├── Contributors.md ├── Installation.md ├── LICENSE ├── README.md ├── ReleaseNotes.md ├── benchmark_data ├── BB01103.dat ├── BB01104.dat ├── BB01105.dat ├── BB01106.dat ├── BB012091.dat ├── BB012092.dat ├── BB01404.dat ├── BB02105.dat ├── BB02106.dat ├── BB02107.dat ├── BB02108.dat ├── BB02110.dat ├── BB02111.dat ├── BB02113.dat ├── BD01103.dat ├── BD01104.dat ├── BD01105.dat ├── BD01106.dat ├── BD01107.dat ├── BD01108.dat ├── BD01109.dat ├── BD01110.dat ├── BD01203.dat ├── BD012051.dat ├── BD012052.dat ├── BD012053.dat ├── BD012054.dat ├── BD012055.dat ├── BD012056.dat ├── BD012057.dat ├── BD01206.dat ├── BD01304.dat ├── BD02106.dat ├── BD02107.dat ├── BD02108.dat ├── BD02109.dat ├── BD02111.dat └── BD02112.dat ├── doc ├── AB01MD.html ├── AB01ND.html ├── AB01OD.html ├── AB04MD.html ├── AB05MD.html ├── AB05ND.html ├── AB05OD.html ├── AB05PD.html ├── AB05QD.html ├── AB05RD.html ├── AB05SD.html ├── AB07MD.html ├── AB07ND.html ├── AB08MD.html ├── AB08MZ.html ├── AB08ND.html ├── AB08NW.html ├── AB08NX.html ├── AB08NY.html ├── AB08NZ.html ├── AB09AD.html ├── AB09AX.html ├── AB09BD.html ├── AB09BX.html ├── AB09CD.html ├── AB09CX.html ├── AB09DD.html ├── AB09ED.html ├── AB09FD.html ├── AB09GD.html ├── AB09HD.html ├── AB09HX.html ├── AB09HY.html ├── AB09ID.html ├── AB09IX.html ├── AB09IY.html ├── AB09JD.html ├── AB09JV.html ├── AB09JW.html ├── AB09JX.html ├── AB09KD.html ├── AB09KX.html ├── AB09MD.html ├── AB09ND.html ├── AB13AD.html ├── AB13AX.html ├── AB13BD.html ├── AB13CD.html ├── AB13DD.html ├── AB13DX.html ├── AB13ED.html ├── AB13FD.html ├── AB13HD.html ├── AB13ID.html ├── AB13MD.html ├── AB8NXZ.html ├── AG07BD.html ├── AG08BD.html ├── AG08BY.html ├── AG08BZ.html ├── AG8BYZ.html ├── BB01AD.html ├── BB02AD.html ├── BB03AD.html ├── BB04AD.html ├── BD01AD.html ├── BD02AD.html ├── DAESolver.html ├── DE01OD.html ├── DE01PD.html ├── DF01MD.html ├── DG01MD.html ├── DG01ND.html ├── DG01OD.html ├── DK01MD.html ├── FB01QD.html ├── FB01RD.html ├── FB01SD.html ├── FB01TD.html ├── FB01VD.html ├── FD01AD.html ├── FSQP.html ├── IB01AD.html ├── IB01BD.html ├── IB01CD.html ├── IB01MD.html ├── IB01MY.html ├── IB01ND.html ├── IB01OD.html ├── IB01OY.html ├── IB01PD.html ├── IB01PX.html ├── IB01PY.html ├── IB01QD.html ├── IB01RD.html ├── IB03AD.html ├── IB03BD.html ├── KINSOL.html ├── MA01AD.html ├── MA01BD.html ├── MA01BZ.html ├── MA01CD.html ├── MA01DD.html ├── MA01DZ.html ├── MA02AD.html ├── MA02AZ.html ├── MA02BD.html ├── MA02BZ.html ├── MA02CD.html ├── MA02CZ.html ├── MA02DD.html ├── MA02ED.html ├── MA02ES.html ├── MA02EZ.html ├── MA02FD.html ├── MA02GD.html ├── MA02GZ.html ├── MA02HD.html ├── MA02HZ.html ├── MA02ID.html ├── MA02IZ.html ├── MA02JD.html ├── MA02JZ.html ├── MA02MD.html ├── MA02MZ.html ├── MA02NZ.html ├── MA02OD.html ├── MA02OZ.html ├── MA02PD.html ├── MA02PZ.html ├── MB01KD.html ├── MB01LD.html ├── MB01MD.html ├── MB01ND.html ├── MB01OC.html ├── MB01OD.html ├── MB01OE.html ├── MB01OH.html ├── MB01OO.html ├── MB01OS.html ├── MB01OT.html ├── MB01PD.html ├── MB01QD.html ├── MB01RB.html ├── MB01RD.html ├── MB01RH.html ├── MB01RT.html ├── MB01RU.html ├── MB01RW.html ├── MB01RX.html ├── MB01RY.html ├── MB01SD.html ├── MB01SS.html ├── MB01TD.html ├── MB01UD.html ├── MB01UW.html ├── MB01UX.html ├── MB01UY.html ├── MB01UZ.html ├── MB01VD.html ├── MB01WD.html ├── MB01XD.html ├── MB01XY.html ├── MB01YD.html ├── MB01ZD.html ├── MB02CD.html ├── MB02CU.html ├── MB02CV.html ├── MB02CX.html ├── MB02CY.html ├── MB02DD.html ├── MB02ED.html ├── MB02FD.html ├── MB02GD.html ├── MB02HD.html ├── MB02ID.html ├── MB02JD.html ├── MB02JX.html ├── MB02KD.html ├── MB02MD.html ├── MB02ND.html ├── MB02NY.html ├── MB02OD.html ├── MB02PD.html ├── MB02QD.html ├── MB02QY.html ├── MB02RD.html ├── MB02RZ.html ├── MB02SD.html ├── MB02SZ.html ├── MB02TD.html ├── MB02TZ.html ├── MB02UD.html ├── MB02UU.html ├── MB02UV.html ├── MB02UW.html ├── MB02VD.html ├── MB02WD.html ├── MB02XD.html ├── MB02YD.html ├── MB03AB.html ├── MB03AD.html ├── MB03AE.html ├── MB03AF.html ├── MB03AG.html ├── MB03AH.html ├── MB03AI.html ├── MB03BA.html ├── MB03BB.html ├── MB03BC.html ├── MB03BD.html ├── MB03BE.html ├── MB03BF.html ├── MB03BZ.html ├── MB03CD.html ├── MB03CZ.html ├── MB03DD.html ├── MB03DZ.html ├── MB03ED.html ├── MB03FD.html ├── MB03FZ.html ├── MB03GD.html ├── MB03GZ.html ├── MB03HD.html ├── MB03HZ.html ├── MB03ID.html ├── MB03IZ.html ├── MB03JD.html ├── MB03JP.html ├── MB03JZ.html ├── MB03KA.html ├── MB03KB.html ├── MB03KC.html ├── MB03KD.html ├── MB03KE.html ├── MB03LD.html ├── MB03LF.html ├── MB03LP.html ├── MB03LZ.html ├── MB03MD.html ├── MB03ND.html ├── MB03NY.html ├── MB03OD.html ├── MB03OY.html ├── MB03PD.html ├── MB03PY.html ├── MB03QD.html ├── MB03QG.html ├── MB03QV.html ├── MB03QW.html ├── MB03QX.html ├── MB03QY.html ├── MB03RD.html ├── MB03RW.html ├── MB03RX.html ├── MB03RY.html ├── MB03RZ.html ├── MB03SD.html ├── MB03TD.html ├── MB03TS.html ├── MB03UD.html ├── MB03VD.html ├── MB03VW.html ├── MB03VY.html ├── MB03WA.html ├── MB03WD.html ├── MB03WX.html ├── MB03XD.html ├── MB03XP.html ├── MB03XS.html ├── MB03XU.html ├── MB03XZ.html ├── MB03YA.html ├── MB03YD.html ├── MB03YT.html ├── MB03ZA.html ├── MB03ZD.html ├── MB04AD.html ├── MB04AZ.html ├── MB04BD.html ├── MB04BP.html ├── MB04BZ.html ├── MB04CD.html ├── MB04DB.html ├── MB04DD.html ├── MB04DI.html ├── MB04DL.html ├── MB04DP.html ├── MB04DS.html ├── MB04DY.html ├── MB04DZ.html ├── MB04ED.html ├── MB04FD.html ├── MB04FP.html ├── MB04GD.html ├── MB04HD.html ├── MB04ID.html ├── MB04IY.html ├── MB04IZ.html ├── MB04JD.html ├── MB04KD.html ├── MB04LD.html ├── MB04MD.html ├── MB04ND.html ├── MB04NY.html ├── MB04OD.html ├── MB04OW.html ├── MB04OX.html ├── MB04OY.html ├── MB04PA.html ├── MB04PB.html ├── MB04PU.html ├── MB04PY.html ├── MB04QB.html ├── MB04QC.html ├── MB04QF.html ├── MB04QS.html ├── MB04QU.html ├── MB04RB.html ├── MB04RD.html ├── MB04RS.html ├── MB04RT.html ├── MB04RU.html ├── MB04RV.html ├── MB04RW.html ├── MB04RZ.html ├── MB04SU.html ├── MB04TB.html ├── MB04TS.html ├── MB04TU.html ├── MB04UD.html ├── MB04VD.html ├── MB04WD.html ├── MB04WP.html ├── MB04WR.html ├── MB04WU.html ├── MB04XD.html ├── MB04XY.html ├── MB04YD.html ├── MB04YW.html ├── MB04ZD.html ├── MB05MD.html ├── MB05MY.html ├── MB05ND.html ├── MB05OD.html ├── MB05OY.html ├── MB3JZP.html ├── MB3LZP.html ├── MB3OYZ.html ├── MB3PYZ.html ├── MB4DBZ.html ├── MB4DLZ.html ├── MB4DPZ.html ├── MC01MD.html ├── MC01ND.html ├── MC01OD.html ├── MC01PD.html ├── MC01PY.html ├── MC01QD.html ├── MC01RD.html ├── MC01SD.html ├── MC01TD.html ├── MC01VD.html ├── MC01WD.html ├── MC01XD.html ├── MC03MD.html ├── MC03ND.html ├── MC03NX.html ├── MD03AD.html ├── MD03BD.html ├── MD03BX.html ├── MD03BY.html ├── NF01AD.html ├── NF01AY.html ├── NF01BD.html ├── NF01BP.html ├── NF01BQ.html ├── NF01BR.html ├── NF01BS.html ├── NF01BU.html ├── NF01BV.html ├── NF01BW.html ├── NF01BX.html ├── NF01BY.html ├── ODESolver.html ├── SB01BD.html ├── SB01BX.html ├── SB01BY.html ├── SB01DD.html ├── SB01FY.html ├── SB01MD.html ├── SB02MD.html ├── SB02MT.html ├── SB02MU.html ├── SB02MX.html ├── SB02ND.html ├── SB02OD.html ├── SB02OY.html ├── SB02PD.html ├── SB02QD.html ├── SB02RD.html ├── SB02RU.html ├── SB02SD.html ├── SB03MD.html ├── SB03MU.html ├── SB03MV.html ├── SB03MW.html ├── SB03MX.html ├── SB03MY.html ├── SB03OD.html ├── SB03OR.html ├── SB03OS.html ├── SB03OT.html ├── SB03OU.html ├── SB03OV.html ├── SB03OY.html ├── SB03OZ.html ├── SB03PD.html ├── SB03QD.html ├── SB03QX.html ├── SB03QY.html ├── SB03RD.html ├── SB03SD.html ├── SB03SX.html ├── SB03SY.html ├── SB03TD.html ├── SB03UD.html ├── SB04MD.html ├── SB04MR.html ├── SB04MU.html ├── SB04MW.html ├── SB04MY.html ├── SB04ND.html ├── SB04NV.html ├── SB04NW.html ├── SB04NX.html ├── SB04NY.html ├── SB04OD.html ├── SB04OW.html ├── SB04PD.html ├── SB04PX.html ├── SB04PY.html ├── SB04QD.html ├── SB04QR.html ├── SB04QU.html ├── SB04QY.html ├── SB04RD.html ├── SB04RV.html ├── SB04RW.html ├── SB04RX.html ├── SB04RY.html ├── SB06ND.html ├── SB08CD.html ├── SB08DD.html ├── SB08ED.html ├── SB08FD.html ├── SB08GD.html ├── SB08HD.html ├── SB08MD.html ├── SB08ND.html ├── SB09MD.html ├── SB10AD.html ├── SB10DD.html ├── SB10ED.html ├── SB10FD.html ├── SB10HD.html ├── SB10ID.html ├── SB10JD.html ├── SB10KD.html ├── SB10LD.html ├── SB10MD.html ├── SB10PD.html ├── SB10QD.html ├── SB10RD.html ├── SB10SD.html ├── SB10TD.html ├── SB10UD.html ├── SB10VD.html ├── SB10WD.html ├── SB10YD.html ├── SB10ZD.html ├── SB10ZP.html ├── SB16AD.html ├── SB16AY.html ├── SB16BD.html ├── SB16CD.html ├── SB16CY.html ├── SG02AD.html ├── SG02CV.html ├── SG02CW.html ├── SG02CX.html ├── SG02ND.html ├── SG03AD.html ├── SG03AX.html ├── SG03AY.html ├── SG03BD.html ├── SG03BR.html ├── SG03BS.html ├── SG03BT.html ├── SG03BU.html ├── SG03BV.html ├── SG03BW.html ├── SG03BX.html ├── SG03BY.html ├── SG03BZ.html ├── TB01ID.html ├── TB01IZ.html ├── TB01KD.html ├── TB01KX.html ├── TB01LD.html ├── TB01MD.html ├── TB01ND.html ├── TB01PD.html ├── TB01PX.html ├── TB01TD.html ├── TB01UD.html ├── TB01UX.html ├── TB01UY.html ├── TB01VD.html ├── TB01VY.html ├── TB01WD.html ├── TB01WX.html ├── TB01XD.html ├── TB01XZ.html ├── TB01YD.html ├── TB01ZD.html ├── TB03AD.html ├── TB04AD.html ├── TB04BD.html ├── TB04BV.html ├── TB04BW.html ├── TB04BX.html ├── TB04CD.html ├── TB05AD.html ├── TC01OD.html ├── TC04AD.html ├── TC05AD.html ├── TD03AD.html ├── TD04AD.html ├── TD05AD.html ├── TF01MD.html ├── TF01MX.html ├── TF01MY.html ├── TF01ND.html ├── TF01OD.html ├── TF01PD.html ├── TF01QD.html ├── TF01RD.html ├── TG01AD.html ├── TG01AZ.html ├── TG01BD.html ├── TG01CD.html ├── TG01DD.html ├── TG01ED.html ├── TG01FD.html ├── TG01FZ.html ├── TG01GD.html ├── TG01HD.html ├── TG01HU.html ├── TG01HX.html ├── TG01HY.html ├── TG01ID.html ├── TG01JD.html ├── TG01JY.html ├── TG01KD.html ├── TG01KZ.html ├── TG01LD.html ├── TG01LY.html ├── TG01MD.html ├── TG01ND.html ├── TG01NX.html ├── TG01OA.html ├── TG01OB.html ├── TG01OD.html ├── TG01OZ.html ├── TG01PD.html ├── TG01QD.html ├── TG01WD.html ├── UD01BD.html ├── UD01CD.html ├── UD01DD.html ├── UD01MD.html ├── UD01MZ.html ├── UD01ND.html ├── UE01MD.html ├── readme └── support.html ├── examples ├── AB01MD.dat ├── AB01MD.res ├── AB01ND.dat ├── AB01ND.res ├── AB01OD.dat ├── AB01OD.res ├── AB04MD.dat ├── AB04MD.res ├── AB05MD.dat ├── AB05MD.res ├── AB05ND.dat ├── AB05ND.res ├── AB05OD.dat ├── AB05OD.res ├── AB05PD.dat ├── AB05PD.res ├── AB05QD.dat ├── AB05QD.res ├── AB05RD.dat ├── AB05RD.res ├── AB07MD.dat ├── AB07MD.res ├── AB07ND.dat ├── AB07ND.res ├── AB08ND.dat ├── AB08ND.res ├── AB08NW.dat ├── AB08NW.res ├── AB08NZ.dat ├── AB08NZ.res ├── AB09AD.dat ├── AB09AD.res ├── AB09BD.dat ├── AB09BD.res ├── AB09CD.dat ├── AB09CD.res ├── AB09DD.dat ├── AB09DD.res ├── AB09ED.dat ├── AB09ED.res ├── AB09FD.dat ├── AB09FD.res ├── AB09GD.dat ├── AB09GD.res ├── AB09HD.dat ├── AB09HD.res ├── AB09ID.dat ├── AB09ID.res ├── AB09JD.dat ├── AB09JD.res ├── AB09KD.dat ├── AB09KD.res ├── AB09MD.dat ├── AB09MD.res ├── AB09ND.dat ├── AB09ND.res ├── AB13AD.dat ├── AB13AD.res ├── AB13BD.dat ├── AB13BD.res ├── AB13CD.dat ├── AB13CD.res ├── AB13DD.dat ├── AB13DD.res ├── AB13ED.dat ├── AB13ED.res ├── AB13FD.dat ├── AB13FD.res ├── AB13ID.dat ├── AB13ID.res ├── AB13MD.dat ├── AB13MD.res ├── AG08BD.dat ├── AG08BD.res ├── AG08BZ.dat ├── AG08BZ.res ├── BB01AD.dat ├── BB01AD.res ├── BB02AD.dat ├── BB02AD.res ├── BB03AD.dat ├── BB03AD.res ├── BB04AD.dat ├── BB04AD.res ├── BD01AD.dat ├── BD01AD.res ├── BD02AD.dat ├── BD02AD.res ├── DE01OD.dat ├── DE01OD.res ├── DE01PD.dat ├── DE01PD.res ├── DF01MD.dat ├── DF01MD.res ├── DG01MD.dat ├── DG01MD.res ├── DG01ND.dat ├── DG01ND.res ├── DG01OD.dat ├── DG01OD.res ├── DK01MD.dat ├── DK01MD.res ├── FB01QD.dat ├── FB01QD.res ├── FB01RD.dat ├── FB01RD.res ├── FB01SD.dat ├── FB01SD.res ├── FB01TD.dat ├── FB01TD.res ├── FB01VD.dat ├── FB01VD.res ├── FD01AD.dat ├── FD01AD.res ├── IB01AD.dat ├── IB01AD.res ├── IB01BD.dat ├── IB01BD.res ├── IB01CD.dat ├── IB01CD.res ├── IB03AD.dat ├── IB03AD.res ├── IB03BD.dat ├── IB03BD.res ├── MB01TD.dat ├── MB01TD.res ├── MB02CD.dat ├── MB02CD.res ├── MB02DD.dat ├── MB02DD.res ├── MB02ED.dat ├── MB02ED.res ├── MB02FD.dat ├── MB02FD.res ├── MB02GD.dat ├── MB02GD.res ├── MB02HD.dat ├── MB02HD.res ├── MB02ID.dat ├── MB02ID.res ├── MB02JD.dat ├── MB02JD.res ├── MB02JX.dat ├── MB02JX.res ├── MB02KD.dat ├── MB02KD.res ├── MB02MD.dat ├── MB02MD.res ├── MB02ND.dat ├── MB02ND.res ├── MB02QD.dat ├── MB02QD.res ├── MB02SD.dat ├── MB02SD.res ├── MB02VD.dat ├── MB02VD.res ├── MB03BD.dat ├── MB03BD.res ├── MB03BZ.dat ├── MB03BZ.res ├── MB03FZ.dat ├── MB03FZ.res ├── MB03KD.dat ├── MB03KD.res ├── MB03LD.dat ├── MB03LD.res ├── MB03LF.dat ├── MB03LF.res ├── MB03LZ.dat ├── MB03LZ.res ├── MB03MD.dat ├── MB03MD.res ├── MB03ND.dat ├── MB03ND.res ├── MB03OD.dat ├── MB03OD.res ├── MB03PD.dat ├── MB03PD.res ├── MB03QD.dat ├── MB03QD.res ├── MB03QG.dat ├── MB03QG.res ├── MB03RD.dat ├── MB03RD.res ├── MB03SD.dat ├── MB03SD.res ├── MB03TD.dat ├── MB03TD.res ├── MB03UD.dat ├── MB03UD.res ├── MB03VD.dat ├── MB03VD.res ├── MB03WD.dat ├── MB03WD.res ├── MB03XD.dat ├── MB03XD.res ├── MB03XP.dat ├── MB03XP.res ├── MB03XZ.dat ├── MB03XZ.res ├── MB03ZD.dat ├── MB03ZD.res ├── MB04AD.dat ├── MB04AD.res ├── MB04AZ.dat ├── MB04AZ.res ├── MB04BD.dat ├── MB04BD.res ├── MB04BZ.dat ├── MB04BZ.res ├── MB04DD.dat ├── MB04DD.res ├── MB04DL.dat ├── MB04DL.res ├── MB04DP.dat ├── MB04DP.res ├── MB04DS.dat ├── MB04DS.res ├── MB04DY.dat ├── MB04DY.res ├── MB04DZ.dat ├── MB04DZ.res ├── MB04ED.dat ├── MB04ED.res ├── MB04FD.dat ├── MB04FD.res ├── MB04GD.dat ├── MB04GD.res ├── MB04MD.dat ├── MB04MD.res ├── MB04OD.dat ├── MB04OD.res ├── MB04PB.dat ├── MB04PB.res ├── MB04PU.dat ├── MB04PU.res ├── MB04TB.dat ├── MB04TB.res ├── MB04TS.dat ├── MB04TS.res ├── MB04UD.dat ├── MB04UD.res ├── MB04VD.dat ├── MB04VD.res ├── MB04XD.dat ├── MB04XD.res ├── MB04YD.dat ├── MB04YD.res ├── MB04ZD.dat ├── MB04ZD.res ├── MB05MD.dat ├── MB05MD.res ├── MB05ND.dat ├── MB05ND.res ├── MB05OD.dat ├── MB05OD.res ├── MB4DLZ.dat ├── MB4DLZ.res ├── MB4DPZ.dat ├── MB4DPZ.res ├── MC01MD.dat ├── MC01MD.res ├── MC01ND.dat ├── MC01ND.res ├── MC01OD.dat ├── MC01OD.res ├── MC01PD.dat ├── MC01PD.res ├── MC01QD.dat ├── MC01QD.res ├── MC01RD.dat ├── MC01RD.res ├── MC01SD.dat ├── MC01SD.res ├── MC01TD.dat ├── MC01TD.res ├── MC01VD.dat ├── MC01VD.res ├── MC01WD.dat ├── MC01WD.res ├── MC01XD.dat ├── MC01XD.res ├── MC03MD.dat ├── MC03MD.res ├── MC03ND.dat ├── MC03ND.res ├── MD03AD.dat ├── MD03AD.res ├── MD03BD.dat ├── MD03BD.res ├── SB01BD.dat ├── SB01BD.res ├── SB01DD.dat ├── SB01DD.res ├── SB01MD.dat ├── SB01MD.res ├── SB02MD.dat ├── SB02MD.res ├── SB02ND.dat ├── SB02ND.res ├── SB02OD.dat ├── SB02OD.res ├── SB02PD.dat ├── SB02PD.res ├── SB02QD.dat ├── SB02QD.res ├── SB02RD.dat ├── SB02RD.res ├── SB02SD.dat ├── SB02SD.res ├── SB03MD.dat ├── SB03MD.res ├── SB03OD.dat ├── SB03OD.res ├── SB03QD.dat ├── SB03QD.res ├── SB03SD.dat ├── SB03SD.res ├── SB03TD.dat ├── SB03TD.res ├── SB03UD.dat ├── SB03UD.res ├── SB04MD.dat ├── SB04MD.res ├── SB04ND.dat ├── SB04ND.res ├── SB04OD.dat ├── SB04OD.res ├── SB04PD.dat ├── SB04PD.res ├── SB04QD.dat ├── SB04QD.res ├── SB04RD.dat ├── SB04RD.res ├── SB06ND.dat ├── SB06ND.res ├── SB08CD.dat ├── SB08CD.res ├── SB08DD.dat ├── SB08DD.res ├── SB08ED.dat ├── SB08ED.res ├── SB08FD.dat ├── SB08FD.res ├── SB08MD.dat ├── SB08MD.res ├── SB08ND.dat ├── SB08ND.res ├── SB09MD.dat ├── SB09MD.res ├── SB10DD.dat ├── SB10DD.res ├── SB10ED.dat ├── SB10ED.res ├── SB10FD.dat ├── SB10FD.res ├── SB10HD.dat ├── SB10HD.res ├── SB10ID.dat ├── SB10ID.res ├── SB10KD.dat ├── SB10KD.res ├── SB10ZD.dat ├── SB10ZD.res ├── SB16AD.dat ├── SB16AD.res ├── SB16BD.dat ├── SB16BD.res ├── SB16CD.dat ├── SB16CD.res ├── SG02AD.dat ├── SG02AD.res ├── SG02ND.dat ├── SG02ND.res ├── SG03AD.dat ├── SG03AD.res ├── SG03BD.dat ├── SG03BD.res ├── TAB01MD.f ├── TAB01ND.f ├── TAB01OD.f ├── TAB04MD.f ├── TAB05MD.f ├── TAB05ND.f ├── TAB05OD.f ├── TAB05PD.f ├── TAB05QD.f ├── TAB05RD.f ├── TAB07MD.f ├── TAB07ND.f ├── TAB08ND.f ├── TAB08NW.f ├── TAB08NZ.f ├── TAB09AD.f ├── TAB09BD.f ├── TAB09CD.f ├── TAB09DD.f ├── TAB09ED.f ├── TAB09FD.f ├── TAB09GD.f ├── TAB09HD.f ├── TAB09ID.f ├── TAB09JD.f ├── TAB09KD.f ├── TAB09MD.f ├── TAB09ND.f ├── TAB13AD.f ├── TAB13BD.f ├── TAB13CD.f ├── TAB13DD.f ├── TAB13ED.f ├── TAB13FD.f ├── TAB13ID.f ├── TAB13MD.f ├── TAG08BD.f ├── TAG08BZ.f ├── TB01ID.dat ├── TB01ID.res ├── TB01IZ.dat ├── TB01IZ.res ├── TB01KD.dat ├── TB01KD.res ├── TB01LD.dat ├── TB01LD.res ├── TB01MD.dat ├── TB01MD.res ├── TB01ND.dat ├── TB01ND.res ├── TB01PD.dat ├── TB01PD.res ├── TB01PX.dat ├── TB01PX.res ├── TB01TD.dat ├── TB01TD.res ├── TB01UD.dat ├── TB01UD.res ├── TB01UY.dat ├── TB01UY.res ├── TB01WD.dat ├── TB01WD.res ├── TB01WX.dat ├── TB01WX.res ├── TB01ZD.dat ├── TB01ZD.res ├── TB03AD.dat ├── TB03AD.res ├── TB04AD.dat ├── TB04AD.res ├── TB04BD.dat ├── TB04BD.res ├── TB04CD.dat ├── TB04CD.res ├── TB05AD.dat ├── TB05AD.res ├── TBB01AD.f ├── TBB02AD.f ├── TBB03AD.f ├── TBB04AD.f ├── TBD01AD.f ├── TBD02AD.f ├── TC01OD.dat ├── TC01OD.res ├── TC04AD.dat ├── TC04AD.res ├── TC05AD.dat ├── TC05AD.res ├── TD03AD.dat ├── TD03AD.res ├── TD04AD.dat ├── TD04AD.res ├── TD05AD.dat ├── TD05AD.res ├── TDE01OD.f ├── TDE01PD.f ├── TDF01MD.f ├── TDG01MD.f ├── TDG01ND.f ├── TDG01OD.f ├── TDK01MD.f ├── TF01MD.dat ├── TF01MD.res ├── TF01ND.dat ├── TF01ND.res ├── TF01OD.dat ├── TF01OD.res ├── TF01PD.dat ├── TF01PD.res ├── TF01QD.dat ├── TF01QD.res ├── TF01RD.dat ├── TF01RD.res ├── TFB01QD.f ├── TFB01RD.f ├── TFB01SD.f ├── TFB01TD.f ├── TFB01VD.f ├── TFD01AD.f ├── TG01AD.dat ├── TG01AD.res ├── TG01AZ.dat ├── TG01AZ.res ├── TG01CD.dat ├── TG01CD.res ├── TG01DD.dat ├── TG01DD.res ├── TG01ED.dat ├── TG01ED.res ├── TG01FD.dat ├── TG01FD.res ├── TG01FZ.dat ├── TG01FZ.res ├── TG01GD.dat ├── TG01GD.res ├── TG01HD.dat ├── TG01HD.res ├── TG01ID.dat ├── TG01ID.res ├── TG01JD.dat ├── TG01JD.res ├── TG01JY.dat ├── TG01JY.res ├── TG01LD.dat ├── TG01LD.res ├── TG01MD.dat ├── TG01MD.res ├── TG01ND.dat ├── TG01ND.res ├── TG01PD.dat ├── TG01PD.res ├── TG01QD.dat ├── TG01QD.res ├── TIB01AD.f ├── TIB01BD.f ├── TIB01CD.f ├── TIB03AD.f ├── TIB03BD.f ├── TMB01TD.f ├── TMB02CD.f ├── TMB02DD.f ├── TMB02ED.f ├── TMB02FD.f ├── TMB02GD.f ├── TMB02HD.f ├── TMB02ID.f ├── TMB02JD.f ├── TMB02JX.f ├── TMB02KD.f ├── TMB02MD.f ├── TMB02ND.f ├── TMB02QD.f ├── TMB02SD.f ├── TMB02VD.f ├── TMB03BD.f ├── TMB03BZ.f ├── TMB03FZ.f ├── TMB03KD.f ├── TMB03LD.f ├── TMB03LF.f ├── TMB03LZ.f ├── TMB03MD.f ├── TMB03ND.f ├── TMB03OD.f ├── TMB03PD.f ├── TMB03QD.f ├── TMB03QG.f ├── TMB03RD.f ├── TMB03SD.f ├── TMB03TD.f ├── TMB03UD.f ├── TMB03VD.f ├── TMB03WD.f ├── TMB03XD.f ├── TMB03XP.f ├── TMB03XZ.f ├── TMB03ZD.f ├── TMB04AD.f ├── TMB04AZ.f ├── TMB04BD.f ├── TMB04BZ.f ├── TMB04DD.f ├── TMB04DL.f ├── TMB04DP.f ├── TMB04DS.f ├── TMB04DY.f ├── TMB04DZ.f ├── TMB04ED.f ├── TMB04FD.f ├── TMB04GD.f ├── TMB04MD.f ├── TMB04OD.f ├── TMB04PB.f ├── TMB04PU.f ├── TMB04TB.f ├── TMB04TS.f ├── TMB04UD.f ├── TMB04VD.f ├── TMB04XD.f ├── TMB04YD.f ├── TMB04ZD.f ├── TMB05MD.f ├── TMB05ND.f ├── TMB05OD.f ├── TMB4DLZ.f ├── TMB4DPZ.f ├── TMC01MD.f ├── TMC01ND.f ├── TMC01OD.f ├── TMC01PD.f ├── TMC01QD.f ├── TMC01RD.f ├── TMC01SD.f ├── TMC01TD.f ├── TMC01VD.f ├── TMC01WD.f ├── TMC01XD.f ├── TMC03MD.f ├── TMC03ND.f ├── TMD03AD.f ├── TMD03BD.f ├── TSB01BD.f ├── TSB01DD.f ├── TSB01MD.f ├── TSB02MD.f ├── TSB02ND.f ├── TSB02OD.f ├── TSB02PD.f ├── TSB02QD.f ├── TSB02RD.f ├── TSB02SD.f ├── TSB03MD.f ├── TSB03OD.f ├── TSB03QD.f ├── TSB03SD.f ├── TSB03TD.f ├── TSB03UD.f ├── TSB04MD.f ├── TSB04ND.f ├── TSB04OD.f ├── TSB04PD.f ├── TSB04QD.f ├── TSB04RD.f ├── TSB06ND.f ├── TSB08CD.f ├── TSB08DD.f ├── TSB08ED.f ├── TSB08FD.f ├── TSB08MD.f ├── TSB08ND.f ├── TSB09MD.f ├── TSB10DD.f ├── TSB10ED.f ├── TSB10FD.f ├── TSB10HD.f ├── TSB10ID.f ├── TSB10KD.f ├── TSB10ZD.f ├── TSB16AD.f ├── TSB16BD.f ├── TSB16CD.f ├── TSG02AD.f ├── TSG02ND.f ├── TSG03AD.f ├── TSG03BD.f ├── TTB01ID.f ├── TTB01IZ.f ├── TTB01KD.f ├── TTB01LD.f ├── TTB01MD.f ├── TTB01ND.f ├── TTB01PD.f ├── TTB01PX.f ├── TTB01TD.f ├── TTB01UD.f ├── TTB01UY.f ├── TTB01WD.f ├── TTB01WX.f ├── TTB01ZD.f ├── TTB03AD.f ├── TTB04AD.f ├── TTB04BD.f ├── TTB04CD.f ├── TTB05AD.f ├── TTC01OD.f ├── TTC04AD.f ├── TTC05AD.f ├── TTD03AD.f ├── TTD04AD.f ├── TTD05AD.f ├── TTF01MD.f ├── TTF01ND.f ├── TTF01OD.f ├── TTF01PD.f ├── TTF01QD.f ├── TTF01RD.f ├── TTG01AD.f ├── TTG01AZ.f ├── TTG01CD.f ├── TTG01DD.f ├── TTG01ED.f ├── TTG01FD.f ├── TTG01FZ.f ├── TTG01GD.f ├── TTG01HD.f ├── TTG01ID.f ├── TTG01JD.f ├── TTG01JY.f ├── TTG01LD.f ├── TTG01MD.f ├── TTG01ND.f ├── TTG01PD.f ├── TTG01QD.f ├── TUD01BD.f ├── TUD01CD.f ├── TUD01DD.f ├── TUD01MD.f ├── TUD01ND.f ├── UD01BD.dat ├── UD01BD.res ├── UD01CD.dat ├── UD01CD.res ├── UD01DD.dat ├── UD01DD.res ├── UD01MD.dat ├── UD01MD.res ├── UD01ND.dat ├── UD01ND.res ├── makefile ├── makefile_Unix └── readme ├── libindex.html ├── make.inc ├── make_Unix.inc ├── makefile ├── makefile_Unix ├── src ├── AB01MD.f ├── AB01ND.f ├── AB01OD.f ├── AB04MD.f ├── AB05MD.f ├── AB05ND.f ├── AB05OD.f ├── AB05PD.f ├── AB05QD.f ├── AB05RD.f ├── AB05SD.f ├── AB07MD.f ├── AB07ND.f ├── AB08MD.f ├── AB08MZ.f ├── AB08ND.f ├── AB08NW.f ├── AB08NX.f ├── AB08NY.f ├── AB08NZ.f ├── AB09AD.f ├── AB09AX.f ├── AB09BD.f ├── AB09BX.f ├── AB09CD.f ├── AB09CX.f ├── AB09DD.f ├── AB09ED.f ├── AB09FD.f ├── AB09GD.f ├── AB09HD.f ├── AB09HX.f ├── AB09HY.f ├── AB09ID.f ├── AB09IX.f ├── AB09IY.f ├── AB09JD.f ├── AB09JV.f ├── AB09JW.f ├── AB09JX.f ├── AB09KD.f ├── AB09KX.f ├── AB09MD.f ├── AB09ND.f ├── AB13AD.f ├── AB13AX.f ├── AB13BD.f ├── AB13CD.f ├── AB13DD.f ├── AB13DX.f ├── AB13ED.f ├── AB13FD.f ├── AB13HD.f ├── AB13ID.f ├── AB13MD.f ├── AB8NXZ.f ├── AG07BD.f ├── AG08BD.f ├── AG08BY.f ├── AG08BZ.f ├── AG8BYZ.f ├── BB01AD.f ├── BB02AD.f ├── BB03AD.f ├── BB04AD.f ├── BD01AD.f ├── BD02AD.f ├── DE01OD.f ├── DE01PD.f ├── DF01MD.f ├── DG01MD.f ├── DG01ND.f ├── DG01NY.f ├── DG01OD.f ├── DK01MD.f ├── FB01QD.f ├── FB01RD.f ├── FB01SD.f ├── FB01TD.f ├── FB01VD.f ├── FD01AD.f ├── IB01AD.f ├── IB01BD.f ├── IB01CD.f ├── IB01MD.f ├── IB01MY.f ├── IB01ND.f ├── IB01OD.f ├── IB01OY.f ├── IB01PD.f ├── IB01PX.f ├── IB01PY.f ├── IB01QD.f ├── IB01RD.f ├── IB03AD.f ├── IB03BD.f ├── MA01AD.f ├── MA01BD.f ├── MA01BZ.f ├── MA01CD.f ├── MA01DD.f ├── MA01DZ.f ├── MA02AD.f ├── MA02AZ.f ├── MA02BD.f ├── MA02BZ.f ├── MA02CD.f ├── MA02CZ.f ├── MA02DD.f ├── MA02ED.f ├── MA02ES.f ├── MA02EZ.f ├── MA02FD.f ├── MA02GD.f ├── MA02GZ.f ├── MA02HD.f ├── MA02HZ.f ├── MA02ID.f ├── MA02IZ.f ├── MA02JD.f ├── MA02JZ.f ├── MA02MD.f ├── MA02MZ.f ├── MA02NZ.f ├── MA02OD.f ├── MA02OZ.f ├── MA02PD.f ├── MA02PZ.f ├── MA02RD.f ├── MA02SD.f ├── MB01KD.f ├── MB01LD.f ├── MB01MD.f ├── MB01ND.f ├── MB01OC.f ├── MB01OD.f ├── MB01OE.f ├── MB01OH.f ├── MB01OO.f ├── MB01OS.f ├── MB01OT.f ├── MB01PD.f ├── MB01QD.f ├── MB01RB.f ├── MB01RD.f ├── MB01RH.f ├── MB01RT.f ├── MB01RU.f ├── MB01RW.f ├── MB01RX.f ├── MB01RY.f ├── MB01SD.f ├── MB01SS.f ├── MB01TD.f ├── MB01UD.f ├── MB01UW.f ├── MB01UX.f ├── MB01UY.f ├── MB01UZ.f ├── MB01VD.f ├── MB01WD.f ├── MB01XD.f ├── MB01XY.f ├── MB01YD.f ├── MB01ZD.f ├── MB02CD.f ├── MB02CU.f ├── MB02CV.f ├── MB02CX.f ├── MB02CY.f ├── MB02DD.f ├── MB02ED.f ├── MB02FD.f ├── MB02GD.f ├── MB02HD.f ├── MB02ID.f ├── MB02JD.f ├── MB02JX.f ├── MB02KD.f ├── MB02MD.f ├── MB02ND.f ├── MB02NY.f ├── MB02OD.f ├── MB02PD.f ├── MB02QD.f ├── MB02QY.f ├── MB02RD.f ├── MB02RZ.f ├── MB02SD.f ├── MB02SZ.f ├── MB02TD.f ├── MB02TZ.f ├── MB02UD.f ├── MB02UU.f ├── MB02UV.f ├── MB02UW.f ├── MB02VD.f ├── MB02WD.f ├── MB02XD.f ├── MB02YD.f ├── MB03AB.f ├── MB03AD.f ├── MB03AE.f ├── MB03AF.f ├── MB03AG.f ├── MB03AH.f ├── MB03AI.f ├── MB03BA.f ├── MB03BB.f ├── MB03BC.f ├── MB03BD.f ├── MB03BE.f ├── MB03BF.f ├── MB03BG.f ├── MB03BZ.f ├── MB03CD.f ├── MB03CZ.f ├── MB03DD.f ├── MB03DZ.f ├── MB03ED.f ├── MB03FD.f ├── MB03FZ.f ├── MB03GD.f ├── MB03GZ.f ├── MB03HD.f ├── MB03HZ.f ├── MB03ID.f ├── MB03IZ.f ├── MB03JD.f ├── MB03JP.f ├── MB03JZ.f ├── MB03KA.f ├── MB03KB.f ├── MB03KC.f ├── MB03KD.f ├── MB03KE.f ├── MB03LD.f ├── MB03LF.f ├── MB03LP.f ├── MB03LZ.f ├── MB03MD.f ├── MB03MY.f ├── MB03ND.f ├── MB03NY.f ├── MB03OD.f ├── MB03OY.f ├── MB03PD.f ├── MB03PY.f ├── MB03QD.f ├── MB03QG.f ├── MB03QV.f ├── MB03QW.f ├── MB03QX.f ├── MB03QY.f ├── MB03RD.f ├── MB03RW.f ├── MB03RX.f ├── MB03RY.f ├── MB03RZ.f ├── MB03SD.f ├── MB03TD.f ├── MB03TS.f ├── MB03UD.f ├── MB03VD.f ├── MB03VW.f ├── MB03VY.f ├── MB03WA.f ├── MB03WD.f ├── MB03WX.f ├── MB03XD.f ├── MB03XP.f ├── MB03XS.f ├── MB03XU.f ├── MB03XZ.f ├── MB03YA.f ├── MB03YD.f ├── MB03YT.f ├── MB03ZA.f ├── MB03ZD.f ├── MB04AD.f ├── MB04AZ.f ├── MB04BD.f ├── MB04BP.f ├── MB04BZ.f ├── MB04CD.f ├── MB04DB.f ├── MB04DD.f ├── MB04DI.f ├── MB04DL.f ├── MB04DP.f ├── MB04DS.f ├── MB04DY.f ├── MB04DZ.f ├── MB04ED.f ├── MB04FD.f ├── MB04FP.f ├── MB04GD.f ├── MB04HD.f ├── MB04ID.f ├── MB04IY.f ├── MB04IZ.f ├── MB04JD.f ├── MB04KD.f ├── MB04LD.f ├── MB04MD.f ├── MB04ND.f ├── MB04NY.f ├── MB04OD.f ├── MB04OW.f ├── MB04OX.f ├── MB04OY.f ├── MB04PA.f ├── MB04PB.f ├── MB04PU.f ├── MB04PY.f ├── MB04QB.f ├── MB04QC.f ├── MB04QF.f ├── MB04QS.f ├── MB04QU.f ├── MB04RB.f ├── MB04RD.f ├── MB04RS.f ├── MB04RT.f ├── MB04RU.f ├── MB04RV.f ├── MB04RW.f ├── MB04RZ.f ├── MB04SU.f ├── MB04TB.f ├── MB04TS.f ├── MB04TT.f ├── MB04TU.f ├── MB04TV.f ├── MB04TW.f ├── MB04TX.f ├── MB04TY.f ├── MB04UD.f ├── MB04VD.f ├── MB04VX.f ├── MB04WD.f ├── MB04WP.f ├── MB04WR.f ├── MB04WU.f ├── MB04XD.f ├── MB04XY.f ├── MB04YD.f ├── MB04YW.f ├── MB04ZD.f ├── MB05MD.f ├── MB05MY.f ├── MB05ND.f ├── MB05OD.f ├── MB05OY.f ├── MB3JZP.f ├── MB3LZP.f ├── MB3OYZ.f ├── MB3PYZ.f ├── MB4DBZ.f ├── MB4DLZ.f ├── MB4DPZ.f ├── MC01MD.f ├── MC01ND.f ├── MC01OD.f ├── MC01PD.f ├── MC01PY.f ├── MC01QD.f ├── MC01RD.f ├── MC01SD.f ├── MC01SW.f ├── MC01SX.f ├── MC01SY.f ├── MC01TD.f ├── MC01VD.f ├── MC01WD.f ├── MC01XD.f ├── MC03MD.f ├── MC03ND.f ├── MC03NX.f ├── MC03NY.f ├── MD03AD.f ├── MD03BA.f ├── MD03BB.f ├── MD03BD.f ├── MD03BF.f ├── MD03BX.f ├── MD03BY.f ├── NF01AD.f ├── NF01AY.f ├── NF01BA.f ├── NF01BB.f ├── NF01BD.f ├── NF01BE.f ├── NF01BF.f ├── NF01BP.f ├── NF01BQ.f ├── NF01BR.f ├── NF01BS.f ├── NF01BU.f ├── NF01BV.f ├── NF01BW.f ├── NF01BX.f ├── NF01BY.f ├── SB01BD.f ├── SB01BX.f ├── SB01BY.f ├── SB01DD.f ├── SB01FY.f ├── SB01MD.f ├── SB02CX.f ├── SB02MD.f ├── SB02MR.f ├── SB02MS.f ├── SB02MT.f ├── SB02MU.f ├── SB02MV.f ├── SB02MW.f ├── SB02MX.f ├── SB02ND.f ├── SB02OD.f ├── SB02OU.f ├── SB02OV.f ├── SB02OW.f ├── SB02OX.f ├── SB02OY.f ├── SB02PD.f ├── SB02QD.f ├── SB02RD.f ├── SB02RU.f ├── SB02SD.f ├── SB03MD.f ├── SB03MU.f ├── SB03MV.f ├── SB03MW.f ├── SB03MX.f ├── SB03MY.f ├── SB03OD.f ├── SB03OR.f ├── SB03OS.f ├── SB03OT.f ├── SB03OU.f ├── SB03OV.f ├── SB03OY.f ├── SB03OZ.f ├── SB03PD.f ├── SB03QD.f ├── SB03QX.f ├── SB03QY.f ├── SB03RD.f ├── SB03SD.f ├── SB03SX.f ├── SB03SY.f ├── SB03TD.f ├── SB03UD.f ├── SB04MD.f ├── SB04MR.f ├── SB04MU.f ├── SB04MW.f ├── SB04MY.f ├── SB04ND.f ├── SB04NV.f ├── SB04NW.f ├── SB04NX.f ├── SB04NY.f ├── SB04OD.f ├── SB04OW.f ├── SB04PD.f ├── SB04PX.f ├── SB04PY.f ├── SB04QD.f ├── SB04QR.f ├── SB04QU.f ├── SB04QY.f ├── SB04RD.f ├── SB04RV.f ├── SB04RW.f ├── SB04RX.f ├── SB04RY.f ├── SB06ND.f ├── SB08CD.f ├── SB08DD.f ├── SB08ED.f ├── SB08FD.f ├── SB08GD.f ├── SB08HD.f ├── SB08MD.f ├── SB08MY.f ├── SB08ND.f ├── SB08NY.f ├── SB09MD.f ├── SB10AD.f ├── SB10DD.f ├── SB10ED.f ├── SB10FD.f ├── SB10HD.f ├── SB10ID.f ├── SB10JD.f ├── SB10KD.f ├── SB10LD.f ├── SB10MD.f ├── SB10PD.f ├── SB10QD.f ├── SB10RD.f ├── SB10SD.f ├── SB10TD.f ├── SB10UD.f ├── SB10VD.f ├── SB10WD.f ├── SB10YD.f ├── SB10ZD.f ├── SB10ZP.f ├── SB16AD.f ├── SB16AY.f ├── SB16BD.f ├── SB16CD.f ├── SB16CY.f ├── SG02AD.f ├── SG02CV.f ├── SG02CW.f ├── SG02CX.f ├── SG02ND.f ├── SG03AD.f ├── SG03AX.f ├── SG03AY.f ├── SG03BD.f ├── SG03BR.f ├── SG03BS.f ├── SG03BT.f ├── SG03BU.f ├── SG03BV.f ├── SG03BW.f ├── SG03BX.f ├── SG03BY.f ├── SG03BZ.f ├── TB01ID.f ├── TB01IZ.f ├── TB01KD.f ├── TB01KX.f ├── TB01LD.f ├── TB01MD.f ├── TB01ND.f ├── TB01PD.f ├── TB01PX.f ├── TB01TD.f ├── TB01TY.f ├── TB01UD.f ├── TB01UX.f ├── TB01UY.f ├── TB01VD.f ├── TB01VY.f ├── TB01WD.f ├── TB01WX.f ├── TB01XD.f ├── TB01XZ.f ├── TB01YD.f ├── TB01ZD.f ├── TB03AD.f ├── TB03AY.f ├── TB04AD.f ├── TB04AY.f ├── TB04BD.f ├── TB04BV.f ├── TB04BW.f ├── TB04BX.f ├── TB04CD.f ├── TB05AD.f ├── TC01OD.f ├── TC04AD.f ├── TC05AD.f ├── TD03AD.f ├── TD03AY.f ├── TD04AD.f ├── TD05AD.f ├── TF01MD.f ├── TF01MX.f ├── TF01MY.f ├── TF01ND.f ├── TF01OD.f ├── TF01PD.f ├── TF01QD.f ├── TF01RD.f ├── TG01AD.f ├── TG01AZ.f ├── TG01BD.f ├── TG01CD.f ├── TG01DD.f ├── TG01ED.f ├── TG01FD.f ├── TG01FZ.f ├── TG01GD.f ├── TG01HD.f ├── TG01HU.f ├── TG01HX.f ├── TG01HY.f ├── TG01ID.f ├── TG01JD.f ├── TG01JY.f ├── TG01KD.f ├── TG01KZ.f ├── TG01LD.f ├── TG01LY.f ├── TG01MD.f ├── TG01ND.f ├── TG01NX.f ├── TG01OA.f ├── TG01OB.f ├── TG01OD.f ├── TG01OZ.f ├── TG01PD.f ├── TG01QD.f ├── TG01WD.f ├── UD01BD.f ├── UD01CD.f ├── UD01DD.f ├── UD01MD.f ├── UD01MZ.f ├── UD01ND.f ├── UE01MD.f ├── delctg.f ├── makefile ├── makefile_Unix ├── readme ├── select.f └── zelctg.f └── src_aux ├── dlatzm.f ├── makefile ├── makefile_Unix ├── readme └── zlatzm.f /benchmark_data/BB01103.dat: -------------------------------------------------------------------------------- 1 | 0.000D+00 1.000D+00 0.000D+00 0.000D+00 2 | 0.000D+00 -1.890D+00 3.900D-01 -5.530D+00 3 | 0.000D+00 -3.400D-02 -2.980D+00 2.430D+00 4 | 3.400D-02 -1.100D-03 -9.900D-01 -2.100D-01 5 | 0.000D+00 0.000D+00 6 | 3.600D-01 -1.600D+00 7 | -9.500D-01 -3.200D-02 8 | 3.000D-02 0.000D+00 9 | 2.313D+00 2.727D+00 6.880D-01 2.300D-02 10 | 2.727D+00 4.271D+00 1.148D+00 3.230D-01 11 | 6.880D-01 1.148D+00 3.130D-01 1.020D-01 12 | 2.300D-02 3.230D-01 1.020D-01 8.300D-02 13 | -------------------------------------------------------------------------------- /benchmark_data/BB02105.dat: -------------------------------------------------------------------------------- 1 | .998D+00 .670D-01 .000D+00 .000D+00 2 | -.670D-01 .998D+00 .000D+00 .000D+00 3 | .000D+00 .000D+00 .998D+00 .153D+00 4 | .000D+00 .000D+00 -.153D+00 .998D+00 5 | .330D-02 .200D-01 6 | .100D+00 -.700D-03 7 | .400D-01 .730D-02 8 | -.280D-02 .100D+00 9 | -------------------------------------------------------------------------------- /benchmark_data/BB02106.dat: -------------------------------------------------------------------------------- 1 | .98475D+00 -.79903D-01 .90540D-03 -.10765D-02 2 | .41588D-01 .99899D+00 -.35855D-01 .12684D-01 3 | -.54662D+00 .44916D-01 -.32991D+00 .19318D+00 4 | .26624D+01 -.10045D+00 -.92455D+00 -.26325D+00 5 | .37112D-02 .73610D-03 6 | -.87051D-01 .93411D-05 7 | -.119844D+01 -.41378D-03 8 | -.31927D+01 .92535D-03 9 | -------------------------------------------------------------------------------- /benchmark_data/BB02107.dat: -------------------------------------------------------------------------------- 1 | -.6000D+00 -.2200D+01 -.3600D+01 -.5400018D+01 2 | .1000D+01 .6000D+00 .8000D+00 .3399982D+01 3 | .0000D+00 .1000D+01 .1800D+01 .3799982D+01 4 | .0000D+00 .0000D+00 .0000D+00 -.999982D+00 5 | .1000D+01 -.1000D+01 -.1000D+01 -.1000D+01 6 | .0000D+00 .1000D+01 -.1000D+01 -.1000D+01 7 | .0000D+00 .0000D+00 .1000D+01 -.1000D+01 8 | .0000D+00 .0000D+00 .0000D+00 .1000D+01 9 | -------------------------------------------------------------------------------- /benchmark_data/BB02108.dat: -------------------------------------------------------------------------------- 1 | .95407D+00 .19643D-01 .35970D-02 .67300D-03 .19000D-03 2 | .40849D+00 .41317D+00 .16084D+00 .44679D-01 .11971D-01 3 | .12217D+00 .26326D+00 .36149D+00 .15930D+00 .12383D+00 4 | .41118D-01 .12858D+00 .27209D+00 .21442D+00 .40976D+00 5 | .13050D-02 .58080D-02 .18750D-01 .36162D-01 .94280D+00 6 | .43400D-03 -.12200D-03 7 | .26606D-01 -.10453D-01 8 | .37530D-01 -.55100D-01 9 | .36076D-01 -.66000D-01 10 | .46170D-02 -.91480D-02 11 | -------------------------------------------------------------------------------- /benchmark_data/BD01103.dat: -------------------------------------------------------------------------------- 1 | 0.000D+00 1.000D+00 0.000D+00 0.000D+00 2 | 0.000D+00 -1.890D+00 3.900D-01 -5.530D+00 3 | 0.000D+00 -3.400D-02 -2.980D+00 2.430D+00 4 | 3.400D-02 -1.100D-03 -9.900D-01 -2.100D-01 5 | 0.000D+00 0.000D+00 6 | 3.600D-01 -1.600D+00 7 | -9.500D-01 -3.200D-02 8 | 3.000D-02 0.000D+00 9 | -------------------------------------------------------------------------------- /benchmark_data/BD012051.dat: -------------------------------------------------------------------------------- 1 | 0.000D+00 1.000D+00 2 | 9.800D+00 0.000D+00 3 | 0.000D+00 4 | 1.000D+00 5 | 1.000D+00 0.000D+00 6 | -------------------------------------------------------------------------------- /benchmark_data/BD012052.dat: -------------------------------------------------------------------------------- 1 | 0.000D+00 1.000D+00 0.000D+00 0.000D+00 2 | 9.800D+00 0.000D+00 -9.800D+00 0.000D+00 3 | 0.000D+00 0.000D+00 0.000D+00 1.000D+00 4 | -9.800D+00 0.000D+00 2.940D+01 0.000D+00 5 | 0.000D+00 0.000D+00 6 | 1.000D+00 -2.000D+00 7 | 0.000D+00 0.000D+00 8 | -2.000D+00 5.000D+00 9 | 1.000D+00 0.000D+00 0.000D+00 0.000D+00 10 | 0.000D+00 0.000D+00 1.000D+00 0.000D+00 11 | -------------------------------------------------------------------------------- /benchmark_data/BD012053.dat: -------------------------------------------------------------------------------- 1 | 0.000D+00 0.000D+00 0.000D+00 1.000D+00 0.000D+00 0.000D+00 2 | 0.000D+00 0.000D+00 0.000D+00 0.000D+00 1.000D+00 0.000D+00 3 | 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 1.000D+00 4 | 2.940D+01 -1.960D+01 -3.6285D-16 0.000D+00 0.000D+00 0.000D+00 5 | -2.940D+01 3.920D+01 -9.800D+00 0.000D+00 0.000D+00 0.000D+00 6 | 0.000D+00 -1.960D+01 1.960D+01 0.000D+00 0.000D+00 0.000D+00 7 | 0.000D+00 0.000D+00 0.000D+00 8 | 0.000D+00 0.000D+00 0.000D+00 9 | 0.000D+00 0.000D+00 0.000D+00 10 | 1.6667D+00 -2.6667D+00 1.000D+00 11 | -2.3333D+00 4.8333D+00 -3.500D+00 12 | 6.6667D-01 -2.6667D+00 4.000D+00 13 | 1.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 14 | 0.000D+00 1.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 15 | 0.000D+00 0.000D+00 1.000D+00 0.000D+00 0.000D+00 0.000D+00 16 | -------------------------------------------------------------------------------- /benchmark_data/BD01206.dat: -------------------------------------------------------------------------------- 1 | -8.950D-01 -2.860D-01 2 | -4.367D+00 -9.180D-01 3 | 1.080D-01 -9.180D-01 4 | -7.700D-01 -3.350D-01 5 | -3.394D+00 -1.627D+00 6 | 1.700D-01 -1.627D+00 7 | -5.970D-01 -3.720D-01 8 | -3.651D+00 -7.920D-01 9 | 1.030D-01 -7.920D-01 10 | -2.980D-01 -2.790D-01 11 | -4.370D+00 -7.730D-01 12 | 1.160D-01 -7.730D-01 13 | -4.540D-01 -4.330D-01 14 | -4.005D+00 -8.070D-01 15 | 9.700D-02 -8.070D-01 16 | -------------------------------------------------------------------------------- /benchmark_data/BD02106.dat: -------------------------------------------------------------------------------- 1 | 9.98D-1 6.70D-2 0.00D0 0.00D0 2 | -6.70D-2 9.98D-1 0.00D0 0.00D0 3 | 0.00D0 0.00D0 9.98D-1 1.53D-1 4 | 0.00D0 0.00D0 -1.53D-1 9.98D-1 5 | 3.30D-3 2.00D-2 6 | 1.00D-1 -7.00D-4 7 | 4.00D-2 7.30D-3 8 | -2.80D-3 1.00D-1 9 | -------------------------------------------------------------------------------- /benchmark_data/BD02107.dat: -------------------------------------------------------------------------------- 1 | 9.8475D-1 -7.9903D-2 9.0540D-4 -1.0765D-3 2 | 4.1588D-2 9.9899D-1 -3.5855D-2 1.2684D-2 3 | -5.4662D-1 4.4916D-2 -3.2991D-1 1.9318D-1 4 | 2.6624D0 -1.0045D-1 -9.2455D-1 -2.6325D-1 5 | 3.7112D-3 7.3610D-4 6 | -8.7051D-2 9.3411D-6 7 | -1.19844D0 -4.1378D-4 8 | -3.1927D0 9.2535D-4 9 | -------------------------------------------------------------------------------- /benchmark_data/BD02108.dat: -------------------------------------------------------------------------------- 1 | -6.0D-01 -2.2D0 -3.6D0 -5.400018D0 2 | 1.0D0 6.0D-01 8.0D-01 3.399982D0 3 | 0.0D0 1.0D0 1.8D0 3.799982D0 4 | 0.0D0 0.0D0 0.0D0 -9.99982D-1 5 | 1.0D0 -1.0D0 -1.0D0 -1.0D0 6 | 0.0D0 1.0D0 -1.0D0 -1.0D0 7 | 0.0D0 0.0D0 1.0D0 -1.0D0 8 | 0.0D0 0.0D0 0.0D0 1.0D0 9 | -------------------------------------------------------------------------------- /benchmark_data/BD02109.dat: -------------------------------------------------------------------------------- 1 | 9.5407D-1 1.9643D-2 3.5970D-3 6.7300D-4 1.9000D-4 2 | 4.0849D-1 4.1317D-1 1.6084D-1 4.4679D-2 1.1971D-2 3 | 1.2217D-1 2.6326D-1 3.6149D-1 1.5930D-1 1.2383D-1 4 | 4.1118D-2 1.2858D-1 2.7209D-1 2.1442D-1 4.0976D-1 5 | 1.3050D-3 5.8080D-3 1.8750D-2 3.6162D-2 9.4280D-1 6 | 4.3400D-4 -1.2200D-4 7 | 2.6606D-2 -1.0453D-2 8 | 3.7530D-2 -5.5100D-2 9 | 3.6076D-2 -6.6000D-2 10 | 4.6170D-3 -9.1480D-3 11 | -------------------------------------------------------------------------------- /benchmark_data/BD02112.dat: -------------------------------------------------------------------------------- 1 | 0.000D+00 0.000D+00 0.000D+00 2 | -2.230D-01 1.850D+00 -5.420D-01 3 | 2.830D+01 2.040D+02 6.870D+01 4 | -5.210D+00 -8.430D-01 -2.850D-01 5 | -1.010D-01 -6.750D+00 -2.460D-01 6 | -------------------------------------------------------------------------------- /examples/AB01MD.dat: -------------------------------------------------------------------------------- 1 | AB01MD EXAMPLE PROGRAM DATA 2 | 3 0.0 I 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 1.0 7 | -------------------------------------------------------------------------------- /examples/AB01MD.res: -------------------------------------------------------------------------------- 1 | AB01MD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the controllable state-space representation = 3 4 | 5 | The state dynamics matrix A of a controllable realization is 6 | 1.0000 1.4142 0.0000 7 | 2.8284 -1.0000 2.8284 8 | 0.0000 1.4142 1.0000 9 | 10 | The input/state vector B of a controllable realization is 11 | -1.4142 12 | 0.0000 13 | 0.0000 14 | 15 | The similarity transformation matrix Z is 16 | -0.7071 0.0000 -0.7071 17 | 0.0000 -1.0000 0.0000 18 | -0.7071 0.0000 0.7071 19 | -------------------------------------------------------------------------------- /examples/AB01ND.dat: -------------------------------------------------------------------------------- 1 | AB01ND EXAMPLE PROGRAM DATA 2 | 3 2 0.0 I 3 | -1.0 0.0 0.0 4 | -2.0 -2.0 -2.0 5 | -1.0 0.0 -3.0 6 | 1.0 0.0 0.0 7 | 0.0 2.0 1.0 8 | -------------------------------------------------------------------------------- /examples/AB01ND.res: -------------------------------------------------------------------------------- 1 | AB01ND EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the controllable state-space representation = 2 4 | 5 | The transformed state dynamics matrix of a controllable realization is 6 | -3.0000 2.2361 7 | 0.0000 -1.0000 8 | 9 | and the dimensions of its diagonal blocks are 10 | 2 11 | 12 | The transformed input/state matrix B of a controllable realization is 13 | 0.0000 -2.2361 14 | 1.0000 0.0000 15 | 16 | The controllability index of the transformed system representation = 1 17 | 18 | The similarity transformation matrix Z is 19 | 0.0000 1.0000 0.0000 20 | -0.8944 0.0000 -0.4472 21 | -0.4472 0.0000 0.8944 22 | -------------------------------------------------------------------------------- /examples/AB01OD.dat: -------------------------------------------------------------------------------- 1 | AB01OD EXAMPLE PROGRAM DATA 2 | 5 2 0.0 F N N 3 | 17.0 24.0 1.0 8.0 15.0 4 | 23.0 5.0 7.0 14.0 16.0 5 | 4.0 6.0 13.0 20.0 22.0 6 | 10.0 12.0 19.0 21.0 3.0 7 | 11.0 18.0 25.0 2.0 9.0 8 | -1.0 -4.0 9 | 4.0 9.0 10 | -9.0 -16.0 11 | 16.0 25.0 12 | -25.0 -36.0 13 | -------------------------------------------------------------------------------- /examples/AB01OD.res: -------------------------------------------------------------------------------- 1 | AB01OD EXAMPLE PROGRAM RESULTS 2 | 3 | The transformed state transition matrix is 4 | 12.8848 3.2345 11.8211 3.3758 -0.8982 5 | 4.4741 -12.5544 5.3509 5.9403 1.4360 6 | 14.4576 7.6855 23.1452 26.3872 -29.9557 7 | 0.0000 1.4805 27.4668 22.6564 -0.0072 8 | 0.0000 0.0000 -30.4822 0.6745 18.8680 9 | 10 | The transformed input matrix is 11 | 31.1199 47.6865 12 | 3.2480 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 0.0000 16 | 17 | The number of stairs in the staircase form = 3 18 | 19 | The dimensions of the stairs are 20 | 2 2 1 21 | -------------------------------------------------------------------------------- /examples/AB04MD.dat: -------------------------------------------------------------------------------- 1 | AB04MD EXAMPLE PROGRAM DATA 2 | 2 2 2 C 1.0D0 1.0D0 3 | 1.0 0.5 4 | 0.5 1.0 5 | 0.0 -1.0 6 | 1.0 0.0 7 | -1.0 0.0 8 | 0.0 1.0 9 | 1.0 0.0 10 | 0.0 -1.0 11 | -------------------------------------------------------------------------------- /examples/AB04MD.res: -------------------------------------------------------------------------------- 1 | AB04MD EXAMPLE PROGRAM RESULTS 2 | 3 | The transformed state matrix is 4 | -1.0000 -4.0000 5 | -4.0000 -1.0000 6 | 7 | The transformed input matrix is 8 | 2.8284 0.0000 9 | 0.0000 -2.8284 10 | 11 | The transformed output matrix is 12 | 0.0000 2.8284 13 | -2.8284 0.0000 14 | 15 | The transformed input/output matrix is 16 | -1.0000 0.0000 17 | 0.0000 -3.0000 18 | -------------------------------------------------------------------------------- /examples/AB05MD.dat: -------------------------------------------------------------------------------- 1 | AB05MD EXAMPLE PROGRAM DATA 2 | 3 2 2 3 2 3 | 1.0 0.0 -1.0 4 | 0.0 -1.0 1.0 5 | 1.0 1.0 2.0 6 | 1.0 1.0 0.0 7 | 2.0 0.0 1.0 8 | 3.0 -2.0 1.0 9 | 0.0 1.0 0.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -3.0 0.0 0.0 13 | 1.0 0.0 1.0 14 | 0.0 -1.0 2.0 15 | 0.0 -1.0 0.0 16 | 1.0 0.0 2.0 17 | 1.0 1.0 0.0 18 | 1.0 1.0 -1.0 19 | 1.0 1.0 20 | 0.0 1.0 21 | -------------------------------------------------------------------------------- /examples/AB05MD.res: -------------------------------------------------------------------------------- 1 | AB05MD EXAMPLE PROGRAM RESULTS 2 | 3 | The state transition matrix of the cascaded system is 4 | 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 5 | 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 6 | 1.0000 1.0000 2.0000 0.0000 0.0000 0.0000 7 | 0.0000 1.0000 0.0000 -3.0000 0.0000 0.0000 8 | -3.0000 2.0000 -1.0000 1.0000 0.0000 1.0000 9 | 0.0000 2.0000 0.0000 0.0000 -1.0000 2.0000 10 | 11 | The input/state matrix of the cascaded system is 12 | 1.0000 2.0000 13 | 1.0000 0.0000 14 | 0.0000 1.0000 15 | 0.0000 1.0000 16 | -1.0000 0.0000 17 | 0.0000 2.0000 18 | 19 | The state/output matrix of the cascaded system is 20 | 3.0000 -1.0000 1.0000 1.0000 1.0000 0.0000 21 | 0.0000 1.0000 0.0000 1.0000 1.0000 -1.0000 22 | 23 | The input/output matrix of the cascaded system is 24 | 1.0000 1.0000 25 | 0.0000 1.0000 26 | -------------------------------------------------------------------------------- /examples/AB05ND.dat: -------------------------------------------------------------------------------- 1 | AB05ND EXAMPLE PROGRAM DATA 2 | 3 2 2 3 3 | 1.0 0.0 -1.0 4 | 0.0 -1.0 1.0 5 | 1.0 1.0 2.0 6 | 1.0 1.0 0.0 7 | 2.0 0.0 1.0 8 | 3.0 -2.0 1.0 9 | 0.0 1.0 0.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -3.0 0.0 0.0 13 | 1.0 0.0 1.0 14 | 0.0 -1.0 2.0 15 | 0.0 -1.0 0.0 16 | 1.0 0.0 2.0 17 | 1.0 1.0 0.0 18 | 1.0 1.0 -1.0 19 | 1.0 1.0 20 | 0.0 1.0 21 | -------------------------------------------------------------------------------- /examples/AB05ND.res: -------------------------------------------------------------------------------- 1 | AB05ND EXAMPLE PROGRAM RESULTS 2 | 3 | The state transition matrix of the connected system is 4 | -0.5000 -0.2500 -1.5000 -1.2500 -1.2500 0.7500 5 | -1.5000 -0.2500 0.5000 -0.2500 -0.2500 -0.2500 6 | 1.0000 0.5000 2.0000 -0.5000 -0.5000 0.5000 7 | 0.0000 0.5000 0.0000 -3.5000 -0.5000 0.5000 8 | -1.5000 1.2500 -0.5000 1.2500 0.2500 1.2500 9 | 0.0000 1.0000 0.0000 -1.0000 -2.0000 3.0000 10 | 11 | The input/state matrix of the connected system is 12 | 0.5000 0.7500 13 | 0.5000 -0.2500 14 | 0.0000 0.5000 15 | 0.0000 0.5000 16 | -0.5000 0.2500 17 | 0.0000 1.0000 18 | 19 | The state/output matrix of the connected system is 20 | 1.5000 -1.2500 0.5000 -0.2500 -0.2500 -0.2500 21 | 0.0000 0.5000 0.0000 -0.5000 -0.5000 0.5000 22 | 23 | The input/output matrix of the connected system is 24 | 0.5000 -0.2500 25 | 0.0000 0.5000 26 | -------------------------------------------------------------------------------- /examples/AB05OD.dat: -------------------------------------------------------------------------------- 1 | AB05OD EXAMPLE PROGRAM DATA 2 | 3 2 2 3 2 3 | 1.0 0.0 -1.0 4 | 0.0 -1.0 1.0 5 | 1.0 1.0 2.0 6 | 1.0 1.0 0.0 7 | 2.0 0.0 1.0 8 | 3.0 -2.0 1.0 9 | 0.0 1.0 0.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -3.0 0.0 0.0 13 | 1.0 0.0 1.0 14 | 0.0 -1.0 2.0 15 | 0.0 -1.0 0.0 16 | 1.0 0.0 2.0 17 | 1.0 1.0 0.0 18 | 1.0 1.0 -1.0 19 | 1.0 1.0 20 | 0.0 1.0 21 | -------------------------------------------------------------------------------- /examples/AB05PD.dat: -------------------------------------------------------------------------------- 1 | AB05PD EXAMPLE PROGRAM DATA 2 | 3 2 2 3 1.0D0 3 | 1.0 0.0 -1.0 4 | 0.0 -1.0 1.0 5 | 1.0 1.0 2.0 6 | 1.0 1.0 0.0 7 | 2.0 0.0 1.0 8 | 3.0 -2.0 1.0 9 | 0.0 1.0 0.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -3.0 0.0 0.0 13 | 1.0 0.0 1.0 14 | 0.0 -1.0 2.0 15 | 0.0 -1.0 0.0 16 | 1.0 0.0 2.0 17 | 1.0 1.0 0.0 18 | 1.0 1.0 -1.0 19 | 1.0 1.0 20 | 0.0 1.0 21 | -------------------------------------------------------------------------------- /examples/AB05PD.res: -------------------------------------------------------------------------------- 1 | AB05PD EXAMPLE PROGRAM RESULTS 2 | 3 | The state transition matrix of the connected system is 4 | 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 5 | 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 6 | 1.0000 1.0000 2.0000 0.0000 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -3.0000 0.0000 0.0000 8 | 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 9 | 0.0000 0.0000 0.0000 0.0000 -1.0000 2.0000 10 | 11 | The input/state matrix of the connected system is 12 | 1.0000 2.0000 13 | 1.0000 0.0000 14 | 0.0000 1.0000 15 | 0.0000 1.0000 16 | -1.0000 0.0000 17 | 0.0000 2.0000 18 | 19 | The state/output matrix of the connected system is 20 | 3.0000 -2.0000 1.0000 1.0000 1.0000 0.0000 21 | 0.0000 1.0000 0.0000 1.0000 1.0000 -1.0000 22 | 23 | The input/output matrix of the connected system is 24 | 2.0000 1.0000 25 | 0.0000 2.0000 26 | -------------------------------------------------------------------------------- /examples/AB05QD.dat: -------------------------------------------------------------------------------- 1 | AB05QD EXAMPLE PROGRAM DATA 2 | 3 2 2 3 2 2 3 | 1.0 0.0 -1.0 4 | 0.0 -1.0 1.0 5 | 1.0 1.0 2.0 6 | 1.0 1.0 0.0 7 | 2.0 0.0 1.0 8 | 3.0 -2.0 1.0 9 | 0.0 1.0 0.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -3.0 0.0 0.0 13 | 1.0 0.0 1.0 14 | 0.0 -1.0 2.0 15 | 0.0 -1.0 0.0 16 | 1.0 0.0 2.0 17 | 1.0 1.0 0.0 18 | 1.0 1.0 -1.0 19 | 1.0 1.0 20 | 0.0 1.0 21 | -------------------------------------------------------------------------------- /examples/AB05RD.dat: -------------------------------------------------------------------------------- 1 | AB05RD EXAMPLE PROGRAM DATA 2 | 3 2 2 2 2 1.0 1.0 O D 3 | 1.0 0.0 -1.0 4 | 0.0 -1.0 1.0 5 | 1.0 1.0 2.0 6 | 1.0 1.0 0.0 7 | 2.0 0.0 1.0 8 | 2.0 1.0 0.0 9 | 1.0 0.0 1.0 10 | 3.0 -2.0 1.0 11 | 0.0 1.0 0.0 12 | 1.0 0.0 13 | 0.0 1.0 14 | 1.0 2.0 15 | 3.0 4.0 16 | 1.0 1.0 17 | 0.0 1.0 18 | 4.0 3.0 19 | 2.0 1.0 20 | -------------------------------------------------------------------------------- /examples/AB05RD.res: -------------------------------------------------------------------------------- 1 | AB05RD EXAMPLE PROGRAM RESULTS 2 | 3 | The reciprocal condition number of the matrix I - alpha*D*F is 0.2000 4 | 5 | The state transition matrix of the closed-loop system is 6 | -4.8333 0.1667 -2.8333 7 | -0.8333 0.1667 0.1667 8 | -1.5000 0.5000 1.5000 9 | 10 | The input/state matrix of the closed-loop system is 11 | -0.5000 -0.8333 12 | 0.5000 0.1667 13 | -0.5000 -0.5000 14 | 15 | The state/output matrix of the closed-loop system is 16 | 1.1667 -1.8333 -0.8333 17 | 1.8333 -1.1667 -0.1667 18 | 19 | The input/output matrix of the closed-loop system is 20 | 0.5000 -0.8333 21 | 0.5000 -0.1667 22 | -------------------------------------------------------------------------------- /examples/AB07MD.dat: -------------------------------------------------------------------------------- 1 | AB07MD EXAMPLE PROGRAM DATA 2 | 3 1 2 D 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 1.0 7 | 0.0 1.0 -1.0 8 | 0.0 0.0 1.0 9 | 0.0 1.0 10 | -------------------------------------------------------------------------------- /examples/AB07MD.res: -------------------------------------------------------------------------------- 1 | AB07MD EXAMPLE PROGRAM RESULTS 2 | 3 | The dual state dynamics matrix is 4 | 1.0000 4.0000 0.0000 5 | 2.0000 -1.0000 0.0000 6 | 0.0000 0.0000 1.0000 7 | 8 | The dual input/state matrix is 9 | 0.0000 0.0000 10 | 1.0000 0.0000 11 | -1.0000 1.0000 12 | 13 | The dual state/output matrix is 14 | 1.0000 0.0000 1.0000 15 | 16 | The dual direct transmission matrix is 17 | 0.0000 1.0000 18 | -------------------------------------------------------------------------------- /examples/AB07ND.dat: -------------------------------------------------------------------------------- 1 | AB07ND EXAMPLE PROGRAM DATA 2 | 3 2 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 7 | 0.0 1.0 8 | 1.0 0.0 9 | 0.0 1.0 -1.0 10 | 0.0 0.0 1.0 11 | 4.0 0.0 12 | 0.0 1.0 13 | -------------------------------------------------------------------------------- /examples/AB07ND.res: -------------------------------------------------------------------------------- 1 | AB07ND EXAMPLE PROGRAM RESULTS 2 | 3 | The state dynamics matrix of the inverse system is 4 | 1.0000 1.7500 0.2500 5 | 4.0000 -1.0000 -1.0000 6 | 0.0000 -0.2500 1.2500 7 | 8 | The input/state matrix of the inverse system is 9 | -0.2500 0.0000 10 | 0.0000 -1.0000 11 | -0.2500 0.0000 12 | 13 | The state/output matrix of the inverse system is 14 | 0.0000 0.2500 -0.2500 15 | 0.0000 0.0000 1.0000 16 | 17 | The feedthrough matrix of the inverse system is 18 | 0.2500 0.0000 19 | 0.0000 1.0000 20 | -------------------------------------------------------------------------------- /examples/AB08ND.dat: -------------------------------------------------------------------------------- 1 | AB08ND EXAMPLE PROGRAM DATA 2 | 6 2 3 0.0 N 3 | 1.0 0.0 0.0 0.0 0.0 0.0 4 | 0.0 1.0 0.0 0.0 0.0 0.0 5 | 0.0 0.0 3.0 0.0 0.0 0.0 6 | 0.0 0.0 0.0 -4.0 0.0 0.0 7 | 0.0 0.0 0.0 0.0 -1.0 0.0 8 | 0.0 0.0 0.0 0.0 0.0 3.0 9 | 0.0 -1.0 10 | -1.0 0.0 11 | 1.0 -1.0 12 | 0.0 0.0 13 | 0.0 1.0 14 | -1.0 -1.0 15 | 1.0 0.0 0.0 1.0 0.0 0.0 16 | 0.0 1.0 0.0 1.0 0.0 1.0 17 | 0.0 0.0 1.0 0.0 0.0 1.0 18 | 0.0 0.0 19 | 0.0 0.0 20 | 0.0 0.0 21 | -------------------------------------------------------------------------------- /examples/AB08NW.dat: -------------------------------------------------------------------------------- 1 | AB08NW EXAMPLE PROGRAM DATA 2 | 6 2 3 0.0 N 3 | 1.0 0.0 0.0 0.0 0.0 0.0 4 | 0.0 1.0 0.0 0.0 0.0 0.0 5 | 0.0 0.0 3.0 0.0 0.0 0.0 6 | 0.0 0.0 0.0 -4.0 0.0 0.0 7 | 0.0 0.0 0.0 0.0 -1.0 0.0 8 | 0.0 0.0 0.0 0.0 0.0 3.0 9 | 0.0 -1.0 10 | -1.0 0.0 11 | 1.0 -1.0 12 | 0.0 0.0 13 | 0.0 1.0 14 | -1.0 -1.0 15 | 1.0 0.0 0.0 1.0 0.0 0.0 16 | 0.0 1.0 0.0 1.0 0.0 1.0 17 | 0.0 0.0 1.0 0.0 0.0 1.0 18 | 0.0 0.0 19 | 0.0 0.0 20 | 0.0 0.0 21 | -------------------------------------------------------------------------------- /examples/AB08NZ.dat: -------------------------------------------------------------------------------- 1 | AB08NZ EXAMPLE PROGRAM DATA 2 | 6 2 3 0.0 N 3 | (1.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) 4 | (0.0,0.0) (1.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) 5 | (0.0,0.0) (0.0,0.0) (3.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) 6 | (0.0,0.0) (0.0,0.0) (0.0,0.0) (-4.0,0.0) (0.0,0.0) (0.0,0.0) 7 | (0.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) (-1.0,0.0) (0.0,0.0) 8 | (0.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) (3.0,0.0) 9 | (0.0,0.0) (-1.0,0.0) 10 | (-1.0,0.0) (0.0,0.0) 11 | (1.0,0.0) (-1.0,0.0) 12 | (0.0,0.0) (0.0,0.0) 13 | (0.0,0.0) (1.0,0.0) 14 | (-1.0,0.0) (-1.0,0.0) 15 | (1.0,0.0) (0.0,0.0) (0.0,0.0) (1.0,0.0) (0.0,0.0) (0.0,0.0) 16 | (0.0,0.0) (1.0,0.0) (0.0,0.0) (1.0,0.0) (0.0,0.0) (1.0,0.0) 17 | (0.0,0.0) (0.0,0.0) (1.0,0.0) (0.0,0.0) (0.0,0.0) (1.0,0.0) 18 | (0.0,0.0) (0.0,0.0) 19 | (0.0,0.0) (0.0,0.0) 20 | (0.0,0.0) (0.0,0.0) 21 | -------------------------------------------------------------------------------- /examples/AB09AD.dat: -------------------------------------------------------------------------------- 1 | AB09AD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 1.E-1 C N N A 3 | -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | -------------------------------------------------------------------------------- /examples/AB09AD.res: -------------------------------------------------------------------------------- 1 | AB09AD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of reduced model = 5 4 | 5 | The Hankel singular values HSV are 6 | 2.5139 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246 7 | 8 | The reduced state dynamics matrix Ar is 9 | 1.3451 5.0399 0.0000 0.0000 4.5315 10 | -4.0214 -3.6604 0.0000 0.0000 -0.9056 11 | 0.0000 0.0000 0.5124 1.7910 0.0000 12 | 0.0000 0.0000 -4.2167 -2.9900 0.0000 13 | 1.2402 1.6416 0.0000 0.0000 -0.0586 14 | 15 | The reduced input/state matrix Br is 16 | -0.3857 0.3857 17 | -3.1753 3.1753 18 | -0.7447 -0.7447 19 | -3.6872 -3.6872 20 | 1.8197 -1.8197 21 | 22 | The reduced state/output matrix Cr is 23 | -0.6704 0.1828 -0.6582 0.2222 -0.0104 24 | 0.1089 0.4867 0.0000 0.0000 0.8651 25 | 0.6704 -0.1828 -0.6582 0.2222 0.0104 26 | -------------------------------------------------------------------------------- /examples/AB09BD.dat: -------------------------------------------------------------------------------- 1 | AB09BD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 1.E-1 1.E-14 C N N A 3 | -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/AB09BD.res: -------------------------------------------------------------------------------- 1 | AB09BD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of reduced model = 5 4 | 5 | The Hankel singular values are 6 | 2.5139 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246 7 | 8 | The reduced state dynamics matrix Ar is 9 | 1.3960 5.1248 0.0000 0.0000 4.4331 10 | -4.1411 -3.8605 0.0000 0.0000 -0.6738 11 | 0.0000 0.0000 0.5847 1.9230 0.0000 12 | 0.0000 0.0000 -4.3823 -3.2922 0.0000 13 | 1.3261 1.7851 0.0000 0.0000 -0.2249 14 | 15 | The reduced input/state matrix Br is 16 | -0.2901 0.2901 17 | -3.4004 3.4004 18 | -0.6379 -0.6379 19 | -3.9315 -3.9315 20 | 1.9813 -1.9813 21 | 22 | The reduced state/output matrix Cr is 23 | -0.6570 0.2053 -0.6416 0.2526 -0.0364 24 | 0.1094 0.4875 0.0000 0.0000 0.8641 25 | 0.6570 -0.2053 -0.6416 0.2526 0.0364 26 | 27 | The reduced input/output matrix Dr is 28 | 0.0498 -0.0007 29 | 0.0010 -0.0010 30 | -0.0007 0.0498 31 | -------------------------------------------------------------------------------- /examples/AB09CD.dat: -------------------------------------------------------------------------------- 1 | AB09CD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 1.E-1 1.E-14 C N A 3 | -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/AB09CD.res: -------------------------------------------------------------------------------- 1 | AB09CD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of reduced model = 5 4 | 5 | The Hankel singular values are 6 | 2.5139 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246 7 | 8 | The reduced state dynamics matrix Ar is 9 | -0.5038 -5.3070 -3.2250 0.0000 0.0000 10 | 1.8355 -0.5038 -2.6289 0.0000 0.0000 11 | 0.0000 0.0000 -1.5171 0.0000 0.0000 12 | 0.0000 0.0000 0.0000 -1.2925 -9.0718 13 | 0.0000 0.0000 0.0000 0.5047 -1.2925 14 | 15 | The reduced input/state matrix Br is 16 | -1.5343 1.5343 17 | -0.3614 0.3614 18 | -1.1096 1.1096 19 | -4.5325 -4.5325 20 | -0.7396 -0.7396 21 | 22 | The reduced state/output matrix Cr is 23 | 1.8971 -0.3055 -2.1124 0.4421 -2.1023 24 | -0.0394 1.1112 -0.3119 0.0000 0.0000 25 | -1.8971 0.3055 2.1124 0.4421 -2.1023 26 | 27 | The reduced input/output matrix Dr is 28 | 0.0126 -0.0126 29 | 0.0005 -0.0005 30 | -0.0126 0.0126 31 | -------------------------------------------------------------------------------- /examples/AB09DD.res: -------------------------------------------------------------------------------- 1 | AB09DD EXAMPLE PROGRAM RESULTS 2 | 3 | The computed reciprocal condition number = 1.00000D+00 4 | 5 | The reduced state dynamics matrix Ar is 6 | -0.0416 4.9200 -4.9200 0.0000 0.0000 7 | -1.3879 -3.3300 0.0000 0.0000 0.0000 8 | 0.5450 