├── README.md ├── calibration.txt ├── config_files ├── gvins │ └── m2dgrp.yaml ├── vinsmono │ └── m2dgrp.yaml ├── vinsrgbd │ ├── m2dgrp_config.yaml │ └── m2dgrp_depth_config.yaml └── viwfusion │ ├── m2dgrp.yaml │ └── m2dgrp_cam.yaml ├── fig ├── car2.jpg ├── result.png ├── resultf.png └── sensor_detail.jpg └── gt ├── anomaly.txt ├── bridge1.txt ├── bridge2.txt ├── building1.txt ├── building2.txt ├── parking1.txt ├── parking2.txt ├── street1.txt ├── street2.txt ├── switch.txt └── tree.txt /README.md: -------------------------------------------------------------------------------- 1 | # M2DGR-plus: Extension and update of [M2DGR](https://github.com/SJTU-ViSYS/M2DGR), a novel Multi-modal and Multi-scenario SLAM Dataset for Ground Robots (ICRA2022 & ICRA2024) 2 | 3 |
4 | 5 | First Author: [**Jie Yin 殷杰**](https://sjtuyinjie.github.io/) 6 |   7 | 📝 [[Paper]](https://ieeexplore.ieee.org/document/10610070) / [[Arxiv]](https://arxiv.org/abs/2402.14308) 8 |   9 | 🎯 [[M2DGR Dataset]](https://github.com/SJTU-ViSYS/M2DGR) 10 |   11 | ⭐️ [[Presentation Video]](https://www.bilibili.com/video/BV1xx421m75k/?spm_id_from=333.337.search-card.all.click&vd_source=0804300aea4065df90adde5398ee74b7) 12 |   13 | 🔥[[News]](https://mp.weixin.qq.com/s/CfnfxHvn9pbYc4599_JoSg) 14 | 15 | [![Author](https://img.shields.io/badge/Author-Jie%20Yin-blue)](https://sjtuyinjie.github.io/) 16 | [![Paper](https://img.shields.io/badge/Paper-GroundFusion-yellow)](https://ieeexplore.ieee.org/document/10610070) 17 | [![Preprint](https://img.shields.io/badge/Preprint-Arxiv-purple)](https://arxiv.org/abs/2112.13659/) 18 | [![Dataset](https://img.shields.io/badge/Dataset-M2DGR+%2B-green)](https://github.com/SJTU-ViSYS/M2DGR-plus) 19 | [![License](https://img.shields.io/badge/License-GPLv3-cyan)]() 20 | [![Video](https://img.shields.io/badge/Video-red)](https://www.bilibili.com/video/BV1xx421m75k/?spm_id_from=333.337.search-card.all.click&vd_source=0804300aea4065df90adde5398ee74b7) 21 | [![News](https://img.shields.io/badge/News-orange)](https://mp.weixin.qq.com/s/CfnfxHvn9pbYc4599_JoSg) 22 | 23 |
24 | 25 |
26 | 27 | 28 |
29 |

Figure 1. Acquisition Platform and Diverse Scenarios.

30 | 31 | 32 | 33 | 34 | ## News & Updates 35 | - **🔥`2024/10/11`**: Introducing **[M2DGR-benchmark](https://github.com/sjtuyinjie/M2DGR-Benchmark)**, benchmarking newest SOTA LiDAR-visual SLAM alrogithms on both M2DGR and M2DGR-plus! 36 | 37 | - **`2024/07/15`**: Introducing a list of LiDAR-Visual SLAM systems at [awesome-LiDAR-Visual-SLAM](https://github.com/sjtuyinjie/awesome-LiDAR-Visual-SLAM), wheel-based SLAM systems at [awesome-wheel-slam](https://github.com/sjtuyinjie/awesome-wheel-slam), and Isaac Sim resources at [awesome-isaac-sim](https://github.com/sjtuyinjie/awesome-isaac-sim) (keep updating) 38 | 39 | 40 | ### This dataset is based on [M2DGR](https://github.com/SJTU-ViSYS/M2DGR). And the algorithm code is [Ground-Fusion](https://github.com/SJTU-ViSYS/Ground-Fusion). The preprint version of this paper is [arxiv](http://arxiv.org/abs/2402.14308). 41 | 42 | ## 1.LICENSE 43 | This work is licensed under GPL-3.0 license. International License and is provided for academic purpose. If you are interested in our project for commercial purposes, please contact us on robot_yinjie@outlook.com for further communication. 44 | 45 | If you use this work in an academic work, please cite: 46 | ~~~ 47 | @article{yin2021m2dgr, 48 | title={M2dgr: A multi-sensor and multi-scenario slam dataset for ground robots}, 49 | author={Yin, Jie and Li, Ang and Li, Tao and Yu, Wenxian and Zou, Danping}, 50 | journal={IEEE Robotics and Automation Letters}, 51 | volume={7}, 52 | number={2}, 53 | pages={2266--2273}, 54 | year={2021}, 55 | publisher={IEEE} 56 | } 57 | 58 | @INPROCEEDINGS{yin2024ground, 59 | author={Yin, Jie and Li, Ang and Xi, Wei and Yu, Wenxian and Zou, Danping}, 60 | booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)}, 61 | title={Ground-Fusion: A Low-cost Ground SLAM System Robust to Corner Cases}, 62 | year={2024}, 63 | volume={}, 64 | number={}, 65 | pages={8603-8609}, 66 | keywords={Location awareness;Visualization;Simultaneous localization and mapping;Accuracy;Wheels;Sensor fusion;Land vehicles}, 67 | doi={10.1109/ICRA57147.2024.10610070}} 68 | 69 | ~~~ 70 | 71 | ## 2.SENSOR SETUP 72 | 73 | 74 | 75 | The calibration results are [here](https://github.com/SJTU-ViSYS/M2DGR-plus/blob/main/calibration.txt). 76 | All the sensors and track devices and their most important parameters are listed as below: 77 | 78 | * **LIDAR** Robosense 16, 360 Horizontal Field of View (FOV),-30 to +10 vertical FOV,5Hz,Max Range 200 m,Range Resolution 3 cm, Horizontal Angular Resolution 0.2°. 79 | * **GNSS** Ublox F9p, GPS/BeiDou/Glonass/Galileo, 1Hz 80 | * **V-I Sensor**,Realsense d435i,RGB/Depth 640*480,69H-FOV,42.5V-FOV,15Hz;IMU 6-axix, 200Hz 81 | * **IMU**,wheeltec,9-axis,100Hz; 82 | * **GNSS-IMU** Xsens Mti 680G. GNSS-RTK,localization precision 2cm,100Hz;IMU 9-axis,100 Hz; 83 | * **Motion-capture System** Vicon Vero 2.2, localization accuracy 1mm, 50 Hz; 84 | 85 | The rostopics of our rosbag sequences are listed as follows: 86 | 87 | * 3D LIDAR: `/rslidar_points` 88 | 89 | * 2D LIDAR: `/scan` 90 | 91 | * Odom: `/odom` 92 | 93 | * GNSS Ublox F9p: 94 | `/ublox_driver/ephem `, 95 | 96 | `/ublox_driver/glo_ephem `, 97 | 98 | `/ublox_driver/range_meas `, 99 | 100 | `/ublox_driver/receiver_lla `, 101 | 102 | `/ublox_driver/receiver_pvt ` 103 | 104 | 105 | * V-I Sensor: 106 | `/camera/color/image_raw`, 107 | `/camera/imu` 108 | 109 | * IMU: `/imu ` 110 | 111 | 112 | ## 3.DATASET SEQUENCES 113 | 114 | 115 | > [!TIP] 116 | > We are delighted to see that many users enjoy our M2DGR-plus dataset. However, **due to an overwhelming number of download requests, OneDrive has become unstable. If you encounter any issues, please wait for about 10 minutes and try again.** 117 | 118 | Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag 119 | --|:--|:--:|--:|--:|--: 120 | Anomaly|2023-8|1.5g|57s|wheel anomaly|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ef8corMuVwhJsWSpp-FXkREBrTduGBO8nifC9VEb5twHVg?e=CyEeMy) 121 | Switch|2023-8|9.5g|292s|indoor-outdoor switch|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ESRoBZtYjrtAkOzZZZxjtLIBowQqF3G9Vz-jiaUCCy6E_A?e=RtZkwL) 122 | Tree|2023-8|3.7g|160s|Dense tree leave cover|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EV9aZQbxo7pChOxZEWqdP0IBDpySkhtOXNIRKP3ijDK62Q?e=fW0afm) 123 | Bridge_01|2022-11|2.4g|75s|Bridge, Zigzag|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EftDI1uQ_M1Hp4LZVof4sHgB4_IF2C9HBsWYZKAK2mr4EA?e=dydvKz) 124 | Bridge_02|2022-11|16.0g|501s|Bridge, Long-term,Straight line|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUrTvD2zK2hNimekHiJS5rABME45O5s7ksSAJpd3ipD-BA?e=7aicGk) 125 | Street_01|2022-11|1.7g|58s|Street, Straight line|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ebap2epwtTtHhWtp0AO_nnYB7S7zDZkkW-zTpYVmrHfOEA?e=JvDij7) 126 | Street_02|2022-11|3.9g|126s|Bridge, Sharp turn|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EdqjNDDhVkJNhwA9DKlPnTsBIXh0xCGITpvQ1b4bG__k0A?e=chWjV8) 127 | Parking_01|2022-11|3.3g|105s|Parking lot, Side moving|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EaCXXT2SAP9AmmqR1LUYwu4By3z5P3jhdeROv8EPdp9C0A?e=fQqJq5) 128 | Parking_02|2022-11|5.4g|149s|Parking lot, Rectangle loop|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EX7UjX535NZBkaXSIX63Pg4BMDGXfIfkjS7JvL-0lUA8mQ?e=lAMTTu) 129 | Building_01|2022-11|3.7g|120s|Building, Far features|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUqNPeUal1JDnSd9ZbYKo5EBoaQKrna5m23B7LxzAB-mtQ?e=QtWUal) 130 | Building_02|2022-11|3.4g|110s|Building, Far features|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQcO7OhqhYlCv1tAQJeD6EkBi50Ot3OPajKtZmZJlJFyUw?e=NBS9rs) 131 | 132 | 133 | 134 | 135 | 136 | ## 4. EXPERIMENTAL RESULTS 137 | ### We test methods with diverse senser settings to validate our benchmark dataset. Results shown that our dataset is a valid and effective testfield for localization methods. 138 | And in some cases, our Ground-Fusion achieves comparable performance to Lidar SLAM! 139 |
140 | 141 | 142 |
143 |

Figure 2. The ATE RMSE (m) result on some sequences.

