├── LICENSE
├── README.md
├── progsynth.ys
├── synesthesia-1-mod-longestsolution.ys
├── synesthesia-1-mod-shortestsolution.ys
├── synesthesia-1-mod.ys
├── synesthesia-1.ys
├── synesthesia-simple-loops--solution.ys
├── synesthesia-simple-loops-refactoring-JUSTLOOP.ys
├── synesthesia-simple-loops-refactoring.ys
├── synesthesia-simple-loops.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-alphanum-collapsedscimplication-flattenscimplication.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-alphanum-collapsedscimplication.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-alphanum.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-collapsedscimplication-flattenscimplication.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-collapsedscimplication-treeifygetrealscbyte.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-collapsedscimplication.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-expandedimplication-removedgeneralimplication.ys
├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable.ys
├── synesthesia-symbolic-loops-twobyte.ys
├── synesthesia-symbolic-loops.ys
└── synesthesia-x86.ys
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # SynesthesiaYS
2 | Synesthesia, implemented as Yices scripts
3 |
4 | Implementation for Synesthesia, a semi-automated compiler for shellcode with encoding restrictions. Run the scripts using yices 2.x with the command-line option "--mode=ef".
5 |
6 | The ideas behind this project were discussed in my presentation at EkoParty 2016: http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
7 |
8 | Please see my blog entry on the subject for a high-level description of the project and the contents of this repository: http://www.msreverseengineering.com/blog/2017/7/15/the-synesthesia-shellcode-generator-code-release-and-future-directions
9 |
10 | Forgive my atrocious file naming convention.
11 |
12 |
--------------------------------------------------------------------------------
/progsynth.ys:
--------------------------------------------------------------------------------
1 | ; These are the "components" as described in the presentation, i.e., the
2 | ; existentially-quantified variables.
3 |
4 | ; b1: If true, first operation is - (NEG), otherwise it is ~ (NOT).
5 | (define b1::bool)
6 | ; b2: If true, second operation is - (NEG), otherwise it is ~ (NOT).
7 | (define b2::bool)
8 |
9 | ; The main assertion that b1 and b2 must satisfy:
10 | (assert
11 | ; The "forall input" part of the formula: for all 32-bit values of x ...
12 | (forall (x::(bitvector 32))
13 | ; Let y be the result of the first operation, dictated by b1
14 | (let ((y (ite b1 (bv-neg x) (bv-not x))))
15 | ; Let z be the result of the second operation, dictated by b2
16 | (let ((z (ite b2 (bv-neg y) (bv-not y))))
17 | ; The output, z, must be equal to the input x plus one.
18 | (= z (bv-add x 0x00000001))
19 | )
20 | )
21 | )
22 | )
23 |
24 | ; This command askes Yices to solve the problem laid out above
25 | (ef-solve)
26 |
27 | ; If the problem was solvable, this command causes the values of b1 and b2 to
28 | ; be printed.
29 | (show-model)
--------------------------------------------------------------------------------
/synesthesia-1-mod-longestsolution.ys:
--------------------------------------------------------------------------------
1 | (define bytecode00::(bitvector 8)) (define bytecode01::(bitvector 8))
2 | (define bytecode02::(bitvector 8)) (define bytecode03::(bitvector 8))
3 | (define bytecode04::(bitvector 8)) (define bytecode05::(bitvector 8))
4 | (define bytecode06::(bitvector 8)) (define bytecode07::(bitvector 8))
5 | (define bytecode08::(bitvector 8)) (define bytecode09::(bitvector 8))
6 | (define bytecode0A::(bitvector 8)) (define bytecode0B::(bitvector 8))
7 | (define bytecode0C::(bitvector 8)) (define bytecode0D::(bitvector 8))
8 | (define bytecode0E::(bitvector 8)) (define bytecode0F::(bitvector 8))
9 | (define bytecode10::(bitvector 8)) (define bytecode11::(bitvector 8))
10 | (define bytecode12::(bitvector 8)) (define bytecode13::(bitvector 8))
11 | (define bytecode14::(bitvector 8)) (define bytecode15::(bitvector 8))
12 | (define bytecode16::(bitvector 8)) (define bytecode17::(bitvector 8))
13 | (define bytecode18::(bitvector 8)) (define bytecode19::(bitvector 8))
14 | (define bytecode1A::(bitvector 8)) (define bytecode1B::(bitvector 8))
15 | (define bytecode1C::(bitvector 8)) (define bytecode1D::(bitvector 8))
16 | (define bytecode1E::(bitvector 8)) (define bytecode1F::(bitvector 8))
17 | (define bytecode20::(bitvector 8)) (define bytecode21::(bitvector 8))
18 | (define bytecode22::(bitvector 8)) (define bytecode23::(bitvector 8))
19 | (define bytecode24::(bitvector 8)) (define bytecode25::(bitvector 8))
20 | (define bytecode26::(bitvector 8)) (define bytecode27::(bitvector 8))
21 | (define bytecode28::(bitvector 8)) (define bytecode29::(bitvector 8))
22 | (define bytecode2A::(bitvector 8)) (define bytecode2B::(bitvector 8))
23 | (define bytecode2C::(bitvector 8)) (define bytecode2D::(bitvector 8))
24 | (define bytecode2E::(bitvector 8)) (define bytecode2F::(bitvector 8))
25 | (define bytecode30::(bitvector 8)) (define bytecode31::(bitvector 8))
26 | (define bytecode32::(bitvector 8)) (define bytecode33::(bitvector 8))
27 | (define bytecode34::(bitvector 8)) (define bytecode35::(bitvector 8))
28 | (define bytecode36::(bitvector 8)) (define bytecode37::(bitvector 8))
29 | (define bytecode38::(bitvector 8)) (define bytecode39::(bitvector 8))
30 | (define bytecode3A::(bitvector 8)) (define bytecode3B::(bitvector 8))
31 | (define bytecode3C::(bitvector 8)) (define bytecode3D::(bitvector 8))
32 | (define bytecode3E::(bitvector 8)) (define bytecode3F::(bitvector 8))
33 | (define bytecode40::(bitvector 8)) (define bytecode41::(bitvector 8))
34 | (define bytecode42::(bitvector 8)) (define bytecode43::(bitvector 8))
35 | (define bytecode44::(bitvector 8)) (define bytecode45::(bitvector 8))
36 | (define bytecode46::(bitvector 8)) (define bytecode47::(bitvector 8))
37 | (define bytecode48::(bitvector 8)) (define bytecode49::(bitvector 8))
38 | (define bytecode4A::(bitvector 8)) (define bytecode4B::(bitvector 8))
39 | (define bytecode4C::(bitvector 8)) (define bytecode4D::(bitvector 8))
40 | (define bytecode4E::(bitvector 8)) (define bytecode4F::(bitvector 8))
41 | (define bytecode50::(bitvector 8)) (define bytecode51::(bitvector 8))
42 | (define bytecode52::(bitvector 8)) (define bytecode53::(bitvector 8))
43 | (define bytecode54::(bitvector 8)) (define bytecode55::(bitvector 8))
44 | (define bytecode56::(bitvector 8)) (define bytecode57::(bitvector 8))
45 | (define bytecode58::(bitvector 8)) (define bytecode59::(bitvector 8))
46 | (define bytecode5A::(bitvector 8)) (define bytecode5B::(bitvector 8))
47 | (define bytecode5C::(bitvector 8)) (define bytecode5D::(bitvector 8))
48 | (define bytecode5E::(bitvector 8)) (define bytecode5F::(bitvector 8))
49 | (define bytecode60::(bitvector 8)) (define bytecode61::(bitvector 8))
50 | (define bytecode62::(bitvector 8)) (define bytecode63::(bitvector 8))
51 | (define bytecode64::(bitvector 8)) (define bytecode65::(bitvector 8))
52 | (define bytecode66::(bitvector 8)) (define bytecode67::(bitvector 8))
53 | (define bytecode68::(bitvector 8)) (define bytecode69::(bitvector 8))
54 | (define bytecode6A::(bitvector 8)) (define bytecode6B::(bitvector 8))
55 | (define bytecode6C::(bitvector 8)) (define bytecode6D::(bitvector 8))
56 | (define bytecode6E::(bitvector 8)) (define bytecode6F::(bitvector 8))
57 | (define bytecode70::(bitvector 8)) (define bytecode71::(bitvector 8))
58 | (define bytecode72::(bitvector 8)) (define bytecode73::(bitvector 8))
59 | (define bytecode74::(bitvector 8)) (define bytecode75::(bitvector 8))
60 | (define bytecode76::(bitvector 8)) (define bytecode77::(bitvector 8))
61 | (define bytecode78::(bitvector 8)) (define bytecode79::(bitvector 8))
62 | (define bytecode7A::(bitvector 8)) (define bytecode7B::(bitvector 8))
63 | (define bytecode7C::(bitvector 8)) (define bytecode7D::(bitvector 8))
64 | (define bytecode7E::(bitvector 8)) (define bytecode7F::(bitvector 8))
65 | (define bytecode80::(bitvector 8)) (define bytecode81::(bitvector 8))
66 | (define bytecode82::(bitvector 8)) (define bytecode83::(bitvector 8))
67 | (define bytecode84::(bitvector 8)) (define bytecode85::(bitvector 8))
68 | (define bytecode86::(bitvector 8)) (define bytecode87::(bitvector 8))
69 | (define bytecode88::(bitvector 8)) (define bytecode89::(bitvector 8))
70 | (define bytecode8A::(bitvector 8)) (define bytecode8B::(bitvector 8))
71 | (define bytecode8C::(bitvector 8)) (define bytecode8D::(bitvector 8))
72 | (define bytecode8E::(bitvector 8)) (define bytecode8F::(bitvector 8))
73 | (define bytecode90::(bitvector 8)) (define bytecode91::(bitvector 8))
74 | (define bytecode92::(bitvector 8)) (define bytecode93::(bitvector 8))
75 | (define bytecode94::(bitvector 8)) (define bytecode95::(bitvector 8))
76 | (define bytecode96::(bitvector 8)) (define bytecode97::(bitvector 8))
77 | (define bytecode98::(bitvector 8)) (define bytecode99::(bitvector 8))
78 | (define bytecode9A::(bitvector 8)) (define bytecode9B::(bitvector 8))
79 | (define bytecode9C::(bitvector 8)) (define bytecode9D::(bitvector 8))
80 | (define bytecode9E::(bitvector 8)) (define bytecode9F::(bitvector 8))
81 | (define bytecodeA0::(bitvector 8)) (define bytecodeA1::(bitvector 8))
82 | (define bytecodeA2::(bitvector 8)) (define bytecodeA3::(bitvector 8))
83 | (define bytecodeA4::(bitvector 8)) (define bytecodeA5::(bitvector 8))
84 | (define bytecodeA6::(bitvector 8)) (define bytecodeA7::(bitvector 8))
85 | (define bytecodeA8::(bitvector 8)) (define bytecodeA9::(bitvector 8))
86 | (define bytecodeAA::(bitvector 8)) (define bytecodeAB::(bitvector 8))
87 | (define bytecodeAC::(bitvector 8)) (define bytecodeAD::(bitvector 8))
88 | (define bytecodeAE::(bitvector 8)) (define bytecodeAF::(bitvector 8))
89 | (define bytecodeB0::(bitvector 8)) (define bytecodeB1::(bitvector 8))
90 | (define bytecodeB2::(bitvector 8)) (define bytecodeB3::(bitvector 8))
91 | (define bytecodeB4::(bitvector 8)) (define bytecodeB5::(bitvector 8))
92 | (define bytecodeB6::(bitvector 8)) (define bytecodeB7::(bitvector 8))
93 | (define bytecodeB8::(bitvector 8)) (define bytecodeB9::(bitvector 8))
94 | (define bytecodeBA::(bitvector 8)) (define bytecodeBB::(bitvector 8))
95 | (define bytecodeBC::(bitvector 8)) (define bytecodeBD::(bitvector 8))
96 | (define bytecodeBE::(bitvector 8)) (define bytecodeBF::(bitvector 8))
97 | (define bytecodeC0::(bitvector 8)) (define bytecodeC1::(bitvector 8))
98 | (define bytecodeC2::(bitvector 8)) (define bytecodeC3::(bitvector 8))
99 | (define bytecodeC4::(bitvector 8)) (define bytecodeC5::(bitvector 8))
100 | (define bytecodeC6::(bitvector 8)) (define bytecodeC7::(bitvector 8))
101 | (define bytecodeC8::(bitvector 8)) (define bytecodeC9::(bitvector 8))
102 | (define bytecodeCA::(bitvector 8)) (define bytecodeCB::(bitvector 8))
103 | (define bytecodeCC::(bitvector 8)) (define bytecodeCD::(bitvector 8))
104 | (define bytecodeCE::(bitvector 8)) (define bytecodeCF::(bitvector 8))
105 | (define bytecodeD0::(bitvector 8)) (define bytecodeD1::(bitvector 8))
106 | (define bytecodeD2::(bitvector 8)) (define bytecodeD3::(bitvector 8))
107 | (define bytecodeD4::(bitvector 8)) (define bytecodeD5::(bitvector 8))
108 | (define bytecodeD6::(bitvector 8)) (define bytecodeD7::(bitvector 8))
109 | (define bytecodeD8::(bitvector 8)) (define bytecodeD9::(bitvector 8))
110 | (define bytecodeDA::(bitvector 8)) (define bytecodeDB::(bitvector 8))
111 | (define bytecodeDC::(bitvector 8)) (define bytecodeDD::(bitvector 8))
112 | (define bytecodeDE::(bitvector 8)) (define bytecodeDF::(bitvector 8))
113 | (define bytecodeE0::(bitvector 8)) (define bytecodeE1::(bitvector 8))
114 | (define bytecodeE2::(bitvector 8)) (define bytecodeE3::(bitvector 8))
115 | (define bytecodeE4::(bitvector 8)) (define bytecodeE5::(bitvector 8))
116 | (define bytecodeE6::(bitvector 8)) (define bytecodeE7::(bitvector 8))
117 | (define bytecodeE8::(bitvector 8)) (define bytecodeE9::(bitvector 8))
118 | (define bytecodeEA::(bitvector 8)) (define bytecodeEB::(bitvector 8))
119 | (define bytecodeEC::(bitvector 8)) (define bytecodeED::(bitvector 8))
120 | (define bytecodeEE::(bitvector 8)) (define bytecodeEF::(bitvector 8))
121 | (define bytecodeF0::(bitvector 8)) (define bytecodeF1::(bitvector 8))
122 | (define bytecodeF2::(bitvector 8)) (define bytecodeF3::(bitvector 8))
123 | (define bytecodeF4::(bitvector 8)) (define bytecodeF5::(bitvector 8))
124 | (define bytecodeF6::(bitvector 8)) (define bytecodeF7::(bitvector 8))
125 | (define bytecodeF8::(bitvector 8)) (define bytecodeF9::(bitvector 8))
126 | (define bytecodeFA::(bitvector 8)) (define bytecodeFB::(bitvector 8))
127 | (define bytecodeFC::(bitvector 8)) (define bytecodeFD::(bitvector 8))
128 | (define bytecodeFE::(bitvector 8)) (define bytecodeFF::(bitvector 8))
129 |
130 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX
131 | ; variable.
132 | (define get-byte::(-> (bitvector 8) (bitvector 8))
133 | (lambda (x::(bitvector 8))
134 | (ite (= x 0x00) bytecode00
135 | (ite (= x 0x01) bytecode01
136 | (ite (= x 0x02) bytecode02
137 | (ite (= x 0x03) bytecode03
138 | (ite (= x 0x04) bytecode04
139 | (ite (= x 0x05) bytecode05
140 | (ite (= x 0x06) bytecode06
141 | (ite (= x 0x07) bytecode07
142 | (ite (= x 0x08) bytecode08
143 | (ite (= x 0x09) bytecode09
144 | (ite (= x 0x0A) bytecode0A
145 | (ite (= x 0x0B) bytecode0B
146 | (ite (= x 0x0C) bytecode0C
147 | (ite (= x 0x0D) bytecode0D
148 | (ite (= x 0x0E) bytecode0E
149 | (ite (= x 0x0F) bytecode0F
150 | (ite (= x 0x10) bytecode10
151 | (ite (= x 0x11) bytecode11
152 | (ite (= x 0x12) bytecode12
153 | (ite (= x 0x13) bytecode13
154 | (ite (= x 0x14) bytecode14
155 | (ite (= x 0x15) bytecode15
156 | (ite (= x 0x16) bytecode16
157 | (ite (= x 0x17) bytecode17
158 | (ite (= x 0x18) bytecode18
159 | (ite (= x 0x19) bytecode19
160 | (ite (= x 0x1A) bytecode1A
161 | (ite (= x 0x1B) bytecode1B
162 | (ite (= x 0x1C) bytecode1C
163 | (ite (= x 0x1D) bytecode1D
164 | (ite (= x 0x1E) bytecode1E
165 | (ite (= x 0x1F) bytecode1F
166 | (ite (= x 0x20) bytecode20
167 | (ite (= x 0x21) bytecode21
168 | (ite (= x 0x22) bytecode22
169 | (ite (= x 0x23) bytecode23
170 | (ite (= x 0x24) bytecode24
171 | (ite (= x 0x25) bytecode25
172 | (ite (= x 0x26) bytecode26
173 | (ite (= x 0x27) bytecode27
174 | (ite (= x 0x28) bytecode28
175 | (ite (= x 0x29) bytecode29
176 | (ite (= x 0x2A) bytecode2A
177 | (ite (= x 0x2B) bytecode2B
178 | (ite (= x 0x2C) bytecode2C
179 | (ite (= x 0x2D) bytecode2D
180 | (ite (= x 0x2E) bytecode2E
181 | (ite (= x 0x2F) bytecode2F
182 | (ite (= x 0x30) bytecode30
183 | (ite (= x 0x31) bytecode31
184 | (ite (= x 0x32) bytecode32
185 | (ite (= x 0x33) bytecode33
186 | (ite (= x 0x34) bytecode34
187 | (ite (= x 0x35) bytecode35
188 | (ite (= x 0x36) bytecode36
189 | (ite (= x 0x37) bytecode37
190 | (ite (= x 0x38) bytecode38
191 | (ite (= x 0x39) bytecode39
192 | (ite (= x 0x3A) bytecode3A
193 | (ite (= x 0x3B) bytecode3B
194 | (ite (= x 0x3C) bytecode3C
195 | (ite (= x 0x3D) bytecode3D
196 | (ite (= x 0x3E) bytecode3E
197 | (ite (= x 0x3F) bytecode3F
198 | (ite (= x 0x40) bytecode40
199 | (ite (= x 0x41) bytecode41
200 | (ite (= x 0x42) bytecode42
201 | (ite (= x 0x43) bytecode43
202 | (ite (= x 0x44) bytecode44
203 | (ite (= x 0x45) bytecode45
204 | (ite (= x 0x46) bytecode46
205 | (ite (= x 0x47) bytecode47
206 | (ite (= x 0x48) bytecode48
207 | (ite (= x 0x49) bytecode49
208 | (ite (= x 0x4A) bytecode4A
209 | (ite (= x 0x4B) bytecode4B
210 | (ite (= x 0x4C) bytecode4C
211 | (ite (= x 0x4D) bytecode4D
212 | (ite (= x 0x4E) bytecode4E
213 | (ite (= x 0x4F) bytecode4F
214 | (ite (= x 0x50) bytecode50
215 | (ite (= x 0x51) bytecode51
216 | (ite (= x 0x52) bytecode52
217 | (ite (= x 0x53) bytecode53
218 | (ite (= x 0x54) bytecode54
219 | (ite (= x 0x55) bytecode55
220 | (ite (= x 0x56) bytecode56
221 | (ite (= x 0x57) bytecode57
222 | (ite (= x 0x58) bytecode58
223 | (ite (= x 0x59) bytecode59
224 | (ite (= x 0x5A) bytecode5A
225 | (ite (= x 0x5B) bytecode5B
226 | (ite (= x 0x5C) bytecode5C
227 | (ite (= x 0x5D) bytecode5D
228 | (ite (= x 0x5E) bytecode5E
229 | (ite (= x 0x5F) bytecode5F
230 | (ite (= x 0x60) bytecode60
231 | (ite (= x 0x61) bytecode61
232 | (ite (= x 0x62) bytecode62
233 | (ite (= x 0x63) bytecode63
234 | (ite (= x 0x64) bytecode64
235 | (ite (= x 0x65) bytecode65
236 | (ite (= x 0x66) bytecode66
237 | (ite (= x 0x67) bytecode67
238 | (ite (= x 0x68) bytecode68
239 | (ite (= x 0x69) bytecode69
240 | (ite (= x 0x6A) bytecode6A
241 | (ite (= x 0x6B) bytecode6B
242 | (ite (= x 0x6C) bytecode6C
243 | (ite (= x 0x6D) bytecode6D
244 | (ite (= x 0x6E) bytecode6E
245 | (ite (= x 0x6F) bytecode6F
246 | (ite (= x 0x70) bytecode70
247 | (ite (= x 0x71) bytecode71
248 | (ite (= x 0x72) bytecode72
249 | (ite (= x 0x73) bytecode73
250 | (ite (= x 0x74) bytecode74
251 | (ite (= x 0x75) bytecode75
252 | (ite (= x 0x76) bytecode76
253 | (ite (= x 0x77) bytecode77
254 | (ite (= x 0x78) bytecode78
255 | (ite (= x 0x79) bytecode79
256 | (ite (= x 0x7A) bytecode7A
257 | (ite (= x 0x7B) bytecode7B
258 | (ite (= x 0x7C) bytecode7C
259 | (ite (= x 0x7D) bytecode7D
260 | (ite (= x 0x7E) bytecode7E
261 | (ite (= x 0x7F) bytecode7F
262 | (ite (= x 0x80) bytecode80
263 | (ite (= x 0x81) bytecode81
264 | (ite (= x 0x82) bytecode82
265 | (ite (= x 0x83) bytecode83
266 | (ite (= x 0x84) bytecode84
267 | (ite (= x 0x85) bytecode85
268 | (ite (= x 0x86) bytecode86
269 | (ite (= x 0x87) bytecode87
270 | (ite (= x 0x88) bytecode88
271 | (ite (= x 0x89) bytecode89
272 | (ite (= x 0x8A) bytecode8A
273 | (ite (= x 0x8B) bytecode8B
274 | (ite (= x 0x8C) bytecode8C
275 | (ite (= x 0x8D) bytecode8D
276 | (ite (= x 0x8E) bytecode8E
277 | (ite (= x 0x8F) bytecode8F
278 | (ite (= x 0x90) bytecode90
279 | (ite (= x 0x91) bytecode91
280 | (ite (= x 0x92) bytecode92
281 | (ite (= x 0x93) bytecode93
282 | (ite (= x 0x94) bytecode94
283 | (ite (= x 0x95) bytecode95
284 | (ite (= x 0x96) bytecode96
285 | (ite (= x 0x97) bytecode97
286 | (ite (= x 0x98) bytecode98
287 | (ite (= x 0x99) bytecode99
288 | (ite (= x 0x9A) bytecode9A
289 | (ite (= x 0x9B) bytecode9B
290 | (ite (= x 0x9C) bytecode9C
291 | (ite (= x 0x9D) bytecode9D
292 | (ite (= x 0x9E) bytecode9E
293 | (ite (= x 0x9F) bytecode9F
294 | (ite (= x 0xA0) bytecodeA0
295 | (ite (= x 0xA1) bytecodeA1
296 | (ite (= x 0xA2) bytecodeA2
297 | (ite (= x 0xA3) bytecodeA3
298 | (ite (= x 0xA4) bytecodeA4
299 | (ite (= x 0xA5) bytecodeA5
300 | (ite (= x 0xA6) bytecodeA6
301 | (ite (= x 0xA7) bytecodeA7
302 | (ite (= x 0xA8) bytecodeA8
303 | (ite (= x 0xA9) bytecodeA9
304 | (ite (= x 0xAA) bytecodeAA
305 | (ite (= x 0xAB) bytecodeAB
306 | (ite (= x 0xAC) bytecodeAC
307 | (ite (= x 0xAD) bytecodeAD
308 | (ite (= x 0xAE) bytecodeAE
309 | (ite (= x 0xAF) bytecodeAF
310 | (ite (= x 0xB0) bytecodeB0
311 | (ite (= x 0xB1) bytecodeB1
312 | (ite (= x 0xB2) bytecodeB2
313 | (ite (= x 0xB3) bytecodeB3
314 | (ite (= x 0xB4) bytecodeB4
315 | (ite (= x 0xB5) bytecodeB5
316 | (ite (= x 0xB6) bytecodeB6
317 | (ite (= x 0xB7) bytecodeB7
318 | (ite (= x 0xB8) bytecodeB8
319 | (ite (= x 0xB9) bytecodeB9
320 | (ite (= x 0xBA) bytecodeBA
321 | (ite (= x 0xBB) bytecodeBB
322 | (ite (= x 0xBC) bytecodeBC
323 | (ite (= x 0xBD) bytecodeBD
324 | (ite (= x 0xBE) bytecodeBE
325 | (ite (= x 0xBF) bytecodeBF
326 | (ite (= x 0xC0) bytecodeC0
327 | (ite (= x 0xC1) bytecodeC1
328 | (ite (= x 0xC2) bytecodeC2
329 | (ite (= x 0xC3) bytecodeC3
330 | (ite (= x 0xC4) bytecodeC4
331 | (ite (= x 0xC5) bytecodeC5
332 | (ite (= x 0xC6) bytecodeC6
333 | (ite (= x 0xC7) bytecodeC7
334 | (ite (= x 0xC8) bytecodeC8
335 | (ite (= x 0xC9) bytecodeC9
336 | (ite (= x 0xCA) bytecodeCA
337 | (ite (= x 0xCB) bytecodeCB
338 | (ite (= x 0xCC) bytecodeCC
339 | (ite (= x 0xCD) bytecodeCD
340 | (ite (= x 0xCE) bytecodeCE
341 | (ite (= x 0xCF) bytecodeCF
342 | (ite (= x 0xD0) bytecodeD0
343 | (ite (= x 0xD1) bytecodeD1
344 | (ite (= x 0xD2) bytecodeD2
345 | (ite (= x 0xD3) bytecodeD3
346 | (ite (= x 0xD4) bytecodeD4
347 | (ite (= x 0xD5) bytecodeD5
348 | (ite (= x 0xD6) bytecodeD6
349 | (ite (= x 0xD7) bytecodeD7
350 | (ite (= x 0xD8) bytecodeD8
351 | (ite (= x 0xD9) bytecodeD9
352 | (ite (= x 0xDA) bytecodeDA
353 | (ite (= x 0xDB) bytecodeDB
354 | (ite (= x 0xDC) bytecodeDC
355 | (ite (= x 0xDD) bytecodeDD
356 | (ite (= x 0xDE) bytecodeDE
357 | (ite (= x 0xDF) bytecodeDF
358 | (ite (= x 0xE0) bytecodeE0
359 | (ite (= x 0xE1) bytecodeE1
360 | (ite (= x 0xE2) bytecodeE2
361 | (ite (= x 0xE3) bytecodeE3
362 | (ite (= x 0xE4) bytecodeE4
363 | (ite (= x 0xE5) bytecodeE5
364 | (ite (= x 0xE6) bytecodeE6
365 | (ite (= x 0xE7) bytecodeE7
366 | (ite (= x 0xE8) bytecodeE8
367 | (ite (= x 0xE9) bytecodeE9
368 | (ite (= x 0xEA) bytecodeEA
369 | (ite (= x 0xEB) bytecodeEB
370 | (ite (= x 0xEC) bytecodeEC
371 | (ite (= x 0xED) bytecodeED
372 | (ite (= x 0xEE) bytecodeEE
373 | (ite (= x 0xEF) bytecodeEF
374 | (ite (= x 0xF0) bytecodeF0
375 | (ite (= x 0xF1) bytecodeF1
376 | (ite (= x 0xF2) bytecodeF2
377 | (ite (= x 0xF3) bytecodeF3
378 | (ite (= x 0xF4) bytecodeF4
379 | (ite (= x 0xF5) bytecodeF5
380 | (ite (= x 0xF6) bytecodeF6
381 | (ite (= x 0xF7) bytecodeF7
382 | (ite (= x 0xF8) bytecodeF8
383 | (ite (= x 0xF9) bytecodeF9
384 | (ite (= x 0xFA) bytecodeFA
385 | (ite (= x 0xFB) bytecodeFB
386 | (ite (= x 0xFC) bytecodeFC
387 | (ite (= x 0xFD) bytecodeFD
388 | (ite (= x 0xFE) bytecodeFE
389 | (ite (= x 0xFF) bytecodeFF
390 | bytecode04))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
391 | )
392 | )
393 |
394 | ; getstate(reg,state). Return the value of register 'reg' from state 'state'.
