├── FEM ├── 2-5 │ ├── 2-5.png │ ├── count.txt │ ├── data.txt │ ├── load.txt │ ├── mat.txt │ ├── node.txt │ ├── pre.txt │ ├── unit.txt │ └── unit2.txt ├── Main.m ├── To_Bke.m ├── To_P.m └── data │ ├── 2-5x.jpg │ ├── 2-5x1.jpg │ ├── 2-5xy.jpg │ ├── 2-5xy1.jpg │ ├── 2-5y.jpg │ ├── 2-5y1.jpg │ ├── Readme.md │ ├── load.txt │ ├── mat.txt │ ├── node.txt │ ├── pre.txt │ └── unit.txt └── README.md /FEM/2-5/2-5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Ron-Wang/FEM-Matlab/5438235a09fcead03bc8565988bbc9360ee06fdc/FEM/2-5/2-5.png -------------------------------------------------------------------------------- /FEM/2-5/count.txt: -------------------------------------------------------------------------------- 1 | 289 2 | 512 3 | 4 4 | 2 -------------------------------------------------------------------------------- /FEM/2-5/data.txt: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /FEM/2-5/load.txt: -------------------------------------------------------------------------------- 1 | 545 25 2 | 577 25 -------------------------------------------------------------------------------- /FEM/2-5/mat.txt: -------------------------------------------------------------------------------- 1 | 10000 0.15 10 -------------------------------------------------------------------------------- /FEM/2-5/node.txt: -------------------------------------------------------------------------------- 1 | 0 0 2 | 0.5 0 3 | 1 0 4 | 1.5 0 5 | 2 0 6 | 2.5 0 7 | 3 0 8 | 3.5 0 9 | 4 0 10 | 4.5 0 11 | 5 0 12 | 5.5 0 13 | 6 0 14 | 6.5 0 15 | 7 0 16 | 7.5 0 17 | 8 0 18 | 0 0.5 19 | 0.5 0.5 20 | 1 0.5 21 | 1.5 0.5 22 | 2 0.5 23 | 2.5 0.5 24 | 3 0.5 25 | 3.5 0.5 26 | 4 0.5 27 | 4.5 0.5 28 | 5 0.5 29 | 5.5 0.5 30 | 6 0.5 31 | 6.5 0.5 32 | 7 0.5 33 | 7.5 0.5 34 | 8 0.5 35 | 0 1 36 | 0.5 1 37 | 1 1 38 | 1.5 1 39 | 2 1 40 | 2.5 1 41 | 3 1 42 | 3.5 1 43 | 4 1 44 | 4.5 1 45 | 5 1 46 | 5.5 1 47 | 6 1 48 | 6.5 1 49 | 7 1 50 | 7.5 1 51 | 8 1 52 | 0 1.5 53 | 0.5 1.5 54 | 1 1.5 55 | 1.5 1.5 56 | 2 1.5 57 | 2.5 1.5 58 | 3 1.5 59 | 3.5 1.5 60 | 4 1.5 61 | 4.5 1.5 62 | 5 1.5 63 | 5.5 1.5 64 | 6 1.5 65 | 6.5 1.5 66 | 7 1.5 67 | 7.5 1.5 68 | 8 1.5 69 | 0 2 70 | 0.5 2 71 | 1 2 72 | 1.5 2 73 | 2 2 74 | 2.5 2 75 | 3 2 76 | 3.5 2 77 | 4 2 78 | 4.5 2 79 | 5 2 80 | 5.5 2 81 | 6 2 82 | 6.5 2 83 | 7 2 84 | 7.5 2 85 | 8 2 86 | 0 2.5 87 | 0.5 2.5 88 | 1 2.5 89 | 1.5 2.5 90 | 2 2.5 91 | 2.5 2.5 92 | 3 2.5 93 | 3.5 2.5 94 | 4 2.5 95 | 4.5 2.5 96 | 5 2.5 97 | 5.5 2.5 98 | 6 2.5 99 | 6.5 2.5 100 | 7 2.5 101 | 7.5 2.5 102 | 8 2.5 103 | 0 3 104 | 0.5 3 105 | 1 3 106 | 1.5 3 107 | 2 3 108 | 2.5 3 109 | 3 3 110 | 3.5 3 111 | 4 3 112 | 4.5 3 113 | 5 3 114 | 5.5 3 115 | 6 3 116 | 6.5 3 117 | 7 3 118 | 7.5 3 119 | 8 3 120 | 0 3.5 121 | 0.5 3.5 122 | 1 3.5 123 | 1.5 3.5 124 | 2 3.5 125 | 2.5 3.5 126 | 3 3.5 127 | 3.5 3.5 128 | 4 3.5 129 | 4.5 3.5 130 | 5 3.5 131 | 5.5 3.5 132 | 6 3.5 133 | 6.5 3.5 134 | 7 3.5 135 | 7.5 3.5 136 | 8 3.5 137 | 0 4 138 | 0.5 4 139 | 1 4 140 | 1.5 4 141 | 2 4 142 | 2.5 4 143 | 3 4 144 | 3.5 4 145 | 4 4 146 | 4.5 4 147 | 5 4 148 | 5.5 4 149 | 6 4 150 | 6.5 4 151 | 7 4 152 | 7.5 4 153 | 8 4 154 | 0 4.5 155 | 0.5 4.5 156 | 1 4.5 157 | 1.5 4.5 158 | 2 4.5 159 | 2.5 4.5 160 | 3 4.5 161 | 3.5 4.5 162 | 4 4.5 163 | 4.5 4.5 164 | 5 4.5 165 | 5.5 4.5 166 | 6 4.5 167 | 6.5 4.5 168 | 7 4.5 169 | 7.5 4.5 170 | 8 4.5 171 | 0 5 172 | 0.5 5 173 | 1 5 174 | 1.5 5 175 | 2 5 176 | 2.5 5 177 | 3 5 178 | 3.5 5 179 | 4 5 180 | 4.5 5 181 | 5 5 182 | 5.5 5 183 | 6 5 184 | 6.5 5 185 | 7 5 186 | 7.5 5 187 | 8 5 188 | 0 5.5 189 | 0.5 5.5 190 | 1 5.5 191 | 1.5 5.5 192 | 2 5.5 193 | 2.5 5.5 194 | 3 5.5 195 | 3.5 5.5 196 | 4 5.5 197 | 4.5 5.5 198 | 5 5.5 199 | 5.5 5.5 200 | 6 5.5 201 | 6.5 5.5 202 | 7 5.5 203 | 7.5 5.5 204 | 8 5.5 205 | 0 6 206 | 0.5 6 207 | 1 6 208 | 1.5 6 209 | 2 6 210 | 2.5 6 211 | 3 6 212 | 3.5 6 213 | 4 6 214 | 4.5 6 215 | 5 6 216 | 5.5 6 217 | 6 6 218 | 6.5 6 219 | 7 6 220 | 7.5 6 221 | 8 6 222 | 0 6.5 223 | 0.5 6.5 224 | 1 6.5 225 | 1.5 6.5 226 | 2 6.5 227 | 2.5 6.5 228 | 3 6.5 229 | 3.5 6.5 230 | 4 6.5 231 | 4.5 6.5 232 | 5 6.5 233 | 5.5 6.5 234 | 6 6.5 235 | 6.5 6.5 236 | 7 6.5 237 | 7.5 6.5 238 | 8 6.5 239 | 0 7 240 | 0.5 7 241 | 1 7 242 | 1.5 7 243 | 2 7 244 | 2.5 7 245 | 3 7 246 | 3.5 7 247 | 4 7 248 | 4.5 7 249 | 5 7 250 | 5.5 7 251 | 6 7 252 | 6.5 7 253 | 7 7 254 | 7.5 7 255 | 8 7 256 | 0 7.5 257 | 0.5 7.5 258 | 1 7.5 259 | 1.5 7.5 260 | 2 7.5 261 | 2.5 7.5 262 | 3 7.5 263 | 3.5 7.5 264 | 4 7.5 265 | 4.5 7.5 266 | 5 7.5 267 | 5.5 7.5 268 | 6 7.5 269 | 6.5 7.5 270 | 7 7.5 271 | 7.5 7.5 272 | 8 7.5 273 | 0 8 274 | 0.5 8 275 | 1 8 276 | 1.5 8 277 | 2 8 278 | 2.5 8 279 | 3 8 280 | 3.5 8 281 | 4 8 282 | 4.5 8 283 | 5 8 284 | 5.5 8 285 | 6 8 286 | 6.5 8 287 | 7 8 288 | 7.5 8 289 | 8 8 290 | -------------------------------------------------------------------------------- /FEM/2-5/pre.txt: -------------------------------------------------------------------------------- 1 | 0 0 2 | 33 0 3 | 32 0 4 | 1 0 -------------------------------------------------------------------------------- /FEM/2-5/unit.txt: -------------------------------------------------------------------------------- 1 | 0 1 17 2 | 1 18 17 3 | 1 2 18 4 | 2 19 18 5 | 2 3 19 6 | 3 20 19 7 | 3 4 20 8 | 4 21 20 9 | 4 5 21 10 | 5 22 21 11 | 5 6 22 12 | 6 23 22 13 | 6 7 23 14 | 7 24 23 15 | 7 8 24 16 | 8 25 24 17 | 8 9 25 18 | 9 26 25 19 | 9 10 26 20 | 10 27 26 21 | 10 11 27 22 | 11 28 27 23 | 11 12 28 24 | 12 29 28 25 | 12 13 29 26 | 13 30 29 27 | 13 14 30 28 | 14 31 30 29 | 14 15 31 30 | 15 32 31 31 | 15 16 32 32 | 16 33 32 33 | 17 18 34 34 | 18 35 34 35 | 18 19 35 36 | 19 36 35 37 | 19 20 36 38 | 20 37 36 39 | 20 21 37 40 | 21 38 37 41 | 21 22 38 42 | 22 39 38 43 | 22 23 39 44 | 23 40 39 45 | 23 24 40 46 | 24 41 40 47 | 24 25 41 48 | 25 42 41 49 | 25 26 42 50 | 26 43 42 51 | 26 27 43 52 | 27 44 43 53 | 27 28 44 54 | 28 45 44 55 | 28 29 45 56 | 29 46 45 57 | 29 30 46 58 | 30 47 46 59 | 30 31 47 60 | 31 48 47 61 | 31 32 48 62 | 32 49 48 63 | 32 33 49 64 | 33 50 49 65 | 34 35 51 66 | 35 52 51 67 | 35 36 52 68 | 36 53 52 69 | 36 37 53 70 | 37 54 53 71 | 37 38 54 72 | 38 55 54 73 | 38 39 55 74 | 39 56 55 75 | 39 40 56 76 | 40 57 56 77 | 40 41 57 78 | 41 58 57 79 | 41 42 58 80 | 42 59 58 81 | 42 43 59 82 | 43 60 59 83 | 43 44 60 84 | 44 61 60 85 | 44 45 61 86 | 45 62 61 87 | 45 46 62 88 | 46 63 62 89 | 46 47 63 90 | 47 64 63 91 | 47 48 64 92 | 48 65 64 93 | 48 49 65 94 | 49 66 65 95 | 49 50 66 96 | 50 67 66 97 | 51 52 68 98 | 52 69 68 99 | 52 53 69 100 | 53 70 69 101 | 53 54 70 102 | 54 71 70 103 | 54 55 71 104 | 55 72 71 105 | 55 56 72 106 | 56 73 72 107 | 56 57 73 108 | 57 74 73 109 | 57 58 74 110 | 58 75 74 111 | 58 59 75 112 | 59 76 75 113 | 59 60 76 114 | 60 77 76 115 | 60 61 77 116 | 61 78 77 117 | 61 62 78 118 | 62 79 78 119 | 62 63 79 120 | 63 80 79 121 | 63 64 80 122 | 64 81 80 123 | 64 65 81 124 | 65 82 81 125 | 65 66 82 126 | 66 83 82 127 | 66 67 83 128 | 67 84 83 129 | 68 69 85 130 | 69 86 85 131 | 69 70 86 132 | 70 87 86 133 | 70 71 87 134 | 71 88 87 135 | 71 72 88 136 | 72 89 88 137 | 72 73 89 138 | 73 90 89 139 | 73 74 90 140 | 74 91 90 141 | 74 75 91 142 | 75 92 91 143 | 75 76 92 144 | 76 93 92 145 | 76 77 93 146 | 77 94 93 147 | 77 78 94 148 | 