0.0000 0.0000 -0.5450 0.0000 9 | 0.0000 0.0000 4.9200 -0.0416 4.9200 10 | 0.0000 0.0000 0.0000 -1.3879 -3.3300 11 | 12 | The reduced input/state matrix Br is 13 | 0.0000 0.0000 14 | 3.3300 0.0000 15 | 0.0000 0.0000 16 | 0.0000 0.0000 17 | 0.0000 3.3300 18 | 19 | The reduced state/output matrix Cr is 20 | 1.0000 0.0000 0.0000 0.0000 0.0000 21 | 0.0000 0.0000 1.0000 0.0000 0.0000 22 | 0.0000 0.0000 0.0000 1.0000 0.0000 23 | 24 | The reduced input/output matrix Dr is 25 | 0.0000 0.0000 26 | 0.0000 0.0000 27 | 0.0000 0.0000 28 | -------------------------------------------------------------------------------- /examples/AB09ED.dat: -------------------------------------------------------------------------------- 1 | AB09ED EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 -0.6D0 1.E-1 1.E-14 C N A 3 | -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | 24 | -------------------------------------------------------------------------------- /examples/AB09FD.dat: -------------------------------------------------------------------------------- 1 | AB08FD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 -1.e-1 .1 1.E-10 C L I B S A 3 | -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | -------------------------------------------------------------------------------- /examples/AB09FD.res: -------------------------------------------------------------------------------- 1 | AB09FD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of reduced model = 5 4 | 5 | The Hankel singular values of coprime factors are 6 | 13.6047 9.4106 1.7684 0.7456 0.6891 0.0241 0.0230 7 | 8 | The reduced state dynamics matrix Ar is 9 | 0.0520 -0.1491 0.0037 -0.0232 0.0168 10 | 0.2340 0.2618 0.0010 -0.0153 -0.0318 11 | 0.1197 0.0075 -0.5752 2.0119 -0.7779 12 | 0.1571 -0.2019 -2.1282 -2.1192 -0.3618 13 | 0.0368 -0.4810 0.8395 -0.2790 -2.8796 14 | 15 | The reduced input/state matrix Br is 16 | 1.0454 0.5860 17 | -0.0489 -1.9194 18 | -1.4282 0.0541 19 | -1.6144 -0.7533 20 | 0.5916 -1.9242 21 | 22 | The reduced state/output matrix Cr is 23 | 0.4368 0.1122 -1.2917 1.5888 -0.6354 24 | 1.1170 0.3963 0.6115 0.1249 -0.0859 25 | 0.0756 -1.8904 0.0144 0.7964 1.9085 26 | -------------------------------------------------------------------------------- /examples/AB09GD.dat: -------------------------------------------------------------------------------- 1 | AB08GD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 -1.e-1 .1 1.E-10 1.E-10 C L I B S A 3 | -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/AB09ID.dat: -------------------------------------------------------------------------------- 1 | AB09ID EXAMPLE PROGRAM DATA (Continuous system) 2 | 3 1 1 6 1 0 0 2 0.0 0.0 0.0 0.1E0 0.0 C S S F L S F 3 | -26.4000 6.4023 4.3868 4 | 32.0000 0 0 5 | 0 8.0000 0 6 | 16 7 | 0 8 | 0 9 | 9.2994 1.1624 0.1090 10 | 0 11 | -1.0000 0 4.0000 -9.2994 -1.1624 -0.1090 12 | 0 2.0000 0 -9.2994 -1.1624 -0.1090 13 | 0 0 -3.0000 -9.2994 -1.1624 -0.1090 14 | 16.0000 16.0000 16.0000 -26.4000 6.4023 4.3868 15 | 0 0 0 32.0000 0 0 16 | 0 0 0 0 8.0000 0 17 | 1 18 | 1 19 | 1 20 | 0 21 | 0 22 | 0 23 | 1 1 1 0 0 0 24 | 0 25 | 26 | 27 | -------------------------------------------------------------------------------- /examples/AB09ID.res: -------------------------------------------------------------------------------- 1 | AB09ID EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The order of reduced model = 2 5 | 6 | The Hankel singular values of weighted ALPHA-stable part are 7 | 3.8253 0.2005 8 | 9 | The reduced state dynamics matrix Ar is 10 | 9.1900 0.0000 11 | 0.0000 -34.5297 12 | 13 | The reduced input/state matrix Br is 14 | 11.9593 15 | 16.9329 16 | 17 | The reduced state/output matrix Cr is 18 | 2.8955 6.9152 19 | 20 | The reduced input/output matrix Dr is 21 | 0.0000 22 | -------------------------------------------------------------------------------- /examples/AB09JD.dat: -------------------------------------------------------------------------------- 1 | AB09JD EXAMPLE PROGRAM DATA (Continuous system) 2 | 6 1 1 2 0 0 0.0 1.E-1 1.E-14 V N I C S A 3 | -3.8637 -7.4641 -9.1416 -7.4641 -3.8637 -1.0000 4 | 1.0000 0 0 0 0 0 5 | 0 1.0000 0 0 0 0 6 | 0 0 1.0000 0 0 0 7 | 0 0 0 1.0000 0 0 8 | 0 0 0 0 1.0000 0 9 | 1 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 0 0 0 0 1 16 | 0 17 | 0.2000 -1.0000 18 | 1.0000 0 19 | 1 20 | 0 21 | -1.8000 0 22 | 1 23 | -------------------------------------------------------------------------------- /examples/AB09JD.res: -------------------------------------------------------------------------------- 1 | AB09JD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The order of reduced model = 4 5 | 6 | The Hankel singular values of weighted ALPHA-stable part are 7 | 2.6790 2.1589 0.8424 0.1929 0.0219 0.0011 8 | 9 | The reduced state dynamics matrix Ar is 10 | -0.2391 0.3072 1.1630 1.1967 11 | -2.9709 -0.2391 2.6270 3.1027 12 | 0.0000 0.0000 -0.5137 -1.2842 13 | 0.0000 0.0000 0.1519 -0.5137 14 | 15 | The reduced input/state matrix Br is 16 | -1.0497 17 | -3.7052 18 | 0.8223 19 | 0.7435 20 | 21 | The reduced state/output matrix Cr is 22 | -0.4466 0.0143 -0.4780 -0.2013 23 | 24 | The reduced input/output matrix Dr is 25 | 0.0219 26 | -------------------------------------------------------------------------------- /examples/AB09KD.dat: -------------------------------------------------------------------------------- 1 | AB09KD EXAMPLE PROGRAM DATA (Continuous system) 2 | 6 1 1 2 0 0 0.0 1.E-1 1.E-14 N C L S A 3 | -3.8637 -7.4641 -9.1416 -7.4641 -3.8637 -1.0000 4 | 1.0000 0 0 0 0 0 5 | 0 1.0000 0 0 0 0 6 | 0 0 1.0000 0 0 0 7 | 0 0 0 1.0000 0 0 8 | 0 0 0 0 1.0000 0 9 | 1 10 | 0 11 | 0 12 | 0 13 | 0 14 | 0 15 | 0 0 0 0 0 1 16 | 0 17 | 0.2000 -1.0000 18 | 1.0000 0 19 | 1 20 | 0 21 | -1.8000 0 22 | 1 23 | -------------------------------------------------------------------------------- /examples/AB09KD.res: -------------------------------------------------------------------------------- 1 | AB09KD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The order of reduced model = 4 5 | 6 | The Hankel singular values of weighted ALPHA-stable part are 7 | 2.6790 2.1589 0.8424 0.1929 0.0219 0.0011 8 | 9 | The reduced state dynamics matrix Ar is 10 | -0.2391 0.3072 1.1630 1.1967 11 | -2.9709 -0.2391 2.6270 3.1027 12 | 0.0000 0.0000 -0.5137 -1.2842 13 | 0.0000 0.0000 0.1519 -0.5137 14 | 15 | The reduced input/state matrix Br is 16 | -1.0497 17 | -3.7052 18 | 0.8223 19 | 0.7435 20 | 21 | The reduced state/output matrix Cr is 22 | -0.4466 0.0143 -0.4780 -0.2013 23 | 24 | The reduced input/output matrix Dr is 25 | 0.0219 26 | -------------------------------------------------------------------------------- /examples/AB09MD.dat: -------------------------------------------------------------------------------- 1 | AB09MD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 -.6D0 1.D-1 C N N A 3 | -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 21 | -------------------------------------------------------------------------------- /examples/AB09MD.res: -------------------------------------------------------------------------------- 1 | AB09MD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of reduced model = 5 4 | 5 | The Hankel singular values of ALPHA-stable part are 6 | 1.9178 0.8621 0.7666 0.0336 0.0246 7 | 8 | The reduced state dynamics matrix Ar is 9 | -0.5181 -1.1084 0.0000 0.0000 0.0000 10 | 8.8157 -0.5181 0.0000 0.0000 0.0000 11 | 0.0000 0.0000 0.5124 0.0000 1.7910 12 | 0.0000 0.0000 0.0000 -1.4460 0.0000 13 | 0.0000 0.0000 -4.2167 0.0000 -2.9900 14 | 15 | The reduced input/state matrix Br is 16 | -1.2837 1.2837 17 | -0.7522 0.7522 18 | -0.7447 -0.7447 19 | 1.9275 -1.9275 20 | -3.6872 -3.6872 21 | 22 | The reduced state/output matrix Cr is 23 | -0.1380 -0.6445 -0.6582 -0.5771 0.2222 24 | 0.6246 0.0196 0.0000 0.4131 0.0000 25 | 0.1380 0.6445 -0.6582 0.5771 0.2222 26 | -------------------------------------------------------------------------------- /examples/AB09ND.dat: -------------------------------------------------------------------------------- 1 | AB09ND EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0 -.6D0 1.D-1 1.E-14 C N N A 3 | -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | 24 | -------------------------------------------------------------------------------- /examples/AB13AD.dat: -------------------------------------------------------------------------------- 1 | AB13AD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 0.0 C N 3 | -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | -------------------------------------------------------------------------------- /examples/AB13AD.res: -------------------------------------------------------------------------------- 1 | AB13AD EXAMPLE PROGRAM RESULTS 2 | 3 | The Hankel-norm of the ALPHA-projection = 2.51388D+00 4 | 5 | The Hankel singular values of ALPHA-projection are 6 | 2.5139 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246 7 | -------------------------------------------------------------------------------- /examples/AB13BD.dat: -------------------------------------------------------------------------------- 1 | AB13BD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 1.E-10 C L 3 | -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/AB13BD.res: -------------------------------------------------------------------------------- 1 | AB13BD EXAMPLE PROGRAM RESULTS 2 | 3 | The L2-norm of the system = 7.93948D+00 4 | -------------------------------------------------------------------------------- /examples/AB13CD.dat: -------------------------------------------------------------------------------- 1 | AB13CD EXAMPLE PROGRAM DATA 2 | 6 1 1 3 | 0.0 1.0 0.0 0.0 0.0 0.0 4 | -0.5 -0.0002 0.0 0.0 0.0 0.0 5 | 0.0 0.0 0.0 1.0 0.0 0.0 6 | 0.0 0.0 -1.0 -0.00002 0.0 0.0 7 | 0.0 0.0 0.0 0.0 0.0 1.0 8 | 0.0 0.0 0.0 0.0 -2.0 -0.000002 9 | 1.0 10 | 0.0 11 | 1.0 12 | 0.0 13 | 1.0 14 | 0.0 15 | 1.0 0.0 1.0 0.0 1.0 0.0 16 | 0.0 17 | 0.000000001 18 | -------------------------------------------------------------------------------- /examples/AB13CD.res: -------------------------------------------------------------------------------- 1 | AB13CD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The H_infty norm of the system is 5 | 6 | 0.5000000006D+06 7 | 8 | The peak frequency is 9 | 10 | 0.1414213562D+01 11 | -------------------------------------------------------------------------------- /examples/AB13DD.dat: -------------------------------------------------------------------------------- 1 | AB13CD EXAMPLE PROGRAM DATA 2 | 6 1 1 0.0 1.0 0.000000001 C I N D 3 | 0.0 1.0 0.0 0.0 0.0 0.0 4 | -0.5 -0.0002 0.0 0.0 0.0 0.0 5 | 0.0 0.0 0.0 1.0 0.0 0.0 6 | 0.0 0.0 -1.0 -0.00002 0.0 0.0 7 | 0.0 0.0 0.0 0.0 0.0 1.0 8 | 0.0 0.0 0.0 0.0 -2.0 -0.000002 9 | 1.0 10 | 0.0 11 | 1.0 12 | 0.0 13 | 1.0 14 | 0.0 15 | 1.0 0.0 1.0 0.0 1.0 0.0 16 | 0.0 17 | 18 | -------------------------------------------------------------------------------- /examples/AB13DD.res: -------------------------------------------------------------------------------- 1 | AB13DD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The L_infty norm of the system is 5 | 6 | 0.5000000001D+06 7 | 8 | The peak frequency is 9 | 10 | 0.1414213562D+01 11 | -------------------------------------------------------------------------------- /examples/AB13ED.dat: -------------------------------------------------------------------------------- 1 | AB13ED EXAMPLE PROGRAM DATA 2 | 5, 9.0D0 3 | 1.0D-01 1.0D-00 0.0D-00 0.0D-00 0.0D-00 4 | 0.0D-00 1.0D-01 1.0D-00 0.0D-00 0.0D-00 5 | 0.0D-00 0.0D-00 1.0D-01 1.0D-00 0.0D-00 6 | 0.0D-00 0.0D-00 0.0D-00 1.0D-01 1.0D-00 7 | 0.0D-00 0.0D-00 0.0D-00 0.0D-00 1.0D-01 8 | -------------------------------------------------------------------------------- /examples/AB13ED.res: -------------------------------------------------------------------------------- 1 | AB13ED EXAMPLE PROGRAM RESULTS 2 | 3 | N = 5 TOL = 0.900D+01 4 | Matrix A ( 5X 5) 5 | 6 | 1 2 3 4 5 7 | 1 0.1000000D+00 0.1000000D+01 0.0000000D+00 0.0000000D+00 0.0000000D+00 8 | 2 0.0000000D+00 0.1000000D+00 0.1000000D+01 0.0000000D+00 0.0000000D+00 9 | 3 0.0000000D+00 0.0000000D+00 0.1000000D+00 0.1000000D+01 0.0000000D+00 10 | 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.1000000D+00 0.1000000D+01 11 | 5 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.1000000D+00 12 | 13 | LOW = 0.20929379255D-05 14 | HIGH = 0.20793050504D-04 15 | -------------------------------------------------------------------------------- /examples/AB13FD.dat: -------------------------------------------------------------------------------- 1 | AB13FD EXAMPLE PROGRAM DATA 2 | 4 0.0D-00 0.0D-00 3 | 246.500 242.500 202.500 -197.500 4 | -252.500 -248.500 -207.500 202.500 5 | -302.500 -297.500 -248.500 242.500 6 | -307.500 -302.500 -252.500 246.500 7 | -------------------------------------------------------------------------------- /examples/AB13FD.res: -------------------------------------------------------------------------------- 1 | AB13FD EXAMPLE PROGRAM RESULTS 2 | 3 | N = 4 TOL = 0.000D+00 4 | A ( 4X 4) 5 | 6 | 1 2 3 4 7 | 1 0.2465000D+03 0.2425000D+03 0.2025000D+03 -0.1975000D+03 8 | 2 -0.2525000D+03 -0.2485000D+03 -0.2075000D+03 0.2025000D+03 9 | 3 -0.3025000D+03 -0.2975000D+03 -0.2485000D+03 0.2425000D+03 10 | 4 -0.3075000D+03 -0.3025000D+03 -0.2525000D+03 0.2465000D+03 11 | 12 | Stability radius : 0.39196472317D-02 13 | Minimizing omega : 0.98966520430D+00 14 | -------------------------------------------------------------------------------- /examples/AB13MD.dat: -------------------------------------------------------------------------------- 1 | AB13MD EXAMPLE PROGRAM DATA 2 | 6 5 3 | 1 1 2 1 1 4 | 1 1 2 2 2 5 | (-1.0D0,6.0D0) (2.0D0,-3.0D0) (3.0D0,8.0D0) 6 | (3.0D0,8.0D0) (-5.0D0,-9.0D0) (-6.0D0,2.0D0) 7 | (4.0D0,2.0D0) (-2.0D0,5.0D0) (-6.0D0,-7.0D0) 8 | (-4.0D0,11.0D0) (8.0D0,-7.0D0) (12.0D0,-1.0D0) 9 | (5.0D0,-4.0D0) (-4.0D0,-8.0D0) (1.0D0,-3.0D0) 10 | (-6.0D0,14.0D0) (2.0D0,-5.0D0) (4.0D0,16.0D0) 11 | (-1.0D0,6.0D0) (2.0D0,-3.0D0) (3.0D0,8.0D0) 12 | (3.0D0,8.0D0) (-5.0D0,-9.0D0) (-6.0D0,2.0D0) 13 | (4.0D0,2.0D0) (-2.0D0,5.0D0) (-6.0D0,-7.0D0) 14 | (-4.0D0,11.0D0) (8.0D0,-7.0D0) (12.0D0,-1.0D0) 15 | (5.0D0,-4.0D0) (-4.0D0,-8.0D0) (1.0D0,-3.0D0) 16 | (-6.0D0,14.0D0) (2.0D0,-5.0D0) (4.0D0,16.0D0) 17 | -------------------------------------------------------------------------------- /examples/AB13MD.res: -------------------------------------------------------------------------------- 1 | AB13MD EXAMPLE PROGRAM RESULTS 2 | 3 | The value of the structured singular value is 4 | 5 | 0.4174753408D+02 6 | -------------------------------------------------------------------------------- /examples/BB01AD.dat: -------------------------------------------------------------------------------- 1 | BB01AD EXAMPLE PROGRAM DATA 2 | N 3 | 2 3 4 | 6 5 | .T. .T. .T. .F. .F. .T. 6 | 1 7 | .1234 8 | 0 9 | 10 | 11 | -------------------------------------------------------------------------------- /examples/BB01AD.res: -------------------------------------------------------------------------------- 1 | BB01AD EXAMPLE PROGRAM RESULTS 2 | 3 | Kenney/Laub/Wette 1989, Ex.2: ARE ill conditioned for EPS -> oo 4 | 5 | Order of matrix A: N = 2 6 | Number of columns in matrix B: M = 1 7 | Number of rows in matrix C: P = 2 8 | A = 9 | 0.0000 0.1234 10 | 0.0000 0.0000 11 | B is not provided. 12 | C = 13 | 1.0000 0.0000 14 | 0.0000 1.0000 15 | G = 16 | 0.0000 0.0000 17 | 0.0000 1.0000 18 | Q is not provided. 19 | W = 20 | 1.0000 0.0000 21 | 0.0000 1.0000 22 | R is not provided. 23 | X = 24 | 9.0486 1.0000 25 | 1.0000 1.1166 26 | -------------------------------------------------------------------------------- /examples/BB02AD.dat: -------------------------------------------------------------------------------- 1 | BB02AD EXAMPLE PROGRAM DATA 2 | N 3 | 2 3 4 | 7 5 | .T. .T. .T. .F. .F. .T. .T. 6 | 1 7 | .1234 8 | 0 9 | -------------------------------------------------------------------------------- /examples/BB02AD.res: -------------------------------------------------------------------------------- 1 | BB02AD EXAMPLE PROGRAM RESULTS 2 | 3 | increasingly bad scaled system as eps -> oo 4 | 5 | Order of matrix A: N = 2 6 | Number of columns in matrix B: M = 1 7 | Number of rows in matrix C: P = 2 8 | A = 9 | 0.0000 0.1234 10 | 0.0000 0.0000 11 | B = 12 | 0.0000 13 | 1.0000 14 | C is not provided. 15 | G is not provided. 16 | Q = 17 | 1.0000 0.0000 18 | 0.0000 1.0000 19 | Q0 is not provided. 20 | R = 21 | 1.0000 22 | S = 23 | 0.0000 24 | 0.0000 25 | X = 26 | 1.0000 0.0000 27 | 0.0000 1.0152 28 | -------------------------------------------------------------------------------- /examples/BB03AD.dat: -------------------------------------------------------------------------------- 1 | BB03AD EXAMPLE PROGRAM DATA 2 | N 3 | 4 1 4 | 2 5 | .15D1 6 | .15D1 7 | 1 8 | 5 9 | -------------------------------------------------------------------------------- /examples/BB04AD.dat: -------------------------------------------------------------------------------- 1 | BB04AD EXAMPLE PROGRAM DATA 2 | N 3 | 4 1 4 | 2 5 | .15D1 6 | .15D1 7 | 1 8 | 5 9 | -------------------------------------------------------------------------------- /examples/BD01AD.dat: -------------------------------------------------------------------------------- 1 | BD01AD EXAMPLE PROGRAM DATA 2 | D 3 | 1 1 4 | -------------------------------------------------------------------------------- /examples/BD01AD.res: -------------------------------------------------------------------------------- 1 | BD01AD EXAMPLE PROGRAM RESULTS 2 | 3 | Laub 1979, Ex.1 4 | 5 | Order of matrix A: N = 2 6 | Number of columns in matrix B: M = 1 7 | Number of rows in matrix C: P = 2 8 | 9 | E is the identity matrix. 10 | A = 11 | 0.0000 1.0000 12 | 0.0000 0.0000 13 | B = 14 | 0.0000 15 | 1.0000 16 | C = 17 | 1.0000 0.0000 18 | 0.0000 1.0000 19 | D is of zeros. 20 | -------------------------------------------------------------------------------- /examples/BD02AD.dat: -------------------------------------------------------------------------------- 1 | BD02AD EXAMPLE PROGRAM DATA 2 | D 3 | 1 1 4 | -------------------------------------------------------------------------------- /examples/BD02AD.res: -------------------------------------------------------------------------------- 1 | BD02AD EXAMPLE PROGRAM RESULTS 2 | 3 | Laub 1979, Ex. 2: uncontrollable-unobservable data 4 | 5 | Order of matrix A: N = 2 6 | Number of columns in matrix B: M = 1 7 | Number of rows in matrix C: P = 1 8 | 9 | E is the identity matrix. 10 | A = 11 | 4.0000 3.0000 12 | -4.5000 -3.5000 13 | B = 14 | 1.0000 15 | -1.0000 16 | C = 17 | 3.0000 2.0000 18 | D is of zeros. 19 | -------------------------------------------------------------------------------- /examples/DE01OD.dat: -------------------------------------------------------------------------------- 1 | DE01OD EXAMPLE PROGRAM DATA 2 | 8 C 3 | 0.4862 0.2288 4 | 0.1948 0.3671 5 | 0.5788 0.6417 6 | -0.5861 0.3875 7 | 0.8254 0.2380 8 | 0.1815 0.4682 9 | 0.2904 0.5312 10 | -0.3599 0.6116 11 | -------------------------------------------------------------------------------- /examples/DE01OD.res: -------------------------------------------------------------------------------- 1 | DE01OD EXAMPLE PROGRAM RESULTS 2 | 3 | Convolution 4 | 5 | i A(i) 6 | 7 | 1 0.5844 8 | 2 0.5769 9 | 3 0.6106 10 | 4 1.0433 11 | 5 0.6331 12 | 6 0.4531 13 | 7 0.7027 14 | 8 0.9929 15 | -------------------------------------------------------------------------------- /examples/DE01PD.dat: -------------------------------------------------------------------------------- 1 | DE01PD EXAMPLE PROGRAM DATA 2 | 8 C N 3 | 0.4862 0.2288 4 | 0.1948 0.3671 5 | 0.5788 0.6417 6 | -0.5861 0.3875 7 | 0.8254 0.2380 8 | 0.1815 0.4682 9 | 0.2904 0.5312 10 | -0.3599 0.6116 11 | -------------------------------------------------------------------------------- /examples/DE01PD.res: -------------------------------------------------------------------------------- 1 | DE01PD EXAMPLE PROGRAM RESULTS 2 | 3 | Convolution 4 | 5 | i A(i) 6 | 7 | 1 0.5844 8 | 2 0.5769 9 | 3 0.6106 10 | 4 1.0433 11 | 5 0.6331 12 | 6 0.4531 13 | 7 0.7027 14 | 8 0.9929 15 | -------------------------------------------------------------------------------- /examples/DF01MD.dat: -------------------------------------------------------------------------------- 1 | DF01MD EXAMPLE PROGRAM DATA 2 | 17 1.0 C 3 | -0.1862 4 | 0.1288 5 | 0.3948 6 | 0.0671 7 | 0.6788 8 | -0.2417 9 | 0.1861 10 | 0.8875 11 | 0.7254 12 | 0.9380 13 | 0.5815 14 | -0.2682 15 | 0.4904 16 | 0.9312 17 | -0.9599 18 | -0.3116 19 | 0.8743 20 | -------------------------------------------------------------------------------- /examples/DF01MD.res: -------------------------------------------------------------------------------- 1 | DF01MD EXAMPLE PROGRAM RESULTS 2 | 3 | Components of cosine transform are 4 | 5 | i A(i) 6 | 7 | 1 28.0536 8 | 2 3.3726 9 | 3 -20.8158 10 | 4 6.0566 11 | 5 5.7317 12 | 6 -3.9347 13 | 7 -12.8074 14 | 8 -6.8780 15 | 9 16.2892 16 | 10 -17.0788 17 | 11 21.7836 18 | 12 -20.8203 19 | 13 -7.3277 20 | 14 -2.5325 21 | 15 -0.3636 22 | 16 7.8792 23 | 17 11.0048 24 | -------------------------------------------------------------------------------- /examples/DG01MD.dat: -------------------------------------------------------------------------------- 1 | DG01MD EXAMPLE PROGRAM DATA 2 | 8 D 3 | -0.1862 0.1288 4 | 0.3948 0.0671 5 | 0.6788 -0.2417 6 | 0.1861 0.8875 7 | 0.7254 0.9380 8 | 0.5815 -0.2682 9 | 0.4904 0.9312 10 | -0.9599 -0.3116 11 | -------------------------------------------------------------------------------- /examples/DG01MD.res: -------------------------------------------------------------------------------- 1 | DG01MD EXAMPLE PROGRAM RESULTS 2 | 3 | Components of Fourier transform are 4 | 5 | i XR(i) XI(i) 6 | 7 | 1 1.9109 2.1311 8 | 2 -1.9419 -2.2867 9 | 3 -1.4070 -1.3728 10 | 4 2.2886 -0.6883 11 | 5 1.5059 1.3815 12 | 6 -2.2271 0.2915 13 | 7 0.1470 2.1274 14 | 8 -1.7660 -0.5533 15 | -------------------------------------------------------------------------------- /examples/DG01ND.dat: -------------------------------------------------------------------------------- 1 | DG01ND EXAMPLE PROGRAM DATA 2 | 8 D 3 | -0.1862 4 | 0.1288 5 | 0.3948 6 | 0.0671 7 | 0.6788 8 | -0.2417 9 | 0.1861 10 | 0.8875 11 | 0.7254 12 | 0.9380 13 | 0.5815 14 | -0.2682 15 | 0.4904 16 | 0.9312 17 | -0.9599 18 | -0.3116 19 | -------------------------------------------------------------------------------- /examples/DG01ND.res: -------------------------------------------------------------------------------- 1 | DG01ND EXAMPLE PROGRAM RESULTS 2 | 3 | Components of Fourier transform are 4 | 5 | i XR(i) XI(i) 6 | 7 | 1 4.0420 0.0000 8 | 2 -3.1322 -0.2421 9 | 3 0.1862 -1.4675 10 | 4 -2.1312 -1.1707 11 | 5 1.5059 -1.3815 12 | 6 2.1927 -0.1908 13 | 7 -1.4462 2.0327 14 | 8 -0.5757 1.4914 15 | 9 -0.2202 0.0000 16 | -------------------------------------------------------------------------------- /examples/DG01OD.dat: -------------------------------------------------------------------------------- 1 | DG01OD EXAMPLE 2 | 16 N N 3 | 1.0 4 | 2.0 5 | 3.0 6 | 4.0 7 | 5.0 8 | 6.0 9 | 7.0 10 | 8.0 11 | 9.0 12 | 10.0 13 | 11.0 14 | 12.0 15 | 13.0 16 | 14.0 17 | 15.0 18 | 16.0 19 | -------------------------------------------------------------------------------- /examples/DG01OD.res: -------------------------------------------------------------------------------- 1 | DG01OD EXAMPLE PROGRAM RESULTS 2 | 3 | Hartley transform 4 | 5 | i A(i) 6 | 7 | 1 136.0000 8 | 2 -48.2187 9 | 3 -27.3137 10 | 4 -19.9728 11 | 5 -16.0000 12 | 6 -13.3454 13 | 7 -11.3137 14 | 8 -9.5913 15 | 9 -8.0000 16 | 10 -6.4087 17 | 11 -4.6863 18 | 12 -2.6546 19 | 13 0.0000 20 | 14 3.9728 21 | 15 11.3137 22 | 16 32.2187 23 | -------------------------------------------------------------------------------- /examples/DK01MD.dat: -------------------------------------------------------------------------------- 1 | DK01MD EXAMPLE PROGRAM DATA 2 | 8 M 3 | 0.3262 4 | 0.8723 5 | -0.7972 6 | 0.6673 7 | -0.1722 8 | 0.3237 9 | 0.5263 10 | -0.3275 11 | -------------------------------------------------------------------------------- /examples/DK01MD.res: -------------------------------------------------------------------------------- 1 | DK01MD EXAMPLE PROGRAM RESULTS 2 | 3 | Components of the windowing function are 4 | 5 | k A(k) 6 | 7 | 1 0.3262 8 | 2 0.8326 9 | 3 -0.6591 10 | 4 0.4286 11 | 5 -0.0754 12 | 6 0.0820 13 | 7 0.0661 14 | 8 -0.0262 15 | -------------------------------------------------------------------------------- /examples/FB01QD.dat: -------------------------------------------------------------------------------- 1 | FB01QD EXAMPLE PROGRAM DATA 2 | 4 2 2 K 0.0 N 3 | 0.0000 0.0000 0.0000 0.0000 4 | 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 0.0000 0.0000 0.0000 6 | 0.0000 0.0000 0.0000 0.0000 7 | 0.2113 0.8497 0.7263 0.8833 8 | 0.7560 0.6857 0.1985 0.6525 9 | 0.0002 0.8782 0.5442 0.3076 10 | 0.3303 0.0683 0.2320 0.9329 11 | 0.5618 0.5042 12 | 0.5896 0.3493 13 | 0.6853 0.3873 14 | 0.8906 0.9222 15 | 1.0000 0.0000 16 | 0.0000 1.0000 17 | 0.3616 0.5664 0.5015 0.2693 18 | 0.2922 0.4826 0.4368 0.6325 19 | 0.9488 0.0000 20 | 0.3760 0.7340 21 | -------------------------------------------------------------------------------- /examples/FB01QD.res: -------------------------------------------------------------------------------- 1 | FB01QD EXAMPLE PROGRAM RESULTS 2 | 3 | The square root of the state covariance matrix is 4 | -1.2936 0.0000 0.0000 0.0000 5 | -1.1382 -0.2579 0.0000 0.0000 6 | -0.9622 -0.1529 0.2974 0.0000 7 | -1.3076 0.0936 0.4508 -0.4897 8 | 9 | The Kalman gain matrix is 10 | 0.3638 0.9469 11 | 0.3532 0.8179 12 | 0.2471 0.5542 13 | 0.1982 0.6471 14 | -------------------------------------------------------------------------------- /examples/FB01RD.dat: -------------------------------------------------------------------------------- 1 | FB01RD EXAMPLE PROGRAM DATA 2 | 4 2 2 K 0.0 N 3 | 0.0000 0.0000 0.0000 0.0000 4 | 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 0.0000 0.0000 0.0000 6 | 0.0000 0.0000 0.0000 0.0000 7 | 0.2113 0.8497 0.7263 0.0000 8 | 0.7560 0.6857 0.1985 0.6525 9 | 0.0002 0.8782 0.5442 0.3076 10 | 0.3303 0.0683 0.2320 0.9329 11 | 0.5618 0.5042 12 | 0.5896 0.3493 13 | 0.6853 0.3873 14 | 0.8906 0.9222 15 | 1.0000 0.0000 16 | 0.0000 1.0000 17 | 0.3616 0.0000 0.0000 0.0000 18 | 0.2922 0.4826 0.0000 0.0000 19 | 0.9488 0.0000 20 | 0.3760 0.7340 21 | -------------------------------------------------------------------------------- /examples/FB01RD.res: -------------------------------------------------------------------------------- 1 | FB01RD EXAMPLE PROGRAM RESULTS 2 | 3 | The square root of the state covariance matrix is 4 | -1.7223 0.0000 0.0000 0.0000 5 | -2.1073 0.5467 0.0000 0.0000 6 | -1.7649 0.1412 -0.1710 0.0000 7 | -1.8291 0.2058 -0.1497 0.7760 8 | 9 | The Kalman gain matrix is 10 | -0.2135 1.6649 11 | -0.2345 2.1442 12 | -0.2147 1.7069 13 | -0.1345 1.4777 14 | -------------------------------------------------------------------------------- /examples/FB01SD.dat: -------------------------------------------------------------------------------- 1 | FB01SD EXAMPLE PROGRAM DATA 2 | 4 2 2 X 0.0 P N 3 | 0.2113 0.7560 0.0002 0.3303 4 | 0.8497 0.6857 0.8782 0.0683 5 | 0.7263 0.1985 0.5442 0.2320 6 | 0.8833 0.6525 0.3076 0.9329 7 | 0.3616 0.5664 0.5015 0.2693 8 | 0.2922 0.4826 0.4368 0.6325 9 | 1.0000 0.0000 10 | 0.0000 1.0000 11 | -0.8805 1.3257 12 | 2.1039 0.5207 13 | -0.6075 1.0386 14 | -0.8531 1.1688 15 | 1.1159 0.2305 16 | 0.0000 0.6597 17 | 1.0000 0.0000 0.0000 0.0000 18 | 0.0000 1.0000 0.0000 0.0000 19 | 0.0000 0.0000 1.0000 0.0000 20 | 0.0000 0.0000 0.0000 1.0000 21 | 0.0019 22 | 0.5075 23 | 0.4076 24 | 0.8408 25 | 0.5017 26 | 0.9128 27 | 0.2129 28 | 0.5591 29 | -------------------------------------------------------------------------------- /examples/FB01SD.res: -------------------------------------------------------------------------------- 1 | FB01SD EXAMPLE PROGRAM RESULTS 2 | 3 | The inverse of the square root of the state covariance matrix is 4 | 0.6897 0.7721 0.7079 0.6102 5 | 0.0000 -0.3363 -0.2252 -0.2642 6 | 0.0000 0.0000 -0.1650 0.0319 7 | 0.0000 0.0000 0.0000 0.3708 8 | 9 | The components of the estimated filtered state are 10 | 11 | k X(k) 12 | 13 | 1 -0.7125 14 | 2 -1.8324 15 | 3 1.7500 16 | 