395 | (define getstate::(-> (bitvector 3) (bitvector 256) (bitvector 32))
396 | (lambda (x::(bitvector 3) z::(bitvector 256))
397 | (ite (= x 0b000) (bv-extract 31 0 z)
398 | (ite (= x 0b001) (bv-extract 63 32 z)
399 | (ite (= x 0b010) (bv-extract 95 64 z)
400 | (ite (= x 0b011) (bv-extract 127 96 z)
401 | (ite (= x 0b100) (bv-extract 159 128 z)
402 | (ite (= x 0b101) (bv-extract 191 160 z)
403 | (ite (= x 0b110) (bv-extract 223 192 z)
404 | (bv-extract 255 224 z)
405 | )))))))
406 | )
407 | )
408 |
409 | ; putstate(reg,state,value). Update register 'reg' to value 'value' in state
410 | ; 'state'; return the new state.
411 | (define putstate::(-> (bitvector 3) (bitvector 32) (bitvector 256) (bitvector 256))
412 | (lambda (x::(bitvector 3) y::(bitvector 32) z::(bitvector 256))
413 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y)
414 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z))
415 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z))
416 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z))
417 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z))
418 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z))
419 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z))
420 | (bv-concat y (bv-extract 223 0 z))
421 | )))))))
422 | )
423 | )
424 |
425 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the
426 | ; operation specified by that instruction. Consult and update the state 'state'
427 | ; accordingly; return the new state concatenated with the length of the
428 | ; instruction. In other words, this function simulates the effects of executing
429 | ; every possible instruction.
430 | (define symbolic-insn::(-> (-> (bitvector 8) (bitvector 8)) (bitvector 8) (bitvector 256) (bitvector 264))
431 | (lambda (f-get-byte::(-> (bitvector 8) (bitvector 8)) eip::(bitvector 8) state::(bitvector 256))
432 | (let ((byte0 (f-get-byte eip)))
433 | (let ((byte1 (f-get-byte (bv-add 0x01 eip))))
434 | (let ((byte2 (f-get-byte (bv-add 0x02 eip))))
435 | (let ((byte3 (f-get-byte (bv-add 0x03 eip))))
436 | (let ((byte4 (f-get-byte (bv-add 0x04 eip))))
437 | ; xor reg, reg
438 | (ite (= (bv-and byte0 0xC0) 0x00)
439 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
440 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
441 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) (getstate rhsreg0 state)) state)))
442 | (bv-concat 0x01 newstate)
443 | )))
444 | ; add reg, reg
445 | (ite (= (bv-and byte0 0xC0) 0x40)
446 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
447 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
448 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) (getstate rhsreg0 state)) state)))
449 | (bv-concat 0x01 newstate)
450 | )))
451 | ; mov reg, reg
452 | (ite (= (bv-and byte0 0xC0) 0x80)
453 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
454 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
455 | (let ((newstate (putstate lhsreg0 (getstate rhsreg0 state) state)))
456 | (bv-concat 0x01 newstate)
457 | )))
458 | ; complex 0xC0 case
459 | (let ((opcode (bv-extract 5 3 byte0)))
460 | (let ((lhsreg0 (bv-extract 2 0 byte0)))
461 | ; inc reg
462 | (ite (= opcode 0b000)
463 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) 0x00000001) state)))
464 | (bv-concat 0x01 newstate))
465 | ; dec reg
466 | (ite (= opcode 0b001)
467 | (let ((newstate (putstate lhsreg0 (bv-sub (getstate lhsreg0 state) 0x00000001) state)))
468 | (bv-concat 0x01 newstate))
469 | ; neg reg
470 | (ite (= opcode 0b010)
471 | (let ((newstate (putstate lhsreg0 (bv-neg (getstate lhsreg0 state)) state)))
472 | (bv-concat 0x01 newstate))
473 | ; not reg
474 | (ite (= opcode 0b011)
475 | (let ((newstate (putstate lhsreg0 (bv-not (getstate lhsreg0 state)) state)))
476 | (bv-concat 0x01 newstate))
477 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1)))
478 | ; add reg, imm32
479 | (ite (= opcode 0b100)
480 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) rhsval0) state)))
481 | (bv-concat 0x05 newstate))
482 | ; xor reg, imm32
483 | (ite (= opcode 0b101)
484 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) rhsval0) state)))
485 | (bv-concat 0x05 newstate))
486 | ; and reg, imm32
487 | (ite (= opcode 0b110)
488 | (let ((newstate (putstate lhsreg0 (bv-and (getstate lhsreg0 state) rhsval0) state)))
489 | (bv-concat 0x05 newstate))
490 | ; opcode == 0b111
491 | ; or reg, imm32
492 | (let ((newstate (putstate lhsreg0 (bv-or (getstate lhsreg0 state) rhsval0) state)))
493 | (bv-concat 0x05 newstate)))))))))))))))
494 | )))))
495 | )
496 | )
497 |
498 | (define get-byte-big::(-> (bitvector 2048) (bitvector 8) (bitvector 8))
499 | (lambda (mem::(bitvector 2048) x::(bitvector 8))
500 | (bv-extract 7 0 (bv-lshr mem (bv-zero-extend x 2040)))
501 | )
502 | )
503 |
504 | ; The main assertion.
505 | (assert
506 | ; For every possible input state (r0, ..., r7).
507 | ; There is an additional universally-quantified variable idx: used to make
508 | ; statements about the bytes in the encoding.
509 | (forall (r0::(bitvector 32) r1::(bitvector 32) r2::(bitvector 32) r3::(bitvector 32) r4::(bitvector 32) r5::(bitvector 32) r6::(bitvector 32) r7::(bitvector 32) idx::(bitvector 8) othermem::(bitvector 2048))
510 | ; ------------------------
511 | ; INITIALIZE STATE AND EIP
512 | ; ------------------------
513 | (let ((my-get-byte
514 | (lambda (x::(bitvector 8))
515 | (bv-extract 7 0 (bv-lshr othermem (bv-zero-extend x 2040))))))
516 | ; Create the input "state" by concatenating all of the inputs.
517 | (let ((state0 (bv-concat r7 r6 r5 r4 r3 r2 r1 r0)))
518 | ; Set initial EIP to zero.
519 | (let ((eip0 0x00))
520 |
521 | ; ------------------------
522 | ; SIMULATE ONE INSTRUCTION
523 | ; ------------------------
524 |
525 | ; Perform symbolic simulation of one instruction (any instruction).
526 | (let ((synsem0 (symbolic-insn get-byte eip0 state0)))
527 | ; Extract the length of the instruction.
528 | (let ((insn0len (bv-extract 263 256 synsem0)))
529 | ; Extract the output state after having executed the instruction.
530 | (let ((state1 (bv-extract 255 0 synsem0)))
531 | ; Extract EIP after executing the instruction.
532 | (let ((eip1 (bv-add eip0 insn0len)))
533 |
534 | ; ------------------------
535 | ; SIMULATE ONE INSTRUCTION
536 | ; ------------------------
537 |
538 | ; Perform symbolic simulation of one instruction (any instruction).
539 | (let ((synsem1 (symbolic-insn get-byte eip1 state1)))
540 | ; Extract the length of the instruction.
541 | (let ((insn1len (bv-extract 263 256 synsem1)))
542 | ; Extract the output state after having executed the instruction.
543 | (let ((state2 (bv-extract 255 0 synsem1)))
544 | ; Extract EIP after executing the instruction.
545 | (let ((eip2 (bv-add eip1 insn1len)))
546 |
547 | ; ----------------------
548 | ; FINALIZE STATE AND EIP
549 | ; ----------------------
550 |
551 | ; Call the final state "finalstate" (for convenience).
552 | (let ((finalstate state2))
553 | ; Call the final EIP "finaleip" (for convenience).
554 | (let ((finaleip eip2))
555 |
556 | ; ------------------------
557 | ; OTHER: SIMULATE ONE INSTRUCTION
558 | ; ------------------------
559 |
560 | ; Perform symbolic simulation of one instruction (any instruction).
561 | (let ((othersynsem0 (symbolic-insn my-get-byte eip0 state0)))
562 | ; Extract the length of the instruction.
563 | (let ((otherinsn0len (bv-extract 263 256 othersynsem0)))
564 | ; Extract the output state after having executed the instruction.
565 | (let ((otherstate1 (bv-extract 255 0 othersynsem0)))
566 | ; Extract EIP after executing the instruction.
567 | (let ((othereip1 (bv-add eip0 otherinsn0len)))
568 |
569 | ; ------------------------
570 | ; OTHER: SIMULATE ONE INSTRUCTION
571 | ; ------------------------
572 |
573 | ; Perform symbolic simulation of one instruction (any instruction).
574 | (let ((othersynsem1 (symbolic-insn my-get-byte othereip1 otherstate1)))
575 | ; Extract the length of the instruction.
576 | (let ((otherinsn1len (bv-extract 263 256 othersynsem1)))
577 | ; Extract the output state after having executed the instruction.
578 | (let ((otherstate2 (bv-extract 255 0 othersynsem1)))
579 | ; Extract EIP after executing the instruction.
580 | (let ((othereip2 (bv-add othereip1 otherinsn1len)))
581 |
582 | ; ----------------------
583 | ; OTHER: FINALIZE STATE AND EIP
584 | ; ----------------------
585 |
586 | ; Call the final state "finalstate" (for convenience).
587 | (let ((otherfinalstate otherstate2))
588 | ; Call the final EIP "finaleip" (for convenience).
589 | (let ((otherfinaleip othereip2))
590 |
591 | ; --------------------------------------------------
592 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING
593 | ; --------------------------------------------------
594 |
595 | (and
596 | ; 0-length instructions are invalid; both instructions must be valid.
597 | (not (= insn0len 0x00))
598 | (not (= insn1len 0x00))
599 |
600 | ; -----------------------------------
601 | ; CONSTRAINTS REGARDING FUNCTIONALITY
602 | ; -----------------------------------
603 |
604 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved.
605 | (= (getstate 0b000 finalstate) (bv-add r0 0x00000001))
606 | (= (getstate 0b001 finalstate) r1)
607 | (= (getstate 0b010 finalstate) r2)
608 | (= (getstate 0b011 finalstate) r3)
609 | (= (getstate 0b100 finalstate) r4)
610 | (= (getstate 0b101 finalstate) r5)
611 | (= (getstate 0b110 finalstate) r6)
612 | (= (getstate 0b111 finalstate) r7)
613 |
614 | ; OTHER
615 | (=> (and
616 | (not (= otherinsn0len 0x00))
617 | (not (= otherinsn1len 0x00))
618 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved.
619 | (= (getstate 0b000 otherfinalstate) (bv-add r0 0x00000001))
620 | (= (getstate 0b001 otherfinalstate) r1)
621 | (= (getstate 0b010 otherfinalstate) r2)
622 | (= (getstate 0b011 otherfinalstate) r3)
623 | (= (getstate 0b100 otherfinalstate) r4)
624 | (= (getstate 0b101 otherfinalstate) r5)
625 | (= (getstate 0b110 otherfinalstate) r6)
626 | (= (getstate 0b111 otherfinalstate) r7))
627 | (bv-le otherfinaleip finaleip))
628 |
629 | ; ------------------------------
630 | ; CONSTRAINTS REGARDING ENCODING
631 | ; ------------------------------
632 | ; None of the bytes are 0x12
633 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12))
634 | ; None of the bytes are 0x34
635 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34))
636 | ; None of the bytes are 0x56
637 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56))
638 | ; None of the bytes are 0x78
639 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78))
640 | ; None of the bytes are 0x00 (commented out)
641 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00))
642 | ) ; end and
643 | )))))))))))) ; end let * 12
644 | ))))))))))) ; end OTHER let * 10
645 | ) ; end forall
646 | ) ; end assert
647 |
648 | ; Solve the constraint system
649 | (ef-solve)
650 |
651 | ; Produce a model, i.e., values for bytecode00-bytecodeFF.
652 | ; This statement will crash yices if (ef-solve) returned unsatisfiable.
653 | (show-model)
--------------------------------------------------------------------------------
/synesthesia-1-mod-shortestsolution.ys:
--------------------------------------------------------------------------------
1 | (define bytecode00::(bitvector 8)) (define bytecode01::(bitvector 8))
2 | (define bytecode02::(bitvector 8)) (define bytecode03::(bitvector 8))
3 | (define bytecode04::(bitvector 8)) (define bytecode05::(bitvector 8))
4 | (define bytecode06::(bitvector 8)) (define bytecode07::(bitvector 8))
5 | (define bytecode08::(bitvector 8)) (define bytecode09::(bitvector 8))
6 | (define bytecode0A::(bitvector 8)) (define bytecode0B::(bitvector 8))
7 | (define bytecode0C::(bitvector 8)) (define bytecode0D::(bitvector 8))
8 | (define bytecode0E::(bitvector 8)) (define bytecode0F::(bitvector 8))
9 | (define bytecode10::(bitvector 8)) (define bytecode11::(bitvector 8))
10 | (define bytecode12::(bitvector 8)) (define bytecode13::(bitvector 8))
11 | (define bytecode14::(bitvector 8)) (define bytecode15::(bitvector 8))
12 | (define bytecode16::(bitvector 8)) (define bytecode17::(bitvector 8))
13 | (define bytecode18::(bitvector 8)) (define bytecode19::(bitvector 8))
14 | (define bytecode1A::(bitvector 8)) (define bytecode1B::(bitvector 8))
15 | (define bytecode1C::(bitvector 8)) (define bytecode1D::(bitvector 8))
16 | (define bytecode1E::(bitvector 8)) (define bytecode1F::(bitvector 8))
17 | (define bytecode20::(bitvector 8)) (define bytecode21::(bitvector 8))
18 | (define bytecode22::(bitvector 8)) (define bytecode23::(bitvector 8))
19 | (define bytecode24::(bitvector 8)) (define bytecode25::(bitvector 8))
20 | (define bytecode26::(bitvector 8)) (define bytecode27::(bitvector 8))
21 | (define bytecode28::(bitvector 8)) (define bytecode29::(bitvector 8))
22 | (define bytecode2A::(bitvector 8)) (define bytecode2B::(bitvector 8))
23 | (define bytecode2C::(bitvector 8)) (define bytecode2D::(bitvector 8))
24 | (define bytecode2E::(bitvector 8)) (define bytecode2F::(bitvector 8))
25 | (define bytecode30::(bitvector 8)) (define bytecode31::(bitvector 8))
26 | (define bytecode32::(bitvector 8)) (define bytecode33::(bitvector 8))
27 | (define bytecode34::(bitvector 8)) (define bytecode35::(bitvector 8))
28 | (define bytecode36::(bitvector 8)) (define bytecode37::(bitvector 8))
29 | (define bytecode38::(bitvector 8)) (define bytecode39::(bitvector 8))
30 | (define bytecode3A::(bitvector 8)) (define bytecode3B::(bitvector 8))
31 | (define bytecode3C::(bitvector 8)) (define bytecode3D::(bitvector 8))
32 | (define bytecode3E::(bitvector 8)) (define bytecode3F::(bitvector 8))
33 | (define bytecode40::(bitvector 8)) (define bytecode41::(bitvector 8))
34 | (define bytecode42::(bitvector 8)) (define bytecode43::(bitvector 8))
35 | (define bytecode44::(bitvector 8)) (define bytecode45::(bitvector 8))
36 | (define bytecode46::(bitvector 8)) (define bytecode47::(bitvector 8))
37 | (define bytecode48::(bitvector 8)) (define bytecode49::(bitvector 8))
38 | (define bytecode4A::(bitvector 8)) (define bytecode4B::(bitvector 8))
39 | (define bytecode4C::(bitvector 8)) (define bytecode4D::(bitvector 8))
40 | (define bytecode4E::(bitvector 8)) (define bytecode4F::(bitvector 8))
41 | (define bytecode50::(bitvector 8)) (define bytecode51::(bitvector 8))
42 | (define bytecode52::(bitvector 8)) (define bytecode53::(bitvector 8))
43 | (define bytecode54::(bitvector 8)) (define bytecode55::(bitvector 8))
44 | (define bytecode56::(bitvector 8)) (define bytecode57::(bitvector 8))
45 | (define bytecode58::(bitvector 8)) (define bytecode59::(bitvector 8))
46 | (define bytecode5A::(bitvector 8)) (define bytecode5B::(bitvector 8))
47 | (define bytecode5C::(bitvector 8)) (define bytecode5D::(bitvector 8))
48 | (define bytecode5E::(bitvector 8)) (define bytecode5F::(bitvector 8))
49 | (define bytecode60::(bitvector 8)) (define bytecode61::(bitvector 8))
50 | (define bytecode62::(bitvector 8)) (define bytecode63::(bitvector 8))
51 | (define bytecode64::(bitvector 8)) (define bytecode65::(bitvector 8))
52 | (define bytecode66::(bitvector 8)) (define bytecode67::(bitvector 8))
53 | (define bytecode68::(bitvector 8)) (define bytecode69::(bitvector 8))
54 | (define bytecode6A::(bitvector 8)) (define bytecode6B::(bitvector 8))
55 | (define bytecode6C::(bitvector 8)) (define bytecode6D::(bitvector 8))
56 | (define bytecode6E::(bitvector 8)) (define bytecode6F::(bitvector 8))
57 | (define bytecode70::(bitvector 8)) (define bytecode71::(bitvector 8))
58 | (define bytecode72::(bitvector 8)) (define bytecode73::(bitvector 8))
59 | (define bytecode74::(bitvector 8)) (define bytecode75::(bitvector 8))
60 | (define bytecode76::(bitvector 8)) (define bytecode77::(bitvector 8))
61 | (define bytecode78::(bitvector 8)) (define bytecode79::(bitvector 8))
62 | (define bytecode7A::(bitvector 8)) (define bytecode7B::(bitvector 8))
63 | (define bytecode7C::(bitvector 8)) (define bytecode7D::(bitvector 8))
64 | (define bytecode7E::(bitvector 8)) (define bytecode7F::(bitvector 8))
65 | (define bytecode80::(bitvector 8)) (define bytecode81::(bitvector 8))
66 | (define bytecode82::(bitvector 8)) (define bytecode83::(bitvector 8))
67 | (define bytecode84::(bitvector 8)) (define bytecode85::(bitvector 8))
68 | (define bytecode86::(bitvector 8)) (define bytecode87::(bitvector 8))
69 | (define bytecode88::(bitvector 8)) (define bytecode89::(bitvector 8))
70 | (define bytecode8A::(bitvector 8)) (define bytecode8B::(bitvector 8))
71 | (define bytecode8C::(bitvector 8)) (define bytecode8D::(bitvector 8))
72 | (define bytecode8E::(bitvector 8)) (define bytecode8F::(bitvector 8))
73 | (define bytecode90::(bitvector 8)) (define bytecode91::(bitvector 8))
74 | (define bytecode92::(bitvector 8)) (define bytecode93::(bitvector 8))
75 | (define bytecode94::(bitvector 8)) (define bytecode95::(bitvector 8))
76 | (define bytecode96::(bitvector 8)) (define bytecode97::(bitvector 8))
77 | (define bytecode98::(bitvector 8)) (define bytecode99::(bitvector 8))
78 | (define bytecode9A::(bitvector 8)) (define bytecode9B::(bitvector 8))
79 | (define bytecode9C::(bitvector 8)) (define bytecode9D::(bitvector 8))
80 | (define bytecode9E::(bitvector 8)) (define bytecode9F::(bitvector 8))
81 | (define bytecodeA0::(bitvector 8)) (define bytecodeA1::(bitvector 8))
82 | (define bytecodeA2::(bitvector 8)) (define bytecodeA3::(bitvector 8))
83 | (define bytecodeA4::(bitvector 8)) (define bytecodeA5::(bitvector 8))
84 | (define bytecodeA6::(bitvector 8)) (define bytecodeA7::(bitvector 8))
85 | (define bytecodeA8::(bitvector 8)) (define bytecodeA9::(bitvector 8))
86 | (define bytecodeAA::(bitvector 8)) (define bytecodeAB::(bitvector 8))
87 | (define bytecodeAC::(bitvector 8)) (define bytecodeAD::(bitvector 8))
88 | (define bytecodeAE::(bitvector 8)) (define bytecodeAF::(bitvector 8))
89 | (define bytecodeB0::(bitvector 8)) (define bytecodeB1::(bitvector 8))
90 | (define bytecodeB2::(bitvector 8)) (define bytecodeB3::(bitvector 8))
91 | (define bytecodeB4::(bitvector 8)) (define bytecodeB5::(bitvector 8))
92 | (define bytecodeB6::(bitvector 8)) (define bytecodeB7::(bitvector 8))
93 | (define bytecodeB8::(bitvector 8)) (define bytecodeB9::(bitvector 8))
94 | (define bytecodeBA::(bitvector 8)) (define bytecodeBB::(bitvector 8))
95 | (define bytecodeBC::(bitvector 8)) (define bytecodeBD::(bitvector 8))
96 | (define bytecodeBE::(bitvector 8)) (define bytecodeBF::(bitvector 8))
97 | (define bytecodeC0::(bitvector 8)) (define bytecodeC1::(bitvector 8))
98 | (define bytecodeC2::(bitvector 8)) (define bytecodeC3::(bitvector 8))
99 | (define bytecodeC4::(bitvector 8)) (define bytecodeC5::(bitvector 8))
100 | (define bytecodeC6::(bitvector 8)) (define bytecodeC7::(bitvector 8))
101 | (define bytecodeC8::(bitvector 8)) (define bytecodeC9::(bitvector 8))
102 | (define bytecodeCA::(bitvector 8)) (define bytecodeCB::(bitvector 8))
103 | (define bytecodeCC::(bitvector 8)) (define bytecodeCD::(bitvector 8))
104 | (define bytecodeCE::(bitvector 8)) (define bytecodeCF::(bitvector 8))
105 | (define bytecodeD0::(bitvector 8)) (define bytecodeD1::(bitvector 8))
106 | (define bytecodeD2::(bitvector 8)) (define bytecodeD3::(bitvector 8))
107 | (define bytecodeD4::(bitvector 8)) (define bytecodeD5::(bitvector 8))
108 | (define bytecodeD6::(bitvector 8)) (define bytecodeD7::(bitvector 8))
109 | (define bytecodeD8::(bitvector 8)) (define bytecodeD9::(bitvector 8))
110 | (define bytecodeDA::(bitvector 8)) (define bytecodeDB::(bitvector 8))
111 | (define bytecodeDC::(bitvector 8)) (define bytecodeDD::(bitvector 8))
112 | (define bytecodeDE::(bitvector 8)) (define bytecodeDF::(bitvector 8))
113 | (define bytecodeE0::(bitvector 8)) (define bytecodeE1::(bitvector 8))
114 | (define bytecodeE2::(bitvector 8)) (define bytecodeE3::(bitvector 8))
115 | (define bytecodeE4::(bitvector 8)) (define bytecodeE5::(bitvector 8))
116 | (define bytecodeE6::(bitvector 8)) (define bytecodeE7::(bitvector 8))
117 | (define bytecodeE8::(bitvector 8)) (define bytecodeE9::(bitvector 8))
118 | (define bytecodeEA::(bitvector 8)) (define bytecodeEB::(bitvector 8))
119 | (define bytecodeEC::(bitvector 8)) (define bytecodeED::(bitvector 8))
120 | (define bytecodeEE::(bitvector 8)) (define bytecodeEF::(bitvector 8))
121 | (define bytecodeF0::(bitvector 8)) (define bytecodeF1::(bitvector 8))
122 | (define bytecodeF2::(bitvector 8)) (define bytecodeF3::(bitvector 8))
123 | (define bytecodeF4::(bitvector 8)) (define bytecodeF5::(bitvector 8))
124 | (define bytecodeF6::(bitvector 8)) (define bytecodeF7::(bitvector 8))
125 | (define bytecodeF8::(bitvector 8)) (define bytecodeF9::(bitvector 8))
126 | (define bytecodeFA::(bitvector 8)) (define bytecodeFB::(bitvector 8))
127 | (define bytecodeFC::(bitvector 8)) (define bytecodeFD::(bitvector 8))
128 | (define bytecodeFE::(bitvector 8)) (define bytecodeFF::(bitvector 8))
129 |
130 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX
131 | ; variable.
