├── .gitignore
├── .gitmodules
├── LICENSE
├── README.md
├── conda.recipe
└── meta.yaml
├── dist
├── gaminet-0.1-py3-none-any.whl
├── gaminet-0.2-py3-none-any.whl
├── gaminet-0.2.1-py3-none-any.whl
├── gaminet-0.3.0-py3-none-any.whl
├── gaminet-0.4.0-py3-none-any.whl
├── gaminet-0.4.1-py3-none-any.whl
├── gaminet-0.5.0-py3-none-any.whl
├── gaminet-0.5.1rc0-py3-none-any.whl
├── gaminet-0.5.2-py3-none-any.whl
├── gaminet-0.5.3-py3-none-any.whl
├── gaminet-0.5.4-py3-none-any.whl
├── gaminet-0.5.5-py3-none-any.whl
├── gaminet-0.5.6-py3-none-any.whl
├── gaminet-0.5.7-py3-none-any.whl
└── gaminet-0.5.8-py3-none-any.whl
├── examples
├── Bank_Marketing-demo.ipynb
├── CH.ipynb
├── FicoHeloc.ipynb
├── GAMINet-demo.ipynb
├── bank.csv
├── data_types.json
├── fico
│ ├── .ipynb_checkpoints
│ │ └── preprocess-checkpoint.ipynb
│ ├── data_types.json
│ ├── fico.csv
│ ├── heloc_data_dictionary-2.xlsx
│ ├── heloc_dataset_v1.csv
│ ├── load.py
│ ├── preprocess.ipynb
│ └── test_file1.csv
├── model_saved.pickle
└── results
│ ├── bank_global.eps
│ ├── bank_global.npy
│ ├── bank_global.png
│ ├── bank_regu.eps
│ ├── bank_regu.png
│ ├── bank_traj.eps
│ ├── bank_traj.png
│ ├── ch_global.eps
│ ├── ch_global.npy
│ ├── ch_global.png
│ ├── ch_regu.eps
│ ├── ch_regu.png
│ ├── ch_traj.eps
│ ├── ch_traj.png
│ ├── fico_global.eps
│ ├── fico_global.npy
│ ├── fico_global.png
│ ├── fico_regu.eps
│ ├── fico_regu.png
│ ├── fico_traj.eps
│ ├── fico_traj.png
│ ├── s1_feature.png
│ ├── s1_global.png
│ ├── s1_local.png
│ ├── s1_regu_plot.png
│ └── s1_traj_plot.png
├── gaminet
├── __init__.py
├── gaminet.py
├── interpret.py
├── layers.py
├── lib
│ ├── interpret-inline.js
│ ├── lib_ebmcore_linux_x64.so
│ ├── lib_ebmcore_mac_x64.dylib
│ ├── lib_ebmcore_win_x64.dll
│ └── lib_ebmcore_win_x64.pdb
└── utils.py
├── requirements.txt
└── setup.py
/.gitignore:
--------------------------------------------------------------------------------
1 | examples/.ipynb_checkpoints/*
2 | scripts/*
3 | .ipynb_checkpoints/*
4 | gaminet/__pycache__/*
5 | interpret/*.ipynb
6 | build/*
7 | gaminet.egg-info/*
8 |
--------------------------------------------------------------------------------
/.gitmodules:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # GAMI-Net
2 | Generalized additive models with structured interactions
3 |
4 | ## Installation
5 |
6 | The following environments are required:
7 |
8 | - Python 3.7 + (anaconda is preferable)
9 | - tensorflow>=2.0.0
10 | - tensorflow-lattice>=2.0.8
11 | - numpy>=1.15.2
12 | - pandas>=0.19.2
13 | - matplotlib>=3.1.3
14 | - scikit-learn>=0.23.0
15 |
16 | ```shell
17 | pip install gaminet
18 | ```
19 |
20 | To use it on GPU, conda install tensorflow==2.2, pip install tensorflow-lattice==2.0.8, conda install tensorflow-estimators==2.2
21 |
22 | ## Usage
23 |
24 | Import library
25 | ```python
26 | import os
27 | import numpy as np
28 | import tensorflow as tf
29 | from sklearn.preprocessing import MinMaxScaler
30 | from sklearn.model_selection import train_test_split
31 |
32 | from gaminet import GAMINet
33 | from gaminet.utils import local_visualize
34 | from gaminet.utils import global_visualize_density
35 | from gaminet.utils import feature_importance_visualize
36 | from gaminet.utils import plot_trajectory
37 | from gaminet.utils import plot_regularization
38 | ```
39 |
40 | Load data
41 | ```python
42 | def metric_wrapper(metric, scaler):
43 | def wrapper(label, pred):
44 | return metric(label, pred, scaler=scaler)
45 | return wrapper
46 |
47 | def rmse(label, pred, scaler):
48 | pred = scaler.inverse_transform(pred.reshape([-1, 1]))