4 1.5854 17 | -------------------------------------------------------------------------------- /examples/FB01TD.dat: -------------------------------------------------------------------------------- 1 | FB01TD EXAMPLE PROGRAM DATA 2 | 4 2 2 X 0.0 N 3 | 0.2113 0.7560 0.0002 0.3303 4 | 0.8497 0.6857 0.8782 0.0683 5 | 0.7263 0.1985 0.5442 0.2320 6 | 0.0000 0.6525 0.3076 0.9329 7 | 0.3616 0.5664 0.5015 0.2693 8 | 0.2922 0.4826 0.4368 0.6325 9 | 1.0000 0.0000 10 | 0.0000 1.0000 11 | -0.8805 1.3257 12 | 0.0000 0.5207 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 1.1159 0.2305 16 | 0.0000 0.6597 17 | 1.0000 0.0000 0.0000 0.0000 18 | 0.0000 1.0000 0.0000 0.0000 19 | 0.0000 0.0000 1.0000 0.0000 20 | 0.0000 0.0000 0.0000 1.0000 21 | 0.0019 22 | 0.5075 23 | 0.4076 24 | 0.8408 25 | 0.5017 26 | 0.9128 27 | 0.2129 28 | 0.5591 29 | -------------------------------------------------------------------------------- /examples/FB01TD.res: -------------------------------------------------------------------------------- 1 | FB01TD EXAMPLE PROGRAM RESULTS 2 | 3 | The inverse of the square root of the state covariance matrix is 4 | -0.8731 -1.1461 -1.0260 -0.8901 5 | 0.0000 -0.2763 -0.1929 -0.3763 6 | 0.0000 0.0000 -0.1110 -0.1051 7 | 0.0000 0.0000 0.0000 0.3120 8 | 9 | The components of the estimated filtered state are 10 | 11 | k X(k) 12 | 13 | 1 -2.0688 14 | 2 -0.7814 15 | 3 2.2181 16 | 4 0.9298 17 | -------------------------------------------------------------------------------- /examples/FB01VD.dat: -------------------------------------------------------------------------------- 1 | FB01VD EXAMPLE PROGRAM DATA 2 | 4 3 2 0.0 3 | 0.5015 0.4368 0.2693 0.6325 4 | 0.4368 0.4818 0.2639 0.4148 5 | 0.2693 0.2639 0.1121 0.6856 6 | 0.6325 0.4148 0.6856 0.8906 7 | 0.2113 0.8497 0.7263 0.8833 8 | 0.7560 0.6857 0.1985 0.6525 9 | 0.0002 0.8782 0.5442 0.3076 10 | 0.3303 0.0683 0.2320 0.9329 11 | 0.0437 0.7783 0.5618 12 | 0.4818 0.2119 0.5896 13 | 0.2639 0.1121 0.6853 14 | 0.4148 0.6856 0.8906 15 | 0.9329 0.2146 0.3126 16 | 0.2146 0.2922 0.5664 17 | 0.3126 0.5664 0.5935 18 | 0.3873 0.9488 0.3760 0.0881 19 | 0.9222 0.3435 0.7340 0.4498 20 | 1.0000 0.0000 21 | 0.0000 1.0000 22 | -------------------------------------------------------------------------------- /examples/FB01VD.res: -------------------------------------------------------------------------------- 1 | FB01VD EXAMPLE PROGRAM RESULTS 2 | 3 | The state covariance matrix is 4 | 1.6007 1.3283 1.1153 1.7177 5 | 1.3283 1.2763 1.0132 1.5137 6 | 1.1153 1.0132 0.8222 1.2722 7 | 1.7177 1.5137 1.2722 2.1562 8 | 9 | The Kalman filter gain matrix is 10 | 0.1648 0.2241 11 | 0.2115 0.1610 12 | 0.0728 0.1673 13 | 0.1304 0.3892 14 | 15 | The square root of the covariance matrix of the innovations is 16 | 1.5091 1.1543 17 | 0.0000 1.5072 18 | -------------------------------------------------------------------------------- /examples/FD01AD.dat: -------------------------------------------------------------------------------- 1 | FD01AD EXAMPLE PROGRAM DATA 2 | 2 1.0D-2 B 3 | -------------------------------------------------------------------------------- /examples/FD01AD.res: -------------------------------------------------------------------------------- 1 | FD01AD EXAMPLE PROGRAM RESULTS 2 | 3 | i XF(i) YQ(i) EPSBCK(i) 4 | 5 | 1 4.880088 12.307615 -0.140367 6 | 2 -1.456881 2.914057 -0.140367 7 | 3 0.980099 8 | 9 | EFOR = 0.197D-02 10 | -------------------------------------------------------------------------------- /examples/IB01AD.res: -------------------------------------------------------------------------------- 1 | IB01AD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the system is 4 4 | The singular values are 5 | 69.8841 14.9963 3.6675 1.9677 0.3000 0.2078 0.1651 0.1373 6 | 0.1133 0.1059 0.0856 0.0784 0.0733 0.0678 0.0571 7 | -------------------------------------------------------------------------------- /examples/IB01CD.res: -------------------------------------------------------------------------------- 1 | IB01CD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The system state matrix A is 5 | 0.8924 0.3887 0.1285 0.1716 6 | -0.0837 0.6186 -0.6273 -0.4582 7 | 0.0052 0.1307 0.6685 -0.6755 8 | 0.0055 0.0734 -0.2148 0.4788 9 | 10 | The system output matrix C is 11 | -0.4442 0.6663 0.3961 0.4102 12 | 13 | The system input matrix B is 14 | -0.2150 15 | -0.1962 16 | 0.0511 17 | 0.0373 18 | 19 | The system input-output matrix D is 20 | -0.0018 21 | 22 | The initial state vector x0 is 23 | -11.4329 -0.6767 0.0472 0.3600 24 | -------------------------------------------------------------------------------- /examples/IB03AD.res: -------------------------------------------------------------------------------- 1 | IB03AD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | Final 2-norm of the residuals = 0.2970365D+00 5 | 6 | Number of iterations = 87 7 | Number of conjugate gradients iterations = 0 8 | Number of function evaluations = 1322 9 | Number of Jacobian evaluations = 105 10 | 11 | Final approximate solution is 12 | -0.9728 0.6465 -1.2888 -0.4296 -0.8530 0.3181 0.9778 0.4570 -0.1420 0.8984 13 | -0.6031 0.0697 -1.0822 0.4465 0.6036 0.3792 0.2532 -0.0285 0.4129 0.4833 14 | 0.1746 0.5626 0.2150 -0.3343 0.4013 -0.3679 0.5653 0.8092 -0.2363 -0.6361 15 | -0.6818 0.6110 -0.5506 0.9914 0.0352 0.1968 -0.2502 7.0067 -10.7378 2.6900 16 | -59.8756 -0.9898 -0.8296 2.3429 1.3456 -0.2531 -1.1265 0.0326 0.5617 0.1045 17 | -------------------------------------------------------------------------------- /examples/IB03BD.res: -------------------------------------------------------------------------------- 1 | IB03BD EXAMPLE PROGRAM RESULTS 2 | 3 | IWARN on exit from IB03BD = 12 4 | 5 | Final 2-norm of the residuals = 0.2995840D+00 6 | 7 | Number of iterations = 42 8 | Number of function evaluations = 898 9 | Number of Jacobian evaluations = 295 10 | 11 | Final approximate solution is 12 | 14.1294 1.1232 6.4322 -11.2418 7.6380 -33.4730 -64.7203 747.1515 -0.4623 -92.6092 13 | 6.1682 -0.7672 0.1194 0.3558 0.9091 0.2948 1.3465 0.0093 0.0560 -0.0035 14 | -0.4179 -0.0455 -2.0871 -0.9196 1.0777 0.9213 0.5373 1.0412 -0.3978 7.6832 15 | -6.8614 -31.6119 -0.1092 -9.8984 0.1257 0.4056 0.0472 7.5819 -13.3969 2.4869 16 | -66.0727 -0.8411 -0.7040 1.9641 1.3059 -0.2046 -0.9326 0.0040 0.4032 0.1479 17 | -------------------------------------------------------------------------------- /examples/MB01TD.dat: -------------------------------------------------------------------------------- 1 | MB01TD EXAMPLE PROGRAM DATA 2 | 5 3 | 1. 2. 6. 3. 5. 4 | -2. -1. -1. 0. -2. 5 | 0. 0. 1. 5. 1. 6 | 0. 0. 0. 0. -4. 7 | 0. 0. 0. 20. 4. 8 | 5. 5. 1. 5. 1. 9 | -2. 1. 3. 0. -4. 10 | 0. 0. 4. 20. 4. 11 | 0. 0. 0. 3. 5. 12 | 0. 0. 0. 1. -2. 13 | -------------------------------------------------------------------------------- /examples/MB01TD.res: -------------------------------------------------------------------------------- 1 | MB01TD EXAMPLE PROGRAM RESULTS 2 | 3 | The matrix product A*B is 4 | 1.0000 7.0000 31.0000 139.0000 22.0000 5 | -8.0000 -11.0000 -9.0000 -32.0000 2.0000 6 | 0.0000 0.0000 4.0000 36.0000 27.0000 7 | 0.0000 0.0000 0.0000 -4.0000 8.0000 8 | 0.0000 0.0000 0.0000 64.0000 92.0000 9 | -------------------------------------------------------------------------------- /examples/MB02CD.dat: -------------------------------------------------------------------------------- 1 | MB02CD EXAMPLE PROGRAM DATA 2 | 3 2 A 3 | 3.0000 1.0000 0.1000 0.1000 0.2000 0.0500 4 | 1.0000 4.0000 0.4000 0.1000 0.0400 0.2000 5 | -------------------------------------------------------------------------------- /examples/MB02DD.dat: -------------------------------------------------------------------------------- 1 | MB02DD EXAMPLE PROGRAM DATA 2 | 3 2 2 A R 3 | 3.0000 1.0000 0.1000 0.1000 0.2000 0.0500 0.1000 0.0400 0.01 0.02 4 | 1.0000 4.0000 0.4000 0.1000 0.0400 0.2000 0.0300 0.0200 0.03 0.01 5 | -------------------------------------------------------------------------------- /examples/MB02ED.dat: -------------------------------------------------------------------------------- 1 | MB02ED EXAMPLE PROGRAM DATA 2 | 3 3 2 C 3 | 3.0000 1.0000 0.2000 4 | 1.0000 4.0000 0.4000 5 | 0.2000 0.4000 5.0000 6 | 0.1000 0.1000 0.2000 7 | 0.2000 0.0400 0.0300 8 | 0.0500 0.2000 0.1000 9 | 0.1000 0.0300 0.1000 10 | 0.0400 0.0200 0.2000 11 | 0.0100 0.0300 0.0200 12 | 1.0000 2.0000 13 | 1.0000 2.0000 14 | 1.0000 2.0000 15 | 1.0000 2.0000 16 | 1.0000 2.0000 17 | 1.0000 2.0000 18 | 1.0000 2.0000 19 | 1.0000 2.0000 20 | 1.0000 2.0000 21 | -------------------------------------------------------------------------------- /examples/MB02ED.res: -------------------------------------------------------------------------------- 1 | MB02ED EXAMPLE PROGRAM RESULTS 2 | 3 | The solution of T*X = B is 4 | 0.2408 0.4816 5 | 0.1558 0.3116 6 | 0.1534 0.3068 7 | 0.2302 0.4603 8 | 0.1467 0.2934 9 | 0.1537 0.3075 10 | 0.2349 0.4698 11 | 0.1498 0.2995 12 | 0.1653 0.3307 13 | -------------------------------------------------------------------------------- /examples/MB02FD.dat: -------------------------------------------------------------------------------- 1 | MB02FD EXAMPLE 2 | 4 2 3 3 | 0 1 1 4 | 3.0000 1.0000 0.1000 0.1000 0.2000 0.0500 0.2000 0.3000 5 | 1.0000 4.0000 0.4000 0.1000 0.0400 0.2000 0.1000 0.2000 6 | -------------------------------------------------------------------------------- /examples/MB02FD.res: -------------------------------------------------------------------------------- 1 | MB02FD EXAMPLE PROGRAM RESULTS 2 | 3 | Incomplete Cholesky factorization 4 | 5 | rows norm(Schur complement) 6 | 7 | 0 5.5509 8 | 2 5.1590 9 | 4 4.8766 10 | 11 | The upper ICC factor of the block Toeplitz matrix is 12 | 1.7321 0.5774 0.0577 0.0577 0.1155 0.0289 0.1155 0.1732 13 | 0.0000 1.9149 0.1915 0.0348 -0.0139 0.0957 0.0174 0.0522 14 | 0.0000 0.0000 1.7205 0.5754 0.0558 0.0465 0.1104 0.0174 15 | 0.0000 0.0000 0.0000 1.9142 0.1890 0.0357 -0.0161 0.0931 16 | -------------------------------------------------------------------------------- /examples/MB02GD.dat: -------------------------------------------------------------------------------- 1 | MB02GD EXAMPLE PROGRAM DATA 2 | 2 4 2 T 3 | 3.0000 1.0000 0.1000 0.4000 0.2000 0.0000 4 | 0.0000 4.0000 0.1000 0.1000 0.0500 0.2000 5 | -------------------------------------------------------------------------------- /examples/MB02GD.res: -------------------------------------------------------------------------------- 1 | MB02GD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The upper Cholesky factor in banded storage format 5 | 0.0000 0.0000 0.0000 0.0000 0.1155 0.1044 0.1156 0.1051 6 | 0.0000 0.0000 0.0000 0.2309 -0.0087 0.2290 -0.0084 0.2302 7 | 0.0000 0.0000 0.0577 -0.0174 0.0541 -0.0151 0.0544 -0.0159 8 | 0.0000 0.5774 0.0348 0.5704 0.0222 0.5725 0.0223 0.5724 9 | 1.7321 1.9149 1.7307 1.9029 1.7272 1.8996 1.7272 1.8995 10 | -------------------------------------------------------------------------------- /examples/MB02HD.dat: -------------------------------------------------------------------------------- 1 | MB02HD EXAMPLE PROGRAM DATA 2 | 2 2 6 2 5 1 N 3 | 4.0 4.0 4 | 1.0 3.0 5 | 2.0 1.0 6 | 2.0 2.0 7 | 4.0 4.0 8 | 3.0 4.0 9 | 1.0 3.0 10 | 2.0 1.0 11 | -------------------------------------------------------------------------------- /examples/MB02HD.res: -------------------------------------------------------------------------------- 1 | MB02HD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The lower triangular factor R in banded storage 5 | -7.0711 -2.4125 6.0822 2.9967 5.9732 2.8593 5.8497 2.7914 2.7298 1.9557 6 | -7.4953 -0.0829 5.8986 -0.5571 5.5329 0.2059 5.6797 0.3414 0.9565 0.0000 7 | -4.2426 0.9202 2.4747 -1.6425 2.9472 -1.0052 2.4396 -0.7785 0.0000 0.0000 8 | -5.2326 0.6218 2.8391 -0.0820 3.2670 0.6327 2.7067 0.0000 0.0000 0.0000 9 | -3.5355 0.8207 3.1160 -0.4451 3.5758 0.5701 0.0000 0.0000 0.0000 0.0000 10 | -4.6669 -0.5803 3.9454 0.7682 4.5481 0.0000 0.0000 0.0000 0.0000 0.0000 11 | -1.4142 -0.0415 1.6441 0.4848 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 | -2.1213 0.0000 2.4662 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 13 | -------------------------------------------------------------------------------- /examples/MB02ID.dat: -------------------------------------------------------------------------------- 1 | MB02ID EXAMPLE PROGRAM DATA 2 | 3 2 4 3 1 1 A 3 | 5.0 2.0 4 | 1.0 2.0 5 | 4.0 3.0 6 | 4.0 0.0 7 | 2.0 2.0 8 | 3.0 3.0 9 | 5.0 1.0 10 | 3.0 3.0 11 | 1.0 1.0 12 | 2.0 3.0 13 | 1.0 3.0 14 | 2.0 2.0 15 | 1.0 4.0 2.0 3.0 16 | 2.0 2.0 2.0 4.0 17 | 3.0 1.0 0.0 1.0 18 | 1.0 19 | 1.0 20 | 1.0 21 | 1.0 22 | 1.0 23 | 1.0 24 | 1.0 25 | 1.0 26 | 1.0 27 | 1.0 28 | 1.0 29 | 1.0 30 | 1.0 31 | 1.0 32 | 1.0 33 | 1.0 34 | 1.0 35 | 1.0 36 | -------------------------------------------------------------------------------- /examples/MB02ID.res: -------------------------------------------------------------------------------- 1 | MB02ID EXAMPLE PROGRAM RESULTS 2 | 3 | The least squares solution of T * X = B is 4 | 0.0379 5 | 0.1677 6 | 0.0485 7 | -0.0038 8 | 0.0429 9 | 0.1365 10 | The minimum norm solution of T^T * X = C is 11 | 0.0509 12 | 0.0547 13 | 0.0218 14 | 0.0008 15 | 0.0436 16 | 0.0404 17 | 0.0031 18 | 0.0451 19 | 0.0421 20 | 0.0243 21 | 0.0556 22 | 0.0472 23 | -------------------------------------------------------------------------------- /examples/MB02JD.dat: -------------------------------------------------------------------------------- 1 | MB02JD EXAMPLE PROGRAM DATA 2 | 2 3 4 3 Q 3 | 1.0 4.0 0.0 4 | 4.0 1.0 2.0 5 | 4.0 2.0 2.0 6 | 5.0 3.0 2.0 7 | 2.0 4.0 4.0 8 | 5.0 3.0 4.0 9 | 2.0 2.0 5.0 10 | 4.0 2.0 3.0 11 | 3.0 4.0 2.0 5.0 0.0 4.0 12 | 5.0 1.0 1.0 2.0 4.0 1.0 13 | -------------------------------------------------------------------------------- /examples/MB02JX.dat: -------------------------------------------------------------------------------- 1 | MB02JX EXAMPLE PROGRAM DATA 2 | 3 3 4 4 -1.0D0 -1.0D0 Q 3 | 1.0 2.0 3.0 4 | 1.0 2.0 3.0 5 | 1.0 2.0 3.0 6 | 1.0 2.0 3.0 7 | 1.0 2.0 3.0 8 | 1.0 2.0 3.0 9 | 1.0 2.0 3.0 10 | 1.0 2.0 3.0 11 | 1.0 2.0 3.0 12 | 1.0 0.0 1.0 13 | 1.0 1.0 0.0 14 | 2.0 2.0 0.0 15 | 1.0 2.0 3.0 1.0 2.0 3.0 0.0 1.0 1.0 16 | 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 1.0 17 | 1.0 2.0 3.0 1.0 2.0 3.0 1.0 1.0 1.0 18 | 1.0 2.0 3.0 1.0 2.0 3.0 0.0 1.0 0.0 19 | -------------------------------------------------------------------------------- /examples/MB02KD.dat: -------------------------------------------------------------------------------- 1 | MB02KD EXAMPLE PROGRAM DATA 2 | 3 2 4 5 1 C N 3 | 4.0 1.0 4 | 3.0 5.0 5 | 2.0 1.0 6 | 4.0 1.0 7 | 3.0 4.0 8 | 2.0 4.0 9 | 3.0 1.0 10 | 3.0 0.0 11 | 4.0 4.0 12 | 5.0 1.0 13 | 3.0 1.0 14 | 4.0 3.0 15 | 5.0 2.0 2.0 2.0 2.0 1.0 1.0 3.0 16 | 4.0 1.0 5.0 4.0 5.0 4.0 1.0 2.0 17 | 2.0 3.0 4.0 1.0 3.0 3.0 3.0 3.0 18 | 0.0 19 | 2.0 20 | 2.0 21 | 2.0 22 | 1.0 23 | 3.0 24 | 3.0 25 | 4.0 26 | 2.0 27 | 3.0 28 | -------------------------------------------------------------------------------- /examples/MB02KD.res: -------------------------------------------------------------------------------- 1 | MB02KD EXAMPLE PROGRAM RESULTS 2 | 3 | The product C = T * B is 4 | 45.0000 5 | 76.0000 6 | 55.0000 7 | 44.0000 8 | 84.0000 9 | 56.0000 10 | 52.0000 11 | 70.0000 12 | 54.0000 13 | 49.0000 14 | 63.0000 15 | 59.0000 16 | -------------------------------------------------------------------------------- /examples/MB02MD.dat: -------------------------------------------------------------------------------- 1 | MB02MD EXAMPLE PROGRAM DATA 2 | 6 3 1 B 3 | 0.0 4 | 0.80010 0.39985 0.60005 0.89999 5 | 0.29996 0.69990 0.39997 0.82997 6 | 0.49994 0.60003 0.20012 0.79011 7 | 0.90013 0.20016 0.79995 0.85002 8 | 0.39998 0.80006 0.49985 0.99016 9 | 0.20002 0.90007 0.70009 1.02994 10 | -------------------------------------------------------------------------------- /examples/MB02MD.res: -------------------------------------------------------------------------------- 1 | MB02MD EXAMPLE PROGRAM RESULTS 2 | 3 | The computed rank of the TLS approximation = 3 4 | 5 | The solution X to the TLS problem is 6 | 7 | 0.5003 8 | 0.8003 9 | 0.2995 10 | 11 | The singular values of C are 12 | 13 | 3.2281 14 | 0.8716 15 | 0.3697 16 | 0.0001 17 | -------------------------------------------------------------------------------- /examples/MB02ND.dat: -------------------------------------------------------------------------------- 1 | MB02ND EXAMPLE PROGRAM DATA 2 | 6 3 1 -1 0.001 0.0 0.0 3 | 0.80010 0.39985 0.60005 0.89999 4 | 0.29996 0.69990 0.39997 0.82997 5 | 0.49994 0.60003 0.20012 0.79011 6 | 0.90013 0.20016 0.79995 0.85002 7 | 0.39998 0.80006 0.49985 0.99016 8 | 0.20002 0.90007 0.70009 1.02994 9 | -------------------------------------------------------------------------------- /examples/MB02ND.res: -------------------------------------------------------------------------------- 1 | MB02ND EXAMPLE PROGRAM RESULTS 2 | 3 | The computed rank of the TLS approximation = 3 4 | 5 | The elements of the partially diagonalized bidiagonal matrix are 6 | 7 | (1,1) = 3.2280 (1,2) = -0.0287 8 | (2,2) = 0.8714 (2,3) = 0.0168 9 | (3,3) = 0.3698 (3,4) = 0.0000 10 | (4,4) = 0.0001 11 | 12 | The solution X to the TLS problem is 13 | 14 | 0.5003 15 | 0.8003 16 | 0.2995 17 | 18 | Right singular subspace corresponds to the first 4 components of the j-th 19 | column of C for which INUL(j) = .TRUE., j = 1,..., 4 20 | 21 | Matrix C 22 | 23 | -0.3967 -0.7096 0.4612 -0.3555 24 | 0.9150 -0.2557 0.2414 -0.5687 25 | -0.0728 0.6526 0.5215 -0.2128 26 | 0.0000 0.0720 0.6761 0.7106 27 | 0.1809 0.3209 0.0247 -0.4139 28 | 0.0905 0.4609 -0.3528 0.5128 29 | 30 | j INUL(j) 31 | 32 | 1 F 33 | 2 F 34 | 3 F 35 | 4 T 36 | -------------------------------------------------------------------------------- /examples/MB02QD.dat: -------------------------------------------------------------------------------- 1 | MB02QD EXAMPLE PROGRAM DATA 2 | 4 3 2 2.3D-16 0.0 L N 3 | 2.0 2.0 -3.0 4 | 3.0 3.0 -1.0 5 | 4.0 4.0 -5.0 6 | -1.0 -1.0 -2.0 7 | 1.0 0.0 8 | 0.0 0.0 9 | 0.0 0.0 10 | 0.0 1.0 11 | -------------------------------------------------------------------------------- /examples/MB02QD.res: -------------------------------------------------------------------------------- 1 | MB02QD EXAMPLE PROGRAM RESULTS 2 | 3 | The effective rank of A = 2 4 | Estimates of the singular values SVAL = 5 | 7.8659 2.6698 0.0000 6 | The least squares solution is 7 | -0.0034 -0.1054 8 | -0.0034 -0.1054 9 | -0.0816 -0.1973 10 | -------------------------------------------------------------------------------- /examples/MB02SD.dat: -------------------------------------------------------------------------------- 1 | MB02SD EXAMPLE PROGRAM DATA 2 | 5 4 O N 3 | 1. 2. 6. 3. 5. 4 | -2. -1. -1. 0. -2. 5 | 0. 3. 1. 5. 1. 6 | 0. 0. 2. 0. -4. 7 | 0. 0. 0. 1. 4. 8 | 5. 5. 1. 5. 9 | -2. 1. 3. 1. 10 | 0. 0. 4. 5. 11 | 2. 1. 1. 3. 12 | -1. 3. 3. 1. 13 | -------------------------------------------------------------------------------- /examples/MB02SD.res: -------------------------------------------------------------------------------- 1 | MB02SD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix is 4 | 0.0435 1.2029 1.6377 1.1014 5 | 1.0870 -4.4275 -5.5580 -2.9638 6 | 0.9130 0.7609 -0.1087 0.6304 7 | -0.8261 2.4783 4.2174 2.7391 8 | -0.0435 0.1304 -0.3043 -0.4348 9 | 10 | Reciprocal condition number = 0.1554D-01 11 | -------------------------------------------------------------------------------- /examples/MB02VD.dat: -------------------------------------------------------------------------------- 1 | MB02VD EXAMPLE PROGRAM DATA 2 | 5 4 N 3 | 1. 2. 6. 3. 4 | -2. -1. -1. 0. 5 | 2. 3. 1. 5. 6 | 1. -1. 2. 0. 7 | 0. 0. 0. 1. 8 | 5. 5. 1. 5. 9 | -2. 1. 3. 1. 10 | 0. 0. 4. 5. 11 | 2. 1. 1. 3. 12 | -------------------------------------------------------------------------------- /examples/MB02VD.res: -------------------------------------------------------------------------------- 1 | MB02VD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix is 4 | -0.0690 0.3333 0.2414 0.2529 5 | -0.1724 -1.6667 1.1034 -0.3678 6 | 0.9655 0.6667 -0.3793 -0.8736 7 | 0.3448 1.6667 0.7931 1.4023 8 | -0.2069 0.0000 0.7241 0.7586 9 | -------------------------------------------------------------------------------- /examples/MB03BD.dat: -------------------------------------------------------------------------------- 1 | MB03BD EXAMPLE PROGRAM DATA 2 | S C I 3 3 2 1 3 3 | -1 1 -1 4 | 2.0 0.0 1.0 5 | 0.0 -2.0 -1.0 6 | 0.0 0.0 3.0 7 | 1.0 2.0 0.0 8 | 4.0 -1.0 3.0 9 | 0.0 3.0 1.0 10 | 1.0 0.0 1.0 11 | 0.0 4.0 -1.0 12 | 0.0 0.0 -2.0 13 | 14 | -------------------------------------------------------------------------------- /examples/MB03FZ.dat: -------------------------------------------------------------------------------- 1 | MB03FZ EXAMPLE PROGRAM DATA 2 | C C P 4 3 | (0.0328,0.9611) (0.6428,0.2585) (0.7033,0.4254) (0.2552,0.7053) 4 | (0.0501,0.2510) (0.2827,0.8865) (0.4719,0.5387) (0.0389,0.5676) 5 | (0.5551,0.4242) (0.0643,0.2716) (0.1165,0.7875) (0.9144,0.3891) 6 | (0.0539,0.7931) (0.0408,0.2654) (0.9912,0.0989) (0.0991,0.6585) 7 | (0.0547,0.8726) (0.4008,0.8722) 8 | (0.7423,0.6166) (0.2631,0.5872) 9 | 0.8740 0.3697 (0.9178,0.6418) 10 | (0.7748,0.5358) 0.1652 0.2441 11 | -------------------------------------------------------------------------------- /examples/MB03KD.dat: -------------------------------------------------------------------------------- 1 | MB03KD EXAMPLE PROGRAM DATA 2 | S C I N 3 3 2 1 3 3 | -1 1 -1 4 | 2.0 0.0 1.0 5 | 0.0 -2.0 -1.0 6 | 0.0 0.0 3.0 7 | 1.0 2.0 0.0 8 | 4.0 -1.0 3.0 9 | 0.0 3.0 1.0 10 | 1.0 0.0 1.0 11 | 0.0 4.0 -1.0 12 | 0.0 0.0 -2.0 13 | 14 | -------------------------------------------------------------------------------- /examples/MB03LD.dat: -------------------------------------------------------------------------------- 1 | MB03LD EXAMPLE PROGRAM DATA 2 | C P 8 3 | 3.1472 1.3236 4.5751 4.5717 4 | 4.0579 -4.0246 4.6489 -0.1462 5 | -3.7301 -2.2150 -3.4239 3.0028 6 | 4.1338 0.4688 4.7059 -3.5811 7 | 0.0000 0.0000 -1.5510 -4.5974 -2.5127 8 | 3.5071 0.0000 0.0000 1.5961 2.4490 9 | -3.1428 2.5648 0.0000 0.0000 -0.0596 10 | 3.0340 2.4892 -1.1604 0.0000 0.0000 11 | 0.6882 -3.3782 -3.3435 1.8921 12 | -0.3061 2.9428 1.0198 2.4815 13 | -4.8810 -1.8878 -2.3703 -0.4946 14 | -1.6288 0.2853 1.5408 -4.1618 15 | -2.4013 -2.7102 0.3834 -3.9335 3.1730 16 | -3.1815 -2.3620 4.9613 4.6190 3.6869 17 | 3.6929 0.7970 0.4986 -4.9537 -4.1556 18 | 3.5303 1.2206 -1.4905 0.1325 -1.0022 19 | 20 | -------------------------------------------------------------------------------- /examples/MB03LZ.dat: -------------------------------------------------------------------------------- 1 | MB03LZ EXAMPLE PROGRAM DATA 2 | C P 4 3 | (0.0604,0.6568) (0.5268,0.2919) 4 | (0.3992,0.6279) (0.4167,0.4316) 5 | (0,0.4896) (0,0.9516) (0.3724,0.0526) 6 | (0.9840,0.3394) (0,0.9203) (0,0.7378) 7 | (0.2691,0.4177) (0.5478,0.3014) 8 | (0.4228,0.9830) (0.9427,0.7010) 9 | 0.6663 0.6981 (0.1781,0.8818) 10 | (0.5391,0.1711) 0.6665 0.1280 11 | -------------------------------------------------------------------------------- /examples/MB03MD.dat: -------------------------------------------------------------------------------- 1 | MB03MD EXAMPLE PROGRAM DATA 2 | 5 -3.0 3 0.0 0.0 3 | 1.0 2.0 3.0 4.0 5.0 4 | 2.0 3.0 4.0 5.0 5 | -------------------------------------------------------------------------------- /examples/MB03MD.res: -------------------------------------------------------------------------------- 1 | MB03MD EXAMPLE PROGRAM RESULTS 2 | 3 | The Bidiagonal Matrix J is 4 | 5 | (1,1) = 1.0000 (1,2) = 2.0000 6 | (2,2) = 2.0000 (2,3) = 3.0000 7 | (3,3) = 3.0000 (3,4) = 4.0000 8 | (4,4) = 4.0000 (4,5) = 5.0000 9 | (5,5) = 5.0000 10 | 11 | The computed value of THETA is 4.7500 12 | 13 | J has 3 singular values < = THETA 14 | -------------------------------------------------------------------------------- /examples/MB03ND.dat: -------------------------------------------------------------------------------- 1 | MB03ND EXAMPLE PROGRAM DATA 2 | 5 5.0 0.0 0.0 3 | 1.0 2.0 3.0 4.0 5.0 4 | 2.0 3.0 4.0 5.0 5 | -------------------------------------------------------------------------------- /examples/MB03ND.res: -------------------------------------------------------------------------------- 1 | MB03ND EXAMPLE PROGRAM RESULTS 2 | 3 | The Bidiagonal Matrix J is 4 | 5 | (1,1) = 1.0000 (1,2) = 2.0000 6 | (2,2) = 2.0000 (2,3) = 3.0000 7 | (3,3) = 3.0000 (3,4) = 4.0000 8 | (4,4) = 4.0000 (4,5) = 5.0000 9 | (5,5) = 5.0000 10 | 11 | J has 3 singular values < = 5.0000 12 | -------------------------------------------------------------------------------- /examples/MB03OD.dat: -------------------------------------------------------------------------------- 1 | MB03OD EXAMPLE PROGRAM DATA 2 | 6 5 Q 5.D-16 0.0 3 | 1. 2. 6. 3. 5. 4 | -2. -1. -1. 0. -2. 5 | 5. 5. 1. 5. 1. 6 | -2. -1. -1. 0. -2. 7 | 4. 8. 4. 20. 4. 8 | -2. -1. -1. 0. -2. 9 | -------------------------------------------------------------------------------- /examples/MB03OD.res: -------------------------------------------------------------------------------- 1 | MB03OD EXAMPLE PROGRAM RESULTS 2 | 3 | The rank is 4 4 | Column permutations are 5 | 4 3 1 5 2 6 | SVAL vector is 7 | 22.7257 1.4330 0.0000 8 | -------------------------------------------------------------------------------- /examples/MB03PD.dat: -------------------------------------------------------------------------------- 1 | MB03PD EXAMPLE PROGRAM DATA 2 | 6 5 R 5.D-16 0.0 3 | 1. 2. 6. 3. 5. 4 | -2. -1. -1. 0. -2. 5 | 5. 5. 1. 5. 1. 6 | -2. -1. -1. 0. -2. 7 | 4. 8. 4. 20. 4. 8 | -2. -1. -1. 0. -2. 9 | -------------------------------------------------------------------------------- /examples/MB03PD.res: -------------------------------------------------------------------------------- 1 | MB03PD EXAMPLE PROGRAM RESULTS 2 | 3 | The rank is 4 4 | Row permutations are 5 | 2 4 6 3 1 5 6 | SVAL vector is 7 | 24.5744 0.9580 0.0000 8 | -------------------------------------------------------------------------------- /examples/MB03QD.dat: -------------------------------------------------------------------------------- 1 | MB03QD EXAMPLE PROGRAM DATA 2 | 4 1 4 0.0 C S U 3 | -1.0 37.0 -12.0 -12.0 4 | -1.0 -10.0 0.0 4.0 5 | 2.0 -4.0 7.0 -6.0 6 | 2.0 2.0 7.0 -9.0 7 | -------------------------------------------------------------------------------- /examples/MB03QD.res: -------------------------------------------------------------------------------- 1 | MB03QD EXAMPLE PROGRAM RESULTS 2 | 3 | The number of eigenvalues in the domain is 4 4 | 5 | The ordered Schur form matrix is 6 | -3.1300 -26.5066 27.2262 -16.2009 7 | 0.9070 -3.1300 13.6254 8.9206 8 | 0.0000 0.0000 -3.3700 0.3419 9 | 0.0000 0.0000 -1.7879 -3.3700 10 | 11 | The transformation matrix is 12 | 0.9611 0.1784 0.2064 -0.0440 13 | -0.1468 -0.2704 0.8116 -0.4965 14 | -0.2224 0.7675 0.4555 0.3924 15 | -0.0733 0.5531 -0.3018 -0.7730 16 | -------------------------------------------------------------------------------- /examples/MB03QG.dat: -------------------------------------------------------------------------------- 1 | MB03QG EXAMPLE PROGRAM DATA 2 | 4 1 4 0.0 C S U U 3 | -1.0 37.0 -12.0 -12.0 4 | -1.0 -10.0 0.0 4.0 5 | 2.0 -4.0 7.0 -6.0 6 | 2.0 2.0 7.0 -9.0 7 | 1.0 3.0 2.0 -1.0 8 | -2.0 5.0 3.0 2.0 9 | 2.0 4.0 5.0 6.0 10 | 3.0 7.0 6.0 9.0 11 | -------------------------------------------------------------------------------- /examples/MB03RD.dat: -------------------------------------------------------------------------------- 1 | MB03RD EXAMPLE PROGRAM DATA 2 | 8 1.D03 1.D-2 U S 3 | 1. -1. 1. 2. 3. 1. 2. 3. 4 | 1. 1. 3. 4. 2. 3. 4. 2. 5 | 0. 0. 1. -1. 1. 5. 4. 1. 6 | 0. 0. 0. 1. -1. 3. 1. 2. 7 | 0. 0. 0. 1. 1. 2. 3. -1. 8 | 0. 0. 0. 0. 0. 1. 5. 1. 9 | 0. 0. 0. 0. 0. 0. 0.99999999 -0.99999999 10 | 0. 0. 0. 0. 0. 0. 