132 | (define get-byte::(-> (bitvector 8) (bitvector 8))
133 | (lambda (x::(bitvector 8))
134 | (ite (= x 0x00) bytecode00
135 | (ite (= x 0x01) bytecode01
136 | (ite (= x 0x02) bytecode02
137 | (ite (= x 0x03) bytecode03
138 | (ite (= x 0x04) bytecode04
139 | (ite (= x 0x05) bytecode05
140 | (ite (= x 0x06) bytecode06
141 | (ite (= x 0x07) bytecode07
142 | (ite (= x 0x08) bytecode08
143 | (ite (= x 0x09) bytecode09
144 | (ite (= x 0x0A) bytecode0A
145 | (ite (= x 0x0B) bytecode0B
146 | (ite (= x 0x0C) bytecode0C
147 | (ite (= x 0x0D) bytecode0D
148 | (ite (= x 0x0E) bytecode0E
149 | (ite (= x 0x0F) bytecode0F
150 | (ite (= x 0x10) bytecode10
151 | (ite (= x 0x11) bytecode11
152 | (ite (= x 0x12) bytecode12
153 | (ite (= x 0x13) bytecode13
154 | (ite (= x 0x14) bytecode14
155 | (ite (= x 0x15) bytecode15
156 | (ite (= x 0x16) bytecode16
157 | (ite (= x 0x17) bytecode17
158 | (ite (= x 0x18) bytecode18
159 | (ite (= x 0x19) bytecode19
160 | (ite (= x 0x1A) bytecode1A
161 | (ite (= x 0x1B) bytecode1B
162 | (ite (= x 0x1C) bytecode1C
163 | (ite (= x 0x1D) bytecode1D
164 | (ite (= x 0x1E) bytecode1E
165 | (ite (= x 0x1F) bytecode1F
166 | (ite (= x 0x20) bytecode20
167 | (ite (= x 0x21) bytecode21
168 | (ite (= x 0x22) bytecode22
169 | (ite (= x 0x23) bytecode23
170 | (ite (= x 0x24) bytecode24
171 | (ite (= x 0x25) bytecode25
172 | (ite (= x 0x26) bytecode26
173 | (ite (= x 0x27) bytecode27
174 | (ite (= x 0x28) bytecode28
175 | (ite (= x 0x29) bytecode29
176 | (ite (= x 0x2A) bytecode2A
177 | (ite (= x 0x2B) bytecode2B
178 | (ite (= x 0x2C) bytecode2C
179 | (ite (= x 0x2D) bytecode2D
180 | (ite (= x 0x2E) bytecode2E
181 | (ite (= x 0x2F) bytecode2F
182 | (ite (= x 0x30) bytecode30
183 | (ite (= x 0x31) bytecode31
184 | (ite (= x 0x32) bytecode32
185 | (ite (= x 0x33) bytecode33
186 | (ite (= x 0x34) bytecode34
187 | (ite (= x 0x35) bytecode35
188 | (ite (= x 0x36) bytecode36
189 | (ite (= x 0x37) bytecode37
190 | (ite (= x 0x38) bytecode38
191 | (ite (= x 0x39) bytecode39
192 | (ite (= x 0x3A) bytecode3A
193 | (ite (= x 0x3B) bytecode3B
194 | (ite (= x 0x3C) bytecode3C
195 | (ite (= x 0x3D) bytecode3D
196 | (ite (= x 0x3E) bytecode3E
197 | (ite (= x 0x3F) bytecode3F
198 | (ite (= x 0x40) bytecode40
199 | (ite (= x 0x41) bytecode41
200 | (ite (= x 0x42) bytecode42
201 | (ite (= x 0x43) bytecode43
202 | (ite (= x 0x44) bytecode44
203 | (ite (= x 0x45) bytecode45
204 | (ite (= x 0x46) bytecode46
205 | (ite (= x 0x47) bytecode47
206 | (ite (= x 0x48) bytecode48
207 | (ite (= x 0x49) bytecode49
208 | (ite (= x 0x4A) bytecode4A
209 | (ite (= x 0x4B) bytecode4B
210 | (ite (= x 0x4C) bytecode4C
211 | (ite (= x 0x4D) bytecode4D
212 | (ite (= x 0x4E) bytecode4E
213 | (ite (= x 0x4F) bytecode4F
214 | (ite (= x 0x50) bytecode50
215 | (ite (= x 0x51) bytecode51
216 | (ite (= x 0x52) bytecode52
217 | (ite (= x 0x53) bytecode53
218 | (ite (= x 0x54) bytecode54
219 | (ite (= x 0x55) bytecode55
220 | (ite (= x 0x56) bytecode56
221 | (ite (= x 0x57) bytecode57
222 | (ite (= x 0x58) bytecode58
223 | (ite (= x 0x59) bytecode59
224 | (ite (= x 0x5A) bytecode5A
225 | (ite (= x 0x5B) bytecode5B
226 | (ite (= x 0x5C) bytecode5C
227 | (ite (= x 0x5D) bytecode5D
228 | (ite (= x 0x5E) bytecode5E
229 | (ite (= x 0x5F) bytecode5F
230 | (ite (= x 0x60) bytecode60
231 | (ite (= x 0x61) bytecode61
232 | (ite (= x 0x62) bytecode62
233 | (ite (= x 0x63) bytecode63
234 | (ite (= x 0x64) bytecode64
235 | (ite (= x 0x65) bytecode65
236 | (ite (= x 0x66) bytecode66
237 | (ite (= x 0x67) bytecode67
238 | (ite (= x 0x68) bytecode68
239 | (ite (= x 0x69) bytecode69
240 | (ite (= x 0x6A) bytecode6A
241 | (ite (= x 0x6B) bytecode6B
242 | (ite (= x 0x6C) bytecode6C
243 | (ite (= x 0x6D) bytecode6D
244 | (ite (= x 0x6E) bytecode6E
245 | (ite (= x 0x6F) bytecode6F
246 | (ite (= x 0x70) bytecode70
247 | (ite (= x 0x71) bytecode71
248 | (ite (= x 0x72) bytecode72
249 | (ite (= x 0x73) bytecode73
250 | (ite (= x 0x74) bytecode74
251 | (ite (= x 0x75) bytecode75
252 | (ite (= x 0x76) bytecode76
253 | (ite (= x 0x77) bytecode77
254 | (ite (= x 0x78) bytecode78
255 | (ite (= x 0x79) bytecode79
256 | (ite (= x 0x7A) bytecode7A
257 | (ite (= x 0x7B) bytecode7B
258 | (ite (= x 0x7C) bytecode7C
259 | (ite (= x 0x7D) bytecode7D
260 | (ite (= x 0x7E) bytecode7E
261 | (ite (= x 0x7F) bytecode7F
262 | (ite (= x 0x80) bytecode80
263 | (ite (= x 0x81) bytecode81
264 | (ite (= x 0x82) bytecode82
265 | (ite (= x 0x83) bytecode83
266 | (ite (= x 0x84) bytecode84
267 | (ite (= x 0x85) bytecode85
268 | (ite (= x 0x86) bytecode86
269 | (ite (= x 0x87) bytecode87
270 | (ite (= x 0x88) bytecode88
271 | (ite (= x 0x89) bytecode89
272 | (ite (= x 0x8A) bytecode8A
273 | (ite (= x 0x8B) bytecode8B
274 | (ite (= x 0x8C) bytecode8C
275 | (ite (= x 0x8D) bytecode8D
276 | (ite (= x 0x8E) bytecode8E
277 | (ite (= x 0x8F) bytecode8F
278 | (ite (= x 0x90) bytecode90
279 | (ite (= x 0x91) bytecode91
280 | (ite (= x 0x92) bytecode92
281 | (ite (= x 0x93) bytecode93
282 | (ite (= x 0x94) bytecode94
283 | (ite (= x 0x95) bytecode95
284 | (ite (= x 0x96) bytecode96
285 | (ite (= x 0x97) bytecode97
286 | (ite (= x 0x98) bytecode98
287 | (ite (= x 0x99) bytecode99
288 | (ite (= x 0x9A) bytecode9A
289 | (ite (= x 0x9B) bytecode9B
290 | (ite (= x 0x9C) bytecode9C
291 | (ite (= x 0x9D) bytecode9D
292 | (ite (= x 0x9E) bytecode9E
293 | (ite (= x 0x9F) bytecode9F
294 | (ite (= x 0xA0) bytecodeA0
295 | (ite (= x 0xA1) bytecodeA1
296 | (ite (= x 0xA2) bytecodeA2
297 | (ite (= x 0xA3) bytecodeA3
298 | (ite (= x 0xA4) bytecodeA4
299 | (ite (= x 0xA5) bytecodeA5
300 | (ite (= x 0xA6) bytecodeA6
301 | (ite (= x 0xA7) bytecodeA7
302 | (ite (= x 0xA8) bytecodeA8
303 | (ite (= x 0xA9) bytecodeA9
304 | (ite (= x 0xAA) bytecodeAA
305 | (ite (= x 0xAB) bytecodeAB
306 | (ite (= x 0xAC) bytecodeAC
307 | (ite (= x 0xAD) bytecodeAD
308 | (ite (= x 0xAE) bytecodeAE
309 | (ite (= x 0xAF) bytecodeAF
310 | (ite (= x 0xB0) bytecodeB0
311 | (ite (= x 0xB1) bytecodeB1
312 | (ite (= x 0xB2) bytecodeB2
313 | (ite (= x 0xB3) bytecodeB3
314 | (ite (= x 0xB4) bytecodeB4
315 | (ite (= x 0xB5) bytecodeB5
316 | (ite (= x 0xB6) bytecodeB6
317 | (ite (= x 0xB7) bytecodeB7
318 | (ite (= x 0xB8) bytecodeB8
319 | (ite (= x 0xB9) bytecodeB9
320 | (ite (= x 0xBA) bytecodeBA
321 | (ite (= x 0xBB) bytecodeBB
322 | (ite (= x 0xBC) bytecodeBC
323 | (ite (= x 0xBD) bytecodeBD
324 | (ite (= x 0xBE) bytecodeBE
325 | (ite (= x 0xBF) bytecodeBF
326 | (ite (= x 0xC0) bytecodeC0
327 | (ite (= x 0xC1) bytecodeC1
328 | (ite (= x 0xC2) bytecodeC2
329 | (ite (= x 0xC3) bytecodeC3
330 | (ite (= x 0xC4) bytecodeC4
331 | (ite (= x 0xC5) bytecodeC5
332 | (ite (= x 0xC6) bytecodeC6
333 | (ite (= x 0xC7) bytecodeC7
334 | (ite (= x 0xC8) bytecodeC8
335 | (ite (= x 0xC9) bytecodeC9
336 | (ite (= x 0xCA) bytecodeCA
337 | (ite (= x 0xCB) bytecodeCB
338 | (ite (= x 0xCC) bytecodeCC
339 | (ite (= x 0xCD) bytecodeCD
340 | (ite (= x 0xCE) bytecodeCE
341 | (ite (= x 0xCF) bytecodeCF
342 | (ite (= x 0xD0) bytecodeD0
343 | (ite (= x 0xD1) bytecodeD1
344 | (ite (= x 0xD2) bytecodeD2
345 | (ite (= x 0xD3) bytecodeD3
346 | (ite (= x 0xD4) bytecodeD4
347 | (ite (= x 0xD5) bytecodeD5
348 | (ite (= x 0xD6) bytecodeD6
349 | (ite (= x 0xD7) bytecodeD7
350 | (ite (= x 0xD8) bytecodeD8
351 | (ite (= x 0xD9) bytecodeD9
352 | (ite (= x 0xDA) bytecodeDA
353 | (ite (= x 0xDB) bytecodeDB
354 | (ite (= x 0xDC) bytecodeDC
355 | (ite (= x 0xDD) bytecodeDD
356 | (ite (= x 0xDE) bytecodeDE
357 | (ite (= x 0xDF) bytecodeDF
358 | (ite (= x 0xE0) bytecodeE0
359 | (ite (= x 0xE1) bytecodeE1
360 | (ite (= x 0xE2) bytecodeE2
361 | (ite (= x 0xE3) bytecodeE3
362 | (ite (= x 0xE4) bytecodeE4
363 | (ite (= x 0xE5) bytecodeE5
364 | (ite (= x 0xE6) bytecodeE6
365 | (ite (= x 0xE7) bytecodeE7
366 | (ite (= x 0xE8) bytecodeE8
367 | (ite (= x 0xE9) bytecodeE9
368 | (ite (= x 0xEA) bytecodeEA
369 | (ite (= x 0xEB) bytecodeEB
370 | (ite (= x 0xEC) bytecodeEC
371 | (ite (= x 0xED) bytecodeED
372 | (ite (= x 0xEE) bytecodeEE
373 | (ite (= x 0xEF) bytecodeEF
374 | (ite (= x 0xF0) bytecodeF0
375 | (ite (= x 0xF1) bytecodeF1
376 | (ite (= x 0xF2) bytecodeF2
377 | (ite (= x 0xF3) bytecodeF3
378 | (ite (= x 0xF4) bytecodeF4
379 | (ite (= x 0xF5) bytecodeF5
380 | (ite (= x 0xF6) bytecodeF6
381 | (ite (= x 0xF7) bytecodeF7
382 | (ite (= x 0xF8) bytecodeF8
383 | (ite (= x 0xF9) bytecodeF9
384 | (ite (= x 0xFA) bytecodeFA
385 | (ite (= x 0xFB) bytecodeFB
386 | (ite (= x 0xFC) bytecodeFC
387 | (ite (= x 0xFD) bytecodeFD
388 | (ite (= x 0xFE) bytecodeFE
389 | (ite (= x 0xFF) bytecodeFF
390 | bytecode04))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
391 | )
392 | )
393 |
394 | ; getstate(reg,state). Return the value of register 'reg' from state 'state'.
395 | (define getstate::(-> (bitvector 3) (bitvector 256) (bitvector 32))
396 | (lambda (x::(bitvector 3) z::(bitvector 256))
397 | (ite (= x 0b000) (bv-extract 31 0 z)
398 | (ite (= x 0b001) (bv-extract 63 32 z)
399 | (ite (= x 0b010) (bv-extract 95 64 z)
400 | (ite (= x 0b011) (bv-extract 127 96 z)
401 | (ite (= x 0b100) (bv-extract 159 128 z)
402 | (ite (= x 0b101) (bv-extract 191 160 z)
403 | (ite (= x 0b110) (bv-extract 223 192 z)
404 | (bv-extract 255 224 z)
405 | )))))))
406 | )
407 | )
408 |
409 | ; putstate(reg,state,value). Update register 'reg' to value 'value' in state
410 | ; 'state'; return the new state.
411 | (define putstate::(-> (bitvector 3) (bitvector 32) (bitvector 256) (bitvector 256))
412 | (lambda (x::(bitvector 3) y::(bitvector 32) z::(bitvector 256))
413 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y)
414 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z))
415 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z))
416 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z))
417 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z))
418 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z))
419 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z))
420 | (bv-concat y (bv-extract 223 0 z))
421 | )))))))
422 | )
423 | )
424 |
425 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the
426 | ; operation specified by that instruction. Consult and update the state 'state'
427 | ; accordingly; return the new state concatenated with the length of the
428 | ; instruction. In other words, this function simulates the effects of executing
429 | ; every possible instruction.
430 | (define symbolic-insn::(-> (-> (bitvector 8) (bitvector 8)) (bitvector 8) (bitvector 256) (bitvector 264))
431 | (lambda (f-get-byte::(-> (bitvector 8) (bitvector 8)) eip::(bitvector 8) state::(bitvector 256))
432 | (let ((byte0 (f-get-byte eip)))
433 | (let ((byte1 (f-get-byte (bv-add 0x01 eip))))
434 | (let ((byte2 (f-get-byte (bv-add 0x02 eip))))
435 | (let ((byte3 (f-get-byte (bv-add 0x03 eip))))
436 | (let ((byte4 (f-get-byte (bv-add 0x04 eip))))
437 | ; xor reg, reg
438 | (ite (= (bv-and byte0 0xC0) 0x00)
439 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
440 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
441 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) (getstate rhsreg0 state)) state)))
442 | (bv-concat 0x01 newstate)
443 | )))
444 | ; add reg, reg
445 | (ite (= (bv-and byte0 0xC0) 0x40)
446 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
447 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
448 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) (getstate rhsreg0 state)) state)))
449 | (bv-concat 0x01 newstate)
450 | )))
451 | ; mov reg, reg
452 | (ite (= (bv-and byte0 0xC0) 0x80)
453 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
454 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
455 | (let ((newstate (putstate lhsreg0 (getstate rhsreg0 state) state)))
456 | (bv-concat 0x01 newstate)
457 | )))
458 | ; complex 0xC0 case
459 | (let ((opcode (bv-extract 5 3 byte0)))
460 | (let ((lhsreg0 (bv-extract 2 0 byte0)))
461 | ; inc reg
462 | (ite (= opcode 0b000)
463 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) 0x00000001) state)))
464 | (bv-concat 0x01 newstate))
465 | ; dec reg
466 | (ite (= opcode 0b001)
467 | (let ((newstate (putstate lhsreg0 (bv-sub (getstate lhsreg0 state) 0x00000001) state)))
468 | (bv-concat 0x01 newstate))
469 | ; neg reg
470 | (ite (= opcode 0b010)
471 | (let ((newstate (putstate lhsreg0 (bv-neg (getstate lhsreg0 state)) state)))
472 | (bv-concat 0x01 newstate))
473 | ; not reg
474 | (ite (= opcode 0b011)
475 | (let ((newstate (putstate lhsreg0 (bv-not (getstate lhsreg0 state)) state)))
476 | (bv-concat 0x01 newstate))
477 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1)))
478 | ; add reg, imm32
479 | (ite (= opcode 0b100)
480 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) rhsval0) state)))
481 | (bv-concat 0x05 newstate))
482 | ; xor reg, imm32
483 | (ite (= opcode 0b101)
484 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) rhsval0) state)))
485 | (bv-concat 0x05 newstate))
486 | ; and reg, imm32
487 | (ite (= opcode 0b110)
488 | (let ((newstate (putstate lhsreg0 (bv-and (getstate lhsreg0 state) rhsval0) state)))
489 | (bv-concat 0x05 newstate))
490 | ; opcode == 0b111
491 | ; or reg, imm32
492 | (let ((newstate (putstate lhsreg0 (bv-or (getstate lhsreg0 state) rhsval0) state)))
493 | (bv-concat 0x05 newstate)))))))))))))))
494 | )))))
495 | )
496 | )
497 |
498 | (define get-byte-big::(-> (bitvector 2048) (bitvector 8) (bitvector 8))
499 | (lambda (mem::(bitvector 2048) x::(bitvector 8))
500 | (bv-extract 7 0 (bv-lshr mem (bv-zero-extend x 2040)))
501 | )
502 | )
503 |
504 | ; The main assertion.
505 | (assert
506 | ; For every possible input state (r0, ..., r7).
507 | ; There is an additional universally-quantified variable idx: used to make
508 | ; statements about the bytes in the encoding.
509 | (forall (r0::(bitvector 32) r1::(bitvector 32) r2::(bitvector 32) r3::(bitvector 32) r4::(bitvector 32) r5::(bitvector 32) r6::(bitvector 32) r7::(bitvector 32) idx::(bitvector 8) othermem::(bitvector 2048))
510 | ; ------------------------
511 | ; INITIALIZE STATE AND EIP
512 | ; ------------------------
513 | (let ((my-get-byte
514 | (lambda (x::(bitvector 8))
515 | (bv-extract 7 0 (bv-lshr othermem (bv-zero-extend x 2040))))))
516 | ; Create the input "state" by concatenating all of the inputs.
517 | (let ((state0 (bv-concat r7 r6 r5 r4 r3 r2 r1 r0)))
518 | ; Set initial EIP to zero.
519 | (let ((eip0 0x00))
520 |
521 | ; ------------------------
522 | ; SIMULATE ONE INSTRUCTION
523 | ; ------------------------
524 |
525 | ; Perform symbolic simulation of one instruction (any instruction).
526 | (let ((synsem0 (symbolic-insn get-byte eip0 state0)))
527 | ; Extract the length of the instruction.
528 | (let ((insn0len (bv-extract 263 256 synsem0)))
529 | ; Extract the output state after having executed the instruction.
530 | (let ((state1 (bv-extract 255 0 synsem0)))
531 | ; Extract EIP after executing the instruction.
532 | (let ((eip1 (bv-add eip0 insn0len)))
533 |
534 | ; ------------------------
535 | ; SIMULATE ONE INSTRUCTION
536 | ; ------------------------
537 |
538 | ; Perform symbolic simulation of one instruction (any instruction).
539 | (let ((synsem1 (symbolic-insn get-byte eip1 state1)))
540 | ; Extract the length of the instruction.
541 | (let ((insn1len (bv-extract 263 256 synsem1)))
542 | ; Extract the output state after having executed the instruction.
543 | (let ((state2 (bv-extract 255 0 synsem1)))
544 | ; Extract EIP after executing the instruction.
545 | (let ((eip2 (bv-add eip1 insn1len)))
546 |
547 | ; ----------------------
548 | ; FINALIZE STATE AND EIP
549 | ; ----------------------
550 |
551 | ; Call the final state "finalstate" (for convenience).
552 | (let ((finalstate state2))
553 | ; Call the final EIP "finaleip" (for convenience).
554 | (let ((finaleip eip2))
555 |
556 | ; ------------------------
557 | ; OTHER: SIMULATE ONE INSTRUCTION
558 | ; ------------------------
559 |
560 | ; Perform symbolic simulation of one instruction (any instruction).
561 | (let ((othersynsem0 (symbolic-insn my-get-byte eip0 state0)))
562 | ; Extract the length of the instruction.
563 | (let ((otherinsn0len (bv-extract 263 256 othersynsem0)))
564 | ; Extract the output state after having executed the instruction.
565 | (let ((otherstate1 (bv-extract 255 0 othersynsem0)))
566 | ; Extract EIP after executing the instruction.
567 | (let ((othereip1 (bv-add eip0 otherinsn0len)))
568 |
569 | ; ------------------------
570 | ; OTHER: SIMULATE ONE INSTRUCTION
571 | ; ------------------------
572 |
573 | ; Perform symbolic simulation of one instruction (any instruction).
574 | (let ((othersynsem1 (symbolic-insn my-get-byte othereip1 otherstate1)))
575 | ; Extract the length of the instruction.
576 | (let ((otherinsn1len (bv-extract 263 256 othersynsem1)))
577 | ; Extract the output state after having executed the instruction.
578 | (let ((otherstate2 (bv-extract 255 0 othersynsem1)))
579 | ; Extract EIP after executing the instruction.
580 | (let ((othereip2 (bv-add othereip1 otherinsn1len)))
581 |
582 | ; ----------------------
583 | ; OTHER: FINALIZE STATE AND EIP
584 | ; ----------------------
585 |
586 | ; Call the final state "finalstate" (for convenience).
587 | (let ((otherfinalstate otherstate2))
588 | ; Call the final EIP "finaleip" (for convenience).
589 | (let ((otherfinaleip othereip2))
590 |
591 | ; --------------------------------------------------
592 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING
593 | ; --------------------------------------------------
594 |
595 | (and
596 | ; 0-length instructions are invalid; both instructions must be valid.
597 | (not (= insn0len 0x00))
598 | (not (= insn1len 0x00))
599 |
600 | ; -----------------------------------
601 | ; CONSTRAINTS REGARDING FUNCTIONALITY
602 | ; -----------------------------------
603 |
604 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved.
605 | (= (getstate 0b000 finalstate) (bv-add r0 0x00000001))
606 | (= (getstate 0b001 finalstate) r1)
607 | (= (getstate 0b010 finalstate) r2)
608 | (= (getstate 0b011 finalstate) r3)
609 | (= (getstate 0b100 finalstate) r4)
610 | (= (getstate 0b101 finalstate) r5)
611 | (= (getstate 0b110 finalstate) r6)
612 | (= (getstate 0b111 finalstate) r7)
613 |
614 | ; OTHER
615 | (=> (and
616 | (not (= otherinsn0len 0x00))
617 | (not (= otherinsn1len 0x00))
618 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved.
619 | (= (getstate 0b000 otherfinalstate) (bv-add r0 0x00000001))
620 | (= (getstate 0b001 otherfinalstate) r1)
621 | (= (getstate 0b010 otherfinalstate) r2)
622 | (= (getstate 0b011 otherfinalstate) r3)
623 | (= (getstate 0b100 otherfinalstate) r4)
624 | (= (getstate 0b101 otherfinalstate) r5)
625 | (= (getstate 0b110 otherfinalstate) r6)
626 | (= (getstate 0b111 otherfinalstate) r7))
627 | (bv-le finaleip otherfinaleip))
628 |
629 | ; ------------------------------
630 | ; CONSTRAINTS REGARDING ENCODING
631 | ; ------------------------------
632 | ; None of the bytes are 0x12
633 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12))
634 | ; None of the bytes are 0x34
635 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34))
636 | ; None of the bytes are 0x56
637 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56))
638 | ; None of the bytes are 0x78
639 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78))
640 | ; None of the bytes are 0x00 (commented out)
641 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00))
642 | ) ; end and
643 | )))))))))))) ; end let * 12
644 | ))))))))))) ; end OTHER let * 10
645 | ) ; end forall
646 | ) ; end assert
647 |
648 | ; Solve the constraint system
649 | (ef-solve)
650 |
651 | ; Produce a model, i.e., values for bytecode00-bytecodeFF.
652 | ; This statement will crash yices if (ef-solve) returned unsatisfiable.
653 | (show-model)
--------------------------------------------------------------------------------
/synesthesia-1-mod.ys:
--------------------------------------------------------------------------------
1 | ; Loosen yices' arbitrary restriction on iteration count. (')
2 | (set-param ef-max-iters 1000)
3 |
4 | (define-type Bit (bitvector 1))
5 | (define-type Byte (bitvector 8))
6 | (define-type Word (bitvector 16))
7 | (define-type Dword (bitvector 32))
8 |
9 | (define-type RegIdx (bitvector 3))
10 | (define R0Idx::RegIdx (mk-bv 3 0)) ; R0 = 0
11 | (define R1Idx::RegIdx (mk-bv 3 1)) ; R1 = 1
12 | (define R2Idx::RegIdx (mk-bv 3 2)) ; R2 = 2
13 | (define R3Idx::RegIdx (mk-bv 3 3)) ; R3 = 3
14 | (define R4Idx::RegIdx (mk-bv 3 4)) ; R4 = 4
15 | (define R5Idx::RegIdx (mk-bv 3 5)) ; R5 = 5
16 | (define R6Idx::RegIdx (mk-bv 3 6)) ; R6 = 6
17 | (define R7Idx::RegIdx (mk-bv 3 7)) ; R7 = 7
18 |
19 | (define-type Reg32State (bitvector 256))
20 | (define-type MachineState (bitvector 264))
21 | (define-type MachineStateRes8 (bitvector 272))
22 | (define-type MachineStateRes16 (bitvector 280))
23 | (define-type MachineStateRes32 (bitvector 296))
24 | (define-type DecodedMachineState (bitvector 268))
25 |
26 | (define bytecode00::Byte) (define bytecode01::Byte)
27 | (define bytecode02::Byte) (define bytecode03::Byte)
28 | (define bytecode04::Byte) (define bytecode05::Byte)
29 | (define bytecode06::Byte) (define bytecode07::Byte)
30 | (define bytecode08::Byte) (define bytecode09::Byte)
31 | (define bytecode0A::Byte) (define bytecode0B::Byte)
32 | (define bytecode0C::Byte) (define bytecode0D::Byte)
33 | (define bytecode0E::Byte) (define bytecode0F::Byte)
34 | (define bytecode10::Byte) (define bytecode11::Byte)
35 | (define bytecode12::Byte) (define bytecode13::Byte)
36 | (define bytecode14::Byte) (define bytecode15::Byte)
37 | (define bytecode16::Byte) (define bytecode17::Byte)
38 | (define bytecode18::Byte) (define bytecode19::Byte)
39 | (define bytecode1A::Byte) (define bytecode1B::Byte)
40 | (define bytecode1C::Byte) (define bytecode1D::Byte)
41 | (define bytecode1E::Byte) (define bytecode1F::Byte)
42 | (define bytecode20::Byte) (define bytecode21::Byte)
43 | (define bytecode22::Byte) (define bytecode23::Byte)
44 | (define bytecode24::Byte) (define bytecode25::Byte)
45 | (define bytecode26::Byte) (define bytecode27::Byte)
46 | (define bytecode28::Byte) (define bytecode29::Byte)
47 | (define bytecode2A::Byte) (define bytecode2B::Byte)
48 | (define bytecode2C::Byte) (define bytecode2D::Byte)
49 | (define bytecode2E::Byte) (define bytecode2F::Byte)
50 | (define bytecode30::Byte) (define bytecode31::Byte)
51 | (define bytecode32::Byte) (define bytecode33::Byte)
52 | (define bytecode34::Byte) (define bytecode35::Byte)
53 | (define bytecode36::Byte) (define bytecode37::Byte)
54 | (define bytecode38::Byte) (define bytecode39::Byte)
55 | (define bytecode3A::Byte) (define bytecode3B::Byte)
56 | (define bytecode3C::Byte) (define bytecode3D::Byte)
57 | (define bytecode3E::Byte) (define bytecode3F::Byte)
58 | (define bytecode40::Byte) (define bytecode41::Byte)
59 | (define bytecode42::Byte) (define bytecode43::Byte)
60 | (define bytecode44::Byte) (define bytecode45::Byte)
61 | (define bytecode46::Byte) (define bytecode47::Byte)
62 | (define bytecode48::Byte) (define bytecode49::Byte)
63 | (define bytecode4A::Byte) (define bytecode4B::Byte)
64 | (define bytecode4C::Byte) (define bytecode4D::Byte)
65 | (define bytecode4E::Byte) (define bytecode4F::Byte)
66 | (define bytecode50::Byte) (define bytecode51::Byte)
67 | (define bytecode52::Byte) (define bytecode53::Byte)
68 | (define bytecode54::Byte) (define bytecode55::Byte)
69 | (define bytecode56::Byte) (define bytecode57::Byte)
70 | (define bytecode58::Byte) (define bytecode59::Byte)
71 | (define bytecode5A::Byte) (define bytecode5B::Byte)
72 | (define bytecode5C::Byte) (define bytecode5D::Byte)
73 | (define bytecode5E::Byte) (define bytecode5F::Byte)
74 | (define bytecode60::Byte) (define bytecode61::Byte)
75 | (define bytecode62::Byte) (define bytecode63::Byte)
76 | (define bytecode64::Byte) (define bytecode65::Byte)
77 | (define bytecode66::Byte) (define bytecode67::Byte)
78 | (define bytecode68::Byte) (define bytecode69::Byte)
79 | (define bytecode6A::Byte) (define bytecode6B::Byte)
80 | (define bytecode6C::Byte) (define bytecode6D::Byte)
81 | (define bytecode6E::Byte) (define bytecode6F::Byte)
82 | (define bytecode70::Byte) (define bytecode71::Byte)
83 | (define bytecode72::Byte) (define bytecode73::Byte)
84 | (define bytecode74::Byte) (define bytecode75::Byte)
85 | (define bytecode76::Byte) (define bytecode77::Byte)
86 | (define bytecode78::Byte) (define bytecode79::Byte)
87 | (define bytecode7A::Byte) (define bytecode7B::Byte)
88 | (define bytecode7C::Byte) (define bytecode7D::Byte)
89 | (define bytecode7E::Byte) (define bytecode7F::Byte)
90 | (define bytecode80::Byte) (define bytecode81::Byte)
91 | (define bytecode82::Byte) (define bytecode83::Byte)
92 | (define bytecode84::Byte) (define bytecode85::Byte)
93 | (define bytecode86::Byte) (define bytecode87::Byte)
94 | (define bytecode88::Byte) (define bytecode89::Byte)
95 | (define bytecode8A::Byte) (define bytecode8B::Byte)
96 | (define bytecode8C::Byte) (define bytecode8D::Byte)
97 | (define bytecode8E::Byte) (define bytecode8F::Byte)
98 | (define bytecode90::Byte) (define bytecode91::Byte)
99 | (define bytecode92::Byte) (define bytecode93::Byte)
100 | (define bytecode94::Byte) (define bytecode95::Byte)
101 | (define bytecode96::Byte) (define bytecode97::Byte)
102 | (define bytecode98::Byte) (define bytecode99::Byte)
103 | (define bytecode9A::Byte) (define bytecode9B::Byte)
104 | (define bytecode9C::Byte) (define bytecode9D::Byte)
105 | (define bytecode9E::Byte) (define bytecode9F::Byte)
106 | (define bytecodeA0::Byte) (define bytecodeA1::Byte)
107 | (define bytecodeA2::Byte) (define bytecodeA3::Byte)
108 | (define bytecodeA4::Byte) (define bytecodeA5::Byte)
109 | (define bytecodeA6::Byte) (define bytecodeA7::Byte)
110 | (define bytecodeA8::Byte) (define bytecodeA9::Byte)
111 | (define bytecodeAA::Byte) (define bytecodeAB::Byte)
112 | (define bytecodeAC::Byte) (define bytecodeAD::Byte)
113 | (define bytecodeAE::Byte) (define bytecodeAF::Byte)
114 | (define bytecodeB0::Byte) (define bytecodeB1::Byte)
115 | (define bytecodeB2::Byte) (define bytecodeB3::Byte)
116 | (define bytecodeB4::Byte) (define bytecodeB5::Byte)
117 | (define bytecodeB6::Byte) (define bytecodeB7::Byte)
118 | (define bytecodeB8::Byte) (define bytecodeB9::Byte)
119 | (define bytecodeBA::Byte) (define bytecodeBB::Byte)
120 | (define bytecodeBC::Byte) (define bytecodeBD::Byte)
121 | (define bytecodeBE::Byte) (define bytecodeBF::Byte)
122 | (define bytecodeC0::Byte) (define bytecodeC1::Byte)
123 | (define bytecodeC2::Byte) (define bytecodeC3::Byte)
124 | (define bytecodeC4::Byte) (define bytecodeC5::Byte)
125 | (define bytecodeC6::Byte) (define bytecodeC7::Byte)
126 | (define bytecodeC8::Byte) (define bytecodeC9::Byte)
127 | (define bytecodeCA::Byte) (define bytecodeCB::Byte)
128 | (define bytecodeCC::Byte) (define bytecodeCD::Byte)
129 | (define bytecodeCE::Byte) (define bytecodeCF::Byte)
130 | (define bytecodeD0::Byte) (define bytecodeD1::Byte)
131 | (define bytecodeD2::Byte) (define bytecodeD3::Byte)
132 | (define bytecodeD4::Byte) (define bytecodeD5::Byte)
133 | (define bytecodeD6::Byte) (define bytecodeD7::Byte)
134 | (define bytecodeD8::Byte) (define bytecodeD9::Byte)
135 | (define bytecodeDA::Byte) (define bytecodeDB::Byte)
136 | (define bytecodeDC::Byte) (define bytecodeDD::Byte)
137 | (define bytecodeDE::Byte) (define bytecodeDF::Byte)
138 | (define bytecodeE0::Byte) (define bytecodeE1::Byte)
139 | (define bytecodeE2::Byte) (define bytecodeE3::Byte)
140 | (define bytecodeE4::Byte) (define bytecodeE5::Byte)
141 | (define bytecodeE6::Byte) (define bytecodeE7::Byte)
142 | (define bytecodeE8::Byte) (define bytecodeE9::Byte)
143 | (define bytecodeEA::Byte) (define bytecodeEB::Byte)
144 | (define bytecodeEC::Byte) (define bytecodeED::Byte)
145 | (define bytecodeEE::Byte) (define bytecodeEF::Byte)
146 | (define bytecodeF0::Byte) (define bytecodeF1::Byte)
147 | (define bytecodeF2::Byte) (define bytecodeF3::Byte)
148 | (define bytecodeF4::Byte) (define bytecodeF5::Byte)
149 | (define bytecodeF6::Byte) (define bytecodeF7::Byte)
150 | (define bytecodeF8::Byte) (define bytecodeF9::Byte)
151 | (define bytecodeFA::Byte) (define bytecodeFB::Byte)
152 | (define bytecodeFC::Byte) (define bytecodeFD::Byte)
153 | (define bytecodeFE::Byte) (define bytecodeFF::Byte)
154 |
155 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX
156 | ; variable.
