├── LICENSE ├── README.md ├── progsynth.ys ├── synesthesia-1-mod-longestsolution.ys ├── synesthesia-1-mod-shortestsolution.ys ├── synesthesia-1-mod.ys ├── synesthesia-1.ys ├── synesthesia-simple-loops--solution.ys ├── synesthesia-simple-loops-refactoring-JUSTLOOP.ys ├── synesthesia-simple-loops-refactoring.ys ├── synesthesia-simple-loops.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-alphanum-collapsedscimplication-flattenscimplication.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-alphanum-collapsedscimplication.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-alphanum.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-collapsedscimplication-flattenscimplication.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-collapsedscimplication-treeifygetrealscbyte.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-collapsedscimplication.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable-expandedimplication-removedgeneralimplication.ys ├── synesthesia-symbolic-loops-twobyte-reducedscstate-chunkloopbody-printable.ys ├── synesthesia-symbolic-loops-twobyte.ys ├── synesthesia-symbolic-loops.ys └── synesthesia-x86.ys /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | {one line to give the program's name and a brief idea of what it does.} 635 | Copyright (C) {year} {name of author} 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | {project} Copyright (C) {year} {fullname} 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # SynesthesiaYS 2 | Synesthesia, implemented as Yices scripts 3 | 4 | Implementation for Synesthesia, a semi-automated compiler for shellcode with encoding restrictions. Run the scripts using yices 2.x with the command-line option "--mode=ef". 5 | 6 | The ideas behind this project were discussed in my presentation at EkoParty 2016: http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk 7 | 8 | Please see my blog entry on the subject for a high-level description of the project and the contents of this repository: http://www.msreverseengineering.com/blog/2017/7/15/the-synesthesia-shellcode-generator-code-release-and-future-directions 9 | 10 | Forgive my atrocious file naming convention. 11 | 12 | -------------------------------------------------------------------------------- /progsynth.ys: -------------------------------------------------------------------------------- 1 | ; These are the "components" as described in the presentation, i.e., the 2 | ; existentially-quantified variables. 3 | 4 | ; b1: If true, first operation is - (NEG), otherwise it is ~ (NOT). 5 | (define b1::bool) 6 | ; b2: If true, second operation is - (NEG), otherwise it is ~ (NOT). 7 | (define b2::bool) 8 | 9 | ; The main assertion that b1 and b2 must satisfy: 10 | (assert 11 | ; The "forall input" part of the formula: for all 32-bit values of x ... 12 | (forall (x::(bitvector 32)) 13 | ; Let y be the result of the first operation, dictated by b1 14 | (let ((y (ite b1 (bv-neg x) (bv-not x)))) 15 | ; Let z be the result of the second operation, dictated by b2 16 | (let ((z (ite b2 (bv-neg y) (bv-not y)))) 17 | ; The output, z, must be equal to the input x plus one. 18 | (= z (bv-add x 0x00000001)) 19 | ) 20 | ) 21 | ) 22 | ) 23 | 24 | ; This command askes Yices to solve the problem laid out above 25 | (ef-solve) 26 | 27 | ; If the problem was solvable, this command causes the values of b1 and b2 to 28 | ; be printed. 29 | (show-model) -------------------------------------------------------------------------------- /synesthesia-1-mod-longestsolution.ys: -------------------------------------------------------------------------------- 1 | (define bytecode00::(bitvector 8)) (define bytecode01::(bitvector 8)) 2 | (define bytecode02::(bitvector 8)) (define bytecode03::(bitvector 8)) 3 | (define bytecode04::(bitvector 8)) (define bytecode05::(bitvector 8)) 4 | (define bytecode06::(bitvector 8)) (define bytecode07::(bitvector 8)) 5 | (define bytecode08::(bitvector 8)) (define bytecode09::(bitvector 8)) 6 | (define bytecode0A::(bitvector 8)) (define bytecode0B::(bitvector 8)) 7 | (define bytecode0C::(bitvector 8)) (define bytecode0D::(bitvector 8)) 8 | (define bytecode0E::(bitvector 8)) (define bytecode0F::(bitvector 8)) 9 | (define bytecode10::(bitvector 8)) (define bytecode11::(bitvector 8)) 10 | (define bytecode12::(bitvector 8)) (define bytecode13::(bitvector 8)) 11 | (define bytecode14::(bitvector 8)) (define bytecode15::(bitvector 8)) 12 | (define bytecode16::(bitvector 8)) (define bytecode17::(bitvector 8)) 13 | (define bytecode18::(bitvector 8)) (define bytecode19::(bitvector 8)) 14 | (define bytecode1A::(bitvector 8)) (define bytecode1B::(bitvector 8)) 15 | (define bytecode1C::(bitvector 8)) (define bytecode1D::(bitvector 8)) 16 | (define bytecode1E::(bitvector 8)) (define bytecode1F::(bitvector 8)) 17 | (define bytecode20::(bitvector 8)) (define bytecode21::(bitvector 8)) 18 | (define bytecode22::(bitvector 8)) (define bytecode23::(bitvector 8)) 19 | (define bytecode24::(bitvector 8)) (define bytecode25::(bitvector 8)) 20 | (define bytecode26::(bitvector 8)) (define bytecode27::(bitvector 8)) 21 | (define bytecode28::(bitvector 8)) (define bytecode29::(bitvector 8)) 22 | (define bytecode2A::(bitvector 8)) (define bytecode2B::(bitvector 8)) 23 | (define bytecode2C::(bitvector 8)) (define bytecode2D::(bitvector 8)) 24 | (define bytecode2E::(bitvector 8)) (define bytecode2F::(bitvector 8)) 25 | (define bytecode30::(bitvector 8)) (define bytecode31::(bitvector 8)) 26 | (define bytecode32::(bitvector 8)) (define bytecode33::(bitvector 8)) 27 | (define bytecode34::(bitvector 8)) (define bytecode35::(bitvector 8)) 28 | (define bytecode36::(bitvector 8)) (define bytecode37::(bitvector 8)) 29 | (define bytecode38::(bitvector 8)) (define bytecode39::(bitvector 8)) 30 | (define bytecode3A::(bitvector 8)) (define bytecode3B::(bitvector 8)) 31 | (define bytecode3C::(bitvector 8)) (define bytecode3D::(bitvector 8)) 32 | (define bytecode3E::(bitvector 8)) (define bytecode3F::(bitvector 8)) 33 | (define bytecode40::(bitvector 8)) (define bytecode41::(bitvector 8)) 34 | (define bytecode42::(bitvector 8)) (define bytecode43::(bitvector 8)) 35 | (define bytecode44::(bitvector 8)) (define bytecode45::(bitvector 8)) 36 | (define bytecode46::(bitvector 8)) (define bytecode47::(bitvector 8)) 37 | (define bytecode48::(bitvector 8)) (define bytecode49::(bitvector 8)) 38 | (define bytecode4A::(bitvector 8)) (define bytecode4B::(bitvector 8)) 39 | (define bytecode4C::(bitvector 8)) (define bytecode4D::(bitvector 8)) 40 | (define bytecode4E::(bitvector 8)) (define bytecode4F::(bitvector 8)) 41 | (define bytecode50::(bitvector 8)) (define bytecode51::(bitvector 8)) 42 | (define bytecode52::(bitvector 8)) (define bytecode53::(bitvector 8)) 43 | (define bytecode54::(bitvector 8)) (define bytecode55::(bitvector 8)) 44 | (define bytecode56::(bitvector 8)) (define bytecode57::(bitvector 8)) 45 | (define bytecode58::(bitvector 8)) (define bytecode59::(bitvector 8)) 46 | (define bytecode5A::(bitvector 8)) (define bytecode5B::(bitvector 8)) 47 | (define bytecode5C::(bitvector 8)) (define bytecode5D::(bitvector 8)) 48 | (define bytecode5E::(bitvector 8)) (define bytecode5F::(bitvector 8)) 49 | (define bytecode60::(bitvector 8)) (define bytecode61::(bitvector 8)) 50 | (define bytecode62::(bitvector 8)) (define bytecode63::(bitvector 8)) 51 | (define bytecode64::(bitvector 8)) (define bytecode65::(bitvector 8)) 52 | (define bytecode66::(bitvector 8)) (define bytecode67::(bitvector 8)) 53 | (define bytecode68::(bitvector 8)) (define bytecode69::(bitvector 8)) 54 | (define bytecode6A::(bitvector 8)) (define bytecode6B::(bitvector 8)) 55 | (define bytecode6C::(bitvector 8)) (define bytecode6D::(bitvector 8)) 56 | (define bytecode6E::(bitvector 8)) (define bytecode6F::(bitvector 8)) 57 | (define bytecode70::(bitvector 8)) (define bytecode71::(bitvector 8)) 58 | (define bytecode72::(bitvector 8)) (define bytecode73::(bitvector 8)) 59 | (define bytecode74::(bitvector 8)) (define bytecode75::(bitvector 8)) 60 | (define bytecode76::(bitvector 8)) (define bytecode77::(bitvector 8)) 61 | (define bytecode78::(bitvector 8)) (define bytecode79::(bitvector 8)) 62 | (define bytecode7A::(bitvector 8)) (define bytecode7B::(bitvector 8)) 63 | (define bytecode7C::(bitvector 8)) (define bytecode7D::(bitvector 8)) 64 | (define bytecode7E::(bitvector 8)) (define bytecode7F::(bitvector 8)) 65 | (define bytecode80::(bitvector 8)) (define bytecode81::(bitvector 8)) 66 | (define bytecode82::(bitvector 8)) (define bytecode83::(bitvector 8)) 67 | (define bytecode84::(bitvector 8)) (define bytecode85::(bitvector 8)) 68 | (define bytecode86::(bitvector 8)) (define bytecode87::(bitvector 8)) 69 | (define bytecode88::(bitvector 8)) (define bytecode89::(bitvector 8)) 70 | (define bytecode8A::(bitvector 8)) (define bytecode8B::(bitvector 8)) 71 | (define bytecode8C::(bitvector 8)) (define bytecode8D::(bitvector 8)) 72 | (define bytecode8E::(bitvector 8)) (define bytecode8F::(bitvector 8)) 73 | (define bytecode90::(bitvector 8)) (define bytecode91::(bitvector 8)) 74 | (define bytecode92::(bitvector 8)) (define bytecode93::(bitvector 8)) 75 | (define bytecode94::(bitvector 8)) (define bytecode95::(bitvector 8)) 76 | (define bytecode96::(bitvector 8)) (define bytecode97::(bitvector 8)) 77 | (define bytecode98::(bitvector 8)) (define bytecode99::(bitvector 8)) 78 | (define bytecode9A::(bitvector 8)) (define bytecode9B::(bitvector 8)) 79 | (define bytecode9C::(bitvector 8)) (define bytecode9D::(bitvector 8)) 80 | (define bytecode9E::(bitvector 8)) (define bytecode9F::(bitvector 8)) 81 | (define bytecodeA0::(bitvector 8)) (define bytecodeA1::(bitvector 8)) 82 | (define bytecodeA2::(bitvector 8)) (define bytecodeA3::(bitvector 8)) 83 | (define bytecodeA4::(bitvector 8)) (define bytecodeA5::(bitvector 8)) 84 | (define bytecodeA6::(bitvector 8)) (define bytecodeA7::(bitvector 8)) 85 | (define bytecodeA8::(bitvector 8)) (define bytecodeA9::(bitvector 8)) 86 | (define bytecodeAA::(bitvector 8)) (define bytecodeAB::(bitvector 8)) 87 | (define bytecodeAC::(bitvector 8)) (define bytecodeAD::(bitvector 8)) 88 | (define bytecodeAE::(bitvector 8)) (define bytecodeAF::(bitvector 8)) 89 | (define bytecodeB0::(bitvector 8)) (define bytecodeB1::(bitvector 8)) 90 | (define bytecodeB2::(bitvector 8)) (define bytecodeB3::(bitvector 8)) 91 | (define bytecodeB4::(bitvector 8)) (define bytecodeB5::(bitvector 8)) 92 | (define bytecodeB6::(bitvector 8)) (define bytecodeB7::(bitvector 8)) 93 | (define bytecodeB8::(bitvector 8)) (define bytecodeB9::(bitvector 8)) 94 | (define bytecodeBA::(bitvector 8)) (define bytecodeBB::(bitvector 8)) 95 | (define bytecodeBC::(bitvector 8)) (define bytecodeBD::(bitvector 8)) 96 | (define bytecodeBE::(bitvector 8)) (define bytecodeBF::(bitvector 8)) 97 | (define bytecodeC0::(bitvector 8)) (define bytecodeC1::(bitvector 8)) 98 | (define bytecodeC2::(bitvector 8)) (define bytecodeC3::(bitvector 8)) 99 | (define bytecodeC4::(bitvector 8)) (define bytecodeC5::(bitvector 8)) 100 | (define bytecodeC6::(bitvector 8)) (define bytecodeC7::(bitvector 8)) 101 | (define bytecodeC8::(bitvector 8)) (define bytecodeC9::(bitvector 8)) 102 | (define bytecodeCA::(bitvector 8)) (define bytecodeCB::(bitvector 8)) 103 | (define bytecodeCC::(bitvector 8)) (define bytecodeCD::(bitvector 8)) 104 | (define bytecodeCE::(bitvector 8)) (define bytecodeCF::(bitvector 8)) 105 | (define bytecodeD0::(bitvector 8)) (define bytecodeD1::(bitvector 8)) 106 | (define bytecodeD2::(bitvector 8)) (define bytecodeD3::(bitvector 8)) 107 | (define bytecodeD4::(bitvector 8)) (define bytecodeD5::(bitvector 8)) 108 | (define bytecodeD6::(bitvector 8)) (define bytecodeD7::(bitvector 8)) 109 | (define bytecodeD8::(bitvector 8)) (define bytecodeD9::(bitvector 8)) 110 | (define bytecodeDA::(bitvector 8)) (define bytecodeDB::(bitvector 8)) 111 | (define bytecodeDC::(bitvector 8)) (define bytecodeDD::(bitvector 8)) 112 | (define bytecodeDE::(bitvector 8)) (define bytecodeDF::(bitvector 8)) 113 | (define bytecodeE0::(bitvector 8)) (define bytecodeE1::(bitvector 8)) 114 | (define bytecodeE2::(bitvector 8)) (define bytecodeE3::(bitvector 8)) 115 | (define bytecodeE4::(bitvector 8)) (define bytecodeE5::(bitvector 8)) 116 | (define bytecodeE6::(bitvector 8)) (define bytecodeE7::(bitvector 8)) 117 | (define bytecodeE8::(bitvector 8)) (define bytecodeE9::(bitvector 8)) 118 | (define bytecodeEA::(bitvector 8)) (define bytecodeEB::(bitvector 8)) 119 | (define bytecodeEC::(bitvector 8)) (define bytecodeED::(bitvector 8)) 120 | (define bytecodeEE::(bitvector 8)) (define bytecodeEF::(bitvector 8)) 121 | (define bytecodeF0::(bitvector 8)) (define bytecodeF1::(bitvector 8)) 122 | (define bytecodeF2::(bitvector 8)) (define bytecodeF3::(bitvector 8)) 123 | (define bytecodeF4::(bitvector 8)) (define bytecodeF5::(bitvector 8)) 124 | (define bytecodeF6::(bitvector 8)) (define bytecodeF7::(bitvector 8)) 125 | (define bytecodeF8::(bitvector 8)) (define bytecodeF9::(bitvector 8)) 126 | (define bytecodeFA::(bitvector 8)) (define bytecodeFB::(bitvector 8)) 127 | (define bytecodeFC::(bitvector 8)) (define bytecodeFD::(bitvector 8)) 128 | (define bytecodeFE::(bitvector 8)) (define bytecodeFF::(bitvector 8)) 129 | 130 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX 131 | ; variable. 132 | (define get-byte::(-> (bitvector 8) (bitvector 8)) 133 | (lambda (x::(bitvector 8)) 134 | (ite (= x 0x00) bytecode00 135 | (ite (= x 0x01) bytecode01 136 | (ite (= x 0x02) bytecode02 137 | (ite (= x 0x03) bytecode03 138 | (ite (= x 0x04) bytecode04 139 | (ite (= x 0x05) bytecode05 140 | (ite (= x 0x06) bytecode06 141 | (ite (= x 0x07) bytecode07 142 | (ite (= x 0x08) bytecode08 143 | (ite (= x 0x09) bytecode09 144 | (ite (= x 0x0A) bytecode0A 145 | (ite (= x 0x0B) bytecode0B 146 | (ite (= x 0x0C) bytecode0C 147 | (ite (= x 0x0D) bytecode0D 148 | (ite (= x 0x0E) bytecode0E 149 | (ite (= x 0x0F) bytecode0F 150 | (ite (= x 0x10) bytecode10 151 | (ite (= x 0x11) bytecode11 152 | (ite (= x 0x12) bytecode12 153 | (ite (= x 0x13) bytecode13 154 | (ite (= x 0x14) bytecode14 155 | (ite (= x 0x15) bytecode15 156 | (ite (= x 0x16) bytecode16 157 | (ite (= x 0x17) bytecode17 158 | (ite (= x 0x18) bytecode18 159 | (ite (= x 0x19) bytecode19 160 | (ite (= x 0x1A) bytecode1A 161 | (ite (= x 0x1B) bytecode1B 162 | (ite (= x 0x1C) bytecode1C 163 | (ite (= x 0x1D) bytecode1D 164 | (ite (= x 0x1E) bytecode1E 165 | (ite (= x 0x1F) bytecode1F 166 | (ite (= x 0x20) bytecode20 167 | (ite (= x 0x21) bytecode21 168 | (ite (= x 0x22) bytecode22 169 | (ite (= x 0x23) bytecode23 170 | (ite (= x 0x24) bytecode24 171 | (ite (= x 0x25) bytecode25 172 | (ite (= x 0x26) bytecode26 173 | (ite (= x 0x27) bytecode27 174 | (ite (= x 0x28) bytecode28 175 | (ite (= x 0x29) bytecode29 176 | (ite (= x 0x2A) bytecode2A 177 | (ite (= x 0x2B) bytecode2B 178 | (ite (= x 0x2C) bytecode2C 179 | (ite (= x 0x2D) bytecode2D 180 | (ite (= x 0x2E) bytecode2E 181 | (ite (= x 0x2F) bytecode2F 182 | (ite (= x 0x30) bytecode30 183 | (ite (= x 0x31) bytecode31 184 | (ite (= x 0x32) bytecode32 185 | (ite (= x 0x33) bytecode33 186 | (ite (= x 0x34) bytecode34 187 | (ite (= x 0x35) bytecode35 188 | (ite (= x 0x36) bytecode36 189 | (ite (= x 0x37) bytecode37 190 | (ite (= x 0x38) bytecode38 191 | (ite (= x 0x39) bytecode39 192 | (ite (= x 0x3A) bytecode3A 193 | (ite (= x 0x3B) bytecode3B 194 | (ite (= x 0x3C) bytecode3C 195 | (ite (= x 0x3D) bytecode3D 196 | (ite (= x 0x3E) bytecode3E 197 | (ite (= x 0x3F) bytecode3F 198 | (ite (= x 0x40) bytecode40 199 | (ite (= x 0x41) bytecode41 200 | (ite (= x 0x42) bytecode42 201 | (ite (= x 0x43) bytecode43 202 | (ite (= x 0x44) bytecode44 203 | (ite (= x 0x45) bytecode45 204 | (ite (= x 0x46) bytecode46 205 | (ite (= x 0x47) bytecode47 206 | (ite (= x 0x48) bytecode48 207 | (ite (= x 0x49) bytecode49 208 | (ite (= x 0x4A) bytecode4A 209 | (ite (= x 0x4B) bytecode4B 210 | (ite (= x 0x4C) bytecode4C 211 | (ite (= x 0x4D) bytecode4D 212 | (ite (= x 0x4E) bytecode4E 213 | (ite (= x 0x4F) bytecode4F 214 | (ite (= x 0x50) bytecode50 215 | (ite (= x 0x51) bytecode51 216 | (ite (= x 0x52) bytecode52 217 | (ite (= x 0x53) bytecode53 218 | (ite (= x 0x54) bytecode54 219 | (ite (= x 0x55) bytecode55 220 | (ite (= x 0x56) bytecode56 221 | (ite (= x 0x57) bytecode57 222 | (ite (= x 0x58) bytecode58 223 | (ite (= x 0x59) bytecode59 224 | (ite (= x 0x5A) bytecode5A 225 | (ite (= x 0x5B) bytecode5B 226 | (ite (= x 0x5C) bytecode5C 227 | (ite (= x 0x5D) bytecode5D 228 | (ite (= x 0x5E) bytecode5E 229 | (ite (= x 0x5F) bytecode5F 230 | (ite (= x 0x60) bytecode60 231 | (ite (= x 0x61) bytecode61 232 | (ite (= x 0x62) bytecode62 233 | (ite (= x 0x63) bytecode63 234 | (ite (= x 0x64) bytecode64 235 | (ite (= x 0x65) bytecode65 236 | (ite (= x 0x66) bytecode66 237 | (ite (= x 0x67) bytecode67 238 | (ite (= x 0x68) bytecode68 239 | (ite (= x 0x69) bytecode69 240 | (ite (= x 0x6A) bytecode6A 241 | (ite (= x 0x6B) bytecode6B 242 | (ite (= x 0x6C) bytecode6C 243 | (ite (= x 0x6D) bytecode6D 244 | (ite (= x 0x6E) bytecode6E 245 | (ite (= x 0x6F) bytecode6F 246 | (ite (= x 0x70) bytecode70 247 | (ite (= x 0x71) bytecode71 248 | (ite (= x 0x72) bytecode72 249 | (ite (= x 0x73) bytecode73 250 | (ite (= x 0x74) bytecode74 251 | (ite (= x 0x75) bytecode75 252 | (ite (= x 0x76) bytecode76 253 | (ite (= x 0x77) bytecode77 254 | (ite (= x 0x78) bytecode78 255 | (ite (= x 0x79) bytecode79 256 | (ite (= x 0x7A) bytecode7A 257 | (ite (= x 0x7B) bytecode7B 258 | (ite (= x 0x7C) bytecode7C 259 | (ite (= x 0x7D) bytecode7D 260 | (ite (= x 0x7E) bytecode7E 261 | (ite (= x 0x7F) bytecode7F 262 | (ite (= x 0x80) bytecode80 263 | (ite (= x 0x81) bytecode81 264 | (ite (= x 0x82) bytecode82 265 | (ite (= x 0x83) bytecode83 266 | (ite (= x 0x84) bytecode84 267 | (ite (= x 0x85) bytecode85 268 | (ite (= x 0x86) bytecode86 269 | (ite (= x 0x87) bytecode87 270 | (ite (= x 0x88) bytecode88 271 | (ite (= x 0x89) bytecode89 272 | (ite (= x 0x8A) bytecode8A 273 | (ite (= x 0x8B) bytecode8B 274 | (ite (= x 0x8C) bytecode8C 275 | (ite (= x 0x8D) bytecode8D 276 | (ite (= x 0x8E) bytecode8E 277 | (ite (= x 0x8F) bytecode8F 278 | (ite (= x 0x90) bytecode90 279 | (ite (= x 0x91) bytecode91 280 | (ite (= x 0x92) bytecode92 281 | (ite (= x 0x93) bytecode93 282 | (ite (= x 0x94) bytecode94 283 | (ite (= x 0x95) bytecode95 284 | (ite (= x 0x96) bytecode96 285 | (ite (= x 0x97) bytecode97 286 | (ite (= x 0x98) bytecode98 287 | (ite (= x 0x99) bytecode99 288 | (ite (= x 0x9A) bytecode9A 289 | (ite (= x 0x9B) bytecode9B 290 | (ite (= x 0x9C) bytecode9C 291 | (ite (= x 0x9D) bytecode9D 292 | (ite (= x 0x9E) bytecode9E 293 | (ite (= x 0x9F) bytecode9F 294 | (ite (= x 0xA0) bytecodeA0 295 | (ite (= x 0xA1) bytecodeA1 296 | (ite (= x 0xA2) bytecodeA2 297 | (ite (= x 0xA3) bytecodeA3 298 | (ite (= x 0xA4) bytecodeA4 299 | (ite (= x 0xA5) bytecodeA5 300 | (ite (= x 0xA6) bytecodeA6 301 | (ite (= x 0xA7) bytecodeA7 302 | (ite (= x 0xA8) bytecodeA8 303 | (ite (= x 0xA9) bytecodeA9 304 | (ite (= x 0xAA) bytecodeAA 305 | (ite (= x 0xAB) bytecodeAB 306 | (ite (= x 0xAC) bytecodeAC 307 | (ite (= x 0xAD) bytecodeAD 308 | (ite (= x 0xAE) bytecodeAE 309 | (ite (= x 0xAF) bytecodeAF 310 | (ite (= x 0xB0) bytecodeB0 311 | (ite (= x 0xB1) bytecodeB1 312 | (ite (= x 0xB2) bytecodeB2 313 | (ite (= x 0xB3) bytecodeB3 314 | (ite (= x 0xB4) bytecodeB4 315 | (ite (= x 0xB5) bytecodeB5 316 | (ite (= x 0xB6) bytecodeB6 317 | (ite (= x 0xB7) bytecodeB7 318 | (ite (= x 0xB8) bytecodeB8 319 | (ite (= x 0xB9) bytecodeB9 320 | (ite (= x 0xBA) bytecodeBA 321 | (ite (= x 0xBB) bytecodeBB 322 | (ite (= x 0xBC) bytecodeBC 323 | (ite (= x 0xBD) bytecodeBD 324 | (ite (= x 0xBE) bytecodeBE 325 | (ite (= x 0xBF) bytecodeBF 326 | (ite (= x 0xC0) bytecodeC0 327 | (ite (= x 0xC1) bytecodeC1 328 | (ite (= x 0xC2) bytecodeC2 329 | (ite (= x 0xC3) bytecodeC3 330 | (ite (= x 0xC4) bytecodeC4 331 | (ite (= x 0xC5) bytecodeC5 332 | (ite (= x 0xC6) bytecodeC6 333 | (ite (= x 0xC7) bytecodeC7 334 | (ite (= x 0xC8) bytecodeC8 335 | (ite (= x 0xC9) bytecodeC9 336 | (ite (= x 0xCA) bytecodeCA 337 | (ite (= x 0xCB) bytecodeCB 338 | (ite (= x 0xCC) bytecodeCC 339 | (ite (= x 0xCD) bytecodeCD 340 | (ite (= x 0xCE) bytecodeCE 341 | (ite (= x 0xCF) bytecodeCF 342 | (ite (= x 0xD0) bytecodeD0 343 | (ite (= x 0xD1) bytecodeD1 344 | (ite (= x 0xD2) bytecodeD2 345 | (ite (= x 0xD3) bytecodeD3 346 | (ite (= x 0xD4) bytecodeD4 347 | (ite (= x 0xD5) bytecodeD5 348 | (ite (= x 0xD6) bytecodeD6 349 | (ite (= x 0xD7) bytecodeD7 350 | (ite (= x 0xD8) bytecodeD8 351 | (ite (= x 0xD9) bytecodeD9 352 | (ite (= x 0xDA) bytecodeDA 353 | (ite (= x 0xDB) bytecodeDB 354 | (ite (= x 0xDC) bytecodeDC 355 | (ite (= x 0xDD) bytecodeDD 356 | (ite (= x 0xDE) bytecodeDE 357 | (ite (= x 0xDF) bytecodeDF 358 | (ite (= x 0xE0) bytecodeE0 359 | (ite (= x 0xE1) bytecodeE1 360 | (ite (= x 0xE2) bytecodeE2 361 | (ite (= x 0xE3) bytecodeE3 362 | (ite (= x 0xE4) bytecodeE4 363 | (ite (= x 0xE5) bytecodeE5 364 | (ite (= x 0xE6) bytecodeE6 365 | (ite (= x 0xE7) bytecodeE7 366 | (ite (= x 0xE8) bytecodeE8 367 | (ite (= x 0xE9) bytecodeE9 368 | (ite (= x 0xEA) bytecodeEA 369 | (ite (= x 0xEB) bytecodeEB 370 | (ite (= x 0xEC) bytecodeEC 371 | (ite (= x 0xED) bytecodeED 372 | (ite (= x 0xEE) bytecodeEE 373 | (ite (= x 0xEF) bytecodeEF 374 | (ite (= x 0xF0) bytecodeF0 375 | (ite (= x 0xF1) bytecodeF1 376 | (ite (= x 0xF2) bytecodeF2 377 | (ite (= x 0xF3) bytecodeF3 378 | (ite (= x 0xF4) bytecodeF4 379 | (ite (= x 0xF5) bytecodeF5 380 | (ite (= x 0xF6) bytecodeF6 381 | (ite (= x 0xF7) bytecodeF7 382 | (ite (= x 0xF8) bytecodeF8 383 | (ite (= x 0xF9) bytecodeF9 384 | (ite (= x 0xFA) bytecodeFA 385 | (ite (= x 0xFB) bytecodeFB 386 | (ite (= x 0xFC) bytecodeFC 387 | (ite (= x 0xFD) bytecodeFD 388 | (ite (= x 0xFE) bytecodeFE 389 | (ite (= x 0xFF) bytecodeFF 390 | bytecode04)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 391 | ) 392 | ) 393 | 394 | ; getstate(reg,state). Return the value of register 'reg' from state 'state'. 395 | (define getstate::(-> (bitvector 3) (bitvector 256) (bitvector 32)) 396 | (lambda (x::(bitvector 3) z::(bitvector 256)) 397 | (ite (= x 0b000) (bv-extract 31 0 z) 398 | (ite (= x 0b001) (bv-extract 63 32 z) 399 | (ite (= x 0b010) (bv-extract 95 64 z) 400 | (ite (= x 0b011) (bv-extract 127 96 z) 401 | (ite (= x 0b100) (bv-extract 159 128 z) 402 | (ite (= x 0b101) (bv-extract 191 160 z) 403 | (ite (= x 0b110) (bv-extract 223 192 z) 404 | (bv-extract 255 224 z) 405 | ))))))) 406 | ) 407 | ) 408 | 409 | ; putstate(reg,state,value). Update register 'reg' to value 'value' in state 410 | ; 'state'; return the new state. 