├── CAICT
├── icingPredict.ipynb
└── index
├── README.md
└── phm2017
├── index
├── phm2017.ipynb
└── phm2017.rar
/CAICT/icingPredict.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "collapsed": false,
8 | "scrolled": false
9 | },
10 | "outputs": [
11 | {
12 | "name": "stdout",
13 | "output_type": "stream",
14 | "text": [
15 | "d:\\0python\\PHM\\CAICT2017\n"
16 | ]
17 | }
18 | ],
19 | "source": [
20 | "cd d:\\0python\\PHM\\CAICT2017"
21 | ]
22 | },
23 | {
24 | "cell_type": "markdown",
25 | "metadata": {},
26 | "source": [
27 | "## 导入包"
28 | ]
29 | },
30 | {
31 | "cell_type": "code",
32 | "execution_count": 2,
33 | "metadata": {
34 | "collapsed": false
35 | },
36 | "outputs": [],
37 | "source": [
38 | "import numpy as np\n",
39 | "import matplotlib.pyplot as plt\n",
40 | "import pandas as pd\n",
41 | "import datetime as dt\n",
42 | "from sklearn.neighbors import KNeighborsClassifier\n",
43 | "from sklearn.model_selection import cross_val_score\n",
44 | "from sklearn.svm import SVC\n",
45 | "from sklearn.model_selection import train_test_split\n",
46 | "import tensorflow as tf"
47 | ]
48 | },
49 | {
50 | "cell_type": "markdown",
51 | "metadata": {},
52 | "source": [
53 | "## 导入数据"
54 | ]
55 | },
56 | {
57 | "cell_type": "code",
58 | "execution_count": 3,
59 | "metadata": {
60 | "collapsed": true
61 | },
62 | "outputs": [],
63 | "source": [
64 | "dataIn15 = pd.read_csv('train/15/15_data.csv')\n",
65 | "normalPer15 = pd.read_csv('train/15/15_normalInfo.csv')\n",
66 | "failurePer15 = pd.read_csv('train/15/15_failureInfo.csv')\n",
67 | "timeIn15 = dataIn15['time']\n",
68 | "dataIn21 = pd.read_csv('train/21/21_data.csv')\n",
69 | "normalPer21 = pd.read_csv('train/21/21_normalInfo.csv')\n",
70 | "failurePer21 = pd.read_csv('train/21/21_failureInfo.csv')\n",
71 | "timeIn21 = dataIn21['time']\n",
72 | "dataIn08 = pd.read_csv('test/08/08_data.csv')"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": 4,
78 | "metadata": {
79 | "collapsed": false
80 | },
81 | "outputs": [
82 | {
83 | "data": {
84 | "text/html": [
85 | "
\n",
86 | "\n",
99 | "
\n",
100 | " \n",
101 | " \n",
102 | " | \n",
103 | " startTime | \n",
104 | " endTime | \n",
105 | "
\n",
106 | " \n",
107 | " \n",
108 | " \n",
109 | " 0 | \n",
110 | " 2015-11-01 20:20:16 | \n",
111 | " 2015-11-03 23:47:32 | \n",
112 | "
\n",
113 | " \n",
114 | " 1 | \n",
115 | " 2015-11-04 14:04:51 | \n",
116 | " 2015-11-04 18:26:08 | \n",
117 | "
\n",
118 | " \n",
119 | " 2 | \n",
120 | " 2015-11-05 11:06:59 | \n",
121 | " 2015-11-09 02:44:31 | \n",
122 | "
\n",
123 | " \n",
124 | " 3 | \n",
125 | " 2015-11-09 12:30:09 | \n",
126 | " 2015-11-09 19:23:32 | \n",
127 | "
\n",
128 | " \n",
129 | " 4 | \n",
130 | " 2015-11-10 00:04:50 | \n",
131 | " 2015-11-15 23:03:06 | \n",
132 | "
\n",
133 | " \n",
134 | "
\n",
135 | "
"
136 | ],
137 | "text/plain": [
138 | " startTime endTime\n",
139 | "0 2015-11-01 20:20:16 2015-11-03 23:47:32\n",
140 | "1 2015-11-04 14:04:51 2015-11-04 18:26:08\n",
141 | "2 2015-11-05 11:06:59 2015-11-09 02:44:31\n",
142 | "3 2015-11-09 12:30:09 2015-11-09 19:23:32\n",
143 | "4 2015-11-10 00:04:50 2015-11-15 23:03:06"
144 | ]
145 | },
146 | "execution_count": 4,
147 | "metadata": {},
148 | "output_type": "execute_result"
149 | }
150 | ],
151 | "source": [
152 | "normalPer15.head()"
153 | ]
154 | },
155 | {
156 | "cell_type": "markdown",
157 | "metadata": {},
158 | "source": [
159 | "## 数据预处理, 标记正反例"
160 | ]
161 | },
162 | {
163 | "cell_type": "code",
164 | "execution_count": 4,
165 | "metadata": {
166 | "collapsed": true
167 | },
168 | "outputs": [],
169 | "source": [
170 | "def dataPreProcess(data, oktime, ngtime):\n",
171 | " for index, row in ngtime.iterrows():\n",
172 | " data.loc[(data['time']>=row[0]) & (data['time']<=row[1]),'label']=1\n",
173 | "\n",
174 | " for index, row in oktime.iterrows():\n",
175 | " data.loc[(data['time']>=row[0]) & (data['time']<=row[1]),'label']=0"
176 | ]
177 | },
178 | {
179 | "cell_type": "code",
180 | "execution_count": 5,
181 | "metadata": {
182 | "collapsed": true
183 | },
184 | "outputs": [],
185 | "source": [
186 | "def dataPreProcess(dataIn, timeIn, normalPer, failurePer):\n",
187 | " dataIn['label'] = -1\n",
188 | " for i in range(len(timeIn)):\n",
189 | " for j in range(len(normalPer)):\n",
190 | " if timeIn[i] >= normalPer.loc[j]['startTime'] and timeIn[i] <= normalPer.loc[j]['endTime']:\n",
191 | " dataIn['label'] = 0\n",
192 | " for j in range(len(failurePer)):\n",
193 | " if timeIn[i] >= failurePer.loc[j]['startTime'] and timeIn[i] <= failurePer.loc[j]['endTime']:\n",
194 | " dataIn['label'] = 1\n",
195 | " return dataIn"
196 | ]
197 | },
198 | {
199 | "cell_type": "code",
200 | "execution_count": 10,
201 | "metadata": {
202 | "collapsed": true
203 | },
204 | "outputs": [],
205 | "source": [
206 | "def featProcess(dataIn):\n",
207 | " pass"
208 | ]
209 | },
210 | {
211 | "cell_type": "code",
212 | "execution_count": 5,
213 | "metadata": {
214 | "collapsed": false
215 | },
216 | "outputs": [],
217 | "source": [
218 | "# data15 = dataPreProcess(dataIn15, timeIn15, normalPer15, failurePer15)\n",
219 | "# data21 = dataPreProcess(dataIn21, timeIn21, normalPer21, failurePer21)\n",
220 | "dataPreProcess(dataIn15, normalPer15, failurePer15)\n",
221 | "dataPreProcess(dataIn21, normalPer21, failurePer21)\n",
222 | "label15 = dataIn15['label']\n",
223 | "label21 = dataIn21['label']"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": 6,
229 | "metadata": {
230 | "collapsed": false
231 | },
232 | "outputs": [],
233 | "source": [
234 | "data15_1 = dataIn15[label15 == 1]\n",
235 | "data15_0 = dataIn15[label15 == 0]\n",
236 | "len_1 = len(data15_1)\n",
237 | "len_0 = len(data15_0)"
238 | ]
239 | },
240 | {
241 | "cell_type": "code",
242 | "execution_count": 7,
243 | "metadata": {
244 | "collapsed": false
245 | },
246 | "outputs": [],
247 | "source": [
248 | "data21_1 = dataIn21[label21 == 1]\n",
249 | "data21_0 = dataIn21[label21 == 0]\n",
250 | "# len_1 = len(data21_1)\n",
251 | "# len_0 = len(data21_0)"
252 | ]
253 | },
254 | {
255 | "cell_type": "code",
256 | "execution_count": 8,
257 | "metadata": {
258 | "collapsed": false
259 | },
260 | "outputs": [],
261 | "source": [
262 | "data15_0 = data15_0.sample(len_1)\n",
263 | "data15_0 = data15_0.loc[:, ['wind_speed', 'power', 'wind_direction', 'environment_tmp', 'label']]\n",
264 | "data15_1 = data15_1.loc[:, ['wind_speed', 'power', 'wind_direction', 'environment_tmp', 'label']]"
265 | ]
266 | },
267 | {
268 | "cell_type": "code",
269 | "execution_count": 52,
270 | "metadata": {
271 | "collapsed": false
272 | },
273 | "outputs": [
274 | {
275 | "data": {
276 | "text/plain": [
277 | "Index(['time', 'wind_speed', 'generator_speed', 'power', 'wind_direction',\n",
278 | " 'wind_direction_mean', 'yaw_position', 'yaw_speed', 'pitch1_angle',\n",
279 | " 'pitch2_angle', 'pitch3_angle', 'pitch1_speed', 'pitch2_speed',\n",
280 | " 'pitch3_speed', 'pitch1_moto_tmp', 'pitch2_moto_tmp', 'pitch3_moto_tmp',\n",
281 | " 'acc_x', 'acc_y', 'environment_tmp', 'int_tmp', 'pitch1_ng5_tmp',\n",
282 | " 'pitch2_ng5_tmp', 'pitch3_ng5_tmp', 'pitch1_ng5_DC', 'pitch2_ng5_DC',\n",
283 | " 'pitch3_ng5_DC', 'group', 'label'],\n",
284 | " dtype='object')"
285 | ]
286 | },
287 | "execution_count": 52,
288 | "metadata": {},
289 | "output_type": "execute_result"
290 | }
291 | ],
292 | "source": [
293 | "dataIn15.columns"
294 | ]
295 | },
296 | {
297 | "cell_type": "code",
298 | "execution_count": 10,
299 | "metadata": {
300 | "collapsed": false
301 | },
302 | "outputs": [],
303 | "source": [
304 | "# dataIn = pd.concat([data15_0, data15_1])\n",
305 | "# X = dataIn.loc[:, ['wind_speed', 'power', 'wind_direction', 'environment_tmp']]\n",
306 | "# y = dataIn['label']\n",
307 | "dataIn = pd.concat([data15_0, data21_0, data15_1, data21_1])\n",
308 | "X = dataIn.loc[:, ['wind_speed', 'power', 'wind_direction', 'environment_tmp']]\n",
309 | "y = dataIn['label']"
310 | ]
311 | },
312 | {
313 | "cell_type": "code",
314 | "execution_count": 174,
315 | "metadata": {
316 | "collapsed": true
317 | },
318 | "outputs": [],
319 | "source": [
320 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)"
321 | ]
322 | },
323 | {
324 | "cell_type": "code",
325 | "execution_count": 8,
326 | "metadata": {
327 | "collapsed": true
328 | },
329 | "outputs": [],
330 | "source": [
331 | "data15_0 = data15_0[data15_0['power'] < 2.0]"
332 | ]
333 | },
334 | {
335 | "cell_type": "code",
336 | "execution_count": 9,
337 | "metadata": {
338 | "collapsed": false
339 | },
340 | "outputs": [],
341 | "source": [
342 | "data21_0 = data21_0[data21_0['power'] < 2.0]"
343 | ]
344 | },
345 | {
346 | "cell_type": "code",
347 | "execution_count": 11,
348 | "metadata": {
349 | "collapsed": false
350 | },
351 | "outputs": [
352 | {
353 | "data": {
354 | "text/plain": [
355 | "(515481, 4)"
356 | ]
357 | },
358 | "execution_count": 11,
359 | "metadata": {},
360 | "output_type": "execute_result"
361 | }
362 | ],
363 | "source": [
364 | "X.shape"
365 | ]
366 | },
367 | {
368 | "cell_type": "code",
369 | "execution_count": 13,
370 | "metadata": {
371 | "collapsed": false
372 | },
373 | "outputs": [
374 | {
375 | "data": {
376 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXuUXPV15/vZVV0tSmpCqyWNsVrIQBbBExsPAg0mo76O\neWSwPUaW8SDbYJQZm9E4JBfDcEXEhGUkL8+ggBcPTSyDgrkJtiCIGHeaYF8cIWdIk+CxZImHjHEw\njkEtZoyQWnGrW93VVfv+cepU1+OcU6eqTr33Z61e3XXq1Dm/rur+7d9vP75bVBXDMAyj+4g1ewCG\nYRhGczADYBiG0aWYATAMw+hSzAAYhmF0KWYADMMwuhQzAIZhGF2KGQDDMIwuxQyAYRhGl2IGwDAM\no0vpafYAgli8eLGefvrpzR6GYRhG27B3797DqrokzLktbQBOP/109uzZ0+xhGIZhtA0i8ouw55oL\nyDAMo0sxA2AYhtGlmAEwDMPoUswAGIZhdClmAAzDMLoUMwCGYRhdSs0GQEROE5Hvi8iPReSAiHzB\n4xwRka0i8qqIvCAi59V6X8MwDKM2oqgDmAVuUtUficjJwF4R+RtV/XHeOR8Gzsp+vR/4Wva7YRgt\nzq3DL/LID94grYoA83vjTM6kWdqf5KJ3L+H7P3mLQ+NT9M9PcCKVZiqVafaQG4oIXP3+5Xx5zTnN\nHkrF1GwAVPVN4M3sz78SkZeBQSDfAHwMeEidBsTPiUi/iLwz+1rDMOrE8L4x7nzqFQ6NT7G0P8mG\ny85mzYrBwHPHxqdyxwTI7xquwPGZNABj41N887nXc88dnUzV4TcIZnVslJt7drJUDnNIF3PH7FpG\nMkMNHYMqufehnBHI/zxOSSYQgfHJVNnPpl5EWgksIqcDK4AfFD01CLyR9/hg9pgZAMOoE8P7xrjl\n8ReZSs1N2Lc8/mLu+XzDcNG7l/CtvWO5c12U1mV1bJQtiQeYLzMALJPDbEk8ACkabgQAHv7B674G\nYHjfGJtGDjA+NWck83/O/2waaQTEWZRHcCGRPuB/Av9NVR8veu6vgS2qOpp9/DTwh6paovMgIuuB\n9QDLly8//xe/CF3VbBgG3iv5fBbOT3AilSmZ7NuN0d7rWRY7XHL8YGYxQzNbmzAiWPXrA+z4T79V\ncKzYEAexcH6C+b09oXZsfojIXlVdGebcSHYAIpIAvgXsKJ78s4wBp+U9XpY9VoKqbge2A6xcubKV\nFyCG0XKEmWya4aoJIt+NM04fqrBQJjxdOvnnis/1BuUwq2OjTdkFPPuzI9w6/GLBTuDOp14JbWyP\nTqZyn08jdgVRZAEJ8HXgZVW9y+e0EWBdNhvoQuCY+f8NI3oqmWxagdWxUb6S2M6y2GFiAgMywaLY\nBDGBZTHHpbM6Npo7d0vigdy54mMBRCh4nfva0d7reW3eVYz2Xl/wXNQ88oM3Ch4f8tmJhWEqlebO\np16pdUi+RLEDWAVcA7woIvuzx/4rsBxAVe8DvgN8BHgVmAT+YwT3NQyjiFomm3rjFbDdlHiIXpn1\nfc18meGuxH2Qgk2Jh3L+/nLMlxlu7tnJyMyQZ6zgnsQ2zk//lNtmPxt6rGF3FOkit/rS/qSvOy4M\n9fxMo8gCGgXf3Zh7jgK/X+u9DMMIJmiyGaxxIqoFv4BtkvITeo9k+EpiOwm8DYWq925gUJz4wM09\nO0sMR0zgmvguAC6J7S+Y6IGagsvxosFsuOzsUDGA4owrl6X9ybL3rBarBDaMDmLDZWeTTMQLjiXi\nQn8yUbeVZBj3itckHHY1D9Ars4Eun6CxLZXSQDHMGQHXpeS6nG7rKd1puDuKMHz6/acVPF6zYpDb\nrziHwf4kAvQnEyTihYNOJuJcfeHyks8umYiz4bKzQ923Glq6IYxhGJXhBgvdLKCYQCqtBSmHURI2\nFdNvEq4nInBvYhsTOo+TZdrznFiR8ZgvM767kqXydvD9gKsv9C4IW7NisCCQ61efsfJdA6HrNqIg\nsjTQerBy5Uq1jmCGEYzXZAKETj2sBb9UzFmNESOTc6vc3LPT87y0QjzQgVw7qo5rpXiyDzrfa1fh\nl1462KQiLj8angZqGEbjyJ/wk4kYk3nSC27q4EmJWEOygfxW9j3ijGmZHOYrie1k0JKJdVJ72ZM5\ni/8rdqDguCqkEXokqhol55oZLTQCxY9djtLHSTpT4Aaa1N5cfKCYZzdeHMk4m4EZAMNoA/KLu/KD\nhZMeujtTqXTDUkEP6WKWlXHveGX5qMJj6Q9wSWx/yWpbBP5ZF/BrOpkzJLUiwBdS12Uze97mkC7i\n6cy5XBl/pmSi35RaB1BwbjMkJhqBGQDDaHGKi7tayWl7x+zaghhAWETgo7HnGJAJz+cX4n28HH7u\nmwzCSGaIkZnCSXxv5jd8J/riczsRMwCG0eJUU9yVTMQAqftOYCQzBKm51XIGCb1qH5CJwAyeoOcq\nf43mqoOjFJDrrXcAo86YATCMFmZ431hVufsnUpmG7RTyV9arY6Pcm9gWavL2O8dvFV8LcYHbeh6C\n2dpy/IuZ39veU6jVARhGi+K6fqqhWW6ikcwQR7Sv7Hl+yYdhJv9Mlb/cgEz41iOEzfEv5lid0msb\nhRkAw2hR2k3Xx2Xz7Domtdf3eVU4zkmez5Wb/Ce1l2+kL/U1IOXwy1oql+Pve706Vuk2gvbevxhG\nB9PKuj5BFMcFjuoCRKCf47lAKxDaVQSO0ThKH5tS6xjJDHFJbH/Z7KNijtLHpJ7k+bpDuqiia0H9\nq3QbgRkAw2hR/HR9+pMJjk2lWiobqBivjJtibtOHWOSRBeSVr/+N9KUFwm1e2Ueua2iSeSxgusC4\nzGhPLr2z+HVBOf5+iMDtV5zTMsVf1WIuIMNoUbx0fZKJuFPY1KQxVUI5jSAvV5Hr4jmYWUxGhYOZ\nxdyQuq5EtXMkM8TG1LUl5505/TDvnf5/+ULquoLn/p/UescoebxuY+raygPA2tjOXfXCpCAMo4Up\nlnm46N1LCvrwFtMKPXLdcXittIsn27nxtlfB1WB/smUrgE0KwjA6hDUrBlkTfxae/hJ67CCH9i3i\nn2Pek2Qje+SWMzRB2Tb5rqEwrqJWoxN8/y5mAAyjRfBUiIw/C09cDylHAmIwYFIPO+nWShhDE3W2\nTasQF+kI37+LxQAMowVwc/7HxqdQHFG3Gx/dz8G/vAVShYFgv7z1Rk26YXLpD+liz9ce1QUNa81Y\nD9KqHTP5gxkAw2gJNo0cKMn5Vyqb1P0m3WpSHIMIM6Y7ZteWBHinNc7JcqKkAUs7GQHBMdadghkA\nw2gyw/vGfBu2VDKpe0261aQ4liPMmLyybY6TLFEGraUKtxko1LVJe6MxA2AYDWB43xirtuzmjI1P\nsmrL7oJVZNCEUsmkHlmKYxnCjmkkM8TQzFbOnN7B0MxW+n0UPtstLtCuBXpeWBDYMOpMsZyz27QF\nnCyfoAmluKq2XKpkI7JqRjJDnJ/+KVfHdxMnQwYhg3BPYhs3607f8fn1DojaRVVv2l3+IR8zAIZR\nZ7w0faZSae586hXWrBj0rfh1abVUydWxUa6MP5OTfY6j9OH03A1KPX06cy7XyK6CKt96uKjqzUXv\nXtLsIURGJC4gEXlQRH4pIi/5PP9BETkmIvuzX1+M4r6G0Q74rfDd414Vv62MVxZQPl5+fddoFEs8\nPJb+QFsUfuXzzedeL3HjtStRxQD+DPhQmXP+TlXPzX59KaL7GkbL4+cycI+vWTHI7Vecw2B/EsHJ\nNW82QTIOfllA+RT79b2MRkzgktj+aAbcYFw3XrsbgUgMgKo+AxyJ4lqG0Wn4afrkV5OuWTHIsxsv\n5udb/h2ZJsuzuIVefumafllA+RT79TuxMMx147UzjcwC+jci8oKIfFdE3tPA+xpGUyle4Q/2JwOr\nSZsdZPQr9Lqt5yHAyQIKasri5ddvVI1ClCycnyh7TrtnBDXKAPwIWK6q7wP+BzDsd6KIrBeRPSKy\n56233mrQ8AyjvuSv8J/deHFgNWmzYwJ+q/UBmcj11f1G+tISI6AKb2f6eCz9AW7u2VngPvIrDJsv\nJ1qyKjguwm2Xv4dEmZ6/zTbWtRKZGqiInA78taq+N8S5/wSsVNVAZ6KpgRrdiqsLVE0/4FoZ7b2e\nZTHvf82DmcUMzWwFvJU8wVtvf2PqWqCwSczJcqKgMMxLLbRZLOiNc3wmuBtbMhFvSV2gStRAG2IA\nRORU4P+oqorIBcBfAu/SMjc3A2B0Ep5ib3mTR6XSz/UiqLF7RoUzp3f4vtbPeOQbjkrOa1UGPT6/\nVqHhctAi8gjwQWCxiBwEbgMSAKp6H/Dvgd8TkVlgCvhUucnfMNqd/An9lGSC4zOzpNLOn31xMZhX\nsVijJn8vaeej9DHgUblbzmcfNtjbzkHhVu4FUCmRGABV/XSZ5/8E+JMo7mUY7UDxhO6l9ZNfDNas\nBvB+0s6PpT/AlfFnKm6dGLbat12rgjupFwCYFpBh1IWwE7qbRdKsbBK/jJ9LYvur0hUKqxPUKOG6\nqJnX01lTpklBGEYdCDuhu1kkpyQTvoqg9STIFVONBEVY7aJKNY5ahfGpVIHrrt0xA2AYdaCcvg8U\nuhNS6UwjhlVCPVwxYQ1Hq2kchSXfddfudNZ+xjBahDC5/J8435lAVnzpe2VTDutFPV0xq2Oj7O1d\nz8/nXZX7+tG89S2V718tzUjPrQe2AzCMOpHOBK/q//r5N/nW3rGysYJyDdhroVJXTNixrI6Ncmfi\nfuZJ4e82wARfSWz3VAut5+8ZNa2g1xQFkdUB1AOrAzDakeIMoFooztKB5hVMVTKWoGIyKM3397p2\nRp0WjEfpQxUWykRLGYZ7PnluS7qBKqkDMBeQYUTI8L4xbtr5fGQpnWEasDeKSsZSTjE0rFqoiCNB\nsSg20XJ9hE0N1DCMHO7KPx3hrrqVCqYqGctR7Qu8Vli1UC9apY+wqYEahpGjmmKucp7kVlLRDDuW\n1bFRTpYTvtdRdbqD5fccqNRktkrFsKmBGoYBVDcZKMHNV1qpYCrsWG7u2Vkg8laMCHwq/n3uStyX\n6zlQRnSzhFapGG53NVAzAIYREdVMBuWar4xkhqqqyK0HxWN5O9NHhhj3Jrbx83lXsbfXSfEM486Z\nJ+lcT+FKaZWK4U6QhbAsIMOIiGqyfxqtiumXallpCubq2ChfSWwvWelPa5zjJBmQUiG5alF1dkoC\npImxI30xt81+NrLrV8KC3jiTM2lPNddWoeFqoIZhzEkD7H9yO9fOfDPUZNrIIK+f8Nv56Z8WCL+5\nx71y9V383DzzJE2vTpBRChrA14LIXKykhwxXxp9hb+Y3mrIL6p/fy4EvdYYSKJgLyDAiZU38WTbJ\n/b4unWIaGeT1S+P8TPxpz+N3Je5jc8+DnvGJIDePiDP518u50MwsoLHxKVZt2d326Z8uZgAMI0Im\nv/tFSBUGg4MmrEYGef0m7ZhPDk6PZFgX31VgzO5JbGNzz4OhGsNXWiyrGt5o1LJDCgq6h8Ht5dAJ\nRsAMgGHUyPC+MVZt2c3pG5/kpMk3Pc/xm7AaGeT1m7SDJuri52IC6+K7eE3fEekKP6PwUPrS0OdX\nu0MqF3QPSyfUAIDFAAyjLEGtHIsDv9WoazZKFfPpzLmsk10Fk7pq5St1ERiKHYh0bDGBy+PP5YK9\nQXjtkMIGt5Oc8K1mrvQzaPcaADADYHQA5Xrt1nrt4laN+XrwxcVfd8yu9dTLaYW0xUti+0sm+2o1\nzaIK8OazkAnP8ajCEe1joRz3FKvzCm7fm9jGf+fr9JLOBauXyWHfXUuQSykmzg6l5DVtXgMA5gIy\n2hx3gh4bn0KJ3j/rVd2bv/0vXgW2Ut4+FPq7ByuQW2glFNg8u45xFjCYndzdmgPwDm6LQJ9Ml2Qq\n+Rm8oB2aK0qXTyfUAIDtAIw2J2iCjmIX4LfNPzQ+xfC+MWIiJdo/rdLoxEths1Uodj2Viyfclbiv\noHBskUxwb2Ib/02/zgKZrune5XZoAgVhcsHp5dCKNQCVYjsAo60JmqCjoH9+wvN4MhHjxkf3Ryr8\nFjVeK+NWwcsV5bc6jwmeVcMicHJsumzMwO/eqvB2pq/sDq34E1bg+z95q8K7tiZmAIy2xs8PG4V/\ndnjfGBMnvDVtJlOZigXMoqZcOqNf2qcqZFSY1c749682jiECU5xUlXuuEwLAEJEBEJEHReSXIvKS\nz/MiIltF5FUReUFEzovivobh1XqxVv/srcMv8uu3fIcbHt1Pyiv61wKUS2dcHRsl4/PvPaaLOXN6\nBzvSF9etWKtdKBcX8ev81QkBYIhuB/BnwIcCnv8wcFb2az3wtYjua3Q5a1YMcvsV5zDYn0SAwf4k\nt19xTtX+2VuHX+Sbz73e0q4d8K/qva3nIX40bz33JrZ5uk1cKebNPQ9yTXxX1avnTiFdZgr89PtP\ni3yB0UpEEgRW1WdE5PSAUz4GPKSO8txzItIvIu9UVe+qGcOogDUrogvIPfKDNyK5Tr3xc+8MiHcq\npYsIfDT2XNnzuoUYwYqkX15zDivfNVC3NONm06gsoEEg/z/rYPaYGQCjpWj1lb+LX8FZmEndJv85\ngiQt+pNOAkCUC4xWo+WiQCKyXkT2iMiet97qjEi70T74+XybhV+g10tDKCwt9is2jaD0zxiwafV7\nGjugJtAoAzAGnJb3eFn2WAmqul1VV6rqyiVLljRkcIbh8un3n1b+pAYRFOh1C87aZMNSFVH+bm7K\n5xHtC1WgF6+0RVmb0igDMAKsy2YDXQgcM/+/0Yp8ec05fObC5S2xE/AL9LrKoiOZIY4S3Hy9nZEI\nJaUV4fyZ7Zw3vZ0zp3cwNLM1MP0zldaOEHsrR1RpoI8A/wCcLSIHReRzIvJ5Efl89pTvAK8BrwJ/\nClwXxX0Nox58ec05/Oz2jzDY5FQ/v0BvfupiJ+8AIDp3VTXqoZ2S6x9EVFlAny7zvAK/H8W9DKNR\nbLjs7IpbPEaJX6AX4OfzrmrwaFqPsEqmbuprpXRKrn8QLRcENoxWwavG4DMXLm/Y/e+YXeupQunK\nJgTJJ3QLrk8/aCck4iihVkIn5foHYQbAMDxwm7zc+Kgzcdz9yXN5duPFrHzXQN3uWZzx005U6oqK\nwnUlApN6EmdO7yh7biUdxOIiNRUTthOmBmp0JX49BIb3jbH5iQMcnUzlzh0bn+LGR/dzw6P7IwsO\nFzcqeTpzbklj9nsS2ziu8zi5QrXLZhD2bVGFDEJcogleuBP7Ee1jkUz4nldJDCCj2hWTP5gBMDqE\nSprC+DV52fOLI3xr75inz9+drqIoFPNqYHKN7CppshIT6GO6qq5dleD+SrXeI+w4/XoQV4M7sW+e\nXcedifuZJ6WfnV++f7HMs0s3+P5dzAVktD2VNoXx6yHw8A9erzrgW0mjca/0Tr8OW43w80d1j7DX\niOr3yZ/YRzJDbEj952wjHpjVGKr45vsLcPWFyzta5ycMtgMw2p6wTWHcXcKYT3pftcKfXiv6LYkH\nIIVnrrlfemenE9VORhWO0sem1LqC97eSRjxK5+v8hMEMgNH2hGkKU+z2iZKggi2vCckvvbPerp5m\n4f5eQb9b8e8+q0Ic9X3NedPbaxqTW+PRyTo/YTAXkNH2hGkK47VLiOz+Pit6v8wTLx2faY2Tqbi3\nVXtQjVHLEOc48zyfO6J9od1tfnSTmycIMwBG2xOmKUw9qzr9FCWDMk+mtBdVZ+V7RPs4TjKyzJh2\npNhI9MosMyQ8DeXJcsK3EU4YbNKbw94Lo+0J0xSmnpkdXit6v8wTN16wKDaRc4v0cYKF+Kcwdjp+\niVX9HGdj6tqCwG4vaXqlsE1nvj5SGDLATTufL0kScGs/ztj4JKu27PZNIugkLAZgdATlfLn1lHUY\nyQxBimxe/9sc0kXcMbvWMwDsFS8ontC6DT8X0SFd5LyHsxQE2b2opNALnHTeWx5/ESBX/+GVGuw+\n36mYATA6mvz6gP75Ceb1xBifSpV/YYWEzUCxDKBw5O+gvIxmMdWIveVnioXNJOs0zAVkdCzF9QFH\nJ1NMz2ZynZ6ioJL8fwjuQNXtuDGR4tz9ckYzqLFLOQ6NTzG8b8w3NbjTFUFtB2B0LH6rOomoErXS\n/P/VsVHmy4mOTfcMIszvK+I0bbljdi039+zkHtlGhphvbpQqjOliX3dbGE5KxHKuHi86vSrYDIDR\nsfit3iZTwY3Aw1JJ/n+xsTC8GZAJ7k1syxmMck3bh2a21nS/qYC/hW6oCjYDYLQ9fjpAS/uTvlv7\nKPDP/z/MaO/1LJXDZIgRJ0OaGD0SjeHpZCrZGY3V2Z3WDYqgZgCMtsVPudPd0m+47Gw2PPY8qWo1\nHvIoVu+8Y3YtGWKeK1TByU+HuRVsT5mVbC10o0tJlar9/mEY7E92/OQPZgCMNqI4o2fixKzn5O5m\nbzy78eISA1ENfr7+uM+k3ujJuF0n/1oMVwYJ9PvPT8SqdvUlYtLxrh8XMwBGW1Ccp11uUnf9/+NV\nTP7Fq/0kJzx9/Z3ej7feiDjFXTGUDFKRiyxIUnrVrw+w4z/9Fqu27PZ1AQY2nG9Tg1oNlgZqtAWV\navmckkywasvuivN93NV+vtTAQECjEaM2YihnTu/gv6Q+X1JNHWRgg/z/z/7sCLcOv+gpESLAZy5c\nzt1rzy15ziWVVu586pXQv0M7YwbAaAsqycdOxITjM7NVBYC9Mnv83BTt6nppJQRlc8+DjGSG8mQf\nhIOZxTyUvpS3M30lhiBM3v+O514HKJEIufuT5/LlNefk5EP86PT8fxdzARltQdiMnmQixvRshkyV\nMVe/zJ5uDLQ2AhFYF98FwG2zny1Jn72Nz+a55IJlNvJRyMWB/IK5bgWw199Vp+f/u0SyAxCRD4nI\nKyLyqohs9Hj+gyJyTET2Z7++GMV9je7BazufiAv9yURudfeZC5cDUnVjF/Cv1O1UqeZWQASuju/2\nfX4kM8TQzFbOnN7B0MzW0EVfYVbxYZRkO5madwAiEge+CvwOcBD4oYiMqOqPi079O1X9aK33M7oT\ndxXn171peN8YN+18vuaevXfMri0p2JrUXh5Lf6CgabsRLX4ZVX4M9ic5ND7F/N44x2e8Y0NhVvHl\n/q46nShcQBcAr6rqawAi8hfAx4BiA2AYNVGs+OnK946NT/k2+K6UIGXPvZnf4OaenQzKYXMHRUw6\npDNidWyU/9r7GKeeOAzvWAaXfJFbX/uX7Hju9YLPv5JVfDd3BYvCBTQIvJH3+GD2WDH/RkReEJHv\nish7Iriv0cXkC71B8OQfF8m6h8Lh53Jwj9e7ArXbUIUd6YvLnudmaJ3KW4DCsTfgiev58pkvc/cn\nzw3sB2F406gg8I+A5ao6ISIfAYaBs7xOFJH1wHqA5cvD/9Ma3UUlaaGffv9pkd7by01kVI6qE1v5\nZvoSbpv9bNnzPWWhU1Pw9JdYc+NLNuFXQRQGYAzI/w9blj2WQ1X/Oe/n74jINhFZrKolKRequh3Y\nDrBy5UortTE8qSRN75vZlMCoGMkMcX76p1wT34Vg2UHVMKsx/kvq8xWpePrKQh87GNGouo8oXEA/\nBM4SkTNEpBf4FDCSf4KInCri/JuIyAXZ+1bWwscw8mhmmt7q2ChXxp8hJjb5V0sMrVjC2S9DazJ5\nate1coyKmg2Aqs4CfwA8BbwM7FTVAyLyeRH5fPa0fw+8JCLPA1uBT6laIb1RPV7pe1Hg1+Al//jd\nia+Z+6dGqung9fenXweJQsM/Gz+JLx7/RK7pjysGaEYgHNLK8/DKlSt1z549zR6G0UD8pJ3zn980\nciDX1jEmkFEn8Hd8eramdo9emv2WAho9k9pb0PGrHIP5fwcv7ISnv+S4fU5Zxqbjn+DPJi7wfM2z\nG8sHljsREdmrqivDnGuVwEbLUK4x9/C+sRJ554w6BWFuyt9Njz1PuspKML8GL9fEdxEzV09o8teU\n+S4yVThKH5tS60JP/gKFE/n71jpfWf5845Oer+sWKYdaMS0go2UIaswNsPmJA57yz654155fHKl6\n8gf/IKPN/d74OQ/GdDFnTD/MF1LXFWj7fCF1HedNby+Z/BfOTzDoE9MpF+vxe75bpBxqxXYARsvg\nt2pzG3cHSUCPjU+FyvbxauziTkiHdDHLPIyABXq9mdB5xNESl5kr1DaSGSrR9vFifDLFbZe/p2D3\nB47hHRufYtWW3TkXULGL8KJ3L+Fbe8cKXtdNUg61YjEAo2Xw02/vTyZq8u27ePn4pzVOih4WMJ07\nVuy2MANQSv60kcFxJRzFUe5cKBMlxhX8ja/rr3cnd6/K7mQizifOH/Sc7D9x/iDf/8lbXSnl4EUl\nMQAzAEbLUBwDAEfaGXHcPLUy2nt9rlVjEKrO5HNU+xiQCTMAIUipoMTpldncsWmNc5wk/UwwTh8L\nmGKezH22k9rLF3U9Qx+/rmDCDmrk4kU3B3y9sCCw0fLkr/bcTB5wWvn1JxMcm0qxtD/J5MxszS0d\nXXwLiYoQcSb/pMzY5B+ShCgwW3BsnqSZh9NMZ4DSpjrzZYY7YtuI/dVX4W8dXR/et7biAK4FfKvH\nDIDRcIpX+vlx28lUhhOpDP3zExzK5nZHhZ+P34uF2Mq/EcQ0qwKa1fUBWNq/mLHxqcB4TT4W8K0e\nMwBGwymn45OhfM/farhjdi33JLaFSum0yb8JZHV9Lnr3I/zqfz3M7XnxmmVymC2JByD7Z+EahjdZ\nzIl3XAp3X5+rDXB3EkZ5LAZgNJwzNj4Z6cq+En4+7yqb3OtEFAFzxdmpJTnh2Yv57Yzjmgssyksk\n4fKtXWsEKokBWB2A0XCauWU3Kef6ohrczB2CpbsFGJTDLPSIGQAMyET5iuzsTsIojxkAo+HUS8cn\nCFfLZ6kcLmkZWUsLSWMOkbmvwPNCXqsmTCE0FBYDMBpOfhu+4iygeuCV/59RZyI6on2cIpPEKmxJ\naDSeilxMpyyr61g6BTMARlPwau9YXAMQFV4aPzGBgxnHHbTIw9dstB6hJ/9E0gkEG2UxA2C0BMW7\ngigZ9En99DtutDldHACuFDMARsuQvyu4+k//gWd/diSS66aJ0ePj4rGMoA7EJv/QmAEwWoZiLZio\n8PPv2+SNurvjAAAV8UlEQVTfgSQHmj2CtsIMgNESFMcAlGDlzrCsjo2SIWZB3hYmlwDgyD4VGH83\npTSUsZY4fPiPox1ch2MGwGg4Xl2/iquDizN38itBRzJDoYyDe40escm/lZlFiOP0Cc6f5zMK30hf\nCsBn4k87zxcptbpGg+SAM/n7uX+KOolZtbCDGQCjofh1/SrO/vHrznVzz06YJdA4BF3DaD0Sop4u\nv5jAR2PPkZQZ4jKXJ6zqpO/ezn9gaM115aWfX9jp6AylsskFebpD3W4ErBDMaCh+Xb+K8VPuXCpv\nBxuHENcwWosg745X5a8IpGLJEhlpX57+0tzk72LVwoAZAKPBhJXuPeQj2XBIFwUahzDXMNqfUzkc\nvumLX1WwVQubATAaS1gdoDtm1zKpvQXH3HaDQcah3DWM1iJIN2hSexmXk72fS54a/iZ+VcFWLRyN\nARCRD4nIKyLyqohs9HheRGRr9vkXROS8KO5rtB8bLjubRLx8SsdIZoiNqWsLmopvTF3LSGYo0Djk\nc37sp8wjVVaczGg8qo6y599l3uP9+SQWMP8TX+Xens95f9apT4a/2SVfdKqDC65v1cIQQRBYROLA\nV4HfAQ4CPxSREVX9cd5pHwbOyn69H/ha9rvRjYSckP2aio9khiDlasK/zSFdVJIFtLnnQdbFd1mu\nf4siAn1M8Zezv83P9Z1cHd9NnIxTtPev/yN89C4A/vzhJzkSmyn9rKcvYFPYm7mBXssCKqHmfgAi\n8lvAJlW9LPv4FgBVvT3vnPuBv1XVR7KPXwE+qKpvBl3b+gF0DvlFXvUiPzVUsEKvZlFJ7v7BzGKG\nZrbmHhf39/XrDyzA3Z88t6ubv/vR6H4Ag8AbeY8PZo9Veo7RBgzvG2PVlt2csfFJVm3ZzfC+sVCv\n2fDY83Wf/O9M3M+y2GFiISSJjfqRJhb6/c8P3CcTcTZcdnbB8xsuO9szS0hxMsqM2mi5ILCIrBeR\nPSKy56233mr2cIw83Bz+sWyvXjeHv5wR2DRygFSdRfdv63mIeRJOSdRiAt5E8b6o+ktveJFBWB0b\nZbA/ye1XnFOyol+zYtDXY2jN4GsnCgMwBpyW93hZ9lil5wCgqttVdaWqrlyyZEkEwzOiwi+Hv9xK\nbHwq+v6+boOX1+ZdxWjv9Z7tA/2w3YE3mSgUmARUwk8rPZLhjxMPcM9v/qOvO2fQJ3PMmsHXThQG\n4IfAWSJyhoj0Ap8CRorOGQHWZbOBLgSOlfP/G62H34qr0SsxV+LBdfcsi1nBVxTE0Jp3AQLEyZRc\nZ1rjTOhJntdPygyn/ehO32t6dZDzchcZlVOzAVDVWeAPgKeAl4GdqnpARD4vIp/PnvYd4DXgVeBP\ngetqva/RePxWXOVWYlGvuL0qgW1VXzvF7RxVq+/UJgKzGsul8G5I/WfeO/2grzvnX6i/EV+zYpDb\nrziHwf6k0zPYx11kVE4kWkCq+h2cST7/2H15Pyvw+1Hcy2geGy47u0S3J8xKLGqfu18lcEUtA42y\niABZIxCr4n2NoZw5vaPg2CFdzDKPz++Xspig0q7iDnJGNJgYnBGa/K5d+Uqexa0d3XTPuAhp1dz3\nsOSncx7VPkSgn4mc6qffJHKUPn5NJ039M0Ikq7aZ//GFNbLFldngVGcX92ee0l7eOH9DoAEw6kPN\ndQD1xOoA2oso+vp6NXDPR3Wujix/VTqpvTyW/gCXx59jIRO2E2gyk9rLxtS1AGzs3ck7eZs3WcSW\nGaf4Kr+w6+9Pv461n72pmcPtKCqpA7AdgFET+dr+sQpX+l6Uk3B2V6QwtypNEyPJjFX+tgiq8Fj6\nA5wf+ynXxHflAo1LcWS7N6auLSz++mUSq8ltDmYAjKopXvFXM/kXN3apRMJZxJlszOXTWojAuviu\n3M/5uLLd+RIfls/fPMwAGFXjVRdQCV5dvyrNOrEVf2sS9LkUG3nL528eLVcJbLQPtUo7eLl7YlJ9\n6qERLRnNxlwi/jwyedNOIi6Wz99EzAAYVROvcfnt5+4RHKngWvLQjSgQzph+mAmdF+lV43lSEQt6\neyy9s4mYATCqptaAr19jFxGnOvQLqev4RvrSgpVoCyetdRxuGucfzX6u7PteyeeSJpaT8Pjt6e/X\nMEKjVswAGFWzcH6iptcHdeyaLzP898TXWRfflVP3LK5UNeqHqvP5rI6NclvPQ5Fet0cyOQmPLb1f\nd5q2G03BDIBRNSdqCADDXNcvv9XjAqZtwm8ydybuZ1GsfF1F2M+p+Lwk09acvYmYATCqZipVe/rl\nSGaIsQBXkNEcjnMSN/fsDC2xXRPWnL1pWBqoEYr8gi9XAiIqvOQBjOYyrT0V1WTUhDVnbxomBWGU\nxUviIZmIIyiTNewCijV/BsQkHFoFVTiifSyKefdZiFR4r3cBxOfB1FFILnSOTR213r1VYlIQRqT4\nNYJZOD/BidlMVamaxUVgi2SCjBJFSxIjAkRgIcdRvD8TEXyfq5iZ48Bx5+epI3PHj70BT1zv/GxG\noC5YDMDwxe3/m1/wld+J64nZ3+OjMlrVta0IrPWJiQZO8A0x1qkpCxLXEdsBGJ54uX28pBu2JB6A\nlBPMrYSgIjDT9TcKsCBx3bAdgOGJl9vHa9XuinuFZXVslB/NW++7erRcf6MECxLXDdsBGJ54KTT6\nrdqXytuhrrk6NspXEtvpldmaxmZ0EYmkEwg26oLtAAxPvBQa/aQbvDo/eXFzz06b/I3wSBwu32oB\n4DpiBsDwZMNlZ5NMxAuOeUk3TGovd8yG+wdtWF650f4kkvDx+2zyrzNmAAxP1qwY5LzlpxQcc6Ub\nDmYWk1HhYGYxG1PXhgoAr45Vly1kdBGSXXCccpqt/BuExQAMT4b3jfH3PztScnwkM1TQzSksN/fs\nLOjhaxiFCNxW+vdm1JeaDICIDACPAqcD/wSsVdWjHuf9E/ArIA3Mhq1SMxqDl8zD5icOUC4lv7id\n4x2za313A+b+MQCI90LaQ/LDMn2aQq07gI3A06q6RUQ2Zh//oc+5F6mqzQINxmtyz2/AUZzvPzY+\nxYbHnidVpiIrqCYA4LaehxgQR0bgKH2M08cA3rICRhehWmoELNOnadRqAD4GfDD7858Df4u/ATAa\njNfkfsvjLwLkjIBXvn/Q5O+u+gflsGfD77sTXyMDJGTuGgNM5Jq5WI5/l5NJQXLA0f85dtD0fppM\nrQbgHar6Zvbn/w28w+c8BXaJSBq4X1W313hfIwR+Gj53PvVK7vlK+voWr/q9iIsS9zhuE38XITH4\n+P3w+HrwciROHYU//HnDh2WUUtYAiMgu4FSPp/4o/4Gqqoj4LR2HVHVMRP4F8Dci8hNVfcbnfuuB\n9QDLly8vNzwjAK9iLgjv5slndWyUuxL30SO19wAwOpxYdlo5ZZkj6FaM+ftbhrJpoKp6qaq+1+Pr\nr4D/IyLvBMh+/6XPNcay338JfBu4IOB+21V1paquXLJkSTW/k5HFq5jLpdLJf0viAZv8jXCkZxwB\nt0u+6Pj38zF/f0tRax3ACPC72Z9/F/ir4hNEZIGInOz+DPxb4KUa72uEwKuYqxq8NIAMI5BjBx2/\n/uVbnbx+xPL7W5BaYwBbgJ0i8jngF8BaABFZCjygqh/BiQt8WxwncA/wsKr+fzXe1wiBG+i94dH9\nFb82P8XT3PdGxbhunvettQm/hanJAKjq28AlHscPAR/J/vwa8K9quY/RWMIEew0DgDN+Gw7+L0e3\n3yWMm+eFnY6byDKBmopJQXQ4bsZPJZjLxwiHwIrPVO7meWGn0+nr2BuAznX+eiG8rLgRDSYF0eH4\nZQIVYy4fIxihNKVTnVX8jS9Vtnp/+kuFOwaY6/xlu4CGYjuADicoE8jFdfksix0mZg1ZDE98ssaK\nu3W9sBPufi9s6ne+e63q/Tp8WeevhmM7gA6iWPbh9EXJUDsAc/kY5fHaAVCY0++6dtzVvV9Td6sP\naBlsB9AhuLIPY+NTKE6x17M/O1JW0A38hdpUIaOCWqN2w+svqTjYG+TaycfqA1oGMwAdwPC+MW7a\n+XyJ7ENY/Dp9jelibkj9Xi1DMzqN5AC+wd6wrh2rD2gZzAC0ObcOv8iNj+4nXcMyPajT16bEQxYT\nMOboXQBXZKW8Hl9f6Of3c+G4x/PjA26l8KbxyoPIRmSItvD+fuXKlbpnz55mD6NlGd43xo2P7g/l\n5inHXBbQ2xzSRTlt/5/Pu8oMQCciMTipH6Y8mrAkB7yPuySSRa6ebHxAYqCZ0nMv3+r8nB8fyH/u\nfWutLiBCRGRv2J4rFgRuU1y3T1Tmu9pOX0abohmY/pXThlHzXIexBHz4j+G7f+htBCRe6ud3/wqL\nJ//kgHOt9611Vv5B8YEwwWMjcswF1IYM7xtjw2PP1+T2CcPmngfren2jyWRShZO/c9D59p6Pe7+m\n5PwAThyb+zkoPhA2eGxEju0A2oT8FE+EumfmbO55kHXxXeb+6TYyaWf174tPOqgXmp5byQelflpd\nQNOwHUCLM7xvjHM3f48bHt2fS/FsRNjm6vhum/y7lakjATEALU3hDMJdyQelfpYLHht1wwxACzC8\nb4xVW3ZzxsYnWbVlN8P7xnLHb3n8RcanUg0dz+rYKHFM+9/wIZfCCYQRDiknDW11AU3DXEB1ppqm\n7G7fXq+WjrWSr/lzSBfnsn3ye/2CyUEYPiQHCiWec9k7Hu4dl3LS0O4xywJqOJYGWkeKJ3eAZCLO\n7VeckzMCq7bsrqgvby14yTxPai+PpT/AlfFnTA7CKM8Vf+o/MRdLQUBhqqfRECpJAzUDUEf8Jve4\nCGlVpAHB3HxGe69nWaxU9kHVVvxGSDYdC37e8vmbjtUBtAh+Qmxu+majba+f5o9N/kZo7n5v8KRu\nHcDaCjMAdWRpf7Jh7h0/8n3+WkkKn2F44RZpvf4c/OP3bKXf5lgWUB2Jqil7EKtjo4z2Xs9r865i\ntPd6VsdGc8f39q7n3sS2nM5/XGzyNyIgNQV7HrSOXh2AxQBqwC/Dxz1e79W/V1A3o3OlOjFz7RiN\n5JTTHGE3o6lYDKAB+KVvPrbndf4+pA5/LayOjXJX4j56pDBf3530be43Go5V7rYdXWkAyuXmh8Er\nR38qlebZnwWoKFZAUL7+VxJfI4Fa8NaIFl8V0OLYUYjuYEZbUJMBEJErgU3AvwQuUFVPf42IfAi4\nF4gDD6jqllruWwtBhVdAWcPQCPfO5p4HuSa+K7eaXyaHuTexjXvZBljWjlFHiqWeE0n4V1cVBnzP\n+rfw/MOl51nlbttR6w7gJeAK4H6/E0QkDnwV+B3gIPBDERlR1R/XeO+q8Fu53/L4C5xIZXLrmrHx\nKW58dD97fnGEL685B5hT4UxlonXw5K/2J5nHAqZLJnmb9I26M3XUafYSJo9/+YWW798B1GQAVPVl\nAAmenS4AXlXV17Ln/gXwMaApBsAvN38qVap9o8A3n3udle8aYM2KQTaNHIh88i9e7fcxHen1DSM0\npywLn8dv+f4dQSNiAINAvlDIQeD99b6pn5+/mtz8Gx7dz+YnDkQqyuZO/IKt7o0WwFw4XUnZOgAR\n2SUiL3l8faweAxKR9SKyR0T2vPXWW1Vdw/Xzu/LJY+NT3PDofs7d/D0ueveSqnLzj05GO/mvy676\nbfI3mkJiQXCDd6MrKLsDUNVLa7zHGHBa3uNl2WN+99sObAenDqCaG25+4oCniub4VIpv7R3jvOWn\nNCRV0w/T2jdqJj4PYj2QOh58XnLA6e5lVbuGB41wAf0QOEtEzsCZ+D8FXFWvm906/GLgaj3KVM1q\nMa19oyrye+waRgTUmgb6ceB/AEuAJ0Vkv6peJiJLcdI9P6KqsyLyB8BTOGmgD6rqgZpH7sHwvjG+\n+dzr9bh0pGQQ4qbJY+TI5tUnB5yHU0dtpW40hFqzgL4NfNvj+CHgI3mPvwN8p5Z7heHOp16p9y0q\nZnVslE2Jh1jIBABHtI80jiU0OpWiQqlYAtZscyZzk0s2WoiOqgT2S/FsFk7V7nZ6ZTZ3bJFMNFwG\n2mggKz8XnCNv6ZNGC9FRBqAV5JfzublnZ8Hk72IB4PZAqVBT6Yzfho/e5fxsk7zRBnSUHPSGy85u\n9hAK8GvAYrQBp5yGrPzcnF8enJ9Xfq60gTniHP/dkYYO0TBqpaN2AGtWDPLYntebnuXjckgXsywi\nI2BtG533IC3Z+Ene8jz3tiQWQGpyTq/mH7/naNVLDDSbeVVpJo27os/HZBCMDqEj+wHcOvwij/zg\njVzrRYDB/iQXvXsJT77wZi5NtD+ZYNPq9+Q0/Dc/cSDSgi+vGABUPpm7jds/ER9lAScKXpv/8VVy\nzeIxNOvPIAOkSDAP530/oXHmSRqRIvdLYgFcfo9NtIZRBmsKHwH5UhL98xOowrGpFKckE4g4lcEx\ncRqwBFGcBXQ8/mv0nXflXGFOciGkp9EZp6An407MEiOmGadKM3+F6ZFFMpxexf4nt3PTzNfoE0dL\nSAVmOIleTiBFSr5HtY/vx4b48EnPM3/qf8Mpy/jhr//f3PDjszg0PpX7HccnU1XLZRuG0RzMABiG\nYXQplRiAjgoCG4ZhGOExA2AYhtGlmAEwDMPoUswAGIZhdClmAAzDMLoUMwCGYRhdihkAwzCMLsUM\ngGEYRpfS0oVgIvIW8ItmjyPLYsDU3RzsvXCw92EOey/maPZ78S5VXRLmxJY2AK2EiOwJW13X6dh7\n4WDvwxz2XszRTu+FuYAMwzC6FDMAhmEYXYoZgPBsb/YAWgh7LxzsfZjD3os52ua9sBiAYRhGl2I7\nAMMwjC7FDEAFiMidIvITEXlBRL4tIv3NHlMzEJErReSAiGREpC2yHaJGRD4kIq+IyKsisrHZ42kW\nIvKgiPxSRF5q9liaiYicJiLfF5EfZ/83vtDsMYXBDEBl/A3wXlV9H/BT4JYmj6dZvARcATzT7IE0\nAxGJA18FPgz8JvBpEfnN5o6qafwZ8KFmD6IFmAVuUtXfBC4Efr8d/ibMAFSAqn5PVd0Gv88By5o5\nnmahqi+r6ivNHkcTuQB4VVVfU9UZ4C+AjzV5TE1BVZ8BjjR7HM1GVd9U1R9lf/4V8DLQ8n1UzQBU\nz2eB7zZ7EEZTGATeyHt8kDb4Zzcag4icDqwAftDckZSnp9kDaDVEZBdwqsdTf6Sqf5U9549wtnw7\nGjm2RhLmfTAMoxAR6QO+Bdygqv/c7PGUwwxAEap6adDzIvIfgI8Cl2gH59CWex+6nDHgtLzHy7LH\njC5GRBI4k/8OVX282eMJg7mAKkBEPgTcDKxW1clmj8doGj8EzhKRM0SkF/gUMNLkMRlNREQE+Drw\nsqre1ezxhMUMQGX8CXAy8Dcisl9E7mv2gJqBiHxcRA4CvwU8KSJPNXtMjSSbCPAHwFM4wb6dqnqg\nuaNqDiLyCPAPwNkiclBEPtfsMTWJVcA1wMXZuWG/iHyk2YMqh1UCG4ZhdCm2AzAMw+hSzAAYhmF0\nKWYADMMwuhQzAIZhGF2KGQDDMIwuxQyAYRhGl2IGwDAMo0sxA2AYhtGl/P9KPXYgXjjcNgAAAABJ\nRU5ErkJggg==\n",
377 | "text/plain": [
378 | ""
379 | ]
380 | },
381 | "metadata": {},
382 | "output_type": "display_data"
383 | }
384 | ],
385 | "source": [
386 | "plt.scatter(data15_0['wind_speed'], data15_0['power'])\n",
387 | "plt.scatter(data15_1['wind_speed'], data15_1['power'])\n",
388 | "plt.show()"
389 | ]
390 | },
391 | {
392 | "cell_type": "code",
393 | "execution_count": 106,
394 | "metadata": {
395 | "collapsed": false,
396 | "scrolled": false
397 | },
398 | "outputs": [
399 | {
400 | "data": {
