├── .gitignore
├── LICENSE.md
├── README.md
├── data
├── __init__.py
├── gp_v_nn_time_comparison
│ ├── gp.m
│ ├── gp_100obs_time_data.csv
│ ├── gp_250obs_time_data.csv
│ ├── gp_300obs_time_data.csv
│ ├── gp_350obs_time_data.csv
│ ├── gp_400obs_time_data.csv
│ ├── gp_450obs_time_data.csv
│ ├── gp_500obs_time_data.csv
│ ├── gp_time.eps
│ ├── gp_v_nn.m
│ ├── nn_100obs_time_data.csv
│ ├── nn_250obs_time_data.csv
│ ├── nn_300obs_time_data.csv
│ ├── nn_350obs_time_data.csv
│ ├── nn_400obs_time_data.csv
│ ├── nn_450obs_time_data.csv
│ └── nn_500obs_time_data.csv
├── mpi_v_seq_time_comparison
│ ├── mpi_time_data.csv
│ ├── plotme.R
│ ├── plotme.m
│ └── sequential_time_data.csv
└── regret_analysis
│ ├── __init__.py
│ ├── gp_gm_1.txt
│ ├── gp_gm_2.txt
│ ├── gp_gm_3.txt
│ ├── gp_gm_4.txt
│ ├── gp_gm_5.txt
│ ├── gp_gm_6.txt
│ ├── gp_gm_7.txt
│ ├── gp_gp_1.txt
│ ├── gp_gp_10.txt
│ ├── gp_gp_2.txt
│ ├── gp_gp_3.txt
│ ├── gp_gp_4.txt
│ ├── gp_gp_5.txt
│ ├── gp_gp_6.txt
│ ├── gp_gp_7.txt
│ ├── gp_gp_8.txt
│ ├── gp_hm_1.txt
│ ├── gp_hm_10.txt
│ ├── gp_hm_2.txt
│ ├── gp_hm_3.txt
│ ├── gp_hm_4.txt
│ ├── gp_hm_5.txt
│ ├── gp_hm_6.txt
│ ├── gp_hm_7.txt
│ ├── gp_hm_8.txt
│ ├── gp_hm_9.txt
│ └── parser.py
├── learning_objective
├── __init__.py
├── gaussian_mix.py
├── gaussian_process.py
├── hartmann.py
└── hidden_function.py
├── mpi
├── __init__.py
├── mpi_definitions.py
├── mpi_master.py
├── mpi_optimizer.py
├── mpi_trainer.py
├── mpi_worker.py
└── theano_definitions.py
├── sequential
├── __init__.py
├── seq_gaussian_process.py
├── seq_optimizer.py
└── test.py
└── utilities
├── __init__.py
├── linear_regressor.py
├── neural_net.py
└── optimizer.py
/.gitignore:
--------------------------------------------------------------------------------
1 | figures
2 | figures_list
3 | output1.txt
4 | framework.org
5 | makefile
6 | fig.zip
7 | report
8 | *pyc
9 | *csv
10 | *txt
11 | neural-network-optimization
12 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | The MIT License (MIT)
2 |
3 | Copyright (c) 2016 Rui Shu
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Adaptive Neural Network Representations for Parallel and Scalable Bayesian Optimization
2 |
3 | **Neural Network Bayesian Optimization** is function optimization technique inpsired by the work of:
4 | > Jasper Snoek, et al
5 | > Scalable Bayesian Optimization Using Deep Neural Networks
6 | > http://arxiv.org/abs/1502.05700
7 |
8 | This repository contains the python code written by James Brofos and Rui Shu of a modified approach that continually retrains the neural network underlying the optimization technique, and implements the technique within a parallelized setting for improved speed performance.
9 |
10 | Motivation
11 | ----------
12 | The success of most machine learning algorithms is dependent the proper tuning of the hyperparameters. A popular technique for hyperparameter tuning is Bayesian optimization, which canonically uses a Gaussian process to interpolate the hyperparameter space. The computation time for GP-based Bayesian optimization, however, grows rapidly with respect to sample size (the number of tested hyperparameters) and quickly becomes very time consuming, if not all together intractable. Fortunately, a neural network is capable of mimicking the behavior of a Guassian process whilst providing a significant reduction in computation time.
13 |
14 | Dependencies
15 | ------------
16 | This code requires:
17 |
18 | * Python 2.7
19 | * MPI (and [MPI4Py](http://mpi4py.scipy.org/))
20 | * [Numpy](http://www.numpy.org/)
21 | * [Scipy](http://www.scipy.org/)
22 | * [Theano](http://deeplearning.net/software/theano/)
23 | * [Theanets](http://theanets.readthedocs.org/en/stable/)
24 | * [Statsmodels](http://statsmodels.sourceforge.net/devel/)
25 | * [Matplotlib](http://matplotlib.org/)
26 | * [pyGPs](http://www-ai.cs.uni-dortmund.de/weblab/static/api_docs/pyGPs/)
27 |
28 | Code Execution
29 | --------------
30 | To run the code from the home directory in parallel with 4 cores, simply call mpiexec:
31 | ```
32 | mpiexec -np 4 python -m mpi.mpi_optimizer
33 | ```
34 |
35 | To run a sequential version of the code:
36 | ```
37 | python -m sequential.seq_optimizer
38 | ```
39 |
40 | To run the gaussian process version of Bayesian optimization:
41 | ```
42 | python -m sequential.seq_gaussian_process
43 | ```
44 |
45 | **Sample output**:
46 | ```
47 | Randomly query a set of initial points... Complete initial dataset acquired
48 | Performing optimization...
49 | 0.100 completion...
50 | 0.200 completion...
51 | 0.300 completion...
52 | 0.400 completion...
53 | 0.500 completion...
54 | 0.600 completion...
55 | 0.700 completion...
56 | 0.800 completion...
57 | 0.900 completion...
58 | 1.000 completion...
59 | Sequential gp optimization task complete.
60 | Best evaluated point is:
61 | [-0.31226245 3.80792522]
62 | Predicted best point is:
63 | [-0.31226245 3.7755048 ]
64 | ```
65 |
66 | **Note:** The code, as written, focuses the use of the algorithm on any black-box function. A few common functions are available in `learning_objective`. The chosen function is set in `hidden_function.py`. To really appreciate the time-savings gained by the parallelized code, it is important to realize that evaluating a real-world black-box function (i.e. computing the test performance for an ML algorithm with a given set of hyperparameters) takes time.
67 |
68 | This can be simulated by uncommenting the line: `# time.sleep(2)` in `hidden_function.py`.
69 |
70 |
--------------------------------------------------------------------------------
/data/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/data/__init__.py
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp.m:
--------------------------------------------------------------------------------
1 | function gp()
2 |
3 | gp100 = load('gp_100obs_time_data.csv');
4 | gp250 = load('gp_250obs_time_data.csv');
5 | gp300 = load('gp_300obs_time_data.csv');
6 | gp350 = load('gp_350obs_time_data.csv');
7 | gp400 = load('gp_400obs_time_data.csv');
8 | gp450 = load('gp_450obs_time_data.csv');
9 | gp500 = load('gp_500obs_time_data.csv');
10 |
11 | size(gp250)
12 |
13 | gp = [gp250' gp300' gp350' gp400' gp450' gp500'];
14 |
15 | x = [250 300 350 400 450 500];
16 | clf;
17 | hold on;
18 | grid on;
19 |
20 | plot(x, mean(gp), 'r', 'linewidth', 1)
21 | plot(x, +2*std(gp)+mean(gp), 'r--', 'linewidth', 1)
22 | plot(x, -2*std(gp)+mean(gp), 'r--', 'linewidth', 1)
23 | xlabel('Number of Queries', 'interpreter', 'latex', 'fontsize', 15)
24 | ylabel('Seconds per Iteration', 'interpreter', 'latex', 'fontsize', 15)
25 | h = legend('Gaussian Process', 'location', 'northwest')
26 | set(h, 'interpreter', 'latex', 'fontsize', 15)
27 |
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_100obs_time_data.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/data/gp_v_nn_time_comparison/gp_100obs_time_data.csv
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_250obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 1.726,1.616,1.713,1.519,1.595,1.712,1.603,1.598,1.635,1.734,1.479,1.505,1.510,1.481,1.547,1.641,1.641,1.555,1.647,1.564,1.493,1.445,1.552,1.510,1.575,1.704,1.645,1.570,1.624,1.586,1.482,1.482,1.556,1.566,1.595,1.706,1.648,1.536,1.612,1.552,1.499,1.453,1.503,1.500,1.552,1.626,1.608,1.541,1.606,1.563,1.549,1.497,1.540,1.530,1.571,1.704,1.609,1.547,1.632,1.572,1.524,1.479,1.558,1.523,1.604,1.692,1.732,1.537,1.612,1.552,1.506,1.582,1.563,1.549,1.581,1.699,1.638,1.565,1.614,1.582,1.525,1.473,1.557,1.518,1.611,1.678,1.633,1.588,1.642,1.607,1.494,1.480,1.516,1.521,1.571,1.700,1.615,1.543,1.614,1.586,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_300obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 2.224,2.286,2.224,2.312,2.252,2.387,2.308,2.420,2.330,2.502,2.206,2.289,2.263,2.447,2.307,2.391,2.306,2.437,2.339,2.531,2.277,2.455,2.266,2.345,2.292,2.445,2.332,2.409,2.345,2.483,2.226,2.283,2.271,2.338,2.324,2.695,2.437,2.449,2.611,2.481,2.226,2.410,2.325,2.371,2.305,2.401,2.370,2.430,2.343,2.444,2.309,2.313,2.319,2.350,2.289,2.411,2.345,2.415,2.396,2.428,2.250,2.294,2.283,2.357,2.267,2.410,2.308,2.420,2.381,2.451,2.224,2.278,2.287,2.439,2.255,2.402,2.234,2.366,2.247,2.310,2.286,2.282,2.233,2.292,2.255,2.408,2.301,2.395,2.318,2.452,2.297,2.399,2.208,2.312,2.319,2.380,2.287,2.392,2.323,2.426,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_350obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 3.080,3.136,3.042,3.186,3.067,3.201,3.256,3.295,3.170,3.366,3.096,3.754,3.351,3.209,3.198,3.259,3.158,3.321,3.224,3.417,3.126,3.145,3.197,3.297,3.153,3.287,3.145,3.323,3.303,3.312,3.247,3.158,3.053,3.163,3.077,3.263,3.147,3.240,3.158,3.277,3.038,3.127,3.235,3.259,3.109,3.231,3.138,3.261,3.121,3.284,3.021,3.123,3.031,3.184,3.125,3.315,3.179,3.281,3.208,3.304,3.169,3.143,3.063,3.156,3.097,3.234,3.185,3.336,3.186,3.277,3.077,3.170,3.061,3.179,3.073,3.187,3.293,3.370,3.161,3.282,3.005,3.101,3.040,3.166,3.088,3.187,3.130,3.264,3.176,3.329,3.056,3.131,3.037,3.205,3.113,3.231,3.135,3.255,3.151,3.284,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_400obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 4.384,4.713,4.778,4.641,4.654,4.687,4.521,4.697,4.700,4.853,4.377,4.659,4.492,4.631,4.575,4.780,4.377,4.732,4.746,4.819,4.531,4.502,4.458,4.567,4.576,4.820,4.629,4.793,4.617,4.794,4.420,4.543,4.478,4.516,4.539,4.667,4.513,4.749,4.681,4.781,4.513,4.562,4.476,4.804,4.740,4.502,4.356,4.419,4.622,5.130,4.382,4.546,4.446,4.682,4.587,4.662,4.562,4.711,4.775,4.871,4.479,4.457,4.394,4.521,4.521,4.654,4.846,4.832,4.522,4.746,5.385,5.066,4.520,5.085,5.247,4.894,4.993,4.891,4.775,4.985,4.680,5.144,4.710,4.753,4.956,5.205,5.078,4.987,4.988,5.368,4.973,4.949,4.732,4.912,4.805,4.999,4.871,4.892,4.853,5.055,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_450obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 6.242,6.646,6.461,6.485,6.355,6.491,6.475,6.615,6.476,6.681,6.169,6.476,6.329,6.518,6.331,6.495,6.445,6.670,6.139,6.551,5.789,5.913,5.872,5.989,6.043,6.147,6.092,6.180,6.090,6.250,5.702,5.863,5.828,6.014,5.982,6.130,6.000,6.262,6.226,6.300,5.742,5.941,5.816,6.068,5.882,6.122,6.626,6.464,6.274,6.483,5.999,6.243,6.022,6.330,6.225,6.534,6.244,6.357,6.272,6.421,5.816,6.045,6.060,6.232,6.091,6.287,6.195,6.455,6.143,6.537,5.880,6.168,6.157,6.162,6.151,6.243,6.216,6.392,6.286,6.414,6.006,6.064,6.066,6.318,6.277,6.369,6.297,6.880,7.527,6.829,6.008,6.314,7.319,6.197,6.119,6.297,6.247,6.323,6.253,6.469,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_500obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 7.355,7.700,7.373,7.480,7.653,7.595,7.592,7.710,7.711,8.308,7.488,7.956,7.343,7.467,7.564,7.569,7.548,7.705,7.866,8.362,7.357,7.698,7.357,7.450,7.451,7.719,7.621,7.668,7.693,8.334,7.375,7.696,7.386,7.487,7.575,7.699,7.663,8.192,7.850,9.975,8.366,9.370,8.225,8.300,8.001,8.062,8.436,8.357,8.416,8.841,8.088,8.510,8.062,8.152,8.149,8.286,8.380,8.561,8.533,9.123,7.933,8.137,7.810,8.006,8.138,8.207,8.028,8.615,8.604,8.962,7.990,8.340,7.880,7.986,8.012,8.127,8.044,8.173,8.352,8.863,7.988,8.299,8.517,8.910,8.103,8.245,8.270,8.428,8.504,8.9789.488,9.860,8.740,9.682,9.186,8.470,7.935,8.153,8.408,9.164,8.648,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/gp_v_nn.m:
--------------------------------------------------------------------------------
1 | function gp_v_nn()
2 |
3 | gp100 = load('gp_100obs_time_data.csv');
4 | gp250 = load('gp_250obs_time_data.csv');
5 | gp300 = load('gp_300obs_time_data.csv');
6 | gp350 = load('gp_350obs_time_data.csv');
7 | gp400 = load('gp_400obs_time_data.csv');
8 | gp450 = load('gp_450obs_time_data.csv');
9 | gp500 = load('gp_500obs_time_data.csv');
10 | nn100 = load('nn_100obs_time_data.csv');
11 | nn250 = load('nn_250obs_time_data.csv');
12 | nn300 = load('nn_300obs_time_data.csv');
13 | nn350 = load('nn_350obs_time_data.csv');
14 | nn400 = load('nn_400obs_time_data.csv');
15 | nn450 = load('nn_450obs_time_data.csv');
16 | nn500 = load('nn_500obs_time_data.csv');
17 |
18 | size(gp250)
19 |
20 | gp = [gp250' gp300' gp350' gp400' gp450' gp500'];
21 | nn = [nn250' nn300' nn350' nn400' nn450' nn500'];
22 | x = [250 300 350 400 450 500];
23 | clf;
24 | hold on;
25 | plot(x, mean(gp), 'g')
26 | plot(x, mean(nn), 'r')
27 | legend('gp', 'nn')
28 | xlabel('iteration')
29 | ylabel('seconds per interation')
30 |
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/nn_100obs_time_data.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/data/gp_v_nn_time_comparison/nn_100obs_time_data.csv
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/nn_250obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 0.502,0.469,0.523,0.474,0.533,0.465,0.455,0.452,0.481,0.440,0.445,0.440,0.451,0.504,0.444,0.442,0.449,0.436,0.483,0.479,0.513,0.458,0.539,0.456,0.455,0.477,0.459,0.449,0.444,0.454,0.452,0.531,0.453,0.458,0.459,0.469,0.469,0.456,0.456,0.456,0.531,0.452,0.441,0.462,0.454,0.459,0.484,0.461,0.468,0.550,0.470,0.465,0.475,0.474,0.492,0.466,0.475,0.478,0.550,0.470,0.492,0.492,0.513,0.481,0.490,0.482,0.464,0.552,0.471,0.462,0.469,0.469,0.458,0.464,0.469,0.462,0.548,0.463,0.471,0.466,0.474,0.449,0.447,0.457,0.470,0.562,0.453,0.456,0.459,0.464,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/nn_300obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 0.521,0.507,0.461,0.452,0.509,0.479,0.442,0.450,0.443,0.489,0.491,0.491,0.502,0.586,0.499,0.548,0.552,0.524,0.461,0.469,0.488,0.460,0.548,0.470,0.464,0.467,0.470,0.436,0.448,0.443,0.442,0.541,0.475,0.443,0.452,0.444,0.439,0.442,0.444,0.447,0.523,0.454,0.450,0.533,0.443,0.436,0.441,0.440,0.437,0.516,0.443,0.434,0.436,0.452,0.479,0.478,0.471,0.475,0.563,0.530,0.581,0.499,0.487,0.490,0.494,0.514,0.499,0.582,0.488,0.503,0.476,0.479,0.460,0.460,0.461,0.461,0.544,0.469,0.469,0.464,0.513,0.446,0.444,0.454,0.446,0.518,0.465,0.458,0.457,0.453,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/nn_350obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 0.431,0.436,0.475,0.424,0.515,0.444,0.465,0.445,0.446,0.419,0.418,0.426,0.421,0.522,0.645,0.541,0.588,0.438,0.472,0.506,0.476,0.535,0.479,0.501,0.453,0.462,0.446,0.443,0.446,0.443,0.446,0.514,0.455,0.461,0.454,0.447,0.480,0.492,0.476,0.565,0.435,0.431,0.427,0.427,0.448,0.436,0.440,0.437,0.434,0.515,0.439,0.443,0.434,0.440,0.443,0.442,0.440,0.432,0.560,0.529,0.427,0.431,0.435,0.438,0.454,0.448,0.447,0.524,0.454,0.441,0.453,0.458,0.459,0.452,0.451,0.449,0.531,0.457,0.445,0.444,0.449,0.472,0.470,0.472,0.466,0.556,0.476,0.473,0.470,0.480,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/nn_400obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 0.492,0.490,0.450,0.496,0.581,0.485,0.475,0.468,0.472,0.479,0.476,0.500,0.556,0.584,0.539,0.480,0.488,0.486,0.483,0.452,0.454,0.454,0.533,0.462,0.459,0.460,0.468,0.466,0.460,0.470,0.458,0.544,0.469,0.479,0.469,0.476,0.475,0.470,0.468,0.485,0.538,0.457,0.455,0.454,0.451,0.467,0.500,0.458,0.466,0.540,0.466,0.464,0.461,0.466,0.456,0.460,0.465,0.462,0.550,0.455,0.461,0.473,0.473,0.463,0.461,0.457,0.460,0.529,0.453,0.466,0.464,0.458,0.479,0.490,0.481,0.474,0.545,0.480,0.515,0.488,0.506,0.444,0.441,0.441,0.444,0.517,0.448,0.449,0.444,0.440,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/nn_450obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 0.463,0.521,0.520,0.503,0.575,0.482,0.491,0.509,0.485,0.483,0.538,0.509,0.477,0.559,0.497,0.495,0.477,0.486,0.513,0.511,0.499,0.503,0.577,0.502,0.526,0.570,0.517,0.522,0.534,0.560,0.517,0.564,0.508,0.511,0.523,0.497,0.530,0.547,0.479,0.573,0.484,0.487,0.477,0.486,0.494,0.486,0.481,0.491,0.481,0.569,0.490,0.545,0.484,0.514,0.470,0.475,0.483,0.470,0.562,0.483,0.502,0.482,0.478,0.524,0.514,0.503,0.494,0.564,0.492,0.500,0.496,0.501,0.501,0.496,0.486,0.558,0.462,0.473,0.472,0.482,0.467,0.523,0.541,0.534,0.547,0.601,0.489,0.482,0.548,0.602,
--------------------------------------------------------------------------------
/data/gp_v_nn_time_comparison/nn_500obs_time_data.csv:
--------------------------------------------------------------------------------
1 | 0.420,0.423,0.422,0.421,0.498,0.426,0.424,0.422,0.427,0.439,0.436,0.445,0.450,0.515,0.444,0.449,0.443,0.440,0.461,0.459,0.459,0.459,0.561,0.469,0.469,0.469,0.467,0.462,0.480,0.467,0.464,0.537,0.463,0.483,0.467,0.467,0.442,0.442,0.447,0.443,0.517,0.442,0.439,0.449,0.441,0.443,0.444,0.439,0.442,0.534,0.464,0.443,0.453,0.451,0.410,0.422,0.419,0.419,0.498,0.417,0.420,0.426,0.425,0.455,0.457,0.459,0.458,0.544,0.457,0.461,0.462,0.460,0.437,0.439,0.440,0.439,0.515,0.438,0.436,0.443,0.446,0.422,0.437,0.431,0.427,0.498,0.451,0.428,0.435,0.438
--------------------------------------------------------------------------------
/data/mpi_v_seq_time_comparison/mpi_time_data.csv:
--------------------------------------------------------------------------------
1 | 0.005,0.006,0.006,0.007,0.007,2.003,2.026,2.026,2.027,2.027,2.941,4.007,4.030,4.034,4.402,4.403,4.945,6.010,6.034,7.859,7.860,7.865,7.866,8.014,8.641,9.870,9.870,9.871,9.873,10.362,10.645,11.874,11.874,11.878,12.353,12.367,12.649,13.878,13.878,14.663,14.664,14.664,14.665,15.882,15.882,16.669,16.669,16.670,16.670,17.886,18.145,18.674,18.676,18.678,19.080,19.893,20.149,20.678,20.682,21.180,21.181,21.898,22.153,22.681,22.930,23.185,23.189,23.902,24.157,24.685,24.937,25.188,25.193,25.906,26.161,26.689,26.941,27.192,27.197,27.910,28.165,28.693,28.945,29.196,29.391,29.913,30.167,30.697,30.948,31.200,31.395,31.917,32.169,32.699,32.953,33.204,33.399,33.921,34.173,34.703,34.956,35.207,35.402,35.924,36.175,36.706,36.959,37.211,37.406,37.928,38.178,38.710,38.963,39.215,39.408,39.931,40.182,40.714,40.966,41.219,41.413,41.935,42.186,42.716,42.970,43.223,43.416,43.939,44.190,44.720,44.974,45.225,45.419,45.942,46.194,46.723,46.976,47.229,47.422,47.946,48.198,48.727,48.980,49.233,49.425,49.950,50.202,50.731,50.983,51.236,51.429,51.954,52.206,52.735,52.987,53.239,53.433,53.958,54.210,54.737,54.991,55.243,55.437,55.962,56.214,56.741,56.995,57.246,57.445,57.965,58.218,58.745,58.999,59.250,59.449,59.968,60.222,60.749,61.002,61.253,61.453,61.972,62.224,62.753,63.004,63.257,63.457,63.976,64.228,64.755,65.006,65.259,65.461,65.980,66.232,66.759,67.010,67.263,67.473,67.984,68.236,68.763,69.014,69.267,69.476,69.987,70.239,70.767,71.025,71.430,71.478,71.991,72.243,72.770,73.035,73.434,73.483,73.995,74.246,74.774,75.039,75.437,75.486,75.998,76.402,76.778,77.042,77.441,77.491,78.002,78.406,78.782,79.046,79.445,79.708,80.006,80.410,80.785,81.050,81.448,81.713,82.009,82.414,82.789,83.165,83.452,83.716,84.013,84.418,84.793
2 | 0.001,0.001,0.002,0.002,0.002,2.004,2.008,2.009,2.011,2.999,3.000,4.008,4.012,4.014,4.192,5.004,5.005,6.014,6.020,6.203,6.203,7.008,7.009,8.018,9.059,9.059,9.060,9.060,9.061,10.022,11.065,11.066,11.068,11.070,11.250,12.026,13.069,13.071,13.072,13.410,13.410,14.031,15.072,15.076,15.353,15.414,15.416,16.035,17.076,17.364,17.364,17.418,17.420,18.039,19.081,19.370,19.372,19.421,19.424,20.043,21.094,21.372,21.375,21.425,21.660,22.048,23.097,23.376,23.379,23.770,23.770,24.052,25.100,25.380,25.761,25.775,25.784,26.056,27.104,27.392,27.764,27.779,27.788,28.060,29.107,29.394,29.771,29.784,29.792,30.070,31.111,31.398,31.774,31.788,32.071,32.074,33.115,33.402,33.777,34.046,34.075,34.078,35.119,35.409,35.783,36.050,36.078,36.080,37.127,37.413,37.787,38.054,38.084,38.085,39.131,39.417,39.791,40.058,40.088,40.372,41.135,41.420,41.796,42.062,42.334,42.380,43.139,43.425,43.800,44.069,44.338,44.385,45.143,45.428,45.804,46.073,46.341,46.388,47.147,47.432,47.812,48.076,48.345,48.398,49.151,49.439,49.816,50.083,50.348,50.775,51.155,51.443,51.820,52.087,52.536,52.780,53.159,53.448,53.824,54.240,54.543,54.784,55.163,55.452,55.874,56.244,56.548,56.788,57.167,57.589,57.878,58.248,58.552,58.792,59.171,59.591,59.882,60.252,60.555,60.796,61.175,61.596,61.885,62.256,62.559,62.801,63.179,63.600,63.888,64.259,64.564,64.804,65.187,65.604,65.891,66.263,66.568,66.809,67.189,67.608,67.895,68.267,68.570,68.812,69.194,69.612,69.900,70.270,70.574,70.816,71.198,71.616,71.904,72.273,72.577,72.819,73.202,73.620,73.906,74.276,74.580,74.823,75.206,75.622,75.910,76.280,76.584,76.828,77.210,77.627,77.913,78.284,78.588,78.832,79.214,79.631,79.916,80.295,80.591,80.836,81.218,81.635,81.920,82.299,82.595,82.840,83.222,83.640,83.924,84.303
3 | 0.001,0.001,0.003,0.004,0.012,2.011,2.017,2.020,2.021,2.254,3.379,4.015,4.021,4.029,4.029,4.312,5.383,6.024,6.024,6.208,6.315,6.316,7.389,8.028,8.029,8.233,8.319,8.320,9.392,10.031,10.237,10.243,10.324,10.324,11.394,12.035,12.241,12.247,12.328,12.564,13.398,14.039,14.245,14.252,14.493,14.566,15.402,16.043,16.249,16.449,16.497,16.570,17.409,18.047,18.301,18.453,18.502,18.583,19.411,20.051,20.311,20.462,20.504,20.587,21.415,22.055,22.315,22.466,22.509,22.900,23.418,24.059,24.319,24.469,24.726,24.904,25.422,26.063,26.323,26.578,26.729,26.908,27.426,28.064,28.327,28.582,28.732,28.912,29.429,30.068,30.331,30.586,30.736,30.916,31.432,32.072,32.335,32.589,32.740,33.035,33.436,34.076,34.339,34.593,34.855,35.044,35.441,36.080,36.343,36.637,36.859,37.048,37.445,38.088,38.374,38.641,38.863,39.052,39.449,40.092,40.378,40.645,40.866,41.056,41.454,42.095,42.382,42.650,42.872,43.148,43.456,44.100,44.389,44.656,44.924,45.152,45.460,46.111,46.392,46.661,46.930,47.156,47.462,48.115,48.396,48.668,48.934,49.159,49.466,50.117,50.400,50.672,50.938,51.163,51.535,52.122,52.405,52.677,52.945,53.251,53.544,54.127,54.408,54.684,54.982,55.257,55.547,56.131,56.413,56.695,56.988,57.261,57.551,58.136,58.417,58.700,58.992,59.265,59.555,60.140,60.419,60.704,60.995,61.267,61.559,62.144,62.423,62.707,62.999,63.271,63.565,64.149,64.427,64.716,65.003,65.275,65.568,66.153,66.431,66.718,67.006,67.278,67.576,68.157,68.434,68.722,69.009,69.283,69.580,70.160,70.438,70.726,71.013,71.287,71.584,72.165,72.442,72.729,73.015,73.291,73.586,74.168,74.444,74.731,75.020,75.295,75.590,76.172,76.448,76.735,77.023,77.298,77.593,78.179,78.453,78.739,79.027,79.301,79.596,80.183,80.457,80.743,81.032,81.304,81.600,82.187,82.461,82.751,83.036,83.308
4 | 0.001,0.001,0.002,0.002,0.002,2.004,2.005,2.007,2.012,2.888,2.888,4.009,4.009,4.011,4.319,4.892,4.892,6.012,6.014,7.160,7.164,7.164,7.165,8.016,8.863,9.168,9.169,9.169,9.172,10.024,10.869,11.172,11.173,11.174,11.507,12.028,12.878,13.176,13.178,13.595,13.595,14.033,14.880,15.180,15.474,15.599,15.600,16.037,16.882,17.184,17.480,17.603,17.604,18.041,18.885,19.188,19.484,19.608,19.609,20.044,20.889,21.191,21.488,21.613,21.871,22.048,22.893,23.195,23.492,23.670,23.875,24.052,24.896,25.199,25.493,25.676,25.882,26.056,26.900,27.203,27.496,27.684,27.886,28.059,28.904,29.207,29.500,29.688,29.890,30.063,30.908,31.211,31.504,31.692,31.894,32.066,32.912,33.213,33.508,33.696,33.900,34.070,34.916,35.217,35.512,35.700,35.904,36.072,36.920,37.220,37.515,37.704,37.909,38.076,38.925,39.224,39.519,39.707,39.912,40.080,40.928,41.232,41.523,41.711,41.916,42.084,42.932,43.236,43.531,43.715,43.920,44.088,44.936,45.239,45.535,45.719,45.924,46.090,46.940,47.244,47.539,47.723,47.929,48.094,48.944,49.248,49.542,49.727,49.936,50.223,50.948,51.257,51.546,51.731,51.938,52.227,52.952,53.261,53.550,53.740,53.942,54.231,54.956,55.265,55.554,55.744,55.946,56.232,56.960,57.269,57.558,57.748,57.950,58.236,58.963,59.273,59.562,59.752,59.954,60.240,60.966,61.277,61.566,61.754,61.968,62.244,62.971,63.281,63.570,63.758,63.972,64.248,64.975,65.285,65.574,65.761,65.976,66.252,66.979,67.288,67.578,67.765,67.980,68.255,68.983,69.292,69.582,69.769,69.984,70.259,70.987,71.296,71.586,71.773,71.988,72.262,72.991,73.299,73.590,73.778,73.992,74.266,74.995,75.302,75.594,75.782,76.001,76.270,76.999,77.306,77.598,77.785,78.007,78.273,79.003,79.310,79.602,79.788,80.011,80.277,81.012,81.316,81.606,81.792,82.015,82.281,83.016,83.319,83.608,83.797
5 | 0.001,0.001,0.001,0.002,0.002,2.006,2.006,2.007,2.009,2.986,2.987,4.010,4.010,4.012,4.442,4.990,4.992,6.014,6.015,6.931,6.931,6.994,6.994,8.018,8.999,8.999,9.000,9.000,9.001,10.022,11.004,11.006,11.006,11.008,11.392,12.026,13.008,13.010,13.010,13.348,13.397,14.030,15.012,15.014,15.363,15.363,15.401,16.034,17.016,17.223,17.367,17.369,17.405,18.038,19.019,19.227,19.371,19.373,19.409,20.042,21.023,21.231,21.375,21.378,21.867,22.046,23.026,23.235,23.379,24.013,24.013,24.050,25.030,25.238,25.431,26.017,26.022,26.054,27.034,27.242,27.438,28.021,28.026,28.057,29.038,29.244,29.441,30.025,30.030,30.202,31.041,31.248,31.445,32.029,32.246,32.246,33.045,33.251,33.449,34.033,34.250,34.254,35.049,35.255,35.453,36.037,36.254,36.258,37.053,37.259,37.456,38.041,38.258,38.262,39.061,39.263,39.460,40.045,40.262,40.595,41.065,41.267,41.464,42.049,42.266,42.599,43.069,43.270,43.468,44.053,44.270,44.602,45.073,45.274,45.472,46.057,46.274,46.606,47.077,47.278,47.476,48.061,48.278,48.610,49.081,49.282,49.480,50.065,50.282,50.614,51.085,51.290,51.484,52.069,52.286,52.617,53.089,53.294,53.488,54.073,54.288,54.621,55.093,55.298,55.492,56.077,56.292,56.625,57.098,57.302,57.496,58.081,58.296,58.628,59.102,59.306,59.500,60.085,60.299,60.632,61.106,61.310,61.503,62.089,62.301,62.634,63.110,63.314,63.507,64.091,64.305,64.638,65.114,65.318,65.512,66.095,66.309,66.642,67.118,67.322,67.515,68.098,68.313,68.646,69.122,69.326,69.519,70.102,70.317,70.650,71.126,71.330,71.523,72.106,72.321,72.654,73.130,73.333,73.527,74.110,74.325,74.658,75.132,75.336,75.531,76.114,76.329,76.660,77.136,77.353,77.535,78.118,78.333,78.665,79.140,79.357,79.539,80.122,80.337,80.669,81.144,81.361,81.543,82.126,82.341,82.673,83.146,83.365,83.547,84.130