411 | (define putstate::(-> (bitvector 3) (bitvector 32) (bitvector 256) (bitvector 256)) 412 | (lambda (x::(bitvector 3) y::(bitvector 32) z::(bitvector 256)) 413 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y) 414 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z)) 415 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z)) 416 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z)) 417 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z)) 418 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z)) 419 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z)) 420 | (bv-concat y (bv-extract 223 0 z)) 421 | ))))))) 422 | ) 423 | ) 424 | 425 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the 426 | ; operation specified by that instruction. Consult and update the state 'state' 427 | ; accordingly; return the new state concatenated with the length of the 428 | ; instruction. In other words, this function simulates the effects of executing 429 | ; every possible instruction. 430 | (define symbolic-insn::(-> (-> (bitvector 8) (bitvector 8)) (bitvector 8) (bitvector 256) (bitvector 264)) 431 | (lambda (f-get-byte::(-> (bitvector 8) (bitvector 8)) eip::(bitvector 8) state::(bitvector 256)) 432 | (let ((byte0 (f-get-byte eip))) 433 | (let ((byte1 (f-get-byte (bv-add 0x01 eip)))) 434 | (let ((byte2 (f-get-byte (bv-add 0x02 eip)))) 435 | (let ((byte3 (f-get-byte (bv-add 0x03 eip)))) 436 | (let ((byte4 (f-get-byte (bv-add 0x04 eip)))) 437 | ; xor reg, reg 438 | (ite (= (bv-and byte0 0xC0) 0x00) 439 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 440 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 441 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) (getstate rhsreg0 state)) state))) 442 | (bv-concat 0x01 newstate) 443 | ))) 444 | ; add reg, reg 445 | (ite (= (bv-and byte0 0xC0) 0x40) 446 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 447 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 448 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) (getstate rhsreg0 state)) state))) 449 | (bv-concat 0x01 newstate) 450 | ))) 451 | ; mov reg, reg 452 | (ite (= (bv-and byte0 0xC0) 0x80) 453 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 454 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 455 | (let ((newstate (putstate lhsreg0 (getstate rhsreg0 state) state))) 456 | (bv-concat 0x01 newstate) 457 | ))) 458 | ; complex 0xC0 case 459 | (let ((opcode (bv-extract 5 3 byte0))) 460 | (let ((lhsreg0 (bv-extract 2 0 byte0))) 461 | ; inc reg 462 | (ite (= opcode 0b000) 463 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) 0x00000001) state))) 464 | (bv-concat 0x01 newstate)) 465 | ; dec reg 466 | (ite (= opcode 0b001) 467 | (let ((newstate (putstate lhsreg0 (bv-sub (getstate lhsreg0 state) 0x00000001) state))) 468 | (bv-concat 0x01 newstate)) 469 | ; neg reg 470 | (ite (= opcode 0b010) 471 | (let ((newstate (putstate lhsreg0 (bv-neg (getstate lhsreg0 state)) state))) 472 | (bv-concat 0x01 newstate)) 473 | ; not reg 474 | (ite (= opcode 0b011) 475 | (let ((newstate (putstate lhsreg0 (bv-not (getstate lhsreg0 state)) state))) 476 | (bv-concat 0x01 newstate)) 477 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1))) 478 | ; add reg, imm32 479 | (ite (= opcode 0b100) 480 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) rhsval0) state))) 481 | (bv-concat 0x05 newstate)) 482 | ; xor reg, imm32 483 | (ite (= opcode 0b101) 484 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) rhsval0) state))) 485 | (bv-concat 0x05 newstate)) 486 | ; and reg, imm32 487 | (ite (= opcode 0b110) 488 | (let ((newstate (putstate lhsreg0 (bv-and (getstate lhsreg0 state) rhsval0) state))) 489 | (bv-concat 0x05 newstate)) 490 | ; opcode == 0b111 491 | ; or reg, imm32 492 | (let ((newstate (putstate lhsreg0 (bv-or (getstate lhsreg0 state) rhsval0) state))) 493 | (bv-concat 0x05 newstate))))))))))))))) 494 | ))))) 495 | ) 496 | ) 497 | 498 | (define get-byte-big::(-> (bitvector 2048) (bitvector 8) (bitvector 8)) 499 | (lambda (mem::(bitvector 2048) x::(bitvector 8)) 500 | (bv-extract 7 0 (bv-lshr mem (bv-zero-extend x 2040))) 501 | ) 502 | ) 503 | 504 | ; The main assertion. 505 | (assert 506 | ; For every possible input state (r0, ..., r7). 507 | ; There is an additional universally-quantified variable idx: used to make 508 | ; statements about the bytes in the encoding. 509 | (forall (r0::(bitvector 32) r1::(bitvector 32) r2::(bitvector 32) r3::(bitvector 32) r4::(bitvector 32) r5::(bitvector 32) r6::(bitvector 32) r7::(bitvector 32) idx::(bitvector 8) othermem::(bitvector 2048)) 510 | ; ------------------------ 511 | ; INITIALIZE STATE AND EIP 512 | ; ------------------------ 513 | (let ((my-get-byte 514 | (lambda (x::(bitvector 8)) 515 | (bv-extract 7 0 (bv-lshr othermem (bv-zero-extend x 2040)))))) 516 | ; Create the input "state" by concatenating all of the inputs. 517 | (let ((state0 (bv-concat r7 r6 r5 r4 r3 r2 r1 r0))) 518 | ; Set initial EIP to zero. 519 | (let ((eip0 0x00)) 520 | 521 | ; ------------------------ 522 | ; SIMULATE ONE INSTRUCTION 523 | ; ------------------------ 524 | 525 | ; Perform symbolic simulation of one instruction (any instruction). 526 | (let ((synsem0 (symbolic-insn get-byte eip0 state0))) 527 | ; Extract the length of the instruction. 528 | (let ((insn0len (bv-extract 263 256 synsem0))) 529 | ; Extract the output state after having executed the instruction. 530 | (let ((state1 (bv-extract 255 0 synsem0))) 531 | ; Extract EIP after executing the instruction. 532 | (let ((eip1 (bv-add eip0 insn0len))) 533 | 534 | ; ------------------------ 535 | ; SIMULATE ONE INSTRUCTION 536 | ; ------------------------ 537 | 538 | ; Perform symbolic simulation of one instruction (any instruction). 539 | (let ((synsem1 (symbolic-insn get-byte eip1 state1))) 540 | ; Extract the length of the instruction. 541 | (let ((insn1len (bv-extract 263 256 synsem1))) 542 | ; Extract the output state after having executed the instruction. 543 | (let ((state2 (bv-extract 255 0 synsem1))) 544 | ; Extract EIP after executing the instruction. 545 | (let ((eip2 (bv-add eip1 insn1len))) 546 | 547 | ; ---------------------- 548 | ; FINALIZE STATE AND EIP 549 | ; ---------------------- 550 | 551 | ; Call the final state "finalstate" (for convenience). 552 | (let ((finalstate state2)) 553 | ; Call the final EIP "finaleip" (for convenience). 554 | (let ((finaleip eip2)) 555 | 556 | ; ------------------------ 557 | ; OTHER: SIMULATE ONE INSTRUCTION 558 | ; ------------------------ 559 | 560 | ; Perform symbolic simulation of one instruction (any instruction). 561 | (let ((othersynsem0 (symbolic-insn my-get-byte eip0 state0))) 562 | ; Extract the length of the instruction. 563 | (let ((otherinsn0len (bv-extract 263 256 othersynsem0))) 564 | ; Extract the output state after having executed the instruction. 565 | (let ((otherstate1 (bv-extract 255 0 othersynsem0))) 566 | ; Extract EIP after executing the instruction. 567 | (let ((othereip1 (bv-add eip0 otherinsn0len))) 568 | 569 | ; ------------------------ 570 | ; OTHER: SIMULATE ONE INSTRUCTION 571 | ; ------------------------ 572 | 573 | ; Perform symbolic simulation of one instruction (any instruction). 574 | (let ((othersynsem1 (symbolic-insn my-get-byte othereip1 otherstate1))) 575 | ; Extract the length of the instruction. 576 | (let ((otherinsn1len (bv-extract 263 256 othersynsem1))) 577 | ; Extract the output state after having executed the instruction. 578 | (let ((otherstate2 (bv-extract 255 0 othersynsem1))) 579 | ; Extract EIP after executing the instruction. 580 | (let ((othereip2 (bv-add othereip1 otherinsn1len))) 581 | 582 | ; ---------------------- 583 | ; OTHER: FINALIZE STATE AND EIP 584 | ; ---------------------- 585 | 586 | ; Call the final state "finalstate" (for convenience). 587 | (let ((otherfinalstate otherstate2)) 588 | ; Call the final EIP "finaleip" (for convenience). 589 | (let ((otherfinaleip othereip2)) 590 | 591 | ; -------------------------------------------------- 592 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING 593 | ; -------------------------------------------------- 594 | 595 | (and 596 | ; 0-length instructions are invalid; both instructions must be valid. 597 | (not (= insn0len 0x00)) 598 | (not (= insn1len 0x00)) 599 | 600 | ; ----------------------------------- 601 | ; CONSTRAINTS REGARDING FUNCTIONALITY 602 | ; ----------------------------------- 603 | 604 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved. 605 | (= (getstate 0b000 finalstate) (bv-add r0 0x00000001)) 606 | (= (getstate 0b001 finalstate) r1) 607 | (= (getstate 0b010 finalstate) r2) 608 | (= (getstate 0b011 finalstate) r3) 609 | (= (getstate 0b100 finalstate) r4) 610 | (= (getstate 0b101 finalstate) r5) 611 | (= (getstate 0b110 finalstate) r6) 612 | (= (getstate 0b111 finalstate) r7) 613 | 614 | ; OTHER 615 | (=> (and 616 | (not (= otherinsn0len 0x00)) 617 | (not (= otherinsn1len 0x00)) 618 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved. 619 | (= (getstate 0b000 otherfinalstate) (bv-add r0 0x00000001)) 620 | (= (getstate 0b001 otherfinalstate) r1) 621 | (= (getstate 0b010 otherfinalstate) r2) 622 | (= (getstate 0b011 otherfinalstate) r3) 623 | (= (getstate 0b100 otherfinalstate) r4) 624 | (= (getstate 0b101 otherfinalstate) r5) 625 | (= (getstate 0b110 otherfinalstate) r6) 626 | (= (getstate 0b111 otherfinalstate) r7)) 627 | (bv-le otherfinaleip finaleip)) 628 | 629 | ; ------------------------------ 630 | ; CONSTRAINTS REGARDING ENCODING 631 | ; ------------------------------ 632 | ; None of the bytes are 0x12 633 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12)) 634 | ; None of the bytes are 0x34 635 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34)) 636 | ; None of the bytes are 0x56 637 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56)) 638 | ; None of the bytes are 0x78 639 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78)) 640 | ; None of the bytes are 0x00 (commented out) 641 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00)) 642 | ) ; end and 643 | )))))))))))) ; end let * 12 644 | ))))))))))) ; end OTHER let * 10 645 | ) ; end forall 646 | ) ; end assert 647 | 648 | ; Solve the constraint system 649 | (ef-solve) 650 | 651 | ; Produce a model, i.e., values for bytecode00-bytecodeFF. 652 | ; This statement will crash yices if (ef-solve) returned unsatisfiable. 653 | (show-model) -------------------------------------------------------------------------------- /synesthesia-1-mod-shortestsolution.ys: -------------------------------------------------------------------------------- 1 | (define bytecode00::(bitvector 8)) (define bytecode01::(bitvector 8)) 2 | (define bytecode02::(bitvector 8)) (define bytecode03::(bitvector 8)) 3 | (define bytecode04::(bitvector 8)) (define bytecode05::(bitvector 8)) 4 | (define bytecode06::(bitvector 8)) (define bytecode07::(bitvector 8)) 5 | (define bytecode08::(bitvector 8)) (define bytecode09::(bitvector 8)) 6 | (define bytecode0A::(bitvector 8)) (define bytecode0B::(bitvector 8)) 7 | (define bytecode0C::(bitvector 8)) (define bytecode0D::(bitvector 8)) 8 | (define bytecode0E::(bitvector 8)) (define bytecode0F::(bitvector 8)) 9 | (define bytecode10::(bitvector 8)) (define bytecode11::(bitvector 8)) 10 | (define bytecode12::(bitvector 8)) (define bytecode13::(bitvector 8)) 11 | (define bytecode14::(bitvector 8)) (define bytecode15::(bitvector 8)) 12 | (define bytecode16::(bitvector 8)) (define bytecode17::(bitvector 8)) 13 | (define bytecode18::(bitvector 8)) (define bytecode19::(bitvector 8)) 14 | (define bytecode1A::(bitvector 8)) (define bytecode1B::(bitvector 8)) 15 | (define bytecode1C::(bitvector 8)) (define bytecode1D::(bitvector 8)) 16 | (define bytecode1E::(bitvector 8)) (define bytecode1F::(bitvector 8)) 17 | (define bytecode20::(bitvector 8)) (define bytecode21::(bitvector 8)) 18 | (define bytecode22::(bitvector 8)) (define bytecode23::(bitvector 8)) 19 | (define bytecode24::(bitvector 8)) (define bytecode25::(bitvector 8)) 20 | (define bytecode26::(bitvector 8)) (define bytecode27::(bitvector 8)) 21 | (define bytecode28::(bitvector 8)) (define bytecode29::(bitvector 8)) 22 | (define bytecode2A::(bitvector 8)) (define bytecode2B::(bitvector 8)) 23 | (define bytecode2C::(bitvector 8)) (define bytecode2D::(bitvector 8)) 24 | (define bytecode2E::(bitvector 8)) (define bytecode2F::(bitvector 8)) 25 | (define bytecode30::(bitvector 8)) (define bytecode31::(bitvector 8)) 26 | (define bytecode32::(bitvector 8)) (define bytecode33::(bitvector 8)) 27 | (define bytecode34::(bitvector 8)) (define bytecode35::(bitvector 8)) 28 | (define bytecode36::(bitvector 8)) (define bytecode37::(bitvector 8)) 29 | (define bytecode38::(bitvector 8)) (define bytecode39::(bitvector 8)) 30 | (define bytecode3A::(bitvector 8)) (define bytecode3B::(bitvector 8)) 31 | (define bytecode3C::(bitvector 8)) (define bytecode3D::(bitvector 8)) 32 | (define bytecode3E::(bitvector 8)) (define bytecode3F::(bitvector 8)) 33 | (define bytecode40::(bitvector 8)) (define bytecode41::(bitvector 8)) 34 | (define bytecode42::(bitvector 8)) (define bytecode43::(bitvector 8)) 35 | (define bytecode44::(bitvector 8)) (define bytecode45::(bitvector 8)) 36 | (define bytecode46::(bitvector 8)) (define bytecode47::(bitvector 8)) 37 | (define bytecode48::(bitvector 8)) (define bytecode49::(bitvector 8)) 38 | (define bytecode4A::(bitvector 8)) (define bytecode4B::(bitvector 8)) 39 | (define bytecode4C::(bitvector 8)) (define bytecode4D::(bitvector 8)) 40 | (define bytecode4E::(bitvector 8)) (define bytecode4F::(bitvector 8)) 41 | (define bytecode50::(bitvector 8)) (define bytecode51::(bitvector 8)) 42 | (define bytecode52::(bitvector 8)) (define bytecode53::(bitvector 8)) 43 | (define bytecode54::(bitvector 8)) (define bytecode55::(bitvector 8)) 44 | (define bytecode56::(bitvector 8)) (define bytecode57::(bitvector 8)) 45 | (define bytecode58::(bitvector 8)) (define bytecode59::(bitvector 8)) 46 | (define bytecode5A::(bitvector 8)) (define bytecode5B::(bitvector 8)) 47 | (define bytecode5C::(bitvector 8)) (define bytecode5D::(bitvector 8)) 48 | (define bytecode5E::(bitvector 8)) (define bytecode5F::(bitvector 8)) 49 | (define bytecode60::(bitvector 8)) (define bytecode61::(bitvector 8)) 50 | (define bytecode62::(bitvector 8)) (define bytecode63::(bitvector 8)) 51 | (define bytecode64::(bitvector 8)) (define bytecode65::(bitvector 8)) 52 | (define bytecode66::(bitvector 8)) (define bytecode67::(bitvector 8)) 53 | (define bytecode68::(bitvector 8)) (define bytecode69::(bitvector 8)) 54 | (define bytecode6A::(bitvector 8)) (define bytecode6B::(bitvector 8)) 55 | (define bytecode6C::(bitvector 8)) (define bytecode6D::(bitvector 8)) 56 | (define bytecode6E::(bitvector 8)) (define bytecode6F::(bitvector 8)) 57 | (define bytecode70::(bitvector 8)) (define bytecode71::(bitvector 8)) 58 | (define bytecode72::(bitvector 8)) (define bytecode73::(bitvector 8)) 59 | (define bytecode74::(bitvector 8)) (define bytecode75::(bitvector 8)) 60 | (define bytecode76::(bitvector 8)) (define bytecode77::(bitvector 8)) 61 | (define bytecode78::(bitvector 8)) (define bytecode79::(bitvector 8)) 62 | (define bytecode7A::(bitvector 8)) (define bytecode7B::(bitvector 8)) 63 | (define bytecode7C::(bitvector 8)) (define bytecode7D::(bitvector 8)) 64 | (define bytecode7E::(bitvector 8)) (define bytecode7F::(bitvector 8)) 65 | (define bytecode80::(bitvector 8)) (define bytecode81::(bitvector 8)) 66 | (define bytecode82::(bitvector 8)) (define bytecode83::(bitvector 8)) 67 | (define bytecode84::(bitvector 8)) (define bytecode85::(bitvector 8)) 68 | (define bytecode86::(bitvector 8)) (define bytecode87::(bitvector 8)) 69 | (define bytecode88::(bitvector 8)) (define bytecode89::(bitvector 8)) 70 | (define bytecode8A::(bitvector 8)) (define bytecode8B::(bitvector 8)) 71 | (define bytecode8C::(bitvector 8)) (define bytecode8D::(bitvector 8)) 72 | (define bytecode8E::(bitvector 8)) (define bytecode8F::(bitvector 8)) 73 | (define bytecode90::(bitvector 8)) (define bytecode91::(bitvector 8)) 74 | (define bytecode92::(bitvector 8)) (define bytecode93::(bitvector 8)) 75 | (define bytecode94::(bitvector 8)) (define bytecode95::(bitvector 8)) 76 | (define bytecode96::(bitvector 8)) (define bytecode97::(bitvector 8)) 77 | (define bytecode98::(bitvector 8)) (define bytecode99::(bitvector 8)) 78 | (define bytecode9A::(bitvector 8)) (define bytecode9B::(bitvector 8)) 79 | (define bytecode9C::(bitvector 8)) (define bytecode9D::(bitvector 8)) 80 | (define bytecode9E::(bitvector 8)) (define bytecode9F::(bitvector 8)) 81 | (define bytecodeA0::(bitvector 8)) (define bytecodeA1::(bitvector 8)) 82 | (define bytecodeA2::(bitvector 8)) (define bytecodeA3::(bitvector 8)) 83 | (define bytecodeA4::(bitvector 8)) (define bytecodeA5::(bitvector 8)) 84 | (define bytecodeA6::(bitvector 8)) (define bytecodeA7::(bitvector 8)) 85 | (define bytecodeA8::(bitvector 8)) (define bytecodeA9::(bitvector 8)) 86 | (define bytecodeAA::(bitvector 8)) (define bytecodeAB::(bitvector 8)) 87 | (define bytecodeAC::(bitvector 8)) (define bytecodeAD::(bitvector 8)) 88 | (define bytecodeAE::(bitvector 8)) (define bytecodeAF::(bitvector 8)) 89 | (define bytecodeB0::(bitvector 8)) (define bytecodeB1::(bitvector 8)) 90 | (define bytecodeB2::(bitvector 8)) (define bytecodeB3::(bitvector 8)) 91 | (define bytecodeB4::(bitvector 8)) (define bytecodeB5::(bitvector 8)) 92 | (define bytecodeB6::(bitvector 8)) (define bytecodeB7::(bitvector 8)) 93 | (define bytecodeB8::(bitvector 8)) (define bytecodeB9::(bitvector 8)) 94 | (define bytecodeBA::(bitvector 8)) (define bytecodeBB::(bitvector 8)) 95 | (define bytecodeBC::(bitvector 8)) (define bytecodeBD::(bitvector 8)) 96 | (define bytecodeBE::(bitvector 8)) (define bytecodeBF::(bitvector 8)) 97 | (define bytecodeC0::(bitvector 8)) (define bytecodeC1::(bitvector 8)) 98 | (define bytecodeC2::(bitvector 8)) (define bytecodeC3::(bitvector 8)) 99 | (define bytecodeC4::(bitvector 8)) (define bytecodeC5::(bitvector 8)) 100 | (define bytecodeC6::(bitvector 8)) (define bytecodeC7::(bitvector 8)) 101 | (define bytecodeC8::(bitvector 8)) (define bytecodeC9::(bitvector 8)) 102 | (define bytecodeCA::(bitvector 8)) (define bytecodeCB::(bitvector 8)) 103 | (define bytecodeCC::(bitvector 8)) (define bytecodeCD::(bitvector 8)) 104 | (define bytecodeCE::(bitvector 8)) (define bytecodeCF::(bitvector 8)) 105 | (define bytecodeD0::(bitvector 8)) (define bytecodeD1::(bitvector 8)) 106 | (define bytecodeD2::(bitvector 8)) (define bytecodeD3::(bitvector 8)) 107 | (define bytecodeD4::(bitvector 8)) (define bytecodeD5::(bitvector 8)) 108 | (define bytecodeD6::(bitvector 8)) (define bytecodeD7::(bitvector 8)) 109 | (define bytecodeD8::(bitvector 8)) (define bytecodeD9::(bitvector 8)) 110 | (define bytecodeDA::(bitvector 8)) (define bytecodeDB::(bitvector 8)) 111 | (define bytecodeDC::(bitvector 8)) (define bytecodeDD::(bitvector 8)) 112 | (define bytecodeDE::(bitvector 8)) (define bytecodeDF::(bitvector 8)) 113 | (define bytecodeE0::(bitvector 8)) (define bytecodeE1::(bitvector 8)) 114 | (define bytecodeE2::(bitvector 8)) (define bytecodeE3::(bitvector 8)) 115 | (define bytecodeE4::(bitvector 8)) (define bytecodeE5::(bitvector 8)) 116 | (define bytecodeE6::(bitvector 8)) (define bytecodeE7::(bitvector 8)) 117 | (define bytecodeE8::(bitvector 8)) (define bytecodeE9::(bitvector 8)) 118 | (define bytecodeEA::(bitvector 8)) (define bytecodeEB::(bitvector 8)) 119 | (define bytecodeEC::(bitvector 8)) (define bytecodeED::(bitvector 8)) 120 | (define bytecodeEE::(bitvector 8)) (define bytecodeEF::(bitvector 8)) 121 | (define bytecodeF0::(bitvector 8)) (define bytecodeF1::(bitvector 8)) 122 | (define bytecodeF2::(bitvector 8)) (define bytecodeF3::(bitvector 8)) 123 | (define bytecodeF4::(bitvector 8)) (define bytecodeF5::(bitvector 8)) 124 | (define bytecodeF6::(bitvector 8)) (define bytecodeF7::(bitvector 8)) 125 | (define bytecodeF8::(bitvector 8)) (define bytecodeF9::(bitvector 8)) 126 | (define bytecodeFA::(bitvector 8)) (define bytecodeFB::(bitvector 8)) 127 | (define bytecodeFC::(bitvector 8)) (define bytecodeFD::(bitvector 8)) 128 | (define bytecodeFE::(bitvector 8)) (define bytecodeFF::(bitvector 8)) 129 | 130 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX 131 | ; variable. 