78 95 94 149 | 78 79 95 150 | 79 96 95 151 | 79 80 96 152 | 80 97 96 153 | 80 81 97 154 | 81 98 97 155 | 81 82 98 156 | 82 99 98 157 | 82 83 99 158 | 83 100 99 159 | 83 84 100 160 | 84 101 100 161 | 85 86 102 162 | 86 103 102 163 | 86 87 103 164 | 87 104 103 165 | 87 88 104 166 | 88 105 104 167 | 88 89 105 168 | 89 106 105 169 | 89 90 106 170 | 90 107 106 171 | 90 91 107 172 | 91 108 107 173 | 91 92 108 174 | 92 109 108 175 | 92 93 109 176 | 93 110 109 177 | 93 94 110 178 | 94 111 110 179 | 94 95 111 180 | 95 112 111 181 | 95 96 112 182 | 96 113 112 183 | 96 97 113 184 | 97 114 113 185 | 97 98 114 186 | 98 115 114 187 | 98 99 115 188 | 99 116 115 189 | 99 100 116 190 | 100 117 116 191 | 100 101 117 192 | 101 118 117 193 | 102 103 119 194 | 103 120 119 195 | 103 104 120 196 | 104 121 120 197 | 104 105 121 198 | 105 122 121 199 | 105 106 122 200 | 106 123 122 201 | 106 107 123 202 | 107 124 123 203 | 107 108 124 204 | 108 125 124 205 | 108 109 125 206 | 109 126 125 207 | 109 110 126 208 | 110 127 126 209 | 110 111 127 210 | 111 128 127 211 | 111 112 128 212 | 112 129 128 213 | 112 113 129 214 | 113 130 129 215 | 113 114 130 216 | 114 131 130 217 | 114 115 131 218 | 115 132 131 219 | 115 116 132 220 | 116 133 132 221 | 116 117 133 222 | 117 134 133 223 | 117 118 134 224 | 118 135 134 225 | 119 120 136 226 | 120 137 136 227 | 120 121 137 228 | 121 138 137 229 | 121 122 138 230 | 122 139 138 231 | 122 123 139 232 | 123 140 139 233 | 123 124 140 234 | 124 141 140 235 | 124 125 141 236 | 125 142 141 237 | 125 126 142 238 | 126 143 142 239 | 126 127 143 240 | 127 144 143 241 | 127 128 144 242 | 128 145 144 243 | 128 129 145 244 | 129 146 145 245 | 129 130 146 246 | 130 147 146 247 | 130 131 147 248 | 131 148 147 249 | 131 132 148 250 | 132 149 148 251 | 132 133 149 252 | 133 150 149 253 | 133 134 150 254 | 134 151 150 255 | 134 135 151 256 | 135 152 151 257 | 136 137 153 258 | 137 154 153 259 | 137 138 154 260 | 138 155 154 261 | 138 139 155 262 | 139 156 155 263 | 139 140 156 264 | 140 157 156 265 | 140 141 157 266 | 141 158 157 267 | 141 142 158 268 | 142 159 158 269 | 142 143 159 270 | 143 160 159 271 | 143 144 160 272 | 144 161 160 273 | 144 145 161 274 | 145 162 161 275 | 145 146 162 276 | 146 163 162 277 | 146 147 163 278 | 147 164 163 279 | 147 148 164 280 | 148 165 164 281 | 148 149 165 282 | 149 166 165 283 | 149 150 166 284 | 150 167 166 285 | 150 151 167 286 | 151 168 167 287 | 151 152 168 288 | 152 169 168 289 | 153 154 170 290 | 154 171 170 291 | 154 155 171 292 | 155 172 171 293 | 155 156 172 294 | 156 173 172 295 | 156 157 173 296 | 157 174 173 297 | 157 158 174 298 | 158 175 174 299 | 158 159 175 300 | 159 176 175 301 | 159 160 176 302 | 160 177 176 303 | 160 161 177 304 | 161 178 177 305 | 161 162 178 306 | 162 179 178 307 | 162 163 179 308 | 163 180 179 309 | 163 164 180 310 | 164 181 180 311 | 164 165 181 312 | 165 182 181 313 | 165 166 182 314 | 166 183 182 315 | 166 167 183 316 | 167 184 183 317 | 167 168 184 318 | 168 185 184 319 | 168 169 185 320 | 169 186 185 321 | 170 171 187 322 | 171 188 187 323 | 171 172 188 324 | 172 189 188 325 | 172 173 189 326 | 173 190 189 327 | 173 174 190 328 | 174 191 190 329 | 174 175 191 330 | 175 192 191 331 | 175 176 192 332 | 176 193 192 333 | 176 177 193 334 | 177 194 193 335 | 177 178 194 336 | 178 195 194 337 | 178 179 195 338 | 179 196 195 339 | 179 180 196 340 | 180 197 196 341 | 180 181 197 342 | 181 198 197 343 | 181 182 198 344 | 182 199 198 345 | 182 183 199 346 | 183 200 199 347 | 183 184 200 348 | 184 201 200 349 | 184 185 201 350 | 185 202 201 351 | 185 186 202 352 | 186 