49 | label = scaler.inverse_transform(label.reshape([-1, 1]))
50 | return np.sqrt(np.mean((pred - label)**2))
51 |
52 | def data_generator1(datanum, dist="uniform", random_state=0):
53 |
54 | nfeatures = 100
55 | np.random.seed(random_state)
56 | x = np.random.uniform(0, 1, [datanum, nfeatures])
57 | x1, x2, x3, x4, x5, x6 = [x[:, [i]] for i in range(6)]
58 |
59 | def cliff(x1, x2):
60 | # x1: -20,20
61 | # x2: -10,5
62 | x1 = (2 * x1 - 1) * 20
63 | x2 = (2 * x2 - 1) * 7.5 - 2.5
64 | term1 = -0.5 * x1 ** 2 / 100
65 | term2 = -0.5 * (x2 + 0.03 * x1 ** 2 - 3) ** 2
66 | y = 10 * np.exp(term1 + term2)
67 | return y
68 |
69 | y = (8 * (x1 - 0.5) ** 2
70 | + 0.1 * np.exp(-8 * x2 + 4)
71 | + 3 * np.sin(2 * np.pi * x3 * x4)
72 | + cliff(x5, x6)).reshape([-1,1]) + 1 * np.random.normal(0, 1, [datanum, 1])
73 |
74 | task_type = "Regression"
75 | meta_info = {"X" + str(i + 1):{'type':'continuous'} for i in range(nfeatures)}
76 | meta_info.update({'Y':{'type':'target'}})
77 | for i, (key, item) in enumerate(meta_info.items()):
78 | if item['type'] == 'target':
79 | sy = MinMaxScaler((0, 1))
80 | y = sy.fit_transform(y)
81 | meta_info[key]['scaler'] = sy
82 | else:
83 | sx = MinMaxScaler((0, 1))
84 | sx.fit([[0], [1]])
85 | x[:,[i]] = sx.transform(x[:,[i]])
86 | meta_info[key]['scaler'] = sx
87 |
88 | train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.2, random_state=random_state)
89 | return train_x, test_x, train_y, test_y, task_type, meta_info, metric_wrapper(rmse, sy)
90 |
91 | train_x, test_x, train_y, test_y, task_type, meta_info, get_metric = data_generator1(10000, 0)
92 | ```
93 |
94 | Run GAMI-Net
95 | ```python
96 | ## Note the current GAMINet API requires input features being normalized within 0 to 1.
97 | model = GAMINet(meta_info=meta_info, interact_num=20,
98 | interact_arch=[40] * 5, subnet_arch=[40] * 5,
99 | batch_size=200, task_type=task_type, activation_func=tf.nn.relu,
100 | main_effect_epochs=5000, interaction_epochs=5000, tuning_epochs=500,
101 | lr_bp=[0.0001, 0.0001, 0.0001], early_stop_thres=[50, 50, 50],
102 | heredity=True, loss_threshold=0.01, reg_clarity=1,
103 | mono_increasing_list=[], mono_decreasing_list=[], ## the indices list of features
104 | verbose=False, val_ratio=0.2, random_state=random_state)
105 |
106 | model.fit(train_x, train_y)
107 |
108 | val_x = train_x[model.val_idx, :]
109 | val_y = train_y[model.val_idx, :]
110 | tr_x = train_x[model.tr_idx, :]
111 | tr_y = train_y[model.tr_idx, :]
112 | pred_train = model.predict(tr_x)
113 | pred_val = model.predict(val_x)
114 | pred_test = model.predict(test_x)
115 | gaminet_stat = np.hstack([np.round(get_metric(tr_y, pred_train),5),
116 | np.round(get_metric(val_y, pred_val),5),
117 | np.round(get_metric(test_y, pred_test),5)])
118 | print(gaminet_stat)
119 | ```
120 |
121 | Training Logs
122 | ```python
123 | simu_dir = "./results/"
124 | if not os.path.exists(simu_dir):
125 | os.makedirs(simu_dir)
126 |
127 | data_dict_logs = model.summary_logs(save_dict=False)
128 | plot_trajectory(data_dict_logs, folder=simu_dir, name="s1_traj_plot", log_scale=True, save_png=True)
129 | plot_regularization(data_dict_logs, folder=simu_dir, name="s1_regu_plot", log_scale=True, save_png=True)
130 | ```
131 | 
132 | 
133 |
134 | Global Visualization
135 | ```python
136 | data_dict = model.global_explain(save_dict=False)
137 | global_visualize_density(data_dict, save_png=True, folder=simu_dir, name='s1_global')
138 | ```
139 | 
140 |
141 | Feature Importance
142 | ```python
143 | feature_importance_visualize(data_dict, save_png=True, folder=simu_dir, name='s1_feature')