132 | (define get-byte::(-> (bitvector 8) (bitvector 8)) 133 | (lambda (x::(bitvector 8)) 134 | (ite (= x 0x00) bytecode00 135 | (ite (= x 0x01) bytecode01 136 | (ite (= x 0x02) bytecode02 137 | (ite (= x 0x03) bytecode03 138 | (ite (= x 0x04) bytecode04 139 | (ite (= x 0x05) bytecode05 140 | (ite (= x 0x06) bytecode06 141 | (ite (= x 0x07) bytecode07 142 | (ite (= x 0x08) bytecode08 143 | (ite (= x 0x09) bytecode09 144 | (ite (= x 0x0A) bytecode0A 145 | (ite (= x 0x0B) bytecode0B 146 | (ite (= x 0x0C) bytecode0C 147 | (ite (= x 0x0D) bytecode0D 148 | (ite (= x 0x0E) bytecode0E 149 | (ite (= x 0x0F) bytecode0F 150 | (ite (= x 0x10) bytecode10 151 | (ite (= x 0x11) bytecode11 152 | (ite (= x 0x12) bytecode12 153 | (ite (= x 0x13) bytecode13 154 | (ite (= x 0x14) bytecode14 155 | (ite (= x 0x15) bytecode15 156 | (ite (= x 0x16) bytecode16 157 | (ite (= x 0x17) bytecode17 158 | (ite (= x 0x18) bytecode18 159 | (ite (= x 0x19) bytecode19 160 | (ite (= x 0x1A) bytecode1A 161 | (ite (= x 0x1B) bytecode1B 162 | (ite (= x 0x1C) bytecode1C 163 | (ite (= x 0x1D) bytecode1D 164 | (ite (= x 0x1E) bytecode1E 165 | (ite (= x 0x1F) bytecode1F 166 | (ite (= x 0x20) bytecode20 167 | (ite (= x 0x21) bytecode21 168 | (ite (= x 0x22) bytecode22 169 | (ite (= x 0x23) bytecode23 170 | (ite (= x 0x24) bytecode24 171 | (ite (= x 0x25) bytecode25 172 | (ite (= x 0x26) bytecode26 173 | (ite (= x 0x27) bytecode27 174 | (ite (= x 0x28) bytecode28 175 | (ite (= x 0x29) bytecode29 176 | (ite (= x 0x2A) bytecode2A 177 | (ite (= x 0x2B) bytecode2B 178 | (ite (= x 0x2C) bytecode2C 179 | (ite (= x 0x2D) bytecode2D 180 | (ite (= x 0x2E) bytecode2E 181 | (ite (= x 0x2F) bytecode2F 182 | (ite (= x 0x30) bytecode30 183 | (ite (= x 0x31) bytecode31 184 | (ite (= x 0x32) bytecode32 185 | (ite (= x 0x33) bytecode33 186 | (ite (= x 0x34) bytecode34 187 | (ite (= x 0x35) bytecode35 188 | (ite (= x 0x36) bytecode36 189 | (ite (= x 0x37) bytecode37 190 | (ite (= x 0x38) bytecode38 191 | (ite (= x 0x39) bytecode39 192 | (ite (= x 0x3A) bytecode3A 193 | (ite (= x 0x3B) bytecode3B 194 | (ite (= x 0x3C) bytecode3C 195 | (ite (= x 0x3D) bytecode3D 196 | (ite (= x 0x3E) bytecode3E 197 | (ite (= x 0x3F) bytecode3F 198 | (ite (= x 0x40) bytecode40 199 | (ite (= x 0x41) bytecode41 200 | (ite (= x 0x42) bytecode42 201 | (ite (= x 0x43) bytecode43 202 | (ite (= x 0x44) bytecode44 203 | (ite (= x 0x45) bytecode45 204 | (ite (= x 0x46) bytecode46 205 | (ite (= x 0x47) bytecode47 206 | (ite (= x 0x48) bytecode48 207 | (ite (= x 0x49) bytecode49 208 | (ite (= x 0x4A) bytecode4A 209 | (ite (= x 0x4B) bytecode4B 210 | (ite (= x 0x4C) bytecode4C 211 | (ite (= x 0x4D) bytecode4D 212 | (ite (= x 0x4E) bytecode4E 213 | (ite (= x 0x4F) bytecode4F 214 | (ite (= x 0x50) bytecode50 215 | (ite (= x 0x51) bytecode51 216 | (ite (= x 0x52) bytecode52 217 | (ite (= x 0x53) bytecode53 218 | (ite (= x 0x54) bytecode54 219 | (ite (= x 0x55) bytecode55 220 | (ite (= x 0x56) bytecode56 221 | (ite (= x 0x57) bytecode57 222 | (ite (= x 0x58) bytecode58 223 | (ite (= x 0x59) bytecode59 224 | (ite (= x 0x5A) bytecode5A 225 | (ite (= x 0x5B) bytecode5B 226 | (ite (= x 0x5C) bytecode5C 227 | (ite (= x 0x5D) bytecode5D 228 | (ite (= x 0x5E) bytecode5E 229 | (ite (= x 0x5F) bytecode5F 230 | (ite (= x 0x60) bytecode60 231 | (ite (= x 0x61) bytecode61 232 | (ite (= x 0x62) bytecode62 233 | (ite (= x 0x63) bytecode63 234 | (ite (= x 0x64) bytecode64 235 | (ite (= x 0x65) bytecode65 236 | (ite (= x 0x66) bytecode66 237 | (ite (= x 0x67) bytecode67 238 | (ite (= x 0x68) bytecode68 239 | (ite (= x 0x69) bytecode69 240 | (ite (= x 0x6A) bytecode6A 241 | (ite (= x 0x6B) bytecode6B 242 | (ite (= x 0x6C) bytecode6C 243 | (ite (= x 0x6D) bytecode6D 244 | (ite (= x 0x6E) bytecode6E 245 | (ite (= x 0x6F) bytecode6F 246 | (ite (= x 0x70) bytecode70 247 | (ite (= x 0x71) bytecode71 248 | (ite (= x 0x72) bytecode72 249 | (ite (= x 0x73) bytecode73 250 | (ite (= x 0x74) bytecode74 251 | (ite (= x 0x75) bytecode75 252 | (ite (= x 0x76) bytecode76 253 | (ite (= x 0x77) bytecode77 254 | (ite (= x 0x78) bytecode78 255 | (ite (= x 0x79) bytecode79 256 | (ite (= x 0x7A) bytecode7A 257 | (ite (= x 0x7B) bytecode7B 258 | (ite (= x 0x7C) bytecode7C 259 | (ite (= x 0x7D) bytecode7D 260 | (ite (= x 0x7E) bytecode7E 261 | (ite (= x 0x7F) bytecode7F 262 | (ite (= x 0x80) bytecode80 263 | (ite (= x 0x81) bytecode81 264 | (ite (= x 0x82) bytecode82 265 | (ite (= x 0x83) bytecode83 266 | (ite (= x 0x84) bytecode84 267 | (ite (= x 0x85) bytecode85 268 | (ite (= x 0x86) bytecode86 269 | (ite (= x 0x87) bytecode87 270 | (ite (= x 0x88) bytecode88 271 | (ite (= x 0x89) bytecode89 272 | (ite (= x 0x8A) bytecode8A 273 | (ite (= x 0x8B) bytecode8B 274 | (ite (= x 0x8C) bytecode8C 275 | (ite (= x 0x8D) bytecode8D 276 | (ite (= x 0x8E) bytecode8E 277 | (ite (= x 0x8F) bytecode8F 278 | (ite (= x 0x90) bytecode90 279 | (ite (= x 0x91) bytecode91 280 | (ite (= x 0x92) bytecode92 281 | (ite (= x 0x93) bytecode93 282 | (ite (= x 0x94) bytecode94 283 | (ite (= x 0x95) bytecode95 284 | (ite (= x 0x96) bytecode96 285 | (ite (= x 0x97) bytecode97 286 | (ite (= x 0x98) bytecode98 287 | (ite (= x 0x99) bytecode99 288 | (ite (= x 0x9A) bytecode9A 289 | (ite (= x 0x9B) bytecode9B 290 | (ite (= x 0x9C) bytecode9C 291 | (ite (= x 0x9D) bytecode9D 292 | (ite (= x 0x9E) bytecode9E 293 | (ite (= x 0x9F) bytecode9F 294 | (ite (= x 0xA0) bytecodeA0 295 | (ite (= x 0xA1) bytecodeA1 296 | (ite (= x 0xA2) bytecodeA2 297 | (ite (= x 0xA3) bytecodeA3 298 | (ite (= x 0xA4) bytecodeA4 299 | (ite (= x 0xA5) bytecodeA5 300 | (ite (= x 0xA6) bytecodeA6 301 | (ite (= x 0xA7) bytecodeA7 302 | (ite (= x 0xA8) bytecodeA8 303 | (ite (= x 0xA9) bytecodeA9 304 | (ite (= x 0xAA) bytecodeAA 305 | (ite (= x 0xAB) bytecodeAB 306 | (ite (= x 0xAC) bytecodeAC 307 | (ite (= x 0xAD) bytecodeAD 308 | (ite (= x 0xAE) bytecodeAE 309 | (ite (= x 0xAF) bytecodeAF 310 | (ite (= x 0xB0) bytecodeB0 311 | (ite (= x 0xB1) bytecodeB1 312 | (ite (= x 0xB2) bytecodeB2 313 | (ite (= x 0xB3) bytecodeB3 314 | (ite (= x 0xB4) bytecodeB4 315 | (ite (= x 0xB5) bytecodeB5 316 | (ite (= x 0xB6) bytecodeB6 317 | (ite (= x 0xB7) bytecodeB7 318 | (ite (= x 0xB8) bytecodeB8 319 | (ite (= x 0xB9) bytecodeB9 320 | (ite (= x 0xBA) bytecodeBA 321 | (ite (= x 0xBB) bytecodeBB 322 | (ite (= x 0xBC) bytecodeBC 323 | (ite (= x 0xBD) bytecodeBD 324 | (ite (= x 0xBE) bytecodeBE 325 | (ite (= x 0xBF) bytecodeBF 326 | (ite (= x 0xC0) bytecodeC0 327 | (ite (= x 0xC1) bytecodeC1 328 | (ite (= x 0xC2) bytecodeC2 329 | (ite (= x 0xC3) bytecodeC3 330 | (ite (= x 0xC4) bytecodeC4 331 | (ite (= x 0xC5) bytecodeC5 332 | (ite (= x 0xC6) bytecodeC6 333 | (ite (= x 0xC7) bytecodeC7 334 | (ite (= x 0xC8) bytecodeC8 335 | (ite (= x 0xC9) bytecodeC9 336 | (ite (= x 0xCA) bytecodeCA 337 | (ite (= x 0xCB) bytecodeCB 338 | (ite (= x 0xCC) bytecodeCC 339 | (ite (= x 0xCD) bytecodeCD 340 | (ite (= x 0xCE) bytecodeCE 341 | (ite (= x 0xCF) bytecodeCF 342 | (ite (= x 0xD0) bytecodeD0 343 | (ite (= x 0xD1) bytecodeD1 344 | (ite (= x 0xD2) bytecodeD2 345 | (ite (= x 0xD3) bytecodeD3 346 | (ite (= x 0xD4) bytecodeD4 347 | (ite (= x 0xD5) bytecodeD5 348 | (ite (= x 0xD6) bytecodeD6 349 | (ite (= x 0xD7) bytecodeD7 350 | (ite (= x 0xD8) bytecodeD8 351 | (ite (= x 0xD9) bytecodeD9 352 | (ite (= x 0xDA) bytecodeDA 353 | (ite (= x 0xDB) bytecodeDB 354 | (ite (= x 0xDC) bytecodeDC 355 | (ite (= x 0xDD) bytecodeDD 356 | (ite (= x 0xDE) bytecodeDE 357 | (ite (= x 0xDF) bytecodeDF 358 | (ite (= x 0xE0) bytecodeE0 359 | (ite (= x 0xE1) bytecodeE1 360 | (ite (= x 0xE2) bytecodeE2 361 | (ite (= x 0xE3) bytecodeE3 362 | (ite (= x 0xE4) bytecodeE4 363 | (ite (= x 0xE5) bytecodeE5 364 | (ite (= x 0xE6) bytecodeE6 365 | (ite (= x 0xE7) bytecodeE7 366 | (ite (= x 0xE8) bytecodeE8 367 | (ite (= x 0xE9) bytecodeE9 368 | (ite (= x 0xEA) bytecodeEA 369 | (ite (= x 0xEB) bytecodeEB 370 | (ite (= x 0xEC) bytecodeEC 371 | (ite (= x 0xED) bytecodeED 372 | (ite (= x 0xEE) bytecodeEE 373 | (ite (= x 0xEF) bytecodeEF 374 | (ite (= x 0xF0) bytecodeF0 375 | (ite (= x 0xF1) bytecodeF1 376 | (ite (= x 0xF2) bytecodeF2 377 | (ite (= x 0xF3) bytecodeF3 378 | (ite (= x 0xF4) bytecodeF4 379 | (ite (= x 0xF5) bytecodeF5 380 | (ite (= x 0xF6) bytecodeF6 381 | (ite (= x 0xF7) bytecodeF7 382 | (ite (= x 0xF8) bytecodeF8 383 | (ite (= x 0xF9) bytecodeF9 384 | (ite (= x 0xFA) bytecodeFA 385 | (ite (= x 0xFB) bytecodeFB 386 | (ite (= x 0xFC) bytecodeFC 387 | (ite (= x 0xFD) bytecodeFD 388 | (ite (= x 0xFE) bytecodeFE 389 | (ite (= x 0xFF) bytecodeFF 390 | bytecode04)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 391 | ) 392 | ) 393 | 394 | ; getstate(reg,state). Return the value of register 'reg' from state 'state'. 395 | (define getstate::(-> (bitvector 3) (bitvector 256) (bitvector 32)) 396 | (lambda (x::(bitvector 3) z::(bitvector 256)) 397 | (ite (= x 0b000) (bv-extract 31 0 z) 398 | (ite (= x 0b001) (bv-extract 63 32 z) 399 | (ite (= x 0b010) (bv-extract 95 64 z) 400 | (ite (= x 0b011) (bv-extract 127 96 z) 401 | (ite (= x 0b100) (bv-extract 159 128 z) 402 | (ite (= x 0b101) (bv-extract 191 160 z) 403 | (ite (= x 0b110) (bv-extract 223 192 z) 404 | (bv-extract 255 224 z) 405 | ))))))) 406 | ) 407 | ) 408 | 409 | ; putstate(reg,state,value). Update register 'reg' to value 'value' in state 410 | ; 'state'; return the new state. 411 | (define putstate::(-> (bitvector 3) (bitvector 32) (bitvector 256) (bitvector 256)) 412 | (lambda (x::(bitvector 3) y::(bitvector 32) z::(bitvector 256)) 413 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y) 414 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z)) 415 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z)) 416 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z)) 417 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z)) 418 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z)) 419 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z)) 420 | (bv-concat y (bv-extract 223 0 z)) 421 | ))))))) 422 | ) 423 | ) 424 | 425 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the 426 | ; operation specified by that instruction. Consult and update the state 'state' 427 | ; accordingly; return the new state concatenated with the length of the 428 | ; instruction. In other words, this function simulates the effects of executing 429 | ; every possible instruction. 430 | (define symbolic-insn::(-> (-> (bitvector 8) (bitvector 8)) (bitvector 8) (bitvector 256) (bitvector 264)) 431 | (lambda (f-get-byte::(-> (bitvector 8) (bitvector 8)) eip::(bitvector 8) state::(bitvector 256)) 432 | (let ((byte0 (f-get-byte eip))) 433 | (let ((byte1 (f-get-byte (bv-add 0x01 eip)))) 434 | (let ((byte2 (f-get-byte (bv-add 0x02 eip)))) 435 | (let ((byte3 (f-get-byte (bv-add 0x03 eip)))) 436 | (let ((byte4 (f-get-byte (bv-add 0x04 eip)))) 437 | ; xor reg, reg 438 | (ite (= (bv-and byte0 0xC0) 0x00) 439 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 440 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 441 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) (getstate rhsreg0 state)) state))) 442 | (bv-concat 0x01 newstate) 443 | ))) 444 | ; add reg, reg 445 | (ite (= (bv-and byte0 0xC0) 0x40) 446 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 447 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 448 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) (getstate rhsreg0 state)) state))) 449 | (bv-concat 0x01 newstate) 450 | ))) 451 | ; mov reg, reg 452 | (ite (= (bv-and byte0 0xC0) 0x80) 453 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 454 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 455 | (let ((newstate (putstate lhsreg0 (getstate rhsreg0 state) state))) 456 | (bv-concat 0x01 newstate) 457 | ))) 458 | ; complex 0xC0 case 459 | (let ((opcode (bv-extract 5 3 byte0))) 460 | (let ((lhsreg0 (bv-extract 2 0 byte0))) 461 | ; inc reg 462 | (ite (= opcode 0b000) 463 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) 0x00000001) state))) 464 | (bv-concat 0x01 newstate)) 465 | ; dec reg 466 | (ite (= opcode 0b001) 467 | (let ((newstate (putstate lhsreg0 (bv-sub (getstate lhsreg0 state) 0x00000001) state))) 468 | (bv-concat 0x01 newstate)) 469 | ; neg reg 470 | (ite (= opcode 0b010) 471 | (let ((newstate (putstate lhsreg0 (bv-neg (getstate lhsreg0 state)) state))) 472 | (bv-concat 0x01 newstate)) 473 | ; not reg 474 | (ite (= opcode 0b011) 475 | (let ((newstate (putstate lhsreg0 (bv-not (getstate lhsreg0 state)) state))) 476 | (bv-concat 0x01 newstate)) 477 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1))) 478 | ; add reg, imm32 479 | (ite (= opcode 0b100) 480 | (let ((newstate (putstate lhsreg0 (bv-add (getstate lhsreg0 state) rhsval0) state))) 481 | (bv-concat 0x05 newstate)) 482 | ; xor reg, imm32 483 | (ite (= opcode 0b101) 484 | (let ((newstate (putstate lhsreg0 (bv-xor (getstate lhsreg0 state) rhsval0) state))) 485 | (bv-concat 0x05 newstate)) 486 | ; and reg, imm32 487 | (ite (= opcode 0b110) 488 | (let ((newstate (putstate lhsreg0 (bv-and (getstate lhsreg0 state) rhsval0) state))) 489 | (bv-concat 0x05 newstate)) 490 | ; opcode == 0b111 491 | ; or reg, imm32 492 | (let ((newstate (putstate lhsreg0 (bv-or (getstate lhsreg0 state) rhsval0) state))) 493 | (bv-concat 0x05 newstate))))))))))))))) 494 | ))))) 495 | ) 496 | ) 497 | 498 | (define get-byte-big::(-> (bitvector 2048) (bitvector 8) (bitvector 8)) 499 | (lambda (mem::(bitvector 2048) x::(bitvector 8)) 500 | (bv-extract 7 0 (bv-lshr mem (bv-zero-extend x 2040))) 501 | ) 502 | ) 503 | 504 | ; The main assertion. 505 | (assert 506 | ; For every possible input state (r0, ..., r7). 507 | ; There is an additional universally-quantified variable idx: used to make 508 | ; statements about the bytes in the encoding. 509 | (forall (r0::(bitvector 32) r1::(bitvector 32) r2::(bitvector 32) r3::(bitvector 32) r4::(bitvector 32) r5::(bitvector 32) r6::(bitvector 32) r7::(bitvector 32) idx::(bitvector 8) othermem::(bitvector 2048)) 510 | ; ------------------------ 511 | ; INITIALIZE STATE AND EIP 512 | ; ------------------------ 513 | (let ((my-get-byte 514 | (lambda (x::(bitvector 8)) 515 | (bv-extract 7 0 (bv-lshr othermem (bv-zero-extend x 2040)))))) 516 | ; Create the input "state" by concatenating all of the inputs. 517 | (let ((state0 (bv-concat r7 r6 r5 r4 r3 r2 r1 r0))) 518 | ; Set initial EIP to zero. 519 | (let ((eip0 0x00)) 520 | 521 | ; ------------------------ 522 | ; SIMULATE ONE INSTRUCTION 523 | ; ------------------------ 524 | 525 | ; Perform symbolic simulation of one instruction (any instruction). 526 | (let ((synsem0 (symbolic-insn get-byte eip0 state0))) 527 | ; Extract the length of the instruction. 528 | (let ((insn0len (bv-extract 263 256 synsem0))) 529 | ; Extract the output state after having executed the instruction. 530 | (let ((state1 (bv-extract 255 0 synsem0))) 531 | ; Extract EIP after executing the instruction. 532 | (let ((eip1 (bv-add eip0 insn0len))) 533 | 534 | ; ------------------------ 535 | ; SIMULATE ONE INSTRUCTION 536 | ; ------------------------ 537 | 538 | ; Perform symbolic simulation of one instruction (any instruction). 539 | (let ((synsem1 (symbolic-insn get-byte eip1 state1))) 540 | ; Extract the length of the instruction. 541 | (let ((insn1len (bv-extract 263 256 synsem1))) 542 | ; Extract the output state after having executed the instruction. 543 | (let ((state2 (bv-extract 255 0 synsem1))) 544 | ; Extract EIP after executing the instruction. 545 | (let ((eip2 (bv-add eip1 insn1len))) 546 | 547 | ; ---------------------- 548 | ; FINALIZE STATE AND EIP 549 | ; ---------------------- 550 | 551 | ; Call the final state "finalstate" (for convenience). 552 | (let ((finalstate state2)) 553 | ; Call the final EIP "finaleip" (for convenience). 554 | (let ((finaleip eip2)) 555 | 556 | ; ------------------------ 557 | ; OTHER: SIMULATE ONE INSTRUCTION 558 | ; ------------------------ 559 | 560 | ; Perform symbolic simulation of one instruction (any instruction). 561 | (let ((othersynsem0 (symbolic-insn my-get-byte eip0 state0))) 562 | ; Extract the length of the instruction. 563 | (let ((otherinsn0len (bv-extract 263 256 othersynsem0))) 564 | ; Extract the output state after having executed the instruction. 565 | (let ((otherstate1 (bv-extract 255 0 othersynsem0))) 566 | ; Extract EIP after executing the instruction. 567 | (let ((othereip1 (bv-add eip0 otherinsn0len))) 568 | 569 | ; ------------------------ 570 | ; OTHER: SIMULATE ONE INSTRUCTION 571 | ; ------------------------ 572 | 573 | ; Perform symbolic simulation of one instruction (any instruction). 574 | (let ((othersynsem1 (symbolic-insn my-get-byte othereip1 otherstate1))) 575 | ; Extract the length of the instruction. 576 | (let ((otherinsn1len (bv-extract 263 256 othersynsem1))) 577 | ; Extract the output state after having executed the instruction. 578 | (let ((otherstate2 (bv-extract 255 0 othersynsem1))) 579 | ; Extract EIP after executing the instruction. 580 | (let ((othereip2 (bv-add othereip1 otherinsn1len))) 581 | 582 | ; ---------------------- 583 | ; OTHER: FINALIZE STATE AND EIP 584 | ; ---------------------- 585 | 586 | ; Call the final state "finalstate" (for convenience). 587 | (let ((otherfinalstate otherstate2)) 588 | ; Call the final EIP "finaleip" (for convenience). 589 | (let ((otherfinaleip othereip2)) 590 | 591 | ; -------------------------------------------------- 592 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING 593 | ; -------------------------------------------------- 594 | 595 | (and 596 | ; 0-length instructions are invalid; both instructions must be valid. 597 | (not (= insn0len 0x00)) 598 | (not (= insn1len 0x00)) 599 | 600 | ; ----------------------------------- 601 | ; CONSTRAINTS REGARDING FUNCTIONALITY 602 | ; ----------------------------------- 603 | 604 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved. 605 | (= (getstate 0b000 finalstate) (bv-add r0 0x00000001)) 606 | (= (getstate 0b001 finalstate) r1) 607 | (= (getstate 0b010 finalstate) r2) 608 | (= (getstate 0b011 finalstate) r3) 609 | (= (getstate 0b100 finalstate) r4) 610 | (= (getstate 0b101 finalstate) r5) 611 | (= (getstate 0b110 finalstate) r6) 612 | (= (getstate 0b111 finalstate) r7) 613 | 614 | ; OTHER 615 | (=> (and 616 | (not (= otherinsn0len 0x00)) 617 | (not (= otherinsn1len 0x00)) 618 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved. 619 | (= (getstate 0b000 otherfinalstate) (bv-add r0 0x00000001)) 620 | (= (getstate 0b001 otherfinalstate) r1) 621 | (= (getstate 0b010 otherfinalstate) r2) 622 | (= (getstate 0b011 otherfinalstate) r3) 623 | (= (getstate 0b100 otherfinalstate) r4) 624 | (= (getstate 0b101 otherfinalstate) r5) 625 | (= (getstate 0b110 otherfinalstate) r6) 626 | (= (getstate 0b111 otherfinalstate) r7)) 627 | (bv-le finaleip otherfinaleip)) 628 | 629 | ; ------------------------------ 630 | ; CONSTRAINTS REGARDING ENCODING 631 | ; ------------------------------ 632 | ; None of the bytes are 0x12 633 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12)) 634 | ; None of the bytes are 0x34 635 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34)) 636 | ; None of the bytes are 0x56 637 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56)) 638 | ; None of the bytes are 0x78 639 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78)) 640 | ; None of the bytes are 0x00 (commented out) 641 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00)) 642 | ) ; end and 643 | )))))))))))) ; end let * 12 644 | ))))))))))) ; end OTHER let * 10 645 | ) ; end forall 646 | ) ; end assert 647 | 648 | ; Solve the constraint system 649 | (ef-solve) 650 | 651 | ; Produce a model, i.e., values for bytecode00-bytecodeFF. 652 | ; This statement will crash yices if (ef-solve) returned unsatisfiable. 653 | (show-model) -------------------------------------------------------------------------------- /synesthesia-1-mod.ys: -------------------------------------------------------------------------------- 1 | ; Loosen yices' arbitrary restriction on iteration count. (') 2 | (set-param ef-max-iters 1000) 3 | 4 | (define-type Bit (bitvector 1)) 5 | (define-type Byte (bitvector 8)) 6 | (define-type Word (bitvector 16)) 7 | (define-type Dword (bitvector 32)) 8 | 9 | (define-type RegIdx (bitvector 3)) 10 | (define R0Idx::RegIdx (mk-bv 3 0)) ; R0 = 0 11 | (define R1Idx::RegIdx (mk-bv 3 1)) ; R1 = 1 12 | (define R2Idx::RegIdx (mk-bv 3 2)) ; R2 = 2 13 | (define R3Idx::RegIdx (mk-bv 3 3)) ; R3 = 3 14 | (define R4Idx::RegIdx (mk-bv 3 4)) ; R4 = 4 15 | (define R5Idx::RegIdx (mk-bv 3 5)) ; R5 = 5 16 | (define R6Idx::RegIdx (mk-bv 3 6)) ; R6 = 6 17 | (define R7Idx::RegIdx (mk-bv 3 7)) ; R7 = 7 18 | 19 | (define-type Reg32State (bitvector 256)) 20 | (define-type MachineState (bitvector 264)) 21 | (define-type MachineStateRes8 (bitvector 272)) 22 | (define-type MachineStateRes16 (bitvector 280)) 23 | (define-type MachineStateRes32 (bitvector 296)) 24 | (define-type DecodedMachineState (bitvector 268)) 25 | 26 | (define bytecode00::Byte) (define bytecode01::Byte) 27 | (define bytecode02::Byte) (define bytecode03::Byte) 28 | (define bytecode04::Byte) (define bytecode05::Byte) 29 | (define bytecode06::Byte) (define bytecode07::Byte) 30 | (define bytecode08::Byte) (define bytecode09::Byte) 31 | (define bytecode0A::Byte) (define bytecode0B::Byte) 32 | (define bytecode0C::Byte) (define bytecode0D::Byte) 33 | (define bytecode0E::Byte) (define bytecode0F::Byte) 34 | (define bytecode10::Byte) (define bytecode11::Byte) 35 | (define bytecode12::Byte) (define bytecode13::Byte) 36 | (define bytecode14::Byte) (define bytecode15::Byte) 37 | (define bytecode16::Byte) (define bytecode17::Byte) 38 | (define bytecode18::Byte) (define bytecode19::Byte) 39 | (define bytecode1A::Byte) (define bytecode1B::Byte) 40 | (define bytecode1C::Byte) (define bytecode1D::Byte) 41 | (define bytecode1E::Byte) (define bytecode1F::Byte) 42 | (define bytecode20::Byte) (define bytecode21::Byte) 43 | (define bytecode22::Byte) (define bytecode23::Byte) 44 | (define bytecode24::Byte) (define bytecode25::Byte) 45 | (define bytecode26::Byte) (define bytecode27::Byte) 46 | (define bytecode28::Byte) (define bytecode29::Byte) 47 | (define bytecode2A::Byte) (define bytecode2B::Byte) 48 | (define bytecode2C::Byte) (define bytecode2D::Byte) 49 | (define bytecode2E::Byte) (define bytecode2F::Byte) 50 | (define bytecode30::Byte) (define bytecode31::Byte) 51 | (define bytecode32::Byte) (define bytecode33::Byte) 52 | (define bytecode34::Byte) (define bytecode35::Byte) 53 | (define bytecode36::Byte) (define bytecode37::Byte) 54 | (define bytecode38::Byte) (define bytecode39::Byte) 55 | (define bytecode3A::Byte) (define bytecode3B::Byte) 56 | (define bytecode3C::Byte) (define bytecode3D::Byte) 57 | (define bytecode3E::Byte) (define bytecode3F::Byte) 58 | (define bytecode40::Byte) (define bytecode41::Byte) 59 | (define bytecode42::Byte) (define bytecode43::Byte) 60 | (define bytecode44::Byte) (define bytecode45::Byte) 61 | (define bytecode46::Byte) (define bytecode47::Byte) 62 | (define bytecode48::Byte) (define bytecode49::Byte) 63 | (define bytecode4A::Byte) (define bytecode4B::Byte) 64 | (define bytecode4C::Byte) (define bytecode4D::Byte) 65 | (define bytecode4E::Byte) (define bytecode4F::Byte) 66 | (define bytecode50::Byte) (define bytecode51::Byte) 67 | (define bytecode52::Byte) (define bytecode53::Byte) 68 | (define bytecode54::Byte) (define bytecode55::Byte) 69 | (define bytecode56::Byte) (define bytecode57::Byte) 70 | (define bytecode58::Byte) (define bytecode59::Byte) 71 | (define bytecode5A::Byte) (define bytecode5B::Byte) 72 | (define bytecode5C::Byte) (define bytecode5D::Byte) 73 | (define bytecode5E::Byte) (define bytecode5F::Byte) 74 | (define bytecode60::Byte) (define bytecode61::Byte) 75 | (define bytecode62::Byte) (define bytecode63::Byte) 76 | (define bytecode64::Byte) (define bytecode65::Byte) 77 | (define bytecode66::Byte) (define bytecode67::Byte) 78 | (define bytecode68::Byte) (define bytecode69::Byte) 79 | (define bytecode6A::Byte) (define bytecode6B::Byte) 80 | (define bytecode6C::Byte) (define bytecode6D::Byte) 81 | (define bytecode6E::Byte) (define bytecode6F::Byte) 82 | (define bytecode70::Byte) (define bytecode71::Byte) 83 | (define bytecode72::Byte) (define bytecode73::Byte) 84 | (define bytecode74::Byte) (define bytecode75::Byte) 85 | (define bytecode76::Byte) (define bytecode77::Byte) 86 | (define bytecode78::Byte) (define bytecode79::Byte) 87 | (define bytecode7A::Byte) (define bytecode7B::Byte) 