157 | (define get-byte::(-> Byte Byte)
158 | (lambda (x::Byte)
159 | (ite (= x 0x00) bytecode00
160 | (ite (= x 0x01) bytecode01
161 | (ite (= x 0x02) bytecode02
162 | (ite (= x 0x03) bytecode03
163 | (ite (= x 0x04) bytecode04
164 | (ite (= x 0x05) bytecode05
165 | (ite (= x 0x06) bytecode06
166 | (ite (= x 0x07) bytecode07
167 | (ite (= x 0x08) bytecode08
168 | (ite (= x 0x09) bytecode09
169 | (ite (= x 0x0A) bytecode0A
170 | (ite (= x 0x0B) bytecode0B
171 | (ite (= x 0x0C) bytecode0C
172 | (ite (= x 0x0D) bytecode0D
173 | (ite (= x 0x0E) bytecode0E
174 | (ite (= x 0x0F) bytecode0F
175 | (ite (= x 0x10) bytecode10
176 | (ite (= x 0x11) bytecode11
177 | (ite (= x 0x12) bytecode12
178 | (ite (= x 0x13) bytecode13
179 | (ite (= x 0x14) bytecode14
180 | (ite (= x 0x15) bytecode15
181 | (ite (= x 0x16) bytecode16
182 | (ite (= x 0x17) bytecode17
183 | (ite (= x 0x18) bytecode18
184 | (ite (= x 0x19) bytecode19
185 | (ite (= x 0x1A) bytecode1A
186 | (ite (= x 0x1B) bytecode1B
187 | (ite (= x 0x1C) bytecode1C
188 | (ite (= x 0x1D) bytecode1D
189 | (ite (= x 0x1E) bytecode1E
190 | (ite (= x 0x1F) bytecode1F
191 | (ite (= x 0x20) bytecode20
192 | (ite (= x 0x21) bytecode21
193 | (ite (= x 0x22) bytecode22
194 | (ite (= x 0x23) bytecode23
195 | (ite (= x 0x24) bytecode24
196 | (ite (= x 0x25) bytecode25
197 | (ite (= x 0x26) bytecode26
198 | (ite (= x 0x27) bytecode27
199 | (ite (= x 0x28) bytecode28
200 | (ite (= x 0x29) bytecode29
201 | (ite (= x 0x2A) bytecode2A
202 | (ite (= x 0x2B) bytecode2B
203 | (ite (= x 0x2C) bytecode2C
204 | (ite (= x 0x2D) bytecode2D
205 | (ite (= x 0x2E) bytecode2E
206 | (ite (= x 0x2F) bytecode2F
207 | (ite (= x 0x30) bytecode30
208 | (ite (= x 0x31) bytecode31
209 | (ite (= x 0x32) bytecode32
210 | (ite (= x 0x33) bytecode33
211 | (ite (= x 0x34) bytecode34
212 | (ite (= x 0x35) bytecode35
213 | (ite (= x 0x36) bytecode36
214 | (ite (= x 0x37) bytecode37
215 | (ite (= x 0x38) bytecode38
216 | (ite (= x 0x39) bytecode39
217 | (ite (= x 0x3A) bytecode3A
218 | (ite (= x 0x3B) bytecode3B
219 | (ite (= x 0x3C) bytecode3C
220 | (ite (= x 0x3D) bytecode3D
221 | (ite (= x 0x3E) bytecode3E
222 | (ite (= x 0x3F) bytecode3F
223 | (ite (= x 0x40) bytecode40
224 | (ite (= x 0x41) bytecode41
225 | (ite (= x 0x42) bytecode42
226 | (ite (= x 0x43) bytecode43
227 | (ite (= x 0x44) bytecode44
228 | (ite (= x 0x45) bytecode45
229 | (ite (= x 0x46) bytecode46
230 | (ite (= x 0x47) bytecode47
231 | (ite (= x 0x48) bytecode48
232 | (ite (= x 0x49) bytecode49
233 | (ite (= x 0x4A) bytecode4A
234 | (ite (= x 0x4B) bytecode4B
235 | (ite (= x 0x4C) bytecode4C
236 | (ite (= x 0x4D) bytecode4D
237 | (ite (= x 0x4E) bytecode4E
238 | (ite (= x 0x4F) bytecode4F
239 | (ite (= x 0x50) bytecode50
240 | (ite (= x 0x51) bytecode51
241 | (ite (= x 0x52) bytecode52
242 | (ite (= x 0x53) bytecode53
243 | (ite (= x 0x54) bytecode54
244 | (ite (= x 0x55) bytecode55
245 | (ite (= x 0x56) bytecode56
246 | (ite (= x 0x57) bytecode57
247 | (ite (= x 0x58) bytecode58
248 | (ite (= x 0x59) bytecode59
249 | (ite (= x 0x5A) bytecode5A
250 | (ite (= x 0x5B) bytecode5B
251 | (ite (= x 0x5C) bytecode5C
252 | (ite (= x 0x5D) bytecode5D
253 | (ite (= x 0x5E) bytecode5E
254 | (ite (= x 0x5F) bytecode5F
255 | (ite (= x 0x60) bytecode60
256 | (ite (= x 0x61) bytecode61
257 | (ite (= x 0x62) bytecode62
258 | (ite (= x 0x63) bytecode63
259 | (ite (= x 0x64) bytecode64
260 | (ite (= x 0x65) bytecode65
261 | (ite (= x 0x66) bytecode66
262 | (ite (= x 0x67) bytecode67
263 | (ite (= x 0x68) bytecode68
264 | (ite (= x 0x69) bytecode69
265 | (ite (= x 0x6A) bytecode6A
266 | (ite (= x 0x6B) bytecode6B
267 | (ite (= x 0x6C) bytecode6C
268 | (ite (= x 0x6D) bytecode6D
269 | (ite (= x 0x6E) bytecode6E
270 | (ite (= x 0x6F) bytecode6F
271 | (ite (= x 0x70) bytecode70
272 | (ite (= x 0x71) bytecode71
273 | (ite (= x 0x72) bytecode72
274 | (ite (= x 0x73) bytecode73
275 | (ite (= x 0x74) bytecode74
276 | (ite (= x 0x75) bytecode75
277 | (ite (= x 0x76) bytecode76
278 | (ite (= x 0x77) bytecode77
279 | (ite (= x 0x78) bytecode78
280 | (ite (= x 0x79) bytecode79
281 | (ite (= x 0x7A) bytecode7A
282 | (ite (= x 0x7B) bytecode7B
283 | (ite (= x 0x7C) bytecode7C
284 | (ite (= x 0x7D) bytecode7D
285 | (ite (= x 0x7E) bytecode7E
286 | (ite (= x 0x7F) bytecode7F
287 | (ite (= x 0x80) bytecode80
288 | (ite (= x 0x81) bytecode81
289 | (ite (= x 0x82) bytecode82
290 | (ite (= x 0x83) bytecode83
291 | (ite (= x 0x84) bytecode84
292 | (ite (= x 0x85) bytecode85
293 | (ite (= x 0x86) bytecode86
294 | (ite (= x 0x87) bytecode87
295 | (ite (= x 0x88) bytecode88
296 | (ite (= x 0x89) bytecode89
297 | (ite (= x 0x8A) bytecode8A
298 | (ite (= x 0x8B) bytecode8B
299 | (ite (= x 0x8C) bytecode8C
300 | (ite (= x 0x8D) bytecode8D
301 | (ite (= x 0x8E) bytecode8E
302 | (ite (= x 0x8F) bytecode8F
303 | (ite (= x 0x90) bytecode90
304 | (ite (= x 0x91) bytecode91
305 | (ite (= x 0x92) bytecode92
306 | (ite (= x 0x93) bytecode93
307 | (ite (= x 0x94) bytecode94
308 | (ite (= x 0x95) bytecode95
309 | (ite (= x 0x96) bytecode96
310 | (ite (= x 0x97) bytecode97
311 | (ite (= x 0x98) bytecode98
312 | (ite (= x 0x99) bytecode99
313 | (ite (= x 0x9A) bytecode9A
314 | (ite (= x 0x9B) bytecode9B
315 | (ite (= x 0x9C) bytecode9C
316 | (ite (= x 0x9D) bytecode9D
317 | (ite (= x 0x9E) bytecode9E
318 | (ite (= x 0x9F) bytecode9F
319 | (ite (= x 0xA0) bytecodeA0
320 | (ite (= x 0xA1) bytecodeA1
321 | (ite (= x 0xA2) bytecodeA2
322 | (ite (= x 0xA3) bytecodeA3
323 | (ite (= x 0xA4) bytecodeA4
324 | (ite (= x 0xA5) bytecodeA5
325 | (ite (= x 0xA6) bytecodeA6
326 | (ite (= x 0xA7) bytecodeA7
327 | (ite (= x 0xA8) bytecodeA8
328 | (ite (= x 0xA9) bytecodeA9
329 | (ite (= x 0xAA) bytecodeAA
330 | (ite (= x 0xAB) bytecodeAB
331 | (ite (= x 0xAC) bytecodeAC
332 | (ite (= x 0xAD) bytecodeAD
333 | (ite (= x 0xAE) bytecodeAE
334 | (ite (= x 0xAF) bytecodeAF
335 | (ite (= x 0xB0) bytecodeB0
336 | (ite (= x 0xB1) bytecodeB1
337 | (ite (= x 0xB2) bytecodeB2
338 | (ite (= x 0xB3) bytecodeB3
339 | (ite (= x 0xB4) bytecodeB4
340 | (ite (= x 0xB5) bytecodeB5
341 | (ite (= x 0xB6) bytecodeB6
342 | (ite (= x 0xB7) bytecodeB7
343 | (ite (= x 0xB8) bytecodeB8
344 | (ite (= x 0xB9) bytecodeB9
345 | (ite (= x 0xBA) bytecodeBA
346 | (ite (= x 0xBB) bytecodeBB
347 | (ite (= x 0xBC) bytecodeBC
348 | (ite (= x 0xBD) bytecodeBD
349 | (ite (= x 0xBE) bytecodeBE
350 | (ite (= x 0xBF) bytecodeBF
351 | (ite (= x 0xC0) bytecodeC0
352 | (ite (= x 0xC1) bytecodeC1
353 | (ite (= x 0xC2) bytecodeC2
354 | (ite (= x 0xC3) bytecodeC3
355 | (ite (= x 0xC4) bytecodeC4
356 | (ite (= x 0xC5) bytecodeC5
357 | (ite (= x 0xC6) bytecodeC6
358 | (ite (= x 0xC7) bytecodeC7
359 | (ite (= x 0xC8) bytecodeC8
360 | (ite (= x 0xC9) bytecodeC9
361 | (ite (= x 0xCA) bytecodeCA
362 | (ite (= x 0xCB) bytecodeCB
363 | (ite (= x 0xCC) bytecodeCC
364 | (ite (= x 0xCD) bytecodeCD
365 | (ite (= x 0xCE) bytecodeCE
366 | (ite (= x 0xCF) bytecodeCF
367 | (ite (= x 0xD0) bytecodeD0
368 | (ite (= x 0xD1) bytecodeD1
369 | (ite (= x 0xD2) bytecodeD2
370 | (ite (= x 0xD3) bytecodeD3
371 | (ite (= x 0xD4) bytecodeD4
372 | (ite (= x 0xD5) bytecodeD5
373 | (ite (= x 0xD6) bytecodeD6
374 | (ite (= x 0xD7) bytecodeD7
375 | (ite (= x 0xD8) bytecodeD8
376 | (ite (= x 0xD9) bytecodeD9
377 | (ite (= x 0xDA) bytecodeDA
378 | (ite (= x 0xDB) bytecodeDB
379 | (ite (= x 0xDC) bytecodeDC
380 | (ite (= x 0xDD) bytecodeDD
381 | (ite (= x 0xDE) bytecodeDE
382 | (ite (= x 0xDF) bytecodeDF
383 | (ite (= x 0xE0) bytecodeE0
384 | (ite (= x 0xE1) bytecodeE1
385 | (ite (= x 0xE2) bytecodeE2
386 | (ite (= x 0xE3) bytecodeE3
387 | (ite (= x 0xE4) bytecodeE4
388 | (ite (= x 0xE5) bytecodeE5
389 | (ite (= x 0xE6) bytecodeE6
390 | (ite (= x 0xE7) bytecodeE7
391 | (ite (= x 0xE8) bytecodeE8
392 | (ite (= x 0xE9) bytecodeE9
393 | (ite (= x 0xEA) bytecodeEA
394 | (ite (= x 0xEB) bytecodeEB
395 | (ite (= x 0xEC) bytecodeEC
396 | (ite (= x 0xED) bytecodeED
397 | (ite (= x 0xEE) bytecodeEE
398 | (ite (= x 0xEF) bytecodeEF
399 | (ite (= x 0xF0) bytecodeF0
400 | (ite (= x 0xF1) bytecodeF1
401 | (ite (= x 0xF2) bytecodeF2
402 | (ite (= x 0xF3) bytecodeF3
403 | (ite (= x 0xF4) bytecodeF4
404 | (ite (= x 0xF5) bytecodeF5
405 | (ite (= x 0xF6) bytecodeF6
406 | (ite (= x 0xF7) bytecodeF7
407 | (ite (= x 0xF8) bytecodeF8
408 | (ite (= x 0xF9) bytecodeF9
409 | (ite (= x 0xFA) bytecodeFA
410 | (ite (= x 0xFB) bytecodeFB
411 | (ite (= x 0xFC) bytecodeFC
412 | (ite (= x 0xFD) bytecodeFD
413 | (ite (= x 0xFE) bytecodeFE
414 | (ite (= x 0xFF) bytecodeFF
415 | bytecode04))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
416 | )
417 | )
418 |
419 | ; getreg32(reg,state). Return the value of register 'reg' from state 'state'.
420 | (define getreg32::(-> RegIdx Reg32State Dword)
421 | (lambda (x::RegIdx z::Reg32State)
422 | (ite (= x 0b000) (bv-extract 31 0 z)
423 | (ite (= x 0b001) (bv-extract 63 32 z)
424 | (ite (= x 0b010) (bv-extract 95 64 z)
425 | (ite (= x 0b011) (bv-extract 127 96 z)
426 | (ite (= x 0b100) (bv-extract 159 128 z)
427 | (ite (= x 0b101) (bv-extract 191 160 z)
428 | (ite (= x 0b110) (bv-extract 223 192 z)
429 | (bv-extract 255 224 z)
430 | )))))))
431 | )
432 | )
433 |
434 | ; putreg32(reg,state,value). Update register 'reg' to value 'value' in state
435 | ; 'state'; return the new state.
436 | (define putreg32::(-> RegIdx Dword Reg32State Reg32State)
437 | (lambda (x::RegIdx y::Dword z::Reg32State)
438 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y)
439 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z))
440 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z))
441 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z))
442 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z))
443 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z))
444 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z))
445 | (bv-concat y (bv-extract 223 0 z))
446 | )))))))
447 | )
448 | )
449 |
450 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the
451 | ; operation specified by that instruction. Consult and update the state 'state'
452 | ; accordingly; return the new state concatenated with the length of the
453 | ; instruction. In other words, this function simulates the effects of executing
454 | ; every possible instruction.
455 | (define symbolic-insn::(-> (-> Byte Byte) Byte Reg32State (bitvector 264))
456 | (lambda (f-get-byte::(-> Byte Byte) eip::Byte state::Reg32State)
457 | (let ((byte0 (f-get-byte eip)))
458 | (let ((byte1 (f-get-byte (bv-add 0x01 eip))))
459 | (let ((byte2 (f-get-byte (bv-add 0x02 eip))))
460 | (let ((byte3 (f-get-byte (bv-add 0x03 eip))))
461 | (let ((byte4 (f-get-byte (bv-add 0x04 eip))))
462 | ; xor reg, reg
463 | (ite (= (bv-and byte0 0xC0) 0x00)
464 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
465 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
466 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state)))
467 | (bv-concat 0x01 newstate)
468 | )))
469 | ; add reg, reg
470 | (ite (= (bv-and byte0 0xC0) 0x40)
471 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
472 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
473 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state)))
474 | (bv-concat 0x01 newstate)
475 | )))
476 | ; mov reg, reg
477 | (ite (= (bv-and byte0 0xC0) 0x80)
478 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
479 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
480 | (let ((newstate (putreg32 lhsreg0 (getreg32 rhsreg0 state) state)))
481 | (bv-concat 0x01 newstate)
482 | )))
483 | ; complex 0xC0 case
484 | (let ((opcode (bv-extract 5 3 byte0)))
485 | (let ((lhsreg0 (bv-extract 2 0 byte0)))
486 | ; inc reg
487 | (ite (= opcode 0b000)
488 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) 0x00000001) state)))
489 | (bv-concat 0x01 newstate))
490 | ; dec reg
491 | (ite (= opcode 0b001)
492 | (let ((newstate (putreg32 lhsreg0 (bv-sub (getreg32 lhsreg0 state) 0x00000001) state)))
493 | (bv-concat 0x01 newstate))
494 | ; neg reg
495 | (ite (= opcode 0b010)
496 | (let ((newstate (putreg32 lhsreg0 (bv-neg (getreg32 lhsreg0 state)) state)))
497 | (bv-concat 0x01 newstate))
498 | ; not reg
499 | (ite (= opcode 0b011)
500 | (let ((newstate (putreg32 lhsreg0 (bv-not (getreg32 lhsreg0 state)) state)))
501 | (bv-concat 0x01 newstate))
502 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1)))
503 | ; add reg, imm32
504 | (ite (= opcode 0b100)
505 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) rhsval0) state)))
506 | (bv-concat 0x05 newstate))
507 | ; xor reg, imm32
508 | (ite (= opcode 0b101)
509 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) rhsval0) state)))
510 | (bv-concat 0x05 newstate))
511 | ; and reg, imm32
512 | (ite (= opcode 0b110)
513 | (let ((newstate (putreg32 lhsreg0 (bv-and (getreg32 lhsreg0 state) rhsval0) state)))
514 | (bv-concat 0x05 newstate))
515 | ; opcode == 0b111
516 | ; or reg, imm32
517 | (let ((newstate (putreg32 lhsreg0 (bv-or (getreg32 lhsreg0 state) rhsval0) state)))
518 | (bv-concat 0x05 newstate)))))))))))))))
519 | )))))
520 | )
521 | )
522 |
523 | ; The main assertion.
524 | (assert
525 | ; For every possible input state (r0, ..., r7).
526 | ; There is an additional universally-quantified variable idx: used to make
527 | ; statements about the bytes in the encoding.
528 | (forall (r0::Dword r1::Dword r2::Dword r3::Dword r4::Dword r5::Dword r6::Dword r7::Dword idx::Byte)
529 | ; ------------------------
530 | ; INITIALIZE STATE AND EIP
531 | ; ------------------------
532 | ; Create the input "state" by concatenating all of the inputs.
533 | (let ((state0 (bv-concat r7 r6 r5 r4 r3 r2 r1 r0)))
534 | ; Set initial EIP to zero.
535 | (let ((eip0 0x00))
536 |
537 | ; ------------------------
538 | ; SIMULATE ONE INSTRUCTION
539 | ; ------------------------
540 |
541 | ; Perform symbolic simulation of one instruction (any instruction).
542 | (let ((synsem0 (symbolic-insn get-byte eip0 state0)))
543 | ; Extract the length of the instruction.
544 | (let ((insn0len (bv-extract 263 256 synsem0)))
545 | ; Extract the output state after having executed the instruction.
546 | (let ((state1 (bv-extract 255 0 synsem0)))
547 | ; Extract EIP after executing the instruction.
548 | (let ((eip1 (bv-add eip0 insn0len)))
549 |
550 | ; ------------------------
551 | ; SIMULATE ONE INSTRUCTION
552 | ; ------------------------
553 |
554 | ; Perform symbolic simulation of one instruction (any instruction).
555 | (let ((synsem1 (symbolic-insn get-byte eip1 state1)))
556 | ; Extract the length of the instruction.
557 | (let ((insn1len (bv-extract 263 256 synsem1)))
558 | ; Extract the output state after having executed the instruction.
559 | (let ((state2 (bv-extract 255 0 synsem1)))
560 | ; Extract EIP after executing the instruction.
561 | (let ((eip2 (bv-add eip1 insn1len)))
562 |
563 | ; ----------------------
564 | ; FINALIZE STATE AND EIP
565 | ; ----------------------
566 |
567 | ; Call the final state "finalstate" (for convenience).
568 | (let ((finalstate state2))
569 | ; Call the final EIP "finaleip" (for convenience).
570 | (let ((finaleip eip2))
571 |
572 | ; --------------------------------------------------
573 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING
574 | ; --------------------------------------------------
575 |
576 | (and
577 | ; 0-length instructions are invalid; both instructions must be valid.
578 | (not (= insn0len 0x00))
579 | (not (= insn1len 0x00))
580 |
581 | ; -----------------------------------
582 | ; CONSTRAINTS REGARDING FUNCTIONALITY
583 | ; -----------------------------------
584 |
585 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved.
586 | (= (getreg32 R0Idx finalstate) (bv-add r0 0x00000001))
587 | (= (getreg32 R1Idx finalstate) r1)
588 | (= (getreg32 R2Idx finalstate) r2)
589 | (= (getreg32 R3Idx finalstate) r3)
590 | (= (getreg32 R4Idx finalstate) r4)
591 | (= (getreg32 R5Idx finalstate) r5)
592 | (= (getreg32 R6Idx finalstate) r6)
593 | (= (getreg32 R7Idx finalstate) r7)
594 |
595 | ; ------------------------------
596 | ; CONSTRAINTS REGARDING ENCODING
597 | ; ------------------------------
598 | ; None of the bytes are 0x12
599 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12))
600 | ; None of the bytes are 0x34
601 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34))
602 | ; None of the bytes are 0x56
603 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56))
604 | ; None of the bytes are 0x78
605 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78))
606 | ; None of the bytes are 0x00 (commented out)
607 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00))
608 | ) ; end and
609 | )))))))))))) ; end let * 12
610 | ) ; end forall
611 | ) ; end assert
612 |
613 | ; Solve the constraint system
614 | (ef-solve)
615 |
616 | ; Produce a model, i.e., values for bytecode00-bytecodeFF.
617 | ; This statement will crash yices if (ef-solve) returned unsatisfiable.