144 | ```
145 |
146 |
147 | Local Visualization
148 | ```python
149 | data_dict_local = model.local_explain(train_x[:10], train_y[:10], save_dict=False)
150 | local_visualize(data_dict_local[0], save_png=True, folder=simu_dir, name='s1_local')
151 | ```
152 |
153 |
154 | ## Citations
155 | ----------
156 |
157 | ```latex
158 | @article{yang2021gami,
159 | title={GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions},
160 | author={Yang, Zebin and Zhang, Aijun and Sudjianto, Agus},
161 | journal={Pattern Recognition},
162 | volume = {120},
163 | pages = {108192},
164 | year={2021}
165 | }
166 | ```
167 |
--------------------------------------------------------------------------------
/conda.recipe/meta.yaml:
--------------------------------------------------------------------------------
1 | package:
2 | name: gaminet
3 | version: "0.1"
4 |
5 | source:
6 | - path: ../
7 |
8 | build:
9 | noarch: python
10 | number: 0
11 | script: "{{ PYTHON }} -m pip install . -vv"
12 |
13 |
14 | requirements:
15 | host:
16 | - pip
17 | - python
18 |
19 | run:
20 | - python>=3.7
21 | - numpy>=1.15.2
22 | - matplotlib>=3.1.3
23 | - tensorflow>=2.0.0
24 | - pandas>=0.19.2
25 | - scikit-learn>=0.23.0
26 |
27 | tests:
28 | imports:
29 | - gaminet
30 |
31 | about:
32 | home: https://github.com/ZebinYang/gaminet
33 | license: GPL
34 | summary: Generalized additive model with pairwise interactions
35 |
--------------------------------------------------------------------------------
/dist/gaminet-0.1-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.1-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.2-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.2-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.2.1-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.2.1-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.3.0-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.3.0-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.4.0-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.4.0-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.4.1-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.4.1-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.0-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.0-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.1rc0-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.1rc0-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.2-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.2-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.3-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.3-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.4-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.4-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.5-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.5-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.6-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.6-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.7-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.7-py3-none-any.whl
--------------------------------------------------------------------------------
/dist/gaminet-0.5.8-py3-none-any.whl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/dist/gaminet-0.5.8-py3-none-any.whl
--------------------------------------------------------------------------------
/examples/data_types.json:
--------------------------------------------------------------------------------
1 | {"age":{"type":"continuous"},
2 | "job":{"type":"categorical"},
3 | "marital":{"type":"categorical"},