203 202 353 | 187 188 204 354 | 188 205 204 355 | 188 189 205 356 | 189 206 205 357 | 189 190 206 358 | 190 207 206 359 | 190 191 207 360 | 191 208 207 361 | 191 192 208 362 | 192 209 208 363 | 192 193 209 364 | 193 210 209 365 | 193 194 210 366 | 194 211 210 367 | 194 195 211 368 | 195 212 211 369 | 195 196 212 370 | 196 213 212 371 | 196 197 213 372 | 197 214 213 373 | 197 198 214 374 | 198 215 214 375 | 198 199 215 376 | 199 216 215 377 | 199 200 216 378 | 200 217 216 379 | 200 201 217 380 | 201 218 217 381 | 201 202 218 382 | 202 219 218 383 | 202 203 219 384 | 203 220 219 385 | 204 205 221 386 | 205 222 221 387 | 205 206 222 388 | 206 223 222 389 | 206 207 223 390 | 207 224 223 391 | 207 208 224 392 | 208 225 224 393 | 208 209 225 394 | 209 226 225 395 | 209 210 226 396 | 210 227 226 397 | 210 211 227 398 | 211 228 227 399 | 211 212 228 400 | 212 229 228 401 | 212 213 229 402 | 213 230 229 403 | 213 214 230 404 | 214 231 230 405 | 214 215 231 406 | 215 232 231 407 | 215 216 232 408 | 216 233 232 409 | 216 217 233 410 | 217 234 233 411 | 217 218 234 412 | 218 235 234 413 | 218 219 235 414 | 219 236 235 415 | 219 220 236 416 | 220 237 236 417 | 221 222 238 418 | 222 239 238 419 | 222 223 239 420 | 223 240 239 421 | 223 224 240 422 | 224 241 240 423 | 224 225 241 424 | 225 242 241 425 | 225 226 242 426 | 226 243 242 427 | 226 227 243 428 | 227 244 243 429 | 227 228 244 430 | 228 245 244 431 | 228 229 245 432 | 229 246 245 433 | 229 230 246 434 | 230 247 246 435 | 230 231 247 436 | 231 248 247 437 | 231 232 248 438 | 232 249 248 439 | 232 233 249 440 | 233 250 249 441 | 233 234 250 442 | 234 251 250 443 | 234 235 251 444 | 235 252 251 445 | 235 236 252 446 | 236 253 252 447 | 236 237 253 448 | 237 254 253 449 | 238 239 255 450 | 239 256 255 451 | 239 240 256 452 | 240 257 256 453 | 240 241 257 454 | 241 258 257 455 | 241 242 258 456 | 242 259 258 457 | 242 243 259 458 | 243 260 259 459 | 243 244 260 460 | 244 261 260 461 | 244 245 261 462 | 245 262 261 463 | 245 246 262 464 | 246 263 262 465 | 246 247 263 466 | 247 264 263 467 | 247 248 264 468 | 248 265 264 469 | 248 249 265 470 | 249 266 265 471 | 249 250 266 472 | 250 267 266 473 | 250 251 267 474 | 251 268 267 475 | 251 252 268 476 | 252 269 268 477 | 252 253 269 478 | 253 270 269 479 | 253 254 270 480 | 254 271 270 481 | 255 256 272 482 | 256 273 272 483 | 256 257 273 484 | 257 274 273 485 | 257 258 274 486 | 258 275 274 487 | 258 259 275 488 | 259 276 275 489 | 259 260 276 490 | 260 277 276 491 | 260 261 277 492 | 261 278 277 493 | 261 262 278 494 | 262 279 278 495 | 262 263 279 496 | 263 280 279 497 | 263 264 280 498 | 264 281 280 499 | 264 265 281 500 | 265 282 281 501 | 265 266 282 502 | 266 283 282 503 | 266 267 283 504 | 267 284 283 505 | 267 268 284 506 | 268 285 284 507 | 268 269 285 508 | 269 286 285 509 | 269 270 286 510 | 270 287 286 511 | 270 271 287 512 | 271 288 287 513 | -------------------------------------------------------------------------------- /FEM/2-5/unit2.txt: -------------------------------------------------------------------------------- 1 | 0,1,18 2 | 0,18,17 3 | 1,2,19 4 | 1,19,18 5 | 2,3,20 6 | 2,20,19 7 | 3,4,21 8 | 3,21,20 9 | 4,5,22 10 | 4,22,21 11 | 5,6,23 12 | 5,23,22 13 | 6,7,24 14 | 6,24,23 15 | 7,8,25 16 | 7,25,24 17 | 8,9,26 18 | 8,26,25 19 | 9,10,27 20 | 9,27,26 21 | 10,11,28 22 | 10,28,27 23 | 11,12,29 24 | 11,29,28 25 | 12,13,30 26 | 12,30,29 27 | 13,14,31 28 | 13,31,30 29 | 14,15,32 30 | 14,32,31 31 | 15,16,33 32 | 15,33,32 33 | 17,18,35 34 | 17,35,34 35 | 18,19,36 36 | 18,36,35 37 | 19,20,37 38 | 19,37,36 39 | 20,21,38 40 | 20,38,37 41 | 21,22,39 42 | 21,39,38 43 | 22,23,40 44 | 22,40,39 45 | 23,24,41 46 | 23,41,40 47 | 24,25,42 48 | 24,42,41 49 | 25,26,43 50 | 25,43,42 51 | 26,27,44 52 | 26,44,43 53 | 27,28,45 54 | 27,45,44 55 | 28,29,46 56 | 28,46,45 57 | 29,30,47 58 | 29,47,46 59 | 30,31,48 60 | 30,48,47 61 | 31,32,49 62 | 31,49,48 63 | 32,33,50 64 | 32,50,49 65 | 34,35,52 66 | 34,52,51 67 | 35,36,53 68 | 35,53,52 69 | 36,37,54 70 | 36,54,53 71 | 37,38,55 72 | 37,55,54 73 | 38,39,56 74 | 38,56,55 75 | 39,40,57 76 | 39,57,56 77 | 40,41,58 78 | 40,58,57 79 | 41,42,59 80 | 41,59,58 81 | 42,43,60 82 | 42,60,59 83 | 43,44,61 84 | 43,61,60 85 | 44,45,62 86 | 44,62,61 87 | 45,46,63 88 | 45,63,62 89 | 46,47,64 90 | 46,64,63 91 | 47,48,65 92 | 47,65,64 93 | 48,49,66 94 | 48,66,65 95 | 49,50,67 96 | 49,67,66 97 | 51,52,69 98 | 51,69,68 99 | 52,53,70 100 | 52,70,69 101 | 53,54,71 102 | 53,71,70 103 | 54,55,72 104 | 54,72,71 105 | 55,56,73 106 | 55,73,72 107 | 56,57,74 108 | 56,74,73 109 | 57,58,75 110 | 57,75,74 111 | 58,59,76 112 | 58,76,75 113 | 59,60,77 114 | 59,77,76 115 | 60,61,78 116 | 60,78,77 117 | 61,62,79 118 | 61,79,78 119 | 62,63,80 120 | 62,80,79 121 | 63,64,81 122 | 63,81,80 123 | 64,65,82 124 | 64,82,81 125 | 65,66,83 126 | 65,83,82 127 | 66,67,84 128 | 66,84,83 129 | 68,69,86 130 | 68,86,85 131 | 69,70,87 132 | 69,87,86 133 | 70,71,88 134 | 70,88,87 135 | 71,72,89 136 | 71,89,88 137 | 72,73,90 138 | 72,90,89 139 | 73,74,91 140 | 73,91,90 141 | 74,75,92 142 | 74,92,91 143 | 75,76,93 144 | 75,93,92 145 | 76,77,94 146 | 76,94,93 147 | 77,78,95 148 | 77,95,94 149 | 78,79,96 150 | 78,96,95 151 | 79,80,97 152 | 79,97,96 153 | 80,81,98 154 | 80,98,97 155 | 81,82,99 156 | 81,99,98 157 | 82,83,100 158 | 82,100,99 159 | 83,84,101 160 | 83,101,100 161 | 85,86,103 162 | 85,103,102 163 | 86,87,104 164 | 86,104,103 165 | 87,88,105 166 | 87,105,104 167 | 88,89,106 168 | 88,106,105 169 | 89,90,107 170 | 89,107,106 171 | 90,91,108 172 | 90,108,107 173 | 91,92,109 174 | 91,109,108 175 | 92,93,110 176 | 92,110,109 177 | 93,94,111 178 | 93,111,110 179 | 94,95,112 180 | 94,112,111 181 | 95,96,113 182 | 95,113,112 183 | 96,97,114 184 | 96,114,113 185 | 97,98,115 186 | 97,115,114 187 | 98,99,116 188 | 98,116,115 189 | 99,100,117 190 | 99,117,116 191 | 100,101,118 192 | 100,118,117 193 | 102,103,120 194 | 102,120,119 195 | 103,104,121 196 | 103,121,120 197 | 104,105,122 198 | 104,122,121 199 | 105,106,123 200 | 105,123,122 201 | 106,107,124 202 | 106,124,123 203 | 107,108,125 204 | 107,125,124 205 | 108,109,126 206 | 108,126,125 207 | 109,110,127 208 | 109,127,126 209 | 110,111,128 210 | 110,128,127 211 | 111,112,129 212 | 111,129,128 213 | 112,113,130 214 | 112,130,129 215 | 113,114,131 216 | 113,131,130 217 | 114,115,132 218 | 114,132,131 219 | 115,116,133 220 | 115,133,132 221 | 116,117,134 222 | 116,134,133 223 | 117,118,135 224 | 117,135,134 225 | 119,120,137 226 | 119,137,136 227 | 120,121,138 228 | 120,138,137 229 | 121,122,139 230 | 121,139,138 231 | 122,123,140 232 | 122,140,139 233 | 123,124,141 234 | 123,141,140 235 | 124,125,142 236 | 124,142,141 237 | 125,126,143 238 | 125,143,142 239 | 126,127,144 240 | 126,144,143 241 | 127,128,145 242 | 127,145,144 243 | 128,129,146 244 | 128,146,145 245 | 129,130,147 246 | 129,147,146 247 | 130,131,148 248 | 130,148,147 249 | 131,132,149 250 | 131,149,148 251 | 132,133,150 252 | 132,150,149 253 | 133,134,151 254 | 133,151,150 255 | 134,135,152 256 | 134,152,151 257 | 136,137,154 258 | 136,154,153 259 | 137,138,155 260 | 137,155,154 261 | 138,139,156 262 | 138,156,155 263 | 139,140,157 264 | 139,157,156 265 | 140,141,158 266 | 