144 | 145 |
146 | 147 | 148 |
149 |

Figure 3. The visualized trajectory.

150 | 151 | 152 | ## 5. Configuration Files 153 | We provide configuration files for several cutting-edge baseline methods, including [VINS-RGBD](https://github.com/SJTU-ViSYS/M2DGR-plus/tree/main/config_files/vinsrgbd),[TartanVO](https://github.com/SJTU-ViSYS/Ground-Challenge/tree/main/config_files_gc/tartanvo),[VINS-Mono](https://github.com/SJTU-ViSYS/M2DGR-plus/tree/main/config_files/vinsmono) and [VIW-Fusion](https://github.com/SJTU-ViSYS/M2DGR-plus/tree/main/config_files/viwfusion) and 154 | [GVINS](https://github.com/SJTU-ViSYS/M2DGR-plus/tree/main/config_files/gvins). 155 | 156 | 157 | ## Star History 158 | 159 | [![Star History Chart](https://api.star-history.com/svg?repos=SJTU-ViSYS/M2DGR-plus&type=Timeline)](https://star-history.com/#Ashutosh00710/github-readme-activity-graph&Timeline) 160 | 161 | -------------------------------------------------------------------------------- /calibration.txt: -------------------------------------------------------------------------------- 1 | #A2B: Convert from coordinate system B to coordinate system A 2 | rsimu2wheel: 3 | rows: 4 4 | cols: 4 5 | dt: d 6 | data: [0.352551,-0.935764,-0.00734672,0.0497956, 7 | 0.0145238,0.0133214,-0.999806 ,1.06332, 8 | 0.93568,0.352375, 0.0182873,-0.037465, 9 | 0,0,0,1] 10 | 11 | imu2wheel: 12 | rows: 4 13 | cols: 4 14 | dt: d 15 | data: [0.9357,0.3524,0.0183,0.1225, 16 | 0.3526,-0.9358,-0.0073,0.0498, 17 | 0.0145,0.0133,-0.9998,1.0633, 18 | 0,0,0,1] 19 | 20 | lidar2wheel: 21 | rows: 4 22 | cols: 4 23 | dt: d 24 | data: [0.9357,0.3524,0.0183,-0.0075, 25 | -0.3526,0.9358,0.0073,-0.0498, 26 | -0.0145,-0.0133,0.9998,-2.0933, 27 | 0,0,0,1] 28 | 29 | rsimu2camera: 30 | rows: 4 31 | cols: 4 32 | dt: d 33 | data: [1 ,0,0,0.0, 34 | 0,1,0 ,0.0, 35 | 0 ,0,1,0.0, 36 | 0 ,0 ,0,1.0,] 37 | 38 | lidar2imu: 39 | rows: 4 40 | cols: 4 41 | dt: d 42 | data: [1, 0, 0, -0.13, 43 | 0, -1, 0, 0, 44 | 0, 0, -1, -1.03, 45 | 0, 0, 0, 1] 46 | 47 | camera2imu: 48 | rows: 4 49 | cols: 4 50 | dt: d 51 | data: [0, 1, 0, 0, 52 | 0, 0, 1, 0, 53 | 1, 0, 0, -0.16, 54 | 0, 0, 0, 1] 55 | 56 | lidar2camera: 57 | rows: 4 58 | cols: 4 59 | dt: d 60 | data: [0, 0, 1, 0.03, 61 | -1, 0, 0, 0.0, 62 | 0, -1, 0, -1.03, 63 | 0, 0, 0, 1] 64 | 65 | 66 | #imu parameters 67 | acc_n: 1.2374091609523514e-02 68 | gyr_n: 3.0032654435730201e-03 69 | acc_w: 1.9218003442176448e-04 70 | gyr_w: 5.4692100664858005e-05 71 | g_norm: 9.805 72 | 73 | # rsimu Settings 74 | rsimuAccNoise: 0.04 75 | rsimuGyrNoise: 0.004 76 | rsimuAccBiasN: 0.002 77 | rsimuGyrBiasN: 4.0e-5 78 | rsimuGravity: 9.80511 79 | 80 | #lidar Settings 81 | N_SCAN: 16 82 | Horizon_SCAN: 1800 83 | 84 | # camera config 85 | model_type: PINHOLE 86 | camera_name: camera 87 | image_width: 640 88 | image_height: 480 89 | distortion_parameters: 90 | k1: 0.0 91 | k2: 0.0 92 | p1: 0.0 93 | p2: 0.0 94 | projection_parameters: 95 | fx: 603.95556640625 96 | fy: 603.1257934570312 97 | cx: 324.0858154296875 98 | cy: 232.72303771972656 99 | -------------------------------------------------------------------------------- /config_files/gvins/m2dgrp.yaml: -------------------------------------------------------------------------------- 1 | %YAML:1.0 2 | 3 | #common parameters 4 | imu_topic: "/camera/imu" 5 | image_topic: "/camera/color/image_raw" 6 | output_dir: "//home/car/Downloads/project/gvins_ws/src/GVINS/traj/m2dgrp/" 7 | 8 | #camera calibration 9 | model_type: PINHOLE 10 | camera_name: camera 11 | image_width: 640 12 | image_height: 480 13 | distortion_parameters: 14 | k1: 0.0 15 | k2: 0.0 16 | p1: 0.0 17 | p2: 0.0 18 | projection_parameters: 19 | fx: 603.95556640625 20 | fy: 603.1257934570312 21 | cx: 324.0858154296875 22 | cy: 232.72303771972656 23 | 24 | 25 | gnss_enable: 0 26 | gnss_meas_topic: "/ublox_driver/range_meas" # GNSS raw measurement topic 27 | gnss_ephem_topic: "/ublox_driver/ephem" # GPS, Galileo, BeiDou ephemeris 28 | gnss_glo_ephem_topic: "/ublox_driver/glo_ephem" # GLONASS ephemeris 29 | gnss_iono_params_topic: "/ublox_driver/iono_params" # GNSS broadcast ionospheric parameters 30 | gnss_tp_info_topic: "/ublox_driver/time_pulse_info" # PPS time info 31 | gnss_elevation_thres: 30 # satellite elevation threshold (degree) 32 | gnss_psr_std_thres: 2.0 # pseudo-range std threshold 33 | gnss_dopp_std_thres: 2.0 # doppler std threshold 34 | gnss_track_num_thres: 5 # number of satellite tracking epochs before entering estimator 35 | gnss_ddt_sigma: 0.1 36 | 37 | gnss_local_online_sync: 0 # if perform online synchronization betwen GNSS and local time 38 | local_trigger_info_topic: "/external_trigger" # external trigger info of the local sensor, if `gnss_local_online_sync` is 1 39 | gnss_local_time_diff: 18.0 # difference between GNSS and local time (s), if `gnss_local_online_sync` is 0 40 | 41 | gnss_iono_default_parameters: !!opencv-matrix 42 | rows: 1 43 | cols: 8 44 | dt: d 45 | data: [0.1118E-07, 0.2235E-07, -0.4172E-06, 0.6557E-06, 46 | 0.1249E+06, -0.4424E+06, 0.1507E+07, -0.2621E+06] 47 | 48 | # Extrinsic parameter between IMU and Camera. 49 | estimate_extrinsic: 0 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it. 50 | # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. 51 | # 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. 52 | #If you choose 0 or 1, you should write down the following matrix. 53 | #Rotation from camera frame to imu frame, imu^R_cam 54 | extrinsicRotation: !!opencv-matrix 55 | rows: 3 56 | cols: 3 57 | dt: d 58 | data: [1.0, -0.00, 0.00, 59 | 0.00, 1.0, 0.0, 60 | -0.00, 0.00, 1.0] 61 | #Translation from camera frame to imu frame, imu^T_cam 62 | extrinsicTranslation: !!opencv-matrix 63 | rows: 3 64 | cols: 1 65 | dt: d 66 | data: [-0.0, -0.00, -0.0] 67 | 68 | #feature traker paprameters 69 | max_cnt: 150 # max feature number in feature tracking 70 | min_dist: 30 # min distance between two features 71 | freq: 0 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 72 | F_threshold: 1.0 # ransac threshold (pixel) 73 | show_track: 1 # publish tracking image as topic 74 | equalize: 1 # if image is too dark or light, trun on equalize to find enough features 75 | fisheye: 0 # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points 76 | 77 | #optimization parameters 78 | max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time 79 | max_num_iterations: 8 # max solver itrations, to guarantee real time 80 | keyframe_parallax: 10.0 # keyframe selection threshold (pixel) 81 | 82 | #imu parameters The more accurate parameters you provide, the better performance 83 | acc_n: 1.2374091609523514e-02 # accelerometer measurement noise standard deviation. #0.2 0.04 84 | gyr_n: 3.0032654435730201e-03 # gyroscope measurement noise standard deviation. #0.05 0.004 85 | acc_w: 1.9218003442176448e-04 # accelerometer bias random work noise standard deviation. #0.002 86 | gyr_w: 5.4692100664858005e-05 87 | g_norm: 9.805 # gravity magnitude 88 | 89 | #unsynchronization parameters 90 | estimate_td: 0 # online estimate time offset between camera and imu 91 | td: 0.0 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock) 92 | -------------------------------------------------------------------------------- /config_files/vinsmono/m2dgrp.yaml: -------------------------------------------------------------------------------- 1 | %YAML:1.0 2 | 3 | #common parameters 4 | imu_topic: "/camera/imu" 5 | image_topic: "/camera/color/image_raw" 6 | output_path: "/home/car/Downloads/project/vinsmono_ws/src/VINS-Mono/traj/m2dgrp/" 7 | 8 | #camera calibration 9 | model_type: PINHOLE 10 | camera_name: camera 11 | image_width: 640 12 | image_height: 480 13 | distortion_parameters: 14 | k1: 0.0 15 | k2: 0.0 16 | p1: 0.0 17 | p2: 0.0 18 | projection_parameters: 19 | fx: 603.95556640625 20 | fy: 603.1257934570312 21 | cx: 324.0858154296875 22 | cy: 232.72303771972656 23 | 24 | 25 | # Extrinsic parameter between IMU and Camera. 26 | estimate_extrinsic: 0 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it. 27 | # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. 28 | # 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. 29 | #If you choose 0 or 1, you should write down the following matrix. 