├── README.md
├── Missing Data.ipynb
├── 1. Mean Median Mode imputation.ipynb
├── 3. Capturing NAN values with a new feature.ipynb
├── 2. Random Sample Imputation.ipynb
└── Titanic.csv
/README.md:
--------------------------------------------------------------------------------
1 | # Handling-Missing-Values
2 | 
3 |
4 | ## Missing data, also known as missing values, is where some of the observations in a data set are blank.
5 | ex.
6 | - At age feature womens hesitate to put down their age
7 | - Men hesitate to show their salary
8 | - informations are not that valid
9 |
10 | ### Type of data
11 |
12 | 1. Categorical Data:
13 | It is a string type of data such as Gender, Sex, education, etc.
14 |
15 | 2. Discrite Data:
16 | It is a number type data which is whole number only such as How many bank account you have,How many bike you have, etc.
17 |
18 | 3.Continous Data:
19 | It is a number type data such as Age, Height, Profit, etc.
20 |
21 | ### Different type of Missing data
22 |
23 | 1. Missing Completely at Random (MCAR)
24 | - The variable is missing completely at random (MCAR) if the probability of being missing is the same for all the observations.
25 | - When data is MCAR, there is absolutely no relationship between the data missing and other values.
26 |
27 | 2. Missing Data Not at Random (MNAR)
28 | - There is absolutely some relationship between the data misssing and any other feature's values in dataset.
29 |
30 | 3. Missing at Random(MAR)
31 | - If the propensity for a data point to be missing is't related to the missing data, but it's related to some of the observed data.
32 | - When Data is MAR, The data is missing but can be predicted from other information.
33 |
34 | ## All techniques of handling Missing values
35 |
36 | 1. Mean/Mode/Median replacement
37 | 2. Random sample imputation
38 | 3. Capturing NAN values with a new feature
39 | 4. End of Distribution imputation
40 | 5. Arbitrary imputation
41 | 6. Frequent categories imputation
42 | #### Note we perform all this techniques on 'Titanic' dataset, you can download it from :
43 | - [Titanic Datset](https://github.com/Rushi21-kesh/Handling-Missing-Values/blob/main/Titanic.csv)
44 |
--------------------------------------------------------------------------------
/Missing Data.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Missing data, also known as missing values, is where some of the observations in a data set are blank.\n",
8 | "ex. \n",
9 | "- At age feature womens hesitate to put down their age\n",
10 | "- Men hesitate to show their salary\n",
11 | "- informations are not that valid"
12 | ]
13 | },
14 | {
15 | "cell_type": "markdown",
16 | "metadata": {},
17 | "source": [
18 | "### Different types of data"
19 | ]
20 | },
21 | {
22 | "cell_type": "markdown",
23 | "metadata": {},
24 | "source": [
25 | "##### 1. Categorical Data:\n",
26 | "\n",
27 | " It is a string type of data such as Gender, Sex, education, etc.\n",
28 | " ex : \n",
29 | " Sex\n",
30 | " 0 male\n",
31 | " 1 female\n",
32 | " 2 female\n",
33 | " 3 female\n",
34 | " 4 male\n"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "metadata": {},
40 | "source": [
41 | "##### 2. Discrite Data:\n",
42 | "\n",
43 | " It is a number type data which is whole number only, such as How many bank account you have,How many bike you have, etc.\n",
44 | " \n",
45 | " ex:\n",
46 | " \n",
47 | " Id\tNo. of Bank account\n",
48 | " 0\t1 \t 2\n",
49 | " 1\t2 \t1\n",
50 | " 2\t3\t 3\n",
51 | " 3\t4 \t1\n",
52 | " 4\t5 \t2"
53 | ]
54 | },
55 | {
56 | "cell_type": "markdown",
57 | "metadata": {},
58 | "source": [
59 | "##### 3. Continous Data:\n",
60 | " \n",
61 | " It is a number type data such as Age, Height, Profit, etc.\n",
62 | "\n",
63 | " ex : \n",
64 | " Age\t Height\n",
65 | " 0\t22.0\t70.250\n",
66 | " 1\t38.0\t71.283\n",
67 | " 2\t26.0\t72.925\n",
68 | " 3\t35.0\t69.100\n",
69 | " 4\t35.0\t78.500\n"
70 | ]
71 | },
72 | {
73 | "cell_type": "markdown",
74 | "metadata": {},
75 | "source": [
76 | "### Different types of Missing data"
77 | ]
78 | },
79 | {
80 | "cell_type": "markdown",
81 | "metadata": {},
82 | "source": [
83 | "##### 1. Missing Completely at Random (MCAR)\n",
84 | " - The variable is missing completely at random (MCAR) if the probability of being missing is the same for all the observations.\n",
85 | " - When data is MCAR, there is absolutely no relationship between the data missing and other values.\n",
86 | " \n",
87 | " ex. \n",
88 | " \n",
89 | "\n",
90 | " PassengerId\tSurvived\tPclass\tSex\tAge\tSibSp\tParch\tTicket\tFare\tCabin\tEmbarked\n",
91 | " 62\t 1\t 1\t\tfemale 38.0\t 0\t 0\t 113572\t80.0\t B28\t NaN\n",
92 | " 830 1\t 1\t\tfemale 62.0 0\t 0 113572\t80.0 B28\t NaN\n",
93 | " \n",
94 | " Null values present in Embarked feature there is no relationship between Embarked's Null values and any other features."
95 | ]
96 | },
97 | {
98 | "cell_type": "markdown",
99 | "metadata": {},
100 | "source": [
101 | "##### 2. Missing Data Not at Random (MNAR)\n",
102 | " - There is absolutely some relationship between the data misssing and any other feature's values in dataset.\n",
103 | " \n",
104 | " ex: \n",
105 | " \n",
106 | " PassengerId Survived Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked\n",
107 | " \t6\t 0\t 3\tmale\tNaN\t0\t0\t330877 8.4583 NaN\tQ\n",
108 | " \t18\t 1 2\tmale\tNaN\t0\t0\t244373 13.0000 NaN\tS\n",
109 | " \t20 1 \t3\tfemale NaN\t0\t0\t2649 7.2250 NaN\tC\n",
110 | " \t27\t 0 \t3\tmale\tNaN\t0\t0 2631 7.2250\tNaN\tC\n",
111 | " \t29\t 1 \t3\tfemale NaN\t 0\t0 330959\t7.8792 NaN\tQ \n",
112 | " \n",
113 | " Null values are present in 'Age' and 'Cabin' feature too so it is having relationship between this feature. Suppose person in that specific cabin is not survied and that's why their Age is unknown."
114 | ]
115 | },
116 | {
117 | "cell_type": "markdown",
118 | "metadata": {},
119 | "source": [
120 | "##### 3. Missing at Random(MAR)\n",
121 | " - If the propensity for a data point to be missing is not related to the missing data, but it is related to some of the observed data.\n",
122 | " - When Data is MAR, The data is missing but can be predicted from other information.\n",
123 | " \n",
124 | " ex:\n",
125 | " \n",
126 | " Sex\tAge\n",
127 | " \tfemale\tNaN\n",
128 | " \tmale \t30\n",
129 | " \tmale\t 19\n",
130 | " \tfemale\tNaN\n",
131 | " \tfemale\t4"
132 | ]
133 | },
134 | {
135 | "cell_type": "markdown",
136 | "metadata": {},
137 | "source": [
138 | "## All techniques of handling Missing values\n",
139 | "\n",
140 | " 1. Mean/Mode/Median replacement\n",
141 | " 2. Random sample imputation\n",
142 | " 3. Capturing NAN values with a new feature\n",
143 | " 4. End of Distribution imputation\n",
144 | " 5. Arbitrary imputation\n",
145 | " 6. Frequent categories imputation "
146 | ]
147 | },
148 | {
149 | "cell_type": "markdown",
150 | "metadata": {},
151 | "source": [
152 | "##### Note we perform all this techniques on 'Titanic' dataset, you can download it from :\n",
153 | "- "
154 | ]
155 | }
156 | ],
157 | "metadata": {
158 | "kernelspec": {
159 | "display_name": "Python 3",
160 | "language": "python",
161 | "name": "python3"
162 | },
163 | "language_info": {
164 | "codemirror_mode": {
165 | "name": "ipython",
166 | "version": 3
167 | },
168 | "file_extension": ".py",
169 | "mimetype": "text/x-python",
170 | "name": "python",
171 | "nbconvert_exporter": "python",
172 | "pygments_lexer": "ipython3",
173 | "version": "3.7.3"
174 | }
175 | },
176 | "nbformat": 4,
177 | "nbformat_minor": 2
178 | }
179 |
--------------------------------------------------------------------------------
/1. Mean Median Mode imputation.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# 1. Mean Median Mode imputation\n",
8 | "\n",
9 | " - This techinique is apply when Data is Missing Completely at Random(MCAR)\n",
10 | " - Means there is absolutely no relationship between the data missing and other values."
11 | ]
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "metadata": {},
16 | "source": [
17 | "- Import Required libraries"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 93,
23 | "metadata": {},
24 | "outputs": [],
25 | "source": [
26 | "import pandas as pd\n",
27 | "import numpy as np\n",
28 | "import seaborn as sns\n",
29 | "import plotly "
30 | ]
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "metadata": {},
35 | "source": [
36 | "- load Dataset "
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": 94,
42 | "metadata": {},
43 | "outputs": [],
44 | "source": [
45 | "data = pd.read_csv('Titanic.csv')\n",
46 | "df1 = data.copy()"
47 | ]
48 | },
49 | {
50 | "cell_type": "code",
51 | "execution_count": 95,
52 | "metadata": {},
53 | "outputs": [
54 | {
55 | "data": {
56 | "text/html": [
57 | "
\n",
58 | "\n",
71 | "
\n",
72 | " \n",
73 | " \n",
74 | " \n",
75 | " PassengerId \n",
76 | " Survived \n",
77 | " Pclass \n",
78 | " Name \n",
79 | " Sex \n",
80 | " Age \n",
81 | " SibSp \n",
82 | " Parch \n",
83 | " Ticket \n",
84 | " Fare \n",
85 | " Cabin \n",
86 | " Embarked \n",
87 | " \n",
88 | " \n",
89 | " \n",
90 | " \n",
91 | " 0 \n",
92 | " 1 \n",
93 | " 0 \n",
94 | " 3 \n",
95 | " Braund, Mr. Owen Harris \n",
96 | " male \n",
97 | " 22.0 \n",
98 | " 1 \n",
99 | " 0 \n",
100 | " A/5 21171 \n",
101 | " 7.2500 \n",
102 | " NaN \n",
103 | " S \n",
104 | " \n",
105 | " \n",
106 | " 1 \n",
107 | " 2 \n",
108 | " 1 \n",
109 | " 1 \n",
110 | " Cumings, Mrs. John Bradley (Florence Briggs Th... \n",
111 | " female \n",
112 | " 38.0 \n",
113 | " 1 \n",
114 | " 0 \n",
115 | " PC 17599 \n",
116 | " 71.2833 \n",
117 | " C85 \n",
118 | " C \n",
119 | " \n",
120 | " \n",
121 | " 2 \n",
122 | " 3 \n",
123 | " 1 \n",
124 | " 3 \n",
125 | " Heikkinen, Miss. Laina \n",
126 | " female \n",
127 | " 26.0 \n",
128 | " 0 \n",
129 | " 0 \n",
130 | " STON/O2. 3101282 \n",
131 | " 7.9250 \n",
132 | " NaN \n",
133 | " S \n",
134 | " \n",
135 | " \n",
136 | " 3 \n",
137 | " 4 \n",
138 | " 1 \n",
139 | " 1 \n",
140 | " Futrelle, Mrs. Jacques Heath (Lily May Peel) \n",
141 | " female \n",
142 | " 35.0 \n",
143 | " 1 \n",
144 | " 0 \n",
145 | " 113803 \n",
146 | " 53.1000 \n",
147 | " C123 \n",
148 | " S \n",
149 | " \n",
150 | " \n",
151 | " 4 \n",
152 | " 5 \n",
153 | " 0 \n",
154 | " 3 \n",
155 | " Allen, Mr. William Henry \n",
156 | " male \n",
157 | " 35.0 \n",
158 | " 0 \n",
159 | " 0 \n",
160 | " 373450 \n",
161 | " 8.0500 \n",
162 | " NaN \n",
163 | " S \n",
164 | " \n",
165 | " \n",
166 | "
\n",
167 | "
"
168 | ],
169 | "text/plain": [
170 | " PassengerId Survived Pclass \\\n",
171 | "0 1 0 3 \n",
172 | "1 2 1 1 \n",
173 | "2 3 1 3 \n",
174 | "3 4 1 1 \n",
175 | "4 5 0 3 \n",
176 | "\n",
177 | " Name Sex Age SibSp \\\n",
178 | "0 Braund, Mr. Owen Harris male 22.0 1 \n",
179 | "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
180 | "2 Heikkinen, Miss. Laina female 26.0 0 \n",
181 | "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
182 | "4 Allen, Mr. William Henry male 35.0 0 \n",
183 | "\n",
184 | " Parch Ticket Fare Cabin Embarked \n",
185 | "0 0 A/5 21171 7.2500 NaN S \n",
186 | "1 0 PC 17599 71.2833 C85 C \n",
187 | "2 0 STON/O2. 3101282 7.9250 NaN S \n",
188 | "3 0 113803 53.1000 C123 S \n",
189 | "4 0 373450 8.0500 NaN S "
190 | ]
191 | },
192 | "execution_count": 95,
193 | "metadata": {},
194 | "output_type": "execute_result"
195 | }
196 | ],
197 | "source": [
198 | "df1.head()"
199 | ]
200 | },
201 | {
202 | "cell_type": "markdown",
203 | "metadata": {},
204 | "source": [
205 | "- Check null values"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": 96,
211 | "metadata": {},
212 | "outputs": [
213 | {
214 | "data": {
215 | "text/plain": [
216 | "PassengerId 0\n",
217 | "Survived 0\n",
218 | "Pclass 0\n",
219 | "Name 0\n",
220 | "Sex 0\n",
221 | "Age 177\n",
222 | "SibSp 0\n",
223 | "Parch 0\n",
224 | "Ticket 0\n",
225 | "Fare 0\n",
226 | "Cabin 687\n",
227 | "Embarked 2\n",
228 | "dtype: int64"
229 | ]
230 | },
231 | "execution_count": 96,
232 | "metadata": {},
233 | "output_type": "execute_result"
234 | }
235 | ],
236 | "source": [
237 | "df1.isnull().sum()"
238 | ]
239 | },
240 | {
241 | "cell_type": "markdown",
242 | "metadata": {},
243 | "source": [
244 | "We can see that there is 177 null values in 'Age',687 in 'Cabin' and 2 in 'Embarked' feature."
245 | ]
246 | },
247 | {
248 | "cell_type": "markdown",
249 | "metadata": {},
250 | "source": [
251 | "### Handle Missing values by using Mean Median Mode imputation"
252 | ]
253 | },
254 | {
255 | "cell_type": "markdown",
256 | "metadata": {},
257 | "source": [
258 | "- 1. Replace All NaN values in Age feature with mean"
259 | ]
260 | },
261 | {
262 | "cell_type": "code",
263 | "execution_count": 97,
264 | "metadata": {},
265 | "outputs": [
266 | {
267 | "data": {
268 | "text/plain": [
269 | "29.69911764705882"
270 | ]
271 | },
272 | "execution_count": 97,
273 | "metadata": {},
274 | "output_type": "execute_result"
275 | }
276 | ],
277 | "source": [
278 | "# Calculate Mean\n",
279 | "mean = df1['Age'].mean()\n",
280 | "mean"
281 | ]
282 | },
283 | {
284 | "cell_type": "code",
285 | "execution_count": 98,
286 | "metadata": {},
287 | "outputs": [],
288 | "source": [
289 | "# Method 1:\n",
290 | "# df1['Age']=df1['Age'].fillna(mean) "
291 | ]
292 | },
293 | {
294 | "cell_type": "code",
295 | "execution_count": 99,
296 | "metadata": {},
297 | "outputs": [],
298 | "source": [
299 | "# Method 2:\n",
300 | "def fill_NAN_Age_mean(df1,variable,mean):\n",
301 | " df1[variable]=df1[variable].fillna(mean)"
302 | ]
303 | },
304 | {
305 | "cell_type": "code",
306 | "execution_count": 100,
307 | "metadata": {},
308 | "outputs": [],
309 | "source": [
310 | "fill_NAN_Age_mean(df1,'Age',mean)"
311 | ]
312 | },
313 | {
314 | "cell_type": "markdown",
315 | "metadata": {},
316 | "source": [
317 | "- Check null values after replace NAN with mean "
318 | ]
319 | },
320 | {
321 | "cell_type": "code",
322 | "execution_count": 101,
323 | "metadata": {},
324 | "outputs": [
325 | {
326 | "data": {
327 | "text/plain": [
328 | "0"
329 | ]
330 | },
331 | "execution_count": 101,
332 | "metadata": {},
333 | "output_type": "execute_result"
334 | }
335 | ],
336 | "source": [
337 | "df1['Age'].isnull().sum()"
338 | ]
339 | },
340 | {
341 | "cell_type": "markdown",
342 | "metadata": {},
343 | "source": [
344 | "## -------------------------------------------------------------------------------------------------------------------------------"
345 | ]
346 | },
347 | {
348 | "cell_type": "markdown",
349 | "metadata": {},
350 | "source": [
351 | "### Now, Understand maybe there is some outlier are present in Age feature, at that time if we replace NaN with Mean then this feature not follow Gaussion Distribution.\n",
352 | "\n",
353 | " - So insted of Mean use Median and replace NaN with it"
354 | ]
355 | },
356 | {
357 | "cell_type": "markdown",
358 | "metadata": {},
359 | "source": [
360 | "- 2. Replace All NaN values in Age feature with median"
361 | ]
362 | },
363 | {
364 | "cell_type": "code",
365 | "execution_count": 102,
366 | "metadata": {},
367 | "outputs": [],
368 | "source": [
369 | "df2 = data.copy()"
370 | ]
371 | },
372 | {
373 | "cell_type": "code",
374 | "execution_count": 103,
375 | "metadata": {},
376 | "outputs": [
377 | {
378 | "data": {
379 | "text/plain": [
380 | "28.0"
381 | ]
382 | },
383 | "execution_count": 103,
384 | "metadata": {},
385 | "output_type": "execute_result"
386 | }
387 | ],
388 | "source": [
389 | "#Calculate Median\n",
390 | "median = df2['Age'].median()\n",
391 | "median"
392 | ]
393 | },
394 | {
395 | "cell_type": "code",
396 | "execution_count": 104,
397 | "metadata": {},
398 | "outputs": [],
399 | "source": [
400 | "# Method 1:\n",
401 | "# df2['Age'] = df2['Age'].fillna(df['Age'].median())"
402 | ]
403 | },
404 | {
405 | "cell_type": "code",
406 | "execution_count": 105,
407 | "metadata": {},
408 | "outputs": [],
409 | "source": [
410 | "#Method 2 :\n",
411 | "def fill_NaN_Age_Median(df2,variable,median):\n",
412 | " df2[variable]=df2[variable].fillna(median)"
413 | ]
414 | },
415 | {
416 | "cell_type": "code",
417 | "execution_count": 106,
418 | "metadata": {},
419 | "outputs": [],
420 | "source": [
421 | "fill_NaN_Age_Median(df2,'Age',median)"
422 | ]
423 | },
424 | {
425 | "cell_type": "code",
426 | "execution_count": 107,
427 | "metadata": {},
428 | "outputs": [
429 | {
430 | "data": {
431 | "text/plain": [
432 | "0"
433 | ]
434 | },
435 | "execution_count": 107,
436 | "metadata": {},
437 | "output_type": "execute_result"