0.99999999 0.99999999 11 | -------------------------------------------------------------------------------- /examples/MB03SD.dat: -------------------------------------------------------------------------------- 1 | MB03SD EXAMPLE PROGRAM DATA 2 | 3 S 3 | 2.0 0.0 0.0 4 | 0.0 1.0 2.0 5 | 0.0 -1.0 3.0 6 | 1.0 0.0 0.0 2.0 3.0 4.0 7 | -2.0 0.0 0.0 0.0 0.0 0.0 8 | -------------------------------------------------------------------------------- /examples/MB03SD.res: -------------------------------------------------------------------------------- 1 | MB03SD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The eigenvalues are 5 | 2.0000 + ( 1.0000)i 6 | 2.0000 + ( -1.0000)i 7 | 1.4142 + ( 0.0000)i 8 | -1.4142 + ( 0.0000)i 9 | -2.0000 + ( 1.0000)i 10 | -2.0000 + ( -1.0000)i 11 | -------------------------------------------------------------------------------- /examples/MB03UD.dat: -------------------------------------------------------------------------------- 1 | MB03UD EXAMPLE PROGRAM DATA 2 | 4 V V 3 | -1.0 37.0 -12.0 -12.0 4 | 0.0 -10.0 0.0 4.0 5 | 0.0 0.0 7.0 -6.0 6 | 0.0 0.0 0.0 -9.0 7 | -------------------------------------------------------------------------------- /examples/MB03UD.res: -------------------------------------------------------------------------------- 1 | MB03UD EXAMPLE PROGRAM RESULTS 2 | 3 | Singular values are 4 | 42.0909 11.7764 5.4420 0.2336 5 | 6 | The transpose of the right singular vectors matrix is 7 | 0.0230 -0.9084 0.2759 0.3132 8 | 0.0075 -0.1272 0.5312 -0.8376 9 | 0.0092 0.3978 0.8009 0.4476 10 | 0.9997 0.0182 -0.0177 -0.0050 11 | 12 | The left singular vectors matrix is 13 | -0.9671 -0.0882 -0.0501 -0.2335 14 | 0.2456 -0.1765 -0.4020 -0.8643 15 | 0.0012 0.7425 0.5367 -0.4008 16 | -0.0670 0.6401 -0.7402 0.1945 17 | -------------------------------------------------------------------------------- /examples/MB03VD.dat: -------------------------------------------------------------------------------- 1 | MB03VD EXAMPLE PROGRAM DATA 2 | 4 2 1 4 3 | 1.5 -.7 3.5 -.7 4 | 1. 0. 2. 3. 5 | 1.5 -.7 2.5 -.3 6 | 1. 0. 2. 1. 7 | 1.5 -.7 3.5 -.7 8 | 1. 0. 2. 3. 9 | 1.5 -.7 2.5 -.3 10 | 1. 0. 2. 1. 11 | -------------------------------------------------------------------------------- /examples/MB03VD.res: -------------------------------------------------------------------------------- 1 | MB03VD EXAMPLE PROGRAM RESULTS 2 | 3 | Reduced matrices 4 | 5 | K = 1 6 | -2.3926 2.7042 -0.9598 -1.2335 7 | 4.1417 -1.7046 1.3001 -1.3120 8 | 0.0000 -1.6247 -0.2534 1.6453 9 | 0.0000 0.0000 -0.0169 -0.4451 10 | 11 | K = 2 12 | -2.5495 2.3402 4.7021 0.2329 13 | 0.0000 1.9725 -0.2483 -2.3493 14 | 0.0000 0.0000 -0.6290 -0.5975 15 | 0.0000 0.0000 0.0000 -0.4426 16 | 17 | Transformation matrices 18 | 19 | K = 1 20 | 1.0000 0.0000 0.0000 0.0000 21 | 0.0000 -0.7103 0.5504 -0.4388 22 | 0.0000 -0.4735 -0.8349 -0.2807 23 | 0.0000 -0.5209 0.0084 0.8536 24 | 25 | K = 2 26 | -0.5883 0.2947 0.7528 -0.0145 27 | -0.3922 -0.8070 0.0009 -0.4415 28 | -0.5883 0.4292 -0.6329 -0.2630 29 | -0.3922 -0.2788 -0.1809 0.8577 30 | 31 | NORM (Q'*A*Q - Aout) = 2.93760D-15 32 | -------------------------------------------------------------------------------- /examples/MB03WD.dat: -------------------------------------------------------------------------------- 1 | MB03WD EXAMPLE PROGRAM DATA 2 | 4 2 1 4 1 4 S V 3 | 1.5 -.7 3.5 -.7 4 | 1. 0. 2. 3. 5 | 1.5 -.7 2.5 -.3 6 | 1. 0. 2. 1. 7 | 1.5 -.7 3.5 -.7 8 | 1. 0. 2. 3. 9 | 1.5 -.7 2.5 -.3 10 | 1. 0. 2. 1. 11 | -------------------------------------------------------------------------------- /examples/MB03XZ.dat: -------------------------------------------------------------------------------- 1 | MB03XZ EXAMPLE PROGRAM DATA 2 | 4 N G U 3 | (0.8147,0.4217) (0.6323,0.6557) (0.9575,0.6787) (0.9571,0.6554) 4 | (0.9057,0.9157) (0.0975,0.0357) (0.9648,0.7577) (0.4853,0.1711) 5 | (0.1269,0.7922) (0.2784,0.8491) (0.1576,0.7431) (0.8002,0.7060) 6 | (0.9133,0.9594) (0.5468,0.9339) (0.9705,0.3922) (0.1418,0.0318) 7 | 0.2769 0.6948 (0.4387,0.7513) (0.1869,0.8909) (0.7094,0.1493) 8 | (0.0462,0.1626) 0.3171 0.3816 (0.4898,0.9593) (0.7547,0.2575) 9 | (0.0971,0.1190) (0.9502,0.5853) 0.7655 0.4456 (0.2760,0.8407) 10 | (0.8235,0.4984) (0.0344,0.2238) (0.7952,0.6991) 0.6463 0.6797 11 | -------------------------------------------------------------------------------- /examples/MB04AZ.dat: -------------------------------------------------------------------------------- 1 | MB04AZ EXAMPLE PROGRAM DATA 2 | T C C 4 3 | (0.4941,0.8054) (0.8909,0.8865) (0.0305,0.9786) (0.9047,0.0596) 4 | (0.7790,0.5767) (0.3341,0.0286) (0.7440,0.7126) (0.6098,0.6819) 5 | (0.7150,0.1829) (0.6987,0.4899) (0.5000,0.5004) (0.6176,0.0424) 6 | (0.9037,0.2399) (0.1978,0.1679) (0.4799,0.4710) (0.8594,0.0714) 7 | (0.5216,0.7224) (0.8181,0.6596) 8 | (0.0967,0.1498) (0.8175,0.5185) 9 | 0.9729 0.8003 (0.4323,0.8313) 10 | (0.6489,0.1331) 0.4537 0.8253 11 | -------------------------------------------------------------------------------- /examples/MB04BD.dat: -------------------------------------------------------------------------------- 1 | MB04BD EXAMPLE PROGRAM DATA 2 | T I I 8 3 | 3.1472 1.3236 4.5751 4.5717 4 | 4.0579 -4.0246 4.6489 -0.1462 5 | -3.7301 -2.2150 -3.4239 3.0028 6 | 4.1338 0.4688 4.7059 -3.5811 7 | 0.0000 0.0000 -1.5510 -4.5974 -2.5127 8 | 3.5071 0.0000 0.0000 1.5961 2.4490 9 | -3.1428 2.5648 0.0000 0.0000 -0.0596 10 | 3.0340 2.4892 -1.1604 0.0000 0.0000 11 | 0.6882 -3.3782 -3.3435 1.8921 12 | -0.3061 2.9428 1.0198 2.4815 13 | -4.8810 -1.8878 -2.3703 -0.4946 14 | -1.6288 0.2853 1.5408 -4.1618 15 | -2.4013 -2.7102 0.3834 -3.9335 3.1730 16 | -3.1815 -2.3620 4.9613 4.6190 3.6869 17 | 3.6929 0.7970 0.4986 -4.9537 -4.1556 18 | 3.5303 1.2206 -1.4905 0.1325 -1.0022 19 | 20 | -------------------------------------------------------------------------------- /examples/MB04BZ.dat: -------------------------------------------------------------------------------- 1 | MB04BZ EXAMPLE PROGRAM DATA 2 | T C 4 3 | (0.0604,0.6568) (0.5268,0.2919) 4 | (0.3992,0.6279) (0.4167,0.4316) 5 | (0,0.4896) (0,0.9516) (0.3724,0.0526) 6 | (0.9840,0.3394) (0,0.9203) (0,0.7378) 7 | (0.2691,0.4177) (0.5478,0.3014) 8 | (0.4228,0.9830) (0.9427,0.7010) 9 | 0.6663 0.6981 (0.1781,0.8818) 10 | (0.5391,0.1711) 0.6665 0.1280 11 | -------------------------------------------------------------------------------- /examples/MB04DD.dat: -------------------------------------------------------------------------------- 1 | MB04DD EXAMPLE PROGRAM DATA 2 | 6 B 3 | 0 0 0 0 0 0 4 | 0.0994 0 0 0 0 0.9696 5 | 0.3248 0 0 0 0.4372 0.8308 6 | 0 0 0 0.0717 0 0 7 | 0 0 0 0 0 0.1976 8 | 0 0 0 0 0 0 9 | 0 0 0 0 0 0 0 10 | 0 0 0 0 0.0651 0 0 11 | 0 0 0 0 0 0 0 12 | 0 0 0.0444 0 0 0.1957 0 13 | 0.8144 0 0 0 0.3652 0 0.9121 14 | 0.9023 0 0 0 0 0 1.0945 15 | -------------------------------------------------------------------------------- /examples/MB04DL.dat: -------------------------------------------------------------------------------- 1 | MB04DL EXAMPLE PROGRAM DATA 2 | 4 B -3 3 | 1 0 -1e-12 0 4 | 0 -2 0 0 5 | -1 -1 -1 0 6 | -1 -1 0 2 7 | 1 0 0 0 8 | 0 1 0 0 9 | 0 0 1 0 10 | 0 0 0 1 11 | 12 | -------------------------------------------------------------------------------- /examples/MB04DP.dat: -------------------------------------------------------------------------------- 1 | MB04DP EXAMPLE PROGRAM DATA 2 | 2 B -3 3 | 1 0 4 | 0 1 5 | 0 0 0 6 | 0 0 0 7 | 1 0 8 | 0 -2 9 | -1 -1.0e-12 0 10 | -1 -1 0 11 | 12 | -------------------------------------------------------------------------------- /examples/MB04DP.res: -------------------------------------------------------------------------------- 1 | MB04DP EXAMPLE PROGRAM RESULTS 2 | 3 | The balanced matrix A is 4 | 1.000 0.000 5 | 0.000 1.000 6 | 7 | The balanced matrix DE is 8 | 0.000 0.000 0.000 9 | 0.000 0.000 0.000 10 | The balanced matrix C is 11 | 2.000 1.000 12 | 0.000 1.000 13 | 14 | The balanced matrix VW is 15 | 0.000 1.000 0.000 16 | 0.000 -1.000 -0.1000E-11 17 | 18 | ILO = 2 19 | 20 | The permutations and left scaling factors are 21 | 4.000 1.000 22 | 23 | The permutations and right scaling factors are 24 | 4.000 1.000 25 | 26 | The initial 1-norms of the (sub)matrices are 27 | 1.000 2.000 28 | 29 | The final 1-norms of the (sub)matrices are 30 | 1.000 2.000 31 | 32 | The threshold value finally used is 33 | -3.000 34 | -------------------------------------------------------------------------------- /examples/MB04DS.dat: -------------------------------------------------------------------------------- 1 | MB04DS EXAMPLE PROGRAM DATA 2 | 6 B 3 | 0.0576 0 0.5208 0 0.7275 -0.7839 4 | 0.1901 0.0439 0.1663 0.0928 0.6756 -0.5030 5 | 0.5962 0 0.4418 0 -0.5955 0.7176 6 | 0.5869 0 0.3939 0.0353 0.6992 -0.0147 7 | 0.2222 0 -0.3663 0 0.5548 -0.4608 8 | 0 0 0 0 0 0.1338 9 | 0 0 -0.9862 -0.4544 -0.4733 0.4435 0 10 | 0 0 0 -0.6927 0.6641 0.4453 0 11 | -0.3676 0 0 0 0.0841 0.3533 0 12 | 0 0 0 0 0 0.0877 0 13 | 0.9561 0 0.4784 0 0 0 0 14 | -0.0164 -0.4514 -0.8289 -0.6831 -0.1536 0 0 15 | -------------------------------------------------------------------------------- /examples/MB04DY.dat: -------------------------------------------------------------------------------- 1 | MB04DY EXAMPLE PROGRAM DATA 2 | 3 S 3 | -0.4 0.05 0.0007 4 | -4.7 0.8 0.025 5 | 81.0 29.0 -0.9 6 | 0.0034 0.0014 0.00077 -0.005 0.0004 0.003 7 | -18.0 -12.0 43.0 99.0 420.0 -200.0 8 | -------------------------------------------------------------------------------- /examples/MB04DY.res: -------------------------------------------------------------------------------- 1 | MB04DY EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The scaled Hamiltonian is 5 | -0.4000 0.4000 0.3584 418.4403 21.5374 0.1851 6 | -0.5875 0.8000 1.6000 21.5374 -9.6149 0.0120 7 | 0.1582 0.4531 -0.9000 0.1851 0.0120 0.0014 8 | -0.0001 -0.0008 0.1789 0.4000 0.5875 -0.1582 9 | -0.0008 0.0515 13.9783 -0.4000 -0.8000 -0.4531 10 | 0.1789 13.9783 -426.0056 -0.3584 -1.6000 0.9000 11 | 12 | The scaling factors are 13 | 0.0029 0.0228 1.4595 14 | -------------------------------------------------------------------------------- /examples/MB04DZ.dat: -------------------------------------------------------------------------------- 1 | MB04DZ EXAMPLE PROGRAM DATA 2 | 6 B 3 | (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 4 | (.0994,0) (0,0) (0,0) (0,0) (0,0) (.9696,0) 5 | (.3248,0) (0,0) (0,0) (0,0) (.4372,0) (.8308,0) 6 | (0,0) (0,0) (0,0) (.0717,0) (0,0) (0,0) 7 | (0,0) (0,0) (0,0) (0,0) (0,0) (.1976,0) 8 | (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 9 | (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 10 | (0,0) (0,0) (0,0) (0,0) (.0651,0) (0,0) (0,0) 11 | (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 12 | (0,0) (0,0) (.0444,0) (0,0) (0,0) (.1957,0) (0,0) 13 | (.8144,0) (0,0) (0,0) (0,0) (.3652,0) (0,0) (.9121,0) 14 | (.9023,0) (0,0) (0,0) (0,0) (0,0) (0,0) 1.0945,0) 15 | -------------------------------------------------------------------------------- /examples/MB04FD.dat: -------------------------------------------------------------------------------- 1 | MB04FD EXAMPLE PROGRAM DATA 2 | T I 8 3 | 0.8147 0.6323 0.9575 0.9571 4 | 0.9057 0.0975 0.9648 0.4853 5 | 0.1269 0.2784 0.1576 0.8002 6 | 0.9133 0.5468 0.9705 0.1418 7 | 0.4217 0.6557 0.6787 0.6554 0.2769 8 | 0.9157 0.0357 0.7577 0.1711 0.0461 9 | 0.7922 0.8491 0.7431 0.7060 0.0971 10 | 0.9594 0.9339 0.3922 0.0318 0.8234 11 | 0.6948 0.4387 0.1868 0.7093 12 | 0.3170 0.3815 0.4897 0.7546 13 | 0.9502 0.7655 0.4455 0.2760 14 | 0.0344 0.7951 0.6463 0.6797 15 | 0.6550 0.9597 0.7512 0.8909 0.1492 16 | 0.1626 0.3403 0.2550 0.9592 0.2575 17 | 0.1189 0.5852 0.5059 0.5472 0.8407 18 | 0.4983 0.2238 0.6990 0.1386 0.2542 19 | -------------------------------------------------------------------------------- /examples/MB04GD.dat: -------------------------------------------------------------------------------- 1 | MB04GD EXAMPLE PROGRAM DATA 2 | 6 5 3 | 1. 2. 6. 3. 5. 4 | -2. -1. -1. 0. -2. 5 | 5. 5. 1. 5. 1. 6 | -2. -1. -1. 0. -2. 7 | 4. 8. 4. 20. 4. 8 | -2. -1. -1. 0. -2. 9 | 0 0 0 0 0 0 10 | -------------------------------------------------------------------------------- /examples/MB04GD.res: -------------------------------------------------------------------------------- 1 | MB04GD EXAMPLE PROGRAM RESULTS 2 | 3 | Row permutations are 4 | 2 4 6 3 1 5 5 | 6 | The matrix A is 7 | 0.0000 -1.0517 -1.8646 -1.9712 1.2374 8 | 0.0000 -1.0517 -1.8646 -1.9712 1.2374 9 | 0.0000 -1.0517 -1.8646 -1.9712 1.2374 10 | 0.0000 0.0000 4.6768 0.0466 -7.4246 11 | 0.0000 0.0000 0.0000 6.7059 -5.4801 12 | 0.0000 0.0000 0.0000 0.0000 -22.6274 13 | -------------------------------------------------------------------------------- /examples/MB04MD.dat: -------------------------------------------------------------------------------- 1 | MB04MD EXAMPLE PROGRAM DATA 2 | 4 0.0 3 | 1.0 0.0 0.0 0.0 4 | 300.0 400.0 500.0 600.0 5 | 1.0 2.0 0.0 0.0 6 | 1.0 1.0 1.0 1.0 7 | -------------------------------------------------------------------------------- /examples/MB04MD.res: -------------------------------------------------------------------------------- 1 | MB04MD EXAMPLE PROGRAM RESULTS 2 | 3 | The balanced matrix is 4 | 1.0000 0.0000 0.0000 0.0000 5 | 30.0000 400.0000 50.0000 60.0000 6 | 1.0000 20.0000 0.0000 0.0000 7 | 1.0000 10.0000 1.0000 1.0000 8 | 9 | SCALE is 10 | 1.0000 10.0000 1.0000 1.0000 11 | -------------------------------------------------------------------------------- /examples/MB04OD.dat: -------------------------------------------------------------------------------- 1 | MB04OD EXAMPLE PROGRAM DATA 2 | 3 2 2 F 3 | 3. 2. 1. 4 | 0. 2. 1. 5 | 0. 0. 1. 6 | 2. 3. 1. 7 | 4. 6. 5. 8 | 3. 2. 9 | 1. 3. 10 | 3. 2. 11 | 1. 3. 12 | 3. 2. 13 | -------------------------------------------------------------------------------- /examples/MB04OD.res: -------------------------------------------------------------------------------- 1 | MB04OD EXAMPLE PROGRAM RESULTS 2 | 3 | The updated matrix R is 4 | -5.3852 -6.6850 -4.6424 5 | 0.0000 -2.8828 -2.0694 6 | 0.0000 0.0000 -1.7793 7 | The updated matrix B is 8 | -4.2710 -3.7139 9 | -0.1555 -2.1411 10 | -1.6021 0.9398 11 | The updated matrix C is 12 | 0.5850 1.0141 13 | -2.7974 -3.1162 14 | -------------------------------------------------------------------------------- /examples/MB04PB.dat: -------------------------------------------------------------------------------- 1 | MB04PB EXAMPLE PROGRAM DATA 2 | 5 3 | 0.9501 0.7621 0.6154 0.4057 0.0579 4 | 0.2311 0.4565 0.7919 0.9355 0.3529 5 | 0.6068 0.0185 0.9218 0.9169 0.8132 6 | 0.4860 0.8214 0.7382 0.4103 0.0099 7 | 0.8913 0.4447 0.1763 0.8936 0.1389 8 | 0.3869 0.4055 0.2140 1.0224 1.1103 0.7016 9 | 1.3801 0.7567 1.4936 1.2913 0.9515 1.1755 10 | 0.7993 1.7598 1.6433 1.0503 0.8839 1.1010 11 | 1.2019 1.1956 0.9346 0.6824 0.7590 1.1364 12 | 0.8780 0.9029 1.6565 1.1022 0.7408 0.3793 13 | -------------------------------------------------------------------------------- /examples/MB04PU.dat: -------------------------------------------------------------------------------- 1 | MB04PU EXAMPLE PROGRAM DATA 2 | 5 3 | 0.9501 0.7621 0.6154 0.4057 0.0579 4 | 0.2311 0.4565 0.7919 0.9355 0.3529 5 | 0.6068 0.0185 0.9218 0.9169 0.8132 6 | 0.4860 0.8214 0.7382 0.4103 0.0099 7 | 0.8913 0.4447 0.1763 0.8936 0.1389 8 | 0.4055 0.3869 1.3801 0.7993 1.2019 0.8780 9 | 0.2140 1.4936 0.7567 1.7598 1.1956 0.9029 10 | 1.0224 1.2913 1.0503 1.6433 0.9346 1.6565 11 | 1.1103 0.9515 0.8839 0.7590 0.6824 1.1022 12 | 0.7016 1.1755 1.1010 1.1364 0.3793 0.7408 13 | -------------------------------------------------------------------------------- /examples/MB04UD.dat: -------------------------------------------------------------------------------- 1 | MB04UD EXAMPLE PROGRAM DATA 2 | 4 4 0.0 3 | 2.0 0.0 2.0 -2.0 4 | 0.0 -2.0 0.0 2.0 5 | 2.0 0.0 -2.0 0.0 6 | 2.0 -2.0 0.0 2.0 7 | 1.0 0.0 1.0 -1.0 8 | 0.0 -1.0 0.0 1.0 9 | 1.0 0.0 -1.0 0.0 10 | 1.0 -1.0 0.0 1.0 11 | -------------------------------------------------------------------------------- /examples/MB04UD.res: -------------------------------------------------------------------------------- 1 | MB04UD EXAMPLE PROGRAM RESULTS 2 | 3 | The transformed matrix A is 4 | 0.5164 1.0328 1.1547 -2.3094 5 | 0.0000 -2.5820 0.0000 -1.1547 6 | 0.0000 0.0000 -3.4641 0.0000 7 | 0.0000 0.0000 0.0000 -3.4641 8 | The transformed matrix E is 9 | 0.2582 0.5164 0.5774 -1.1547 10 | 0.0000 -1.2910 0.0000 -0.5774 11 | 0.0000 0.0000 -1.7321 0.0000 12 | 0.0000 0.0000 0.0000 -1.7321 13 | 14 | The computed rank of E = 4 15 | 16 | ISTAIR is 17 | 1 2 3 4 18 | -------------------------------------------------------------------------------- /examples/MB04VD.dat: -------------------------------------------------------------------------------- 1 | MB04VD EXAMPLE PROGRAM DATA 2 | 2 4 0.0 S 3 | 1.0 0.0 -1.0 0.0 4 | 1.0 1.0 0.0 -1.0 5 | 0.0 -1.0 0.0 0.0 6 | 0.0 -1.0 0.0 0.0 7 | -------------------------------------------------------------------------------- /examples/MB04XD.dat: -------------------------------------------------------------------------------- 1 | MB04XD EXAMPLE PROGRAM DATA 2 | 6 4 -1 0.001 0.0 0.0 A A 3 | 0.80010 0.39985 0.60005 0.89999 4 | 0.29996 0.69990 0.39997 0.82997 5 | 0.49994 0.60003 0.20012 0.79011 6 | 0.90013 0.20016 0.79995 0.85002 7 | 0.39998 0.80006 0.49985 0.99016 8 | 0.20002 0.90007 0.70009 1.02994 9 | -------------------------------------------------------------------------------- /examples/MB04YD.dat: -------------------------------------------------------------------------------- 1 | MB04YD EXAMPLE PROGRAM DATA 2 | 5 5 2.0 -1 0.0 0.0 N N 3 | 1.0 2.0 3.0 4.0 5.0 4 | 2.0 3.0 4.0 5.0 5 | -------------------------------------------------------------------------------- /examples/MB04YD.res: -------------------------------------------------------------------------------- 1 | MB04YD EXAMPLE PROGRAM RESULTS 2 | 3 | The transformed bidiagonal matrix J is 4 | 5 | (1,1) = 0.4045 (1,2) = 0.0000 6 | (2,2) = 1.9839 (2,3) = 0.0000 7 | (3,3) = 3.4815 (3,4) = 0.0128 8 | (4,4) = 5.3723 (4,5) = 0.0273 9 | (5,5) = 7.9948 10 | 11 | J has 3 singular values > 2.0000 12 | 13 | -------------------------------------------------------------------------------- /examples/MB04ZD.dat: -------------------------------------------------------------------------------- 1 | MB04ZD EXAMPLE PROGRAM DATA 2 | 3 N 3 | 1.0 2.0 3.0 4 | 4.0 5.0 6.0 5 | 7.0 8.0 9.0 6 | 1.0 1.0 1.0 2.0 2.0 3.0 7 | 7.0 6.0 5.0 8.0 4.0 9.0 8 | -------------------------------------------------------------------------------- /examples/MB04ZD.res: -------------------------------------------------------------------------------- 1 | MB04ZD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The square-reduced Hamiltonian is 5 | 1.0000 3.3485 0.3436 1.0000 1.9126 -0.1072 6 | 6.7566 11.0750 -0.3014 1.9126 8.4479 -1.0790 7 | 2.3478 1.6899 -2.3868 -0.1072 -1.0790 -2.9871 8 | 7.0000 8.6275 -0.6352 -1.0000 -6.7566 -2.3478 9 | 8.6275 16.2238 -0.1403 -3.3485 -11.0750 -1.6899 10 | -0.6352 -0.1403 1.2371 -0.3436 0.3014 2.3868 11 | 12 | The square of the square-reduced Hamiltonian is 13 | 48.0000 80.6858 -2.5217 0.0000 1.8590 -10.5824 14 | 167.8362 298.4815 -4.0310 -1.8590 0.0000 -33.1160 15 | 0.0000 4.5325 2.5185 10.5824 33.1160 0.0000 16 | 0.0000 0.0000 0.0000 48.0000 167.8362 0.0000 17 | 0.0000 0.0000 0.0000 80.6858 298.4815 4.5325 18 | 0.0000 0.0000 0.0000 -2.5217 -4.0310 2.5185 19 | -------------------------------------------------------------------------------- /examples/MB05MD.dat: -------------------------------------------------------------------------------- 1 | MB05MD EXAMPLE PROGRAM DATA 2 | 4 1.0 3 | 0.5 0.0 2.3 -2.6 4 | 0.0 0.5 -1.4 -0.7 5 | 2.3 -1.4 0.5 0.0 6 | -2.6 -0.7 0.0 0.5 7 | -------------------------------------------------------------------------------- /examples/MB05MD.res: -------------------------------------------------------------------------------- 1 | MB05MD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix exp(A*DELTA) is 4 | 26.8551 -3.2824 18.7409 -19.4430 5 | -3.2824 4.3474 -5.1848 0.2700 6 | 18.7409 -5.1848 15.6012 -11.7228 7 | -19.4430 0.2700 -11.7228 15.6012 8 | 9 | The eigenvalues of A are 10 | -3.0 0.0*j 4.0 0.0*j -1.0 0.0*j 2.0 0.0*j 11 | 12 | The eigenvector matrix for A is 13 | -0.7000 0.7000 0.1000 -0.1000 14 | 0.1000 -0.1000 0.7000 -0.7000 15 | 0.5000 0.5000 0.5000 0.5000 16 | -0.5000 -0.5000 0.5000 0.5000 17 | 18 | The inverse eigenvector matrix for A (premultiplied by exp(Lambda*DELTA)) is 19 | -0.0349 0.0050 0.0249 -0.0249 20 | 38.2187 -5.4598 27.2991 -27.2991 21 | 0.0368 0.2575 0.1839 0.1839 22 | -0.7389 -5.1723 3.6945 3.6945 23 | -------------------------------------------------------------------------------- /examples/MB05ND.dat: -------------------------------------------------------------------------------- 1 | MB05ND EXAMPLE PROGRAM DATA 2 | 5 0.1 0.0001 3 | 5.0 4.0 3.0 2.0 1.0 4 | 1.0 6.0 0.0 4.0 3.0 5 | 2.0 0.0 7.0 6.0 5.0 6 | 1.0 3.0 1.0 8.0 7.0 7 | 2.0 5.0 7.0 1.0 9.0 8 | -------------------------------------------------------------------------------- /examples/MB05ND.res: -------------------------------------------------------------------------------- 1 | MB05ND EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix exp(A*DELTA) is 4 | 1.8391 0.9476 0.7920 0.8216 0.7811 5 | 0.3359 2.2262 0.4013 1.0078 1.0957 6 | 0.6335 0.6776 2.6933 1.6155 1.8502 7 | 0.4804 1.1561 0.9110 2.7461 2.0854 8 | 0.7105 1.4244 1.8835 1.0966 3.4134 9 | 10 | and its integral is 11 | 0.1347 0.0352 0.0284 0.0272 0.0231 12 | 0.0114 0.1477 0.0104 0.0369 0.0368 13 | 0.0218 0.0178 0.1624 0.0580 0.0619 14 | 0.0152 0.0385 0.0267 0.1660 0.0732 15 | 0.0240 0.0503 0.0679 0.0317 0.1863 16 | -------------------------------------------------------------------------------- /examples/MB05OD.dat: -------------------------------------------------------------------------------- 1 | MB05OD EXAMPLE PROGRAM DATA 2 | 3 1.0 S 3 | 2.0 1.0 1.0 4 | 0.0 3.0 2.0 5 | 1.0 0.0 4.0 6 | -------------------------------------------------------------------------------- /examples/MB05OD.res: -------------------------------------------------------------------------------- 1 | MB05OD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix E = exp(A*DELTA) is 4 | 22.5984 17.2073 53.8144 5 | 24.4047 27.6033 83.2241 6 | 29.4097 12.2024 81.4177 7 | 8 | Minimal number of accurate digits in the norm of E = 12 9 | Number of accurate digits in the norm of E 10 | at 95 per cent confidence interval = 15 11 | -------------------------------------------------------------------------------- /examples/MB4DLZ.dat: -------------------------------------------------------------------------------- 1 | MB4DLZ EXAMPLE PROGRAM DATA 2 | 4 B -3 3 | (1,0.5) 0 -1e-12 0 4 | 0 (-2,-1) 0 0 5 | 1 (-1,-0.5) (-1,0.5) 0 6 | (-1,0.5) -1 0 (2,-1) 7 | (1,0.5) 0 0 0 8 | 0 (1,0.5) 0 0 9 | 0 0 (1,-0.5) 0 10 | 0 0 0 (1,-0.5) 11 | 12 | -------------------------------------------------------------------------------- /examples/MB4DPZ.dat: -------------------------------------------------------------------------------- 1 | MB4DPZ EXAMPLE PROGRAM DATA 2 | 2 B -3 3 | (1,0.5) 0 4 | 0 (1,0.5) 5 | 0 0 0 6 | 0 0 0 7 | (1,0.5) 0 8 | 0 (-2,-1) 9 | 1 -1.e-12 0 10 | (-1,0.5) -1 0 11 | -------------------------------------------------------------------------------- /examples/MC01MD.dat: -------------------------------------------------------------------------------- 1 | MC01MD EXAMPLE PROGRAM DATA 2 | 5 2.0 6 3 | 6.0 5.0 4.0 3.0 2.0 1.0 4 | -------------------------------------------------------------------------------- /examples/MC01MD.res: -------------------------------------------------------------------------------- 1 | MC01MD EXAMPLE PROGRAM RESULTS 2 | 3 | ALPHA = 2.0000 4 | 5 | The coefficients of the shifted polynomial are 6 | 7 | power of (x-ALPHA) coefficient 8 | 0 120.0000 9 | 1 201.0000 10 | 2 150.0000 11 | 3 59.0000 12 | 4 12.0000 13 | 5 1.0000 14 | -------------------------------------------------------------------------------- /examples/MC01ND.dat: -------------------------------------------------------------------------------- 1 | MC01ND EXAMPLE PROGRAM DATA 2 | 4 -1.56 0.29 3 | 5.0 3.0 -1.0 2.0 1.0 4 | -------------------------------------------------------------------------------- /examples/MC01ND.res: -------------------------------------------------------------------------------- 1 | MC01ND EXAMPLE PROGRAM RESULTS 2 | 3 | Real part of P( -1.56 +0.29*j ) = -4.1337 4 | 5 | Imaginary part of P( -1.56 +0.29*j ) = 1.7088 6 | -------------------------------------------------------------------------------- /examples/MC01OD.dat: -------------------------------------------------------------------------------- 1 | MC01OD EXAMPLE PROGRAM DATA 2 | 5 3 | 1.1 0.9 4 | 0.6 -0.7 5 | -2.0 0.3 6 | -0.8 2.5 7 | -0.3 -0.4 8 | -------------------------------------------------------------------------------- /examples/MC01OD.res: -------------------------------------------------------------------------------- 1 | MC01OD EXAMPLE PROGRAM RESULTS 2 | 3 | The coefficients of the polynomial P(x) are 4 | 5 | power of x real part imag part 6 | 0 2.7494 -2.1300 7 | 1 -1.7590 -5.4205 8 | 2 0.0290 2.8290 9 | 3 -1.6500 -1.7300 10 | 4 1.4000 -2.6000 11 | 5 1.0000 0.0000 12 | -------------------------------------------------------------------------------- /examples/MC01PD.dat: -------------------------------------------------------------------------------- 1 | MC01PD EXAMPLE PROGRAM DATA 2 | 5 3 | 0.0 1.0 4 | 0.0 -1.0 5 | 2.0 0.0 6 | 1.0 3.0 7 | 1.0 -3.0 8 | -------------------------------------------------------------------------------- /examples/MC01PD.res: -------------------------------------------------------------------------------- 1 | MC01PD EXAMPLE PROGRAM RESULTS 2 | 3 | The coefficients of the polynomial P(x) are 4 | 5 | power of x coefficient 6 | 0 -20.0000 7 | 1 14.0000 8 | 2 -24.0000 9 | 3 15.0000 10 | 4 -4.0000 11 | 5 1.0000 12 | -------------------------------------------------------------------------------- /examples/MC01QD.dat: -------------------------------------------------------------------------------- 1 | MC01QD EXAMPLE PROGRAM DATA 2 | 4 3 | 2.0 2.0 -1.0 2.0 1.0 4 | 2 5 | 1.0 -1.0 1.0 6 | -------------------------------------------------------------------------------- /examples/MC01QD.res: -------------------------------------------------------------------------------- 1 | MC01QD EXAMPLE PROGRAM RESULTS 2 | 3 | The coefficients of the polynomials Q(x) and R(x) are 4 | 5 | Q(x) R(x) 6 | power of x coefficient coefficient 7 | 0 1.0000 1.0000 8 | 1 3.0000 0.0000 9 | 2 1.0000 10 | -------------------------------------------------------------------------------- /examples/MC01RD.dat: -------------------------------------------------------------------------------- 1 | MC01RD EXAMPLE PROGRAM DATA 2 | 1 3 | 1.00 2.50 4 | 2 5 | 1.00 0.10 -0.40 6 | 1 7 | 1.15 1.50 8 | -2.20 9 | -------------------------------------------------------------------------------- /examples/MC01RD.res: -------------------------------------------------------------------------------- 1 | MC01RD EXAMPLE PROGRAM RESULTS 2 | 3 | Degree of the resulting polynomial P(x) = 3 4 | 5 | The coefficients of P(x) are 6 | 7 | power of x coefficient 8 | 0 -1.5300 9 | 1 -0.7000 10 | 2 -0.1500 11 | 3 -1.0000 12 | -------------------------------------------------------------------------------- /examples/MC01SD.dat: -------------------------------------------------------------------------------- 1 | MC01SD EXAMPLE PROGRAM DATA 2 | 5 3 | 10.0 -40.5 159.5 0.0 2560.0 -10236.5 4 | -------------------------------------------------------------------------------- /examples/MC01SD.res: -------------------------------------------------------------------------------- 1 | MC01SD EXAMPLE PROGRAM RESULTS 2 | 3 | The base of the machine (BETA) = 2 4 | 5 | The scaling factors are s = BETA**( -3) and t = BETA**( -2) 6 | 7 | The coefficients of the scaled polynomial Q(x) = s*P(tx) are 8 | 9 | power of x coefficient 10 | 0 1.2500 11 | 1 -1.2656 12 | 2 1.2461 13 | 3 0.0000 14 | 4 1.2500 15 | 5 -1.2496 16 | -------------------------------------------------------------------------------- /examples/MC01TD.dat: -------------------------------------------------------------------------------- 1 | MC01TD EXAMPLE PROGRAM DATA 2 | 4 C 3 | 2.0 0.0 1.0 -1.0 1.0 4 | -------------------------------------------------------------------------------- /examples/MC01TD.res: -------------------------------------------------------------------------------- 1 | MC01TD EXAMPLE PROGRAM RESULTS 2 | 3 | The polynomial P(x) is unstable 4 | 5 | The number of zeros of P(x) in the right half-plane = 2 6 | -------------------------------------------------------------------------------- /examples/MC01VD.dat: -------------------------------------------------------------------------------- 1 | MC01VD EXAMPLE PROGRAM DATA 2 | 0.5 -1.0 2.0 3 | -------------------------------------------------------------------------------- /examples/MC01VD.res: -------------------------------------------------------------------------------- 1 | MC01VD EXAMPLE PROGRAM