30 | #Rotation from camera frame to imu frame, imu^R_cam 31 | # extrinsicRotation: !!opencv-matrix 32 | # rows: 3 33 | # cols: 3 34 | # dt: d 35 | # data: [ 0.99964659 ,-0.01617333 , 0.0210979, 36 | # 0.01635721, 0.99982947, -0.00857216, 37 | # -0.02095566, 0.00891423, 0.99974066] 38 | #idc cam to imu 39 | extrinsicRotation: !!opencv-matrix 40 | rows: 3 41 | cols: 3 42 | dt: d 43 | data: [ 0.99957087, -0.00192891 ,-0.02922921 , 44 | 0.00215313 ,0.99996848 , 0.00764156 , 45 | 0.02921355, -0.00770122 , 0.99954353 ] 46 | #Translation from camera frame to imu frame, imu^T_cam 47 | # extrinsicTranslation: !!opencv-matrix 48 | # rows: 3 49 | # cols: 1 50 | # dt: d 51 | # data: [-0.02323286, -0.01953139, 0.01917997] 52 | 53 | #idc 54 | extrinsicTranslation: !!opencv-matrix 55 | rows: 3 56 | cols: 1 57 | dt: d 58 | data: [-0.03575085, 0.0044559 , -0.03269785] 59 | 60 | #feature traker paprameters 61 | max_cnt: 200 # max feature number in feature tracking 62 | min_dist: 15 # min distance between two features 63 | freq: 10 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 64 | F_threshold: 1.0 # ransac threshold (pixel) 65 | show_track: 1 # publish tracking image as topic 66 | equalize: 0 # if image is too dark or light, trun on equalize to find enough features 67 | fisheye: 0 # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points 68 | 69 | #optimization parameters 70 | max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time 71 | max_num_iterations: 8 # max solver itrations, to guarantee real time 72 | keyframe_parallax: 10.0 # keyframe selection threshold (pixel) 73 | 74 | #imu parameters The more accurate parameters you provide, the better performance 75 | # acc_n: 2.67809809884e-04 # accelerometer measurement noise standard deviation. #0.2 0.04 76 | # gyr_n: 1.02960602817e-05 # gyroscope measurement noise standard deviation. #0.05 0.004 77 | # acc_w: 2.49999993684e-05 # accelerometer bias random work noise standard deviation. #0.002 78 | # gyr_w: 2.49999999369e-07 # gyroscope bias random work noise standard deviation. #4.0e-5 79 | # g_norm: 9.805 # gravity magnitude 80 | 81 | 82 | #first time full log 83 | # acc_n: 0.02 #2.9840535876578939e-02 # accelerometer measurement noise standard deviation. #0.2 84 | # gyr_n: 0.005 #4.8602774318549456e-03 # gyroscope measurement noise standard deviation. #0.05 85 | # acc_w: 0.01 #9.2450042830019173e-03 # accelerometer bias random work noise standard deviation. #0.02 86 | # gyr_w: 3.0e-5 #3.0172667291423203e-05 # gyroscope bias random work noise standard deviation. #4.0e-5 87 | # g_norm: 9.805 # gravity magnitude 88 | 89 | #m2dgr 90 | # gyr_n: 2.4710787075320089e-03 91 | # gyr_w: 1.7963145905200798e-05 92 | # acc_n: 2.6848761610624401e-02 93 | # acc_w: 8.5216274964016023e-04 94 | 95 | #test used this... 96 | # acc_n: 1.3414916806352631e-02 # accelerometer measurement noise standard deviation. #0.2 0.04 97 | # gyr_n: 3.1272352813400007e-03 # gyroscope measurement noise standard deviation. #0.05 0.004 98 | # acc_w: 2.3513079032355371e-04 # accelerometer bias random work noise standard deviation. #0.002 99 | # gyr_w: 4.7867403773944395e-05 100 | # g_norm: 9.805 # gravity magnitude 101 | 102 | #idc 103 | acc_n: 1.2374091609523514e-02 # accelerometer measurement noise standard deviation. #0.2 0.04 104 | gyr_n: 3.0032654435730201e-03 # gyroscope measurement noise standard deviation. #0.05 0.004 105 | acc_w: 1.9218003442176448e-04 # accelerometer bias random work noise standard deviation. #0.002 106 | gyr_w: 5.4692100664858005e-05 # gyroscope bias random work noise standard deviation. #4.0e-5 107 | g_norm: 9.805 # gravity magnitude 108 | 109 | 110 | #loop closure parameters 111 | loop_closure: 1 # start loop closure 112 | fast_relocalization: 1 # useful in real-time and large project 113 | load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path' 114 | pose_graph_save_path: "/home/yinjie/Downloads/project/vinsmono_ws/src/VINS-Mono/posegraph/" # save and load path 115 | 116 | #unsynchronization parameters 117 | estimate_td: 1 # online estimate time offset between camera and imu 118 | td: 0.000 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock) 119 | 120 | #rolling shutter parameters 121 | rolling_shutter: 0 # 0: global shutter camera, 1: rolling shutter camera 122 | rolling_shutter_tr: 0.033 # unit: s. rolling shutter read out time per frame (from data sheet). 123 | 124 | #visualization parameters 125 | save_image: 1 # save image in pose graph for visualization prupose; you can close this function by setting 0 126 | visualize_imu_forward: 0 # output imu forward propogation to achieve low latency and high frequence results 127 | visualize_camera_size: 0.4 # size of camera marker in RVIZ 128 | -------------------------------------------------------------------------------- /config_files/vinsrgbd/m2dgrp_config.yaml: -------------------------------------------------------------------------------- 1 | %YAML:1.0 2 | 3 | #common parameters 4 | imu_topic: "/camera/imu" 5 | image_topic: "/camera/color/image_raw" 6 | 7 | depth_topic: "/camera/aligned_depth_to_color/image_raw" 8 | output_path: "/home/car/Downloads/newproject/vinsrgbd_ws/src/VINS-RGBD/mytraj/m2dgrp/" 9 | 10 | #pointcloud settings 11 | pcl_dist: 10 12 | u_boundary: 10 13 | d_boundary: 10 14 | l_boundary: 40 15 | r_boundary: 40 16 | pcl_min_dist: 0.3 17 | pcl_max_dist: 6 18 | resolution: 0.02 19 | 20 | #camera calibration 21 | 22 | model_type: PINHOLE 23 | camera_name: camera 24 | image_width: 640 25 | image_height: 480 26 | distortion_parameters: 27 | k1: 0.0 28 | k2: 0.0 29 | p1: 0.0 30 | p2: 0.0 31 | projection_parameters: 32 | fx: 603.95556640625 33 | fy: 603.1257934570312 34 | cx: 324.0858154296875 35 | cy: 232.72303771972656 36 | 37 | 38 | 39 | 40 | # Extrinsic parameter between IMU and Camera. 41 | estimate_extrinsic: 1 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it. 42 | # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. 43 | # 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. 44 | #If you choose 0 or 1, you should write down the following matrix. 45 | #Rotation from camera frame to imu frame, imu^R_cam 46 | extrinsicRotation: !!opencv-matrix 47 | rows: 3 48 | cols: 3 49 | dt: d 50 | data: [ 0.99957087, -0.00192891 ,-0.02922921 , 51 | 0.00215313 ,0.99996848 , 0.00764156 , 52 | 0.02921355, -0.00770122 , 0.99954353 ] 53 | #Translation from camera frame to imu frame, imu^T_cam 54 | extrinsicTranslation: !!opencv-matrix 55 | rows: 3 56 | cols: 1 57 | dt: d 58 | data: [-0.03575085, 0.0044559 , -0.03269785] 59 | 60 | #feature traker paprameters 61 | max_cnt: 200 # max feature number in feature tracking 62 | min_dist: 15 # min distance between two features 63 | freq: 10 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 64 | F_threshold: 1.0 # ransac threshold (pixel) 65 | show_track: 1 # publish tracking image as topic 66 | equalize: 0 # if image is too dark or light, trun on equalize to find enough features 67 | fisheye: 0 # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points 68 | 69 | #optimization parameters 70 | max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time 71 | max_num_iterations: 8 # max solver itrations, to guarantee real time 72 | keyframe_parallax: 10.0 # keyframe selection threshold (pixel) 73 | 74 | #imu parameters The more accurate parameters you provide, the better performance 75 | #for handheld, wheeld 76 | # acc_n: 0.1 # accelerometer measurement noise standard deviation. #0.2 77 | # gyr_n: 0.01 # gyroscope measurement noise standard deviation. #0.05 78 | # acc_w: 0.0002 # accelerometer bias random work noise standard deviation. #0.02 79 | # gyr_w: 2.0e-5 # gyroscope bias random work noise standard deviation. #4.0e-5 80 | 81 | 82 | #first time test with full log 83 | # acc_n: 0.02 #2.9840535876578939e-02 # accelerometer measurement noise standard deviation. #0.2 84 | # gyr_n: 0.005 #4.8602774318549456e-03 # gyroscope measurement noise standard deviation. #0.05 85 | # acc_w: 0.01 #9.2450042830019173e-03 # accelerometer bias random work noise standard deviation. #0.02 86 | # gyr_w: 3.0e-5 #3.0172667291423203e-05 # gyroscope bias random work noise standard deviation. #4.0e-5 87 | # g_norm: 9.805 # gravity magnitude 88 | 89 | # #M2DGR 90 | # gyr_n: 2.4710787075320089e-03 91 | # gyr_w: 1.7963145905200798e-05 92 | # acc_n: 2.6848761610624401e-02 93 | # acc_w: 8.5216274964016023e-04 94 | # g_norm: 9.805 # gravity magnitude 95 | 96 | #idc 97 | acc_n: 1.2374091609523514e-02 # accelerometer measurement noise standard deviation. #0.2 0.04 98 | gyr_n: 3.0032654435730201e-03 # gyroscope measurement noise standard deviation. #0.05 0.004 99 | acc_w: 1.9218003442176448e-04 # accelerometer bias random work noise standard deviation. #0.002 100 | gyr_w: 5.4692100664858005e-05 101 | g_norm: 9.805 # gravity magnitude 102 | 103 | #for tracked applications 104 | #acc_n: 0.5 # accelerometer measurement noise standard deviation. #0.2 105 | #gyr_n: 0.01 # gyroscope measurement noise standard deviation. #0.05 106 | #acc_w: 0.001 # accelerometer bias random work noise standard deviation. #0.02 107 | #gyr_w: 2.0e-5 # gyroscope bias random work noise standard deviation. #4.0e-5 108 | 109 | 110 | # g_norm: 9.805 # gravity magnitude 111 | 112 | #loop closure parameters 113 | loop_closure: 0 # start loop closure 114 | fast_relocalization: 1 # useful in real-time and large project 115 | load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path' 116 | pose_graph_save_path: "/home/shanzy/output/pose_graph/" # save and load path 117 | 118 | #unsynchronization parameters 119 | estimate_td: 1 # online estimate time offset between camera and imu 120 | td: 0.000 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock) 121 | 122 | #rolling shutter parameters 123 | rolling_shutter: 0 # 0: global shutter camera, 1: rolling shutter camera 124 | rolling_shutter_tr: 0.033 # unit: s. rolling shutter read out time per frame (from data sheet). 125 | 126 | #visualization parameters 127 | save_image: 1 # save image in pose graph for visualization prupose; you can close this function by setting 0 128 | visualize_imu_forward: 0 # output imu forward propogation to achieve low latency and high frequence results 129 | visualize_camera_size: 0.4 # size of camera marker in RVIZ 130 | -------------------------------------------------------------------------------- /config_files/vinsrgbd/m2dgrp_depth_config.yaml: -------------------------------------------------------------------------------- 1 | %YAML:1.0 2 | --- 3 | model_type: PINHOLE 4 | camera_name: camera 5 | image_width: 640 6 | image_height: 480 7 | distortion_parameters: 8 | k1: 0.0 9 | k2: 0.0 10 | p1: 0.0 11 | p2: 0.0 12 | projection_parameters: 13 | fx: 603.95556640625 14 | fy: 603.1257934570312 15 | cx: 324.0858154296875 16 | cy: 232.72303771972656 17 | -------------------------------------------------------------------------------- /config_files/viwfusion/m2dgrp.yaml: -------------------------------------------------------------------------------- 1 | %YAML:1.0 2 | 3 | #common parameters 4 | #support: 1 imu 1 cam; 1 imu 2 cam: 2 cam; 5 | imu: 1 6 | wheel: 1 7 | only_initial_with_wheel: 0 #只利用wheel进行初始化,不加入因子图 8 | plane: 0 9 | num_of_cam: 1 10 | 11 | imu_topic: "/camera/imu" 12 | wheel_topic: "/odom" #"/ridgeback_velocity_controller/odom", “/odometry/filtered” 13 | #TODO check the distortion 14 | image0_topic: "/camera/color/image_raw" 15 | image1_topic: "/camera/aligned_depth_to_color/image_raw" 16 | output_path: "/home/car/Downloads/newproject/viwfusion_ws/src/VIW-Fusion/output/m2dgrp/" 17 | 18 | cam0_calib: "m2dgrp_cam.yaml" 19 | cam1_calib: "m2dgrp_cam.yaml" 20 | image_width: 640 21 | image_height: 480 22 | 23 | 24 | # Extrinsic parameter between IMU and Camera. 25 | estimate_extrinsic: 0 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it. 26 | # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. 27 | # 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. 28 | #If you choose 0 or 1, you should write down the following matrix. 29 | 30 | extrinsic_type: 3 # 0 ALL 31 | # 1 Only translation 32 | # 2 Only Rotation 33 | # 3 no z 34 | # 4 no rotation and no z 35 | 36 | body_T_cam0: !!opencv-matrix 37 | rows: 4 38 | cols: 4 39 | dt: d 40 | data: [ 0.99957087 , 0.00215313 , 0.02921355 , 0.03668114, 41 | -0.00192891 ,0.99996848, -0.00770122 ,-0.00477653, 42 | -0.02922921 , 0.00764156 ,0.99954353 , 0.0316039, 43 | 0. , 0. , 0. , 1. ] 44 | 45 | 46 | body_T_cam1: !!opencv-matrix 47 | rows: 4 48 | cols: 4 49 | dt: d 50 | data: [ 0.99957087 , 0.00215313 , 0.02921355 , 0.03668114, 51 | -0.00192891 ,0.99996848, -0.00770122 ,-0.00477653, 52 | -0.02922921 , 0.00764156 ,0.99954353 , 0.0316039, 53 | 0. , 0. , 0. , 1. ] 54 | 55 | 56 | # Extrinsic parameter between IMU and Wheel. 57 | estimate_wheel_extrinsic: 0 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it. 58 | # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. 59 | # 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. 60 | #If you choose 0 or 1, you should write down the following matrix. 61 | 62 | extrinsic_type_wheel: 0 # 0 ALL 63 | # 1 Only translation 64 | # 2 Only Rotation 65 | # 3 no z 66 | # 4 no rotation and no z 67 | 68 | #wheel to body 69 | body_T_wheel: !!opencv-matrix 70 | rows: 4 71 | cols: 4 72 | dt: d 73 | data: [0, -1, 0, 0, 74 | 0, 0, -1, 0, 75 | 1, 0, 0, 0, 76 | 0, 0, 0, 1] 77 | 78 | #plane noise 79 | #mono:0.01 stereo:0.005 80 | roll_n: 0.01 81 | #mono:0.01 stereo:0.005 82 | pitch_n: 0.01 83 | #mono:0.05 stereo:0.025 84 | zpw_n: 0.05 85 | 86 | 87 | #Multiple thread support 88 | multiple_thread: 1 89 | 90 | #feature traker paprameters 91 | max_cnt: 150 # max feature number in feature tracking 92 | min_dist: 30 # min distance between two features 93 | freq: 10 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 94 | F_threshold: 1.0 # ransac threshold (pixel) 95 | show_track: 1 # publish tracking image as topic 96 | flow_back: 1 # perform forward and backward optical flow to improve feature tracking accuracy 97 | 98 | #optimization parameters 99 | max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time 100 | max_num_iterations: 8 # max solver itrations, to guarantee real time 101 | keyframe_parallax: 10.0 # keyframe selection threshold (pixel) 102 | 103 | #imu parameters The more accurate parameters you provide, the better performance 104 | acc_n: 1.2374091609523514e-02 # accelerometer measurement noise standard deviation. #0.2 0.04 105 | gyr_n: 3.0032654435730201e-03 # gyroscope measurement noise standard deviation. #0.05 0.004 106 | acc_w: 1.9218003442176448e-04 # accelerometer bias random work noise standard deviation. #0.002 107 | gyr_w: 5.4692100664858005e-05 # gyroscope bias random work noise standard deviation. #4.0e-5 108 | g_norm: 9.805 # gravity magnitude 109 | 110 | #wheel parameters 111 | # rad/s mono:0.004 stereo:0.002 112 | wheel_gyro_noise_sigma: 0.004 113 | # m/s mono:0.01 stereo:0.006 114 | wheel_velocity_noise_sigma: 0.01 115 | 116 | estimate_wheel_intrinsic: 0 117 | # 0 Have an accurate intrinsic parameters. We will trust the following sx, sy, sw, don't change it. 118 | # 1 Have an initial guess about intrinsic parameters. We will optimize around your initial guess. 119 | # 2 TODO Don't know anything about intrinsic parameters. You don't need to give sx, sy, sw. We will try to calibrate it. Do some rotation movement at beginning. 120 | #If you choose 0 or 1, you should write down the following sx, sy, sw. 121 | # wheel intrinsic 122 | sx: 1.0 123 | sy: 1.0 124 | sw: 1.0 125 | 126 | 127 | #unsynchronization parameters 128 | estimate_td: 0 # online estimate time offset between camera and imu 129 | td: 0.00 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock) 130 | #unsynchronization parameters 131 | estimate_td_wheel: 0 # online estimate time offset between camera and wheel 132 | td_wheel: 0.0 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock) 133 | #loop closure parameters 134 | load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path' 135 | pose_graph_save_path: "/home/td/slam/vins_fusion_ws/src/VINS-Fusion/output/pose_graph" # save and load path 136 | save_image: 0 # save image in pose graph for visualization prupose; you can close this function by setting 0 137 | -------------------------------------------------------------------------------- /config_files/viwfusion/m2dgrp_cam.yaml: -------------------------------------------------------------------------------- 1 | %YAML:1.0 2 | --- 3 | model_type: PINHOLE 4 | camera_name: camera 5 | image_width: 640 6 | image_height: 480 7 | distortion_parameters: 8 | k1: 0.0 9 | k2: 0.0 10 | p1: 0.0 11 | p2: 0.0 12 | projection_parameters: 13 | fx: 603.95556640625 14 | fy: 603.1257934570312 15 | cx: 324.0858154296875 16 | cy: 232.72303771972656 17 | 18 | -------------------------------------------------------------------------------- /fig/car2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/SJTU-ViSYS/M2DGR-plus/e03b28a60d7569a1759a133acd29536f9ba69cff/fig/car2.jpg -------------------------------------------------------------------------------- /fig/result.