140,158,157 267 | 141,142,159 268 | 141,159,158 269 | 142,143,160 270 | 142,160,159 271 | 143,144,161 272 | 143,161,160 273 | 144,145,162 274 | 144,162,161 275 | 145,146,163 276 | 145,163,162 277 | 146,147,164 278 | 146,164,163 279 | 147,148,165 280 | 147,165,164 281 | 148,149,166 282 | 148,166,165 283 | 149,150,167 284 | 149,167,166 285 | 150,151,168 286 | 150,168,167 287 | 151,152,169 288 | 151,169,168 289 | 153,154,171 290 | 153,171,170 291 | 154,155,172 292 | 154,172,171 293 | 155,156,173 294 | 155,173,172 295 | 156,157,174 296 | 156,174,173 297 | 157,158,175 298 | 157,175,174 299 | 158,159,176 300 | 158,176,175 301 | 159,160,177 302 | 159,177,176 303 | 160,161,178 304 | 160,178,177 305 | 161,162,179 306 | 161,179,178 307 | 162,163,180 308 | 162,180,179 309 | 163,164,181 310 | 163,181,180 311 | 164,165,182 312 | 164,182,181 313 | 165,166,183 314 | 165,183,182 315 | 166,167,184 316 | 166,184,183 317 | 167,168,185 318 | 167,185,184 319 | 168,169,186 320 | 168,186,185 321 | 170,171,188 322 | 170,188,187 323 | 171,172,189 324 | 171,189,188 325 | 172,173,190 326 | 172,190,189 327 | 173,174,191 328 | 173,191,190 329 | 174,175,192 330 | 174,192,191 331 | 175,176,193 332 | 175,193,192 333 | 176,177,194 334 | 176,194,193 335 | 177,178,195 336 | 177,195,194 337 | 178,179,196 338 | 178,196,195 339 | 179,180,197 340 | 179,197,196 341 | 180,181,198 342 | 180,198,197 343 | 181,182,199 344 | 181,199,198 345 | 182,183,200 346 | 182,200,199 347 | 183,184,201 348 | 183,201,200 349 | 184,185,202 350 | 184,202,201 351 | 185,186,203 352 | 185,203,202 353 | 187,188,205 354 | 187,205,204 355 | 188,189,206 356 | 188,206,205 357 | 189,190,207 358 | 189,207,206 359 | 190,191,208 360 | 190,208,207 361 | 191,192,209 362 | 191,209,208 363 | 192,193,210 364 | 192,210,209 365 | 193,194,211 366 | 193,211,210 367 | 194,195,212 368 | 194,212,211 369 | 195,196,213 370 | 195,213,212 371 | 196,197,214 372 | 196,214,213 373 | 197,198,215 374 | 197,215,214 375 | 198,199,216 376 | 198,216,215 377 | 199,200,217 378 | 199,217,216 379 | 200,201,218 380 | 200,218,217 381 | 201,202,219 382 | 201,219,218 383 | 202,203,220 384 | 202,220,219 385 | 204,205,222 386 | 204,222,221 387 | 205,206,223 388 | 205,223,222 389 | 206,207,224 390 | 206,224,223 391 | 207,208,225 392 | 207,225,224 393 | 208,209,226 394 | 208,226,225 395 | 209,210,227 396 | 209,227,226 397 | 210,211,228 398 | 210,228,227 399 | 211,212,229 400 | 211,229,228 401 | 212,213,230 402 | 212,230,229 403 | 213,214,231 404 | 213,231,230 405 | 214,215,232 406 | 214,232,231 407 | 215,216,233 408 | 215,233,232 409 | 216,217,234 410 | 216,234,233 411 | 217,218,235 412 | 217,235,234 413 | 218,219,236 414 | 218,236,235 415 | 219,220,237 416 | 219,237,236 417 | 221,222,239 418 | 221,239,238 419 | 222,223,240 420 | 222,240,239 421 | 223,224,241 422 | 223,241,240 423 | 224,225,242 424 | 224,242,241 425 | 225,226,243 426 | 225,243,242 427 | 226,227,244 428 | 226,244,243 429 | 227,228,245 430 | 227,245,244 431 | 228,229,246 432 | 228,246,245 433 | 229,230,247 434 | 229,247,246 435 | 230,231,248 436 | 230,248,247 437 | 231,232,249 438 | 231,249,248 439 | 232,233,250 440 | 232,250,249 441 | 233,234,251 442 | 233,251,250 443 | 234,235,252 444 | 234,252,251 445 | 235,236,253 446 | 235,253,252 447 | 236,237,254 448 | 236,254,253 449 | 238,239,256 450 | 238,256,255 451 | 239,240,257 452 | 239,257,256 453 | 240,241,258 454 | 240,258,257 455 | 241,242,259 456 | 241,259,258 457 | 242,243,260 458 | 242,260,259 459 | 243,244,261 460 | 243,261,260 461 | 244,245,262 462 | 244,262,261 463 | 245,246,263 464 | 245,263,262 465 | 246,247,264 466 | 