4 | "education":{"type":"categorical"},
5 | "default":{"type":"categorical"},
6 | "balance":{"type":"continuous"},
7 | "housing":{"type":"categorical"},
8 | "loan":{"type":"categorical"},
9 | "contact":{"type":"categorical"},
10 | "day":{"type":"continuous"},
11 | "month":{"type":"categorical"},
12 | "duration":{"type":"continuous"},
13 | "campaign":{"type":"continuous"},
14 | "pdays":{"type":"continuous"},
15 | "previous":{"type":"continuous"},
16 | "poutcome":{"type":"categorical"},
17 | "term deposit":{"type":"target"}}
--------------------------------------------------------------------------------
/examples/fico/.ipynb_checkpoints/preprocess-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "ExecuteTime": {
8 | "end_time": "2020-05-27T04:16:46.019095Z",
9 | "start_time": "2020-05-27T04:08:26.163560Z"
10 | }
11 | },
12 | "outputs": [
13 | {
14 | "name": "stdout",
15 | "output_type": "stream",
16 | "text": [
17 | "Column being fixed: 1\n",
18 | "Column being fixed: 8\n",
19 | "Column being fixed: 14\n",
20 | "Column being fixed: 17\n",
21 | "Column being fixed: 18\n",
22 | "Column being fixed: 19\n",
23 | "Column being fixed: 20\n",
24 | "Column being fixed: 21\n",
25 | "Column being fixed: 22\n"
26 | ]
27 | }
28 | ],
29 | "source": [
30 | "# --- Imports section --- \n",
31 | "import numpy as np\n",
32 | "import pandas as pd\n",
33 | "from sklearn.preprocessing import StandardScaler\n",
34 | "from sklearn import datasets, linear_model, preprocessing\n",
35 | "import copy\n",
36 | "\n",
37 | "class ModelError(Exception):\n",
38 | "\tpass\n",
39 | "\n",
40 | "class Data_Cleaner():\n",
41 | "\n",
42 | "\tdef __init__ (self, file_name, data = None):\n",
43 | "\t# --- Retrieves the data from CSV or array, as well as basic organisation ---\n",
44 | "\n",
45 | "\t\t# -- Get data from CSV or given array --\n",
46 | "\t\tif (data == None):\n",
47 | "\t\t\tself.data_set = pd.read_csv(file_name).values\n",
48 | "\n",
49 | "\t\telse:\n",
50 | "\t\t\tself.data_set = data\n",
51 | "\n",
52 | "\t\t# -- Converting target to binary --\n",
53 | "\t\tnp.place(self.data_set, self.data_set == \"Bad\", 0)\n",
54 | "\t\tnp.place(self.data_set, self.data_set == \"Good\", 1)\n",
55 | "\n",
56 | "\t\t# -- Creating Model Variable -- \n",
57 | "\t\tself.model = None\n",
58 | "\n",
59 | "\t\t# -- Creating an Order Column --\n",
60 | "\t\torder = np.arange(self.data_set.shape[0])\n",
61 | "\t\torder = order.reshape((order.shape[0],1))\n",
62 | "\n",
63 | "\t\t# -- Scale and Split --\n",
64 | "\t\t# self.y = self.data_set[:,:1]\n",
65 | "\t\t# scaler = StandardScaler()\n",
66 | "\t\t# self.X = scaler.fit_transform(self.data_set[:,1:])\n",
67 | "\n",
68 | "\t\tself.y = self.data_set[:,:1]\n",
69 | "\t\tself.X = self.data_set[:,1:]\n",
70 | "\n",
71 | "\n",
72 | "\t\t# -- Needs to be retained for inserting new samples\n",
73 | "\t\t# self.mean = scaler.mean_\n",
74 | "\t\t# self.scale = scaler.scale_\n",
75 | "\n",
76 | "\t\t# -- Assiging general useful variables --\n",
77 | "\t\tself.num_samples , self.num_features = self.X.shape\n",
78 | "\n",
79 | "\t\t# -- Add the Order Column -- \n",
80 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
81 | "\t\tself.y = np.append(order,self.y,axis=1)\n",
82 | "\n",
83 | "\tdef shift(self):\n",
84 | "\t# --- Perform the shift for the two categorical features --- \n",
85 | "\n",
86 | "\t\t# -- Shift is hardcoded based on requirements -- \n",
87 | "\t\tfirst_col = self.X[:,10]\n",
88 | "\t\tnp.place(first_col, first_col == 1, 100) # hold value\n",
89 | "\t\tnp.place(first_col, first_col == 6, 1)\n",