401 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvX2YW/V17/tZ0mjGGg/1eGyfA56xA+1DIOElEPsmtHZ7\nAiYl5ATjkMZNSOCcJ6UuebkEN7UxN2kY055i7JzwchIKhnBaJySxKWQyLuRS3nrp0JCLHRuDE5wQ\nKOAx94mNPU7skT0aad0/pC3rZW9pS9oava3P8/iZma0t7W1pZq3fb718l6gqhmEYRvsRqvcNGIZh\nGPXBHIBhGEabYg7AMAyjTTEHYBiG0aaYAzAMw2hTzAEYhmG0KeYADMMw2hRzAIZhGG2KOQDDMIw2\npaPeN1CM2bNn66mnnlrv2zAMw2gatm/ffkBV5/g5t6EdwKmnnsq2bdvqfRuGYRhNg4i87vdcCwEZ\nhmG0KeYADMMw2hRzAIZhGG2KOQDDMIw2xRyAYRhGm1K1AxCReSLytIj8TER2i8gXXc4REblTRF4R\nkV0i8t5qr2sYhmFURxBloJPAl1T1pyJyErBdRB5X1Z9lnXMpcHr63/uBv09/NQyjBEM7Rtnw2B72\njcWY2xtl1SVnsOz8/qpea3QsVvBYf2+UU2dF+fdfHaSV5wT290a58Mw5PLLrLQ6NxwGIRkJMi4QZ\nG48XvMf57/+FZ87h6Zf3B/J55BPkZ+0HCXokpIj8EPiGqj6edewe4F9V9Xvpn/cAH1DVt4q91sKF\nC9X6AIx2ws3YPLR9lFg8kTknGglzyxXnAJRlLD5174959lcHa/5/aAWy3+MbH34x5/3PRwAFZnZH\nUIXDsUInAqWN+9CO0YJrOfdRjhMQke2qutDXuUE6ABE5FXgGOFtVf5N1/J+Bdao6kv75SeAGVS1q\n3c0BGK2ImyEAGBzezVgsnnOuY1zy6Y1GOD6ZLDAWH1vQn1md9qYNUv5rGv6Y2R3hN7FJEhXayGwn\nsnbr7sxuwyESFjb8yXsyxn3Ruqc8d2bPrrnI93XLcQCBdQKLSA/wEHB9tvGv4HVWACsA5s+fH9Dd\nGUZ98Qq9jI7F+MvNOwmHhXii0NB4mR43ox6LJ/jOc29kfs43OEZ5VPv+xeIJBod3Fzhqh3hCWbt1\nd8YB7HMx/sWOB0EgDkBEIqSM/wOq+rDLKaPAvKyfB9LHClDVjcBGSO0Agrg/w6iUIGKyblv7bJJA\n0sX4G81Pqd3XofE4i9Y9xapLzmBub9R1BzC3N1qr2wukCkiAbwE/V9Wve5w2DFydrga6ADhcKv5v\nGPXGMdyjYzGU1Gr9xodfZGiH69rFkw2P7SkaQzbaG+f36sIz5xCNhHMei0bCmRBhLQiiD2ARcBVw\nkYjsTP/7sIhcKyLXps95FHgVeAW4F/hcANc1jJriZrhj8QQbHtuTc2xoxyiL1j3FaWseYdG6pwoc\nRC238EbjEo2Emdkd8XVuLJ7g6Zf3c8sV59DfG0VIxf7LTQCXS9UhoHRiV0qco8Dnq72WYUwlfmKy\n+eEdZzW37fWDmWRsSKTiRGI2IYGkRYqagrCI7yoih31jMZad319Tg59PQ8tBG0Y9mRGNuMZws2Oy\nXruEB557I5PADcL4gxn/RmTR7/Xx0zcOlyzddAoAwkUWA7WM9XthDsAwXBjaMcrRicmC45GQ5MRk\nvXYJZqtbm7AIn3z/PP522TklCwXyV/Ve9f61jPV7YQ7AMFzY8Nge17LMnmkdOX/MXpUbRnPz6Qvm\n+zLuUGjgS+GcO5Udv16YAzDalmJ/3F4r+7F0bXh2Xb9Xs5bR+Nz+p+ex7fWDfO8nb5JQzVnZQ/nG\n3S9THev3whyA0ZZ4JW8h9cdZrCY7/7mKd8eu0bh8+oL5GUPsGPx2w+SgjbakVInnqkvOKKjJFlKO\n4ktbXih4ruMEDKOZMAdgtCVeIZ7RsRiL1j0FkKnJhtwVvlcVR7EdQFjMPTQaDzz3RtlNfa2GOQCj\nLSlWcpcdDnp2zUX090arCu9EI2H+5/L30B1p/T+3paERRjqv49WuKxnpvI6loZF635InCgVNfe1G\n6/9GGoYLbiGebGLxBGu37mZox2jVVT7TIiEe3PYG4/FkVa/T6CwNjbAuch8DoQOEBAZCB/haZCPb\nO1cUdQh+nEatHEu7V3AFPg8gSEwO2qglxYajOBTrvi3W1NNOLA2NsLpjC/1ygFKRLlU4RA+D8asZ\nTi5mbcf9XBV+glDW85KazrfobNZPLgdgXeQ+umUi55xvJy7mpsnPVHXvIvDaLf+1qtdoNOo2DyBo\nzAEYU4GXDnspPn3B/Bz55XbEWfVnG2c/jGsn25Kn84eh3UWdxrh2EtNOZoWOFDyWVLg+/jmGk4vL\nve0c/mNd+zoACwEZbU+lHZhPv7w/4DtpTJaGRtjeuYLXuq7kta4r+WnXikwIZnXHlrKNP0C3TJQ0\n/s55fVJo/CG1O1vdsaXsaxsnMAdgtD3Lzu+nN+pPtTGbdlD5XBoaYUPkHmaFjiCSCpn0yRHuiNzF\nq11X0i8HKn7tIAqj5srb1b9IG2MOwDCAj7znlLLOF6DXp9RvM7O6YwtdUqhkKZJagU9Fdeshejzz\nMPt0VlWv7VeuuVUxB2C0PUM7Rnloe3n14AocOTaZk7xsReZWscIPAlXYmriAbycuLnAC49rJ+snl\nFVcIRcLCTZedVYO7bh7MARhtT6UTu+JJbXn5h306u67XF4Grw09wmrzF9fHPsTc5m6QKe5OzWRO/\nBqCg9HRd5L6STqC/N5ozkL1dMS0go+2pJpavCuGQkGhRsf71k8vZELnHNQxUjOziwmrDRCLwh6Hd\nLA7tZp/O5vr4ZwE8S0+7ZYLVHVsYniisDurvjfLsmouqu6EWwhyA0fb4kXQuJvbWqsYfSJVYxuGm\njk30yZGKjLlqME5AgAFJNZcpWtQpeSWH273xKx8LARltSfYc3/GJSSJ5wfxISJjZHcnMZv3UBfPb\nVuxtOLmYBRMbywp3ORVDkpUoDqrlqFMmS+5IvJLDAm2v/5ONOQCj7XDknEfHYihwaDwOAtEsrZ54\nUlGF2/70PJ5dcxF/u+yclo/3l6LafMBU6eE5yWE3TP8nF3MARtvhlvSNJ5RYnlbPWCzOqgdfyKwY\nK+kVaBWWhkbolmNVr+JrKTygSiY5XKw7uB36N/xiOQCj7SjHAMSTmlkxus0IbjUcXZ+5coB9RbR4\nqqHcnED++RPaUZADGNfOkobfoR7D1xuVQByAiNwPfAT4taqe7fL4B4AfAq+lDz2sqjcHcW3DKJdy\n5/juG4t5zghuJfJ1fQYkVVIZ005X419JclehZO/EpIY4rN3MlKPs01k8mTyPJaGdzJW32aezMk4p\n5ahOHPNj/Os1fL1RCWoH8A/AN4BNRc75N1X9SEDXM4yKWXXJGTkjHaF4lc/c3mhLhw2KqXl2ywRR\nvFf+43nOQTV3Olr268VV6PB4l1PPE09jfpPLc9zKPIvRX8fh641KIDkAVX0GOBjEaxlGrVl2fn9m\n2ld2lU8kXLg0jYSEVZec0RKyD24ds9ka/uWu5g9qD8foTBnvtF13JCJidLIpcXFO49aX4p9ltEgi\nuZyVfDlEI2FuTyfzzfjnMpU5gD8QkV3AKPBXqrp7Cq9tGDk4w8CzWfiOPtZu3Z2qCiKV9B1cehbL\nzu9ncLi5f13LDe9kc4gepmssJ+YeV+EkOUanuOdFumWCj4SeY8HExpx7cBLJ+c5G5MQ9ESfHCbjl\nJcpxEtmzns0B5BLYPAARORX4Z48cwO8ASVU9IiIfBu5Q1dM9XmcFsAJg/vz5C15//fVA7s8wvHAG\nw+wbizE3HSYAMsNimnnwS6lhLaXi+F4dvX7i/6rwxbRev9vcAK/X2JuczeKJOzP3n/+8chK+2UQj\nYW654pyWdwJ1GQhTzAG4nPsfwEJVLao0ZQNhjFrj9ARk5wMiYQFNVQA1M36GtXgZ4SC6d+GEMR/p\nvI6BkD9huaQKv3v8AQDP52U7iXJoBymIhhsIIyIni6R+nUTkfenrmpC3UXe8egKa3fiDv2Eth+hh\nXDtzjgVl/AH65QA/7VpR1tyA7C5eLzXSSucAtHIyvxKCKgP9HvABYLaI7CWVtI8AqOrdwJ8AnxWR\nSSAGfEIbeRal0Ta0skEoJeWcTEstb0++M1NSqSguufCq8Jro5dxDdllofhfvPp3NgMv/o9I5ANYD\nkEtQVUCfVNVTVDWiqgOq+i1VvTtt/FHVb6jqWar6HlW9QFX/PYjrGka1tLJBKCXdEBL4ePgZABZP\n3Mm3E0sqNghey7liOwlnsLtTKfR2MlVVdHvkrkyV0vrJ5QU7lGJSD8WwHoBCbCi80ZS4JW4rSe65\n5QBahaWhEe6I3FUynLM3OZsnk+dxdfiJKdPrgZQD+N3j3wXc8xVOFG6MHlTJNIb5rQLqjUYQgbHx\neFW/I81GOTkAk4Iwmo58oz06FuPGh18Eyi/zW3Z+P9teP8j3fvJm01b6eDGcXMwd3FXyvH45MOXG\nH3J3KG75Cic01McRxunk+vhnfVf+tEOyNwhMDM5oOtwSt9m13uXgjINsFeOf3+yVLP2UHMnmqWJC\nO3LCOKXyFc6QFz9YqMc/tgMwmg6vxG05CV0nhNRKA0Lcmr0mNYRqcsoNvBuOjz1ED4Pxq3NW817J\n3myKVf44vRom91Ae5gCMpsNLzC0kwtCO0ZJ//M0Y9y/VDbs0NMLXI3fTIblr/g5JckSnMU0nCKf3\nA/VyBsqJ+n5npzJXDnBIe+iSyZLlp8UqfxKqmZW/GX//mAMwmg43MTdIGQE/uYBKh8DXCy8ZhwWJ\nX7AktJN+OVBUZbObY5lk62tdV07RXRdyNF3Nk///mZVXJuoIyhUrD3UT73PCgOYA/GMOwGg6nD/w\nL215oSB272YE8iuGmi3s45Yg7ZYJrgo/kTGSxRb1Qsrw1zvL0SPH2d65AhGKNqiJwCHtYTw5zVPu\n2ev/0sp9HbXAHIDRlCw7v5+Vm3e6PpZtBNwqhpoNrwRpKV19B/HhJKYCkdRq30++vZejvDdLSM7/\nReC0NY+0VdlnNZgDMJqWYrkAxwgcPT7ZVOEeN/wkSJsJPzmISjt9HecyOhZj5eadbHv9IH+77JyK\nXqsdsDJQo2lZdckZRCPhguMJVZSUERiLxaf+xgLGrRu2BaSKPKm00zcfBb7z3BuZmc5GIeYAjIZi\naMcoi9Y9xWlrHmHRuqeK/vEuO7+fjy3or3too9YMJxezJn5NznCVbycuLnAKrYAqOVLPbkNsADrL\nECxau7W5ZznUEgsBGQ1DJR2+T7+8v+7JzalgOLnYdQRiPTp4a8mozs4x/m7VT8RhaxmzAJwBP0Yh\ntgMwGoZKOnzbuerjsvBzLWX8VeEUOcDajvsB7+qn1R1bfCWSHZaGRuC2s2FwBqztS3297WzY5a+z\nuJWxHYDRMFTS4duMZZ3VkN0Q1my2P3tusBsiECa1q4FgZgEsDY1wa+d9cDjtSDS9wDj8Jmy9LvX9\nudXnG5oV2wEYDYOXNHMxyeYLz5xT8nUjfuslG5zsAe6hOuj3VIvf+xWBT4Wf8pSzHmO6a17AjRsi\nW4ji0XMQj8GTN/u7qRbFHIDRMLhV9Tjt/V7J4adf3l/6haX+NfDV4kg9lJrw1QioFp8P4Cd8Eybp\nWv00oR1MJ5ZxggOhVF7AcQK90Qj9vVGElCJoyd3C4b0+/keti4WAjIbBSfTm6/xve/0gDzz3RibZ\nm50c9pMDiCeU6Z1hkkpT9gQ4K/98nZ9GpdRK3+9O4LbI3xNCmdQQYZKM6myiHGNWKFc6wskLPK7/\nhcGlZ+UWDNw2kAr3eDFjwN/NtCg2EMZoaIZ2jLJy807XSp/+dGjIbw4gEoJ4c9jQHMoZqN6qjGsn\na+LXcHtnyinkk0QYvnx3YbXYri2pWH/c5XckEoXL7my5HEDDDYU3jErZ8NieorovXs1gbjSD8Xer\ney+lld8OdMsEN3d+m5C4m6zQjAH3UuFzl6eM/Ix5qZ8l/bsyY15LGv9ysR2A0dCctuaRonX+/b1R\nLjxzDk+/vL/pq4HcxiKOayfH6Cw6WL0ZKCX1XNVrtOhKvlJsB2C0DKWGto+OxXho+yirLjkjExJq\nVrzq3lWbX/ohiIolt9dISohB/QtO++70kp3jRiHmAIyGxk+Ix2kWKycc1Ih4hXpmytGmr2KqFZJM\ncs3Ed/hV15VsHv9zRn5wlzmBMjAHYDQ8XR2lf01Hx2J8acsLTVnl4+BV975PZzHq8VirUypCrZBT\nEnqzbGTnIxXISLcpgTgAEblfRH4tIi95PC4icqeIvCIiu0TkvUFc12htHG0gv4qezT7Y3a3uXRX6\n5UBq6ldz//cqoljoSLVwJkK3TPCV+J0w2GtyDz4IagfwD8CHijx+KXB6+t8K4O8Duq7RwjTb6MZq\ncVQ/D2pPjmxC9r9iTVZth4dzSPVL6Am5B3MCngTiAFT1GeBgkVMuBzZpiueAXhE5JYhrG61LOwq9\nDScXM67TiurlGGUQj8HDf267AQ+mqhO4H8hux9ubPvZW/okisoLULoH58+dPyc0Z/smfr1vLsXsz\nopGmGOiSLdC2T2cXzK8t9/ml6v7NCaSQaB+TE+N0JI6VPtnE31xpuCSwqm5U1YWqunDOnNJCX8bU\n4cTkR8dimYlbNz78Yk2qLoZ2jHJ0YjLw1w2afIG2fG0aP8/fELkn5/lm3/0gcNZH6bj8f7E3Odtf\nWMzE3wqYKgcwCszL+nkgfcxoIirR66/mWvFE4we7i2nW++Gmjk10Se57ait8Pyhsux8e/nM6QsJB\n7fH3tDYXf8tnqhzAMHB1uhroAuCwqhaEf4zGphK9/qCv1WhUq1nf7B2+9SW1QDiZ/fTJEX+7gDYX\nf8snqDLQ7wE/Bs4Qkb0i8mcicq2IXJs+5VHgVeAV4F7gc0Fc15haKtHrD/pajUax2n3jBLWuXBI/\n8xEiUVjy1dreSJMRSBJYVT9Z4nEFPh/EtYz6seqSM3Jm9sIJvf5qcEssu12rEVk/udxVv2f9pL9E\n4yF66KP1dwF1D2vNmJcy/pYAzsHE4IyyCKoKyHmd0bEYAjmCb9FImFuuOAeAL//gRY5ONLYTOFHF\n8zb7dFZZVUDOoJdm0fpvTgQGx+p9E1NGOWJw5gCMKcepJiq2uu/vjfLsmosY2jHaFE6gGrZ3rigY\ncmIEyIx5sNJVpKAlKccB2EQwY8rx0+G7byzmy1E0O0tDI5YIriUW9y9Kw/UBGK2PnwqfGdEIa7fu\nbnnjvy5yX/3j461EZDpE+wCxoS8+MAdgTDl+Knx+e3ySQ+ON3wVcDW49BEYhRaPUM+aRMfZX3AuX\n3Q6d06fq1poecwDGlONHtz9RZAJKq6yYbdRjcVRhb3I2R+lyPyHal4rtD46diPFvvS49BN7E4Pxg\nDsCYcpad388tV5xDf2+0ItmDBq5b8MRt1q9XD4GRQoGvJf6Uny/4GwjnymQT7oRLb8099uTNhcPf\nTf6hKFYFZARGpSWii9Y91fTzfL1YGhphMLKJmRzJ2bmMaycPJv6Iq8JPFGjaGydQBemdB6f/Mfzy\nX1JSDjMG3Gv6B3vBdYK0lYF6YVVARiDkV+w4QnGQWvEXcw6rLjmD6zfvrNu9B022uicUDi2BlF7Q\nktBO9mg/ZzLaMmGtoBEhFcp54bulE7ozBtLhH5fjhiu2AzACwWsV35829vnlnJGQ0DOtg7HxOHN7\noxw6epzxePM3QzmVPX6Su9lDX9oRVThKF5HOaXTGD5cOB5aq59+1JRXzzw4DRaJtVwlUzg7AcgBG\nIBQTinOr+48nlUPj8YysdDMof/qhnMoeX/o1LYgCR7SLtZHreWLZDrq+/AYS7Sv9xFJKnucuTxn7\n7MqgNjP+5WIhICMQ5vZGXXcAc3ujvur+40WqfpoJq+wpjQA93dMZvGHtiYOX3go//DwkijhPP6Gc\nc5ebwS8D2wEYgeBW2ukIxTWLsmclZFf3bO9cYcNc/BI7mFueee5yuPyb6dU7FAz8tY7emmA7ACMQ\nnISuV6K3FSUd1nbcz9XhJzJhnFkm6VAeT96cu1rPXr3v2pJ6vFjVj1E1lgQ2yqaScs/s50yLhIg1\necJ3aWiEOyJ3tWUM3w+qfvMbYgY+YCwJbNSMcucCD+0YZdG6p1iZLvO87U/Po2+6R2dnA+HWuJXN\n6o4tZvwDwTp264ntAIyyKFbu+eyaizI/D+0YZe3W3QV6PtFIuGgoKH82QD1wK+V0GreWhHYyV1KD\n280BBIyfMk8LC5XEdgBGzfAzF9jZJbiJuRUz/mER/uD3fJQD1hivQe9XhZ9gIHSAUJuWb9acw2/C\nbWe77wScGn/T+QkUSwIbZVGs3NPBj95/PtFImI8t6Gfz8y6dnDUiu2N3n87myeR5LAntpN+jlNMk\nG6YAx7BD7uq+mM6P7QIqxnYARlkUK/d08FP3n8/HFvTz9Mv7p6whzAnzOCv6gdABrk6v8G11X2fc\nBNy8msBKNYcZRTEHYJRFvpJnf2+UW644J6cKqJK6/4e2j06pIJxbmKeY4W+RPrXmId+wezWBmc5P\nVVgIyCibZef3Fy37dNP+KUUsniAsQqKCooT8UI6foex+O3ZVYTQdHvpk+F/plMmy78/wwGn68iPg\ntuSr7jo/1hxWFYHsAETkQyKyR0ReEZE1Lo9/QEQOi8jO9D/71FoYt13Cpy+YTyRcPLZSqfHPD+Ws\ni9xXULaZj18t/gQh+uUAnw4/SQQz/sEhKeO95KspQ56Nm2E3nZ+aUPUOQETCwDeBDwJ7gedFZFhV\nf5Z36r+p6keqvZ7RHLjtEha+o8+1NLQavCp2VndsYXiicBeQvVtIam5iN795SRU6JNWwFq57cWor\nIbDwM4VJ3lLlnabzEzhBhIDeB7yiqq8CiMj3gcuBfAdgtDB+uoMz+v8PvhCY+JtXKGeuvF1wzK2+\nP9voO1/bXaY5UCJReM+VxYe5mGGvG0GEgPqB7CDe3vSxfP5ARHaJyI9E5CyvFxORFSKyTUS27d+/\nP4DbM2qNW3fwys07OXXNIyxa91ROl/CGx/YEqvzpFcrZp7OA3I7er0fu9pX4bVeZ5iBRhYPaw6D+\nBc8nzyj9BKMuTFUV0E+B+ap6LvC/gCGvE1V1o6ouVNWFc+bMmaLbM6rBre7fMfH5UhGVlIgW48nk\neQUVOuPayfrJ5aztuJ/bI3dl8gNOOMeYGgbjV3NwfIKzt3/FGrgalCAcwCgwL+vngfSxDKr6G1U9\nkv7+USAiIjYRu0UoZdRj8QQbHtsDQG93JLDrLg2N8PHwMzlx/KTCg4k/ArB5u3VEBG7q2MTqji1E\n8wfk2KD2hiEIB/A8cLqInCYincAngOHsE0TkZJHUplpE3pe+bmGQ1mhK/NT9j47F+NS9Py6ZAC4l\nwpaNWwI4JLAktJPVHVvM+NeZPjniXW5rDVwNQdVJYFWdFJEvAI8BYeB+Vd0tItemH78b+BPgsyIy\nCcSAT2gjq9AZOZRK8Pqt+3/2VweLPp6fpB2QVEkncTJ1/dlVPF723UvKwZh69ulsBtw+D2vgaghM\nDdQoipPgzTfu0UiIaZFwZqj7hWfO4emX91fVzTvSeR0DoUJjsTc5m8UTd5Y1cN2oPwkVVsY/W/CZ\nxegiesU3rPKnRpgaqBEYXsJusXgyZ6j7Q9tHWXXJGfzHuv9a8bW8Vu7O8cHIJjP+DYjXElJQhpOL\nWRO/hr3J2SRV2JuczZqJPzPj3yCYFIRRFL9VO06id9n5/fR7KIYWo1isP0GIpaERZmIjF+uN26Qv\nr1DcryVVxTecXJzTlNefnzMynf+6YTsAoyjlCLs5ziJbGdQvxSZshUjaBK4a4icKrAqxZNj78fwD\nkShvvndVSeVY0/mvL+YAjKK4yT97UYkKqFP1Uyxxu09n+xZvMyqjmBNIKmxKXMy7Jr7NqEfj3SHt\nKdDp+T+W/kVJ5diiOv9GzbEQkFGSro5QyQofZ2XnJI394Cepm1RYP7mc1R1b3KtJjKrx2lk5TmGM\nHl7ueDdMpj4Lt3GZd0auYXDl2oLXKKUcazr/9cUcgOHJ0I5RVv3TCyWHtPRnlYYuWveUbxlotzr+\nbJIK305cnCoBnYTbI3dZbX+FuMXuS+Gc38cR/lrv5mhoMvVZxEmX4r7NPp3F+snlXLRsRfEX84rz\nzxjwJwdt1ARzAIYna7fu9mX8s4fBlyP14BXWcTT4HV1/p/bfecxyAZVRzXuXrbCan9T95LTnWPav\nl8APPZK4TpzfCfVkj300nf+6Yg7A8MSPbLNj8J1msXK6SryahEY1VfcP7mGipKYqT8wR+CeI98pN\nYfVPOv+dvwnfB4ePpQ64zfQtFudf+dKJc6wKaMoxB9DE+JFgrjVze6OezWKl8Ionr5888cd/U0dh\n7X9I4O1kDzMYN4G3KcRRWIWUA57bG+VmeYiO2LHcE/OHtZeK85scdN0wB9Ck5BtdR3UTCMwJ9EYj\njMW8dwFO4terWawUXvHkbNmHPnGv/Z8pR7k+/lm+FtloYxqngKSmlFeXhkb4vzof5GT2w/EwqMfn\nnm30Lc7fsJgDaFLcjG52M1YQDC49y3N4S3bid+Xmnb5f021+rxPuyT+nXw54hi4O6XQA1CZ1TQkh\ngU+En07NRXZGY3oZfzhh3HdtgYmjhY9bnL8hMAfQpHglW4PU23ccSakw01yfnb9+xd786P30yRH+\nR8e36JLydx5GadwSxv7fa0mt+G89DY7/FpJ5u8hoH1x6q4V9GgBzAE2Kl9GtpBmrGCXruPGvBupn\nfm+p0lAHEejheMnzjKlGyPQFxzzUXzunm/FvEKwTuElx69AtaLOfIpad388tV5xDd6T4r5Of+b3l\nSDlbFVDtSFRiGiSMtzRcFtbk1TDYDqBJ8RueqRXZFUgzohFi8QTHJ4tX5HiVfWbP71W8xcWMqWFC\nO/he4gPlTVSLRAtLPb2w5G/DYPMAjLKptOzTLb6vCscJ00XqtWxVP7UkFcbpYno6nHaIkxiMX8Vw\ncjGvdV3p+nk4JiMhITpIprR/lnw1XcvvUu2TTSQKl91pIaAaUs48ANsBGBn89hVUU/a5IPGLnJWl\nCEzDErmFsBi3AAAXFUlEQVT1QoCzj/9vIFXZdeGZc9j63BtAqiGvWKOeAK/lz38Y+lxu0lfCMG0G\nxA5BdGbq2MMrUs7CGr7qjuUADODEqn50LJYZ8nLjwy8ytGO04NxqKo2WhHaank8DkSDEq11X8mzX\nddz+7l/y9Mv7M1H89ZPLGdfOnPNVoVuOsTQ04l5wkL9lCIVTFT8LP5NyArGDmOxz42AOwACK9xXk\nU02lkc3rbRxUoUOShCT1uZz9079mwW8ezzzuTPN6O9mTCfuIpEpw10Xu44v/aUfuCz55MyTyKrgS\nE/CjG2Db/RQkiE32ue6YAzCA8voKilUaOfr+r3ZdyUjndTmTvpwkr1F/3Or8oxznjshdbO9ckfnc\nhpOLiTGt4NxumeCP37gNbjsbBntTX73i/86q3w2rCKorlgMwgOJ9BW65gZndkQKxuFKNXqs7tlj4\np8ERgVlyhA2RezKfm1f57gz9LRz+beqHUslfL6wiqK7YDsAAvPsKLjxzTkFuYOXmnRwajxeUa3o1\neg1GNpWc+mVMLaWqrbokkZHgPqQ9Fb0GkKr6ifZ53YXJQdSZQByAiHxIRPaIyCsissblcRGRO9OP\n7xKR9wZxXSM4nGau/PF9T7+8vyA3oHlfHbxWijM5wkDIW9enGA1cpdzyzJW3Wdtxv6cgnycSJns0\nJJfemnIEuSelEsNWBVRXqg4BiUgY+CbwQWAv8LyIDKvqz7JOuxQ4Pf3v/cDfp78aDYSb7EM5Qm9j\n9NBHobGw2v7m5LBM56rwE+V/fpqEwbHC46b533AEkQN4H/CKqr4KICLfBy4Hsh3A5cAmTXWdPSci\nvSJyiqq+FcD1jQrwU/M/tGOUkAgJn8twrUEbrzmP+qBAL0cre//d4vqm+d+QBBEC6geyM0B708fK\nPQcAEVkhIttEZNv+/fsDuD0jHz81/845fo0/wMxyQwVGwyKAVFKzZTLPTUXDJYFVdaOqLlTVhXPm\nzKn37bQkfmr+K+n23aezA7k/o7lIKCRVGI+eYjIPTUYQDmAUmJf180D6WLnnGFOEn5p/P/r++bh1\njhqtjSoMhT7E8LLddN/wshn/JiOIHMDzwOkichopo/4J4Mq8c4aBL6TzA+8HDlv8v3541fzPiEZY\ntO6piqUenBGPd0Tusth9myACH/ud3TDFs6iNYKh6B6Cqk8AXgMeAnwNbVHW3iFwrItemT3sUeBV4\nBbgX+Fy11zUqx63mPxISjk5MZvICleCMcjTaDOvmbVoC6QRW1UdJGfnsY3dnfa/A54O4llE9brME\nxicmCzp7y2FpaIQNkXtsRGML4buoy7p5mxaTgmgjipV+nrbmkape+6aOTWb8mxQ3XSDwafyt6qep\nabgqIKM2lCr9rHaWcNndokbDUHG+xun0tcRv02IOoE3wKv28fvNOFq17igvPnGOjGA1/hCJwxb2w\n8iUz/k2OhYBaDK8wT7HKntGxGA8890ZVUs2HPGQgjOYhPxTkFRqi6yQz/C2COYAWIn9WrxPmAe/S\nT4dqNdcG41db+WeTkwRC6V+EQ/Qw08uhxw4B/keIGo2LhYBaiGIdvm6ln0EynFzMpsTFZal3mtJn\n46AKYUmt+FNzmic4hLsMNDMGyhohajQu5gBaiGIdvo7cc280UrPrb0++k3gZm0rbLUw9bk7XLdTT\nLROoUtjZna76KWeEqNG4mANoIbwqeWZEI7zrr3/E9Zt3Mharrtbfa9wjpAbCdMpkxa9v1J6jdGVm\n/GbP+XVjZugoN8av4f9jDpqt73/ucs/FxuhYzHYBTYTlABqQSmOrqy45IycHACkPX43Rdyg17hG8\nB8IYjUM3E3wleQ1fD3+z5HjO0IwB7lh5C3BLwWPFckpO3snyAY2P7QAajGpiq/lTvXqjEZIB3ZfX\nuMc7IndldgOmBtr4HOs+mdUdm0vPZi7R4FUsp2ShoObBdgANRrHYqp8VVfZUr/PW/ktg9+W1uhdJ\n7Qa+FtnIcQ17lw4aDUH3xEGierx4m++MebDkqwwlFrEhLQ6YvxN1vl7vMTGuUkFBY2oxB9Bg+JFq\n9sPQjtFAQj+Z6+tsBoqEeDplMif+b46gQUkc9/xckkDoinvh3OWuJcWr/ukFBod3czgWzziE/iLK\nskbjYyGgBsMrkVuuVMPg8O4gbifDk8nzyirbNOPfXCQVftL30UyDl9tONJ5QxmLxnNDkhWfOIeIS\nTzo6MWnJ4CbAHECD4RZbjUbCrLrkDO8n7doCt50Ng72pr7u2BLr6Xxoa4ePhZ8yotyiqcH38c3xm\n/ycyRtvPjjMWT/D0y/vpmVYYSIgn1PIATYA5gAYjP5Hb3xvllivO8Y7/79oCW6+Dw28Cmvq6tbBE\nsxrcEsBG63BQexhOLs5J3vrdcY6OxRjzkBG3PEDjYzmABiQ7kVuSJ2+GeN4fWjzG6o4tDE8sDuR+\nvBLAmiUbMJ1Yjhx0UkERwqI559suovHI/kwco+1WUuxGWISTZ0xzzQNUqzBr1B7bATQ7HtOY5srb\ngV3ikLpLAozqbE47/l3ee3wj309cSDIrRxASmCTEQe0hqcLe5Gz+LXmWyT80IL0czXzvGO3snWgx\nEqqVhS2NhsB2AM3OjIF0+CeXfTorkJdfGhrhJDlWcPy4hlk/eUIRckloZ0FteZck2J+cxnsnNmZe\n6yx5nT6O2E6ggcj+XbnwzDmZudBOpc+Gx/Z4Nn3190ZdJ8yZMFxzYA6g2Vny1VQOICsMNK6dOca5\nGrzkHY4SZTi5ODMHuN8jTNQvBxjpvC4TRirZgGRMKarQLcdYGhrh8fAf8dD2UT6Y+H/Y3LmFubED\nvDU0my++43N8+bfvIp7I3b5FQpJZ5ZcVtjQaBnMAzY6jy/7kzSQP72VfchbrJ5dn5BmqxSv+P5Mj\nbO9cQZ+UXs0PhEwiolERgT6OcGvkPqZLB0cnJnMkP/o5wGVv3Aq/dwM3/PLMTAivOxLi764414x+\nk2MOoIk5oRk0nbm9dzJ6LPiqC68GMAVmhUoPgLFQT3MQlQn+Knk/sY5pBRVfUY6z6PW7UL0zc0xt\nflxLYEngJsVNM6gWrJ9cXiAJnFQL5bQifXLEc8d3CrlFBab30xpU5QBEpE9EHheRX6a/zvQ47z9E\n5EUR2Ski26q5ppHCrVOzFgwnF7Mmfg17k7Mz1TxGayLivbJ3KyqwOv/mp9odwBrgSVU9HXgy/bMX\nF6rqeaq6sMprGtRuxe/GcHIxiyfu5HePP8DiiTuLqn5amWdzE0KZILekM0aXa1GB1fk3P9U6gMuB\nf0x//4/Asipfz/DB0I7RqiKwxQa7ZD/2Stenec3lnPWTy3Nq/rOxmH9zIwKd0RkpRdD0EJiX3vs3\nPB7+LznnWZ1/ayBaxZJNRMZUtTf9vQCHnJ/zznsNOAwkgHtUdaOf11+4cKFu22YRo3wWrXuq7B2A\nU67pVo6ZVPh24mK2J9+ZUwGSjWPwk4QIk+Qo0+jmmOUCWhKBwbGcIzYAvnkQke1+Iy0lHYCIPAGc\n7PLQl4F/zDb4InJIVQvyACLSr6