6 | 0.001,0.001,0.002,0.002,0.002,2.006,2.007,2.008,2.010,2.481,3.271,4.010,4.011,4.015,4.442,4.485,5.274,6.014,6.015,6.803,6.804,6.804,7.278,8.018,8.392,8.808,8.810,8.812,9.282,10.022,10.397,10.811,10.814,10.816,11.285,12.026,12.401,12.815,12.818,13.228,13.289,14.030,14.405,14.819,15.194,15.234,15.293,16.034,16.409,16.823,17.198,17.237,17.297,18.037,18.413,18.826,19.202,19.241,19.301,20.041,20.416,20.829,21.205,21.245,21.755,22.045,22.420,22.833,23.209,23.545,23.759,24.049,24.424,24.841,25.213,25.549,25.763,26.053,26.428,26.844,27.217,27.553,27.767,28.056,28.431,28.847,29.221,29.557,29.771,30.060,30.440,30.855,31.226,31.561,31.790,32.074,32.442,32.858,33.229,33.565,33.799,34.086,34.446,34.862,35.233,35.568,35.803,36.090,36.449,36.865,37.237,37.572,37.807,38.093,38.453,38.870,39.241,39.575,39.811,40.133,40.456,40.872,41.244,41.579,41.894,42.137,42.460,42.874,43.246,43.581,43.898,44.141,44.464,44.878,45.248,45.585,45.902,46.145,46.468,46.882,47.252,47.589,47.906,48.147,48.472,48.889,49.256,49.593,49.909,50.164,50.474,50.893,51.260,51.597,52.076,52.169,52.478,52.897,53.265,53.603,54.081,54.173,54.482,54.901,55.269,55.607,56.085,56.177,56.486,56.905,57.273,57.611,58.089,58.181,58.490,58.909,59.277,59.614,60.093,60.392,60.492,60.914,61.281,61.618,62.100,62.398,62.494,62.918,63.286,63.622,64.105,64.402,64.504,64.923,65.290,65.626,66.109,66.406,66.507,66.926,67.294,67.631,68.113,68.410,68.770,68.930,69.298,69.634,70.117,70.414,70.779,70.934,71.301,71.638,72.121,72.418,72.782,72.938,73.309,73.642,74.125,74.422,74.786,74.942,75.313,75.646,76.129,76.426,76.790,77.058,77.317,77.649,78.133,78.430,78.797,79.064,79.321,79.653,80.136,80.433,80.801,81.068,81.325,81.657,82.140,82.437,82.804,83.072,83.329,83.661
7 | 0.001,0.001,0.002,0.002,0.002,2.004,2.006,2.028,2.028,2.029,3.285,4.008,4.010,4.033,4.356,5.289,5.289,6.013,6.015,6.267,6.359,7.293,7.293,8.016,8.527,8.528,8.528,9.297,9.297,10.020,10.532,10.533,10.535,11.300,11.539,12.024,12.536,12.537,12.538,13.303,13.543,14.028,14.540,14.540,14.684,15.307,15.547,16.032,16.544,16.773,16.774,17.311,17.551,18.036,18.548,18.776,18.781,19.315,19.554,20.044,20.552,20.780,20.784,21.318,21.558,22.048,22.556,22.784,22.788,23.322,23.563,24.052,24.560,24.788,24.958,25.326,25.567,26.054,26.564,26.792,26.961,27.330,27.571,28.058,28.568,28.794,28.965,29.333,29.578,30.062,30.571,30.796,30.969,31.337,31.581,32.068,32.575,32.799,32.974,33.342,33.585,34.071,34.578,34.803,34.978,35.344,35.587,36.075,36.580,36.806,36.983,37.348,37.589,38.079,38.584,38.810,38.987,39.352,39.593,40.083,40.588,40.814,40.991,41.360,41.597,42.087,42.591,42.818,42.994,43.364,43.601,44.091,44.594,44.822,44.998,45.368,45.604,46.095,46.598,46.824,47.002,47.372,47.608,48.099,48.602,48.828,49.006,49.375,49.612,50.101,50.605,50.832,51.010,51.379,51.617,52.106,52.608,52.836,53.014,53.383,53.621,54.109,54.612,54.839,55.017,55.387,55.624,56.113,56.616,56.843,57.021,57.391,57.627,58.116,58.621,58.847,59.025,59.395,59.630,60.120,60.624,60.849,61.029,61.399,61.632,62.124,62.628,62.853,63.033,63.403,63.636,64.128,64.632,64.859,65.037,65.407,65.640,66.132,66.636,66.863,67.041,67.411,67.645,68.136,68.640,68.867,69.045,69.415,69.649,70.139,70.643,70.870,71.049,71.419,71.653,72.143,72.647,72.876,73.053,73.423,73.656,74.147,74.655,74.880,75.057,75.427,75.660,76.151,76.664,76.884,77.061,77.431,77.664,78.153,78.669,78.888,79.065,79.436,79.668,80.157,80.673,80.892,81.069,81.440,81.672,82.161,82.676,82.896,83.073,83.444
8 | 0.001,0.001,0.002,0.002,0.002,2.004,2.029,2.030,2.030,2.030,2.257,4.008,4.034,4.036,4.723,4.724,4.724,6.012,6.037,6.189,6.727,6.745,6.746,8.016,8.824,8.825,8.825,8.826,8.826,10.020,10.829,10.829,10.833,10.834,11.553,12.024,12.833,12.834,12.837,13.077,13.561,14.028,14.837,14.838,15.194,15.194,15.565,16.032,16.841,17.568,17.569,17.569,17.571,18.036,18.845,19.573,19.575,19.575,19.577,20.045,20.849,21.577,21.577,21.579,21.895,22.048,22.853,23.581,23.582,23.582,23.918,24.052,24.865,25.589,25.797,25.922,25.924,26.056,26.879,27.603,27.804,27.925,27.929,28.060,28.892,29.607,29.808,29.929,29.933,30.117,30.895,31.611,31.813,31.933,32.105,32.121,32.899,33.615,33.817,33.980,34.109,34.125,34.901,35.619,35.821,35.984,36.113,36.129,36.905,37.621,37.825,37.987,38.117,38.133,38.909,39.625,39.828,39.991,40.121,40.336,40.913,41.629,41.832,41.994,42.220,42.340,42.918,43.633,43.835,44.010,44.223,44.344,44.925,45.637,45.839,46.013,46.225,46.349,46.928,47.641,47.841,48.017,48.229,48.353,48.932,49.645,49.845,50.021,50.233,50.391,50.936,51.649,51.849,52.025,52.237,52.396,52.940,53.653,53.853,54.029,54.241,54.400,54.944,55.657,55.857,56.032,56.245,56.408,56.948,57.661,57.861,58.036,58.249,58.412,58.952,59.665,59.867,60.040,60.253,60.416,60.956,61.669,61.871,62.044,62.257,62.420,62.961,63.673,63.875,64.048,64.261,64.424,64.965,65.677,65.879,66.051,66.265,66.427,66.969,67.681,67.882,68.055,68.268,68.431,68.973,69.683,69.886,70.059,70.272,70.460,70.976,71.687,71.889,72.063,72.276,72.464,72.980,73.690,73.893,74.066,74.280,74.468,74.984,75.694,75.897,76.070,76.284,76.472,76.988,77.697,77.901,78.074,78.292,78.475,78.995,79.701,79.909,80.078,80.296,80.479,80.999,81.705,81.913,82.082,82.300,82.482,83.003,83.708,83.918,84.121
9 | 0.001,0.001,0.002,0.002,0.002,2.006,2.006,2.009,2.011,2.769,3.390,4.010,4.011,4.014,4.177,4.774,5.394,6.014,6.015,6.181,6.181,6.778,7.398,8.018,8.336,8.337,8.337,8.781,9.402,10.022,10.341,10.342,10.344,10.786,11.406,12.026,12.345,12.346,12.351,12.790,13.411,14.030,14.349,14.350,14.493,14.793,15.414,16.033,16.353,16.540,16.541,16.797,17.418,18.037,18.357,18.545,18.545,18.807,19.426,20.041,20.361,20.549,20.550,20.810,21.428,22.045,22.365,22.553,22.554,22.814,23.432,24.049,24.366,24.558,24.689,24.818,25.435,26.052,26.370,26.562,26.696,26.822,27.438,28.056,28.374,28.566,28.700,28.826,29.441,30.058,30.378,30.570,30.704,30.830,31.445,32.061,32.381,32.574,32.708,32.853,33.449,34.065,34.384,34.578,34.710,34.858,35.453,36.068,36.388,36.582,36.714,36.861,37.457,38.072,38.391,38.586,38.717,38.865,39.461,40.075,40.395,40.590,40.726,40.869,41.465,42.078,42.399,42.594,42.730,42.873,43.467,44.082,44.403,44.598,44.734,44.876,45.471,46.085,46.406,46.602,46.738,46.880,47.478,48.089,48.409,48.606,48.742,48.885,49.481,50.097,50.416,50.609,50.746,50.888,51.485,52.100,52.420,52.613,52.749,52.892,53.489,54.104,54.425,54.617,54.754,54.895,55.493,56.108,56.428,56.622,56.758,56.899,57.497,58.110,58.432,58.626,58.762,58.902,59.501,60.115,60.435,60.630,60.766,60.906,61.504,62.125,62.438,62.633,62.769,62.910,63.507,64.129,64.442,64.637,64.773,64.914,65.511,66.132,66.447,66.642,66.777,66.917,67.515,68.136,68.451,68.645,68.781,68.921,69.519,70.146,70.453,70.649,70.784,70.925,71.523,72.150,72.462,72.658,72.786,72.934,73.526,74.154,74.466,74.662,74.789,74.938,75.530,76.157,76.471,76.665,76.793,76.941,77.534,78.166,78.473,78.669,78.797,78.945,79.538,80.169,80.476,80.673,80.800,80.949,81.542,82.173,82.480,82.677,82.804,82.953
10 | 0.001,0.001,0.002,0.002,0.013,2.018,2.021,2.021,2.024,3.322,3.322,4.025,4.026,4.027,5.014,5.325,5.327,6.029,6.029,6.793,7.018,7.329,7.335,8.033,8.767,8.797,9.021,9.333,9.337,10.373,10.771,10.800,11.025,11.337,12.667,12.667,12.775,12.802,13.029,13.341,14.671,14.673,14.778,14.805,15.033,15.346,16.675,16.681,16.781,17.031,17.037,17.350,18.678,18.684,18.871,19.035,19.041,19.353,20.682,20.835,20.878,21.038,21.045,21.357,22.686,22.837,22.881,23.042,23.049,23.361,24.689,24.841,24.885,25.045,25.178,25.364,26.692,26.845,26.889,27.049,27.182,27.368,28.696,28.847,28.985,29.053,29.185,29.372,30.700,30.849,30.989,31.057,31.189,31.376,32.704,32.853,32.993,33.061,33.193,33.379,34.707,34.857,34.995,35.065,35.199,35.381,36.711,36.861,36.997,37.145,37.204,37.386,38.715,38.865,39.010,39.149,39.208,39.390,40.719,40.940,41.014,41.152,41.212,41.394,42.723,42.944,43.020,43.156,43.216,43.440,44.727,44.948,45.024,45.160,45.385,45.445,46.731,46.952,47.028,47.252,47.389,47.448,48.735,48.956,49.179,49.256,49.393,49.452,50.738,51.048,51.183,51.260,51.397,51.454,52.742,53.052,53.187,53.263,53.401,53.673,54.746,55.056,55.191,55.267,55.534,55.677,56.750,57.060,57.194,57.503,57.538,57.681,58.754,59.064,59.356,59.507,59.542,59.685,60.757,61.101,61.361,61.513,61.545,61.689,62.761,63.108,63.365,63.517,63.549,63.887,64.764,65.112,65.369,65.521,65.894,65.894,66.768,67.116,67.373,67.727,67.898,67.901,68.772,69.119,69.560,69.733,69.902,69.904,70.776,71.123,71.565,71.737,71.906,71.908,72.780,73.126,73.567,73.741,73.910,74.294,74.791,75.130,75.571,75.745,76.135,76.296,76.794,77.134,77.575,77.940,78.139,78.300,78.798,79.138,79.579,79.944,80.145,80.304,80.802,81.142,81.582,81.952,82.147,82.308,82.806,83.145,83.586,83.956,84.149,84.452
11 | 0.001,2.830,2.831,2.831,2.832,2.841,2.841,2.842,3.536,3.536,3.537,3.537,3.538,4.237,4.238,4.238,4.243,4.244,7.111,7.112,7.112,7.113,7.113,7.718,7.719,7.728,7.728,7.730,7.731,7.731,8.356,8.356,8.916,8.929,8.929,8.930,8.930,8.931,9.456,9.459,9.460,9.460,9.954,9.955,9.955,9.956,9.956,9.957,10.567,10.567,10.568,10.568,11.154,11.155,11.160,11.160,11.161,11.652,11.652,11.653,11.653,11.654,11.654,12.164,12.165,12.165,12.166,12.612,12.620,12.624,12.624,12.625,13.174,13.182,13.189,13.190,13.196,13.198,13.610,13.611,13.611,13.612,14.129,14.129,14.130,14.130,14.131,14.580,14.580,14.581,14.581,14.581,14.594,15.047,15.048,15.048,15.048,15.049,15.575,15.583,15.590,15.591,15.591,15.592,16.020,16.020,16.021,16.021,16.022,16.488,16.489,16.489,16.992,16.993,16.993,17.001,17.002,17.002,17.505,17.516,17.516,17.548,17.552,17.977,17.984,17.985,17.985,17.985,18.549,18.552,18.552,18.553,18.553,18.553,19.142,19.142,19.142,19.788,19.797,19.798,19.798,19.799,19.800,20.425,20.433,20.434,20.435,20.436,21.232,21.233,21.233,21.234,21.234,21.865,21.865,21.866,21.874,22.573,22.574,22.574,22.580,22.580,23.328,23.329,23.329,23.330,23.330,24.012,24.013,24.013,24.014,24.014,24.702,24.702,24.703,24.703,24.704,24.704,25.357,25.357,25.357,25.358,26.294,26.294,26.295,26.295,26.296,26.296,27.077,27.077,27.078,27.078,27.764,27.764,27.765,27.765,27.766,28.513,28.513,28.514,28.514,28.514,29.476,29.476,29.477,29.477,29.478,29.478,30.169,30.169,30.170,30.170,30.171,30.855,30.856,30.856,30.856,31.633,31.633,31.634,31.634,31.637,32.028,32.029,32.029,32.030,32.030,32.424,32.428,32.428,32.430,32.430,32.981,32.981,32.982,32.982,32.983,33.226,33.226,33.227,33.227,33.228,33.504,33.507,33.507,33.516,33.516,33.517,33.937,33.937,NA
12 | 0.001,0.001,1.006,1.006,1.008,1.008,1.009,3.768,3.768,3.783,3.783,3.784,3.784,4.129,4.129,4.130,4.130,6.607,6.608,6.608,6.609,6.612,7.794,7.794,7.795,7.800,7.800,7.801,8.628,8.629,8.629,8.630,9.188,9.188,9.189,9.189,9.190,9.190,10.456,10.457,10.458,10.459,10.460,11.751,11.751,11.752,11.752,12.875,12.876,12.876,12.877,12.877,12.878,14.051,14.052,14.052,14.053,15.084,15.084,15.085,15.085,15.086,15.101,16.056,16.056,16.057,16.057,16.058,16.972,16.980,16.980,16.981,16.981,17.869,17.869,17.870,17.870,18.720,18.720,18.721,18.745,18.746,18.746,19.381,19.381,19.382,19.382,20.007,20.007,20.016,20.016,20.017,20.017,20.629,20.629,20.630,20.630,20.631,21.277,21.277,21.278,21.278,21.901,21.901,21.902,21.902,21.903,22.513,22.513,22.514,22.514,22.515,23.168,23.169,23.169,23.170,23.170,23.773,23.774,23.774,23.775,23.775,23.776,24.444,24.445,24.445,24.446,24.962,24.963,24.963,24.963,24.964,25.557,25.557,25.558,25.560,25.560,25.561,26.184,26.185,26.185,26.186,26.844,26.845,26.846,26.846,26.846,26.847,27.444,27.445,27.445,27.446,28.224,28.225,28.225,28.226,28.226,28.848,28.848,28.849,28.849,28.850,28.850,29.484,29.485,29.485,29.486,30.073,30.073,30.074,30.074,30.075,30.075,30.681,30.681,30.682,30.682,30.683,31.260,31.261,31.261,31.262,31.932,31.933,31.933,31.934,31.934,32.533,32.533,32.534,32.534,32.535,32.535,33.134,33.135,33.135,33.136,33.137,33.732,33.732,33.733,33.733,33.734,34.456,34.459,34.460,34.464,35.022,35.023,35.023,35.024,35.024,35.604,35.605,35.605,35.606,35.607,36.180,36.181,36.181,36.185,36.186,36.774,36.775,36.775,36.776,36.776,37.345,37.345,37.346,37.346,37.347,37.347,37.970,37.970,37.971,37.971,37.972,37.972,38.600,38.600,38.601,38.601,39.323,39.324,39.324,39.325,39.774,39.780,39.792,NA
13 | 0.001,0.774,0.774,0.775,1.504,1.505,2.235,2.954,2.955,2.955,3.770,3.770,4.506,5.237,5.238,5.238,6.097,6.098,6.608,7.226,7.226,7.227,7.938,7.939,8.658,9.238,9.239,9.239,9.822,9.822,10.634,11.113,11.122,11.123,11.781,11.782,12.516,13.314,13.314,13.315,14.010,14.010,14.710,15.414,15.415,15.415,16.161,16.162,16.867,17.634,17.634,17.635,18.331,18.332,19.214,19.945,19.945,19.946,20.713,20.713,21.426,22.133,22.134,22.134,22.850,22.853,23.574,24.282,24.282,24.283,25.038,25.039,25.776,26.498,26.498,26.499,27.222,27.222,27.942,28.659,28.660,28.660,29.370,29.371,29.371,30.078,31.494,31.494,31.495,31.495,31.496,31.496,33.631,33.632,33.632,33.633,33.633,33.634,35.766,35.766,35.767,35.767,35.768,35.768,37.897,37.898,37.898,37.899,37.899,37.899,40.209,40.209,40.210,40.210,40.211,40.211,42.438,42.439,42.445,42.446,42.446,42.447,44.634,44.634,44.635,44.635,44.636,44.636,46.806,46.807,46.817,46.818,46.818,46.819,48.991,48.991,48.992,48.992,48.993,48.993,51.165,51.165,51.166,51.166,51.167,51.167,53.348,53.349,53.349,53.350,53.350,53.351,55.686,55.697,55.698,55.698,55.699,55.699,57.930,57.930,57.931,57.931,57.932,57.932,60.138,60.149,60.150,60.150,60.151,60.151,62.346,62.756,62.757,62.757,62.758,62.758,64.602,64.603,64.603,64.604,64.604,64.605,66.894,66.894,66.895,66.895,66.896,66.896,69.292,69.293,69.293,69.294,69.294,69.295,71.618,71.618,71.619,71.619,71.620,71.620,73.957,73.966,73.973,73.977,73.978,73.978,76.002,76.003,76.003,76.004,76.004,76.005,78.185,78.186,78.186,78.187,78.187,78.187,80.341,80.342,80.342,80.343,80.343,80.344,82.694,82.695,82.695,82.696,82.696,82.697,84.692,84.693,84.694,84.697,84.698,84.699,87.017,87.018,87.023,87.024,87.024,87.025,89.319,89.319,89.320,89.320,89.321,89.321,91.807,91.808,NA
14 |
--------------------------------------------------------------------------------
/data/mpi_v_seq_time_comparison/plotme.R:
--------------------------------------------------------------------------------
1 | library(ggplot2)
2 |
3 | mpi.df <- read.csv("mpi_time_data.csv", header=F)
4 | mpi.df <- mpi.df[,1:250]
5 |
6 | seq.df <- read.csv("sequential_time_data.csv", header=F)
7 | seq.df <- seq.df[,1:250]
8 |
9 | df <- data.frame(x=1:250, y1=rowMeans(t(mpi.df)), y2=rowMeans(t(seq.df)))
10 | cairo_ps(file="plot.eps", width=7,height=7)
11 | p <- (ggplot(df, aes(x, y = value, color = variable)) +
12 | geom_line(aes(y = y1, col = "Parallel")) +
13 | geom_line(aes(y = y2, col = "Sequential")) +
14 | xlab("Number of queries") + ylab("Seconds taken") +
15 | scale_fill_discrete(breaks=c("Sequential", "Parallel")))
16 | plot(p)
17 | dev.off()
18 |
--------------------------------------------------------------------------------
/data/mpi_v_seq_time_comparison/plotme.m:
--------------------------------------------------------------------------------
1 | function plotme()
2 |
3 | seq = load('sequential_time_data.csv');
4 | mpi = load('mpi_time_data.csv');
5 |
6 | seq_y = mean(seq, 1);
7 | mpi_y = mean(mpi, 1);
8 | x = 1:250;
9 |
10 | clf;
11 | hold on;
12 | plot(x, seq_y, 'b');
13 | plot(x, mpi_y, 'r');
14 | legend('sequential', 'parallel')
15 | xlabel('iterations')
16 | ylabel('time')
17 |
--------------------------------------------------------------------------------
/data/mpi_v_seq_time_comparison/sequential_time_data.csv:
--------------------------------------------------------------------------------
1 | 2.005,4.010,6.013,8.017,10.022,12.670,14.674,16.681,18.687,20.692,23.523,25.528,27.531,29.535,31.536,33.749,35.752,37.757,39.762,41.767,43.928,45.933,47.937,49.943,51.949,54.194,56.199,58.205,60.211,62.215,64.587,66.591,68.597,70.601,72.606,74.848,76.852,78.856,80.858,82.860,85.109,87.114,89.117,91.121,93.125,95.348,97.353,99.356,101.360,103.363,107.646,109.652,111.657,113.661,115.664,118.011,120.017,122.022,124.027,126.029,128.274,130.278,132.284,134.288,136.292,138.545,140.549,142.552,144.556,146.560,148.779,150.784,152.790,154.797,156.803,159.087,161.093,163.096,165.101,167.104,169.417,171.421,173.425,175.429,177.435,179.639,181.641,183.647,185.651,187.655,189.835,191.840,193.843,195.849,197.852,200.109,202.113,204.116,206.120,208.124,210.331,212.337,214.342,216.348,218.353,220.566,222.571,224.576,226.579,228.583,230.921,232.925,234.930,236.935,238.939,241.147,243.152,245.155,247.159,249.163,251.345,253.347,255.351,257.354,259.357,261.539,263.544,265.549,267.552,269.555,271.729,273.733,275.735,277.739,279.744,281.936,283.941,285.944,287.946,289.950,292.158,294.162,296.165,298.167,300.171,302.360,304.365,306.368,308.373,310.378,314.618,316.622,318.626,320.629,322.633,324.828,326.831,328.836,330.841,332.846,335.147,337.151,339.156,341.161,343.165,345.436,347.442,349.447,351.451,353.457,355.717,357.721,359.726,361.730,363.735,366.010,368.015,370.019,372.023,374.027,376.297,378.302,380.306,382.311,384.314,386.580,388.585,390.589,392.594,394.597,396.874,398.878,400.883,402.890,404.896,407.182,409.186,411.188,413.191,415.195,417.456,419.462,421.465,423.469,425.473,427.768,429.772,431.778,433.784,435.789,438.084,440.086,442.090,444.094,446.098,448.369,450.372,452.376,454.379,456.385,458.676,460.680,462.684,464.687,466.691,468.974,470.978,472.983,474.986,476.992,479.252,481.257,483.262,485.266,487.271,489.537,491.541,493.545,495.548,497.552,499.814,501.819,503.825,505.828,507.833,510.172,512.175,514.179,516.184,518.190
2 | 2.003,4.007,6.011,8.014,10.017,12.318,14.322,16.327,18.332,20.337,22.827,24.830,26.834,28.838,30.843,33.673,35.678,37.682,39.685,41.689,43.939,45.943,47.947,49.950,51.954,54.280,56.282,58.286,60.292,62.296,64.510,66.514,68.519,70.524,72.527,74.709,76.714,78.719,80.724,82.728,84.910,86.915,88.924,90.929,92.933,95.110,97.114,99.116,101.120,103.125,108.029,110.034,112.038,114.044,116.049,118.213,120.216,122.219,124.223,126.228,128.365,130.370,132.376,134.381,136.387,138.520,140.524,142.527,144.529,146.532,148.680,150.684,152.689,154.694,156.699,158.921,160.924,162.928,164.933,166.938,169.081,171.085,173.089,175.093,177.099,179.249,181.254,183.259,185.264,187.268,189.406,191.410,193.414,195.419,197.425,199.560,201.566,203.570,205.574,207.579,209.710,211.715,213.719,215.723,217.727,219.857,221.860,223.864,225.870,227.875,230.015,232.020,234.026,236.031,238.035,240.178,242.184,244.186,246.189,248.193,250.344,252.348,254.352,256.357,258.360,260.487,262.490,264.495,266.499,268.503,270.648,272.654,274.659,276.664,278.668,280.807,282.812,284.817,286.822,288.827,290.972,292.975,294.979,296.984,298.988,301.155,303.158,305.162,307.166,309.171,314.216,316.220,318.224,320.229,322.233,324.377,326.382,328.387,330.392,332.398,334.540,336.547,338.552,340.558,342.561,344.716,346.720,348.725,350.731,352.739,354.871,356.875,358.878,360.881,362.886,365.023,367.027,369.031,371.035,373.038,375.161,377.165,379.170,381.175,383.180,385.317,387.322,389.326,391.330,393.336,395.473,397.478,399.485,401.489,403.493,405.623,407.627,409.630,411.634,413.638,415.775,417.780,419.786,421.792,423.797,425.941,427.947,429.950,431.954,433.960,436.100,438.106,440.110,442.114,444.119,446.287,448.290,450.294,452.297,454.300,456.430,458.435,460.439,462.442,464.448,466.589,468.593,470.597,472.599,474.605,476.752,478.757,480.762,482.765,484.769,486.901,488.904,490.908,492.914,494.920,497.122,499.126,501.130,503.133,505.137,507.268,509.274,511.280,513.285,515.290
3 | 2.002,4.006,6.012,8.017,10.021,12.494,14.499,16.503,18.507,20.512,23.147,25.152,27.156,29.159,31.163,33.313,35.318,37.321,39.325,41.328,43.480,45.484,47.489,49.493,51.499,53.664,55.666,57.670,59.672,61.676,63.849,65.854,67.860,69.864,71.868,74.024,76.028,78.034,80.039,82.044,84.291,86.295,88.301,90.305,92.309,94.507,96.513,98.518,100.522,102.525,106.797,108.803,110.808,112.813,114.817,117.008,119.013,121.019,123.025,125.029,127.237,129.241,131.246,133.250,135.255,137.490,139.494,141.497,143.501,145.505,147.722,149.728,151.733,153.735,155.741,158.021,160.027,162.033,164.039,166.044,168.250,170.253,172.258,174.262,176.265,178.487,180.492,182.495,184.498,186.502,188.727,190.731,192.734,194.738,196.743,198.944,200.949,202.952,204.956,206.959,209.153,211.158,213.163,215.167,217.171,219.374,221.379,223.382,225.386,227.391,229.597,231.601,233.607,235.613,237.618,239.823,241.827,243.832,245.837,247.841,250.038,252.042,254.048,256.053,258.057,260.269,262.272,264.276,266.278,268.282,270.480,272.485,274.490,276.494,278.498,280.682,282.688,284.693,286.698,288.702,290.880,292.884,294.888,296.894,298.899,301.111,303.116,305.122,307.126,309.130,313.457,315.460,317.464,319.469,321.472,323.619,325.625,327.630,329.636,331.639,333.791,335.795,337.798,339.804,341.809,343.990,345.993,347.997,350.003,352.008,354.155,356.158,358.163,360.168,362.173,364.358,366.364,368.370,370.374,372.379,374.580,376.585,378.590,380.594,382.598,384.803,386.807,388.810,390.815,392.819,394.991,396.994,398.998,401.004,403.008,405.203,407.208,409.211,411.214,413.218,415.419,417.423,419.428,421.433,423.436,425.689,427.693,429.698,431.703,433.709,435.886,437.890,439.894,441.899,443.905,446.104,448.109,450.115,452.120,454.124,456.330,458.336,460.338,462.341,464.345,466.544,468.548,470.552,472.558,474.564,476.748,478.753,480.758,482.763,484.768,486.925,488.930,490.934,492.937,494.940,497.103,499.107,501.112,503.117,505.123,507.372,509.377,511.381,513.385,515.388
4 | 2.003,4.007,6.011,8.016,10.020,12.663,14.668,16.672,18.677,20.680,23.388,25.392,27.398,29.402,31.408,34.419,36.422,38.425,40.428,42.435,44.646,46.651,48.655,50.660,52.666,54.923,56.928,58.934,60.939,62.945,65.193,67.196,69.199,71.204,73.209,75.418,77.423,79.427,81.430,83.434,85.648,87.652,89.655,91.661,93.666,95.892,97.896,99.902,101.907,103.911,108.316,110.321,112.326,114.333,116.337,118.562,120.565,122.569,124.572,126.574,128.769,130.774,132.778,134.781,136.785,139.008,141.011,143.015,145.019,147.023,149.261,151.266,153.270,155.274,157.278,159.495,161.499,163.503,165.509,167.515,169.827,171.832,173.838,175.843,177.849,180.057,182.061,184.066,186.070,188.075,190.297,192.301,194.304,196.308,198.314,200.527,202.531,204.537,206.540,208.545,210.737,212.743,214.748,216.754,218.759,220.957,222.961,224.964,226.967,228.971,231.134,233.139,235.143,237.145,239.148,241.342,243.346,245.352,247.355,249.359,251.551,253.555,255.560,257.564,259.569,261.756,263.762,265.764,267.768,269.771,271.976,273.981,275.987,277.991,279.996,282.193,284.199,286.204,288.209,290.212,292.394,294.398,296.404,298.409,300.414,302.603,304.609,306.613,308.617,310.622,314.874,316.880,318.885,320.888,322.893,325.066,327.069,329.073,331.078,333.080,335.248,337.251,339.256,341.262,343.267,345.446,347.449,349.452,351.456,353.460,355.631,357.635,359.639,361.645,363.651,365.817,367.821,369.825,371.830,373.836,376.010,378.013,380.017,382.020,384.024,386.211,388.214,390.217,392.221,394.226,396.404,398.409,400.414,402.417,404.421,406.594,408.600,410.604,412.607,414.612,416.777,418.781,420.786,422.790,424.796,426.971,428.975,430.980,432.986,434.991,437.153,439.159,441.164,443.170,445.175,447.336,449.342,451.347,453.349,455.354,457.541,459.546,461.551,463.555,465.561,467.729,469.733,471.739,473.744,475.749,477.974,479.979,481.984,483.988,485.993,488.157,490.162,492.166,494.171,496.175,498.336,500.340,502.343,504.349,506.354,508.508,510.513,512.519,514.524,516.528
5 | 2.003,4.008,6.013,8.017,10.021,12.161,14.167,16.169,18.173,20.178,22.346,24.349,26.353,28.358,30.362,33.014,35.018,37.021,39.024,41.028,43.740,45.744,47.747,49.751,51.756,54.519,56.525,58.529,60.534,62.540,65.310,67.316,69.321,71.324,73.328,75.619,77.623,79.625,81.629,83.632,85.861,87.867,89.872,91.878,93.883,96.128,98.134,100.139,102.145,104.150,108.618,110.625,112.628,114.634,116.639,118.867,120.871,122.877,124.882,126.888,129.114,131.118,133.122,135.126,137.130,139.335,141.340,143.344,145.349,147.353,149.595,151.601,153.606,155.612,157.615,159.856,161.860,163.865,165.867,167.872,170.111,172.117,174.123,176.128,178.133,180.388,182.391,184.395,186.403,188.408,190.700,192.705,194.709,196.714,198.718,201.003,203.009,205.014,207.017,209.021,211.358,213.363,215.368,217.374,219.379,221.647,223.650,225.654,227.659,229.663,231.949,233.954,235.960,237.965,239.970,242.235,244.239,246.242,248.246,250.250,252.480,254.484,256.490,258.495,260.500,262.754,264.758,266.764,268.769,270.774,273.033,275.037,277.041,279.046,281.052,283.276,285.280,287.285,289.290,291.295,293.523,295.528,297.533,299.537,301.542,303.785,305.787,307.791,309.796,311.798,316.293,318.298,320.301,322.305,324.311,326.636,328.642,330.647,332.652,334.655,336.826,338.829,340.833,342.836,344.840,347.041,349.046,351.051,353.057,355.060,357.253,359.258,361.262,363.265,365.270,367.473,369.476,371.479,373.482,375.486,377.678,379.684,381.689,383.692,385.696,387.907,389.912,391.917,393.922,395.927,398.146,400.152,402.157,404.160,406.163,408.361,410.366,412.369,414.373,416.378,418.602,420.608,422.612,424.617,426.621,428.836,430.839,432.843,434.849,436.854,439.067,441.071,443.076,445.082,447.088,449.314,451.318,453.322,455.326,457.332,459.544,461.546,463.552,465.557,467.562,469.769,471.774,473.780,475.785,477.788,479.994,481.998,484.003,486.009,488.015,490.258,492.261,494.266,496.271,498.276,500.478,502.483,504.486,506.491,508.495,510.719,512.724,514.730,516.734,518.737