438 | }
439 | ],
440 | "source": [
441 | "df2['Age'].isnull().sum()"
442 | ]
443 | },
444 | {
445 | "cell_type": "markdown",
446 | "metadata": {},
447 | "source": [
448 | "## -------------------------------------------------------------------------------------------------------------------------------"
449 | ]
450 | },
451 | {
452 | "cell_type": "markdown",
453 | "metadata": {},
454 | "source": [
455 | "### If there is some frequent value are present in feature then replace NaN values with that frequent value.\n",
456 | "ex. \n",
457 | " In classs 12th most of student is 17 years old, suppose we have some entries with Missing Age then we assume Age of that student is also 17 years and replace nan with 17 (we assume 17 is a frequent value)"
458 | ]
459 | },
460 | {
461 | "cell_type": "markdown",
462 | "metadata": {},
463 | "source": [
464 | "- 3. Replace All NaN values in Age feature with mode"
465 | ]
466 | },
467 | {
468 | "cell_type": "code",
469 | "execution_count": 108,
470 | "metadata": {},
471 | "outputs": [],
472 | "source": [
473 | "df3 = data.copy()"
474 | ]
475 | },
476 | {
477 | "cell_type": "code",
478 | "execution_count": 109,
479 | "metadata": {},
480 | "outputs": [
481 | {
482 | "data": {
483 | "text/plain": [
484 | "24.0"
485 | ]
486 | },
487 | "execution_count": 109,
488 | "metadata": {},
489 | "output_type": "execute_result"
490 | }
491 | ],
492 | "source": [
493 | "#Calculate mode\n",
494 | "mode=df3['Age'].mode()[0]\n",
495 | "mode"
496 | ]
497 | },
498 | {
499 | "cell_type": "code",
500 | "execution_count": 110,
501 | "metadata": {},
502 | "outputs": [],
503 | "source": [
504 | "# method 1:\n",
505 | "#df3['Age'] = df3['Age'].fillna(mode)"
506 | ]
507 | },
508 | {
509 | "cell_type": "code",
510 | "execution_count": 111,
511 | "metadata": {},
512 | "outputs": [],
513 | "source": [
514 | "#method 2:\n",
515 | "def fill_NAN_Age_mode(df3,variable,mode):\n",
516 | " df3[variable] = df3[variable].fillna(mode)"
517 | ]
518 | },
519 | {
520 | "cell_type": "code",
521 | "execution_count": 112,
522 | "metadata": {},
523 | "outputs": [],
524 | "source": [
525 | "fill_NAN_Age_mode(df3,'Age',mode)"
526 | ]
527 | },
528 | {
529 | "cell_type": "code",
530 | "execution_count": 113,
531 | "metadata": {},
532 | "outputs": [
533 | {
534 | "data": {
535 | "text/plain": [
536 | "0"
537 | ]
538 | },
539 | "execution_count": 113,
540 | "metadata": {},
541 | "output_type": "execute_result"
542 | }
543 | ],
544 | "source": [
545 | "df3['Age'].isnull().sum()"
546 | ]
547 | },
548 | {
549 | "cell_type": "markdown",
550 | "metadata": {},
551 | "source": [
552 | "## ------------------------------------------------- End ------------------------------------------------------------"
553 | ]
554 | }
555 | ],
556 | "metadata": {
557 | "kernelspec": {
558 | "display_name": "Python 3",
559 | "language": "python",
560 | "name": "python3"
561 | },
562 | "language_info": {
563 | "codemirror_mode": {
564 | "name": "ipython",
565 | "version": 3
566 | },
567 | "file_extension": ".py",
568 | "mimetype": "text/x-python",
569 | "name": "python",
570 | "nbconvert_exporter": "python",
571 | "pygments_lexer": "ipython3",
572 | "version": "3.8.5"
573 | }
574 | },
575 | "nbformat": 4,
576 | "nbformat_minor": 4
577 | }
578 |
--------------------------------------------------------------------------------
/3. Capturing NAN values with a new feature.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Capturing NaN values with a new feature\n",
8 | "\n",
9 | "- In this method we create a new feature for NaN values where we set NaN=1 else 0\n",
10 | "- This method shoud apply when missing data type is MNAR\n",
11 | "- There is absolutely some relationship between the data misssing and any other feature's values in dataset.\n",
12 | "- After creating mew feature then handle NaN values in old feature by using suitable method"
13 | ]
14 | },
15 | {
16 | "cell_type": "markdown",
17 | "metadata": {},
18 | "source": [
19 | "### Import Libraries"
20 | ]
21 | },
22 | {
23 | "cell_type": "code",
24 | "execution_count": 1,
25 | "metadata": {},
26 | "outputs": [],
27 | "source": [
28 | "import pandas as pd\n",
29 | "import numpy as np\n",
30 | "import seaborn as sns\n",
31 | "import matplotlib.pyplot as plt\n",
32 | "import missingno as mn"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "metadata": {},
38 | "source": [
39 | "### Load Dataset"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": 2,
45 | "metadata": {},
46 | "outputs": [
47 | {
48 | "data": {
49 | "text/html": [
50 | "\n",
51 | "\n",
64 | "
\n",
65 | " \n",
66 | " \n",
67 | " \n",
68 | " Survived \n",
69 | " Age \n",
70 | " Fare \n",
71 | " \n",
72 | " \n",
73 | " \n",
74 | " \n",
75 | " 0 \n",
76 | " 0 \n",
77 | " 22.0 \n",
78 | " 7.2500 \n",
79 | " \n",
80 | " \n",
81 | " 1 \n",
82 | " 1 \n",
83 | " 38.0 \n",
84 | " 71.2833 \n",
85 | " \n",
86 | " \n",
87 | " 2 \n",
88 | " 1 \n",
89 | " 26.0 \n",
90 | " 7.9250 \n",
91 | " \n",
92 | " \n",
93 | " 3 \n",
94 | " 1 \n",
95 | " 35.0 \n",
96 | " 53.1000 \n",
97 | " \n",
98 | " \n",
99 | " 4 \n",
100 | " 0 \n",
101 | " 35.0 \n",
102 | " 8.0500 \n",
103 | " \n",
104 | " \n",
105 | "
\n",
106 | "
"
107 | ],
108 | "text/plain": [
109 | " Survived Age Fare\n",
110 | "0 0 22.0 7.2500\n",
111 | "1 1 38.0 71.2833\n",
112 | "2 1 26.0 7.9250\n",
113 | "3 1 35.0 53.1000\n",
114 | "4 0 35.0 8.0500"
115 | ]
116 | },
117 | "execution_count": 2,
118 | "metadata": {},
119 | "output_type": "execute_result"
120 | }
121 | ],
122 | "source": [
123 | "data = pd.read_csv('Titanic.csv',usecols=['Age','Fare','Survived'])\n",
124 | "data.head()"
125 | ]
126 | },
127 | {
128 | "cell_type": "markdown",
129 | "metadata": {},
130 | "source": [
131 | "### Check NaN values"
132 | ]
133 | },
134 | {
135 | "cell_type": "code",
136 | "execution_count": 5,
137 | "metadata": {},
138 | "outputs": [
139 | {
140 | "data": {
141 | "text/plain": [
142 | "Survived 0\n",
143 | "Age 177\n",
144 | "Fare 0\n",
145 | "dtype: int64"
146 | ]
147 | },
148 | "execution_count": 5,
149 | "metadata": {},
150 | "output_type": "execute_result"
151 | }
152 | ],
153 | "source": [
154 | "data.isnull().sum()"
155 | ]
156 | },
157 | {
158 | "cell_type": "code",
159 | "execution_count": 15,
160 | "metadata": {},
161 | "outputs": [
162 | {
163 | "data": {
164 | "text/plain": [
165 | "Survived 0.000000\n",
166 | "Age 0.198653\n",
167 | "Fare 0.000000\n",
168 | "dtype: float64"
169 | ]
170 | },
171 | "execution_count": 15,
172 | "metadata": {},
173 | "output_type": "execute_result"
174 | }
175 | ],
176 | "source": [
177 | "data.isnull().mean()"
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": 14,
183 | "metadata": {},
184 | "outputs": [
185 | {
186 | "data": {
187 | "text/plain": [
188 | ""
189 | ]
190 | },
191 | "execution_count": 14,
192 | "metadata": {},
193 | "output_type": "execute_result"
194 | },
195 | {
196 | "data": {
197 | "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAJ8CAYAAADNiZyDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABfYklEQVR4nO3deZhld10n/ve3uru6m6S7gWytLNMIgSGIFPsiW8AQFkF2lwFtIouODhbjDG4TRdQRHZXCERUExwX8EUAMYZGEhC7UAYkwViKEiQmLhISEXtJV1d11763l+/ujqnq6O52kO3WqTm7V6/U856lT957z6c8BHqr7Xd/7+ZZaawAAAAAAoJ8MtN0AAAAAAACcLOE2AAAAAAB9R7gNAAAAAEDfEW4DAAAAANB3hNsAAAAAAPQd4TYAAAAAAH1HuA0AAAAAQN8RbgMAAAAA0HeE28CqU0rZXEp5cNt9AAAAALB8hNvAqlJKKUnen+RTpZTvabsfAAAAAJaHcBtYVWqtNcnvJjmY5M9KKY9ouSUAAAAAloFwG1h1aq2jSV6VZGOSd5dShhZWdAMAAACwSgi3gVWjlLL+iG83J3lvkkcl+b0kVnADAAAArCJl/hP8AP2tlFIWRpKklPL+JA9J8vUk90ny8CRfTHJBrfWq1poEAAAAoDFWbgOrwhHB9q8meVqSn07y0iRPSfJDSe6d5H+VUh5hRAkAAABA/7NyG1hVSikfTTKY5Ptrrb2F19YneUaSi5JcneRnklxV/R8gAAAAQN+ychtYFUopA6WUDUlOTzJXa+2VUtYvjCuZSfLpJJ/K/Eruv0rysBbbBQAAAGCJhNtAXzpytEgpZaDWOldrnU7ywSTPKqU8bSHUXp8ktdZu5mdwfyzJeJKple8aAAAAgKYIt4G+U0pZd8SM7Q1J7nnE2x9I8tkkF5VSvnch8E4p5YwkD0zyySRPrbV+ZWW7BgAAAKBJZm4DfWUh2J5dOP8fSZ6Y+dD6c0nekeQTSc5N8pYkj04ykmQ2yUOSPDnJ42ut16985wAAAAA0SbgN9KVSyvuTPD7zY0huTfLSJPdL8vu11l8tpTwyyX9I8ookvSQ3JPnJWuvVLbUMAAAAQIPWt90AwMkqpbwyyeOSvCrJPyxsHvnhJFcl2bAwg/ufk/xzKeW3kxzK/C/zJtvrGgAAAIAmmbkN9KOHJ9mT5PMLwfY5Sa7I/Cru36i1zpVSvquUMpBkd631gGAbAAAAYHURbgN3a6WUdcd8vz7JGUlma60TpZSHJPmHJJ9K8qpa61Qp5aeSvDrJpmr2EgAAAMCqJNwG7taO2DzyjQubSc4k+UKSx5ZS/kPmg+0rkry61nqwlPIdSZ6a5MzWmgYAAABg2dlQErjbK6U8K8knkvxYrfUvSylnJPlA5kPsT9Zaz1+47n5JfjXJeUmeWWv917Z6BgAAAGB52VAS6AdfSPKVJM9P8pe11t2llN9NUpM8rZTyq0m2J7lvkscmOU+wDQAAALC6WbkN3K0tjCKZXRhB8u4kP1hr/fDCe+ck2ZnkKUnmknw2yTsF2wAAAACrn3AbuNsopaxfmKmdUko5cjPIhY0j359kLMnraq2dI97bUmudXAzCV7pvAAAAAFaeDSWBVpVSTimlfH+SHBFsvz3Jz5VSHrV4Xa312iQfTPLDSXYsXLdu4e0DC1/nVqhtAAAAAFpm5TbQmlLKQJJdSb6a5DW11plSyj2TXJTkEZnfF+CdST5ea/2HUsopSa7M/OrtC2qt3VYaBwAAAKB1wm2gVaWUhyb55sJYkcfUWj+/8PrTkzwtyX9OsifzofavJfmFJA/N/Oztr7TSNAAAAACtM5YEaM3CXO0vLwTbb0ny0VLKjyRJrXW01vqrSR6b5C+TPDHJxzM/kuRRSX6kpbYBAAAAuBsQbgOtWNj88ciPjlya+dnZP1tK+aHFF2ut/5rkzUkemOQvkhxcOC5euW4BAAAAuLsxlgRoVSnlfyR5e63166WUxyd5b+ZD7t+stV60cM2GWuv0wvn2JNO11r2tNQ0AAABA66zcBlqzEGYPJ3nZwkruz2V+3MipSX6hlPKDSVJrnS6lrF84v1mwDQAAAICV20CrSimfynyY/cRa6+zCa49L8leZX8H9G7XWD7TYIgAAAAB3Q1ZuAyuilFKO+X79wumFSR6a5KcXr6u1Xpn5Fdwbk/xOKeVFK9krAADAciilrGu7B4DVRLgNLLuFwLounC+OF5lZePv6JFcm+f5SypaFy9ctBNyvTrI3yVUttA3AKlFKOe7feW/vdQBYDgv/zln8tOq5pZRXllK+r5TykLZ7A+hXxpIAy+qYv8D9WZLpJJfUWj9yxDUvT/K+JM+vtX5sMWyotc6VUjbVWjsttA7AKlBKWV9rnSmlbEzyqCSnJBmvtf5Ty60BsIaUUgZqrXML5+9L8tQk90gymOSbSX691voXLbYI0JeE28CyOeYvcOcmeWySn0hyWpLLk/xFkk/WWg+VUi5PUpL8UK119xE1Dq/6BoCTsfgL1oVPBn0y8z9/HpBkKsn7k/xyrfXGNnsEYG0ppbw9yXOT/FTmP8F6/yQjSZ6c5PF++Qpwctbf+SUAd80RwfaHM78y4awklyR5XJL/luTtSW4opfxckmuSPDvzocPuI2oItgG4SxaC7c1JPp1kPMl/THIwydlJ/leSjaWU/1hrnWixTQDWiFLKfZI8Jclbk4wuLPLZlOThSd6T+X8TAXASzBkEGnfkJimllKcnuVeSl2c+q/6/Cx+3e1SSX0/SS/KRJENJHpT54AEAmvLizH/s+2eTXFFr/UySxV+cjh0ZbB+7+TEALMXifkNH/Hw5Pcl3J/nnhWD7oUmuzvyni36i1nqwlPK6Usp3t9MxQP8RbgONO2LG9q8keX7mP/49WmudXnh9Xa31QK31j2utT0synOTfktyQ+VUMANCUh2R+numXFvZy+OEkf5bkF2qtv1NKuXcp5aWJTwsB0JyF8YozC9++uZTyxMx/imhPkocubCL5vzMfbP/4Qtj9pMyPLLlvK00D9CHhNrAsSimnZX4V9huS3OuIYLscEX6XJKm1/q/Mz5x7eK31qpZaBqDPHfnJoSMcSHJarbVbSnl+kvcm+cVa628tbGD8oiSvLaXcfyV7BWD1Wth7qC6c/36S/5RkOsm+JF9N8otJPpv5TxT9YJIDpZR7J3lNkjOS+DcRwAkSbgONODZQqLXuTfL4JJ9J8phSyo+WUgaPXBVXa61HBNwTZp4CcFct/vK0lLJ5YeXbov+TZLyU8ukkH07ys7XWtyy899AkP5rk+sx/eggAlmTh59Hi3kOPSLIlyavz/0Zh/WiSkuTUJJcs/KL1SUl+N8kLk7y21vqtNnoH6EfFpy+BJpVSfj7Ju2utuxe+35H5TSS3ZH7FwqWLq7gBoAkL465mFwKCv0ryhCSvrrVevvD+OzMfLPxjkhdkfuXcE5P83kKJ7621ziwEEv5yDMCSLazYflrm9x96Vq31/5ZSNtRap0spD0/yN0k2J9mW5BuZ34voR2utV7fWNEAfEm4DjSmlPDvzq+I+m+TFtdZ9C6/vSPKxzP/l7fURcAPQkFLK+oVg+h75f5sVn5Pk5syv0v7kwnXvSvJ9mZ+/PZ5kLsnuJOctBA3rFsdmAcBSlVLemPnxI1uT/ECt9SMLry/+QvZeSYaSnJ3kn5N8o9Z6S1v9AvQr4TbQmIXdwIczPz/7G5kPuPcuvLcj8wH3+iS/kOQjAm4AlmJxpXUp5dQkn0/ytcyvfJtI8h+SXJ35+dofX7j+mUkekfmfRf83yccWAob1R2z6BQB32ZG/LC2l7EzyjiRjSV5fa/3cwut+7gA0RLgN3CXH/oVsYZ52byHgfkPmR5B8LcmLjljB/e8yv6r7liRPqbUeaKF1AFaRI0aRPCzzI0e+sRBY/2iSC5McTPJfF1dwH+d+K7YBuMvu7OdIKeUnkvz3zP876FdrrVcuvG4UFkADhNvASVvY/Xtxk5QX1lovXjg/MuAeznzI/X+TvLTWeuvCNfdPsr7W+tVWmgdgVSmlbEvyqSRX1lp/8pifUT+W5H8l+WKOGFECAE04csFPKeWCJN+d+fFXf1tr/dgR1/1Ukl/L/N4Pv1xr/Xwb/QKsRgNtNwD0h1LKulLKfZPkiNDglUk+VEp508LrvYWAeybJ7yf5YJJzk/x/pZTTF675hmAbgJNVShm8nbcOJZlOcr9k/mfUwi9ZU2v98yTvT/KdSd5USnniSvQKwOpVStlUSrnPwi9TF4PtizI/evHRSXYk+Ugp5XWL99Ra357kvy28/7ZSyqNWvnOA1Um4DdypUsopSd6WZKSU8rIj3vpskj9K8sullF9NDgfcG2utvcyvTvh65gPuv1j46DgAnJRSyiOTvL2U8vxjXl+fZDbzs0wfX0p57sLHvGdKKQOllA2Z38jryiT3z/wc7pRSyoo+AACrQilla+b/ffOyIxb8vD3JY5K8qtb6tMz/TEqSPyql/NfFe2utf5jkt5N8R+Y3NAagAYIm4A6VUrYk+YfM/4XtK0kuXXyv1np9kv+R+YD7wiMC7u5CcPC4JF9N8ktJ/tPiXwAB4ESVUu6d5D1JfjzJh0sp7y+l7FxcMbfws+W/Jekk+c0kz00Of8ro3yXZnPnVdP9fkleUUu5lxikAJ2sh2P5Ckmsz/6mgLHwi6N9nfvTVPyyE2T+X5KeTvDvJby2MJEmS1Fp/N8mja603rHT/AKuVcBu4XaWUeyS5IsmeJK9O8ku11olSyrrFa2qtX0/y1iR/nPmA+zcX/uL3gCTfn+TfkvzPWutXVrp/AFaF/UmuWji/JMmTk/xpks+XUn60lPLgWuuezIfaW5O8t5RyaSnlT5P8bZJ71lqvSrJvoZZgG4CTsvDvm6uSfCPJD9Vab1p4a1/mf9b8bSnlB5P8YuZXcP9h5n9WJcn/LKX8tyPK7V+ZrgHWBuE2cEd+OklJ8p+TfGlxptzibuCllDMWvr8+8x+x+53MbyL5b5nf3OtlSX6/1tpd+dYB6HdHbA75y5n/RetXMz/L9OczH1L/WZJPlFL+U5K9SR6c5E+SnJJkKMnfJXnsQrmnZ3613fRK9Q9A/1sY0Xh1kuuSvKLW+q0j9na4Nsl1C//e+cEkH0nyoYX3Ppvkfy/c+4ZSymkLr/slK0CDhNvAHXl0kv211n858i9hpZRXl1I+kORTpZSPlVLOWVjB/ZYkz0jyF5kfVfKkhdVyAHDSjhhntSfJpzM/muTsWutvJ3nSwve3ZH5fiL/L/HiSP0zyglrro2qtP57kzIVV3E9I8p9rrQdX+DEA6G8/mvl9G65aCLYHFvZ22FxKuTrJjyws+jknyVyt9VCSlFIetnD/z2X+Z9feVroHWOWKXxoCx7OwGuGizG948vzMf+Tu7MyH1udm/uN0X8/8jLmbkzxjIeAGgMaVUp6V5BOZH5H1mwuvnZrkS5nfmOtA5n8pe0rmZ5++tZTy1CS/m+SeSV7qF64AnKxSyr0y/4mh/5rk12qtv1JK2Zjk80kOJnlJrfXGUsqfJXlO5j/9OpHkxZn/xer31VptIAmwTITbwO0qpTwuyT8m2ZX5MPvJSdZnfmOvNyeZTPLszG/S9d5a62tLKcVH7QBYDqWUi5N8b+Z/sdpJ8k9JpjK/x0MvyfYkr0ry84ujtEopL07yz7XWr7XRMwD9b2Hm9i9nflzjbyR5QZJDmR/DeGOttZZSzkry3sx/knUi8790/f5a61grTQOsEcJt4A6VUp6S+Z2+75n5Odp/mOTzR3zc7h5Jrkny97XWV7bVJwCrXynltZn/OfQbSX44879k/Q+11v97nGsHa629FW4RgFXqiID7pzIfXD/iiI0lj7zuJQvvX1NrvWFluwRYe4TbwJ1aCLC31FpvOeb1kuThmV/J/Re11t+xchuAph35s6WU8r+TPDHzM7ZfleTrfu4AsBJKKduSvDHJLyR5U631zUe8t7gJMgAraH3bDQB3fwurtBdXah+5Eu6eSYaTnJrkAwvXChgAaNTCx70XA+73JPnuzH9iyKgRAFZMrXW8lPJbSTYmedPCz6ZfXXhPsA3QAuE2cFIWg+1SyjMzv3P4C5I8vdb6b602BsCqdsQvTy9J8ktJHp8cvaobAJZbrXWilLK4YvtXSimztdZfb7UpgDVMuA2clIWdwXdlftX2/iRPqbV+sc2eAFg7aq03llL+e5I/KKU8o9b6qbZ7AmBtOSLgnk3y5lJKr9b62233BbAWCbeBk1Jr7ZZS/nOSRyW5+HibqADAMvt4kr/O/NxtAFhxCwH3f0/SS/LRtvsBWKtsKAncJT4GDsDdQSllfa11pu0+AFibbCQJ0C7hNgAAAAAAfWeg7QYAAAAAAOBk3a3C7VLKS0sp/7OU8vellIlSSi2lvKftvgAAAAAAuHu5u20o+d+SPCLJgSTfTPLv220HAAAAAIC7o7vVyu0kb0jy4CRbk/xky70AAAAAAHA3dbdauV1r3bV4XkppsxUAAAAAAO7G7m4rtwEAAAAA4E7drVZuN+HpT396bbsHANa2kZGRJMnw8HCrfQCwdvlZBMDdwejo6GodzdD3+ePOnTuzY8eOvOlNb2q7lSX9b2TVhdsAAAAAAGtZrTW9Xi/dbve4R6fTabvFRgi3AQAAAAD6xL/8y7/k9a9//ZLrPPrRj26gm3YJtwGgYUNDQ0mS0dHRVvsAYO0aGxtruwUAYJkcOHCgkTrr1q1rpE6bhNsA0LDFQMGcUwDasjhzGwBYfZ74xCdm165dt3l9bm7uqFEknU7n8PfHnr/rXe/KxMREC903S7gNAAAAANDnBgYGsmnTpmzatOlOr33f+963Ah0tv4G2GwAAAAAAgJN1t1q5XUp5YZIXLny7feHrE0spf7ZwvqfW+l9WuC0AAAAAAO5m7lbhdpKhJD92zGvftXAkyb8lEW4DAAAAAKxxd6twu9b6piRvarkNAAAAAIC7pYmJiYyMjGRycvJOr52dnb3NhpLdbjeTk5N5wAMesALdLq+7VbgNAKvB0NBQkmR0dLTVPgBYu8bGxtpuAQBYJh/72Meya9euJde53/3u10A37RJuA0DDFgOF4eHhVvsAYO0aGRlpuwUAgGUn3AYAAAAA6BPPe97zcv3115/QWJKZmZn0er2jxpJ0Op1MTk7mhhtuWIFul5dwGwAAAACgT2zdujUXXnjhkmrs3LkztdaGOmqPcBsAAAAAoE/VWjM9PX3UyuzF1drdbve45xMTE2233QjhNgAAAABAn/j0pz+dN73pTUuuc9pppy29mZYNtN0AAAAAAAAnZvfu3Y3U2bBhQyN12mTlNgA0bGhoKEkyOjraah8ArF1jY2NttwAALJOmNoJ8znOe00idNgm3AaBhi4HC8PBwq30AsHaNjIy03QIAsEzOOuusRuqMjo7mx37sxxqp1RbhNgA0zMptANpm5TYArF779u076XtKKdm6dWu2bNmSzZs3Z/PmzYf/7drPhNsA0DArtwFom5XbALB6/diP/ViGhobS6XTS7XbT6/XS6XTS6/XS7XZz4MCBTExMHHVMTk5mfHw84+Pjh+v8zd/8TR7xiEe0+CRLJ9wGAAAAAOgT1157bS688MIl1zn11FMb6KZdwm0AaJixJAC0zVgSAFi9Siltt3C3IdwGgIYZSwJA24wlAYDV69GPfnR27dp1u+/Pzs4eHlVy5NiSI8/f9ra35cCBAyvY9fIQbgMAAAAA9Ilaa/7t3/4tMzMzSXJ41vbJHAcPHmz5KZoh3AYAAAAA6BN//dd/nbe//e1LrnPWWWc10E27BtpuAAAAAACAE/PEJz6xkTp79uxppE6brNwGgIbZUBKAttlQEgBWr4svvvgO39+wYUMGBwezadOmbNy48fD54OBgNm7cmE2bNmXDhg157nOfuzINLyPhNgAAAABAn5iamsrGjRvz3Oc+N9u2bcuWLVuydevWbN26NVu2bMnmzZtvE2avW7eu7baXhXAbAAAAAKBPnHnmmel2u/mbv/mbE75n3bp12bhx41HHy172sjzvec9bxk6Xn3AbABq2+FHw4eHhVvsAYO0aGRlpuwUAYJm88pWvzPOf//x0u907PXq9XjqdzuHzbrebTqeT//2//3f+6Z/+SbgNAAAAAMDKKKXkXve615Jq7Ny5s5lmWibcBgAAAADoE3Nzc/n85z+fXq931GuLK7MXV2sfuVJ78XzxuOWWW7Jjx472HqIhwm0AAAAAgD5x0UUX5Z3vfOeS62zfvr2Bbtol3AYAAAAA6BPPf/7z87WvfS0HDx68w+tqrZmenj7u6u3x8fHccsstK9Tx8hFuAwAAAAD0iVNPPTW/+Iu/uKQaO3fuTK21oY7aM9B2AwAAAAAAcLKs3AYAAAAAWGVqrbfZSHLx6HQ6bbfXCOE2AAAAAECfuPrqq3PRRRdldnb2cHh97EztxeOOPPKRj1yhjpePcBsAGjY0NJQkGR0dbbUPANausbGxtlsAAJbJFVdckc985jMndU8pJVu3bj3qeOELX7g8Da4g4TYANGwxUBgeHm61DwDWrpGRkbZbAACWyctf/vKcddZZR63Wvr2V20cevV4v3/rWt3LDDTckSTZv3pwLL7yw5adZGuE2AAAAAECfuM997pMf+ZEfucv3z87O5oILLsjs7GyDXbVjoO0GAAAAAABYGevWrUsppe02GiHcBgAAAACg7wi3AQAAAADoO2ZuAwAAAAD0ifHx8XzhC184aqPITqdzu+fHe23fvn3ZsWNH24+yZMJtAGjY0NBQkmR0dLTVPgBYu8bGxtpuAQBYJn/xF3+RD33oQyd1z8DAQLZu3ZotW7bkrLPOyoMf/OC85CUvWaYOV45wGwAAAACgTwwNDeVTn/pUpqamUkpJrTVJMjMzk9nZ2ePeMzc3l/3792f//v2HXzvrrLPy8Ic/fCVaXjbCbQBo2OJqueHh4Vb7AGDtGhkZabsFAGCZPOUpT8lTnvKU4743MzNzeFzJ1NRUDhw4kPHx8UxMTGRycjITExMZHx/PZZddln379q1w580TbgMAAAAA9IlrrrkmP/VTP7XkOps3b26gm3YJtwGgYWZuA9A2M7cBYPVqasX14OBgI3XaJNwGgIYZSwJA24wlAYDV68lPfnJ27dp11Gu11vR6vcMjSY48Dhw4cHgkyeJx6aWXZnx8vKUnaI5wGwAAAACgT1x33XV57Wtfu+Q6mzZtaqCbdgm3AaBhxpIA0DZjSQBg9frmN7/ZSB0ztwGA2zCWBIC2GUsCAKvXueeem3PPPffw9zMzM4dHkCyOJul0Osc9Xzze97735dZbb23xKZoh3AYAAAAA6FPr16/P+vXrc8opp5zwPX/7t3+7jB2tHOE2AAAAAMAqUWvN9PT0cTeXXDwOHTrUdpuNEG4DAAAAAPSJsbGxvOENb1hynVNPPbWBbtol3AaAhtlQEoC22VASAFavXq/XSJ1SSiN12iTcBoCG2VASgLbZUBIAVq/HPe5x2bVr13Hfm52dvc3mkcfbYPKP/uiPMjk5ucKdN0+4DQAAAADQR/bs2ZPZ2dk7na19e8fU1FTbj9AI4TYAAAAAQJ/4m7/5m/z+7//+kuuceeaZDXTTLuE2AAAAAECfePKTn5yPfexjGR8fTykltdYkdzxDe25u7vBYksWZ3Xv37l2RfpeTcBsAAAAAoE+cccYZede73nWX75+bm8urXvWqzM7ONthVO4TbAAAAAAB94tZbb81b3vKWTExMnND1MzMzx91g8oEPfOAyd7r8hNsA0LChoaEkyejoaKt9ALB2jY2Ntd0CALBMLrvsslx55ZVLrnPf+963gW7aJdwGgIYtBgrDw8Ot9gHA2jUyMtJ2CwDAMlkN40SaItwGAAAAAOgTP/ADP5CbbropBw4cuMMNJefm5m4zjqTX66XT6WTfvn35xje+0Ub7jRJuAwAAAAD0iVNOOSX/5b/8lyXV2LlzZzPNtGyg7QYAAAAAAOBkCbcBAAAAAOg7wm0AAAAAAPqOmdsAAAAAAH1sbm4uvV7vqE0jj3fe7XbT6XQyMTHRdsuNEG4DAAAAAPSJf/iHf8iFF1645Drbtm1roJt2GUsCAAAAANAn7n3vezdSp9frNVKnTVZuAwAAAAD0iXPOOSe7du067nszMzPpdDrp9XqZmprKgQMHMj4+nomJiUxOTmZiYiLj4+O57LLLMjU1tcKdN0+4DQAAAADQJz73uc/l53/+55dcZzWMJRFuA0DDhoaGkiSjo6Ot9gHA2jU2NtZ2CwDAMrnpppsaqbN58+ZG6rTJzG0AAAAAgD5x6qmnNlKn1tpInTZZuQ0ADVtcLTc8PNxqHwCsXSMjI223AAAsk/POOy/nnXdekvkZ291u97jH4uztY8+73W4+9KEP5ZZbbmn5SZZOuA0AAAAA0IfWr1+f9evX55RTTjmp+25vQ8p+YywJAAAAAAB9R7gNAAAAAEDfEW4DAAAAANB3zNwGAAAAAOgT09PTueSSSzI1NXXc93u93m02kjx2c8mbbropO3bsWNnGl4FwGwAaNjQ0lCQZHR1ttQ8A1q6xsbG2WwAAlslFF12Ud7/73Uuus3379ga6aZdwGwAathgoDA8Pt9oHAGvXyMhI2y0AAMvk5S9/eWqtmZqaSikltdYkSSklSTI3N5dut3t4pfbxjhtuuCE333xzm4/RCOE2AAAAAECfGBwczCtf+col1di5c2czzbTMhpIAAAAAAPQd4TYAAAAAAH1HuA0AAAAAQN8RbgMAAAAA0HdsKAkAAAAAsIrUWjM9PZ1ut3vco9PptN1iI4TbAAAAAAB94l/+5V/y+te/fsl1HvWoRzXQTbuE2wDQsKGhoSTJ6Ohoq30AsHaNjY213QIAsEwOHDjQSJ0NGzY0UqdNwm0AaNhioDA8PNxqHwCsXSMjI223AAAsk0c+8pH5vd/7vXQ6nfR6vcNjRjqdTiYmJo57TE5O3mYUyfj4eEtP0BzhNgA0zMptANpm5TYArF5/+qd/mg984AMndU8pJdu2bcvWrVsPH8973vOWqcOVI9wGAAAAAOgTD3zgA0/6nlprxsfHj1qt/YAHPCCPfexjm2xtxQm3AaBhxpIA0DZjSQBg9Tr//PNz/vnnH/6+1prp6el0u907PXq9XjqdTt773vfmxhtvbPEpmiHcBgAAAADoU6WUDA4OZnBwMFu2bDmhez7ykY8sc1crQ7gNAAAAANAnJicnMzIyksnJyZRSUmtNMh9yH2tmZua4K7cnJibygAc8YKVbb5xwGwAaZkNJANpmQ0kAWL0++tGP5lOf+tSS69zvfvdroJt2CbcBoGFmbgPQNjO3AYC1QLgNAAAAANAnnvvc5+baa6/N5OTkbd47dkzJ7OzsUSNJFs8nJydzww03rHTrjRNuAwAAAAD0iW3btuVNb3rTkmrs3LnzcAjezwbabgAAAAAAAE6WldsAAAAAAH2i1+vl4osvzqFDh477/szMzOExJJ1O5/AokiNfu+mmm7Jjx46VbXwZCLcBoGFDQ0NJktHR0Vb7AGDtWtzcGABYfd7//vfn3e9+95LrbN++vYFu2iXcBoCGLQYKw8PDrfYBwNo1MjLSdgsAwDJ5+ctfnnXr1mVqauqoDSST+VXdBw8ezOTkZCYmJg4fk5OT6XQ6R9W5+eabV7r1xgm3AQAAAAD6xGc/+9n85V/+ZaamppZU5/TTT2+oo/YItwGgYcaSANA2Y0kAYPW6+uqrTzrYLqVk69atRx1PfepTl6nDlSPcBoCGGUsCQNuMJQGA1Wvnzp15xCMecdRGkUcehw4dOmokyeJYkvHx8YyPjx+uMzg4mO/5nu9p8UmWTrgNAAAAANAnvvjFL+ad73xnut3u4ddmZmYOh9tzc3MnVGfbtm3L1eKKEW4DQMOMJQGgbcaSAMDq9U//9E+58cYbT+qe440lOf/885epw5Uj3AaAhhlLAkDbjCUBgNXrFa94RR784AcfXqnd6/XS6XRu9/zIr91uNzfccEMmJyezcePG/Mqv/Erbj7Mkwm0AAAAAgD5x73vfO89+9rOXVGPnzp2ptTbUUXsG2m4AAAAAAABOlnAbAAAAAIC+YywJAAAAAEAfOXDgQKanp487Z7vb7R41Y/t4x549e7Jjx462H2PJhNsAAAAAAH3ikksuyVvf+tYl1/mO7/iOBrppl7EkAAAAAAB9YnZ2tpE6pZRG6rRJuA0AAAAA0Cce9KAHNVJnfHy8kTptEm4DAAAAAPSJb37zm43U2bx5cyN12iTcBgAAAADoEw972MOyadOmJddZDSu3bSgJAAAAANAn7n//++dv//ZvT/q+2dnZ9Hq9dLvd/Kf/9J8yPT29DN2tLOE2AAAAAMAqt27dumzevDmbN2/OunXr2m6nEcaSAAAAAADQd4TbAAAAAAD0HeE2AAAAAAB9x8xtAAAAAIA+Mjk5menp6cMbRHY6nTs8P/a1PXv2ZMeOHW0/xpIJtwEAAAAA+sSHP/zhjIyMLLnOGWecsfRmWibcBgAAAADoE49//ONz//vfP/v37z+p+6anp9PtdjM3N5ck2bdv3zJ0t7KE2wAAAAAAfWL79u358z//87t0b601MzMzefWrX53Z2dmGO1t5NpQEAAAAAFgDSinZsGFDSiltt9IIK7cBAAAAAFaxWuvhsSSdTiczMzNtt9QI4TYAAAAAQJ/4t3/7t1xwwQWHZ2ffVeecc05DHbVHuA0ADRsaGkqSjI6OttoHAGvX2NhY2y0AAMvky1/+8pKD7STZsmVLA920S7gNAA1bDBSGh4db7QOAtWtkZKTtFgCAZfLsZz87z372szM7O5ter3d41Mji+R0dvV4vnU4nH/nIR7J37962H2XJhNsAAAAAAH1m3bp12bx5czZu3JhNmzYdDq+PDbuPDb43bdqUdevWtd1+I4TbAAAAAAB94tOf/nTe9KY3LbnOPe95zyXXaNtA2w0AAAAAAHBitm/f3kidbrfbSJ02WbkNAAAAANAnHvKQh2TXrl0ndO3c3NxxZ3H/8i//cqamppa50+Un3AYAAAAA6BMzMzO59NJL0+l0UkpJrTVJUkrJzMzM4U0jj9xA8sh53N1uN3v27MmDH/zglp9k6YTbANCwoaGhJMno6GirfQCwdo2NjbXdAgCwTN73vvfl3e9+95LrNDXepE3CbQBo2GKgMDw83GofAKxdIyMjbbcAACyTl770pZmamsqhQ4du95rZ2dnbjCI58vjWt76Vm2++eQW7Xh7CbQAAAACAPrFhw4Z83/d9352OHjnesXjtnj172n6MRgi3AQAAAAD6xJ/+6Z/mr/7qr07qnoGBgWzZsiVbt27NKaeckoc85CE599xzl6nDlSPcBoCGmbkNQNvM3AaA1ev0008/6Xvm5uYyPj6e8fHxDAwMZHBwMDfddNMydLeyhNsA0DAztwFom5nbALB6vehFL8qLXvSizM3N3ekYkts7Lrnkklx77bVtP8qSCbcBAAAAAPrMwMBANm3alE2bNp30vX//93+/DB2tvIG2GwAAAAAAgJNl5TYAAAAAQB+59dZbMzMzk16vl16vl06nk263e9zz4722Z8+e7Nixo+3HWDLhNgAAAABAn7j44ovztre9bcl1zjzzzAa6aZdwGwAAAACgTzzpSU/KJZdckv3796eUklprkqSUcrv31FoPr/Kenp5Okuzdu3dF+l1Owm0AAAAAgD5x5pln5k//9E/v8v2zs7O54IILMjs722BX7RBuAwAAAAD0if379+e3f/u3MzExcULX93q9dLvdo2ZuT01N5YEPfOAyd7r8hNsA0LChoaEkyejoaKt9ALB2jY2Ntd0CALBMLrvssnz2s59dch0ztwGA21gMFIaHh1vtA4C1a2RkpO0WAIBl8rKXvSwPf/jDMzMzk16vl6mpqUxOTmZycjITExPHPSYnJ9PpdI6qc/PNN7f0BM0RbgMAAAAA9IlPfvKT+c3f/M0l17n3ve/dQDftGmi7AQAAAAAATszZZ5/dSJ0DBw40UqdNwm0AAAAAgD4xODiYe93rXkuuMzc310A37TKWBAAaZkNJANpmQ0kAWL3++Z//ObfeeuuS6zQRkLdNuA0ADbOhJABts6EkAKxe3//9359nP/vZ6Xa76Xa76fV66XQ6h8+73W46nc5xzxePSy+9NLt37277UZZMuA0AAAAA0EfWr1+f9evX55RTTkmS1FozPT19VJh9ZOB97Png4GDLT9AM4TYAAAAAQJ/4h3/4h1x44YVLrrNt27YGummXDSUBAAAAAPpEU7Oyp6enG6nTJiu3AQAAAAD6xHd+53fmcY97XCYmJu7wurm5ufR6vRw8eDCTk5PpdDpHvX/s9/1IuA0ADRsaGkqSjI6OttoHAGvX4ubGAMDq88lPfjJXXnnlkuucccYZDXTTLuE2ADRsMVAYHh5utQ8A1q6RkZG2WwAAlsljH/vY/NEf/dGS69x6660NdNMu4TYANMzKbQDaZuU2AKxe119/fSN1tmzZ0kidNgm3AaBhVm4D0DYrtwFg9TrvvPNy3nnnpdaa6enp9Hq9dDqddLvdo86Pdyy+f/HFF2fv3r1tP8qSCbcBAAAAAPpMKSWDg4MZHBzMqaeeelL3fvrTn16mrlaWcBsAAAAAoE90Op28973vzcGDB2/3mtnZ2XS73XQ6ncOrtXu93uEV3DfddFN27Nixck0vE+E2ADTMzG0A2mbmNgCsXh/84Afznve8Z8l1tm/f3kA37RJuA0DDzNwGoG1mbgPA6vVDP/RD2bZtW7rd7m3em5ubO2rF9rHni8d1112Xm2++uYXumyXcBgAAAADoE+vXr8/zn//8JdXYuXNnM820bKDtBgAAAAAA4GQJtwEAAAAA6DvGkgAAAAAArGIzMzNHzdyenp5uu6VGCLcBAAAAAPrE1772tVxwwQVLrvOwhz2sgW7aJdwGgIYNDQ0lSUZHR1vtA4C1a2xsrO0WAIBlcv311zdS59RTT22kTpuE2wDQsMVAYXh4uNU+AFi7RkZG2m4BAFgmp512WiN1er1eI3XaJNwGgIZZuQ1A26zcBoDV66tf/WojdbZs2dJInTYNtN0AAAAAAAAn5oYbbmikznOe85xG6rTJym0AaJixJAC0zVgSAFi9tm/f3kidj3/84/mJn/iJRmq1RbgNAA0zlgSAthlLAgCr1y233NJInfPPP7+ROm0SbgNAw6zcBqBtVm4DwOp13/vet5E6l19+eV7zmtc0UqstZm4DAAAAAPSJc845p5E6+/bta6ROm6zcBgAAAADoE+ecc0527dp1p9fVWjM9PZ1Op5Nut5ter5dut5tOp5M3v/nNmZqaWoFul5dwGwAAAABglSmlZHBwMIODg7d5b9OmTS101DxjSQAAAAAA6DvCbQAAAAAA+o5wGwAAAACAviPcBgAAAACg7wi3AQAAAADoO8JtAAAAAAD6zvq2GwAAAAAA4K6bnZ1Nt9u906PX66XT6WRiYqLtlhsh3AYAAAAA6BN///d/n1/+5V9ecp1t27Y10E27jCUBAAAAAOgTp512WiN1er1eI3XaZOU2AAAAAECfOOecc7Jr1647va7Wmunp6cOjSI4cS/LmN785U1NTK9Dt8hJuAwAAAAD0idnZ2fzd3/1dut3uUa/Pzc0dd7728V7bt29fS903S7gNAA0bGhpKkoyOjrbaBwBr19jYWNstAADL5KKLLsqf/MmfLLnO9u3bG+imXcJtAGjYYqAwPDzcah8ArF0jIyNttwAALJMXvvCF2bNnTw4dOnTc92dnZ9PtdnPgwIFMTEwcPo5d6X3zzTevRLvLSrgNAAAAANAnrr766nz+859Pt9tNKeWo2drdbjczMzMnVGfbtm3L3OnyE24DQMOMJQGgbcaSAMDqdeWVV+aGG244qXsGBgaydevWbNmyJVu3bs22bdty/vnnL1OHK0e4DQANM5YEgLYZSwIAq9crXvGKnH322el0OodXa5/oMTU1lf379+fAgQMZHBzMr/zKr7T9OEsi3AYAAAAA6BP3vve985znPGdJNXbu3Jlaa0MdtWeg7QYAAAAAAOBkCbcBAAAAAOg7wm0AAAAAAPqOmdsAAAAAAH2u1pper3d4o8lOp5Nut3vc8wMHDrTdbiOE2wAAAAAAfeKzn/1sfvEXf3HJdbZu3dpAN+0ylgQAAAAAoE+ccsopjdSZnZ1tpE6brNwGAAAAAOgTO3bsyLnnnpvJycnbvabWmunp6Rw8eDATExOZnJxMp9M56ppDhw4td6vLTrgNAA0bGhpKkoyOjrbaBwBr19jYWNstAADL5OMf/3h27dq15DpnnXVWA920S7gNAA1bDBSGh4db7QOAtWtkZKTtFgCAZfKkJz0p73jHO5ZcZ+/evQ100y7hNgA0zMptANpm5TYArF7XXHNNI3W2bdvWSJ02CbcBoGFWbgPQNiu3AWD1Ov/88/PYxz728DztEz263e5Rdfbs2dPSEzRHuA0AAAAA0Cf+4i/+In/2Z392UvcMDAxky5Yt2bhx4+Hj8Y9//PI0uIKE2wDQMGNJAGibsSQAsHoNDg6e9D1zc3M5ePBgpqenMzMzk5mZmXQ6nWXobmUJtwGgYcaSANA2Y0kAYPX64R/+4bzoRS9Kt9u9y8cVV1yRq666Ki960YvafpwlEW4DAAAAAPSJvXv35k1velPGx8dP+J5er5der5dut5tOp5O5ubmsW7duGbtcGcJtAGiYsSQAtM1YEgBYvXbt2pUvfvGLS65z+umnN9BNu4TbANAwY0kAaJuxJACwej384Q/P0NBQDh48mE6nk8nJyUxMTGRubu6k6uzfv395GlxBwm0AaJiV2wC0zcptAFi9Pv7xj5/0z/qBgYFs3bo1W7ZsydatW7Nt27a85CUvWZ4GV5BwGwAaZuU2AG2zchsAVq8XvvCFucc97nHSm0ju37//qNXa97jHPfJLv/RL7T1IA4TbAAAAAAB94gEPeEBe97rXnfR9s7Oz6fV66XQ6ef3rX5/p6ell6G5lCbcBAAAAAFaRxSD79lZx93q9tltshHAbAAAAAKBPXH311fmZn/mZJdd5zGMe00A37RJuA0DDbCgJQNtsKAkAq9ehQ4caqbNu3bpG6rRJuA0ADbOhJABts6EkAKxeT3jCE7Jr167bvF5rzfT0dLrdbjqdzuGxJEeeLx7veMc7MjEx0UL3zRJuAwAAAAD0uVJKBgcHMzg4mC1bttzhte9973tXqKvlNdB2AwAAAAAAcLKs3AYAAAAA6BOzs7P55Cc/mU6nk1JKaq2H35uZmTlq/MixR6/XS6fTybe+9a3s2LGjvYdoiHAbABpmQ0kA2mZDSQBYvd73vvflXe9615LrbN++vYFu2iXcBoCG2VASgLbZUBIAVq8Xv/jFmZyczKFDh477fq/Xy9TUVCYnJzMxMXH46Ha7R1138803r0S7y0q4DQAAAADQJ770pS/loosuWnKdO9t0sh8ItwGgYcaSANA2Y0kAYPUaGBhopM6Rs7r7lXAbABpmLAkAbTOWBABWr0c96lHZtWvX7b4/OzubXq93hxtLjoyM5MCBAyvY9fIQbgMAAAAArBLr1q3L5s2bs3nz5tu95p3vfOcKdrR8mlnDDgAAAAAAK0i4DQAAAABA3xFuAwAAAADQd4TbAAAAAAD0HeE2AAAAAAB9R7gNAAAAAEDfEW4DAAAAANB3hNsAAAAAAPSd9W03AAAAAADAyam1ZmZmJt1u96ij1+ul0+kc93zxmltvvTU7duxo+xGWTLgNAAAAANAnLrnkkvzxH/9xut1u5ubm7lKNDRs25EEPelDDna084TYANGxoaChJMjo62mofAKxdY2NjbbcAACyTf/3Xf83U1NRRr23cuDFbt27Nli1bsnXr1uMeW7ZsySmnnJLBwcFs2LAhZ599dktP0BzhNgAAAABAn7j//e9/m9e63W52796d3bt3n3CdV77ylbnggguabG3F2VASAAAAAKBPrF/fzHrldevWNVKnTcJtAAAAAIA+cejQoUbqzMzMNFKnTcaSAEDDFuecDg8Pt9oHAGvXyMhI2y0AAMvkB3/wB3PKKaek0+nc5r1aa3q9Xrrd7h0eX/3qV3PDDTe00H2zhNsAAAAAAH2ilJINGzZkdnb2Nu/Nzc1ldnY2AwMDWbduXdatW3fU+eKxWgi3AaBhQ0NDSZLR0dFW+wBg7Vr8FBEAsPq8733vy7vf/e4l19m+fXsD3bRLuA0ADTOWBIC2GUsCAKvXS1/60nQ6nTucvT07O5tut5tOp5Ner3f46+JYkptuuik333zzCna9PITbAAAAAAB9YnBwMA972MPS6/UOv1ZrzfT09FGB9pEzto99bffu3S0+QXOE2wDQMGNJAGibsSQAsHpddNFFeec737nkOsaSAAC3YSwJAG0zlgQAVq9nPvOZjYTb3/72txvopl3CbQBomJXbALTNym0AWL0uv/zyRuqceeaZjdRpk3AbABpm5TYAbbNyGwBWr6c+9an5kz/5kyXX2bNnTwPdtEu4DQANs3IbgLZZuQ0Aq1dTP+fvda97NVKnTcJtAGiYldsAtM3KbQBYvb7/+78/z372s9PtdtPtdtPr9dLpdO7w/NhrL7vssuzevbvtR1ky4TYAAAAAQB9Zv3591q9fn1NOOeUu3f+FL3yh4Y7aMdB2AwAAAAAAcLKE2wAAAAAA9B3hNgAAAAAAfcfMbQAAAACAVWx2dja9Xi/dbjedTiczMzNtt9QI4TYAAAAAQJ/42te+lgsuuGDJdc4555wGummXcBsAGjY0NJQkGR0dbbUPANausbGxtlsAAJbJdddd10idLVu2NFKnTcJtAGjYYqAwPDzcah8ArF0jIyNttwAALJNnPetZedaznpVaa6anpw+PGlkcO3JHR6/XS6fTycUXX5y9e/e2/ShLJtwGAAAAAOgzpZQMDg5mcHDwpFdhf/rTn16mrlaWcBsAAAAAoE90Op28973vzcGDB1NKSa01yXzYvWhmZuYOV27fdNNN2bFjR0tP0BzhNgA0zMxtANpm5jYArF4f/OAH8573vGfJdbZv395AN+0SbgNAw8zcBqBtZm4DwOr1jGc8I+9+97uXXGf37t0NdNMu4TYANMzKbQDaZuU2AKxen/vc5xqpc9pppzVSp03CbQBomJXbALTNym0AWL3OOeecRupMTEw0UqdNwm0AaJiV2wC0zcptAFi9rrnmmkbqrIaV2wNtNwAAAAAAwImZnp5uu4W7DSu3AaBhxpIA0DZjSQBg9XrZy16WRz7ykZmZmUmSzM7OptvtntRx5ZVX5sYbb2z5SZZOuA0AAAAA0CcOHjyYD33oQ5mcnLzD62qt6fV66fV66XQ66Xa7R52XUlao4+Uj3AaAhpm5DUDbzNwGgNXrIx/5SD7xiU8suc797ne/Brppl3AbABpmLAkAbTOWBABWr4GBZrZRXLduXSN12mRDSQAAAACAPjE4ONhInVprI3XaJNwGAAAAAFhjOp1O2y0smbEkANAwM7cBaJuZ2wCwep111lmN1Ol2u43UaZNwGwAaZuY2AG0zcxsAVq8nPelJ2bVr121en5mZSbfbPXx0Op10u91MTExkYmIik5OTmZiYyPj4eC677LLceuutLXTfLOE2AAAAAECfuPbaa/MTP/ETS66zefPmBrppl3AbABpmLAkAbTOWBABWr5tvvrmROps2bWqkTpuE2wDQMGNJAGibsSQAsHo97WlPO2osydzcXHq9Xrrd7uGvnU7nuOeLx1/91V8ZSwIAAAAAwMqbnZ29wwD7eEev10un08ns7Gzb7TdCuA0AAAAA0Cc+8YlP5Ld+67eWXOe0005roJt2DbTdAAAAAAAAJ+ahD31oBgaWHutOTk420E27hNsAAAAAAH1i3bp1ucc97rHkOrXWBrppl7EkANCwoaGhJMno6GirfQCwdi1ubgwArD5XX311Dhw4sOQ697znPZfeTMuE2wDQsMVAYXh4uNU+AFi7RkZG2m4BAFgmz33uc/Oc5zznhDaQPN5x8ODBXHrppdm9e3fbj7Jkwm0AAAAAgD5x8803541vfGP279+fUsrh8SKllDu8b3p6Ot1uN3Nzc0nmx5v0O+E2ADTMWBIA2mYsCQCsXp/73Odyww03LLnOve997wa6aZdwGwAaZiwJAG0zlgQAVq8f+IEfyLnnnpuZmZnDo0k6nc4dnh/72ujoqLEkAAAAAACsnH379uXXf/3XMz4+fkLX11rT7XaPCrenp6czMDCwzJ0uP+E2ADTMWBIA2mYsCQCsXpdffnn++Z//ecl17nvf+zbQTbv6P54HAAAAAFgjZmZm2m7hbsPKbQBomJnbALTNzG0AWL1e+MIXZs+ePTlw4EBKKam1JklKKYevqbVmZmYm3W73qGNx/vbu3bvzjW98o61HaIxwGwAAAACgT2zevDlPf/rTMz09ffi1Xq933A0lF49jXzvRed13d8JtAGiYmdsAtM3MbQBYvd7//vfnj//4j5dcZ/v27Q100y7hNgA0zFgSANpmLAkArF7Pfvaz86UvfSkHDhy402vn5uYOjyM5ciX3gQMHcsstt6xAt8tLuA0AAAAA0Ce2bt2a173udZmdnT0cXp/s8ZnPfObwrO5+JtwGAAAAAOgTH/rQh/IHf/AHS65z1llnNdBNu4TbAAAAAAB94ulPf3p27dqViYmJO712dnb28BiSbrd71Ht79uxZrhZXjHAbAAAAAKBP7N69O1/60peWXGdwcLCBbtol3AaAhg0NDSVJRkdHW+0DgLVrcXNjAGD1aWojyI0bNzZSp03CbQBo2GKgMDw83GofAKxdIyMjbbcAACyTpz3tadm1a9fh72utmZ6eTq/XO+ENJd/znvdk//797T1EQ4TbAAAAAAB9pNaamZmZdLvd9Hq9dDqdw+fdbjedTue454vH7Oxs24/QCOE2AAAAAECf+MQnPpHf+q3fWnKd008/vYFu2jXQdgMAAAAAAJyYc845Jxs2bFhynYmJiQa6aZeV2wAAAAAAfeL+979/LrvssiTJ3Nzc7c7aPnY0ydTUVCYmJjI+Pp7LLrssvV6v5SdZOuE2AAAAAECfuOKKK/Lrv/7rS65z5plnNtBNu4wlAQAAAADoE02NExkY6P9o2MptAGjY0NBQkmR0dLTVPgBYu8bGxtpuAQBYJtu3b2+kTqfTaaROm4TbANCwxUBheHi41T4AWLtGRkbabgEAWCbT09Ntt3C30f9rzwEAAAAA1ogzzjijkTrdbreROm2ychsAAAAAoE+ceeaZ+e7v/u6Mj4+nlJJaa5KklHKba2dnZ9PtdnPgwIHbjCHp9Xor0u9yEm4DQMPM3AagbWZuA8DqdcUVV+SLX/zikuvc5z73aaCbdhlLAgAAAADQJ8zc/n+s3AaAhtlQEoC22VASAFavF7/4xdm/f38OHTp0u2NJ5ubm0uv10uv10ul00u120+v10u120+12c8stt+Qb3/hGW4/QGOE2AAAAAECf2LRpU574xCceNTN7cbb2Ypi9GGQvnh8ZcHc6nezbt6/FJ2iOcBsAGmbmNgBtM3MbAFaviy66KO94xzuWXGf79u0NdNMu4TYANMxYEgDaZiwJAKxez33uc3PddddlcnLydseSLJqZmTk8iuTIldsTExO55ZZbVrr1xgm3AQAAAAD6xNatW3PhhRcuqcbOnTsPh+L9bKDtBgAAAAAA4GRZuQ0AAAAAsMrUWjM9PX3cDSW73W7b7TVCuA0AAAAA0Ce+/OUv5z/+x/+45DpDQ0NLb6Zlwm0AaNjiXxBGR0db7QOAtWtxc2MAYPXZs2dPI3U2btzYSJ02CbcBoGGLgcLw8HCrfQCwdo2MjLTdAgCwTJ7ylKdk165dR702Ozubbrd73GNqaiqTk5OZmJg4fFx66aXZv39/Ow/QIOE2AAAAAECfuP766/Oa17xmyXWs3AYAbsNYEgDaZiwJAKxe3/jGNxqpc8oppzRSp03CbQBomLEkALTNWBIAWL2e8Yxn5BnPeEaSpNaa6enpdDqddLvd9Hq9dLvddDqd25wfOHDgqLEk+/bta/lJlk64DQAAAADQJ77xjW/kx3/8xzMzM7OkOoODgw111B7hNgA0zFgSANpmLAkArF7XXHPNkoPtJNm6dWsD3bRLuA0ADTOWBIC2GUsCAKvXd3zHdzRSZ2pqqpE6bRJuA0DDrNwGoG1WbgPA6tVUKL1u3bpG6rRJuA0ADbNyG4C2WbkNAKvX+Ph4I3WMJQEAbsPKbQDaZuU2AKxeX/nKV076noGBgWzdujVbtmzJ1q1bs23btnzP93zPMnS3soTbANAwK7cBaJuV2wCwel1wwQV50pOelE6nk263m16vl06nk6mpqUxMTNzusX///uzfv/9wnQ0bNuRxj3tcew/SAOE2AAAAAECf+D//5//kl37pl5ZcZ9u2bQ10066BthsAAAAAAODEbNmypZE609PTjdRpk5XbAAAAAAB94uEPf3h27dp13PdqrYfHlBw6dCgTExMZHx/P5OTkUSNKLr300hw6dGiFO2+ecBsAAAAAoE/80z/9U974xjcuuU5TK8DbZCwJAAAAAECfWLduXSN1aq2N1GmTldsAAAAAAH3iUY961O2OJUmSubm5HDp06PAoktsbS3LgwIEV7Hp5CLcBAAAAAPrE2NhY3vCGNyy5zimnnNJAN+0SbgNAw4aGhpIko6OjrfYBwNo1NjbWdgsAwDLpdruN1GlqvEmbhNsA0LDFQGF4eLjVPgBYu0ZGRtpuAQBYJo9//ONvdyzJzMxMOp1Oer1eOp1Out3ucc/f8Y53ZGJiYoU7b55wGwAAAACgj9x6662ZmZlJr9e7TXjd7XYPB9zdbve4x9TUVNuP0AjhNgAAAABAn7j44ovztre9bcl1zjjjjAa6aZdwGwAAAACgTzzpSU/KJZdckv3795/wPbXWTE9Pp9vtZmZmJkmyb9++Zepw5Qi3AQAAAAD6xJlnnpk/+ZM/ucOxI8c7Fq8/ePBgLrvssszOzrb9KEsm3AYAAAAA6BMf+9jH8ju/8ztLrrMaxpIMtN0AAAAAAAAn5hGPeES2bt265DonM9bk7kq4DQAAAADQJ2ZmZjIxMbHkOqWUBrppl7EkANCwoaGhJMno6GirfQCwdo2NjbXdAgCwTK699tpG6mzZsqWROm0SbgNAwxYDheHh4Vb7AGDtGhkZabsFAGCZnHXWWY3U6Xa7jdRpk7EkAAAAAAB94mtf+1ojdazcBgBuw1gSANpmLAkArF4bNmxopE6ttZE6bRJuA0DDjCUBoG3GkgDA6nXf+943j3nMYzI1NZUDBw5kYmIi4+PjmZubO6k6TWxK2TbhNgA0zMptANpm5TYArF6jo6P5/Oc/f1L3lFKydevWo44f+IEfWKYOV45wGwAaZuU2AG2zchsAVq+Xv/zlOeuss9Ltdm9z9Hq9dLvddDqdw+dHHjfffHNuuOGGJMnmzZtz4YUXtvw0SyPcBgAAAADoE9/5nd+ZH/7hH77L98/OzuaCCy7I7Oxsg121Y6DtBgAAAAAAWBnr1q1LKaXtNhph5TYAAAAAwCo2Nzd3eGxJp9PJzMxM2y01QrgNAAAAANAnrr/++nz84x8/as52p9M5aub2scf09PRt6pxzzjktdN8s4TYANGxoaCjJ/A7WANCGxc2NAYDV58Mf/nA++tGPHvXaxo0bs3Xr1mzZsiXbtm07fD44OJhNmzZl48aNGRwczMaNGw8fj3zkI1t6guYItwEAAAAA+sSWLVtu81q3283u3buze/fuw6+VUm4TaB8Zdm/YsCFPe9rTVrL1xgm3AaBhi6vlhoeHW+0DgLVrZGSk7RYAgGXy4z/+43nmM5953PEjxx63N7LkX/7lX7J161bhNgAAAAAAK2PdunV54AMfuKQaO3fubKaZlg203QAAAAAAAJws4TYAAAAAAH1HuA0AAAAAQN8RbgMAAAAA0HeE2wAAAAAA9J31bTcAAAAAAMDymZ2dTbfbPXxMT0+33VIjhNsAAAAAAH3ia1/7Wi644IIl13nYwx7WQDftEm4DQMOGhoaSJKOjo632AcDaNTY21nYLAMAyuf766xups2XLlkbqtEm4DQANWwwUhoeHW+0DgLVrZGSk7RYAgGXyfd/3fbnPfe6T6enpzMzMpNPpZHJyMhMTE7d7TE5OptPpHFVn7969LT1Bc4TbANAwK7cBaJuV2wCwen3gAx/IH/3RHy25zvbt2xvopl3CbQBomJXbALTNym0AWL3OP//8XHXVVZmYmLjTa2utmZ6ePmozyW63m0OHDuXb3/72CnS7vITbAAAAAAB9Ytu2bfmN3/iNu3z/7OxsLrjggszNzTXYVTuE2wAAAAAAfeKWW27Jz//8z2f//v0ppaTWmiQppdzuPUeu4J6ZmUmSPOhBD1qRfpeTcBsAGmbmNgBtM3MbAFavz372s/n617++5DqnnXba0ptpmXAbABpm5jYAbTNzGwBWrxe+8IX53u/93hw6dCiTk5OZmJg4oaPb7R5Vx8xtAAAAAABWzEc/+tH87u/+7pLrnHHGGQ100y7hNgAAAABAn3jkIx+Z008/Pfv27TvhmdvJ/NztIzeRvPXWW5e1z5Ug3AYAAAAA6BP3uc998oEPfCBzc3Ppdrvp9XrpdDq3OT/eMTU1lYmJiVx66aWHN5bsZ8JtAAAAAIA+cemll+Ytb3nLkuts3769gW7aNdB2AwAAAAAAnJhDhw613cLdhnAbAAAAAKBP3Pe+922kzmoIyYXbAAAAAAB9YnJyspE669f3/8Rq4TYAAAAAQJ+4//3v30gdK7cBAAAAAFgxV199dSN1tm7d2kidNvX/2nMAAAAAgDXiqU99ai6//PKMj4+f8D0zMzPpdruHj1pr9u7du4xdrgzhNgAAAABAnzj99NPzh3/4h3f5/lprXvWqV2V2drbBrtphLAkAAAAAwBpRSmm7hcYItwEAAAAA6DvCbQAAAAAA+o6Z2wAAAAAAfWJycjJve9vbcuDAgTu9dmZmJp1OJ71e76gNJcfHx/OABzxgBbpdXsJtAGjY0NBQkmR0dLTVPgBYu8bGxtpuAQBYJh/96EdzxRVXLLnO/e53vwa6aZexJAAAAAAAfWI1bQi5VFZuA0DDFlfLDQ8Pt9oHAGvXyMhI2y0AAMvkOc95Tq655poTGksyOzt71EiSXq+XTqeTgwcP5oYbbliBbpeXcBsAAAAAoE9s3bo1r3vd6zI7O5u5ubmjZmmf6PGZz3wmtda2H2XJhNsAAAAAAH3iQx/6UP7gD/5gyXXOPPPMBrppl3AbAAAAAKBPPO1pT8uuXbsyPj6eUsrhFdi3N4u71prp6enD40k6nU7m5uayd+/elWx7WQi3AQAAAAD6xOmnn77klds7d+7M7OxsQx21R7gNAAAAANAn9u3blze/+c0ZHx+/zXvHruSutR5euX3kzO3p6el813d910q33jjhNgA0bGhoKEkyOjraah8ArF1jY2NttwAALJNPfepTueqqq5Zc54wzzmigm3YJtwGgYYuBwvDwcKt9ALB2jYyMtN0CALBMXvKSl+Qxj3lMZmdnj7sq+0SOf/zHf8wtt9zS9qMsmXAbAAAAAKBPlFKyY8eOJdXYuXNnI720baDtBgAAAAAA4GQJtwEAAAAA6DvCbQAAAAAA+o6Z2wAAAAAAfaLWmhtuuOHwhpK9Xi+dTie9Xu9ON5JcvHb37t1Lntt9dyDcBoCGDQ0NJUlGR0db7QOAtWtsbKztFgCAZfLXf/3Xefvb377kOmeddVYD3bRLuA0ADVsMFIaHh1vtA4C1a2RkpO0WAIBlcu655+bv/u7vMjExcULXz83NZXp6+qiV27Ozs9mzZ88yd7r8hNsAAAAAAH3itNNOy1ve8pbbHUOyGGAfeX7stVdccUVmZ2fbfpQlE24DAAAAAPSJSy65JG9961uXXOeMM85ooJt2CbcBAAAAAPrE4x73uHznd35n9u/ff1L3zc7OptvtHv5+3759DXe28oTbAAAAAAB9Yvv27Xnve997l+6ttabX6+U1r3nNqhhLMtB2AwAAAAAALL9SSjZu3JiBgdURC6+OpwAAAAAAYE0RbgMAAAAA0HfM3AYAAAAAWEXm5ubS7XbT6/XS7XbT6XSOOp+ammq7xUYItwEAAAAA+sTVV1+dn/mZn1lyncc+9rENdNMuY0kAAAAAAPrEV77ylUbqbN26tZE6bbJyGwAaNjQ0lCQZHR1ttQ8A1q6xsbG2WwAAlsm6desaqVNrbaROm4TbANCwxUBheHi41T4AWLtGRkbabgEAWCYveMELct5556XX693uTO1jz4997Yorrsi3vvWtth9lyYTbAAAAAAB9ZPPmzdm8efNdvv+qq65qsJv2CLcBAAAAAPrE7OxsLr/88nS73du8t7g6u9vtHl6xvfj9ka9961vfyo4dO1a++YYJtwGgYWZuA9A2M7cBYPV63/vel3e9611LrrN9+/YGummXcBsAGmbmNgBtM3MbAFavF7/4xZmYmMjBgwdTSjm8MWQp5fA1c3NzR63iPnbl9i233JKbb765rUdojHAbAAAAAKBPbN68OT/5kz+5pBo7d+5sppmWDbTdAAAAAAAAnCwrtwEAAAAAVpHZ2dnbjCQ58piammq7xUYItwEAAAAA+sRVV13VyB5Pj3nMY5beTMuMJQEAAAAA6BNNrbpet25dI3XaZOU2AAAAAECfeMITnpBdu3bd5vVaa6anp9Pr9dLpdNLtdnPgwIGMj49ncnIyExMTh49LL700ExMTLXTfLOE2AAAAAECfuOaaa/JTP/VTS66zefPmBrppl3AbABo2NDSUJBkdHW21DwDWrrGxsbZbAACWyd69exupMzg42EidNgm3AaBhi4FCExt8AMBdMTIy0nYLAMAyecpTnnKbsSSzs7Pp9XrpdrsndPz5n/95xsfHW3qC5gi3AQAAAAD6yNzc3OEw+8gZ20eeH+9YfH9mZqbtR2iEcBsAAAAAoE988IMfzB/+4R+m1nrS95ZSsnHjxmzcuDHnnHPOMnS3soTbANAwM7cBaJuZ2wCwen3961+/TbC9cePGbN26NVu2bMm2bduyZcuWbN269TbHKaeckk2bNmXjxo253/3u19ITNEe4DQANM3MbgLaZuQ0Aq9eTn/zkfPOb37zNyJGpqans378/X/3qV0+ozgte8IK84Q1vWOZul5dwGwAAAACgTzzhCU/IE57whNt9f25u7vB87W63m06nc5vNJt/61rfaUBIAAAAAgLuPgYGBbN68OZs3b77da97xjnesYEfLZ6DtBgAAAAAA4GQJtwEAAAAA6DvCbQAAAAAA+o5wGwAAAACAviPcBgAAAACg7wi3AQAAAADoO8JtAAAAAAD6zvq2GwAAAAAAYPnMzc2l1+ul2+2m2+1mZmam7ZYaIdwGAAAAAOgTX//61/OqV71qyXXOOeecBrppl3AbABo2NDSUJBkdHW21DwDWrrGxsbZbAACWybXXXttInS1btjRSp03CbQBo2GKgMDw83GofAKxdIyMjbbcAACyT888/P+eff/5tRo0sHr1eL51O57jni9d8+MMfzt69e9t+lCUTbgMAAAAA9JmBgYFs2rQpGzZsyODg4OGj2+0efu3Y88HBwWzYsCHr1q1ru/1GCLcBAAAAAPrE6OhofvVXf3XJdc4444wGumnXQNsNAAAAAABwYm699dZG6qyG1dtWbgNAw2woCUDbbCgJAKtXUyuue71eI3XaJNwGgIbZUBKAttlQEgBWryc/+cnZtWvXUa/VWo+7uWS3282BAwcyOTmZiYmJw8ell16affv2tfQEzRFuAwAAAAD0ieuuuy6vfe1rl1xn06ZNDXTTLuE2ADTMWBIA2mYsCQCsXt/85jcbqbN58+ZG6rRJuA0ADTOWBIC2GUsCAKvXKaec0kidubm5Ruq0aaDtBgAAAAAAODE33nhjI3Ws3AYAbsNYEgDaZiwJAKxeTa3cXg2E2wDQMGNJAGibsSQAsHo961nPyrOe9azUWjM9PZ1ut5tOp5Ner3fUeafTSbfbPer84MGDmZiYyKWXXpqbb7657UdZMuE2AAAAAECfuPHGG/PTP/3T2b9//5LqrF/f/9Fw/z8BANzNGEsCQNuMJQGA1WtsbGzJwXaS3Ote91p6My0TbgNAw4wlAaBtxpIAwOr1vOc9L89+9rPT7Xbv8nHppZdm9+7dbT/Kkgm3AQAAAAD6yLp163KPe9wj97jHPe7S/Z///Ocb7qgdwm0AAAAAgD4xMzOTj3/845mamrrNe3Nzc4c3lryj46abbsqOHTtWvvmGCbcBoGFmbgPQNjO3AWD1et/73pd3v/vdS65zv/vdr4Fu2iXcBoCGmbkNQNvM3AYA7sz27dvbbmHJhNsA0DArtwFom5XbALB69Xq9k75nYGAgp556ajZv3pxNmzZlcHAwGzZsWIbuVpZwGwAaZuU2AG2zchsAVq9XvepVee5zn3u787R7vV46nc7h2dtHni8eV155ZT7zmc/kWc96VtuPsyTCbQAAAACAPlFKWfJIkZ07dzbTTMsG2m4AAAAAAABOlnAbAAAAAIC+I9wGAAAAAKDvCLcBAAAAAOg7wm0AAAAAAPqOcBsAAAAAgL4j3AYAAAAAoO8ItwEAAAAA6DvCbQAAAAAA+s76thsAAAAAAODkzM3NpdvtptfrpdPp3Ob8eMfi+7feemt27NjR9iMsmXAbAAAAAKBPXHrppXnLW96y5DqnnXZaA920y1gSAAAAAIA+8ZCHPKSROpOTk43UaZOV2wAAAAAAfWLHjh3ZtWvXSd1Ta8309HS63W46nU7e8IY3pNfrLVOHK0e4DQAAAACwipVSMjg4mMHBwWzZsiXr16+OWNhYEgAAAAAA+s7qiOgBAAAAANaoubm5dLvd9Hq9dDqddLvdOzwmJibabrkRwm0AAAAAgD5x+eWX5zd+4zeWXOc7vuM7GuimXcJtAGjY0NBQkmR0dLTVPgBYu8bGxtpuAQBYJtdee20jdZ7whCc0UqdNwm0AaNhioDA8PNxqHwCsXSMjI223AAAskzPOOKOROl/4whfyiEc8opFabbGhJAAAAABAn3jyk5+cM888Mxs2bDjh43huuummFe68eVZuAwAAAAD0iU6nk29/+9tLrjMw0P/rnoXbANAwM7cBaJuZ2wCwen3lK19ppM6pp57aSJ02CbcBoGFmbgPQNjO3AWD1Ou+883LeeeclSWZnZ9PtdtPpdNLr9dLtdm/36HQ6mZiYyMTERC699NLs27ev5SdZOuE2AAAAAECfuOGGG/KTP/mTOXjw4JLq3N4s7n4i3AaAhhlLAkDbjCUBgNXr85///JKD7STZvn17A920q/+nhgMAAAAArBGHDh1qu4W7DSu3AaBhZm4D0DYztwFg9fqhH/qhnH766el2u0e9XmvN9PT04RnbvV4vnU7nqLnbi6/967/+a2644YaWnqA5wm0AAAAAgD6xbt26nH/++UuqsXPnzmaaaZlwGwAAAACgjyyuyO71eul2u+l0Ond4fuxre/fuzY4dO9p+jCUTbgMAAAAA9IlLLrkkb33rW5dc54wzzmigm3bZUBIAAAAAoE88+tGPbqTOrbfe2kidNlm5DQANGxoaSpKMjo622gcAa9fi5sYAwOrT1L81Tz/99EbqtEm4DQANWwwUhoeHW+0DgLVrZGSk7RYAgGXy4he/OHv37s2hQ4du95paa2ZmZo6aub04o7vT6WT37t25+eabV7Dr5SHcBgAAAADoE5s3b87rX//6JdXYuXNnM820zMxtAAAAAAD6jnAbAAAAAIC+YywJAAAAAECfqLXmxhtvzMzMTGqtx52pfeT57c3c3rFjR9uPsmTCbQBo2NDQUJLmdrAGgJO1uLkxALD6fOhDH8of/MEfLLnOWWed1UA37RJuA0DDFgOF4eHhVvsAYO0aGRlpuwUAYJk8/elPz65duzIxMZFSSmqtSZJSym2unZ2dTafTycGDB9PpdI56b8+ePSvS73ISbgMAAAAA9Indu3fnS1/60pLrDA4ONtBNu4TbANAwY0kAaJuxJACwen37299upM7GjRsbqdMm4TYANMxYEgDaZiwJAKxeT33qU7Nr167D39daMzMzc5sNJRePTqeTycnJTE5OZmJiIuPj47nsssuyf//+9h6iIcJtAAAAAIA+8ZWvfCWvfvWrl1zHym0A4DaMJQGgbcaSAMDq9fWvf72ROqecckojddok3AaAhhlLAkDbjCUBgNXrmc98Zp75zGcmSebm5tLr9Y4aQ3JHx+LYkg9+8IPZt29fy0+ydMJtAAAAAIA+NDAwkE2bNmXTpk0ndd/ll1++TB2trIG2GwAAAAAAgJNl5TYAAAAAwBqwOMZkbm6u7VYaIdwGAAAAAOgTN998c372Z3/2pGdmLwbbi84+++ymW1txwm0AaNjQ0FCSZHR0tNU+AFi7Fjc3BgBWnyuvvDI33XTTkuvc+973bqCbdgm3AaBhi4HC8PBwq30AsHaNjIy03QIA9K1Syi8keXGShyTpJvnHJL9Qa/1iq40teMELXpDzzjsvvV4vvV4v3W43nU7nDs+Pfe2KK67I7t27236UJTupcLuU8rwkP5PknCSnJflWki8k+b1a62ePufbUJD+X5KVJHpCks3Dt79ZaP36c2vdN8mNJhpI8Msl3JSlJzq61Xn9STwUAAAAAcNc8PckfJvmnzOeTb05yeSnlnFrryc0CWSabN2/O5s2b7/L9V111VYPdLE0p5aeSvC7JjoWXvpTk12utH7uze0843C6l/FaSNybZm+TiJHuSPCjJDyR5SSnlR2ut71m49p5J/j7Jdy80844kpyR5QZKPlVJ+ptb6+8f8EY9J8utJapKvJRlPcs8T7Q8AAAAAYKlqrecf+X0p5ZWZzyq/N8lHWmlqwezsbK688spcd911Ofvss/O4xz0u69ata7OlJnwz84ukr0sykPkF0BeXUh5da736jm48oXC7lLI9yX9JckuS76m1fvuI985N8qnM/wbjPQsvvynzwfaHkvxgrXVm4dozklyZ5HdKKX9ba73uiD/m80memuSqWutEKWU0ydNOpD8AAAAAgGWyJfOh661tNjE7O5s3vvGN+fKXv5xOp5NNmzbloQ99aH77t3+7rwPuWuuHj3npl0opP5nkiUmWHm4n+XeZ/y/wc0cG2wt/+K5SymSSM454+cULX395MdheuHZ3KeV3k/zPJD+R5GePeO+bmU/pAQAAAADuLt6WZCzJZ+/kumV15ZVX5stf/nKmpqaSJFNTUxkbG8trX/vabNu27bj3zM3NpdvtHp63vThz+8CBAyml5LOf/ezdavV3KWVdkpclOTXJZ+7s+hMNt69L0kvyuFLK6bXWPUf8gU/N/G8vLj7i+u0LX796nFqLrz3zBP9sAOgrQ0NDSZLR0dFW+wBg7Vrc3BgAWJpSyu8leXKSJ9daZ9vs5brrrkun0znqtbm5uXz1q8eLYO/c17/+9fzar/3a3WL1dynl4Zn/5cGmJAeSvKjW+i93dt8Jhdu11n2llJ9L8ntJrimlXJz52dsPzPwc7U9mfuj3oj1JviPzG0lec0y571r4+u9P5M8GgH6zGCgMDw+32gcAa9fIyEjbLQBA3yulvDXJDyU5t9Z61xLkBp199tnZtGnT4ZXbSTI4OJhXvOIVedCDHnTU6uzbO2688cZ86UtfytzcXJL51d/XXHNNrrzyyjzxiU9s69GS5NokQ5nfg/ElSf68lPL0WusX7+imUms94T+hlPLCJH+a5F5HvHx9kl+ptf7VEde9M8lrknwgyQ8v/lajlHJa5ncZfcDCpfeotU7lOI6YuX12rfX6E24SAAAAAGAJSilvy3yw/fRa65fb7idJzj333HVJLk3y+CT3SHIoyeeSnL9r164TWlV+7rnnXpj5/RIHjnh5Lsmv7Nq169cbbXgJSimXJ/m3WuuP3+F1Jxpul1LemOS/J/n9JH+Q5ObMr77+zSTPSvI/aq1vXLh2e5J/zPys7i8muSLz/4H/QJLJzK/qvkeSjbXW3u38eaMRbgMAAAAAK6iU8vYkr0zywhw9leJArfVAK02tMaWUTyW5qdb6iju87kTC7VLK05PsSvI3tdYXH/PePZL8a+YD67MXl+iXUs5I8t+SPD/JfTO/m+hHk/xa5uduT9Ra73kHf+ZohNsAAAAAwAoqpdxeYPqrtdY3rWQva0Ep5S1JPpbkhszv7fgjSX4uyfNqrX97R/ee6IaS37/wddexb9RaD5VSrkzyoiSPzMKGkbXW3Ul+ZuE4stlzk5TMjycBAAAAALjbqLWWtntYY7Ynec/C1/EkVyd5Tq310ju78UTD7Y0LX8+4nfcXXz/uiJFjvGbh63tP8M8GAAAAAGAVqrXuvKv3Dtz5JUmSv1/4+tpSyn2OfKOU8pwk35ukk+QzC68NlFJOPbZIKeXVSX44yViE2wAAAAAA3EUnunL7g0kuT/J9Sb5cSvmbzG8o+dDMjywpSX6+1rp34fp7JLmllPLJJIvzsp+S5HFJvpLkRbXW6WP/kFLKnx3x7b9f+PpbpZTJhfN31Vr/4QR7BgAAAABglTqhDSWTpJSyIclPJfmhJOdkPsDel+TKJL9fa73smGv/OMmTM7+ZZDIfan8wye/d3q6idzCsfdGraq1/dkINAwAAAACwap1wuA0AAAAAAHcXJzpzGwAAAAAA7jaE2wAAAAAA9B3hNgAAAAAAfUe4DQAAAABA3xFuAwAAAADQd4TbAAAAAAD0HeE2AAAAAAB9R7gNAAAAAEDfEW4DAAAAANB3/n+hfCIWm7IsdQAAAABJRU5ErkJggg==\n",
198 | "text/plain": [
199 | ""
200 | ]
201 | },
202 | "metadata": {
203 | "needs_background": "light"
204 | },
205 | "output_type": "display_data"
206 | }
207 | ],
208 | "source": [
209 | "mn.matrix(data)"
210 | ]
211 | },
212 | {
213 | "cell_type": "markdown",
214 | "metadata": {},
215 | "source": [
216 | "- There is 177 NaN values are present in Age feature it is approximately 20%"
217 | ]
218 | },
219 | {
220 | "cell_type": "markdown",
221 | "metadata": {},
222 | "source": [
223 | "## Now, Apply Capturing NaN values with a new feature method"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": 18,
229 | "metadata": {},
230 | "outputs": [],
231 | "source": [
232 | "data['Age_NaN'] = np.where(data['Age'].isnull,0,1)"
233 | ]
234 | },
235 | {
236 | "cell_type": "markdown",
237 | "metadata": {},
238 | "source": [
239 | "- data['Age_NaN'] this is our new feature\n",
240 | "- Where data['Age'] feature is having NaN values there data['Age_NaN'] values is 1 else 0"
241 | ]
242 | },
243 | {
244 | "cell_type": "code",
245 | "execution_count": 19,
246 | "metadata": {},
247 | "outputs": [
248 | {
249 | "data": {
250 | "text/html": [
251 | "\n",
252 | "\n",
265 | "
\n",
266 | " \n",
267 | " \n",
268 | " \n",
269 | " Survived \n",
270 | " Age \n",
271 | " Fare \n",
272 | " Age_NaN \n",
273 | " \n",
274 | " \n",
275 | " \n",
276 | " \n",
277 | " 0 \n",
278 | " 0 \n",
279 | " 22.0 \n",
280 | " 7.2500 \n",
281 | " 0 \n",
282 | " \n",
283 | " \n",
284 | " 1 \n",
285 | " 1 \n",
286 | " 38.0 \n",
287 | " 71.2833 \n",
288 | " 0 \n",
289 | " \n",
290 | " \n",
291 | " 2 \n",
292 | " 1 \n",
293 | " 26.0 \n",
294 | " 7.9250 \n",
295 | " 0 \n",
296 | " \n",
297 | " \n",
298 | " 3 \n",
299 | " 1 \n",
300 | " 35.0 \n",
301 | " 53.1000 \n",
302 | " 0 \n",
303 | " \n",
304 | " \n",
305 | " 4 \n",
306 | " 0 \n",
307 | " 35.0 \n",
308 | " 8.0500 \n",
309 | " 0 \n",
310 | " \n",
311 | " \n",
312 | "
\n",
313 | "
"
314 | ],
315 | "text/plain": [
316 | " Survived Age Fare Age_NaN\n",
317 | "0 0 22.0 7.2500 0\n",
318 | "1 1 38.0 71.2833 0\n",
319 | "2 1 26.0 7.9250 0\n",
320 | "3 1 35.0 53.1000 0\n",
321 | "4 0 35.0 8.0500 0"
322 | ]
323 | },
324 | "execution_count": 19,
325 | "metadata": {},
326 | "output_type": "execute_result"
327 | }
328 | ],
329 | "source": [
330 | "data.head()"
331 | ]
332 | },
333 | {
334 | "cell_type": "markdown",
335 | "metadata": {},
336 | "source": [
337 | "- We created a new feature for capturing a NaN \n",
338 | "- Now you can handle NaN in data['Age'] feature \n",
339 | "- For handling this data['Age'] feature you can use verious methods\n",
340 | "\n",
341 | " ex:\n",
342 | " - mean mode median imputation\n",
343 | " - [Kaggle](https://www.kaggle.com/rushikeshlavate/mean-median-mode-imputation-on-titanic-dataset) \n",
344 | " - [GitHub](https://github.com/Rushi21-kesh/Handling-Missing-Values/blob/main/1.%20Mean%20Median%20Mode%20imputation.ipynb)\n",
345 | " - random sample imputation\n",
346 | " - [Kaggle](https://www.kaggle.com/rushikeshlavate/random-sample-imputation-on-titanic-dataset)\n",
347 | " - [GitHub](https://github.com/Rushi21-kesh/Handling-Missing-Values/blob/main/2.%20Random%20Sample%20Imputation.ipynb)"
348 | ]
349 | },
350 | {
351 | "cell_type": "markdown",
352 | "metadata": {},
353 | "source": [
354 | "- We use 'capturing NaN values with a new feature' because after creating a new feature for NaN we replace NaN with other values. \n",
355 | "- It helps to the model to understand there is something happened here and it captures the importance of NaN. \n",
356 | "- This method is create additional features therfore it work better with less number of feature "
357 | ]
358 | },
359 | {
360 | "cell_type": "markdown",
361 | "metadata": {},
362 | "source": [
363 | "### I hope this notebook will helps you 😇😇😇\n",
364 | "## Thank you !"
365 | ]
366 | }
367 | ],
368 | "metadata": {
369 | "kernelspec": {
370 | "display_name": "Python 3",
371 | "language": "python",
372 | "name": "python3"
373 | },
374 | "language_info": {
375 | "codemirror_mode": {
376 | "name": "ipython",
377 | "version": 3
378 | },
379 | "file_extension": ".py",
380 | "mimetype": "text/x-python",
381 | "name": "python",
382 | "nbconvert_exporter": "python",
383 | "pygments_lexer": "ipython3",
384 | "version": "3.8.5"
385 | }
386 | },
387 | "nbformat": 4,
388 | "nbformat_minor": 4
389 | }
390 |
--------------------------------------------------------------------------------
/2. Random Sample Imputation.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Random Sample Imputation\n",
8 | "\n",
9 | "- Random Sample Imputation take a random observation from the feature.\n",
10 | "- After that we use random observation to replace NaN in that feature.\n",
11 | "- It should be used when data is missing completely at random (MCAR)"
12 | ]
13 | },
14 | {
15 | "cell_type": "markdown",
16 | "metadata": {},
17 | "source": [
18 | "### Import Required Libraries "
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 1,
24 | "metadata": {},
25 | "outputs": [],
26 | "source": [
27 | "import pandas as pd\n",
28 | "import numpy as np\n",
29 | "import seaborn as sns\n",
30 | "import matplotlib.pyplot as plt\n",
31 | "%matplotlib inline"
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "### Loading dataset"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 2,
44 | "metadata": {},
45 | "outputs": [
46 | {
47 | "data": {
48 | "text/html": [
49 | "\n",
50 | "\n",
63 | "
\n",
64 | " \n",
65 | " \n",
66 | " \n",
67 | " Survived \n",
68 | " Age \n",
69 | " Fare \n",
70 | " \n",
71 | " \n",
72 | " \n",
73 | " \n",
74 | " 0 \n",
75 | " 0 \n",
76 | " 22.0 \n",
77 | " 7.2500 \n",
78 | " \n",
79 | " \n",
80 | " 1 \n",
81 | " 1 \n",
82 | " 38.0 \n",
83 | " 71.2833 \n",
84 | " \n",
85 | " \n",
86 | " 2 \n",
87 | " 1 \n",
88 | " 26.0 \n",
89 | " 7.9250 \n",
90 | " \n",
91 | " \n",
92 | " 3 \n",
93 | " 1 \n",
94 | " 35.0 \n",
95 | " 53.1000 \n",
96 | " \n",
97 | " \n",
98 | " 4 \n",
99 | " 0 \n",
100 | " 35.0 \n",
101 | " 8.0500 \n",
102 | " \n",
103 | " \n",
104 | "
\n",
105 | "
"
106 | ],
107 | "text/plain": [
108 | " Survived Age Fare\n",
109 | "0 0 22.0 7.2500\n",
110 | "1 1 38.0 71.2833\n",
111 | "2 1 26.0 7.9250\n",
112 | "3 1 35.0 53.1000\n",
113 | "4 0 35.0 8.0500"
114 | ]
115 | },
116 | "execution_count": 2,
117 | "metadata": {},
118 | "output_type": "execute_result"
119 | }
120 | ],
121 | "source": [
122 | "df = pd.read_csv('Titanic.csv',usecols=['Age','Fare','Survived'])\n",
123 | "df.head()"
124 | ]
125 | },
126 | {
127 | "cell_type": "markdown",
128 | "metadata": {},
129 | "source": [
130 | "### Check null values"
131 | ]
132 | },
133 | {
134 | "cell_type": "code",
135 | "execution_count": 3,
136 | "metadata": {},
137 | "outputs": [
138 | {
139 | "data": {
140 | "text/plain": [
141 | "Survived 0\n",
142 | "Age 177\n",
143 | "Fare 0\n",
144 | "dtype: int64"
145 | ]
146 | },
147 | "execution_count": 3,
148 | "metadata": {},
149 | "output_type": "execute_result"
150 | }
151 | ],
152 | "source": [
153 | "df.isnull().sum()"
154 | ]
155 | },
156 | {
157 | "cell_type": "markdown",
158 | "metadata": {},
159 | "source": [
160 | " - There is 177 null values are present in Age feature."
161 | ]
162 | },
163 | {
164 | "cell_type": "markdown",
165 | "metadata": {},
166 | "source": [
167 | "## Now, we replace this NaN by using Random Sample Imputation"
168 | ]
169 | },
170 | {
171 | "cell_type": "code",
172 | "execution_count": 11,
173 | "metadata": {},
174 | "outputs": [
175 | {
176 | "data": {
177 | "text/plain": [
178 | "137 37.0\n",
179 | "Name: Age, dtype: float64"
180 | ]
181 | },
182 | "execution_count": 11,
183 | "metadata": {},
184 | "output_type": "execute_result"
185 | }
186 | ],
187 | "source": [
188 | "df['Age'].dropna().sample()"
189 | ]
190 | },
191 | {
192 | "cell_type": "markdown",
193 | "metadata": {},
194 | "source": [
195 | " - where .dropna() function drop all nan values in that feature and .sample() function return any one random value"
196 | ]
197 | },
198 | {
199 | "cell_type": "code",
200 | "execution_count": 23,
201 | "metadata": {},
202 | "outputs": [
203 | {
204 | "data": {
205 | "text/plain": [
206 | "37 21.0\n",
207 | "323 22.0\n",
208 | "492 55.0\n",
209 | "377 27.0\n",
210 | "855 18.0\n",
211 | " ... \n",
212 | "646 19.0\n",
213 | "332 38.0\n",
214 | "376 22.0\n",
215 | "44 19.0\n",
216 | "699 42.0\n",
217 | "Name: Age, Length: 177, dtype: float64"
218 | ]
219 | },
220 | "execution_count": 23,
221 | "metadata": {},
222 | "output_type": "execute_result"
223 | }
224 | ],
225 | "source": [
226 | "df['Age'].dropna().sample(df['Age'].isnull().sum())"
227 | ]
228 | },
229 | {
230 | "cell_type": "markdown",
231 | "metadata": {},
232 | "source": [
233 | " - this function check where is null values are present and replace Nan with random sample"
234 | ]
235 | },
236 | {
237 | "cell_type": "code",
238 | "execution_count": 24,
239 | "metadata": {},
240 | "outputs": [
241 | {
242 | "data": {
243 | "text/plain": [
244 | "423 28.00\n",
245 | "177 50.00\n",
246 | "305 0.92\n",
247 | "292 36.00\n",
248 | "889 26.00\n",
249 | " ... \n",
250 | "539 22.00\n",
251 | "267 25.00\n",
252 | "352 15.00\n",
253 | "99 34.00\n",
254 | "689 15.00\n",
255 | "Name: Age, Length: 177, dtype: float64"
256 | ]
257 | },
258 | "execution_count": 24,
259 | "metadata": {},
260 | "output_type": "execute_result"
261 | }
262 | ],
263 | "source": [
264 | "df['Age'].dropna().sample(df['Age'].isnull().sum(),random_state=0)"
265 | ]
266 | },
267 | {
268 | "cell_type": "markdown",
269 | "metadata": {},
270 | "source": [
271 | " - This function check where is null values are present and replace Nan with random sample\n",
272 | " - We use random_state because it replace NaN with specific value only ( if we not use random_state then values change evrytime when we run .)"