90 | "\t\tnp.place(first_col, first_col == 5, 1)\n",
91 | "\t\tnp.place(first_col, first_col == 4, 6)\n",
92 | "\t\tnp.place(first_col, first_col == 3, 5)\n",
93 | "\t\tnp.place(first_col, first_col == 2, 4)\n",
94 | "\t\tnp.place(first_col, first_col == 100, 3)\n",
95 | "\t\tnp.place(first_col, first_col == 0, 2)\n",
96 | "\t\tnp.place(first_col, first_col == 8, 0)\n",
97 | "\t\tnp.place(first_col, first_col == 9, 0)\n",
98 | "\n",
99 | "\t\tsecond_col= self.X[:,11]\n",
100 | "\t\tnp.place(second_col, second_col == 1, 0)\n",
101 | "\t\tnp.place(second_col, second_col == 9, 0)\n",
102 | "\t\tnp.place(second_col, second_col == 7, 1)\n",
103 | "\t\tnp.place(second_col, second_col == 8, 7)\n",
104 | "\n",
105 | "\t\tself.X[:,10] = first_col\n",
106 | "\t\tself.X[:,11] = second_col\n",
107 | "\n",
108 | "\tdef __scaled_row(self,row,scaler):\n",
109 | "\t# --- Returns the Row Scaled ---\n",
110 | "\t\tmean = scaler.mean_\n",
111 | "\t\tscale = scaler.scale_\n",
112 | "\t\tscld = []\n",
113 | "\t\tfor k in range(row.shape[0]):\n",
114 | "\t\t\tscld.append((row[k] - mean[k])/scale[k])\n",
115 | "\t\tscld = np.array(scld)\n",
116 | "\n",
117 | "\t\treturn scld\n",
118 | "\t \n",
119 | "\tdef __masked_arr(self,orig_array, mask):\n",
120 | "\t# --- Returns XOR of Array and Mask --- \n",
121 | "\t\tmasked_array = []\n",
122 | "\n",
123 | "\t\tfor i in range(len(orig_array)):\n",
124 | "\t\t\trow = []\n",
125 | "\t\t\tfor j in range(len(orig_array[0])):\n",
126 | "\t\t\t\tif mask[j] != 0:\n",
127 | "\t\t\t\t\trow.append(orig_array[i][j])\n",
128 | "\t\t\tmasked_array.append(row)\n",
129 | "\n",
130 | "\t\tmasked_array = np.array(masked_array)\n",
131 | "\n",
132 | "\t\treturn masked_array\n",
133 | "\n",
134 | "\tdef __euc_distance(self,row1, row2):\n",
135 | "\t# --- Returns Euclidian Distance between Rows --- \n",
136 | "\t\tdist = 0\n",
137 | "\t\tfor i in range(len(row1)):\n",
138 | "\t\t\tt = (row1[i]-row2[i])**2\n",
139 | "\t\t\tdist += t\n",
140 | "\t\tdist = np.sqrt(dist)\n",
141 | "\t\treturn dist\n",
142 | "\n",
143 | "\tdef __predict_feature_weighted(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
144 | "\t# --- Returns the single special value replaced by kNN imputation using weights---\n",
145 | "\n",
146 | "\t\tdistances = []\n",
147 | "\t\t# -- Loops through the good data with no special values -- \n",
148 | "\t\t\t# - Good data has the changing feature removed -\n",
149 | "\t\tfor i in range(len(good_data_masked)):\t\n",
150 | "\t\t\tdistances.append(self.__euc_distance(row, good_data_masked[i]))\n",
151 | "\n",
152 | "\t\tdistances = np.array(distances)\n",
153 | "\t\tmax_dist = np.max(distances)\n",
154 | "\t \n",
155 | "\t\t# -- Sorts the first no_neigbours features --\n",
156 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
157 | "\n",
158 | "\t\tvalues = []\n",
159 | "\t\tmin_dists = []\n",
160 | "\t \n",
161 | "\t\t# -- Retrieving values with which to replace -- \n",
162 | "\t\tfor i in range(no_neighbours):\n",
163 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
164 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
165 | "\n",
166 | "\t\tvalues = np.array(values) \n",
167 | "\t\tmin_dists = np.array(min_dists)\n",
168 | "\n",
169 | "\t\t# -- Assigning the weights -- \n",
170 | "\t\tweights = []\n",
171 | "\t\tfor i in min_dists:\n",
172 | "\t\t\tweights.append(1 - (i/max_dist))\n",
173 | "\t \n",
174 | "\t # -- Calculating final result -- \n",
175 | "\t\timputed_val = 0\n",
176 | "\t\tfor i in range(len(weights)):\n",
177 | "\t\t\timputed_val += weights[i] * values[i]\n",