6 | 2.004,4.009,6.015,8.020,10.024,12.572,14.576,16.580,18.586,20.592,23.210,25.216,27.221,29.225,31.228,33.543,35.548,37.553,39.557,41.560,43.829,45.835,47.840,49.846,51.850,53.984,55.989,57.995,60.001,62.006,64.120,66.125,68.130,70.135,72.138,74.256,76.262,78.266,80.270,82.275,84.399,86.401,88.405,90.407,92.409,94.536,96.540,98.544,100.548,102.552,106.718,108.724,110.730,112.734,114.739,116.994,118.999,121.002,123.005,125.008,127.259,129.265,131.270,133.274,135.281,137.469,139.472,141.475,143.479,145.484,147.695,149.701,151.706,153.711,155.715,157.966,159.972,161.975,163.979,165.983,168.311,170.315,172.322,174.328,176.334,178.530,180.535,182.541,184.546,186.549,188.737,190.741,192.743,194.746,196.751,199.007,201.010,203.015,205.019,207.025,209.206,211.211,213.216,215.219,217.223,219.424,221.428,223.432,225.437,227.443,229.640,231.645,233.649,235.655,237.659,239.828,241.832,243.836,245.842,247.846,250.040,252.043,254.047,256.050,258.054,260.250,262.255,264.259,266.263,268.267,270.463,272.466,274.470,276.474,278.479,280.692,282.697,284.702,286.706,288.716,290.920,292.923,294.926,296.928,298.931,301.127,303.132,305.137,307.141,309.145,313.650,315.655,317.660,319.666,321.671,323.866,325.872,327.876,329.880,331.885,334.055,336.059,338.064,340.068,342.072,344.319,346.323,348.328,350.332,352.335,354.529,356.534,358.539,360.543,362.548,364.723,366.728,368.733,370.736,372.740,374.928,376.932,378.936,380.942,382.947,385.127,387.130,389.134,391.139,393.145,395.330,397.334,399.340,401.345,403.350,405.547,407.552,409.557,411.562,413.566,415.748,417.753,419.757,421.763,423.767,425.940,427.944,429.950,431.954,433.958,436.135,438.141,440.145,442.147,444.151,446.334,448.338,450.343,452.349,454.355,456.544,458.549,460.555,462.559,464.563,466.750,468.753,470.756,472.760,474.765,476.943,478.948,480.954,482.959,484.963,487.140,489.144,491.148,493.153,495.158,497.336,499.341,501.345,503.349,505.353,507.544,509.548,511.550,513.555,515.560
7 | 2.003,4.007,6.013,8.019,10.023,12.357,14.362,16.368,18.372,20.376,23.082,25.087,27.091,29.096,31.098,34.010,36.014,38.018,40.023,42.026,44.764,46.768,48.773,50.777,52.780,55.058,57.062,59.068,61.074,63.080,65.285,67.290,69.294,71.298,73.302,75.602,77.605,79.610,81.613,83.618,85.954,87.957,89.958,91.962,93.967,96.164,98.168,100.172,102.176,104.182,108.349,110.353,112.359,114.364,116.368,118.647,120.653,122.659,124.665,126.670,128.957,130.962,132.967,134.972,136.976,139.263,141.269,143.274,145.278,147.283,149.551,151.557,153.562,155.568,157.573,159.841,161.846,163.851,165.856,167.859,170.149,172.153,174.157,176.161,178.166,180.495,182.499,184.502,186.506,188.512,190.789,192.795,194.800,196.805,198.808,201.058,203.064,205.068,207.075,209.080,211.351,213.355,215.359,217.362,219.366,221.600,223.606,225.610,227.613,229.618,231.867,233.871,235.876,237.881,239.887,242.129,244.134,246.140,248.144,250.149,252.393,254.398,256.400,258.405,260.409,262.684,264.688,266.693,268.697,270.703,272.964,274.969,276.973,278.979,280.982,283.284,285.288,287.292,289.295,291.297,293.598,295.603,297.607,299.611,301.616,303.859,305.863,307.866,309.870,311.875,316.394,318.398,320.404,322.408,324.414,326.984,328.988,330.992,332.996,335.000,337.333,339.339,341.343,343.347,345.353,347.560,349.566,351.571,353.576,355.580,357.803,359.808,361.812,363.816,365.823,368.028,370.032,372.037,374.041,376.046,378.296,380.302,382.305,384.310,386.314,388.513,390.518,392.523,394.525,396.529,398.725,400.727,402.733,404.738,406.743,408.933,410.938,412.943,414.946,416.950,419.146,421.151,423.156,425.160,427.165,429.361,431.364,433.367,435.371,437.376,439.576,441.582,443.587,445.592,447.595,449.779,451.784,453.788,455.794,457.799,459.998,462.002,464.006,466.009,468.015,470.247,472.250,474.255,476.260,478.266,480.526,482.529,484.531,486.535,488.540,490.727,492.731,494.736,496.741,498.745,500.962,502.968,504.973,506.976,508.981,511.186,513.192,515.197,517.203,519.206
8 | 2.003,4.008,6.013,8.017,10.021,12.700,14.705,16.712,18.717,20.720,22.859,24.862,26.866,28.870,30.873,33.556,35.560,37.564,39.570,41.572,43.803,45.807,47.811,49.814,51.818,54.052,56.056,58.063,60.067,62.073,64.352,66.356,68.360,70.364,72.366,74.577,76.580,78.584,80.589,82.595,84.790,86.793,88.796,90.800,92.804,94.997,97.000,99.004,101.007,103.011,107.325,109.330,111.336,113.341,115.347,117.511,119.513,121.517,123.524,125.529,127.702,129.707,131.711,133.716,135.720,137.881,139.887,141.891,143.896,145.901,148.052,150.056,152.060,154.064,156.068,158.245,160.250,162.254,164.259,166.265,168.511,170.516,172.522,174.527,176.532,178.701,180.704,182.708,184.711,186.715,188.877,190.879,192.883,194.889,196.892,199.083,201.088,203.094,205.098,207.103,209.293,211.297,213.300,215.306,217.313,219.481,221.487,223.492,225.498,227.504,229.690,231.696,233.701,235.705,237.711,239.886,241.889,243.892,245.898,247.903,250.087,252.090,254.093,256.101,258.107,260.281,262.288,264.293,266.296,268.300,270.477,272.481,274.483,276.487,278.490,280.680,282.684,284.688,286.691,288.695,290.871,292.875,294.880,296.885,298.890,301.071,303.074,305.078,307.079,309.083,314.604,316.608,318.611,320.616,322.620,324.768,326.772,328.778,330.782,332.787,334.934,336.939,338.944,340.948,342.952,345.106,347.112,349.115,351.117,353.121,355.272,357.277,359.282,361.288,363.293,365.441,367.444,369.448,371.455,373.460,375.614,377.619,379.626,381.633,383.638,385.789,387.793,389.796,391.800,393.804,395.963,397.970,399.974,401.978,403.984,406.132,408.138,410.143,412.148,414.153,416.305,418.311,420.314,422.319,424.325,426.476,428.481,430.486,432.491,434.497,436.650,438.654,440.659,442.663,444.667,446.820,448.824,450.830,452.835,454.839,456.992,458.996,461.001,463.007,465.012,467.168,469.173,471.176,473.180,475.185,477.339,479.344,481.348,483.352,485.357,487.516,489.519,491.522,493.529,495.534,497.682,499.687,501.691,503.696,505.702,507.924,509.930,511.934,513.940,515.943
9 | 2.004,4.011,6.015,8.020,10.027,12.214,14.219,16.223,18.227,20.232,22.515,24.518,26.524,28.529,30.536,32.756,34.761,36.764,38.769,40.776,43.588,45.592,47.598,49.602,51.606,54.426,56.433,58.438,60.440,62.443,65.241,67.244,69.247,71.252,73.257,75.524,77.529,79.535,81.539,83.543,86.153,88.156,90.160,92.165,94.168,96.490,98.494,100.500,102.503,104.506,109.349,111.353,113.358,115.363,117.368,119.603,121.609,123.614,125.618,127.624,129.855,131.860,133.864,135.869,137.875,140.071,142.077,144.081,146.086,148.092,150.323,152.330,154.335,156.341,158.347,160.585,162.588,164.593,166.598,168.602,170.851,172.857,174.862,176.867,178.870,181.201,183.206,185.211,187.216,189.220,191.452,193.458,195.465,197.469,199.473,201.682,203.689,205.694,207.699,209.703,211.954,213.959,215.963,217.968,219.973,222.206,224.211,226.215,228.220,230.225,232.447,234.451,236.455,238.461,240.466,242.668,244.673,246.677,248.679,250.685,252.895,254.899,256.903,258.906,260.912,263.132,265.137,267.140,269.147,271.151,273.371,275.375,277.381,279.385,281.389,283.588,285.595,287.600,289.605,291.610,293.834,295.839,297.844,299.847,301.853,304.068,306.073,308.077,310.082,312.089,317.239,319.243,321.249,323.255,325.261,327.455,329.462,331.466,333.470,335.475,337.683,339.688,341.691,343.695,345.700,347.934,349.940,351.945,353.949,355.953,358.163,360.166,362.169,364.173,366.177,368.415,370.419,372.424,374.428,376.433,378.662,380.666,382.671,384.674,386.678,388.903,390.908,392.912,394.915,396.920,399.157,401.162,403.166,405.168,407.172,409.389,411.392,413.397,415.404,417.409,419.646,421.652,423.658,425.663,427.666,429.891,431.897,433.900,435.905,437.909,440.140,442.146,444.151,446.155,448.158,450.411,452.415,454.420,456.425,458.429,460.663,462.669,464.675,466.680,468.684,470.912,472.917,474.921,476.928,478.933,481.157,483.161,485.165,487.170,489.175,491.429,493.435,495.440,497.444,499.448,501.662,503.664,505.669,507.675,509.680,511.903,513.907,515.910,517.918,519.923
10 | 2.004,4.008,6.014,8.019,10.025,12.354,14.359,16.362,18.367,20.372,22.579,24.586,26.591,28.595,30.600,33.440,35.445,37.449,39.451,41.455,43.909,45.916,47.920,49.925,51.931,54.248,56.254,58.259,60.265,62.271,64.562,66.566,68.572,70.578,72.582,74.844,76.849,78.854,80.859,82.863,85.151,87.155,89.158,91.163,93.170,95.430,97.434,99.440,101.445,103.449,108.011,110.017,112.021,114.025,116.031,118.319,120.323,122.326,124.331,126.335,128.681,130.685,132.690,134.696,136.700,138.962,140.968,142.973,144.975,146.981,149.255,151.261,153.267,155.271,157.275,159.564,161.569,163.575,165.580,167.584,169.896,171.901,173.907,175.912,177.917,180.159,182.163,184.167,186.171,188.175,190.404,192.409,194.413,196.419,198.426,200.654,202.657,204.663,206.668,208.671,210.898,212.904,214.909,216.915,218.920,221.153,223.156,225.160,227.166,229.171,231.383,233.388,235.393,237.397,239.401,241.632,243.638,245.643,247.648,249.655,251.883,253.889,255.895,257.898,259.904,262.101,264.107,266.112,268.118,270.122,272.330,274.335,276.339,278.343,280.348,282.532,284.535,286.540,288.545,290.553,292.737,294.741,296.748,298.754,300.759,302.948,304.954,306.959,308.964,310.970,315.656,317.659,319.666,321.672,323.676,325.829,327.834,329.840,331.846,333.850,335.995,337.999,340.003,342.009,344.015,346.170,348.175,350.180,352.185,354.192,356.356,358.362,360.368,362.372,364.377,366.534,368.539,370.545,372.552,374.557,376.709,378.714,380.719,382.723,384.729,386.893,388.895,390.901,392.907,394.913,397.067,399.074,401.080,403.086,405.090,407.237,409.240,411.243,413.247,415.253,417.407,419.410,421.415,423.419,425.423,427.573,429.577,431.581,433.585,435.589,437.721,439.725,441.729,443.733,445.738,447.892,449.898,451.902,453.907,455.911,458.051,460.056,462.059,464.064,466.068,468.215,470.218,472.222,474.226,476.230,478.390,480.394,482.396,484.401,486.405,488.565,490.571,492.575,494.579,496.583,498.780,500.785,502.790,504.793,506.797,508.963,510.968,512.971,514.975,516.980
--------------------------------------------------------------------------------
/data/regret_analysis/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/data/regret_analysis/__init__.py
--------------------------------------------------------------------------------
/data/regret_analysis/gp_gm_7.txt:
--------------------------------------------------------------------------------
1 | Complete initial dataset acquired
2 | [[ 7.01633367e-01 -9.08142827e-01 1.67547830e-03]
3 | [ 7.53458638e-01 4.53779980e-01 4.22874531e-01]
4 | [ 6.00811296e-01 -1.00216392e-01 2.90279549e-01]
5 | [ 3.21126448e-01 -6.55372499e-01 -3.06204929e-04]
6 | [ -8.51233295e-01 -2.90344163e-01 -4.28296776e-04]
7 | [ 2.17338343e-01 7.06014108e-01 1.66406620e+00]
8 | [ -2.99959481e-01 9.63932771e-01 1.97164935e-02]
9 | [ 1.75253392e-01 -9.81051962e-01 9.30237123e-04]
10 | [ 6.07074630e-01 -9.66802839e-01 4.46149313e-04]
11 | [ 1.63909208e-01 -4.38368235e-01 6.43774945e-05]
12 | [ -2.96094241e-01 -7.89856301e-01 5.87890753e-04]
13 | [ -6.20079128e-01 -3.53002040e-01 1.63413878e-03]
14 | [ -1.61606800e-01 4.36628849e-01 1.09968296e-01]
15 | [ -5.49505698e-01 7.35075140e-01 -6.99594227e-05]
16 | [ -8.57419428e-01 6.45673304e-01 1.68745835e-03]
17 | [ -1.90521352e-01 -6.13050747e-01 2.40280160e-04]
18 | [ -7.15695704e-01 5.42084306e-01 -3.99367597e-04]
19 | [ -6.82107977e-01 5.66971310e-01 9.15474687e-04]
20 | [ 2.93356972e-01 -7.49939409e-01 4.06269459e-04]
21 | [ -2.16906785e-01 -2.78100658e-01 -5.78235240e-04]
22 | [ -1.24566610e-02 -5.00096745e-02 2.22857779e-04]
23 | [ -5.30723862e-01 3.38536379e-01 2.30414196e-05]
24 | [ -1.88284387e-01 7.70445734e-01 2.41734630e-01]
25 | [ 5.43207079e-03 -6.39426155e-01 1.99412184e-03]
26 | [ 1.67286802e-01 5.19540303e-01 1.03216686e+00]
27 | [ -8.45095606e-01 -6.43027084e-01 1.16880609e-03]
28 | [ -5.12237788e-01 -6.83419471e-01 4.62195936e-04]
29 | [ -3.75963752e-01 9.11672862e-01 8.42397877e-03]
30 | [ 4.94819947e-01 -2.14966769e-01 7.71706651e-02]
31 | [ -4.43204348e-01 1.75401949e-01 -4.02173811e-04]
32 | [ -6.61511030e-01 6.21854893e-01 -3.46430097e-04]
33 | [ -8.47244388e-01 -9.51635250e-01 -5.50908135e-04]
34 | [ 7.74202886e-01 7.89228655e-02 9.08929631e-01]
35 | [ 4.62281366e-01 -9.05582819e-01 2.44321962e-03]
36 | [ -9.54432256e-01 6.85669294e-01 -8.60593429e-04]
37 | [ 8.64138047e-01 1.01474765e-01 1.05453915e+00]
38 | [ 7.43211885e-01 8.34046477e-01 6.41619215e-01]
39 | [ 7.17823577e-01 8.24910778e-01 6.03443733e-01]
40 | [ -7.18867886e-01 1.35199132e-01 2.31725520e-03]
41 | [ -3.04501206e-01 7.66192635e-02 5.43861179e-04]
42 | [ 7.93695819e-01 -1.12943523e-01 6.02803966e-01]
43 | [ 1.19098723e-02 -2.08836323e-01 1.46138648e-04]
44 | [ -3.19558694e-01 5.64310508e-01 3.25648220e-02]
45 | [ -5.56944257e-01 6.60718175e-01 8.45941862e-04]
46 | [ -7.68947360e-01 -5.57523802e-01 1.17001573e-03]
47 | [ 4.68783725e-01 6.18373600e-01 4.44753434e-01]
48 | [ 4.80419089e-01 -5.44884446e-01 1.02830046e-03]
49 | [ -9.12294897e-01 3.96798663e-01 -1.55615331e-05]
50 | [ 3.79809979e-01 -4.70133335e-01 1.89619284e-03]
51 | [ -6.85500760e-01 7.04151189e-02 -2.58085369e-03]]
52 | optimizer.py: All expected
53 | Tasks done: 1. New data added to dataset: [[ 0.2244898 0.79591837 1.41179903]]
54 | optimizer.py: All expected
55 | Tasks done: 2. New data added to dataset: [[ 0.18367347 0.71428571 1.74930717]]
56 | optimizer.py: All expected
57 | Tasks done: 3. New data added to dataset: [[ 0.14285714 0.71428571 1.77348566]]
58 | optimizer.py: All expected
59 | Tasks done: 4. New data added to dataset: [[ 0.14285714 0.71428571 1.77451479]]
60 | optimizer.py: All expected
61 | Tasks done: 5. New data added to dataset: [[ 0.14285714 0.71428571 1.773668 ]]
62 | optimizer.py: All expected
63 | Tasks done: 6. New data added to dataset: [[ 0.14285714 0.67346939 1.75793617]]
64 | optimizer.py: All expected
65 | Tasks done: 7. New data added to dataset: [[ 0.14285714 0.71428571 1.77242267]]
66 | optimizer.py: All expected
67 | Tasks done: 8. New data added to dataset: [[ 0.14285714 0.71428571 1.77323393]]
68 | optimizer.py: All expected
69 | Tasks done: 9. New data added to dataset: [[ 0.14285714 0.71428571 1.77203399]]
70 | optimizer.py: All expected
71 | Tasks done: 10. New data added to dataset: [[ 0.14285714 0.71428571 1.77475787]]
72 | optimizer.py: All expected
73 | Tasks done: 11. New data added to dataset: [[ 0.14285714 0.71428571 1.77318503]]
74 | optimizer.py: All expected
75 | Tasks done: 12. New data added to dataset: [[ 0.14285714 0.71428571 1.77291055]]
76 | optimizer.py: All expected
77 | Tasks done: 13. New data added to dataset: [[ 0.14285714 0.71428571 1.77335629]]
78 | optimizer.py: All expected
79 | Tasks done: 14. New data added to dataset: [[ 0.14285714 0.71428571 1.77298453]]
80 | optimizer.py: All expected
81 | Tasks done: 15. New data added to dataset: [[ 0.14285714 0.71428571 1.77319136]]
82 | optimizer.py: All expected
83 | Tasks done: 16. New data added to dataset: [[ 0.14285714 0.71428571 1.77350307]]
84 | optimizer.py: All expected
85 | Tasks done: 17. New data added to dataset: [[ 0.14285714 0.71428571 1.77351068]]
86 | optimizer.py: All expected
87 | Tasks done: 18. New data added to dataset: [[ 0.14285714 0.71428571 1.77208209]]
88 | optimizer.py: All expected
89 | Tasks done: 19. New data added to dataset: [[ 0.14285714 0.71428571 1.77500775]]
90 | optimizer.py: All expected
91 | Tasks done: 20. New data added to dataset: [[ 0.14285714 0.71428571 1.77219023]]
92 | optimizer.py: All expected
93 | Tasks done: 21. New data added to dataset: [[ 0.14285714 0.71428571 1.77348792]]
94 | optimizer.py: All expected
95 | Tasks done: 22. New data added to dataset: [[ 0.14285714 0.71428571 1.77287721]]
96 | optimizer.py: All expected
97 | Tasks done: 23. New data added to dataset: [[ 0.14285714 0.71428571 1.7726083 ]]
98 | optimizer.py: All expected
99 | Tasks done: 24. New data added to dataset: [[ 0.14285714 0.71428571 1.77214528]]
100 | optimizer.py: All expected
101 | Tasks done: 25. New data added to dataset: [[ 0.14285714 0.71428571 1.77356477]]
102 | optimizer.py: All expected
103 | Tasks done: 26. New data added to dataset: [[ 0.14285714 0.71428571 1.77384516]]
104 | optimizer.py: All expected
105 | Tasks done: 27. New data added to dataset: [[ 0.14285714 0.71428571 1.77513115]]
106 | optimizer.py: All expected
107 | Tasks done: 28. New data added to dataset: [[ 0.14285714 0.71428571 1.77293752]]
108 | optimizer.py: All expected
109 | Tasks done: 29. New data added to dataset: [[ 0.14285714 0.71428571 1.7734619 ]]
110 | optimizer.py: All expected
111 | Tasks done: 30. New data added to dataset: [[ 0.14285714 0.71428571 1.77257108]]
112 | optimizer.py: All expected
113 | Tasks done: 31. New data added to dataset: [[ 0.14285714 0.71428571 1.77331991]]
114 | optimizer.py: All expected
115 | Tasks done: 32. New data added to dataset: [[ 0.14285714 0.71428571 1.77390568]]
116 | optimizer.py: All expected
117 | Tasks done: 33. New data added to dataset: [[ 0.14285714 0.71428571 1.77317542]]
118 | optimizer.py: All expected
119 | Tasks done: 34. New data added to dataset: [[ 0.14285714 0.71428571 1.77211449]]
120 | optimizer.py: All expected
121 | Tasks done: 35. New data added to dataset: [[ 0.14285714 0.71428571 1.77267933]]
122 | optimizer.py: All expected
123 | Tasks done: 36. New data added to dataset: [[ 0.14285714 0.71428571 1.7720356 ]]
124 | optimizer.py: All expected
125 | Tasks done: 37. New data added to dataset: [[ 0.14285714 0.71428571 1.77240084]]
126 | optimizer.py: All expected
127 | Tasks done: 38. New data added to dataset: [[ 0.14285714 0.71428571 1.77335381]]
128 | optimizer.py: All expected
129 | Tasks done: 39. New data added to dataset: [[ 0.14285714 0.71428571 1.77416436]]
130 | optimizer.py: All expected
131 | Tasks done: 40. New data added to dataset: [[ 0.14285714 0.71428571 1.7740197 ]]
132 | optimizer.py: All expected
133 | Tasks done: 41. New data added to dataset: [[ 0.14285714 0.71428571 1.77311262]]
134 | optimizer.py: All expected
135 | Tasks done: 42. New data added to dataset: [[ 0.14285714 0.71428571 1.77445938]]
136 | optimizer.py: All expected
137 | Tasks done: 43. New data added to dataset: [[ 0.14285714 0.71428571 1.7727646 ]]
138 | optimizer.py: All expected
139 | Tasks done: 44. New data added to dataset: [[ 0.14285714 0.71428571 1.77435273]]
140 | optimizer.py: All expected
141 | Tasks done: 45. New data added to dataset: [[ 0.14285714 0.71428571 1.77517388]]
142 | optimizer.py: All expected
143 | Tasks done: 46. New data added to dataset: [[ 0.14285714 0.71428571 1.77301197]]
144 | optimizer.py: All expected
145 | Tasks done: 47. New data added to dataset: [[ 0.14285714 0.71428571 1.77186704]]
146 | optimizer.py: All expected
147 | Tasks done: 48. New data added to dataset: [[ 0.14285714 0.71428571 1.77181281]]
148 | optimizer.py: All expected
149 | Tasks done: 49. New data added to dataset: [[ 0.14285714 0.71428571 1.77498706]]
150 | optimizer.py: All expected
151 | Tasks done: 50. New data added to dataset: [[ 0.14285714 0.71428571 1.77219313]]
152 | optimizer.py: All expected
153 | Tasks done: 51. New data added to dataset: [[ 0.14285714 0.71428571 1.77411336]]
154 | optimizer.py: All expected
155 | Tasks done: 52. New data added to dataset: [[ 0.14285714 0.71428571 1.77302646]]
156 | optimizer.py: All expected
157 | Tasks done: 53. New data added to dataset: [[ 0.14285714 0.71428571 1.77086059]]
158 | optimizer.py: All expected
159 | Tasks done: 54. New data added to dataset: [[ 0.14285714 0.71428571 1.77279619]]
160 | optimizer.py: All expected
161 | Tasks done: 55. New data added to dataset: [[ 0.14285714 0.71428571 1.77358017]]
162 | optimizer.py: All expected
163 | Tasks done: 56. New data added to dataset: [[ 0.14285714 0.71428571 1.77202918]]
164 | optimizer.py: All expected
165 | Tasks done: 57. New data added to dataset: [[ 0.14285714 0.71428571 1.7725252 ]]
166 | optimizer.py: All expected
167 | Tasks done: 58. New data added to dataset: [[ 0.14285714 0.71428571 1.77353143]]
168 | optimizer.py: All expected
169 | Tasks done: 59. New data added to dataset: [[ 0.14285714 0.71428571 1.77207075]]
170 | optimizer.py: All expected
171 | Tasks done: 60. New data added to dataset: [[ 0.14285714 0.71428571 1.77514574]]
172 | optimizer.py: All expected
173 | Tasks done: 61. New data added to dataset: [[ 0.14285714 0.71428571 1.77376093]]
174 | optimizer.py: All expected
175 | Tasks done: 62. New data added to dataset: [[ 0.14285714 0.71428571 1.77365555]]
176 | optimizer.py: All expected
177 | Tasks done: 63. New data added to dataset: [[ 0.14285714 0.71428571 1.77452468]]
178 | optimizer.py: All expected
179 | Tasks done: 64. New data added to dataset: [[ 0.14285714 0.71428571 1.77335511]]
180 | optimizer.py: All expected
181 | Tasks done: 65. New data added to dataset: [[ 0.14285714 0.71428571 1.77413686]]
182 | optimizer.py: All expected
183 | Tasks done: 66. New data added to dataset: [[ 0.14285714 0.71428571 1.77358226]]
184 | optimizer.py: All expected
185 | Tasks done: 67. New data added to dataset: [[ 0.14285714 0.71428571 1.77224476]]
186 | optimizer.py: All expected
187 | Tasks done: 68. New data added to dataset: [[ 0.14285714 0.71428571 1.77268723]]
188 | optimizer.py: All expected
189 | Tasks done: 69. New data added to dataset: [[ 0.14285714 0.71428571 1.77360457]]
190 | optimizer.py: All expected
191 | Tasks done: 70. New data added to dataset: [[ 0.14285714 0.71428571 1.77392595]]
192 | optimizer.py: All expected
193 | Tasks done: 71. New data added to dataset: [[ 0.14285714 0.71428571 1.77237262]]
194 | optimizer.py: All expected
195 | Tasks done: 72. New data added to dataset: [[ 0.14285714 0.71428571 1.77135057]]
196 | optimizer.py: All expected
197 | Tasks done: 73. New data added to dataset: [[ 0.14285714 0.71428571 1.77211435]]
198 | optimizer.py: All expected
199 | Tasks done: 74. New data added to dataset: [[ 0.14285714 0.71428571 1.77321382]]
200 | optimizer.py: All expected
201 | Tasks done: 75. New data added to dataset: [[ 0.14285714 0.71428571 1.77416664]]
202 | optimizer.py: All expected
203 | Tasks done: 76. New data added to dataset: [[ 0.14285714 0.71428571 1.77379168]]
204 | optimizer.py: All expected
205 | Tasks done: 77. New data added to dataset: [[ 0.14285714 0.71428571 1.77352105]]
206 | optimizer.py: All expected
207 | Tasks done: 78. New data added to dataset: [[ 0.14285714 0.71428571 1.77514553]]
208 | optimizer.py: All expected
209 | Tasks done: 79. New data added to dataset: [[ 0.14285714 0.71428571 1.77394498]]
210 | optimizer.py: All expected
211 | Tasks done: 80. New data added to dataset: [[ 0.14285714 0.71428571 1.77229251]]
212 | optimizer.py: All expected
213 | Tasks done: 81. New data added to dataset: [[ 0.14285714 0.71428571 1.77440254]]
214 | optimizer.py: All expected
215 | Tasks done: 82. New data added to dataset: [[ 0.14285714 0.71428571 1.7730291 ]]
216 | optimizer.py: All expected
217 | Tasks done: 83. New data added to dataset: [[ 0.14285714 0.71428571 1.77425098]]
218 | optimizer.py: All expected
219 | Tasks done: 84. New data added to dataset: [[ 0.14285714 0.71428571 1.77261913]]
220 | optimizer.py: All expected
221 | Tasks done: 85. New data added to dataset: [[ 0.14285714 0.71428571 1.77441504]]
222 | optimizer.py: All expected
223 | Tasks done: 86. New data added to dataset: [[ 0.14285714 0.71428571 1.77285646]]
224 | optimizer.py: All expected
225 | Tasks done: 87. New data added to dataset: [[ 0.14285714 0.71428571 1.77350493]]
226 | optimizer.py: All expected
227 | Tasks done: 88. New data added to dataset: [[ 0.14285714 0.71428571 1.77317203]]
228 | optimizer.py: All expected
229 | Tasks done: 89. New data added to dataset: [[ 0.14285714 0.71428571 1.77481325]]
230 | optimizer.py: All expected
231 | Tasks done: 90. New data added to dataset: [[ 0.14285714 0.71428571 1.77402841]]
232 | optimizer.py: All expected
233 | Tasks done: 91. New data added to dataset: [[ 0.14285714 0.71428571 1.77112627]]
234 | optimizer.py: All expected
235 | Tasks done: 92. New data added to dataset: [[ 0.14285714 0.71428571 1.77215519]]
236 | optimizer.py: All expected
237 | Tasks done: 93. New data added to dataset: [[ 0.14285714 0.71428571 1.77359442]]