273 | ]
274 | },
275 | {
276 | "cell_type": "code",
277 | "execution_count": 26,
278 | "metadata": {},
279 | "outputs": [
280 | {
281 | "data": {
282 | "text/plain": [
283 | "Int64Index([ 5, 17, 19, 26, 28, 29, 31, 32, 36, 42,\n",
284 | " ...\n",
285 | " 832, 837, 839, 846, 849, 859, 863, 868, 878, 888],\n",
286 | " dtype='int64', length=177)"
287 | ]
288 | },
289 | "execution_count": 26,
290 | "metadata": {},
291 | "output_type": "execute_result"
292 | }
293 | ],
294 | "source": [
295 | "df[df['Age'].isnull()].index"
296 | ]
297 | },
298 | {
299 | "cell_type": "markdown",
300 | "metadata": {},
301 | "source": [
302 | " - This line of code return a index where Age is NaN"
303 | ]
304 | },
305 | {
306 | "cell_type": "markdown",
307 | "metadata": {},
308 | "source": [
309 | "### Create A function which Replace NaN with Random Sample\n",
310 | "- Here we creating a two new features Age_median and Age_random \n",
311 | "- In Age_median replace NaN with Median and In Age_random replce NaN with Random Sample "
312 | ]
313 | },
314 | {
315 | "cell_type": "code",
316 | "execution_count": 28,
317 | "metadata": {},
318 | "outputs": [],
319 | "source": [
320 | "def RSI(df,variable,median):\n",
321 | " df[variable+'_median'] = df[variable].fillna(median)#replace Nan with median\n",
322 | " df[variable+'_random'] = df[variable]#Copy feature into new feature\n",
323 | " #calculate random smaple and store into random_sample_values\n",
324 | " random_sample_value = df[variable].dropna().sample(df[variable].isnull().sum(),random_state=0)\n",
325 | " #in random_sample_value all filled nan values are present now we want to put/merge this all filled values in our dataset\n",
326 | " # for this we want to match all nan values index in random_sample_values with df[variavle_'random] \n",
327 | " #Pandas need to have same index in order to merge dataset\n",
328 | " random_sample_value.index = df[df[variable].isnull()].index#find index of NaN values in feature\n",
329 | " #now put a condition where ever it is null with loc function then replace with random_sample_values\n",
330 | " df.loc[df[variable].isnull(),variable+'_random'] =random_sample_value"
331 | ]
332 | },
333 | {
334 | "cell_type": "markdown",
335 | "metadata": {},
336 | "source": [
337 | "- calculate median"
338 | ]
339 | },
340 | {
341 | "cell_type": "code",
342 | "execution_count": 29,
343 | "metadata": {},
344 | "outputs": [],
345 | "source": [
346 | "median = df['Age'].median()"
347 | ]
348 | },
349 | {
350 | "cell_type": "markdown",
351 | "metadata": {},
352 | "source": [
353 | "- Call Function\n",
354 | " - RSI('dataframe','Feature','median')\n"
355 | ]
356 | },
357 | {
358 | "cell_type": "code",
359 | "execution_count": 33,
360 | "metadata": {},
361 | "outputs": [],
362 | "source": [
363 | "RSI(df,'Age',median)"
364 | ]
365 | },
366 | {
367 | "cell_type": "code",
368 | "execution_count": 31,
369 | "metadata": {},
370 | "outputs": [
371 | {
372 | "data": {
373 | "text/html": [
374 | "\n",
375 | "\n",
388 | "
\n",
389 | " \n",
390 | " \n",
391 | " \n",
392 | " Survived \n",
393 | " Age \n",
394 | " Fare \n",
395 | " Age_median \n",
396 | " Age_random \n",
397 | " \n",
398 | " \n",
399 | " \n",
400 | " \n",
401 | " 0 \n",
402 | " 0 \n",
403 | " 22.0 \n",
404 | " 7.2500 \n",
405 | " 22.0 \n",
406 | " 22.0 \n",
407 | " \n",
408 | " \n",
409 | " 1 \n",
410 | " 1 \n",
411 | " 38.0 \n",
412 | " 71.2833 \n",
413 | " 38.0 \n",
414 | " 38.0 \n",
415 | " \n",
416 | " \n",
417 | " 2 \n",
418 | " 1 \n",
419 | " 26.0 \n",
420 | " 7.9250 \n",
421 | " 26.0 \n",
422 | " 26.0 \n",
423 | " \n",
424 | " \n",
425 | " 3 \n",
426 | " 1 \n",
427 | " 35.0 \n",
428 | " 53.1000 \n",
429 | " 35.0 \n",
430 | " 35.0 \n",
431 | " \n",
432 | " \n",
433 | " 4 \n",
434 | " 0 \n",
435 | " 35.0 \n",
436 | " 8.0500 \n",
437 | " 35.0 \n",
438 | " 35.0 \n",
439 | " \n",
440 | " \n",
441 | "
\n",
442 | "
"
443 | ],
444 | "text/plain": [
445 | " Survived Age Fare Age_median Age_random\n",
446 | "0 0 22.0 7.2500 22.0 22.0\n",
447 | "1 1 38.0 71.2833 38.0 38.0\n",
448 | "2 1 26.0 7.9250 26.0 26.0\n",
449 | "3 1 35.0 53.1000 35.0 35.0\n",
450 | "4 0 35.0 8.0500 35.0 35.0"
451 | ]
452 | },
453 | "execution_count": 31,
454 | "metadata": {},
455 | "output_type": "execute_result"
456 | }
457 | ],
458 | "source": [
459 | "df.head()"
460 | ]
461 | },
462 | {
463 | "cell_type": "markdown",
464 | "metadata": {},
465 | "source": [
466 | "### plot graph between Age, Age_median , Age_random"
467 | ]
468 | },
469 | {
470 | "cell_type": "code",
471 | "execution_count": 54,
472 | "metadata": {},
473 | "outputs": [
474 | {
475 | "data": {
476 | "text/plain": [
477 | ""
478 | ]
479 | },
480 | "execution_count": 54,
481 | "metadata": {},
482 | "output_type": "execute_result"
483 | },
484 | {
485 | "data": {
486 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHVCAYAAAA6rtfLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABzC0lEQVR4nO3dd3hUVf7H8feZmUx6IwkQeu9NQMCua0cX7OAuIuqu69pXd3/2tuuua1vLrr2hrmJBxLIq9oaiEAglNOkJnUB6JpnMnN8fkwCBJCSQySSTz+t58pA599w731w0+XBy7jnGWouIiIiIiBw6R6gLEBEREREJFwrXIiIiIiKNROFaRERERKSRKFyLiIiIiDQShWsRERERkUaicC0iIiIi0kiCGq6NMacZY1YYY1YZY26u4bgxxjxeeXyRMWb4XsfWGWMWG2MyjTHzglmniIiIiEhjcAXrwsYYJ/AEcDKQA8w1xrxvrV26V7fTgd6VH6OBpyr/rHKCtXZHsGoUEREREWlMwRy5HgWsstausdaWA28A4/fpMx54xQbMAZKMMelBrElEREREJGiCNnINdASy93qdQ/VR6dr6dAQ2Axb41BhjgWestc8e6A1TU1Ntt27dDqVmEREREZE6ZWRk7LDWptV0LJjh2tTQtu9e63X1Ocpau8kY0xb4zBiz3Fr77X5vYszlwOUAXbp0Yd48Tc8WERERkeAxxqyv7Vgwp4XkAJ33et0J2FTfPtbaqj+3Ae8SmGayH2vts9bakdbakWlpNf4DQkRERESkSQQzXM8Fehtjuhtj3MBE4P19+rwPTK5cNWQMkG+t3WyMiTXGxAMYY2KBU4AlQaxVREREROSQBW1aiLW2whhzNTALcAIvWmuzjDFXVB5/GvgIGAusAkqASypPbwe8a4ypqvF1a+0nwapVRERERKQxGGv3nQbdco0cOdJqzrWIiIi0dF6vl5ycHDweT6hLadWioqLo1KkTERER1dqNMRnW2pE1nRPMBxpFRERE5CDk5OQQHx9Pt27dqPxNvjQxay25ubnk5OTQvXv3ep+n7c9FREREmhmPx0NKSoqCdQgZY0hJSWnwbw8UrkVERESaIQXr0DuYvwOFaxERERGp0bvvvosxhuXLl4e6lBZD4VpEREREajRt2jSOPvpo3njjjVCX0mIoXIuIiIjIfoqKipg9ezYvvPDC7nDt9/u58sorGThwIGeeeSZjx45l+vTpAGRkZHDccccxYsQITj31VDZv3hzK8kNGq4WIiIiINGPXXw+ZmY17zWHD4NFH6+4zc+ZMTjvtNPr06UObNm2YP38+a9asYd26dSxevJht27bRv39/Lr30UrxeL9dccw3vvfceaWlpvPnmm9x22228+OKLjVt4C6BwLSIiIiL7mTZtGtdffz0AEydOZNq0aXi9Xs4//3wcDgft27fnhBNOAGDFihUsWbKEk08+GQCfz0d6enqoSg8phWsRERGRZuxAI8zBkJuby5dffsmSJUswxuDz+TDGcPbZZ9fY31rLwIED+fHHH5u40uZHc65FREREpJrp06czefJk1q9fz7p168jOzqZ79+6kpqbyzjvv4Pf72bp1K19//TUAffv2Zfv27bvDtdfrJSsrK4RfQegoXIuIiIhINdOmTdtvlPrcc89l06ZNdOrUiUGDBvGHP/yB0aNHk5iYiNvtZvr06dx0000MHTqUYcOG8cMPP4So+tDStBARERERqaZqRHpv1157LRBYRSQuLo7c3FxGjRrF4MGDARg2bBjffvttU5bZLClci4gcAr+/DHDicOjbqYi0DmeeeSZ5eXmUl5dzxx130L59+1CX1Kzop4GIyEHavPkFVq68ioiINgwaNJOEhFGhLklEJOhqGtWWPTTnWkTkIBQVLWblyiuIjx+OMS6WLr0Qn6801GWJiEiIKVyLiByE9ev/jsMRy+DBH9C37wt4PGvYuvW1UJclIiIhpnAtItJA5eU72L59OunpvyMiIoXk5JOIjR3Kpk1Ph7o0EREJMYVrEZEG2rnzI8BH27YTATDG0K7dbykqyqC0dE1oixMRkZBSuBYRaaDc3A9wu9OJjx++uy0t7dzKYx+GqiwREWkGFK5FRBrA7y9n585ZpKSciTF7voVGR/cgKqonu3Z9EcLqREQa17vvvosxhuXLl4e6lFpNnTqVq6++GoCnn36aV155JaT1KFyLiDRAfv4P+HyFpKScud+x5OQTycv7Gmv9IahMRKTxTZs2jaOPPpo33ngj1KXUyxVXXMHkyZNDWoPWuRYRaYCCgh8BSEw8er9jCQlHsHnzs5SUrCA2tn9TlyYiYeqXX66nqCizUa8ZFzeM3r0frbNPUVERs2fP5quvvmLcuHHcfffd+P1+rr76ar755hu6d++O3+/n0ksv5bzzziMjI4MbbriBoqIiUlNTmTp1Kunp6TVe+/jjj+ewww4jIyOD7du388orr3DfffexePFiJkyYwL333gvAf//7Xx5//HHKy8sZPXo0Tz75JE6nk5deeon77ruP9PR0+vTpQ2RkJAB33303cXFx/PnPf+a5557j2Wefpby8nF69evHqq68SExPDlClTSEhIYN68eWzZsoUHHniA8847r9HurUauRUQaoKBgDtHRfYiIaLPfsfj4kQAUFs5r6rJERBrdzJkzOe200+jTpw9t2rRh/vz5zJgxg3Xr1rF48WKef/55fvwxMODg9Xq55pprmD59OhkZGVx66aXcdtttdV7f7Xbz7bffcsUVVzB+/HieeOIJlixZwtSpU8nNzWXZsmW8+eabzJ49m8zMTJxOJ6+99hqbN2/mrrvuYvbs2Xz22WcsXbq0xuufc845zJ07l4ULF9K/f39eeOGF3cc2b97M999/z4cffsjNN9/ceDcNjVyLiNSbtZaCgp9o0+aUGo/HxvbH4YilsHAu7dtf1MTViUi4OtAIc7BMmzaN66+/HoCJEycybdo0vF4v559/Pg6Hg/bt23PCCScAsGLFCpYsWcLJJ58MgM/nq3XUusq4ceMAGDx4MAMHDtzdv0ePHmRnZ/P999+TkZHB4YcfDkBpaSlt27blp59+4vjjjyctLQ2ACRMmsHLlyv2uv2TJEm6//Xby8vIoKiri1FNP3X3srLPOwuFwMGDAALZu3XoId2l/CtciIvVUVrYBr3crCQljajxujJP4+OEUFs5t4spERBpXbm4uX375JUuWLMEYg8/nwxjD2WefXWN/ay0DBw7cPZJdH1VTORwOx+7Pq15XVFRgreXiiy/mvvvuq3bezJkzMcYc8PpTpkxh5syZDB06lKlTp1bbtn3v97PW1rvm+tC0EBGReioomANAQsLoWvvExx9OUVEmfr+3qcoSEWl006dPZ/Lkyaxfv55169aRnZ1N9+7dSU1N5Z133sHv97N169bdgbVv375s37692jSRrKysQ6rhxBNPZPr06Wzbtg2AnTt3sn79ekaPHs3XX39Nbm4uXq+Xt99+u8bzCwsLSU9Px+v18tprTbeDrkauRUTqqbBwPsa4iY0dUmuf+PiR+P0eSkqWERdXez8RkeZs2rRp+81FPvfcc1m2bBmdOnVi0KBB9OnTh9GjR5OYmIjb7Wb69Olce+215OfnU1FRwfXXX8/AgQMPuoYBAwZw7733csopp+D3+4mIiOCJJ55gzJgx3H333RxxxBGkp6czfPhwfD7ffuf/7W9/Y/To0XTt2pXBgwdTWFh40LU0hGnsofBQGjlypJ03Tw8SiUhwLFp0BmVlORx++MJa+xQVLWLevKH07z+Ndu0mNmF1IhJOli1bRv/+zXPVoaKiIuLi4sjNzWXUqFHMnj2b9u3bh7qsoKnp78IYk2GtHVlTf41ci4jUU3HxEhITj6mzT3R0H8BBScmypilKRKSJnXnmmeTl5VFeXs4dd9wR1sH6YChci4jUQ0VFPmVlG4iNHVRnP6cziqio7grXIhK29n4w8ECuuuoqZs+eXa3tuuuu45JLLmnkqpoPhWsRkXooLg48mHOgcB3o01/hWkQEeOKJJ0JdQpPTaiEiIvVQXLwEqF+4jonpT0nJSvz+imCXJSIizYzCtYhIPRQXL8HpjCMqqssB+8bEDMDacjyetU1QmYiINCcK1yIi9VBcvJSYmAEYc+Bvm7GxgafKS0pq3pJXRETCl8K1iEg9lJauJCamT736Rkf3BaCk5JdgliQiIs2QwrWIyAH4fKWUlWVXLrN3YBERSbhcyXg8a4JcmYhIcL377rsYY1i+fHmoS6nT3XffzUMPPRTqMgCFaxGRAyotXQVQ75FrgKioHpSWKlyLSMs2bdo0jj76aN54442gvUdFRXg9/K2l+EREDqC0NDC9Izq6d73PiY7uSVHRgmCVJCKtyfXXQ2Zm415z2DB49NE6uxQVFTF79my++uorxo0bx913343f7+fqq6/mm2++oXv37vj9fi699FLOO+88MjIyuOGGGygqKiI1NZWpU6eSnp5e47WPP/54jjzySGbPns24cePo06cP9957L+Xl5aSkpPDaa6/Rrl077r77bjZs2MCaNWvYsGED119/Pddeey0Af//733nllVfo3LkzaWlpjBgxAoDMzEyuuOIKSkpK6NmzJy+++CLJyckcf/zxHHbYYWRkZLB9+3ZeeeUV7rvvPhYvXsyECRO49957G+XWauRaROQASkpWAg0N1z3weNZhrS9YZYmIBNXMmTM57bTT6NOnD23atGH+/PnMmDGDdevWsXjxYp5//nl+/PFHALxeL9dccw3Tp08nIyODSy+9lNtuu63O6+fl5fHNN99w4403cvTRRzNnzhwWLFjAxIkTeeCBB3b3W758ObNmzeLnn3/mnnvuwev1kpGRwRtvvMGCBQuYMWMGc+fO3d1/8uTJ3H///SxatIjBgwdzzz337D7mdrv59ttvueKKKxg/fjxPPPEES5YsYerUqeTm5jbKfdPItYjIAZSW/oLb3R6XK77e50RF9cBaL2VlOURFdQ1idSIS9g4wwhws06ZN4/rrrwdg4sSJTJs2Da/Xy/nnn4/D4aB9+/accMIJAKxYsYIlS5Zw8sknA+Dz+Wodta4yYcKE3Z/n5OQwYcIENm/eTHl5Od27d9997IwzziAyMpLIyEjatm3L1q1b+e677zj77LOJiYkBYNy4cQDk5+eTl5fHcccdB8DFF1/M+eefv/taVf0GDx7MwIEDd9fYo0cPsrOzSUlJOej7VUXhWkTkAEpLV9b7YcYq0dE9K89do3AtIi1Obm4uX375JUuWLMEYg8/nwxjD2WefXWN/ay0DBw7cPZJdH7Gxsbs/v+aaa7jhhhsYN24cX3/9NXfffffuY5GRkbs/dzqdu+doG2Ma+FXtuZbD4ah2XYfD0WhzvzUtRETkAEpKfmnQlBAIjFwDlJauDkZJIiJBNX36dCZPnsz69etZt24d2dnZdO/endTUVN555x38fj9bt27l66+/BqBv375s37692jSRrKyser9ffn4+HTt2BODll18+YP9jjz2Wd999l9LSUgoLC/nggw8ASExMJDk5me+++w6AV199dfcodlPRyLWISB18vhK83q1ER/do0HmRkZ0wxqXl+ESkRZo2bRo333xztbZzzz2XZcuW0alTJwYNGkSfPn0YPXo0iYmJuN1upk+fzrXXXkt+fj4VFRVcf/31DBw4sF7vd/fdd3P++efTsWNHxowZw9q1de9wO3z4cCZMmMCwYcPo2rUrxxxzzO5jL7/88u4HGnv06MFLL73U8BtwCIy1tknfMJhGjhxp582bF+oyRCSMFBcvZe7cgfTv/zrt2l3YoHPnzOlJQsJoBgx4PUjViUi4WrZsGf379w91GTUqKioiLi6O3NxcRo0axezZs2nfvn2oywqamv4ujDEZ1tqRNfXXyLWISB08nsDoSVRUtwafGxnZmbKy7EauSEQktM4880zy8vIoLy/njjvuCOtgfTAUrkVE6lBaWhWuux+g5/6iojqTl/dtY5ckIhJSVfOs6+Oqq65i9uzZ1dquu+46LrnkkkauqvlQuBYRqYPHsxaHIxq3u12Dzw2MXG/EWh/GOINQnYhI8/bEE0+EuoQmp9VCRETq4PGsJSqq20Eu+dQF8FFevqXxCxORsBdOz8W1VAfzd6BwLSJSB49n3UHNt4bAtJDANTTvWkQaJioqitzcXAXsELLWkpubS1RUVIPO07QQEZE6eDxrSUg44qDOjYwMhOvAQ41jGrEqEQl3nTp1Iicnh+3bt4e6lFYtKiqKTp06NegchWsRkVp4vXlUVOQd1MOMsHe43tCYZYlIKxAREVFtC3BpOTQtRESkFlXL8EVHH9wPOJcrCYcjVtNCRERaEYVrEZFaHMoa1wDGGKKiumitaxGRVkThWkSkFnvC9cH/alYbyYiItC4K1yIitfB41uF0JuByJR/0NRSuRURaF4VrEZFalJYe/BrXVaKiOlNevgW/v6wRKxMRkeZK4VpEpBZlZRuIiup6SNfYs2LIxsYoSUREmjmFaxGRWpSV5ewOxwcrsEsjmhoiItJKKFyLiNTA5yumomIXkZEN2zxgX9qlUUSkdVG4FhGpQVUYPvSR60A4LyvLOeSaRESk+VO4FhGpQVUYPtSRa6czFqczgfLyzY1RloiINHMK1yIiNaiaI101reNQuN3plJdvOuTriIhI86dwLSJSg6qRa7e74yFfKzKyA2VlCtciIq2BwrWISA3KyrKJiEjD6Yw65Gu53R00LUREpJVQuBYRqUFZWfYhP8xYJTIynbKyTVhrG+V6IiLSfClci4jUoDHWuK7idnfA2jIqKvIa5XoiItJ8KVyLiNTA48k+5JVCqrjd6QB6qFFEpBVQuBYR2UdFRSE+X36jrBQCgQcaAT3UKCLSCihci4jso7HWuK6yZ+RaDzWKiIQ7hWsRkX1UrXHdeHOu0yuvq5FrEZFwp3AtIrKPPSPXjROuXa44nM54jVyLiLQCCtciIvvYM3LdodGuGVjrWiPXIiLhTuFaRGQfZWU5RES0w+GIbLRrBnZp1Mi1iEi4U7gWEdlHYy7DV8XtTtfItYhIKxDUcG2MOc0Ys8IYs8oYc3MNx40x5vHK44uMMcP3Oe40xiwwxnwYzDpFRPZWVpbdaMvwVQmMXGuXRhGRcBe0cG2McQJPAKcDA4ALjTED9ul2OtC78uNy4Kl9jl8HLAtWjSIiNWnM3RmruN3p2qVRRKQVCObI9ShglbV2jbW2HHgDGL9Pn/HAKzZgDpBkjEkHMMZ0As4Ang9ijSIi1VRUFODzFQRhWkjg4UhNDRERCW/BDNcdgey9XudUttW3z6PA/wH+INUnIrKfxl6Gr0pkpNa6FhFpDYIZrk0NbftONqyxjzHmTGCbtTbjgG9izOXGmHnGmHnbt28/mDpFRHbbswxfY49ctwegvHxro15XRESal2CG6xxg76GfTsC+Qza19TkKGGeMWUdgOsmvjDH/relNrLXPWmtHWmtHpqWlNVbtItJKeTyNuztjlYiIdgB4vQrXIiLhLJjhei7Q2xjT3RjjBiYC7+/T531gcuWqIWOAfGvtZmvtLdbaTtbabpXnfWmtnRTEWkVEgKppIaZRN5ABcLkSMSaS8vItjXpdERFpXlzBurC1tsIYczUwC3ACL1prs4wxV1Qefxr4CBgLrAJKgEuCVY+ISH2UlWXjdrfD4XA36nWNMbjd7TQtREQkzAUtXANYaz8iEKD3bnt6r88tcNUBrvE18HUQyhMR2U8wluGr4na3V7gWEQlz2qFRRGQvZWWNvztjlcDItaaFiIiEM4VrEZFK1trKcB2skWtNCxERCXcK1yIilXy+Any+oqBOC/F6t2OtLyjXFxGR0FO4FhGptGcZvuBMCwksx+fH690RlOuLiEjoKVyLiFSq2p0xKip4I9egjWRERMKZwrWISKVg7c5Yxe0ObCSjhxpFRMKXwrWISKVAuDa43Y27gUyVPeFaI9ciIuFK4VpEpFJZWQ5udzoOR0RQrr9nWohGrkVEwpXCtYhIpWCucQ3gdMbjcERp5FpEJIwpXIuIVArm7oxQtQV6e41ci4iEMYVrERECG8h4PMEduYbAcnxer0auRUTClcK1iAhQUZGH318ctGX4qgRGrhWuRUTClcK1iAh71rgO5rQQqNoCXdNCRETClcK1iAjBX+O6itvdDq93B35/RVDfR0REQkPhWkSEphy5bg9YvN7tQX0fEREJDYVrERGqRq4duN3pQX0fbSQjIhLeFK5FRACPJ7tyAxlXUN9HG8mIiIQ3hWsREQLTQoK9UggEluIDtByfiEiYUrgWESH4uzNW2TNyrXAtIhKOFK5FpNWz1gZ9d8YqLlccDkeMpoWIiIQphWsRafUqKnbh95c0SbiGqrWuNXItIhKOFK5FpNVrqjWuqwR2adTItYhIOFK4FpFWz+OpCtcauRYRkUOjcC0irV7VyHVTrBYCgZFrrRYiIhKeFK5FpNUrK8vGGNfulTyCLSKiagt0b5O8n4iINB2FaxFp9crKsnG7O2KMs0ner2qXRm2BLiISfhSuRaTV83g2NNmUENAujSIi4UzhWkRavcAGMk0ZrgMj1wrXIiLhR+FaRFo1a/1NtoFMFe3SKCISvhSuRaRVKy/fhrVeoqK6NNl77hm5VrgWEQk3Ctci0qqVlW0Amm6NawCnMxaHI1bL8YmIhCGFaxFp1fbszth04RqqdmlUuBYRCTcK1yLSqjX17oxVArs06oFGEZFwo3AtIq1aWVk2DkcUEREpTfq+2gJdRCQ8KVyLSKtWVraByMguGGOa9H01LUREJDwpXItIq+bxNO0a11Xc7nZUVORqC3QRkTCjcC0irVpZWXaT7s5YJSKiagv0bU3+3iIiEjwK1yLSavn9XsrLN4ds5Bq01rWISLhRuBaRVqusbCNgiYxsug1kquzZpVErhoiIhBOFaxFptarWuA7FtBCNXIuIhCeFaxFptUK1gQwoXIuIhCuFaxFptUIZrp3OWJzOOE0LEREJMwrXItJqeTzZuFxJuFzxIXn/iIh2eL0auRYRCScK1yLSagU2kGn6Uesq2qVRRCT8KFyLSKtVVhaaDWSqBHZp1LQQEZFwonAtIq1WqHZnrKKRaxGR8KNwLSKtks9XQkVFbkiW4asS2AJ9p7ZAFxEJIwrXItIq7VkppOk3kKlStZGMtkAXEQkfCtci0ip5PKFbhq9KRETVWteady0iEi4UrkWkVfJ41gEQFdUtZDVoIxkRkfCjcC0irVIgXDuJjOwUshoUrkVEwo/CtYi0Sh7POiIjO+FwuEJWw55wrWkhIiLhQuFaRFolj2cd0dHdQ1rDni3QNXItIhIuFK5FpFXyeNaFdL51FW2BLiISXhSuRaTV8fvLKC/f1CzCtXZpFBEJLwrXItLqeDwbANtMwrV2aRQRCScK1yLS6jSHZfiqKFyLiIQXhWsRaXX2hOvQPtAIgWkhgS3Qy0NdioiINAKFaxFpdTyedRjjwu3uEOpS9lqOT1ugi4iEA4VrEWl1Amtcdw7pGtdVqrZA14ohIiLhQeFaRFodj2dts5hvDYFpIaCNZEREwoXCtYi0OoE1rkM/3xq0BbqISLhRuBaRVsXn81BevrkZjVwrXIuIhBOFaxFpVcrKNgDNYxk+AKczBqczXuFaRCRMKFyLSKvSnNa4rhJY61pzrkVEwoHCtYi0Ks1pjesqERHttFqIiEiYULgWkVbF41mLMRFERqaHupTdtEujiEj4ULgWkVYlsMZ1F4xxhrqU3dzu9poWIiISJhSuRaRVKS1dQ3T0XlNC1q2Dm2+GYcMgORnatoWjjoJ77oENG5qkJre7HRUVu7QFuohIGFC4FpFWpbR0FdHRvaCiAu64A/r0gYcfhpQU+O1v4ZxzwO8PhOsePeCqq2DXrqDWpC3QRUTCR+j3/hURaSJe7y4qKnYSQxc44wz49FOYNAn++U/o2LGyTyBbR25ZDw8+CE8/DR98AK+/DkcfHZS69t6lMSqqU1DeQ0REmoZGrkWk1SgtXY3xQtvfvwmffQbPPguvvsqPGzoyZQp07gxuN0RFQZvDunLaqv/w7k0/4o9ww3HHwXPPBaWuiIjAyLVWDBERafk0ci0irUZp6Sp6PgXubxfCSy+x6ZQpXHkWvPceJCbCqafCgAEQERGYiv3VV3DOrMPpkTqfz/tOpPvll8P27XDrrY1al3ZpFBEJHwrXItJqON59n07vgv9P1zJvwBTGDYeCArjvPrj6aoiLq97fWvj+e7jnngT6fPEe76VcytjbbgOXC/7v/xqtrj3hWiuGiIi0dEGdFmKMOc0Ys8IYs8oYc3MNx40x5vHK44uMMcMr26OMMT8bYxYaY7KMMfcEs04RaQV27iT5jncp6hvB3HMe4le/gpgYmDs3sFjIvsEawBg45hj4/HN4/a0ILvZP5W3nRLjppkadIrJnC3SFaxGRli5o4doEFpF9AjgdGABcaIwZsE+304HelR+XA09VtpcBv7LWDgWGAacZY8YEq1YRaQVuvx3nLg+rbh7M6eMiaN8eZs+GgQPrd/r550PmYicPDX6ZTzgN/xV/hC++aLTy3O50hWsRkTAQzJHrUcAqa+0aa2058AYwfp8+44FXbMAcIMkYk175uqiyT0Tlhw1irSISzlasgGefZcv4GD7ZMhRjAguFpDdwk8aOHeGL79w8f/KbLPP3xTP+Ali9ulFKjIzsQFnZpka5loiIhE4ww3VHIHuv1zmVbfXqY4xxGmMygW3AZ9ban4JXqoiEtTvuwEZHs2ZSCUuW9OK//w0sYX0w4uLg9Q8T+Ndx71NcDDt/dS54PIdcYmDkevMhX0dEREIrmOHa1NC27+hzrX2stT5r7TCgEzDKGDOoxjcx5nJjzDxjzLzt27cfSr0iEo5WrIDp08k590K8yTBgQC9OP/3QLul2wxOf9OThwS/TZsNCNl603yMlB3HNDpSXb8Ja/ZJORKQlC2a4zgE67/W6E7Dv7zwP2Mdamwd8DZxW05tYa5+11o601o5MS0s7xJJFJOw8+CA2KoqHyo8E4NJLezbKZaOi4C/fnMkrSdfQcfpjbHnhf4d0vcjIDvj9Hioq8hulPhERCY1ghuu5QG9jTHdjjBuYCLy/T5/3gcmVq4aMAfKttZuNMWnGmCQAY0w0cBKwPIi1ikg42r4dXn2V1cdeylZ/4DdbKSmNE64BkpPhyO8eYIljCJFXTKFsw8GvU+12ByaAl5dr3rWISEsWtHBtra0ArgZmAcuAt6y1WcaYK4wxV1R2+whYA6wCngOurGxPB74yxiwiENI/s9Z+GKxaRSRMvfIKlJdzzbIrGTz4F1yuVCIikhr1LXoNimLro9OIqShg6UnXHvR1IiM7AOihRhGRFi6om8hYaz8iEKD3bnt6r88tcFUN5y0CDgtmbSIS5qyFZ59la6+j+GTVAG4cvYKYmL5BeasTrxnAh6/fwZlz7iDjjgsZ8bezGnyNPSPXeqhRRKQlC+omMiIiIfPtt7ByJY+V/J6hQyE6OnjhGuDkz25iReQQOv3jSgo25DX4fE0LEREJDwrXIhKennsOb2wij246nxtvzMPr3RrUcB0ZF0H5My+S6t9K5um3NPh8lysepzOOsjKNXIuItGQK1yISfkpK4N13+TR5IknpMYwduwIgqOEaYPDFI5h92DUcvfQZ5j23oMHnVy3HJyIiLZfCtYiEn48+gpISHs65gKuvBq83EK6jo4MbrgFGfng3eY4UzLXXUF7WsDWrIyM7aM61iEgLp3AtIuHnrbcojGnLD85juewyKClZgTEuoqMbbxm+2sR0SCLn6vsY4ZnN55dNa9C5bne6VgsREWnhFK5FJLwUF2P/9z/esedy6hku2rULhOuoqB44HBFNUsKQRy5lZeJIhr3+F7avLar3eYFpIZu1S6OISAumcC0i4eWjjzAlJbxcej5TpgSaSkuDu1LIfhwO3E//mw52E3PP+Ue9T4uMTMfvL9UujSIiLZjCtYiElxkzyItsS1abYznjDLDWR0nJL00broFuE8eQ0e+3HJ/5KEs/r99UD7c7sJGMHmoUEWm5FK5FJHxUVOD/ZBbve8cy8bdO3G7weDZgbVmTPMy4r17T/oaLCjZcdk+9+msjGRGRlk/hWkTCx08/4cjbxQf+sUycGGgqKWmaZfhqkjisO5lH/JGTNrxA5psrDthfW6CLiLR8CtciEj4++gifcbK43cmMGRNoKilZBkBMTL+QlDTwtdvwmGgKrrntgH01ci0i0vIpXItI2PB9+BE/mKM48dwkHJXf3YqLs4iISMPtTgtJTbHd27L4lD9z7PZ3yHjypzr77tmlUSPXIiItlcK1iISHjRtxLsrkQ/9Yzj13T3NJSRaxsQNDVxdw2Ks3sN3RFntbfUavtZGMiEhLpnAtIuHhk08A+DHxdI49NtBkraW4eCkxMaEN11Fp8SwfdxMj875g0ZPf19nX7U7XaiEiIi2YwrWIhAX/51+w1bSj19mDcbkCbWVlOfh8BSEfuQYY8dwVbDNt8d1Z98ohkZEdKCvTyLWISEulcC0iLZ+1VHz6FV/aExh7htndXFycBdAswnVMagyLTv0/Dsv9nF+mzq61X2BayCbt0igi0kIpXItIy7dyJe6dW/jGnMBJJ+1pLilpPuEaYOTzgdHr0ptrH72OjOxQuUtjXtMVJiIijUbhWkRavq++AiB/+AkkJe1pDqwU0o6IiJTQ1LWPpI6xzD3uLwzZ+hkb3/6hxj6RkZ2BwJQWERFpeRSuRaTFK/34K3LoyOCze1VrLy4O/Uoh+xr+3B/ZRhoFf/lrjccjIzsBUFaW3ZRliYhII1G4FpGWzVr4+mu+4gROH2v2araUlCxtduE6vVcsXw39E/3Xz6Lo+8z9ju8J1xq5FhFpiRSuRaRlW7qU6IJtZCT8iqFD9zSXlW3A5ytqduEaoNdDV1BIHBuve2C/Y4FdGh0K1yIiLZTCtYi0aPa7wLrR5rhjd+/KCFBUtAiA2NjBoSirTiNOSuaDDn+g1/w38a1aW+2Yw+HC7U7XtBARkRZK4VpEWrT8T35gK20Z+Ose1dqLihYCzTNcA8Tf+Sd8ONlw3cP7HYuM7KSRaxGRFkrhWkRath9/5AeO5IRfmWrNxcULiYrqicsVH6LC6nb6ZR15N3YS6Z+8CNu3VzsWFdVZ4VpEpIVSuBaRlmv7dpK2/cKyxCPoUX3gmqKiTOLihtZ8XjPgckHhH/5ClL+UrXf8u9qxyMhOeDzZ2khGRKQFUrgWkRbL/8McAOyYIzB7DVxXVBRRWrq6WYdrgLNu6c/7jvHETf0PFBXtbo+M7IzfX0xFRX4IqxMRkYOhcC0iLdaOD37Ai4su54ys1l5cvBiwxMUNC0ld9ZWaCpkn/x+xZbsoe/ql3e1ajk9EpOVSuBaRFqv8mx9ZwGEce2p0tfaqhxmb+8g1wK9uP5I5jMbz0L/B7we0kYyISEtWr3BtjHnHGHOGMUZhXESaB6+XtLU/szjuSLp2rX6ouHghLlcSkZFdQlNbAxx1FLzT6XoSt/4CH38MaAt0EZGWrL5h+SngN8Avxph/GmP6BbEmEZEDW7SISF8pRUOO2O9QUVEmsbFDMMbUcGLzYgx0//O55NCRgr8+CoDb3R5tJCMi0jLVK1xbaz+31v4WGA6sAz4zxvxgjLnEGBMRzAJFRGqy638/AJBw6pHV2q31U1S0uEVMCanym4sjeM51JQk/fw5ZWTgcEbjd7TUtRESkBar3NA9jTAowBfgdsAB4jEDY/iwolYmI1KFg1o/k0JGhZ3au1l5auhq/v7jZP8y4t6QkyLvgckqJovyhx4HA1BCNXIuItDz1nXM9A/gOiAF+ba0dZ61901p7DRAXzAJFRGoSkzWXDOcohgyp3t6SHmbc22+uTeW/TMLx2quQm1u5S6NGrkVEWpr6jlw/b60dYK29z1q7GcAYEwlgrR1Z96kiIo0sL4+0/FVs7zISl6v6oeLihYCTmJiBISntYI0aBR/2uA6XtxSee46oqK54POu1kYyISAtT33B9bw1tPzZmISIi9VU6ez4ArtEj9jtWWDifmJh+OJ1RTV3WITEGjr1yEJ9zIt7HniDK1Rm/vxSvd/uBTxYRkWajznBtjGlvjBkBRBtjDjPGDK/8OJ7AFBERkSa36YMMADqOqx6urbUUFs4jPr5l/kJt0iR4wnENEVtySPh2GwAez/oQVyUiIg3hOsDxUwk8xNgJ+Nde7YXArUGqSUSkTmU/ZLCeLow4NbV6e1kOXu82EhIOD1Flh6ZdO2DsGWz8qBNtX/4a7gCPZ12L/XpERFqjOkeurbUvW2tPAKZYa0/Y62OctXZGE9UoIlJN0uoMVsSPpE2b6u2FhfMAWuzINcCU37l42n85EV/+SPRGjVyLiLQ0B5oWMqny027GmBv2/WiC+kREqrG78uhQsorCPjXNt56LMS5iY1vWSiF7GzsWZqb8Dp9x0vHDSDyedaEuSUREGuBADzTGVv4ZB8TX8CEi0qQ2/y/wMGP0UTWF63nExg5ucQ8z7i0iAk6dks5MzqLdxxWU5a8OdUkiItIAdc65ttY+U/nnPU1TjohI3bZ9kkEHoNP4mh9mTEs7LzSFNaJLLoFrH/4j5+a/Q+zHS0BTrkVEWoz6biLzgDEmwRgTYYz5whizY68pIyIiTWdeBhvoQv9jqj/M6PGspaJiV4ueb11l4EAoOvxX7EhJIuXtTVrrWkSkBanvOtenWGsLgDOBHKAP8JegVSUiUovUDRmsTh5JRET19sLCuQDEx4fHMO/kiw3/63gsiUv8VMz/PtTliIhIPdU3XFf9GBsLTLPW7gxSPSIitfLvyqdTaW0PM87DmEhiY1vWzoy1mTAB3ok/B58b7FOPhbocERGpp/qG6w+MMcuBkcAXxpg0wBO8skRE9pf9QSYA0UcN3+9YYeE84uKG4nC4m7iq4EhNhXb9B7P9OHC99TGUlIS6JBERqYd6hWtr7c3AEcBIa60XKAbGB7MwEZF9bf1sEQBdfl19qT1r/RQWZoTFfOu9nXZaV7aMBUdhCczQ1gIiIi1BfUeuAfoDE4wxk4HzgFOCU5KISM188xeyg1R6Hd2+WntJyUp8vsKwmW9dZezYNmzuE0t+aiK88EKoyxERkXo40PbnABhjXgV6ApmAr7LZAq8EpywRkf0lrV/IuqShpLpMtfZw2JmxJtHRhrLy7mQOr+C4T7+G1auhZ89QlyUiInWo78j1SOAoa+2V1tprKj+uDWZhIiJ783p8dCteQnGPIfsdKyych8MRQ0xMvxBUFlxJST3Zcqofv3HASy+FuhwRETmA+obrJUD7A/YSEQmS1Z/8QjQeIkftv7V5YeFc4uOH43DU65dxLUqnTr1IHrSBeSmnwtSp4PMd8BwREQmd+obrVGCpMWaWMeb9qo9gFiYisrdNHy8EIP206uHa76+gqGhB2E0JqRId3RO328NT5WfDxo0wa1aoSxIRkTrUd5jn7mAWISJyIBXzF+HFRedT+ldrLylZht9fGsbhuhcAi7t2p2RtGjEvvghjx4a4KhERqU19l+L7BlgHRFR+PheYH8S6RESqiV+zkA3R/XBER1Zr37MzY7iG68ADjKOPWc870RfB++/D9u0hrkpERGpTr3BtjPk9MB14prKpIzAzSDWJiFRjLXTZtZDcjjU/zOh0JhAd3TsElQVfZGQXjHFx3HGruW/7ZeD1wquvhrosERGpRX3nXF8FHAUUAFhrfwHaBqsoEZG9bVqyk442h4pBNT3MOI/4+BEY05Bl+1sOh8NFVFQ3evVaxUrnANZ3GAMvvhj4F4eIiDQ79f1pVGatLa96YYxxEVjnWkQk6LL/F9iZMeHofR9mLKeoaGHYTgmpEh3dC79/NaedBk+WXAJZWbBgQajLEhGRGtQ3XH9jjLkViDbGnAy8DXwQvLJERPYo/D6wUkiXM6tPCykuXoy15WG3M+O+oqJ6Ulq6iosusjybdz7+CDe8oj28RESao/qG65uB7cBi4A/AR8DtwSpKRGRvrqWL2OFII6FP9eX2w3Vnxn1FR/fC5yvg9NNz8cUnM7/Dr2HatMD8axERaVbqu1qIn8ADjFdaa8+z1j5nrSb8iUjTSNu8kI1thoDZf9tzlyuFqKhuoSmsiVQtx2ftKs47Dx7cNhm2bYNPPw1xZSIisq86w7UJuNsYswNYDqwwxmw3xtzZNOWJSGvnKaqgl2cJRT1re5hxJGaf0B1uqpbj83hWM2kSvFt6GmXxKVo1RESkGTrQyPX1BFYJOdxam2KtbQOMBo4yxvwp2MWJiKyZ9QtRlBExovp8a5+vlKKixWE/JQQgKqo7YCgpWclxx0Hbjm4+T5kI770H+fmhLk9ERPZyoHA9GbjQWru2qsFauwaYVHlMRCSotn65BIB2Jw2u1l5UtBDwtYpw7XRGERXVnZKSFTid8JvfwN+zJ4PHA9Onh7o8ERHZy4HCdYS1dse+jdba7UBEcEoSEdmjfH4WfgydTq6+7XlreZixSkxMP0pKlgEwaRL86DucXW37aGqIiEgzc6BwXX6Qx0REGkX06iXkRPbEGRddrb2wcC5ud3siIzuGqLKmFRPTn5KSFVjrY8gQGDLE8GbkZPjmG1i3LtTliYhIpQOF66HGmIIaPgqBwQc4V0TkkFgL7Xdmkdt+4H7HCgvnERc3IuwfZqwSE9MPa8vweNYDgdHrf2b/NnDwtddCWJmIiOytznBtrXVaaxNq+Ii31mpaiIgE1Zb1ZfTw/UJF3+rhuqKiiJKS5SQkhPfmMXuLjQ1Mi6maGnLhhbDBdGNd12MDG8podVQRkWahvpvIiIg0uTUfr8CFj9jRg6q1FxVlAv5WM98aAiPXACUlywHo1AlOOAGeKZ0MK1fC3LmhLE9ERCopXItIs7XzuywAOp1SfeS66mHGuLgRTV5TqEREpBARkUZx8bLdbZMmwZPbzsMfGaUHG0VEmgmFaxFptnyLsqjAScLhfau1FxbOw+3uSGRk+1rODE+Bhxr3hOtzz4XyqEQWdB6n7dBFRJoJhWsRabbis7PYHNsbIiOrtVftzNjaVIVrWzm/OiEBxo+Hh7deBLm5MGtWiCsUERGFaxFplsrLoUvBEvI77fswYwGlpStbabjuR0XFLrze7bvbJk2CtwtPpTw+Bf773xBWJyIioHAtIs3U8gWl9GQ1DKwerouKFgCW+PjWM9+6yr4rhgCceiokpkTwVbsJge3QCwpCVZ6IiKBwLSLN1IZPl+PAknR09ZVC9uzM2PrCdUzMAACKi7N2t0VEwMSJcN+GSYHt0N99N1TliYgICtci0kwV/rgEgPYn7r9SSGRkF9zutqEoK6QiIzvhciVTVLSwWvukSfBN+RgK0npoaoiISIgFNVwbY04zxqwwxqwyxtxcw3FjjHm88vgiY8zwyvbOxpivjDHLjDFZxpjrglmniDQ/jmVZeE0Erv69q7W31ocZAYwxxMYO2S9cjx4NPXsaZsZOgi++gE2bQlShiIgELVwbY5zAE8DpwADgQmPMgH26nQ70rvy4HHiqsr0CuNFa2x8YA1xVw7kiEsaSN2WxNbFPYN5DJa83j9LSVa02XAPExQ2luHgx1vp3txkTGL3++7rfBnZqnDYthBWKiLRuwRy5HgWsstausdaWA28A4/fpMx54xQbMAZKMMenW2s3W2vkA1tpCYBnQMYi1ikgzsnUr9CrPorj7vjszzgda53zrKnFxQ/H7SygtXV2tfdIkWEkfNnUepakhIiIhFMxw3RHI3ut1DvsH5AP2McZ0Aw4DfqrpTYwxlxtj5hlj5m3fvr2mLiLSwiz9uYgerCViaM07M7bmcB0bOwSA4uJF1dp79YIxY+AV3yTIzIQlS0JQnYiIBDNcmxrabEP6GGPigHeA6621Na4vZa191lo70lo7Mi0t7aCLFZHmY+PngaXmUo/bP1xHRXUnIiIlFGU1C7GxAwHHfvOuITB6/a9NE7BOJ7z2WtMXJyIiQQ3XOUDnvV53AvZ9yqbWPsaYCALB+jVr7Ywg1ikizUzpvMBScwlH7r8MX2uebw3gdEYTE9OHoqJF+x274ALY5WrL8q6nBsK131/DFUREJJiCGa7nAr2NMd2NMW5gIvD+Pn3eByZXrhoyBsi31m42xhjgBWCZtfZfQaxRRJoh9y9ZlDsioWfP3W1e7048nrWtekpIldjYoRQX7z9ynZYGp50G/9k1CbKz4bvvQlCdiEjrFrRwba2tAK4GZhF4IPEta22WMeYKY8wVld0+AtYAq4DngCsr248CLgJ+ZYzJrPwYG6xaRaT58Hqh/Y4l7EjtB07n7vbCwgyAVj9yDRAXNwSPZx0VFfn7HZs0CV7aNZ6K6Dg92CgiEgKuYF7cWvsRgQC9d9vTe31ugatqOO97ap6PLSJhbsUK6G+zKOt1TLX2qocZ4+KGh6KsZiUu7jAACgsXkJx8fLVj48aBKz6Gn9uezZFvvw3//jdERTV9kSIirZR2aBSRZmXpnAK6kE304fvPt46O7kVERHKIKms+4uMPB6CwcO5+x6Kj4bzz4IFNkyA/H/73v6YuT0SkVVO4FpFmZcc3gYcZU4/df6UQTQkJcLtTiYrqVmO4Bpg8GT4s/RWlie01NUREpIkpXItIs+LNDIRr115rXHu9uZSVbdCUkL3Ex4+ioODnGo8deyx07eHiw/gLAyPXO3c2cXUiIq2XwrWINCsxa7Moc0ZD9+672woLFwB75hpLYGpIWdl6ysu37XfM4YBLLoH7ciYFnhCdPj0EFYqItE4K1yLSbOzYAV2Ls9iVPiCQECsVFQXCdXy8wnWVhIRRQM3zrgGmTIFMDmNban9NDRERaUIK1yLSbCxeDINYgr9f9fnWRUWZREZ2btU7M+4rMEXGQUFBzeG6Uyc49TTDS95JgfWu161r0vpERForhWsRaTZWzNlFBzYTP2bfcL2AuLhhoSmqmXK54oiNHUBhYc3zrgEuvRSeyv9N4MXrrzdRZSIirZvCtYg0G7u+DzzMGH/EnmX4fL4SSkpWaL51DeLjD6ewcC6BLQP2N24cFLbpxrLUY+DVV6GWfiIi0ngUrkWk2bBLAuGagXtGrouKFgF+hesaJCQcgde7g9LSlTUej4wM7Nj4712TYPlyWLCgiSsUEWl9FK5FpFmoqIDkjUvwRMRBly6724uKMgE9zFiTxMTALpZ5ed/V2ufSS2Ga73x8TrcebBQRaQIK1yLSLPzyC/T1ZVHYeQAYs7u9qGgBLlcykZFd6ji7dYqJ6UtERBr5+bWH66FDoeeIZL6JGwvTpgX+FSMiIkGjcC0izcKiRTCQLJyDa36Y0ewVuCXAGENi4tF1hmsIjF4/kT8JtmyBL79soupERFonhWsRaRZWzdlBO7aRcOSehxn9/gqKixdrvnUdEhOPweNZS1nZxlr7XHghfBl1BiXuRE0NEREJMoVrEWkWin7af9vz0tIV+P0ehes6JCUdC9Q97zo5Gc75TRRv+s7HzpgBxcVNVZ6ISKujcC0izYJz2ZLAJ3utFLJn2/NhIaioZYiNHYrTGXfAqSF//CNM9U3CFBfDe+81UXUiIq2PwrWIhNyuXdAhL4uyyATo2HF3e1HRAhyOKGJi+oWwuubN4XCRkHAkeXlf19lv5EgoHXEMm12dsZoaIiISNArXIhJyixcHHmYs6TFwv5VCYmMH43C4Qlhd85ecfBIlJUspK9tUZ78rrnQwteK38OmnsG1bE1UnItK6KFyLSMgtWmgZSBbuw/ZMCbHWUlSUqfnW9dCmzSkA7Nr1WZ39Jk6E9+MnYXw+ePPNpihNRKTVUbgWkZBbM2cbqeQSc/ielULKyjZQUbFL4boeYmMHExHRlp07P62zX0wMjLlsIJkMw/viq01UnYhI66JwLSIhV5YReJjRDNLDjAfDGAfJySeza9fnWOuvs+8VV8ArXERE5lzIymqiCkVEWg+FaxEJKZ8PotdUhry9VgopKloAOIiLGxKawlqYNm1OwevdRlHRojr79e0L646+iHIi8D/7fBNVJyLSeihci0hIrVkDvb1ZlMUmQ/v2u9uLijKJiemL0xkTwupajuTkkwDYtavuqSEAF92QxkzOwvviK+DxBLs0EZFWReFaREJq4cLASiHe3vuvFKL51vUXGdmB2NjB5OZ+dMC+48bBh+1/T2TRTnj33SaoTkSk9VC4FpGQqlopJGqvhxm93lzKyrI137qBUlLGkZ//PV5vbp39nE4YedOJrKE7+Q8/10TViYi0DgrXIhJSOT9vIpk8XEP2nm+dCaCR6wZKTR0P+Oo1en3JZQ5ei7yMxIyvYNWq4BcnItJKKFyLSEh5M/d/mLFqpZD4eIXrhoiPH4HbnU5u7vv16AtMmYIPB/n/0oONIiKNReFaREImLw9St9W8UkhkZGciIlJCU1gLZYyDlJRfs3PnJ/j9ZQfsf/GtHfmIM3C8PBW83uAXKCLSCihci0jILFoUeJixPCEV2rbd3R7YmXFY6AprwVJTx+PzFbFr15cH7NulCyw/5vfEl2yl5K0Pm6A6EZHwp3AtIiGTmRkI13avUWufr5SSkuWab32QkpJ+hdMZx44dM+rV/8SHTieHjmy55+kgVyYi0jooXItIyCzMtAwyWbgP27NSSHHxEsCvkeuD5HRGkZp6Ftu3v4PfX37A/sNHufiy1x/o8cunlGauaIIKRUTCm8K1iITMlnnZxNvCatue71kpZFhoigoDaWkTqKjYxa5dn9erf9+HL6cMNyuu/U+QKxMRCX8K1yISEhUV4FxW88OMTmcCUVHdQlNYGGjT5hRcriS2bXujXv1Hj2vH120n0Ov7qZRtLwhydSIi4U3hWkRCYsUK6FexOPBi0J5pIVUPM5q9dmuUhnE43KSmnsOOHTPx+eq3vXnSHdcQZ4vIuGZqcIsTEQlzCtciEhKZmTCERXjbdYI2bQCw1kdR0SJNCWkEbdtOxOcrJDe3fquAjLrqcBbHjiF9xn+oKPcHuToRkfClcC0iIbFwIQw1i3AOH7K7rbR0NX5/scJ1I0hO/hVud0e2bHmpXv2NgfIrrqW79xc+/79Pg1ydiEj4UrgWkZDIWlBOP7sMx9A94VoPMzYeY5y0bz+FnTs/oaxsY73OGf73c9kekU7004/gqd9sEhER2YfCtYiERMn85URQAUOqh2tjXMTGDghhZeGjffspgJ8tW16pV38T6abg4ms5ruxT3r4tM5iliYiELYVrEWlyW7ZAx52LAi+GDt3dXlSUSUzMAByOyBBVFl5iYnqRmHgcW7a8iLW2Xuf0fOiPFLsSiP3P/RRo4RARkQZTuBaRJrdwYeBhRn+EG/r02d2ubc8bX3r6pZSWriI///v6nZCYSMFv/sj48rd46fbVwS1ORCQMKVyLSJOrWinE338guFwAlJdvpbx8s8J1I0tLOxenM57Nm5+v9znp/7wOnyOC2KceYuvWIBYnIhKGFK5FpMktXAjDHQtxHbb3fOuFgB5mbGxOZyzt2k1i27Y3KS/fXr+T0tMpOX8Kkype4v4/bQlugSIiYUbhWkSa3Pq522jr37Lfw4wAcXFDazlLDlbHjldjbRmbNz9X73OS7v0zbuOl3bRHycgIYnEiImFG4VpEmlRhIUSvqtyZcZ9wHRnZhYiINiGqLHzFxg4gOflkNm58Er/fW7+TevWi4pwLuMo8wV1Xbqeez0OKiLR6Ctci0qQyM2EwNa8UoikhwdOx47WUl29kx453632O+967iKGE435+gGnTgliciEgYUbgWkSaVkRF4mNHXtj2kpQHg85VQUrJC4TqIUlLGEhXVk5ycx+t/Ur9+mEmTuMb8h4du3ExRUfDqExEJFwrXItKkMjJghGsRzmF7poQUFy8B/ArXQWSMg44dr6agYDYFBT/X/7y77sTtqGDKlvu4444gFigiEiYUrkWkSWXOq6CfP6uWhxmHhaaoViI9/TJcriQ2bLiv/if17Inj0kv4o+MZZj66jp9+Cl59IiLhQOFaRJpMURH4lv+C21+2X7h2OhOIiuoWuuJaAZcrno4dr2XHjpkUF2fV/8Q778QV6eSR6Fv5/e+hvDx4NYqItHQK1yLSZAKbxwTWs943XMfFDcMYE5rCWpFOna7F4Yhlw4Z/NuQkzI03clbpNGIWz+HBB4NXn4hIS6dwLSJNJiMDDmMB1u2G/v0BsNZHUdEiTQlpIhERKXTocAVbt06jtHRN/U+86SZo356XU27gr/dYli4NXo0iIi2ZwrWINJmMDDjSnYEZPBjcbgBKS1fj9xcrXDehzp1vwBhnw+Zex8XBvffSN/dHJke9xW9/q+khIiI1UbgWkSaTMc8yzM6HESN2t+lhxqYXGdmBDh0uZ/Pmlygp+aX+J06ZAsOG8bj7RlZlFnLnnUErUUSkxVK4FpEmUVwMnuXriPfuguHDd7cXFWVijIvY2AEhrK716dLlNhyOSNatu6v+Jzmd8NRTRO/cxIxBd/HAA/DNN8GrUUSkJVK4FpEmsWABHGYzAi+qjVwvICZmAA5HZIgqa50iI9vTqdN1bNs2jaKihfU/ccwY+MMfOGnpY/y60wImT4a8vKCVKSLS4ihci0iTmDMHhjMf63LB4MEAWGspLJxPfPzwA5wtwdC5819wuZJYu/b2hp34j39gUlN5Lf4PbNnoY8oUsDYoJYqItDgK1yLSJObMgaOjMzCDBkFkYJS6rCwHr3cbcXEjDnC2BENERDKdO99Ebu6H7Nr1df1PTE6GRx8lbulcvhj7MO+9Bw8/HLQyRURaFIVrEQk6a+HHHyyH+TOqTQkpLAxME4mPV7gOlU6driMysiurVl2Htb76nzhxIpxzDkfNuoMbTl7MzTfDt98Gr04RkZZC4VpEgi4nB5ybs4kvy93nYcYMwEFc3NDQFdfKOZ3R9Oz5IMXFi9i8+fn6n2gMPP00JimJB7ZMpl+PciZMgC1bgleriEhLoHAtIkH3448wgv0fZiwszCA2dgBOZ0yIKhOAtLTzSEw8lrVrb8frzWvIifDMMzgXZ/LlCX8jPx8uvBC83qCVKiLS7Clci0jQzZkDo50ZWKdz97bngYcZMzTfuhkwxtCr12N4vbmsW3dHw04+6yyYPJm2L9zHuzd+z9dfww03BKNKEZGWQeFaRIJuzhw4LmE+ZsAAiI4GoKxsI17vNs23bibi44fRsePVbNz4BAUFPzXs5H//G7p359QXJ3DXldv5z3/g2WeDU6eISHOncC0iQVVWFtiZcbBnLowcubs9MN9aDzM2J927/53IyI6sWPF7/P4GzO1ISIC334bcXO76ZRKnn+rnqqv0gKOItE4K1yISVJmZ0Mm7hrjSHYENSCoFVgpxaNvzZsTliqd37ycoLl5MdnYD19YbNgwefxzz2ae8M/If9OwJ554L69YFo1IRkeZL4VpEgmrOHBjDnMCLfcK1HmZsflJTx5Gaei7r1t1NcXFWw07+/e/hN78h+r67+Pwvs/B6Yfx4KCoKTq0iIs2RwrWIBNUPP8BJcXMgNhYGDgT0MGNz16fPE7hcCSxbNgm/v7z+JxoDzzwDgwbR6cYJfPDwSpYsgcmTwe8PXr0iIs2JwrWIBI21gXm3x7rnwKhR4HQCUF6+Ca93q+ZbN1Nudzv69n2eoqJM1q27q2Enx8XBe+9BRATHPDiOx/+Wz7vvwl//GpxaRUSaG4VrEQmalSshb0sp3fMya5hvrYcZm7PU1HGkp/+ODRvuJy/vm4ad3K0bvPMOrF7Nld9fyJSLfNxzT6BJRCTcKVyLSNB88w0MZz4Of4UeZmyBevb8F9HRvVm6dCJlZQ3cevHYY+GJJzAff8xzKTczZkxgesjChcGpVUSkuVC4FpGg+eYbODm+8mHG0aN3txcWZhAT018PMzZzLlc8AwdOp6Iin6VLJ+L3VzTsApdfDlddhevRh/j4gpdIToZx42DbtuDUKyLSHChci0hQWBsI16cn/hiYJtCuXWW7pbDwJ+LjR9Z9AWkW4uIG06fPM+Tnf8Patbc2/AKPPgonn0zSTX/g8zu+Yds2OO88KG/Ac5IiIi2JwrWIBMWaNbBxo2VI3reBKQKVPJ41eL07SEw8IoTVSUO0b38RHTr8kezsB9m8eWrDTna54K23oGdP+t16Dm/dt5rvvoNrrgn8A0xEJNwoXItIUHzzDfRlBdFF26uF64KCwDSRhASF65akV6/HSE4+iZUrL2fXrq8bdnJSEnzwAQC/fuZM7vlTHs8+C0891ehlioiEnMK1iATF55/Dr+MrV5nYJ1w7HLHExg4MUWVyMByOCAYMeJvo6F5kZZ1DcfHShl2gVy+YMQNWr+aOJRMYf0YF114LX34ZnHpFREIlqOHaGHOaMWaFMWaVMebmGo4bY8zjlccXGWOG73XsRWPMNmPMkmDWKCKNz++Hzz6Ds1O+hfbtA8GqUkHBHBISRmGMM4QVysGIiEhi8OAPcTgiWbjwZEpL1zTsAscdB08/jfnsU97qcD19+8L552uLdBEJL0EL1ybwk/MJ4HRgAHChMWbAPt1OB3pXflwO7P1LwqnAacGqT0SCZ/582LHDMiz/m0CgMgYAn6+UoqJMEhLGHOAK0lxFR/dgyJDP8Ps9LFx4Ih5PTsMucOml8Oc/437uCb4+/wl8PrjgAigrC069IiJNLZgj16OAVdbaNdbacuANYPw+fcYDr9iAOUCSMSYdwFr7LbAziPWJSJB8+il0Yx0xuzZWmxJSWJiBtRWab93CxcUNYsiQWXi9uSxceFLD18D+5z9h3DjS7r2O/13/KXPnwg03BKdWEZGmFsxw3RHI3ut1TmVbQ/uISAszaxZM7lLzfGuAhITRNZ0mLUhCwkgGD/4fZWU5ZGYei8ezof4nO53w2mswcCBHPXI+D1yyjCefhNdfD169IiJNJZjh2tTQtu/CS/XpU/ebGHO5MWaeMWbe9u3bG3KqiARBQQH88AOcFf85pKXBgAF7HZtDVFQP3O62IaxQGktS0jEMHfop5eXbWLDgaEpKfqn/yXFxgRVEoqP58zdncsboHVx+OSxt4HOSIiLNTTDDdQ7Qea/XnYBNB9GnTtbaZ621I621I9PS0g6qUBFpPF98Ab4KPwM3fQYnnwyOPd9mAg8zar51OElMPJJhw77G7/ewYMExFBYuqP/JXbrAzJmYjRt5x5xLUkw5550HRUXBq1dEJNiCGa7nAr2NMd2NMW5gIvD+Pn3eByZXrhoyBsi31m4OYk0iEmQzZ8Ix8Qtx79oGp566u93jyaa8fKPCdRiKjx/GsGHf4nC4ycw8ltzcj+t/8pgx8NJLRM75lp9HXMGK5Zarrw5erSIiwRa0cG2trQCuBmYBy4C3rLVZxpgrjDFXVHb7CFgDrAKeA66sOt8YMw34EehrjMkxxlwWrFpFpHF4vfD++3BVr1mBhpNP3n0sP/97IDDSKeEnNrYfw4fPITq6N4sX/5pNm56t/8kXXgh33kmHT17i4xMf4uWXNf9aRFouY8No/9mRI0faefPmhboMkVbr888DeXrboBNIc+yEhQt3H1u58o9s3foaRx+9S2tch7GKiiKWLp3Azp0f0bnzTfTo8Q+Mqcc4jrUwYQL2nXe4tv/nvLzhBDIzoUePoJcsItJgxpgMa+3Imo5ph0YRaTQzZkBadBGpK2ZXmxICkJf3DYmJRytYhzmXK45Bg94jPf0PZGffz9Klv8Hn8xz4RGPgxRcxffrw6NaJdGQjF14Y+G2IiEhLonAtIo3C7w/Mt75h2JcYr7dauC4v30ZJyTKSko4LXYHSZBwOF336PEWPHvezffubLFp0Ml5v7oFPjIuDd97BWVrMdx0mMP9nL3feGfx6RUQak8K1iDSK77+HzZvh/Ih3ITERjjlm97H8/O8ASEw8trbTJcwYY+jS5f8YMOBNCgrmMn/+kZSWrj7wiQMGwPPPk7piNh8Nuon77w+sQCMi0lIoXItIo5g6FZLjvPRY/B6MGwdu9+5jeXnf4nDEEB8/InQFSki0bXsBQ4d+jte7g/nzx5CfP+fAJ02cCFdfzclLHuGa9OlcdBFoGwMRaSkUrkXkkBUXw9tvw61HfYPZtQvOOafa8by8b0hIOAKHw13LFSScJSUdzfDhc3A6E1m48AS2b59x4JMefhhGj+ZfeZeQsmMFl10WeOZRRKS5U7gWkUM2Y0Zg44/fRr0DMTHV5lt7vTspLl6k+datXExMb4YP/5G4uMPIyjqPnJzH6z7B7Ya338YZE8VXKefy+QclPPVU09QqInIoFK5F5JBNnQq9uvtoP+ddGDsWoqN3H9u163PAkpx8Usjqk+bB7U5j6NAvSE09i1WrrmP9+vvqPqFzZ3jtNVK2LuW9jldx442QldU0tYqIHCyFaxE5JCtWwJdfwp3Hf4vZuhXOO6/a8Z07P8XpTCQ+/vAQVSjNidMZzYABb9G27W9Zu/ZW1q69gzr3WzjlFMztt3PyxqlcHvESF14Innqs7CciEioK1yJySB57LPAb/POKp0JCQuBhxkrWWnbt+pTk5JNwOFyhK1KaFYfDRf/+L5Oe/jvWr7+X1av/UnfAvusu+NWv+FfZlbB4ETfd1HS1iog0lMK1iBy0nTvh5Zfh0guKiP7fOzBhQrUpISUlKygry6ZNm1NCWKU0R8Y46dPnGTp2vIacnIfrDthOJ7z+Os42SXyedB4vPV7ARx81bb0iIvWlcC0iB+1f/4KSErit15uBJUMuvrja8V27PgUgOVnhWvZnjINevR6jY8erycl5mPXr7629c7t28MYbpBWs5u3E33PJFMvWrU1Xq4hIfSlci8hByc0NTAk5/zxLp3f/DYMGwZFHVuuzc+csoqP7EB3dLTRFSrNnjKFXr8do124y69bdSU7OY7V3Pu44zN//zqn5b3HhrieZMiWwM6iISHOicC0iB+VvfwsMVt//6+9h4UK49lowZvdxn6+YvLyvaNPm1DquIhIYwe7b9wVSU89h1arr2bLl1do7/9//wdixPGz/xI5P5vL4AVb0ExFpagrXIuHE2sBWdmvWQH5+0N5myRL4z3/gD3+A7u88BMnJ8NvfVuuzc+cs/P5SUlPPClodEj4cDhcDBrxOUtIJrFhxGbt2fV1bR3jlFRwd0/kw5gLu+79dLFzYpKWKiNRJ4VokHKxdC1ddBR06QNu20LMnJCVBnz5w++2BsN1IvF743e8gMRHuu2ABvP8+XH99YPOYvezY8S4uVxsSE49ttPeW8OZwRDJw4Ayio3uRlXU2xcXLau6YkoJ56y3aejfyquNiLpxoKSlp2lpFRGqjcC3Skvl88M9/Qt++8MILcMwx8Oij8NJL8I9/QI8ecN990Lt3IBFv2nTIb3nPPfDTT/DUU5D0yF2BEH/ttdX6+P1ecnM/JCXl11qCTxokIiKJwYM/whg3ixePpby8lqcWR4/GPPggp5R9wBnLH+LGG5u2ThGR2ihci7RUHk9gw5ZbboGzzsL/y2o+nPwWl2Rex4AHphD/j1uI/e4Tjumynhldrqdi6qv4evfFPv1MYPrIQXj9dfj73+HSS+GCxFnwwQeBObBJSdX65eV9TUVFHmlpZzfCFyqtTXR0NwYP/pDy8q0sXjwOn6+05o7XXgvnnss/zS0sfvp7Zs5s0jJFRGpk6ly4v4UZOXKknTdvXqjLEAk+rzewWcsnn8Cjj/Jpv2u57nrD8uWB6c/HHgvduwemp+bkBLaMLslawzP8gZP5nHW9TiLqtRdoP6pLvd/ytdfgkkvgqKPgk3dLiRw9LLBUw5IlEBlZre/KlVeyZcvLHHXUDpzO6JovKHIA27fPJCvrbNq1m0S/fq9g9npgdrf8fOzwEWzPLuWY2AV8mtmWrl2bvlYRaV2MMRnW2pE1HdPItUhLY23gScJPPqHiyWe5bs11nHqaweeDN96ArVth5kx45BF4+GF4881A/v1hcw9WP/kpD/Z4ipRVc4gePZj7B77My1MthYW1v11BQWCAcNKkwEp7M2dC5K03wsqVgbkh+wRrv7+cbdveIiXlTAVrOSRpaWfRrdtf2br1v+TkPFJzp8REzDvTSXXsZGrhOUw8u0zbo4tISGnkWqSleekluPRSKm65g/EL/8pHH8F11wWmXkdF1e8S675ai5lyMV03fMe7nMX1Uc8w9OS2HHVUYJp2QgLs2AHffw/TpgUC9jXXwAMPQORrL8Jll8Gf/wwPPrjftbdvf5esrHMYPPgjUlJOb+QvXloba/1kZV3Ajh3vMmTIx7Xv9vnWWzBhAq9wEd9c8jLPv2CoaaBbRKQx1DVyrXAt0pKsWAHDh+M7fDTjoj7jo1lOnn46MJDdYD4f9pFHsbfeSrErkbuTHuORzROwe/1CKy4OzjgD/vIXGDGCyr3OL4WTTw6sEuJ273fZxYvHU1j4M2PGZOthRmkUFRVFLFhwJGVl2QwfPpeYmF41d/zb3+DOO7mVv9PtmVu5/PKmrVNEWg9NCxEJBz4fXHQRNjqaG9Ne5aNZTp577iCDNYDTifnzjTgWzCd+QBce3vwbyoeNZv0jM5j9tZelS2HnzsBUkxEdNgdWG5kyBY4/Ht55p8ZgXV6+jZ07P6Jdu4sUrKXRuFxxDBr0HuBgyZLxVFTUMo/p9tvx/+a3/IPb+PKq6fz0U5OWKSICKFyLtBzPPgtz5zJr7OM8Nr0jd98dyLuHbODAwNp6L7+Ma9d2uvzpXI4cl0r/a04i4rcXBCZad+oEr7wSWBnkk08gNrbGS23d+l+sraB9+4sboTCRPaKjuzNw4FuUlKxg2bKLsLaGfc+NwfHC83hHHclU30X8c+y3bNjQ9LWKSOumaSEiLcG2bdC3L/m9hpMy/3PO/LVhxozAaiCNqqIiEJ4//BAWLIC8PGjXDo47LjBq3bNnrada6+Onn3rjdqczfPjsRi5MJCAn5zFWrbqerl3voHv3v9bcaft2ykYfi2ftJi7v9RXPZQwnIaFp6xSR8FbXtBD93lakJbjtNmxxMRN3PEGHjoaXX645WFvrw+/3YEzkwU3LcLngzDMDHw20Y8f7eDxr6dHjgYa/r0g9dex4LUVFC1m//m/Exg6ibdsL9u+Ulkbkt5/hH3k0/1l1Kjee8R1PfdUPl37iiUgT0LcakeZu+XJ48UW+HXINn2T24/PPA1uPV/H5PGzd+jJbt/6XwsIM/P5SjHERE9OPNm3Gkp7++9ofAGsk1lqysx8kMrIrqalnBfW9pHUzxtCnz1OUlKxg+fIpREf3Ij5++P4dO3Ui+vvPsSOO5q7vT+Lu33zJ397soxVERCToNOdapLm77TZ80bGcn3kbV14JJ56459CuXV8zd+5AVq68goqKPDp0uIIePR6gc+e/4Ha3JyfnX/z8cx+ysi6gtHR10ErcufMTCgp+pGvXW/QgowSdwxHJoEEziIhIZcmS8ZSVbam5Y69exHz/GUkx5Vz99rE8cunig92cVESk3jTnWqQ5+/lnGD2aZzvew50Vd7JixZ5R640bn+SXX64lOronvXv/h+Tkk/bbwa6sbDMbN/6bjRv/jd/vpWvXW+jS5RYcjv1X+jhY1vrJyBhFRUUuo0ataNRri9SlsDCTBQuOIi5uCEOHfoXTWfNC73bZcvIOPwl/cSkzr5jFZU/VOE1SRKTetBSfSEv1z39SFpPMjRv/xIMP7gnW2dmP8ssvV5GSMpYRI+bRps3JNW4NHRmZTo8e/2DUqBWkpZ3DunV3M3/+kRQXL2+0EjdvfpGiogy6dfurgrU0qfj4YfTv/woFBXNYufIP1DZYZPr3I3Hhd/jiEjn/6V8x4/JPmrhSEWlNFK5FmqtVq7AzZ/IUf2ToUfFMmhRo3rHjPVav/hOpqecycOA7uFzxB7xUZGQHBgx4nYEDZ+DxrCMjYzgbNz5Raxipr/LybaxZcxOJicfQrt2kQ7qWyMFISzuXbt3uZuvWV9iw4b5a+zl6dqfNku/YmdiD8c+dwaxf/6cJqxSR1kThWqS5euQRfI4I7i+5moceAmOguHgpy5ZNIj7+cPr3/y8OR0SDLpmWdjaHH76YpKTj+OWXq1m06HTKyjYdVHnW+lm27CL8/hL69Hm6xpFzkabQtesdtG37G9auvY0tW16utZ+ra0c6rfuehR3P4NQPr+HHEVdjy71NWKmItAYK1yLNUW4u9qWXeN1M4oiz0xkzBvz+MrKyzsfhiGHgwBm1zi89kMjIdAYP/ojevZ8kP/9b5s4dxLZtbzf4OmvW3MquXZ/Sq9djxMYOOKhaRBqDMQ769XuJ5OSTWL78MnJza5/24UqKY9jad/l0yI0cMf8J1nY5Dt+67CasVkTCncK1SHP01FOY0lIe9N3A3/8eaFq37q+UlCylX7+pREV1OqTLG2Po2PGPjBy5gOjoXixdegFZWRfg8Rx4OztrLWvX3kV29v106HAF6em/P6RaRBqDw+Fm4MB3iIsbTFbWeRQU1L73uSPCycmZD/HfM6eRtnUxxX2GUTr9f01YrYiEM4VrkebG48H32H/4xJzOqEsG0r8/FBbOZ8OG+2nffgopKac32lvFxPTlsMNm063b38jN/YCff+7HqlU34vGsr6W0DSxZcjbr1/+V9u2n0Lv3fzQdRJoNlyuBwYM/xu1ux8KFp1JQMLfWvsbApA8m8v5d81nt7UL0+WdSdMWfweNpwopFJBxpKT6R5uaFF+B3v+NU5+c8t+ZEOnf2M3/+EZSVbeDww5cSEZEclLf1eDawdu1tbN06DbAkJh5NYuJRuN0d8PkKKSj4iZ07P8IYF92730unTn9SsJZmyePZQGbm8Xi9Oxk69HMSEupeeu+TmR42XHAjl3ufpKTbAGKmvwIjRjRRtSLSEtW1FJ/CtUhz4vfj7TeIrFWRPHnZfJ59zrBly6ssXz6Zfv1epn37yUEvwePJZvPm58jN/ZDi4sVYWwFAVFQ3UlPPoVOn64iK6hL0OkQOhceznszM46moyGPIkE9JSDi8zv6LFsG/Tp3FvVsuo4NjC+bWWzF33A5uLS8pIvtTuBZpKT76CM44g8nmVe5eNYkuXYr4+ee+REZ2YvjwHzGmaWdy+f3lVFQU4HBE1mvJP5HmJBCwT6C8fBsDB04nJeW0Ovvv2gV/vDCP02ZdzxRexj9kGI5XX4YhQ5qoYhFpKbSJjEgLUf6Ph9hIR1y/nUCPHrBx42OUl2+iV69HmjxYQ+AhMbc7VcFaWqSoqK4cdthsYmJ6s2TJr+tcpg8gORle/yiJ7L9OZTzvsTNrM/4RI+Hee8GrJftEpH4UrkWai/nzcc/+ise4jptuj6CiopDs7H+RkvJrEhOPDHV1Ii1SZGQ6w4Z9Q2LicSxfPoVVq27E76+otb/DAXfcAdd8No5jU7J4238e3HEH9ogjYMmSJqxcRFoqhWuRZqLsvocpIJ7tZ19O376wadOTVFTspGvXO0JdmkiL5nIlMGTIx3TseA05Of9i0aJTKC/fWuc5J50EXy9OYeopr3Mu08lfvAE7YgTcdx9U1B7ORUQUrkWag+xsXO+8yfP8jhvuScTnKyY7+yHatDntgA9iiciBORwR9O79OP36vUxBwY/MnTuI7dtn1nlO27bwv//BUQ+fywB/Fh86x8Ott8KRR8LSpU1TuIi0OArXIs1A2QOPYS0sP+U6Bg+GTZuexuvdQdeud4a6NJGw0r79ZEaMyCAysjNZWWezfPmlVFTk19rf4YAbboAP5qRxQ8e3mGjepHjJGuzw4fDAA+DzNWH1ItISKFyLhFp+Pjz3LG9xAX/4R1d8vlI2bHiQ5OSTSEw8ItTViYSd2NgBDB8+hy5dbmPLlpf56ae+bNnyKnWtnjViBMyfD1GTL6BHaRbfxY2Fm26C44+HbG2fLiJ7KFyLhFjZk88TWVbInCNvZMQI2Lz5ObzerRq1Fgkih8NNjx73MmLEz0RFdWP58slkZh5LYWFGrefEx8PUqfDQK+0YW/oOf4x7lYqMTBg2DD74oKlKF5FmTuFaJJS8XsoeeIyvOJ4LHxqBz+dhw4b7SUo6nqSkY0JdnUjYi48fwfDhP9C37/OUlCwnI2MkWVnnU1KyotZzLroI5mUYZnefRP/S+Wx0dYVx4wLzR8rLm7B6EWmOFK5FQqj8tbdJyMvm8yE3csQRsGXLi5SXb9IKISJNyBgH6emXMXr0arp2vZOdOz/h558Hsnz57/B4ap7y0a8f/PQTnPiH3vTY9iNvtb8GHnkEjj4acnKa+CsQkeZEOzSKhIq1bOsyktycErZ9mcUxx3n56adeREZ25bDDvsMYE+oKRVql8vJtrF//DzZtegqADh3+SNeut+B2t6ux/5tvwu9/D2f5Z/Ci72JcCTHwzjuBoC0iYUk7NIo0Q+Wffk3bnPl80OsGjjvBwZYtL1NWlkO3bncqWIuEkNvdlt69H2X06JW0a3cRGzf+hzlzerB69c14vTv36z9hQuBhx6X9zmGI5yd2eBOxJ5wATz8dgupFJNQUrkVCZMsND7CNNEY+dhF+v5cNG+4jPn40ycknh7o0ESGwfXq/fs8zatQyUlPPIjv7AebM6c66dX+loqKgWt9eveD77+Ho3w+g166fmZt4Mvzxj3D55ZqHLdLKKFyLhIB3biZdln7CjM7Xc8LpUWzd+l88nnUatRZphmJiejNgwGuMHLmQ5OQTWbfuLubM6c6GDQ/g85Xs7hcVBc8+Cw89l8RxBR/wRMIt8Nxzge0et28P4VcgIk1J4VokBDZcdT8FxNPz4SuxtoL16/9OXNwI2rQ5PdSliUgt4uIGM2jQDIYPn0tCwijWrLmJn3/ux7Ztb1dbI/t3v4NvZzu5P/EfTI6YRsWcuTBqFCxeHMLqRaSpKFyLNDHv8tV0m/sWM9tdwUnnJbFt2zQ8ntUatRZpIRISRjJkyMcMG/YNLlcbli69gIULT6S4OGt3n8MPh4wM2HjMRI7wfkvetjLskUfC+++HsHIRaQoK1yJNbPUfH6ICF+3/eX3lqPW9xMYOJSXl16EuTUQaICnpWEaOzKB37ycoKspk7tyhrFlzKz6fB4C0NJg1C074y+EMLJnLMtsPe9ZZcP/9EEYrdYlIdQrXIk3Is24L3b5+iY9SL+bkizuwbdvrlJaupFu3uzVqLdICGeOkY8crGTVqJe3bT2bDhvvIyBhOfv4cAFwueOABePStjhxrv2WmewLcfDNMngweT4irF5FgULgWaUKLL30EN+W0e+gvWFvBunV/JS7uMFJTx4e6NBE5BG53Kv36vcjgwR/j8xWxYMFRrFr1590PPJ5/Pnw7N5pbur7O7eZe+O9/sccfD1u2hLZwEWl0CtciTaTwly0M/OrffN1+Ikde3JutW1+tnGutUWuRcJGSchqHH76E9PTfk5PzMPPmHUZBwU8ADBgAc+cZVk+4jbOZQdm8xfhGHB5YJFtEwobCtUgTyZr0D9yUk/bkX/H7vaxf/zfi4kZorrVImHG5Eujb92mGDv0cv7+U+fOPZM2a2/D7y4mPh9dfh1OfOptjzGy2bDX4jjwa3n471GWLSCNRuBZpApvmbOCwn5/hm+6XMPjsXmzd+goez1q6d79Ho9YiYSo5+UQOP3wx7dtfzIYN/yAjYxRFRYswBq64Ap75aRhnd5zLz2XD4IIL8N11D/j9oS5bRA6RwrVIE1j+m78C0OfVO/D5Sli37h7i4w+nTZuxIa5MRILJ5UqkX78XGTToPcrLt5CRMZL16/+J31/B8OHw6cJ2PHn+V7zMZJx/vZuCMyZCSckBrysizZfCtUiQ/fxSFseunUrm6CvofFQXsrP/RVlZNj17PqRRa5FWIjV1HIcfvoTU1PGsXXsLmZnHUFLyC0lJ8OpbkUS+PpU7ox8k7pPpbOt7DL71OaEuWUQOksK1SBBVeC3+a66jyJHAkOl3Ula2mQ0b/klq6jkkJR0b6vJEpAm53akMGPAW/fu/TknJCubNG0pOzn+w1s/ECw1XrPozfx3xPlE5v7Cr10iWPf5ZqEsWkYOgcC0SRB9e9i5jir9g3aV/I7pTCmvX3o615fTocX+oSxOREDDG0K7dhRx++BKSko5j1aprWLjwFDyebDp0gLvmnsnsB39kJ23of90pfD7oenZkl4a6bBFpAIVrkSBZmVHI8Ff/xLqEwQx98g8UFMxjy5aX6NjxWmJieoW6PBEJocjIDgwe/BF9+jxDQcEc5s4dxObNUwHL6X8eSPrGDL477BpOynqMHd1G8MJlP1BQEOqqRaQ+FK5FgsDng8Vn3kInsol/9Sms07Jy5e9xu9vTtevtoS5PRJoBYwwdOlzO4YcvIi5uGCtWXMKCBUeSnz+b+LbRHDP/cdY/9ykpkUVc9uJRvN/2dzx6Ry55eaGuXETqonAtEgRTL/uOc7c8wcrTriVl3FHk5PyLoqJMevd+goiIpFCXJyLNSHR0D4YN+4q+fV/E49nAggVHs2TJuRQWLqDr704mbdtSNk/6CxPLX2bSvX35e7vH+cu1ZaxfH+rKRaQmxlob6hoazciRI+28efNCXYa0ct++t4suZx1GTJyDtlsWU2TXMn/+4bRpczqDBs0IdXki0oz5fMVkZz9CdvYD+HyFJCefROfOfyE5+SRM1lIKL72W+LlfsZZu3G3+SuGZF3Lp5S5OOw1crlBXL9J6GGMyrLUjazqmkWuRRrR+naX4gkvowCbiP3wDX5Rh6dKJOJ2J9OnzVKjLE5FmzumMpVu32zniiGx69HiA4uIsFi06lZ9+6sna2LdwfvUMzJpFx4HJvGwn88j/+jDr1/+mX+dibr8dfvkl1F+BiChcizSS/HyYMfp+Ti9/j523PEj0caNYtep6Skqy6N//FdzudqEuUURaCJcrkS5d/sKYMWvp3/+/REf3Zv36e/l5bh/mJv+FnJmnUfzqfXQe3Z5/cy0LcjsT+/dbObXPGkaOhIceguzsUH8VIq2TpoWINILSUnh45DRuX/obtpwwkfZfvE7Oxn+zatV1dOlyCz16/CPUJYpIC+fxZLNt25vk5n5Ifv73gA+Xqw3p6wbS4bV8oj5dgvH7mRd/PI8WXsYMzmHE0TFMnAjnngvt24f6KxAJH3VNC1G4FjlEpaXw16M/5e75vyav7xjaLfyUHYWfsmTJWaSmjmPgwOkY4wx1mSISRrzeXezcOYtduz4jL+9rPJ41RG6H9M+iSP/YQWROCV53FF9GncnzBRfwMWMZemQsZ58NZ50FvbQaqMghUbgWCZLcXHj42Pe4a+kFFHfuT5uFX7HDN5usrHOJixvCsGFf43TGhrpMEQlzHk82eXnfkJf3Nfm7vibyp9WkfQVp3xncuywVERHMSTqBV7afyyecRuKgLpx1ViBoDx8OxoT6KxBpWRSuRYJgyWLLu7/6N7fsuIG8XiNJ/fljtpbPYvnyycTFDWXIkE+JiEgOdZki0gp5PDnk5X3Nrh2f4vvmI5I/zyXlB4jaFji+ObkjM0p+zf/Kfs2GDkcw+rRkTj0VTjwRUlJCW7tIS6BwLdKIfD547oFdJN9+FRP809h5zHiSPniJtTv+SXb2AyQmHs2gQR9oPWsRaRastZSUrGDXzk8pmT8T5+c/kDynjKSF4PAG+qyJ7cYXnl8x23csFYOG0evMfhx9YiSjRkFCQmjrF2mOFK5FGsl33/j5ZMobXLPuBtLMDkr/727sLaez4pc/UFSUQYcOf6RXr0dxONyhLlVEpEZ+fwWFhT+Tt+ljyr97H9dPWSQs8ZGYBa7iQJ8K42SF6cNC/zAK2vYiun932o7pQZfjutPz6HSi4iNC+0WIhFjIwrUx5jTgMcAJPG+t/ec+x03l8bFACTDFWju/PufWROFagsHrhVnvlzH/jhmctew+hrCY3G7DiXntDtYlv8vWrf8lIiKN3r3/Tdu254e6XBGRBvH5SsjP/55dOz6jNPMjzJKlxK2B2DUQs9pF1HYfjn2yQp6jDUWxbfEmtcW2bYu7Y1tiuqSQ2D0FZ7vUwNyS1Mo/U1IgPl4TuyWshCRcm8DyCCuBk4EcYC5wobV26V59xgLXEAjXo4HHrLWj63NuTRSupbHs2gWzPy0me+oXxHz1P8aWzSCNHexq24OK237FxqN+Ia/wGxyOaDp0uJKuXW/T/GoRCQsVFQUUFmZQWDiXwsK5FO2ci92wnugtELUJ3DvB7IjCbHXjyHUQme8npqicmLIyHNScKXzOCMrjU6hISoU2KTjSUnC1T8WdnoJJqwzhaWnQtm3gIy0NoqOb+CsXqb+6wnUwN0sdBayy1q6pLOINYDywd0AeD7xiAwl/jjEmyRiTDnSrx7kiB628HAp2+di2tpjclbmUrMyhYFkOnl+ySdqwkN5F8zjdtwonfsoiI9l1bDuWn9uJLYPWgGMNUd6edO/+d9LTL9PmMCISVlyuBJKTTyA5+YTdbT5fCaWlqygt/YWSkhV4PBsoL99CefkWSkq2UFGxBeO3uIogIh8iCio/Kj93FXiJyNuCY9d2nHlOIhaD+dGPv8iH019zIC+PisITn0BZQhvKk1OoaNMWf2p7TLsOuNI7Edm+HVGp8USmxOFKjseREBcYIY+O1ii5hFQww3VHYO/9oXIIjE4fqE/Hep7bLCwaO4Y22av2NOz1PcLYfRr2YXYfstXPNVXH6/itwj7HTI1vtafBHOgXFLaWvqaG96rjfQ74Xge8VvXrNqjuussCC64yP64yHxFlflLLLak1XLIsFQpHQXYvyB8KeUPKcMdZ4uKG0TPpTyQnn0Js7ECMvnmLSCvhdMYQFzeEuLghNR631uL3l1BRkU9FRQE+X37l54GPwsJ8tubn4/EU4vEU4vUWUlFRiPUX4CrJJ7Ion5jiQmKKioku9OLOg4g8D+48DxF520jcBRFrwb0LjL/uWv0GfJEOfE6D3+nAX/Wna+/XBuvY8z3cGrP7h8jenwf+NNhqf9bQD+r6cR8c+hEEwOaTJnD4I0+Euoxqghmua/pr3/c/vdr61OfcwAWMuRy4HKBLly4Nqa9RuEqLiSz17FvV7s/sfl9J9Yb9jlcFtn2C9u6mav33udZ+m9nvabC11WL2vNee4+aA/9PaAwTLmo+bfd6nWjO1vWl938tUXbvaf0Em8NIEPvyRTnzRLvwxgQ/inZAUBZ1SiOiehqNLWxxJqbhcbYiL7ERKZEeiorpr5Q8RkToYY3A6Y3E6Y4mM7HBI1/L7K/D5iqioKKS4uJD8wsCfJSWFlBbn48vdhtm2BQp24ijKw+UpxFlShtNThquknAhPOU5POcbnw1Hhw+Hz4fD5Ax8Vfhw+i6PCj7GVPy6qBmls4MPYPek9EORtZXtVp8p+1aoOn8UhWhxPSagr2E8ww3UO0Hmv152ATfXs467HuQBYa58FnoXAnOtDK7nhBny1uKnfUkREJGw5HC4cjiQiIpKIjg48FylSm7RQF1CD/cY6G9FcoLcxprsxxg1MBN7fp8/7wGQTMAbIt9Zurue5IiIiIiLNStBGrq21FcaYq4FZBJbTe9Fam2WMuaLy+NPARwRWCllFYCm+S+o6N1i1ioiIiIg0Bm0iIyIiIiLSAHUtxRfMaSEiIiIiIq2KwrWIiIiISCNRuBYRERERaSQK1yIiIiIijUThWkRERESkkShci4iIiIg0EoVrEREREZFGonAtIiIiItJIFK5FRERERBqJwrWIiIiISCNRuBYRERERaSQK1yIiIiIijUThWkRERESkkShci4iIiIg0EoVrEREREZFGYqy1oa6h0RhjtgPrm/AtU4EdTfh+LZ3uV8PpnjWM7lfD6Z41jO5Xw+meNYzuV8OF4p51tdam1XQgrMJ1UzPGzLPWjgx1HS2F7lfD6Z41jO5Xw+meNYzuV8PpnjWM7lfDNbd7pmkhIiIiIiKNROFaRERERKSRKFwfmmdDXUALo/vVcLpnDaP71XC6Zw2j+9VwumcNo/vVcM3qnmnOtYiIiIhII9HItYiIiIhII1G4PkjGmD8bY6wxJnWvtluMMauMMSuMMaeGsr7mxBjzoDFmuTFmkTHmXWNM0l7HdM9qYIw5rfKerDLG3BzqepobY0xnY8xXxphlxpgsY8x1le1tjDGfGWN+qfwzOdS1NjfGGKcxZoEx5sPK17pntTDGJBljpld+/1pmjDlC96tuxpg/Vf4/ucQYM80YE6V7Vp0x5kVjzDZjzJK92mq9R63952Qt96tZ5wqF64NgjOkMnAxs2KttADARGAicBjxpjHGGpsJm5zNgkLV2CLASuAV0z2pTeQ+eAE4HBgAXVt4r2aMCuNFa2x8YA1xVeY9uBr6w1vYGvqh8LdVdByzb67XuWe0eAz6x1vYDhhK4b7pftTDGdASuBUZaawcBTgLf43XPqptK4Gfe3mq8R/o5CdR8v5p1rlC4PjiPAP8H7D1hfTzwhrW2zFq7FlgFjApFcc2NtfZTa21F5cs5QKfKz3XPajYKWGWtXWOtLQfeIHCvpJK1drO1dn7l54UEQk9HAvfp5cpuLwNnhaTAZsoY0wk4A3h+r2bdsxoYYxKAY4EXAKy15dbaPHS/DsQFRBtjXEAMsAnds2qstd8CO/dpru0etfqfkzXdr+aeKxSuG8gYMw7YaK1duM+hjkD2Xq9zKtukukuBjys/1z2rme5LAxhjugGHAT8B7ay1myEQwIG2ISytOXqUwMCAf6823bOa9QC2Ay9VTqN53hgTi+5Xray1G4GHCPxWdzOQb639FN2z+qjtHunnwYE1u1zhauo3bAmMMZ8D7Ws4dBtwK3BKTafV0NZqlmKp655Za9+r7HMbgV/nv1Z1Wg39W809q4PuSz0ZY+KAd4DrrbUFxtR06wTAGHMmsM1am2GMOT7E5bQELmA4cI219idjzGNoOkOdKucJjwe6A3nA28aYSSEtquXTz4M6NNdcoXBdA2vtSTW1G2MGE/imsbDyh3gnYL4xZhSBfx113qt7JwK/DmsVartnVYwxFwNnAifaPes/tup7Vgfdl3owxkQQCNavWWtnVDZvNcakW2s3G2PSgW2hq7DZOQoYZ4wZC0QBCcaY/6J7VpscIMda+1Pl6+kEwrXuV+1OAtZaa7cDGGNmAEeie1Yftd0j/TyoRXPOFZoW0gDW2sXW2rbW2m7W2m4E/hKHW2u3AO8DE40xkcaY7kBv4OcQlttsGGNOA24CxllrS/Y6pHtWs7lAb2NMd2OMm8DDGe+HuKZmxQT+dfsCsMxa+6+9Dr0PXFz5+cXAe01dW3Nlrb3FWtup8nvXROBLa+0kdM9qVPl9PdsY07ey6URgKbpfddkAjDHGxFT+P3oigechdM8OrLZ7pJ+TNWjuuUIj143EWptljHmLwDffCuAqa60vxGU1F/8BIoHPKkf851hrr9A9q5m1tsIYczUwi8DT9i9aa7NCXFZzcxRwEbDYGJNZ2XYr8E/gLWPMZQR+0J8fmvJaFN2z2l0DvFb5j9w1wCUEBqV0v2pQOX1mOjCfwPf0BQR2zotD92w3Y8w04Hgg1RiTA9xFLf8f6udkrffrFppxrtAOjSIiIiIijUTTQkREREREGonCtYiIiIhII1G4FhERERFpJArXIiIiIiKNROFaRERERKSRKFyLiIiIiDQShWsRERERkUaicC0iIiIi0kj+HxoK0okvcCxNAAAAAElFTkSuQmCC\n",
487 | "text/plain": [
488 | ""
489 | ]
490 | },
491 | "metadata": {
492 | "needs_background": "light"
493 | },
494 | "output_type": "display_data"
495 | }
496 | ],
497 | "source": [
498 | "plt.figure(figsize=(12,8))\n",
499 | "df.Age.plot(kind='kde',color='b')\n",
500 | "df.Age_median.plot(kind='kde',color='y')\n",
501 | "df.Age_random.plot(kind='kde',color='r')\n",
502 | "plt.legend()"
503 | ]
504 | },
505 | {
506 | "cell_type": "markdown",
507 | "metadata": {},
508 | "source": [
509 | "#### Note: \n",
510 | "- from plot we can say that Random Sample Imputation work better than Mean Median Mode imputation is some cases.\n",
511 | "- When we use Median to fillna there is Distortion\n",
512 | "- There is Less distortion in random sample\n",
513 | "- In every cases random sample imputation wont work"
514 | ]
515 | },
516 | {
517 | "cell_type": "markdown",
518 | "metadata": {},
519 | "source": [
520 | "### Please drop a comment and share your feedback 👍🏻\n",
521 | "## Thank you 😇😇 !"
522 | ]
523 | },
524 | {
525 | "cell_type": "code",
526 | "execution_count": null,
527 | "metadata": {},
528 | "outputs": [],
529 | "source": []
530 | }
531 | ],
532 | "metadata": {
533 | "kernelspec": {
534 | "display_name": "Python 3",
535 | "language": "python",
536 | "name": "python3"
537 | },
538 | "language_info": {
539 | "codemirror_mode": {
540 | "name": "ipython",
541 | "version": 3
542 | },
543 | "file_extension": ".py",
544 | "mimetype": "text/x-python",
545 | "name": "python",
546 | "nbconvert_exporter": "python",
547 | "pygments_lexer": "ipython3",
548 | "version": "3.8.5"
549 | }
550 | },
551 | "nbformat": 4,
552 | "nbformat_minor": 4
553 | }
554 |
--------------------------------------------------------------------------------
/Titanic.csv:
--------------------------------------------------------------------------------
1 | PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
2 | 1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
3 | 2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
4 | 3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
5 | 4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
6 | 5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
7 | 6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
8 | 7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
9 | 8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
10 | 9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
11 | 10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
12 | 11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
13 | 12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
14 | 13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
15 | 14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
16 | 15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
17 | 16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
18 | 17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
19 | 18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
20 | 19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
21 | 20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
22 | 21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
23 | 22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
24 | 23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
25 | 24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
26 | 25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
27 | 26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
28 | 27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
29 | 28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
30 | 29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
31 | 30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
32 | 31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
33 | 32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
34 | 33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
35 | 34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
36 | 35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
37 | 36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
38 | 37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
39 | 38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
40 | 39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
41 | 40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
42 | 41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
43 | 42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
44 | 43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
45 | 44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
46 | 45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
47 | 46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
48 | 47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
49 | 48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
50 | 49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
51 | 50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
52 | 51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
53 | 52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
54 | 53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
55 | 54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
56 | 55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
57 | 56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
58 | 57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
59 | 58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
60 | 59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
61 | 60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
62 | 61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
63 | 62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
64 | 63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
65 | 64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
66 | 65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
67 | 66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
68 | 67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
69 | 68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
70 | 69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
71 | 70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
72 | 71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
73 | 72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
74 | 73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
75 | 74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
76 | 75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
77 | 76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
78 | 77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
79 | 78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
80 | 79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
81 | 80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
82 | 81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