qjIvKfgMeB/1NVn/G43gpgBcD8+fMXvP76637+Hy1J/h/dhWfO\n4ZFdb3HIQ3vFi/xpXm6UGg/o9Rxb8bcgEgJNjxKK9sGlt54oNzYankAdQIkL7QE+oKpvicgpwL+q\natF9oYgMAkdU9WulXr9ddwBDO0YZHN5d9fxeZ8WfJESHBDUbzGg7QhFYdpc5gSahHAdQbQ5gGPhv\n6e//G/BDl5uZLiInOd8Dfwy8VOV1WxanvLNa478uch8DoQOEBDP+hjeR6Sfi/eI+4pFkPCU6aLQc\n1TqAdcAHReSXwMXpnxGRuSLyaPqc/wyMiMgLwP8LPKKq/3eV121ZgijvNPlmw0E19e+g9jCZXzoQ\n7oTLboeVL6Vi/lpkoeAhOmg0N1V1Aqvq28ASl+P7gA+nv38VeE8112kngqit9mrmMdqPCcKsiv8F\nw8nFXB4a4Y45W1PGfMZASkcqO6zjISyYecxoOUwKImAqrZZwnhdEGX2p+b1G+9AlicxsiG2/80FY\neYv3yUu+Cj/8PCTydo+hSOoxo+UwKYgAcZNnuPHhF0vORs1+XhCsn1zOhOb6dmvQah3K/Sjnytv+\n6vbPXQ6XfzNV+eMQ7bMEcAtjO4AAcYvfO5opxXYBtZB10ED2EkY9cZy2kiq3TUXwBYl0Q/yo9xPz\n+LXMLj5WNJtzl5uxbyPMAQSIV/ze7Xh2qKhSU52txZ8gRIgk+3Q2UY7ljGeE0vX6VtPfWExqiL+M\nX8vbpy3lgT///dwHnTnQ2aNAI1F4z5XwwncLjp982d+x7Fxr2jIKMQcQIHN7o75mozohn2pW/fnN\nXR2kKjgG5EDZ4R5T92w8OkS58+884vVZMyAKErrzL3A/bhgumAMIELdB2kJqzF42tS719LuSV03N\n9bWqoQakVNWNV6jGQjhGGVgSOECWnd/Pxxb051RbK/DQ9tGcRPBUlHrm7wLcft6UuDiw0ZFG+Tg1\n+vlMELaqG2NKMAcQMP/8wlsFMf384RlByOgWk2QGOERPRsN/UkMFuwIRuDr8BF+P3G3hnzohkjL2\nR3Raxhm8nezhhslrGUosqvftGW2AOYAAGdox6inhkL3q9yujW0y2uZgksypsTVyQ0fAP4d7hKSYT\nUXe6JMGY9nDa8e9y2vHvsmBiIz+YXMSXtrxQsnzYMKrFcgABUmxEXvaqf9n5/SXF3vKTvANygHWR\n+1iQ+AVLQjuZKwc8ZwKIwMfDz7A9+U4gJeHs5QSM2lCOuupcebvgWEKVGx9+EcBkl42aYQ4gQIrF\n9p1Vv1P+ORaLI3g39bglebtlgqvCT/gK2XTLBDd1bCIqE7bKrxGqcEzDdEqSUNYnmSDEA4mL2J58\nJ4ORTczkCABJIOzy2bmNWwR/PSSGUQ3mAALEqwx0ZneEZef3M7RjlFUPvkA8HbspVq3pleQtJ17f\nJ0estj9Akkpm13WIHgbjVzOcXFz0OcPHTzy+tuP+Agc+rp1FE/E2d9eoJZYDCJBVl5xBNJIrqRuN\nhHn3KSfxezc+yvWbd2aMfylKJXmzKbfu32QhvPF6bzTL+AP8DuMsCP3C12suDY2wvXMFV+cZ/6Sm\nwnO3R+4qyPE42Nxdo5ZUNRCm1jTjQJh8MbhTZ0V59lcHy34dP1O8jPri/Onk7waclX62w/CzE3Nk\nm9dOXs2C0C/4VPgpwpI88Toz5uU2du3akm76ejOl5a+JwnOMtmPKJoLVmmZzAEM7Rlm7dXfZIxu9\nODHV620EtXBOAzOhHfxVfAULQr/g6vATVX1WqqTmsxQ7KTI9NaglX7kTUrIQl91pTqBNKccBWA7A\nJ6Vknod2jLLqn14gnqjMoS4NjXBTxyb65EhQt2xMIZ0yyR2Ru4DqNZV8Pb+YGFw8ltoZmAMwSmAO\nwAf52j2OzDOcKNHb8NieksZ/bcf9qW09SZII49rJdDmOIoRshd/0NNTnZxO8DB+YA/CBl8zz9Zt3\ncv3mnTnHs4ex79PZrJ9cznByMWs77s8JDYRRTpLj6Wc1bhjOaFJsgpfhA3MAPvBbiufWvLUhcg9/\nx7eYzvHGWiEarUskalpChi/MAWTxlaEX+d5P3iShSliET75/Hgvf0ed5fr4ef5hkgZHvkgRdBDvs\nxTAySCg1zN2qgIwKMAeQ5lP3/jinXDOhyneee4PvPPeG6/n5TT0dJrVgTDWhiI1rNKrCHACpJK+f\nWv3sFT80WNLPaC9spW8EQFUOQEQ+DgwC7wLep6quRfsi8iHgDiAM3Keq66q5bjW4lXOu3bq76HOW\nhkYymi5m9I26E+2DlS/V+y6MFqDaHcBLwBXAPV4niEgY+CbwQWAv8LyIDKvqz6q8dtkM7RjlSw++\nQCItxzA6FuMvt+z0lFUG2BT5H/xhaLcZfqMxCEXg0lvrfRdGi1CVA1DVnwNIcev4PuAVVX01fe73\ngcuBmjkAr6at1f90wvg7FDP+azvuN+NvNA7RvpTxt7CPERBTkQPoB97M+nkv8P5aXcytaWvl5p18\n8+lfMlFGl+7S0EjVLf2GEQgSho/ebYbfCJySDkBEngBOdnnoy6r6w6BvSERWACsA5s+fX/bz3Zq2\nFPjlr4u0zufh1POb8TemjGgfxFwKEUzXx6ghJR2Aql5c5TVGgXlZPw+kj3ldbyOwEVJicGVfLAD9\ndLdhLIZRM2bMO5HUzSh87k1181qlj1FDpiIE9DxwuoicRsrwfwK4shYXGtoxWnTKll+8hrEYRuDk\nd+2eu9wMvjFlVDUQRkQ+KiJ7gd8HHhGRx9LH54rIowCqOgl8AXgM+DmwRVWL111WyIbH9gSiqlPO\nMJZa0sBK3W2IRzww2peK0ft5TiQKC/8steJHUl8tvGPUkWqrgH4A/MDl+D7gw1k/Pwo8Ws21/BDU\n+Lz1k8vrNowle+yg5SDqSGQ6dPedCMWc/sfwwndTUsuZc6InSjK3Xlf42HuuhF/+i4VzjIalpTqB\nvWbylstwcjHEyen6hROhJS8DrerfaHudGxKY1JANcq8noQhcdnuhsZ5/QfH4vMXujSajpSaC5ZeA\n1pL8AS6H6GFr4gKWhHbSLwdcjbvzVicI8e/Jd3n2GJTjSIwKiPbBWR89sTqPzkwdjx0y4200PW07\nESx7OEsQO4FiDCcXMzyxuOD4TbjP8x3XTtbEr8nMjQUY6byOAZeEc4KQicv5Ii/l75RMAvzohhNl\nlY5ipunnGEYOLbUDyOcrQy96qnnWmux5vvt0VmYwTP45bo7iwcQf8fHwMznHVSGB0CGN+3lNGU5H\nLFjYxTDysKHwWQztGGVweDdjsWAGtQeNl6NwO97X3cnqyGaisbdIIoT0RMbYM2I0+8zU/NjDb1Kw\nYq4nbvr12TXwFpYxjIowB1AFbjpCAGu37ubQeMqJ9EYjDC49K2cofFPhp9nIGpIMoykxB2AYhtGm\nlOMAqmoEMwzDMJoXcwCGYRhtijkAwzCMNsUcgGEYRptiDsAwDKNNMQdgGIbRppgDMAzDaFPMARiG\nYbQpDd0IJiL7gdfzDs8GbGRXIfa+eGPvjTv2vrjT7O/LO1R1jp8TG9oBuCEi2/x2ubUT9r54Y++N\nO/a+uNNO74uFgAzDMNoUcwCGYRhtSjM6gI31voEGxd4Xb+y9ccfeF3fa5n1puhyAYRiGEQzNuAMw\nDMMwAqApHYCIbBCRl0Vkl4j8QER6631PjYCIfFxEdotIUkTaooqhGCLyIRHZIyKviMiaet9PoyAi\n94vIr0XkpXrfSyMhIvNE5GkR+Vn67+iL9b6nWtOUDgB4HDhbVc8FfgHcWOf7aRReAq4Anqn3jdQb\nEQkD3wQuBd4NfFJE3l3fu2oY/gH4UL1vogGZBL6kqu8GLgA+3+q/M03pAFT1X1R1Mv3jc8BAPe+n\nUVDVn6vqnnrfR4PwPuAVVX1VVSeA7wOX1/meGgJVfQY4WO/7aDRU9S1V/Wn6+98CPweadO6rP5rS\nAeTxGeBH9b4Jo+HoB97M+nkvLf7HbASHiJwKnA/8pL53Uls66n0DXojIE8DJLg99WVV/mD7ny6S2\nbQ9M5b3VEz/vi2EYlSMiPcBDwPWq+pt6308taVgHoKoXF3tcRP478BFgibZRLWup98XIMArMy/p5\nIH3MMDwRkQgp4/+Aqj5c7/upNU0ZAhKRDwGrgaWqOl7v+zEakueB00XkNBHpBD4BDNf5nowGRkQE\n+Bbwc1X9er3vZypoSgcAfAM4CXhcRHaKyN31vqFGQEQ+KiJ7gd8HHhGRx+p9T/UiXSTwBeAxUsm8\nLaq6u7531RiIyPeAHwNniMheEfmzet9Tg7AIuAq4KG1XdorIh+t9U7XEOoENwzDalGbdARiGYRhV\nYg7AMAyjTTEHYBiG0aaYAzAMw2hTzAEYhmG0KeYADMMw2hRzAIZhGG2KOQDDMIw25f8H3HaRMiV5\n1boAAAAASUVORK5CYII=\n",
402 | "text/plain": [
403 | ""
404 | ]
405 | },
406 | "metadata": {},
407 | "output_type": "display_data"
408 | }
409 | ],
410 | "source": [
411 | "plt.scatter(data21_0['wind_speed'], data21_0['power'])\n",
412 | "plt.scatter(data21_1['wind_speed'], data21_1['power'])\n",
413 | "plt.show()"
414 | ]
415 | },
416 | {
417 | "cell_type": "code",
418 | "execution_count": 173,
419 | "metadata": {
420 | "collapsed": false
421 | },
422 | "outputs": [
423 | {
424 | "data": {
425 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNXawH9ntm8qgYTeu4CIlyaIioqgn72i2PUiiqhX\nsRfs3Wu/Inaxi1gpiojSLPTeQg8lCSGkbZ853x+bhITd9E2yIef3PHlgZ87MvJPyvue85y1CSolC\noVAoGh9afQugUCgUivpBGQCFQqFopCgDoFAoFI0UZQAUCoWikaIMgEKhUDRSlAFQKBSKRooyAAqF\nQtFIUQZAoVAoGinKACgUCkUjxVzfApRHs2bNZIcOHepbDIVCoWgwLFu27ICUMrkyY6PaAHTo0IGl\nS5fWtxgKhULRYBBC7KzsWOUCUigUikaKMgAKhULRSFEGQKFQKBopygAoFApFI0UZAIVCoWik1DgK\nSAjRFvgYaA5IYIqU8tUjxgjgVeAswAVcK6VcXtNnKxSKUDJ2H2Df1nTadG9F05ZNyh3rznezZfl2\n4pvG0aFXWwCklGxfs4usfdmsWbCebat20q5nG/qe0pM9qenkZeXhynOzZ8t+Utol0+6YVqz5YyMH\n9mThdnvJ3peNyWyiaeskcrPyyNiRidAE8clxJDZNoFXX5iSmJHAoM4djBnfnwN6DpC7fjsVqxpBg\nsZho3aMVO1fvwuf1k3+ogMzdWWiahjPBgaEb5GTkYUid2PgYHPF28rLzMfwG9lg78cnxNGvZBCE0\nEJKmLZOIbRJD6srtFGS7aNoqkeR2yVjtVuKbxnLssGNIadeUXRv34Pf4SWmXTKe+7RFCEFRdpb+3\nq+atIybRSf+Rx1GQ42LX+jRadEyheftKRV6WS3ZGDrvWp9G8QzItOqTU+H4VIWraEUwI0RJoKaVc\nLoSIA5YB50sp15cYcxYwgaABGAS8KqUcVNG9+/fvL1UYqEJRNjkHcvn9q8XkZeXT+8QefPfGLP6Z\ntQKrzYLf6+fkS4dwzWOXMev939i9IY1eQ3sw8tpTiEmI4cNJX/L509ODSk5AYkoCbXu0Yv3izfjc\nvvp+tXrHZNYYcv5AJrxxI01SEnj/wc+Y9t+fMFk0QKD7AxiGxGwxEfAFsNqtxCQ6SUhOQPcH6Hp8\nJy6793za92xTfM/9OzJYMO0v9IDOCecNKD5nGAZvTHiP2R/MK/7Z9R3em4e/uhNHjL1Kcgshlkkp\n+1dqbKRbQgohvgfekFLOKXHsbeB3KeXnhZ83AadIKfeVdy9lABQK+HvGMj5+7GvSd2bS9fhOXP/U\n5XQ6tj2TJ37Ed6/PCq67AU0TSEAah/+mLTYz0pAYhsTQDRCABJPZhB7Q6+V9KqL/Kbmcf+MB4pMC\nLJqVwI8fNMOVb6oXWUxmjWatm9J9YBcWfPNXqe9tRQhNYHNYee6XhznmhO589sx0Pnrky+DPAdBM\ngrPHjWTC6zcw/dUZvP/g53hd3uLrrXYLJ186hHs+vLVKMtebARBCdADmA72llLkljv8EPCulXFj4\neS5wr5SyXO2uDICiMZOxK5N37vuUBdP+RA8YxcdNZhMms4bP469H6WqH0belc/lt6didQb3kdQsO\n7LNwyxnd8LjqxwgAxYazOnQ6tj3xzeJY+dvasOefnHE/r49/l/QdmSHnLDYL3x36CKvNUnlRq2AA\nIpYJLISIBb4B7iip/Ktxn7HAWIB27dpFSDqFom6RUrJj7S58Hj9d+nXEZK6a8pr13lzemPBeWCWv\nB/Sonb2XRZvOHmLidbatd+D3lo490TRJp15u7DEGV9yRjs1+WNPaHJKmLfyMuvwg371Xcx97tanB\nPHnb6p2YzGXH23zw0OfkHyoI/1jDwOf2VckAVIWIGAAhhIWg8v9USjk9zJA9QNsSn9sUHgtBSjkF\nmALBFUAk5FMo6pKd63fz8LnPkZ1+CKFpmM0a931yOwPP7Fep67P2ZZep/BsKZovBBf/O5Jxrskhq\n7kcI8HqCm6qv39ea36YnAdBncD4Pvr0Dm0NiMkks1tA/ebtTcv6Nmfz2bRNyD5ZUWZL23T1YrJJt\n6x0Yugi5NloouYI7km2rdtJzcFc2/LUlxMWU0i6ZmARnrckViSggAbwHbJBS/reMYT8AtwohviC4\nCZxTkf9foWiI+H1+Jg5/lJwDuZT0rj5+yYu8u/bl4sgOKWVx1EnHPu1KrRD+/GEpQoteZRaOVh28\nxMTrbN9gJ+DXmPT+Do4bmo+1xGzebJGA5Pbn09i1xU7mXgtPTN2OI6Zs5VhESms/b/+2iVtGdCM7\n00L7bh4e/XA7TZIDSAP8fsGz49uz/I+4WnzL2kEaki3LtmNzWAn4AwR8OppJw2KzcPvksSGRSJEk\nEiuAocBVwBohxMrCYw8A7QCklJOBmQQjgFIJhoFeF4HnKhRRx9KfV+Hz+Dlya00P6Mx+/zeufXw0\nuzbu4ZHzniNrz0GESWCxWrhv6gQGjAquEKSUNXI51CXJrXw8+uF22nT2ogcESPjyzWT6DcsPO5uH\noFvnwbd3MP/HRCzWUOUvJRyp80xmiEsMcNmtGbz7ZEuen5ZKfJKOVsKz8uj727hhWE8y91pLXWu1\nG1xzzz5GXX4Qq12yYkEskx9pzd4dthq/f6Twe/2079mBvsN7sW7xZtr2aMUld51Lx9616wavsQEo\n3Ngt10TJ4E7z+Jo+S6GIdg5l5KDrof75gE8na+9BAv4AE4dP4lBGTrGRcONh0oUv0GNAFzb+k4rN\nacHvC9Sx5NVB8vTn22jV0YvZHPwMcNXE9MLP4RECWrb3c+n4zBBFX3znMEbAYoVBp+ewanEsFptR\nSvkDWO1wxwu7sNig579cFOSa+PadZhw7JI8+g1zYHEH5+g/P47WZW7jhxB7kHIyegsj7d2Ty1kvX\n1ukzo+ftFYqjgO4Du+Bzh/rubU4r/Uf2Y9kvq/C4vCErBL/Hz5oFG4L/90aH77/TMW5OvTAbs9Vg\n4U+JrP0nhpJzvW593SS38ocoe1Ml9ruLlHs4A1CexyMmQSexaQBrmNWFEPCvUwqKr7cmBxjzn3RM\nZom5xB6qyQRWm8GZV2bxxWvNKxY2ApgtJlp2bo7daWfbmp3o/tBJQuuuLetEllJy1fkTFYqjmIXT\n/0ZoAqmXVlBCCIaeP4BfP1lQpVjy+uLimzO4auJ+LBaJEDDq8mx+m57Ia/e2ocgIJDYLYIQJRjpy\nZl4W1XFtxzcx6HNCHqZKai6bQ4YY26Lj3fq6qvZwAZqmYRgGHXq35bjhvXHne/jts4WYLSakLvH7\nA5xwTn9W/b4Ov8+PJ9+LI85Oiw4pvLzgCWLinXz+7Ld89uQ3eErE/NscVq57cnTV5IkAygAoFNUg\n92Aei79bgs/jZ+BZ/Yo3d3/58PfiRJ+SBPw6BTkuWnVKiZoZflkkt/Jx9d37S4VjOmIMTrsoG10H\naQhWLYpl/dIYzGFm4uHcN5FCCDj1whz0AGhhVhqVfa7XI9i2zlHBswQjrx/OHZPHYjKZ2L8jg4xd\nB2h/TBsSmsUXjxv34jUs/XklQgj6jzqOmHgnHpeXBdP+Yv+ODLr068jAs/phKlwajb73fGwOK589\nPZ2czFxadWnBTS9ezb9G9K309yFSRDwTOJKoRDBFNLL4+yU8fcUrCE1gGBKkZMxDF3HFAxdxRbtx\nZKZlhVxjsZn5z5RxvDpuCj6vP6pXAWddmcVNj+4pTsYqQkrQdTCbwV2g4c4XOGN1bM7DitfrAUMX\n2J2ylDIuUjMVHassUoIeoJRrp+j4kfczDAj4wWo7/Nmdr3HDsB5kZ5a+QcvOzXlh7qMc3J9N52Pb\nY7WX3lCONFLKiEf5VCURTFUDVSiqQEFOAU+PeQWv24enwIvP7cPn8fPZ09PZsnwbp15xIhZb6MLa\n5rTx2i3v4HX7olr5A/h9AiNMZKYQFPv7HTEGTVJ07DGHFa6UkJ1pYf8ua4gSFgIMPfhVUvFXV/cJ\nAZl7LXg9AneBoCBPoyBXw+cpfUOPWzD/xwTmfpOEzxN8r3X/OPnPeV1ClD9AblY+zds1o+fArrWu\n/IPvUb/hvsoFpFBUgb9nLEczhc6bvG4fU+75hJtfvoZ/Zq1g37Z0PAWHfbz5hwoaTGjnnz/Hc+sz\nFY8Lp+QTkvzEJ4ZXanoALLbIuIekhPVLnXz0fEv6Ds3HlWti+YJYOvX0MP7pPXTo4cHr1pgxNYkP\nnmlJwK/xysQ2aBoYRtkCNG/frObCNSCUAVAoqkDAr4fdVETC6j/WMWHQ/Vx4x/+RmXaQeZ8vwCja\nDG4gyh8gP8fMMze34/7/7cIwBJomsTlkpRS33Qm6Hv5lLdUIuy/PTdR/eD5vPWKi579cnHZRNmaL\nZMcGO6/c3YYtq52FG9QlLwy/sinJLa80rhQltQegUFSB7Iwcruxwc7llGmxOG8ltm5K2aW8dShZ5\nYuJ1Bp2ei9licNXE/SS3ClRoBGRwSyQkEqi8jeHqbhpLCbtTLTRv68dWomKyu0Dj5tO7sW9n1S3O\nLO/nmC0Ne16s9gAUilqiSUoCN79yHVaHNawrCMDr8pK2uWzlb7E2DAVTkGvit+lN+OXLpkye1LrS\nq5iqKP+SY6qKENC2S2nlD8E6ROffGFpZszJsWb6tWtc1VJQBUCiqyNljR/D2ihcYdtHgsmv2lKHQ\nmjRPwO9vCFm+pVk8K4Gs9PIzvAwj6Oc/koqUf9FmcHWNwJFYrNCxp6fqNwPSNjeuEmXKACgU1aBN\nt1bc+vr1VY7oyTmQ26D2A4qQUjDp2k7k52i48jR8nqDCDgTA7wuGWaalhkb/VIVIBcQEArBxRfUq\naKa0U5vACoWiEugBA5PFFDatvyyMMjZIGwKpa5xccXwvBp+RQ0KSzrolDkZPyOCEUbkIDdp28YGo\n3USwIsp7hgC+r2bvAHtM9BSIqwvUCkChqCYJzeKwOWo/Vjya8Lo1FvyUyKaVDtp09jHw9DwslmB9\nHaHVvuKvDJtWOsjaX/UGKkIT7NmyvxYkil7UCkChqCZmi5n/u+kMvn7h+0pfY4ux4QtTDK6ytOrg\nZcioYCXRRbMS2L+rbmes/Ybl8cBbOzFZJFabEZKJC3VjBMqKNnK7BF/9rzmderkZNTqLmASdRTMT\n+euX+HLj/wHMVjMde7ctd8zRhjIACkU1Sduyjx/fml2la3xuL2arGb83uFua3NrH+Cf30P/UPIwA\n/PFDIpMntaYgN3TD9aKbMrjmnv0ITQKCa+7Zz3tPt6y2uyMc8UkBRo7OotMxHrascvDLV0nk5wTV\nRFKKn0c/2B5SIqKukRK8blixII7BZ+QhRHDz2TAEP7zfjKbNfdz3xk7MVonZDENH5bJuiZOHr+pU\nphEwW830ObEHHfu0r+O3qV+UAVAoqsmnT04LW/q5PKRBsfK3O3Vem7GF+KRAsMSCBU45/xCde7u5\nZUQ3SiYxterg5Zp79hfXtC/aSb7hgX389Us86btrvhJo28XDyz+kYrEZ2B2SIaNyGH1bBhPO7EZ6\nmpVTL8xGRMhpXJN9AiGCCWcnjMzjly8TWD4/noBPY/3SGPw+wWfL15fqROaINeg10MWQM3NYOCMx\n5H6OODtn3Xga1z15eXVfp8Gi9gAUimqybtGmsJU/K8vwC7JxxOil6ulbbZKW7X30HVK6SfjQs3LQ\nTOFr4A89M7faMpRkwrNpxMTp2AuNjN0piU3QufmJYPvuxGaBUhVCiyhyx1SWokJuNclBLQodPeOy\nHO58aTcnnXuI0y46yId/bsBiC72xI8bgpHMOhRy3x9j4IWcq4166FpujcW0AgzIACkW1MAyDpq2T\nanSPTsd4cMSEKivNJGnbtZJx7BHytwsh6TOoIKTEsskM/zo5D4CVC2Nx54eqjIA/uLKprEIXguJ6\n/lU1HuHuZXPA0DNzuPre/cQmGGFXFoYOrrxQt5qnwMvmZVurL0ADRxkAhaKK/PLx71za8t9s/Gtz\nyDnNrBHbJAbNpBGXFIvZWnby1PYNdtwFodrK0AW7t5ROb100KwFDDx0rDVg0Kz7keFUJxvSHtyZ+\nX/D4sj/i2LjCibvgsNrwegRCC9bmr4pLp2gGX5OKoCUxW8BaTkCWzyuY/Xl4g/3y2Mk1F6CBogyA\nQlEF/p6xjNdueYeczFwCYeL/jYBBfnYBZ990OtMPfED/kceVea953zbB4zIRKJE96/MK9u+0smpx\nTKmxe7fb+Oj5FnjdAp83OM7rFrz3dMuI+P9B8Mf3iSHllL0ewZyvgopTSsGDYzoxeVIr1v7tZOWi\nGLL2W8rt/1tZaqskmWEE32HqSy3YuDwm7JjUFTuI5ppotYkqBqdQVIFbB93PpiWplRo7+r7zycsu\nYMbbc8oc07yNj/FPpfGv4XkYAVEYBdSqOPLmSFp18DLkzByQsHBmZMNAnXE6L3+/hbZdvcXhlbJQ\ngf75cwLvPN6Kgxml4z4//mcdzdtEprRFTTaGy2oEs3Wtg4eu7MihA2XnBZgtJmZ5v6jeg6OQqhSD\nU1FACkUVSN+ZUemxXzz3HT0HdS3/fmlWHrmmE8Gonoq1394dNqa9lVJpGapC0+Z+mrf1l2rqLkzg\niJGcdM4h+gwu4NYzu3LahdkMOC2XzD1WsjPMpLQOrRJaVWUuZdDYoB2uC1TRPYs+uwsEUgo0zcBe\nogKEzyN47d425Sp/gJMvOaHygh5lKAOgUFSBLv06sfTnlZUbLCF1xfZK3rn+U2hH35aOzR4+qsls\ngdgEP+/8vhGrXWJ3SHQ9GKkUTtFLAwwoZUyg/NaQJTegSxaHEyLo8vK4BA6ngUSQlW5m9eJYHLEG\na/6MYe60Jpz/7wNc+O9MYuINdm228eZDrdm8quKaQB6Pj7ULN9BraI9679BV10TEBSSEeB84G8iQ\nUvYOc/4U4Hug6K9hupTy8Yruq1xAimhjy/Jt/OekR/C6vBUP1sBmt1VubB2haZJhZx9i+IWHCPiC\nG6NL58UBgvcWbKBNZ1+511dmZg7g80LmHgvN25VeURRVDLWU2LA1dAj4RYkch8O48gVL5sYz77sm\n/PVLPPFJASxWyYF9FsoymkJIpKyaIrfH2Djl0iHc+e7NDd4I1IcL6EPgDeDjcsYskFKeHaHnKRT1\nQtfjO/HS74/x/gOfsXnZVpq1TiJrbzZ5B/NDxlqsZgJRVfpZ8vC7O+g3LB9HTHCm3394Hj9/kcRb\nD7cm96AJ2al81024c2WVZG6SEgjZIDaZwOfReHtSC3wByNpjZedmBx8s2hj2eTaHZODpeWxe7URK\nQU7WYXeOI0bnmP4FuF0mNix1Fiv9qip/CIaD/v7VYk6/6mT6ntKrytc3VCJiAKSU84UQHSJxL4Ui\n2unevzPP/fJw8We3y8MNPW8nc/fB4mNmq5kLbj2Tr178sT5EDMtxJ+aXUv4QTJA6a8wBfvmyScS9\nUM7Y8N4FR4zBGaOzue2sroAgpbWPnIMmmrYIhNT2MZmC46+8az+Zeyz88UMTAEaOzuKWJ/egBwRC\ngCtf44ErOrFzk6Pa8npdXv6Y9mejMgB1GQY6RAixWggxSwhR5ndYCDFWCLFUCLE0M7N6XX0UirpA\nSsnCb//mwTOfxhHn5NQrTuS8CWdx2phhxCY6o0r5Aww4NRebI9THb7HBqz9toUc/d5WjcMryIFd0\nny693Yx7fC/dj3MxZd4mEpsFlX9ZiWEOp+SyCcEN+M69Xdzy5B7sTklMvIEzziCpeYBnv9wWNlu6\nsgghsNqqXkW0IVNXm8DLgXZSynwhxFnAd0DY8Agp5RRgCgT3AOpIPoWiynz82NdMe+kHPAVBH/++\nrcFSwgG/XuVGMXVB/iFTmYrZUk4SVXl+/+q6y01m+L8rsxh4Wi6O2MNGqbzOYEkpQXfaWWMOYraW\nHqRpYHMYHHtCPisXxlVLJovNwulXnlStaxsqdbICkFLmSinzC/8/E7AIIRpX6x3FUUVuVh5fPvdd\nsfKHYJE3vzcQlcof4K85CWGPl6fEDaOw1MMRrxSJfVKLVdKqQ+imc7h76zqs/TuYyJXQNHRvoYjY\nhMo35ymWw2bBYrdw5SMX06Vfxypf35CpkxWAEKIFkC6llEKIgQQNT1ZdPFuhqA22LN+GxWbG761a\nNdC65l8n53L1Pftp3cHHrlQbeoCwNfzDUTTL351qo01nL9Zq5pyFC/0MHijbkEiD4sqjAX9w4/ij\n51sAsHh2Av2H54bUUTJbJGv+Cp/tWxYms4nL77uAkdcPJ6Vt45uTRsQACCE+B04Bmgkh0oBJgAVA\nSjkZuBi4WQgRANzAaBnNKcgKRQUktUhED1S/EmhdcMKoQ9z3xq7i+v29BrjQA8EQzZLKvKykraJj\nFYWGVkTYPIFyEsWkhAUzEohN0GndyQsSnHEGk97fzooFseTnmDiYYSEpxYcjJrhK8XkEn7/WvFSU\nUGXk6jOsJ1dNuqSab9bwiVQUULmFtKWUbxAME1UoooL1f27ig4e+YNvqnbTq3JyrH7uMAeXU7TmS\njn3aYzJHdymtcY/uDWneYjIHI2aQEr9PYLJITCZZ7h6A1SbRq+5ZKZfyXEh6AKZNTiY7w8Jbczfh\niDEwmSAuUadN52CklbtAoOsaq/+0k51pYcbHzVi1OLZKMnQf2IVrHru0Jq/R4Inu32CFohZYu3AD\n94x4nJXz1pKblcfGf1J57KIX+OPrxZW+x77t6Xjd0ZPgdSQmsySlTXj3lN0puXJAT168oy0TRnWt\nlD//yPDM2sTr0di2zsEl4zOwO4zSpSkK3UbOWIndaRDwazw9rkOVlb/JYmLnujTuG/UUd5/+WFT/\nLGsTZQAUjY63756K11XareF1+Zh818eVrgq5ZPZKdH/0uoD0ABTkhC9FnZ+jMfnXzdzz+m7emL2l\nUrX866rPr88jePOB1vh9Gr0HFpS7X2E2Q98h+VisVf856H4dd74Hr8vLukUb+WjSVzWQvOGiDICi\n0bF9zc6wx7P2HsRTibIN86f9ydt3fRRpsSJK2y5eFs2Ox+MufdzjEsTGB+PmHTEGNodEK9GcpYia\nNmqpCkUdwv7+NY6JF3Xm9++bYLYY7NluxajA9RQJOf3eALPem1uzmzRQVDE4RaMjqUUT9m1LDzku\nDcnL/57MvR9PwGQOP3teNmcVz1/7Bj5P5KJ/OvRw02tAAQczLPwzNx69jMYslcEZp/PYh9vp1tdF\nwC8wW8DvD9bb8Xs19u+y0LlXaSNnMoHfB34vOGJLFGero+mhEEG3z2v3tuWOF3Zz/El5hyuCliOD\nHoAVC2MJ+GsuqDvPXfGgoxBlABSNjisfvpjXxr8btkjb4u+X8MVz3zHmwYvCXvvRpK9C3EfVRdMk\n9/1vJ4NOD/b01XWB160x8cIu7NlWvZjL25/fTY9+rsKm6EFN7nEJ5