246,264,263 467 | 247,248,265 468 | 247,265,264 469 | 248,249,266 470 | 248,266,265 471 | 249,250,267 472 | 249,267,266 473 | 250,251,268 474 | 250,268,267 475 | 251,252,269 476 | 251,269,268 477 | 252,253,270 478 | 252,270,269 479 | 253,254,271 480 | 253,271,270 481 | 255,256,273 482 | 255,273,272 483 | 256,257,274 484 | 256,274,273 485 | 257,258,275 486 | 257,275,274 487 | 258,259,276 488 | 258,276,275 489 | 259,260,277 490 | 259,277,276 491 | 260,261,278 492 | 260,278,277 493 | 261,262,279 494 | 261,279,278 495 | 262,263,280 496 | 262,280,279 497 | 263,264,281 498 | 263,281,280 499 | 264,265,282 500 | 264,282,281 501 | 265,266,283 502 | 265,283,282 503 | 266,267,284 504 | 266,284,283 505 | 267,268,285 506 | 267,285,284 507 | 268,269,286 508 | 268,286,285 509 | 269,270,287 510 | 269,287,286 511 | 270,271,288 512 | 270,288,287 513 | -------------------------------------------------------------------------------- /FEM/Main.m: -------------------------------------------------------------------------------- 1 | node = load('.\data\node.txt'); 2 | unit = load('.\data\unit.txt'); 3 | mat = load('.\data\mat.txt'); 4 | pre = load('.\data\pre.txt'); 5 | load = load('.\data\load.txt'); 6 | [node_num,~] = size(node); 7 | [unit_num,~] = size(unit); 8 | [pre_num,~] = size(pre); 9 | [load_num,~] = size(load); 10 | D = mat(1)/(1-mat(2)^2)*[1,mat(2),0;mat(2),1,0;0,0,(1-mat(2))*0.5]; 11 | B = zeros(3,6,unit_num); 12 | ke = zeros(6,6,unit_num); 13 | K = zeros(2*node_num); 14 | for i = 1:unit_num 15 | [B(:,:,i),ke(:,:,i)] = To_Bke([node(unit(i,1)+1,1);node(unit(i,2)+1,1);node(unit(i,3)+1,1)],[node(unit(i,1)+1,2);node(unit(i,2)+1,2);node(unit(i,3)+1,2)],D,mat(3)); 16 | for j = 1:3 17 | for k = 1:3 18 | K(2*unit(i,j)+1,2*unit(i,k)+1) = K(2*unit(i,j)+1,2*unit(i,k)+1) + ke(2*j-1,2*k-1); 19 | K(2*unit(i,j)+1,2*unit(i,k)+2) = K(2*unit(i,j)+1,2*unit(i,k)+2) + ke(2*j-1,2*k); 20 | K(2*unit(i,j)+2,2*unit(i,k)+1) = K(2*unit(i,j)+2,2*unit(i,k)+1) + ke(2*j,2*k-1); 21 | K(2*unit(i,j)+2,2*unit(i,k)+2) = K(2*unit(i,j)+2,2*unit(i,k)+2) + ke(2*j,2*k); 22 | end 23 | end 24 | end 25 | P = To_P(node_num,load_num,load); 26 | [pre,~] = sort(pre,1,'descend'); 27 | for i = 1:pre_num 28 | K(pre(i,1)+1,:)=[]; 29 | P(pre(i,1)+1)=[]; 30 | end 31 | for i = 1:pre_num 32 | K(:,pre(i,1)+1)=[]; 33 | end 34 | clear mat node unit load pre; 35 | u = K\P; 36 | -------------------------------------------------------------------------------- /FEM/To_Bke.m: -------------------------------------------------------------------------------- 1 | function [B,ke] = To_Bke(X,Y,D,t) 2 | bi = Y(2)-Y(3); 3 | ci = X(3)-X(2); 4 | bj = Y(3)-Y(1); 5 | cj = X(1)-X(3); 6 | bm = Y(1)-Y(2); 7 | cm = X(2)-X(1); 8 | A = 0.5*(bj*cm - bm*cj); 9 | B = 0.5 / A * [bi,0,bj,0,bm,0; 10 | 0,ci,0,cj,0,cm; 11 | ci,bi,cj,bj,cm,bm]; 12 | ke = B'*D*B*t*A; 13 | end -------------------------------------------------------------------------------- /FEM/To_P.m: -------------------------------------------------------------------------------- 1 | function P = To_P(node_num,load_num,load) 2 | P = zeros(2*node_num,1); 3 | for i = 1:load_num 4 | P(load(i,1)+1) = load(i,2); 5 | end 6 | end -------------------------------------------------------------------------------- /FEM/data/2-5x.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Ron-Wang/FEM-Matlab/5438235a09fcead03bc8565988bbc9360ee06fdc/FEM/data/2-5x.jpg -------------------------------------------------------------------------------- /FEM/data/2-5x1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Ron-Wang/FEM-Matlab/5438235a09fcead03bc8565988bbc9360ee06fdc/FEM/data/2-5x1.jpg -------------------------------------------------------------------------------- /FEM/data/2-5xy.