88 | (define bytecode7C::Byte) (define bytecode7D::Byte) 89 | (define bytecode7E::Byte) (define bytecode7F::Byte) 90 | (define bytecode80::Byte) (define bytecode81::Byte) 91 | (define bytecode82::Byte) (define bytecode83::Byte) 92 | (define bytecode84::Byte) (define bytecode85::Byte) 93 | (define bytecode86::Byte) (define bytecode87::Byte) 94 | (define bytecode88::Byte) (define bytecode89::Byte) 95 | (define bytecode8A::Byte) (define bytecode8B::Byte) 96 | (define bytecode8C::Byte) (define bytecode8D::Byte) 97 | (define bytecode8E::Byte) (define bytecode8F::Byte) 98 | (define bytecode90::Byte) (define bytecode91::Byte) 99 | (define bytecode92::Byte) (define bytecode93::Byte) 100 | (define bytecode94::Byte) (define bytecode95::Byte) 101 | (define bytecode96::Byte) (define bytecode97::Byte) 102 | (define bytecode98::Byte) (define bytecode99::Byte) 103 | (define bytecode9A::Byte) (define bytecode9B::Byte) 104 | (define bytecode9C::Byte) (define bytecode9D::Byte) 105 | (define bytecode9E::Byte) (define bytecode9F::Byte) 106 | (define bytecodeA0::Byte) (define bytecodeA1::Byte) 107 | (define bytecodeA2::Byte) (define bytecodeA3::Byte) 108 | (define bytecodeA4::Byte) (define bytecodeA5::Byte) 109 | (define bytecodeA6::Byte) (define bytecodeA7::Byte) 110 | (define bytecodeA8::Byte) (define bytecodeA9::Byte) 111 | (define bytecodeAA::Byte) (define bytecodeAB::Byte) 112 | (define bytecodeAC::Byte) (define bytecodeAD::Byte) 113 | (define bytecodeAE::Byte) (define bytecodeAF::Byte) 114 | (define bytecodeB0::Byte) (define bytecodeB1::Byte) 115 | (define bytecodeB2::Byte) (define bytecodeB3::Byte) 116 | (define bytecodeB4::Byte) (define bytecodeB5::Byte) 117 | (define bytecodeB6::Byte) (define bytecodeB7::Byte) 118 | (define bytecodeB8::Byte) (define bytecodeB9::Byte) 119 | (define bytecodeBA::Byte) (define bytecodeBB::Byte) 120 | (define bytecodeBC::Byte) (define bytecodeBD::Byte) 121 | (define bytecodeBE::Byte) (define bytecodeBF::Byte) 122 | (define bytecodeC0::Byte) (define bytecodeC1::Byte) 123 | (define bytecodeC2::Byte) (define bytecodeC3::Byte) 124 | (define bytecodeC4::Byte) (define bytecodeC5::Byte) 125 | (define bytecodeC6::Byte) (define bytecodeC7::Byte) 126 | (define bytecodeC8::Byte) (define bytecodeC9::Byte) 127 | (define bytecodeCA::Byte) (define bytecodeCB::Byte) 128 | (define bytecodeCC::Byte) (define bytecodeCD::Byte) 129 | (define bytecodeCE::Byte) (define bytecodeCF::Byte) 130 | (define bytecodeD0::Byte) (define bytecodeD1::Byte) 131 | (define bytecodeD2::Byte) (define bytecodeD3::Byte) 132 | (define bytecodeD4::Byte) (define bytecodeD5::Byte) 133 | (define bytecodeD6::Byte) (define bytecodeD7::Byte) 134 | (define bytecodeD8::Byte) (define bytecodeD9::Byte) 135 | (define bytecodeDA::Byte) (define bytecodeDB::Byte) 136 | (define bytecodeDC::Byte) (define bytecodeDD::Byte) 137 | (define bytecodeDE::Byte) (define bytecodeDF::Byte) 138 | (define bytecodeE0::Byte) (define bytecodeE1::Byte) 139 | (define bytecodeE2::Byte) (define bytecodeE3::Byte) 140 | (define bytecodeE4::Byte) (define bytecodeE5::Byte) 141 | (define bytecodeE6::Byte) (define bytecodeE7::Byte) 142 | (define bytecodeE8::Byte) (define bytecodeE9::Byte) 143 | (define bytecodeEA::Byte) (define bytecodeEB::Byte) 144 | (define bytecodeEC::Byte) (define bytecodeED::Byte) 145 | (define bytecodeEE::Byte) (define bytecodeEF::Byte) 146 | (define bytecodeF0::Byte) (define bytecodeF1::Byte) 147 | (define bytecodeF2::Byte) (define bytecodeF3::Byte) 148 | (define bytecodeF4::Byte) (define bytecodeF5::Byte) 149 | (define bytecodeF6::Byte) (define bytecodeF7::Byte) 150 | (define bytecodeF8::Byte) (define bytecodeF9::Byte) 151 | (define bytecodeFA::Byte) (define bytecodeFB::Byte) 152 | (define bytecodeFC::Byte) (define bytecodeFD::Byte) 153 | (define bytecodeFE::Byte) (define bytecodeFF::Byte) 154 | 155 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX 156 | ; variable. 157 | (define get-byte::(-> Byte Byte) 158 | (lambda (x::Byte) 159 | (ite (= x 0x00) bytecode00 160 | (ite (= x 0x01) bytecode01 161 | (ite (= x 0x02) bytecode02 162 | (ite (= x 0x03) bytecode03 163 | (ite (= x 0x04) bytecode04 164 | (ite (= x 0x05) bytecode05 165 | (ite (= x 0x06) bytecode06 166 | (ite (= x 0x07) bytecode07 167 | (ite (= x 0x08) bytecode08 168 | (ite (= x 0x09) bytecode09 169 | (ite (= x 0x0A) bytecode0A 170 | (ite (= x 0x0B) bytecode0B 171 | (ite (= x 0x0C) bytecode0C 172 | (ite (= x 0x0D) bytecode0D 173 | (ite (= x 0x0E) bytecode0E 174 | (ite (= x 0x0F) bytecode0F 175 | (ite (= x 0x10) bytecode10 176 | (ite (= x 0x11) bytecode11 177 | (ite (= x 0x12) bytecode12 178 | (ite (= x 0x13) bytecode13 179 | (ite (= x 0x14) bytecode14 180 | (ite (= x 0x15) bytecode15 181 | (ite (= x 0x16) bytecode16 182 | (ite (= x 0x17) bytecode17 183 | (ite (= x 0x18) bytecode18 184 | (ite (= x 0x19) bytecode19 185 | (ite (= x 0x1A) bytecode1A 186 | (ite (= x 0x1B) bytecode1B 187 | (ite (= x 0x1C) bytecode1C 188 | (ite (= x 0x1D) bytecode1D 189 | (ite (= x 0x1E) bytecode1E 190 | (ite (= x 0x1F) bytecode1F 191 | (ite (= x 0x20) bytecode20 192 | (ite (= x 0x21) bytecode21 193 | (ite (= x 0x22) bytecode22 194 | (ite (= x 0x23) bytecode23 195 | (ite (= x 0x24) bytecode24 196 | (ite (= x 0x25) bytecode25 197 | (ite (= x 0x26) bytecode26 198 | (ite (= x 0x27) bytecode27 199 | (ite (= x 0x28) bytecode28 200 | (ite (= x 0x29) bytecode29 201 | (ite (= x 0x2A) bytecode2A 202 | (ite (= x 0x2B) bytecode2B 203 | (ite (= x 0x2C) bytecode2C 204 | (ite (= x 0x2D) bytecode2D 205 | (ite (= x 0x2E) bytecode2E 206 | (ite (= x 0x2F) bytecode2F 207 | (ite (= x 0x30) bytecode30 208 | (ite (= x 0x31) bytecode31 209 | (ite (= x 0x32) bytecode32 210 | (ite (= x 0x33) bytecode33 211 | (ite (= x 0x34) bytecode34 212 | (ite (= x 0x35) bytecode35 213 | (ite (= x 0x36) bytecode36 214 | (ite (= x 0x37) bytecode37 215 | (ite (= x 0x38) bytecode38 216 | (ite (= x 0x39) bytecode39 217 | (ite (= x 0x3A) bytecode3A 218 | (ite (= x 0x3B) bytecode3B 219 | (ite (= x 0x3C) bytecode3C 220 | (ite (= x 0x3D) bytecode3D 221 | (ite (= x 0x3E) bytecode3E 222 | (ite (= x 0x3F) bytecode3F 223 | (ite (= x 0x40) bytecode40 224 | (ite (= x 0x41) bytecode41 225 | (ite (= x 0x42) bytecode42 226 | (ite (= x 0x43) bytecode43 227 | (ite (= x 0x44) bytecode44 228 | (ite (= x 0x45) bytecode45 229 | (ite (= x 0x46) bytecode46 230 | (ite (= x 0x47) bytecode47 231 | (ite (= x 0x48) bytecode48 232 | (ite (= x 0x49) bytecode49 233 | (ite (= x 0x4A) bytecode4A 234 | (ite (= x 0x4B) bytecode4B 235 | (ite (= x 0x4C) bytecode4C 236 | (ite (= x 0x4D) bytecode4D 237 | (ite (= x 0x4E) bytecode4E 238 | (ite (= x 0x4F) bytecode4F 239 | (ite (= x 0x50) bytecode50 240 | (ite (= x 0x51) bytecode51 241 | (ite (= x 0x52) bytecode52 242 | (ite (= x 0x53) bytecode53 243 | (ite (= x 0x54) bytecode54 244 | (ite (= x 0x55) bytecode55 245 | (ite (= x 0x56) bytecode56 246 | (ite (= x 0x57) bytecode57 247 | (ite (= x 0x58) bytecode58 248 | (ite (= x 0x59) bytecode59 249 | (ite (= x 0x5A) bytecode5A 250 | (ite (= x 0x5B) bytecode5B 251 | (ite (= x 0x5C) bytecode5C 252 | (ite (= x 0x5D) bytecode5D 253 | (ite (= x 0x5E) bytecode5E 254 | (ite (= x 0x5F) bytecode5F 255 | (ite (= x 0x60) bytecode60 256 | (ite (= x 0x61) bytecode61 257 | (ite (= x 0x62) bytecode62 258 | (ite (= x 0x63) bytecode63 259 | (ite (= x 0x64) bytecode64 260 | (ite (= x 0x65) bytecode65 261 | (ite (= x 0x66) bytecode66 262 | (ite (= x 0x67) bytecode67 263 | (ite (= x 0x68) bytecode68 264 | (ite (= x 0x69) bytecode69 265 | (ite (= x 0x6A) bytecode6A 266 | (ite (= x 0x6B) bytecode6B 267 | (ite (= x 0x6C) bytecode6C 268 | (ite (= x 0x6D) bytecode6D 269 | (ite (= x 0x6E) bytecode6E 270 | (ite (= x 0x6F) bytecode6F 271 | (ite (= x 0x70) bytecode70 272 | (ite (= x 0x71) bytecode71 273 | (ite (= x 0x72) bytecode72 274 | (ite (= x 0x73) bytecode73 275 | (ite (= x 0x74) bytecode74 276 | (ite (= x 0x75) bytecode75 277 | (ite (= x 0x76) bytecode76 278 | (ite (= x 0x77) bytecode77 279 | (ite (= x 0x78) bytecode78 280 | (ite (= x 0x79) bytecode79 281 | (ite (= x 0x7A) bytecode7A 282 | (ite (= x 0x7B) bytecode7B 283 | (ite (= x 0x7C) bytecode7C 284 | (ite (= x 0x7D) bytecode7D 285 | (ite (= x 0x7E) bytecode7E 286 | (ite (= x 0x7F) bytecode7F 287 | (ite (= x 0x80) bytecode80 288 | (ite (= x 0x81) bytecode81 289 | (ite (= x 0x82) bytecode82 290 | (ite (= x 0x83) bytecode83 291 | (ite (= x 0x84) bytecode84 292 | (ite (= x 0x85) bytecode85 293 | (ite (= x 0x86) bytecode86 294 | (ite (= x 0x87) bytecode87 295 | (ite (= x 0x88) bytecode88 296 | (ite (= x 0x89) bytecode89 297 | (ite (= x 0x8A) bytecode8A 298 | (ite (= x 0x8B) bytecode8B 299 | (ite (= x 0x8C) bytecode8C 300 | (ite (= x 0x8D) bytecode8D 301 | (ite (= x 0x8E) bytecode8E 302 | (ite (= x 0x8F) bytecode8F 303 | (ite (= x 0x90) bytecode90 304 | (ite (= x 0x91) bytecode91 305 | (ite (= x 0x92) bytecode92 306 | (ite (= x 0x93) bytecode93 307 | (ite (= x 0x94) bytecode94 308 | (ite (= x 0x95) bytecode95 309 | (ite (= x 0x96) bytecode96 310 | (ite (= x 0x97) bytecode97 311 | (ite (= x 0x98) bytecode98 312 | (ite (= x 0x99) bytecode99 313 | (ite (= x 0x9A) bytecode9A 314 | (ite (= x 0x9B) bytecode9B 315 | (ite (= x 0x9C) bytecode9C 316 | (ite (= x 0x9D) bytecode9D 317 | (ite (= x 0x9E) bytecode9E 318 | (ite (= x 0x9F) bytecode9F 319 | (ite (= x 0xA0) bytecodeA0 320 | (ite (= x 0xA1) bytecodeA1 321 | (ite (= x 0xA2) bytecodeA2 322 | (ite (= x 0xA3) bytecodeA3 323 | (ite (= x 0xA4) bytecodeA4 324 | (ite (= x 0xA5) bytecodeA5 325 | (ite (= x 0xA6) bytecodeA6 326 | (ite (= x 0xA7) bytecodeA7 327 | (ite (= x 0xA8) bytecodeA8 328 | (ite (= x 0xA9) bytecodeA9 329 | (ite (= x 0xAA) bytecodeAA 330 | (ite (= x 0xAB) bytecodeAB 331 | (ite (= x 0xAC) bytecodeAC 332 | (ite (= x 0xAD) bytecodeAD 333 | (ite (= x 0xAE) bytecodeAE 334 | (ite (= x 0xAF) bytecodeAF 335 | (ite (= x 0xB0) bytecodeB0 336 | (ite (= x 0xB1) bytecodeB1 337 | (ite (= x 0xB2) bytecodeB2 338 | (ite (= x 0xB3) bytecodeB3 339 | (ite (= x 0xB4) bytecodeB4 340 | (ite (= x 0xB5) bytecodeB5 341 | (ite (= x 0xB6) bytecodeB6 342 | (ite (= x 0xB7) bytecodeB7 343 | (ite (= x 0xB8) bytecodeB8 344 | (ite (= x 0xB9) bytecodeB9 345 | (ite (= x 0xBA) bytecodeBA 346 | (ite (= x 0xBB) bytecodeBB 347 | (ite (= x 0xBC) bytecodeBC 348 | (ite (= x 0xBD) bytecodeBD 349 | (ite (= x 0xBE) bytecodeBE 350 | (ite (= x 0xBF) bytecodeBF 351 | (ite (= x 0xC0) bytecodeC0 352 | (ite (= x 0xC1) bytecodeC1 353 | (ite (= x 0xC2) bytecodeC2 354 | (ite (= x 0xC3) bytecodeC3 355 | (ite (= x 0xC4) bytecodeC4 356 | (ite (= x 0xC5) bytecodeC5 357 | (ite (= x 0xC6) bytecodeC6 358 | (ite (= x 0xC7) bytecodeC7 359 | (ite (= x 0xC8) bytecodeC8 360 | (ite (= x 0xC9) bytecodeC9 361 | (ite (= x 0xCA) bytecodeCA 362 | (ite (= x 0xCB) bytecodeCB 363 | (ite (= x 0xCC) bytecodeCC 364 | (ite (= x 0xCD) bytecodeCD 365 | (ite (= x 0xCE) bytecodeCE 366 | (ite (= x 0xCF) bytecodeCF 367 | (ite (= x 0xD0) bytecodeD0 368 | (ite (= x 0xD1) bytecodeD1 369 | (ite (= x 0xD2) bytecodeD2 370 | (ite (= x 0xD3) bytecodeD3 371 | (ite (= x 0xD4) bytecodeD4 372 | (ite (= x 0xD5) bytecodeD5 373 | (ite (= x 0xD6) bytecodeD6 374 | (ite (= x 0xD7) bytecodeD7 375 | (ite (= x 0xD8) bytecodeD8 376 | (ite (= x 0xD9) bytecodeD9 377 | (ite (= x 0xDA) bytecodeDA 378 | (ite (= x 0xDB) bytecodeDB 379 | (ite (= x 0xDC) bytecodeDC 380 | (ite (= x 0xDD) bytecodeDD 381 | (ite (= x 0xDE) bytecodeDE 382 | (ite (= x 0xDF) bytecodeDF 383 | (ite (= x 0xE0) bytecodeE0 384 | (ite (= x 0xE1) bytecodeE1 385 | (ite (= x 0xE2) bytecodeE2 386 | (ite (= x 0xE3) bytecodeE3 387 | (ite (= x 0xE4) bytecodeE4 388 | (ite (= x 0xE5) bytecodeE5 389 | (ite (= x 0xE6) bytecodeE6 390 | (ite (= x 0xE7) bytecodeE7 391 | (ite (= x 0xE8) bytecodeE8 392 | (ite (= x 0xE9) bytecodeE9 393 | (ite (= x 0xEA) bytecodeEA 394 | (ite (= x 0xEB) bytecodeEB 395 | (ite (= x 0xEC) bytecodeEC 396 | (ite (= x 0xED) bytecodeED 397 | (ite (= x 0xEE) bytecodeEE 398 | (ite (= x 0xEF) bytecodeEF 399 | (ite (= x 0xF0) bytecodeF0 400 | (ite (= x 0xF1) bytecodeF1 401 | (ite (= x 0xF2) bytecodeF2 402 | (ite (= x 0xF3) bytecodeF3 403 | (ite (= x 0xF4) bytecodeF4 404 | (ite (= x 0xF5) bytecodeF5 405 | (ite (= x 0xF6) bytecodeF6 406 | (ite (= x 0xF7) bytecodeF7 407 | (ite (= x 0xF8) bytecodeF8 408 | (ite (= x 0xF9) bytecodeF9 409 | (ite (= x 0xFA) bytecodeFA 410 | (ite (= x 0xFB) bytecodeFB 411 | (ite (= x 0xFC) bytecodeFC 412 | (ite (= x 0xFD) bytecodeFD 413 | (ite (= x 0xFE) bytecodeFE 414 | (ite (= x 0xFF) bytecodeFF 415 | bytecode04)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 416 | ) 417 | ) 418 | 419 | ; getreg32(reg,state). Return the value of register 'reg' from state 'state'. 420 | (define getreg32::(-> RegIdx Reg32State Dword) 421 | (lambda (x::RegIdx z::Reg32State) 422 | (ite (= x 0b000) (bv-extract 31 0 z) 423 | (ite (= x 0b001) (bv-extract 63 32 z) 424 | (ite (= x 0b010) (bv-extract 95 64 z) 425 | (ite (= x 0b011) (bv-extract 127 96 z) 426 | (ite (= x 0b100) (bv-extract 159 128 z) 427 | (ite (= x 0b101) (bv-extract 191 160 z) 428 | (ite (= x 0b110) (bv-extract 223 192 z) 429 | (bv-extract 255 224 z) 430 | ))))))) 431 | ) 432 | ) 433 | 434 | ; putreg32(reg,state,value). Update register 'reg' to value 'value' in state 435 | ; 'state'; return the new state. 436 | (define putreg32::(-> RegIdx Dword Reg32State Reg32State) 437 | (lambda (x::RegIdx y::Dword z::Reg32State) 438 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y) 439 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z)) 440 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z)) 441 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z)) 442 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z)) 443 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z)) 444 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z)) 445 | (bv-concat y (bv-extract 223 0 z)) 446 | ))))))) 447 | ) 448 | ) 449 | 450 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the 451 | ; operation specified by that instruction. Consult and update the state 'state' 452 | ; accordingly; return the new state concatenated with the length of the 453 | ; instruction. In other words, this function simulates the effects of executing 454 | ; every possible instruction. 455 | (define symbolic-insn::(-> (-> Byte Byte) Byte Reg32State (bitvector 264)) 456 | (lambda (f-get-byte::(-> Byte Byte) eip::Byte state::Reg32State) 457 | (let ((byte0 (f-get-byte eip))) 458 | (let ((byte1 (f-get-byte (bv-add 0x01 eip)))) 459 | (let ((byte2 (f-get-byte (bv-add 0x02 eip)))) 460 | (let ((byte3 (f-get-byte (bv-add 0x03 eip)))) 461 | (let ((byte4 (f-get-byte (bv-add 0x04 eip)))) 462 | ; xor reg, reg 463 | (ite (= (bv-and byte0 0xC0) 0x00) 464 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 465 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 466 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state))) 467 | (bv-concat 0x01 newstate) 468 | ))) 469 | ; add reg, reg 470 | (ite (= (bv-and byte0 0xC0) 0x40) 471 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 472 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 473 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state))) 474 | (bv-concat 0x01 newstate) 475 | ))) 476 | ; mov reg, reg 477 | (ite (= (bv-and byte0 0xC0) 0x80) 478 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 479 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 480 | (let ((newstate (putreg32 lhsreg0 (getreg32 rhsreg0 state) state))) 481 | (bv-concat 0x01 newstate) 482 | ))) 483 | ; complex 0xC0 case 484 | (let ((opcode (bv-extract 5 3 byte0))) 485 | (let ((lhsreg0 (bv-extract 2 0 byte0))) 486 | ; inc reg 487 | (ite (= opcode 0b000) 488 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) 0x00000001) state))) 489 | (bv-concat 0x01 newstate)) 490 | ; dec reg 491 | (ite (= opcode 0b001) 492 | (let ((newstate (putreg32 lhsreg0 (bv-sub (getreg32 lhsreg0 state) 0x00000001) state))) 493 | (bv-concat 0x01 newstate)) 494 | ; neg reg 495 | (ite (= opcode 0b010) 496 | (let ((newstate (putreg32 lhsreg0 (bv-neg (getreg32 lhsreg0 state)) state))) 497 | (bv-concat 0x01 newstate)) 498 | ; not reg 499 | (ite (= opcode 0b011) 500 | (let ((newstate (putreg32 lhsreg0 (bv-not (getreg32 lhsreg0 state)) state))) 501 | (bv-concat 0x01 newstate)) 502 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1))) 503 | ; add reg, imm32 504 | (ite (= opcode 0b100) 505 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) rhsval0) state))) 506 | (bv-concat 0x05 newstate)) 507 | ; xor reg, imm32 508 | (ite (= opcode 0b101) 509 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) rhsval0) state))) 510 | (bv-concat 0x05 newstate)) 511 | ; and reg, imm32 512 | (ite (= opcode 0b110) 513 | (let ((newstate (putreg32 lhsreg0 (bv-and (getreg32 lhsreg0 state) rhsval0) state))) 514 | (bv-concat 0x05 newstate)) 515 | ; opcode == 0b111 516 | ; or reg, imm32 517 | (let ((newstate (putreg32 lhsreg0 (bv-or (getreg32 lhsreg0 state) rhsval0) state))) 518 | (bv-concat 0x05 newstate))))))))))))))) 519 | ))))) 520 | ) 521 | ) 522 | 523 | ; The main assertion. 524 | (assert 525 | ; For every possible input state (r0, ..., r7). 526 | ; There is an additional universally-quantified variable idx: used to make 527 | ; statements about the bytes in the encoding. 528 | (forall (r0::Dword r1::Dword r2::Dword r3::Dword r4::Dword r5::Dword r6::Dword r7::Dword idx::Byte) 529 | ; ------------------------ 530 | ; INITIALIZE STATE AND EIP 531 | ; ------------------------ 532 | ; Create the input "state" by concatenating all of the inputs. 533 | (let ((state0 (bv-concat r7 r6 r5 r4 r3 r2 r1 r0))) 534 | ; Set initial EIP to zero. 535 | (let ((eip0 0x00)) 536 | 537 | ; ------------------------ 538 | ; SIMULATE ONE INSTRUCTION 539 | ; ------------------------ 540 | 541 | ; Perform symbolic simulation of one instruction (any instruction). 542 | (let ((synsem0 (symbolic-insn get-byte eip0 state0))) 543 | ; Extract the length of the instruction. 544 | (let ((insn0len (bv-extract 263 256 synsem0))) 545 | ; Extract the output state after having executed the instruction. 546 | (let ((state1 (bv-extract 255 0 synsem0))) 547 | ; Extract EIP after executing the instruction. 548 | (let ((eip1 (bv-add eip0 insn0len))) 549 | 550 | ; ------------------------ 551 | ; SIMULATE ONE INSTRUCTION 552 | ; ------------------------ 553 | 554 | ; Perform symbolic simulation of one instruction (any instruction). 555 | (let ((synsem1 (symbolic-insn get-byte eip1 state1))) 556 | ; Extract the length of the instruction. 557 | (let ((insn1len (bv-extract 263 256 synsem1))) 558 | ; Extract the output state after having executed the instruction. 559 | (let ((state2 (bv-extract 255 0 synsem1))) 560 | ; Extract EIP after executing the instruction. 561 | (let ((eip2 (bv-add eip1 insn1len))) 562 | 563 | ; ---------------------- 564 | ; FINALIZE STATE AND EIP 565 | ; ---------------------- 566 | 567 | ; Call the final state "finalstate" (for convenience). 568 | (let ((finalstate state2)) 569 | ; Call the final EIP "finaleip" (for convenience). 570 | (let ((finaleip eip2)) 571 | 572 | ; -------------------------------------------------- 573 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING 574 | ; -------------------------------------------------- 575 | 576 | (and 577 | ; 0-length instructions are invalid; both instructions must be valid. 578 | (not (= insn0len 0x00)) 579 | (not (= insn1len 0x00)) 580 | 581 | ; ----------------------------------- 582 | ; CONSTRAINTS REGARDING FUNCTIONALITY 583 | ; ----------------------------------- 584 | 585 | ; Effect on state: r0 becomes 0x12345678; all other registers preserved. 586 | (= (getreg32 R0Idx finalstate) (bv-add r0 0x00000001)) 587 | (= (getreg32 R1Idx finalstate) r1) 588 | (= (getreg32 R2Idx finalstate) r2) 589 | (= (getreg32 R3Idx finalstate) r3) 590 | (= (getreg32 R4Idx finalstate) r4) 591 | (= (getreg32 R5Idx finalstate) r5) 592 | (= (getreg32 R6Idx finalstate) r6) 593 | (= (getreg32 R7Idx finalstate) r7) 594 | 595 | ; ------------------------------ 596 | ; CONSTRAINTS REGARDING ENCODING 597 | ; ------------------------------ 598 | ; None of the bytes are 0x12 599 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12)) 600 | ; None of the bytes are 0x34 601 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34)) 602 | ; None of the bytes are 0x56 603 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56)) 604 | ; None of the bytes are 0x78 605 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78)) 606 | ; None of the bytes are 0x00 (commented out) 607 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00)) 608 | ) ; end and 609 | )))))))))))) ; end let * 12 610 | ) ; end forall 611 | ) ; end assert 612 | 613 | ; Solve the constraint system 614 | (ef-solve) 615 | 616 | ; Produce a model, i.e., values for bytecode00-bytecodeFF. 617 | ; This statement will crash yices if (ef-solve) returned unsatisfiable. 