618 | (show-model)
--------------------------------------------------------------------------------
/synesthesia-1.ys:
--------------------------------------------------------------------------------
1 | (define bytecode::(-> (bitvector 8) (bitvector 8)))
2 |
3 | (assert
4 | (forall (r0::(bitvector 32) r1::(bitvector 32) r2::(bitvector 32) r3::(bitvector 32) r4::(bitvector 32) r5::(bitvector 32) r6::(bitvector 32) r7::(bitvector 32))
5 | (let ((eip0 0x00))
6 | (let ((state00 (update (lambda (x::(bitvector 3)) r0) (0b000) r0)))
7 | (let ((state01 (update state00 (0b001) r1)))
8 | (let ((state02 (update state01 (0b010) r2)))
9 | (let ((state03 (update state02 (0b011) r3)))
10 | (let ((state04 (update state03 (0b100) r4)))
11 | (let ((state05 (update state04 (0b101) r5)))
12 | (let ((state06 (update state05 (0b110) r6)))
13 | (let ((state (update state06 (0b111) r7)))
14 | (let ((insn0byte (bytecode eip0)))
15 | (let ((synsem0
16 | (ite (= (bv-and insn0byte 0xC0) 0x00)
17 | (let ((lhsreg0 (bv-extract 5 3 insn0byte)))
18 | (let ((rhsreg0 (bv-extract 2 0 insn0byte)))
19 | (let ((newstate (update state (lhsreg0) (bv-add (state lhsreg0) (state rhsreg0)))))
20 | (mk-tuple 0x01 newstate)
21 | )))
22 | (ite (= (bv-and insn0byte 0xC0) 0x40)
23 | (let ((lhsreg0 (bv-extract 5 3 insn0byte)))
24 | (let ((rhsval0 (bv-concat (bytecode (bv-add eip0 0x03)) (bytecode (bv-add eip0 0x02)) (bytecode (bv-add eip0 0x01)) (bytecode (bv-add eip0 0x00)))))
25 | (let ((newstate (update state (lhsreg0) (bv-add (state lhsreg0) rhsval0))))
26 | (mk-tuple 0x05 newstate)
27 | )))
28 | (ite (= (bv-and insn0byte 0xC0) 0x80)
29 | (let ((lhsreg0 (bv-extract 5 3 insn0byte)))
30 | (let ((rhsreg0 (bv-extract 2 0 insn0byte)))
31 | (let ((newstate (update state (lhsreg0) (bv-xor (state lhsreg0) (state rhsreg0)))))
32 | (mk-tuple 0x01 newstate)
33 | )))
34 | ; 0xC0 case
35 | (let ((lhsreg0 (bv-extract 5 3 insn0byte)))
36 | (let ((rhsval0 (bv-concat (bytecode (bv-add eip0 0x03)) (bytecode (bv-add eip0 0x02)) (bytecode (bv-add eip0 0x01)) (bytecode (bv-add eip0 0x00)))))
37 | (let ((newstate (update state (lhsreg0) (bv-xor (state lhsreg0) rhsval0))))
38 | (mk-tuple 0x05 newstate)
39 | )))
40 | )))))
41 | (let ((insn0len (select synsem0 1)))
42 | (let ((state1 (select synsem0 2)))
43 | (and
44 | ; eip beforehand is 0
45 | (= eip0 0x00)
46 | (/= insn0len 0x00)
47 | (= (state1 0b000) (bv-not (state 0b000)))
48 | (= (state1 0b001) (state 0b001))
49 | (= (state1 0b010) (state 0b010))
50 | (= (state1 0b011) (state 0b011))
51 | (= (state1 0b100) (state 0b100))
52 | (= (state1 0b101) (state 0b101))
53 | (= (state1 0b110) (state 0b110))
54 | (= (state1 0b111) (state 0b111))
55 | ) ; and
56 | ))))))))))))) ; let * 12
57 | ) ; forall
58 | ) ; assert
59 |
60 | (ef-solve)
61 | (show-model)
--------------------------------------------------------------------------------
/synesthesia-simple-loops--solution.ys:
--------------------------------------------------------------------------------
1 | (= bytecode00 0xF0)
2 | (= bytecode01 0x40)
3 | (= bytecode02 0x00)
4 | (= bytecode03 0x00)
5 | (= bytecode04 0x00)
6 | (= bytecode05 0xC1)
7 | (= bytecode06 0xC9)
8 | (= bytecode07 0xE0)
9 | (= bytecode08 0xF8)
10 | (= bytecode09 0xFB)
11 | (= WhichReg 0b000)
12 | (= shellcode00 0xA0)
13 | (= shellcode01 0x8C)
14 | (= shellcode02 0x1C)
15 | (= shellcode03 0x29)
16 | (= shellcode04 0xA1)
17 | (= shellcode05 0xCC)
18 | (= shellcode06 0x38)
19 | (= shellcode07 0xFD)
20 | (= shellcode08 0x8D)
21 | (= shellcode09 0xF4)
22 | (= shellcode0A 0x8E)
23 | (= shellcode0B 0x59)
24 | (= shellcode0C 0x86)
25 | (= shellcode0D 0xB7)
26 | (= shellcode0E 0xCA)
27 | (= shellcode0F 0xFF)
28 | (= shellcode10 0x33)
29 | (= shellcode11 0x29)
30 | (= shellcode12 0xD6)
31 | (= shellcode13 0xE3)
32 | (= shellcode14 0x6F)
33 | (= shellcode15 0x4B)
34 | (= shellcode16 0x19)
35 | (= shellcode17 0x71)
36 | (= shellcode18 0x5C)
37 | (= shellcode19 0xBB)
38 | (= shellcode1A 0x4E)
39 | (= shellcode1B 0x90)
40 | (= shellcode1C 0xC3)
41 | (= shellcode1D 0xF7)
42 | (= shellcode1E 0x41)
43 | (= shellcode1F 0x9E)
44 | (= shellcode20 0xA2)
45 | (= shellcode21 0x1C)
46 | (= shellcode22 0x22)
47 | (= shellcode23 0xBF)
48 | (= shellcode24 0x25)
49 | (= shellcode25 0x0F)
50 | (= shellcode26 0xFE)
51 | (= shellcode27 0xA6)
52 | (= shellcode28 0x81)
53 | (= shellcode29 0x10)
54 | (= shellcode2A 0x43)
55 | (= shellcode2B 0x38)
56 | (= shellcode2C 0x92)
57 | (= shellcode2D 0x95)
58 | (= shellcode2E 0x21)
59 | (= shellcode2F 0x2B)
60 | (= shellcode30 0xE3)
61 | (= shellcode31 0xA6)
62 | (= shellcode32 0xE9)
63 | (= shellcode33 0xAC)
64 | (= shellcode34 0x08)
65 | (= shellcode35 0x4D)
66 | (= shellcode36 0xBA)
67 | (= shellcode37 0x08)
68 | (= shellcode38 0x0B)
69 | (= shellcode39 0xAB)
70 | (= shellcode3A 0x22)
71 | (= shellcode3B 0x84)
72 | (= shellcode3C 0x6B)
73 | (= shellcode3D 0x1F)
74 | (= shellcode3E 0xAD)
75 | (= shellcode3F 0x05)
76 |
--------------------------------------------------------------------------------
/synesthesia-simple-loops-refactoring-JUSTLOOP.ys:
--------------------------------------------------------------------------------
1 | ; Loosen yices' arbitrary restriction on iteration count. (')
2 | (set-param ef-max-iters 1000)
3 |
4 | (define-type Bit (bitvector 1))
5 | (define-type Byte (bitvector 8))
6 | (define-type Word (bitvector 16))
7 | (define-type Dword (bitvector 32))
8 |
9 | (define-type RegIdx (bitvector 3))
10 | (define R0Idx::RegIdx (mk-bv 3 0)) ; R0 = 0
11 | (define R1Idx::RegIdx (mk-bv 3 1)) ; R1 = 1
12 | (define R2Idx::RegIdx (mk-bv 3 2)) ; R2 = 2
13 | (define R3Idx::RegIdx (mk-bv 3 3)) ; R3 = 3
14 | (define R4Idx::RegIdx (mk-bv 3 4)) ; R4 = 4
15 | (define R5Idx::RegIdx (mk-bv 3 5)) ; R5 = 5
16 | (define R6Idx::RegIdx (mk-bv 3 6)) ; R6 = 6
17 | (define R7Idx::RegIdx (mk-bv 3 7)) ; R7 = 7
18 |
19 | (define-type Reg32State (bitvector 256))
20 | (define-type SCState (bitvector 512)) ; 0x40-length shellcode
21 | (define-type EIPRingBuffer (bitvector 80)) ; 10 8-bit EIP history
22 | (define-type EIPBitMask (bitvector 10)) ; 10 1-bit EIP bitmask
23 |
24 | (define-type MachineState (bitvector 866))
25 | ; 255 0: Reg32State
26 | ; 767 256: SCState
27 | ; 775 768: Byte [scptr]
28 | ; 855 776: EIPRingBuffer
29 | ; 865 855: EIPBitMask
30 |
31 | (define-type DecodedMachineState (bitvector 876)) ; (extra::Bit,length::Byte,MachineState)
32 | ; 865 0: MachineState
33 | ; 873 866: Byte [length]
34 | ; 874 874: Bit [extra]
35 | ; 875 875: Bit [is-jcc]
36 |
37 | (define WhichReg::RegIdx)
38 |
39 | (define bytecode00::Byte) (define bytecode01::Byte)
40 | (define bytecode02::Byte) (define bytecode03::Byte)
41 | (define bytecode04::Byte) (define bytecode05::Byte)
42 | (define bytecode06::Byte) (define bytecode07::Byte)
43 | (define bytecode08::Byte) (define bytecode09::Byte)
44 | (define bytecode0A::Byte) (define bytecode0B::Byte)
45 | (define bytecode0C::Byte) (define bytecode0D::Byte)
46 | (define bytecode0E::Byte) (define bytecode0F::Byte)
47 | (define bytecode10::Byte) (define bytecode11::Byte)
48 | (define bytecode12::Byte) (define bytecode13::Byte)
49 | (define bytecode14::Byte) (define bytecode15::Byte)
50 | (define bytecode16::Byte) (define bytecode17::Byte)
51 | (define bytecode18::Byte) (define bytecode19::Byte)
52 | (define bytecode1A::Byte) (define bytecode1B::Byte)
53 | (define bytecode1C::Byte) (define bytecode1D::Byte)
54 | (define bytecode1E::Byte) (define bytecode1F::Byte)
55 | (define bytecode20::Byte) (define bytecode21::Byte)
56 | (define bytecode22::Byte) (define bytecode23::Byte)
57 | (define bytecode24::Byte) (define bytecode25::Byte)
58 | (define bytecode26::Byte) (define bytecode27::Byte)
59 | (define bytecode28::Byte) (define bytecode29::Byte)
60 | (define bytecode2A::Byte) (define bytecode2B::Byte)
61 | (define bytecode2C::Byte) (define bytecode2D::Byte)
62 | (define bytecode2E::Byte) (define bytecode2F::Byte)
63 | (define bytecode30::Byte) (define bytecode31::Byte)
64 | (define bytecode32::Byte) (define bytecode33::Byte)
65 | (define bytecode34::Byte) (define bytecode35::Byte)
66 | (define bytecode36::Byte) (define bytecode37::Byte)
67 | (define bytecode38::Byte) (define bytecode39::Byte)
68 | (define bytecode3A::Byte) (define bytecode3B::Byte)
69 | (define bytecode3C::Byte) (define bytecode3D::Byte)
70 | (define bytecode3E::Byte) (define bytecode3F::Byte)
71 | (define bytecode40::Byte) (define bytecode41::Byte)
72 | (define bytecode42::Byte) (define bytecode43::Byte)
73 | (define bytecode44::Byte) (define bytecode45::Byte)
74 | (define bytecode46::Byte) (define bytecode47::Byte)
75 | (define bytecode48::Byte) (define bytecode49::Byte)
76 | (define bytecode4A::Byte) (define bytecode4B::Byte)
77 | (define bytecode4C::Byte) (define bytecode4D::Byte)
78 | (define bytecode4E::Byte) (define bytecode4F::Byte)
79 | (define bytecode50::Byte) (define bytecode51::Byte)
80 | (define bytecode52::Byte) (define bytecode53::Byte)
81 | (define bytecode54::Byte) (define bytecode55::Byte)
82 | (define bytecode56::Byte) (define bytecode57::Byte)
83 | (define bytecode58::Byte) (define bytecode59::Byte)
84 | (define bytecode5A::Byte) (define bytecode5B::Byte)
85 | (define bytecode5C::Byte) (define bytecode5D::Byte)
86 | (define bytecode5E::Byte) (define bytecode5F::Byte)
87 | (define bytecode60::Byte) (define bytecode61::Byte)
88 | (define bytecode62::Byte) (define bytecode63::Byte)
89 | (define bytecode64::Byte) (define bytecode65::Byte)
90 | (define bytecode66::Byte) (define bytecode67::Byte)
91 | (define bytecode68::Byte) (define bytecode69::Byte)
92 | (define bytecode6A::Byte) (define bytecode6B::Byte)
93 | (define bytecode6C::Byte) (define bytecode6D::Byte)
94 | (define bytecode6E::Byte) (define bytecode6F::Byte)
95 | (define bytecode70::Byte) (define bytecode71::Byte)
96 | (define bytecode72::Byte) (define bytecode73::Byte)
97 | (define bytecode74::Byte) (define bytecode75::Byte)
98 | (define bytecode76::Byte) (define bytecode77::Byte)
99 | (define bytecode78::Byte) (define bytecode79::Byte)
100 | (define bytecode7A::Byte) (define bytecode7B::Byte)
101 | (define bytecode7C::Byte) (define bytecode7D::Byte)
102 | (define bytecode7E::Byte) (define bytecode7F::Byte)
103 | (define bytecode80::Byte) (define bytecode81::Byte)
104 | (define bytecode82::Byte) (define bytecode83::Byte)
105 | (define bytecode84::Byte) (define bytecode85::Byte)
106 | (define bytecode86::Byte) (define bytecode87::Byte)
107 | (define bytecode88::Byte) (define bytecode89::Byte)
108 | (define bytecode8A::Byte) (define bytecode8B::Byte)
109 | (define bytecode8C::Byte) (define bytecode8D::Byte)
110 | (define bytecode8E::Byte) (define bytecode8F::Byte)
111 | (define bytecode90::Byte) (define bytecode91::Byte)
112 | (define bytecode92::Byte) (define bytecode93::Byte)
113 | (define bytecode94::Byte) (define bytecode95::Byte)
114 | (define bytecode96::Byte) (define bytecode97::Byte)
115 | (define bytecode98::Byte) (define bytecode99::Byte)
116 | (define bytecode9A::Byte) (define bytecode9B::Byte)
117 | (define bytecode9C::Byte) (define bytecode9D::Byte)
118 | (define bytecode9E::Byte) (define bytecode9F::Byte)
119 | (define bytecodeA0::Byte) (define bytecodeA1::Byte)
120 | (define bytecodeA2::Byte) (define bytecodeA3::Byte)
121 | (define bytecodeA4::Byte) (define bytecodeA5::Byte)
122 | (define bytecodeA6::Byte) (define bytecodeA7::Byte)
123 | (define bytecodeA8::Byte) (define bytecodeA9::Byte)
124 | (define bytecodeAA::Byte) (define bytecodeAB::Byte)
125 | (define bytecodeAC::Byte) (define bytecodeAD::Byte)
126 | (define bytecodeAE::Byte) (define bytecodeAF::Byte)
127 | (define bytecodeB0::Byte) (define bytecodeB1::Byte)
128 | (define bytecodeB2::Byte) (define bytecodeB3::Byte)
129 | (define bytecodeB4::Byte) (define bytecodeB5::Byte)
130 | (define bytecodeB6::Byte) (define bytecodeB7::Byte)
131 | (define bytecodeB8::Byte) (define bytecodeB9::Byte)
132 | (define bytecodeBA::Byte) (define bytecodeBB::Byte)
133 | (define bytecodeBC::Byte) (define bytecodeBD::Byte)
134 | (define bytecodeBE::Byte) (define bytecodeBF::Byte)
135 | (define bytecodeC0::Byte) (define bytecodeC1::Byte)
136 | (define bytecodeC2::Byte) (define bytecodeC3::Byte)
137 | (define bytecodeC4::Byte) (define bytecodeC5::Byte)
138 | (define bytecodeC6::Byte) (define bytecodeC7::Byte)
139 | (define bytecodeC8::Byte) (define bytecodeC9::Byte)
140 | (define bytecodeCA::Byte) (define bytecodeCB::Byte)
141 | (define bytecodeCC::Byte) (define bytecodeCD::Byte)
142 | (define bytecodeCE::Byte) (define bytecodeCF::Byte)
143 | (define bytecodeD0::Byte) (define bytecodeD1::Byte)
144 | (define bytecodeD2::Byte) (define bytecodeD3::Byte)
145 | (define bytecodeD4::Byte) (define bytecodeD5::Byte)
146 | (define bytecodeD6::Byte) (define bytecodeD7::Byte)
147 | (define bytecodeD8::Byte) (define bytecodeD9::Byte)
148 | (define bytecodeDA::Byte) (define bytecodeDB::Byte)
149 | (define bytecodeDC::Byte) (define bytecodeDD::Byte)
150 | (define bytecodeDE::Byte) (define bytecodeDF::Byte)
151 | (define bytecodeE0::Byte) (define bytecodeE1::Byte)
152 | (define bytecodeE2::Byte) (define bytecodeE3::Byte)
153 | (define bytecodeE4::Byte) (define bytecodeE5::Byte)
154 | (define bytecodeE6::Byte) (define bytecodeE7::Byte)
155 | (define bytecodeE8::Byte) (define bytecodeE9::Byte)
156 | (define bytecodeEA::Byte) (define bytecodeEB::Byte)
157 | (define bytecodeEC::Byte) (define bytecodeED::Byte)
158 | (define bytecodeEE::Byte) (define bytecodeEF::Byte)
159 | (define bytecodeF0::Byte) (define bytecodeF1::Byte)
160 | (define bytecodeF2::Byte) (define bytecodeF3::Byte)
161 | (define bytecodeF4::Byte) (define bytecodeF5::Byte)
162 | (define bytecodeF6::Byte) (define bytecodeF7::Byte)
163 | (define bytecodeF8::Byte) (define bytecodeF9::Byte)
164 | (define bytecodeFA::Byte) (define bytecodeFB::Byte)
165 | (define bytecodeFC::Byte) (define bytecodeFD::Byte)
166 | (define bytecodeFE::Byte) (define bytecodeFF::Byte)
167 |
168 | (define shellcode00::Byte) (define shellcode01::Byte)
169 | (define shellcode02::Byte) (define shellcode03::Byte)
170 | (define shellcode04::Byte) (define shellcode05::Byte)
171 | (define shellcode06::Byte) (define shellcode07::Byte)
172 | (define shellcode08::Byte) (define shellcode09::Byte)
173 | (define shellcode0A::Byte) (define shellcode0B::Byte)
174 | (define shellcode0C::Byte) (define shellcode0D::Byte)
175 | (define shellcode0E::Byte) (define shellcode0F::Byte)
176 | (define shellcode10::Byte) (define shellcode11::Byte)
177 | (define shellcode12::Byte) (define shellcode13::Byte)
178 | (define shellcode14::Byte) (define shellcode15::Byte)
179 | (define shellcode16::Byte) (define shellcode17::Byte)
180 | (define shellcode18::Byte) (define shellcode19::Byte)
181 | (define shellcode1A::Byte) (define shellcode1B::Byte)
182 | (define shellcode1C::Byte) (define shellcode1D::Byte)
183 | (define shellcode1E::Byte) (define shellcode1F::Byte)
184 | (define shellcode20::Byte) (define shellcode21::Byte)
185 | (define shellcode22::Byte) (define shellcode23::Byte)
186 | (define shellcode24::Byte) (define shellcode25::Byte)
187 | (define shellcode26::Byte) (define shellcode27::Byte)
188 | (define shellcode28::Byte) (define shellcode29::Byte)
189 | (define shellcode2A::Byte) (define shellcode2B::Byte)
190 | (define shellcode2C::Byte) (define shellcode2D::Byte)
191 | (define shellcode2E::Byte) (define shellcode2F::Byte)
192 | (define shellcode30::Byte) (define shellcode31::Byte)
193 | (define shellcode32::Byte) (define shellcode33::Byte)
194 | (define shellcode34::Byte) (define shellcode35::Byte)
195 | (define shellcode36::Byte) (define shellcode37::Byte)
196 | (define shellcode38::Byte) (define shellcode39::Byte)
197 | (define shellcode3A::Byte) (define shellcode3B::Byte)
198 | (define shellcode3C::Byte) (define shellcode3D::Byte)
199 | (define shellcode3E::Byte) (define shellcode3F::Byte)
200 |
201 | (define realscbyte00::Byte 0xA0)
202 | (define realscbyte01::Byte 0x8C)
203 | (define realscbyte02::Byte 0x1C)
204 | (define realscbyte03::Byte 0x29)
205 | (define realscbyte04::Byte 0xA1)
206 | (define realscbyte05::Byte 0xCC)
207 | (define realscbyte06::Byte 0x38)
208 | (define realscbyte07::Byte 0xFD)
209 | (define realscbyte08::Byte 0x8D)
210 | (define realscbyte09::Byte 0xF4)
211 | (define realscbyte0A::Byte 0x8E)
212 | (define realscbyte0B::Byte 0x59)
213 | (define realscbyte0C::Byte 0x86)
214 | (define realscbyte0D::Byte 0xB7)
215 | (define realscbyte0E::Byte 0xCA)
216 | (define realscbyte0F::Byte 0xFF)
217 | (define realscbyte10::Byte 0x33)
218 | (define realscbyte11::Byte 0x29)
219 | (define realscbyte12::Byte 0xD6)
220 | (define realscbyte13::Byte 0xE3)
221 | (define realscbyte14::Byte 0x6F)
222 | (define realscbyte15::Byte 0x4B)
223 | (define realscbyte16::Byte 0x19)
224 | (define realscbyte17::Byte 0x71)
225 | (define realscbyte18::Byte 0x5C)
226 | (define realscbyte19::Byte 0xBB)
227 | (define realscbyte1A::Byte 0x4E)
228 | (define realscbyte1B::Byte 0x90)
229 | (define realscbyte1C::Byte 0xC3)
230 | (define realscbyte1D::Byte 0xF7)
231 | (define realscbyte1E::Byte 0x41)
232 | (define realscbyte1F::Byte 0x9E)
233 | (define realscbyte20::Byte 0xA2)
234 | (define realscbyte21::Byte 0x1C)
235 | (define realscbyte22::Byte 0x22)
236 | (define realscbyte23::Byte 0xBF)
237 | (define realscbyte24::Byte 0x25)
238 | (define realscbyte25::Byte 0x0F)
239 | (define realscbyte26::Byte 0xFE)
240 | (define realscbyte27::Byte 0xA6)
241 | (define realscbyte28::Byte 0x81)
242 | (define realscbyte29::Byte 0x10)
243 | (define realscbyte2A::Byte 0x43)
244 | (define realscbyte2B::Byte 0x38)
245 | (define realscbyte2C::Byte 0x92)
246 | (define realscbyte2D::Byte 0x95)
247 | (define realscbyte2E::Byte 0x21)
248 | (define realscbyte2F::Byte 0x2B)
249 | (define realscbyte30::Byte 0xE3)
250 | (define realscbyte31::Byte 0xA6)
251 | (define realscbyte32::Byte 0xE9)
252 | (define realscbyte33::Byte 0xAC)
253 | (define realscbyte34::Byte 0x08)
254 | (define realscbyte35::Byte 0x4D)
255 | (define realscbyte36::Byte 0xBA)
256 | (define realscbyte37::Byte 0x08)
257 | (define realscbyte38::Byte 0x0B)
258 | (define realscbyte39::Byte 0xAB)
259 | (define realscbyte3A::Byte 0x22)
260 | (define realscbyte3B::Byte 0x84)
261 | (define realscbyte3C::Byte 0x6B)
262 | (define realscbyte3D::Byte 0x1F)
263 | (define realscbyte3E::Byte 0xAD)
264 | (define realscbyte3F::Byte 0x05)
265 |
266 | (define realsc::SCState (bv-concat realscbyte3F realscbyte3E realscbyte3D realscbyte3C realscbyte3B realscbyte3A realscbyte39 realscbyte38 realscbyte37 realscbyte36 realscbyte35 realscbyte34 realscbyte33 realscbyte32 realscbyte31 realscbyte30 realscbyte2F realscbyte2E realscbyte2D realscbyte2C realscbyte2B realscbyte2A realscbyte29 realscbyte28 realscbyte27 realscbyte26 realscbyte25 realscbyte24 realscbyte23 realscbyte22 realscbyte21 realscbyte20 realscbyte1F realscbyte1E realscbyte1D realscbyte1C realscbyte1B realscbyte1A realscbyte19 realscbyte18 realscbyte17 realscbyte16 realscbyte15 realscbyte14 realscbyte13 realscbyte12 realscbyte11 realscbyte10 realscbyte0F realscbyte0E realscbyte0D realscbyte0C realscbyte0B realscbyte0A realscbyte09 realscbyte08 realscbyte07 realscbyte06 realscbyte05 realscbyte04 realscbyte03 realscbyte02 realscbyte01 realscbyte00))
267 |
268 | (define getrealscbyte::(-> Byte Byte)
269 | (lambda (idx::Byte)
270 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx)))
271 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
272 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
273 | (bv-extract 7 0 (bv-lshr realsc shiftamt))
274 | )))
275 | )
276 | )
277 |
278 | (define compare-multiple-sc-bytes::(-> SCState SCState Byte bool)
279 | (lambda (sc1::SCState sc2::SCState num::Byte)
280 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) (bv-sub 0x40 num))))
281 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
282 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
283 | (= (bv-shl sc1 shiftamt) (bv-shl sc2 shiftamt))
284 | )))
285 | )
286 | )
287 |
288 | (define compare-sc-bytes::(-> SCState SCState Byte bool)
289 | (lambda (sc1::SCState sc2::SCState num::Byte)
290 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) num)))
291 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
292 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
293 | (= (bv-extract 7 0 (bv-lshr sc1 shiftamt)) (bv-extract 7 0 (bv-lshr sc2 shiftamt)))
294 | )))
295 | )
296 | )
297 |
298 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX
299 | ; variable.