RESULTS 2 | 3 | The roots of the quadratic equation are 4 | 5 | x = 1.0000 +1.7321*j 6 | x = 1.0000 -1.7321*j 7 | -------------------------------------------------------------------------------- /examples/MC01WD.dat: -------------------------------------------------------------------------------- 1 | MC01WD EXAMPLE PROGRAM DATA 2 | 6 3 | 0.62 1.10 1.64 1.88 2.12 1.70 1.00 4 | 0.60 0.80 5 | -------------------------------------------------------------------------------- /examples/MC01WD.res: -------------------------------------------------------------------------------- 1 | MC01WD EXAMPLE PROGRAM RESULTS 2 | 3 | The coefficients of the quotient polynomial Q(x) are 4 | 5 | power of x coefficient 6 | 0 0.6000 7 | 1 0.7000 8 | 2 0.8000 9 | 3 0.9000 10 | 4 1.0000 11 | 12 | The coefficients of the remainder polynomial R(x) are 13 | 14 | power of x coefficient 15 | 0 0.2600 16 | 1 0.2000 17 | -------------------------------------------------------------------------------- /examples/MC01XD.dat: -------------------------------------------------------------------------------- 1 | MC01XD EXAMPLE PROGRAM DATA 2 | -3098110792.0746 4649783048.0746 -2327508384.0000 388574551.8120 3 | -------------------------------------------------------------------------------- /examples/MC01XD.res: -------------------------------------------------------------------------------- 1 | MC01XD EXAMPLE PROGRAM RESULTS 2 | 3 | Real part of the numerators of the roots 4 | 1.0185 1.1048 0.5911 5 | Imaginary part of the numerators of the roots 6 | 0.0000 0.0455 -0.0244 7 | Denominators of the roots 8 | 0.5110 0.5528 0.2958 9 | Roots of the polynomial 10 | 11 | 1.9931 0.0000 12 | 1.9984 0.0823 13 | 1.9984 -0.0823 14 | -------------------------------------------------------------------------------- /examples/MC03MD.dat: -------------------------------------------------------------------------------- 1 | MC03MD EXAMPLE PROGRAM DATA 2 | 3 2 2 3 | 2 4 | 1.0 0.0 3.0 5 | 2.0 -1.0 2.0 6 | -2.0 4.0 9.0 7 | 3.0 7.0 -2.0 8 | 6.0 2.0 -3.0 9 | 1.0 2.0 4.0 10 | 1 11 | 6.0 1.0 12 | 1.0 7.0 13 | -9.0 -6.0 14 | 7.0 8.0 15 | 1 16 | 1.0 1.0 0.0 17 | 0.0 1.0 1.0 18 | -1.0 1.0 1.0 19 | -1.0 -1.0 1.0 20 | 1.0 21 | -------------------------------------------------------------------------------- /examples/MC03MD.res: -------------------------------------------------------------------------------- 1 | MC03MD EXAMPLE PROGRAM RESULTS 2 | 3 | The polynomial matrix P(x) (of degree 3) is 4 | 5 | power of x 0 1 2 3 6 | 7 | element ( 1, 1) is 9.00 -31.00 37.00 -60.00 8 | 9 | element ( 1, 2) is 15.00 41.00 23.00 50.00 10 | 11 | element ( 2, 1) is 0.00 38.00 -64.00 -30.00 12 | 13 | element ( 2, 2) is -6.00 44.00 100.00 30.00 14 | 15 | element ( 3, 1) is 20.00 14.00 -83.00 3.00 16 | 17 | element ( 3, 2) is 18.00 33.00 72.00 11.00 18 | -------------------------------------------------------------------------------- /examples/MC03ND.dat: -------------------------------------------------------------------------------- 1 | MC03ND EXAMPLE PROGRAM DATA 2 | 5 4 2 0.0 3 | 2.0 2.0 0.0 3.0 4 | 0.0 4.0 0.0 6.0 5 | 8.0 8.0 0.0 12.0 6 | 0.0 0.0 0.0 0.0 7 | 2.0 2.0 0.0 3.0 8 | 1.0 0.0 1.0 0.0 9 | 0.0 0.0 2.0 0.0 10 | 4.0 0.0 4.0 0.0 11 | 2.0 2.0 0.0 3.0 12 | 3.0 2.0 1.0 3.0 13 | 0.0 0.0 0.0 0.0 14 | 1.0 0.0 0.0 0.0 15 | 0.0 0.0 0.0 0.0 16 | 1.0 0.0 1.0 0.0 17 | 1.0 0.0 1.0 0.0 18 | -------------------------------------------------------------------------------- /examples/MC03ND.res: -------------------------------------------------------------------------------- 1 | MC03ND EXAMPLE PROGRAM RESULTS 2 | 3 | The right nullspace vectors of P(s) are 4 | 0.0000 0.0000 0.0000 5 | -0.8321 0.0000 0.1538 6 | 0.0000 -1.0000 0.0000 7 | 0.5547 0.0000 0.2308 8 | 9 | The minimal polynomial basis K(s) (of degree 1) for the right nullspace is 10 | 11 | power of s 0 1 12 | 13 | element ( 1, 1) is 0.00 0.00 14 | 15 | element ( 1, 2) is 0.00 0.00 16 | 17 | element ( 2, 1) is -0.83 0.00 18 | 19 | element ( 2, 2) is 0.00 0.15 20 | 21 | element ( 3, 1) is 0.00 0.00 22 | 23 | element ( 3, 2) is -1.00 0.00 24 | 25 | element ( 4, 1) is 0.55 0.00 26 | 27 | element ( 4, 2) is 0.00 0.23 28 | -------------------------------------------------------------------------------- /examples/MD03AD.dat: -------------------------------------------------------------------------------- 1 | MD03AD EXAMPLE PROGRAM DATA 2 | 15 3 100 0 -1. -1. G D F U 3 | 1.0 1.0 1.0 4 | -------------------------------------------------------------------------------- /examples/MD03AD.res: -------------------------------------------------------------------------------- 1 | MD03AD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | Final 2-norm of the residuals = 0.9063596D-01 5 | 6 | The number of function and Jacobian evaluations = 13 12 7 | 8 | Final approximate solution is 9 | 0.0824 1.1330 2.3437 10 | -------------------------------------------------------------------------------- /examples/MD03BD.dat: -------------------------------------------------------------------------------- 1 | MD03BD EXAMPLE PROGRAM DATA 2 | 15 3 100 5 0 0 1.D2 0 -1. -1. -1. -1. G I E 3 | 1.0 1.0 1.0 4 | -------------------------------------------------------------------------------- /examples/MD03BD.res: -------------------------------------------------------------------------------- 1 | MD03BD EXAMPLE PROGRAM RESULTS 2 | 3 | IWARN on exit from MD03BD = 1 4 | 5 | Final 2-norm of the residuals = 0.9063596D-01 6 | 7 | The number of function and Jacobian evaluations = 6 5 8 | 9 | Final approximate solution is 10 | 0.0824 1.1330 2.3437 11 | -------------------------------------------------------------------------------- /examples/SB01BD.dat: -------------------------------------------------------------------------------- 1 | SB01BD EXAMPLE PROGRAM DATA 2 | 4 2 2 -.4 1.E-8 C 3 | -6.8000 0.0000 -207.0000 0.0000 4 | 1.0000 0.0000 0.0000 0.0000 5 | 43.2000 0.0000 0.0000 -4.2000 6 | 0.0000 0.0000 1.0000 0.0000 7 | 5.6400 0.0000 8 | 0.0000 0.0000 9 | 0.0000 1.1800 10 | 0.0000 0.0000 11 | -0.5000 0.1500 12 | -0.5000 -0.1500 13 | -2.0000 0.0000 14 | -0.4000 0.0000 15 | -------------------------------------------------------------------------------- /examples/SB01BD.res: -------------------------------------------------------------------------------- 1 | SB01BD EXAMPLE PROGRAM RESULTS 2 | 3 | Number of assigned eigenvalues: NAP = 2 4 | Number of fixed eigenvalues: NFP = 2 5 | Number of uncontrollable poles: NUP = 0 6 | 7 | The state feedback matrix F is 8 | -0.0876 -4.2138 0.0837 -18.1412 9 | -0.0233 18.2483 -0.4259 -4.8120 10 | 11 | The eigenvalues of closed-loop matrix A+B*F 12 | ( -3.3984, 94.5253 ) 13 | ( -3.3984,-94.5253 ) 14 | ( -0.5000, 0.1500 ) 15 | ( -0.5000, -0.1500 ) 16 | 17 | NORM(A+B*F - Z*Aout*Z') / (eps*NORM(A)) = 1.03505D+01 18 | -------------------------------------------------------------------------------- /examples/SB01DD.dat: -------------------------------------------------------------------------------- 1 | SB01DD EXAMPLE PROGRAM DATA 2 | 4 2 0.0 I 3 | -1.0 0.0 2.0 -3.0 4 | 1.0 -4.0 3.0 -1.0 5 | 0.0 2.0 4.0 -5.0 6 | 0.0 0.0 -1.0 -2.0 7 | 1.0 0.0 8 | 0.0 0.0 9 | 0.0 0.0 10 | 0.0 1.0 11 | -1.0 -1.0 -1.0 -1.0 12 | 0.0 0.0 0.0 0.0 13 | 1.0 2.0 2.0 1.0 -1.0 -2.0 3.0 1.0 14 | -------------------------------------------------------------------------------- /examples/SB01DD.res: -------------------------------------------------------------------------------- 1 | SB01DD EXAMPLE PROGRAM RESULTS 2 | 3 | The state feedback matrix G is 4 | -5.2339 3.1725 -15.7885 21.7043 5 | -1.6022 0.8504 -5.1914 6.2339 6 | -------------------------------------------------------------------------------- /examples/SB01MD.dat: -------------------------------------------------------------------------------- 1 | SB01MD EXAMPLE PROGRAM DATA 2 | 4 0.0 I 3 | -1.0 0.0 2.0 -3.0 4 | 1.0 -4.0 3.0 -1.0 5 | 0.0 2.0 4.0 -5.0 6 | 0.0 0.0 -1.0 -2.0 7 | 1.0 0.0 0.0 0.0 8 | -1.0 -1.0 -1.0 -1.0 9 | 0.0 0.0 0.0 0.0 10 | -------------------------------------------------------------------------------- /examples/SB01MD.res: -------------------------------------------------------------------------------- 1 | SB01MD EXAMPLE PROGRAM RESULTS 2 | 3 | The one-dimensional state feedback matrix G is 4 | 1.0000 29.0000 93.0000 -76.0000 5 | -------------------------------------------------------------------------------- /examples/SB02MD.dat: -------------------------------------------------------------------------------- 1 | SB02MD EXAMPLE PROGRAM DATA 2 | 2 C D U N S 3 | 0.0 1.0 4 | 0.0 0.0 5 | 1.0 0.0 6 | 0.0 2.0 7 | 0.0 0.0 8 | 0.0 1.0 9 | -------------------------------------------------------------------------------- /examples/SB02MD.res: -------------------------------------------------------------------------------- 1 | SB02MD EXAMPLE PROGRAM RESULTS 2 | 3 | RCOND = 0.31 4 | 5 | The solution matrix X is 6 | 2.0000 1.0000 7 | 1.0000 2.0000 8 | -------------------------------------------------------------------------------- /examples/SB02ND.dat: -------------------------------------------------------------------------------- 1 | SB02ND EXAMPLE PROGRAM DATA 2 | 2 1 3 0.0 D N Z U 3 | 2.0 -1.0 4 | 1.0 0.0 5 | 1.0 6 | 0.0 7 | 0.0 0.0 8 | 0.0 0.0 9 | 0.0 1.0 10 | 0.0 11 | 0.0 12 | 0.0 13 | -------------------------------------------------------------------------------- /examples/SB02ND.res: -------------------------------------------------------------------------------- 1 | SB02ND EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 1.0000 0.0000 5 | 0.0000 1.0000 6 | 7 | The optimal feedback matrix F is 8 | 2.0000 -1.0000 9 | -------------------------------------------------------------------------------- /examples/SB02OD.dat: -------------------------------------------------------------------------------- 1 | SB02OD EXAMPLE PROGRAM DATA 2 | 2 1 3 0.0 C B B U Z S 3 | 0.0 1.0 4 | 0.0 0.0 5 | 0.0 6 | 1.0 7 | 1.0 0.0 8 | 0.0 1.0 9 | 0.0 0.0 10 | 0.0 11 | 0.0 12 | 1.0 13 | -------------------------------------------------------------------------------- /examples/SB02OD.res: -------------------------------------------------------------------------------- 1 | SB02OD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 1.7321 1.0000 5 | 1.0000 1.7321 6 | -------------------------------------------------------------------------------- /examples/SB02PD.dat: -------------------------------------------------------------------------------- 1 | SB02PD EXAMPLE PROGRAM DATA 2 | 2 A N U 3 | 0.0 1.0 4 | 0.0 0.0 5 | 1.0 0.0 6 | 0.0 2.0 7 | 0.0 0.0 8 | 0.0 1.0 9 | -------------------------------------------------------------------------------- /examples/SB02PD.res: -------------------------------------------------------------------------------- 1 | SB02PD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 2.0000 1.0000 5 | 1.0000 2.0000 6 | 7 | Estimated reciprocal condition number = 0.1333 8 | 9 | Estimated error bound = 0.0000000000000063 10 | -------------------------------------------------------------------------------- /examples/SB02QD.dat: -------------------------------------------------------------------------------- 1 | SB02QD EXAMPLE PROGRAM DATA 2 | 2 B N N U O 3 | 0.0 1.0 4 | 0.0 0.0 5 | 1.0 0.0 6 | 0.0 2.0 7 | 0.0 0.0 8 | 0.0 1.0 9 | -------------------------------------------------------------------------------- /examples/SB02QD.res: -------------------------------------------------------------------------------- 1 | SB02QD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 2.0000 1.0000 5 | 1.0000 2.0000 6 | 7 | Estimated separation = 0.4000 8 | 9 | Estimated reciprocal condition number = 0.1333 10 | 11 | Estimated error bound = 0.0000 12 | -------------------------------------------------------------------------------- /examples/SB02RD.dat: -------------------------------------------------------------------------------- 1 | SB02RD EXAMPLE PROGRAM DATA 2 | 2 A C D N U N S N O 3 | 0.0 1.0 4 | 0.0 0.0 5 | 1.0 0.0 6 | 0.0 2.0 7 | 0.0 0.0 8 | 0.0 1.0 9 | -------------------------------------------------------------------------------- /examples/SB02RD.res: -------------------------------------------------------------------------------- 1 | SB02RD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 2.0000 1.0000 5 | 1.0000 2.0000 6 | 7 | Estimated separation = 0.4000 8 | 9 | Estimated reciprocal condition number = 0.1333 10 | 11 | Estimated error bound = 0.0000 12 | -------------------------------------------------------------------------------- /examples/SB02SD.dat: -------------------------------------------------------------------------------- 1 | SB02SD EXAMPLE PROGRAM DATA 2 | 2 B N N U O 3 | 2.0 -1.0 4 | 1.0 0.0 5 | 0.0 0.0 6 | 0.0 1.0 7 | 1.0 0.0 8 | 0.0 0.0 9 | -------------------------------------------------------------------------------- /examples/SB02SD.res: -------------------------------------------------------------------------------- 1 | SB02SD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | -0.7691 1.2496 5 | 1.2496 -2.3306 6 | 7 | Estimated separation = 0.4456 8 | 9 | Estimated reciprocal condition number = 0.1445 10 | 11 | Estimated error bound = 0.0000 12 | -------------------------------------------------------------------------------- /examples/SB03MD.dat: -------------------------------------------------------------------------------- 1 | SB03MD EXAMPLE PROGRAM DATA 2 | 3 D N X N 3 | 3.0 1.0 1.0 4 | 1.0 3.0 0.0 5 | 0.0 0.0 3.0 6 | 25.0 24.0 15.0 7 | 24.0 32.0 8.0 8 | 15.0 8.0 40.0 9 | -------------------------------------------------------------------------------- /examples/SB03MD.res: -------------------------------------------------------------------------------- 1 | SB03MD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 2.0000 1.0000 1.0000 5 | 1.0000 3.0000 0.0000 6 | 1.0000 0.0000 4.0000 7 | 8 | Scaling factor = 1.0000 9 | -------------------------------------------------------------------------------- /examples/SB03OD.dat: -------------------------------------------------------------------------------- 1 | SB03OD EXAMPLE PROGRAM DATA 2 | 4 5 C N N 3 | -1.0 37.0 -12.0 -12.0 4 | -1.0 -10.0 0.0 4.0 5 | 2.0 -4.0 7.0 -6.0 6 | 2.0 2.0 7.0 -9.0 7 | 1.0 2.5 1.0 3.5 8 | 0.0 1.0 0.0 1.0 9 | -1.0 -2.5 -1.0 -1.5 10 | 1.0 2.5 4.0 -5.5 11 | -1.0 -2.5 -4.0 3.5 12 | -------------------------------------------------------------------------------- /examples/SB03OD.res: -------------------------------------------------------------------------------- 1 | SB03OD EXAMPLE PROGRAM RESULTS 2 | 3 | The transpose of the Cholesky factor U is 4 | 1.0000 5 | 3.0000 1.0000 6 | 2.0000 -1.0000 1.0000 7 | -1.0000 1.0000 -2.0000 1.0000 8 | 9 | The solution matrix X = op(U)'*op(U) is 10 | 1.0000 3.0000 2.0000 -1.0000 11 | 3.0000 10.0000 5.0000 -2.0000 12 | 2.0000 5.0000 6.0000 -5.0000 13 | -1.0000 -2.0000 -5.0000 7.0000 14 | 15 | Scaling factor = 1.0000 16 | -------------------------------------------------------------------------------- /examples/SB03QD.dat: -------------------------------------------------------------------------------- 1 | SB03QD EXAMPLE PROGRAM DATA 2 | 3 B N N U O 3 | 3.0 1.0 1.0 4 | 1.0 3.0 0.0 5 | 0.0 0.0 3.0 6 | 25.0 24.0 15.0 7 | 24.0 32.0 8.0 8 | 15.0 8.0 40.0 9 | -------------------------------------------------------------------------------- /examples/SB03QD.res: -------------------------------------------------------------------------------- 1 | SB03QD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 3.2604 2.7187 1.8616 5 | 2.7187 4.4271 0.5699 6 | 1.8616 0.5699 6.0461 7 | 8 | Scaling factor = 1.0000 9 | 10 | Estimated separation = 4.9068 11 | 12 | Estimated reciprocal condition number = 0.3611 13 | 14 | Estimated error bound = 0.0000 15 | -------------------------------------------------------------------------------- /examples/SB03SD.dat: -------------------------------------------------------------------------------- 1 | SB03SD EXAMPLE PROGRAM DATA 2 | 3 B N N U O 3 | 3.0 1.0 1.0 4 | 1.0 3.0 0.0 5 | 0.0 0.0 3.0 6 | 25.0 24.0 15.0 7 | 24.0 32.0 8.0 8 | 15.0 8.0 40.0 9 | -------------------------------------------------------------------------------- /examples/SB03SD.res: -------------------------------------------------------------------------------- 1 | SB03SD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 2.0000 1.0000 1.0000 5 | 1.0000 3.0000 0.0000 6 | 1.0000 0.0000 4.0000 7 | 8 | Scaling factor = 1.0000 9 | 10 | Estimated separation = 5.2302 11 | 12 | Estimated reciprocal condition number = 0.1832 13 | 14 | Estimated error bound = 0.0000 15 | -------------------------------------------------------------------------------- /examples/SB03TD.dat: -------------------------------------------------------------------------------- 1 | SB03TD EXAMPLE PROGRAM DATA 2 | 3 A N N U O 3 | 3.0 1.0 1.0 4 | 1.0 3.0 0.0 5 | 0.0 0.0 3.0 6 | 25.0 24.0 15.0 7 | 24.0 32.0 8.0 8 | 15.0 8.0 40.0 9 | -------------------------------------------------------------------------------- /examples/SB03TD.res: -------------------------------------------------------------------------------- 1 | SB03TD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 3.2604 2.7187 1.8616 5 | 2.7187 4.4271 0.5699 6 | 1.8616 0.5699 6.0461 7 | 8 | Scaling factor = 1.0000 9 | 10 | Estimated separation = 4.9068 11 | 12 | Estimated reciprocal condition number = 0.3611 13 | 14 | Estimated error bound = 0.0000 15 | -------------------------------------------------------------------------------- /examples/SB03UD.dat: -------------------------------------------------------------------------------- 1 | SB03UD EXAMPLE PROGRAM DATA 2 | 3 A N N U O 3 | 3.0 1.0 1.0 4 | 1.0 3.0 0.0 5 | 0.0 0.0 3.0 6 | 25.0 24.0 15.0 7 | 24.0 32.0 8.0 8 | 15.0 8.0 40.0 9 | -------------------------------------------------------------------------------- /examples/SB03UD.res: -------------------------------------------------------------------------------- 1 | SB03UD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 2.0000 1.0000 1.0000 5 | 1.0000 3.0000 0.0000 6 | 1.0000 0.0000 4.0000 7 | 8 | Scaling factor = 1.0000 9 | 10 | Estimated separation = 5.2302 11 | 12 | Estimated reciprocal condition number = 0.1832 13 | 14 | Estimated error bound = 0.0000 15 | -------------------------------------------------------------------------------- /examples/SB04MD.dat: -------------------------------------------------------------------------------- 1 | SB04MD EXAMPLE PROGRAM DATA 2 | 3 2 3 | 2.0 1.0 3.0 4 | 0.0 2.0 1.0 5 | 6.0 1.0 2.0 6 | 2.0 1.0 7 | 1.0 6.0 8 | 2.0 1.0 9 | 1.0 4.0 10 | 0.0 5.0 11 | -------------------------------------------------------------------------------- /examples/SB04MD.res: -------------------------------------------------------------------------------- 1 | SB04MD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | -2.7685 0.5498 5 | -1.0531 0.6865 6 | 4.5257 -0.4389 7 | 8 | The orthogonal matrix Z is 9 | -0.9732 -0.2298 10 | 0.2298 -0.9732 11 | -------------------------------------------------------------------------------- /examples/SB04ND.dat: -------------------------------------------------------------------------------- 1 | SB04ND EXAMPLE PROGRAM DATA 2 | 5 3 0.0 U U B 3 | 17.0 24.0 1.0 8.0 15.0 4 | 23.0 5.0 7.0 14.0 16.0 5 | 0.0 6.0 13.0 20.0 22.0 6 | 0.0 0.0 19.0 21.0 3.0 7 | 0.0 0.0 0.0 2.0 9.0 8 | 8.0 1.0 6.0 9 | 0.0 5.0 7.0 10 | 0.0 9.0 2.0 11 | 62.0 -12.0 26.0 12 | 59.0 -10.0 31.0 13 | 70.0 -6.0 9.0 14 | 35.0 31.0 -7.0 15 | 36.0 -15.0 7.0 16 | -------------------------------------------------------------------------------- /examples/SB04ND.res: -------------------------------------------------------------------------------- 1 | SB04ND EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 0.0000 0.0000 1.0000 5 | 1.0000 0.0000 0.0000 6 | 0.0000 1.0000 0.0000 7 | 1.0000 1.0000 -1.0000 8 | 2.0000 -2.0000 1.0000 9 | -------------------------------------------------------------------------------- /examples/SB04OD.dat: -------------------------------------------------------------------------------- 1 | SB04OD EXAMPLE PROGRAM DATA 2 | 3 2 R N D 3 | 1.6 -3.1 1.9 4 | -3.8 4.2 2.4 5 | 0.5 2.2 -4.5 6 | 1.1 0.1 7 | -1.3 -3.1 8 | -2.0 28.9 9 | -5.7 -11.8 10 | 12.9 -31.7 11 | 2.5 0.1 1.7 12 | -2.5 0.0 0.9 13 | 0.1 5.1 -7.3 14 | 6.0 2.4 15 | -3.6 2.5 16 | 0.5 23.8 17 | -11.0 -10.4 18 | 39.5 -74.8 19 | -------------------------------------------------------------------------------- /examples/SB04OD.res: -------------------------------------------------------------------------------- 1 | SB04OD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix L is 4 | -0.7538 -1.6210 5 | 2.1778 1.7005 6 | -3.5029 2.7961 7 | 8 | The solution matrix R is 9 | 1.3064 2.7989 10 | 0.3698 -5.3376 11 | -0.8767 6.7500 12 | 13 | The left transformation matrix P is 14 | -0.3093 -0.9502 0.0383 15 | 0.9366 -0.2974 0.1851 16 | -0.1645 0.0932 0.9820 17 | 18 | The right transformation matrix Q is 19 | -0.6097 -0.7920 -0.0314 20 | 0.6310 -0.5090 0.5854 21 | 0.4796 -0.3371 -0.8102 22 | 23 | The left transformation matrix U is 24 | -0.8121 0.5835 25 | 0.5835 0.8121 26 | 27 | The right transformation matrix V is 28 | -0.9861 0.1660 29 | 0.1660 0.9861 30 | 31 | DIF = 0.1147 32 | -------------------------------------------------------------------------------- /examples/SB04PD.dat: -------------------------------------------------------------------------------- 1 | SB04PD EXAMPLE PROGRAM DATA 2 | 3 2 1 D N N N N 3 | 2.0 1.0 3.0 4 | 0.0 2.0 1.0 5 | 6.0 1.0 2.0 6 | 2.0 1.0 7 | 1.0 6.0 8 | 2.0 1.0 9 | 1.0 4.0 10 | 0.0 5.0 11 | -------------------------------------------------------------------------------- /examples/SB04PD.res: -------------------------------------------------------------------------------- 1 | SB04PD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | -0.3430 0.1995 5 | -0.1856 0.4192 6 | 0.6922 -0.2952 7 | 8 | Scaling factor = 1.0000 9 | 10 | The orthogonal matrix U is 11 | 0.5396 -0.7797 0.3178 12 | 0.1954 -0.2512 -0.9480 13 | -0.8190 -0.5736 -0.0168 14 | 15 | The orthogonal matrix V is 16 | -0.9732 -0.2298 17 | 0.2298 -0.9732 18 | -------------------------------------------------------------------------------- /examples/SB04QD.dat: -------------------------------------------------------------------------------- 1 | SB04QD EXAMPLE PROGRAM DATA 2 | 3 3 3 | 1.0 2.0 3.0 4 | 6.0 7.0 8.0 5 | 9.0 2.0 3.0 6 | 7.0 2.0 3.0 7 | 2.0 1.0 2.0 8 | 3.0 4.0 1.0 9 | 271.0 135.0 147.0 10 | 923.0 494.0 482.0 11 | 578.0 383.0 287.0 12 | -------------------------------------------------------------------------------- /examples/SB04QD.res: -------------------------------------------------------------------------------- 1 | SB04QD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 2.0000 3.0000 6.0000 5 | 4.0000 7.0000 1.0000 6 | 5.0000 3.0000 2.0000 7 | 8 | The orthogonal matrix Z is 9 | 0.8337 0.5204 -0.1845 10 | 0.3881 -0.7900 -0.4746 11 | 0.3928 -0.3241 0.8606 12 | -------------------------------------------------------------------------------- /examples/SB04RD.dat: -------------------------------------------------------------------------------- 1 | SB04RD EXAMPLE PROGRAM DATA 2 | 5 5 0.0 U U B 3 | 1.0 2.0 3.0 4.0 5.0 4 | 6.0 7.0 8.0 9.0 1.0 5 | 0.0 2.0 3.0 4.0 5.0 6 | 0.0 0.0 6.0 7.0 8.0 7 | 0.0 0.0 0.0 9.0 1.0 8 | 1.0 2.0 3.0 4.0 5.0 9 | 0.0 1.0 2.0 3.0 4.0 10 | 0.0 0.0 1.0 2.0 3.0 11 | 0.0 0.0 0.0 1.0 -5.0 12 | 0.0 0.0 0.0 4.0 1.0 13 | 2.0 4.0 10.0 40.0 7.0 14 | 6.0 20.0 40.0 74.0 38.0 15 | 0.0 2.0 8.0 36.0 2.0 16 | 0.0 0.0 6.0 52.0 -9.0 17 | 0.0 0.0 0.0 13.0 -43.0 18 | -------------------------------------------------------------------------------- /examples/SB04RD.res: -------------------------------------------------------------------------------- 1 | SB04RD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 1.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 1.0000 0.0000 0.0000 0.0000 6 | 0.0000 0.0000 1.0000 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 1.0000 0.0000 8 | 0.0000 0.0000 0.0000 0.0000 1.0000 9 | -------------------------------------------------------------------------------- /examples/SB06ND.dat: -------------------------------------------------------------------------------- 1 | SB06ND EXAMPLE PROGRAM DATA 2 | 5 2 0.0 N N 3 | -17.0 24.0 41.0 68.0 15.0 4 | 23.0 -35.0 27.0 14.0 16.0 5 | 34.0 26.0 -13.0 20.0 22.0 6 | 10.0 12.0 19.0 -21.0 63.0 7 | 11.0 18.0 25.0 52.0 -29.0 8 | -31.0 14.0 9 | 74.0 -69.0 10 | -59.0 16.0 11 | 16.0 -25.0 12 | -25.0 36.0 13 | -------------------------------------------------------------------------------- /examples/SB06ND.res: -------------------------------------------------------------------------------- 1 | SB06ND EXAMPLE PROGRAM RESULTS 2 | 3 | The deadbeat feedback matrix F is 4 | -0.4819 -0.5782 -2.7595 -3.1093 0.0000 5 | 0.2121 -0.4462 0.7698 -1.5421 -0.5773 6 | -------------------------------------------------------------------------------- /examples/SB08CD.dat: -------------------------------------------------------------------------------- 1 | SB08CD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 1.E-10 C 3 | -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/SB08DD.dat: -------------------------------------------------------------------------------- 1 | SB08DD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 1.E-10 C 3 | -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/SB08ED.dat: -------------------------------------------------------------------------------- 1 | SB08ED EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 -1.0 1.E-10 C 3 | -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/SB08FD.dat: -------------------------------------------------------------------------------- 1 | SB08FD EXAMPLE PROGRAM DATA (Continuous system) 2 | 7 2 3 -1.0 1.E-10 C 3 | -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 4 | -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 5 | 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 6 | 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 7 | 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 8 | 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 10 | 0.0000 0.0000 11 | 12.500 0.0000 12 | 0.0000 0.0000 13 | 0.0000 0.0000 14 | 0.0000 0.0000 15 | 0.0000 12.500 16 | 0.0000 0.0000 17 | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 | 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 19 | 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 20 | 0.0000 0.0000 21 | 0.0000 0.0000 22 | 0.0000 0.0000 23 | -------------------------------------------------------------------------------- /examples/SB08MD.dat: -------------------------------------------------------------------------------- 1 | SB08MD EXAMPLE PROGRAM DATA 2 | 3 A 3 | 8.0 -6.0 -3.0 1.0 4 | -------------------------------------------------------------------------------- /examples/SB08MD.res: -------------------------------------------------------------------------------- 1 | SB08MD EXAMPLE PROGRAM RESULTS 2 | 3 | The coefficients of the polynomial B(s) are 4 | 5 | power of s coefficient 6 | 0 64.0000 7 | 2 -84.0000 8 | 4 21.0000 9 | 6 -1.0000 10 | 11 | The coefficients of the spectral factor E(s) are 12 | 13 | power of s coefficient 14 | 0 8.0000 15 | 1 14.0000 16 | 2 7.0000 17 | 3 1.0000 18 | 19 | RES = 2.7E-15 20 | -------------------------------------------------------------------------------- /examples/SB08ND.dat: -------------------------------------------------------------------------------- 1 | SB08ND EXAMPLE PROGRAM DATA 2 | 2 A 3 | 2.0 4.5 1.0 4 | -------------------------------------------------------------------------------- /examples/SB08ND.res: -------------------------------------------------------------------------------- 1 | SB08ND EXAMPLE PROGRAM RESULTS 2 | 3 | The coefficients of the polynomial B(z) are 4 | 5 | power of z coefficient 6 | 0 25.2500 7 | 1 13.5000 8 | 2 2.0000 9 | 10 | The coefficients of the spectral factor E(z) are 11 | 12 | power of z coefficient 13 | 0 0.5000 14 | 1 3.0000 15 | 2 4.0000 16 | 17 | RES = 4.4E-16 18 | -------------------------------------------------------------------------------- /examples/SB09MD.dat: -------------------------------------------------------------------------------- 1 | SB09MD EXAMPLE PROGRAM DATA 2 | 2 2 2 0.0 3 | 1.3373 0.1205 0.6618 -0.3372 4 | -0.4062 1.6120 0.9299 0.7429 5 | 1.1480 -0.1837 0.8843 -0.4947 6 | -0.4616 1.4674 0.6028 0.9524 7 | -------------------------------------------------------------------------------- /examples/SB09MD.res: -------------------------------------------------------------------------------- 