238 | optimizer.py: All expected
239 | Tasks done: 94. New data added to dataset: [[ 0.14285714 0.71428571 1.77304514]]
240 | optimizer.py: All expected
241 | Tasks done: 95. New data added to dataset: [[ 0.14285714 0.71428571 1.77275985]]
242 | optimizer.py: All expected
243 | Tasks done: 96. New data added to dataset: [[ 0.14285714 0.71428571 1.7737152 ]]
244 | optimizer.py: All expected
245 | Tasks done: 97. New data added to dataset: [[ 0.14285714 0.71428571 1.77328841]]
246 | optimizer.py: All expected
247 | Tasks done: 98. New data added to dataset: [[ 0.14285714 0.71428571 1.77490125]]
248 | optimizer.py: All expected
249 | Tasks done: 99. New data added to dataset: [[ 0.14285714 0.71428571 1.77191621]]
250 | optimizer.py: All expected
251 | Tasks done: 100. New data added to dataset: [[ 0.14285714 0.71428571 1.77491083]]
252 | optimizer.py: All expected
253 | Tasks done: 101. New data added to dataset: [[ 0.14285714 0.71428571 1.77311216]]
254 | optimizer.py: All expected
255 | Tasks done: 102. New data added to dataset: [[ 0.14285714 0.71428571 1.77009784]]
256 | optimizer.py: All expected
257 | Tasks done: 103. New data added to dataset: [[ 0.14285714 0.71428571 1.77342212]]
258 | optimizer.py: All expected
259 | Tasks done: 104. New data added to dataset: [[ 0.14285714 0.71428571 1.7732284 ]]
260 | optimizer.py: All expected
261 | Tasks done: 105. New data added to dataset: [[ 0.14285714 0.71428571 1.77441724]]
262 | optimizer.py: All expected
263 | Tasks done: 106. New data added to dataset: [[ 0.14285714 0.71428571 1.77381959]]
264 | optimizer.py: All expected
265 | Tasks done: 107. New data added to dataset: [[ 0.14285714 0.71428571 1.77279098]]
266 | optimizer.py: All expected
267 | Tasks done: 108. New data added to dataset: [[ 0.14285714 0.71428571 1.77129037]]
268 | optimizer.py: All expected
269 | Tasks done: 109. New data added to dataset: [[ 0.14285714 0.71428571 1.77458718]]
270 | optimizer.py: All expected
271 | Tasks done: 110. New data added to dataset: [[ 0.14285714 0.71428571 1.77378267]]
272 | optimizer.py: All expected
273 | Tasks done: 111. New data added to dataset: [[ 0.14285714 0.71428571 1.77463784]]
274 | optimizer.py: All expected
275 | Tasks done: 112. New data added to dataset: [[ 0.14285714 0.71428571 1.77262447]]
276 | optimizer.py: All expected
277 | Tasks done: 113. New data added to dataset: [[ 0.14285714 0.71428571 1.77338601]]
278 | optimizer.py: All expected
279 | Tasks done: 114. New data added to dataset: [[ 0.14285714 0.71428571 1.77369417]]
280 | optimizer.py: All expected
281 | Tasks done: 115. New data added to dataset: [[ 0.14285714 0.71428571 1.77464053]]
282 | optimizer.py: All expected
283 | Tasks done: 116. New data added to dataset: [[ 0.14285714 0.71428571 1.77152969]]
284 | optimizer.py: All expected
285 | Tasks done: 117. New data added to dataset: [[ 0.14285714 0.71428571 1.77263462]]
286 | optimizer.py: All expected
287 | Tasks done: 118. New data added to dataset: [[ 0.14285714 0.71428571 1.77238681]]
288 | optimizer.py: All expected
289 | Tasks done: 119. New data added to dataset: [[ 0.14285714 0.71428571 1.77133739]]
290 | optimizer.py: All expected
291 | Tasks done: 120. New data added to dataset: [[ 0.14285714 0.71428571 1.77473565]]
292 | optimizer.py: All expected
293 | Tasks done: 121. New data added to dataset: [[ 0.14285714 0.71428571 1.77228476]]
294 | optimizer.py: All expected
295 | Tasks done: 122. New data added to dataset: [[ 0.14285714 0.71428571 1.77227148]]
296 | optimizer.py: All expected
297 |
--------------------------------------------------------------------------------
/data/regret_analysis/gp_gp_1.txt:
--------------------------------------------------------------------------------
1 | Complete initial dataset acquired
2 | [[ -5.92637150e-02 8.59581910e-01]
3 | [ -2.48642561e-01 3.46180075e+00]
4 | [ 1.90686301e-01 -1.56174737e+00]
5 | [ 2.67045918e-02 -3.44336144e-01]
6 | [ 2.91348255e-02 -3.76086702e-01]
7 | [ 4.84861319e-01 -6.64853373e-02]
8 | [ -3.43583200e-01 3.73104634e+00]
9 | [ 4.04905324e-01 -7.31786241e-01]
10 | [ 7.70711671e-01 -2.23569820e+00]
11 | [ -4.55759380e-01 1.76336511e+00]
12 | [ 9.96336111e-01 -1.97748564e+01]
13 | [ 4.71808814e-01 -2.01662174e-01]
14 | [ -6.31564433e-01 -9.88465189e+00]
15 | [ -3.33295493e-01 3.75810376e+00]
16 | [ -9.72453188e-01 -8.98239076e+01]
17 | [ 3.47105448e-01 -1.16091047e+00]
18 | [ -8.81996834e-01 -5.84226581e+01]
19 | [ -8.30384327e-02 1.20450527e+00]
20 | [ 1.34675346e-01 -1.34378113e+00]
21 | [ 4.76166075e-01 -1.63052317e-01]
22 | [ 7.34127045e-01 -1.15200769e+00]
23 | [ -9.92404502e-01 -9.80044208e+01]
24 | [ -8.41820110e-01 -4.71850276e+01]
25 | [ 3.98282743e-01 -7.78912972e-01]
26 | [ -1.58169395e-01 2.38474491e+00]
27 | [ 9.98452233e-05 9.15368752e-03]
28 | [ -2.45699099e-01 3.42182372e+00]
29 | [ -2.78762452e-02 3.99272746e-01]
30 | [ -1.27034660e-01 1.90442051e+00]
31 | [ -6.45481445e-01 -1.14270929e+01]
32 | [ 7.00026357e-01 -4.49147299e-01]
33 | [ 4.13636724e-01 -6.84469985e-01]
34 | [ 6.32485944e-01 2.54676478e-01]
35 | [ 3.57197493e-02 -4.45138715e-01]
36 | [ -3.30723089e-01 3.76913463e+00]
37 | [ -8.11775967e-01 -3.97621650e+01]
38 | [ -5.56353321e-01 -3.28997613e+00]
39 | [ 8.30657856e-01 -4.85698805e+00]
40 | [ 1.98970943e-01 -1.59282908e+00]
41 | [ 8.61862418e-01 -6.71982670e+00]
42 | [ -9.49489862e-01 -8.09953062e+01]
43 | [ 4.45277793e-01 -4.19098707e-01]
44 | [ 3.66122902e-01 -1.04473536e+00]
45 | [ 4.43320459e-01 -4.20395715e-01]
46 | [ 3.01142542e-01 -1.42657198e+00]
47 | [ 7.45937295e-01 -1.46144314e+00]
48 | [ 4.09710473e-01 -6.91042073e-01]
49 | [ -3.89396119e-01 3.27918445e+00]
50 | [ -5.19758510e-01 -1.00670149e+00]
51 | [ 5.62497782e-01 2.99631753e-01]]
52 | optimizer.py: All expected
53 | Tasks done: 1. New data added to dataset: [[-0.31572629 3.76588833]]
54 | optimizer.py: All expected
55 | Tasks done: 2. New data added to dataset: [[-0.31572629 3.7851203 ]]
56 | optimizer.py: All expected
57 | Tasks done: 3. New data added to dataset: [[-0.31572629 3.78111911]]
58 | optimizer.py: All expected
59 | Tasks done: 4. New data added to dataset: [[-0.31572629 3.76538738]]
60 | optimizer.py: All expected
61 | Tasks done: 5. New data added to dataset: [[-0.31572629 3.7939861 ]]
62 | optimizer.py: All expected
63 | Tasks done: 6. New data added to dataset: [[-0.31572629 3.77855303]]
64 | optimizer.py: All expected
65 | Tasks done: 7. New data added to dataset: [[-0.31492597 3.79238569]]
66 | optimizer.py: All expected
67 | Tasks done: 8. New data added to dataset: [[-0.31492597 3.7760767 ]]
68 | optimizer.py: All expected
69 | Tasks done: 9. New data added to dataset: [[-0.31572629 3.77856763]]
70 | optimizer.py: All expected
71 | Tasks done: 10. New data added to dataset: [[-0.31492597 3.7660407 ]]
72 | optimizer.py: All expected
73 | Tasks done: 11. New data added to dataset: [[-0.31572629 3.77325943]]
74 | optimizer.py: All expected
75 | Tasks done: 12. New data added to dataset: [[-0.31572629 3.77832833]]
76 | optimizer.py: All expected
77 | Tasks done: 13. New data added to dataset: [[-0.31572629 3.77260461]]
78 | optimizer.py: All expected
79 | Tasks done: 14. New data added to dataset: [[-0.31572629 3.79356344]]
80 | optimizer.py: All expected
81 | Tasks done: 15. New data added to dataset: [[-0.31492597 3.76702897]]
82 | optimizer.py: All expected
83 | Tasks done: 16. New data added to dataset: [[-0.31492597 3.76742156]]
84 | optimizer.py: All expected
85 | Tasks done: 17. New data added to dataset: [[-0.31492597 3.78048299]]
86 | optimizer.py: All expected
87 | Tasks done: 18. New data added to dataset: [[-0.31572629 3.78436379]]
88 | optimizer.py: All expected
89 | Tasks done: 19. New data added to dataset: [[-0.31492597 3.76164962]]
90 | optimizer.py: All expected
91 | Tasks done: 20. New data added to dataset: [[-0.31572629 3.77481303]]
92 | optimizer.py: All expected
93 | Tasks done: 21. New data added to dataset: [[-0.31572629 3.77362614]]
94 | optimizer.py: All expected
95 | Tasks done: 22. New data added to dataset: [[-0.31492597 3.77026834]]
96 | optimizer.py: All expected
97 | Tasks done: 23. New data added to dataset: [[-0.31492597 3.76376983]]
98 | optimizer.py: All expected
99 | Tasks done: 24. New data added to dataset: [[-0.31572629 3.78862183]]
100 | optimizer.py: All expected
101 | Tasks done: 25. New data added to dataset: [[-0.31572629 3.77909641]]
102 | optimizer.py: All expected
103 | Tasks done: 26. New data added to dataset: [[-0.31492597 3.77631018]]
104 | optimizer.py: All expected
105 | Tasks done: 27. New data added to dataset: [[-0.31572629 3.78159508]]
106 | optimizer.py: All expected
107 | Tasks done: 28. New data added to dataset: [[-0.31572629 3.78288587]]
108 | optimizer.py: All expected
109 | Tasks done: 29. New data added to dataset: [[-0.31572629 3.78100512]]
110 | optimizer.py: All expected
111 | Tasks done: 30. New data added to dataset: [[-0.31572629 3.78094858]]
112 | optimizer.py: All expected
113 | Tasks done: 31. New data added to dataset: [[-0.31572629 3.76264923]]
114 | optimizer.py: All expected
115 | Tasks done: 32. New data added to dataset: [[-0.31572629 3.7843538 ]]
116 | optimizer.py: All expected
117 | Tasks done: 33. New data added to dataset: [[-0.31492597 3.77827026]]
118 | optimizer.py: All expected
119 | Tasks done: 34. New data added to dataset: [[-0.31572629 3.77897465]]
120 | optimizer.py: All expected
121 | Tasks done: 35. New data added to dataset: [[-0.31572629 3.76138121]]
122 | optimizer.py: All expected
123 | Tasks done: 36. New data added to dataset: [[-0.31572629 3.77133122]]
124 | optimizer.py: All expected
125 | Tasks done: 37. New data added to dataset: [[-0.31572629 3.76286582]]
126 | optimizer.py: All expected
127 | Tasks done: 38. New data added to dataset: [[-0.31572629 3.78419147]]
128 | optimizer.py: All expected
129 | Tasks done: 39. New data added to dataset: [[-0.31572629 3.76935052]]
130 | optimizer.py: All expected
131 | Tasks done: 40. New data added to dataset: [[-0.31572629 3.76923769]]
132 | optimizer.py: All expected
133 | Tasks done: 41. New data added to dataset: [[-0.31572629 3.77309976]]
134 | optimizer.py: All expected
135 | Tasks done: 42. New data added to dataset: [[-0.31572629 3.78245195]]
136 | optimizer.py: All expected
137 | Tasks done: 43. New data added to dataset: [[-0.31572629 3.77337046]]
138 | optimizer.py: All expected
139 | Tasks done: 44. New data added to dataset: [[-0.31572629 3.75989129]]
140 | optimizer.py: All expected
141 | Tasks done: 45. New data added to dataset: [[-0.31572629 3.77251338]]
142 | optimizer.py: All expected
143 | Tasks done: 46. New data added to dataset: [[-0.31572629 3.77365033]]
144 | optimizer.py: All expected
145 | Tasks done: 47. New data added to dataset: [[-0.31572629 3.77032179]]
146 | optimizer.py: All expected
147 | Tasks done: 48. New data added to dataset: [[-0.31572629 3.78240014]]
148 | optimizer.py: All expected
149 | Tasks done: 49. New data added to dataset: [[-0.31572629 3.77402925]]
150 | optimizer.py: All expected
151 | Tasks done: 50. New data added to dataset: [[-0.31572629 3.78450926]]
152 | optimizer.py: All expected
153 | Tasks done: 51. New data added to dataset: [[-0.31572629 3.77324652]]
154 | optimizer.py: All expected
155 | Tasks done: 52. New data added to dataset: [[-0.31572629 3.77765425]]
156 | optimizer.py: All expected
157 | Tasks done: 53. New data added to dataset: [[-0.31492597 3.76932265]]
158 | optimizer.py: All expected
159 | Tasks done: 54. New data added to dataset: [[-0.31492597 3.76660444]]
160 | optimizer.py: All expected
161 | Tasks done: 55. New data added to dataset: [[-0.31572629 3.77282494]]
162 | optimizer.py: All expected
163 | Tasks done: 56. New data added to dataset: [[-0.31572629 3.77600338]]
164 | optimizer.py: All expected
165 | Tasks done: 57. New data added to dataset: [[-0.31492597 3.76484744]]
166 | optimizer.py: All expected
167 | Tasks done: 58. New data added to dataset: [[-0.31572629 3.78038415]]
168 | optimizer.py: All expected
169 | Tasks done: 59. New data added to dataset: [[-0.31572629 3.77945794]]
170 | optimizer.py: All expected
171 | Tasks done: 60. New data added to dataset: [[-0.31572629 3.77295777]]
172 | optimizer.py: All expected
173 | Tasks done: 61. New data added to dataset: [[-0.31572629 3.7894791 ]]
174 | optimizer.py: All expected
175 | Tasks done: 62. New data added to dataset: [[-0.31572629 3.75513869]]
176 | optimizer.py: All expected
177 | Tasks done: 63. New data added to dataset: [[-0.31572629 3.78375709]]
178 | optimizer.py: All expected
179 | Tasks done: 64. New data added to dataset: [[-0.31492597 3.78342094]]
180 | optimizer.py: All expected
181 | Tasks done: 65. New data added to dataset: [[-0.31492597 3.75615399]]
182 | optimizer.py: All expected
183 | Tasks done: 66. New data added to dataset: [[-0.31572629 3.75628812]]
184 | optimizer.py: All expected
185 | Tasks done: 67. New data added to dataset: [[-0.31572629 3.76407639]]
186 | optimizer.py: All expected
187 | Tasks done: 68. New data added to dataset: [[-0.31492597 3.78243363]]
188 | optimizer.py: All expected
189 | Tasks done: 69. New data added to dataset: [[-0.31572629 3.7819045 ]]
190 | optimizer.py: All expected
191 | Tasks done: 70. New data added to dataset: [[-0.31572629 3.77908257]]
192 | optimizer.py: All expected
193 | Tasks done: 71. New data added to dataset: [[-0.31572629 3.78785166]]
194 | optimizer.py: All expected
195 | Tasks done: 72. New data added to dataset: [[-0.31572629 3.79437434]]
196 | optimizer.py: All expected
197 | Tasks done: 73. New data added to dataset: [[-0.31652661 3.76289226]]
198 | optimizer.py: All expected
199 | Tasks done: 74. New data added to dataset: [[-0.31572629 3.7736189 ]]
200 | optimizer.py: All expected
201 | Tasks done: 75. New data added to dataset: [[-0.31572629 3.77918396]]
202 | optimizer.py: All expected
203 | Tasks done: 76. New data added to dataset: [[-0.31572629 3.788034 ]]
204 | optimizer.py: All expected
205 | Tasks done: 77. New data added to dataset: [[-0.31572629 3.77066646]]
206 | optimizer.py: All expected
207 | Tasks done: 78. New data added to dataset: [[-0.31492597 3.78362647]]
208 | optimizer.py: All expected
209 | Tasks done: 79. New data added to dataset: [[-0.31572629 3.79434975]]
210 | optimizer.py: All expected
211 | Tasks done: 80. New data added to dataset: [[-0.31492597 3.7886894 ]]
212 | optimizer.py: All expected
213 | Tasks done: 81. New data added to dataset: [[-0.31572629 3.76568302]]
214 | optimizer.py: All expected
215 | Tasks done: 82. New data added to dataset: [[-0.31572629 3.77453895]]
216 | optimizer.py: All expected
217 | Tasks done: 83. New data added to dataset: [[-0.31572629 3.78322816]]
218 | optimizer.py: All expected
219 | Tasks done: 84. New data added to dataset: [[-0.31572629 3.78296319]]
220 | optimizer.py: All expected
221 | Tasks done: 85. New data added to dataset: [[-0.31572629 3.77728782]]
222 | optimizer.py: All expected
223 | Tasks done: 86. New data added to dataset: [[-0.31572629 3.7775403 ]]
224 | optimizer.py: All expected
225 | Tasks done: 87. New data added to dataset: [[-0.31572629 3.78364525]]
226 | optimizer.py: All expected
227 | Tasks done: 88. New data added to dataset: [[-0.31492597 3.77536318]]
228 | optimizer.py: All expected
229 | Tasks done: 89. New data added to dataset: [[-0.31572629 3.77547068]]
230 | optimizer.py: All expected
231 | Tasks done: 90. New data added to dataset: [[-0.31572629 3.79217272]]
232 | optimizer.py: All expected
233 | Tasks done: 91. New data added to dataset: [[-0.31572629 3.77144568]]
234 | optimizer.py: All expected
235 | Tasks done: 92. New data added to dataset: [[-0.31572629 3.77469433]]
236 | optimizer.py: All expected
237 | Tasks done: 93. New data added to dataset: [[-0.31572629 3.77306526]]
238 | optimizer.py: All expected
239 | Tasks done: 94. New data added to dataset: [[-0.31572629 3.78135555]]
240 | optimizer.py: All expected
241 | Tasks done: 95. New data added to dataset: [[-0.31572629 3.79726362]]
242 | optimizer.py: All expected
243 | Tasks done: 96. New data added to dataset: [[-0.31572629 3.7775685 ]]
244 | optimizer.py: All expected
245 | Tasks done: 97. New data added to dataset: [[-0.31572629 3.79893085]]
246 | optimizer.py: All expected
247 | Tasks done: 98. New data added to dataset: [[-0.31572629 3.76706152]]
248 | optimizer.py: All expected
249 | Tasks done: 99. New data added to dataset: [[-0.31572629 3.77974282]]
250 | optimizer.py: All expected
251 | Tasks done: 100. New data added to dataset: [[-0.31572629 3.77533539]]
252 | optimizer.py: All expected
253 | Tasks done: 101. New data added to dataset: [[-0.31492597 3.77151417]]
254 | optimizer.py: All expected
255 | Tasks done: 102. New data added to dataset: [[-0.31572629 3.78340569]]
256 | optimizer.py: All expected
257 | Tasks done: 103. New data added to dataset: [[-0.31572629 3.77566965]]
258 | optimizer.py: All expected
259 | Tasks done: 104. New data added to dataset: [[-0.31492597 3.77505641]]
260 | optimizer.py: All expected
261 | Tasks done: 105. New data added to dataset: [[-0.31572629 3.79187948]]
262 | optimizer.py: All expected
263 | Tasks done: 106. New data added to dataset: [[-0.31572629 3.77657842]]
264 | optimizer.py: All expected
265 | Tasks done: 107. New data added to dataset: [[-0.31572629 3.7844084 ]]
266 | optimizer.py: All expected
267 | Tasks done: 108. New data added to dataset: [[-0.31572629 3.77609293]]
268 | optimizer.py: All expected
269 | Tasks done: 109. New data added to dataset: [[-0.31572629 3.77736292]]
270 | optimizer.py: All expected
271 | Tasks done: 110. New data added to dataset: [[-0.31572629 3.77365418]]
272 | optimizer.py: All expected
273 | Tasks done: 111. New data added to dataset: [[-0.31492597 3.76621154]]
274 | optimizer.py: All expected
275 | Tasks done: 112. New data added to dataset: [[-0.31572629 3.78413046]]
276 | optimizer.py: All expected
277 | Tasks done: 113. New data added to dataset: [[-0.31572629 3.77306649]]
278 | optimizer.py: All expected
279 | Tasks done: 114. New data added to dataset: [[-0.31492597 3.77309996]]
280 | optimizer.py: All expected
281 | Tasks done: 115. New data added to dataset: [[-0.31572629 3.76822746]]
282 | optimizer.py: All expected
283 | Tasks done: 116. New data added to dataset: [[-0.31492597 3.77925136]]
284 | optimizer.py: All expected
285 | Tasks done: 117. New data added to dataset: [[-0.31572629 3.76449458]]
286 | optimizer.py: All expected
287 | Tasks done: 118. New data added to dataset: [[-0.31572629 3.77224308]]
288 | optimizer.py: All expected
289 | Tasks done: 119. New data added to dataset: [[-0.31572629 3.76785006]]
290 | optimizer.py: All expected
291 | Tasks done: 120. New data added to dataset: [[-0.31572629 3.76881748]]
292 | optimizer.py: All expected
293 | Tasks done: 121. New data added to dataset: [[-0.31492597 3.78029825]]
294 | optimizer.py: All expected
295 | Tasks done: 122. New data added to dataset: [[-0.31572629 3.77451175]]
296 | optimizer.py: All expected
297 | Tasks done: 123. New data added to dataset: [[-0.31572629 3.76437088]]
298 | optimizer.py: All expected
299 | Tasks done: 124. New data added to dataset: [[-0.31572629 3.78538349]]
300 | optimizer.py: All expected
301 | Tasks done: 125. New data added to dataset: [[-0.31572629 3.77111173]]
302 | optimizer.py: All expected
303 | Tasks done: 126. New data added to dataset: [[-0.31492597 3.78314762]]
304 | optimizer.py: All expected
305 | Tasks done: 127. New data added to dataset: [[-0.31572629 3.77913639]]
306 | optimizer.py: All expected
307 | Tasks done: 128. New data added to dataset: [[-0.31572629 3.76414315]]
308 | optimizer.py: All expected
309 | Tasks done: 129. New data added to dataset: [[-0.31572629 3.76844535]]
310 | optimizer.py: All expected
311 | Tasks done: 130. New data added to dataset: [[-0.31572629 3.74864464]]
312 | optimizer.py: All expected
313 | Tasks done: 131. New data added to dataset: [[-0.31572629 3.77362393]]
314 | optimizer.py: All expected
315 | Tasks done: 132. New data added to dataset: [[-0.31492597 3.776719 ]]
316 | optimizer.py: All expected
317 | Tasks done: 133. New data added to dataset: [[-0.31572629 3.77752996]]
318 | optimizer.py: All expected
319 | Tasks done: 134. New data added to dataset: [[-0.31572629 3.76023384]]
320 | optimizer.py: All expected
321 | Tasks done: 135. New data added to dataset: [[-0.31492597 3.77397722]]
322 | optimizer.py: All expected
323 | Tasks done: 136. New data added to dataset: [[-0.31572629 3.77889613]]
324 | optimizer.py: All expected
325 | Tasks done: 137. New data added to dataset: [[-0.31572629 3.76498605]]
326 | optimizer.py: All expected
327 | Tasks done: 138. New data added to dataset: [[-0.31572629 3.77319883]]
328 | optimizer.py: All expected
329 | Tasks done: 139. New data added to dataset: [[-0.31572629 3.78407988]]
330 | optimizer.py: All expected
331 | Tasks done: 140. New data added to dataset: [[-0.31572629 3.78176236]]
332 | optimizer.py: All expected
333 | Tasks done: 141. New data added to dataset: [[-0.31572629 3.76317451]]
334 | optimizer.py: All expected
335 | Tasks done: 142. New data added to dataset: [[-0.31572629 3.79664165]]
336 | optimizer.py: All expected
337 | Tasks done: 143. New data added to dataset: [[-0.31572629 3.78752428]]
338 | optimizer.py: All expected
339 | Tasks done: 144. New data added to dataset: [[-0.31492597 3.77621838]]
340 | optimizer.py: All expected
341 | Tasks done: 145. New data added to dataset: [[-0.31572629 3.77207184]]
342 | optimizer.py: All expected
343 | Tasks done: 146. New data added to dataset: [[-0.31492597 3.76585812]]
344 | optimizer.py: All expected
345 | Tasks done: 147. New data added to dataset: [[-0.31492597 3.76549034]]
346 | optimizer.py: All expected
347 | Tasks done: 148. New data added to dataset: [[-0.31572629 3.76477614]]
348 | optimizer.py: All expected
349 | Tasks done: 149. New data added to dataset: [[-0.31572629 3.79469237]]
350 | optimizer.py: All expected
351 | Tasks done: 150. New data added to dataset: [[-0.31492597 3.77339503]]
352 | optimizer.py: All expected
353 | Tasks done: 151. New data added to dataset: [[-0.31572629 3.77422866]]
354 | optimizer.py: All expected
355 | Tasks done: 152. New data added to dataset: [[-0.31572629 3.7619551 ]]
356 | optimizer.py: All expected
357 | Tasks done: 153. New data added to dataset: [[-0.31572629 3.77095855]]
358 | optimizer.py: All expected
359 | Tasks done: 154. New data added to dataset: [[-0.31572629 3.79564385]]
360 | optimizer.py: All expected
361 | Tasks done: 155. New data added to dataset: [[-0.31492597 3.79574703]]
362 | optimizer.py: All expected
363 | Tasks done: 156. New data added to dataset: [[-0.31492597 3.77640659]]
364 | optimizer.py: All expected
365 | Tasks done: 157. New data added to dataset: [[-0.31572629 3.77034302]]
366 | optimizer.py: All expected
367 | Tasks done: 158. New data added to dataset: [[-0.31572629 3.79237053]]
368 | optimizer.py: All expected
369 | Tasks done: 159. New data added to dataset: [[-0.31492597 3.76231683]]
370 | optimizer.py: All expected
371 | Tasks done: 160. New data added to dataset: [[-0.31652661 3.78594823]]
372 | optimizer.py: All expected
373 | Tasks done: 161. New data added to dataset: [[-0.31492597 3.77656573]]
374 | optimizer.py: All expected
375 | Tasks done: 162. New data added to dataset: [[-0.31572629 3.76694932]]
376 | optimizer.py: All expected
377 | Tasks done: 163. New data added to dataset: [[-0.31492597 3.77205901]]
378 | optimizer.py: All expected
379 | Tasks done: 164. New data added to dataset: [[-0.31492597 3.76465436]]
380 | optimizer.py: All expected
381 | Tasks done: 165. New data added to dataset: [[-0.31572629 3.7895126 ]]
382 | optimizer.py: All expected
383 | Tasks done: 166. New data added to dataset: [[-0.31572629 3.7724473 ]]
384 | optimizer.py: All expected
385 | Tasks done: 167. New data added to dataset: [[-0.31572629 3.7892898 ]]
386 | optimizer.py: All expected
387 | Tasks done: 168. New data added to dataset: [[-0.31572629 3.79286006]]
388 | optimizer.py: All expected
389 | Tasks done: 169. New data added to dataset: [[-0.31572629 3.75633122]]
390 | optimizer.py: All expected
391 | Tasks done: 170. New data added to dataset: [[-0.31572629 3.76729494]]
392 | optimizer.py: All expected
393 | Tasks done: 171. New data added to dataset: [[-0.31652661 3.76798612]]
394 | optimizer.py: All expected
395 | Tasks done: 172. New data added to dataset: [[-0.31492597 3.77859058]]
396 | optimizer.py: All expected
397 | Tasks done: 173. New data added to dataset: [[-0.31572629 3.77644686]]
398 | optimizer.py: All expected
399 | Tasks done: 174. New data added to dataset: [[-0.31492597 3.77549889]]
400 | optimizer.py: All expected
401 | Tasks done: 175. New data added to dataset: [[-0.31572629 3.78403434]]