83 | 82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
84 | 83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
85 | 84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
86 | 85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
87 | 86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
88 | 87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
89 | 88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
90 | 89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
91 | 90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
92 | 91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
93 | 92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
94 | 93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
95 | 94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
96 | 95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
97 | 96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
98 | 97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
99 | 98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
100 | 99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
101 | 100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
102 | 101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
103 | 102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
104 | 103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
105 | 104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
106 | 105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
107 | 106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
108 | 107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
109 | 108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
110 | 109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
111 | 110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
112 | 111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
113 | 112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
114 | 113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
115 | 114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
116 | 115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
117 | 116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
118 | 117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
119 | 118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
120 | 119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
121 | 120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
122 | 121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
123 | 122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
124 | 123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
125 | 124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
126 | 125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
127 | 126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
128 | 127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
129 | 128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
130 | 129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
131 | 130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
132 | 131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
133 | 132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
134 | 133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
135 | 134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
136 | 135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
137 | 136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
138 | 137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
139 | 138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
140 | 139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
141 | 140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
142 | 141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
143 | 142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
144 | 143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
145 | 144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
146 | 145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
147 | 146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
148 | 147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
149 | 148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
150 | 149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
151 | 150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
152 | 151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
153 | 152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
154 | 153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
155 | 154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
156 | 155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
157 | 156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
158 | 157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
159 | 158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
160 | 159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
161 | 160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
162 | 161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
163 | 162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
164 | 163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
165 | 164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
166 | 165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
167 | 166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
168 | 167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
169 | 168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
170 | 169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
171 | 170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
172 | 171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
173 | 172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
174 | 173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
175 | 174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
176 | 175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
177 | 176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
178 | 177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
179 | 178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
180 | 179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
181 | 180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
182 | 181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
183 | 182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
184 | 183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
185 | 184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
186 | 185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
187 | 186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
188 | 187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
189 | 188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
190 | 189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
191 | 190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
192 | 191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
193 | 192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
194 | 193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
195 | 194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
196 | 195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
197 | 196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
198 | 197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
199 | 198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
200 | 199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
201 | 200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
202 | 201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
203 | 202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
204 | 203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
205 | 204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
206 | 205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
207 | 206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
208 | 207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
209 | 208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
210 | 209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
211 | 210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
212 | 211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
213 | 212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
214 | 213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
215 | 214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
216 | 215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
217 | 216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
218 | 217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
219 | 218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
220 | 219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
221 | 220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
222 | 221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
223 | 222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
224 | 223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
225 | 224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
226 | 225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
227 | 226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
228 | 227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
229 | 228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
230 | 229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
231 | 230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
232 | 231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
233 | 232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
234 | 233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
235 | 234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
236 | 235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
237 | 236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
238 | 237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
239 | 238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
240 | 239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
241 | 240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
242 | 241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
243 | 242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
244 | 243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
245 | 244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
246 | 245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
247 | 246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
248 | 247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
249 | 248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
250 | 249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
251 | 250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
252 | 251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
253 | 252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
254 | 253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
255 | 254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
256 | 255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
257 | 256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
258 | 257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
259 | 258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
260 | 259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
261 | 260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
262 | 261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
263 | 262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
264 | 263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
265 | 264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
266 | 265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
267 | 266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
268 | 267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
269 | 268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
270 | 269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
271 | 270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
272 | 271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
273 | 272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
274 | 273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
275 | 274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
276 | 275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
277 | 276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
278 | 277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
279 | 278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
280 | 279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
281 | 280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
282 | 281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
283 | 282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
284 | 283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
285 | 284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
286 | 285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
287 | 286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
288 | 287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
289 | 288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
290 | 289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
291 | 290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
292 | 291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
293 | 292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
294 | 293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
295 | 294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
296 | 295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
297 | 296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
298 | 297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
299 | 298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
300 | 299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
301 | 300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
302 | 301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
303 | 302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
304 | 303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
305 | 304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
306 | 305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
307 | 306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
308 | 307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
309 | 308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
310 | 309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
311 | 310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
312 | 311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
313 | 312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
314 | 313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
315 | 314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
316 | 315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
317 | 316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
318 | 317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
319 | 318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
320 | 319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
321 | 320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
322 | 321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
323 | 322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
324 | 323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
325 | 324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
326 | 325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
327 | 326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
328 | 327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
329 | 328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
330 | 329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
331 | 330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
332 | 331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
333 | 332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
334 | 333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
335 | 334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
336 | 335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
337 | 336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
338 | 337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
339 | 338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
340 | 339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
341 | 340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
342 | 341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
343 | 342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
344 | 343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
345 | 344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
346 | 345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
347 | 346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
348 | 347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
349 | 348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
350 | 349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
351 | 350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
352 | 351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
353 | 352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
354 | 353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
355 | 354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
356 | 355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
357 | 356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
358 | 357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
359 | 358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
360 | 359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
361 | 360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
362 | 361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
363 | 362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
364 | 363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
365 | 364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
366 | 365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
367 | 366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
368 | 367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
369 | 368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
370 | 369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
371 | 370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
372 | 371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
373 | 372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
374 | 373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
375 | 374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
376 | 375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
377 | 376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
378 | 377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
379 | 378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
380 | 379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
381 | 380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
382 | 381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
383 | 382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
384 | 383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
385 | 384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
386 | 385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
387 | 386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
388 | 387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
389 | 388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
390 | 389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
391 | 390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
392 | 391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
393 | 392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
394 | 393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
395 | 394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
396 | 395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
397 | 396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
398 | 397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
399 | 398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
400 | 399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
401 | 400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
402 | 401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
403 | 402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
404 | 403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
405 | 404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
406 | 405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
407 | 406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
408 | 407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
409 | 408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
410 | 409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
411 | 410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
412 | 411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
413 | 412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
414 | 413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
415 | 414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
416 | 415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
417 | 416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
418 | 417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
419 | 418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
420 | 419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
421 | 420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
422 | 421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
423 | 422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
424 | 423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
425 | 424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
426 | 425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
427 | 426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
428 | 427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
429 | 428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
430 | 429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
431 | 430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
432 | 431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
433 | 432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
434 | 433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
435 | 434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
436 | 435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
437 | 436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
438 | 437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
439 | 438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
440 | 439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
441 | 440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
442 | 441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
443 | 442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
444 | 443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
445 | 444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
446 | 445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
447 | 446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
448 | 447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
449 | 448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
450 | 449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
451 | 450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
452 | 451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
453 | 452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
454 | 453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
455 | 454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
456 | 455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
457 | 456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
458 | 457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
459 | 458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
460 | 459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
461 | 460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
462 | 461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
463 | 462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
464 | 463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
465 | 464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
466 | 465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
467 | 466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
468 | 467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
469 | 468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
470 | 469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
471 | 470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
472 | 471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
473 | 472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
474 | 473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
475 | 474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
476 | 475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
477 | 476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
478 | 477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
479 | 478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
480 | 479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
481 | 480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
482 | 481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
483 | 482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
484 | 483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
485 | 484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
486 | 485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
487 | 486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
488 | 487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