300 | (define get-byte::(-> Byte Byte)
301 | (lambda (x::Byte)
302 | (ite (= x 0x00) bytecode00
303 | (ite (= x 0x01) bytecode01
304 | (ite (= x 0x02) bytecode02
305 | (ite (= x 0x03) bytecode03
306 | (ite (= x 0x04) bytecode04
307 | (ite (= x 0x05) bytecode05
308 | (ite (= x 0x06) bytecode06
309 | (ite (= x 0x07) bytecode07
310 | (ite (= x 0x08) bytecode08
311 | (ite (= x 0x09) bytecode09
312 | (ite (= x 0x0A) bytecode0A
313 | (ite (= x 0x0B) bytecode0B
314 | (ite (= x 0x0C) bytecode0C
315 | (ite (= x 0x0D) bytecode0D
316 | (ite (= x 0x0E) bytecode0E
317 | (ite (= x 0x0F) bytecode0F
318 | (ite (= x 0x10) bytecode10
319 | (ite (= x 0x11) bytecode11
320 | (ite (= x 0x12) bytecode12
321 | (ite (= x 0x13) bytecode13
322 | (ite (= x 0x14) bytecode14
323 | (ite (= x 0x15) bytecode15
324 | (ite (= x 0x16) bytecode16
325 | (ite (= x 0x17) bytecode17
326 | (ite (= x 0x18) bytecode18
327 | (ite (= x 0x19) bytecode19
328 | (ite (= x 0x1A) bytecode1A
329 | (ite (= x 0x1B) bytecode1B
330 | (ite (= x 0x1C) bytecode1C
331 | (ite (= x 0x1D) bytecode1D
332 | (ite (= x 0x1E) bytecode1E
333 | (ite (= x 0x1F) bytecode1F
334 | (ite (= x 0x20) bytecode20
335 | (ite (= x 0x21) bytecode21
336 | (ite (= x 0x22) bytecode22
337 | (ite (= x 0x23) bytecode23
338 | (ite (= x 0x24) bytecode24
339 | (ite (= x 0x25) bytecode25
340 | (ite (= x 0x26) bytecode26
341 | (ite (= x 0x27) bytecode27
342 | (ite (= x 0x28) bytecode28
343 | (ite (= x 0x29) bytecode29
344 | (ite (= x 0x2A) bytecode2A
345 | (ite (= x 0x2B) bytecode2B
346 | (ite (= x 0x2C) bytecode2C
347 | (ite (= x 0x2D) bytecode2D
348 | (ite (= x 0x2E) bytecode2E
349 | (ite (= x 0x2F) bytecode2F
350 | (ite (= x 0x30) bytecode30
351 | (ite (= x 0x31) bytecode31
352 | (ite (= x 0x32) bytecode32
353 | (ite (= x 0x33) bytecode33
354 | (ite (= x 0x34) bytecode34
355 | (ite (= x 0x35) bytecode35
356 | (ite (= x 0x36) bytecode36
357 | (ite (= x 0x37) bytecode37
358 | (ite (= x 0x38) bytecode38
359 | (ite (= x 0x39) bytecode39
360 | (ite (= x 0x3A) bytecode3A
361 | (ite (= x 0x3B) bytecode3B
362 | (ite (= x 0x3C) bytecode3C
363 | (ite (= x 0x3D) bytecode3D
364 | (ite (= x 0x3E) bytecode3E
365 | (ite (= x 0x3F) bytecode3F
366 | (ite (= x 0x40) bytecode40
367 | (ite (= x 0x41) bytecode41
368 | (ite (= x 0x42) bytecode42
369 | (ite (= x 0x43) bytecode43
370 | (ite (= x 0x44) bytecode44
371 | (ite (= x 0x45) bytecode45
372 | (ite (= x 0x46) bytecode46
373 | (ite (= x 0x47) bytecode47
374 | (ite (= x 0x48) bytecode48
375 | (ite (= x 0x49) bytecode49
376 | (ite (= x 0x4A) bytecode4A
377 | (ite (= x 0x4B) bytecode4B
378 | (ite (= x 0x4C) bytecode4C
379 | (ite (= x 0x4D) bytecode4D
380 | (ite (= x 0x4E) bytecode4E
381 | (ite (= x 0x4F) bytecode4F
382 | (ite (= x 0x50) bytecode50
383 | (ite (= x 0x51) bytecode51
384 | (ite (= x 0x52) bytecode52
385 | (ite (= x 0x53) bytecode53
386 | (ite (= x 0x54) bytecode54
387 | (ite (= x 0x55) bytecode55
388 | (ite (= x 0x56) bytecode56
389 | (ite (= x 0x57) bytecode57
390 | (ite (= x 0x58) bytecode58
391 | (ite (= x 0x59) bytecode59
392 | (ite (= x 0x5A) bytecode5A
393 | (ite (= x 0x5B) bytecode5B
394 | (ite (= x 0x5C) bytecode5C
395 | (ite (= x 0x5D) bytecode5D
396 | (ite (= x 0x5E) bytecode5E
397 | (ite (= x 0x5F) bytecode5F
398 | (ite (= x 0x60) bytecode60
399 | (ite (= x 0x61) bytecode61
400 | (ite (= x 0x62) bytecode62
401 | (ite (= x 0x63) bytecode63
402 | (ite (= x 0x64) bytecode64
403 | (ite (= x 0x65) bytecode65
404 | (ite (= x 0x66) bytecode66
405 | (ite (= x 0x67) bytecode67
406 | (ite (= x 0x68) bytecode68
407 | (ite (= x 0x69) bytecode69
408 | (ite (= x 0x6A) bytecode6A
409 | (ite (= x 0x6B) bytecode6B
410 | (ite (= x 0x6C) bytecode6C
411 | (ite (= x 0x6D) bytecode6D
412 | (ite (= x 0x6E) bytecode6E
413 | (ite (= x 0x6F) bytecode6F
414 | (ite (= x 0x70) bytecode70
415 | (ite (= x 0x71) bytecode71
416 | (ite (= x 0x72) bytecode72
417 | (ite (= x 0x73) bytecode73
418 | (ite (= x 0x74) bytecode74
419 | (ite (= x 0x75) bytecode75
420 | (ite (= x 0x76) bytecode76
421 | (ite (= x 0x77) bytecode77
422 | (ite (= x 0x78) bytecode78
423 | (ite (= x 0x79) bytecode79
424 | (ite (= x 0x7A) bytecode7A
425 | (ite (= x 0x7B) bytecode7B
426 | (ite (= x 0x7C) bytecode7C
427 | (ite (= x 0x7D) bytecode7D
428 | (ite (= x 0x7E) bytecode7E
429 | (ite (= x 0x7F) bytecode7F
430 | (ite (= x 0x80) bytecode80
431 | (ite (= x 0x81) bytecode81
432 | (ite (= x 0x82) bytecode82
433 | (ite (= x 0x83) bytecode83
434 | (ite (= x 0x84) bytecode84
435 | (ite (= x 0x85) bytecode85
436 | (ite (= x 0x86) bytecode86
437 | (ite (= x 0x87) bytecode87
438 | (ite (= x 0x88) bytecode88
439 | (ite (= x 0x89) bytecode89
440 | (ite (= x 0x8A) bytecode8A
441 | (ite (= x 0x8B) bytecode8B
442 | (ite (= x 0x8C) bytecode8C
443 | (ite (= x 0x8D) bytecode8D
444 | (ite (= x 0x8E) bytecode8E
445 | (ite (= x 0x8F) bytecode8F
446 | (ite (= x 0x90) bytecode90
447 | (ite (= x 0x91) bytecode91
448 | (ite (= x 0x92) bytecode92
449 | (ite (= x 0x93) bytecode93
450 | (ite (= x 0x94) bytecode94
451 | (ite (= x 0x95) bytecode95
452 | (ite (= x 0x96) bytecode96
453 | (ite (= x 0x97) bytecode97
454 | (ite (= x 0x98) bytecode98
455 | (ite (= x 0x99) bytecode99
456 | (ite (= x 0x9A) bytecode9A
457 | (ite (= x 0x9B) bytecode9B
458 | (ite (= x 0x9C) bytecode9C
459 | (ite (= x 0x9D) bytecode9D
460 | (ite (= x 0x9E) bytecode9E
461 | (ite (= x 0x9F) bytecode9F
462 | (ite (= x 0xA0) bytecodeA0
463 | (ite (= x 0xA1) bytecodeA1
464 | (ite (= x 0xA2) bytecodeA2
465 | (ite (= x 0xA3) bytecodeA3
466 | (ite (= x 0xA4) bytecodeA4
467 | (ite (= x 0xA5) bytecodeA5
468 | (ite (= x 0xA6) bytecodeA6
469 | (ite (= x 0xA7) bytecodeA7
470 | (ite (= x 0xA8) bytecodeA8
471 | (ite (= x 0xA9) bytecodeA9
472 | (ite (= x 0xAA) bytecodeAA
473 | (ite (= x 0xAB) bytecodeAB
474 | (ite (= x 0xAC) bytecodeAC
475 | (ite (= x 0xAD) bytecodeAD
476 | (ite (= x 0xAE) bytecodeAE
477 | (ite (= x 0xAF) bytecodeAF
478 | (ite (= x 0xB0) bytecodeB0
479 | (ite (= x 0xB1) bytecodeB1
480 | (ite (= x 0xB2) bytecodeB2
481 | (ite (= x 0xB3) bytecodeB3
482 | (ite (= x 0xB4) bytecodeB4
483 | (ite (= x 0xB5) bytecodeB5
484 | (ite (= x 0xB6) bytecodeB6
485 | (ite (= x 0xB7) bytecodeB7
486 | (ite (= x 0xB8) bytecodeB8
487 | (ite (= x 0xB9) bytecodeB9
488 | (ite (= x 0xBA) bytecodeBA
489 | (ite (= x 0xBB) bytecodeBB
490 | (ite (= x 0xBC) bytecodeBC
491 | (ite (= x 0xBD) bytecodeBD
492 | (ite (= x 0xBE) bytecodeBE
493 | (ite (= x 0xBF) bytecodeBF
494 | (ite (= x 0xC0) bytecodeC0
495 | (ite (= x 0xC1) bytecodeC1
496 | (ite (= x 0xC2) bytecodeC2
497 | (ite (= x 0xC3) bytecodeC3
498 | (ite (= x 0xC4) bytecodeC4
499 | (ite (= x 0xC5) bytecodeC5
500 | (ite (= x 0xC6) bytecodeC6
501 | (ite (= x 0xC7) bytecodeC7
502 | (ite (= x 0xC8) bytecodeC8
503 | (ite (= x 0xC9) bytecodeC9
504 | (ite (= x 0xCA) bytecodeCA
505 | (ite (= x 0xCB) bytecodeCB
506 | (ite (= x 0xCC) bytecodeCC
507 | (ite (= x 0xCD) bytecodeCD
508 | (ite (= x 0xCE) bytecodeCE
509 | (ite (= x 0xCF) bytecodeCF
510 | (ite (= x 0xD0) bytecodeD0
511 | (ite (= x 0xD1) bytecodeD1
512 | (ite (= x 0xD2) bytecodeD2
513 | (ite (= x 0xD3) bytecodeD3
514 | (ite (= x 0xD4) bytecodeD4
515 | (ite (= x 0xD5) bytecodeD5
516 | (ite (= x 0xD6) bytecodeD6
517 | (ite (= x 0xD7) bytecodeD7
518 | (ite (= x 0xD8) bytecodeD8
519 | (ite (= x 0xD9) bytecodeD9
520 | (ite (= x 0xDA) bytecodeDA
521 | (ite (= x 0xDB) bytecodeDB
522 | (ite (= x 0xDC) bytecodeDC
523 | (ite (= x 0xDD) bytecodeDD
524 | (ite (= x 0xDE) bytecodeDE
525 | (ite (= x 0xDF) bytecodeDF
526 | (ite (= x 0xE0) bytecodeE0
527 | (ite (= x 0xE1) bytecodeE1
528 | (ite (= x 0xE2) bytecodeE2
529 | (ite (= x 0xE3) bytecodeE3
530 | (ite (= x 0xE4) bytecodeE4
531 | (ite (= x 0xE5) bytecodeE5
532 | (ite (= x 0xE6) bytecodeE6
533 | (ite (= x 0xE7) bytecodeE7
534 | (ite (= x 0xE8) bytecodeE8
535 | (ite (= x 0xE9) bytecodeE9
536 | (ite (= x 0xEA) bytecodeEA
537 | (ite (= x 0xEB) bytecodeEB
538 | (ite (= x 0xEC) bytecodeEC
539 | (ite (= x 0xED) bytecodeED
540 | (ite (= x 0xEE) bytecodeEE
541 | (ite (= x 0xEF) bytecodeEF
542 | (ite (= x 0xF0) bytecodeF0
543 | (ite (= x 0xF1) bytecodeF1
544 | (ite (= x 0xF2) bytecodeF2
545 | (ite (= x 0xF3) bytecodeF3
546 | (ite (= x 0xF4) bytecodeF4
547 | (ite (= x 0xF5) bytecodeF5
548 | (ite (= x 0xF6) bytecodeF6
549 | (ite (= x 0xF7) bytecodeF7
550 | (ite (= x 0xF8) bytecodeF8
551 | (ite (= x 0xF9) bytecodeF9
552 | (ite (= x 0xFA) bytecodeFA
553 | (ite (= x 0xFB) bytecodeFB
554 | (ite (= x 0xFC) bytecodeFC
555 | (ite (= x 0xFD) bytecodeFD
556 | (ite (= x 0xFE) bytecodeFE
557 | (ite (= x 0xFF) bytecodeFF
558 | bytecode04))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
559 | )
560 | )
561 |
562 | (define getregstate::(-> MachineState Reg32State)
563 | (lambda (mstate::MachineState)
564 | (bv-extract 255 0 mstate)
565 | )
566 | )
567 |
568 | (define getscstate::(-> MachineState SCState)
569 | (lambda (mstate::MachineState)
570 | (bv-extract 767 256 mstate)
571 | )
572 | )
573 |
574 | (define getscptr::(-> MachineState Byte)
575 | (lambda (mstate::MachineState)
576 | (bv-extract 775 768 mstate)
577 | )
578 | )
579 |
580 | (define getscbyte-byidx::(-> MachineState Byte Byte)
581 | (lambda (mstate::MachineState idx::Byte)
582 | (let ((sc (getscstate mstate)))
583 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx)))
584 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
585 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
586 | (bv-extract 7 0 (bv-lshr sc shiftamt))
587 | )))))
588 | )
589 |
590 | (define getscbyte::(-> MachineState Byte)
591 | (lambda (mstate::MachineState)
592 | (let ((scptr (getscptr mstate)))
593 | (getscbyte-byidx mstate scptr)
594 | ))
595 | )
596 |
597 | (define geteipbuffer::(-> MachineState EIPRingBuffer)
598 | (lambda (mstate::MachineState)
599 | (bv-extract 855 776 mstate)
600 | )
601 | )
602 |
603 | (define geteipmask::(-> MachineState EIPBitMask)
604 | (lambda (mstate::MachineState)
605 | (bv-extract 865 856 mstate)
606 | )
607 | )
608 |
609 | (define geteip::(-> MachineState Byte)
610 | (lambda (mstate::MachineState)
611 | (bv-extract 783 776 mstate)
612 | )
613 | )
614 |
615 | ; getreg32(reg,state). Return the value of register 'reg' from state 'state'.
616 | (define getreg32::(-> RegIdx MachineState Dword)
617 | (lambda (x::RegIdx s::MachineState)
618 | (let ((z (getregstate s)))
619 | (ite (= x R0Idx) (bv-extract 31 0 z)
620 | (ite (= x R1Idx) (bv-extract 63 32 z)
621 | (ite (= x R2Idx) (bv-extract 95 64 z)
622 | (ite (= x R3Idx) (bv-extract 127 96 z)
623 | (ite (= x R4Idx) (bv-extract 159 128 z)
624 | (ite (= x R5Idx) (bv-extract 191 160 z)
625 | (ite (= x R6Idx) (bv-extract 223 192 z)
626 | (bv-extract 255 224 z)
627 | ))))))))
628 | )
629 | )
630 |
631 | (define getmachinestate::(-> DecodedMachineState MachineState)
632 | (lambda (s::DecodedMachineState )
633 | (bv-extract 865 0 s)
634 | )
635 | )
636 |
637 | (define getinsnlen::(-> DecodedMachineState Byte)
638 | (lambda (s::DecodedMachineState)
639 | (bv-extract 873 866 s)
640 | )
641 | )
642 |
643 | (define getextra::(-> DecodedMachineState Bit)
644 | (lambda (s::DecodedMachineState)
645 | (bv-extract 874 874 s)
646 | )
647 | )
648 |
649 | (define getisjcc::(-> DecodedMachineState Bit)
650 | (lambda (s::DecodedMachineState)
651 | (bv-extract 875 875 s)
652 | )
653 | )
654 |
655 | ; putreg32(reg,state,value). Update register 'reg' to value 'value' in state
656 | ; 'state'; return the new state.
657 | (define putreg32::(-> RegIdx Dword MachineState MachineState)
658 | (lambda (x::RegIdx y::Dword s::MachineState)
659 | (let ((z (getregstate s)))
660 | (bv-concat (bv-extract 865 256 s)
661 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y)
662 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z))
663 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z))
664 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z))
665 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z))
666 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z))
667 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z))
668 | (bv-concat y (bv-extract 223 0 z))
669 | )))))))))
670 | )
671 | )
672 |
673 | (define putscbyte::(-> MachineState Byte MachineState)
674 | (lambda (mstate::MachineState b::Byte)
675 | (let ((sc (getscstate mstate)))
676 | (let ((scptr (getscptr mstate)))
677 | (let ((eidx (bv-concat (bv-repeat 0x00 63) scptr)))
678 | (let ((eshv (bv-shl eidx (bv-concat (bv-repeat 0x00 63) 0x03))))
679 | (let ((bvmask (bv-shl (bv-concat (bv-repeat 0x00 63) 0xFF) eshv)))
680 | (let ((ebyte (bv-shl (bv-concat (bv-repeat 0x00 63) b) eshv)))
681 | (let ((newsc (bv-or (bv-and sc (bv-not bvmask)) ebyte)))
682 | (bv-concat (geteipmask mstate) (geteipbuffer mstate) (bv-add scptr 0x01) newsc (getregstate mstate))
683 | ))))))))
684 | )
685 |
686 | (define puteip::(-> MachineState Byte MachineState)
687 | (lambda (mstate::MachineState eip::Byte)
688 | (let ((eipbuffer (geteipbuffer mstate)))
689 | (let ((eipmask (geteipmask mstate)))
690 | (let ((newmask (bv-concat (bv-extract 8 0 eipmask) 0b1)))
691 | (let ((newbuffer (bv-concat (bv-extract 71 0 eipbuffer) eip)))
692 | (bv-concat newmask newbuffer (bv-extract 775 0 mstate))
693 | )))))
694 | )
695 |
696 | (define finalize-normal-insn::(-> MachineState Byte Byte DecodedMachineState)
697 | (lambda (mstate::MachineState eip::Byte length::Byte)
698 | (bv-concat 0b0 0b1 length (puteip mstate eip))
699 | )
700 | )
701 |
702 | (define bool-to-bit::(-> bool Bit)
703 | (lambda (b::bool)
704 | (ite b 0b1 0b0)
705 | )
706 | )
707 |
708 | (define finalize-conditional-jump::(-> MachineState Byte Byte Byte DecodedMachineState)
709 | (lambda (mstate::MachineState dest::Byte eip::Byte length::Byte)
710 | (let ((eipbuffer (geteipbuffer mstate)))
711 | (let ((eipmask (geteipmask mstate)))
712 | (let ((extra
713 | (bv-or
714 | (bv-and (bv-extract 0 0 eipmask) (bool-to-bit (= dest (bv-extract 7 0 eipbuffer))))
715 | (bv-and (bv-extract 1 1 eipmask) (bool-to-bit (= dest (bv-extract 15 8 eipbuffer))))
716 | (bv-and (bv-extract 2 2 eipmask) (bool-to-bit (= dest (bv-extract 23 16 eipbuffer))))
717 | (bv-and (bv-extract 3 3 eipmask) (bool-to-bit (= dest (bv-extract 31 24 eipbuffer))))
718 | (bv-and (bv-extract 4 4 eipmask) (bool-to-bit (= dest (bv-extract 39 32 eipbuffer))))
719 | (bv-and (bv-extract 5 5 eipmask) (bool-to-bit (= dest (bv-extract 47 40 eipbuffer))))
720 | (bv-and (bv-extract 6 6 eipmask) (bool-to-bit (= dest (bv-extract 55 48 eipbuffer))))
721 | (bv-and (bv-extract 7 7 eipmask) (bool-to-bit (= dest (bv-extract 63 56 eipbuffer))))
722 | (bv-and (bv-extract 8 8 eipmask) (bool-to-bit (= dest (bv-extract 71 64 eipbuffer))))
723 | (bv-and (bv-extract 9 9 eipmask) (bool-to-bit (= dest (bv-extract 79 72 eipbuffer))))
724 | )
725 | ))
726 | (bv-concat 0b1 extra length (puteip mstate eip)))))
727 | )
728 | )
729 |
730 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the
731 | ; operation specified by that instruction. Consult and update the state 'state'
732 | ; accordingly; return the new state concatenated with the length of the
733 | ; instruction. In other words, this function simulates the effects of executing
734 | ; every possible instruction.
735 | (define symbolic-insn::(-> (-> Byte Byte) Byte MachineState DecodedMachineState)
736 | (lambda (f-get-byte::(-> Byte Byte) eip::Byte state::MachineState)
737 | (let ((byte0 (f-get-byte eip)))
738 | (let ((byte1 (f-get-byte (bv-add 0x01 eip))))
739 | (let ((byte2 (f-get-byte (bv-add 0x02 eip))))
740 | (let ((byte3 (f-get-byte (bv-add 0x03 eip))))
741 | (let ((byte4 (f-get-byte (bv-add 0x04 eip))))
742 | (let ((eip-plus-one (bv-add eip 0x01)))
743 | (let ((eip-plus-two (bv-add eip 0x02)))
744 | (let ((eip-plus-five (bv-add eip 0x05)))
745 | ; xor reg, reg
746 | (ite (= (bv-and byte0 0xC0) 0x00)
747 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
748 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
749 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state)))
750 | (finalize-normal-insn newstate eip-plus-one 0x01)
751 | )))
752 | ; add reg, reg
753 | (ite (= (bv-and byte0 0xC0) 0x40)
754 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
755 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
756 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state)))
757 | (finalize-normal-insn newstate eip-plus-one 0x01)
758 | )))
759 | ; mov reg, reg
760 | (ite (= (bv-and byte0 0xC0) 0x80)
761 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
762 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
763 | (let ((newstate (putreg32 lhsreg0 (getreg32 rhsreg0 state) state)))
764 | (finalize-normal-insn newstate eip-plus-one 0x01)
765 | )))
766 | ; complex 0xC0 case
767 | (let ((opcode (bv-extract 5 3 byte0)))
768 | (let ((lhsreg0 (bv-extract 2 0 byte0)))
769 | ; CHANGED: getscbyte rX
770 | (ite (= opcode 0b000)
771 | (let ((newstate (putreg32 lhsreg0 (bv-zero-extend (getscbyte state) 24) state)))
772 | (finalize-normal-insn newstate eip-plus-one 0x01))
773 | ; CHANGED: putscbyte rX
774 | (ite (= opcode 0b001)
775 | (let ((newstate (putscbyte state (bv-extract 7 0 (getreg32 lhsreg0 state)))))
776 | (finalize-normal-insn newstate eip-plus-one 0x01))
777 | ; neg reg
778 | (ite (= opcode 0b010)
779 | (let ((newstate (putreg32 lhsreg0 (bv-neg (getreg32 lhsreg0 state)) state)))
780 | (finalize-normal-insn newstate eip-plus-one 0x01))
781 | ; not reg
782 | (ite (= opcode 0b011)
783 | (let ((newstate (putreg32 lhsreg0 (bv-not (getreg32 lhsreg0 state)) state)))
784 | (finalize-normal-insn newstate eip-plus-one 0x01))
785 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1)))
786 | ; add reg, imm32
787 | (ite (= opcode 0b100)
788 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) rhsval0) state)))
789 | (finalize-normal-insn newstate eip-plus-five 0x05))
790 | ; xor reg, imm32
791 | (ite (= opcode 0b101)
792 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) rhsval0) state)))
793 | (finalize-normal-insn newstate eip-plus-five 0x05))
794 | ; CHANGED: mov reg, imm32
795 | (ite (= opcode 0b110)
796 | (let ((newstate (putreg32 lhsreg0 rhsval0 state)))
797 | (finalize-normal-insn newstate eip-plus-five 0x05))
798 | ; opcode == 0b111
799 | ; CHANGED: jnz rel
800 | (let ((dest (bv-add eip-plus-two byte1)))
801 | (finalize-conditional-jump state dest (ite (= 0x00000000 (getreg32 lhsreg0 state)) eip-plus-two dest) 0x02)
802 | )))))))))))))))
803 | )))))))
804 | )
805 | )
806 |
807 | ; The main assertion.
808 | (assert
809 | ; For every possible input state (r0, ..., r7).
810 | ; There is an additional universally-quantified variable idx: used to make
811 | ; statements about the bytes in the encoding.
812 | (forall (r0::Dword r1::Dword r2::Dword r3::Dword r4::Dword r5::Dword r6::Dword r7::Dword idx::Dword scptr::Byte)
813 |
814 | (let ((initialsc (bv-concat shellcode3F shellcode3E shellcode3D shellcode3C shellcode3B shellcode3A shellcode39 shellcode38 shellcode37 shellcode36 shellcode35 shellcode34 shellcode33 shellcode32 shellcode31 shellcode30 shellcode2F shellcode2E shellcode2D shellcode2C shellcode2B shellcode2A shellcode29 shellcode28 shellcode27 shellcode26 shellcode25 shellcode24 shellcode23 shellcode22 shellcode21 shellcode20 shellcode1F shellcode1E shellcode1D shellcode1C shellcode1B shellcode1A shellcode19 shellcode18 shellcode17 shellcode16 shellcode15 shellcode14 shellcode13 shellcode12 shellcode11 shellcode10 shellcode0F shellcode0E shellcode0D shellcode0C shellcode0B shellcode0A shellcode09 shellcode08 shellcode07 shellcode06 shellcode05 shellcode04 shellcode03 shellcode02 shellcode01 shellcode00)))
815 |
816 | (let ((sclength 0x00000040))
817 |
818 | ; ------------------------
819 | ; INITIALIZE STATE AND EIP
820 | ; ------------------------
821 | ; Set initial EIP to zero.
822 | (let ((eip1 0x00))
823 | ; Create the input "state" by concatenating all of the inputs.
824 | (let ((loopstate0 (bv-concat (bv-repeat 0b0 9) 0b1 (bv-repeat 0x00 9) eip1 scptr initialsc r7 r6 r5 r4 r3 r2 r1 r0)))
825 |
826 | ; ------------------------
827 | ; SIMULATE ONE INSTRUCTION
828 | ; ------------------------
829 |
830 | ; Perform symbolic simulation of one instruction (any instruction).
831 | (let ((synsem1 (symbolic-insn get-byte eip1 loopstate0)))
832 | ; Extract the length of the instruction.
833 | (let ((insn1len (getinsnlen synsem1)))
834 | ; Extract any "extra" constraints that must be satisfied
835 | (let ((extra1 (getextra synsem1)))
836 | ; Extract the flow type
837 | (let ((isjcc1 (getisjcc synsem1)))
838 | ; Extract the output state after having executed the instruction.
839 | (let ((state2 (getmachinestate synsem1)))
840 | ; Extract EIP after executing the instruction.
841 | (let ((eip2 (geteip state2)))
842 |
843 | ; ------------------------
844 | ; SIMULATE ONE INSTRUCTION
845 | ; ------------------------
846 |
847 | ; Perform symbolic simulation of one instruction (any instruction).
848 | (let ((synsem2 (symbolic-insn get-byte eip2 state2)))
849 | ; Extract the length of the instruction.
850 | (let ((insn2len (getinsnlen synsem2)))
851 | ; Extract any "extra" constraints that must be satisfied
852 | (let ((extra2 (getextra synsem2)))
853 | ; Extract the flow type
854 | (let ((isjcc2 (getisjcc synsem2)))
855 | ; Extract the output state after having executed the instruction.
856 | (let ((state3 (getmachinestate synsem2)))
857 | ; Extract EIP after executing the instruction.
858 | (let ((eip3 (geteip state3)))
859 |
860 | ; ------------------------
861 | ; SIMULATE ONE INSTRUCTION
862 | ; ------------------------
863 |
864 | ; Perform symbolic simulation of one instruction (any instruction).
865 | (let ((synsem3 (symbolic-insn get-byte eip3 state3)))
866 | ; Extract the length of the instruction.
867 | (let ((insn3len (getinsnlen synsem3)))
868 | ; Extract any "extra" constraints that must be satisfied
869 | (let ((extra3 (getextra synsem3)))
870 | ; Extract the flow type
871 | (let ((isjcc3 (getisjcc synsem3)))
872 | ; Extract the output state after having executed the instruction.
873 | (let ((state4 (getmachinestate synsem3)))
874 | ; Extract EIP after executing the instruction.
875 | (let ((eip4 (geteip state4)))
876 |
877 | ; ------------------------
878 | ; SIMULATE ONE INSTRUCTION
879 | ; ------------------------
880 |
881 | ; Perform symbolic simulation of one instruction (any instruction).
882 | (let ((synsem4 (symbolic-insn get-byte eip4 state4)))
883 | ; Extract the length of the instruction.
884 | (let ((insn4len (getinsnlen synsem4)))
885 | ; Extract any "extra" constraints that must be satisfied
886 | (let ((extra4 (getextra synsem4)))
887 | ; Extract the flow type
888 | (let ((isjcc4 (getisjcc synsem4)))
889 | ; Extract the output state after having executed the instruction.
890 | (let ((state5 (getmachinestate synsem4)))
891 | ; Extract EIP after executing the instruction.
892 | (let ((eip5 (geteip state5)))
893 |
894 | (let ((finalloopstate state5))
895 |
896 | ; ------------------------
897 | ; SIMULATE ONE INSTRUCTION
898 | ; ------------------------
899 |
900 | ; Perform symbolic simulation of one instruction (any instruction).
901 | (let ((synsem5 (symbolic-insn get-byte eip5 state5)))
902 | ; Extract the length of the instruction.
903 | (let ((insn5len (getinsnlen synsem5)))
904 | ; Extract any "extra" constraints that must be satisfied
905 | (let ((extra5 (getextra synsem5)))
906 | ; Extract the flow type
907 | (let ((isjcc5 (getisjcc synsem5)))
908 | ; Extract the output state after having executed the instruction.
909 | (let ((state6 (getmachinestate synsem5)))
910 | ; Extract EIP after executing the instruction.
911 | (let ((eip6 (geteip state6)))
912 |
913 | ; ----------------------
914 | ; FINALIZE STATE AND EIP
915 | ; ----------------------
916 |
917 | ; Call the final state "finalstate" (for convenience).
918 | (let ((finalstate state6))
919 | ; Call the final EIP "finaleip" (for convenience).
920 | (let ((finaleip eip6))
921 |
922 | (let ((lasteip (bv-add eip5 insn5len)))
923 |
924 | (let ((sclengthlow (bv-extract 7 0 sclength)))
925 | (let ((l0scptr (getscptr loopstate0)))
926 |
927 | ; --------------------------------------------------
928 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING
929 | ; --------------------------------------------------
930 |
931 | (and
932 | ; 0-length instructions are invalid; all instructions must be valid.
933 | (not (= insn1len 0x00))
934 | (not (= insn2len 0x00))
935 | (not (= insn3len 0x00))
936 | (not (= insn4len 0x00))
937 | (not (= insn5len 0x00))
938 |
939 | ; All "extra" constraints must be satisfied
940 | (= 0b1 extra1)
941 | (= 0b1 extra2)
942 | (= 0b1 extra3)
943 | (= 0b1 extra4)
944 | (= 0b1 extra5)
945 |
946 | ; Only the last instruction is a jump
947 | (= 0b0 isjcc1)
948 | (= 0b0 isjcc2)
949 | (= 0b0 isjcc3)
950 | (= 0b0 isjcc4)
951 | (= 0b1 isjcc5)
952 |
953 | ; All of the instructions, except the last, fall through.
954 | (= eip2 (bv-add eip1 insn1len))
955 | (= eip3 (bv-add eip2 insn2len))
956 | (= eip4 (bv-add eip3 insn3len))
957 | (= eip5 (bv-add eip4 insn3len))
958 |
959 | ; At least one of the encoded shellcode bytes differs
960 | (not (= shellcode00 realscbyte00))
961 |
962 | ; -----------------------------------
963 | ; CONSTRAINTS REGARDING FUNCTIONALITY
964 | ; -----------------------------------
965 |
966 | ; The iteration counter has decreased by one, AND
967 | (= (bv-add (getreg32 WhichReg finalloopstate) 0x00000001) (getreg32 WhichReg loopstate0))
968 | ; The shellcode pointer has increased by one, AND
969 | (= (getscptr finalloopstate) (bv-add l0scptr 0x01))
970 | ; Implication:
971 | (=>
972 | (bv-lt l0scptr sclengthlow)
973 | ; If the shellcode pointer is less than the shellcode length, THEN
974 | (and
975 | (compare-multiple-sc-bytes (getscstate loopstate0) (getscstate finalloopstate) l0scptr)
976 | ; The same sc bytes are correct, plus the next one
977 | (compare-sc-bytes (getscstate finalloopstate) realsc l0scptr)
978 | )
979 | ; THEN IT MUST ALSO BE TRUE THAT, AFTER EXECUTING THE BLOCK ...