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Ron-Wang/FEM-Matlab/5438235a09fcead03bc8565988bbc9360ee06fdc/FEM/data/2-5xy.jpg -------------------------------------------------------------------------------- /FEM/data/2-5xy1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Ron-Wang/FEM-Matlab/5438235a09fcead03bc8565988bbc9360ee06fdc/FEM/data/2-5xy1.jpg -------------------------------------------------------------------------------- /FEM/data/2-5y.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Ron-Wang/FEM-Matlab/5438235a09fcead03bc8565988bbc9360ee06fdc/FEM/data/2-5y.jpg -------------------------------------------------------------------------------- /FEM/data/2-5y1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Ron-Wang/FEM-Matlab/5438235a09fcead03bc8565988bbc9360ee06fdc/FEM/data/2-5y1.jpg -------------------------------------------------------------------------------- /FEM/data/Readme.md: -------------------------------------------------------------------------------- 1 | # 测试数据 2 | -------------------------------------------------------------------------------- /FEM/data/load.txt: -------------------------------------------------------------------------------- 1 | 25,25 2 | 27,50 3 | 29,25 -------------------------------------------------------------------------------- /FEM/data/mat.txt: -------------------------------------------------------------------------------- 1 | 200000,0.15,5 -------------------------------------------------------------------------------- /FEM/data/node.txt: -------------------------------------------------------------------------------- 1 | 0,0 2 | 5,0 3 | 10,0 4 | 0,5 5 | 5,5 6 | 10,5 7 | 0,10 8 | 5,10 9 | 10,10 10 | 0,15 11 | 5,15 12 | 10,15 13 | 0,20 14 | 5,20 15 | 10,20 -------------------------------------------------------------------------------- /FEM/data/pre.txt: -------------------------------------------------------------------------------- 1 | 1,0 2 | 3,0 3 | 5,0 4 | 2,0 -------------------------------------------------------------------------------- /FEM/data/unit.txt: -------------------------------------------------------------------------------- 1 | 4,3,0 2 | 0,1,4 3 | 5,4,1 4 | 1,2,5 5 | 7,6,3 6 | 3,4,7 7 | 8,7,4 8 | 4,5,8 9 | 10,9,6 10 | 6,7,10 11 | 11,10,7 12 | 7,8,11 13 | 13,12,9 14 | 9,10,13 15 | 14,13,10 16 | 10,11,14 -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Finite-Element-Method (FEM) 2 | 3 | 利用MATLAB编程,实现平面(应变)三角形单元的有限元静力学求解。 4 | 5 | ## 数据说明 6 | *仅处理平面三角形单元* 7 | 8 | * node.txt 节点信息:x坐标,y坐标; 9 | * unit.txt 单元信息:节点号1,节点号2,节点号3; 10 | * pre.txt 约束信息:自由度编号,约束条件(0表示位移为零); 11 | * met.txt 材料信息:弹性模量E,泊松比ν,厚度t; 12 | * load.txt 荷载信息(不计自重):自由度编号,荷载大小; 13 | 14 | *其中节点编号、自由度编号均从0开始* 15 | 16 | ## 不同单元划分 17 | 18 | ![image](https://github.com/Ron-Wang/FEM-Matlab/blob/master/FEM/2-5/2-5.png) 19 | *另一单元划分为镜像* 20 | 21 | ## 计算结果
22 | * x方向(水平力): 23 | ![image](https://github.com/Ron-Wang/FEM-Matlab/blob/master/FEM/data/2-5x.jpg) 24 | ![image](https://github.com/Ron-Wang/FEM-Matlab/blob/master/FEM/data/2-5x1.jpg) 25 | 26 | * y方向(竖直力): 27 | ![image](https://github.com/Ron-Wang/FEM-Matlab/blob/master/FEM/data/2-5y.jpg) 28 | ![image](https://github.com/Ron-Wang/FEM-Matlab/blob/master/FEM/data/2-5y1.jpg) 29 | 30 | * xy方向(剪力): 31 | ![image](https://github.com/Ron-Wang/FEM-Matlab/blob/master/FEM/data/2-5xy.jpg) 32 | ![image](https://github.com/Ron-Wang/FEM-Matlab/blob/master/FEM/data/2-5xy1.jpg) 33 | 34 | --------------------------------------------------------------------------------