402 | optimizer.py: All expected
403 | Tasks done: 176. New data added to dataset: [[-0.31572629 3.77428179]]
404 | optimizer.py: All expected
405 | Tasks done: 177. New data added to dataset: [[-0.31572629 3.76816385]]
406 | optimizer.py: All expected
407 | Tasks done: 178. New data added to dataset: [[-0.31572629 3.77949446]]
408 | optimizer.py: All expected
409 | Tasks done: 179. New data added to dataset: [[-0.31572629 3.7864036 ]]
410 | optimizer.py: All expected
411 | Tasks done: 180. New data added to dataset: [[-0.31572629 3.77007862]]
412 | optimizer.py: All expected
413 | Tasks done: 181. New data added to dataset: [[-0.31492597 3.76222066]]
414 | optimizer.py: All expected
415 | Tasks done: 182. New data added to dataset: [[-0.31572629 3.78476105]]
416 | optimizer.py: All expected
417 | Tasks done: 183. New data added to dataset: [[-0.31572629 3.77048515]]
418 | optimizer.py: All expected
419 | Tasks done: 184. New data added to dataset: [[-0.31572629 3.76245432]]
420 | optimizer.py: All expected
421 | Tasks done: 185. New data added to dataset: [[-0.31572629 3.78262377]]
422 | optimizer.py: All expected
423 | Tasks done: 186. New data added to dataset: [[-0.31572629 3.77228646]]
424 | optimizer.py: All expected
425 | Tasks done: 187. New data added to dataset: [[-0.31572629 3.76292441]]
426 | optimizer.py: All expected
427 | Tasks done: 188. New data added to dataset: [[-0.31572629 3.78921814]]
428 | optimizer.py: All expected
429 | Tasks done: 189. New data added to dataset: [[-0.31572629 3.78912467]]
430 | optimizer.py: All expected
431 | Tasks done: 190. New data added to dataset: [[-0.31492597 3.76877324]]
432 | optimizer.py: All expected
433 | Tasks done: 191. New data added to dataset: [[-0.31572629 3.76296882]]
434 | optimizer.py: All expected
435 | Tasks done: 192. New data added to dataset: [[-0.31572629 3.77491033]]
436 | optimizer.py: All expected
437 | Tasks done: 193. New data added to dataset: [[-0.31572629 3.77642461]]
438 | optimizer.py: All expected
439 | Tasks done: 194. New data added to dataset: [[-0.31572629 3.79265415]]
440 | optimizer.py: All expected
441 | Tasks done: 195. New data added to dataset: [[-0.31572629 3.75688069]]
442 | optimizer.py: All expected
443 | Tasks done: 196. New data added to dataset: [[-0.31572629 3.78790914]]
444 | optimizer.py: All expected
445 | Tasks done: 197. New data added to dataset: [[-0.31572629 3.78615826]]
446 | optimizer.py: All expected
447 | Tasks done: 198. New data added to dataset: [[-0.31572629 3.77353343]]
448 | optimizer.py: All expected
449 | Tasks done: 199. New data added to dataset: [[-0.31572629 3.79115969]]
450 | optimizer.py: All expected
451 | Tasks done: 200. New data added to dataset: [[-0.31572629 3.78109076]]
452 | optimizer.py: All expected
453 | Tasks done: 201. New data added to dataset: [[-0.31572629 3.76974396]]
454 | optimizer.py: All expected
455 | Tasks done: 202. New data added to dataset: [[-0.31572629 3.76034705]]
456 | optimizer.py: All expected
457 | Tasks done: 203. New data added to dataset: [[-0.31572629 3.75803435]]
458 | optimizer.py: All expected
459 | Tasks done: 204. New data added to dataset: [[-0.31572629 3.77244546]]
460 | optimizer.py: All expected
461 | Tasks done: 205. New data added to dataset: [[-0.31572629 3.77219474]]
462 | optimizer.py: All expected
463 | Tasks done: 206. New data added to dataset: [[-0.31652661 3.77814354]]
464 | optimizer.py: All expected
465 | Tasks done: 207. New data added to dataset: [[-0.31492597 3.78119732]]
466 | optimizer.py: All expected
467 | Tasks done: 208. New data added to dataset: [[-0.31572629 3.78845643]]
468 | optimizer.py: All expected
469 | Tasks done: 209. New data added to dataset: [[-0.31492597 3.78642655]]
470 | optimizer.py: All expected
471 | Tasks done: 210. New data added to dataset: [[-0.31572629 3.78675749]]
472 | optimizer.py: All expected
473 | Tasks done: 211. New data added to dataset: [[-0.31572629 3.763845 ]]
474 | optimizer.py: All expected
475 | Tasks done: 212. New data added to dataset: [[-0.31572629 3.78114001]]
476 | optimizer.py: All expected
477 | Tasks done: 213. New data added to dataset: [[-0.31492597 3.76157116]]
478 | optimizer.py: All expected
479 | Tasks done: 214. New data added to dataset: [[-0.31572629 3.7757655 ]]
480 | optimizer.py: All expected
481 | Tasks done: 215. New data added to dataset: [[-0.31572629 3.77138266]]
482 | optimizer.py: All expected
483 | Tasks done: 216. New data added to dataset: [[-0.31572629 3.79325565]]
484 | optimizer.py: All expected
485 | Tasks done: 217. New data added to dataset: [[-0.31572629 3.7680944 ]]
486 | optimizer.py: All expected
487 | Tasks done: 218. New data added to dataset: [[-0.31572629 3.77308773]]
488 | optimizer.py: All expected
489 | Tasks done: 219. New data added to dataset: [[-0.31572629 3.78321463]]
490 | optimizer.py: All expected
491 | Tasks done: 220. New data added to dataset: [[-0.31572629 3.78996628]]
492 | optimizer.py: All expected
493 | Tasks done: 221. New data added to dataset: [[-0.31572629 3.79225214]]
494 | optimizer.py: All expected
495 | Tasks done: 222. New data added to dataset: [[-0.31572629 3.75994148]]
496 | optimizer.py: All expected
497 | Tasks done: 223. New data added to dataset: [[-0.31572629 3.78537037]]
498 | optimizer.py: All expected
499 | Tasks done: 224. New data added to dataset: [[-0.31572629 3.76275785]]
500 | optimizer.py: All expected
501 | Tasks done: 225. New data added to dataset: [[-0.31572629 3.79218631]]
502 | optimizer.py: All expected
503 | Tasks done: 226. New data added to dataset: [[-0.31572629 3.76648138]]
504 | optimizer.py: All expected
505 | Tasks done: 227. New data added to dataset: [[-0.31572629 3.78535719]]
506 | optimizer.py: All expected
507 | Tasks done: 228. New data added to dataset: [[-0.31572629 3.77768618]]
508 | optimizer.py: All expected
509 | Tasks done: 229. New data added to dataset: [[-0.31572629 3.77155827]]
510 | optimizer.py: All expected
511 | Tasks done: 230. New data added to dataset: [[-0.31572629 3.76971998]]
512 | optimizer.py: All expected
513 | Tasks done: 231. New data added to dataset: [[-0.31572629 3.7809995 ]]
514 | optimizer.py: All expected
515 | Tasks done: 232. New data added to dataset: [[-0.31572629 3.77139115]]
516 | optimizer.py: All expected
517 | Tasks done: 233. New data added to dataset: [[-0.31492597 3.78392272]]
518 | optimizer.py: All expected
519 | Tasks done: 234. New data added to dataset: [[-0.31492597 3.76706178]]
520 | optimizer.py: All expected
521 | Tasks done: 235. New data added to dataset: [[-0.31572629 3.77638002]]
522 | optimizer.py: All expected
523 | Tasks done: 236. New data added to dataset: [[-0.31572629 3.76663137]]
524 | optimizer.py: All expected
525 | Tasks done: 237. New data added to dataset: [[-0.31572629 3.76946045]]
526 | optimizer.py: All expected
527 | Tasks done: 238. New data added to dataset: [[-0.31572629 3.77494175]]
528 | optimizer.py: All expected
529 | Tasks done: 239. New data added to dataset: [[-0.31572629 3.7700154 ]]
530 | optimizer.py: All expected
531 | Tasks done: 240. New data added to dataset: [[-0.31572629 3.77255734]]
532 | optimizer.py: All expected
533 | Tasks done: 241. New data added to dataset: [[-0.31572629 3.76591849]]
534 | optimizer.py: All expected
535 | Tasks done: 242. New data added to dataset: [[-0.31572629 3.7642229 ]]
536 | optimizer.py: All expected
537 | Tasks done: 243. New data added to dataset: [[-0.31572629 3.75445057]]
538 | optimizer.py: All expected
539 | Tasks done: 244. New data added to dataset: [[-0.31572629 3.77088018]]
540 | optimizer.py: All expected
541 | Tasks done: 245. New data added to dataset: [[-0.31572629 3.76653247]]
542 | optimizer.py: All expected
543 | Tasks done: 246. New data added to dataset: [[-0.31572629 3.77230538]]
544 | optimizer.py: All expected
545 | Tasks done: 247. New data added to dataset: [[-0.31492597 3.77285076]]
546 | optimizer.py: All expected
547 | Tasks done: 248. New data added to dataset: [[-0.31572629 3.78456357]]
548 | optimizer.py: All expected
549 | Tasks done: 249. New data added to dataset: [[-0.31572629 3.76422349]]
550 | optimizer.py: All expected
551 | Tasks done: 250. New data added to dataset: [[-0.31572629 3.77281502]]
552 | optimizer.py: All expected
553 | Tasks done: 251. New data added to dataset: [[-0.31572629 3.7510122 ]]
554 | optimizer.py: All expected
555 | Tasks done: 252. New data added to dataset: [[-0.31492597 3.76836479]]
556 | optimizer.py: All expected
557 | Tasks done: 253. New data added to dataset: [[-0.31412565 3.7653055 ]]
558 | optimizer.py: All expected
559 | Tasks done: 254. New data added to dataset: [[-0.31492597 3.75928283]]
560 | optimizer.py: All expected
561 | Tasks done: 255. New data added to dataset: [[-0.31572629 3.78342632]]
562 | optimizer.py: All expected
563 | Tasks done: 256. New data added to dataset: [[-0.31572629 3.76993131]]
564 | optimizer.py: All expected
565 | Tasks done: 257. New data added to dataset: [[-0.31492597 3.77724661]]
566 | optimizer.py: All expected
567 | Tasks done: 258. New data added to dataset: [[-0.31412565 3.7667922 ]]
568 | optimizer.py: All expected
569 | Tasks done: 259. New data added to dataset: [[-0.31572629 3.78435944]]
570 | optimizer.py: All expected
571 | Tasks done: 260. New data added to dataset: [[-0.31412565 3.7812181 ]]
572 | optimizer.py: All expected
573 | Tasks done: 261. New data added to dataset: [[-0.31572629 3.79223421]]
574 | optimizer.py: All expected
575 | Tasks done: 262. New data added to dataset: [[-0.31652661 3.77575001]]
576 | optimizer.py: All expected
577 | Tasks done: 263. New data added to dataset: [[-0.31492597 3.76952479]]
578 | optimizer.py: All expected
579 | Tasks done: 264. New data added to dataset: [[-0.31412565 3.76859369]]
580 | optimizer.py: All expected
581 | Tasks done: 265. New data added to dataset: [[-0.31492597 3.76301524]]
582 | optimizer.py: All expected
583 | Tasks done: 266. New data added to dataset: [[-0.31492597 3.78302429]]
584 | optimizer.py: All expected
585 | Tasks done: 267. New data added to dataset: [[-0.31572629 3.78030979]]
586 | optimizer.py: All expected
587 | Tasks done: 268. New data added to dataset: [[-0.31572629 3.77145735]]
588 | optimizer.py: All expected
589 | Tasks done: 269. New data added to dataset: [[-0.31492597 3.77915974]]
590 | optimizer.py: All expected
591 | Tasks done: 270. New data added to dataset: [[-0.31572629 3.7866096 ]]
592 | optimizer.py: All expected
593 | Tasks done: 271. New data added to dataset: [[-0.31492597 3.76665606]]
594 | optimizer.py: All expected
595 | Tasks done: 272. New data added to dataset: [[-0.31572629 3.78125433]]
596 | optimizer.py: All expected
597 | Tasks done: 273. New data added to dataset: [[-0.31572629 3.77910799]]
598 | optimizer.py: All expected
599 | Tasks done: 274. New data added to dataset: [[-0.31572629 3.77252862]]
600 | optimizer.py: All expected
601 | Tasks done: 275. New data added to dataset: [[-0.31572629 3.78260487]]
602 | optimizer.py: All expected
603 | Tasks done: 276. New data added to dataset: [[-0.31572629 3.78277916]]
604 | optimizer.py: All expected
605 | Tasks done: 277. New data added to dataset: [[-0.31572629 3.7767405 ]]
606 | optimizer.py: All expected
607 | Tasks done: 278. New data added to dataset: [[-0.31572629 3.77838296]]
608 | optimizer.py: All expected
609 | Tasks done: 279. New data added to dataset: [[-0.31572629 3.76673678]]
610 | optimizer.py: All expected
611 | Tasks done: 280. New data added to dataset: [[-0.31572629 3.77504573]]
612 | optimizer.py: All expected
613 | Tasks done: 281. New data added to dataset: [[-0.31572629 3.78113972]]
614 | optimizer.py: All expected
615 | Tasks done: 282. New data added to dataset: [[-0.31572629 3.7725987 ]]
616 | optimizer.py: All expected
617 | Tasks done: 283. New data added to dataset: [[-0.31572629 3.78096958]]
618 | optimizer.py: All expected
619 | Tasks done: 284. New data added to dataset: [[-0.31572629 3.77366458]]
620 | optimizer.py: All expected
621 | Tasks done: 285. New data added to dataset: [[-0.31572629 3.79192545]]
622 | optimizer.py: All expected
623 | Tasks done: 286. New data added to dataset: [[-0.31652661 3.79410658]]
624 | optimizer.py: All expected
625 | Tasks done: 287. New data added to dataset: [[-0.31572629 3.77733915]]
626 | optimizer.py: All expected
627 | Tasks done: 288. New data added to dataset: [[-0.31412565 3.78456299]]
628 | optimizer.py: All expected
629 | Tasks done: 289. New data added to dataset: [[-0.31492597 3.78466205]]
630 | optimizer.py: All expected
631 | Tasks done: 290. New data added to dataset: [[-0.31572629 3.76083641]]
632 | optimizer.py: All expected
633 | Tasks done: 291. New data added to dataset: [[-0.31492597 3.77057571]]
634 | optimizer.py: All expected
635 | Tasks done: 292. New data added to dataset: [[-0.31572629 3.77198356]]
636 | optimizer.py: All expected
637 | Tasks done: 293. New data added to dataset: [[-0.31412565 3.77753241]]
638 | optimizer.py: All expected
639 | Tasks done: 294. New data added to dataset: [[-0.31572629 3.77346856]]
640 | optimizer.py: All expected
641 | Tasks done: 295. New data added to dataset: [[-0.31572629 3.77535079]]
642 | optimizer.py: All expected
643 | Tasks done: 296. New data added to dataset: [[-0.31572629 3.78051453]]
644 | optimizer.py: All expected
645 | Tasks done: 297. New data added to dataset: [[-0.31492597 3.7608381 ]]
646 | optimizer.py: All expected
647 | Tasks done: 298. New data added to dataset: [[-0.31492597 3.77949365]]
648 | optimizer.py: All expected
649 | Tasks done: 299. New data added to dataset: [[-0.31492597 3.76339425]]
650 | optimizer.py: All expected
651 | Tasks done: 300. New data added to dataset: [[-0.31572629 3.77255621]]
652 | optimizer.py: All expected
653 | Tasks done: 301. New data added to dataset: [[-0.31492597 3.77699511]]
654 | optimizer.py: All expected
655 | Tasks done: 302. New data added to dataset: [[-0.31412565 3.7857381 ]]
656 | optimizer.py: All expected
657 | Tasks done: 303. New data added to dataset: [[-0.31572629 3.79515923]]
658 | optimizer.py: All expected
659 | Tasks done: 304. New data added to dataset: [[-0.31572629 3.78735529]]
660 | optimizer.py: All expected
661 | Tasks done: 305. New data added to dataset: [[-0.31572629 3.76703625]]
662 | optimizer.py: All expected
663 | Tasks done: 306. New data added to dataset: [[-0.31492597 3.77872202]]
664 | optimizer.py: All expected
665 | Tasks done: 307. New data added to dataset: [[-0.31572629 3.77760057]]
666 | optimizer.py: All expected
667 | Tasks done: 308. New data added to dataset: [[-0.31492597 3.781807 ]]
668 | optimizer.py: All expected
669 | Tasks done: 309. New data added to dataset: [[-0.31572629 3.78066415]]
670 | optimizer.py: All expected
671 | Tasks done: 310. New data added to dataset: [[-0.31572629 3.77475799]]
672 | optimizer.py: All expected
673 | Tasks done: 311. New data added to dataset: [[-0.31572629 3.79526504]]
674 | optimizer.py: All expected
675 | Tasks done: 312. New data added to dataset: [[-0.31492597 3.79016764]]
676 | optimizer.py: All expected
677 | Tasks done: 313. New data added to dataset: [[-0.31652661 3.78022149]]
678 | optimizer.py: All expected
679 | Tasks done: 314. New data added to dataset: [[-0.31492597 3.77907958]]
680 | optimizer.py: All expected
681 | Tasks done: 315. New data added to dataset: [[-0.31492597 3.77668889]]
682 | optimizer.py: All expected
683 | Tasks done: 316. New data added to dataset: [[-0.31492597 3.75878792]]
684 | optimizer.py: All expected
685 | Tasks done: 317. New data added to dataset: [[-0.31572629 3.79225713]]
686 | optimizer.py: All expected
687 | Tasks done: 318. New data added to dataset: [[-0.31572629 3.77290953]]
688 | optimizer.py: All expected
689 | Tasks done: 319. New data added to dataset: [[-0.31572629 3.7867497 ]]
690 | optimizer.py: All expected
691 | Tasks done: 320. New data added to dataset: [[-0.31652661 3.77711096]]
692 | optimizer.py: All expected
693 | Tasks done: 321. New data added to dataset: [[-0.31572629 3.78927925]]
694 | optimizer.py: All expected
695 | Tasks done: 322. New data added to dataset: [[-0.31492597 3.79556463]]
696 | optimizer.py: All expected
697 | Tasks done: 323. New data added to dataset: [[-0.31492597 3.76807302]]
698 | optimizer.py: All expected
699 | Tasks done: 324. New data added to dataset: [[-0.31572629 3.78364545]]
700 | optimizer.py: All expected
701 | Tasks done: 325. New data added to dataset: [[-0.31572629 3.77373654]]
702 | optimizer.py: All expected
703 | Tasks done: 326. New data added to dataset: [[-0.31572629 3.78351772]]
704 | optimizer.py: All expected
705 | Tasks done: 327. New data added to dataset: [[-0.31492597 3.79174225]]
706 | optimizer.py: All expected
707 | Tasks done: 328. New data added to dataset: [[-0.31572629 3.76445954]]
708 | optimizer.py: All expected
709 | Tasks done: 329. New data added to dataset: [[-0.31572629 3.76530298]]
710 | optimizer.py: All expected
711 | Tasks done: 330. New data added to dataset: [[-0.31572629 3.77721579]]
712 | optimizer.py: All expected
713 | Tasks done: 331. New data added to dataset: [[-0.31572629 3.76921634]]
714 | optimizer.py: All expected
715 | Tasks done: 332. New data added to dataset: [[-0.31412565 3.76120888]]
716 | optimizer.py: All expected
717 | Tasks done: 333. New data added to dataset: [[-0.31572629 3.7638488 ]]
718 | optimizer.py: All expected
719 | Tasks done: 334. New data added to dataset: [[-0.31492597 3.76608639]]
720 | optimizer.py: All expected
721 | Tasks done: 335. New data added to dataset: [[-0.31572629 3.77557595]]
722 | optimizer.py: All expected
723 | Tasks done: 336. New data added to dataset: [[-0.31492597 3.78256333]]
724 | optimizer.py: All expected
725 | Tasks done: 337. New data added to dataset: [[-0.31572629 3.80201139]]
726 | optimizer.py: All expected
727 | Tasks done: 338. New data added to dataset: [[-0.31492597 3.77882789]]
728 | optimizer.py: All expected
729 | Tasks done: 339. New data added to dataset: [[-0.31572629 3.78734384]]
730 | optimizer.py: All expected
731 | Tasks done: 340. New data added to dataset: [[-0.31492597 3.77747999]]
732 | optimizer.py: All expected
733 | Tasks done: 341. New data added to dataset: [[-0.31492597 3.77035002]]
734 | optimizer.py: All expected
735 | Tasks done: 342. New data added to dataset: [[-0.31572629 3.78177141]]
736 | optimizer.py: All expected
737 | Tasks done: 343. New data added to dataset: [[-0.31572629 3.78230811]]
738 | optimizer.py: All expected
739 | Tasks done: 344. New data added to dataset: [[-0.31492597 3.74270336]]
740 | optimizer.py: All expected
741 | Tasks done: 345. New data added to dataset: [[-0.31572629 3.78164633]]
742 | optimizer.py: All expected
743 | Tasks done: 346. New data added to dataset: [[-0.31492597 3.77983394]]
744 | optimizer.py: All expected
745 | Tasks done: 347. New data added to dataset: [[-0.31492597 3.79486778]]
746 | optimizer.py: All expected
747 | Tasks done: 348. New data added to dataset: [[-0.31652661 3.7720423 ]]
748 | optimizer.py: All expected
749 | Tasks done: 349. New data added to dataset: [[-0.31572629 3.78017778]]
750 | optimizer.py: All expected
751 | Tasks done: 350. New data added to dataset: [[-0.31572629 3.77720132]]
752 | optimizer.py: All expected
753 | Tasks done: 351. New data added to dataset: [[-0.31652661 3.78133106]]
754 | optimizer.py: All expected
755 | Tasks done: 352. New data added to dataset: [[-0.31572629 3.771446 ]]
756 | optimizer.py: All expected
757 | Tasks done: 353. New data added to dataset: [[-0.31572629 3.75420383]]
758 | optimizer.py: All expected
759 | Tasks done: 354. New data added to dataset: [[-0.31572629 3.78493377]]
760 | optimizer.py: All expected
761 | Tasks done: 355. New data added to dataset: [[-0.31572629 3.78429198]]
762 | optimizer.py: All expected
763 | Tasks done: 356. New data added to dataset: [[-0.31492597 3.77683893]]
764 | optimizer.py: All expected
765 | Tasks done: 357. New data added to dataset: [[-0.31492597 3.79395531]]
766 | optimizer.py: All expected
767 | Tasks done: 358. New data added to dataset: [[-0.31492597 3.78562054]]
768 | optimizer.py: All expected
769 | Tasks done: 359. New data added to dataset: [[-0.31572629 3.78320646]]
770 | optimizer.py: All expected
771 | Tasks done: 360. New data added to dataset: [[-0.31492597 3.76463949]]
772 | optimizer.py: All expected
773 | Tasks done: 361. New data added to dataset: [[-0.31572629 3.77185517]]
774 | optimizer.py: All expected
775 | Tasks done: 362. New data added to dataset: [[-0.31572629 3.77158994]]
776 | optimizer.py: All expected
777 | Tasks done: 363. New data added to dataset: [[-0.31652661 3.77593136]]
778 | optimizer.py: All expected
779 | Tasks done: 364. New data added to dataset: [[-0.31492597 3.78554782]]
780 | optimizer.py: All expected
781 | Tasks done: 365. New data added to dataset: [[-0.31652661 3.77491876]]
782 | optimizer.py: All expected
783 | Tasks done: 366. New data added to dataset: [[-0.31492597 3.76491999]]
784 | optimizer.py: All expected
785 | Tasks done: 367. New data added to dataset: [[-0.31492597 3.78958272]]
786 | optimizer.py: All expected
787 | Tasks done: 368. New data added to dataset: [[-0.31492597 3.78586186]]
788 | optimizer.py: All expected
789 | Tasks done: 369. New data added to dataset: [[-0.31572629 3.75972602]]
790 | optimizer.py: All expected
791 | Tasks done: 370. New data added to dataset: [[-0.31652661 3.77228134]]
792 | optimizer.py: All expected
793 | Tasks done: 371. New data added to dataset: [[-0.31572629 3.77394834]]
794 | optimizer.py: All expected
795 | Tasks done: 372. New data added to dataset: [[-0.31492597 3.77767109]]
796 | optimizer.py: All expected
797 | Tasks done: 373. New data added to dataset: [[-0.31492597 3.76359516]]
798 | optimizer.py: All expected
799 | Tasks done: 374. New data added to dataset: [[-0.31492597 3.76122984]]
800 | optimizer.py: All expected
801 | Tasks done: 375. New data added to dataset: [[-0.31492597 3.78675496]]
802 | optimizer.py: All expected
803 | Tasks done: 376. New data added to dataset: [[-0.31572629 3.78064402]]
804 | optimizer.py: All expected
805 | Tasks done: 377. New data added to dataset: [[-0.31492597 3.75961551]]
806 | optimizer.py: All expected
807 | Tasks done: 378. New data added to dataset: [[-0.31572629 3.7835074 ]]
808 | optimizer.py: All expected
809 | Tasks done: 379. New data added to dataset: [[-0.31492597 3.77345099]]
810 | optimizer.py: All expected
811 | Tasks done: 380. New data added to dataset: [[-0.31572629 3.77404937]]
812 | optimizer.py: All expected
813 | Tasks done: 381. New data added to dataset: [[-0.31572629 3.78548869]]
814 | optimizer.py: All expected
815 | Tasks done: 382. New data added to dataset: [[-0.31572629 3.78494648]]
816 | optimizer.py: All expected
817 | Tasks done: 383. New data added to dataset: [[-0.31572629 3.78239009]]
818 | optimizer.py: All expected
819 | Tasks done: 384. New data added to dataset: [[-0.31572629 3.77229623]]
820 | optimizer.py: All expected
821 | Tasks done: 385. New data added to dataset: [[-0.31492597 3.7642383 ]]
822 | optimizer.py: All expected
823 | Tasks done: 386. New data added to dataset: [[-0.31412565 3.78654401]]
824 | optimizer.py: All expected
825 | Tasks done: 387. New data added to dataset: [[-0.31492597 3.78476824]]
826 | optimizer.py: All expected
827 | Tasks done: 388. New data added to dataset: [[-0.31572629 3.79526675]]
828 | optimizer.py: All expected
829 | Tasks done: 389. New data added to dataset: [[-0.31492597 3.77196047]]
830 | optimizer.py: All expected
831 | Tasks done: 390. New data added to dataset: [[-0.31572629 3.77260728]]
832 | optimizer.py: All expected
833 | Tasks done: 391. New data added to dataset: [[-0.31572629 3.78513986]]
834 | optimizer.py: All expected
835 | Tasks done: 392. New data added to dataset: [[-0.31572629 3.77182173]]
836 | optimizer.py: All expected
837 | Tasks done: 393. New data added to dataset: [[-0.31492597 3.78628788]]
838 | optimizer.py: All expected
839 | Tasks done: 394. New data added to dataset: [[-0.31572629 3.76540101]]
840 | optimizer.py: All expected
841 | Tasks done: 395. New data added to dataset: [[-0.31412565 3.78439091]]
842 | optimizer.py: All expected
843 | Tasks done: 396. New data added to dataset: [[-0.31652661 3.76602924]]
844 | optimizer.py: All expected
845 | Tasks done: 397. New data added to dataset: [[-0.31572629 3.7760892 ]]
846 | optimizer.py: All expected
847 | Tasks done: 398. New data added to dataset: [[-0.31492597 3.7807805 ]]
848 | optimizer.py: All expected
849 | Tasks done: 399. New data added to dataset: [[-0.31652661 3.78411712]]
850 | optimizer.py: All expected
851 | Tasks done: 400. New data added to dataset: [[-0.31572629 3.76988819]]
852 | optimizer.py: All expected
853 | Sequential gp optimization task complete.