618 | (show-model) -------------------------------------------------------------------------------- /synesthesia-1.ys: -------------------------------------------------------------------------------- 1 | (define bytecode::(-> (bitvector 8) (bitvector 8))) 2 | 3 | (assert 4 | (forall (r0::(bitvector 32) r1::(bitvector 32) r2::(bitvector 32) r3::(bitvector 32) r4::(bitvector 32) r5::(bitvector 32) r6::(bitvector 32) r7::(bitvector 32)) 5 | (let ((eip0 0x00)) 6 | (let ((state00 (update (lambda (x::(bitvector 3)) r0) (0b000) r0))) 7 | (let ((state01 (update state00 (0b001) r1))) 8 | (let ((state02 (update state01 (0b010) r2))) 9 | (let ((state03 (update state02 (0b011) r3))) 10 | (let ((state04 (update state03 (0b100) r4))) 11 | (let ((state05 (update state04 (0b101) r5))) 12 | (let ((state06 (update state05 (0b110) r6))) 13 | (let ((state (update state06 (0b111) r7))) 14 | (let ((insn0byte (bytecode eip0))) 15 | (let ((synsem0 16 | (ite (= (bv-and insn0byte 0xC0) 0x00) 17 | (let ((lhsreg0 (bv-extract 5 3 insn0byte))) 18 | (let ((rhsreg0 (bv-extract 2 0 insn0byte))) 19 | (let ((newstate (update state (lhsreg0) (bv-add (state lhsreg0) (state rhsreg0))))) 20 | (mk-tuple 0x01 newstate) 21 | ))) 22 | (ite (= (bv-and insn0byte 0xC0) 0x40) 23 | (let ((lhsreg0 (bv-extract 5 3 insn0byte))) 24 | (let ((rhsval0 (bv-concat (bytecode (bv-add eip0 0x03)) (bytecode (bv-add eip0 0x02)) (bytecode (bv-add eip0 0x01)) (bytecode (bv-add eip0 0x00))))) 25 | (let ((newstate (update state (lhsreg0) (bv-add (state lhsreg0) rhsval0)))) 26 | (mk-tuple 0x05 newstate) 27 | ))) 28 | (ite (= (bv-and insn0byte 0xC0) 0x80) 29 | (let ((lhsreg0 (bv-extract 5 3 insn0byte))) 30 | (let ((rhsreg0 (bv-extract 2 0 insn0byte))) 31 | (let ((newstate (update state (lhsreg0) (bv-xor (state lhsreg0) (state rhsreg0))))) 32 | (mk-tuple 0x01 newstate) 33 | ))) 34 | ; 0xC0 case 35 | (let ((lhsreg0 (bv-extract 5 3 insn0byte))) 36 | (let ((rhsval0 (bv-concat (bytecode (bv-add eip0 0x03)) (bytecode (bv-add eip0 0x02)) (bytecode (bv-add eip0 0x01)) (bytecode (bv-add eip0 0x00))))) 37 | (let ((newstate (update state (lhsreg0) (bv-xor (state lhsreg0) rhsval0)))) 38 | (mk-tuple 0x05 newstate) 39 | ))) 40 | ))))) 41 | (let ((insn0len (select synsem0 1))) 42 | (let ((state1 (select synsem0 2))) 43 | (and 44 | ; eip beforehand is 0 45 | (= eip0 0x00) 46 | (/= insn0len 0x00) 47 | (= (state1 0b000) (bv-not (state 0b000))) 48 | (= (state1 0b001) (state 0b001)) 49 | (= (state1 0b010) (state 0b010)) 50 | (= (state1 0b011) (state 0b011)) 51 | (= (state1 0b100) (state 0b100)) 52 | (= (state1 0b101) (state 0b101)) 53 | (= (state1 0b110) (state 0b110)) 54 | (= (state1 0b111) (state 0b111)) 55 | ) ; and 56 | ))))))))))))) ; let * 12 57 | ) ; forall 58 | ) ; assert 59 | 60 | (ef-solve) 61 | (show-model) -------------------------------------------------------------------------------- /synesthesia-simple-loops--solution.ys: -------------------------------------------------------------------------------- 1 | (= bytecode00 0xF0) 2 | (= bytecode01 0x40) 3 | (= bytecode02 0x00) 4 | (= bytecode03 0x00) 5 | (= bytecode04 0x00) 6 | (= bytecode05 0xC1) 7 | (= bytecode06 0xC9) 8 | (= bytecode07 0xE0) 9 | (= bytecode08 0xF8) 10 | (= bytecode09 0xFB) 11 | (= WhichReg 0b000) 12 | (= shellcode00 0xA0) 13 | (= shellcode01 0x8C) 14 | (= shellcode02 0x1C) 15 | (= shellcode03 0x29) 16 | (= shellcode04 0xA1) 17 | (= shellcode05 0xCC) 18 | (= shellcode06 0x38) 19 | (= shellcode07 0xFD) 20 | (= shellcode08 0x8D) 21 | (= shellcode09 0xF4) 22 | (= shellcode0A 0x8E) 23 | (= shellcode0B 0x59) 24 | (= shellcode0C 0x86) 25 | (= shellcode0D 0xB7) 26 | (= shellcode0E 0xCA) 27 | (= shellcode0F 0xFF) 28 | (= shellcode10 0x33) 29 | (= shellcode11 0x29) 30 | (= shellcode12 0xD6) 31 | (= shellcode13 0xE3) 32 | (= shellcode14 0x6F) 33 | (= shellcode15 0x4B) 34 | (= shellcode16 0x19) 35 | (= shellcode17 0x71) 36 | (= shellcode18 0x5C) 37 | (= shellcode19 0xBB) 38 | (= shellcode1A 0x4E) 39 | (= shellcode1B 0x90) 40 | (= shellcode1C 0xC3) 41 | (= shellcode1D 0xF7) 42 | (= shellcode1E 0x41) 43 | (= shellcode1F 0x9E) 44 | (= shellcode20 0xA2) 45 | (= shellcode21 0x1C) 46 | (= shellcode22 0x22) 47 | (= shellcode23 0xBF) 48 | (= shellcode24 0x25) 49 | (= shellcode25 0x0F) 50 | (= shellcode26 0xFE) 51 | (= shellcode27 0xA6) 52 | (= shellcode28 0x81) 53 | (= shellcode29 0x10) 54 | (= shellcode2A 0x43) 55 | (= shellcode2B 0x38) 56 | (= shellcode2C 0x92) 57 | (= shellcode2D 0x95) 58 | (= shellcode2E 0x21) 59 | (= shellcode2F 0x2B) 60 | (= shellcode30 0xE3) 61 | (= shellcode31 0xA6) 62 | (= shellcode32 0xE9) 63 | (= shellcode33 0xAC) 64 | (= shellcode34 0x08) 65 | (= shellcode35 0x4D) 66 | (= shellcode36 0xBA) 67 | (= shellcode37 0x08) 68 | (= shellcode38 0x0B) 69 | (= shellcode39 0xAB) 70 | (= shellcode3A 0x22) 71 | (= shellcode3B 0x84) 72 | (= shellcode3C 0x6B) 73 | (= shellcode3D 0x1F) 74 | (= shellcode3E 0xAD) 75 | (= shellcode3F 0x05) 76 | -------------------------------------------------------------------------------- /synesthesia-simple-loops-refactoring-JUSTLOOP.ys: -------------------------------------------------------------------------------- 1 | ; Loosen yices' arbitrary restriction on iteration count. (') 2 | (set-param ef-max-iters 1000) 3 | 4 | (define-type Bit (bitvector 1)) 5 | (define-type Byte (bitvector 8)) 6 | (define-type Word (bitvector 16)) 7 | (define-type Dword (bitvector 32)) 8 | 9 | (define-type RegIdx (bitvector 3)) 10 | (define R0Idx::RegIdx (mk-bv 3 0)) ; R0 = 0 11 | (define R1Idx::RegIdx (mk-bv 3 1)) ; R1 = 1 12 | (define R2Idx::RegIdx (mk-bv 3 2)) ; R2 = 2 13 | (define R3Idx::RegIdx (mk-bv 3 3)) ; R3 = 3 14 | (define R4Idx::RegIdx (mk-bv 3 4)) ; R4 = 4 15 | (define R5Idx::RegIdx (mk-bv 3 5)) ; R5 = 5 16 | (define R6Idx::RegIdx (mk-bv 3 6)) ; R6 = 6 17 | (define R7Idx::RegIdx (mk-bv 3 7)) ; R7 = 7 18 | 19 | (define-type Reg32State (bitvector 256)) 20 | (define-type SCState (bitvector 512)) ; 0x40-length shellcode 21 | (define-type EIPRingBuffer (bitvector 80)) ; 10 8-bit EIP history 22 | (define-type EIPBitMask (bitvector 10)) ; 10 1-bit EIP bitmask 23 | 24 | (define-type MachineState (bitvector 866)) 25 | ; 255 0: Reg32State 26 | ; 767 256: SCState 27 | ; 775 768: Byte [scptr] 28 | ; 855 776: EIPRingBuffer 29 | ; 865 855: EIPBitMask 30 | 31 | (define-type DecodedMachineState (bitvector 876)) ; (extra::Bit,length::Byte,MachineState) 32 | ; 865 0: MachineState 33 | ; 873 866: Byte [length] 34 | ; 874 874: Bit [extra] 35 | ; 875 875: Bit [is-jcc] 36 | 37 | (define WhichReg::RegIdx) 38 | 39 | (define bytecode00::Byte) (define bytecode01::Byte) 40 | (define bytecode02::Byte) (define bytecode03::Byte) 41 | (define bytecode04::Byte) (define bytecode05::Byte) 42 | (define bytecode06::Byte) (define bytecode07::Byte) 43 | (define bytecode08::Byte) (define bytecode09::Byte) 44 | (define bytecode0A::Byte) (define bytecode0B::Byte) 45 | (define bytecode0C::Byte) (define bytecode0D::Byte) 46 | (define bytecode0E::Byte) (define bytecode0F::Byte) 47 | (define bytecode10::Byte) (define bytecode11::Byte) 48 | (define bytecode12::Byte) (define bytecode13::Byte) 49 | (define bytecode14::Byte) (define bytecode15::Byte) 50 | (define bytecode16::Byte) (define bytecode17::Byte) 51 | (define bytecode18::Byte) (define bytecode19::Byte) 52 | (define bytecode1A::Byte) (define bytecode1B::Byte) 53 | (define bytecode1C::Byte) (define bytecode1D::Byte) 54 | (define bytecode1E::Byte) (define bytecode1F::Byte) 55 | (define bytecode20::Byte) (define bytecode21::Byte) 56 | (define bytecode22::Byte) (define bytecode23::Byte) 57 | (define bytecode24::Byte) (define bytecode25::Byte) 58 | (define bytecode26::Byte) (define bytecode27::Byte) 59 | (define bytecode28::Byte) (define bytecode29::Byte) 60 | (define bytecode2A::Byte) (define bytecode2B::Byte) 61 | (define bytecode2C::Byte) (define bytecode2D::Byte) 62 | (define bytecode2E::Byte) (define bytecode2F::Byte) 63 | (define bytecode30::Byte) (define bytecode31::Byte) 64 | (define bytecode32::Byte) (define bytecode33::Byte) 65 | (define bytecode34::Byte) (define bytecode35::Byte) 66 | (define bytecode36::Byte) (define bytecode37::Byte) 67 | (define bytecode38::Byte) (define bytecode39::Byte) 68 | (define bytecode3A::Byte) (define bytecode3B::Byte) 69 | (define bytecode3C::Byte) (define bytecode3D::Byte) 70 | (define bytecode3E::Byte) (define bytecode3F::Byte) 71 | (define bytecode40::Byte) (define bytecode41::Byte) 72 | (define bytecode42::Byte) (define bytecode43::Byte) 73 | (define bytecode44::Byte) (define bytecode45::Byte) 74 | (define bytecode46::Byte) (define bytecode47::Byte) 75 | (define bytecode48::Byte) (define bytecode49::Byte) 76 | (define bytecode4A::Byte) (define bytecode4B::Byte) 77 | (define bytecode4C::Byte) (define bytecode4D::Byte) 78 | (define bytecode4E::Byte) (define bytecode4F::Byte) 79 | (define bytecode50::Byte) (define bytecode51::Byte) 80 | (define bytecode52::Byte) (define bytecode53::Byte) 81 | (define bytecode54::Byte) (define bytecode55::Byte) 82 | (define bytecode56::Byte) (define bytecode57::Byte) 83 | (define bytecode58::Byte) (define bytecode59::Byte) 84 | (define bytecode5A::Byte) (define bytecode5B::Byte) 85 | (define bytecode5C::Byte) (define bytecode5D::Byte) 86 | (define bytecode5E::Byte) (define bytecode5F::Byte) 87 | (define bytecode60::Byte) (define bytecode61::Byte) 88 | (define bytecode62::Byte) (define bytecode63::Byte) 89 | (define bytecode64::Byte) (define bytecode65::Byte) 90 | (define bytecode66::Byte) (define bytecode67::Byte) 91 | (define bytecode68::Byte) (define bytecode69::Byte) 92 | (define bytecode6A::Byte) (define bytecode6B::Byte) 93 | (define bytecode6C::Byte) (define bytecode6D::Byte) 94 | (define bytecode6E::Byte) (define bytecode6F::Byte) 95 | (define bytecode70::Byte) (define bytecode71::Byte) 96 | (define bytecode72::Byte) (define bytecode73::Byte) 97 | (define bytecode74::Byte) (define bytecode75::Byte) 98 | (define bytecode76::Byte) (define bytecode77::Byte) 99 | (define bytecode78::Byte) (define bytecode79::Byte) 100 | (define bytecode7A::Byte) (define bytecode7B::Byte) 101 | (define bytecode7C::Byte) (define bytecode7D::Byte) 102 | (define bytecode7E::Byte) (define bytecode7F::Byte) 103 | (define bytecode80::Byte) (define bytecode81::Byte) 104 | (define bytecode82::Byte) (define bytecode83::Byte) 105 | (define bytecode84::Byte) (define bytecode85::Byte) 106 | (define bytecode86::Byte) (define bytecode87::Byte) 107 | (define bytecode88::Byte) (define bytecode89::Byte) 108 | (define bytecode8A::Byte) (define bytecode8B::Byte) 109 | (define bytecode8C::Byte) (define bytecode8D::Byte) 110 | (define bytecode8E::Byte) (define bytecode8F::Byte) 111 | (define bytecode90::Byte) (define bytecode91::Byte) 112 | (define bytecode92::Byte) (define bytecode93::Byte) 113 | (define bytecode94::Byte) (define bytecode95::Byte) 114 | (define bytecode96::Byte) (define bytecode97::Byte) 115 | (define bytecode98::Byte) (define bytecode99::Byte) 116 | (define bytecode9A::Byte) (define bytecode9B::Byte) 117 | (define bytecode9C::Byte) (define bytecode9D::Byte) 118 | (define bytecode9E::Byte) (define bytecode9F::Byte) 119 | (define bytecodeA0::Byte) (define bytecodeA1::Byte) 120 | (define bytecodeA2::Byte) (define bytecodeA3::Byte) 121 | (define bytecodeA4::Byte) (define bytecodeA5::Byte) 122 | (define bytecodeA6::Byte) (define bytecodeA7::Byte) 123 | (define bytecodeA8::Byte) (define bytecodeA9::Byte) 124 | (define bytecodeAA::Byte) (define bytecodeAB::Byte) 125 | (define bytecodeAC::Byte) (define bytecodeAD::Byte) 126 | (define bytecodeAE::Byte) (define bytecodeAF::Byte) 127 | (define bytecodeB0::Byte) (define bytecodeB1::Byte) 128 | (define bytecodeB2::Byte) (define bytecodeB3::Byte) 129 | (define bytecodeB4::Byte) (define bytecodeB5::Byte) 130 | (define bytecodeB6::Byte) (define bytecodeB7::Byte) 131 | (define bytecodeB8::Byte) (define bytecodeB9::Byte) 132 | (define bytecodeBA::Byte) (define bytecodeBB::Byte) 133 | (define bytecodeBC::Byte) (define bytecodeBD::Byte) 134 | (define bytecodeBE::Byte) (define bytecodeBF::Byte) 135 | (define bytecodeC0::Byte) (define bytecodeC1::Byte) 136 | (define bytecodeC2::Byte) (define bytecodeC3::Byte) 137 | (define bytecodeC4::Byte) (define bytecodeC5::Byte) 138 | (define bytecodeC6::Byte) (define bytecodeC7::Byte) 139 | (define bytecodeC8::Byte) (define bytecodeC9::Byte) 140 | (define bytecodeCA::Byte) (define bytecodeCB::Byte) 141 | (define bytecodeCC::Byte) (define bytecodeCD::Byte) 142 | (define bytecodeCE::Byte) (define bytecodeCF::Byte) 143 | (define bytecodeD0::Byte) (define bytecodeD1::Byte) 144 | (define bytecodeD2::Byte) (define bytecodeD3::Byte) 145 | (define bytecodeD4::Byte) (define bytecodeD5::Byte) 146 | (define bytecodeD6::Byte) (define bytecodeD7::Byte) 147 | (define bytecodeD8::Byte) (define bytecodeD9::Byte) 148 | (define bytecodeDA::Byte) (define bytecodeDB::Byte) 149 | (define bytecodeDC::Byte) (define bytecodeDD::Byte) 150 | (define bytecodeDE::Byte) (define bytecodeDF::Byte) 151 | (define bytecodeE0::Byte) (define bytecodeE1::Byte) 152 | (define bytecodeE2::Byte) (define bytecodeE3::Byte) 153 | (define bytecodeE4::Byte) (define bytecodeE5::Byte) 154 | (define bytecodeE6::Byte) (define bytecodeE7::Byte) 155 | (define bytecodeE8::Byte) (define bytecodeE9::Byte) 156 | (define bytecodeEA::Byte) (define bytecodeEB::Byte) 157 | (define bytecodeEC::Byte) (define bytecodeED::Byte) 158 | (define bytecodeEE::Byte) (define bytecodeEF::Byte) 159 | (define bytecodeF0::Byte) (define bytecodeF1::Byte) 160 | (define bytecodeF2::Byte) (define bytecodeF3::Byte) 161 | (define bytecodeF4::Byte) (define bytecodeF5::Byte) 162 | (define bytecodeF6::Byte) (define bytecodeF7::Byte) 163 | (define bytecodeF8::Byte) (define bytecodeF9::Byte) 164 | (define bytecodeFA::Byte) (define bytecodeFB::Byte) 165 | (define bytecodeFC::Byte) (define bytecodeFD::Byte) 166 | (define bytecodeFE::Byte) (define bytecodeFF::Byte) 167 | 168 | (define shellcode00::Byte) (define shellcode01::Byte) 169 | (define shellcode02::Byte) (define shellcode03::Byte) 170 | (define shellcode04::Byte) (define shellcode05::Byte) 171 | (define shellcode06::Byte) (define shellcode07::Byte) 172 | (define shellcode08::Byte) (define shellcode09::Byte) 173 | (define shellcode0A::Byte) (define shellcode0B::Byte) 174 | (define shellcode0C::Byte) (define shellcode0D::Byte) 175 | (define shellcode0E::Byte) (define shellcode0F::Byte) 176 | (define shellcode10::Byte) (define shellcode11::Byte) 177 | (define shellcode12::Byte) (define shellcode13::Byte) 178 | (define shellcode14::Byte) (define shellcode15::Byte) 179 | (define shellcode16::Byte) (define shellcode17::Byte) 180 | (define shellcode18::Byte) (define shellcode19::Byte) 181 | (define shellcode1A::Byte) (define shellcode1B::Byte) 182 | (define shellcode1C::Byte) (define shellcode1D::Byte) 183 | (define shellcode1E::Byte) (define shellcode1F::Byte) 184 | (define shellcode20::Byte) (define shellcode21::Byte) 185 | (define shellcode22::Byte) (define shellcode23::Byte) 186 | (define shellcode24::Byte) (define shellcode25::Byte) 187 | (define shellcode26::Byte) (define shellcode27::Byte) 188 | (define shellcode28::Byte) (define shellcode29::Byte) 189 | (define shellcode2A::Byte) (define shellcode2B::Byte) 190 | (define shellcode2C::Byte) (define shellcode2D::Byte) 191 | (define shellcode2E::Byte) (define shellcode2F::Byte) 192 | (define shellcode30::Byte) (define shellcode31::Byte) 193 | (define shellcode32::Byte) (define shellcode33::Byte) 194 | (define shellcode34::Byte) (define shellcode35::Byte) 195 | (define shellcode36::Byte) (define shellcode37::Byte) 196 | (define shellcode38::Byte) (define shellcode39::Byte) 197 | (define shellcode3A::Byte) (define shellcode3B::Byte) 198 | (define shellcode3C::Byte) (define shellcode3D::Byte) 199 | (define shellcode3E::Byte) (define shellcode3F::Byte) 200 | 201 | (define realscbyte00::Byte 0xA0) 202 | (define realscbyte01::Byte 0x8C) 203 | (define realscbyte02::Byte 0x1C) 204 | (define realscbyte03::Byte 0x29) 205 | (define realscbyte04::Byte 0xA1) 206 | (define realscbyte05::Byte 0xCC) 207 | (define realscbyte06::Byte 0x38) 208 | (define realscbyte07::Byte 0xFD) 209 | (define realscbyte08::Byte 0x8D) 210 | (define realscbyte09::Byte 0xF4) 211 | (define realscbyte0A::Byte 0x8E) 212 | (define realscbyte0B::Byte 0x59) 213 | (define realscbyte0C::Byte 0x86) 214 | (define realscbyte0D::Byte 0xB7) 215 | (define realscbyte0E::Byte 0xCA) 216 | (define realscbyte0F::Byte 0xFF) 217 | (define realscbyte10::Byte 0x33) 218 | (define realscbyte11::Byte 0x29) 219 | (define realscbyte12::Byte 0xD6) 220 | (define realscbyte13::Byte 0xE3) 221 | (define realscbyte14::Byte 0x6F) 222 | (define realscbyte15::Byte 0x4B) 223 | (define realscbyte16::Byte 0x19) 224 | (define realscbyte17::Byte 0x71) 225 | (define realscbyte18::Byte 0x5C) 226 | (define realscbyte19::Byte 0xBB) 227 | (define realscbyte1A::Byte 0x4E) 228 | (define realscbyte1B::Byte 0x90) 229 | (define realscbyte1C::Byte 0xC3) 230 | (define realscbyte1D::Byte 0xF7) 231 | (define realscbyte1E::Byte 0x41) 232 | (define realscbyte1F::Byte 0x9E) 233 | (define realscbyte20::Byte 0xA2) 234 | (define realscbyte21::Byte 0x1C) 235 | (define realscbyte22::Byte 0x22) 236 | (define realscbyte23::Byte 0xBF) 237 | (define realscbyte24::Byte 0x25) 238 | (define realscbyte25::Byte 0x0F) 239 | (define realscbyte26::Byte 0xFE) 240 | (define realscbyte27::Byte 0xA6) 241 | (define realscbyte28::Byte 0x81) 242 | (define realscbyte29::Byte 0x10) 243 | (define realscbyte2A::Byte 0x43) 244 | (define realscbyte2B::Byte 0x38) 245 | (define realscbyte2C::Byte 0x92) 246 | (define realscbyte2D::Byte 0x95) 247 | (define realscbyte2E::Byte 0x21) 248 | (define realscbyte2F::Byte 0x2B) 249 | (define realscbyte30::Byte 0xE3) 250 | (define realscbyte31::Byte 0xA6) 251 | (define realscbyte32::Byte 0xE9) 252 | (define realscbyte33::Byte 0xAC) 253 | (define realscbyte34::Byte 0x08) 254 | (define realscbyte35::Byte 0x4D) 255 | (define realscbyte36::Byte 0xBA) 256 | (define realscbyte37::Byte 0x08) 257 | (define realscbyte38::Byte 0x0B) 258 | (define realscbyte39::Byte 0xAB) 259 | (define realscbyte3A::Byte 0x22) 260 | (define realscbyte3B::Byte 0x84) 261 | (define realscbyte3C::Byte 0x6B) 262 | (define realscbyte3D::Byte 0x1F) 263 | (define realscbyte3E::Byte 0xAD) 264 | (define realscbyte3F::Byte 0x05) 265 | 266 | (define realsc::SCState (bv-concat realscbyte3F realscbyte3E realscbyte3D realscbyte3C realscbyte3B realscbyte3A realscbyte39 realscbyte38 realscbyte37 realscbyte36 realscbyte35 realscbyte34 realscbyte33 realscbyte32 realscbyte31 realscbyte30 realscbyte2F realscbyte2E realscbyte2D realscbyte2C realscbyte2B realscbyte2A realscbyte29 realscbyte28 realscbyte27 realscbyte26 realscbyte25 realscbyte24 realscbyte23 realscbyte22 realscbyte21 realscbyte20 realscbyte1F realscbyte1E realscbyte1D realscbyte1C realscbyte1B realscbyte1A realscbyte19 realscbyte18 realscbyte17 realscbyte16 realscbyte15 realscbyte14 realscbyte13 realscbyte12 realscbyte11 realscbyte10 realscbyte0F realscbyte0E realscbyte0D realscbyte0C realscbyte0B realscbyte0A realscbyte09 realscbyte08 realscbyte07 realscbyte06 realscbyte05 realscbyte04 realscbyte03 realscbyte02 realscbyte01 realscbyte00)) 267 | 268 | (define getrealscbyte::(-> Byte Byte) 269 | (lambda (idx::Byte) 270 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx))) 271 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 272 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 273 | (bv-extract 7 0 (bv-lshr realsc shiftamt)) 274 | ))) 275 | ) 276 | ) 277 | 278 | (define compare-multiple-sc-bytes::(-> SCState SCState Byte bool) 279 | (lambda (sc1::SCState sc2::SCState num::Byte) 280 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) (bv-sub 0x40 num)))) 281 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 282 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 283 | (= (bv-shl sc1 shiftamt) (bv-shl sc2 shiftamt)) 284 | ))) 285 | ) 286 | ) 287 | 288 | (define compare-sc-bytes::(-> SCState SCState Byte bool) 289 | (lambda (sc1::SCState sc2::SCState num::Byte) 290 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) num))) 291 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 292 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 293 | (= (bv-extract 7 0 (bv-lshr sc1 shiftamt)) (bv-extract 7 0 (bv-lshr sc2 shiftamt))) 294 | ))) 295 | ) 296 | ) 297 | 298 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX 299 | ; variable. 300 | (define get-byte::(-> Byte Byte) 301 | (lambda (x::Byte) 302 | (ite (= x 0x00) bytecode00 303 | (ite (= x 0x01) bytecode01 304 | (ite (= x 0x02) bytecode02 305 | (ite (= x 0x03) bytecode03 306 | (ite (= x 0x04) bytecode04 307 | (ite (= x 0x05) bytecode05 308 | (ite (= x 0x06) bytecode06 309 | (ite (= x 0x07) bytecode07 310 | (ite (= x 0x08) bytecode08 311 | (ite (= x 0x09) bytecode09 312 | (ite (= x 0x0A) bytecode0A 313 | (ite (= x 0x0B) bytecode0B 314 | (ite (= x 0x0C) bytecode0C 315 | (ite (= x 0x0D) bytecode0D 316 | (ite (= x 0x0E) bytecode0E 317 | (ite (= x 0x0F) bytecode0F 318 | (ite (= x 0x10) bytecode10 319 | (ite (= x 0x11) bytecode11 320 | (ite (= x 0x12) bytecode12 321 | (ite (= x 0x13) bytecode13 322 | (ite (= x 0x14) bytecode14 323 | (ite (= x 0x15) bytecode15 324 | (ite (= x 0x16) bytecode16 325 | (ite (= x 0x17) bytecode17 326 | (ite (= x 0x18) bytecode18 327 | (ite (= x 0x19) bytecode19 328 | (ite (= x 0x1A) bytecode1A 329 | (ite (= x 0x1B) bytecode1B 330 | (ite (= x 0x1C) bytecode1C 331 | (ite (= x 0x1D) bytecode1D 332 | (ite (= x 0x1E) bytecode1E 333 | (ite (= x 0x1F) bytecode1F 334 | (ite (= x 0x20) bytecode20 335 | (ite (= x 0x21) bytecode21 336 | (ite (= x 0x22) bytecode22 337 | (ite (= x 0x23) bytecode23 338 | (ite (= x 0x24) bytecode24 339 | (ite (= x 0x25) bytecode25 340 | (ite (= x 0x26) bytecode26 341 | (ite (= x 0x27) bytecode27 342 | (ite (= x 0x28) bytecode28 343 | (ite (= x 0x29) bytecode29 344 | (ite (= x 0x2A) bytecode2A 345 | (ite (= x 0x2B) bytecode2B 346 | (ite (= x 0x2C) bytecode2C 347 | (ite (= x 0x2D) bytecode2D 348 | (ite (= x 0x2E) bytecode2E 349 | (ite (= x 0x2F) bytecode2F 350 | (ite (= x 0x30) bytecode30 351 | (ite (= x 0x31) bytecode31 352 | (ite (= x 0x32) bytecode32 353 | (ite (= x 0x33) bytecode33 354 | (ite (= x 0x34) bytecode34 355 | (ite (= x 0x35) bytecode35 356 | (ite (= x 0x36) bytecode36 357 | (ite (= x 0x37) bytecode37 358 | (ite (= x 0x38) bytecode38 359 | (ite (= x 0x39) bytecode39 360 | (ite (= x 0x3A) bytecode3A 361 | (ite (= x 0x3B) bytecode3B 362 | (ite (= x 0x3C) bytecode3C 363 | (ite (= x 0x3D) bytecode3D 364 | (ite (= x 0x3E) bytecode3E 365 | (ite (= x 0x3F) bytecode3F 366 | (ite (= x 0x40) bytecode40 367 | (ite (= x 0x41) bytecode41 368 | (ite (= x 0x42) bytecode42 369 | (ite (= x 0x43) bytecode43 370 | (ite (= x 0x44) bytecode44 371 | (ite (= x 0x45) bytecode45 372 | (ite (= x 0x46) bytecode46 373 | (ite (= x 0x47) bytecode47 374 | (ite (= x 0x48) bytecode48 375 | (ite (= x 0x49) bytecode49 376 | (ite (= x 0x4A) bytecode4A 377 | (ite (= x 0x4B) bytecode4B 378 | (ite (= x 0x4C) bytecode4C 379 | (ite (= x 0x4D) bytecode4D 380 | (ite (= x 0x4E) bytecode4E 381 | (ite (= x 0x4F) bytecode4F 382 | (ite (= x 0x50) bytecode50 383 | (ite (= x 0x51) bytecode51 384 | (ite (= x 0x52) bytecode52 385 | (ite (= x 0x53) bytecode53 386 | (ite (= x 0x54) bytecode54 387 | (ite (= x 0x55) bytecode55 388 | (ite (= x 0x56) bytecode56 389 | (ite (= x 0x57) bytecode57 390 | (ite (= x 0x58) bytecode58 391 | (ite (= x 0x59) bytecode59 392 | (ite (= x 0x5A) bytecode5A 393 | (ite (= x 0x5B) bytecode5B 394 | (ite (= x 0x5C) bytecode5C 395 | (ite (= x 0x5D) bytecode5D 396 | (ite (= x 0x5E) bytecode5E 397 | (ite (= x 0x5F) bytecode5F 398 | (ite (= x 0x60) bytecode60 399 | (ite (= x 0x61) bytecode61 400 | (ite (= x 0x62) bytecode62 401 | (ite (= x 0x63) bytecode63 402 | (ite (= x 0x64) bytecode64 403 | (ite (= x 0x65) bytecode65 404 | (ite (= x 0x66) bytecode66 405 | (ite (= x 0x67) bytecode67 406 | (ite (= x 0x68) bytecode68 407 | (ite (= x 0x69) bytecode69 408 | (ite (= x 0x6A) bytecode6A 409 | (ite (= x 0x6B) bytecode6B 410 | (ite (= x 0x6C) bytecode6C 411 | (ite (= x 0x6D) bytecode6D 412 | (ite (= x 0x6E) bytecode6E 413 | (ite (= x 0x6F) bytecode6F 