980 |
981 | )
982 | ; The EIP after executing the block is either the one after the loop, or at its beginning, AND
983 | (= finaleip (ite (= 0x00000000 (getreg32 WhichReg finalstate)) lasteip eip1))
984 |
985 |
986 | ; ------------------------------
987 | ; CONSTRAINTS REGARDING ENCODING
988 | ; ------------------------------
989 | ; None of the bytes are 0x12
990 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12))
991 | ; None of the bytes are 0x34
992 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34))
993 | ; None of the bytes are 0x56
994 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56))
995 | ; None of the bytes are 0x78
996 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78))
997 | ; None of the bytes are 0x00 (commented out)
998 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00))
999 | ) ; end and
1000 | )))))))))))))))))))))))) ; end let * 17
1001 | )))))))))))))))) ; end let SC STUFF
1002 | ) ; end forall
1003 | ) ; end assert
1004 |
1005 | ; Solve the constraint system
1006 | (ef-solve)
1007 |
1008 | ; Produce a model, i.e., values for bytecode00-bytecodeFF.
1009 | ; This statement will crash yices if (ef-solve) returned unsatisfiable.
1010 | (show-model)
--------------------------------------------------------------------------------
/synesthesia-simple-loops-refactoring.ys:
--------------------------------------------------------------------------------
1 | ; Loosen yices' arbitrary restriction on iteration count. (')
2 | (set-param ef-max-iters 1000)
3 |
4 | (define-type Bit (bitvector 1))
5 | (define-type Byte (bitvector 8))
6 | (define-type Word (bitvector 16))
7 | (define-type Dword (bitvector 32))
8 |
9 | (define-type RegIdx (bitvector 3))
10 | (define R0Idx::RegIdx (mk-bv 3 0)) ; R0 = 0
11 | (define R1Idx::RegIdx (mk-bv 3 1)) ; R1 = 1
12 | (define R2Idx::RegIdx (mk-bv 3 2)) ; R2 = 2
13 | (define R3Idx::RegIdx (mk-bv 3 3)) ; R3 = 3
14 | (define R4Idx::RegIdx (mk-bv 3 4)) ; R4 = 4
15 | (define R5Idx::RegIdx (mk-bv 3 5)) ; R5 = 5
16 | (define R6Idx::RegIdx (mk-bv 3 6)) ; R6 = 6
17 | (define R7Idx::RegIdx (mk-bv 3 7)) ; R7 = 7
18 |
19 | (define-type Reg32State (bitvector 256))
20 | (define-type SCState (bitvector 512)) ; 0x40-length shellcode
21 | (define-type EIPRingBuffer (bitvector 80)) ; 10 8-bit EIP history
22 | (define-type EIPBitMask (bitvector 10)) ; 10 1-bit EIP bitmask
23 |
24 | (define-type MachineState (bitvector 866))
25 | ; 255 0: Reg32State
26 | ; 767 256: SCState
27 | ; 775 768: Byte [scptr]
28 | ; 855 776: EIPRingBuffer
29 | ; 865 855: EIPBitMask
30 |
31 | (define-type DecodedMachineState (bitvector 876)) ; (extra::Bit,length::Byte,MachineState)
32 | ; 865 0: MachineState
33 | ; 873 866: Byte [length]
34 | ; 874 874: Bit [extra]
35 | ; 875 875: Bit [is-jcc]
36 |
37 | (define WhichReg::RegIdx)
38 |
39 | (define bytecode00::Byte) (define bytecode01::Byte)
40 | (define bytecode02::Byte) (define bytecode03::Byte)
41 | (define bytecode04::Byte) (define bytecode05::Byte)
42 | (define bytecode06::Byte) (define bytecode07::Byte)
43 | (define bytecode08::Byte) (define bytecode09::Byte)
44 | (define bytecode0A::Byte) (define bytecode0B::Byte)
45 | (define bytecode0C::Byte) (define bytecode0D::Byte)
46 | (define bytecode0E::Byte) (define bytecode0F::Byte)
47 | (define bytecode10::Byte) (define bytecode11::Byte)
48 | (define bytecode12::Byte) (define bytecode13::Byte)
49 | (define bytecode14::Byte) (define bytecode15::Byte)
50 | (define bytecode16::Byte) (define bytecode17::Byte)
51 | (define bytecode18::Byte) (define bytecode19::Byte)
52 | (define bytecode1A::Byte) (define bytecode1B::Byte)
53 | (define bytecode1C::Byte) (define bytecode1D::Byte)
54 | (define bytecode1E::Byte) (define bytecode1F::Byte)
55 | (define bytecode20::Byte) (define bytecode21::Byte)
56 | (define bytecode22::Byte) (define bytecode23::Byte)
57 | (define bytecode24::Byte) (define bytecode25::Byte)
58 | (define bytecode26::Byte) (define bytecode27::Byte)
59 | (define bytecode28::Byte) (define bytecode29::Byte)
60 | (define bytecode2A::Byte) (define bytecode2B::Byte)
61 | (define bytecode2C::Byte) (define bytecode2D::Byte)
62 | (define bytecode2E::Byte) (define bytecode2F::Byte)
63 | (define bytecode30::Byte) (define bytecode31::Byte)
64 | (define bytecode32::Byte) (define bytecode33::Byte)
65 | (define bytecode34::Byte) (define bytecode35::Byte)
66 | (define bytecode36::Byte) (define bytecode37::Byte)
67 | (define bytecode38::Byte) (define bytecode39::Byte)
68 | (define bytecode3A::Byte) (define bytecode3B::Byte)
69 | (define bytecode3C::Byte) (define bytecode3D::Byte)
70 | (define bytecode3E::Byte) (define bytecode3F::Byte)
71 | (define bytecode40::Byte) (define bytecode41::Byte)
72 | (define bytecode42::Byte) (define bytecode43::Byte)
73 | (define bytecode44::Byte) (define bytecode45::Byte)
74 | (define bytecode46::Byte) (define bytecode47::Byte)
75 | (define bytecode48::Byte) (define bytecode49::Byte)
76 | (define bytecode4A::Byte) (define bytecode4B::Byte)
77 | (define bytecode4C::Byte) (define bytecode4D::Byte)
78 | (define bytecode4E::Byte) (define bytecode4F::Byte)
79 | (define bytecode50::Byte) (define bytecode51::Byte)
80 | (define bytecode52::Byte) (define bytecode53::Byte)
81 | (define bytecode54::Byte) (define bytecode55::Byte)
82 | (define bytecode56::Byte) (define bytecode57::Byte)
83 | (define bytecode58::Byte) (define bytecode59::Byte)
84 | (define bytecode5A::Byte) (define bytecode5B::Byte)
85 | (define bytecode5C::Byte) (define bytecode5D::Byte)
86 | (define bytecode5E::Byte) (define bytecode5F::Byte)
87 | (define bytecode60::Byte) (define bytecode61::Byte)
88 | (define bytecode62::Byte) (define bytecode63::Byte)
89 | (define bytecode64::Byte) (define bytecode65::Byte)
90 | (define bytecode66::Byte) (define bytecode67::Byte)
91 | (define bytecode68::Byte) (define bytecode69::Byte)
92 | (define bytecode6A::Byte) (define bytecode6B::Byte)
93 | (define bytecode6C::Byte) (define bytecode6D::Byte)
94 | (define bytecode6E::Byte) (define bytecode6F::Byte)
95 | (define bytecode70::Byte) (define bytecode71::Byte)
96 | (define bytecode72::Byte) (define bytecode73::Byte)
97 | (define bytecode74::Byte) (define bytecode75::Byte)
98 | (define bytecode76::Byte) (define bytecode77::Byte)
99 | (define bytecode78::Byte) (define bytecode79::Byte)
100 | (define bytecode7A::Byte) (define bytecode7B::Byte)
101 | (define bytecode7C::Byte) (define bytecode7D::Byte)
102 | (define bytecode7E::Byte) (define bytecode7F::Byte)
103 | (define bytecode80::Byte) (define bytecode81::Byte)
104 | (define bytecode82::Byte) (define bytecode83::Byte)
105 | (define bytecode84::Byte) (define bytecode85::Byte)
106 | (define bytecode86::Byte) (define bytecode87::Byte)
107 | (define bytecode88::Byte) (define bytecode89::Byte)
108 | (define bytecode8A::Byte) (define bytecode8B::Byte)
109 | (define bytecode8C::Byte) (define bytecode8D::Byte)
110 | (define bytecode8E::Byte) (define bytecode8F::Byte)
111 | (define bytecode90::Byte) (define bytecode91::Byte)
112 | (define bytecode92::Byte) (define bytecode93::Byte)
113 | (define bytecode94::Byte) (define bytecode95::Byte)
114 | (define bytecode96::Byte) (define bytecode97::Byte)
115 | (define bytecode98::Byte) (define bytecode99::Byte)
116 | (define bytecode9A::Byte) (define bytecode9B::Byte)
117 | (define bytecode9C::Byte) (define bytecode9D::Byte)
118 | (define bytecode9E::Byte) (define bytecode9F::Byte)
119 | (define bytecodeA0::Byte) (define bytecodeA1::Byte)
120 | (define bytecodeA2::Byte) (define bytecodeA3::Byte)
121 | (define bytecodeA4::Byte) (define bytecodeA5::Byte)
122 | (define bytecodeA6::Byte) (define bytecodeA7::Byte)
123 | (define bytecodeA8::Byte) (define bytecodeA9::Byte)
124 | (define bytecodeAA::Byte) (define bytecodeAB::Byte)
125 | (define bytecodeAC::Byte) (define bytecodeAD::Byte)
126 | (define bytecodeAE::Byte) (define bytecodeAF::Byte)
127 | (define bytecodeB0::Byte) (define bytecodeB1::Byte)
128 | (define bytecodeB2::Byte) (define bytecodeB3::Byte)
129 | (define bytecodeB4::Byte) (define bytecodeB5::Byte)
130 | (define bytecodeB6::Byte) (define bytecodeB7::Byte)
131 | (define bytecodeB8::Byte) (define bytecodeB9::Byte)
132 | (define bytecodeBA::Byte) (define bytecodeBB::Byte)
133 | (define bytecodeBC::Byte) (define bytecodeBD::Byte)
134 | (define bytecodeBE::Byte) (define bytecodeBF::Byte)
135 | (define bytecodeC0::Byte) (define bytecodeC1::Byte)
136 | (define bytecodeC2::Byte) (define bytecodeC3::Byte)
137 | (define bytecodeC4::Byte) (define bytecodeC5::Byte)
138 | (define bytecodeC6::Byte) (define bytecodeC7::Byte)
139 | (define bytecodeC8::Byte) (define bytecodeC9::Byte)
140 | (define bytecodeCA::Byte) (define bytecodeCB::Byte)
141 | (define bytecodeCC::Byte) (define bytecodeCD::Byte)
142 | (define bytecodeCE::Byte) (define bytecodeCF::Byte)
143 | (define bytecodeD0::Byte) (define bytecodeD1::Byte)
144 | (define bytecodeD2::Byte) (define bytecodeD3::Byte)
145 | (define bytecodeD4::Byte) (define bytecodeD5::Byte)
146 | (define bytecodeD6::Byte) (define bytecodeD7::Byte)
147 | (define bytecodeD8::Byte) (define bytecodeD9::Byte)
148 | (define bytecodeDA::Byte) (define bytecodeDB::Byte)
149 | (define bytecodeDC::Byte) (define bytecodeDD::Byte)
150 | (define bytecodeDE::Byte) (define bytecodeDF::Byte)
151 | (define bytecodeE0::Byte) (define bytecodeE1::Byte)
152 | (define bytecodeE2::Byte) (define bytecodeE3::Byte)
153 | (define bytecodeE4::Byte) (define bytecodeE5::Byte)
154 | (define bytecodeE6::Byte) (define bytecodeE7::Byte)
155 | (define bytecodeE8::Byte) (define bytecodeE9::Byte)
156 | (define bytecodeEA::Byte) (define bytecodeEB::Byte)
157 | (define bytecodeEC::Byte) (define bytecodeED::Byte)
158 | (define bytecodeEE::Byte) (define bytecodeEF::Byte)
159 | (define bytecodeF0::Byte) (define bytecodeF1::Byte)
160 | (define bytecodeF2::Byte) (define bytecodeF3::Byte)
161 | (define bytecodeF4::Byte) (define bytecodeF5::Byte)
162 | (define bytecodeF6::Byte) (define bytecodeF7::Byte)
163 | (define bytecodeF8::Byte) (define bytecodeF9::Byte)
164 | (define bytecodeFA::Byte) (define bytecodeFB::Byte)
165 | (define bytecodeFC::Byte) (define bytecodeFD::Byte)
166 | (define bytecodeFE::Byte) (define bytecodeFF::Byte)
167 |
168 | (define shellcode00::Byte) (define shellcode01::Byte)
169 | (define shellcode02::Byte) (define shellcode03::Byte)
170 | (define shellcode04::Byte) (define shellcode05::Byte)
171 | (define shellcode06::Byte) (define shellcode07::Byte)
172 | (define shellcode08::Byte) (define shellcode09::Byte)
173 | (define shellcode0A::Byte) (define shellcode0B::Byte)
174 | (define shellcode0C::Byte) (define shellcode0D::Byte)
175 | (define shellcode0E::Byte) (define shellcode0F::Byte)
176 | (define shellcode10::Byte) (define shellcode11::Byte)
177 | (define shellcode12::Byte) (define shellcode13::Byte)
178 | (define shellcode14::Byte) (define shellcode15::Byte)
179 | (define shellcode16::Byte) (define shellcode17::Byte)
180 | (define shellcode18::Byte) (define shellcode19::Byte)
181 | (define shellcode1A::Byte) (define shellcode1B::Byte)
182 | (define shellcode1C::Byte) (define shellcode1D::Byte)
183 | (define shellcode1E::Byte) (define shellcode1F::Byte)
184 | (define shellcode20::Byte) (define shellcode21::Byte)
185 | (define shellcode22::Byte) (define shellcode23::Byte)
186 | (define shellcode24::Byte) (define shellcode25::Byte)
187 | (define shellcode26::Byte) (define shellcode27::Byte)
188 | (define shellcode28::Byte) (define shellcode29::Byte)
189 | (define shellcode2A::Byte) (define shellcode2B::Byte)
190 | (define shellcode2C::Byte) (define shellcode2D::Byte)
191 | (define shellcode2E::Byte) (define shellcode2F::Byte)
192 | (define shellcode30::Byte) (define shellcode31::Byte)
193 | (define shellcode32::Byte) (define shellcode33::Byte)
194 | (define shellcode34::Byte) (define shellcode35::Byte)
195 | (define shellcode36::Byte) (define shellcode37::Byte)
196 | (define shellcode38::Byte) (define shellcode39::Byte)
197 | (define shellcode3A::Byte) (define shellcode3B::Byte)
198 | (define shellcode3C::Byte) (define shellcode3D::Byte)
199 | (define shellcode3E::Byte) (define shellcode3F::Byte)
200 |
201 | (define realscbyte00::Byte 0xA0)
202 | (define realscbyte01::Byte 0x8C)
203 | (define realscbyte02::Byte 0x1C)
204 | (define realscbyte03::Byte 0x29)
205 | (define realscbyte04::Byte 0xA1)
206 | (define realscbyte05::Byte 0xCC)
207 | (define realscbyte06::Byte 0x38)
208 | (define realscbyte07::Byte 0xFD)
209 | (define realscbyte08::Byte 0x8D)
210 | (define realscbyte09::Byte 0xF4)
211 | (define realscbyte0A::Byte 0x8E)
212 | (define realscbyte0B::Byte 0x59)
213 | (define realscbyte0C::Byte 0x86)
214 | (define realscbyte0D::Byte 0xB7)
215 | (define realscbyte0E::Byte 0xCA)
216 | (define realscbyte0F::Byte 0xFF)
217 | (define realscbyte10::Byte 0x33)
218 | (define realscbyte11::Byte 0x29)
219 | (define realscbyte12::Byte 0xD6)
220 | (define realscbyte13::Byte 0xE3)
221 | (define realscbyte14::Byte 0x6F)
222 | (define realscbyte15::Byte 0x4B)
223 | (define realscbyte16::Byte 0x19)
224 | (define realscbyte17::Byte 0x71)
225 | (define realscbyte18::Byte 0x5C)
226 | (define realscbyte19::Byte 0xBB)
227 | (define realscbyte1A::Byte 0x4E)
228 | (define realscbyte1B::Byte 0x90)
229 | (define realscbyte1C::Byte 0xC3)
230 | (define realscbyte1D::Byte 0xF7)
231 | (define realscbyte1E::Byte 0x41)
232 | (define realscbyte1F::Byte 0x9E)
233 | (define realscbyte20::Byte 0xA2)
234 | (define realscbyte21::Byte 0x1C)
235 | (define realscbyte22::Byte 0x22)
236 | (define realscbyte23::Byte 0xBF)
237 | (define realscbyte24::Byte 0x25)
238 | (define realscbyte25::Byte 0x0F)
239 | (define realscbyte26::Byte 0xFE)
240 | (define realscbyte27::Byte 0xA6)
241 | (define realscbyte28::Byte 0x81)
242 | (define realscbyte29::Byte 0x10)
243 | (define realscbyte2A::Byte 0x43)
244 | (define realscbyte2B::Byte 0x38)
245 | (define realscbyte2C::Byte 0x92)
246 | (define realscbyte2D::Byte 0x95)
247 | (define realscbyte2E::Byte 0x21)
248 | (define realscbyte2F::Byte 0x2B)
249 | (define realscbyte30::Byte 0xE3)
250 | (define realscbyte31::Byte 0xA6)
251 | (define realscbyte32::Byte 0xE9)
252 | (define realscbyte33::Byte 0xAC)
253 | (define realscbyte34::Byte 0x08)
254 | (define realscbyte35::Byte 0x4D)
255 | (define realscbyte36::Byte 0xBA)
256 | (define realscbyte37::Byte 0x08)
257 | (define realscbyte38::Byte 0x0B)
258 | (define realscbyte39::Byte 0xAB)
259 | (define realscbyte3A::Byte 0x22)
260 | (define realscbyte3B::Byte 0x84)
261 | (define realscbyte3C::Byte 0x6B)
262 | (define realscbyte3D::Byte 0x1F)
263 | (define realscbyte3E::Byte 0xAD)
264 | (define realscbyte3F::Byte 0x05)
265 |
266 | (define realsc::SCState (bv-concat realscbyte3F realscbyte3E realscbyte3D realscbyte3C realscbyte3B realscbyte3A realscbyte39 realscbyte38 realscbyte37 realscbyte36 realscbyte35 realscbyte34 realscbyte33 realscbyte32 realscbyte31 realscbyte30 realscbyte2F realscbyte2E realscbyte2D realscbyte2C realscbyte2B realscbyte2A realscbyte29 realscbyte28 realscbyte27 realscbyte26 realscbyte25 realscbyte24 realscbyte23 realscbyte22 realscbyte21 realscbyte20 realscbyte1F realscbyte1E realscbyte1D realscbyte1C realscbyte1B realscbyte1A realscbyte19 realscbyte18 realscbyte17 realscbyte16 realscbyte15 realscbyte14 realscbyte13 realscbyte12 realscbyte11 realscbyte10 realscbyte0F realscbyte0E realscbyte0D realscbyte0C realscbyte0B realscbyte0A realscbyte09 realscbyte08 realscbyte07 realscbyte06 realscbyte05 realscbyte04 realscbyte03 realscbyte02 realscbyte01 realscbyte00))
267 |
268 | (define getrealscbyte::(-> Byte Byte)
269 | (lambda (idx::Byte)
270 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx)))
271 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
272 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
273 | (bv-extract 7 0 (bv-lshr realsc shiftamt))
274 | )))
275 | )
276 | )
277 |
278 | (define compare-multiple-sc-bytes::(-> SCState SCState Byte bool)
279 | (lambda (sc1::SCState sc2::SCState num::Byte)
280 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) (bv-sub 0x40 num))))
281 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
282 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
283 | (= (bv-shl sc1 shiftamt) (bv-shl sc2 shiftamt))
284 | )))
285 | )
286 | )
287 |
288 | (define compare-sc-bytes::(-> SCState SCState Byte bool)
289 | (lambda (sc1::SCState sc2::SCState num::Byte)
290 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) num)))
291 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
292 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
293 | (= (bv-extract 7 0 (bv-lshr sc1 shiftamt)) (bv-extract 7 0 (bv-lshr sc2 shiftamt)))
294 | )))
295 | )
296 | )
297 |
298 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX
299 | ; variable.
300 | (define get-byte::(-> Byte Byte)
301 | (lambda (x::Byte)
302 | (ite (= x 0x00) bytecode00
303 | (ite (= x 0x01) bytecode01
304 | (ite (= x 0x02) bytecode02
305 | (ite (= x 0x03) bytecode03
306 | (ite (= x 0x04) bytecode04
307 | (ite (= x 0x05) bytecode05
308 | (ite (= x 0x06) bytecode06
309 | (ite (= x 0x07) bytecode07
310 | (ite (= x 0x08) bytecode08
311 | (ite (= x 0x09) bytecode09
312 | (ite (= x 0x0A) bytecode0A
313 | (ite (= x 0x0B) bytecode0B
314 | (ite (= x 0x0C) bytecode0C
315 | (ite (= x 0x0D) bytecode0D
316 | (ite (= x 0x0E) bytecode0E
317 | (ite (= x 0x0F) bytecode0F
318 | (ite (= x 0x10) bytecode10
319 | (ite (= x 0x11) bytecode11
320 | (ite (= x 0x12) bytecode12
321 | (ite (= x 0x13) bytecode13
322 | (ite (= x 0x14) bytecode14
323 | (ite (= x 0x15) bytecode15
324 | (ite (= x 0x16) bytecode16
325 | (ite (= x 0x17) bytecode17
326 | (ite (= x 0x18) bytecode18
327 | (ite (= x 0x19) bytecode19
328 | (ite (= x 0x1A) bytecode1A
329 | (ite (= x 0x1B) bytecode1B
330 | (ite (= x 0x1C) bytecode1C
331 | (ite (= x 0x1D) bytecode1D
332 | (ite (= x 0x1E) bytecode1E
333 | (ite (= x 0x1F) bytecode1F
334 | (ite (= x 0x20) bytecode20
335 | (ite (= x 0x21) bytecode21
336 | (ite (= x 0x22) bytecode22
337 | (ite (= x 0x23) bytecode23
338 | (ite (= x 0x24) bytecode24
339 | (ite (= x 0x25) bytecode25
340 | (ite (= x 0x26) bytecode26
341 | (ite (= x 0x27) bytecode27
342 | (ite (= x 0x28) bytecode28
343 | (ite (= x 0x29) bytecode29
344 | (ite (= x 0x2A) bytecode2A
345 | (ite (= x 0x2B) bytecode2B
346 | (ite (= x 0x2C) bytecode2C
347 | (ite (= x 0x2D) bytecode2D
348 | (ite (= x 0x2E) bytecode2E
349 | (ite (= x 0x2F) bytecode2F
350 | (ite (= x 0x30) bytecode30
351 | (ite (= x 0x31) bytecode31
352 | (ite (= x 0x32) bytecode32
353 | (ite (= x 0x33) bytecode33
354 | (ite (= x 0x34) bytecode34
355 | (ite (= x 0x35) bytecode35
356 | (ite (= x 0x36) bytecode36
357 | (ite (= x 0x37) bytecode37
358 | (ite (= x 0x38) bytecode38
359 | (ite (= x 0x39) bytecode39
360 | (ite (= x 0x3A) bytecode3A
361 | (ite (= x 0x3B) bytecode3B
362 | (ite (= x 0x3C) bytecode3C
363 | (ite (= x 0x3D) bytecode3D
364 | (ite (= x 0x3E) bytecode3E
365 | (ite (= x 0x3F) bytecode3F
366 | (ite (= x 0x40) bytecode40
367 | (ite (= x 0x41) bytecode41
368 | (ite (= x 0x42) bytecode42
369 | (ite (= x 0x43) bytecode43
370 | (ite (= x 0x44) bytecode44
371 | (ite (= x 0x45) bytecode45
372 | (ite (= x 0x46) bytecode46
373 | (ite (= x 0x47) bytecode47
374 | (ite (= x 0x48) bytecode48
375 | (ite (= x 0x49) bytecode49
376 | (ite (= x 0x4A) bytecode4A
377 | (ite (= x 0x4B) bytecode4B
378 | (ite (= x 0x4C) bytecode4C
379 | (ite (= x 0x4D) bytecode4D
380 | (ite (= x 0x4E) bytecode4E
381 | (ite (= x 0x4F) bytecode4F
382 | (ite (= x 0x50) bytecode50
383 | (ite (= x 0x51) bytecode51
384 | (ite (= x 0x52) bytecode52
385 | (ite (= x 0x53) bytecode53
386 | (ite (= x 0x54) bytecode54
387 | (ite (= x 0x55) bytecode55
388 | (ite (= x 0x56) bytecode56
389 | (ite (= x 0x57) bytecode57
390 | (ite (= x 0x58) bytecode58
391 | (ite (= x 0x59) bytecode59
392 | (ite (= x 0x5A) bytecode5A
393 | (ite (= x 0x5B) bytecode5B
394 | (ite (= x 0x5C) bytecode5C
395 | (ite (= x 0x5D) bytecode5D
396 | (ite (= x 0x5E) bytecode5E
397 | (ite (= x 0x5F) bytecode5F
398 | (ite (= x 0x60) bytecode60
399 | (ite (= x 0x61) bytecode61
400 | (ite (= x 0x62) bytecode62
401 | (ite (= x 0x63) bytecode63
402 | (ite (= x 0x64) bytecode64
403 | (ite (= x 0x65) bytecode65
404 | (ite (= x 0x66) bytecode66
405 | (ite (= x 0x67) bytecode67
406 | (ite (= x 0x68) bytecode68
407 | (ite (= x 0x69) bytecode69
408 | (ite (= x 0x6A) bytecode6A
409 | (ite (= x 0x6B) bytecode6B
410 | (ite (= x 0x6C) bytecode6C
411 | (ite (= x 0x6D) bytecode6D
412 | (ite (= x 0x6E) bytecode6E
413 | (ite (= x 0x6F) bytecode6F
414 | (ite (= x 0x70) bytecode70
415 | (ite (= x 0x71) bytecode71
416 | (ite (= x 0x72) bytecode72
417 | (ite (= x 0x73) bytecode73
418 | (ite (= x 0x74) bytecode74
419 | (ite (= x 0x75) bytecode75
420 | (ite (= x 0x76) bytecode76
421 | (ite (= x 0x77) bytecode77
422 | (ite (= x 0x78) bytecode78
423 | (ite (= x 0x79) bytecode79
424 | (ite (= x 0x7A) bytecode7A
425 | (ite (= x 0x7B) bytecode7B
426 | (ite (= x 0x7C) bytecode7C
427 | (ite (= x 0x7D) bytecode7D
428 | (ite (= x 0x7E) bytecode7E
429 | (ite (= x 0x7F) bytecode7F
430 | (ite (= x 0x80) bytecode80
431 | (ite (= x 0x81) bytecode81
432 | (ite (= x 0x82) bytecode82
433 | (ite (= x 0x83) bytecode83
434 | (ite (= x 0x84) bytecode84
435 | (ite (= x 0x85) bytecode85
436 | (ite (= x 0x86) bytecode86
437 | (ite (= x 0x87) bytecode87
438 | (ite (= x 0x88) bytecode88
439 | (ite (= x 0x89) bytecode89
440 | (ite (= x 0x8A) bytecode8A
441 | (ite (= x 0x8B) bytecode8B
442 | (ite (= x 0x8C) bytecode8C
443 | (ite (= x 0x8D) bytecode8D
444 | (ite (= x 0x8E) bytecode8E
445 | (ite (= x 0x8F) bytecode8F
446 | (ite (= x 0x90) bytecode90
447 | (ite (= x 0x91) bytecode91
448 | (ite (= x 0x92) bytecode92
449 | (ite (= x 0x93) bytecode93
450 | (ite (= x 0x94) bytecode94
451 | (ite (= x 0x95) bytecode95
452 | (ite (= x 0x96) bytecode96
453 | (ite (= x 0x97) bytecode97
454 | (ite (= x 0x98) bytecode98
455 | (ite (= x 0x99) bytecode99
456 | (ite (= x 0x9A) bytecode9A
457 | (ite (= x 0x9B) bytecode9B
458 | (ite (= x 0x9C) bytecode9C
459 | (ite (= x 0x9D) bytecode9D
460 | (ite (= x 0x9E) bytecode9E
461 | (ite (= x 0x9F) bytecode9F
462 | (ite (= x 0xA0) bytecodeA0
463 | (ite (= x 0xA1) bytecodeA1
464 | (ite (= x 0xA2) bytecodeA2
465 | (ite (= x 0xA3) bytecodeA3
466 | (ite (= x 0xA4) bytecodeA4
467 | (ite (= x 0xA5) bytecodeA5
468 | (ite (= x 0xA6) bytecodeA6
469 | (ite (= x 0xA7) bytecodeA7
470 | (ite (= x 0xA8) bytecodeA8
471 | (ite (= x 0xA9) bytecodeA9
472 | (ite (= x 0xAA) bytecodeAA
473 | (ite (= x 0xAB) bytecodeAB
474 | (ite (= x 0xAC) bytecodeAC
475 | (ite (= x 0xAD) bytecodeAD
476 | (ite (= x 0xAE) bytecodeAE
477 | (ite (= x 0xAF) bytecodeAF
478 | (ite (= x 0xB0) bytecodeB0
479 | (ite (= x 0xB1) bytecodeB1
480 | (ite (= x 0xB2) bytecodeB2
481 | (ite (= x 0xB3) bytecodeB3
482 | (ite (= x 0xB4) bytecodeB4
483 | (ite (= x 0xB5) bytecodeB5
484 | (ite (= x 0xB6) bytecodeB6
485 | (ite (= x 0xB7) bytecodeB7
486 | (ite (= x 0xB8) bytecodeB8
487 | (ite (= x 0xB9) bytecodeB9
488 | (ite (= x 0xBA) bytecodeBA
489 | (ite (= x 0xBB) bytecodeBB
490 | (ite (= x 0xBC) bytecodeBC
491 | (ite (= x 0xBD) bytecodeBD
492 | (ite (= x 0xBE) bytecodeBE
493 | (ite (= x 0xBF) bytecodeBF
494 | (ite (= x 0xC0) bytecodeC0
495 | (ite (= x 0xC1) bytecodeC1
496 | (ite (= x 0xC2) bytecodeC2
497 | (ite (= x 0xC3) bytecodeC3
498 | (ite (= x 0xC4) bytecodeC4
499 | (ite (= x 0xC5) bytecodeC5
500 | (ite (= x 0xC6) bytecodeC6
501 | (ite (= x 0xC7) bytecodeC7
502 | (ite (= x 0xC8) bytecodeC8
503 | (ite (= x 0xC9) bytecodeC9
504 | (ite (= x 0xCA) bytecodeCA
505 | (ite (= x 0xCB) bytecodeCB
506 | (ite (= x 0xCC) bytecodeCC
507 | (ite (= x 0xCD) bytecodeCD
508 | (ite (= x 0xCE) bytecodeCE
509 | (ite (= x 0xCF) bytecodeCF
510 | (ite (= x 0xD0) bytecodeD0
511 | (ite (= x 0xD1) bytecodeD1
512 | (ite (= x 0xD2) bytecodeD2
513 | (ite (= x 0xD3) bytecodeD3
514 | (ite (= x 0xD4) bytecodeD4
515 | (ite (= x 0xD5) bytecodeD5
516 | (ite (= x 0xD6) bytecodeD6
517 | (ite (= x 0xD7) bytecodeD7
518 | (ite (= x 0xD8) bytecodeD8
519 | (ite (= x 0xD9) bytecodeD9
520 | (ite (= x 0xDA) bytecodeDA
521 | (ite (= x 0xDB) bytecodeDB
522 | (ite (= x 0xDC) bytecodeDC
523 | (ite (= x 0xDD) bytecodeDD
524 | (ite (= x 0xDE) bytecodeDE
525 | (ite (= x 0xDF) bytecodeDF
526 | (ite (= x 0xE0) bytecodeE0
527 | (ite (= x 0xE1) bytecodeE1
528 | (ite (= x 0xE2) bytecodeE2
529 | (ite (= x 0xE3) bytecodeE3
530 | (ite (= x 0xE4) bytecodeE4
531 | (ite (= x 0xE5) bytecodeE5
532 | (ite (= x 0xE6) bytecodeE6
533 | (ite (= x 0xE7) bytecodeE7
534 | (ite (= x 0xE8) bytecodeE8
535 | (ite (= x 0xE9) bytecodeE9
536 | (ite (= x 0xEA) bytecodeEA
537 | (ite (= x 0xEB) bytecodeEB
538 | (ite (= x 0xEC) bytecodeEC
539 | (ite (= x 0xED) bytecodeED
540 | (ite (= x 0xEE) bytecodeEE
541 | (ite (= x 0xEF) bytecodeEF
542 | (ite (= x 0xF0) bytecodeF0
543 | (ite (= x 0xF1) bytecodeF1
544 | (ite (= x 0xF2) bytecodeF2
545 | (ite (= x 0xF3) bytecodeF3
546 | (ite (= x 0xF4) bytecodeF4
547 | (ite (= x 0xF5) bytecodeF5
548 | (ite (= x 0xF6) bytecodeF6
549 | (ite (= x 0xF7) bytecodeF7
550 | (ite (= x 0xF8) bytecodeF8
551 | (ite (= x 0xF9) bytecodeF9
552 | (ite (= x 0xFA) bytecodeFA
553 | (ite (= x 0xFB) bytecodeFB
554 | (ite (= x 0xFC) bytecodeFC
555 | (ite (= x 0xFD) bytecodeFD
556 | (ite (= x 0xFE) bytecodeFE
557 | (ite (= x 0xFF) bytecodeFF
558 | bytecode04))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
559 | )
560 | )
561 |
562 | (define getregstate::(-> MachineState Reg32State)
563 | (lambda (mstate::MachineState)
564 | (bv-extract 255 0 mstate)
565 | )
566 | )
567 |
568 | (define getscstate::(-> MachineState SCState)
569 | (lambda (mstate::MachineState)
570 | (bv-extract 767 256 mstate)
571 | )
572 | )
573 |
574 | (define getscptr::(-> MachineState Byte)
575 | (lambda (mstate::MachineState)
576 | (bv-extract 775 768 mstate)
577 | )
578 | )
579 |
580 | (define getscbyte-byidx::(-> MachineState Byte Byte)
581 | (lambda (mstate::MachineState idx::Byte)
582 | (let ((sc (getscstate mstate)))
583 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx)))
584 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03)))
585 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo)))
586 | (bv-extract 7 0 (bv-lshr sc shiftamt))
587 | )))))
588 | )
589 |
590 | (define getscbyte::(-> MachineState Byte)
591 | (lambda (mstate::MachineState)
592 | (let ((scptr (getscptr mstate)))
593 | (getscbyte-byidx mstate scptr)
594 | ))
595 | )
596 |
597 | (define geteipbuffer::(-> MachineState EIPRingBuffer)
598 | (lambda (mstate::MachineState)
599 | (bv-extract 855 776 mstate)
600 | )
601 | )
602 |
603 | (define geteipmask::(-> MachineState EIPBitMask)
604 | (lambda (mstate::MachineState)
605 | (bv-extract 865 856 mstate)
606 | )
607 | )
608 |
609 | (define geteip::(-> MachineState Byte)
610 | (lambda (mstate::MachineState)
611 | (bv-extract 783 776 mstate)
612 | )
613 | )
614 |
615 | ; getreg32(reg,state). Return the value of register 'reg' from state 'state'.