854 | Best evaluated point is:
855 | [-0.31572629 3.80201139]
856 | Predicted best point is:
857 | [-0.31492597 3.7760601 ]
858 |
--------------------------------------------------------------------------------
/data/regret_analysis/gp_gp_10.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/data/regret_analysis/gp_gp_10.txt
--------------------------------------------------------------------------------
/data/regret_analysis/gp_gp_8.txt:
--------------------------------------------------------------------------------
1 | Complete initial dataset acquired
2 | [[ -4.07645970e-01 2.97725060e+00]
3 | [ 7.98834073e-01 -3.31850803e+00]
4 | [ -6.87276830e-01 -1.67565344e+01]
5 | [ 6.02598120e-01 3.56385035e-01]
6 | [ 9.61540962e-01 -1.55001144e+01]
7 | [ -9.51794962e-01 -8.18472933e+01]
8 | [ -4.14531482e-01 2.84328966e+00]
9 | [ -1.09979217e-01 1.65618864e+00]
10 | [ 3.41812200e-01 -1.21009594e+00]
11 | [ -4.04041597e-01 3.03516653e+00]
12 | [ 4.58106257e-01 -3.24039999e-01]
13 | [ 1.99821598e-01 -1.59776037e+00]
14 | [ 5.00668927e-01 7.02198858e-03]
15 | [ -9.40672030e-01 -7.77376178e+01]
16 | [ 3.57843140e-02 -4.52490827e-01]
17 | [ 4.69709104e-01 -2.37417108e-01]
18 | [ 6.28568666e-01 2.93206703e-01]
19 | [ 5.78698716e-01 3.37166422e-01]
20 | [ 8.97434211e-01 -9.30842292e+00]
21 | [ -5.60487804e-01 -3.56709320e+00]
22 | [ -3.75321314e-01 3.43537637e+00]
23 | [ 1.88042222e-01 -1.55268240e+00]
24 | [ -4.79926726e-01 8.76626974e-01]
25 | [ -4.00225598e-01 3.10666282e+00]
26 | [ 1.73980926e-01 -1.53756663e+00]
27 | [ -2.69634354e-01 3.63505621e+00]
28 | [ -6.96792032e-01 -1.81128486e+01]
29 | [ -6.73953583e-01 -1.49415868e+01]
30 | [ -6.75983907e-02 9.74475920e-01]
31 | [ -8.44338744e-01 -4.78378447e+01]
32 | [ 3.76910182e-02 -4.83878216e-01]
33 | [ -3.31577627e-01 3.76163226e+00]
34 | [ -9.12673468e-01 -6.80856929e+01]
35 | [ 3.69820845e-02 -4.66355164e-01]
36 | [ -9.98297357e-01 -1.00523209e+02]
37 | [ 8.20510283e-02 -9.41290279e-01]
38 | [ 2.33145655e-01 -1.60219783e+00]
39 | [ -5.21445650e-01 -1.10274622e+00]
40 | [ 4.87489579e-01 -7.85543331e-02]
41 | [ 2.82331266e-01 -1.50007480e+00]
42 | [ 9.04552655e-01 -9.88796115e+00]
43 | [ -2.45480647e-01 3.44921336e+00]
44 | [ 6.87093791e-01 -2.49157469e-01]
45 | [ -5.58493113e-01 -3.43416538e+00]
46 | [ 7.38060538e-01 -1.25298164e+00]
47 | [ -2.66669167e-01 3.59384190e+00]
48 | [ 5.65469730e-01 3.34111366e-01]
49 | [ -4.48480046e-01 1.98615078e+00]
50 | [ -7.72971213e-01 -3.13053715e+01]
51 | [ -1.43967780e-01 2.18172488e+00]]
52 | optimizer.py: All expected
53 | Tasks done: 1. New data added to dataset: [[-0.31492597 3.77669815]]
54 | optimizer.py: All expected
55 | Tasks done: 2. New data added to dataset: [[-0.31492597 3.77618057]]
56 | optimizer.py: All expected
57 | Tasks done: 3. New data added to dataset: [[-0.31492597 3.7835557 ]]
58 | optimizer.py: All expected
59 | Tasks done: 4. New data added to dataset: [[-0.31572629 3.78421436]]
60 | optimizer.py: All expected
61 | Tasks done: 5. New data added to dataset: [[-0.31492597 3.74861016]]
62 | optimizer.py: All expected
63 | Tasks done: 6. New data added to dataset: [[-0.31492597 3.80384628]]
64 | optimizer.py: All expected
65 | Tasks done: 7. New data added to dataset: [[-0.31572629 3.75601003]]
66 | optimizer.py: All expected
67 | Tasks done: 8. New data added to dataset: [[-0.31492597 3.77975385]]
68 | optimizer.py: All expected
69 | Tasks done: 9. New data added to dataset: [[-0.31492597 3.76976422]]
70 | optimizer.py: All expected
71 | Tasks done: 10. New data added to dataset: [[-0.31492597 3.76926202]]
72 | optimizer.py: All expected
73 | Tasks done: 11. New data added to dataset: [[-0.31492597 3.76160253]]
74 | optimizer.py: All expected
75 | Tasks done: 12. New data added to dataset: [[-0.31492597 3.77702784]]
76 | optimizer.py: All expected
77 | Tasks done: 13. New data added to dataset: [[-0.31492597 3.7614438 ]]
78 | optimizer.py: All expected
79 | Tasks done: 14. New data added to dataset: [[-0.31492597 3.77943639]]
80 | optimizer.py: All expected
81 | Tasks done: 15. New data added to dataset: [[-0.31492597 3.7649342 ]]
82 | optimizer.py: All expected
83 | Tasks done: 16. New data added to dataset: [[-0.31492597 3.763692 ]]
84 | optimizer.py: All expected
85 | Tasks done: 17. New data added to dataset: [[-0.31492597 3.80301677]]
86 | optimizer.py: All expected
87 | Tasks done: 18. New data added to dataset: [[-0.31492597 3.78007435]]
88 | optimizer.py: All expected
89 | Tasks done: 19. New data added to dataset: [[-0.31492597 3.78147458]]
90 | optimizer.py: All expected
91 | Tasks done: 20. New data added to dataset: [[-0.31572629 3.77427998]]
92 | optimizer.py: All expected
93 | Tasks done: 21. New data added to dataset: [[-0.31492597 3.78526223]]
94 | optimizer.py: All expected
95 | Tasks done: 22. New data added to dataset: [[-0.31492597 3.77481673]]
96 | optimizer.py: All expected
97 | Tasks done: 23. New data added to dataset: [[-0.31492597 3.77206774]]
98 | optimizer.py: All expected
99 | Tasks done: 24. New data added to dataset: [[-0.31492597 3.78080198]]
100 | optimizer.py: All expected
101 | Tasks done: 25. New data added to dataset: [[-0.31492597 3.79067922]]
102 | optimizer.py: All expected
103 | Tasks done: 26. New data added to dataset: [[-0.31492597 3.77771514]]
104 | optimizer.py: All expected
105 | Tasks done: 27. New data added to dataset: [[-0.31492597 3.76179722]]
106 | optimizer.py: All expected
107 | Tasks done: 28. New data added to dataset: [[-0.31492597 3.7707383 ]]
108 | optimizer.py: All expected
109 | Tasks done: 29. New data added to dataset: [[-0.31492597 3.78423877]]
110 | optimizer.py: All expected
111 | Tasks done: 30. New data added to dataset: [[-0.31492597 3.77344818]]
112 | optimizer.py: All expected
113 | Tasks done: 31. New data added to dataset: [[-0.31572629 3.78140999]]
114 | optimizer.py: All expected
115 | Tasks done: 32. New data added to dataset: [[-0.31572629 3.77697374]]
116 | optimizer.py: All expected
117 | Tasks done: 33. New data added to dataset: [[-0.31572629 3.77256079]]
118 | optimizer.py: All expected
119 | Tasks done: 34. New data added to dataset: [[-0.31492597 3.77323707]]
120 | optimizer.py: All expected
121 | Tasks done: 35. New data added to dataset: [[-0.31492597 3.78665437]]
122 | optimizer.py: All expected
123 | Tasks done: 36. New data added to dataset: [[-0.31492597 3.75682818]]
124 | optimizer.py: All expected
125 | Tasks done: 37. New data added to dataset: [[-0.31492597 3.77633234]]
126 | optimizer.py: All expected
127 | Tasks done: 38. New data added to dataset: [[-0.31572629 3.76969815]]
128 | optimizer.py: All expected
129 | Tasks done: 39. New data added to dataset: [[-0.31492597 3.76055185]]
130 | optimizer.py: All expected
131 | Tasks done: 40. New data added to dataset: [[-0.31492597 3.78500908]]
132 | optimizer.py: All expected
133 | Tasks done: 41. New data added to dataset: [[-0.31492597 3.77249886]]
134 | optimizer.py: All expected
135 | Tasks done: 42. New data added to dataset: [[-0.31572629 3.78741805]]
136 | optimizer.py: All expected
137 | Tasks done: 43. New data added to dataset: [[-0.31492597 3.77431399]]
138 | optimizer.py: All expected
139 | Tasks done: 44. New data added to dataset: [[-0.31492597 3.79172793]]
140 | optimizer.py: All expected
141 | Tasks done: 45. New data added to dataset: [[-0.31572629 3.77630911]]
142 | optimizer.py: All expected
143 | Tasks done: 46. New data added to dataset: [[-0.31492597 3.76639953]]
144 | optimizer.py: All expected
145 | Tasks done: 47. New data added to dataset: [[-0.31492597 3.77483945]]
146 | optimizer.py: All expected
147 | Tasks done: 48. New data added to dataset: [[-0.31492597 3.78626194]]
148 | optimizer.py: All expected
149 | Tasks done: 49. New data added to dataset: [[-0.31492597 3.76810717]]
150 | optimizer.py: All expected
151 | Tasks done: 50. New data added to dataset: [[-0.31492597 3.77199103]]
152 | optimizer.py: All expected
153 | Tasks done: 51. New data added to dataset: [[-0.31492597 3.78166845]]
154 | optimizer.py: All expected
155 | Tasks done: 52. New data added to dataset: [[-0.31492597 3.76209739]]
156 | optimizer.py: All expected
157 | Tasks done: 53. New data added to dataset: [[-0.31572629 3.79510863]]
158 | optimizer.py: All expected
159 | Tasks done: 54. New data added to dataset: [[-0.31492597 3.78669359]]
160 | optimizer.py: All expected
161 | Tasks done: 55. New data added to dataset: [[-0.31572629 3.76568138]]
162 | optimizer.py: All expected
163 | Tasks done: 56. New data added to dataset: [[-0.31572629 3.76737023]]
164 | optimizer.py: All expected
165 | Tasks done: 57. New data added to dataset: [[-0.31572629 3.77722344]]
166 | optimizer.py: All expected
167 | Tasks done: 58. New data added to dataset: [[-0.31572629 3.76170219]]
168 | optimizer.py: All expected
169 | Tasks done: 59. New data added to dataset: [[-0.31492597 3.78300756]]
170 | optimizer.py: All expected
171 | Tasks done: 60. New data added to dataset: [[-0.31492597 3.77316019]]
172 | optimizer.py: All expected
173 | Tasks done: 61. New data added to dataset: [[-0.31492597 3.78232834]]
174 | optimizer.py: All expected
175 | Tasks done: 62. New data added to dataset: [[-0.31492597 3.76352296]]
176 | optimizer.py: All expected
177 | Tasks done: 63. New data added to dataset: [[-0.31492597 3.76947198]]
178 | optimizer.py: All expected
179 | Tasks done: 64. New data added to dataset: [[-0.31492597 3.76220937]]
180 | optimizer.py: All expected
181 | Tasks done: 65. New data added to dataset: [[-0.31572629 3.7731283 ]]
182 | optimizer.py: All expected
183 | Tasks done: 66. New data added to dataset: [[-0.31572629 3.78004079]]
184 | optimizer.py: All expected
185 | Tasks done: 67. New data added to dataset: [[-0.31492597 3.78332338]]
186 | optimizer.py: All expected
187 | Tasks done: 68. New data added to dataset: [[-0.31572629 3.77449625]]
188 | optimizer.py: All expected
189 | Tasks done: 69. New data added to dataset: [[-0.31492597 3.78489493]]
190 | optimizer.py: All expected
191 | Tasks done: 70. New data added to dataset: [[-0.31572629 3.78088352]]
192 | optimizer.py: All expected
193 | Tasks done: 71. New data added to dataset: [[-0.31492597 3.76969302]]
194 | optimizer.py: All expected
195 | Tasks done: 72. New data added to dataset: [[-0.31492597 3.77865083]]
196 | optimizer.py: All expected
197 | Tasks done: 73. New data added to dataset: [[-0.31492597 3.768421 ]]
198 | optimizer.py: All expected
199 | Tasks done: 74. New data added to dataset: [[-0.31492597 3.7827422 ]]
200 | optimizer.py: All expected
201 | Tasks done: 75. New data added to dataset: [[-0.31572629 3.80318343]]
202 | optimizer.py: All expected
203 | Tasks done: 76. New data added to dataset: [[-0.31572629 3.77559388]]
204 | optimizer.py: All expected
205 | Tasks done: 77. New data added to dataset: [[-0.31492597 3.78951294]]
206 | optimizer.py: All expected
207 | Tasks done: 78. New data added to dataset: [[-0.31492597 3.79247483]]
208 | optimizer.py: All expected
209 | Tasks done: 79. New data added to dataset: [[-0.31572629 3.76335416]]
210 | optimizer.py: All expected
211 | Tasks done: 80. New data added to dataset: [[-0.31492597 3.76721631]]
212 | optimizer.py: All expected
213 | Tasks done: 81. New data added to dataset: [[-0.31572629 3.77626991]]
214 | optimizer.py: All expected
215 | Tasks done: 82. New data added to dataset: [[-0.31572629 3.76600005]]
216 | optimizer.py: All expected
217 | Tasks done: 83. New data added to dataset: [[-0.31492597 3.7835915 ]]
218 | optimizer.py: All expected
219 | Tasks done: 84. New data added to dataset: [[-0.31492597 3.77819591]]
220 | optimizer.py: All expected
221 | Tasks done: 85. New data added to dataset: [[-0.31572629 3.77638345]]
222 | optimizer.py: All expected
223 | Tasks done: 86. New data added to dataset: [[-0.31572629 3.80340913]]
224 | optimizer.py: All expected
225 | Tasks done: 87. New data added to dataset: [[-0.31492597 3.78483063]]
226 | optimizer.py: All expected
227 | Tasks done: 88. New data added to dataset: [[-0.31492597 3.78248933]]
228 | optimizer.py: All expected
229 | Tasks done: 89. New data added to dataset: [[-0.31492597 3.78276218]]
230 | optimizer.py: All expected
231 | Tasks done: 90. New data added to dataset: [[-0.31572629 3.76607962]]
232 | optimizer.py: All expected
233 | Tasks done: 91. New data added to dataset: [[-0.31492597 3.77424144]]
234 | optimizer.py: All expected
235 | Tasks done: 92. New data added to dataset: [[-0.31492597 3.77041247]]
236 | optimizer.py: All expected
237 | Tasks done: 93. New data added to dataset: [[-0.31572629 3.79276563]]
238 | optimizer.py: All expected
239 | Tasks done: 94. New data added to dataset: [[-0.31492597 3.78398858]]
240 | optimizer.py: All expected
241 | Tasks done: 95. New data added to dataset: [[-0.31492597 3.76692534]]
242 | optimizer.py: All expected
243 | Tasks done: 96. New data added to dataset: [[-0.31572629 3.79986824]]
244 | optimizer.py: All expected
245 | Tasks done: 97. New data added to dataset: [[-0.31492597 3.78280749]]
246 | optimizer.py: All expected
247 | Tasks done: 98. New data added to dataset: [[-0.31492597 3.78253456]]
248 | optimizer.py: All expected
249 | Tasks done: 99. New data added to dataset: [[-0.31492597 3.78589576]]
250 | optimizer.py: All expected
251 | Tasks done: 100. New data added to dataset: [[-0.31572629 3.76137722]]
252 | optimizer.py: All expected
253 | Tasks done: 101. New data added to dataset: [[-0.31572629 3.77962872]]
254 | optimizer.py: All expected
255 | Tasks done: 102. New data added to dataset: [[-0.31572629 3.7706444 ]]
256 | optimizer.py: All expected
257 | Tasks done: 103. New data added to dataset: [[-0.31492597 3.78349465]]
258 | optimizer.py: All expected
259 | Tasks done: 104. New data added to dataset: [[-0.31492597 3.77111604]]
260 | optimizer.py: All expected
261 | Tasks done: 105. New data added to dataset: [[-0.31572629 3.77810334]]
262 | optimizer.py: All expected
263 | Tasks done: 106. New data added to dataset: [[-0.31492597 3.76084604]]
264 | optimizer.py: All expected
265 | Tasks done: 107. New data added to dataset: [[-0.31492597 3.76443882]]
266 | optimizer.py: All expected
267 | Tasks done: 108. New data added to dataset: [[-0.31572629 3.77118806]]
268 | optimizer.py: All expected
269 | Tasks done: 109. New data added to dataset: [[-0.31572629 3.75025185]]
270 | optimizer.py: All expected
271 | Tasks done: 110. New data added to dataset: [[-0.31572629 3.77144083]]
272 | optimizer.py: All expected
273 | Tasks done: 111. New data added to dataset: [[-0.31572629 3.779997 ]]
274 | optimizer.py: All expected
275 | Tasks done: 112. New data added to dataset: [[-0.31572629 3.77109988]]
276 | optimizer.py: All expected
277 | Tasks done: 113. New data added to dataset: [[-0.31492597 3.76921624]]
278 | optimizer.py: All expected
279 | Tasks done: 114. New data added to dataset: [[-0.31492597 3.7580337 ]]
280 | optimizer.py: All expected
281 | Tasks done: 115. New data added to dataset: [[-0.31572629 3.76568719]]
282 | optimizer.py: All expected
283 | Tasks done: 116. New data added to dataset: [[-0.31492597 3.78200153]]
284 | optimizer.py: All expected
285 | Tasks done: 117. New data added to dataset: [[-0.31572629 3.76921861]]
286 | optimizer.py: All expected
287 | Tasks done: 118. New data added to dataset: [[-0.31492597 3.78299464]]
288 | optimizer.py: All expected
289 | Tasks done: 119. New data added to dataset: [[-0.31572629 3.77335211]]
290 | optimizer.py: All expected
291 | Tasks done: 120. New data added to dataset: [[-0.31572629 3.79591653]]
292 | optimizer.py: All expected
293 | Tasks done: 121. New data added to dataset: [[-0.31572629 3.78019844]]
294 | optimizer.py: All expected
295 | Tasks done: 122. New data added to dataset: [[-0.31572629 3.78501472]]
296 | optimizer.py: All expected
297 | Tasks done: 123. New data added to dataset: [[-0.31572629 3.7851015 ]]
298 | optimizer.py: All expected
299 | Tasks done: 124. New data added to dataset: [[-0.31572629 3.77520338]]
300 | optimizer.py: All expected
301 | Tasks done: 125. New data added to dataset: [[-0.31572629 3.77063091]]
302 | optimizer.py: All expected
303 | Tasks done: 126. New data added to dataset: [[-0.31572629 3.77830379]]
304 | optimizer.py: All expected
305 | Tasks done: 127. New data added to dataset: [[-0.31492597 3.77752902]]
306 | optimizer.py: All expected
307 | Tasks done: 128. New data added to dataset: [[-0.31492597 3.77465142]]
308 | optimizer.py: All expected
309 | Tasks done: 129. New data added to dataset: [[-0.31492597 3.77200012]]
310 | optimizer.py: All expected
311 | Tasks done: 130. New data added to dataset: [[-0.31492597 3.781593 ]]
312 | optimizer.py: All expected
313 | Tasks done: 131. New data added to dataset: [[-0.31492597 3.7801511 ]]
314 | optimizer.py: All expected
315 | Tasks done: 132. New data added to dataset: [[-0.31572629 3.7787044 ]]
316 | optimizer.py: All expected
317 | Tasks done: 133. New data added to dataset: [[-0.31492597 3.77721263]]
318 | optimizer.py: All expected
319 | Tasks done: 134. New data added to dataset: [[-0.31492597 3.77304118]]
320 | optimizer.py: All expected
321 | Tasks done: 135. New data added to dataset: [[-0.31492597 3.76398523]]
322 | optimizer.py: All expected
323 | Tasks done: 136. New data added to dataset: [[-0.31492597 3.7702625 ]]
324 | optimizer.py: All expected
325 | Tasks done: 137. New data added to dataset: [[-0.31492597 3.77040973]]
326 | optimizer.py: All expected
327 | Tasks done: 138. New data added to dataset: [[-0.31492597 3.75496866]]
328 | optimizer.py: All expected
329 | Tasks done: 139. New data added to dataset: [[-0.31492597 3.76551499]]
330 | optimizer.py: All expected
331 | Tasks done: 140. New data added to dataset: [[-0.31492597 3.76856586]]
332 | optimizer.py: All expected
333 | Tasks done: 141. New data added to dataset: [[-0.31492597 3.7717378 ]]
334 | optimizer.py: All expected
335 | Tasks done: 142. New data added to dataset: [[-0.31492597 3.78843656]]
336 | optimizer.py: All expected
337 | Tasks done: 143. New data added to dataset: [[-0.31572629 3.7859157 ]]
338 | optimizer.py: All expected
339 | Tasks done: 144. New data added to dataset: [[-0.31492597 3.77993546]]
340 | optimizer.py: All expected
341 | Tasks done: 145. New data added to dataset: [[-0.31492597 3.7880567 ]]
342 | optimizer.py: All expected
343 | Tasks done: 146. New data added to dataset: [[-0.31492597 3.75835679]]
344 | optimizer.py: All expected
345 | Tasks done: 147. New data added to dataset: [[-0.31492597 3.76142102]]
346 | optimizer.py: All expected
347 | Tasks done: 148. New data added to dataset: [[-0.31492597 3.77787741]]
348 | optimizer.py: All expected
349 | Tasks done: 149. New data added to dataset: [[-0.31572629 3.76818643]]
350 | optimizer.py: All expected
351 | Tasks done: 150. New data added to dataset: [[-0.31492597 3.78228254]]
352 | optimizer.py: All expected
353 | Tasks done: 151. New data added to dataset: [[-0.31492597 3.77085183]]
354 | optimizer.py: All expected
355 | Tasks done: 152. New data added to dataset: [[-0.31492597 3.78936861]]
356 | optimizer.py: All expected
357 | Tasks done: 153. New data added to dataset: [[-0.31492597 3.7722861 ]]
358 | optimizer.py: All expected
359 | Tasks done: 154. New data added to dataset: [[-0.31492597 3.78729475]]
360 | optimizer.py: All expected
361 | Tasks done: 155. New data added to dataset: [[-0.31492597 3.78297096]]
362 | optimizer.py: All expected
363 | Tasks done: 156. New data added to dataset: [[-0.31572629 3.77812238]]
364 | optimizer.py: All expected
365 | Tasks done: 157. New data added to dataset: [[-0.31492597 3.77335783]]
366 | optimizer.py: All expected
367 | Tasks done: 158. New data added to dataset: [[-0.31492597 3.78580876]]
368 | optimizer.py: All expected
369 | Tasks done: 159. New data added to dataset: [[-0.31492597 3.75677557]]
370 | optimizer.py: All expected
371 | Tasks done: 160. New data added to dataset: [[-0.31492597 3.77705173]]
372 | optimizer.py: All expected
373 | Tasks done: 161. New data added to dataset: [[-0.31492597 3.77660892]]
374 | optimizer.py: All expected
375 | Tasks done: 162. New data added to dataset: [[-0.31492597 3.77652647]]
376 | optimizer.py: All expected
377 | Tasks done: 163. New data added to dataset: [[-0.31492597 3.78150616]]
378 | optimizer.py: All expected
379 | Tasks done: 164. New data added to dataset: [[-0.31492597 3.78491206]]
380 | optimizer.py: All expected
381 | Tasks done: 165. New data added to dataset: [[-0.31492597 3.77129865]]
382 | optimizer.py: All expected
383 | Tasks done: 166. New data added to dataset: [[-0.31492597 3.79178168]]
384 | optimizer.py: All expected
385 | Tasks done: 167. New data added to dataset: [[-0.31492597 3.78935677]]
386 | optimizer.py: All expected
387 | Tasks done: 168. New data added to dataset: [[-0.31572629 3.7884433 ]]
388 | optimizer.py: All expected
389 | Tasks done: 169. New data added to dataset: [[-0.31572629 3.78289114]]
390 | optimizer.py: All expected
391 | Tasks done: 170. New data added to dataset: [[-0.31572629 3.79063878]]
392 | optimizer.py: All expected
393 | Tasks done: 171. New data added to dataset: [[-0.31492597 3.78237671]]
394 | optimizer.py: All expected
395 | Tasks done: 172. New data added to dataset: [[-0.31572629 3.78429471]]
396 | optimizer.py: All expected
397 | Tasks done: 173. New data added to dataset: [[-0.31492597 3.77092089]]
398 | optimizer.py: All expected
399 | Tasks done: 174. New data added to dataset: [[-0.31572629 3.77924824]]
400 | optimizer.py: All expected
401 | Tasks done: 175. New data added to dataset: [[-0.31492597 3.77088743]]
402 | optimizer.py: All expected
403 | Tasks done: 176. New data added to dataset: [[-0.31572629 3.77862843]]
404 | optimizer.py: All expected
405 | Tasks done: 177. New data added to dataset: [[-0.31572629 3.79842216]]
406 | optimizer.py: All expected
407 | Tasks done: 178. New data added to dataset: [[-0.31492597 3.77968714]]
408 | optimizer.py: All expected
409 | Tasks done: 179. New data added to dataset: [[-0.31492597 3.78244231]]
410 | optimizer.py: All expected
411 | Tasks done: 180. New data added to dataset: [[-0.31492597 3.79438105]]
412 | optimizer.py: All expected
413 | Tasks done: 181. New data added to dataset: [[-0.31492597 3.76803339]]
414 | optimizer.py: All expected
415 | Tasks done: 182. New data added to dataset: [[-0.31572629 3.79578461]]
416 | optimizer.py: All expected
417 | Tasks done: 183. New data added to dataset: [[-0.31492597 3.78106912]]
418 | optimizer.py: All expected
419 | Tasks done: 184. New data added to dataset: [[-0.31572629 3.77377419]]
420 | optimizer.py: All expected
421 | Tasks done: 185. New data added to dataset: [[-0.31572629 3.78545104]]
422 | optimizer.py: All expected
423 | Tasks done: 186. New data added to dataset: [[-0.31492597 3.79168102]]
424 | optimizer.py: All expected
425 | Tasks done: 187. New data added to dataset: [[-0.31492597 3.77762836]]
426 | optimizer.py: All expected
427 | Tasks done: 188. New data added to dataset: [[-0.31572629 3.79411463]]
428 | optimizer.py: All expected
429 | Tasks done: 189. New data added to dataset: [[-0.31572629 3.77421538]]
430 | optimizer.py: All expected
431 | Tasks done: 190. New data added to dataset: [[-0.31572629 3.78533099]]
432 | optimizer.py: All expected
433 | Tasks done: 191. New data added to dataset: [[-0.31492597 3.79796273]]
434 | optimizer.py: All expected
435 | Tasks done: 192. New data added to dataset: [[-0.31492597 3.76799455]]
436 | optimizer.py: All expected
437 | Tasks done: 193. New data added to dataset: [[-0.31572629 3.7934618 ]]
438 | optimizer.py: All expected
439 | Tasks done: 194. New data added to dataset: [[-0.31492597 3.77216844]]
440 | optimizer.py: All expected
441 | Tasks done: 195. New data added to dataset: [[-0.31572629 3.7731464 ]]
442 | optimizer.py: All expected
443 | Tasks done: 196. New data added to dataset: [[-0.31572629 3.77594781]]
444 | optimizer.py: All expected
445 | Tasks done: 197. New data added to dataset: [[-0.31572629 3.7846958 ]]
446 | optimizer.py: All expected
447 | Tasks done: 198. New data added to dataset: [[-0.31492597 3.75810381]]
448 | optimizer.py: All expected
449 | Tasks done: 199. New data added to dataset: [[-0.31492597 3.77908337]]
450 | optimizer.py: All expected
451 | Tasks done: 200. New data added to dataset: [[-0.31572629 3.77350887]]
452 | optimizer.py: All expected
453 | Tasks done: 201. New data added to dataset: [[-0.31492597 3.76905189]]
454 | optimizer.py: All expected
455 | Tasks done: 202. New data added to dataset: [[-0.31492597 3.78542869]]
456 | optimizer.py: All expected
457 | Tasks done: 203. New data added to dataset: [[-0.31492597 3.76114215]]
458 | optimizer.py: All expected
459 | Tasks done: 204. New data added to dataset: [[-0.31572629 3.78557359]]
460 | optimizer.py: All expected
461 | Tasks done: 205. New data added to dataset: [[-0.31492597 3.76649755]]
462 | optimizer.py: All expected
463 | Tasks done: 206. New data added to dataset: [[-0.31412565 3.79379724]]
464 | optimizer.py: All expected
465 | Tasks done: 207. New data added to dataset: [[-0.31412565 3.7879924 ]]
466 | optimizer.py: All expected
467 | Tasks done: 208. New data added to dataset: [[-0.31572629 3.77178807]]
468 | optimizer.py: All expected
469 | Tasks done: 209. New data added to dataset: [[-0.31572629 3.7858957 ]]
470 | optimizer.py: All expected
471 | Tasks done: 210. New data added to dataset: [[-0.31492597 3.79835778]]
472 | optimizer.py: All expected
473 | Tasks done: 211. New data added to dataset: [[-0.31492597 3.7633941 ]]
474 | optimizer.py: All expected
475 | Tasks done: 212. New data added to dataset: [[-0.31492597 3.77946623]]
476 | optimizer.py: All expected
477 | Tasks done: 213. New data added to dataset: [[-0.31492597 3.78247649]]
478 | optimizer.py: All expected
479 | Tasks done: 214. New data added to dataset: [[-0.31492597 3.78382453]]
480 | optimizer.py: All expected
481 | Tasks done: 215. New data added to dataset: [[-0.31492597 3.77674189]]
482 | optimizer.py: All expected
483 | Tasks done: 216. New data added to dataset: [[-0.31492597 3.75614766]]
484 | optimizer.py: All expected
485 | Tasks done: 217. New data added to dataset: [[-0.31572629 3.77009964]]
486 | optimizer.py: All expected
487 | Tasks done: 218. New data added to dataset: [[-0.31492597 3.78556051]]
488 | optimizer.py: All expected
489 | Tasks done: 219. New data added to dataset: [[-0.31572629 3.78218623]]
490 | optimizer.py: All expected
491 | Tasks done: 220. New data added to dataset: [[-0.31492597 3.7849711 ]]
492 | optimizer.py: All expected
493 | Tasks done: 221. New data added to dataset: [[-0.31572629 3.75009893]]
494 | optimizer.py: All expected
495 | Tasks done: 222. New data added to dataset: [[-0.31492597 3.78841326]]
496 | optimizer.py: All expected
497 | Tasks done: 223. New data added to dataset: [[-0.31492597 3.78518224]]
498 | optimizer.py: All expected
499 | Tasks done: 224. New data added to dataset: [[-0.31572629 3.77892379]]
500 | optimizer.py: All expected
501 | Tasks done: 225. New data added to dataset: [[-0.31492597 3.78808604]]
502 | optimizer.py: All expected
503 | Tasks done: 226. New data added to dataset: [[-0.31492597 3.78566903]]
504 | optimizer.py: All expected
505 | Tasks done: 227. New data added to dataset: [[-0.31492597 3.78597244]]
506 | optimizer.py: All expected
507 | Tasks done: 228. New data added to dataset: [[-0.31572629 3.75061783]]
508 | optimizer.py: All expected
509 | Tasks done: 229. New data added to dataset: [[-0.31492597 3.77779886]]
510 | optimizer.py: All expected
511 | Tasks done: 230. New data added to dataset: [[-0.31492597 3.79178335]]
512 | optimizer.py: All expected
513 | Tasks done: 231. New data added to dataset: [[-0.31492597 3.78647617]]
514 | optimizer.py: All expected
515 | Tasks done: 232. New data added to dataset: [[-0.31412565 3.79832265]]
516 | optimizer.py: All expected
517 | Tasks done: 233. New data added to dataset: [[-0.31572629 3.75802875]]
518 | optimizer.py: All expected
519 | Tasks done: 234. New data added to dataset: [[-0.31492597 3.78493527]]
520 | optimizer.py: All expected
521 | Tasks done: 235. New data added to dataset: [[-0.31572629 3.77583442]]
522 | optimizer.py: All expected
523 | Tasks done: 236. New data added to dataset: [[-0.31572629 3.77804778]]
524 | optimizer.py: All expected
525 | Tasks done: 237. New data added to dataset: [[-0.31492597 3.76459119]]
526 | optimizer.py: All expected