1 | SB09MD EXAMPLE PROGRAM RESULTS 2 | 3 | The sum-of-squares matrix SS is 4 | 1.9534 1.3027 5 | 2.6131 0.6656 6 | 7 | The quadratic error matrix SE is 8 | 0.0389 0.1565 9 | 0.1134 0.0687 10 | 11 | The percentage relative error matrix PRE is 12 | 14.1125 34.6607 13 | 20.8363 32.1262 14 | -------------------------------------------------------------------------------- /examples/SB10DD.dat: -------------------------------------------------------------------------------- 1 | SB10DD EXAMPLE PROGRAM DATA 2 | 6 5 5 2 2 3 | -0.7 0.0 0.3 0.0 -0.5 -0.1 4 | -0.6 0.2 -0.4 -0.3 0.0 0.0 5 | -0.5 0.7 -0.1 0.0 0.0 -0.8 6 | -0.7 0.0 0.0 -0.5 -1.0 0.0 7 | 0.0 0.3 0.6 -0.9 0.1 -0.4 8 | 0.5 -0.8 0.0 0.0 0.2 -0.9 9 | -1.0 -2.0 -2.0 1.0 0.0 10 | 1.0 0.0 1.0 -2.0 1.0 11 | -3.0 -4.0 0.0 2.0 -2.0 12 | 1.0 -2.0 1.0 0.0 -1.0 13 | 0.0 1.0 -2.0 0.0 3.0 14 | 1.0 0.0 3.0 -1.0 -2.0 15 | 1.0 -1.0 2.0 -2.0 0.0 -3.0 16 | -3.0 0.0 1.0 -1.0 1.0 0.0 17 | 0.0 2.0 0.0 -4.0 0.0 -2.0 18 | 1.0 -3.0 0.0 0.0 3.0 1.0 19 | 0.0 1.0 -2.0 1.0 0.0 -2.0 20 | 1.0 -1.0 -2.0 0.0 0.0 21 | 0.0 1.0 0.0 1.0 0.0 22 | 2.0 -1.0 -3.0 0.0 1.0 23 | 0.0 1.0 0.0 1.0 -1.0 24 | 0.0 0.0 1.0 2.0 1.0 25 | 111.294 0.00000001 26 | -------------------------------------------------------------------------------- /examples/SB10ED.dat: -------------------------------------------------------------------------------- 1 | SB10ED EXAMPLE PROGRAM DATA 2 | 6 5 5 2 2 3 | -0.7 0.0 0.3 0.0 -0.5 -0.1 4 | -0.6 0.2 -0.4 -0.3 0.0 0.0 5 | -0.5 0.7 -0.1 0.0 0.0 -0.8 6 | -0.7 0.0 0.0 -0.5 -1.0 0.0 7 | 0.0 0.3 0.6 -0.9 0.1 -0.4 8 | 0.5 -0.8 0.0 0.0 0.2 -0.9 9 | -1.0 -2.0 -2.0 1.0 0.0 10 | 1.0 0.0 1.0 -2.0 1.0 11 | -3.0 -4.0 0.0 2.0 -2.0 12 | 1.0 -2.0 1.0 0.0 -1.0 13 | 0.0 1.0 -2.0 0.0 3.0 14 | 1.0 0.0 3.0 -1.0 -2.0 15 | 1.0 -1.0 2.0 -2.0 0.0 -3.0 16 | -3.0 0.0 1.0 -1.0 1.0 0.0 17 | 0.0 2.0 0.0 -4.0 0.0 -2.0 18 | 1.0 -3.0 0.0 0.0 3.0 1.0 19 | 0.0 1.0 -2.0 1.0 0.0 -2.0 20 | 1.0 -1.0 -2.0 0.0 0.0 21 | 0.0 1.0 0.0 1.0 0.0 22 | 2.0 -1.0 -3.0 0.0 1.0 23 | 0.0 1.0 0.0 1.0 -1.0 24 | 0.0 0.0 1.0 2.0 1.0 25 | 0.00000001 26 | -------------------------------------------------------------------------------- /examples/SB10FD.dat: -------------------------------------------------------------------------------- 1 | SB10FD EXAMPLE PROGRAM DATA 2 | 6 5 5 2 2 3 | -1.0 0.0 4.0 5.0 -3.0 -2.0 4 | -2.0 4.0 -7.0 -2.0 0.0 3.0 5 | -6.0 9.0 -5.0 0.0 2.0 -1.0 6 | -8.0 4.0 7.0 -1.0 -3.0 0.0 7 | 2.0 5.0 8.0 -9.0 1.0 -4.0 8 | 3.0 -5.0 8.0 0.0 2.0 -6.0 9 | -3.0 -4.0 -2.0 1.0 0.0 10 | 2.0 0.0 1.0 -5.0 2.0 11 | -5.0 -7.0 0.0 7.0 -2.0 12 | 4.0 -6.0 1.0 1.0 -2.0 13 | -3.0 9.0 -8.0 0.0 5.0 14 | 1.0 -2.0 3.0 -6.0 -2.0 15 | 1.0 -1.0 2.0 -4.0 0.0 -3.0 16 | -3.0 0.0 5.0 -1.0 1.0 1.0 17 | -7.0 5.0 0.0 -8.0 2.0 -2.0 18 | 9.0 -3.0 4.0 0.0 3.0 7.0 19 | 0.0 1.0 -2.0 1.0 -6.0 -2.0 20 | 1.0 -2.0 -3.0 0.0 0.0 21 | 0.0 4.0 0.0 1.0 0.0 22 | 5.0 -3.0 -4.0 0.0 1.0 23 | 0.0 1.0 0.0 1.0 -3.0 24 | 0.0 0.0 1.0 7.0 1.0 25 | 15.0 0.00000001 26 | -------------------------------------------------------------------------------- /examples/SB10HD.dat: -------------------------------------------------------------------------------- 1 | SB10HD EXAMPLE PROGRAM DATA 2 | 6 5 5 2 2 3 | -1.0 0.0 4.0 5.0 -3.0 -2.0 4 | -2.0 4.0 -7.0 -2.0 0.0 3.0 5 | -6.0 9.0 -5.0 0.0 2.0 -1.0 6 | -8.0 4.0 7.0 -1.0 -3.0 0.0 7 | 2.0 5.0 8.0 -9.0 1.0 -4.0 8 | 3.0 -5.0 8.0 0.0 2.0 -6.0 9 | -3.0 -4.0 -2.0 1.0 0.0 10 | 2.0 0.0 1.0 -5.0 2.0 11 | -5.0 -7.0 0.0 7.0 -2.0 12 | 4.0 -6.0 1.0 1.0 -2.0 13 | -3.0 9.0 -8.0 0.0 5.0 14 | 1.0 -2.0 3.0 -6.0 -2.0 15 | 1.0 -1.0 2.0 -4.0 0.0 -3.0 16 | -3.0 0.0 5.0 -1.0 1.0 1.0 17 | -7.0 5.0 0.0 -8.0 2.0 -2.0 18 | 9.0 -3.0 4.0 0.0 3.0 7.0 19 | 0.0 1.0 -2.0 1.0 -6.0 -2.0 20 | 0.0 0.0 0.0 -4.0 -1.0 21 | 0.0 0.0 0.0 1.0 0.0 22 | 0.0 0.0 0.0 0.0 1.0 23 | 3.0 1.0 0.0 1.0 -3.0 24 | -2.0 0.0 1.0 7.0 1.0 25 | 0.00000001 26 | -------------------------------------------------------------------------------- /examples/SB10ID.dat: -------------------------------------------------------------------------------- 1 | SB10ID EXAMPLE PROGRAM DATA 2 | 6 2 3 3 | -1.0 0.0 4.0 5.0 -3.0 -2.0 4 | -2.0 4.0 -7.0 -2.0 0.0 3.0 5 | -6.0 9.0 -5.0 0.0 2.0 -1.0 6 | -8.0 4.0 7.0 -1.0 -3.0 0.0 7 | 2.0 5.0 8.0 -9.0 1.0 -4.0 8 | 3.0 -5.0 8.0 0.0 2.0 -6.0 9 | -3.0 -4.0 10 | 2.0 0.0 11 | -5.0 -7.0 12 | 4.0 -6.0 13 | -3.0 9.0 14 | 1.0 -2.0 15 | 1.0 -1.0 2.0 -4.0 0.0 -3.0 16 | -3.0 0.0 5.0 -1.0 1.0 1.0 17 | -7.0 5.0 0.0 -8.0 2.0 -2.0 18 | 1.0 -2.0 19 | 0.0 4.0 20 | 5.0 -3.0 21 | 1.0 22 | -------------------------------------------------------------------------------- /examples/SB10ID.res: -------------------------------------------------------------------------------- 1 | SB10ID EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The controller state matrix AK is 5 | 6 | -39.0671 9.9293 22.2322 -27.4113 43.8655 7 | -6.6117 3.0006 11.0878 -11.4130 15.4269 8 | 33.6805 -6.6934 -23.9953 14.1438 -33.4358 9 | -32.3191 9.7316 25.4033 -24.0473 42.0517 10 | -44.1655 18.7767 34.8873 -42.4369 50.8437 11 | 12 | The controller input matrix BK is 13 | 14 | -10.2905 -16.5382 -10.9782 15 | -4.3598 -8.7525 -5.1447 16 | 6.5962 1.8975 6.2316 17 | -9.8770 -14.7041 -11.8778 18 | -9.6726 -22.7309 -18.2692 19 | 20 | The controller output matrix CK is 21 | 22 | -0.6647 -0.0599 -1.0376 0.5619 1.7297 23 | -8.4202 3.9573 7.3094 -7.6283 10.6768 24 | 25 | The controller matrix DK is 26 | 27 | 0.8466 0.4979 -0.6993 28 | -1.2226 -4.8689 -4.5056 29 | 30 | The estimated condition numbers are 31 | 32 | 0.13861D-01 0.90541D-02 33 | -------------------------------------------------------------------------------- /examples/SB10KD.dat: -------------------------------------------------------------------------------- 1 | SB10KD EXAMPLE PROGRAM DATA 2 | 6 2 2 3 | 0.2 0.0 0.3 0.0 -0.3 -0.1 4 | -0.3 0.2 -0.4 -0.3 0.0 0.0 5 | -0.1 0.1 -0.1 0.0 0.0 -0.3 6 | 0.1 0.0 0.0 -0.1 -0.1 0.0 7 | 0.0 0.3 0.6 0.2 0.1 -0.4 8 | 0.2 -0.4 0.0 0.0 0.2 -0.2 9 | -1.0 -2.0 10 | 1.0 3.0 11 | -3.0 -4.0 12 | 1.0 -2.0 13 | 0.0 1.0 14 | 1.0 5.0 15 | 1.0 -1.0 2.0 -2.0 0.0 -3.0 16 | -3.0 0.0 1.0 -1.0 1.0 -1.0 17 | 1.1 18 | -------------------------------------------------------------------------------- /examples/SB10ZD.dat: -------------------------------------------------------------------------------- 1 | SB10LD EXAMPLE PROGRAM DATA 2 | 6 2 3 3 | 0.2 0.0 3.0 0.0 -0.3 -0.1 4 | -3.0 0.2 -0.4 -0.3 0.0 0.0 5 | -0.1 0.1 -1.0 0.0 0.0 -3.0 6 | 1.0 0.0 0.0 -1.0 -1.0 0.0 7 | 0.0 0.3 0.6 2.0 0.1 -0.4 8 | 0.2 -4.0 0.0 0.0 0.2 -2.0 9 | -1.0 -2.0 10 | 1.0 3.0 11 | -3.0 -4.0 12 | 1.0 -2.0 13 | 0.0 1.0 14 | 1.0 5.0 15 | 1.0 -1.0 2.0 -2.0 0.0 -3.0 16 | -3.0 0.0 1.0 -1.0 1.0 -1.0 17 | 2.0 4.0 -3.0 0.0 5.0 1.0 18 | 10.0 -6.0 19 | -7.0 8.0 20 | 2.0 -4.0 21 | 1.1 0.0 22 | -------------------------------------------------------------------------------- /examples/SB16AD.dat: -------------------------------------------------------------------------------- 1 | SB16AD EXAMPLE PROGRAM DATA (Continuous system) 2 | 3 1 1 3 2 0.0 0.1E0 0.0 C S S F I N F 3 | -1. 0. 4. 4 | 0. 2. 0. 5 | 0. 0. -3. 6 | 1. 7 | 1. 8 | 1. 9 | 1. 1. 1. 10 | 0. 11 | -26.4000 6.4023 4.3868 12 | 32.0000 0 0 13 | 0 8.0000 0 14 | -16 15 | 0 16 | 0 17 | 9.2994 1.1624 0.1090 18 | 0 19 | 20 | -------------------------------------------------------------------------------- /examples/SB16AD.res: -------------------------------------------------------------------------------- 1 | SB16AD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The order of reduced controller = 2 5 | 6 | The Hankel singular values of weighted ALPHA-stable part are 7 | 3.8253 0.2005 8 | 9 | The reduced controller state dynamics matrix Ac is 10 | 9.1900 0.0000 11 | 0.0000 -34.5297 12 | 13 | The reduced controller input/state matrix Bc is 14 | -11.9593 15 | 86.3137 16 | 17 | The reduced controller state/output matrix Cc is 18 | 2.8955 -1.3566 19 | 20 | The reduced controller input/output matrix Dc is 21 | 0.0000 22 | -------------------------------------------------------------------------------- /examples/SB16BD.res: -------------------------------------------------------------------------------- 1 | SB16BD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of reduced controller = 4 4 | 5 | The Hankel singular values of extended system are: 6 | 4.9078 4.8745 3.8455 3.7811 1.2289 1.1785 0.5176 0.1148 7 | 8 | The reduced controller state dynamics matrix Ac is 9 | 0.5946 -0.7336 0.1914 -0.3368 10 | 0.5960 -0.0184 -0.1088 0.0207 11 | 1.2253 0.2043 0.1009 -1.4948 12 | -0.0330 -0.0243 1.3440 0.0035 13 | 14 | The reduced controller input/state matrix Bc is 15 | 0.0015 16 | -0.0202 17 | 0.0159 18 | -0.0544 19 | 20 | The reduced controller state/output matrix Cc is 21 | 0.3534 0.0274 0.0337 -0.0320 22 | 23 | The reduced controller input/output matrix Dc is 24 | 0.0000 25 | -------------------------------------------------------------------------------- /examples/SB16CD.res: -------------------------------------------------------------------------------- 1 | SB16CD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of reduced controller = 2 4 | 5 | The frequency-weighted Hankel singular values are: 6 | 3.3073 0.7274 0.1124 0.0784 0.0242 0.0182 0.0101 0.0094 7 | 8 | The reduced controller state dynamics matrix Ac is 9 | -0.4334 0.4884 10 | -0.1950 -0.1093 11 | 12 | The reduced controller input/state matrix Bc is 13 | -0.4231 14 | -0.1785 15 | 16 | The reduced controller state/output matrix Cc is 17 | -0.0326 -0.2307 18 | -------------------------------------------------------------------------------- /examples/SG02AD.dat: -------------------------------------------------------------------------------- 1 | SG02AD EXAMPLE PROGRAM DATA 2 | 2 1 3 0.0 C B B U Z N S N 3 | 0.0 1.0 4 | 0.0 0.0 5 | 1.0 0.0 6 | 0.0 1.0 7 | 0.0 8 | 1.0 9 | 1.0 0.0 10 | 0.0 1.0 11 | 0.0 0.0 12 | 0.0 13 | 0.0 14 | 1.0 15 | -------------------------------------------------------------------------------- /examples/SG02AD.res: -------------------------------------------------------------------------------- 1 | SG02AD EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 1.7321 1.0000 5 | 1.0000 1.7321 6 | -------------------------------------------------------------------------------- /examples/SG02ND.dat: -------------------------------------------------------------------------------- 1 | SG02ND EXAMPLE PROGRAM DATA 2 | 2 1 3 0.0 D I K N N Z U N 3 | 2.0 -1.0 4 | 1.0 0.0 5 | 1.0 6 | 0.0 7 | 0.0 0.0 8 | 0.0 0.0 9 | 0.0 1.0 10 | 0.0 11 | 0.0 12 | 0.0 13 | -------------------------------------------------------------------------------- /examples/SG02ND.res: -------------------------------------------------------------------------------- 1 | SG02ND EXAMPLE PROGRAM RESULTS 2 | 3 | The solution matrix X is 4 | 1.0000 0.0000 5 | 0.0000 1.0000 6 | 7 | The optimal feedback matrix F is 8 | 2.0000 -1.0000 9 | -------------------------------------------------------------------------------- /examples/SG03AD.dat: -------------------------------------------------------------------------------- 1 | SG03AD EXAMPLE PROGRAM DATA 2 | 3 B C N N U 3 | 3.0 1.0 1.0 4 | 1.0 3.0 0.0 5 | 1.0 0.0 2.0 6 | 1.0 3.0 0.0 7 | 3.0 2.0 1.0 8 | 1.0 0.0 1.0 9 | -64.0 -73.0 -28.0 10 | 0.0 -70.0 -25.0 11 | 0.0 0.0 -18.0 12 | -------------------------------------------------------------------------------- /examples/SG03AD.res: -------------------------------------------------------------------------------- 1 | SG03AD EXAMPLE PROGRAM RESULTS 2 | 3 | SEP = 0.29D+00 4 | FERR = 0.40D-13 5 | SCALE = 0.10D+01 6 | 7 | The solution matrix X is 8 | -2.0000 -1.0000 0.0000 9 | -1.0000 -3.0000 -1.0000 10 | 0.0000 -1.0000 -3.0000 11 | -------------------------------------------------------------------------------- /examples/SG03BD.dat: -------------------------------------------------------------------------------- 1 | SG03BD EXAMPLE PROGRAM DATA 2 | 3 1 C N N 3 | -1.0 3.0 -4.0 4 | 0.0 5.0 -2.0 5 | -4.0 4.0 1.0 6 | 2.0 1.0 3.0 7 | 2.0 0.0 1.0 8 | 4.0 5.0 1.0 9 | 2.0 -1.0 7.0 10 | -------------------------------------------------------------------------------- /examples/SG03BD.res: -------------------------------------------------------------------------------- 1 | SG03BD EXAMPLE PROGRAM RESULTS 2 | 3 | SCALE = 1.0000 4 | 5 | The Cholesky factor U of the solution matrix is 6 | 1.6003 -0.4418 -0.1523 7 | 0.0000 0.6795 -0.2499 8 | 0.0000 0.0000 0.2041 9 | -------------------------------------------------------------------------------- /examples/TB01ID.dat: -------------------------------------------------------------------------------- 1 | TB01ID EXAMPLE PROGRAM DATA 2 | 5 2 5 A 0.0 3 | 0.0 1.0000e+000 0.0 0.0 0.0 4 | -1.5800e+006 -1.2570e+003 0.0 0.0 0.0 5 | 3.5410e+014 0.0 -1.4340e+003 0.0 -5.3300e+011 6 | 0.0 0.0 0.0 0.0 1.0000e+000 7 | 0.0 0.0 0.0 -1.8630e+004 -1.4820e+000 8 | 0.0 0.0 9 | 1.1030e+002 0.0 10 | 0.0 0.0 11 | 0.0 0.0 12 | 0.0 8.3330e-003 13 | 1.0000e+000 0.0 0.0 0.0 0.0 14 | 0.0 0.0 1.0000e+000 0.0 0.0 15 | 0.0 0.0 0.0 1.0000e+000 0.0 16 | 6.6640e-001 0.0 -6.2000e-013 0.0 0.0 17 | 0.0 0.0 -1.0000e-003 1.8960e+006 1.5080e+002 18 | -------------------------------------------------------------------------------- /examples/TB01KD.dat: -------------------------------------------------------------------------------- 1 | TB01KD EXAMPLE PROGRAM DATA (Continuous system) 2 | 5 2 3 -1.0 C U G 3 | -0.04165 4.9200 -4.9200 0 0 4 | -1.387944 -3.3300 0 0 0 5 | 0.5450 0 0 -0.5450 0 6 | 0 0 4.9200 -0.04165 4.9200 7 | 0 0 0 -1.387944 -3.3300 8 | 0 0 9 | 3.3300 0 10 | 0 0 11 | 0 0 12 | 0 3.3300 13 | 1 0 0 0 0 14 | 0 0 1 0 0 15 | 0 0 0 1 0 16 | -------------------------------------------------------------------------------- /examples/TB01LD.dat: -------------------------------------------------------------------------------- 1 | TB01LD EXAMPLE PROGRAM DATA (Continuous system) 2 | 5 2 3 -1.0 C U G 3 | -0.04165 4.9200 -4.9200 0 0 4 | -1.387944 -3.3300 0 0 0 5 | 0.5450 0 0 -0.5450 0 6 | 0 0 4.9200 -0.04165 4.9200 7 | 0 0 0 -1.387944 -3.3300 8 | 0 0 9 | 3.3300 0 10 | 0 0 11 | 0 0 12 | 0 3.3300 13 | 1 0 0 0 0 14 | 0 0 1 0 0 15 | 0 0 0 1 0 16 | -------------------------------------------------------------------------------- /examples/TB01MD.dat: -------------------------------------------------------------------------------- 1 | TB01MD EXAMPLE PROGRAM DATA 2 | 6 3 N U 3 | 35.0 1.0 6.0 26.0 19.0 24.0 4 | 3.0 32.0 7.0 21.0 23.0 25.0 5 | 31.0 9.0 2.0 22.0 27.0 20.0 6 | 8.0 28.0 33.0 17.0 10.0 15.0 7 | 30.0 5.0 34.0 12.0 14.0 16.0 8 | 4.0 36.0 29.0 13.0 18.0 11.0 9 | 1.0 5.0 11.0 10 | -1.0 4.0 11.0 11 | -5.0 1.0 9.0 12 | -11.0 -4.0 5.0 13 | -19.0 -11.0 -1.0 14 | -29.0 -20.0 -9.0 15 | -------------------------------------------------------------------------------- /examples/TB01MD.res: -------------------------------------------------------------------------------- 1 | TB01MD EXAMPLE PROGRAM RESULTS 2 | 3 | The transformed state transition matrix is 4 | 60.3649 58.8853 5.0480 -5.4406 2.1382 -7.3870 5 | 54.5832 33.1865 36.5234 6.3272 -3.1377 8.8154 6 | 17.6406 21.4501 -13.5942 0.5417 1.6926 0.0786 7 | -9.0567 10.7202 0.3531 1.5444 -1.2846 24.6407 8 | 0.0000 6.8796 -20.1372 -2.6440 2.4983 -21.8071 9 | 0.0000 0.0000 0.0000 0.0000 0.0000 27.0000 10 | 11 | The transformed input matrix is 12 | -16.8819 -8.8260 13.9202 13 | 0.0000 13.8240 39.9205 14 | 0.0000 0.0000 4.1928 15 | 0.0000 0.0000 0.0000 16 | 0.0000 0.0000 0.0000 17 | 0.0000 0.0000 0.0000 18 | -------------------------------------------------------------------------------- /examples/TB01ND.dat: -------------------------------------------------------------------------------- 1 | TB01ND EXAMPLE PROGRAM DATA 2 | 5 3 N U 3 | 15.0 21.0 -3.0 3.0 9.0 4 | 20.0 1.0 2.0 8.0 9.0 5 | 4.0 1.0 7.0 13.0 14.0 6 | 5.0 6.0 12.0 13.0 -6.0 7 | 5.0 11.0 17.0 -7.0 -1.0 8 | 7.0 -1.0 3.0 -6.0 -3.0 9 | 4.0 5.0 6.0 -2.0 -3.0 10 | 9.0 8.0 5.0 2.0 1.0 11 | -------------------------------------------------------------------------------- /examples/TB01ND.res: -------------------------------------------------------------------------------- 1 | TB01ND EXAMPLE PROGRAM RESULTS 2 | 3 | The transformed state transition matrix is 4 | 7.1637 -0.9691 -16.5046 0.2869 0.9205 5 | -2.3285 11.5431 -8.7471 3.4122 -3.7118 6 | -10.5440 -7.6032 -0.3215 3.6571 -0.4335 7 | -3.6845 5.6449 0.5906 -15.6996 17.4267 8 | 0.0000 -6.4260 1.5591 14.4317 32.3143 9 | 10 | The transformed output matrix is 11 | 0.0000 0.0000 7.6585 5.2973 -4.1576 12 | 0.0000 0.0000 0.0000 5.8305 -7.4837 13 | 0.0000 0.0000 0.0000 0.0000 -13.2288 14 | -------------------------------------------------------------------------------- /examples/TB01PD.dat: -------------------------------------------------------------------------------- 1 | TB01PD EXAMPLE PROGRAM DATA 2 | 3 1 2 0.0 M N 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 1.0 7 | 0.0 1.0 -1.0 8 | 0.0 0.0 1.0 9 | -------------------------------------------------------------------------------- /examples/TB01PD.res: -------------------------------------------------------------------------------- 1 | TB01PD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the minimal realization = 3 4 | 5 | The transformed state dynamics matrix of a minimal realization is 6 | 1.0000 -1.4142 1.4142 7 | -2.8284 0.0000 1.0000 8 | 2.8284 1.0000 0.0000 9 | 10 | The transformed input/state matrix of a minimal realization is 11 | -1.0000 12 | 0.7071 13 | 0.7071 14 | 15 | The transformed state/output matrix of a minimal realization is 16 | 0.0000 0.0000 -1.4142 17 | 0.0000 0.7071 0.7071 18 | -------------------------------------------------------------------------------- /examples/TB01PX.dat: -------------------------------------------------------------------------------- 1 | TB01PX EXAMPLE PROGRAM DATA 2 | 3 1 2 0.0 M N 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 1.0 7 | 0.0 1.0 -1.0 8 | 0.0 0.0 1.0 9 | -------------------------------------------------------------------------------- /examples/TB01PX.res: -------------------------------------------------------------------------------- 1 | TB01PX EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the minimal realization = 3 4 | 5 | The transformed state dynamics matrix of a minimal realization is 6 | 1.0000 2.0000 0.0000 7 | 4.0000 -1.0000 0.0000 8 | 0.0000 0.0000 1.0000 9 | 10 | The transformed input/state matrix of a minimal realization is 11 | 1.0000 12 | 0.0000 13 | 1.0000 14 | 15 | The transformed state/output matrix of a minimal realization is 16 | 0.0000 1.0000 -1.0000 17 | 0.0000 0.0000 1.0000 18 | 19 | Information on the performed reduction is -1 -1 2 0 20 | -------------------------------------------------------------------------------- /examples/TB01TD.dat: -------------------------------------------------------------------------------- 1 | TB01TD EXAMPLE PROGRAM DATA 2 | 5 2 2 3 | 0.0 0.0 1.0 4.0 5.0 4 | 50.0 10.0 1.0 0.0 0.0 5 | 0.0 0.0 90.0 10.0 0.0 6 | 0.0 1.0 1.0 1.0 1.0 7 | 100.0 0.0 0.0 0.0 70.0 8 | 0.0 2.0 0.0 1.0 2.0 9 | 0.0 20.0 100.0 1.0 0.0 10 | 1.0 0.0 0.0 1.0 0.0 11 | 1.0 1.0 0.0 2.0 1.0 12 | 1.0 1.0 1.0 1.0 13 | -------------------------------------------------------------------------------- /examples/TB01TD.res: -------------------------------------------------------------------------------- 1 | TB01TD EXAMPLE PROGRAM RESULTS 2 | 3 | LOW = 1 IGH = 5 4 | 5 | The balanced state dynamics matrix A is 6 | 0.0000 0.0000 1.0000 4.0000 40.0000 7 | 6.2500 10.0000 0.1250 0.0000 0.0000 8 | 0.0000 0.0000 90.0000 10.0000 0.0000 9 | 0.0000 8.0000 1.0000 1.0000 8.0000 10 | 12.5000 0.0000 0.0000 0.0000 70.0000 11 | 12 | The balanced input/state matrix B is 13 | 0.0000 0.0000 14 | 16.0000 2.5000 15 | 0.0000 100.0000 16 | 64.0000 1.0000 17 | 16.0000 0.0000 18 | 19 | The balanced state/output matrix C is 20 | 32.0000 0.0000 0.0000 32.0000 0.0000 21 | 4.0000 32.0000 0.0000 8.0000 32.0000 22 | 23 | The scaled direct transmission matrix D is 24 | 2048.0000 32.0000 25 | 256.0000 4.0000 26 | -------------------------------------------------------------------------------- /examples/TB01UD.dat: -------------------------------------------------------------------------------- 1 | TB01UD EXAMPLE PROGRAM DATA 2 | 3 2 2 0.0 I 3 | -1.0 0.0 0.0 4 | -2.0 -2.0 -2.0 5 | -1.0 0.0 -3.0 6 | 1.0 0.0 0.0 7 | 0.0 2.0 1.0 8 | 0.0 2.0 1.0 9 | 1.0 0.0 0.0 10 | -------------------------------------------------------------------------------- /examples/TB01UD.res: -------------------------------------------------------------------------------- 1 | TB01UD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the controllable state-space representation = 2 4 | 5 | The transformed state dynamics matrix of a controllable realization is 6 | -3.0000 2.2361 7 | 0.0000 -1.0000 8 | 9 | and the dimensions of its diagonal blocks are 10 | 2 11 | 12 | The transformed input/state matrix B of a controllable realization is 13 | 0.0000 -2.2361 14 | 1.0000 0.0000 15 | 16 | The transformed output/state matrix C of a controllable realization is 17 | -2.2361 0.0000 18 | 0.0000 1.0000 19 | 20 | The controllability index of the transformed system representation = 1 21 | 22 | The similarity transformation matrix Z is 23 | 0.0000 1.0000 0.0000 24 | -0.8944 0.0000 -0.4472 25 | -0.4472 0.0000 0.8944 26 | -------------------------------------------------------------------------------- /examples/TB01UY.dat: -------------------------------------------------------------------------------- 1 | TB01UY EXAMPLE PROGRAM DATA 2 | 3 1 1 2 0.0 I 3 | -1.0 0.0 0.0 4 | -2.0 -2.0 -2.0 5 | -1.0 0.0 -3.0 6 | 1.0 0.0 0.0 7 | 0.0 2.0 1.0 8 | 0.0 2.0 1.0 9 | 1.0 0.0 0.0 10 | -------------------------------------------------------------------------------- /examples/TB01UY.res: -------------------------------------------------------------------------------- 1 | TB01UY EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the controllable state-space representation = 2 4 | 5 | The transformed state dynamics matrix of a controllable realization is 6 | -1.0000 0.0000 7 | 2.2361 -3.0000 8 | 9 | and the dimensions of its diagonal blocks are 10 | 1 1 11 | 12 | The transformed input/state matrix B of a controllable realization is 13 | 1.0000 0.0000 14 | 0.0000 -2.2361 15 | 16 | The transformed output/state matrix C of a controllable realization is 17 | 0.0000 -2.2361 18 | 1.0000 0.0000 19 | 20 | The controllability index of the transformed system representation = 2 21 | 22 | The similarity transformation matrix Z is 23 | 1.0000 0.0000 0.0000 24 | 0.0000 -0.8944 -0.4472 25 | 0.0000 -0.4472 0.8944 26 | -------------------------------------------------------------------------------- /examples/TB01WD.dat: -------------------------------------------------------------------------------- 1 | TB01WD EXAMPLE PROGRAM DATA (Continuous system) 2 | 5 2 3 3 | -0.04165 4.9200 -4.9200 0 0 4 | -1.387944 -3.3300 0 0 0 5 | 0.5450 0 0 -0.5450 0 6 | 0 0 4.9200 -0.04165 4.9200 7 | 0 0 0 -1.387944 -3.3300 8 | 0 0 9 | 3.3300 0 10 | 0 0 11 | 0 0 12 | 0 3.3300 13 | 1 0 0 0 0 14 | 0 0 1 0 0 15 | 0 0 0 1 0 16 | 17 | -------------------------------------------------------------------------------- /examples/TB01WX.dat: -------------------------------------------------------------------------------- 1 | TB01WX EXAMPLE PROGRAM DATA (Continuous system) 2 | 5 2 3 I 3 | -0.04165 4.9200 -4.9200 0 0 4 | -1.387944 -3.3300 0 0 0 5 | 0.5450 0 0 -0.5450 0 6 | 0 0 4.9200 -0.04165 4.9200 7 | 0 0 0 -1.387944 -3.3300 8 | 0 0 9 | 3.3300 0 10 | 0 0 11 | 0 0 12 | 0 3.3300 13 | 1 0 0 0 0 14 | 0 0 1 0 0 15 | 0 0 0 1 0 16 | 17 | -------------------------------------------------------------------------------- /examples/TB01ZD.dat: -------------------------------------------------------------------------------- 1 | TB01ZD EXAMPLE PROGRAM DATA 2 | 3 2 0.0 I 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 1.0 7 | 0.0 2.0 1.0 8 | 1.0 0.0 0.0 9 | -------------------------------------------------------------------------------- /examples/TB01ZD.res: -------------------------------------------------------------------------------- 1 | TB01ZD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the controllable state-space representation = 3 4 | 5 | The state dynamics matrix A of a controllable realization is 6 | 1.0000 1.4142 0.0000 7 | 2.8284 -1.0000 2.8284 8 | 0.0000 1.4142 1.0000 9 | 10 | The input/state vector B of a controllable realization is 11 | -1.4142 12 | 0.0000 13 | 0.0000 14 | 15 | The output/state matrix C of a controllable realization is 16 | -0.7071 -2.0000 0.7071 17 | -0.7071 0.0000 -0.7071 18 | 19 | The similarity transformation matrix Z is 20 | -0.7071 0.0000 -0.7071 21 | 0.0000 -1.0000 0.0000 22 | -0.7071 0.0000 0.7071 23 | -------------------------------------------------------------------------------- /examples/TB03AD.dat: -------------------------------------------------------------------------------- 1 | TB03AD EXAMPLE PROGRAM DATA 2 | 3 1 2 0.0 R N 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 1.0 7 | 0.0 1.0 -1.0 8 | 0.0 0.0 1.0 9 | 0.0 1.0 10 | -------------------------------------------------------------------------------- /examples/TB03AD.res: -------------------------------------------------------------------------------- 1 | TB03AD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the minimal state-space representation = 3 4 | 5 | The transformed state dynamics matrix of a minimal realization is 6 | 1.0000 -1.4142 0.0000 7 | -2.8284 -1.0000 2.8284 8 | 0.0000 1.4142 1.0000 9 | 10 | and the dimensions of its diagonal blocks are 11 | 1 1 1 12 | 13 | The transformed input/state matrix of a minimal realization is 14 | -1.4142 15 | 0.0000 16 | 0.0000 17 | 18 | The transformed state/output matrix of a minimal realization is 19 | 0.7071 1.0000 0.7071 20 | -0.7071 0.0000 -0.7071 21 | 22 | The controllability index of the transformed minimal system representation = 3 23 | 24 | INDEX is 25 | 3 26 | 27 | The denominator matrix P(s) is 28 | 0.1768 -0.1768 -1.5910 1.5910 29 | 30 | The numerator matrix Q(s) is 31 | 0.0000 -0.1768 0.7071 0.8839 32 | 0.1768 0.0000 -1.5910 0.0000 33 | -------------------------------------------------------------------------------- /examples/TB04AD.dat: -------------------------------------------------------------------------------- 1 | TB04AD EXAMPLE PROGRAM DATA 2 | 3 2 2 0.0 0.0 R 3 | -1.0 0.0 0.0 4 | 0.0 -2.0 0.0 5 | 0.0 0.0 -3.0 6 | 0.0 1.0 -1.0 7 | 1.0 1.0 0.0 8 | 0.0 1.0 1.0 9 | 1.0 1.0 1.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -------------------------------------------------------------------------------- /examples/TB04BD.dat: -------------------------------------------------------------------------------- 1 | TB04BD EXAMPLE PROGRAM DATA 2 | 3 2 2 0.0 D I N 3 | -1.0 0.0 0.0 4 | 0.0 -2.0 0.0 5 | 0.0 0.0 -3.0 6 | 0.0 1.0 -1.0 7 | 1.0 1.0 0.0 8 | 0.0 1.0 1.0 9 | 1.0 1.0 1.