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/SJTU-ViSYS/M2DGR-plus/e03b28a60d7569a1759a133acd29536f9ba69cff/fig/result.png -------------------------------------------------------------------------------- /fig/resultf.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/SJTU-ViSYS/M2DGR-plus/e03b28a60d7569a1759a133acd29536f9ba69cff/fig/resultf.png -------------------------------------------------------------------------------- /fig/sensor_detail.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/SJTU-ViSYS/M2DGR-plus/e03b28a60d7569a1759a133acd29536f9ba69cff/fig/sensor_detail.jpg -------------------------------------------------------------------------------- /gt/anomaly.txt: -------------------------------------------------------------------------------- 1 | 1691991959.119890213 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2 | 1691991959.318526983 -0.00242897000266 0.00360622967669 -0.00253457658842 0.999999530904 0.000801243413919 -0.000490426511889 -0.000235972835666 3 | 1691991959.518533468 -0.00410698542811 0.00476819060359 0.00139462144555 0.999997385877 0.00209959943379 0.000749353341908 -0.000508322241224 4 | 1691991959.717109919 -0.00623102370853 0.00653392764793 0.000656850350117 0.999995999834 0.00255970628728 0.000939510102085 -0.00075202432095 5 | 1691991959.915848970 -0.00953647228044 0.00809290902559 0.00637595924301 0.999991306301 0.00396276824983 0.000981809201086 -0.000848434168383 6 | 1691991960.115822792 -0.0116841103818 0.00788971113268 0.00265413080478 0.999990459911 0.00414088931816 0.001188367279 -0.000721737474332 7 | 1691991960.314418316 -0.00952595363257 0.00744698833045 -0.000923110905331 0.99999189693 0.0038701188651 0.00103590299554 -0.000393902649303 8 | 1691991960.514393091 -0.0118550451014 0.00779869630828 -0.00164218843398 0.999988031058 0.00468592801031 0.00138702610905 -0.00023659493702 9 | 1691991960.713068962 -0.0146273392682 0.00758374143103 -0.00177047849127 0.999991696042 0.00385347235291 0.00131535996268 0.000168597944111 10 | 1691991960.911706209 -0.0112780727427 0.00574334349847 0.000275475574483 0.999987838991 0.00455413765604 0.00187713918515 -0.000240934979413 11 | 1691991961.111802578 0.00301151726243 0.000499914883616 -0.00111002851746 0.999977573029 0.00403560832472 0.00125819790781 -0.0051946359714 12 | 1691991961.310394049 -0.0013911399318 0.00602698671949 -0.00193822755221 0.999860263756 0.00245042396835 0.000850244711994 -0.0165144018611 13 | 1691991961.510337830 -0.00671093206864 0.000339074685608 -0.00398253722556 0.999789892072 0.00272404177987 0.001595194165 -0.0202535592774 14 | 1691991961.708997011 -0.0195891277997 0.0046997457094 0.0012576054906 0.999625133201 0.00409129943861 0.00384519703542 -0.0267968058088 15 | 1691991961.909010172 -0.0615080697235 0.00851685091764 0.000874659475353 0.999522206645 0.00236340148758 0.00329568890775 -0.0306416577695 16 | 1691991962.107701540 -0.0977457872469 0.00524678250501 0.00357500361894 0.999480609912 0.00217600342449 0.00250243547879 -0.0320548473007 17 | 1691991962.307619572 -0.119469097809 0.00237783059069 0.00907092750727 0.999170056018 0.00249664118116 0.00302518281965 -0.0405439786884 18 | 1691991962.506387711 -0.146387453367 -0.00248950575121 0.00802970490745 0.998485323731 0.000582421895939 0.00300479188423 -0.054933508037 19 | 1691991962.706285477 -0.179940397134 -0.00824447112192 0.00479112666915 0.996919242517 -0.000214364187166 0.00405808406549 -0.0783294957222 20 | 1691991962.905048370 -0.212684216171 -0.0137349331208 0.00967795638768 0.994672523634 -0.00140737035413 0.00371965149627 -0.103008515319 21 | 1691991963.103592157 -0.246801120633 -0.0139246110834 -0.0019980868777 0.991854352436 -0.00260854827782 0.00403920603262 -0.127286385149 22 | 1691991963.303668976 -0.27512205266 -0.0226573171544 0.00168864763094 0.988859215694 -0.00365792815459 0.00414373072942 -0.148751136444 23 | 1691991963.503662586 -0.294736853803 -0.0285333977946 -0.00111949322847 0.984919708216 -0.00528271887884 0.00382371970516 -0.172889098605 24 | 1691991963.702350616 -0.308637680196 -0.0360633144107 0.00297901719643 0.979789608902 -0.00748296445076 0.00308535085548 -0.199866976116 25 | 1691991963.902246475 -0.311344943956 -0.04984081994 0.0115707019173 0.973111236432 -0.00952867590417 0.00377600235337 -0.230107513289 26 | 1691991964.100983143 -0.312933606974 -0.0547306392545 0.00669831840463 0.965314925755 -0.0102406005539 0.00497094836556 -0.260840015886 27 | 1691991964.300989151 -0.306635385233 -0.0815037456498 0.00537241947441 0.956462850025 -0.0129222482473 0.00402896333509 -0.29154004781 28 | 1691991964.499553680 -0.289506279235 -0.11058537599 0.00785144394429 0.946393693205 -0.0144759956874 0.0048821286396 -0.322653975382 29 | 1691991964.699635267 -0.261871321779 -0.1440521387 0.0133510041281 0.936622729483 -0.0154657527136 0.0047765114769 -0.349965509796 30 | 1691991964.898215532 -0.248974116315 -0.156004892592 0.00407140542503 0.925841424839 -0.0174324305625 0.00534322546033 -0.377472139844 31 | 1691991965.096873760 -0.228868596977 -0.180206077233 0.00119544222717 0.922592452487 -0.0182354897838 0.00474015208298 -0.385315668621 32 | 1691991965.296861410 -0.193464739549 -0.2133542724 0.00150617942164 0.921376266906 -0.017286204369 0.00604960177607 -0.388240085823 33 | 1691991965.495528698 -0.150048917285 -0.253684897871 -0.00160696481336 0.920335086106 -0.0174934138387 0.00609893767623 -0.390691838555 34 | 1691991965.695485592 -0.112479279281 -0.287337856563 -0.00800190652511 0.919825612702 -0.0177076260004 0.0065546448605 -0.391872835024 35 | 1691991965.894142866 -0.0775596542108 -0.323551942075 -0.011750551045 0.919293121744 -0.0174779610609 0.00621963469776 -0.393136100271 36 | 1691991966.094146967 -0.0421509734745 -0.358209206906 -0.0201652022522 0.919158653216 -0.017810184203 0.0064025033345 -0.393432555221 37 | 1691991966.292801619 -0.0076083559579 -0.394691529452 -0.0295237938103 0.918711052762 -0.0178631818551 0.00633379769085 -0.394475336712 38 | 1691991966.491464376 0.0298986050483 -0.421136300066 -0.0317467673072 0.919388560909 -0.0187331354299 0.0056566840188 -0.392863520364 39 | 1691991966.690121412 0.0731484420803 -0.43806198172 -0.0322727275206 0.92424028191 -0.0178816538933 0.00520171922139 -0.381356906147 40 | 1691991966.890113831 0.117922242386 -0.460692478194 -0.0324844174991 0.933173499818 -0.0173150146242 0.00396469603947 -0.358987034154 41 | 1691991967.090070486 0.165490647671 -0.485161773862 -0.0441137959293 0.941784075856 -0.015734402035 0.00536983038929 -0.335807010021 42 | 1691991967.288708210 0.210950358915 -0.504735128572 -0.0448172783264 0.949926041049 -0.0142627670981 0.00544143444572 -0.312101715476 43 | 1691991967.487433434 0.250855432334 -0.519982503433 -0.0560518638292 0.957219997611 -0.0133994697662 0.00573292476962 -0.288993882214 44 | 1691991967.687402964 0.288352558594 -0.528375431742 -0.0530778971863 0.965257145537 -0.012764412173 0.00643104301582 -0.26091062542 45 | 1691991967.886153698 0.314433960513 -0.530637766259 -0.0540743815377 0.972695683219 -0.0120107305526 0.00596520754467 -0.231696496518 46 | 1691991968.085993767 0.346801025046 -0.534276365573 -0.0646977337238 0.979312702479 -0.011042794393 0.00481102060145 -0.201993914603 47 | 1691991968.284657001 0.379505733653 -0.533902433501 -0.0654476357782 0.985133642565 -0.00780878156868 0.00632725912852 -0.171495466439 48 | 1691991968.483373165 0.405944997123 -0.530379301965 -0.0731511716061 0.989983593784 -0.00500847219254 0.00674140043692 -0.140932440429 49 | 1691991968.682018995 0.422612373207 -0.52360371932 -0.0815145194161 0.994194538127 -0.00378423769305 0.00511154567067 -0.107409366465 50 | 1691991968.881958246 0.43927041219 -0.519814395782 -0.0836604696753 0.997408298032 -0.00025123972458 0.00642221182752 -0.0716615593718 51 | 1691991969.081993818 0.457989942507 -0.508770997319 -0.079554271252 0.999376549091 0.00250003649962 0.00350918826764 -0.035042096719 52 | 1691991969.280661821 