527 | Tasks done: 238. New data added to dataset: [[-0.31492597 3.77658449]]
528 | optimizer.py: All expected
529 | Tasks done: 239. New data added to dataset: [[-0.31572629 3.7781658 ]]
530 | optimizer.py: All expected
531 | Tasks done: 240. New data added to dataset: [[-0.31572629 3.77235348]]
532 | optimizer.py: All expected
533 | Tasks done: 241. New data added to dataset: [[-0.31572629 3.78629649]]
534 | optimizer.py: All expected
535 | Tasks done: 242. New data added to dataset: [[-0.31572629 3.77154596]]
536 | optimizer.py: All expected
537 | Tasks done: 243. New data added to dataset: [[-0.31572629 3.77185935]]
538 | optimizer.py: All expected
539 | Tasks done: 244. New data added to dataset: [[-0.31412565 3.76422088]]
540 | optimizer.py: All expected
541 | Tasks done: 245. New data added to dataset: [[-0.31492597 3.7667272 ]]
542 | optimizer.py: All expected
543 | Tasks done: 246. New data added to dataset: [[-0.31572629 3.78301377]]
544 | optimizer.py: All expected
545 | Tasks done: 247. New data added to dataset: [[-0.31572629 3.77953349]]
546 | optimizer.py: All expected
547 | Tasks done: 248. New data added to dataset: [[-0.31492597 3.76401182]]
548 | optimizer.py: All expected
549 | Tasks done: 249. New data added to dataset: [[-0.31572629 3.77314579]]
550 | optimizer.py: All expected
551 | Tasks done: 250. New data added to dataset: [[-0.31492597 3.77397083]]
552 | optimizer.py: All expected
553 | Tasks done: 251. New data added to dataset: [[-0.31492597 3.76747437]]
554 | optimizer.py: All expected
555 | Tasks done: 252. New data added to dataset: [[-0.31572629 3.77774256]]
556 | optimizer.py: All expected
557 | Tasks done: 253. New data added to dataset: [[-0.31492597 3.776395 ]]
558 | optimizer.py: All expected
559 | Tasks done: 254. New data added to dataset: [[-0.31492597 3.77678931]]
560 | optimizer.py: All expected
561 | Tasks done: 255. New data added to dataset: [[-0.31492597 3.76542446]]
562 | optimizer.py: All expected
563 | Tasks done: 256. New data added to dataset: [[-0.31572629 3.77805228]]
564 | optimizer.py: All expected
565 | Tasks done: 257. New data added to dataset: [[-0.31492597 3.76947474]]
566 | optimizer.py: All expected
567 | Tasks done: 258. New data added to dataset: [[-0.31492597 3.79114632]]
568 | optimizer.py: All expected
569 | Tasks done: 259. New data added to dataset: [[-0.31572629 3.79121029]]
570 | optimizer.py: All expected
571 | Tasks done: 260. New data added to dataset: [[-0.31572629 3.78501808]]
572 | optimizer.py: All expected
573 | Tasks done: 261. New data added to dataset: [[-0.31572629 3.77639467]]
574 | optimizer.py: All expected
575 | Tasks done: 262. New data added to dataset: [[-0.31572629 3.77268061]]
576 | optimizer.py: All expected
577 | Tasks done: 263. New data added to dataset: [[-0.31492597 3.75743746]]
578 | optimizer.py: All expected
579 | Tasks done: 264. New data added to dataset: [[-0.31492597 3.7770208 ]]
580 | optimizer.py: All expected
581 | Tasks done: 265. New data added to dataset: [[-0.31492597 3.78083016]]
582 | optimizer.py: All expected
583 | Tasks done: 266. New data added to dataset: [[-0.31492597 3.77631491]]
584 | optimizer.py: All expected
585 | Tasks done: 267. New data added to dataset: [[-0.31572629 3.79535046]]
586 | optimizer.py: All expected
587 | Tasks done: 268. New data added to dataset: [[-0.31572629 3.77292204]]
588 | optimizer.py: All expected
589 | Tasks done: 269. New data added to dataset: [[-0.31492597 3.79690061]]
590 | optimizer.py: All expected
591 | Tasks done: 270. New data added to dataset: [[-0.31572629 3.77261398]]
592 | optimizer.py: All expected
593 | Tasks done: 271. New data added to dataset: [[-0.31572629 3.77924214]]
594 | optimizer.py: All expected
595 | Tasks done: 272. New data added to dataset: [[-0.31492597 3.77627462]]
596 | optimizer.py: All expected
597 | Tasks done: 273. New data added to dataset: [[-0.31492597 3.77846462]]
598 | optimizer.py: All expected
599 | Tasks done: 274. New data added to dataset: [[-0.31572629 3.76197375]]
600 | optimizer.py: All expected
601 | Tasks done: 275. New data added to dataset: [[-0.31492597 3.75295238]]
602 | optimizer.py: All expected
603 | Tasks done: 276. New data added to dataset: [[-0.31492597 3.78036948]]
604 | optimizer.py: All expected
605 | Tasks done: 277. New data added to dataset: [[-0.31572629 3.76944959]]
606 | optimizer.py: All expected
607 | Tasks done: 278. New data added to dataset: [[-0.31492597 3.78073719]]
608 | optimizer.py: All expected
609 | Tasks done: 279. New data added to dataset: [[-0.31492597 3.76116009]]
610 | optimizer.py: All expected
611 | Tasks done: 280. New data added to dataset: [[-0.31492597 3.77741907]]
612 | optimizer.py: All expected
613 | Tasks done: 281. New data added to dataset: [[-0.31572629 3.77262653]]
614 | optimizer.py: All expected
615 | Tasks done: 282. New data added to dataset: [[-0.31572629 3.78844114]]
616 | optimizer.py: All expected
617 | Tasks done: 283. New data added to dataset: [[-0.31572629 3.77039186]]
618 | optimizer.py: All expected
619 | Tasks done: 284. New data added to dataset: [[-0.31572629 3.77207965]]
620 | optimizer.py: All expected
621 | Tasks done: 285. New data added to dataset: [[-0.31492597 3.78422556]]
622 | optimizer.py: All expected
623 | Tasks done: 286. New data added to dataset: [[-0.31492597 3.77323678]]
624 | optimizer.py: All expected
625 | Tasks done: 287. New data added to dataset: [[-0.31572629 3.78952236]]
626 | optimizer.py: All expected
627 | Tasks done: 288. New data added to dataset: [[-0.31492597 3.77825505]]
628 | optimizer.py: All expected
629 | Tasks done: 289. New data added to dataset: [[-0.31492597 3.77296271]]
630 | optimizer.py: All expected
631 | Tasks done: 290. New data added to dataset: [[-0.31492597 3.77962976]]
632 | optimizer.py: All expected
633 | Tasks done: 291. New data added to dataset: [[-0.31492597 3.76759329]]
634 | optimizer.py: All expected
635 | Tasks done: 292. New data added to dataset: [[-0.31492597 3.77452379]]
636 | optimizer.py: All expected
637 | Tasks done: 293. New data added to dataset: [[-0.31572629 3.77513937]]
638 | optimizer.py: All expected
639 | Tasks done: 294. New data added to dataset: [[-0.31572629 3.77251237]]
640 | optimizer.py: All expected
641 | Tasks done: 295. New data added to dataset: [[-0.31492597 3.79823092]]
642 | optimizer.py: All expected
643 | Tasks done: 296. New data added to dataset: [[-0.31572629 3.76302235]]
644 | optimizer.py: All expected
645 | Tasks done: 297. New data added to dataset: [[-0.31572629 3.76207314]]
646 | optimizer.py: All expected
647 | Tasks done: 298. New data added to dataset: [[-0.31492597 3.76698834]]
648 | optimizer.py: All expected
649 | Tasks done: 299. New data added to dataset: [[-0.31652661 3.77410829]]
650 | optimizer.py: All expected
651 | Tasks done: 300. New data added to dataset: [[-0.31492597 3.76882105]]
652 | optimizer.py: All expected
653 | Tasks done: 301. New data added to dataset: [[-0.31572629 3.78060272]]
654 | optimizer.py: All expected
655 | Tasks done: 302. New data added to dataset: [[-0.31492597 3.7877622 ]]
656 | optimizer.py: All expected
657 | Tasks done: 303. New data added to dataset: [[-0.31492597 3.77326552]]
658 | optimizer.py: All expected
659 | Tasks done: 304. New data added to dataset: [[-0.31492597 3.79703296]]
660 | optimizer.py: All expected
661 | Tasks done: 305. New data added to dataset: [[-0.31572629 3.79013735]]
662 | optimizer.py: All expected
663 | Tasks done: 306. New data added to dataset: [[-0.31492597 3.76854862]]
664 | optimizer.py: All expected
665 | Tasks done: 307. New data added to dataset: [[-0.31492597 3.77448308]]
666 | optimizer.py: All expected
667 | Tasks done: 308. New data added to dataset: [[-0.31492597 3.75579198]]
668 | optimizer.py: All expected
669 | Tasks done: 309. New data added to dataset: [[-0.31572629 3.76075251]]
670 | optimizer.py: All expected
671 | Tasks done: 310. New data added to dataset: [[-0.31572629 3.7711719 ]]
672 | optimizer.py: All expected
673 | Tasks done: 311. New data added to dataset: [[-0.31492597 3.77655138]]
674 | optimizer.py: All expected
675 | Tasks done: 312. New data added to dataset: [[-0.31492597 3.76273478]]
676 | optimizer.py: All expected
677 | Tasks done: 313. New data added to dataset: [[-0.31572629 3.77400158]]
678 | optimizer.py: All expected
679 | Tasks done: 314. New data added to dataset: [[-0.31572629 3.77077604]]
680 | optimizer.py: All expected
681 | Tasks done: 315. New data added to dataset: [[-0.31652661 3.78671792]]
682 | optimizer.py: All expected
683 | Tasks done: 316. New data added to dataset: [[-0.31492597 3.79488121]]
684 | optimizer.py: All expected
685 | Tasks done: 317. New data added to dataset: [[-0.31492597 3.77950596]]
686 | optimizer.py: All expected
687 | Tasks done: 318. New data added to dataset: [[-0.31492597 3.7656091 ]]
688 | optimizer.py: All expected
689 | Tasks done: 319. New data added to dataset: [[-0.31492597 3.78170436]]
690 | optimizer.py: All expected
691 | Tasks done: 320. New data added to dataset: [[-0.31492597 3.77717891]]
692 | optimizer.py: All expected
693 | Tasks done: 321. New data added to dataset: [[-0.31492597 3.75958264]]
694 | optimizer.py: All expected
695 | Tasks done: 322. New data added to dataset: [[-0.31492597 3.75482154]]
696 | optimizer.py: All expected
697 | Tasks done: 323. New data added to dataset: [[-0.31492597 3.79453206]]
698 | optimizer.py: All expected
699 | Tasks done: 324. New data added to dataset: [[-0.31572629 3.77725245]]
700 | optimizer.py: All expected
701 | Tasks done: 325. New data added to dataset: [[-0.31492597 3.78233405]]
702 | optimizer.py: All expected
703 | Tasks done: 326. New data added to dataset: [[-0.31492597 3.78821738]]
704 | optimizer.py: All expected
705 | Tasks done: 327. New data added to dataset: [[-0.31492597 3.76281233]]
706 | optimizer.py: All expected
707 | Tasks done: 328. New data added to dataset: [[-0.31572629 3.77411885]]
708 | optimizer.py: All expected
709 | Tasks done: 329. New data added to dataset: [[-0.31572629 3.77721148]]
710 | optimizer.py: All expected
711 | Tasks done: 330. New data added to dataset: [[-0.31572629 3.78169517]]
712 | optimizer.py: All expected
713 | Tasks done: 331. New data added to dataset: [[-0.31572629 3.7958739 ]]
714 | optimizer.py: All expected
715 | Tasks done: 332. New data added to dataset: [[-0.31492597 3.77616964]]
716 | optimizer.py: All expected
717 | Tasks done: 333. New data added to dataset: [[-0.31492597 3.76962347]]
718 | optimizer.py: All expected
719 | Tasks done: 334. New data added to dataset: [[-0.31492597 3.77958534]]
720 | optimizer.py: All expected
721 | Tasks done: 335. New data added to dataset: [[-0.31492597 3.77802497]]
722 | optimizer.py: All expected
723 | Tasks done: 336. New data added to dataset: [[-0.31492597 3.76711888]]
724 | optimizer.py: All expected
725 | Tasks done: 337. New data added to dataset: [[-0.31572629 3.78349946]]
726 | optimizer.py: All expected
727 | Tasks done: 338. New data added to dataset: [[-0.31492597 3.76763036]]
728 | optimizer.py: All expected
729 | Tasks done: 339. New data added to dataset: [[-0.31572629 3.80315532]]
730 | optimizer.py: All expected
731 | Tasks done: 340. New data added to dataset: [[-0.31492597 3.77256137]]
732 | optimizer.py: All expected
733 | Tasks done: 341. New data added to dataset: [[-0.31492597 3.76493707]]
734 | optimizer.py: All expected
735 | Tasks done: 342. New data added to dataset: [[-0.31492597 3.78129208]]
736 | optimizer.py: All expected
737 | Tasks done: 343. New data added to dataset: [[-0.31572629 3.77315629]]
738 | optimizer.py: All expected
739 | Tasks done: 344. New data added to dataset: [[-0.31572629 3.77709988]]
740 | optimizer.py: All expected
741 | Tasks done: 345. New data added to dataset: [[-0.31492597 3.8001557 ]]
742 | optimizer.py: All expected
743 | Tasks done: 346. New data added to dataset: [[-0.31572629 3.78662506]]
744 | optimizer.py: All expected
745 | Tasks done: 347. New data added to dataset: [[-0.31572629 3.74950059]]
746 | optimizer.py: All expected
747 | Tasks done: 348. New data added to dataset: [[-0.31572629 3.7747772 ]]
748 | optimizer.py: All expected
749 | Tasks done: 349. New data added to dataset: [[-0.31572629 3.77981563]]
750 | optimizer.py: All expected
751 | Tasks done: 350. New data added to dataset: [[-0.31492597 3.7868391 ]]
752 | optimizer.py: All expected
753 | Tasks done: 351. New data added to dataset: [[-0.31572629 3.78065361]]
754 | optimizer.py: All expected
755 | Tasks done: 352. New data added to dataset: [[-0.31492597 3.77483832]]
756 | optimizer.py: All expected
757 | Tasks done: 353. New data added to dataset: [[-0.31572629 3.78195197]]
758 | optimizer.py: All expected
759 | Tasks
--------------------------------------------------------------------------------
/data/regret_analysis/parser.py:
--------------------------------------------------------------------------------
1 | import os
2 | import re
3 | from learning_objective.hidden_function import true_evaluate, get_settings
4 |
5 | lim_domain = get_settings(lim_domain_only=True)
6 |
7 | scribe = open("./data/regret_analysis/gp_hm.csv", 'w')
8 |
9 | for f in os.listdir("./data/regret_analysis"):
10 | if f.startswith("gp_hm"):
11 | print f
12 | f = "data/regret_analysis/" + f
13 | for line in open(f, 'r'):
14 | r = re.compile('Tasks done:(.*?). New')
15 | m = r.search(line)
16 | if m:
17 | print line,
18 | r = re.compile('\[ (.*?)\]')
19 | n = r.search(line)
20 | print n.group(1).split()
21 |
22 | val = n.group(1).split()
23 | val[0] = val[0].replace("[", "")
24 | print val
25 |
26 | query = [float(elem) for elem in val[0:4]]
27 | print query
28 |
29 | tasknum = int(m.group(1))
30 | y_val = true_evaluate(query, lim_domain)[0, -1]
31 | scribe.write(str(tasknum) + "," + str(y_val) + "\n")
32 |
33 |
34 | scribe.close()
35 |
--------------------------------------------------------------------------------
/learning_objective/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/learning_objective/__init__.py
--------------------------------------------------------------------------------
/learning_objective/gaussian_mix.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from numpy import atleast_2d as vec
3 | from scipy.stats import multivariate_normal
4 |
5 |
6 | def gaussian_mix(query):
7 | # Assign multivariate gaussians to be present in the space.
8 | gaussians = [multivariate_normal(mean = [0.9, 0.1], cov = [[.05, 0], [0, .05]])]
9 | gaussians.append(multivariate_normal(mean = [0.9, 0.9], cov = [[0.07, 0.01], [0.01, .07]]))
10 | gaussians.append(multivariate_normal(mean = [0.15, 0.7], cov = [[.03, 0], [0, .03]]))
11 | # Initialize initial value.
12 | value = 0.0
13 | # Iterate through each gaussian in the space.
14 | for j in xrange(len(gaussians)):
15 | value += gaussians[j].pdf(query)
16 |
17 | # Take the average.
18 | gaussian_function = value / len(gaussians)
19 | return vec(gaussian_function) # vec(np.array([query.ravel(), gaussian_function]).ravel())
20 |
21 |
22 | if __name__ == "__main__":
23 | X = gaussian_mix(np.array([0.5, 0.5]))
24 | print X
25 | print X.shape
26 |
27 |
28 |
--------------------------------------------------------------------------------
/learning_objective/gaussian_process.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from numpy import atleast_2d as vec
3 |
4 | def gaussian_process(xs):
5 | return m(xs)
6 |
7 | def m(x):
8 | return vec(-3*x*(1.5+3*x)*(3*x-1.5)*(3*x-2))
9 |
10 | if __name__ == "__main__":
11 | print gaussian_process(0)
12 |
--------------------------------------------------------------------------------
/learning_objective/hartmann.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from numpy import atleast_2d as vec
3 |
4 | alpha = [1.0, 1.2, 3.0, 3.2]
5 | A = vec([[10, 3, 17, 3.5, 1.7, 8],
6 | [0.05, 10, 17, 0.1, 8, 14],
7 | [3, 3.5, 1.7, 10, 17, 8],
8 | [17, 8, 0.05, 10, 0.1, 14]])
9 | P = 10 ** (-4) * vec([[1312, 1696, 5569, 124, 8283, 5886],
10 | [2329, 4135, 8307, 3736, 1004, 9991],
11 | [2348, 1451, 3522, 2883, 3047, 6650],
12 | [4047, 8828, 8732, 5743, 1091, 381]])
13 |
14 |
15 | def hartmann(x):
16 | outer = 0.0
17 | for i in range(4):
18 | inner = 0.0
19 | for j in range(4):
20 | xj = x[0, j]
21 | Aij = A[i, j]
22 | Pij = P[i, j]
23 | inner += Aij * (xj - Pij) ** 2
24 |
25 | new = alpha[i] * np.exp(-inner)
26 | outer += new
27 | return vec(-1 * (1.1 - outer) / 0.839)
28 |
29 |
30 | if __name__ == "__main__":
31 | print alpha
32 | print A
33 | print P
34 |
35 | print hartmann([0.5,0.5,0.5,0.5])
36 |
--------------------------------------------------------------------------------
/learning_objective/hidden_function.py:
--------------------------------------------------------------------------------
1 | """
2 | @Author: Rui Shu
3 | @Date: 4/11/15
4 |
5 | Provides a proxy hidden function for running of optimizer and mpi_optimizer
6 | """
7 |
8 | import numpy as np
9 | import time
10 | from gaussian_mix import gaussian_mix as gm
11 | from hartmann import hartmann as hm
12 | from gaussian_process import gaussian_process as gp
13 |
14 | # Definitions for which function to evaluate
15 | HM = 0 # hartmann
16 | GP = 1 # gaussian process realization
17 | GM = 2 # gaussian mixture
18 |
19 | # Set it
20 | method = 1 # currently set as GP
21 |
22 | def get_settings(lim_domain_only=False):
23 | """ Get settings for the optimizer.
24 | """
25 | # Settings
26 | if method == HM:
27 | lim_domain = np.array([[0., 0., 0., 0.],
28 | [ 1., 1., 1., 1.]])
29 | elif method == GM:
30 | lim_domain = np.array([[-1., -1.],
31 | [ 1., 1.]])
32 | elif method == GP:
33 | lim_domain = np.array([[-1.],
34 | [ 1.]])
35 |
36 | if lim_domain_only:
37 | return lim_domain
38 |
39 | init_size = 50
40 | additional_query_size = 300
41 | selection_size = 5
42 |
43 | # Get initial set of locations to query
44 | init_query = np.random.uniform(0, 1, size=(init_size, lim_domain.shape[1]))
45 |
46 | # Establish the grid size to use.
47 | if method == HM:
48 | r = np.linspace(-1, 1, 15)
49 | X = np.meshgrid(r, r, r, r)
50 | elif method == GM:
51 | r = np.linspace(-1, 1, 50)
52 | X = np.meshgrid(r, r)
53 | if method == GP:
54 | domain = np.atleast_2d(np.linspace(-1, 1, 5000)).T
55 | else:
56 | xx = np.atleast_2d([x.ravel() for x in X]).T
57 | domain = np.atleast_2d(xx[0])
58 | for i in range(1, xx.shape[0]):
59 | domain = np.concatenate((domain, np.atleast_2d(xx[i])), axis=0)
60 |
61 | return lim_domain, init_size, additional_query_size, init_query, domain, selection_size
62 |
63 | def evaluate(query, lim_domain):
64 | """ Queries a single point with noise.
65 |
66 | Keyword arguments:
67 | query -- a (m,) array. Single point query in input space scaled to unit cube.
68 | lim_domain -- a (2, m) array. Defines the search space boundaries of the
69 | true input space
70 | """
71 | var = (lim_domain[1, :] - lim_domain[0, :])/2.
72 | mean = (lim_domain[1, :] + lim_domain[0, :])/2.
73 | query = np.atleast_2d(query) # Convert to (1, m) array
74 | X = query*var + mean # Scale query to true input space
75 |
76 | if method == GM:
77 | dataset = np.concatenate((query, gm(X) + np.random.randn()/100), axis=1)
78 | elif method == HM:
79 | dataset = np.concatenate((query, hm(X) + np.random.randn()/100), axis=1)
80 | elif method == GP:
81 | dataset = np.concatenate((query, gp(X) + np.random.randn()/100), axis=1)
82 |
83 | # time.sleep(2)
84 | return dataset
85 |
86 | def true_evaluate(query, lim_domain):
87 | """ Queries a single point with noise.
88 |
89 | Keyword arguments:
90 | query -- a (m,) array. Single point query in input space scaled to unit cube.
91 | lim_domain -- a (2, m) array. Defines the search space boundaries of the
92 | true input space
93 | """
94 | var = (lim_domain[1, :] - lim_domain[0, :])/2.
95 | mean = (lim_domain[1, :] + lim_domain[0, :])/2.
96 | query = np.atleast_2d(query) # Convert to (1, m) array
97 | X = query*var + mean # Scale query to true input space
98 |
99 | if method == GM:
100 | dataset = np.concatenate((query, gm(X)), axis=1)
101 | elif method == HM:
102 | dataset = np.concatenate((query, hm(X)), axis=1)
103 | elif method == GP:
104 | dataset = np.concatenate((query, gp(X)), axis=1)
105 |
106 | return dataset
107 |
--------------------------------------------------------------------------------
/mpi/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/mpi/__init__.py
--------------------------------------------------------------------------------
/mpi/mpi_definitions.py:
--------------------------------------------------------------------------------
1 | # For tahoe server:
2 | # import sys
3 | # sys.path.append('/usr/lib64/python2.7/site-packages/mpich')
4 |
5 | from mpi4py import MPI
6 | import numpy as np
7 |
8 | MASTER = 0
9 | TRAINER = 1
10 | SEND_WORKER = 3 # Send by Master: gives Worker some work
11 | SEND_TRAINER = 4 # Send by Master: gives Trainer more data
12 | EXIT_WORKER = 5 # Send by Master/Worker: tells Worker to quit
13 | EXIT_TRAINER = 6 # Send by Master/Trainer: tells Trainer to quit
14 | WORKER_READY = 7 # Send by Worker: tells Master to give work
15 | WORKER_DONE = 8 # Send by Worker: tells Master the work is done
16 | TRAINER_READY = 9 # Send by Trainer: tells Master to give work
17 | TRAINER_DONE = 10 # Send by Trainer: gives Master new neural network
18 |
19 | # Initializations and preliminaries
20 | comm = MPI.COMM_WORLD # get MPI communicator object
21 | size = comm.size # total number of processes
22 | rank = comm.rank # rank of this process
23 | status = MPI.Status() # get MPI status object
24 |
--------------------------------------------------------------------------------
/mpi/mpi_master.py:
--------------------------------------------------------------------------------
1 | """
2 | @Author: Rui Shu
3 | @Date: 4/11/15
4 |
5 | Master -- handles the Optimizer object (which takes prior data,
6 | interpolates based on a neural network-linear regression model, and selects the
7 | next set of points to query). Tells worker nodes which points to query.
8 | """
9 |
10 | from mpi_definitions import *
11 | import time
12 |
13 | def contains_row(x, X):
14 | """ Checks if the row x is contained in matrix X
15 | """
16 | for i in range(X.shape[0]):
17 | if all(X[i,:] == x):
18 | return True
19 |
20 | return False
21 |
22 | def master_process(print_statements):
23 | file_record = open("data/mpi_time_data.csv", "a") # record times for experiment
24 | from learning_objective.hidden_function import evaluate, true_evaluate, get_settings
25 | import random
26 | import utilities.optimizer as op
27 |
28 | print "MASTER: starting with %d workers" % (size - 1)
29 |
30 | # Setup
31 | t1 = time.time() # Get amount of time taken
32 | num_workers = size - 1 # Get number of workers
33 | closed_workers = 0 # Get number of workers EXIT'ed
34 |
35 | # Get settings relevant to the hidden function being used
36 | lim_domain, init_size, additional_query_size, init_query, domain, selection_size = get_settings()
37 |
38 | # Acquire an initial data set
39 | dataset = None
40 | init_assigned = 0 # init query counters
41 | init_done = 0
42 |
43 | print "Randomly query a set of initial points... ",
44 |
45 | while init_done < init_size:
46 | # Get a worker (trainer does not initiate conversation with master)
47 | data = comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status)
48 | source = status.Get_source()
49 | tag = status.Get_tag()
50 |
51 | if tag == WORKER_READY:
52 | if init_assigned < init_size:
53 | # Send a (m,) array query to worker
54 | comm.send(init_query[init_assigned, :], dest=source, tag=SEND_WORKER)
55 | init_assigned += 1
56 |
57 | else:
58 | # No more intial work available. Give random work
59 | comm.send(domain[random.choice(range(domain.shape[0])), :],
60 | dest=source, tag=SEND_WORKER)
61 |
62 | if tag == WORKER_DONE:
63 | # data is a (1, m) array
64 | if dataset == None:
65 | dataset = data
66 |
67 | else:
68 | dataset = np.concatenate((dataset, data), axis=0)
69 |
70 | if contains_row(data[0, :-1], init_query):
71 | init_done += 1
72 |
73 | if print_statements:
74 | string1 = "MASTER: Init queries done: %3d. " % init_done
75 | string2 = "Submission from WORKER %2d is: " % source
76 | print string1 + string2 + str(data)
77 |
78 | print "Complete initial dataset acquired"
79 |
80 | # NN-LR based query system
81 | optimizer = op.Optimizer(dataset, domain)
82 | optimizer.train()
83 |
84 | # Select a series of points to query
85 | selected_points = optimizer.select_multiple(selection_size) # (#points, m) array
86 |
87 | # Set counters
88 | listen_to_trainer = True
89 | trainer_is_ready = True # Determines if trainer will be used
90 | trainer_index = 0 # Keeps track of data that trainer doesn't have
91 | selection_index = 0 # Keeps track of unqueried selected_points
92 | queries_done = 0 # Keeps track of total queries done
93 | queries_total = additional_query_size
94 |
95 | t0 = time.time()
96 |
97 | print "Performing optimization..."
98 |
99 | while closed_workers < num_workers:
100 | if selection_index == selection_size:
101 | # Update optimizer's dataset and retrain LR
102 | optimizer.retrain_LR()
103 | selected_points = optimizer.select_multiple(selection_size) # Select new points
104 | selection_size = selected_points.shape[0] # Get number of selected points
105 | selection_index = 0 # Restart index
106 |
107 | if queries_done < queries_total and trainer_is_ready and (dataset.shape[0] - trainer_index - 1) >= 100:
108 | # Trainer ready and enough new data for trainer to train a new NN.
109 | if print_statements:
110 | print "MASTER: Trainer has been summoned"
111 |
112 | comm.send(dataset[trainer_index: -1, :], dest=TRAINER, tag=SEND_TRAINER)
113 | trainer_index = dataset.shape[0] - 1
114 | trainer_is_ready = not trainer_is_ready # Trainer is not longer available.
115 |
116 | if queries_done >= queries_total and trainer_is_ready:
117 | comm.send("MASTER has fired Trainer", dest=TRAINER, tag=EXIT_TRAINER)
118 |
119 | # Check for data from either worker or trainer
120 | data = comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status)
121 | source = status.Get_source()
122 | tag = status.Get_tag()
123 |
124 | if tag == WORKER_READY:
125 | if queries_done < queries_total:
126 | comm.send(selected_points[selection_index, :],
127 | dest=source, tag=SEND_WORKER)
128 | selection_index += 1
129 |
130 | else:
131 | comm.send(None, dest=source, tag=EXIT_WORKER)
132 |
133 | elif tag == WORKER_DONE:
134 | dataset = np.concatenate((dataset, data), axis=0) # data is (m, 1) array
135 | optimizer.update_data(data) # add data to optimizer
136 | queries_done += 1
137 |
138 | if print_statements:
139 | string1 = "MASTER: Queries done: %3d. " % queries_done
140 | string2 = "Submission from Worker %2d: " % source
141 | print string1 + string2 + str(data)
142 | else:
143 | # Print some sort of progress:
144 | if queries_done % (queries_total/10) == 0:
145 | print "%.3f completion..." % ((1.*queries_done)/queries_total)
146 |
147 | if queries_done <= queries_total:
148 | info = "%.3f," % (time.time()-t0)
149 | file_record.write(info)
150 |
151 | elif tag == TRAINER_DONE:
152 | if listen_to_trainer:
153 | if print_statements:
154 | print "MASTER: Updating neural network"
155 |
156 | W, B, architecture = data
157 | optimizer.update_params(W, B, architecture)
158 |
159 | trainer_is_ready = not trainer_is_ready
160 |
161 | elif tag == EXIT_WORKER or tag == EXIT_TRAINER:
162 | closed_workers += 1
163 |
164 | file_record.write("NA\n")
165 | file_record.close()
166 | t2 = time.time()
167 | print "MASTER: Total update time is: %3.3f" % (t2-t1)
168 | print "Best evaluated point is:"
169 | print dataset[np.argmax(dataset[:, -1]), :]
170 | print "MASTER: Predicted best point is:"
171 | optimizer.retrain_LR()
172 | domain, pred, hi_ci, lo_ci, nn_pred, ei, gamma = optimizer.get_prediction()
173 | index = np.argmax(pred[:, 0])
174 | print np.concatenate((np.atleast_2d(domain[index, :]), np.atleast_2d(pred[index, 0])), axis=1)[0, :]
175 |
--------------------------------------------------------------------------------
/mpi/mpi_optimizer.py:
--------------------------------------------------------------------------------
1 | """
2 | @Author: Rui Shu
3 | @Date: 4/11/15
4 |
5 | Finds the global maxima of a costly function in a parallelized setting. Runs
6 | optimizer.py in parallel with with several worker nodes that evaluates the costly
7 | function in batch.