414 | (ite (= x 0x70) bytecode70 415 | (ite (= x 0x71) bytecode71 416 | (ite (= x 0x72) bytecode72 417 | (ite (= x 0x73) bytecode73 418 | (ite (= x 0x74) bytecode74 419 | (ite (= x 0x75) bytecode75 420 | (ite (= x 0x76) bytecode76 421 | (ite (= x 0x77) bytecode77 422 | (ite (= x 0x78) bytecode78 423 | (ite (= x 0x79) bytecode79 424 | (ite (= x 0x7A) bytecode7A 425 | (ite (= x 0x7B) bytecode7B 426 | (ite (= x 0x7C) bytecode7C 427 | (ite (= x 0x7D) bytecode7D 428 | (ite (= x 0x7E) bytecode7E 429 | (ite (= x 0x7F) bytecode7F 430 | (ite (= x 0x80) bytecode80 431 | (ite (= x 0x81) bytecode81 432 | (ite (= x 0x82) bytecode82 433 | (ite (= x 0x83) bytecode83 434 | (ite (= x 0x84) bytecode84 435 | (ite (= x 0x85) bytecode85 436 | (ite (= x 0x86) bytecode86 437 | (ite (= x 0x87) bytecode87 438 | (ite (= x 0x88) bytecode88 439 | (ite (= x 0x89) bytecode89 440 | (ite (= x 0x8A) bytecode8A 441 | (ite (= x 0x8B) bytecode8B 442 | (ite (= x 0x8C) bytecode8C 443 | (ite (= x 0x8D) bytecode8D 444 | (ite (= x 0x8E) bytecode8E 445 | (ite (= x 0x8F) bytecode8F 446 | (ite (= x 0x90) bytecode90 447 | (ite (= x 0x91) bytecode91 448 | (ite (= x 0x92) bytecode92 449 | (ite (= x 0x93) bytecode93 450 | (ite (= x 0x94) bytecode94 451 | (ite (= x 0x95) bytecode95 452 | (ite (= x 0x96) bytecode96 453 | (ite (= x 0x97) bytecode97 454 | (ite (= x 0x98) bytecode98 455 | (ite (= x 0x99) bytecode99 456 | (ite (= x 0x9A) bytecode9A 457 | (ite (= x 0x9B) bytecode9B 458 | (ite (= x 0x9C) bytecode9C 459 | (ite (= x 0x9D) bytecode9D 460 | (ite (= x 0x9E) bytecode9E 461 | (ite (= x 0x9F) bytecode9F 462 | (ite (= x 0xA0) bytecodeA0 463 | (ite (= x 0xA1) bytecodeA1 464 | (ite (= x 0xA2) bytecodeA2 465 | (ite (= x 0xA3) bytecodeA3 466 | (ite (= x 0xA4) bytecodeA4 467 | (ite (= x 0xA5) bytecodeA5 468 | (ite (= x 0xA6) bytecodeA6 469 | (ite (= x 0xA7) bytecodeA7 470 | (ite (= x 0xA8) bytecodeA8 471 | (ite (= x 0xA9) bytecodeA9 472 | (ite (= x 0xAA) bytecodeAA 473 | (ite (= x 0xAB) bytecodeAB 474 | (ite (= x 0xAC) bytecodeAC 475 | (ite (= x 0xAD) bytecodeAD 476 | (ite (= x 0xAE) bytecodeAE 477 | (ite (= x 0xAF) bytecodeAF 478 | (ite (= x 0xB0) bytecodeB0 479 | (ite (= x 0xB1) bytecodeB1 480 | (ite (= x 0xB2) bytecodeB2 481 | (ite (= x 0xB3) bytecodeB3 482 | (ite (= x 0xB4) bytecodeB4 483 | (ite (= x 0xB5) bytecodeB5 484 | (ite (= x 0xB6) bytecodeB6 485 | (ite (= x 0xB7) bytecodeB7 486 | (ite (= x 0xB8) bytecodeB8 487 | (ite (= x 0xB9) bytecodeB9 488 | (ite (= x 0xBA) bytecodeBA 489 | (ite (= x 0xBB) bytecodeBB 490 | (ite (= x 0xBC) bytecodeBC 491 | (ite (= x 0xBD) bytecodeBD 492 | (ite (= x 0xBE) bytecodeBE 493 | (ite (= x 0xBF) bytecodeBF 494 | (ite (= x 0xC0) bytecodeC0 495 | (ite (= x 0xC1) bytecodeC1 496 | (ite (= x 0xC2) bytecodeC2 497 | (ite (= x 0xC3) bytecodeC3 498 | (ite (= x 0xC4) bytecodeC4 499 | (ite (= x 0xC5) bytecodeC5 500 | (ite (= x 0xC6) bytecodeC6 501 | (ite (= x 0xC7) bytecodeC7 502 | (ite (= x 0xC8) bytecodeC8 503 | (ite (= x 0xC9) bytecodeC9 504 | (ite (= x 0xCA) bytecodeCA 505 | (ite (= x 0xCB) bytecodeCB 506 | (ite (= x 0xCC) bytecodeCC 507 | (ite (= x 0xCD) bytecodeCD 508 | (ite (= x 0xCE) bytecodeCE 509 | (ite (= x 0xCF) bytecodeCF 510 | (ite (= x 0xD0) bytecodeD0 511 | (ite (= x 0xD1) bytecodeD1 512 | (ite (= x 0xD2) bytecodeD2 513 | (ite (= x 0xD3) bytecodeD3 514 | (ite (= x 0xD4) bytecodeD4 515 | (ite (= x 0xD5) bytecodeD5 516 | (ite (= x 0xD6) bytecodeD6 517 | (ite (= x 0xD7) bytecodeD7 518 | (ite (= x 0xD8) bytecodeD8 519 | (ite (= x 0xD9) bytecodeD9 520 | (ite (= x 0xDA) bytecodeDA 521 | (ite (= x 0xDB) bytecodeDB 522 | (ite (= x 0xDC) bytecodeDC 523 | (ite (= x 0xDD) bytecodeDD 524 | (ite (= x 0xDE) bytecodeDE 525 | (ite (= x 0xDF) bytecodeDF 526 | (ite (= x 0xE0) bytecodeE0 527 | (ite (= x 0xE1) bytecodeE1 528 | (ite (= x 0xE2) bytecodeE2 529 | (ite (= x 0xE3) bytecodeE3 530 | (ite (= x 0xE4) bytecodeE4 531 | (ite (= x 0xE5) bytecodeE5 532 | (ite (= x 0xE6) bytecodeE6 533 | (ite (= x 0xE7) bytecodeE7 534 | (ite (= x 0xE8) bytecodeE8 535 | (ite (= x 0xE9) bytecodeE9 536 | (ite (= x 0xEA) bytecodeEA 537 | (ite (= x 0xEB) bytecodeEB 538 | (ite (= x 0xEC) bytecodeEC 539 | (ite (= x 0xED) bytecodeED 540 | (ite (= x 0xEE) bytecodeEE 541 | (ite (= x 0xEF) bytecodeEF 542 | (ite (= x 0xF0) bytecodeF0 543 | (ite (= x 0xF1) bytecodeF1 544 | (ite (= x 0xF2) bytecodeF2 545 | (ite (= x 0xF3) bytecodeF3 546 | (ite (= x 0xF4) bytecodeF4 547 | (ite (= x 0xF5) bytecodeF5 548 | (ite (= x 0xF6) bytecodeF6 549 | (ite (= x 0xF7) bytecodeF7 550 | (ite (= x 0xF8) bytecodeF8 551 | (ite (= x 0xF9) bytecodeF9 552 | (ite (= x 0xFA) bytecodeFA 553 | (ite (= x 0xFB) bytecodeFB 554 | (ite (= x 0xFC) bytecodeFC 555 | (ite (= x 0xFD) bytecodeFD 556 | (ite (= x 0xFE) bytecodeFE 557 | (ite (= x 0xFF) bytecodeFF 558 | bytecode04)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 559 | ) 560 | ) 561 | 562 | (define getregstate::(-> MachineState Reg32State) 563 | (lambda (mstate::MachineState) 564 | (bv-extract 255 0 mstate) 565 | ) 566 | ) 567 | 568 | (define getscstate::(-> MachineState SCState) 569 | (lambda (mstate::MachineState) 570 | (bv-extract 767 256 mstate) 571 | ) 572 | ) 573 | 574 | (define getscptr::(-> MachineState Byte) 575 | (lambda (mstate::MachineState) 576 | (bv-extract 775 768 mstate) 577 | ) 578 | ) 579 | 580 | (define getscbyte-byidx::(-> MachineState Byte Byte) 581 | (lambda (mstate::MachineState idx::Byte) 582 | (let ((sc (getscstate mstate))) 583 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx))) 584 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 585 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 586 | (bv-extract 7 0 (bv-lshr sc shiftamt)) 587 | ))))) 588 | ) 589 | 590 | (define getscbyte::(-> MachineState Byte) 591 | (lambda (mstate::MachineState) 592 | (let ((scptr (getscptr mstate))) 593 | (getscbyte-byidx mstate scptr) 594 | )) 595 | ) 596 | 597 | (define geteipbuffer::(-> MachineState EIPRingBuffer) 598 | (lambda (mstate::MachineState) 599 | (bv-extract 855 776 mstate) 600 | ) 601 | ) 602 | 603 | (define geteipmask::(-> MachineState EIPBitMask) 604 | (lambda (mstate::MachineState) 605 | (bv-extract 865 856 mstate) 606 | ) 607 | ) 608 | 609 | (define geteip::(-> MachineState Byte) 610 | (lambda (mstate::MachineState) 611 | (bv-extract 783 776 mstate) 612 | ) 613 | ) 614 | 615 | ; getreg32(reg,state). Return the value of register 'reg' from state 'state'. 616 | (define getreg32::(-> RegIdx MachineState Dword) 617 | (lambda (x::RegIdx s::MachineState) 618 | (let ((z (getregstate s))) 619 | (ite (= x R0Idx) (bv-extract 31 0 z) 620 | (ite (= x R1Idx) (bv-extract 63 32 z) 621 | (ite (= x R2Idx) (bv-extract 95 64 z) 622 | (ite (= x R3Idx) (bv-extract 127 96 z) 623 | (ite (= x R4Idx) (bv-extract 159 128 z) 624 | (ite (= x R5Idx) (bv-extract 191 160 z) 625 | (ite (= x R6Idx) (bv-extract 223 192 z) 626 | (bv-extract 255 224 z) 627 | )))))))) 628 | ) 629 | ) 630 | 631 | (define getmachinestate::(-> DecodedMachineState MachineState) 632 | (lambda (s::DecodedMachineState ) 633 | (bv-extract 865 0 s) 634 | ) 635 | ) 636 | 637 | (define getinsnlen::(-> DecodedMachineState Byte) 638 | (lambda (s::DecodedMachineState) 639 | (bv-extract 873 866 s) 640 | ) 641 | ) 642 | 643 | (define getextra::(-> DecodedMachineState Bit) 644 | (lambda (s::DecodedMachineState) 645 | (bv-extract 874 874 s) 646 | ) 647 | ) 648 | 649 | (define getisjcc::(-> DecodedMachineState Bit) 650 | (lambda (s::DecodedMachineState) 651 | (bv-extract 875 875 s) 652 | ) 653 | ) 654 | 655 | ; putreg32(reg,state,value). Update register 'reg' to value 'value' in state 656 | ; 'state'; return the new state. 657 | (define putreg32::(-> RegIdx Dword MachineState MachineState) 658 | (lambda (x::RegIdx y::Dword s::MachineState) 659 | (let ((z (getregstate s))) 660 | (bv-concat (bv-extract 865 256 s) 661 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y) 662 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z)) 663 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z)) 664 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z)) 665 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z)) 666 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z)) 667 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z)) 668 | (bv-concat y (bv-extract 223 0 z)) 669 | ))))))))) 670 | ) 671 | ) 672 | 673 | (define putscbyte::(-> MachineState Byte MachineState) 674 | (lambda (mstate::MachineState b::Byte) 675 | (let ((sc (getscstate mstate))) 676 | (let ((scptr (getscptr mstate))) 677 | (let ((eidx (bv-concat (bv-repeat 0x00 63) scptr))) 678 | (let ((eshv (bv-shl eidx (bv-concat (bv-repeat 0x00 63) 0x03)))) 679 | (let ((bvmask (bv-shl (bv-concat (bv-repeat 0x00 63) 0xFF) eshv))) 680 | (let ((ebyte (bv-shl (bv-concat (bv-repeat 0x00 63) b) eshv))) 681 | (let ((newsc (bv-or (bv-and sc (bv-not bvmask)) ebyte))) 682 | (bv-concat (geteipmask mstate) (geteipbuffer mstate) (bv-add scptr 0x01) newsc (getregstate mstate)) 683 | )))))))) 684 | ) 685 | 686 | (define puteip::(-> MachineState Byte MachineState) 687 | (lambda (mstate::MachineState eip::Byte) 688 | (let ((eipbuffer (geteipbuffer mstate))) 689 | (let ((eipmask (geteipmask mstate))) 690 | (let ((newmask (bv-concat (bv-extract 8 0 eipmask) 0b1))) 691 | (let ((newbuffer (bv-concat (bv-extract 71 0 eipbuffer) eip))) 692 | (bv-concat newmask newbuffer (bv-extract 775 0 mstate)) 693 | ))))) 694 | ) 695 | 696 | (define finalize-normal-insn::(-> MachineState Byte Byte DecodedMachineState) 697 | (lambda (mstate::MachineState eip::Byte length::Byte) 698 | (bv-concat 0b0 0b1 length (puteip mstate eip)) 699 | ) 700 | ) 701 | 702 | (define bool-to-bit::(-> bool Bit) 703 | (lambda (b::bool) 704 | (ite b 0b1 0b0) 705 | ) 706 | ) 707 | 708 | (define finalize-conditional-jump::(-> MachineState Byte Byte Byte DecodedMachineState) 709 | (lambda (mstate::MachineState dest::Byte eip::Byte length::Byte) 710 | (let ((eipbuffer (geteipbuffer mstate))) 711 | (let ((eipmask (geteipmask mstate))) 712 | (let ((extra 713 | (bv-or 714 | (bv-and (bv-extract 0 0 eipmask) (bool-to-bit (= dest (bv-extract 7 0 eipbuffer)))) 715 | (bv-and (bv-extract 1 1 eipmask) (bool-to-bit (= dest (bv-extract 15 8 eipbuffer)))) 716 | (bv-and (bv-extract 2 2 eipmask) (bool-to-bit (= dest (bv-extract 23 16 eipbuffer)))) 717 | (bv-and (bv-extract 3 3 eipmask) (bool-to-bit (= dest (bv-extract 31 24 eipbuffer)))) 718 | (bv-and (bv-extract 4 4 eipmask) (bool-to-bit (= dest (bv-extract 39 32 eipbuffer)))) 719 | (bv-and (bv-extract 5 5 eipmask) (bool-to-bit (= dest (bv-extract 47 40 eipbuffer)))) 720 | (bv-and (bv-extract 6 6 eipmask) (bool-to-bit (= dest (bv-extract 55 48 eipbuffer)))) 721 | (bv-and (bv-extract 7 7 eipmask) (bool-to-bit (= dest (bv-extract 63 56 eipbuffer)))) 722 | (bv-and (bv-extract 8 8 eipmask) (bool-to-bit (= dest (bv-extract 71 64 eipbuffer)))) 723 | (bv-and (bv-extract 9 9 eipmask) (bool-to-bit (= dest (bv-extract 79 72 eipbuffer)))) 724 | ) 725 | )) 726 | (bv-concat 0b1 extra length (puteip mstate eip))))) 727 | ) 728 | ) 729 | 730 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the 731 | ; operation specified by that instruction. Consult and update the state 'state' 732 | ; accordingly; return the new state concatenated with the length of the 733 | ; instruction. In other words, this function simulates the effects of executing 734 | ; every possible instruction. 735 | (define symbolic-insn::(-> (-> Byte Byte) Byte MachineState DecodedMachineState) 736 | (lambda (f-get-byte::(-> Byte Byte) eip::Byte state::MachineState) 737 | (let ((byte0 (f-get-byte eip))) 738 | (let ((byte1 (f-get-byte (bv-add 0x01 eip)))) 739 | (let ((byte2 (f-get-byte (bv-add 0x02 eip)))) 740 | (let ((byte3 (f-get-byte (bv-add 0x03 eip)))) 741 | (let ((byte4 (f-get-byte (bv-add 0x04 eip)))) 742 | (let ((eip-plus-one (bv-add eip 0x01))) 743 | (let ((eip-plus-two (bv-add eip 0x02))) 744 | (let ((eip-plus-five (bv-add eip 0x05))) 745 | ; xor reg, reg 746 | (ite (= (bv-and byte0 0xC0) 0x00) 747 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 748 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 749 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state))) 750 | (finalize-normal-insn newstate eip-plus-one 0x01) 751 | ))) 752 | ; add reg, reg 753 | (ite (= (bv-and byte0 0xC0) 0x40) 754 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 755 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 756 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state))) 757 | (finalize-normal-insn newstate eip-plus-one 0x01) 758 | ))) 759 | ; mov reg, reg 760 | (ite (= (bv-and byte0 0xC0) 0x80) 761 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 762 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 763 | (let ((newstate (putreg32 lhsreg0 (getreg32 rhsreg0 state) state))) 764 | (finalize-normal-insn newstate eip-plus-one 0x01) 765 | ))) 766 | ; complex 0xC0 case 767 | (let ((opcode (bv-extract 5 3 byte0))) 768 | (let ((lhsreg0 (bv-extract 2 0 byte0))) 769 | ; CHANGED: getscbyte rX 770 | (ite (= opcode 0b000) 771 | (let ((newstate (putreg32 lhsreg0 (bv-zero-extend (getscbyte state) 24) state))) 772 | (finalize-normal-insn newstate eip-plus-one 0x01)) 773 | ; CHANGED: putscbyte rX 774 | (ite (= opcode 0b001) 775 | (let ((newstate (putscbyte state (bv-extract 7 0 (getreg32 lhsreg0 state))))) 776 | (finalize-normal-insn newstate eip-plus-one 0x01)) 777 | ; neg reg 778 | (ite (= opcode 0b010) 779 | (let ((newstate (putreg32 lhsreg0 (bv-neg (getreg32 lhsreg0 state)) state))) 780 | (finalize-normal-insn newstate eip-plus-one 0x01)) 781 | ; not reg 782 | (ite (= opcode 0b011) 783 | (let ((newstate (putreg32 lhsreg0 (bv-not (getreg32 lhsreg0 state)) state))) 784 | (finalize-normal-insn newstate eip-plus-one 0x01)) 785 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1))) 786 | ; add reg, imm32 787 | (ite (= opcode 0b100) 788 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) rhsval0) state))) 789 | (finalize-normal-insn newstate eip-plus-five 0x05)) 790 | ; xor reg, imm32 791 | (ite (= opcode 0b101) 792 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) rhsval0) state))) 793 | (finalize-normal-insn newstate eip-plus-five 0x05)) 794 | ; CHANGED: mov reg, imm32 795 | (ite (= opcode 0b110) 796 | (let ((newstate (putreg32 lhsreg0 rhsval0 state))) 797 | (finalize-normal-insn newstate eip-plus-five 0x05)) 798 | ; opcode == 0b111 799 | ; CHANGED: jnz rel 800 | (let ((dest (bv-add eip-plus-two byte1))) 801 | (finalize-conditional-jump state dest (ite (= 0x00000000 (getreg32 lhsreg0 state)) eip-plus-two dest) 0x02) 802 | ))))))))))))))) 803 | ))))))) 804 | ) 805 | ) 806 | 807 | ; The main assertion. 808 | (assert 809 | ; For every possible input state (r0, ..., r7). 810 | ; There is an additional universally-quantified variable idx: used to make 811 | ; statements about the bytes in the encoding. 812 | (forall (r0::Dword r1::Dword r2::Dword r3::Dword r4::Dword r5::Dword r6::Dword r7::Dword idx::Dword scptr::Byte) 813 | 814 | (let ((initialsc (bv-concat shellcode3F shellcode3E shellcode3D shellcode3C shellcode3B shellcode3A shellcode39 shellcode38 shellcode37 shellcode36 shellcode35 shellcode34 shellcode33 shellcode32 shellcode31 shellcode30 shellcode2F shellcode2E shellcode2D shellcode2C shellcode2B shellcode2A shellcode29 shellcode28 shellcode27 shellcode26 shellcode25 shellcode24 shellcode23 shellcode22 shellcode21 shellcode20 shellcode1F shellcode1E shellcode1D shellcode1C shellcode1B shellcode1A shellcode19 shellcode18 shellcode17 shellcode16 shellcode15 shellcode14 shellcode13 shellcode12 shellcode11 shellcode10 shellcode0F shellcode0E shellcode0D shellcode0C shellcode0B shellcode0A shellcode09 shellcode08 shellcode07 shellcode06 shellcode05 shellcode04 shellcode03 shellcode02 shellcode01 shellcode00))) 815 | 816 | (let ((sclength 0x00000040)) 817 | 818 | ; ------------------------ 819 | ; INITIALIZE STATE AND EIP 820 | ; ------------------------ 821 | ; Set initial EIP to zero. 822 | (let ((eip1 0x00)) 823 | ; Create the input "state" by concatenating all of the inputs. 824 | (let ((loopstate0 (bv-concat (bv-repeat 0b0 9) 0b1 (bv-repeat 0x00 9) eip1 scptr initialsc r7 r6 r5 r4 r3 r2 r1 r0))) 825 | 826 | ; ------------------------ 827 | ; SIMULATE ONE INSTRUCTION 828 | ; ------------------------ 829 | 830 | ; Perform symbolic simulation of one instruction (any instruction). 831 | (let ((synsem1 (symbolic-insn get-byte eip1 loopstate0))) 832 | ; Extract the length of the instruction. 833 | (let ((insn1len (getinsnlen synsem1))) 834 | ; Extract any "extra" constraints that must be satisfied 835 | (let ((extra1 (getextra synsem1))) 836 | ; Extract the flow type 837 | (let ((isjcc1 (getisjcc synsem1))) 838 | ; Extract the output state after having executed the instruction. 839 | (let ((state2 (getmachinestate synsem1))) 840 | ; Extract EIP after executing the instruction. 841 | (let ((eip2 (geteip state2))) 842 | 843 | ; ------------------------ 844 | ; SIMULATE ONE INSTRUCTION 845 | ; ------------------------ 846 | 847 | ; Perform symbolic simulation of one instruction (any instruction). 848 | (let ((synsem2 (symbolic-insn get-byte eip2 state2))) 849 | ; Extract the length of the instruction. 850 | (let ((insn2len (getinsnlen synsem2))) 851 | ; Extract any "extra" constraints that must be satisfied 852 | (let ((extra2 (getextra synsem2))) 853 | ; Extract the flow type 854 | (let ((isjcc2 (getisjcc synsem2))) 855 | ; Extract the output state after having executed the instruction. 856 | (let ((state3 (getmachinestate synsem2))) 857 | ; Extract EIP after executing the instruction. 858 | (let ((eip3 (geteip state3))) 859 | 860 | ; ------------------------ 861 | ; SIMULATE ONE INSTRUCTION 862 | ; ------------------------ 863 | 864 | ; Perform symbolic simulation of one instruction (any instruction). 865 | (let ((synsem3 (symbolic-insn get-byte eip3 state3))) 866 | ; Extract the length of the instruction. 867 | (let ((insn3len (getinsnlen synsem3))) 868 | ; Extract any "extra" constraints that must be satisfied 869 | (let ((extra3 (getextra synsem3))) 870 | ; Extract the flow type 871 | (let ((isjcc3 (getisjcc synsem3))) 872 | ; Extract the output state after having executed the instruction. 873 | (let ((state4 (getmachinestate synsem3))) 874 | ; Extract EIP after executing the instruction. 875 | (let ((eip4 (geteip state4))) 876 | 877 | ; ------------------------ 878 | ; SIMULATE ONE INSTRUCTION 879 | ; ------------------------ 880 | 881 | ; Perform symbolic simulation of one instruction (any instruction). 882 | (let ((synsem4 (symbolic-insn get-byte eip4 state4))) 883 | ; Extract the length of the instruction. 884 | (let ((insn4len (getinsnlen synsem4))) 885 | ; Extract any "extra" constraints that must be satisfied 886 | (let ((extra4 (getextra synsem4))) 887 | ; Extract the flow type 888 | (let ((isjcc4 (getisjcc synsem4))) 889 | ; Extract the output state after having executed the instruction. 890 | (let ((state5 (getmachinestate synsem4))) 891 | ; Extract EIP after executing the instruction. 892 | (let ((eip5 (geteip state5))) 893 | 894 | (let ((finalloopstate state5)) 895 | 896 | ; ------------------------ 897 | ; SIMULATE ONE INSTRUCTION 898 | ; ------------------------ 899 | 900 | ; Perform symbolic simulation of one instruction (any instruction). 901 | (let ((synsem5 (symbolic-insn get-byte eip5 state5))) 902 | ; Extract the length of the instruction. 903 | (let ((insn5len (getinsnlen synsem5))) 904 | ; Extract any "extra" constraints that must be satisfied 905 | (let ((extra5 (getextra synsem5))) 906 | ; Extract the flow type 907 | (let ((isjcc5 (getisjcc synsem5))) 908 | ; Extract the output state after having executed the instruction. 909 | (let ((state6 (getmachinestate synsem5))) 910 | ; Extract EIP after executing the instruction. 911 | (let ((eip6 (geteip state6))) 912 | 913 | ; ---------------------- 914 | ; FINALIZE STATE AND EIP 915 | ; ---------------------- 916 | 917 | ; Call the final state "finalstate" (for convenience). 918 | (let ((finalstate state6)) 919 | ; Call the final EIP "finaleip" (for convenience). 920 | (let ((finaleip eip6)) 921 | 922 | (let ((lasteip (bv-add eip5 insn5len))) 923 | 924 | (let ((sclengthlow (bv-extract 7 0 sclength))) 925 | (let ((l0scptr (getscptr loopstate0))) 926 | 927 | ; -------------------------------------------------- 928 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING 929 | ; -------------------------------------------------- 930 | 931 | (and 932 | ; 0-length instructions are invalid; all instructions must be valid. 933 | (not (= insn1len 0x00)) 934 | (not (= insn2len 0x00)) 935 | (not (= insn3len 0x00)) 936 | (not (= insn4len 0x00)) 937 | (not (= insn5len 0x00)) 938 | 939 | ; All "extra" constraints must be satisfied 940 | (= 0b1 extra1) 941 | (= 0b1 extra2) 942 | (= 0b1 extra3) 943 | (= 0b1 extra4) 944 | (= 0b1 extra5) 945 | 946 | ; Only the last instruction is a jump 947 | (= 0b0 isjcc1) 948 | (= 0b0 isjcc2) 949 | (= 0b0 isjcc3) 950 | (= 0b0 isjcc4) 951 | (= 0b1 isjcc5) 952 | 953 | ; All of the instructions, except the last, fall through. 954 | (= eip2 (bv-add eip1 insn1len)) 955 | (= eip3 (bv-add eip2 insn2len)) 956 | (= eip4 (bv-add eip3 insn3len)) 957 | (= eip5 (bv-add eip4 insn3len)) 958 | 959 | ; At least one of the encoded shellcode bytes differs 960 | (not (= shellcode00 realscbyte00)) 961 | 962 | ; ----------------------------------- 963 | ; CONSTRAINTS REGARDING FUNCTIONALITY 964 | ; ----------------------------------- 965 | 966 | ; The iteration counter has decreased by one, AND 967 | (= (bv-add (getreg32 WhichReg finalloopstate) 0x00000001) (getreg32 WhichReg loopstate0)) 968 | ; The shellcode pointer has increased by one, AND 969 | (= (getscptr finalloopstate) (bv-add l0scptr 0x01)) 970 | ; Implication: 971 | (=> 972 | (bv-lt l0scptr sclengthlow) 973 | ; If the shellcode pointer is less than the shellcode length, THEN 974 | (and 975 | (compare-multiple-sc-bytes (getscstate loopstate0) (getscstate finalloopstate) l0scptr) 976 | ; The same sc bytes are correct, plus the next one 977 | (compare-sc-bytes (getscstate finalloopstate) realsc l0scptr) 978 | ) 979 | ; THEN IT MUST ALSO BE TRUE THAT, AFTER EXECUTING THE BLOCK ... 