178 | "\t \n",
179 | "\t\treturn imputed_val \n",
180 | "\n",
181 | "\tdef __predict_feature_mean(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
182 | "\t# --- Returns the single special value replaced by kNN imputation using the mean ---\n",
183 | "\n",
184 | "\t\tdistances = []\n",
185 | "\t\t# -- Loops through the good data with no special values -- \n",
186 | "\t \t# - Good data has the changing feature removed -\n",
187 | "\t\tfor i in range(len(good_data_masked)):\n",
188 | "\t\t\tdistances.append(self.__euc_distance(row,good_data_masked[i]))\n",
189 | "\t\tdistances = np.array(distances)\n",
190 | "\t \n",
191 | "\t\t# -- Sorts the first no_neigbours features --\n",
192 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
193 | "\n",
194 | "\t\tvalues = []\n",
195 | "\t\tmin_dists = []\n",
196 | "\t \n",
197 | "\t\t# -- Retrieving values with which to replace -- \n",
198 | "\t\tfor i in range(no_neighbours):\n",
199 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
200 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
201 | "\n",
202 | "\t\tvalues = np.array(values) \n",
203 | "\t\tmin_dists = np.array(min_dists)\n",
204 | "\t \n",
205 | "\t\t# -- Calculating final result -- \n",
206 | "\t\timputed_val = 0\n",
207 | "\t\tfor i in range(len(values)):\n",
208 | "\t\t\timputed_val += values[i]\n",
209 | "\n",
210 | "\t\timputed_val = imputed_val/len(values)\n",
211 | "\n",
212 | "\t\treturn imputed_val\n",
213 | "\n",
214 | "\tdef __remove_row_with_vals(self, data, target, vals):\n",
215 | "\t# --- Returns the data/target without the rows that have any instance of vals list ---\n",
216 | "\t\tremoved_data = []\n",
217 | "\t\tremoved_target = []\n",
218 | "\n",
219 | "\t\trow_no = 0 \n",
220 | "\t\tfor row in data:\n",
221 | "\t\t\tfor col in row:\n",
222 | "\t\t\t\tif (col in vals):\n",
223 | "\t\t\t\t\tremoved_data.append(data[row_no])\n",
224 | "\t\t\t\t\tdata = np.delete(data, row_no, 0)\n",
225 | "\n",
226 | "\t\t\t\t\tremoved_target.append(target[row_no])\n",
227 | "\t\t\t\t\ttarget = np.delete(target, row_no, 0) \n",
228 | "\t\t\t\t\trow_no -= 1\n",
229 | "\t\t\t\t\tbreak\n",
230 | "\t\t\trow_no += 1\n",
231 | "\n",
232 | "\t\tremoved_data = np.array(removed_data)\n",
233 | "\t\tremoved_target = np.array(removed_target)\n",
234 | "\n",
235 | "\t\treturn data, target, removed_data, removed_target\n",
236 | "\n",
237 | "\tdef __remove_col_with_vals(self, data, vals):\n",
238 | "\t# --- Returns the data without the coloumns that have the desired special values ---\n",
239 | "\t\tno_cols = data.shape[1]\n",
240 | "\t\tno_rows = data.shape[0]\n",
241 | "\t\trow = 0\n",
242 | "\t\twhile (no_rows > row):\n",
243 | "\t\t\tcol = 0\n",
244 | "\t\t\twhile (no_cols > col):\n",
245 | "\t\t\t\tif (data[row][col] in vals):\n",
246 | "\t\t\t\t\tdata = np.delete(data, col, 1)\n",
247 | "\t\t\t\t\tno_cols -= 1\n",
248 | "\t\t\t\telse:\n",
249 | "\t\t\t\t\tcol += 1\n",
250 | "\t\t\trow += 1 \n",
251 | "\t\treturn data\n",
252 | "\n",
253 | "\tdef __predict_values_lin_reg(self,X_tr,y_tr,X_test):\n",
254 | "\t# --- Uses linear regression to extrapolate values ---\n",
255 | "\t\tmodel = linear_model.LinearRegression()\n",
256 | "\t\tmodel.fit(X_tr, y_tr)\n",
257 | "\t\tpred = model.predict(X_test)\n",
258 | "\t\treturn pred\n",
259 | "\n",
260 | "\tdef __data_spliter(self,all_data,target_col,target_val):\n",
261 | "\t# --- Splits the data such to identify target col --- \n",
262 | "\t\ttarget_col += 1\n",
263 | "\n",
264 | "\t\ty = all_data[:,target_col:target_col+1]\n",
265 | "\t\tX = np.delete(all_data,target_col,1)\n",
