = torch.cat((x, v), 0)
642 |
643 | # If none remain process next image
644 | if not x.shape[0]:
645 | continue
646 |
647 | # Compute conf
648 | if nc == 1:
649 | x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
650 | # so there is no need to multiplicate.
651 | else:
652 | x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
653 |
654 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
655 | box = xywh2xyxy(x[:, :4])
656 |
657 | # Detections matrix nx6 (xyxy, conf, cls)
658 | if multi_label:
659 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
660 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
661 | else: # best class only
662 | conf, j = x[:, 5:].max(1, keepdim=True)
663 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
664 |
665 | # Filter by class
666 | if classes is not None:
667 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
668 |
669 | # Apply finite constraint
670 | # if not torch.isfinite(x).all():
671 | # x = x[torch.isfinite(x).all(1)]
672 |
673 | # Check shape
674 | n = x.shape[0] # number of boxes
675 | if not n: # no boxes
676 | continue
677 | elif n > max_nms: # excess boxes
678 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
679 |
680 | # Batched NMS
681 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
682 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
683 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
684 | if i.shape[0] > max_det: # limit detections
685 | i = i[:max_det]
686 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
687 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
688 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
689 | weights = iou * scores[None] # box weights
690 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
691 | if redundant:
692 | i = i[iou.sum(1) > 1] # require redundancy
693 |
694 | output[xi] = x[i]
695 | if (time.time() - t) > time_limit:
696 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
697 | break # time limit exceeded
698 |
699 | return output
700 |
701 |
702 | def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
703 | labels=(), kpt_label=False, nc=None, nkpt=None):
704 | """Runs Non-Maximum Suppression (NMS) on inference results
705 |
706 | Returns:
707 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
708 | """
709 | if nc is None:
710 | nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
711 | xc = prediction[..., 4] > conf_thres # candidates
712 |
713 | # Settings
714 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
715 | max_det = 300 # maximum number of detections per image
716 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
717 | time_limit = 10.0 # seconds to quit after
718 | redundant = True # require redundant detections
719 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
720 | merge = False # use merge-NMS
721 |
722 | t = time.time()
723 | output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
724 | for xi, x in enumerate(prediction): # image index, image inference
725 | # Apply constraints
726 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
727 | x = x[xc[xi]] # confidence
728 |
729 | # Cat apriori labels if autolabelling
730 | if labels and len(labels[xi]):
731 | l = labels[xi]
732 | v = torch.zeros((len(l), nc + 5), device=x.device)
733 | v[:, :4] = l[:, 1:5] # box
734 | v[:, 4] = 1.0 # conf
735 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
736 | x = torch.cat((x, v), 0)
737 |
738 | # If none remain process next image
739 | if not x.shape[0]:
740 | continue
741 |
742 | # Compute conf
743 | x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
744 |
745 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
746 | box = xywh2xyxy(x[:, :4])
747 |
748 | # Detections matrix nx6 (xyxy, conf, cls)
749 | if multi_label:
750 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
751 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
752 | else: # best class only
753 | if not kpt_label:
754 | conf, j = x[:, 5:].max(1, keepdim=True)
755 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
756 | else:
757 | kpts = x[:, 6:]
758 | conf, j = x[:, 5:6].max(1, keepdim=True)
759 | x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
760 |
761 |
762 | # Filter by class
763 | if classes is not None:
764 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
765 |
766 | # Apply finite constraint
767 | # if not torch.isfinite(x).all():
768 | # x = x[torch.isfinite(x).all(1)]
769 |
770 | # Check shape
771 | n = x.shape[0] # number of boxes
772 | if not n: # no boxes
773 | continue
774 | elif n > max_nms: # excess boxes
775 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
776 |
777 | # Batched NMS
778 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
779 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
780 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
781 | if i.shape[0] > max_det: # limit detections
782 | i = i[:max_det]
783 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
784 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
785 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
786 | weights = iou * scores[None] # box weights
787 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
788 | if redundant:
789 | i = i[iou.sum(1) > 1] # require redundancy
790 |
791 | output[xi] = x[i]
792 | if (time.time() - t) > time_limit:
793 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
794 | break # time limit exceeded
795 |
796 | return output
797 |
798 |
799 | def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
800 | # Strip optimizer from 'f' to finalize training, optionally save as 's'
801 | x = torch.load(f, map_location=torch.device('cpu'))
802 | if x.get('ema'):
803 | x['model'] = x['ema'] # replace model with ema
804 | for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
805 | x[k] = None
806 | x['epoch'] = -1
807 | x['model'].half() # to FP16
808 | for p in x['model'].parameters():
809 | p.requires_grad = False
810 | torch.save(x, s or f)
811 | mb = os.path.getsize(s or f) / 1E6 # filesize
812 | print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
813 |
814 |
815 | def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
816 | # Print mutation results to evolve.txt (for use with train.py --evolve)
817 | a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
818 | b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
819 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
820 | print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
821 |
822 | if bucket:
823 | url = 'gs://%s/evolve.txt' % bucket
824 | if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
825 | os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
826 |
827 | with open('evolve.txt', 'a') as f: # append result
828 | f.write(c + b + '\n')
829 | x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
830 | x = x[np.argsort(-fitness(x))] # sort
831 | np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
832 |
833 | # Save yaml
834 | for i, k in enumerate(hyp.keys()):
835 | hyp[k] = float(x[0, i + 7])
836 | with open(yaml_file, 'w') as f:
837 | results = tuple(x[0, :7])
838 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
839 | f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
840 | yaml.dump(hyp, f, sort_keys=False)
841 |
842 | if bucket:
843 | os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
844 |
845 |
846 | def apply_classifier(x, model, img, im0):
847 | # applies a second stage classifier to yolo outputs
848 | im0 = [im0] if isinstance(im0, np.ndarray) else im0
849 | for i, d in enumerate(x): # per image
850 | if d is not None and len(d):
851 | d = d.clone()
852 |
853 | # Reshape and pad cutouts
854 | b = xyxy2xywh(d[:, :4]) # boxes
855 | b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
856 | b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
857 | d[:, :4] = xywh2xyxy(b).long()
858 |
859 | # Rescale boxes from img_size to im0 size
860 | scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
861 |
862 | # Classes
863 | pred_cls1 = d[:, 5].long()
864 | ims = []
865 | for j, a in enumerate(d): # per item
866 | cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
867 | im = cv2.resize(cutout, (224, 224)) # BGR
868 | # cv2.imwrite('test%i.jpg' % j, cutout)
869 |
870 | im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
871 | im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
872 | im /= 255.0 # 0 - 255 to 0.0 - 1.0
873 | ims.append(im)
874 |
875 | pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
876 | x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
877 |
878 | return x
879 |
880 |
881 | def increment_path(path, exist_ok=True, sep=''):
882 | # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
883 | path = Path(path) # os-agnostic
884 | if (path.exists() and exist_ok) or (not path.exists()):
885 | return str(path)
886 | else:
887 | dirs = glob.glob(f"{path}{sep}*") # similar paths
888 | matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
889 | i = [int(m.groups()[0]) for m in matches if m] # indices
890 | n = max(i) + 1 if i else 2 # increment number
891 | return f"{path}{sep}{n}" # update path
892 |
--------------------------------------------------------------------------------