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -------------------------------------------------------------------------------- /examples/TB04BD.res: -------------------------------------------------------------------------------- 1 | TB04BD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The polynomial coefficients appear in increasing order 5 | of the powers of the indeterminate 6 | 7 | The coefficients of polynomials in the transfer matrix T(s) are 8 | 9 | element ( 1, 1) is 7.00 5.00 1.00 10 | ---------------------- 11 | 6.00 5.00 1.00 12 | 13 | element ( 2, 1) is 1.00 14 | ---------------------- 15 | 6.00 5.00 1.00 16 | 17 | element ( 1, 2) is 1.00 18 | --------------- 19 | 2.00 1.00 20 | 21 | element ( 2, 2) is 5.00 5.00 1.00 22 | ---------------------- 23 | 2.00 3.00 1.00 24 | -------------------------------------------------------------------------------- /examples/TB04CD.dat: -------------------------------------------------------------------------------- 1 | TB04CD EXAMPLE PROGRAM DATA 2 | 3 2 2 0.0 D N 3 | -1.0 0.0 0.0 4 | 0.0 -2.0 0.0 5 | 0.0 0.0 -3.0 6 | 0.0 1.0 -1.0 7 | 1.0 1.0 0.0 8 | 0.0 1.0 1.0 9 | 1.0 1.0 1.0 10 | 1.0 0.0 11 | 0.0 1.0 12 | -------------------------------------------------------------------------------- /examples/TB05AD.dat: -------------------------------------------------------------------------------- 1 | TB05AD EXAMPLE PROGRAM DATA 2 | 3 1 2 (0.0,0.5) G A 3 | 1.0 2.0 0.0 4 | 4.0 -1.0 0.0 5 | 0.0 0.0 1.0 6 | 1.0 0.0 1.0 7 | 1.0 0.0 -1.0 8 | 0.0 0.0 1.0 9 | -------------------------------------------------------------------------------- /examples/TB05AD.res: -------------------------------------------------------------------------------- 1 | TB05AD EXAMPLE PROGRAM RESULTS 2 | 3 | RCOND = 0.22 4 | 5 | Eigenvalues of the state transmission matrix A are 6 | 3.00 0.00*j 7 | -3.00 0.00*j 8 | 1.00 0.00*j 9 | 10 | The frequency response matrix G(freq) is 11 | ( 0.69, 0.35) 12 | (-0.80,-0.40) 13 | 14 | H(inverse)*B is 15 | (-0.11,-0.05) 16 | (-0.43, 0.00) 17 | (-0.80,-0.40) 18 | -------------------------------------------------------------------------------- /examples/TC01OD.dat: -------------------------------------------------------------------------------- 1 | TC01OD EXAMPLE PROGRAM DATA 2 | 2 2 3 L 3 | 2.0 3.0 1.0 4 | 4.0 -1.0 -1.0 5 | 5.0 7.0 -6.0 6 | 3.0 2.0 2.0 7 | 6.0 -1.0 5.0 8 | 1.0 7.0 5.0 9 | 1.0 1.0 1.0 10 | 4.0 1.0 -1.0 11 | -------------------------------------------------------------------------------- /examples/TC01OD.res: -------------------------------------------------------------------------------- 1 | TC01OD EXAMPLE PROGRAM RESULTS 2 | 3 | The coefficients of the denominator matrix of the dual system are 4 | 5 | element ( 1, 1) is 2.00 3.00 1.00 6 | 7 | element ( 1, 2) is 5.00 7.00 -6.00 8 | 9 | element ( 2, 1) is 4.00 -1.00 -1.00 10 | 11 | element ( 2, 2) is 3.00 2.00 2.00 12 | 13 | 14 | The coefficients of the numerator matrix of the dual system are 15 | 16 | element ( 1, 1) is 6.00 -1.00 5.00 17 | 18 | element ( 1, 2) is 1.00 1.00 1.00 19 | 20 | element ( 2, 1) is 1.00 7.00 5.00 21 | 22 | element ( 2, 2) is 4.00 1.00 -1.00 23 | -------------------------------------------------------------------------------- /examples/TC04AD.dat: -------------------------------------------------------------------------------- 1 | TC04AD EXAMPLE PROGRAM DATA 2 | 2 2 L 3 | 2 2 4 | 2.0 3.0 1.0 5 | 4.0 -1.0 -1.0 6 | 5.0 7.0 -6.0 7 | 3.0 2.0 2.0 8 | 6.0 -1.0 5.0 9 | 1.0 7.0 5.0 10 | 1.0 1.0 1.0 11 | 4.0 1.0 -1.0 12 | -------------------------------------------------------------------------------- /examples/TC04AD.res: -------------------------------------------------------------------------------- 1 | TC04AD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the resulting state-space representation = 4 4 | 5 | RCOND = 0.25 6 | 7 | The state dynamics matrix A is 8 | 0.0000 0.5714 0.0000 -0.4286 9 | 1.0000 1.0000 0.0000 -1.0000 10 | 0.0000 -2.0000 0.0000 2.0000 11 | 0.0000 0.7857 1.0000 -1.7143 12 | 13 | The input/state matrix B is 14 | 8.0000 3.8571 15 | 4.0000 4.0000 16 | -9.0000 5.0000 17 | 4.0000 -5.0714 18 | 19 | The state/output matrix C is 20 | 0.0000 -0.2143 0.0000 0.2857 21 | 0.0000 0.3571 0.0000 -0.1429 22 | 23 | The direct transmission matrix D is 24 | -1.0000 0.9286 25 | 2.0000 -0.2143 26 | -------------------------------------------------------------------------------- /examples/TC05AD.dat: -------------------------------------------------------------------------------- 1 | TC05AD EXAMPLE PROGRAM DATA 2 | 2 2 (0.0,0.5) L 3 | 2 2 4 | 2.0 3.0 1.0 5 | 4.0 -1.0 -1.0 6 | 5.0 7.0 -6.0 7 | 3.0 2.0 2.0 8 | 6.0 -1.0 5.0 9 | 1.0 7.0 5.0 10 | 1.0 1.0 1.0 11 | 4.0 1.0 -1.0 12 | -------------------------------------------------------------------------------- /examples/TC05AD.res: -------------------------------------------------------------------------------- 1 | TC05AD EXAMPLE PROGRAM RESULTS 2 | 3 | RCOND = 0.19 4 | 5 | The frequency response matrix T(SVAL) is 6 | (-0.25,-0.33) ( 0.26,-0.45) 7 | (-1.48, 0.35) (-2.25,-1.11) 8 | -------------------------------------------------------------------------------- /examples/TD03AD.dat: -------------------------------------------------------------------------------- 1 | TD01ND EXAMPLE PROGRAM DATA 2 | 2 2 0.0 R L N 3 | 3 3 4 | 1.0 6.0 11.0 6.0 5 | 1.0 6.0 11.0 6.0 6 | 1.0 6.0 12.0 7.0 7 | 0.0 1.0 4.0 3.0 8 | 0.0 0.0 1.0 1.0 9 | 1.0 8.0 20.0 15.0 10 | -------------------------------------------------------------------------------- /examples/TD04AD.dat: -------------------------------------------------------------------------------- 1 | TD04AD EXAMPLE PROGRAM DATA 2 | 2 2 0.0 R 3 | 3 3 4 | 1.0 6.0 11.0 6.0 5 | 1.0 6.0 11.0 6.0 6 | 1.0 6.0 12.0 7.0 7 | 0.0 1.0 4.0 3.0 8 | 0.0 0.0 1.0 1.0 9 | 1.0 8.0 20.0 15.0 10 | -------------------------------------------------------------------------------- /examples/TD04AD.res: -------------------------------------------------------------------------------- 1 | TD04AD EXAMPLE PROGRAM RESULTS 2 | 3 | The order of the minimal realization = 3 4 | 5 | The state dynamics matrix A of a minimal realization is 6 | 0.5000 -0.8028 0.9387 7 | 4.4047 -2.3380 2.5076 8 | -5.5541 1.6872 -4.1620 9 | 10 | The input/state matrix B of a minimal realization is 11 | -0.2000 -1.2500 12 | 0.0000 -0.6097 13 | 0.0000 2.2217 14 | 15 | The state/output matrix C of a minimal realization is 16 | 0.0000 -0.8679 0.2119 17 | 0.0000 0.0000 0.9002 18 | 19 | The direct transmission matrix D is 20 | 1.0000 0.0000 21 | 0.0000 1.0000 22 | 23 | The observability index of a minimal state-space representation = 2 24 | 25 | The dimensions of the diagonal blocks of the state dynamics matrix are 26 | 2 1 27 | -------------------------------------------------------------------------------- /examples/TD05AD.dat: -------------------------------------------------------------------------------- 1 | TD05AD EXAMPLE PROGRAM DATA 2 | 6 4 1.0 R C 3 | 1.0 1.0 0.0 0.0 2.0 1.0 4 | 6.0 2.0 3.0 1.0 5 | -------------------------------------------------------------------------------- /examples/TD05AD.res: -------------------------------------------------------------------------------- 1 | TD05AD EXAMPLE PROGRAM RESULTS 2 | 3 | Complex value of G(jW) = 0.8462 -0.2308*j 4 | -------------------------------------------------------------------------------- /examples/TF01MD.dat: -------------------------------------------------------------------------------- 1 | TF01MD EXAMPLE PROGRAM DATA 2 | 3 2 2 10 3 | 0.0000 -0.0700 0.0150 4 | 1.0000 0.8000 -0.1500 5 | 0.0000 0.0000 0.5000 6 | 0.0000 2.0000 1.0000 7 | -1.0000 -0.1000 1.0000 8 | 0.0000 1.0000 9 | 0.0000 0.0000 10 | 1.0000 0.0000 11 | 1.0000 0.5000 12 | 0.0000 0.5000 13 | 1.0000 1.0000 1.0000 14 | -0.6922 -1.4934 0.3081 -2.7726 2.0039 15 | 0.2614 -0.9160 -0.6030 1.2556 0.2951 16 | -1.5734 1.5639 -0.9942 1.8957 0.8988 17 | 0.4118 -1.4893 -0.9344 1.2506 -0.0701 18 | -------------------------------------------------------------------------------- /examples/TF01MD.res: -------------------------------------------------------------------------------- 1 | TF01MD EXAMPLE PROGRAM RESULTS 2 | 3 | The output sequence Y(1),...,Y(10) is 4 | 5 | Y( 1) : 0.3078 6 | -0.0928 7 | 8 | Y( 2) : -1.5125 9 | 1.2611 10 | 11 | Y( 3) : -1.2577 12 | 3.4002 13 | 14 | Y( 4) : -0.2947 15 | -0.7060 16 | 17 | Y( 5) : -0.5632 18 | 5.4532 19 | 20 | Y( 6) : -1.0846 21 | 1.1846 22 | 23 | Y( 7) : -1.2427 24 | 2.2286 25 | 26 | Y( 8) : 1.8097 27 | -1.9534 28 | 29 | Y( 9) : 0.6685 30 | -4.4965 31 | 32 | Y(10) : -0.0896 33 | 1.1654 34 | 35 | -------------------------------------------------------------------------------- /examples/TF01ND.dat: -------------------------------------------------------------------------------- 1 | TF01ND EXAMPLE PROGRAM DATA 2 | 3 2 2 10 U 3 | 0.0000 -0.0700 0.0000 4 | 1.0000 0.8000 -0.1500 5 | 0.0000 0.0000 0.5000 6 | 0.0000 2.0000 1.0000 7 | -1.0000 -0.1000 1.0000 8 | 0.0000 1.0000 9 | 0.0000 0.0000 10 | 1.0000 0.0000 11 | 1.0000 0.5000 12 | 0.0000 0.5000 13 | 1.0000 1.0000 1.0000 14 | -0.6922 -1.4934 0.3081 -2.7726 2.0039 15 | 0.2614 -0.9160 -0.6030 1.2556 0.2951 16 | -1.5734 1.5639 -0.9942 1.8957 0.8988 17 | 0.4118 -1.4893 -0.9344 1.2506 -0.0701 18 | -------------------------------------------------------------------------------- /examples/TF01ND.res: -------------------------------------------------------------------------------- 1 | TF01ND EXAMPLE PROGRAM RESULTS 2 | 3 | The output sequence Y(1),...,Y(10) is 4 | 5 | Y( 1) : 0.3078 6 | -0.0928 7 | 8 | Y( 2) : -1.5275 9 | 1.2611 10 | 11 | Y( 3) : -1.3026 12 | 3.4002 13 | 14 | Y( 4) : -0.3512 15 | -0.7060 16 | 17 | Y( 5) : -0.5922 18 | 5.4532 19 | 20 | Y( 6) : -1.1693 21 | 1.1846 22 | 23 | Y( 7) : -1.3029 24 | 2.2286 25 | 26 | Y( 8) : 1.7529 27 | -1.9534 28 | 29 | Y( 9) : 0.6793 30 | -4.4965 31 | 32 | Y(10) : -0.0349 33 | 1.1654 34 | 35 | -------------------------------------------------------------------------------- /examples/TF01OD.dat: -------------------------------------------------------------------------------- 1 | TF01OD EXAMPLE PROGRAM DATA 2 | 2 2 3 3 3 | 1.0647 -0.4282 -0.4922 -1.2072 4 | -0.3043 0.6883 -0.0926 0.7167 5 | -0.1844 -0.8507 0.4441 -0.0478 6 | 0.7195 0.0500 -0.3955 0.5674 7 | 1.3387 -0.2801 0.1073 -0.5315 8 | -------------------------------------------------------------------------------- /examples/TF01OD.res: -------------------------------------------------------------------------------- 1 | TF01OD EXAMPLE PROGRAM RESULTS 2 | 3 | The 6 by 6 matrix T is 4 | 1.0647 -0.4922 -0.3043 -0.0926 -0.1844 0.4441 5 | -0.4282 -1.2072 0.6883 0.7167 -0.8507 -0.0478 6 | -0.3043 -0.0926 -0.1844 0.4441 0.7195 -0.3955 7 | 0.6883 0.7167 -0.8507 -0.0478 0.0500 0.5674 8 | -0.1844 0.4441 0.7195 -0.3955 1.3387 0.1073 9 | -0.8507 -0.0478 0.0500 0.5674 -0.2801 -0.5315 10 | -------------------------------------------------------------------------------- /examples/TF01PD.dat: -------------------------------------------------------------------------------- 1 | TF01PD EXAMPLE PROGRAM DATA 2 | 2 2 3 3 3 | 1.0647 -0.4282 -0.4922 -1.2072 4 | -0.3043 0.6883 -0.0926 0.7167 5 | -0.1844 -0.8507 0.4441 -0.0478 6 | 0.7195 0.0500 -0.3955 0.5674 7 | 1.3387 -0.2801 0.1073 -0.5315 8 | -------------------------------------------------------------------------------- /examples/TF01PD.res: -------------------------------------------------------------------------------- 1 | TF01PD EXAMPLE PROGRAM RESULTS 2 | 3 | The 6 by 6 matrix T is 4 | -0.1844 0.4441 -0.3043 -0.0926 1.0647 -0.4922 5 | -0.8507 -0.0478 0.6883 0.7167 -0.4282 -1.2072 6 | 0.7195 -0.3955 -0.1844 0.4441 -0.3043 -0.0926 7 | 0.0500 0.5674 -0.8507 -0.0478 0.6883 0.7167 8 | 1.3387 0.1073 0.7195 -0.3955 -0.1844 0.4441 9 | -0.2801 -0.5315 0.0500 0.5674 -0.8507 -0.0478 10 | -------------------------------------------------------------------------------- /examples/TF01QD.dat: -------------------------------------------------------------------------------- 1 | TF01QD EXAMPLE PROGRAM DATA 2 | 8 10 2 2 3 | 2 4 | 1.0 -0.5 5 | 0.6 -0.2 6 | 1 7 | 1.0 8 | -0.8 9 | 3 10 | 0.5 -0.4 0.3 11 | 0.8 0.4 0.1 12 | 4 13 | 1.0 0.5 -0.5 0.0 14 | -0.8 0.6 0.0 -0.2 15 | -------------------------------------------------------------------------------- /examples/TF01QD.res: -------------------------------------------------------------------------------- 1 | TF01QD EXAMPLE PROGRAM RESULTS 2 | 3 | The Markov Parameters M(1),...,M(8) are 4 | 5 | M(1) : 1.0000 1.0000 6 | 0.5000 1.0000 7 | 8 | M(2) : -1.1000 0.8000 9 | -0.8000 1.3000 10 | 11 | M(3) : 0.8600 0.6400 12 | 0.7400 -0.0600 13 | 14 | M(4) : -0.7360 0.5120 15 | -0.3220 -0.8280 16 | 17 | M(5) : 0.6136 0.4096 18 | 0.0416 -0.4264 19 | 20 | M(6) : -0.5154 0.3277 21 | 0.0215 0.4157 22 | 23 | M(7) : 0.4319 0.2621 24 | -0.0017 0.5764 25 | 26 | M(8) : -0.3622 0.2097 27 | -0.0114 0.0461 28 | -------------------------------------------------------------------------------- /examples/TF01RD.dat: -------------------------------------------------------------------------------- 1 | TF01RD EXAMPLE PROGRAM DATA 2 | 5 3 2 2 3 | 0.000 -0.070 0.015 4 | 1.000 0.800 -0.150 5 | 0.000 0.000 0.500 6 | 0.000 2.000 1.000 7 | -1.000 -0.100 1.000 8 | 0.000 1.000 0.000 9 | 0.000 1.000 0.000 10 | -------------------------------------------------------------------------------- /examples/TF01RD.res: -------------------------------------------------------------------------------- 1 | TF01RD EXAMPLE PROGRAM RESULTS 2 | 3 | The Markov Parameters M(1),...,M(5) are 4 | 5 | M(1) : 1.0000 1.0000 6 | 0.0000 -1.0000 7 | 8 | M(2) : 0.2000 0.5000 9 | 2.0000 -0.1000 10 | 11 | M(3) : -0.1100 0.2500 12 | 1.6000 -0.0100 13 | 14 | M(4) : -0.2020 0.1250 15 | 1.1400 -0.0010 16 | 17 | M(5) : -0.2039 0.0625 18 | 0.8000 -0.0001 19 | -------------------------------------------------------------------------------- /examples/TG01AD.dat: -------------------------------------------------------------------------------- 1 | TG01AD EXAMPLE PROGRAM DATA 2 | 4 4 2 2 A 0.0 3 | -1 0 0 0.003 4 | 0 0 0.1000 0.02 5 | 100 10 0 0.4 6 | 0 0 0 0.0 7 | 1 0.2 0 0.0 8 | 0 1 0 0.01 9 | 300 90 6 0.3 10 | 0 0 20 0.0 11 | 10 0 12 | 0 0 13 | 0 1000 14 | 10000 10000 15 | -0.1 0.0 0.001 0.0 16 | 0.0 0.01 -0.001 0.0001 17 | 18 | -------------------------------------------------------------------------------- /examples/TG01AZ.dat: -------------------------------------------------------------------------------- 1 | TG01AZ EXAMPLE PROGRAM DATA 2 | 4 4 2 2 A 0.0 3 | (-1,0) (0,0) (0,0) (0.003,0) 4 | (0,0) (0,0) (0.1000,0) (0.02,0) 5 | (100,0) (10,0) (0,0) (0.4,0) 6 | (0,0) (0,0) (0,0) (0.0,0) 7 | (1,0) (0.2,0) (0,0) (0.0,0) 8 | (0,0) (1,0) (0,0) ( 0.01,0) 9 | (300,0) (90,0) (6,0) (0.3,0) 10 | (0,0) (0,0) (20,0) (0.0,0) 11 | (10,0) (0,0) 12 | (0,0) (0,0) 13 | (0,0) (1000,0) 14 | (10000,0) (10000,0) 15 | (-0.1,0) (0.0,0) (0.001,0) (0.0,0) 16 | (0.0,0) (0.01,0) (-0.001,0) (0.0001,0) 17 | 18 | -------------------------------------------------------------------------------- /examples/TG01CD.dat: -------------------------------------------------------------------------------- 1 | TG01CD EXAMPLE PROGRAM DATA 2 | 4 4 2 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -------------------------------------------------------------------------------- /examples/TG01CD.res: -------------------------------------------------------------------------------- 1 | TG01CD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The transformed state dynamics matrix Q'*A is 5 | -0.6325 -0.9487 0.0000 -4.7434 6 | -0.8706 -0.2176 -0.7255 -0.3627 7 | -0.5203 -0.1301 0.3902 1.4307 8 | -0.7559 -0.1890 0.5669 2.0788 9 | 10 | The transformed descriptor matrix Q'*E is 11 | -3.1623 -9.1706 -5.6921 -2.8460 12 | 0.0000 -1.3784 -1.3059 -1.3784 13 | 0.0000 0.0000 -2.4279 0.0000 14 | 0.0000 0.0000 0.0000 0.0000 15 | 16 | The transformed input/state matrix Q'*B is 17 | -0.3162 -0.9487 18 | 0.6529 -0.2176 19 | -0.4336 -0.9538 20 | 1.1339 0.3780 21 | 22 | The left transformation matrix Q is 23 | -0.3162 0.6529 0.3902 0.5669 24 | 0.0000 -0.7255 0.3902 0.5669 25 | -0.9487 -0.2176 -0.1301 -0.1890 26 | 0.0000 0.0000 -0.8238 0.5669 27 | -------------------------------------------------------------------------------- /examples/TG01DD.dat: -------------------------------------------------------------------------------- 1 | TG01DD EXAMPLE PROGRAM DATA 2 | 4 4 2 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | -1 0 1 0 12 | 0 1 -1 1 13 | -------------------------------------------------------------------------------- /examples/TG01DD.res: -------------------------------------------------------------------------------- 1 | TG01DD EXAMPLE PROGRAM RESULTS 2 | 3 | 4 | The transformed state dynamics matrix A*Z is 5 | 0.4082 3.0773 0.6030 0.0000 6 | 0.8165 1.7233 0.6030 -1.0000 7 | 2.0412 2.8311 2.4121 0.0000 8 | 0.0000 0.0000 0.0000 0.0000 9 | 10 | The transformed descriptor matrix E*Z is 11 | 0.0000 -0.7385 2.1106 0.0000 12 | 0.0000 0.7385 1.2060 0.0000 13 | 0.0000 0.0000 9.9499 -6.0000 14 | 0.0000 0.0000 0.0000 -2.0000 15 | 16 | The transformed input/state matrix C*Z is 17 | -0.8165 0.4924 -0.3015 -1.0000 18 | 0.0000 0.7385 1.2060 1.0000 19 | 20 | The right transformation matrix Z is 21 | 0.8165 -0.4924 0.3015 0.0000 22 | -0.4082 -0.1231 0.9045 0.0000 23 | 0.0000 0.0000 0.0000 -1.0000 24 | 0.4082 0.8616 0.3015 0.0000 25 | -------------------------------------------------------------------------------- /examples/TG01ED.dat: -------------------------------------------------------------------------------- 1 | TG01ED EXAMPLE PROGRAM DATA 2 | 4 4 2 2 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | -------------------------------------------------------------------------------- /examples/TG01FD.dat: -------------------------------------------------------------------------------- 1 | TG01FD EXAMPLE PROGRAM DATA 2 | 4 4 2 2 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | -------------------------------------------------------------------------------- /examples/TG01FZ.dat: -------------------------------------------------------------------------------- 1 | TG01FZ EXAMPLE PROGRAM DATA 2 | 4 4 2 2 0.0 3 | (-1,0) (0,0) (0,0) (3,0) 4 | (0,0) (0,0) (1,0) (2,0) 5 | (1,0) (1,0) (0,0) (4,0) 6 | (0,0) (0,0) (0,0) (0,0) 7 | (1,0) (2,0) (0,0) (0,0) 8 | (0,0) (1,0) (0,0) (1,0) 9 | (3,0) (9,0) (6,0) (3,0) 10 | (0,0) (0,0) (2,0) (0,0) 11 | (1,0) (0,0) 12 | (0,0) (0,0) 13 | (0,0) (1,0) 14 | (1,0) (1,0) 15 | (-1,0) (0,0) (1,0) (0,0) 16 | (0,0) (1,0) (-1,0) (1,0) 17 | -------------------------------------------------------------------------------- /examples/TG01GD.dat: -------------------------------------------------------------------------------- 1 | TG01GD EXAMPLE PROGRAM DATA 2 | 4 4 2 2 D 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | 1 0 18 | 1 1 19 | -------------------------------------------------------------------------------- /examples/TG01GD.res: -------------------------------------------------------------------------------- 1 | TG01GD EXAMPLE PROGRAM RESULTS 2 | 3 | Rank of matrix E = 3 4 | 5 | The reduced state dynamics matrix is 6 | 2.5102 -3.8550 -11.4533 7 | -0.0697 0.0212 0.7015 8 | 0.3798 -0.1156 -3.8250 9 | 10 | The reduced descriptor matrix is 11 | 10.1587 5.8230 1.3021 12 | 0.0000 -2.4684 -0.1896 13 | 0.0000 0.0000 1.0338 14 | 15 | The reduced input/state matrix is 16 | 7.7100 1.6714 17 | 0.7678 1.1070 18 | 2.5428 0.6935 19 | 20 | The reduced state/output matrix is 21 | 0.5477 -2.5000 -6.2610 22 | -1.0954 1.0000 -0.8944 23 | 24 | The transformed feedthrough matrix is 25 | 4.0000 1.0000 26 | 1.0000 1.0000 27 | -------------------------------------------------------------------------------- /examples/TG01LD.dat: -------------------------------------------------------------------------------- 1 | TG01LD EXAMPLE PROGRAM DATA 2 | 4 2 2 F N 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | -------------------------------------------------------------------------------- /examples/TG01MD.dat: -------------------------------------------------------------------------------- 1 | TG01MD EXAMPLE PROGRAM DATA 2 | 4 2 2 F 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | -------------------------------------------------------------------------------- /examples/TG01ND.dat: -------------------------------------------------------------------------------- 1 | TG01ND EXAMPLE PROGRAM DATA 2 | 4 2 2 F D 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | -------------------------------------------------------------------------------- /examples/TG01PD.dat: -------------------------------------------------------------------------------- 1 | TG01PD EXAMPLE PROGRAM DATA 2 | 4 2 2 C S G I I 1 4 -1.E-7 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | -------------------------------------------------------------------------------- /examples/TG01QD.dat: -------------------------------------------------------------------------------- 1 | TG01QD EXAMPLE PROGRAM DATA 2 | 4 2 2 C S F -1.E-7 0.0 3 | -1 0 0 3 4 | 0 0 1 2 5 | 1 1 0 4 6 | 0 0 0 0 7 | 1 2 0 0 8 | 0 1 0 1 9 | 3 9 6 3 10 | 0 0 2 0 11 | 1 0 12 | 0 0 13 | 0 1 14 | 1 1 15 | -1 0 1 0 16 | 0 1 -1 1 17 | -------------------------------------------------------------------------------- /examples/UD01BD.dat: -------------------------------------------------------------------------------- 1 | UD01BD EXAMPLE PROGRAM DATA 2 | 4 3 2 3 | P0 4 | 1.0D-00 0.0D-00 0.0D-00 5 | 0.0D-00 2.0D-00 4.0D-00 6 | 0.0D-00 4.0D-00 8.0D-00 7 | 0.0D-00 6.0D-00 1.2D+01 8 | P1 9 | 0.0D-00 1.0D-00 2.0D-00 10 | 1.0D-00 0.0D-00 0.0D-00 11 | 2.0D-00 0.0D-00 0.0D-00 12 | 3.0D-00 0.0D-00 0.0D-00 13 | P2 14 | 1.0D-00 0.0D-00 0.0D-00 15 | 0.0D-00 0.0D-00 0.0D-00 16 | 0.0D-00 0.0D-00 0.0D-00 17 | 0.0D-00 0.0D-00 0.0D-00 18 | -------------------------------------------------------------------------------- /examples/UD01BD.res: -------------------------------------------------------------------------------- 1 | UD01BD EXAMPLE PROGRAM RESULTS 2 | 3 | MP = 4 NP = 3 DP = 2 4 | 5 | P( 0) ( 4X 3) 6 | 1 2 3 7 | 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 8 | 2 0.0000000D+00 0.2000000D+01 0.4000000D+01 9 | 3 0.0000000D+00 0.4000000D+01 0.8000000D+01 10 | 4 0.0000000D+00 0.6000000D+01 0.1200000D+02 11 | 12 | P( 1) ( 4X 3) 13 | 1 2 3 14 | 1 0.0000000D+00 0.1000000D+01 0.2000000D+01 15 | 2 0.1000000D+01 0.0000000D+00 0.0000000D+00 16 | 3 0.2000000D+01 0.0000000D+00 0.0000000D+00 17 | 4 0.3000000D+01 0.0000000D+00 0.0000000D+00 18 | 19 | P( 2) ( 4X 3) 20 | 1 2 3 21 | 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 22 | 2 0.0000000D+00 0.0000000D+00 0.0000000D+00 23 | 3 0.0000000D+00 0.0000000D+00 0.0000000D+00 24 | 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 25 | 26 | -------------------------------------------------------------------------------- /examples/UD01CD.dat: -------------------------------------------------------------------------------- 1 | UD01CD EXAMPLE PROGRAM DATA 2 | 4 3 2 3 | 1 1 1 4 | 1.0 1.0 5 | 2 2 2 6 | 2.0 0.0 1.0 7 | 3 3 2 8 | 0.0 3.0 1.0 9 | 4 1 0 10 | 4.0 11 | -------------------------------------------------------------------------------- /examples/UD01CD.res: -------------------------------------------------------------------------------- 1 | UD01CD EXAMPLE PROGRAM RESULTS 2 | 3 | MP = 4 NP = 3 DP = 2 4 | 5 | P( 0) ( 4X 3) 6 | 1 2 3 7 | 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 8 | 2 0.0000000D+00 0.2000000D+01 0.0000000D+00 9 | 3 0.0000000D+00 0.0000000D+00 0.0000000D+00 10 | 4 0.4000000D+01 0.0000000D+00 0.0000000D+00 11 | 12 | P( 1) ( 4X 3) 13 | 1 2 3 14 | 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 15 | 2 0.0000000D+00 0.0000000D+00 0.0000000D+00 16 | 3 0.0000000D+00 0.0000000D+00 0.3000000D+01 17 | 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 18 | 19 | P( 2) ( 4X 3) 20 | 1 2 3 21 | 1 0.0000000D+00 0.0000000D+00 0.0000000D+00 22 | 2 0.0000000D+00 0.1000000D+01 0.0000000D+00 23 | 3 0.0000000D+00 0.0000000D+00 0.1000000D+01 24 | 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 25 | 26 | -------------------------------------------------------------------------------- /examples/UD01DD.dat: -------------------------------------------------------------------------------- 1 | UD01DD EXAMPLE PROGRAM DATA 2 | 6 5 3 | 1 1 -1.1 4 | 6 1 1.5 5 | 2 2 -2.2 6 | 6 2 2.5 7 | 3 3 -3.3 8 | 6 3 3.5 9 | 4 4 -4.4 10 | 6 4 4.5 11 | 5 5 -5.5 12 | 6 5 5.5 13 | -------------------------------------------------------------------------------- /examples/UD01DD.res: -------------------------------------------------------------------------------- 1 | UD01DD EXAMPLE PROGRAM RESULTS 2 | 3 | Matrix A ( 6X 5) 4 | 5 | 1 2 3 4 5 6 | 1 -0.1100000D+01 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00 7 | 2 0.0000000D+00 -0.2200000D+01 0.0000000D+00 0.0000000D+00 0.0000000D+00 8 | 3 0.0000000D+00 0.0000000D+00 -0.3300000D+01 0.0000000D+00 0.0000000D+00 9 | 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 -0.4400000D+01 0.0000000D+00 10 | 5 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00 -0.5500000D+01 11 | 6 0.1500000D+01 0.2500000D+01 0.3500000D+01 0.4500000D+01 0.5500000D+01 12 | 13 | -------------------------------------------------------------------------------- /examples/UD01MD.dat: -------------------------------------------------------------------------------- 1 | UD01MD EXAMPLE PROGRAM DATA 2 | 4 4 4 'Matrix A' 3 | 1.0 2.0 3.0 4.0 4 | 5.0 6.0 7.0 8.0 5 | 9.0 10.0 11.0 12.0 6 | 13.0 14.0 15.0 16.0 7 | -------------------------------------------------------------------------------- /examples/UD01MD.res: -------------------------------------------------------------------------------- 1 | UD01MD EXAMPLE PROGRAM RESULTS 2 | 3 | Matrix A ( 4X 4) 4 | 5 | 1 2 3 4 6 | 1 0.1000000D+01 0.2000000D+01 0.3000000D+01 0.4000000D+01 7 | 2 0.5000000D+01 0.6000000D+01 0.7000000D+01 0.8000000D+01 8 | 3 0.9000000D+01 0.1000000D+02 0.1100000D+02 0.1200000D+02 9 | 4 0.1300000D+02 0.1400000D+02 0.1500000D+02 0.1600000D+02 10 | 11 | -------------------------------------------------------------------------------- /examples/UD01ND.dat: -------------------------------------------------------------------------------- 1 | UD01ND EXAMPLE PROGRAM DATA 2 | 4 3 2 5 P 3 | P0 4 | 1.0D-00 0.0D-00 0.0D-00 5 | 0.0D-00 2.0D-00 4.0D-00 6 | 0.0D-00 4.0D-00 8.0D-00 7 | 0.0D-00 6.0D-00 1.2D+01 8 | P1 9 | 0.0D-00 1.0D-00 2.0D-00 10 | 1.0D-00 0.0D-00 0.0D-00 11 | 2.0D-00 0.0D-00 0.0D-00 12 | 3.0D-00 0.0D-00 0.0D-00 13 | P2 14 | 1.0D-00 0.0D-00 0.0D-00 15 | 0.0D-00 0.0D-00 0.0D-00 16 | 0.0D-00 0.0D-00 0.0D-00 17 | 0.0D-00 0.0D-00 0.0D-00 18 | -------------------------------------------------------------------------------- /examples/UD01ND.res: -------------------------------------------------------------------------------- 1 | UD01ND EXAMPLE PROGRAM RESULTS 2 | 3 | MP = 4 NP = 3 DP = 2 4 | 5 | P( 0) ( 4X 3) 6 | 1 2 3 7 | 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 8 | 2 0.0000000D+00 0.2000000D+01 0.4000000D+01 9 | 3 0.0000000D+00 0.4000000D+01 0.8000000D+01 10 | 4 0.0000000D+00 0.6000000D+01 0.1200000D+02 11 | 12 | P( 1) ( 4X 3) 13 | 1 2 3 14 | 1 0.0000000D+00 0.1000000D+01 0.2000000D+01 15 | 2 0.1000000D+01 0.0000000D+00 0.0000000D+00 16 | 3 0.2000000D+01 0.0000000D+00 0.0000000D+00 17 | 4 0.3000000D+01 0.0000000D+00 0.0000000D+00 18 | 19 | P( 2) ( 4X 3) 20 | 1 2 3 21 | 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 22 | 2 0.0000000D+00 0.0000000D+00 0.0000000D+00 23 | 3 0.0000000D+00 0.0000000D+00 0.0000000D+00 24 | 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 25 | 26 | -------------------------------------------------------------------------------- /src/MB04RT.f: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/SLICOT/SLICOT-Reference/a037f7eb76134d45e7d222b7f017d5cbd16eb731/src/MB04RT.f -------------------------------------------------------------------------------- /src/MB04RW.f: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/SLICOT/SLICOT-Reference/a037f7eb76134d45e7d222b7f017d5cbd16eb731/src/MB04RW.f -------------------------------------------------------------------------------- /src/delctg.f: -------------------------------------------------------------------------------- 1 | LOGICAL FUNCTION DELCTG( PAR1, PAR2, PAR3 ) 2 | C 3 | C PURPOSE 4 | C 5 | C Void logical function for DGGES. 6 | C 7 | DOUBLE PRECISION PAR1, PAR2, PAR3 8 | C 9 | DELCTG = .TRUE. 10 | RETURN 11 | END 12 | -------------------------------------------------------------------------------- /src/readme: -------------------------------------------------------------------------------- 1 | SLICOT Library Subdirectory src 2 | ------------------------------- 3 | 4 | SLICOT Library Subdirectory src contains all source files of the 5 | SLICOT Library routines. The codes follow the Fortran 77 language 6 | conventions. SLICOT routines make calls to the state-of-the-art 7 | packages LAPACK (Linear Algebra Package) and BLAS (Basic Linear 8 | Algebra Subprograms). 9 | -------------------------------------------------------------------------------- /src/select.f: -------------------------------------------------------------------------------- 1 | LOGICAL FUNCTION SELECT( PAR1, PAR2 ) 2 | C 3 | C PURPOSE 4 | C 5 | C Void logical function for DGEES. 6 | C 7 | DOUBLE PRECISION PAR1, PAR2 8 | C 9 | SELECT = .TRUE. 10 | RETURN 11 | END 12 | -------------------------------------------------------------------------------- /src/zelctg.f: -------------------------------------------------------------------------------- 1 | LOGICAL FUNCTION ZELCTG( PAR1, PAR2 ) 2 | C 3 | C PURPOSE 4 | C 5 | C Void logical function for ZGGES. 6 | C 7 | COMPLEX*16 PAR1, PAR2 8 | C 9 | ZELCTG = .TRUE. 10 | RETURN 11 | END 12 | -------------------------------------------------------------------------------- /src_aux/readme: -------------------------------------------------------------------------------- 1 | SLICOT Library Subdirectory src_aux 2 | ----------------------------------- 3 | 4 | SLICOT Library Subdirectory src_aux contains two deprecated auxiliary LAPACK 5 | source files, dlatzm and zlatzm, which are called by few SLICOT routines. 6 | --------------------------------------------------------------------------------