0.489194369774 -0.498689803535 -0.0817276688059 0.999984507908 0.00364776550964 0.00419991609214 0.000196101974051 53 | 1691991969.479325771 0.512301555033 -0.476275759102 -0.0788724551125 0.999253141588 0.00685662205704 0.00381552412388 0.0378363256211 54 | 1691991969.679440975 0.55827930005 -0.468533272827 -0.063994627736 0.997201510172 0.00909102044187 0.00417890262966 0.0740880437846 55 | 1691991969.877925873 0.600229630625 -0.441784476124 -0.075446798292 0.993703708202 0.0114342602839 0.00359088085756 0.111397053691 56 | 1691991970.076613903 0.638868921749 -0.418426756555 -0.0879600302286 0.989055722387 0.013328158268 0.00338823427682 0.146900163645 57 | 1691991970.276746273 0.687280552983 -0.390546372055 -0.0878132086858 0.983353537494 0.0163660558086 0.00358957489784 0.180928404257 58 | 1691991970.475313902 0.730292761786 -0.361761923196 -0.0843494096325 0.977287676066 0.0176653360097 0.00391281107579 0.21114313634 59 | 1691991970.675332069 0.768914653943 -0.317814131593 -0.0880375348851 0.969773172822 0.0210338092242 0.00445354898038 0.243059124588 60 | 1691991970.875225306 0.834960303854 -0.281572626216 -0.0981236329319 0.962219144726 0.0234228006236 0.00590703088928 0.271202501685 61 | 1691991971.073911667 0.900763724487 -0.23332616145 -0.102441182892 0.959790678234 0.0231760885662 0.00540086923502 0.279706191397 62 | 1691991971.272524357 0.95893619146 -0.198623549513 -0.0981143771154 0.959890808434 0.024944820756 0.00524756824003 0.27921292024 63 | 1691991971.471299648 1.00679677556 -0.157803743837 -0.106950320458 0.959798822709 0.0251499627454 0.00522594671072 0.279510981504 64 | 1691991971.671200514 1.06538485812 -0.120496625308 -0.112110738422 0.960265893184 0.0242741763712 0.00522422900543 0.277980010396 65 | 1691991971.869805574 1.13448908519 -0.0846044016814 -0.116565277354 0.962929441646 0.023883854966 0.00430408512844 0.268659499615 66 | 1691991972.069877386 1.1983401281 -0.054588108197 -0.127314386259 0.96791606881 0.0215939698157 0.0045411316598 0.250302941112 67 | 1691991972.268486977 1.25998727587 -0.0198051945998 -0.139527643883 0.972867331626 0.0197716621488 0.00549484290422 0.230451823886 68 | 1691991972.467183828 1.32470918404 0.00315228221772 -0.139230202988 0.977508101852 0.0181691233564 0.0062986486252 0.210019334337 69 | 1691991972.667099476 1.38462474346 0.0156622772134 -0.140006503704 0.982532834362 0.0173916794815 0.00668918010414 0.185154027112 70 | 1691991972.865775108 1.43926387835 0.0239324390518 -0.138150455225 0.986690939476 0.0154000213112 0.00669991651762 0.161737257362 71 | 1691991973.065900803 1.47574399424 0.0406423039843 -0.14334812381 0.990561501075 0.0143137162064 0.00652710606292 0.136163236606 72 | 1691991973.264436245 1.50318132622 0.0451423011133 -0.154547685979 0.993415914481 0.012514790432 0.0073320169626 0.113641728268 73 | 1691991973.463054419 1.54134423943 0.0479255751144 -0.15421650778 0.995724024961 0.0116412926975 0.00719051996331 0.0913588684378 74 | 1691991973.661725760 1.54972115697 0.0480725283406 -0.156803707604 0.996835232564 0.010608471821 0.0081180616096 0.078365021021 75 | 1691991973.861774921 1.5418912845 0.0463873090982 -0.163146790842 0.996899623044 0.0108856468082 0.00739716263947 0.0775752940892 76 | 1691991974.061710596 1.54321850243 0.0449288700809 -0.159097662958 0.996920528155 0.010245893042 0.00753368452567 0.0773803968467 77 | 1691991974.260533094 1.54182822778 0.0454635895748 -0.163328502275 0.996901602387 0.00994899152239 0.00766389999495 0.0776497093518 78 | 1691991974.459093809 1.53799792865 0.0477091011075 -0.163668732433 0.996902295608 0.0102600457393 0.00769986609713 0.0775967559526 79 | 1691991974.659087181 1.54160166733 0.0456549596608 -0.165848239293 0.996932610042 0.0100934680362 0.0076937492279 0.0772288751771 80 | 1691991974.857680559 1.53625303074 0.0464971565842 -0.162025393884 0.996904857102 0.0102467706563 0.00761136035187 0.0775743306154 81 | 1691991975.056346416 1.54126773035 0.0452449691077 -0.16879496131 0.996897790491 0.0100145980833 0.00789618204248 0.0776669392296 82 | 1691991975.256365061 1.54277846076 0.0469199353975 -0.170921229972 0.996921217158 0.00978828722713 0.00803918129079 0.0773798925978 83 | 1691991975.454984903 1.54395637453 0.0458695063014 -0.168179828764 0.996939984468 0.0100888607446 0.00793188776984 0.0771100992967 84 | 1691991975.655048847 1.54670485136 0.0454974711859 -0.16632291488 0.996919373731 0.0104285563468 0.0077057145712 0.0773539233413 85 | 1691991975.853654385 1.54359979665 0.046518622137 -0.16735527868 0.996906566163 0.00995104154172 0.00792479950089 0.0775594782431 86 | 1691991976.052292109 1.54519436735 0.0446480566885 -0.16718454518 0.996931715429 0.00970343953628 0.00799080494329 0.0772602424851 87 | 1691991976.252327681 1.54698578863 0.0446858779281 -0.168843340301 0.996933705174 0.0099329403822 0.00793301860434 0.0772113424318 88 | 1691991976.450967789 1.54627040334 0.0445097076156 -0.168721552843 0.996926428624 0.00985728285461 0.00785333150416 0.0773230565174 89 | 1691991976.649681568 1.54540370688 0.0495927518831 -0.169910033574 0.996903876792 0.00980836830208 0.00781651204343 0.0776231826745 90 | 1691991976.849655867 1.5417812761 0.0494587737804 -0.173263011862 0.996912391629 0.00998759702406 0.00795342412863 0.0774769279653 91 | 1691991977.048303843 1.54527590737 0.0490902198461 -0.169980408422 0.996918752373 0.0101615111307 0.00779403780593 0.0773886156612 92 | 1691991977.248271465 1.54361951025 0.0468051129705 -0.170047182805 0.996922757728 0.0100542956456 0.00793374741775 0.0773368082833 93 | 1691991977.446941376 1.54557131158 0.0493209954276 -0.168953172863 0.996917105398 0.0103003785501 0.00771864770191 0.0773990287073 94 | 1691991977.645606756 1.54453807387 0.0496600767336 -0.168520009375 0.996935096444 0.0100190976697 0.00793305321453 0.0771822377691 95 | 1691991977.845577717 1.54467118701 0.0513323617087 -0.170933436351 0.996930875447 0.010142646807 0.00780671325107 0.0772334870615 96 | 1691991978.044183493 1.54654265016 0.0475874936689 -0.170889192394 0.997115164539 0.00946822457382 0.00782183635577 0.0749034061082 97 | 1691991978.242887497 1.54691513157 0.043113070568 -0.163482768672 0.997375354766 0.00904847531097 0.00762606252618 0.0714308754696 98 | 1691991978.442914009 1.54707389782 0.0258689309631 -0.167245137226 0.997360847448 0.00951948367234 0.00749913638552 0.0715854898784 99 | 1691991978.641647577 1.54883213916 -0.00198793443733 -0.162259468389 0.997353335492 0.0095215363799 0.00736072552051 0.0717041438643 100 | 1691991978.841595411 1.55062842849 -0.0602314886825 -0.162675569166 0.997050405279 0.00933093648787 0.00765114844643 0.0757950056708 101 | 1691991979.040168524 1.56214122104 -0.129694328882 -0.165917834828 0.996803338434 0.0102538393835 0.00786418965026 0.0788423603576 102 | 1691991979.238805294 1.5716475566 -0.190884730252 -0.174061264951 0.996713056934 0.0105925641422 0.00846716612729 0.0798698116927 103 | 1691991979.438784838 1.58100126622 -0.260028361478 -0.175400093581 0.996865081908 0.00981023381238 0.00920934091942 0.0779676588457 104 | 1691991979.637445450 1.58728193842 -0.333386630163 -0.17386312779 0.997117456815 0.00983334759712 0.00886323158556 0.0747096092556 105 | 1691991979.837471008 1.59080307111 -0.367416242398 -0.174562866422 0.996640842219 0.0100576112249 0.00834488199903 0.0808470099694 106 | 1691991980.036125183 1.60018767615 -0.423050810743 -0.177563756136 0.9964332319 0.0104723747302 0.00818846390208 0.0833312233922 107 | 1691991980.236078501 1.60587651429 -0.452386789607 -0.172590653625 0.996389561211 0.0101138793288 0.00793509623614 0.0839201167928 108 | 1691991980.434724808 1.61311918476 -0.495464906348 -0.172448417349 0.996283289678 0.00950700134622 0.00784184851904 0.0852509767993 109 | 1691991980.633356810 1.61785496452 -0.546862345761 -0.173805914752 0.996271558568 0.00984878565527 0.00763630040415 0.0853678506543 110 | 1691991980.833363295 1.62018326092 -0.594700552726 -0.170806468062 0.996166612878 0.0090974667737 0.00730916928805 0.0866942416194 111 | 1691991981.032031059 1.62833483177 -0.63758663526 -0.177665138052 0.995853092687 0.00976514618867 0.00760424358286 0.0901301014376 112 | 1691991981.232008696 1.63548140872 -0.672031062795 -0.178092591832 0.995612047872 0.00911383495659 0.00751622123247 0.0928283069046 113 | 1691991981.430748224 1.64262377684 -0.694950612206 -0.181938557789 0.995723635184 0.00904873402403 0.00768660463031 0.0916159312481 114 | 1691991981.629335880 1.64176212815 -0.697011652815 -0.184103778299 0.995733657625 0.00962684949706 0.00746945059014 0.0914659179633 115 | 1691991981.829344273 1.64459927519 -0.704105013651 -0.187038562284 0.995865290739 0.00827641235348 0.00797210049656 0.0901125369398 116 | 1691991982.028039694 1.65065752052 -0.763106938196 -0.18698786763 0.996190281269 0.00847449766263 0.0076873445652 0.0864523633407 117 | 1691991982.226642609 1.65482258641 -0.807996602584 -0.184571748321 0.995998212938 0.00878790232331 0.0076090045325 0.0886139698146 118 | 1691991982.425317526 1.66281443688 -0.83746918488 -0.182436893161 0.995763885899 0.00841196945422 0.00775056909744 0.0912329490284 119 | 1691991982.625279188 1.66962096723 -0.874562935681 -0.188532279712 0.99562115371 0.00856322254166 0.00795505218766 0.0927464643462 120 | 1691991982.823996067 1.68067900065 -0.921995508434 -0.188702341663 0.99593564456 0.00919354835637 0.00781924305441 0.0892554200174 121 | 1691991983.022621393 1.68422098154 -0.967054028932 -0.183095452259 0.996274425596 0.00851442369758 0.00749830161864 0.0854900518517 122 | 1691991983.221311092 1.69370094413 -1.02044800068 -0.185711471074 0.996077732899 0.00816166071148 0.00785903635948 0.0877540475722 123 | 1691991983.421268940 1.70676542698 -1.06313234014 -0.188658001721 0.995828098876 0.0083559813253 0.00781972546859 0.090528597466 124 | 1691991983.619950771 1.71022267344 -1.1025410221 -0.190303560748 0.995755483061 0.00869561031404 0.00761675671761 0.0913093058319 125 | 1691991983.819944143 1.7241778609 -1.14871099547 -0.186347569488 0.995875877361 0.00819046068572 0.00730798136192 0.0900596838355 126 | 1691991984.018619061 1.73374852949 -1.19758144395 -0.187644816529 0.996139643774 0.00726544184441 0.00761068219868 0.0871498764968 127 | 1691991984.217275381 1.73830592251 -1.23765904625 -0.181432236559 0.996121095411 0.00696958411687 0.00712005372472 0.0874270725192 128 | 1691991984.417250395 1.73926434434 -1.26395620224 -0.183674386264 0.995877924364 0.00667735946304 0.00739092483907 0.0901551266735 129 | 1691991984.615855694 1.74753910455 -1.30413577454 -0.190082525512 0.995786705058 0.00783568496469 0.00748282725107 0.0910573850285 130 | 1691991984.815852404 1.75111332163 -1.33027592448 -0.186077947929 0.995870721264 0.0079852647592 0.00722653625216 0.090141662117 131 | 1691991985.014547348 1.7483079019 -1.33987979125 -0.184524024489 0.995911550653 0.00795839273383 0.00738815402827 0.0896786621329 132 | 1691991985.213193178 1.74417207675 -1.33929176021 -0.189653768125 0.995956120762 0.00849827820088 0.00737695127663 0.0891334133409 133 | 1691991985.413149595 1.7496516102 -1.33874979162 -0.184230298157 0.995923066949 0.00791677353348 0.00727741052714 0.0895634340087 134 | 1691991985.611897707 1.74569835594 -1.34015451498 -0.190308759749 0.995893035573 0.00837525876462 0.00773870749854 0.0898166417966 135 | 1691991985.811766863 1.74822909673 -1.34821579584 -0.185015063385 0.995942713112 0.00687590566032 0.00761140754427 0.0894030234183 136 | 1691991986.010477304 1.75428795851 -1.40348698619 -0.18443730201 0.996232840927 0.00686646489113 0.00735159971675 0.0861332241387 137 | 1691991986.210460663 1.75920356521 -1.47117934676 -0.184652093474 0.996269080357 0.00884693789503 0.0065862602534 0.0855936469071 138 | 1691991986.409107447 1.76369054942 -1.47496222866 -0.183601296075 0.996309349667 0.0085282713857 0.00716776634149 0.0851091738788 139 | 1691991986.607737064 1.76100218787 -1.46346070142 -0.184550068734 0.996165925677 0.00822367064709 0.00724457018961 0.0867947922672 140 | 1691991986.807772636 1.76169887773 -1.47401377187 -0.18996280015 0.996322561579 0.0083291821193 0.00744603034913 0.0849501891998 141 | 1691991987.006496668 1.75841130127 -1.47363569532 -0.191148835269 0.996243825087 0.00840578183341 0.00752702423254 0.0858541071507 142 | 1691991987.206448793 1.76200440185 -1.47409069048 -0.190050874319 0.996264148828 0.0086432833335 0.00732318110981 0.0856119759787 143 | 1691991987.405153036 1.76391254101 -1.47414675325 -0.186507517279 0.996254528497 0.00819304746222 0.00728789510279 0.0857710615984 144 | 1691991987.603746414 1.76581903509 -1.47691809372 -0.17791265943 0.996302624774 0.00777022955798 0.00703664447191 0.0852712673498 145 | 1691991987.803728819 1.76451826517 -1.47943262124 -0.186345714763 0.996293143206 0.00834184533273 0.00745531383403 0.0852924657411 146 | 1691991988.002382278 1.76730887435 -1.47588245322 -0.182518855471 0.996241629469 0.00810804530024 0.00740207504563 0.0859190584167 147 | 1691991988.202413797 1.76863500463 -1.47730848462 -0.187782180507 0.996277520392 0.00863726419732 0.00714485408359 0.0854719315826 148 | 1691991988.401047707 1.76320593472 -1.47754220394 -0.185864962195 0.996289233009 0.00800763946874 0.00764790763018 0.0853530984165 149 | 1691991988.601011038 1.76378590188 -1.47423767801 -0.18632551088 0.996265790532 0.00842234818941 0.00737413964614 0.085610517647 150 | 1691991988.799635649 1.76239311594 -1.47773377252 -0.190269189346 0.996285356795 0.0084502254456 0.00759046173759 0.0853608014008 151 | 1691991988.998294353 1.76204073092 -1.47668531319 -0.187067000623 0.99628078743 0.00835724833144 0.00740895415144 0.0854391970776 152 | 1691991989.198353767 1.76217282279 -1.4769186187 -0.18652984788 0.996311614029 0.00800330877239 0.00738890554924 0.0851147394723 153 | 1691991989.396981239 1.76607306071 -1.47712895902 -0.198215625688 0.996299117051 0.00905055125649 0.00750121016138 0.0851462784417 154 | 1691991989.596978188 1.76718710976 -1.47660978241 -0.197381192999 0.996294789528 0.00854410514109 0.00770074320826 0.0852313861297 155 | 1691991989.795694351 1.76831616012 -1.47363820053 -0.192572667586 0.996279079041 0.00838427867499 0.00735088688705 0.0854614825399 156 | 1691991989.994344950 1.76908122659 -1.47631434211 -0.187670728089 0.99630847659 0.00825283610519 0.00693124691504 0.0851661199487 157 | 1691991990.194211245 1.77006897122 -1.47447941436 -0.188496714666 0.996285060917 0.00873354859882 0.00703951699662 0.0853829474955 158 | 1691991990.392992496 1.77375383493 -1.47487479008 -0.186360780465 0.996280624227 0.00829468925423 0.00725344695531 0.0854605372514 159 | 1691991990.592949867 1.78006602641 -1.4786273696 -0.185559361997 0.996920045198 0.00864070496722 0.00755723985466 0.077579957635 160 | 1691991990.792963505 1.79817596533 -1.48709673523 -0.188322311023 0.998744486865 0.00787756268603 0.00751714477912 0.0488966920891 161 | 1691991990.991536856 1.79160922551 -1.497679379 -0.195393489858 0.999788444978 0.00642484785941 0.00794996174231 0.0178489419161 162 | 1691991991.190209389 1.79236537723 -1.51803337746 -0.187745564237 0.999819208743 0.00510421559804 0.00824722463697 -0.0163548188084 163 | 1691991991.390283346 1.79052407544 -1.52504356224 -0.193330474225 0.998533026098 0.00287000314482 0.00822143982948 -0.0534412462446 164 | 1691991991.592261553 1.78789659421 -1.52961408708 -0.196523129904 0.995998073754 0.0013792790181 0.00799262895016 -0.0890059130113 165 | 1691991991.788867950 1.79098988764 -1.53927282277 -0.196036033286 0.991972782721 -0.000379732390535 0.00826800046084 -0.126180403834 166 | 1691991991.987579584 1.78442952421 -1.55788550287 -0.194751940163 0.986676189247 -0.00209436683926 0.00807384209799 -0.16248238143 167 | 1691991992.186220884 1.77982439695 -1.56665061686 -0.204110750565 0.981596210082 -0.00278887803497 0.00892245962147 -0.190739330568 168 | 1691991992.386228323 1.76760611658 -1.57601285519 -0.193019772941 0.97512638823 -0.0046929781618 0.0101298982239 -0.221368218351 169 | 1691991992.584806919 1.72903446293 -1.57018482052 -0.190212362558 0.967365612403 -0.00842745476274 0.00811150574476 -0.253114506541 170 | 1691991992.784801960 1.69257387386 -1.56292605534 -0.180198929254 0.959321419752 -0.0111274933515 0.00760929871361 -0.28199413304 171 | 1691991992.982065439 1.65083998834 -1.55366437456 -0.188149307519 0.951628908625 -0.0108269655595 0.0078919855893 -0.306957511146 172 | 1691991993.182065248 1.62167918608 -1.53433274146 -0.186304532535 0.950598870324 -0.0109847876089 0.00834090009095 -0.310115384279 173 | 1691991993.382091761 1.59237586909 -1.51725754757 -0.179822378055 0.950218166851 -0.0103361982715 0.00811381560733 -0.311308150213 174 | 1691991993.580724955 