489 | 488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
490 | 489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
491 | 490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
492 | 491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
493 | 492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
494 | 493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
495 | 494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
496 | 495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
497 | 496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
498 | 497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
499 | 498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
500 | 499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
501 | 500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
502 | 501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
503 | 502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
504 | 503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
505 | 504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
506 | 505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
507 | 506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
508 | 507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
509 | 508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
510 | 509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
511 | 510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
512 | 511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
513 | 512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
514 | 513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
515 | 514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
516 | 515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
517 | 516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
518 | 517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
519 | 518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
520 | 519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
521 | 520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
522 | 521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
523 | 522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
524 | 523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
525 | 524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
526 | 525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
527 | 526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
528 | 527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
529 | 528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
530 | 529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
531 | 530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
532 | 531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
533 | 532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
534 | 533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
535 | 534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
536 | 535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
537 | 536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
538 | 537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
539 | 538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
540 | 539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
541 | 540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
542 | 541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
543 | 542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
544 | 543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
545 | 544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
546 | 545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
547 | 546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
548 | 547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
549 | 548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
550 | 549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
551 | 550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
552 | 551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
553 | 552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
554 | 553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
555 | 554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
556 | 555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
557 | 556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
558 | 557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
559 | 558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
560 | 559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
561 | 560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
562 | 561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
563 | 562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
564 | 563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
565 | 564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
566 | 565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
567 | 566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
568 | 567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
569 | 568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
570 | 569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
571 | 570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
572 | 571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
573 | 572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
574 | 573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
575 | 574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
576 | 575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
577 | 576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
578 | 577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
579 | 578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
580 | 579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
581 | 580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
582 | 581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
583 | 582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
584 | 583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
585 | 584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
586 | 585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
587 | 586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
588 | 587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
589 | 588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
590 | 589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
591 | 590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
592 | 591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
593 | 592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
594 | 593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
595 | 594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
596 | 595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
597 | 596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
598 | 597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
599 | 598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
600 | 599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
601 | 600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
602 | 601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
603 | 602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
604 | 603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
605 | 604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
606 | 605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
607 | 606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
608 | 607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
609 | 608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
610 | 609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
611 | 610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
612 | 611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
613 | 612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
614 | 613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
615 | 614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
616 | 615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
617 | 616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
618 | 617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
619 | 618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
620 | 619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
621 | 620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
622 | 621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
623 | 622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
624 | 623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
625 | 624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
626 | 625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
627 | 626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
628 | 627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
629 | 628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
630 | 629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
631 | 630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
632 | 631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
633 | 632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
634 | 633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
635 | 634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
636 | 635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
637 | 636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
638 | 637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
639 | 638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
640 | 639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
641 | 640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
642 | 641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
643 | 642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
644 | 643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
645 | 644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
646 | 645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
647 | 646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
648 | 647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
649 | 648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
650 | 649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
651 | 650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
652 | 651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
653 | 652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
654 | 653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
655 | 654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
656 | 655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
657 | 656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
658 | 657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
659 | 658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
660 | 659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
661 | 660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
662 | 661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
663 | 662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
664 | 663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
665 | 664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
666 | 665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
667 | 666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
668 | 667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
669 | 668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
670 | 669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
671 | 670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
672 | 671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
673 | 672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
674 | 673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
675 | 674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
676 | 675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
677 | 676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
678 | 677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
679 | 678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
680 | 679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
681 | 680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
682 | 681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
683 | 682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
684 | 683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
685 | 684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
686 | 685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
687 | 686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
688 | 687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
689 | 688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
690 | 689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
691 | 690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
692 | 691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
693 | 692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
694 | 693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
695 | 694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
696 | 695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
697 | 696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
698 | 697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
699 | 698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
700 | 699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
701 | 700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
702 | 701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
703 | 702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
704 | 703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
705 | 704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
706 | 705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
707 | 706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
708 | 707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
709 | 708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
710 | 709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
711 | 710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
712 | 711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
713 | 712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
714 | 713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
715 | 714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
716 | 715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
717 | 716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
718 | 717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
719 | 718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
720 | 719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
721 | 720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
722 | 721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
723 | 722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
724 | 723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
725 | 724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
726 | 725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
727 | 726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
728 | 727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
729 | 728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
730 | 729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
731 | 730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
732 | 731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
733 | 732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
734 | 733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
735 | 734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
736 | 735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
737 | 736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
738 | 737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
739 | 738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
740 | 739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
741 | 740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
742 | 741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
743 | 742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
744 | 743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
745 | 744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
746 | 745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
747 | 746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
748 | 747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
749 | 748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
750 | 749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
751 | 750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
752 | 751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
753 | 752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
754 | 753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
755 | 754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
756 | 755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
757 | 756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
758 | 757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
759 | 758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
760 | 759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
761 | 760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
762 | 761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
763 | 762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
764 | 763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
765 | 764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
766 | 765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
767 | 766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
768 | 767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
769 | 768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
770 | 769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
771 | 770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
772 | 771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
773 | 772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
774 | 773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
775 | 774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
776 | 775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
777 | 776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
778 | 777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
779 | 778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
780 | 779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
781 | 780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
782 | 781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
783 | 782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
784 | 783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
785 | 784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
786 | 785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
787 | 786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
788 | 787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
789 | 788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
790 | 789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
791 | 790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
792 | 791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
793 | 792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
794 | 793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
795 | 794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
796 | 795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
797 | 796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
798 | 797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
799 | 798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
800 | 799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
801 | 800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
802 | 801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
803 | 802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
804 | 803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
805 | 804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
806 | 805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
807 | 806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
808 | 807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
809 | 808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
810 | 809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
811 | 810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
812 | 811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
813 | 812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
814 | 813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
815 | 814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
816 | 815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
817 | 816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
818 | 817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
819 | 818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
820 | 819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
821 | 820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
822 | 821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
823 | 822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
824 | 823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
825 | 824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
826 | 825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
827 | 826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
828 | 827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
829 | 828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
830 | 829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
831 | 830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
832 | 831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
833 | 832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
834 | 833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
835 | 834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
836 | 835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
837 | 836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
838 | 837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
839 | 838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
840 | 839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
841 | 840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
842 | 841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
843 | 842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
844 | 843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
845 | 844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
846 | 845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
847 | 846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
848 | 847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
849 | 848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
850 | 849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
851 | 850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
852 | 851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
853 | 852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
854 | 853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
855 | 854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
856 | 855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
857 | 856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
858 | 857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
859 | 858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
860 | 859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
861 | 860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
862 | 861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
863 | 862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
864 | 863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
865 | 864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
866 | 865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
867 | 866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
868 | 867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
869 | 868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
870 | 869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
871 | 870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
872 | 871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
873 | 872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
874 | 873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
875 | 874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
876 | 875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
877 | 876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
878 | 877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
879 | 878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
880 | 879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
881 | 880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
882 | 881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
883 | 882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
884 | 883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
885 | 884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
886 | 885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
887 | 886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
888 | 887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
889 | 888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
890 | 889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
891 | 890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
892 | 891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
893 |
--------------------------------------------------------------------------------