8 |
9 | Run as: mpiexec -np 4 python parallel_optimizer.py
10 | where 4 is the number of available processes
11 |
12 | Framework:
13 | Master -- handles the Optimizer object (which takes prior data,
14 | interpolates based on a neural network-linear regression model, and selects the
15 | next set of points to query). Tells worker nodes which points to query.
16 |
17 | Worker -- compute the costly function. Returns function evaluation.
18 |
19 | Trainer -- in charge of handling the neural network training.
20 | """
21 |
22 | from mpi_definitions import *
23 | import mpi_master as master
24 | import mpi_worker as worker
25 | import mpi_trainer as trainer
26 |
27 | print_statements = False
28 |
29 | # Check that we have the right number of processes
30 | if size < 3 and not rank == MASTER:
31 | quit()
32 | elif size < 3:
33 | print("MASTER: Need at least three processes running.")
34 | quit()
35 |
36 | # Print status of mpi
37 | print "THE RANK IS: %d, with total size: %d" % (rank, size)
38 |
39 | if rank == MASTER:
40 | master.master_process(print_statements)
41 | elif rank == TRAINER:
42 | trainer.trainer_process(print_statements)
43 | else:
44 | worker.worker_process(rank)
45 |
--------------------------------------------------------------------------------
/mpi/mpi_trainer.py:
--------------------------------------------------------------------------------
1 | """
2 | @Author: Rui Shu
3 | @Date: 4/11/15
4 |
5 | Trainer -- in charge of handling the neural network training.
6 | """
7 | from mpi_definitions import *
8 | from theano_definitions import *
9 |
10 | def trainer_process(print_statements):
11 | import utilities.neural_net as nn
12 | nobs = 0
13 | dataset = None
14 | untrained_data_count = 0
15 |
16 | while True:
17 | new_data = comm.recv(source=0, tag=MPI.ANY_TAG, status=status)
18 | tag = status.Get_tag()
19 |
20 | if tag == SEND_TRAINER:
21 | if print_statements:
22 | print "TRAINER: Received from master, starting new neural net"
23 |
24 | if dataset == None:
25 | dataset = new_data
26 |
27 | else:
28 | dataset = np.concatenate((dataset, new_data), axis=0)
29 |
30 | nobs = dataset.shape[0]
31 | architecture = (dataset.shape[1] - 1, 50, 50, nobs - 2 if nobs < 50 else 50, 1 )
32 | neural_net = nn.NeuralNet(architecture, dataset)
33 | neural_net.train()
34 | W, B = neural_net.extract_params()
35 |
36 | if print_statements:
37 | print "TRAINER: Sending back neural net to master"
38 |
39 | comm.send((W, B, architecture), dest=0, tag=TRAINER_DONE)
40 |
41 | elif tag == EXIT_TRAINER:
42 | print "TRAINER: Exiting"
43 | break
44 |
45 | comm.send(None, dest=0, tag=EXIT_TRAINER) # Suicide complete
46 |
47 |
48 |
--------------------------------------------------------------------------------
/mpi/mpi_worker.py:
--------------------------------------------------------------------------------
1 | """
2 | @Author: Rui Shu
3 | @Date: 4/11/15
4 |
5 | Worker -- compute the costly function. Returns function evaluation.
6 | """
7 |
8 | from mpi_definitions import *
9 |
10 | def worker_process(rank):
11 | from learning_objective.hidden_function import evaluate, get_settings
12 |
13 | lim_domain = get_settings(lim_domain_only=True)
14 |
15 | while True:
16 | comm.send("WORKER is ready", dest=0, tag=WORKER_READY) # tell Master node that I need a new query
17 | query = comm.recv(source=0, tag=MPI.ANY_TAG, status=status)
18 | tag = status.Get_tag()
19 |
20 | if tag == SEND_WORKER:
21 | # string = "WORKER %3d: The query is: " % rank
22 | # print string + str(query)
23 | result = evaluate(query, lim_domain)
24 | comm.send(result, dest=0, tag=WORKER_DONE)
25 |
26 | elif tag == EXIT_WORKER:
27 | # Worker dies!
28 | print "WORKER: Worker %2d exiting" % rank
29 | break
30 |
31 | comm.send(None, dest=0, tag=EXIT_WORKER) # Suicide complete
32 |
33 |
--------------------------------------------------------------------------------
/mpi/theano_definitions.py:
--------------------------------------------------------------------------------
1 | import theano
2 | theano.gof.compilelock.set_lock_status(False)
3 |
--------------------------------------------------------------------------------
/sequential/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/sequential/__init__.py
--------------------------------------------------------------------------------
/sequential/seq_gaussian_process.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import time
3 | import scipy.stats as stats
4 | from learning_objective.hidden_function import evaluate, true_evaluate, get_settings
5 | import pyGPs
6 |
7 | def contains_row(x, X):
8 | """ Checks if the row x is contained in matrix X
9 | """
10 | for i in range(X.shape[0]):
11 | if all(X[i,:] == x):
12 | return True
13 |
14 | return False
15 |
16 | def select(dataset, pred_y, sigma2_pred):
17 | """ Identify multiple points.
18 | """
19 |
20 | # Rank order by expected improvement
21 | train_Y = dataset[:, -1:]
22 | prediction = pred_y
23 | sig = sigma2_pred**0.5
24 |
25 | gamma = (prediction - np.max(train_Y)) / sig
26 | ei = sig*(gamma*stats.norm.cdf(gamma) + stats.norm.pdf(gamma))
27 |
28 | if np.max(ei) <= 0:
29 | select_index = np.argmax(sig)
30 | else:
31 | select_index = np.argmax(ei)
32 |
33 | return np.atleast_2d(domain[select_index, :])
34 |
35 |
36 | if __name__ == "__main__":
37 | print_statements = False
38 |
39 | # Open file to write times for comparison
40 | file_record = open("data/gp_time_data.csv", "a")
41 |
42 | # Get settings relevant to the hidden function being used
43 | lim_domain, init_size, additional_query_size, init_query, domain, selection_size = get_settings()
44 |
45 | # Construct the dataset
46 | dataset = evaluate(init_query[0,:], lim_domain)
47 |
48 | print "Randomly query a set of initial points... ",
49 |
50 | for query in init_query[1:,:]:
51 | dataset = np.concatenate((dataset, evaluate(query, lim_domain)), axis=0)
52 |
53 | print "Complete initial dataset acquired"
54 |
55 | # Begin sequential optimization using Gaussian process based query system
56 | model = pyGPs.GPR()
57 | model.getPosterior(dataset[:,:-1], dataset[:,-1:])
58 | model.optimize(dataset[:,:-1], dataset[:,-1:])
59 | model.predict(domain)
60 | y_pred = model.ym
61 | sigma2_pred = model.ys2
62 | query = select(dataset, y_pred, sigma2_pred)
63 |
64 | print "Performing optimization... "
65 |
66 | for i in range(additional_query_size):
67 | t0 = time.time()
68 | new_data = evaluate(query, lim_domain)
69 | dataset = np.concatenate((dataset, new_data), axis=0)
70 |
71 | if print_statements:
72 | string1 = "Tasks done: %3d. " % (i+1)
73 | string2 = "New data added to dataset: " + str(new_data)
74 | print string1 + string2
75 |
76 | else:
77 | if (i+1) % (additional_query_size/10) == 0:
78 | print "%.3f completion..." % ((i+1.)/additional_query_size)
79 |
80 | model.getPosterior(dataset[:,:-1], dataset[:,-1:])
81 |
82 | try:
83 | model.optimize(dataset[:,:-1], dataset[:,-1:])
84 | except:
85 | pass
86 |
87 | model.predict(domain)
88 | y_pred = model.ym
89 | sigma2_pred = model.ys2
90 | query = select(dataset, y_pred, sigma2_pred)
91 |
92 | info = "%.3f," % (time.time()-t0)
93 | file_record.write(info)
94 |
95 | file_record.write("NA\n")
96 | file_record.close()
97 |
98 | print "Sequential gp optimization task complete."
99 | print "Best evaluated point is:"
100 | print dataset[np.argmax(dataset[:, -1]), :]
101 | print "Predicted best point is:"
102 | index = np.argmax(y_pred[:, 0])
103 | print np.concatenate((np.atleast_2d(domain[index, :]), np.atleast_2d(y_pred[index, 0])), axis=1)[0, :]
104 |
--------------------------------------------------------------------------------
/sequential/seq_optimizer.py:
--------------------------------------------------------------------------------
1 | """
2 | @Author: Rui Shu
3 | @Date: 4/21/15
4 |
5 | Performs sequential optimization.
6 | """
7 | import time
8 | from learning_objective.hidden_function import evaluate, true_evaluate, get_settings
9 | import matplotlib.pyplot as plt
10 | import utilities.optimizer as op
11 | import numpy as np
12 |
13 | # Open file to write times for comparison
14 | file_record = open("data/seq_time_data.csv", "a")
15 |
16 | # Freeze plotting
17 | plot_it = False
18 | print_statements = False
19 |
20 | # Get settings relevant to the hidden function being used
21 | lim_domain, init_size, additional_query_size, init_query, domain, selection_size = get_settings()
22 |
23 | # Construct the dataset
24 | dataset = evaluate(init_query[0,:], lim_domain)
25 |
26 | print "Randomly query a set of initial points... ",
27 |
28 | for query in init_query[1:,:]:
29 | dataset = np.concatenate((dataset, evaluate(query, lim_domain)), axis=0)
30 |
31 | print "Complete initial dataset acquired"
32 |
33 | # Begin sequential optimization using NN-LR based query system
34 | optimizer = op.Optimizer(dataset, domain)
35 | optimizer.train()
36 |
37 | # Select a series of points to query
38 | selected_points = optimizer.select_multiple(selection_size) # (#points, m) array
39 | selection_index = 0
40 |
41 | t0 = time.time()
42 |
43 | print "Performing optimization..."
44 |
45 | for i in range(additional_query_size):
46 | if selection_index == selection_size:
47 | # Update optimizer's dataset and retrain LR
48 | optimizer.retrain_LR()
49 | selected_points = optimizer.select_multiple(selection_size) # Select new points
50 | selection_size = selected_points.shape[0] # Get number of selected points
51 | selection_index = 0 # Restart index
52 | info = "%.3f," % (time.time()-t0)
53 | file_record.write(info)
54 | t0 = time.time()
55 |
56 | if (optimizer.get_dataset().shape[0] % 100) == 0:
57 | # Retrain the neural network
58 | optimizer.retrain_NN()
59 |
60 | new_data = evaluate(selected_points[selection_index], lim_domain)
61 | optimizer.update_data(new_data)
62 | selection_index += 1
63 |
64 | if print_statements:
65 | string1 = "Tasks done: %3d. " % (i+1)
66 | string2 = "New data added to dataset: " + str(new_data)
67 | print string1 + string2
68 |
69 | else:
70 | if (i+1) % (additional_query_size/10) == 0:
71 | print "%.3f completion..." % ((i+1.)/additional_query_size)
72 |
73 | info = "%.3f," % (time.time()-t0)
74 | file_record.write(info)
75 |
76 | file_record.write("NA\n")
77 | file_record.close()
78 | print "Sequential optimization task complete."
79 | print "Best evaluated point is:"
80 | dataset = optimizer.get_dataset()
81 | print dataset[np.argmax(dataset[:, -1]), :]
82 | print "Predicted best point is:"
83 | optimizer.retrain_LR()
84 | domain, pred, hi_ci, lo_ci, nn_pred, ei, gamma = optimizer.get_prediction()
85 | index = np.argmax(pred[:, 0])
86 | print np.concatenate((np.atleast_2d(domain[index, :]), np.atleast_2d(pred[index, 0])), axis=1)[0, :]
87 |
--------------------------------------------------------------------------------
/sequential/test.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 | from sklearn import gaussian_process
5 | def f(x):
6 | return x * np.sin(x)
7 |
8 | X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
9 | y = f(X).ravel()
10 | x = np.atleast_2d(np.linspace(0, 10, 1000)).T
11 | gp = gaussian_process.GaussianProcess(theta0=1e-2, nugget=1e-7, thetaL=1e-4, thetaU=1e-1)
12 | gp.fit(X, y)
13 | y_pred, sigma2_pred = gp.predict(x, eval_MSE=True)
14 |
15 | uci = y_pred + 10*sigma2_pred**0.5
16 | lci = y_pred - 10*sigma2_pred**0.5
17 |
18 | plt.plot(x, uci, 'g--')
19 | plt.plot(x, lci, 'g--')
20 | plt.plot(x, y_pred, 'r')
21 | plt.show()
22 |
--------------------------------------------------------------------------------
/utilities/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RuiShu/nn-bayesian-optimization/e98dc326344d1dc3609de5fc3eb472e06d48d6af/utilities/__init__.py
--------------------------------------------------------------------------------
/utilities/linear_regressor.py:
--------------------------------------------------------------------------------
1 | """
2 | @Author: Rui Shu
3 | @Date: 4/11/15
4 |
5 | Performs linear regression and returns the confidence interval.
6 | """
7 |
8 | import numpy as np
9 | import statsmodels.api as sm
10 | import sklearn.linear_model as sklm
11 | import matplotlib.pyplot as plt
12 | from numpy import atleast_2d as vec
13 |
14 | class LinearRegressor():
15 |
16 | def __init__(self, dataset, intercept=True):
17 | """Initialization of Optimizer object
18 |
19 | Keyword arguments:
20 | dataset -- an n by (m+1) array that forms the matrix [X, Y]
21 | """
22 | self.__dataset = dataset
23 | self.__intercept = intercept
24 |
25 | def train(self):
26 | dataset = self.__dataset
27 | intercept = self.__intercept
28 | train_X = sm.add_constant(dataset[:, :-1]) if intercept else dataset[:, :-1]
29 | train_Y = dataset[:, -1:]
30 |
31 | XX_inv,_,_,_ = np.linalg.lstsq(np.dot(train_X.T, train_X),
32 | np.identity(train_X.shape[1]))
33 | beta = np.dot(np.dot(XX_inv, train_X.T), train_Y)
34 |
35 | self.__XX_inv = XX_inv
36 | self.__beta = beta
37 |
38 | def predict(self, test_X):
39 | dataset = self.__dataset
40 | intercept = self.__intercept
41 | XX_inv = self.__XX_inv
42 | beta = self.__beta
43 |
44 | train_X = sm.add_constant(dataset[:, :-1]) if intercept else dataset[:, :-1]
45 | test_X = sm.add_constant(vec(test_X)) if intercept else vec(test_X)
46 | train_Y = dataset[:, -1:]
47 | train_pred = np.dot(train_X, beta)
48 |
49 | # Confidence interval
50 | sig = (np.linalg.norm(train_Y-train_pred)**2/(train_X.shape[0]-train_X.shape[1]+1))**0.5
51 | s = []
52 | for row in range(test_X.shape[0]):
53 | x = test_X[[row], :]
54 | s.append(sig*(1 + np.dot(np.dot(x, XX_inv), x.T))**0.5)
55 |
56 | s = np.reshape(np.asarray(s), (test_X.shape[0], 1))
57 |
58 | test_pred = np.dot(test_X, beta)
59 | hi_ci = test_pred + 2*s
60 | lo_ci = test_pred - 2*s
61 |
62 | return test_pred, hi_ci, lo_ci
63 |
64 | def predict_reg(self, test_X):
65 | clf = sklm.Lasso(alpha=1, fit_intercept=False)
66 | clf.fit(self.__dataset[:, :-1], self.__dataset[:, -1:])
67 | print np.atleast_2d(clf.coef_)
68 | pred =clf.predict(test_X)
69 | pred = np.atleast_2d(pred).T
70 | return pred, pred, pred
71 |
72 |
73 | if __name__ == "__main__":
74 | # Settings
75 | lim_x = [-10, 10] # x range for univariate data
76 | nobs = 50 # number of observed data
77 | g = lambda x: 2*x + 3 + np.random.randn()*2 # Define the hidden function
78 | noiseless_g = lambda x: 2*x + 3 # Define the hidden function
79 |
80 | dataset_X1 = np.asarray([[i] for i in np.linspace(lim_x[0]/10-3, lim_x[1]/10-3, nobs)], dtype=np.float32) # Uniform sampling
81 | dataset_X2 = np.asarray([[i] for i in np.linspace(lim_x[0]/10+3, lim_x[1]/10+3, nobs)], dtype=np.float32) # Uniform sampling
82 | dataset_X = np.concatenate((dataset_X1, dataset_X2), axis=0)
83 | dataset_Y = np.asarray([[g(dataset_X[i, :])[0]] for i in range(dataset_X.shape[0])])
84 | dataset = np.concatenate((dataset_X, dataset_Y), axis=1)
85 | linear_regressor = LinearRegressor(dataset)
86 | domain = np.asarray([[i] for i in np.linspace(lim_x[0], lim_x[1], 100)])
87 | pred, hi_ci, lo_ci = linear_regressor.predict(domain)
88 | # linear_regressor.predict_reg(test_X)
89 |
90 | ax = plt.gca()
91 | true_func = np.asarray([[i, noiseless_g(i)] for i in np.linspace(lim_x[0], lim_x[1], 100)], dtype=np.float32)
92 | plt.plot(true_func[:, 0], true_func[:, 1], 'k', label='true', linewidth=4) # true plot
93 | plt.plot(domain, pred, 'c--', label='LR regression', linewidth=7)
94 | plt.plot(domain, hi_ci, 'g--', label='ci')
95 | plt.plot(domain, lo_ci, 'g--')
96 | plt.plot(dataset[:,:-1], dataset[:, -1:], 'rv', label='training', markersize=7.)
97 | plt.xlabel('Input space')
98 | plt.ylabel('Output space')
99 | plt.title("LR regression")
100 | plt.legend()
101 | plt.show()
102 |
--------------------------------------------------------------------------------
/utilities/neural_net.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import theanets
3 | import statsmodels.api as sm
4 |
5 | class NeuralNet(object):
6 |
7 | def __init__(self, architecture, dataset):
8 | """Initialization of NeuralNet object
9 |
10 | Keyword arguments:
11 | architecture -- a tuple containing the number of nodes in each layer
12 | dataset -- an n by (m+1) array that forms the matrix [X, Y]
13 | """
14 | self.__architecture = architecture
15 | self.__dataset = dataset
16 | self.e = None
17 |
18 | def train(self):
19 | architecture = self.__architecture
20 | dataset = self.__dataset
21 |
22 | cut = int(0.9 * len(dataset)) # select 90% of data for training, 10% for validation
23 | idx = range(len(dataset))
24 | np.random.shuffle(idx)
25 |
26 | train = idx[:cut]
27 | train_set = [dataset[train, :-1], dataset[train, -1:]]
28 | valid = idx[cut:]
29 | valid_set = [dataset[valid, :-1], dataset[valid, -1:]]
30 |
31 | e = theanets.Experiment(theanets.feedforward.Regressor,
32 | layers=architecture,
33 | optimize='sgd',
34 | hidden_activation='tanh',
35 | output_activation='linear',
36 | learning_rate=0.01)
37 |
38 | e.train(train_set, valid_set)
39 | self.e = e
40 |
41 | def extract_params(self):
42 | architecture = self.__architecture
43 | e = self.e
44 | # Extract parameters
45 | W = {}
46 | B = {}
47 | for i in range(len(architecture)-2):
48 | W[i] = e.network.params[2*i].get_value()
49 | B[i] = np.reshape(e.network.params[2*i+1].get_value(), (1, architecture[i+1]))
50 |
51 | self.__W = W
52 | self.__B = B
53 |
54 | return (W, B)
55 |
56 | if __name__ == "__main__":
57 | # Settings
58 | lim_x = [-1, 1] # x range for univariate data
59 | nobs = 100 # number of observed data
60 | architecture = (1, 50, 50, nobs-2 if nobs < 50 else 50, 1) # Define NN layer architecture
61 | g = lambda x: np.exp(-x)*np.sin(10*x)*x-4*x**2 + np.random.randn()/10 # Define the hidden function
62 |
63 | dataset_X = np.asarray([[i] for i in np.linspace(lim_x[0], lim_x[1], nobs)], dtype=np.float32) # Uniform sampling
64 | dataset_Y = np.asarray([[g(dataset_X[i, :])[0]] for i in range(dataset_X.shape[0])])
65 | dataset = np.concatenate((dataset_X, dataset_Y), axis=1)
66 | feature_extractor = NeuralNet(architecture, dataset)
67 | feature_extractor.train()
68 | train_X = dataset[:, :-1]
69 |
--------------------------------------------------------------------------------
/utilities/optimizer.py:
--------------------------------------------------------------------------------
1 | import time
2 | import numpy as np
3 | import neural_net as nn
4 | import linear_regressor as lm
5 | import scipy.stats as stats
6 | import matplotlib.pyplot as plt
7 | import random
8 | from learning_objective.hidden_function import evaluate, true_evaluate
9 | import statsmodels.api as sm
10 |
11 | class Optimizer(object):
12 |
13 | def __init__(self, dataset, domain):
14 | """Initialization of Optimizer object
15 |
16 | Keyword arguments:
17 | dataset -- an n by (m+1) array that forms the matrix [X, Y]
18 | """
19 | self.__dataset = dataset
20 | nobs = dataset.shape[0]
21 | self.__architecture = (domain.shape[1], 50, 50, nobs - 2 if nobs < 50 else 50, 1 )
22 | self.__domain = domain
23 |
24 | def train(self):
25 | """ Using the stored dataset and architecture, trains the neural net to
26 | perform feature extraction, and the linear regressor to perform prediction
27 | and confidence interval computation.
28 | """
29 | neural_net = nn.NeuralNet(self.__architecture, self.__dataset)
30 | neural_net.train()
31 | self.__W, self.__B = neural_net.extract_params()
32 | self.__nn_pred = neural_net.e.network(self.__domain)
33 |
34 | # Extract features
35 | train_X = self.__dataset[:, :-1]
36 | train_Y = self.__dataset[:, -1:]
37 | train_features = self.extract_features(train_X)
38 | domain_features = self.extract_features(self.__domain)
39 | lm_dataset = np.concatenate((train_features, train_Y), axis=1)
40 |
41 | # Train and predict with linear_regressor
42 | linear_regressor = lm.LinearRegressor(lm_dataset, intercept=False)
43 | linear_regressor.train()
44 | self.__pred, self.__hi_ci, self.__lo_ci = linear_regressor.predict(domain_features)
45 |
46 | def retrain_NN(self):
47 | neural_net = nn.NeuralNet(self.__architecture, self.__dataset)
48 | neural_net.train()
49 | self.__W, self.__B = neural_net.extract_params()
50 |
51 | def retrain_LR(self):
52 | """ After the selected point (see select()) is queried, insert the new info
53 | into dataset. Depending on the size of the dataset, the module decides whether
54 | to re-train the neural net (for feature extraction).
55 | A new interpolation is then constructed.
56 |
57 | Keyword arguments:
58 | new_data -- a 1 by (m+1) array that forms the matrix [X, Y]
59 | """
60 |
61 | train_X = self.__dataset[:, :-1]
62 | train_Y = self.__dataset[:, -1:]
63 |
64 | # Extract features
65 | train_features = self.extract_features(train_X)
66 | domain_features = self.extract_features(self.__domain)
67 | lm_dataset = np.concatenate((train_features, train_Y), axis=1)
68 |
69 | # Train and predict with linear_regressor
70 | linear_regressor = lm.LinearRegressor(lm_dataset)
71 | linear_regressor.train()
72 | self.__pred, self.__hi_ci, self.__lo_ci = linear_regressor.predict(domain_features)
73 |
74 | def extract_features(self, test_X):
75 | W = self.__W
76 | B = self.__B
77 | architecture = self.__architecture
78 |
79 | # Feedforward into custom neural net
80 | X = []
81 | for i in range(test_X.shape[0]):
82 | test_val = test_X[[i], :]
83 | L = np.tanh(np.dot(test_val, W[0]) + B[0])
84 |
85 | for i in range(1, len(architecture)-2):
86 | L = np.tanh(np.dot(L, W[i]) + B[i])
87 |
88 | X.extend(L.tolist())
89 |
90 | X = np.asarray(X)
91 | X = sm.add_constant(X)
92 |
93 | return X
94 |
95 | def select(self):
96 | """ Selects and returns the point in the domain X that has the max expected
97 | improvements.
98 | """
99 |
100 | train_Y = self.__dataset[:, -1:]
101 | prediction = self.__pred
102 | hi_ci = self.__hi_ci
103 |
104 | sig = (hi_ci - prediction)/2
105 | # gamma = (min(train_Y) - prediction)/sig # finding min
106 | # gamma = -(min(train_Y) - prediction)/sig # finding max
107 | # -(min(train_Y) - prediction)/sig # finding max
108 | # ei = sig*(gamma*stats.norm.cdf(gamma) + stats.norm.pdf(gamma))
109 | gamma = (prediction - np.max(train_Y)) / sig
110 | self.__ei = ei
111 | index = np.argmax(ei)
112 | return self.__domain[index, :]
113 |
114 | def select_multiple(self, cap=5):
115 | """ Identify multiple points.
116 | """
117 |
118 | # Rank order by expected improvement
119 | train_Y = self.__dataset[:, -1:]
120 | prediction = self.__pred
121 | hi_ci = self.__hi_ci
122 |
123 | sig = abs((hi_ci - prediction)/2)
124 | gamma = (prediction - np.max(train_Y)) / sig
125 | ei = sig*(gamma*stats.norm.cdf(gamma) + stats.norm.pdf(gamma))
126 |
127 | if np.max(ei) <= 0:
128 | # If no good points, do pure exploration
129 | sig_order = np.argsort(-sig, axis=0)
130 | select_indices = sig_order[:cap, 0].tolist()
131 | else:
132 | ei_order = np.argsort(-1*ei, axis=0)
133 | select_indices = [ei_order[0, 0]]
134 |
135 | for candidate in ei_order[:, 0]:
136 | keep = True
137 | for selected_index in select_indices:
138 | keep = keep*self.check_point(selected_index, candidate)
139 | if keep and ei[candidate, 0] > 0:
140 | select_indices.append(candidate)
141 | if len(select_indices) == cap: # Number of points to select
142 | break
143 |
144 | if len(select_indices) < cap:
145 | # If not enough good points, append with exploration
146 | sig_order = np.argsort(-sig, axis=0)
147 | add_indices = sig_order[:(cap-len(select_indices)), 0].tolist()
148 | select_indices.extend(add_indices)
149 |
150 | index = np.argmax(ei)
151 | self.__gamma = gamma
152 | self.__ei = ei
153 |
154 | return np.atleast_2d(self.__domain[select_indices, :])
155 |
156 | def check_point(self, selected_index, order):
157 | prediction = self.__pred
158 | hi_ci = self.__hi_ci
159 |
160 | sig = (hi_ci[selected_index] - prediction[selected_index])/2
161 | z_score = abs(prediction[order] - prediction[selected_index])/sig
162 |
163 | return (stats.norm.cdf(-z_score)*2) < 0.5
164 |
165 | def update_data(self, new_data):
166 | nobs = self.__dataset.shape[0]
167 | if nobs < 50:
168 | nobs += new_data.shape[0]
169 | self.__architecture = (self.__domain.shape[1], 50, 50, nobs - 2 if nobs < 50 else 50, 1)
170 |
171 | self.__dataset = np.concatenate((self.__dataset, new_data), axis=0)
172 |
173 | def update_params(self, W, B, architecture):
174 | self.__W = W
175 | self.__B = B
176 | self.__architecture = architecture
177 |
178 | def get_prediction(self):
179 | return (self.__domain, self.__pred, self.__hi_ci,
180 | self.__lo_ci, self.__nn_pred, self.__ei, self.__gamma)
181 |
182 | def get_dataset(self):
183 | return self.__dataset
184 |
185 | if __name__ == "__main__":
186 | t1 = time.time()
187 | random.seed(42)
188 | # Settings
189 | lim_domain = np.array([[-1, -1],
190 | [ 1, 1]])
191 | nobs = 50 # number of observed data
192 |
193 | # Create dataset
194 | dataset_X = np.random.uniform(-1, 1, size=(nobs, lim_domain.shape[1]))
195 | dataset = evaluate(dataset_X[0, :], lim_domain)
196 |
197 | for i in range(1, dataset_X.shape[0]):
198 | dataset = np.concatenate((dataset, evaluate(dataset_X[i, :], lim_domain)))
199 |
200 | domain = dataset[:, :-1]
201 |
202 | # Instantiate Optimizer
203 | optimizer = Optimizer(dataset, domain)
204 | optimizer.train()
205 | selected_points = optimizer.select_multiple()
206 | selection_index = 0
207 | selection_size = selected_points.shape[0]
208 |
209 | # Select a point
210 | for _ in range(50):
211 | if selection_index == selection_size:
212 | optimizer.retrain_LR()
213 | selected_points = optimizer.select_multiple()
214 | selection_size = selected_points.shape[0]
215 | selection_index = 0
216 |
217 | new_data = evaluate(selected_points[selection_index, :], lim_domain)
218 | print "New evaluation: " + str(new_data)
219 | selection_index += 1
220 | optimizer.update_data(new_data)
221 |
222 |
223 | dataset = optimizer.get_dataset()
224 | selected_point = optimizer.select_multiple()[0, :]
225 |
226 | domain, pred, hi_ci, lo_ci, nn_pred, ei, gamma = optimizer.get_prediction()
227 |
228 | t2 = time.time()
229 |
230 | print "optimizer: Total update time is: %3.3f" % (t2-t1)
231 |
232 | # Plot results
233 | if False:
234 | ax = plt.gca()
235 | plt.plot(domain, pred, 'c', label='NN-LR regression', linewidth=3)
236 | plt.plot(domain, nn_pred, 'r', label='NN regression', linewidth=3)
237 | plt.plot(domain, hi_ci, 'g--', label='ci')
238 | plt.plot(domain, lo_ci, 'g--')
239 | # plt.plot(domain, ei, 'b--', label='ei')
240 | # plt.plot(domain, gamma, 'r', label='gamma')
241 | plt.plot([selected_point, selected_point], [ax.axis()[2], ax.axis()[3]], 'r--',
242 | label='EI selection')
243 | plt.plot(dataset[:,:-1], dataset[:, -1:], 'rv', label='training', markersize=7.)
244 | plt.xlabel('Input space')
245 | plt.ylabel('Output space')
246 | plt.title("NN-LR regression")
247 | plt.legend()
248 | figpath = 'figures/seq_regression_' + str(int(time.time())) + '.eps'
249 | plt.savefig(figpath, format='eps', dpi=2000)
250 | # plt.show()
251 |
--------------------------------------------------------------------------------