1.54577001514 -1.47681766523 -0.181648693049 0.954634057809 -0.0100371093688 0.00822032120049 -0.297498736849 175 | 1691991993.780743599 1.51658225839 -1.43613937444 -0.174897987408 0.964158007034 -0.00953227422451 0.00822085526693 -0.265029980868 176 | 1691991993.979365587 1.48148760709 -1.40075278944 -0.171780107 0.974016046375 -0.00708303735116 0.00850606917175 -0.22620835257 177 | 1691991994.179383993 1.44411550726 -1.37412451757 -0.168952237309 0.982723859598 -0.00435619414275 0.00902097143891 -0.184806551353 178 | 1691991994.377986670 1.4051574259 -1.34910335402 -0.165368405797 0.989500858655 -0.0025215102858 0.00888902205092 -0.144231334991 179 | 1691991994.578029156 1.35508023259 -1.321479786 -0.158579022024 0.994835411146 -0.00235297571803 0.00840703087153 -0.101125120847 180 | 1691991994.776689768 1.31832638593 -1.30024718871 -0.158375866532 0.998316444602 0.000288853078425 0.00837912459883 -0.057393233676 181 | 1691991994.976656199 1.27484054732 -1.2897890238 -0.15593672556 0.999779950437 0.00299278984324 0.008383465767 -0.0189950365948 182 | 1691991995.175360918 1.23350317994 -1.27499676365 -0.149135133069 0.99970268514 0.00547189398972 0.0089816665285 0.0219983946131 183 | 1691991995.374015093 1.19751634608 -1.26241284611 -0.138466636226 0.997965360125 0.00864892834682 0.00739861485815 0.0627343329226 184 | 1691991995.573970795 1.14824771735 -1.2597127905 -0.133516229973 0.994595666131 0.0115138594866 0.00709836708197 0.102939327462 185 | 1691991995.772649288 1.09831734385 -1.26140868956 -0.132924383993 0.989688917846 0.0141246030729 0.00720852030642 0.142353007399 186 | 1691991995.972599030 1.05274229157 -1.25887586055 -0.125986653956 0.983379686226 0.0163106600112 0.0074680188355 0.180672587246 187 | 1691991996.171229362 1.00113516675 -1.27301935555 -0.115596289434 0.976026669523 0.0170240360613 0.00681596622302 0.216877073895 188 | 1691991996.371259212 0.95860781237 -1.28598381167 -0.116836694242 0.967421344612 0.0202332512963 0.00664238660771 0.252274525528 189 | 1691991996.571291447 0.930427502202 -1.3070859188 -0.12158009933 0.96321769931 0.0207063517544 0.00644184429403 0.267845876157 190 | 1691991996.769910097 0.892407758702 -1.33257291151 -0.11612183688 0.962332629464 0.0208607238295 0.00626220938488 0.27100096901 191 | 1691991996.968571663 0.850123640475 -1.36390923928 -0.115243467515 0.961600649197 0.0203644962336 0.00695397931309 0.273607603929 192 | 1691991997.167256117 0.810077120436 -1.39629808903 -0.108528008737 0.962386598723 0.0200853315887 0.0056595579925 0.270881124217 193 | 1691991997.367237806 0.781693897559 -1.4372580641 -0.103865558948 0.965855892918 0.0191560457951 0.00665555235221 0.258285004689 194 | 1691991997.565904856 0.749262685543 -1.47356872098 -0.10348232529 0.970579019379 0.0186354769168 0.00726351119954 0.23995067732 195 | 1691991997.764509201 0.712735513569 -1.51380746811 -0.101709968635 0.97605889993 0.0170114034006 0.00746869070781 0.216711454892 196 | 1691991997.964527607 0.6726419643 -1.55743224596 -0.0935470275999 0.982279619697 0.0157478377931 0.00669357295174 0.186638555542 197 | 1691991998.163172007 0.637957280451 -1.59601666055 -0.0938833183383 0.988644739055 0.0141918363338 0.00655794532057 0.149456231297 198 | 1691991998.363171339 0.609969424673 -1.63237575499 -0.09368087406 0.994421098109 0.0119758370494 0.0084093658328 0.104463110855 199 | 1691991998.561803818 0.570164544813 -1.66124445019 -0.0877523007301 0.998371079466 0.00894980621684 0.008685277092 0.0556745419027 200 | 1691991998.760550976 0.516958894488 -1.67956024163 -0.0895079423558 0.999923650628 0.00626127621036 0.00794190908518 0.00710038129189 201 | 1691991998.959145546 0.480321373176 -1.71616141623 -0.0837681479763 0.998904128431 0.00266308143377 0.007397691808 -0.0461381009304 202 | 1691991999.157800913 0.443782930956 -1.72508411855 -0.0831730770734 0.995055154699 0.000107218946367 0.00759273664399 -0.0990332164542 203 | 1691991999.357763767 0.403230748488 -1.7334043857 -0.0834978068358 0.989105930301 -0.00343250758537 0.00903320918562 -0.146887976588 204 | 1691991999.556450844 0.366901242744 -1.74525049689 -0.0815481618954 0.980575999319 -0.0059649527077 0.00938754378291 -0.195823907937 205 | 1691991999.756445885 0.326752668719 -1.74280740295 -0.078959565047 0.97109332113 -0.00882969556882 0.00863458116192 -0.238380456711 206 | 1691991999.955063820 0.278267732529 -1.7450086502 -0.0718581638038 0.96046532712 -0.0106031150215 0.0086447397424 -0.278063298237 207 | 1691992000.153798342 0.228697290834 -1.72031160217 -0.0707644047814 0.951128967034 -0.0110898824166 0.00858217519151 -0.308475361813 208 | 1691992000.353697062 0.188613028622 -1.70393198394 -0.0697609119295 0.945406181834 -0.012216608067 0.0094966133903 -0.325526834794 209 | 1691992000.552364826 0.141767002126 -1.67569954622 -0.0676731596202 0.939931933123 -0.0132031541509 0.00920976143664 -0.340982137524 210 | 1691992000.752417564 0.0917803871402 -1.63135028942 -0.0686393738576 0.937664104048 -0.014421963205 0.00872988935084 -0.347133726377 211 | 1691992000.951056480 0.0520866597125 -1.59518597416 -0.065223987395 0.936924049586 -0.0143105615965 0.00928693026163 -0.349116436252 212 | 1691992001.149759293 0.00654280038961 -1.56200022683 -0.0633506157223 0.936395880919 -0.0138309032586 0.0092030731046 -0.35055208423 213 | 1691992001.349692583 -0.0383099063362 -1.53158072887 -0.0667038875439 0.936370442247 -0.0140727304535 0.00870106999487 -0.350623223026 214 | 1691992001.548299789 -0.0815055141748 -1.50135829155 -0.0625135013504 0.936344920037 -0.0129399251851 0.00947571885235 -0.350714926699 215 | 1691992001.748339415 -0.11944853636 -1.47227738046 -0.0555606113945 0.936399374424 -0.0137233752461 0.00861227511911 -0.350561990621 216 | 1691992001.947001934 -0.159988911669 -1.44259640116 -0.0510322034109 0.93653271411 -0.0140924770272 0.0083116091989 -0.350198221933 217 | 1691992002.145695448 -0.19690364379 -1.40800295822 -0.0436185366782 0.936736067376 -0.0133800689353 0.00963577158498 -0.349647916821 218 | 1691992002.345680952 -0.242928889737 -1.36933982823 -0.0407598825571 0.936953574366 -0.0137052261627 0.00951662549549 -0.34905529662 219 | 1691992002.544371128 -0.285321789004 -1.33802642505 -0.038528184503 0.936864005304 -0.0136969832369 0.00989452819783 -0.349285451355 220 | 1691992002.744325161 -0.328444206131 -1.30424869282 -0.0346792636946 0.936904847106 -0.0136319522159 0.00939051188161 -0.349192347618 221 | 1691992002.942939043 -0.369601759083 -1.27456773553 -0.0290342601557 0.936990149667 -0.0137127352129 0.00924627450529 -0.348964076557 222 | 1691992003.142983437 -0.405744657541 -1.24818759462 -0.0257760952907 0.937104841236 -0.0139525621953 0.00894990870174 -0.348654186373 223 | 1691992003.341550112 -0.431654787336 -1.22768402185 -0.0272577466974 0.936829409727 -0.0138738532052 0.00948184448137 -0.34938269547 224 | 1691992003.540186882 -0.452658412663 -1.20697011652 -0.0234738042498 0.93712200526 -0.0136121244199 0.00935392426872 -0.348610902621 225 | 1691992003.740187883 -0.473221214336 -1.19426712768 -0.024517497485 0.937290423009 -0.0139489613651 0.00883402785583 -0.348158080999 226 | 1691992003.938927650 -0.471159629216 -1.19490306209 -0.030250180585 0.937128124511 -0.0136187573203 0.00938690084782 -0.348593307153 227 | 1691992004.137584925 -0.471440406244 -1.19470218577 -0.0260582669673 0.937039573217 -0.0140074179398 0.00940351111474 -0.348815430344 228 | 1691992004.337554932 -0.473211533719 -1.19140755959 -0.0280582059864 0.936924619101 -0.0140934549215 0.00916375076264 -0.34912699455 229 | 1691992004.536148787 -0.471229669113 -1.19098224083 -0.0299859044502 0.937052478008 -0.0138780240171 0.00926026026401 -0.348789766891 230 | 1691992004.736277580 -0.46813398715 -1.19575800043 -0.0310144888889 0.937284241581 -0.0139284173898 0.00954245149536 -0.348156848695 231 | 1691992004.934843302 -0.471082989806 -1.1932136661 -0.0323597078943 0.93717606496 -0.0138892686122 0.00946615768534 -0.348451579625 232 | 1691992005.133457184 -0.473826580234 -1.1922245964 -0.0311443599694 0.937133705488 -0.0141159819142 0.00929524339174 -0.348560978229 233 | 1691992005.333485126 -0.473189402998 -1.19386771822 -0.0349459492266 0.937142148568 -0.01361268005 0.00985668102877 -0.348542872769 234 | --------------------------------------------------------------------------------