n2XSJtOXnoNdIVVqmZL8Kto\nRn1kFc/axuuWvPzDFpo295fp9gl2LQtWrPB5NAryTLwysW1Ent9YYxKVAVA0Os645hRysnKZMnFq\nyDmv28cP/5tdygBk7Mpk3heLKMh1sXtTWsTkGHl5FoNOyy0RqSNxOA0eeXc7N53ao8r3s9oNho7K\nDWmKbndKRo7OLjdzt+h4fRTClBISm0kM3V/cKzgcAT8snJHI9g129my38dcv8RGZ/UNw9Zex+0Cj\nywVQBkDRKDln3EjevfdTDD10AzE/u4DZH8zjuOG92LRkK89f+wbSMPB7I1vZ8+yrs7AfkcykmaBF\nex8t2nmr3O3LZjfKLOhWl1E8VaXI6BzZkP5ILFbIzzHx5RvNa0WOZ658jZf/qLBK/VGFMgCKRond\naaP9MW3YvmZXyLmAX+fN295D1w30gI5RSwlfFmt4v4M0yj5XHnmHTKTvtoQkbtWk1WJdUpGM7nyN\nv+bE18qzpZRs/HsLuQfziE+qXi2hhkgUzwsUitrljrdvwh5jQ2ilNY+hG3gKvPg9/lpT/gC/fdsE\nrztU6xXkmtmdWp09AMHLE9viLtAIFO5R+31Hh39bD8C6pU6W/V57ylmIYHhoY0IZAMVRh8/r55Mn\nvmZMh5u5rNW/efO298k9mBcy7pjB3bjx2SvRatk/MviMHN6YvZkv16zlqU+30qWPC4Bv32nG7q22\nYGYuwebr7gKNZ25pR3WL86/9O5ZbzujGzE+asmJBLF+/lYwrr+H/mfv9goev6gTAOddm8v7CDXyx\nah0TX9lFcqvIbMq37NSCJs0TI3KvhkJEWkLWFqolpKI63HvGE6xbtBGvO6gYzFYzKW2b8s6a/2K1\nl655cFO/iWxbFT4vIBKcMTqL8YW16+Fw3Zq7LuhC6honJrNkyKgc+g7JJ3OvhTlfJXEwo3o16WMT\nApx3/QEGj8gl+4CZ6VOSWbkwjl4D83lp+tZyQyqjnYMZZi4/rhcTnt3N6RdnF38/9UBwX+DfJ/cg\n52DVPNoprX2ktPaxb3c87nwbL857lK7Hd6oN8euU+mgJqVBEBZuWbmXd4k3Fyh8g4AtwMD2HP77+\nkxFXnVxqfNaeg0feokI0TTJoRC5Dz8zBlacx+4umbFsX2olK0yQ3PrSvVD0eTQOrXXLdfft4cExn\n9IBgwU+JLPipZjPPmHid//2ymcTkADZ78Hl9h+Qz67MkBp+RGw0958ukoj0KKSGxaYCLb0nnjEuz\nC0Ncg5jMYI8xOOfaA3zy3xaVel7Hnm4efHsHLdv7CATMWKwQMF2GvXnjKgUNygWkOMrYvHRrWKe3\nJ9/DukWbQo73GNytSvfXNMljH23n3td3MeLSbM6+JouXv9/COdceCBmb0DSA3Rm6h6Bp0K1vZBOP\nzr3uAInNDit/CIZ/nn9DFi3b+aN6E7i8JjBF5zUT3PjgfvQwgVg2u+TYIaE9mcNxyS3pvPnzZtp0\n9mG2gN0RwGQKYBPTka6vq/kGDRdlABRHFS06JKOFqdJpdVhp1SV0hnjdE6NDNoFLccSpE0bm0Gdw\nQXEXK5M5qGjHPrKXuCaltVN+jglZxh5y5t7Ith4cdHouNkeoFo1mxV+SysoZ7h31ACQkBZg8dxMP\nTN5B9+NcYa9t28XDVXftx2QO8zzpBtd7VZS64aMMgOKo4vgRxxKfFIdmKv2rbTJrxCQ4uOeMx7n7\ntMeY8/G9h5PbAAAgAElEQVQf6LrOoYycMss+AEXJtMUMOzunVFP1Ivx+Qd8jZqF+n8bMT5ricZXW\nNh6XqLS7orIczDBjRG9tukpRmYJ0RR3KSqKZoH13Lx17ejjpnBxe+jaVYWdnh1w/9MycchPN/N7G\n16NK7QEojipMJhMvL3iCZ696jfWLNyGEoHW3VsQkOHljwnsEfMEwv43/bOGPaX8Sm+Ak4Cs/wctk\n1tB1AyS4CzR0PXypBK87dD71zhOtADjryqzimjfvPdWSxbPDt2esLt++k8yAU3Or3bUrGqhoFSBl\ncMVl6MH/G4V5b0IrnclssUnueDGNRbMSMfTDNxWibAtj6JC6JoVebSLwIg0ItQJQNBjc+W7mTP2D\naf/9kS3Lt5U5LrlNU16a9xhfp7/Hp7veokOvNqxbtLFY+QN4CrysmreW7PScCp+rB4zilcDsz5Pw\ne0M1laELVi4MrUlv6IK3H23Nxb16c+0JPbmsTy9mf9a0Em9bWSSxCQF6DchHRPNObwQoKmVR5MIp\n+XUkdodB646laz0tnJkYttCeLDTsv88cXFuiRy1qBaBoEGxaksq9I57AMAz8vgAms4nBZ/+LBz67\nvcw4/tjEGJb/upqF3/4T9rynwIvZakLTBEYlG7lvWhHDxy+24Jp79qMHRLB4mgEPX9URv6/s+ZTf\nq3EwI7LzrX7Dcpn4ym6aJAfQTA3H3x8pNK1st5FmCmZGl2R3qp1PX2nBmDv2o5klWuHKYdXiGF67\nryu3vnFOHUgdXSgDoIh6DMNg0vnPU5B7eHMv4Avw94xlzP10QUhoZ0l++ej3cl08y39dU2nlX8Q3\nk1OYO60J/Ybl48rXWP5HXLnKvzbod1IuT3+2Papr/NQFZfUb3rvdyqEDoRvtX73ZnEWzEjnhjENI\nI9h7+MB+JyOuOpn+VWgJerSgDIAi6tm6cgeuMPXaPQVeZr03t1wDoIcp9laSivz/ZXHogIV53zap\n1rWR4IG3dja6GX9VmPZWMq07eUPKaktDkpZq5evUlOJjZpvgsnvPRzTCb2gjnz8oGgKGXnaVy3DV\nPEty+phh2GMa7s5oYjM/7bt5MFsOv2eLdl5iEwxlAMrhxkf28dacTTwxdRtWe/m/I0LC3z8tqyPJ\nogtlABRRT5fjO2K1hS7nbU4bZ1x9SrnXDjzreIaePxBL4fUNZZYXE6/zxNRtTP1nA6/8tIWv1qzj\njMuCYYrOOCNsQhTUbSvHaEUIiI0PtrvsOySf6+/fi82hAzJszodm0op/PxobETEAQoj3hRAZQoi1\nZZwXQojXhBCpQojVQojjI/FcRePAZDLx0Jd3Yo+xYXUEa/nYY+30GtKdM649pdxrM3YdYNUf64rr\n4ERz7auSPPj2Do47MR+rXeKMNYiJNxj/1B4Gj8jhlPMOho1nL3o1oxJN3hsLNofk/BuzmL5pLV+t\nXcc514bG+ktg2EWD6l64KCBSewAfAm8AH5dx/kyga+HXIOCtwn8Vikpx3PDefLz1TeZ9vpDs9Bz6\nndqb407tXWElz2eufJWsvdnIKm701ifNWvroPagA6xGdvax2yaQPdpQZ+lh0zGRSBqAkQoDZDAlJ\nOjc9mo4e0Jg7vQWCYIjv3R/c0uiqgBYREQMgpZwvhOhQzpDzgI9lcPr1lxAiUQjRUkq5LxLPVzQO\nmqQkcOHt/1fp8bkH89i0ZGtUKn8hJD2Od2G1SdYvc+L3HjZkic0CBHyiVF0fqFpXrwbi6Yo4FRWW\nM5t9THh2F1dMdLJ1y8X0Ovn8RtUA5kjqKgqoNbC7xOe0wmPKADRyvG4v/8xcQUGOi+NO7U2LDikV\nX1RJcg7koQci28YxEnTu7eKJj7fjiDGQMqjYX/xPGxbOCEYV7U61YzJHn9FqKAT8lNlYHkAgadZs\nA82SX0LEnwA0XgMQdZvAQoixQoilQoilmZmZ9S2OohbZ+M8WLms1lheu/x9v3v4+1x9zB+/e/2lE\n7h3wB3jkvOfKLMZWX1isBs9+uY2mLQI444K+fUeswUNTdnHnf3dhthh43RofPtc86mSPdqSE7AyN\n5fPjytwkL32BB5n3eq3LFc3UlQHYA7Qt8blN4bEQpJRTpJT9pZT9k5OT60Q4Rd2jB3QePPsZCnJc\nuPPcxS0Yv39jFsvmrKrx/Rd/v6Ratf5rm/7D88LO7oWA0y7K5u5Xgwvlnz5KPrIOnaIChIAmyQZ9\nBudXcg/EAP+a2hYrqqkrA/ADcHVhNNBgIEf5/xs3axduDJuE5SnwMuvduTW+/+alW3Hne2p8n0gT\nm6CX6cs3W+CEUTkkNffj9wnc+VG3QI96hAaOGIlW2Y1wc/talymaiVQY6OfAn0B3IUSaEOIGIcQ4\nIcS4wiEzgW1AKvAOcEsknqtouPg8ZfdxdRd4yzxXHlJKMtOyKMgpoFXnFlGZALZ6cSyaqWzNZDZL\n+p2YBwhS19lVNE810YrDfssbZUfENm5VFKkooMsrOC+B8ZF4luLooPewnsEqm0dgj7Fx2hUnVule\nBTkFzHp3Ll+9+AMFuW6kYdDv1D5YbBY81TQmtUV6mpUfP2jG+Tdmht2o1Exw92u7uevl3ZXzYyvK\npNxIKK05xD2MsA6oM3miEbXGVNQLjhg7d75zEzaHFZMlWLXRHmun19AenHzpkErdQ0rJ1Me/5pIW\nN/L23VPJTs/B5/bh9wZYPncNLTok06Vf9PV5feeJlrx+X5uwCr5kyWOrvfGGc9Y6zf5Ac5xR31LU\nO6oYnKLeOPXyYXT7V2d+/nAeeQfzGXx2fwaceRymcN1WwjD/6z/56vnv8XtDNWnAF2DXxj08+eP9\nzHx3LvM+Xxhp8atMTLzOOdceYPCIXA5mmJkxNYn/uyp8Vm84KopxV1QSrXWFCYSNBRHNqfH9+/eX\nS5curW8xFFGGK8/Nrg1pvHzT22xbtbPMcWarGUM3KiwYVxu07+bh5if20GdwPh6Xxi9fN2HoqFya\nJAew2mSwo5UOhgRLFcrQFP25KkMQSuUMpB0SnkFzVD6hsKEhhFgmpexfmbFqBaBoUHz29Dd89tR0\nTBYTrtzQEtElqW6p55rSrKWPl3/YgiPWQNMgNsHg3Guy0LSgjx8Ou3k0WbWZvVL8ZXPk96aoMJ4A\n0EBobSHuzqNa+VcVZQAUDYYF3/zFZ09/i9ftg/J1f8SJTQjw70f2ctI5OWiaZPHsBN5+tFXYpiPn\n3XAAi80oFe5ZVmaqUujVoyyj6fWI4j7Buzbb+PvXpvQ59XyOPak7mDohLN3qXNZoRhkARYPhyxe+\nx+uq+6geTZO89G0qrTt6sRRGlp50ziF6DSjghmE9QrqBdTvW1aCbs0c7fl+w4J04YqvIMARbtozl\n7fvWk5Z6iKYtm/H89HSSkt5D5phBBpDWfogmkxHCUT/CRxlqJ0TRYMhOPxT2uMlionn7ZDRT7fw6\nH39yHilt/MXKH4Iz+rgmOkPPCm0qn7rWgT9MmkMUb7c1KKSEOV8n4vMcXgL4fQJh6U2f02/nzWXv\n8X3ON7z7d2uSkrYCHpD5wX99y5G5z9eb7NGGMgCKqGTTklQ+ffIbpr86g4P7swH414i+mMyhv7LO\nOAcT378Fw6idzd4O3T1YrKH3dsYadOwZmm38/XvJ+L0aJcXxFS5clBGoOSYzFOSaePnuNqxaFMPG\n5U7+mT8CrdlnCFHCqeGZDhy5YvQWHleAcgEpogwpJS9e/z/++PpP/B4fZquZ9x/4jAe/+A9XPHAh\nv06dXyqBzGQxMf616+ncryO1VTwnbZsNv1cLMQKufI3dW0J9PbEJOlvX2unZ34UQQZeFNARCKO0f\nCTQNzrk2i9zsHO44uysZe6z839jeDLvyiJ+FLMNdKL1IKRtMd7jaRK0AFFHFPzOXM3/an3hdXgxD\n4vP48bp9PH3FK3z/xqyQln4mk0ZOZi7bVu3AbK1c/kCVZZobz6EsMwH/4WOBALgLNOb/VLqRSKdj\n3Pz3+1R6DXJhthRuVEowW5TyrwpFETzhVkxCgMUKCU0D3PFisHjejClzefi858jLzj98D8uAMNcL\nsA5Uyr8QZQAUUcWcqfPDlm/QTBrfvzkbn7u0c93n8fPWnR8y6fznay3e39AF/zm3C3/PiScQAD0A\ny/+I4/azu+LzlP4Tuuae/dgcpSOArPbD4Z+KyiElbFtnLXeM2QzHDc0vXpkt/XklD5/7HAD5hwqY\ndKUNV54Jb+Fegc+rYUgnIv6R2hW+AaFcQIqooqyZmZQybO2g4EkoyHHVolSQe9DM6/e34dlbNfxe\nDSnDy9m9nytstU814aw6e3fYadPZj81R/uqpaJYf8AVIXb6NbWt28v4Dn7F0bi7Xn9ids6/Ooksf\nN1vXOdm5/UQe/rpLHUjfMFAGQBFVjLj6ZP76aWnoKkBCYko8B/eFjwSqTc64NIsbH9mH3WmAhJmf\nNGXK460w9FCtnpFmpkmyquJWU7xuwY8fNWPp7/Hc8uQeTJrEZCltSPUArFgQS8B/2OIKTXDXyZPI\nP1QAwKEDFj75b4vi85ppKz6vH6utCunXRzHKBaSIKgaMOo5TxwzD5rRiMpuwOa3YnFYe+vJObnn5\nOmzO8t0CkWbQiBzGP72HhCQdm11ic0jOHJPF2Ef2hoxt19VDyw5+FelTQ6SE1LV2Vi2KZfZnTblq\nQE8mT2pN1n4zrnwNPQCuPI2DGRZenti21LWeAm+x8ldUjKoFpKhXAv4Af/20jH3bMuh8XAeOG94L\nTdPYumoHS2avJCbewbCLB5OYnADAktkr+GjSl6TvOkDBIRd+r7+CJ9SM12dupttxoWnHXjfcfnYw\nq3TnpmDd/o/+3kByK3+VmrcrwmMYsGmFk+dva8fe7cHoHk2TDDg1j4493ezZbuPPn+NLzf4rQjNp\n9D2lF8/PObr3AKpSC0gZAEW9kZmWxe1DHyT/UAF+jx+LzUKb7q14ad6jOGJLZ2rmZOUycfij7Fgb\njPowW0xYnTZctez7/27LahwxoX8jUoLPKzAMkAYsnJnAiWfl4IyN3r+nhoahQ94hE1cN7InXXbNd\ndM2kkZiSwGuLn6J5+6O71WxVDICaqyjqjReue5Osvdm48zwE/DrufA871u7mo0lflRo34505XJx8\nQ7HyBwj49Ygrf5vDYPgF2Zx/QyaderlpkuzHZi9bodvsEodT4oyVjLjkUFhDoag+mgmsNsnJ54Zm\nWxfRrKWP0belM/6pNE4YlRO225rJbGLkdcOZuvWNo175VxW1CayoFzwuL6v/WB8Suun3+pkz9Q80\nk8ai7/7BnecmO71sBRApOvd28dxX2zCZJWazRALbN9gJBCBcesGRUT0qyqd2cMQajJ20l2NPcDP1\nxWTS0w7vAR1/ch6PvLcdkwZWu+T0S7LZscHOPZd2xu89PLdt0TGZW1+/QW38hkEZAEW9UJ7rMe9g\nPt+9PjNso5dIYbUbnHTOIbr2cbE71cbo2zKIS9RLjekexvevqHviEnVOv+QgJ4zM5pYR3UhPs6KZ\nJPe9uROH8/DvkTPWoFMvN2dekcUPHxye6RfkuCk4VIC1eWK42zdqlAtIUS84Yuz0GNglJO5fM2kI\nIWpV+Sc28/Pu/I2Mf2oP59+Yxb8n7aNZy9DnqVl99CCEgSPWYMydmQB07uXGEia72u6UnHZxdqlj\neQfzmXLP1DqRs6GhDICi3pj4wXjimsZijwlGeThi7Vjtllrv4HXjQ/to2tyPMzb4HHs5iUbKCNQP\n4RaIJpNk8Egde4yNgF9DM4X/4fi8pdWaHtBZ/P2S2hCzwaNcQIp6o03Xlnyy7U1+/3Ixe1P30+X4\nTqz+Yx0zpswpO+s3AgwZlRPSoEUp+uhBymAYaLjW0GZ7a37InYoR0BHZZ4CRVuq8u0Bj5tSmIdeZ\nzKoWRziUAVDUK45YB2fecFrx507HtuPnD+ehB44oqC9AEwLDqHmkjR4mgxdUv91oQRqw7p8YevRz\nYS0RheVxaWzfNpJjOwpMFjOyyVvIg1cBfpDB/ZuNq9qwYEYccHgCYbFZGHH1yXX8Fg2DiLiAhBCj\nhBCbhBCpQoj7wpw/RQiRI4RYWfh1dGdiKKpN2+6teeTriTRpnoA9xobFZqHnCd147Lt7eHrWg7z4\n26QaP2PuN01KNRMpQgil/OsbKeGvOXE8fFVH/vktDp9H4MrXKMjVePepNrTodmHxWGHpjkhZiEh4\nFhF/P6LZdDqd+DktOjTHEWfHardij7HRpV8Hrn1idD2+VfRS4xWAEMIEvAmMANKAJUKIH6SU648Y\nukBKeXZNn6c4usnOyGHht39j6AaOWDunjRnGpXefx6+fzGfFb2tYMXdNjZ/x4bMt6Hm8i3bdPNjs\nBpopfENxZQxqFz1AcGWnBb/XQdePCcM5HkP+yhM3diQ+KUBCUoDszDiGXzGclHal4/iFsIJ9ZPHn\nJinw3vpXWP7rGvam7qfTse3oNbSHKv9cBjXOBBZCnAA8KqUcWfj5fgAp5TMlxpwCTKyqAVCZwI0L\nd4GHG3v9h6x92ej+4JJeaAJpyGIFETkkvQcVcNOje+nWNzTcUxrBxuKKyCMlIOG3bxMZMvIQjtgj\nBogkCiwzmfbfn5n/zV844xycP+FMTr/yJKXIK0FVMoEjsQfQGthd4nMaMCjMuCFCiNXAHoLGYF24\nmwkhxgJjAdq1axcB8RQNhbmfLCA3K69Y+QPIQp9/5CuWCNb+HctnrzTn3jd2hmTxGgZoyiVUa0x9\nKYUmyTp2Z7izXmIdf3Hdk5dz3ZOX17VojYq62gReDrSTUuYLIc4CvgO6hhsopZwCTIHgCqCO5FNE\nAev/3BS2GUxtEZcY4MwxB7DaZbGB0XXQ/cHNZkdMnYnS6DhzTBZNkvXwqyzpA2N/ncvUGInEIncP\nULIma5vCY8VIKXOllPmF/58JWIQQzSLwbMVRRLserbHaI5OuH5cYoNfAfJJb+8oc8/jH2zn+pHxM\nphIbwBK+fbdZGTNTRSQQApq2KEP5AxKNed/kc03XW7ms9VhevXkK2Rm1Xw6kMRKJPQAzsBk4jaDi\nXwJcUdLFI4RoAaRLKaUQYiAwDWgvK3i42gM4+jAMgyWzVjB/2l/YY2yMvG443f7VGQhuAF/bdQKu\nvJqUYJDc+NA+zr3+AH6fwGKVrFoUy1M3tcfjCsaCdzuugLtf3UXbLr6wm796gJA8AUVkKW+TfX9a\nU8ae0hGvK1jq22Qx0aR5Au+tewVnnCP8RYpi6rwcdKFb5xXABLwvpXxKCDEOQEo5WQhxK3AzEADc\nwJ1SysUV3VcZgKMLwzB4/JKXWDZnNZ58T/Fxi9XEKaOHMvq+C/Hke3jpxrfYsW53tTKCR11xgPFP\n7i0VP+7zChbOSOC5W9sz8LRcHv1we3HkSThUBFDtYxjg94mQaqtSalw3pBf7dpZeHticNm545gou\nmHBWXYrZIFH9ABRRyT+zVvDEpS+V6+ePS4rl7JtGMO3lH/F7ql4P6POV60hKCb3O7xNc1LMXH/+z\ngcSmepgrFXVJdmaw5lNsgl682vK4NJYvPobnx8fiDrMKPPHCQUyaNrGOJW141HUUkEJRKRZM/6vC\nTd68g/l88ey31Yr6sTn1MvvxmkyS0belk5CklH9tUtnVk80hufGkHlx5534GnJpH/iET30xJxqMP\nAbmqeFxyKx9NkgPs2RFD2+6talHyxokyAIo6wxFrR9MqLudQ3UXphGd2l31SwIX/zlSunVqiqmU0\n9m63k7Xfwqv3HI4fsdotTPrmVHZt3EP2vt3c/79t9BpQQMAvMJkhYB1aC5I3blSqi6LOGHntcCy1\n1JQjJj7AyefklKuAVGRP9ZGybMNcdM7Qg779cOdL4nEJPni2BUCpxC49YPDEZS9z5cMX88SnB+gz\nqACbQxITb2B3GsRa3kd65kbqlRQoA6CoQzr37cCNz46JcGVGyZV37ePzFeux2MoepWb+NaOsOklF\nyl3TwGQO/ltS4es6uPI0stLNGAbs2WblmVvas3RePGaLqVRjID2g48n38O7dr9G97wEstiMsh3Qj\nC96thbdrvCgXkKJO2L1pD3/9uIw5n8xHD0TOD3/6JQe5eNwBbOXU9AdlAGqL8iKpAHKyzEy6piPb\nNyXg9/iAwxcECjO+23bx0KaLl12b7ezZZiM+KYAeEJjDaScjM7Iv0MhRBkBRq0gpmXznh/ww+RcC\ntdDl69LxmThiareBjKJqlDQKcQkBnp+WSu5BCwf2mfnqfyn89Us8dqeBEPDglB0cOzjo5zdbJCsX\nxfLiHZ2QRjjLYgbriXX2Ho0BZQAUtcqyOauZ8c6vtaL8ARKbhr+viuWPDiw2MFsljhgfzdv6ePDY\nnbgKBLEJBhT+jExmildwxw/L4+q795Lnv5Uk62tAUSa3BUQsInZcvb3L0YgyAIoQcrPy+PXT+aTv\nyKTXkO4MOW8AZkv1flV+/nAeXlfZ5Rhqypq/YxgyMhdNNXyKCsIZ3pKfrXZZKknvSCw2OPvqTIR4\ng6C7yAQYYB2ASHgeYUqpDbEbLcoAKEqxedlW7j71MfSAjtftY9a7c2nRMYVXFj5ZrTR83V97zd0B\nPnimJf2G5WOzG5gtwSgUPRAMNbXZa/XRihJEMp80aDA8pQ/6loORBcoARBQVBaQoRkrJM2NexZXn\nxusOztrd+R7SNu/jy+e+q9Y9T71iGDanNZJiAuCM0xl+QTbHDCjggdGdmPNVEjs32/h7TjyPXt8e\nQ1e/2nVJ0Sy/9txuPqTrq9q6eaNF/ZUoislMyyJj14GQ436vn98+X1itew45bwADRvXDEqEqnwCD\nTs/l8xXruO25NG55Yi/Pf7OV7RvtvHF/G1p18PLERzswmw0Mozb6CCjKojLKP9zPo3I/IwNkdlVF\nUlSAcgEpijGZTWX+MVY3dl/TNB75+i5Wz1/P718uZuf63axZsAGqqZhj4nUemLwDu7OwrVQhNz64\nDykltkIvldoTiE7CGYnKrRqcCNvpkRan0aMMgKKYpi2b0KFXW1JXbi/uxAVgc1g568bTqn1fIQR9\nT+5F35N7ATD91Z9474HP8Xl8VTYEg0fkYBiFhftLYLZKFfVzNGPpUar3ryIyKBeQohQPfnEHiSkJ\nOOMcWGwW7DE2eg/ryQW3R64M74W3n83/ljzLOeNGlswLqhQWm0SIUKtRVqaq4uhAJH2MEKpJQ6RR\n5aAVIfh9fv6esZwDaQfpPrALPQZ2qZVm3D6vnx8n/8zkOz+q9EqgaQs/HyzeEKaOvDIARy8mtBYb\n6luIBoMqB62oERarhRMvGFTj++zckMaXz33H9jW76PqvTlx693m06doSKSVfPPstnz09vbg8tKZJ\n+g7Np0lygI3LnezdEb6wT9Z+Cx8+24Jr7t2nwjyjmCPnlTUyzvb/q5EsirJRKwBFrbBu8SbuPeMJ\n/B5fcflnoQlufHYMzjgHk+/6GK8rqPybt/XywjdbiUvQQYDJLJn3bSKvTGxL++4eLr45g/bdvGxY\n5mTaWylk7LEy5feNtO3iRVNOzKhESsjO0EhMNkop/5L/D7dqK6mOhDCB1g7R7EuEllh6nGcuMv9N\nMPaBuQ8i7j8IS89aeJOGh+oIpqh3xh1/N1tX7gg5LjSBzWEt1RjmzV820bGnB1OJyB13gcYPHzbl\nvOsOYLFKTGbw+8Dn0Xj65vY8/E5RJJAiGqlMf4AiA3CkITB00Kw9EPF3gnVY0BCUwHB9BblPcjhZ\nTAB2RNMvlBGgagZAzZ8UEUfXdbat2hn2nDRkKeXfvI2Ptp29pZQ/gCPG4IIbDmB3BpU/gMUaPH75\nbenVDiNV1A2V2ZQvK3lMMwH6boTtlBDlL2UA8l6gdKawBDzIvJdrKHXjQxkARcTRNA2bs5zi/CWw\nOYzCsM5QQurBE1QOnXq7sKnZ/9FNWRE/xgGQ4dqKSvCvrlWRjkaUAVBEHCEEZ48bgdAq3vlL22rD\n4wr9NdQrKCEUrvOU4iiirKQvLZEyl3+mlrUmztGKMgCKWuH6py7n2GEV+2MNQ/D8hHZ4XAJ/4cTO\nXRDsLFVWByqHkxCXkaJhULQ3UP7WoxniHwp7Rgg7OC4GjgwBcyBix0dAwsZFRAyAEGKUEGKTECJV\nCHFfmPNCCPFa4fnVQojjI/FcRfRisVp4cd5jXPP4ZZgs5Wvr5fPjGDu8O9PeTuG36Yl8/34KPm/4\n1YNK+Gr4bF3nYN8uC153sGVkkTEwdAHYEIlvomllN3AW8Q+A4yLABthBJED8Awi7KhVRVWqcByCC\nuzRvAiOANGCJEOIHKeX6EsPOBLoWfg0C3ir8V3EU48pzMfOdX6lMpFn6bhsfPhtcwg8ZdajcmvGK\nhoshLdx90bEU5Hpo3sZH83Ze2nbx0mdQAWZ7a0666hWEuX259xDCgkiYhIy/B4xDoCUjhEppqg6R\n+K4NBFKllNsAhBBfAOcBJQ3AecDHMqgJ/hJCJAohWkop90Xg+YpaJmtfNiazRmJyQrnjdq7fzRfP\nfcfaBRvIycrDnecpd3xZnHrhoWpdp4huDMMMtgvQ9R0ApKdZSU+zsnpxHDM+bobFZqFFnwDdKxXA\nCEI4wFT1HhWKw0TCBdQa2F3ic1rhsaqOUUQZqSu2c0Ov/3BVp/Fc0XYcE054gH3b08OOXbtoI+MH\n3s/cTxewf0dmtZU/QGKzgHLzHEVICV6PQNeGYE56iLs/CO+rD/j8fPbUN3UsXeMm6jaBhRBjhRBL\nhRBLMzMz61ucRktuVh53DZ/Erg1p+L1+/L4Am5ek8p+THiEQpsvX67e+i9flLVVFtLosnh2Px6Us\nwNGANGDD8hjm//YwthbvIoSdtt1b4YgNreMhJexYu6sepGy8RMIA7AHalvjcpvBYVccAIKWcIqXs\nL6Xsn5ycHAHxFNXh10/no/v1UscMQ+LKdfPPzBWljuu6zvbV4RO/qsPMT5qSudeKL1y4t6JhISCp\n82OMvP7K4kPNO6SgB/TQoULQqW+HOhROEQkDsAToKoToKISwAqOBH44Y8wNwdWE00GAgR/n/o5t9\nW1F53I4AABxnSURBVNOL20KWRPcHyNhdumtYVRK/KoPHZeLWUV1ZNDtBdfQ6CmjZpvSfujPOwbm3\njAz5nbE6rFz58MV1KVqjp8YGQEoZAG4FfgY2AF9JKdcJIcYJIcYVDpsJbANSgXeAW2r6XEXt0mtI\n97DLdM2k0a1/51LHhBCcfdMZWGyRisSQ/N/VBxgyMidC91PUFpUz0KHuvH8/fxVXTbqYxOYJmMwm\nug/swnO/PExntQKoU1QxOEVY/D4/4/rdzb5t6fi9QZ+/1WGl99AePPvzQ8X9AXIO5LJ/ewbN2jbl\n8YteZP2fm6v0nGYtffQ43sWhTDPrlsQgpWD8U7s559qDaiM4yqlMDwbD0DClzEaYO9SJTArVD0AR\nASxWC68tforPnv6WeV8sxGwxc+YNp3LxXecghCDgD/Dy2Lf57YuFYEgCfj24Agjt1lgGkpse3cvZ\nV2fh9wmEAFeBxp5tVo49waWUfwOgokqfUoJhuxmzUv5Ri1oBKKrFO/dO5bvXZ+Hz+Kt1/UnnHOLO\n/+7CEXP4968yJYQVDQNXgQmP5UOatVP5nnWNWgEoIo5hGKyYu4ZVv68jdeUOls5eUaMN2nOvP1BK\n+YNS/EcLXg/876G2jHvzmPoWRVEBygAoKiT/UAF3nTKJtC378IWJDKoszlidM8dkMeDUPNp3d0dQ\nQkVdUZHfX0pIXeNkwU8pjHkin/ikuLoTTlFllAFQVMiUe6aye+Me/L4KajSXQ2xCgDd/3kxicgC7\nQ2IYqpF7Q6QyTV4sFonJbOKdez5h2a+rsTtt/N/Y0xnz0EVYrGXU+VfUC1GXCayIPn7/YlGNlD/A\nhWMzSUoJKn84XO65cuWBFQ2FgB+2b7QT8Ov8+cMSPPkeDmXkMO2lH3nyMtWxK9pQBkBRIYZe8+4r\nQ0blllnh0+MSBGpmXxRRQsAvmPZWCn6vH6NEWRCv28fSn1eStnlvPUqnOBJlABohUkr2pO7jwN6D\nlRo/+Jz+xXH/1SU3O3xPACHA5pCk77YSCBwOH1Qrguigsj8HKYN1f3xejeEXZmMyh1p0w5CsWbAh\nwhIqaoIyAI2MlfPWckW7cdx03N1c3flWJpzwQEhphyO55ZVrSUiOr9Fzv3s3Gbcr/DkhoHVHHybT\n4YYvam8gOqhow7fkv0KD+CY6F43N5PGPdoSMD/gCvHPvpxzKVBne0YIyAI2I/TsyePjcZzmw5yBe\nlxe/1///7d15fFTV2cDx33NnzwJZ2AkIAi+LSqEV3OqugK1CbUWsVuxbC60WWl9xrV1ssRWr4FYr\nasF9qTtYQEW0KgqKUhCQnSAQ9gCBJLPf8/4xISRkQhIykyGZ5/v55MPs97lMcp57zzn3Oaz5Yj03\nnXsn9hEW2c3rkMttz/+6Udv+9O1WzHqmTa1HlNroNz9Vv6+qtz0+Q7+Ty+hxYs2MHygL8MaDs5sg\nOlUfmgDSyOwn3qtRytmO2uzbVcKyj6qfmhtj+HrhGuZMm8eyj1fyzvQPGrl14Yk/d2bdMp8u6N7C\nxEvcTpeTHifWXBMiHAyz6O3/1nyDSgmdBppGthfuJBKqWYYXA7u2FFfe9Zf6uXXoXRR+9U1sqqYl\nOOtY17c+8tqHeW1qW8bdvYXMVrYe8bdgoWCEHZs9iBiMqf5Ff7OyiO0bd9KhW7sURacO0gSQRgac\neyIL3vqCQFn1QvvRSJQ+p/SqvP/P255n3eJCwsGDZR4MDufR/6pYDsP/3beZc0bsIxQUXB5t/Fsy\n2waXy+a3jxaS0yZK2X6Lvbuc+MssPpmTw8yn2nLXqCn8/bNJqQ417WkXUBo576ozyeuYW61ssyfD\nw1kjT6OgV2xB9lAgxNxnPiQcDHPi4FKmzlvN21u+4pUVS7j6pu1YVsOn51wxfgdnXRJb6D2rtY3H\nq7N8Wpqqs7csC1weyGkTO9vMbGVT0CNEr/4BfvzrHTw8ezVb1xXWexaaSh49A0gj3gwPj3w+iZfu\neYOPXl2IN8PD8OuH8b0x52PbNk/e8SJvPDyHYHmQ4/v5mfTyelzu2Hszs22u/M0O2nYKMeXGrg3a\n7oif7caboXV/Wop4V3DX9/v0+Az57cMMHbWb8FEWElSJo9VAFQDP3/UqL056k2B5rHto8ptrOWFQ\nzbLMtg0jTziB0pL6HjsY3ir8CnfiFgxTLcDyz/I4afiCRl9fompqSDVQ7QJSGGN4ZfJblY0/QM+T\n/HGP6kSg98BaJvQf5vRhJcxcvwyXW7t81CHRCBT0HaCN/zFAu4AU0UiU8v3VG/VoWMBXS+mGsrqP\nG47r7ef3/9yIpYcY6jCWw0tu93GpDkOhZwCK2JztDt3bV3ts/uxWcY/awyFYvSSjzs8c+8et2s+v\n4rCQ1hMR14mpDkShCUBVuO7+n+L2HCrVO+0vndi/x1F50ZYxscb/oVsKiITr/rXp3id+F5JqmQ6v\n3xS/y88Drf6MlTGiqcJSddAEoAA47ZKTmTDtusr7JcUufn52H158sB2r/utj/uzW3HJZT+a+kl/n\nZ/kyo2Tl2Nrvn2YOLw0R+/oF8AIe8F2C+C5LSWwqPh0DUADs2LSbyWOmVnts/x4nz9zbkWfujV0j\n4HTZHN/Pz4F9DnZtddf6Wd8fXYxlGT0DSHMC4DkP8V4ErgGIs2HTh1XyNSoBiEge8C+gG7ARuNwY\nszfO6zYCB4AoEKnvFCWVHCW79/Pi3a+zYOYXZLTO4OQh3+KV+2YSjdRepOf8H+3hV38pAgGny7Bm\nSQYTxxxHSXHNFZ5OH1pSef2ASl/BgAtv62GIb3iqQ1G1aOwZwG3APGPMJBG5reL+rbW89lxjzJHr\nDquEOLC3lE/eXEQ4EGLQRQOr1VwpKynjl9++mX079xOpWOVr3eLCI35e/9MO8Ot7NuOtMvbb9ztl\nTH5jHeMv+h9y2kS45tZt5LWLMH92a0qKndg2OgMozYQCUrnoTzgkhEKt8HqHpTgqdSSNTQAjgHMq\nbj8N/IfaE4BqAp/N+pKJl09BLMG2DY9OeJorb7+Un/x+JACznpjHgeLSysb/SDofH+TGKZvod3LN\nC8KcLijoEeLVlctxVNSJE4H+p5Vp338asqOwYYWX/I4RnE7Dgrn5fPfq5xHRKwCPZY1NAO2NMdsq\nbm8H2tfyOgO8JyJR4DFjzOON3K6Ko/yAn4mj7ifoD1V7/KV7ZjDoom/jcFq89eg7NZ6PJyM7ygNv\nrSWrVbTWI3kROLxG3MG6/poE0ovDCVs3+bhhRFdOPKMPv3l0DDntuqQ6LFWHOhOAiLwHdIjz1B1V\n7xhjjIjU9mf/XWNMkYi0A+aKyCpjzEe1bG8sMBaga1cdNGqIz2cvxnLUHHkNlgf561UPUFy0h2B5\n3Y0/wAWX7cHjs7GOsgq0DgCnGcngvJ/eybljL8ThaHzpcNU06kwAxpgLantORHaISEdjzDYR6Qjs\nrOUziir+3SkibwCDgbgJoOLs4HGI1QKqexfUQZFw9ODcuxq2rt1e78/p0jPAtb/bhqeWRdyVqsHq\ngngvwBJt/JuTxg7TzQSuqbh9DTDj8BeISKaIZB+8DQwBljdyuyqOQcMGEI3EWfClQQx/fLIQt0cb\nf9UQAUR0Vnlz09gEMAm4UETWAhdU3EdEOonIwYU/2wPzRWQp8DkwyxjzdiO3q+Jo3aYVv3roZxUT\nsBvCMOzHxUz7eCWvr1pG5+4hncGjGiZaBMQKC5rwKkxwAcYuTXFQqi5aDroFGpEzmvL9/nq//ppb\ntnHpmF34MmO/C/Hqvav0cej7F6r3KbqB2saQMpC2czB7fw7RLYATTAiyb8DKvDbJEauqtBx0C7f8\nk1X8YcQ9/GLgTTx641PVVlbataWY8gP1a/xdHpvjevv50S8PNf6gjb8CyAffT4iVcXCAowDJ/QdY\n3eK/3HcZZu9YiGwA4wdzAAjCgYcwwU+aLmzVINpp18y8/+LHTBnzWGXt/k1fb2Husx8ydfG9tOvS\nhgUzv8BhWUSjtV/VC4ar/m8HI6/fhVi2LtaiqhEBJIB4z4dWt4MJgGTG6vfnP4PZfSmYfYANOMHZ\nGzJ+AMUvE7vYvyo/puxpxHNGk++HqpsmgGYkGony9/HTqy3cEglHKS8p57mJr3Lj47/Eclg43E6i\nR5jrP/xnuxl5/c5qR/1KVWfA3o6IE0MmBN/FLn8e7HLIuBZcnZHoTnD1BdcgCC/GiDP+LDRb1/49\nVmkCaEa2Fe4kHKy5jmo0YvPxaws578rv8p+X5hOq40KvUeO08Vd1MFFwfSt288Bfwf9yrGsHILIG\nnN0h/xVEYkWfjKsfNY/+ATzgPa9pYlYNpmMAzUirvKxap3mW7ivj5vP+xNIPv67zc3Ly45eBMCa2\n5u8xPC9AJU3V+fs+8JyPOHtgokVQ/tKhxh+AAEQ2QmBO5SMiPsi6ndiYwcFBJA842iEZVyc9enV0\nNAE0I63ys/nOkAE4nHG+tgY02htXeeM+vn2TCzuqg8BpSTJAOoGjB2RPQHImxx4PfQlx5/f7McHq\n13JamVcgeU+CZxi4Toas8Uj+DMTKTn786qhoAmhmhl5zNrbduEP0x+7sTKBcKlf7AgiUC/Nntz7q\n0g+qOTjCn7sJQO6DSOs/I1YbsHdUvCWvljc4wTpUZdZEd2FCS8HZEyv3Qaz8F7CyxiJWVuLCVwmn\nYwDNzBO3PY9pZAL4akEWt17eg9E3b6db7wCb1nl57r725LSJIKIVu1uGeHP2jzQzzAF7x2IOvseE\nMc6TgOBh3T8HOZGMyzEmiNl3MwTfB/GACWEyrkKyb0VEMMYPwYWAAfepiFX3etKq6WgCaEZKS8rY\nuq7+NX2OZNMaL5/Oac3OIjeFX3spXOUjt03NAWbVXMVr7H3g7AGReJVYgmCCVOtLjHwZ53UWkIHk\n3IM4u2OX/A6CHwCh2IVfAOUvYhydwdkFs++GivcYwMa0ug/Ld2Gj9kwljiaAY5wxhtJ9ZaxfUsgd\nl9ydkM9s2znEw7PX4s2I4ss0BMqFq27czqrFenTWcsQZ6Hf1h9YPwO6zgHjJvj5nlgIZVyDeCzEm\nDP4ZQPCw1/ih7J8Yey8QqP5UyQSM+z3E0Q6VepoAjmGfzljEw+OnsW/HvlilzwS57s9FtMqN4Kj4\n9r0ZBo/PMPj8Uh0AbsnCn0P5c8Q/O6hvt2IUyqdjhz6DnIeIP/WTirn/8X6ZbAjMhsyf1nN7Kpk0\nARxjjDG8+fBsnpv4GvuLDyRlG4POPVDZ+B+kDX86MFD+Dxo0ZSwuGyKrYP9fwNGhovZPVQKOThDd\nHOe9ETBaJO5YoQkghZbPX8mzE19ly+qt9BzYndF3Xs5Hryzg9QdmESg//LQ6cSIRwd3oRkA1T0f6\n3t3Ezg7qXi4UwhD6EHIehH03EusGMoADxAtZE6Dkpjif5QbP2UcVuUo8TQBJ8umMRUz77QtsL9xB\n+27t+PndV3H6iEGVz38260smjppSuULXrs3FfPHuUoxt4l7te/QM/QaV0/tb5eza6mLh3Fa8/1ou\nQ67YozX/VXU5j8Ua9WgRkAnBOdTs369O3CdD/kuY0qkQLQTXACRzDOLsih36IQTeqDKLyAe+7yGu\nk5K9J6qetBx0Enz82kLuuebhassvejLc3Pr0eM780akYYxjdYxzbN8ZdQC1hXG6bu57bQO+BfhxO\nQyQk+MstfndVdya/uR5fpq1dP6qCE2n/VbVFXYzxY0JfwoHJEFlR8y2O47Ha1r60hzEGQp9g/G8A\nBvGNAPdZsaJyKmkaUg5aE0ASjO45jm0bdtR43Oly4HA6aN02m52bipOybYfT4HTZBP0ORo3fwZU3\n7MDrO/QdG3Oo3rv+HapK0gGrfdxVWjHR7ZjdPwBTRuyMwAniRnKnI+5vN2mYqm4NSQDaBZQEtR3Z\nR8JRIuFoQhp/h9NgOQzhYOzqTo/P5vqJRZx/2R4cDti9w4nbY1dr/EEbflULR1uMiSJx1vQVRwdo\n+zam/F8QXgyO7kjGTxBnQQoCVYmkCSAJ8jvlsntLckrgZudGuOFvmznlwgNYlmH1kgzun9CFMX8o\n4uRzSyuXcmzXKaJF3VT9RdZg9ozC5DwEpX+HwLuAA3wjkKzfIFYOkvWLVEepEky7gJJgzvR5PPLr\nJ6vV7U8Mw9R5ayjoEcAVq8KLbYO/DHyZ6Dq+qpG8IG4w5RyaveMGZx8k/xXtu28mtAsoyaKRKLOf\neI850+Zh24Yh15zDxb8cwsblm3hr6rvs2bYXt8+VkASQkRXlnB/so+NxQbyZUTp2O9T4Q6zRz9B6\nWyohAjXLQRCC6DoILwL34FQFppJEE0ADGWP446V/Y8kHKyob+OmrX+C1+//N7qI92EdcirFhuvYK\nMGXGWjxeg9trau3S0QMzlThxfslMBMKrNAG0QGmbAKLRKA5Hw2sfr1y4hqX/WVHt6D7oD7FzUyKq\naBrOvLiEy67bScfjgmTn2NUGbbWhV8nlIpYADrt4S1zg6JKKgFSSpV2v8aczFjG65ziGua7gR23/\nl1cmz+TgOEjQH2Rb4Q5CgdqXVPxs9mJCCb1Q65Dxd2/h9n98Q5+Bflrn2ViWNvoqUQ5fBMgZ+5FM\nYlcAe8F9FpBJ9Ro+DrBywXNWE8WpmlKjzgBEZCRwJ9AXGGyMiTtiKyLDgAeJrTv3T2PMpMZs92h9\nOXcpf73yAYIVa+buLy7lmT++zK6iYgqXbmLZ/JU4HBYiwmUTLuGaP42qHPhav3Qjd426n63rtyew\nm8dwwuAyOnUL8d3v7+GUC8q0wVdJ4IKscRB4CyLrAAu8QyH7d0j4c4juBPfJiKsfJlKIKfkthJcA\nAu7TkNZ3x50eqpq/Rs0CEpG+xIqHPAbcFC8BSOw3Zw1wIbAFWAT82BhT5+K1iZ4FNP7U21n1+br6\nvVjg+2Mv5IZHx1JWUsblHccQCiTuyD87J8K9r6+jc/dg5aCuNv4qOVxI9m1I5tUYuwzEVbmYe22M\n8QMWIp6mCVElTENmATWqC8gYs9IYs7qOlw0G1hljNhhjQsBLwIjGbLe+yg/42V1UjF2x9mFRQxZT\nMTDrsbkULt/EYzc/m7DG35cZ4eaHvuFfX62gW+8gbo9enKWSTJzg/lbsppVZZ+MPsUXetfFv+Zpi\nELgzULUu7BbglGRusPyAn8nX/oMFM79ALCE7L4sbpv6Crn07s+KTuvJVdWP7T0hYXO06h3jy05U4\nnNrgq6biBdcgxNU/1YGoY1CdCUBE3gM6xHnqDmPMjEQHJCJjgbEAXbt2bfD7/aV+xp96O5tXb61c\nO7d4617+MOIehl8/lLVfbkhoV05D/OnpDdr4qyTLBmcB2HtBMsA3Eskcneqg1DGqzgRgjLmgkdso\nAqrOISuoeKy27T0OPA6xMYCGbGjvjn38YuDN7N2+L97nMuORt/FmpO60tnufoDb+qvGcA2KNuncI\n4MD4Z4G9HbwXYzk7pTo61Yw0RRfQIqCXiHQn1vBfAVyZjA1Nv+OFuI1/VclcaKVO2virBrOALKAU\nHF2R7FsQb/VjMskYnpLIVPPX2GmglwIPA22BWSKyxBgzVEQ6EZvu+T1jTERExgHvEJsGOt0YE6e4\neOPNe+7jZHzsUWnbOcS1d2xlwBllhALCR2+1TnVI6lhhtQNHbwjP58grdPkg4ydYrW5uqshUmmkx\nxeD8ZQGGZ1+d5Ijqp3tfPw/NWovLYyq7fA7+N2sXUEuXA23eREIfYKIlEJwH0fVgAsSKrTmQvGdj\nc+4DH2D2/x7sEsCA+/RYv314EVg5kHEt4rtUi7CpBknLYnD7dydnAfWjMX7SlmqNP2jD35wcXDCn\nYRzg7IfkTEGcncB5FQKYrOsg9Fmsjr7VDrzDECtWvU+854LnI7B3gWRWPq5UU2kxCSC/U26qQ6jU\n99vl2uA3Y0f87rInIt6zY4ujRDeAaxB4zkKsLMTKi/NZAp5TYz9xt2WBo32CIleqYVpMAnC6nPQ5\ntRerFq5NdSiEgoI3o/Fda0d3JKoaxkNsmUMH4ITMcZB5JZTcFuu+wQmEwdkLcqdhVTTWkv2b1IWs\nVIK0mAQAMPmDP3F5+2sp2+9PaRz/fiafH47dXWOBloY06JGKgozOON9Q1WGbpkgQqUxEB7dtaOgk\nKotDA6wuYkXN8sHRBtxngu8yxJEPgXcxkXWIsyd4hxy6Sjb3EUx0F0TWg7ML4uicwL1S6tjQohKA\n2+Pi9T1P8cJfXmfuM/8B4OxRpzNywiVk52ZTWlLG6w/MYvWidXTp05nh1w2lU48OGGNY9PZ/eer3\n/2LtfzcceWJGPTw1qSPH9w0w8MzSylbLtuHAPsHtActh8Hhrb1jtKCyal82cF/IZd/cW2nY8VJ7X\ntuHZ+9pRUhxb9L19QeLWH4gXT2UDXOX/xI7G/ouMHYvH6TryamQ1PrdKa15z/6XixwLyEEceOPIQ\nyYbobqAMrPbgGwquARBeBtGNiLNXZQNuTBii28DKA6Jg7wdHp/gFzXwX15pYxNEWHG1r3zGlmrkW\nMwsokbas2cr7L80nHAgz8Pz+bF5dxNb12/F43WTnZtJjQHf27ixh2ccr2bp2G+IQTrv4O4jDYuu6\n7XTu1YmC3p1Y9v7bFHRfTbcT+1Fw0mhc3jwksgw7uo9guBc7NywgHNiEv9RJeUmYzj0dBMqFtV9l\n0+l/BnHSWX1xOBzY0TIiZYtxumzEOxgRH7Zt8+W7S1n24ad0LFhMjxPC5BQMwdvqeDYuXUCmbwXt\nupTj9eWx+ZsTKAucS79TOmCZFYTDWTh9/dm/p5SF/16MMTZ57XNwup2ccEYfvBkebNsmEorg9tZd\nNwbARDZB6FOQLPCch1gZcV6zAUKfx2a4eM5B5PASxUqpxmrILCBNAEop1YI0WTVQpZRSzZcmAKWU\nSlOaAJRSKk1pAlBKqTSlCUAppdKUJgCllEpTx/Q0UBHZBXyT6jiANsDuVAeRQrr/uv/puv/Ncd+P\nM8bU6wrGYzoBHCtE5Iv6zqttiXT/df/Tdf9b+r5rF5BSSqUpTQBKKZWmNAHUz+OpDiDFdP/TWzrv\nf4vedx0DUEqpNKVnAEoplaY0AdSTiNwrIqtE5CsReUNEclIdU1MSkZEiskJEbBFpsbMiqhKRYSKy\nWkTWichtqY6nKYnIdBHZKSLLUx1LKohIFxH5QES+rvi9b5FLwGkCqL+5wInGmP7AGuD2FMfT1JYD\nPwQ+SnUgTUFiq8c8AlwE9AN+LCL9UhtVk3oKGJbqIFIoAkwwxvQDTgV+1RK/f00A9WSMedcYc3Bp\nroVAQSrjaWrGmJXGmNWpjqMJDQbWGWM2GGNCwEvAiBTH1GSMMR8Be1IdR6oYY7YZYxZX3D4ArARa\n3LqgmgCOzs+AOakOQiVVZ2BzlftbaIENgKqbiHQDBgKfpTaSxGtRawI3loi8B3SI89QdxpgZFa+5\ng9jp4fNNGVtTqM/+K5VORCQLeA24wRizP9XxJJomgCqMMRcc6XkR+SlwMXC+aYHzZ+va/zRTBHSp\ncr+g4jGVJkTERazxf94Y83qq40kG7QKqJxEZBtwCDDfGlKc6HpV0i4BeItJdRNzAFcDMFMekmoiI\nCDANWGmMmZLqeJJFE0D9/R3IBuaKyBIRmZrqgJqSiFwqIluA04BZIvJOqmNKpooB/3HAO8QGAF82\nxqxIbVRNR0ReBBYAvUVki4hcm+qYmtgZwNXAeRV/70tE5HupDirR9EpgpZRKU3oGoJRSaUoTgFJK\npSlNAEoplaY0ASilVJrSBKCUUmlKE4BSSqUpTQBKKZWmNAEopVSa+n+OPiGXh/MNlgAAAABJRU5E\nrkJggg==\n",
426 | "text/plain": [
427 | ""
428 | ]
429 | },
430 | "metadata": {},
431 | "output_type": "display_data"
432 | }
433 | ],
434 | "source": [
435 | "plt.scatter(X['wind_speed'], X['power'], c=y)\n",
436 | "plt.show()"
437 | ]
438 | },
439 | {
440 | "cell_type": "code",
441 | "execution_count": 22,
442 | "metadata": {
443 | "collapsed": true
444 | },
445 | "outputs": [],
446 | "source": [
447 | "svc = SVC(kernel='rbf')"
448 | ]
449 | },
450 | {
451 | "cell_type": "code",
452 | "execution_count": 23,
453 | "metadata": {
454 | "collapsed": false
455 | },
456 | "outputs": [
457 | {
458 | "data": {
459 | "text/plain": [
460 | "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n",
461 | " decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',\n",
462 | " max_iter=-1, probability=False, random_state=None, shrinking=True,\n",
463 | " tol=0.001, verbose=False)"
464 | ]
465 | },
466 | "execution_count": 23,
467 | "metadata": {},
468 | "output_type": "execute_result"
469 | }
470 | ],
471 | "source": [
472 | "svc.fit(X_train, y_train)"
473 | ]
474 | },
475 | {
476 | "cell_type": "code",
477 | "execution_count": 24,
478 | "metadata": {
479 | "collapsed": false
480 | },
481 | "outputs": [
482 | {
483 | "data": {
484 | "text/plain": [
485 | "0.86795019357538972"
486 | ]
487 | },
488 | "execution_count": 24,
489 | "metadata": {},
490 | "output_type": "execute_result"
491 | }
492 | ],
493 | "source": [
494 | "svc.score(X_test, y_test)"
495 | ]
496 | },
497 | {
498 | "cell_type": "code",
499 | "execution_count": 183,
500 | "metadata": {
501 | "collapsed": true
502 | },
503 | "outputs": [],
504 | "source": [
505 | "knn = KNeighborsClassifier(n_neighbors=5)"
506 | ]
507 | },
508 | {
509 | "cell_type": "code",
510 | "execution_count": 184,
511 | "metadata": {
512 | "collapsed": false
513 | },
514 | "outputs": [
515 | {
516 | "data": {
517 | "text/plain": [
518 | "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
519 | " metric_params=None, n_jobs=1, n_neighbors=5, p=2,\n",
520 | " weights='uniform')"
521 | ]
522 | },
523 | "execution_count": 184,
524 | "metadata": {},
525 | "output_type": "execute_result"
526 | }
527 | ],
528 | "source": [
529 | "knn.fit(X_train, y_train)"
530 | ]
531 | },
532 | {
533 | "cell_type": "code",
534 | "execution_count": 190,
535 | "metadata": {
536 | "collapsed": false
537 | },
538 | "outputs": [
539 | {
540 | "data": {
541 | "text/plain": [
542 | "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
543 | " metric_params=None, n_jobs=1, n_neighbors=5, p=2,\n",
544 | " weights='uniform')"
545 | ]
546 | },
547 | "execution_count": 190,
548 | "metadata": {},
549 | "output_type": "execute_result"
550 | }
551 | ],
552 | "source": [
553 | "knn = KNeighborsClassifier(n_neighbors=5)\n",
554 | "knn.fit(X, y)"
555 | ]
556 | },
557 | {
558 | "cell_type": "code",
559 | "execution_count": 192,
560 | "metadata": {
561 | "collapsed": false
562 | },
563 | "outputs": [
564 | {
565 | "data": {
566 | "text/plain": [
567 | "array([ 0.96779825, 0.96762852, 0.96881517, 0.96748145, 0.96862117,\n",
568 | " 0.9697124 , 0.96917891, 0.96862117, 0.96842718, 0.96857268])"
569 | ]
570 | },
571 | "execution_count": 192,
572 | "metadata": {},
573 | "output_type": "execute_result"
574 | }
575 | ],
576 | "source": [
577 | "cross_val_score(knn, X_train, y_train, cv=10, scoring='accuracy')"
578 | ]
579 | },
580 | {
581 | "cell_type": "code",
582 | "execution_count": 69,
583 | "metadata": {
584 | "collapsed": true
585 | },
586 | "outputs": [],
587 | "source": [
588 | "y_predict = knn.predict(X_test)"
589 | ]
590 | },
591 | {
592 | "cell_type": "code",
593 | "execution_count": 185,
594 | "metadata": {
595 | "collapsed": false,
596 | "scrolled": true
597 | },
598 | "outputs": [
599 | {
600 | "data": {
601 | "text/plain": [
602 | "0.97722753550089236"
603 | ]
604 | },
605 | "execution_count": 185,
606 | "metadata": {},
607 | "output_type": "execute_result"
608 | }
609 | ],
610 | "source": [
611 | "knn.score(X_train, y_train)"
612 | ]
613 | },
614 | {
615 | "cell_type": "code",
616 | "execution_count": null,
617 | "metadata": {
618 | "collapsed": true
619 | },
620 | "outputs": [],
621 | "source": [
622 | "dataX = featProcess()\n",
623 | "datay =\n",
624 | "testX = featProcess(dataIn08)"
625 | ]
626 | },
627 | {
628 | "cell_type": "code",
629 | "execution_count": 194,
630 | "metadata": {
631 | "collapsed": false
632 | },
633 | "outputs": [],
634 | "source": [
635 | "k_range = range(3, 20)\n",
636 | "k_score = []\n",
637 | "for k in k_range:\n",
638 | " knn = KNeighborsClassifier(n_neighbors=k)\n",
639 | " k_score.append(cross_val_score(knn, X, y, cv=10, scoring='accuracy'))"
640 | ]
641 | },
642 | {
643 | "cell_type": "code",
644 | "execution_count": 195,
645 | "metadata": {
646 | "collapsed": false
647 | },
648 | "outputs": [],
649 | "source": [
650 | "k_mean = []\n",
651 | "for item in k_score:\n",
652 | " k_mean.append(item.mean())"
653 | ]
654 | },
655 | {
656 | "cell_type": "code",
657 | "execution_count": 196,
658 | "metadata": {
659 | "collapsed": false
660 | },
661 | "outputs": [
662 | {
663 | "data": {
664 | "text/plain": [
665 | "array([ 0.93398514, 0.9678746 , 0.94595329, 0.91179095, 0.88628075,\n",
666 | " 0.93984248, 0.93974548, 0.94506091, 0.95413983, 0.93049197])"
667 | ]
668 | },
669 | "execution_count": 196,
670 | "metadata": {},
671 | "output_type": "execute_result"
672 | }
673 | ],
674 | "source": [
675 | "k_score[10]"
676 | ]
677 | },
678 | {
679 | "cell_type": "code",
680 | "execution_count": 197,
681 | "metadata": {
682 | "collapsed": false
683 | },
684 | "outputs": [
685 | {
686 | "data": {