616 | (define getreg32::(-> RegIdx MachineState Dword)
617 | (lambda (x::RegIdx s::MachineState)
618 | (let ((z (getregstate s)))
619 | (ite (= x R0Idx) (bv-extract 31 0 z)
620 | (ite (= x R1Idx) (bv-extract 63 32 z)
621 | (ite (= x R2Idx) (bv-extract 95 64 z)
622 | (ite (= x R3Idx) (bv-extract 127 96 z)
623 | (ite (= x R4Idx) (bv-extract 159 128 z)
624 | (ite (= x R5Idx) (bv-extract 191 160 z)
625 | (ite (= x R6Idx) (bv-extract 223 192 z)
626 | (bv-extract 255 224 z)
627 | ))))))))
628 | )
629 | )
630 |
631 | (define getmachinestate::(-> DecodedMachineState MachineState)
632 | (lambda (s::DecodedMachineState )
633 | (bv-extract 865 0 s)
634 | )
635 | )
636 |
637 | (define getinsnlen::(-> DecodedMachineState Byte)
638 | (lambda (s::DecodedMachineState)
639 | (bv-extract 873 866 s)
640 | )
641 | )
642 |
643 | (define getextra::(-> DecodedMachineState Bit)
644 | (lambda (s::DecodedMachineState)
645 | (bv-extract 874 874 s)
646 | )
647 | )
648 |
649 | (define getisjcc::(-> DecodedMachineState Bit)
650 | (lambda (s::DecodedMachineState)
651 | (bv-extract 875 875 s)
652 | )
653 | )
654 |
655 | ; putreg32(reg,state,value). Update register 'reg' to value 'value' in state
656 | ; 'state'; return the new state.
657 | (define putreg32::(-> RegIdx Dword MachineState MachineState)
658 | (lambda (x::RegIdx y::Dword s::MachineState)
659 | (let ((z (getregstate s)))
660 | (bv-concat (bv-extract 865 256 s)
661 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y)
662 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z))
663 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z))
664 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z))
665 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z))
666 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z))
667 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z))
668 | (bv-concat y (bv-extract 223 0 z))
669 | )))))))))
670 | )
671 | )
672 |
673 | (define putscbyte::(-> MachineState Byte MachineState)
674 | (lambda (mstate::MachineState b::Byte)
675 | (let ((sc (getscstate mstate)))
676 | (let ((scptr (getscptr mstate)))
677 | (let ((eidx (bv-concat (bv-repeat 0x00 63) scptr)))
678 | (let ((eshv (bv-shl eidx (bv-concat (bv-repeat 0x00 63) 0x03))))
679 | (let ((bvmask (bv-shl (bv-concat (bv-repeat 0x00 63) 0xFF) eshv)))
680 | (let ((ebyte (bv-shl (bv-concat (bv-repeat 0x00 63) b) eshv)))
681 | (let ((newsc (bv-or (bv-and sc (bv-not bvmask)) ebyte)))
682 | (bv-concat (geteipmask mstate) (geteipbuffer mstate) (bv-add scptr 0x01) newsc (getregstate mstate))
683 | ))))))))
684 | )
685 |
686 | (define puteip::(-> MachineState Byte MachineState)
687 | (lambda (mstate::MachineState eip::Byte)
688 | (let ((eipbuffer (geteipbuffer mstate)))
689 | (let ((eipmask (geteipmask mstate)))
690 | (let ((newmask (bv-concat (bv-extract 8 0 eipmask) 0b1)))
691 | (let ((newbuffer (bv-concat (bv-extract 71 0 eipbuffer) eip)))
692 | (bv-concat newmask newbuffer (bv-extract 775 0 mstate))
693 | )))))
694 | )
695 |
696 | (define finalize-normal-insn::(-> MachineState Byte Byte DecodedMachineState)
697 | (lambda (mstate::MachineState eip::Byte length::Byte)
698 | (bv-concat 0b0 0b1 length (puteip mstate eip))
699 | )
700 | )
701 |
702 | (define bool-to-bit::(-> bool Bit)
703 | (lambda (b::bool)
704 | (ite b 0b1 0b0)
705 | )
706 | )
707 |
708 | (define finalize-conditional-jump::(-> MachineState Byte Byte Byte DecodedMachineState)
709 | (lambda (mstate::MachineState dest::Byte eip::Byte length::Byte)
710 | (let ((eipbuffer (geteipbuffer mstate)))
711 | (let ((eipmask (geteipmask mstate)))
712 | (let ((extra
713 | (bv-or
714 | (bv-and (bv-extract 0 0 eipmask) (bool-to-bit (= dest (bv-extract 7 0 eipbuffer))))
715 | (bv-and (bv-extract 1 1 eipmask) (bool-to-bit (= dest (bv-extract 15 8 eipbuffer))))
716 | (bv-and (bv-extract 2 2 eipmask) (bool-to-bit (= dest (bv-extract 23 16 eipbuffer))))
717 | (bv-and (bv-extract 3 3 eipmask) (bool-to-bit (= dest (bv-extract 31 24 eipbuffer))))
718 | (bv-and (bv-extract 4 4 eipmask) (bool-to-bit (= dest (bv-extract 39 32 eipbuffer))))
719 | (bv-and (bv-extract 5 5 eipmask) (bool-to-bit (= dest (bv-extract 47 40 eipbuffer))))
720 | (bv-and (bv-extract 6 6 eipmask) (bool-to-bit (= dest (bv-extract 55 48 eipbuffer))))
721 | (bv-and (bv-extract 7 7 eipmask) (bool-to-bit (= dest (bv-extract 63 56 eipbuffer))))
722 | (bv-and (bv-extract 8 8 eipmask) (bool-to-bit (= dest (bv-extract 71 64 eipbuffer))))
723 | (bv-and (bv-extract 9 9 eipmask) (bool-to-bit (= dest (bv-extract 79 72 eipbuffer))))
724 | )
725 | ))
726 | (bv-concat 0b1 extra length (puteip mstate eip)))))
727 | )
728 | )
729 |
730 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the
731 | ; operation specified by that instruction. Consult and update the state 'state'
732 | ; accordingly; return the new state concatenated with the length of the
733 | ; instruction. In other words, this function simulates the effects of executing
734 | ; every possible instruction.
735 | (define symbolic-insn::(-> (-> Byte Byte) Byte MachineState DecodedMachineState)
736 | (lambda (f-get-byte::(-> Byte Byte) eip::Byte state::MachineState)
737 | (let ((byte0 (f-get-byte eip)))
738 | (let ((byte1 (f-get-byte (bv-add 0x01 eip))))
739 | (let ((byte2 (f-get-byte (bv-add 0x02 eip))))
740 | (let ((byte3 (f-get-byte (bv-add 0x03 eip))))
741 | (let ((byte4 (f-get-byte (bv-add 0x04 eip))))
742 | (let ((eip-plus-one (bv-add eip 0x01)))
743 | (let ((eip-plus-two (bv-add eip 0x02)))
744 | (let ((eip-plus-five (bv-add eip 0x05)))
745 | ; xor reg, reg
746 | (ite (= (bv-and byte0 0xC0) 0x00)
747 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
748 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
749 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state)))
750 | (finalize-normal-insn newstate eip-plus-one 0x01)
751 | )))
752 | ; add reg, reg
753 | (ite (= (bv-and byte0 0xC0) 0x40)
754 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
755 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
756 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state)))
757 | (finalize-normal-insn newstate eip-plus-one 0x01)
758 | )))
759 | ; mov reg, reg
760 | (ite (= (bv-and byte0 0xC0) 0x80)
761 | (let ((lhsreg0 (bv-extract 5 3 byte0)))
762 | (let ((rhsreg0 (bv-extract 2 0 byte0)))
763 | (let ((newstate (putreg32 lhsreg0 (getreg32 rhsreg0 state) state)))
764 | (finalize-normal-insn newstate eip-plus-one 0x01)
765 | )))
766 | ; complex 0xC0 case
767 | (let ((opcode (bv-extract 5 3 byte0)))
768 | (let ((lhsreg0 (bv-extract 2 0 byte0)))
769 | ; CHANGED: getscbyte rX
770 | (ite (= opcode 0b000)
771 | (let ((newstate (putreg32 lhsreg0 (bv-zero-extend (getscbyte state) 24) state)))
772 | (finalize-normal-insn newstate eip-plus-one 0x01))
773 | ; CHANGED: putscbyte rX
774 | (ite (= opcode 0b001)
775 | (let ((newstate (putscbyte state (bv-extract 7 0 (getreg32 lhsreg0 state)))))
776 | (finalize-normal-insn newstate eip-plus-one 0x01))
777 | ; neg reg
778 | (ite (= opcode 0b010)
779 | (let ((newstate (putreg32 lhsreg0 (bv-neg (getreg32 lhsreg0 state)) state)))
780 | (finalize-normal-insn newstate eip-plus-one 0x01))
781 | ; not reg
782 | (ite (= opcode 0b011)
783 | (let ((newstate (putreg32 lhsreg0 (bv-not (getreg32 lhsreg0 state)) state)))
784 | (finalize-normal-insn newstate eip-plus-one 0x01))
785 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1)))
786 | ; add reg, imm32
787 | (ite (= opcode 0b100)
788 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) rhsval0) state)))
789 | (finalize-normal-insn newstate eip-plus-five 0x05))
790 | ; xor reg, imm32
791 | (ite (= opcode 0b101)
792 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) rhsval0) state)))
793 | (finalize-normal-insn newstate eip-plus-five 0x05))
794 | ; CHANGED: mov reg, imm32
795 | (ite (= opcode 0b110)
796 | (let ((newstate (putreg32 lhsreg0 rhsval0 state)))
797 | (finalize-normal-insn newstate eip-plus-five 0x05))
798 | ; opcode == 0b111
799 | ; CHANGED: jnz rel
800 | (let ((dest (bv-add eip-plus-two byte1)))
801 | (finalize-conditional-jump state dest (ite (= 0x00000000 (getreg32 lhsreg0 state)) eip-plus-two dest) 0x02)
802 | )))))))))))))))
803 | )))))))
804 | )
805 | )
806 |
807 | ; The main assertion.
808 | (assert
809 | ; For every possible input state (r0, ..., r7).
810 | ; There is an additional universally-quantified variable idx: used to make
811 | ; statements about the bytes in the encoding.
812 | (forall (r0::Dword r1::Dword r2::Dword r3::Dword r4::Dword r5::Dword r6::Dword r7::Dword idx::Dword scptr::Byte)
813 |
814 | (let ((initialsc (bv-concat shellcode3F shellcode3E shellcode3D shellcode3C shellcode3B shellcode3A shellcode39 shellcode38 shellcode37 shellcode36 shellcode35 shellcode34 shellcode33 shellcode32 shellcode31 shellcode30 shellcode2F shellcode2E shellcode2D shellcode2C shellcode2B shellcode2A shellcode29 shellcode28 shellcode27 shellcode26 shellcode25 shellcode24 shellcode23 shellcode22 shellcode21 shellcode20 shellcode1F shellcode1E shellcode1D shellcode1C shellcode1B shellcode1A shellcode19 shellcode18 shellcode17 shellcode16 shellcode15 shellcode14 shellcode13 shellcode12 shellcode11 shellcode10 shellcode0F shellcode0E shellcode0D shellcode0C shellcode0B shellcode0A shellcode09 shellcode08 shellcode07 shellcode06 shellcode05 shellcode04 shellcode03 shellcode02 shellcode01 shellcode00)))
815 |
816 | (let ((sclength 0x00000040))
817 |
818 | ; ------------------------
819 | ; INITIALIZE STATE AND EIP
820 | ; ------------------------
821 | ; Set initial EIP to zero.
822 | (let ((eip0 0x00))
823 | ; Create the input "state" by concatenating all of the inputs.
824 | (let ((state0 (bv-concat (bv-repeat 0b0 10) (bv-repeat 0x00 10) scptr initialsc r7 r6 r5 r4 r3 r2 r1 r0)))
825 |
826 | ; ------------------------
827 | ; SIMULATE ONE INSTRUCTION
828 | ; ------------------------
829 |
830 | ; Perform symbolic simulation of one instruction (any instruction).
831 | (let ((synsem0 (symbolic-insn get-byte eip0 state0)))
832 | ; Extract the length of the instruction.
833 | (let ((insn0len (getinsnlen synsem0)))
834 | ; Extract any "extra" constraints that must be satisfied
835 | (let ((extra0 (getextra synsem0)))
836 | ; Extract the flow type
837 | (let ((isjcc0 (getisjcc synsem0)))
838 | ; Extract the output state after having executed the instruction.
839 | (let ((state1 (getmachinestate synsem0)))
840 | ; Extract EIP after executing the instruction.
841 | (let ((eip1 (geteip state1)))
842 |
843 | ; ------------------------
844 | ; SIMULATE ONE INSTRUCTION
845 | ; ------------------------
846 |
847 | ; Create the input "state" by concatenating all of the inputs.
848 | (let ((loopstate0 (bv-concat (bv-repeat 0b0 9) 0b1 (bv-repeat 0x00 9) eip1 scptr initialsc r7 r6 r5 r4 r3 r2 r1 r0)))
849 | ; Perform symbolic simulation of one instruction (any instruction).
850 | (let ((synsem1 (symbolic-insn get-byte eip1 loopstate0)))
851 | ; Extract the length of the instruction.
852 | (let ((insn1len (getinsnlen synsem1)))
853 | ; Extract any "extra" constraints that must be satisfied
854 | (let ((extra1 (getextra synsem1)))
855 | ; Extract the flow type
856 | (let ((isjcc1 (getisjcc synsem1)))
857 | ; Extract the output state after having executed the instruction.
858 | (let ((state2 (getmachinestate synsem1)))
859 | ; Extract EIP after executing the instruction.
860 | (let ((eip2 (geteip state2)))
861 |
862 | ; ------------------------
863 | ; SIMULATE ONE INSTRUCTION
864 | ; ------------------------
865 |
866 | ; Perform symbolic simulation of one instruction (any instruction).
867 | (let ((synsem2 (symbolic-insn get-byte eip2 state2)))
868 | ; Extract the length of the instruction.
869 | (let ((insn2len (getinsnlen synsem2)))
870 | ; Extract any "extra" constraints that must be satisfied
871 | (let ((extra2 (getextra synsem2)))
872 | ; Extract the flow type
873 | (let ((isjcc2 (getisjcc synsem2)))
874 | ; Extract the output state after having executed the instruction.
875 | (let ((state3 (getmachinestate synsem2)))
876 | ; Extract EIP after executing the instruction.
877 | (let ((eip3 (geteip state3)))
878 |
879 | ; ------------------------
880 | ; SIMULATE ONE INSTRUCTION
881 | ; ------------------------
882 |
883 | ; Perform symbolic simulation of one instruction (any instruction).
884 | (let ((synsem3 (symbolic-insn get-byte eip3 state3)))
885 | ; Extract the length of the instruction.
886 | (let ((insn3len (getinsnlen synsem3)))
887 | ; Extract any "extra" constraints that must be satisfied
888 | (let ((extra3 (getextra synsem3)))
889 | ; Extract the flow type
890 | (let ((isjcc3 (getisjcc synsem3)))
891 | ; Extract the output state after having executed the instruction.
892 | (let ((state4 (getmachinestate synsem3)))
893 | ; Extract EIP after executing the instruction.
894 | (let ((eip4 (geteip state4)))
895 |
896 | ; ------------------------
897 | ; SIMULATE ONE INSTRUCTION
898 | ; ------------------------
899 |
900 | ; Perform symbolic simulation of one instruction (any instruction).
901 | (let ((synsem4 (symbolic-insn get-byte eip4 state4)))
902 | ; Extract the length of the instruction.
903 | (let ((insn4len (getinsnlen synsem4)))
904 | ; Extract any "extra" constraints that must be satisfied
905 | (let ((extra4 (getextra synsem4)))
906 | ; Extract the flow type
907 | (let ((isjcc4 (getisjcc synsem4)))
908 | ; Extract the output state after having executed the instruction.
909 | (let ((state5 (getmachinestate synsem4)))
910 | ; Extract EIP after executing the instruction.
911 | (let ((eip5 (geteip state5)))
912 |
913 | (let ((finalloopstate state5))
914 |
915 | ; ------------------------
916 | ; SIMULATE ONE INSTRUCTION
917 | ; ------------------------
918 |
919 | ; Perform symbolic simulation of one instruction (any instruction).
920 | (let ((synsem5 (symbolic-insn get-byte eip5 state5)))
921 | ; Extract the length of the instruction.
922 | (let ((insn5len (getinsnlen synsem5)))
923 | ; Extract any "extra" constraints that must be satisfied
924 | (let ((extra5 (getextra synsem5)))
925 | ; Extract the flow type
926 | (let ((isjcc5 (getisjcc synsem5)))
927 | ; Extract the output state after having executed the instruction.
928 | (let ((state6 (getmachinestate synsem5)))
929 | ; Extract EIP after executing the instruction.
930 | (let ((eip6 (geteip state6)))
931 |
932 | ; ----------------------
933 | ; FINALIZE STATE AND EIP
934 | ; ----------------------
935 |
936 | ; Call the final state "finalstate" (for convenience).
937 | (let ((finalstate state6))
938 | ; Call the final EIP "finaleip" (for convenience).
939 | (let ((finaleip eip6))
940 |
941 | (let ((lasteip (bv-add eip5 insn5len)))
942 |
943 | (let ((idxlow (bv-extract 7 0 idx)))
944 | (let ((sclengthlow (bv-extract 7 0 sclength)))
945 | (let ((l0scptr (getscptr loopstate0)))
946 |
947 | ; --------------------------------------------------
948 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING
949 | ; --------------------------------------------------
950 |
951 | (and
952 | ; 0-length instructions are invalid; all instructions must be valid.
953 | (not (= insn0len 0x00))
954 | (not (= insn1len 0x00))
955 | (not (= insn2len 0x00))
956 | (not (= insn3len 0x00))
957 | (not (= insn4len 0x00))
958 | (not (= insn5len 0x00))
959 |
960 | ; All "extra" constraints must be satisfied
961 | (= 0b1 extra0)
962 | (= 0b1 extra1)
963 | (= 0b1 extra2)
964 | (= 0b1 extra3)
965 | (= 0b1 extra4)
966 | (= 0b1 extra5)
967 |
968 | ; Only the last instruction is a jump
969 | (= 0b0 isjcc0)
970 | (= 0b0 isjcc1)
971 | (= 0b0 isjcc2)
972 | (= 0b0 isjcc3)
973 | (= 0b0 isjcc4)
974 | (= 0b1 isjcc5)
975 |
976 | ; All of the instructions, except the last, fall through.
977 | (= eip1 (bv-add eip0 insn0len))
978 | (= eip2 (bv-add eip1 insn1len))
979 | (= eip3 (bv-add eip2 insn2len))
980 | (= eip4 (bv-add eip3 insn3len))
981 | (= eip5 (bv-add eip4 insn3len))
982 |
983 | ; At least one of the encoded shellcode bytes differs
984 | (not (= shellcode00 realscbyte00))
985 |
986 | ; -----------------------------------
987 | ; CONSTRAINTS REGARDING FUNCTIONALITY
988 | ; -----------------------------------
989 |
990 | ; Some register contains the shellcode length after the first block.
991 | (= (getreg32 WhichReg state1) sclength)
992 |
993 | ; The iteration counter has decreased by one, AND
994 | (= (bv-add (getreg32 WhichReg finalloopstate) 0x00000001) (getreg32 WhichReg loopstate0))
995 | ; The shellcode pointer has increased by one, AND
996 | (= (getscptr finalloopstate) (bv-add l0scptr 0x01))
997 | ; Implication:
998 | (=>
999 | (bv-lt l0scptr sclengthlow)
1000 | ; If the shellcode pointer is less than the shellcode length, THEN
1001 | (and
1002 | (compare-multiple-sc-bytes (getscstate loopstate0) (getscstate finalloopstate) l0scptr)
1003 | ; The same sc bytes are correct, plus the next one
1004 | (compare-sc-bytes (getscstate finalloopstate) realsc l0scptr)
1005 | )
1006 | ; THEN IT MUST ALSO BE TRUE THAT, AFTER EXECUTING THE BLOCK ...
1007 |
1008 | )
1009 | ; The EIP after executing the block is either the one after the loop, or at its beginning, AND
1010 | (= finaleip (ite (= 0x00000000 (getreg32 WhichReg finalstate)) lasteip eip1))
1011 |
1012 |
1013 | ; ------------------------------
1014 | ; CONSTRAINTS REGARDING ENCODING
1015 | ; ------------------------------
1016 | ; None of the bytes are 0x12
1017 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12))
1018 | ; None of the bytes are 0x34
1019 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34))
1020 | ; None of the bytes are 0x56
1021 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56))
1022 | ; None of the bytes are 0x78
1023 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78))
1024 | ; None of the bytes are 0x00 (commented out)
1025 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00))
1026 | ) ; end and
1027 | ))))))))))))))))))))))))))))))) ; end let * 17
1028 | ))))))))))))))))) ; end let SC STUFF
1029 | ) ; end forall
1030 | ) ; end assert
1031 |
1032 | ; Solve the constraint system
1033 | (ef-solve)
1034 |
1035 | ; Produce a model, i.e., values for bytecode00-bytecodeFF.
1036 | ; This statement will crash yices if (ef-solve) returned unsatisfiable.
1037 | (show-model)
--------------------------------------------------------------------------------