980 | 981 | ) 982 | ; The EIP after executing the block is either the one after the loop, or at its beginning, AND 983 | (= finaleip (ite (= 0x00000000 (getreg32 WhichReg finalstate)) lasteip eip1)) 984 | 985 | 986 | ; ------------------------------ 987 | ; CONSTRAINTS REGARDING ENCODING 988 | ; ------------------------------ 989 | ; None of the bytes are 0x12 990 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12)) 991 | ; None of the bytes are 0x34 992 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34)) 993 | ; None of the bytes are 0x56 994 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56)) 995 | ; None of the bytes are 0x78 996 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78)) 997 | ; None of the bytes are 0x00 (commented out) 998 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00)) 999 | ) ; end and 1000 | )))))))))))))))))))))))) ; end let * 17 1001 | )))))))))))))))) ; end let SC STUFF 1002 | ) ; end forall 1003 | ) ; end assert 1004 | 1005 | ; Solve the constraint system 1006 | (ef-solve) 1007 | 1008 | ; Produce a model, i.e., values for bytecode00-bytecodeFF. 1009 | ; This statement will crash yices if (ef-solve) returned unsatisfiable. 1010 | (show-model) -------------------------------------------------------------------------------- /synesthesia-simple-loops-refactoring.ys: -------------------------------------------------------------------------------- 1 | ; Loosen yices' arbitrary restriction on iteration count. (') 2 | (set-param ef-max-iters 1000) 3 | 4 | (define-type Bit (bitvector 1)) 5 | (define-type Byte (bitvector 8)) 6 | (define-type Word (bitvector 16)) 7 | (define-type Dword (bitvector 32)) 8 | 9 | (define-type RegIdx (bitvector 3)) 10 | (define R0Idx::RegIdx (mk-bv 3 0)) ; R0 = 0 11 | (define R1Idx::RegIdx (mk-bv 3 1)) ; R1 = 1 12 | (define R2Idx::RegIdx (mk-bv 3 2)) ; R2 = 2 13 | (define R3Idx::RegIdx (mk-bv 3 3)) ; R3 = 3 14 | (define R4Idx::RegIdx (mk-bv 3 4)) ; R4 = 4 15 | (define R5Idx::RegIdx (mk-bv 3 5)) ; R5 = 5 16 | (define R6Idx::RegIdx (mk-bv 3 6)) ; R6 = 6 17 | (define R7Idx::RegIdx (mk-bv 3 7)) ; R7 = 7 18 | 19 | (define-type Reg32State (bitvector 256)) 20 | (define-type SCState (bitvector 512)) ; 0x40-length shellcode 21 | (define-type EIPRingBuffer (bitvector 80)) ; 10 8-bit EIP history 22 | (define-type EIPBitMask (bitvector 10)) ; 10 1-bit EIP bitmask 23 | 24 | (define-type MachineState (bitvector 866)) 25 | ; 255 0: Reg32State 26 | ; 767 256: SCState 27 | ; 775 768: Byte [scptr] 28 | ; 855 776: EIPRingBuffer 29 | ; 865 855: EIPBitMask 30 | 31 | (define-type DecodedMachineState (bitvector 876)) ; (extra::Bit,length::Byte,MachineState) 32 | ; 865 0: MachineState 33 | ; 873 866: Byte [length] 34 | ; 874 874: Bit [extra] 35 | ; 875 875: Bit [is-jcc] 36 | 37 | (define WhichReg::RegIdx) 38 | 39 | (define bytecode00::Byte) (define bytecode01::Byte) 40 | (define bytecode02::Byte) (define bytecode03::Byte) 41 | (define bytecode04::Byte) (define bytecode05::Byte) 42 | (define bytecode06::Byte) (define bytecode07::Byte) 43 | (define bytecode08::Byte) (define bytecode09::Byte) 44 | (define bytecode0A::Byte) (define bytecode0B::Byte) 45 | (define bytecode0C::Byte) (define bytecode0D::Byte) 46 | (define bytecode0E::Byte) (define bytecode0F::Byte) 47 | (define bytecode10::Byte) (define bytecode11::Byte) 48 | (define bytecode12::Byte) (define bytecode13::Byte) 49 | (define bytecode14::Byte) (define bytecode15::Byte) 50 | (define bytecode16::Byte) (define bytecode17::Byte) 51 | (define bytecode18::Byte) (define bytecode19::Byte) 52 | (define bytecode1A::Byte) (define bytecode1B::Byte) 53 | (define bytecode1C::Byte) (define bytecode1D::Byte) 54 | (define bytecode1E::Byte) (define bytecode1F::Byte) 55 | (define bytecode20::Byte) (define bytecode21::Byte) 56 | (define bytecode22::Byte) (define bytecode23::Byte) 57 | (define bytecode24::Byte) (define bytecode25::Byte) 58 | (define bytecode26::Byte) (define bytecode27::Byte) 59 | (define bytecode28::Byte) (define bytecode29::Byte) 60 | (define bytecode2A::Byte) (define bytecode2B::Byte) 61 | (define bytecode2C::Byte) (define bytecode2D::Byte) 62 | (define bytecode2E::Byte) (define bytecode2F::Byte) 63 | (define bytecode30::Byte) (define bytecode31::Byte) 64 | (define bytecode32::Byte) (define bytecode33::Byte) 65 | (define bytecode34::Byte) (define bytecode35::Byte) 66 | (define bytecode36::Byte) (define bytecode37::Byte) 67 | (define bytecode38::Byte) (define bytecode39::Byte) 68 | (define bytecode3A::Byte) (define bytecode3B::Byte) 69 | (define bytecode3C::Byte) (define bytecode3D::Byte) 70 | (define bytecode3E::Byte) (define bytecode3F::Byte) 71 | (define bytecode40::Byte) (define bytecode41::Byte) 72 | (define bytecode42::Byte) (define bytecode43::Byte) 73 | (define bytecode44::Byte) (define bytecode45::Byte) 74 | (define bytecode46::Byte) (define bytecode47::Byte) 75 | (define bytecode48::Byte) (define bytecode49::Byte) 76 | (define bytecode4A::Byte) (define bytecode4B::Byte) 77 | (define bytecode4C::Byte) (define bytecode4D::Byte) 78 | (define bytecode4E::Byte) (define bytecode4F::Byte) 79 | (define bytecode50::Byte) (define bytecode51::Byte) 80 | (define bytecode52::Byte) (define bytecode53::Byte) 81 | (define bytecode54::Byte) (define bytecode55::Byte) 82 | (define bytecode56::Byte) (define bytecode57::Byte) 83 | (define bytecode58::Byte) (define bytecode59::Byte) 84 | (define bytecode5A::Byte) (define bytecode5B::Byte) 85 | (define bytecode5C::Byte) (define bytecode5D::Byte) 86 | (define bytecode5E::Byte) (define bytecode5F::Byte) 87 | (define bytecode60::Byte) (define bytecode61::Byte) 88 | (define bytecode62::Byte) (define bytecode63::Byte) 89 | (define bytecode64::Byte) (define bytecode65::Byte) 90 | (define bytecode66::Byte) (define bytecode67::Byte) 91 | (define bytecode68::Byte) (define bytecode69::Byte) 92 | (define bytecode6A::Byte) (define bytecode6B::Byte) 93 | (define bytecode6C::Byte) (define bytecode6D::Byte) 94 | (define bytecode6E::Byte) (define bytecode6F::Byte) 95 | (define bytecode70::Byte) (define bytecode71::Byte) 96 | (define bytecode72::Byte) (define bytecode73::Byte) 97 | (define bytecode74::Byte) (define bytecode75::Byte) 98 | (define bytecode76::Byte) (define bytecode77::Byte) 99 | (define bytecode78::Byte) (define bytecode79::Byte) 100 | (define bytecode7A::Byte) (define bytecode7B::Byte) 101 | (define bytecode7C::Byte) (define bytecode7D::Byte) 102 | (define bytecode7E::Byte) (define bytecode7F::Byte) 103 | (define bytecode80::Byte) (define bytecode81::Byte) 104 | (define bytecode82::Byte) (define bytecode83::Byte) 105 | (define bytecode84::Byte) (define bytecode85::Byte) 106 | (define bytecode86::Byte) (define bytecode87::Byte) 107 | (define bytecode88::Byte) (define bytecode89::Byte) 108 | (define bytecode8A::Byte) (define bytecode8B::Byte) 109 | (define bytecode8C::Byte) (define bytecode8D::Byte) 110 | (define bytecode8E::Byte) (define bytecode8F::Byte) 111 | (define bytecode90::Byte) (define bytecode91::Byte) 112 | (define bytecode92::Byte) (define bytecode93::Byte) 113 | (define bytecode94::Byte) (define bytecode95::Byte) 114 | (define bytecode96::Byte) (define bytecode97::Byte) 115 | (define bytecode98::Byte) (define bytecode99::Byte) 116 | (define bytecode9A::Byte) (define bytecode9B::Byte) 117 | (define bytecode9C::Byte) (define bytecode9D::Byte) 118 | (define bytecode9E::Byte) (define bytecode9F::Byte) 119 | (define bytecodeA0::Byte) (define bytecodeA1::Byte) 120 | (define bytecodeA2::Byte) (define bytecodeA3::Byte) 121 | (define bytecodeA4::Byte) (define bytecodeA5::Byte) 122 | (define bytecodeA6::Byte) (define bytecodeA7::Byte) 123 | (define bytecodeA8::Byte) (define bytecodeA9::Byte) 124 | (define bytecodeAA::Byte) (define bytecodeAB::Byte) 125 | (define bytecodeAC::Byte) (define bytecodeAD::Byte) 126 | (define bytecodeAE::Byte) (define bytecodeAF::Byte) 127 | (define bytecodeB0::Byte) (define bytecodeB1::Byte) 128 | (define bytecodeB2::Byte) (define bytecodeB3::Byte) 129 | (define bytecodeB4::Byte) (define bytecodeB5::Byte) 130 | (define bytecodeB6::Byte) (define bytecodeB7::Byte) 131 | (define bytecodeB8::Byte) (define bytecodeB9::Byte) 132 | (define bytecodeBA::Byte) (define bytecodeBB::Byte) 133 | (define bytecodeBC::Byte) (define bytecodeBD::Byte) 134 | (define bytecodeBE::Byte) (define bytecodeBF::Byte) 135 | (define bytecodeC0::Byte) (define bytecodeC1::Byte) 136 | (define bytecodeC2::Byte) (define bytecodeC3::Byte) 137 | (define bytecodeC4::Byte) (define bytecodeC5::Byte) 138 | (define bytecodeC6::Byte) (define bytecodeC7::Byte) 139 | (define bytecodeC8::Byte) (define bytecodeC9::Byte) 140 | (define bytecodeCA::Byte) (define bytecodeCB::Byte) 141 | (define bytecodeCC::Byte) (define bytecodeCD::Byte) 142 | (define bytecodeCE::Byte) (define bytecodeCF::Byte) 143 | (define bytecodeD0::Byte) (define bytecodeD1::Byte) 144 | (define bytecodeD2::Byte) (define bytecodeD3::Byte) 145 | (define bytecodeD4::Byte) (define bytecodeD5::Byte) 146 | (define bytecodeD6::Byte) (define bytecodeD7::Byte) 147 | (define bytecodeD8::Byte) (define bytecodeD9::Byte) 148 | (define bytecodeDA::Byte) (define bytecodeDB::Byte) 149 | (define bytecodeDC::Byte) (define bytecodeDD::Byte) 150 | (define bytecodeDE::Byte) (define bytecodeDF::Byte) 151 | (define bytecodeE0::Byte) (define bytecodeE1::Byte) 152 | (define bytecodeE2::Byte) (define bytecodeE3::Byte) 153 | (define bytecodeE4::Byte) (define bytecodeE5::Byte) 154 | (define bytecodeE6::Byte) (define bytecodeE7::Byte) 155 | (define bytecodeE8::Byte) (define bytecodeE9::Byte) 156 | (define bytecodeEA::Byte) (define bytecodeEB::Byte) 157 | (define bytecodeEC::Byte) (define bytecodeED::Byte) 158 | (define bytecodeEE::Byte) (define bytecodeEF::Byte) 159 | (define bytecodeF0::Byte) (define bytecodeF1::Byte) 160 | (define bytecodeF2::Byte) (define bytecodeF3::Byte) 161 | (define bytecodeF4::Byte) (define bytecodeF5::Byte) 162 | (define bytecodeF6::Byte) (define bytecodeF7::Byte) 163 | (define bytecodeF8::Byte) (define bytecodeF9::Byte) 164 | (define bytecodeFA::Byte) (define bytecodeFB::Byte) 165 | (define bytecodeFC::Byte) (define bytecodeFD::Byte) 166 | (define bytecodeFE::Byte) (define bytecodeFF::Byte) 167 | 168 | (define shellcode00::Byte) (define shellcode01::Byte) 169 | (define shellcode02::Byte) (define shellcode03::Byte) 170 | (define shellcode04::Byte) (define shellcode05::Byte) 171 | (define shellcode06::Byte) (define shellcode07::Byte) 172 | (define shellcode08::Byte) (define shellcode09::Byte) 173 | (define shellcode0A::Byte) (define shellcode0B::Byte) 174 | (define shellcode0C::Byte) (define shellcode0D::Byte) 175 | (define shellcode0E::Byte) (define shellcode0F::Byte) 176 | (define shellcode10::Byte) (define shellcode11::Byte) 177 | (define shellcode12::Byte) (define shellcode13::Byte) 178 | (define shellcode14::Byte) (define shellcode15::Byte) 179 | (define shellcode16::Byte) (define shellcode17::Byte) 180 | (define shellcode18::Byte) (define shellcode19::Byte) 181 | (define shellcode1A::Byte) (define shellcode1B::Byte) 182 | (define shellcode1C::Byte) (define shellcode1D::Byte) 183 | (define shellcode1E::Byte) (define shellcode1F::Byte) 184 | (define shellcode20::Byte) (define shellcode21::Byte) 185 | (define shellcode22::Byte) (define shellcode23::Byte) 186 | (define shellcode24::Byte) (define shellcode25::Byte) 187 | (define shellcode26::Byte) (define shellcode27::Byte) 188 | (define shellcode28::Byte) (define shellcode29::Byte) 189 | (define shellcode2A::Byte) (define shellcode2B::Byte) 190 | (define shellcode2C::Byte) (define shellcode2D::Byte) 191 | (define shellcode2E::Byte) (define shellcode2F::Byte) 192 | (define shellcode30::Byte) (define shellcode31::Byte) 193 | (define shellcode32::Byte) (define shellcode33::Byte) 194 | (define shellcode34::Byte) (define shellcode35::Byte) 195 | (define shellcode36::Byte) (define shellcode37::Byte) 196 | (define shellcode38::Byte) (define shellcode39::Byte) 197 | (define shellcode3A::Byte) (define shellcode3B::Byte) 198 | (define shellcode3C::Byte) (define shellcode3D::Byte) 199 | (define shellcode3E::Byte) (define shellcode3F::Byte) 200 | 201 | (define realscbyte00::Byte 0xA0) 202 | (define realscbyte01::Byte 0x8C) 203 | (define realscbyte02::Byte 0x1C) 204 | (define realscbyte03::Byte 0x29) 205 | (define realscbyte04::Byte 0xA1) 206 | (define realscbyte05::Byte 0xCC) 207 | (define realscbyte06::Byte 0x38) 208 | (define realscbyte07::Byte 0xFD) 209 | (define realscbyte08::Byte 0x8D) 210 | (define realscbyte09::Byte 0xF4) 211 | (define realscbyte0A::Byte 0x8E) 212 | (define realscbyte0B::Byte 0x59) 213 | (define realscbyte0C::Byte 0x86) 214 | (define realscbyte0D::Byte 0xB7) 215 | (define realscbyte0E::Byte 0xCA) 216 | (define realscbyte0F::Byte 0xFF) 217 | (define realscbyte10::Byte 0x33) 218 | (define realscbyte11::Byte 0x29) 219 | (define realscbyte12::Byte 0xD6) 220 | (define realscbyte13::Byte 0xE3) 221 | (define realscbyte14::Byte 0x6F) 222 | (define realscbyte15::Byte 0x4B) 223 | (define realscbyte16::Byte 0x19) 224 | (define realscbyte17::Byte 0x71) 225 | (define realscbyte18::Byte 0x5C) 226 | (define realscbyte19::Byte 0xBB) 227 | (define realscbyte1A::Byte 0x4E) 228 | (define realscbyte1B::Byte 0x90) 229 | (define realscbyte1C::Byte 0xC3) 230 | (define realscbyte1D::Byte 0xF7) 231 | (define realscbyte1E::Byte 0x41) 232 | (define realscbyte1F::Byte 0x9E) 233 | (define realscbyte20::Byte 0xA2) 234 | (define realscbyte21::Byte 0x1C) 235 | (define realscbyte22::Byte 0x22) 236 | (define realscbyte23::Byte 0xBF) 237 | (define realscbyte24::Byte 0x25) 238 | (define realscbyte25::Byte 0x0F) 239 | (define realscbyte26::Byte 0xFE) 240 | (define realscbyte27::Byte 0xA6) 241 | (define realscbyte28::Byte 0x81) 242 | (define realscbyte29::Byte 0x10) 243 | (define realscbyte2A::Byte 0x43) 244 | (define realscbyte2B::Byte 0x38) 245 | (define realscbyte2C::Byte 0x92) 246 | (define realscbyte2D::Byte 0x95) 247 | (define realscbyte2E::Byte 0x21) 248 | (define realscbyte2F::Byte 0x2B) 249 | (define realscbyte30::Byte 0xE3) 250 | (define realscbyte31::Byte 0xA6) 251 | (define realscbyte32::Byte 0xE9) 252 | (define realscbyte33::Byte 0xAC) 253 | (define realscbyte34::Byte 0x08) 254 | (define realscbyte35::Byte 0x4D) 255 | (define realscbyte36::Byte 0xBA) 256 | (define realscbyte37::Byte 0x08) 257 | (define realscbyte38::Byte 0x0B) 258 | (define realscbyte39::Byte 0xAB) 259 | (define realscbyte3A::Byte 0x22) 260 | (define realscbyte3B::Byte 0x84) 261 | (define realscbyte3C::Byte 0x6B) 262 | (define realscbyte3D::Byte 0x1F) 263 | (define realscbyte3E::Byte 0xAD) 264 | (define realscbyte3F::Byte 0x05) 265 | 266 | (define realsc::SCState (bv-concat realscbyte3F realscbyte3E realscbyte3D realscbyte3C realscbyte3B realscbyte3A realscbyte39 realscbyte38 realscbyte37 realscbyte36 realscbyte35 realscbyte34 realscbyte33 realscbyte32 realscbyte31 realscbyte30 realscbyte2F realscbyte2E realscbyte2D realscbyte2C realscbyte2B realscbyte2A realscbyte29 realscbyte28 realscbyte27 realscbyte26 realscbyte25 realscbyte24 realscbyte23 realscbyte22 realscbyte21 realscbyte20 realscbyte1F realscbyte1E realscbyte1D realscbyte1C realscbyte1B realscbyte1A realscbyte19 realscbyte18 realscbyte17 realscbyte16 realscbyte15 realscbyte14 realscbyte13 realscbyte12 realscbyte11 realscbyte10 realscbyte0F realscbyte0E realscbyte0D realscbyte0C realscbyte0B realscbyte0A realscbyte09 realscbyte08 realscbyte07 realscbyte06 realscbyte05 realscbyte04 realscbyte03 realscbyte02 realscbyte01 realscbyte00)) 267 | 268 | (define getrealscbyte::(-> Byte Byte) 269 | (lambda (idx::Byte) 270 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx))) 271 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 272 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 273 | (bv-extract 7 0 (bv-lshr realsc shiftamt)) 274 | ))) 275 | ) 276 | ) 277 | 278 | (define compare-multiple-sc-bytes::(-> SCState SCState Byte bool) 279 | (lambda (sc1::SCState sc2::SCState num::Byte) 280 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) (bv-sub 0x40 num)))) 281 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 282 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 283 | (= (bv-shl sc1 shiftamt) (bv-shl sc2 shiftamt)) 284 | ))) 285 | ) 286 | ) 287 | 288 | (define compare-sc-bytes::(-> SCState SCState Byte bool) 289 | (lambda (sc1::SCState sc2::SCState num::Byte) 290 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) num))) 291 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 292 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 293 | (= (bv-extract 7 0 (bv-lshr sc1 shiftamt)) (bv-extract 7 0 (bv-lshr sc2 shiftamt))) 294 | ))) 295 | ) 296 | ) 297 | 298 | ; Used instead of an array lookup. Pass in byte XX, get back the bytecodeXX 299 | ; variable. 300 | (define get-byte::(-> Byte Byte) 301 | (lambda (x::Byte) 302 | (ite (= x 0x00) bytecode00 303 | (ite (= x 0x01) bytecode01 304 | (ite (= x 0x02) bytecode02 305 | (ite (= x 0x03) bytecode03 306 | (ite (= x 0x04) bytecode04 307 | (ite (= x 0x05) bytecode05 308 | (ite (= x 0x06) bytecode06 309 | (ite (= x 0x07) bytecode07 310 | (ite (= x 0x08) bytecode08 311 | (ite (= x 0x09) bytecode09 312 | (ite (= x 0x0A) bytecode0A 313 | (ite (= x 0x0B) bytecode0B 314 | (ite (= x 0x0C) bytecode0C 315 | (ite (= x 0x0D) bytecode0D 316 | (ite (= x 0x0E) bytecode0E 317 | (ite (= x 0x0F) bytecode0F 318 | (ite (= x 0x10) bytecode10 319 | (ite (= x 0x11) bytecode11 320 | (ite (= x 0x12) bytecode12 321 | (ite (= x 0x13) bytecode13 322 | (ite (= x 0x14) bytecode14 323 | (ite (= x 0x15) bytecode15 324 | (ite (= x 0x16) bytecode16 325 | (ite (= x 0x17) bytecode17 326 | (ite (= x 0x18) bytecode18 327 | (ite (= x 0x19) bytecode19 328 | (ite (= x 0x1A) bytecode1A 329 | (ite (= x 0x1B) bytecode1B 330 | (ite (= x 0x1C) bytecode1C 331 | (ite (= x 0x1D) bytecode1D 332 | (ite (= x 0x1E) bytecode1E 333 | (ite (= x 0x1F) bytecode1F 334 | (ite (= x 0x20) bytecode20 335 | (ite (= x 0x21) bytecode21 336 | (ite (= x 0x22) bytecode22 337 | (ite (= x 0x23) bytecode23 338 | (ite (= x 0x24) bytecode24 339 | (ite (= x 0x25) bytecode25 340 | (ite (= x 0x26) bytecode26 341 | (ite (= x 0x27) bytecode27 342 | (ite (= x 0x28) bytecode28 343 | (ite (= x 0x29) bytecode29 344 | (ite (= x 0x2A) bytecode2A 345 | (ite (= x 0x2B) bytecode2B 346 | (ite (= x 0x2C) bytecode2C 347 | (ite (= x 0x2D) bytecode2D 348 | (ite (= x 0x2E) bytecode2E 349 | (ite (= x 0x2F) bytecode2F 350 | (ite (= x 0x30) bytecode30 351 | (ite (= x 0x31) bytecode31 352 | (ite (= x 0x32) bytecode32 353 | (ite (= x 0x33) bytecode33 354 | (ite (= x 0x34) bytecode34 355 | (ite (= x 0x35) bytecode35 356 | (ite (= x 0x36) bytecode36 357 | (ite (= x 0x37) bytecode37 358 | (ite (= x 0x38) bytecode38 359 | (ite (= x 0x39) bytecode39 360 | (ite (= x 0x3A) bytecode3A 361 | (ite (= x 0x3B) bytecode3B 362 | (ite (= x 0x3C) bytecode3C 363 | (ite (= x 0x3D) bytecode3D 364 | (ite (= x 0x3E) bytecode3E 365 | (ite (= x 0x3F) bytecode3F 366 | (ite (= x 0x40) bytecode40 367 | (ite (= x 0x41) bytecode41 368 | (ite (= x 0x42) bytecode42 369 | (ite (= x 0x43) bytecode43 370 | (ite (= x 0x44) bytecode44 371 | (ite (= x 0x45) bytecode45 372 | (ite (= x 0x46) bytecode46 373 | (ite (= x 0x47) bytecode47 374 | (ite (= x 0x48) bytecode48 375 | (ite (= x 0x49) bytecode49 376 | (ite (= x 0x4A) bytecode4A 377 | (ite (= x 0x4B) bytecode4B 378 | (ite (= x 0x4C) bytecode4C 379 | (ite (= x 0x4D) bytecode4D 380 | (ite (= x 0x4E) bytecode4E 381 | (ite (= x 0x4F) bytecode4F 382 | (ite (= x 0x50) bytecode50 383 | (ite (= x 0x51) bytecode51 384 | (ite (= x 0x52) bytecode52 385 | (ite (= x 0x53) bytecode53 386 | (ite (= x 0x54) bytecode54 387 | (ite (= x 0x55) bytecode55 388 | (ite (= x 0x56) bytecode56 389 | (ite (= x 0x57) bytecode57 390 | (ite (= x 0x58) bytecode58 391 | (ite (= x 0x59) bytecode59 392 | (ite (= x 0x5A) bytecode5A 393 | (ite (= x 0x5B) bytecode5B 394 | (ite (= x 0x5C) bytecode5C 395 | (ite (= x 0x5D) bytecode5D 396 | (ite (= x 0x5E) bytecode5E 397 | (ite (= x 0x5F) bytecode5F 398 | (ite (= x 0x60) bytecode60 399 | (ite (= x 0x61) bytecode61 400 | (ite (= x 0x62) bytecode62 401 | (ite (= x 0x63) bytecode63 402 | (ite (= x 0x64) bytecode64 403 | (ite (= x 0x65) bytecode65 404 | (ite (= x 0x66) bytecode66 405 | (ite (= x 0x67) bytecode67 406 | (ite (= x 0x68) bytecode68 407 | (ite (= x 0x69) bytecode69 408 | (ite (= x 0x6A) bytecode6A 409 | (ite (= x 0x6B) bytecode6B 410 | (ite (= x 0x6C) bytecode6C 411 | (ite (= x 0x6D) bytecode6D 412 | (ite (= x 0x6E) bytecode6E 413 | (ite (= x 0x6F) bytecode6F 414 | (ite (= x 0x70) bytecode70 415 | (ite (= x 0x71) bytecode71 416 | (ite (= x 0x72) bytecode72 417 | (ite (= x 0x73) bytecode73 418 | (ite (= x 0x74) bytecode74 419 | (ite (= x 0x75) bytecode75 420 | (ite (= x 0x76) bytecode76 421 | (ite (= x 0x77) bytecode77 422 | (ite (= x 0x78) bytecode78 423 | (ite (= x 0x79) bytecode79 424 | (ite (= x 0x7A) bytecode7A 425 | (ite (= x 0x7B) bytecode7B 426 | (ite (= x 0x7C) bytecode7C 427 | (ite (= x 0x7D) bytecode7D 428 | (ite (= x 0x7E) bytecode7E 429 | (ite (= x 0x7F) bytecode7F 430 | (ite (= x 0x80) bytecode80 431 | (ite (= x 0x81) bytecode81 432 | (ite (= x 0x82) bytecode82 433 | (ite (= x 0x83) bytecode83 434 | (ite (= x 0x84) bytecode84 435 | (ite (= x 0x85) bytecode85 436 | (ite (= x 0x86) bytecode86 437 | (ite (= x 0x87) bytecode87 438 | (ite (= x 0x88) bytecode88 439 | (ite (= x 0x89) bytecode89 440 | (ite (= x 0x8A) bytecode8A 441 | (ite (= x 0x8B) bytecode8B 442 | (ite (= x 0x8C) bytecode8C 443 | (ite (= x 0x8D) bytecode8D 444 | (ite (= x 0x8E) bytecode8E 445 | (ite (= x 0x8F) bytecode8F 446 | (ite (= x 0x90) bytecode90 447 | (ite (= x 0x91) bytecode91 448 | (ite (= x 0x92) bytecode92 449 | (ite (= x 0x93) bytecode93 450 | (ite (= x 0x94) bytecode94 451 | (ite (= x 0x95) bytecode95 452 | (ite (= x 0x96) bytecode96 453 | (ite (= x 0x97) bytecode97 454 | (ite (= x 0x98) bytecode98 455 | (ite (= x 0x99) bytecode99 456 | (ite (= x 0x9A) bytecode9A 457 | (ite (= x 0x9B) bytecode9B 458 | (ite (= x 0x9C) bytecode9C 459 | (ite (= x 0x9D) bytecode9D 460 | (ite (= x 0x9E) bytecode9E 461 | (ite (= x 0x9F) bytecode9F 462 | (ite (= x 0xA0) bytecodeA0 463 | (ite (= x 0xA1) bytecodeA1 464 | (ite (= x 0xA2) bytecodeA2 465 | (ite (= x 0xA3) bytecodeA3 466 | (ite (= x 0xA4) bytecodeA4 467 | (ite (= x 0xA5) bytecodeA5 468 | (ite (= x 0xA6) bytecodeA6 469 | (ite (= x 0xA7) bytecodeA7 470 | (ite (= x 0xA8) bytecodeA8 471 | (ite (= x 0xA9) bytecodeA9 472 | (ite (= x 0xAA) bytecodeAA 473 | (ite (= x 0xAB) bytecodeAB 474 | (ite (= x 0xAC) bytecodeAC 475 | (ite (= x 0xAD) bytecodeAD 476 | (ite (= x 0xAE) bytecodeAE 477 | (ite (= x 0xAF) bytecodeAF 478 | (ite (= x 0xB0) bytecodeB0 479 | (ite (= x 0xB1) bytecodeB1 480 | (ite (= x 0xB2) bytecodeB2 481 | (ite (= x 0xB3) bytecodeB3 482 | (ite (= x 0xB4) bytecodeB4 483 | (ite (= x 0xB5) bytecodeB5 484 | (ite (= x 0xB6) bytecodeB6 