687 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW5+PHPk30hkJCENUBYwi6LYAARVKyKrUi1txbq\nrqigorW97bX2Xq3dLj9ta21r3ResuNVqBYtVrlIBZQtLgLATEgJhyQIkJGR/fn/MCY5hQmaSyUwg\nz/v14sXMOd9zzneUzJPv9nxFVTHGGGNCgl0BY4wxbYMFBGOMMYAFBGOMMQ4LCMYYYwALCMYYYxwW\nEIwxxgAWEIwxxjgsIBhjjAG8DAgiMlVEdojIbhF5yMP5BBF5X0Q2icgaERnuHI9y3meKSJaIPOZ2\nzSgRWSUiG0UkQ0TS/fexjDHG+EqaWqksIqHATuByYD+wFpipqlvdyjwBnFDVx0RkMPC0ql4mIgLE\nquoJEQkHVgAPqOoqEfkEeFJVPxKRbwI/UdVLzlSXpKQkTU1NbfaHNcaY9mjdunWFqprcVLkwL+6V\nDuxW1WwAEXkLmA5sdSszFJgHoKrbRSRVRLqq6mHghFMm3PlTH4EU6Oi87gTkN1WR1NRUMjIyvKiy\nMcaYeiKS6005b7qMegJ5bu/3O8fcZQLXOQ9OB/oAKc77UBHZCBwBlqjqaueaHwBPiEge8Fvgp95U\n2BhjTOvw16DyPCDe+eKfC2wAagFUtVZVR+EKEOn14wvAHOBBVe0FPAi85OnGInKXM8aQUVBQ4Kfq\nGmOMacibgHAA6OX2PsU5doqqlqjqbc4X/81AMpDdoMwxYCkw1Tl0C/Ce8/pvuLqmTqOqz6vqWFUd\nm5zcZBeYMcaYZvImIKwF0kSkr4hEADOAhe4FRCTeOQcwC1imqiUikiwi8U6ZaFwD09udcvnAxc7r\nKcCuln0UY4wxLdHkoLKq1ojIfcDHQCjwsqpmichs5/yzwBBgvogokAXc4Vze3Tkeiiv4vKOqHzrn\n7gSeEpEwoAK4y4+fyxhjjI+anHbalowdO1ZtlpExxvhGRNap6timytlKZWOMMYAFBGOM8bsTlTW8\ntjKHohOVwa6KTywgGGOMH5VUVHPTS6t55IMsLn9yGf/cdDDYVfKaBQRjjPGTY+VV3PjiarYcOM6j\n04aSkhDNvW+s59431p8VrQULCMYY4wfFZVV8/4XVbD9YyrM3juG2iX15b86F/PjKQSzJOswVTy5j\n8ea23VqwgGCMOWst3X6Eb/z+cz4K8hdtQWklM55fyZ6CE7x4y1guG9IVgLDQEO69dACL5l5Ej/ho\n7lnQtlsLFhCMMWelVdlFzH59HfuKypmzYD3/+9E2amrrAl6PwyUVzHh+JXnFJ3nl1guYPPD0jAqD\nusXx/j2u1sInWYe44sllQQ9inlhAMMacdTLzjnHHq2vp3TmG5f91KTeM681zn2dz88trAvrbd/6x\nk3zvuZUcOl7B/NvTuXBAUqNl61sLH86dRI/4aOa0wdaCBQRjzFll5+FSbnllDZ07RPDXO8bRtWMU\nv772PJ74jxFk5B5l2p9WkJl3rNXrkVdczvXPraToRBWv3TGO9L6dvbpuULc43rvnQv7zioFtrrVg\nAcEY06TDJRX8/pMdFJdVBbUe+4rKufHF1USEhrDgjvF06xR16tx3x/bivTkXIiJ899mVvLVmX6vV\nI6ewjO89t5LSihoW3DmOMX0SfLo+PDSE+6akfa21cN8b64P+39cCgjHmjGpq65j7xgb++Nlurv3L\nF+w+UhqUehw6XsENL62iuraO12eNo3dizGllhvfsxIdzL2Jcv8489N5mHvr7Jiqqa/1aj91HTvC9\n51dSUVPHG3eOY0RKfLPv5d5a+DjrEJcHeYDcAoIx5oz+vHQ3a3KKmXNJf8oqa7n26S/5fGdg9yYp\nLqvixpdWc7Ssmvm3pzOwa1yjZRNiI3j1tnTuvbQ/b63N4/rnVnLg2Em/1GPHoVJmPL+K2jp4887x\nDOvRqcX3rG8tLJp7Ed3jo5izYD1z39wQlNaCBQRjTKPW7C3mj5/u4rrRPfmvqYP54L6JpHSO4bZX\n1vDqF3sJRHLMkopqbnl5DXnF5bx4y1ivfiMPDRF+fOVgnr9pDHsLypj2pxV8sbuwRfXYml/CzBdW\nESLw1l3jGdSt8aDUHIO7deT9eybyo8sH8q8tB7niyc/515bAthYsIBhjPDpeXs0P3tpA784x/OLb\nro0Oe8ZH8+7sCUwZ3JWfL9rK/3ywhepWnOp5sqqWWa9msO1gCc/ceD7j+yX6dP0Vw7rxwX0TSYyN\n4KaXVvPMv/c0K4ht2n+MmS+sIioshHfunsCALh18voc3wkNDmHtZGgvvu4iuHaOY/XpgWwsWEIwx\np1FVHnpvE0dKK3lqxmg6RH61dUpsZBjP3zSG2Rf35/VV+7j1lTUcL6/2ex2qauqYs2Ada3OLefJ7\no5gyuGuz7tMvuQP/uHciVw3vzv/713buWbCeE5U1Xl+/ft9RbnhhNXFRYbx99wRSk2KbVQ9fDOne\nkX/cO5EfurUWVmcXtfpzLSAYY07z5po8PtpyiB9fOYiRvU7vogkJER66ajC//e5I1uwt5tq/fEF2\nwQm/Pb+2Tnnw7Y38e0cBv7n2PKaN7NGi+8VGhvHn74/mZ98cwidbDzP9zyvYfaTp+q7ZW8xNL66m\nc4cI3r57Ar06nz6Q3VrCQ0O432kt9E/uQEoAnm0b5BhjvmbX4VKm/XkFF6R2Zv5t6YSEyBnLr80p\n5u6/rqOmto5nbhzDxDMszvKGqvLQ3zfzdkYeP/vmEO6c3K9F92to5Z4i7ntjPRXVtfz2uyO56rzu\nHst9uaeQO17NoHt8FG/eOZ6uHaM8ljsb2AY5xpyFSiuqWZiZH5QUDAAV1bXMfXMDsRFh/O76kU0G\nA4ALUjvzwb0T6dYpiptfXsOC1bnNfr6q8ut/buPtjDzmThng92AAMKF/Ih/efxFpXeMaTXmxbGcB\nt72yll6do3n7rglndTDwhQUEY9qQRz/I4v43N/DAWxupqgl8UPjfxdvYfqiU314/ki5x3n8J9uoc\nw9/nXMjktCR+9v4Wfr4wq1lB7Y+f7ubFFXu59cJUfnj5QJ+v91b3TtG8ffd4vu8h5cVn2w8za34G\n/ZI78Oad40mOi2y1erQ1FhCMaSPW7C3mvQ0HGN07nn9uPsjs19f5fVHVmSzZepj5K3O546K+XDqo\ni8/Xx0WF8+ItFzDror68+mUOt8/PoKTC+8Hml1fs5cn/28l3zk/hkauHItJ066QlIsNC+c215/G4\nW8qLZz/fw91/Xcfg7nG8eec4Eju0n2AAFhCMaRNqaut45IMt9IyPZsGscfzm2vNYuuMIt72y1qcZ\nMc116HgFP3k3k2E9OvKTqYOafZ/QEOG/rx7KvOvO48vdhVz3ly/JLSpr8rp3MvL4xYdbmTqsG//v\nO+d51VXlL9eP7cXfZ7tSXsz7aDvDe3bi9VnjiI+JCFgd2goLCMa0Aa+tzGX7oVL+5+qhxESE8f1x\nvXny+lGsySnmppdWt8q0znr1M3oqquv448zRRIaFtvieM9J789c7xlF4opLpT3/BqjNMmVy8+SAP\n/X0Tk9KSeGrmKMJCA/+1dF5KJxbNvYifTxvKa7en0zEqPOB1aAssIBgTZEdKK3hyyU4mD0zmymFf\nzbX/9uiePP3988k6UMKMF1ZR2Eppkp/9fA8rs4t4bPow+if7b8HVhP6J/OOerxaFvb329GRzn+8s\n4IG3NjC6dwLP3TTGL8GouTrHRnDrxL7EtdNgABYQjAm6eYu3U1lTx2PXDDut33zq8G68eMtY9hae\n4HvPreTgcf/k5Km3ft9Rfr9kJ9NG9uC7Y1L8em+A1KRY3rtnIuP7JfJff9/Mr/+5ldo611R313TV\nDNK6xPHyrRcQExHWxN1Ma7OAYNqlnMIyfvfJDiprAjdo68nq7CLe23CAuyb3o28jK2AnD0zmtdvH\ncbikku8+u5J9ReV+eXZJRTX3v7mB7p2i+PW1w1ttELdTdDiv3HoBt16YygvL93Lnaxmsyi7i9lfW\n0iM+mtfuSKdTdPv9rbwt8SogiMhUEdkhIrtF5CEP5xNE5H0R2SQia0RkuHM8ynmfKSJZIvJYg+vm\nish259zj/vlIxjTtN4u38afPdvOrD7cFrQ7VtXU88kEWPeOjuffSAWcsm963MwtmjeNEZQ3ffe7L\nFqegVlV+9v4WDh6v4KkZo1u9zzwsNISfXzOMX357OJ/vLGDG86voGB3O63eMI6mdzeRpy5oMCCIS\nCjwNXAUMBWaKyNAGxR4GNqrqCOBm4CnneCUwRVVHAqOAqSIy3rnvpcB0YKSqDgN+64fPY0yTsgtO\nsGTbYVISovnrqlw+2HggKPV4bWUuOw67BpKjI5ruOx/ZK56375pAbR1c/9wqthw43uxnv7tuP4sy\n8/nh5QN93tylJW4a34f5t6UzZXAXXp81jh7x0QF7tmmaNy2EdGC3qmarahXwFq4vcndDgc8AVHU7\nkCoiXdWlPmFIuPOnPlfGHGCeqlY61x1p2UcxxjsvrdhLeGgI786+kPTUzvz0vc3sOhzYTV+OlFTw\nhyU7ubjBQHJTBnWL42+zJxAVFsLMF1axLveoz8/eU3CCRxdmMaFfIrMv7u/z9S11UVoSL996QaNd\nZCZ4vAkIPYE8t/f7nWPuMoHrAEQkHegDpDjvQ0VkI3AEWKKqq51rBgKTRGS1iHwuIhd4eriI3CUi\nGSKSUVAQ2E05zLmn6EQl767bz3Wje9KtUxR/+v5oYiJCmbNgPWUBmO9f738/cg0k/9zDQHJT+ibF\n8s7sCadm73zpQ57/yppa7n9zA5FhITz5vVGEBnC+v2n7/DWoPA+Id7745wIbgFoAVa1V1VG4AkR6\n/fgCEAZ0BsYDPwbeEQ8/Gar6vKqOVdWxycnJfqquaa9eX7WPypo6Zk3qC0DXjlE8NWM02QUnePj9\nzQHZ8GV1dhHvbzjA3Rc3PpDclJSEGN65ewIpCdHc+upaPt122KvrHv/XDrLyS3j8P0Z+bT9iY8C7\ngHAA6OX2PsU5doqqlqjqbc4X/81AMpDdoMwxYCkw1Tm0H3jP6VZaA9QBLUuTaMwZVFTX8trKHC4b\n3IUBXb7a7WrigCR+ePlAPtiYz4LVrbcxO3x9IPmeS848kNyULh2jePuuCQzuFsfdf13Hh5vyz1h+\n6Y4jvLRiL7dM6MPlQ5u3t4A5t3kTENYCaSLSV0QigBnAQvcCIhLvnAOYBSxT1RIRSRaReKdMNHA5\nsN0p9w/gUufcQCACaNked8acwXvrD1BUVsWsSadn0LznkgFcMiiZXyzayqb9x1qtDvO/zGHH4VIe\nmebdQHJTEmIjWDBrHKN7x3P/mxt4JyPPY7kjpRX85zuZDO4Wx0+/OaTFzzXnpiYDgqrWAPcBHwPb\ngHdUNUtEZovIbKfYEGCLiOzANRvpAed4d2CpiGzCFViWqOqHzrmXgX4isgXXQPUtejZtzmDOKnV1\nyosrsjmvZyfG9+t82vmQEOHJ60eRHBfJnNfXc6zc/1sWHimp4A//t4tLBiVzhR9/Q4+LCmf+7elM\nHJDET97dxKtf7P3a+bo65UfvZFJWVcOfZo4mKjx4q4FN2+bV0kBVXQwsbnDsWbfXK3ENEje8bhMw\nupF7VgE3+lJZY5rrs+1HyC4o448zRzc6iJsQG8Gfvz+a659byY/eyeSFm8f6NcnabxZvo6qmjp9P\n830guSkxEWG8eMtY5r6xgZ8v2kpZVe2ptQ0vrshm+a5CfnPteaR19e/G8ObcYiuVTbvw/PJsesZH\n883h3c5YbnTvBP77W0P5dPsRnluWfcayvliVXcQ/NuYz++J+rbYnb2RYKE/fcD7TR/XgiY938Pi/\ntpOZd4zH/7WDqcO6MTO9V9M3Me2aBQTTqhZl5nPlk8tapQvGW5l5x1izt5jbJqZ6lUnz5gl9uHpE\nd574eDsr97R8Y/Nqt9TWc1o4kNyU8NAQfn/9KGam9+Iv/97DzBdW0SUuknnfOa/V9xcwZz8LCKZV\n/dVZjfvExzuCVocXlmcTFxXGjPTeXpUXEeZ9ZwSpSbHMfXMDR0oqWvT8+V/msPPwCR7100ByU0JD\nhN9cex53TupLbZ3yhxmj22Vuf+M7Cwim1eQfO8manGKS4yJ5Y80+MvNab/ZOY/KKy1m8+SDfH9eb\nDpHeZ9PsEBnGMzeM4URlNXPf3NDsPY4POwPJlw5KDuhUTxHhZ98aSuajV5De9/RBdGM8sYBgWs0/\nNx0E4JVbLyC5QyT//Y8tp1IfB8rLX+wlRIRbL0z1+dpB3eL4zbXnsXpvMb9bsrNZz//N4m1U1TZv\nRbI/2Iwi4wsLCKbVLNqUz4iUTgzv2YmffWsImw8c5401rbvwy93x8mreXpvHNSN70L1T85KoXXd+\nCjPTe/PMv/d4vRq43so9RXywMZ/Zk/vRJ9Hy9pi2zwKCaRU5hWVs2n+caSN6AHDNyB5M6JfIE//a\n3mo7fzX0xpp9lFfVelyI5otHpw1lWI+OPPj2RvKKvduLoH4gOSWh9QeSjfEXCwimVdSnUfjWiO6A\nq0/7l98exsnqWuZ9tP1Ml/pFVU0dr3yxl0lpSQzt0bFF94oKD+WZG8agwD0L1nu1qc78L3PYdeQE\nj04bFpCBZGP8wQKCaRWLMg+Sntr5a/nuB3SJ446L+vHuuv2szSlu1ecvzMznSGlli1sH9XonxvC7\n745k84Hj/PLDrWcse7jEtUfylMFd+MaQLn55vjGBYAHB+N2OQ6XsOFzKtJHdTzt3/2UD6NEpiv/5\nx5Zmz9xpiqry4vJsBnWNY3Ka//IlXjGsG3dP7sfrq/adcVOdX/9zG9V1yqPThtrcf3NWsYBg/G5R\nZj4hAledd3pAiIkI45Fpw9h+qJRXv8xplecv31XI9kOl3Dm5n9+/kP/zykFn3FTnyz2FLMzMZ/bF\n/W0g2Zx1LCAYv1JVFm3KZ+KApEb3yr1yWFcuGZTMH/5vF4dbuOjLkxeWZ9MlLpJrRvbw+73DQ0Ma\n3VSnuraORz/IIiUhmnsuCfxOZMa0lAUE41ebDxwnt6j81OwiT0SEx64ZRlVtHb/6p383ud+aX8Ly\nXYXcOjGViLDW+efdtWMUf3Q21fnpe19tqvPqF66B5J9PG2bz/81ZyQKC8atFmfmEhwpXDjtzErk+\nibHMubg/izLz+cKHLSCb8uKKbGIiQrkhvY/f7unJhc6mOgsz83l99T4OHa/gD/+3k8sGd+EbtvmM\nOUtZQDB+U1enfLjpIBcP7EKnmPAmy8+5pD+9O8fwPx9soaqm5QPMB4+fZOHGfL53QS+vnt9S9Zvq\n/HLRVua+ud4ZSB7W6s81prVYQDB+k5F7lIPHKzzOLvIkKjyUx6YPI7ugjBeWtzzV9Ktf5lCnyu0T\n+7b4Xt5w31Rnbc5R5lzcn96JMQF5tjGtwQKC8ZtFmflEhYfwjSHed5lcOqgLVw7ryp8+28X+o96t\nAvbkRGUNb6zex1XndadX58B9KSfERvDCzWO59cJU5thAsjnLWUA4R2zYd5QnPt5OsHYhramtY/Hm\ng1w2pCuxPmQVBXhk2jAE4ReLzrzg60zeXptHaUUNd/lpIZovhvboyM+vsYFkc/azgHCOmP9lDk8v\n3cO/dxQE5fkrs4soKqs64+yixvSMj2buZQP4ZOthlm4/4vP1NbV1vLxiL+mpnRnZK97n640xLhYQ\nzhEZuUcB+ONnu4LSSliUmU9cZBiXDEpu1vWzLupH/+RYHl2YRUV107mC3C3ecogDx05y5+TAtw6M\nOZdYQDgHHC6pYP/RkwzuFseGfcf4YnfLt330RWVNLR9tOcQVw7o1u9skIiyEX04fzr7icp759x6v\nr1NVXliWTb+kWC4bbHmDjGkJCwjngIwcV+vgsWuG0bVjJH/8bFdAn79sZyGlFTVezy5qzIUDkrhm\nZA+e+XwPOYVlXl2zem8xmw8cZ9akfoSEWN4gY1rCAsI5ICO3mKjwEM7vk8Ddk/uzZm8xq7MD10pY\nlJlPQkw4Ewe0PJHcf39rCBGhITy6MMurrq8XlmWTGBvBdef3bPGzjWnvLCCcA9blHmVkSjzhoSHM\nTO9NUocI/vTZ7oA8u7yqhiVbD3PVed0JD235P6cuHaN48PKBfL6zgI+zDp2x7O4jpXy6/Qg3Tehj\nM3yM8QOvfoJFZKqI7BCR3SLykIfzCSLyvohsEpE1IjLcOR7lvM8UkSwReczDtT8SERUR/+UpbkfK\nq2rIyi9hbGoCANERodw5qR8rdheyft/RVn/+Z9uPcLK6tlmzixpzy4Q+DO4Wxy8WbaW8qqbRci+t\n2EtkWAg3jW/dNBXGtBdNBgQRCQWeBq4ChgIzRWRog2IPAxtVdQRwM/CUc7wSmKKqI4FRwFQRGe92\n717AFUDgNto9x2zMO0ZtnTK2T+dTx24c34eEmHD+9GnrjyUsysynS1wk6X07N13YS2GhIfzq28PJ\nP17BHz/13NIpKK3k7+sP8J0xKSQ2klXVGOMbb1oI6cBuVc1W1SrgLWB6gzJDgc8AVHU7kCoiXdXl\nhFMm3Pnj3jH8JPCTBseMD9Y5A8rn9044dSw2Mow7LurL0h0FbN5/vNWeXVJRzdIdBVw9ogehfh7Q\nHZvame+OSeHF5dke9x3468ocqmvruOOiwKSpMKY98CYg9ATy3N7vd465ywSuAxCRdKAPkOK8DxWR\njcARYImqrnaOTwcOqGpmiz5BO5eRe5SBXTuclszt5gtT6RgVxp9accbRJ1mHqaqpa/HsosY8dNVg\nYiPD+J8PtnxtgPlkVS1/XZXLN4Z0pX9yh1Z5tjHtkb8GlecB8c4X/1xgA1ALoKq1qjoKV4BIF5Hh\nIhKDq5vpkaZuLCJ3iUiGiGQUFARnFW5bVVunrN93lDF9Tu+u6RgVzm0T+/LJ1sNsO1jSKs9flJlP\nSkI0o1ppdXBih0h+fOUgVmUXszAz/9Txd9fv52h5NXfZQjRj/MqbgHAA6OX2PsU5doqqlqjqbc4X\n/81AMpDdoMwxYCkwFegP9AUyRSTHued6ETktib6qPq+qY1V1bHJy81bBnqt2Hi6ltKKGsX0SPJ6/\nfWJfOkSG8eel/p9xVFxWxYrdhUwb2aNV9w2emd6bESmd+NU/t1FSUU1tnfLS8mxG9opv9HMbY5rH\nm4CwFkgTkb4iEgHMABa6FxCReOccwCxgmaqWiEiyiMQ7ZaKBy4HtqrpZVbuoaqqqpuLqhjpfVc88\nz7ANWLO3OCCDtd6oT1dRP8OooU4x4dw8oQ+LNx9k95HT++Fb4qMtB6mtU7/OLvIkNET41beHU3ii\nkieX7GTJ1sPkFJVz1yT/75dsTHvXZEBQ1RrgPuBjYBvwjqpmichsEZntFBsCbBGRHbhmIz3gHO8O\nLBWRTbgCyxJV/dDfHyKQ3lqzj98t2cmRVtgL2FfrcopJ6hBJ7zOke77jor5EhYXy9FLv00F4Y+HG\nfAZ06cCQ7nF+va8nI1LiuWFcb+Z/mcPj/9pOr87RXDnMdiUzxt+8GkNQ1cWqOlBV+6vqr51jz6rq\ns87rlc75Qap6naoedY5vUtXRqjpCVYer6i8auX+qqvpvH8VWlFPkSqmwfFfwq5uRe5SxfRLO+Jty\nYodIbhzfmw82HvA6HURTDh2vYE1OMdNGtG53kbsfXzGYhJgIsgvLuH1iX8L8sAjOGPN19lPlo9wi\n1yYuy3cFd4C7PqFdY91F7u6c3I/w0BD+8m//jCX8c/NBVOHqVppd5EmnmHB++e3hjOwVz/VjezV9\ngTHGZxYQfFBSUU1RWRUhAit2F1JXF7zlE/UJ7cZ4MbDaJS6Kmem9eW/9AfKKm78rWb1FmfkM69Ex\n4FM+v3ledz64d6LPG/AYY7xjAcEH+5zWwTeGdKXwRBXbDrXOdE5vZOQWExkWwrAenbwqf/fF/QgR\n4dnPWzaWkFdczsa8Y0wb2bqDycaYwLOA4IP68YMbndw5wRxHWJd7lJG94okI8+5/YfdO0fzH2BT+\nlrGfQ8ebPyC+aJNrPcDVIwLXXWSMCQwLCD6oH5Qdm5rA4G5xQRtHOJXQzsd5+HMu7k+daotaCQs3\n5jOmTwIpCYHbyN4YExgWEHyQU1RO146RxESEMSktibV7j3KyyrftHv3hVEI7LwaU3fXqHMO1o3vy\n5pp9HCn1vZWw63Ap2w+VMs1aB8ackywg+CC3qIw+ibEATEpLpqq2jtV7A7tdJXhOaOetey8dQHVt\nHS8u3+vztYs2HSRE4JsWEIw5J1lA8EFOUTmpia6ukvS+nYkICwnKOEJG7lHSunQgPiai6cINpCbF\ncs3IHry+Kpfisiqvr1NVPszMZ3y/RLrERfn8XGNM22cBwUtllTUUlFaeaiFEhYcyrm/ngI8j1DkJ\n7XztLnJ335QBnKyu5aUV2U0XdmTll5BdWGazi4w5h1lA8FL9grS+SbGnjk1KS2Ln4RMtmrXjq51H\nXAntPGU49daALnF8c3h35n+Zy/Hyaq+uWZSZT1iIMHXYafkHjTHnCAsIXsp1ppz2Sfxqds2kNFf2\n1UC2EuoXpLU00+d9UwZworKGV75seiyhrk75cNNBJg9MJiHW924qY8zZwQKCl3KcFkJ9lxHA4G5x\nJHWIDOg4wrrcoyR1iPhaYGqOId07cvnQrry8Yi+lFWduJWzIO8qBYydbbSMcY0zbYAHBS7lFZSR1\niKSDW9oEEWFyWlJA01hk5BYzpomEdt66f0oaJRU1vLYy94zlFmUeJDIshG8MsQyjxpzLLCB4aW9h\n2akZRu4mDUyiuKyKrPzWT2NxpKSCvOKTjG3B+IG781I6ccmgZF5asZfyqhqPZWqd7qIpg7sQFxXu\nsYwx5txgAcFLuUXlX+suqnfRANc4wrIAjCM0tSFOc8ydkkZxWRULVu3zeH51dhGFJyptdpEx7YAF\nBC+crKrlUEmFxxZCclwkQ7t3DMjAckbOUZ8S2nljTJ8EJg5I5Lll2VRUn77qemFmPrERoUwZ3MVv\nzzTGtE0WELywz0kZ3Sfp9BYCuLqN1uUepazSc7eLv6zLLfYpoZ235k5Jo/BEJW+u+Xoroaqmjo+2\nHOKKYd0XQfNXAAAWhklEQVSICg/16zONMW2PBQQv1Gc59dRCAJiclkx1rbZqGouTVbXNSmjnjfH9\nEklP7cxzn2dTWfNVK2HF7gKOn6y22UXGtBMWELzw1RoEzy2EMX0SiAoPYdnO1pt+ujHvGDXNSGjn\nrbmXDeBQSQV/y9h/6tiizIN0ig4/NU5ijDm3WUDwQk5ROZ1jI+gU7XmWjSuNRWKrjiOsyy0GmpfQ\nzhsXDUhiVK94nvn3Hqpr66ioruWTrENcNbyb37uojDFtk/2ke8GV5fTMC8EmpSWxp6CMA8dOtkod\nWpLQzhsiwv2XDeDAsZO8v/4AS7cfoayq1mYXGdOOWEDwQk5hOamNdBfVmzzQ1a2yohVaCXV1yvrc\nliW088alg7owvGdHnv73bt7fcICkDpGM75fYqs80xrQdFhCaUFlTS/7xk022ENK6dKBrx0iWtUIa\ni11HTlDSwoR23hAR7rs0jdyicj7ZepirR3QnNKTlK6KNMWcHCwhNyCsuR5UmWwgiwqS0ZL7YXUit\nn9NYZDjjB60xw6ihK4Z2ZVDXOACbXWRMO+NVQBCRqSKyQ0R2i8hDHs4niMj7IrJJRNaIyHDneJTz\nPlNEskTkMbdrnhCR7c4174tIvP8+lv/kFNYntWs6mdyktCSOlVez5cBxv9ZhXY5/Etp5IyREeGz6\nMGam92J0r9YPQMaYtqPJgCAiocDTwFXAUGCmiAxtUOxhYKOqjgBuBp5yjlcCU1R1JDAKmCoi451z\nS4DhzjU7gZ+29MO0hq/WIJy5hQCumToAy3b6dxwhI/eo3xLaeWN8v0T+97oRhFh3kTHtijcthHRg\nt6pmq2oV8BYwvUGZocBnAKq6HUgVka7qcsIpE+78UafcJ6pav7R3FZDSso/SOnKLyukYFUZ8TNOJ\n3RI7RDK8Z0e/psM+UlrBvuJyvyW0M8aYxngTEHoCeW7v9zvH3GUC1wGISDrQB+cLXkRCRWQjcARY\noqqrPTzjduAj36oeGDlFZaQmxXr92/nktGTW7zva5B4D3lrnbIgzppVnGBljjL8GlecB8c4X/1xg\nA1ALoKq1qjoKV4BIrx9fqCciPwNqgAWebiwid4lIhohkFBQEdv9icLUQvOkuqjcpLZmaOmVVdrFf\nnp+R60poN9yPCe2MMcYTbwLCAaCX2/sU59gpqlqiqrc5X/w3A8lAdoMyx4ClwNT6YyJyK3A1cIOq\nepyao6rPq+pYVR2bnBzYFApVNXXsP1reaA4jT87vE09MRKjfVi1n5BQzMsX/Ce2MMaYhb75l1gJp\nItJXRCKAGcBC9wIiEu+cA5gFLFPVEhFJrp89JCLRwOXAduf9VOAnwDWqWu6fj+NfB46dpE4bz2Hk\nSWRYKOP7JfplHKE+oZ11FxljAqHJgOAM/N4HfAxsA95R1SwRmS0is51iQ4AtIrID12ykB5zj3YGl\nIrIJV2BZoqofOuf+DMQBS0Rko4g867dP5SenZhgl+Tbdc1JaEnsLy8grblmcO5XQLgDrD4wxJqzp\nIqCqi4HFDY496/Z6JTDQw3WbgNGN3HOATzUNgpzCM2c5bcykNFfX1vJdhXx/XO9mP78+od0YCwjG\nmACwjukzyC0qp0NkGImxviWU658cS49OUS0eR8jIPcqAVkxoZ4wx7iwgnEGOk+XU1wVh7mksamrr\nmvXsUwntrHVgjAkQCwhn4OuUU3eTBiZRUlHDpmamsfgqoZ0FBGNMYFhAaERNbR15xeXNzh80sX8S\nIrC8mbuonUpol2orlI0xgWEBoRH5xyqoqVNSk5rXQkiIjWBEz07NHkdYl3OUxNgIn9ZAGGNMS1hA\naIQvSe0aMyktmQ15xyhpRhqLQCe0M8YYCwiNyD0VEJr/G/rkgcnU1ilf7i7y6bpTCe1sQZoxJoAs\nIDQip6ic6PBQkuMim32P0b3jiW1GGov6hHY2fmCMCSQLCI3IKWzelFN34aEhTOif5HMaC0toZ4wJ\nBgsIjcgpKmvR+EG9yQOT2FdcfqoLyhsZuUctoZ0xJuDsG8eD2jolr/gkfXzMYeRJfRqLZV62Ek5W\n1ZJ14LgltDPGBJwFBA8OHj9JVW2dX1oIqYkxpCREs9zLbTUz91tCO2NMcFhA8CC3yJWl1B+b2ten\nsVi5p4hqL9JYrMt1dkizgGCMCTALCB7Ur0Ho28xFaQ1NTkuitLKGzLxjTZbNyCm2hHbGmKCwgOBB\nblE5kWEhdI2L8sv9LuyfRIg0PY5QV6ess4R2xpggsYDgQf2U05AQ/6wS7hQTzshe8U2uR9hdYAnt\njDHBYwHBg9yicp83xWnKpLRkMvOOcby88TQWGbYgzRgTRBYQGqirU2cNgn+Tyk1OS6JO4cs9jXcb\nZeQWW0I7Y0zQWEBo4HBpBZU1dX5vIYzsFU9cZNgZxxHWWUI7Y0wQWUBoIKfQNeXUH2sQ3IWHhnDh\ngESW7SxAVU87X1BaSW6RJbQzxgSPBYQG6lNM+GMNQkOT0pI5cOwkewtPT2OxztkQZ0wfGz8wxgSH\nBYQGcorKCQ8VesRH+/3ek500Fp6S3WXkHCUiLIThPTv6/bnGGOMNCwgN5BaV0atzDKF+mnLqrndi\nDH0SYzxOP3UltOtEZFio359rjDHesIDQQE5ROX39PH7gblJaEiv3FFFV81Uai4rqWrLyj1t3kTEm\nqLwKCCIyVUR2iMhuEXnIw/kEEXlfRDaJyBoRGe4cj3LeZ4pIlog85nZNZxFZIiK7nL+DPpqqquQW\nlfl9hpG7SWnJlFXVsmHf0VPHMvOOUV1rCe2MMcHVZEAQkVDgaeAqYCgwU0SGNij2MLBRVUcANwNP\nOccrgSmqOhIYBUwVkfHOuYeAT1U1DfjUeR9UBScqKa+qJdUPaa8bM6F/IqEh8rVxhAxLaGeMaQO8\naSGkA7tVNVtVq4C3gOkNygwFPgNQ1e1Aqoh0VZcTTplw50/9nMvpwHzn9Xzg283/GP5RP+W0NVsI\nHaPCGd0gjcW63KP0T44lIdYS2hljgsebgNATyHN7v9855i4TuA5ARNKBPkCK8z5URDYCR4Alqrra\nuaarqh50Xh8CujbrE/hRfZbT1l4pPCktmU0HjnO0rMotoZ2NHxhjgstfg8rzgHjni38usAGoBVDV\nWlUdhStApNePL7hT10qt01drASJyl4hkiEhGQYFvm9X7KreojLAQoWcrTDl1N2lgEqrwxZ5Cdhec\n4PjJatshzRgTdGFelDkA9HJ7n+IcO0VVS4DbAMSVd2EvkN2gzDERWQpMBbYAh0Wku6oeFJHuuFoQ\np1HV54HnAcaOHesxaPhLTlE5KQnRhIW27uSrET070TEqjOU7Cyk5WQNgA8rGmKDz5ptvLZAmIn1F\nJAKYASx0LyAi8c45gFnAMlUtEZFkEYl3ykQDlwPbnXILgVuc17cAH7Tso7Rca88wqhcWGsLEAUks\n31VwKqGdvzbjMcaY5moyIKhqDXAf8DGwDXhHVbNEZLaIzHaKDQG2iMgOXLORHnCOdweWisgmXIFl\niap+6JybB1wuIruAbzjvg0ZVyS0sD1im0ckDk8k/XsEnWYc53xLaGWPaAG+6jFDVxcDiBseedXu9\nEhjo4bpNwOhG7lkEXOZLZVtTcVkVpZU1pAboN/WLBiQBcKKyxrqLjDFtgq1UduQUtU6W08b06hxD\nPyf42IY4xpi2wAKCozWznDbm0sFd6BAZZgntjDFtglddRu1BTlE5IQIpCYELCD+8fCA3T+hjCe2M\nMW2CBQRHTmEZPROiiQgLXKMpNjKM2Ej7X2CMaRusy8iRW1QWsPEDY4xpiywgOHKKygM6fmCMMW2N\nBQTgWHkVx09WWwvBGNOuWUDgqymngVilbIwxbZUFBL6actq3FfdBMMaYts4CAq59ECTAU06NMaat\nsYCAq4XQo1M0UeG2HsAY035ZQMC1MY7NMDLGtHcWEKifcmoDysaY9q3dB4TjJ6spLqsKWNprY4xp\nq9p9QNhnU06NMQawgECOM+U01aacGmPauXYfEOrXIPTubAHBGNO+tfuAkFNUTteOkcREWNZRY0z7\n1u4DgmU5NcYYl3YfEHKKyi0gGGMM7TwglFXWUFBaSR8bUDbGmPYdEE7NMLIWgjHGtO+AkHtqDYK1\nEIwxpl0HhPoWgi1KM8aYdh4QcgvLSeoQSQfb6N4YY7wLCCIyVUR2iMhuEXnIw/kEEXlfRDaJyBoR\nGe4c7yUiS0Vkq4hkicgDbteMEpFVIrJRRDJEJN1/H8s7OUVllsPIGGMcTQYEEQkFngauAoYCM0Vk\naINiDwMbVXUEcDPwlHO8BviRqg4FxgP3ul37OPCYqo4CHnHeB1SuZTk1xphTvGkhpAO7VTVbVauA\nt4DpDcoMBT4DUNXtQKqIdFXVg6q63jleCmwDejrXKNDRed0JyG/RJ/HRyapaDpVU2LaZxhjj8Kbz\nvCeQ5/Z+PzCuQZlM4DpgudP10wdIAQ7XFxCRVGA0sNo59APgYxH5La7AdKGnh4vIXcBdAL179/ai\nut7ZV2xZTo0xxp2/BpXnAfEishGYC2wAautPikgH4O/AD1S1xDk8B3hQVXsBDwIvebqxqj6vqmNV\ndWxycrKfqmtrEIwxpiFvWggHgF5u71OcY6c4X/K3AYiIAHuBbOd9OK5gsEBV33O77BagfpD5b8CL\nzah/s+UUOllObVDZGGMA71oIa4E0EekrIhHADGChewERiXfOAcwClqlqiRMcXgK2qervG9w3H7jY\neT0F2NXcD9EcOUXldI6NoFN0eCAfa4wxbVaTLQRVrRGR+4CPgVDgZVXNEpHZzvlngSHAfBFRIAu4\nw7l8InATsNnpTgJ4WFUXA3cCT4lIGFCBM04QKLlFZbZC2Rhj3Hi1Isv5Al/c4Nizbq9XAgM9XLcC\nkEbuuQIY40tl/Sm3qJz0vp2D9XhjjGlz2uVK5YrqWvKPn7QWgjHGuGmXAWH/0XJUbYaRMca4a5cB\nIafQtQYhNckCgjHG1GufAeHUGgTrMjLGmHrtMiDkFpXTKTqc+JiIpgsbY0w70S4DgmU5NcaY07Xb\ngGA5jIwx5uvaXUCoqqnjwNGT1kIwxpgG2l1A2H+0nDq1LKfGGNNQuwsIuUX1U06thWCMMe7aXUCo\nn3JqLQRjjPm6dhcQcovK6RAZRmKsTTk1xhh37S4g5BSVkZoUgysztzHGmHrtLiDkFpVbd5ExxnjQ\nrgJCTW0decXlNuXUGGM8aFcB4cCxk9TUqbUQjDHGg3YVEHLqp5xaQDDGmNO0q4CQa1lOjTGmUe0q\nIOQUlhMdHkpyXGSwq2KMMW1OuwoIuUVl9Em0KafGGONJuwoIrrTXNn5gjDGetJuAUFun5BWftG0z\njTGmEe0mIBw8fpKq2jobUDbGmEa0m4BQn+XU1iAYY4xnXgUEEZkqIjtEZLeIPOThfIKIvC8im0Rk\njYgMd473EpGlIrJVRLJE5IEG180Vke3Oucf985E821voTDm1tNfGGONRWFMFRCQUeBq4HNgPrBWR\nhaq61a3Yw8BGVb1WRAY75S8DaoAfqep6EYkD1onIElXdKiKXAtOBkapaKSJd/PzZvia3qIzIsBC6\nxkW15mOMMeas5U0LIR3YrarZqloFvIXri9zdUOAzAFXdDqSKSFdVPaiq653jpcA2oKdzzRxgnqpW\nOuePtPjTnEFOUTl9EmMICbEpp8YY44k3AaEnkOf2fj9ffanXywSuAxCRdKAPkOJeQERSgdHAaufQ\nQGCSiKwWkc9F5AJPDxeRu0QkQ0QyCgoKvKiuZ641CDZ+YIwxjfHXoPI8IF5ENgJzgQ1Abf1JEekA\n/B34gaqWOIfDgM7AeODHwDviYcWYqj6vqmNVdWxycnKzKldXp+QWWZZTY4w5kybHEIADQC+39ynO\nsVOcL/nbAJwv9b1AtvM+HFcwWKCq77ldth94T1UVWCMidUAS0PxmQCMOl1ZQWVNnLQRjjDkDb1oI\na4E0EekrIhHADGChewERiXfOAcwClqlqiRMcXgK2qervG9z3H8ClzvUDgQigsPkfpXE5ha4pp31t\nUZoxxjSqyRaCqtaIyH3Ax0Ao8LKqZonIbOf8s8AQYL6IKJAF3OFcPhG4CdjsdCcBPKyqi4GXgZdF\nZAtQBdzitBb8rj7LaR/rMjLGmEZ502WE8wW+uMGxZ91er8Q1SNzwuhWAx2k9zoylG32pbHPlFJUT\nERpC907RgXicMcacldrFSuXUxBiuHd2TUJtyaowxjfKqhXC2m5HemxnpvYNdDWOMadPaRQvBGGNM\n0ywgGGOMASwgGGOMcVhAMMYYA1hAMMYY47CAYIwxBrCAYIwxxmEBwRhjDADSSumDWoWIFAC5wa4H\nrqysrZKIr4WsXr6xevnG6uW7tlK3Pqra5P4BZ1VAaCtEJENVxwa7Hg1ZvXxj9fKN1ct3bblunliX\nkTHGGMACgjHGGIcFhOZ5PtgVaITVyzdWL99YvXzXlut2GhtDMMYYA1gLwRhjjMMCgo9EJFRENojI\nh8GuiztnX+t3RWS7iGwTkQnBrhOAiDwoIlkiskVE3hSRqCDV42UROeJs2Vp/rLOILBGRXc7fCW2k\nXk84/x83icj7IhLfFurldu5HIqIiktRW6iUic53/Zlki8nhbqJeIjBKRVSKyUUQyRCQ90PXylQUE\n3z0AbAt2JTx4CviXqg4GRtIG6igiPYH7gbGqOhzXntwzglSdV4GpDY49BHyqqmnAp877QHuV0+u1\nBBiuqiOAncBPA10pPNcLEekFXAHsC3SFHK/SoF4icikwHRipqsOA37aFegGPA4+p6ijgEed9m2YB\nwQcikgJ8C3gx2HVxJyKdgMnAS+Dar1pVjwW3VqeEAdEiEgbEAPnBqISqLgOKGxyeDsx3Xs8Hvh3Q\nSuG5Xqr6iarWOG9XASltoV6OJ4GfAEEZfGykXnOAeapa6ZQ50kbqpUBH53UngvRv3xcWEHzzB1w/\nDHXBrkgDfYEC4BWnO+tFEYkNdqVU9QCu39b2AQeB46r6SXBr9TVdVfWg8/oQ0DWYlWnE7cBHwa4E\ngIhMBw6oamaw69LAQGCSiKwWkc9F5IJgV8jxA+AJEcnD9XMQjJaeTywgeElErgaOqOq6YNfFgzDg\nfOAZVR0NlBGc7o+vcfrkp+MKWD2AWBG5Mbi18kxd0+3a1JQ7EfkZUAMsaAN1iQEextX10daEAZ2B\n8cCPgXdERIJbJcDVcnlQVXsBD+K04NsyCwjemwhcIyI5wFvAFBF5PbhVOmU/sF9VVzvv38UVIILt\nG8BeVS1Q1WrgPeDCINfJ3WER6Q7g/B3wrobGiMitwNXADdo25ob3xxXYM52fgRRgvYh0C2qtXPYD\n76nLGlwt+IAPeHtwC65/8wB/A2xQ+Vyhqj9V1RRVTcU1MPqZqraJ33ZV9RCQJyKDnEOXAVuDWKV6\n+4DxIhLj/MZ2GW1gsNvNQlw/tDh/fxDEupwiIlNxdU1eo6rlwa4PgKpuVtUuqprq/AzsB853/u0F\n2z+ASwFEZCAQQdtIKJcPXOy8ngLsCmJdvBIW7AoYv5kLLBCRCCAbuC3I9UFVV4vIu8B6XF0fGwjS\nyk0ReRO4BEgSkf3Ao8A8XN0Ld+DKont9G6nXT4FIYInT87FKVWcHu16qGvQuj0b+e70MvOxM+awC\nbgl0q6qRet0JPOVMqKgA7gpknZrDViobY4wBrMvIGGOMwwKCMcYYwAKCMcYYhwUEY4wxgAUEY4wx\nDgsIxhhjAAsIxhhjHBYQjDHGAPD/AbaAow0erKNEAAAAAElFTkSuQmCC\n",
688 | "text/plain": [
689 | ""
690 | ]
691 | },
692 | "metadata": {},
693 | "output_type": "display_data"
694 | }
695 | ],
696 | "source": [
697 | "plt.plot(k_range, k_mean)\n",
698 | "plt.show()\n",
699 | "k_best = k_range[np.array(k_mean).argmax()]"
700 | ]
701 | },
702 | {
703 | "cell_type": "code",
704 | "execution_count": 12,
705 | "metadata": {
706 | "collapsed": false
707 | },
708 | "outputs": [],
709 | "source": [
710 | "n_inputs = 4\n",
711 | "n_classes = 2 \n",
712 | "\n",
713 | "X_data =tf.placeholder(tf.float32, [None, n_inputs], name='X_data')\n",
714 | "Y_data =tf.placeholder(tf.float32, [None, n_classes], name='Y_data')\n",
715 | "\n",
716 | "W = {\n",
717 | " 'w1': tf.Variable(tf.random_normal([n_inputs,12]), name='w1'),\n",
718 | " 'w2': tf.Variable(tf.random_normal([12,24]), name='w2'),\n",
719 | " 'w3': tf.Variable(tf.random_normal([24, 12]), name='w3'),\n",
720 | " 'w4': tf.Variable(tf.random_normal([12, 6]), name='w4'),\n",
721 | " 'w5': tf.Variable(tf.random_normal([6, n_classes]), name='w5'),\n",
722 | "}\n",
723 | "\n",
724 | "B = {\n",
725 | " 'b1': tf.Variable(tf.random_normal([12]), name='b1'),\n",
726 | " 'b2': tf.Variable(tf.random_normal([24]), name='b2'),\n",
727 | " 'b3': tf.Variable(tf.random_normal([12]), name='b3'),\n",
728 | " 'b4': tf.Variable(tf.random_normal([6]), name='b4'),\n",
729 | " 'b5': tf.Variable(tf.random_normal([n_classes]), name='b5'),\n",
730 | "}\n",
731 | "\n",
732 | "\n",
733 | "with tf.name_scope(\"L1\"):\n",
734 | " H1 = tf.matmul(X_data, W['w1']) + B['b1'] \n",
735 | " H1 = tf.nn.relu(H1)\n",
736 | "\n",
737 | "with tf.name_scope(\"L2\"):\n",
738 | " H2 = tf.matmul(H1, W['w2']) + B['b2'] \n",
739 | " H2 = tf.nn.relu(H2)\n",
740 | " \n",
741 | "with tf.name_scope(\"L3\"):\n",
742 | " H3 = tf.matmul(H2, W['w3']) + B['b3'] \n",
743 | " H3 = tf.nn.relu(H3)\n",
744 | " \n",
745 | "with tf.name_scope(\"L4\"):\n",
746 | " H4 = tf.matmul(H3, W['w4']) + B['b4'] \n",
747 | " H4 = tf.nn.relu(H4)\n",
748 | " \n",
749 | "with tf.name_scope('L5'):\n",
750 | " pred = tf.matmul(H4, W['w5']) + B['b5']\n",
751 | " pred_softmax = tf.nn.softmax(pred, name=\"pred_softmax\")\n",
752 | "\n",
753 | "with tf.name_scope('loss_and_acc'):\n",
754 | " correct_pred = tf.equal(tf.argmax(pred_softmax, 1), tf.argmax(Y_data, 1))\n",
755 | " accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n",
756 | " loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=Y_data))"
757 | ]
758 | },
759 | {
760 | "cell_type": "code",
761 | "execution_count": 13,
762 | "metadata": {
763 | "collapsed": true
764 | },
765 | "outputs": [],
766 | "source": [
767 | "a = tf.random_uniform([3, 2])\n",
768 | "init = tf.global_variables_initializer()\n",
769 | "sess = tf.Session()\n",
770 | "# merged = tf.summary.merge_all()\n",
771 | "writer = tf.summary.FileWriter(\"logs/\", sess.graph)\n",
772 | "sess.run(init)\n",
773 | "# sess.run(tf.local_variables_initializer())\n",
774 | "# sess.run(tf.equal(1, 1))\n",
775 | "# sess.run(a)"
776 | ]
777 | },
778 | {
779 | "cell_type": "code",
780 | "execution_count": 14,
781 | "metadata": {
782 | "collapsed": false
783 | },
784 | "outputs": [
785 | {
786 | "name": "stdout",
787 | "output_type": "stream",
788 | "text": [
789 | "0 accuracy: 0.635243 loss: 5.56904\n",
790 | "[ True False True ..., False False False]\n",
791 | "1 accuracy: 0.9329 loss: 4.08161\n",
792 | "2 accuracy: 0.663393 loss: 1.82518\n",
793 | "3 accuracy: 0.93231 loss: 1.79136\n",
794 | "4 accuracy: 0.932967 loss: 0.466656\n",
795 | "5 accuracy: 0.93271 loss: 0.429719\n",
796 | "6 accuracy: 0.93308 loss: 0.411469\n",
797 | "7 accuracy: 0.932983 loss: 0.393096\n",
798 | "8 accuracy: 0.933373 loss: 0.378384\n",
799 | "9 accuracy: 0.932867 loss: 0.368164\n",
800 | "10 accuracy: 0.932593 loss: 0.362003\n",
801 | "[ True True True ..., False True True]\n",
802 | "11 accuracy: 0.932857 loss: 0.354194\n",
803 | "12 accuracy: 0.9331 loss: 0.345652\n",
804 | "13 accuracy: 0.933607 loss: 0.338958\n",
805 | "14 accuracy: 0.933493 loss: 0.331448\n",
806 | "15 accuracy: 0.933523 loss: 0.325876\n",
807 | "16 accuracy: 0.932713 loss: 0.323051\n",
808 | "17 accuracy: 0.93276 loss: 0.319117\n",
809 | "18 accuracy: 0.932693 loss: 0.313676\n",
810 | "19 accuracy: 0.932867 loss: 0.308046\n",
811 | "20 accuracy: 0.933183 loss: 0.301843\n",
812 | "[ True True True ..., True True True]\n",
813 | "21 accuracy: 0.93347 loss: 0.295891\n",
814 | "22 accuracy: 0.933197 loss: 0.29237\n",
815 | "23 accuracy: 0.93269 loss: 0.291423\n",
816 | "24 accuracy: 0.933143 loss: 0.286312\n",
817 | "25 accuracy: 0.933063 loss: 0.283579\n",
818 | "26 accuracy: 0.932923 loss: 0.280274\n",
819 | "27 accuracy: 0.93293 loss: 0.277302\n",
820 | "28 accuracy: 0.93285 loss: 0.275539\n",
821 | "29 accuracy: 0.932803 loss: 0.273387\n",
822 | "30 accuracy: 0.93289 loss: 0.270587\n",
823 | "[ True True True ..., True True True]\n",
824 | "31 accuracy: 0.933483 loss: 0.26742\n",
825 | "32 accuracy: 0.933557 loss: 0.26547\n",
826 | "33 accuracy: 0.93264 loss: 0.265664\n",
827 | "34 accuracy: 0.932787 loss: 0.264183\n",
828 | "35 accuracy: 0.932777 loss: 0.263205\n",
829 | "36 accuracy: 0.93302 loss: 0.260779\n",
830 | "37 accuracy: 0.93319 loss: 0.25992\n",
831 | "38 accuracy: 0.932747 loss: 0.259876\n",
832 | "39 accuracy: 0.932717 loss: 0.259267\n",
833 | "40 accuracy: 0.933307 loss: 0.255819\n",
834 | "[ True True True ..., True True True]\n",
835 | "41 accuracy: 0.932913 loss: 0.257224\n",
836 | "42 accuracy: 0.933237 loss: 0.255693\n",
837 | "43 accuracy: 0.9333 loss: 0.254765\n",
838 | "44 accuracy: 0.933037 loss: 0.254976\n",
839 | "45 accuracy: 0.932707 loss: 0.254708\n",
840 | "46 accuracy: 0.933613 loss: 0.25241\n",
841 | "47 accuracy: 0.93348 loss: 0.251872\n",
842 | "48 accuracy: 0.93286 loss: 0.253126\n",
843 | "49 accuracy: 0.93316 loss: 0.251747\n",
844 | "50 accuracy: 0.93301 loss: 0.252162\n",
845 | "[ True True True ..., True True True]\n",
846 | "51 accuracy: 0.932337 loss: 0.252574\n",
847 | "52 accuracy: 0.93288 loss: 0.251615\n",
848 | "53 accuracy: 0.932447 loss: 0.251756\n",
849 | "54 accuracy: 0.93328 loss: 0.249642\n",
850 | "55 accuracy: 0.93331 loss: 0.248608\n",
851 | "56 accuracy: 0.93274 loss: 0.249932\n",
852 | "57 accuracy: 0.93286 loss: 0.249614\n",
853 | "58 accuracy: 0.933117 loss: 0.24819\n",
854 | "59 accuracy: 0.93294 loss: 0.248149\n",
855 | "60 accuracy: 0.932683 loss: 0.24901\n",
856 | "[ True True True ..., True True True]\n",
857 | "61 accuracy: 0.9328 loss: 0.248826\n",
858 | "62 accuracy: 0.932773 loss: 0.248022\n",
859 | "63 accuracy: 0.93298 loss: 0.246884\n",
860 | "64 accuracy: 0.932697 loss: 0.247153\n",
861 | "65 accuracy: 0.93264 loss: 0.247674\n",
862 | "66 accuracy: 0.933423 loss: 0.244451\n",
863 | "67 accuracy: 0.933063 loss: 0.245809\n",
864 | "68 accuracy: 0.93288 loss: 0.245345\n",
865 | "69 accuracy: 0.933263 loss: 0.244941\n",
866 | "70 accuracy: 0.932867 loss: 0.245108\n",
867 | "[ True True True ..., True True True]\n",
868 | "71 accuracy: 0.933233 loss: 0.243591\n",
869 | "72 accuracy: 0.93265 loss: 0.245319\n",
870 | "73 accuracy: 0.93291 loss: 0.243816\n",
871 | "74 accuracy: 0.93314 loss: 0.243389\n",
872 | "75 accuracy: 0.93296 loss: 0.243243\n",
873 | "76 accuracy: 0.933057 loss: 0.242507\n",
874 | "77 accuracy: 0.932863 loss: 0.243215\n",
875 | "78 accuracy: 0.933247 loss: 0.241715\n",
876 | "79 accuracy: 0.932983 loss: 0.242202\n",
877 | "80 accuracy: 0.93326 loss: 0.241224\n",
878 | "[ True False True ..., True True True]\n",
879 | "81 accuracy: 0.932727 loss: 0.242064\n",
880 | "82 accuracy: 0.933107 loss: 0.241171\n",
881 | "83 accuracy: 0.932753 loss: 0.241874\n",
882 | "84 accuracy: 0.933323 loss: 0.239798\n",
883 | "85 accuracy: 0.93319 loss: 0.240165\n",
884 | "86 accuracy: 0.93292 loss: 0.240096\n",
885 | "87 accuracy: 0.933177 loss: 0.239485\n",
886 | "88 accuracy: 0.933217 loss: 0.23933\n",
887 | "89 accuracy: 0.932967 loss: 0.239266\n",
888 | "90 accuracy: 0.93278 loss: 0.239604\n",
889 | "[ True True True ..., True True True]\n",
890 | "91 accuracy: 0.933367 loss: 0.238184\n",
891 | "92 accuracy: 0.932783 loss: 0.239059\n",
892 | "93 accuracy: 0.933447 loss: 0.23706\n",
893 | "94 accuracy: 0.933197 loss: 0.237986\n",
894 | "95 accuracy: 0.933037 loss: 0.23747\n",
895 | "96 accuracy: 0.932803 loss: 0.238349\n",
896 | "97 accuracy: 0.93263 loss: 0.237473\n",
897 | "98 accuracy: 0.9329 loss: 0.2373\n",
898 | "99 accuracy: 0.932677 loss: 0.237375\n"
899 | ]
900 | }
901 | ],
902 | "source": [
903 | "learning_rate = 0.1\n",
904 | "train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)\n",
905 | "for i in range(100):\n",
906 | " # training\n",
907 | " rnd_idx = np.random.choice(X.shape[0], 300000, replace=False)\n",
908 | " X_sample = X.iloc[rnd_idx]\n",
909 | " y_sample = np.eye(2)[y.iloc[rnd_idx].values.astype(int)]\n",
910 | " _, acc, loss1, corr= sess.run([train_step, accuracy, loss, correct_pred], feed_dict={X_data: X_sample, Y_data:y_sample})\n",
911 | "# sess.run(train_step, feed_dict={xs: x_data, ys: y_data})\n",
912 | " print(i, 'accuracy:', acc, 'loss:', loss1)\n",
913 | " if i % 10 ==0:\n",
914 | " print(corr)"
915 | ]
916 | }
917 | ],
918 | "metadata": {
919 | "kernelspec": {
920 | "display_name": "Python 3",
921 | "language": "python",
922 | "name": "python3"
923 | },
924 | "language_info": {
925 | "codemirror_mode": {
926 | "name": "ipython",
927 | "version": 3
928 | },
929 | "file_extension": ".py",
930 | "mimetype": "text/x-python",
931 | "name": "python",
932 | "nbconvert_exporter": "python",
933 | "pygments_lexer": "ipython3",
934 | "version": "3.6.0"
935 | }
936 | },
937 | "nbformat": 4,
938 | "nbformat_minor": 2
939 | }
940 |
--------------------------------------------------------------------------------
/CAICT/index:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 工业大数据
2 | ## 故障诊断与健康管理
3 | ## 预测性维护
4 | ## 工业数据分析
5 | ## phm数据竞赛
6 |
--------------------------------------------------------------------------------
/phm2017/index:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/phm2017/phm2017.rar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/RyanWangCode/PHM/39162e919bff48e9b116a68abdfce0f7f39958bc/phm2017/phm2017.rar
--------------------------------------------------------------------------------