485 | (ite (= x 0xB7) bytecodeB7 486 | (ite (= x 0xB8) bytecodeB8 487 | (ite (= x 0xB9) bytecodeB9 488 | (ite (= x 0xBA) bytecodeBA 489 | (ite (= x 0xBB) bytecodeBB 490 | (ite (= x 0xBC) bytecodeBC 491 | (ite (= x 0xBD) bytecodeBD 492 | (ite (= x 0xBE) bytecodeBE 493 | (ite (= x 0xBF) bytecodeBF 494 | (ite (= x 0xC0) bytecodeC0 495 | (ite (= x 0xC1) bytecodeC1 496 | (ite (= x 0xC2) bytecodeC2 497 | (ite (= x 0xC3) bytecodeC3 498 | (ite (= x 0xC4) bytecodeC4 499 | (ite (= x 0xC5) bytecodeC5 500 | (ite (= x 0xC6) bytecodeC6 501 | (ite (= x 0xC7) bytecodeC7 502 | (ite (= x 0xC8) bytecodeC8 503 | (ite (= x 0xC9) bytecodeC9 504 | (ite (= x 0xCA) bytecodeCA 505 | (ite (= x 0xCB) bytecodeCB 506 | (ite (= x 0xCC) bytecodeCC 507 | (ite (= x 0xCD) bytecodeCD 508 | (ite (= x 0xCE) bytecodeCE 509 | (ite (= x 0xCF) bytecodeCF 510 | (ite (= x 0xD0) bytecodeD0 511 | (ite (= x 0xD1) bytecodeD1 512 | (ite (= x 0xD2) bytecodeD2 513 | (ite (= x 0xD3) bytecodeD3 514 | (ite (= x 0xD4) bytecodeD4 515 | (ite (= x 0xD5) bytecodeD5 516 | (ite (= x 0xD6) bytecodeD6 517 | (ite (= x 0xD7) bytecodeD7 518 | (ite (= x 0xD8) bytecodeD8 519 | (ite (= x 0xD9) bytecodeD9 520 | (ite (= x 0xDA) bytecodeDA 521 | (ite (= x 0xDB) bytecodeDB 522 | (ite (= x 0xDC) bytecodeDC 523 | (ite (= x 0xDD) bytecodeDD 524 | (ite (= x 0xDE) bytecodeDE 525 | (ite (= x 0xDF) bytecodeDF 526 | (ite (= x 0xE0) bytecodeE0 527 | (ite (= x 0xE1) bytecodeE1 528 | (ite (= x 0xE2) bytecodeE2 529 | (ite (= x 0xE3) bytecodeE3 530 | (ite (= x 0xE4) bytecodeE4 531 | (ite (= x 0xE5) bytecodeE5 532 | (ite (= x 0xE6) bytecodeE6 533 | (ite (= x 0xE7) bytecodeE7 534 | (ite (= x 0xE8) bytecodeE8 535 | (ite (= x 0xE9) bytecodeE9 536 | (ite (= x 0xEA) bytecodeEA 537 | (ite (= x 0xEB) bytecodeEB 538 | (ite (= x 0xEC) bytecodeEC 539 | (ite (= x 0xED) bytecodeED 540 | (ite (= x 0xEE) bytecodeEE 541 | (ite (= x 0xEF) bytecodeEF 542 | (ite (= x 0xF0) bytecodeF0 543 | (ite (= x 0xF1) bytecodeF1 544 | (ite (= x 0xF2) bytecodeF2 545 | (ite (= x 0xF3) bytecodeF3 546 | (ite (= x 0xF4) bytecodeF4 547 | (ite (= x 0xF5) bytecodeF5 548 | (ite (= x 0xF6) bytecodeF6 549 | (ite (= x 0xF7) bytecodeF7 550 | (ite (= x 0xF8) bytecodeF8 551 | (ite (= x 0xF9) bytecodeF9 552 | (ite (= x 0xFA) bytecodeFA 553 | (ite (= x 0xFB) bytecodeFB 554 | (ite (= x 0xFC) bytecodeFC 555 | (ite (= x 0xFD) bytecodeFD 556 | (ite (= x 0xFE) bytecodeFE 557 | (ite (= x 0xFF) bytecodeFF 558 | bytecode04)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 559 | ) 560 | ) 561 | 562 | (define getregstate::(-> MachineState Reg32State) 563 | (lambda (mstate::MachineState) 564 | (bv-extract 255 0 mstate) 565 | ) 566 | ) 567 | 568 | (define getscstate::(-> MachineState SCState) 569 | (lambda (mstate::MachineState) 570 | (bv-extract 767 256 mstate) 571 | ) 572 | ) 573 | 574 | (define getscptr::(-> MachineState Byte) 575 | (lambda (mstate::MachineState) 576 | (bv-extract 775 768 mstate) 577 | ) 578 | ) 579 | 580 | (define getscbyte-byidx::(-> MachineState Byte Byte) 581 | (lambda (mstate::MachineState idx::Byte) 582 | (let ((sc (getscstate mstate))) 583 | (let ((shiftamtone (bv-concat (bv-repeat 0x00 63) idx))) 584 | (let ((shiftamttwo (bv-concat (bv-repeat 0x00 63) 0x03))) 585 | (let ((shiftamt (bv-shl shiftamtone shiftamttwo))) 586 | (bv-extract 7 0 (bv-lshr sc shiftamt)) 587 | ))))) 588 | ) 589 | 590 | (define getscbyte::(-> MachineState Byte) 591 | (lambda (mstate::MachineState) 592 | (let ((scptr (getscptr mstate))) 593 | (getscbyte-byidx mstate scptr) 594 | )) 595 | ) 596 | 597 | (define geteipbuffer::(-> MachineState EIPRingBuffer) 598 | (lambda (mstate::MachineState) 599 | (bv-extract 855 776 mstate) 600 | ) 601 | ) 602 | 603 | (define geteipmask::(-> MachineState EIPBitMask) 604 | (lambda (mstate::MachineState) 605 | (bv-extract 865 856 mstate) 606 | ) 607 | ) 608 | 609 | (define geteip::(-> MachineState Byte) 610 | (lambda (mstate::MachineState) 611 | (bv-extract 783 776 mstate) 612 | ) 613 | ) 614 | 615 | ; getreg32(reg,state). Return the value of register 'reg' from state 'state'. 616 | (define getreg32::(-> RegIdx MachineState Dword) 617 | (lambda (x::RegIdx s::MachineState) 618 | (let ((z (getregstate s))) 619 | (ite (= x R0Idx) (bv-extract 31 0 z) 620 | (ite (= x R1Idx) (bv-extract 63 32 z) 621 | (ite (= x R2Idx) (bv-extract 95 64 z) 622 | (ite (= x R3Idx) (bv-extract 127 96 z) 623 | (ite (= x R4Idx) (bv-extract 159 128 z) 624 | (ite (= x R5Idx) (bv-extract 191 160 z) 625 | (ite (= x R6Idx) (bv-extract 223 192 z) 626 | (bv-extract 255 224 z) 627 | )))))))) 628 | ) 629 | ) 630 | 631 | (define getmachinestate::(-> DecodedMachineState MachineState) 632 | (lambda (s::DecodedMachineState ) 633 | (bv-extract 865 0 s) 634 | ) 635 | ) 636 | 637 | (define getinsnlen::(-> DecodedMachineState Byte) 638 | (lambda (s::DecodedMachineState) 639 | (bv-extract 873 866 s) 640 | ) 641 | ) 642 | 643 | (define getextra::(-> DecodedMachineState Bit) 644 | (lambda (s::DecodedMachineState) 645 | (bv-extract 874 874 s) 646 | ) 647 | ) 648 | 649 | (define getisjcc::(-> DecodedMachineState Bit) 650 | (lambda (s::DecodedMachineState) 651 | (bv-extract 875 875 s) 652 | ) 653 | ) 654 | 655 | ; putreg32(reg,state,value). Update register 'reg' to value 'value' in state 656 | ; 'state'; return the new state. 657 | (define putreg32::(-> RegIdx Dword MachineState MachineState) 658 | (lambda (x::RegIdx y::Dword s::MachineState) 659 | (let ((z (getregstate s))) 660 | (bv-concat (bv-extract 865 256 s) 661 | (ite (= x 0b000) (bv-concat (bv-extract 255 32 z) y) 662 | (ite (= x 0b001) (bv-concat (bv-extract 255 64 z) y (bv-extract 31 0 z)) 663 | (ite (= x 0b010) (bv-concat (bv-extract 255 96 z) y (bv-extract 63 0 z)) 664 | (ite (= x 0b011) (bv-concat (bv-extract 255 128 z) y (bv-extract 95 0 z)) 665 | (ite (= x 0b100) (bv-concat (bv-extract 255 160 z) y (bv-extract 127 0 z)) 666 | (ite (= x 0b101) (bv-concat (bv-extract 255 192 z) y (bv-extract 159 0 z)) 667 | (ite (= x 0b110) (bv-concat (bv-extract 255 224 z) y (bv-extract 191 0 z)) 668 | (bv-concat y (bv-extract 223 0 z)) 669 | ))))))))) 670 | ) 671 | ) 672 | 673 | (define putscbyte::(-> MachineState Byte MachineState) 674 | (lambda (mstate::MachineState b::Byte) 675 | (let ((sc (getscstate mstate))) 676 | (let ((scptr (getscptr mstate))) 677 | (let ((eidx (bv-concat (bv-repeat 0x00 63) scptr))) 678 | (let ((eshv (bv-shl eidx (bv-concat (bv-repeat 0x00 63) 0x03)))) 679 | (let ((bvmask (bv-shl (bv-concat (bv-repeat 0x00 63) 0xFF) eshv))) 680 | (let ((ebyte (bv-shl (bv-concat (bv-repeat 0x00 63) b) eshv))) 681 | (let ((newsc (bv-or (bv-and sc (bv-not bvmask)) ebyte))) 682 | (bv-concat (geteipmask mstate) (geteipbuffer mstate) (bv-add scptr 0x01) newsc (getregstate mstate)) 683 | )))))))) 684 | ) 685 | 686 | (define puteip::(-> MachineState Byte MachineState) 687 | (lambda (mstate::MachineState eip::Byte) 688 | (let ((eipbuffer (geteipbuffer mstate))) 689 | (let ((eipmask (geteipmask mstate))) 690 | (let ((newmask (bv-concat (bv-extract 8 0 eipmask) 0b1))) 691 | (let ((newbuffer (bv-concat (bv-extract 71 0 eipbuffer) eip))) 692 | (bv-concat newmask newbuffer (bv-extract 775 0 mstate)) 693 | ))))) 694 | ) 695 | 696 | (define finalize-normal-insn::(-> MachineState Byte Byte DecodedMachineState) 697 | (lambda (mstate::MachineState eip::Byte length::Byte) 698 | (bv-concat 0b0 0b1 length (puteip mstate eip)) 699 | ) 700 | ) 701 | 702 | (define bool-to-bit::(-> bool Bit) 703 | (lambda (b::bool) 704 | (ite b 0b1 0b0) 705 | ) 706 | ) 707 | 708 | (define finalize-conditional-jump::(-> MachineState Byte Byte Byte DecodedMachineState) 709 | (lambda (mstate::MachineState dest::Byte eip::Byte length::Byte) 710 | (let ((eipbuffer (geteipbuffer mstate))) 711 | (let ((eipmask (geteipmask mstate))) 712 | (let ((extra 713 | (bv-or 714 | (bv-and (bv-extract 0 0 eipmask) (bool-to-bit (= dest (bv-extract 7 0 eipbuffer)))) 715 | (bv-and (bv-extract 1 1 eipmask) (bool-to-bit (= dest (bv-extract 15 8 eipbuffer)))) 716 | (bv-and (bv-extract 2 2 eipmask) (bool-to-bit (= dest (bv-extract 23 16 eipbuffer)))) 717 | (bv-and (bv-extract 3 3 eipmask) (bool-to-bit (= dest (bv-extract 31 24 eipbuffer)))) 718 | (bv-and (bv-extract 4 4 eipmask) (bool-to-bit (= dest (bv-extract 39 32 eipbuffer)))) 719 | (bv-and (bv-extract 5 5 eipmask) (bool-to-bit (= dest (bv-extract 47 40 eipbuffer)))) 720 | (bv-and (bv-extract 6 6 eipmask) (bool-to-bit (= dest (bv-extract 55 48 eipbuffer)))) 721 | (bv-and (bv-extract 7 7 eipmask) (bool-to-bit (= dest (bv-extract 63 56 eipbuffer)))) 722 | (bv-and (bv-extract 8 8 eipmask) (bool-to-bit (= dest (bv-extract 71 64 eipbuffer)))) 723 | (bv-and (bv-extract 9 9 eipmask) (bool-to-bit (= dest (bv-extract 79 72 eipbuffer)))) 724 | ) 725 | )) 726 | (bv-concat 0b1 extra length (puteip mstate eip))))) 727 | ) 728 | ) 729 | 730 | ; symbolic-insn(eip,state). Decode an instruction at eip 'eip'. Perform the 731 | ; operation specified by that instruction. Consult and update the state 'state' 732 | ; accordingly; return the new state concatenated with the length of the 733 | ; instruction. In other words, this function simulates the effects of executing 734 | ; every possible instruction. 735 | (define symbolic-insn::(-> (-> Byte Byte) Byte MachineState DecodedMachineState) 736 | (lambda (f-get-byte::(-> Byte Byte) eip::Byte state::MachineState) 737 | (let ((byte0 (f-get-byte eip))) 738 | (let ((byte1 (f-get-byte (bv-add 0x01 eip)))) 739 | (let ((byte2 (f-get-byte (bv-add 0x02 eip)))) 740 | (let ((byte3 (f-get-byte (bv-add 0x03 eip)))) 741 | (let ((byte4 (f-get-byte (bv-add 0x04 eip)))) 742 | (let ((eip-plus-one (bv-add eip 0x01))) 743 | (let ((eip-plus-two (bv-add eip 0x02))) 744 | (let ((eip-plus-five (bv-add eip 0x05))) 745 | ; xor reg, reg 746 | (ite (= (bv-and byte0 0xC0) 0x00) 747 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 748 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 749 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state))) 750 | (finalize-normal-insn newstate eip-plus-one 0x01) 751 | ))) 752 | ; add reg, reg 753 | (ite (= (bv-and byte0 0xC0) 0x40) 754 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 755 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 756 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) (getreg32 rhsreg0 state)) state))) 757 | (finalize-normal-insn newstate eip-plus-one 0x01) 758 | ))) 759 | ; mov reg, reg 760 | (ite (= (bv-and byte0 0xC0) 0x80) 761 | (let ((lhsreg0 (bv-extract 5 3 byte0))) 762 | (let ((rhsreg0 (bv-extract 2 0 byte0))) 763 | (let ((newstate (putreg32 lhsreg0 (getreg32 rhsreg0 state) state))) 764 | (finalize-normal-insn newstate eip-plus-one 0x01) 765 | ))) 766 | ; complex 0xC0 case 767 | (let ((opcode (bv-extract 5 3 byte0))) 768 | (let ((lhsreg0 (bv-extract 2 0 byte0))) 769 | ; CHANGED: getscbyte rX 770 | (ite (= opcode 0b000) 771 | (let ((newstate (putreg32 lhsreg0 (bv-zero-extend (getscbyte state) 24) state))) 772 | (finalize-normal-insn newstate eip-plus-one 0x01)) 773 | ; CHANGED: putscbyte rX 774 | (ite (= opcode 0b001) 775 | (let ((newstate (putscbyte state (bv-extract 7 0 (getreg32 lhsreg0 state))))) 776 | (finalize-normal-insn newstate eip-plus-one 0x01)) 777 | ; neg reg 778 | (ite (= opcode 0b010) 779 | (let ((newstate (putreg32 lhsreg0 (bv-neg (getreg32 lhsreg0 state)) state))) 780 | (finalize-normal-insn newstate eip-plus-one 0x01)) 781 | ; not reg 782 | (ite (= opcode 0b011) 783 | (let ((newstate (putreg32 lhsreg0 (bv-not (getreg32 lhsreg0 state)) state))) 784 | (finalize-normal-insn newstate eip-plus-one 0x01)) 785 | (let ((rhsval0 (bv-concat byte4 byte3 byte2 byte1))) 786 | ; add reg, imm32 787 | (ite (= opcode 0b100) 788 | (let ((newstate (putreg32 lhsreg0 (bv-add (getreg32 lhsreg0 state) rhsval0) state))) 789 | (finalize-normal-insn newstate eip-plus-five 0x05)) 790 | ; xor reg, imm32 791 | (ite (= opcode 0b101) 792 | (let ((newstate (putreg32 lhsreg0 (bv-xor (getreg32 lhsreg0 state) rhsval0) state))) 793 | (finalize-normal-insn newstate eip-plus-five 0x05)) 794 | ; CHANGED: mov reg, imm32 795 | (ite (= opcode 0b110) 796 | (let ((newstate (putreg32 lhsreg0 rhsval0 state))) 797 | (finalize-normal-insn newstate eip-plus-five 0x05)) 798 | ; opcode == 0b111 799 | ; CHANGED: jnz rel 800 | (let ((dest (bv-add eip-plus-two byte1))) 801 | (finalize-conditional-jump state dest (ite (= 0x00000000 (getreg32 lhsreg0 state)) eip-plus-two dest) 0x02) 802 | ))))))))))))))) 803 | ))))))) 804 | ) 805 | ) 806 | 807 | ; The main assertion. 808 | (assert 809 | ; For every possible input state (r0, ..., r7). 810 | ; There is an additional universally-quantified variable idx: used to make 811 | ; statements about the bytes in the encoding. 812 | (forall (r0::Dword r1::Dword r2::Dword r3::Dword r4::Dword r5::Dword r6::Dword r7::Dword idx::Dword scptr::Byte) 813 | 814 | (let ((initialsc (bv-concat shellcode3F shellcode3E shellcode3D shellcode3C shellcode3B shellcode3A shellcode39 shellcode38 shellcode37 shellcode36 shellcode35 shellcode34 shellcode33 shellcode32 shellcode31 shellcode30 shellcode2F shellcode2E shellcode2D shellcode2C shellcode2B shellcode2A shellcode29 shellcode28 shellcode27 shellcode26 shellcode25 shellcode24 shellcode23 shellcode22 shellcode21 shellcode20 shellcode1F shellcode1E shellcode1D shellcode1C shellcode1B shellcode1A shellcode19 shellcode18 shellcode17 shellcode16 shellcode15 shellcode14 shellcode13 shellcode12 shellcode11 shellcode10 shellcode0F shellcode0E shellcode0D shellcode0C shellcode0B shellcode0A shellcode09 shellcode08 shellcode07 shellcode06 shellcode05 shellcode04 shellcode03 shellcode02 shellcode01 shellcode00))) 815 | 816 | (let ((sclength 0x00000040)) 817 | 818 | ; ------------------------ 819 | ; INITIALIZE STATE AND EIP 820 | ; ------------------------ 821 | ; Set initial EIP to zero. 822 | (let ((eip0 0x00)) 823 | ; Create the input "state" by concatenating all of the inputs. 824 | (let ((state0 (bv-concat (bv-repeat 0b0 10) (bv-repeat 0x00 10) scptr initialsc r7 r6 r5 r4 r3 r2 r1 r0))) 825 | 826 | ; ------------------------ 827 | ; SIMULATE ONE INSTRUCTION 828 | ; ------------------------ 829 | 830 | ; Perform symbolic simulation of one instruction (any instruction). 831 | (let ((synsem0 (symbolic-insn get-byte eip0 state0))) 832 | ; Extract the length of the instruction. 833 | (let ((insn0len (getinsnlen synsem0))) 834 | ; Extract any "extra" constraints that must be satisfied 835 | (let ((extra0 (getextra synsem0))) 836 | ; Extract the flow type 837 | (let ((isjcc0 (getisjcc synsem0))) 838 | ; Extract the output state after having executed the instruction. 839 | (let ((state1 (getmachinestate synsem0))) 840 | ; Extract EIP after executing the instruction. 841 | (let ((eip1 (geteip state1))) 842 | 843 | ; ------------------------ 844 | ; SIMULATE ONE INSTRUCTION 845 | ; ------------------------ 846 | 847 | ; Create the input "state" by concatenating all of the inputs. 848 | (let ((loopstate0 (bv-concat (bv-repeat 0b0 9) 0b1 (bv-repeat 0x00 9) eip1 scptr initialsc r7 r6 r5 r4 r3 r2 r1 r0))) 849 | ; Perform symbolic simulation of one instruction (any instruction). 850 | (let ((synsem1 (symbolic-insn get-byte eip1 loopstate0))) 851 | ; Extract the length of the instruction. 852 | (let ((insn1len (getinsnlen synsem1))) 853 | ; Extract any "extra" constraints that must be satisfied 854 | (let ((extra1 (getextra synsem1))) 855 | ; Extract the flow type 856 | (let ((isjcc1 (getisjcc synsem1))) 857 | ; Extract the output state after having executed the instruction. 858 | (let ((state2 (getmachinestate synsem1))) 859 | ; Extract EIP after executing the instruction. 860 | (let ((eip2 (geteip state2))) 861 | 862 | ; ------------------------ 863 | ; SIMULATE ONE INSTRUCTION 864 | ; ------------------------ 865 | 866 | ; Perform symbolic simulation of one instruction (any instruction). 867 | (let ((synsem2 (symbolic-insn get-byte eip2 state2))) 868 | ; Extract the length of the instruction. 869 | (let ((insn2len (getinsnlen synsem2))) 870 | ; Extract any "extra" constraints that must be satisfied 871 | (let ((extra2 (getextra synsem2))) 872 | ; Extract the flow type 873 | (let ((isjcc2 (getisjcc synsem2))) 874 | ; Extract the output state after having executed the instruction. 875 | (let ((state3 (getmachinestate synsem2))) 876 | ; Extract EIP after executing the instruction. 877 | (let ((eip3 (geteip state3))) 878 | 879 | ; ------------------------ 880 | ; SIMULATE ONE INSTRUCTION 881 | ; ------------------------ 882 | 883 | ; Perform symbolic simulation of one instruction (any instruction). 884 | (let ((synsem3 (symbolic-insn get-byte eip3 state3))) 885 | ; Extract the length of the instruction. 886 | (let ((insn3len (getinsnlen synsem3))) 887 | ; Extract any "extra" constraints that must be satisfied 888 | (let ((extra3 (getextra synsem3))) 889 | ; Extract the flow type 890 | (let ((isjcc3 (getisjcc synsem3))) 891 | ; Extract the output state after having executed the instruction. 892 | (let ((state4 (getmachinestate synsem3))) 893 | ; Extract EIP after executing the instruction. 894 | (let ((eip4 (geteip state4))) 895 | 896 | ; ------------------------ 897 | ; SIMULATE ONE INSTRUCTION 898 | ; ------------------------ 899 | 900 | ; Perform symbolic simulation of one instruction (any instruction). 901 | (let ((synsem4 (symbolic-insn get-byte eip4 state4))) 902 | ; Extract the length of the instruction. 903 | (let ((insn4len (getinsnlen synsem4))) 904 | ; Extract any "extra" constraints that must be satisfied 905 | (let ((extra4 (getextra synsem4))) 906 | ; Extract the flow type 907 | (let ((isjcc4 (getisjcc synsem4))) 908 | ; Extract the output state after having executed the instruction. 909 | (let ((state5 (getmachinestate synsem4))) 910 | ; Extract EIP after executing the instruction. 911 | (let ((eip5 (geteip state5))) 912 | 913 | (let ((finalloopstate state5)) 914 | 915 | ; ------------------------ 916 | ; SIMULATE ONE INSTRUCTION 917 | ; ------------------------ 918 | 919 | ; Perform symbolic simulation of one instruction (any instruction). 920 | (let ((synsem5 (symbolic-insn get-byte eip5 state5))) 921 | ; Extract the length of the instruction. 922 | (let ((insn5len (getinsnlen synsem5))) 923 | ; Extract any "extra" constraints that must be satisfied 924 | (let ((extra5 (getextra synsem5))) 925 | ; Extract the flow type 926 | (let ((isjcc5 (getisjcc synsem5))) 927 | ; Extract the output state after having executed the instruction. 928 | (let ((state6 (getmachinestate synsem5))) 929 | ; Extract EIP after executing the instruction. 930 | (let ((eip6 (geteip state6))) 931 | 932 | ; ---------------------- 933 | ; FINALIZE STATE AND EIP 934 | ; ---------------------- 935 | 936 | ; Call the final state "finalstate" (for convenience). 937 | (let ((finalstate state6)) 938 | ; Call the final EIP "finaleip" (for convenience). 939 | (let ((finaleip eip6)) 940 | 941 | (let ((lasteip (bv-add eip5 insn5len))) 942 | 943 | (let ((idxlow (bv-extract 7 0 idx))) 944 | (let ((sclengthlow (bv-extract 7 0 sclength))) 945 | (let ((l0scptr (getscptr loopstate0))) 946 | 947 | ; -------------------------------------------------- 948 | ; ISSUE CONSTRAINTS ABOUT FUNCTIONALITY AND ENCODING 949 | ; -------------------------------------------------- 950 | 951 | (and 952 | ; 0-length instructions are invalid; all instructions must be valid. 953 | (not (= insn0len 0x00)) 954 | (not (= insn1len 0x00)) 955 | (not (= insn2len 0x00)) 956 | (not (= insn3len 0x00)) 957 | (not (= insn4len 0x00)) 958 | (not (= insn5len 0x00)) 959 | 960 | ; All "extra" constraints must be satisfied 961 | (= 0b1 extra0) 962 | (= 0b1 extra1) 963 | (= 0b1 extra2) 964 | (= 0b1 extra3) 965 | (= 0b1 extra4) 966 | (= 0b1 extra5) 967 | 968 | ; Only the last instruction is a jump 969 | (= 0b0 isjcc0) 970 | (= 0b0 isjcc1) 971 | (= 0b0 isjcc2) 972 | (= 0b0 isjcc3) 973 | (= 0b0 isjcc4) 974 | (= 0b1 isjcc5) 975 | 976 | ; All of the instructions, except the last, fall through. 977 | (= eip1 (bv-add eip0 insn0len)) 978 | (= eip2 (bv-add eip1 insn1len)) 979 | (= eip3 (bv-add eip2 insn2len)) 980 | (= eip4 (bv-add eip3 insn3len)) 981 | (= eip5 (bv-add eip4 insn3len)) 982 | 983 | ; At least one of the encoded shellcode bytes differs 984 | (not (= shellcode00 realscbyte00)) 985 | 986 | ; ----------------------------------- 987 | ; CONSTRAINTS REGARDING FUNCTIONALITY 988 | ; ----------------------------------- 989 | 990 | ; Some register contains the shellcode length after the first block. 991 | (= (getreg32 WhichReg state1) sclength) 992 | 993 | ; The iteration counter has decreased by one, AND 994 | (= (bv-add (getreg32 WhichReg finalloopstate) 0x00000001) (getreg32 WhichReg loopstate0)) 995 | ; The shellcode pointer has increased by one, AND 996 | (= (getscptr finalloopstate) (bv-add l0scptr 0x01)) 997 | ; Implication: 998 | (=> 999 | (bv-lt l0scptr sclengthlow) 1000 | ; If the shellcode pointer is less than the shellcode length, THEN 1001 | (and 1002 | (compare-multiple-sc-bytes (getscstate loopstate0) (getscstate finalloopstate) l0scptr) 1003 | ; The same sc bytes are correct, plus the next one 1004 | (compare-sc-bytes (getscstate finalloopstate) realsc l0scptr) 1005 | ) 1006 | ; THEN IT MUST ALSO BE TRUE THAT, AFTER EXECUTING THE BLOCK ... 1007 | 1008 | ) 1009 | ; The EIP after executing the block is either the one after the loop, or at its beginning, AND 1010 | (= finaleip (ite (= 0x00000000 (getreg32 WhichReg finalstate)) lasteip eip1)) 1011 | 1012 | 1013 | ; ------------------------------ 1014 | ; CONSTRAINTS REGARDING ENCODING 1015 | ; ------------------------------ 1016 | ; None of the bytes are 0x12 1017 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x12)) 1018 | ; None of the bytes are 0x34 1019 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x34)) 1020 | ; None of the bytes are 0x56 1021 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x56)) 1022 | ; None of the bytes are 0x78 1023 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x78)) 1024 | ; None of the bytes are 0x00 (commented out) 1025 | ; (=> (bv-lt idx finaleip) (/= (get-byte idx) 0x00)) 1026 | ) ; end and 1027 | ))))))))))))))))))))))))))))))) ; end let * 17 1028 | ))))))))))))))))) ; end let SC STUFF 1029 | ) ; end forall 1030 | ) ; end assert 1031 | 1032 | ; Solve the constraint system 1033 | (ef-solve) 1034 | 1035 | ; Produce a model, i.e., values for bytecode00-bytecodeFF. 1036 | ; This statement will crash yices if (ef-solve) returned unsatisfiable. 1037 | (show-model) --------------------------------------------------------------------------------