266 | "\t \n",
267 | "\t\t# -- Will hold the X for the y values that need to be predicted--\n",
268 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
269 | "\n",
270 | "\t\trow_no = 0 \n",
271 | "\t\t# -- Finds the rows with a target val -- \n",
272 | "\t\tfor val in y:\n",
273 | "\t\t\tif (val[0] == target_val):\n",
274 | "\t\t\t\tX_target = np.append(X_target,X[row_no:row_no+1,:],axis=0)\n",
275 | "\t\t\t\tX = np.delete(X, row_no, 0)\n",
276 | "\t\t\t\ty = np.delete(y, row_no, 0) \n",
277 | "\t\t\telse:\n",
278 | "\t\t\t\trow_no += 1\n",
279 | "\n",
280 | "\t\tX_target = np.delete(X_target,0,0)\n",
281 | "\t \n",
282 | "\t\treturn X,y,X_target # Note that the order column is still attached\n",
283 | "\n",
284 | "\tdef __combine_parts_inorder(self,X,y,X_target,y_target,target_col):\n",
285 | "\t# --- Combines all the small parts into a single data matrix ---\n",
286 | "\t\ttarget_col += 1 # To account for the order column\n",
287 | "\n",
288 | "\t\ty_target = y_target.reshape((y_target.shape[0],1))\n",
289 | "\t\ty_full = np.append(y_target,y,axis=0)\n",
290 | "\t\tX_full = np.append(X_target,X,axis=0)\n",
291 | "\n",
292 | "\t\tdata = np.append(X_full[:,:target_col],y_full,axis=1)\n",
293 | "\t\tdata = np.append(data,X_full[:,target_col:],axis=1)\n",
294 | "\t\treturn data\n",
295 | "\n",
296 | "\tdef __average_each_feature(self,X):\n",
297 | "\t# --- Finds the mean values for each feature ---\n",
298 | "\n",
299 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
300 | "\t \n",
301 | "\t\tfor i in range(X.shape[1]):\n",
302 | "\t\t\tcol = X[:,i]\n",
303 | "\t\t\tcol = np.mean(col,axis=0)\n",
304 | "\t\t\tX_target[:,i] = col\n",
305 | "\t \n",
306 | "\t\treturn X_target\n",
307 | "\n",
308 | "\tdef __process_and_predict(self,all_data,target_col,target_val,exclude=None,model=\"linear\"):\n",
309 | "\t\t# -- Split data --\n",
310 | "\t\tX,y,X_target = self.__data_spliter(all_data,target_col,target_val)\n",
311 | "\t\t# -- Record order columns -- \n",
312 | "\n",
313 | "\t\torder_data = X[:,0:1]\n",
314 | "\t\torder_target = X_target[:,0:1]\n",
315 | "\t \n",
316 | "\t # -- Remove certain columns --\n",
317 | "\t\tif (exclude != None or exclude == []):\n",
318 | "\t\t\ty_tr = np.copy(y)\n",
319 | "\t\t\tX_tr = self.__remove_col_with_vals(X,exclude)\n",
320 | "\t\t\tX_tr = np.delete(X_tr,0,axis=1) # Removes the order column\n",
321 | "\t\t\tX_pred = self.__remove_col_with_vals(X_target,exclude) # The x used to predict\n",
322 | "\t\t\tX_pred = np.delete(X_pred,0,axis=1)\n",
323 | "\n",
324 | "\n",
325 | "\t\telse:\n",
326 | "\t\t\ty_tr = np.copy(y)\n",
327 | "\t\t\tX_tr = np.delete(X,0,axis=1) # Removes the order column\n",
328 | "\t\t\tX_pred = np.delete(X_target,0,axis=1)\n",
329 | "\n",
330 | "\n",
331 | "\t # -- Run regression --\n",
332 | "\t\tif (model == \"linear\"):\n",
333 | "\t\t\ty_target = self.__predict_values_lin_reg(X_tr,y_tr,X_pred)\n",
334 | "\n",
335 | "\t\telif (model == \"polynomial\"):\n",
336 | "\t\t\tpass\n",
337 | "\n",
338 | "\t\telif (model == \"special\"):\n",
339 | "\t\t\tX_avg = self.__average_each_feature(X_pred)\n",
340 | "\t\t\tpred = self.__predict_values_lin_reg(X_tr,y_tr,X_avg)\n",
341 | "\t \n",
342 | "\t\telse:\n",
343 | "\t\t\traise ModelError(\"Model currently not available\")\n",
344 | "\t \n",
345 | "\t\tfinal_data = self.__combine_parts_inorder(X,y,X_target,y_target,target_col)\n",
346 | "\t\treturn final_data\n",
347 | "\t# --- Processes the data and uses linear regression to extrapolate --- \n",
348 | "\n",
349 | "\tdef remove_8(self, kNN, prediction_type):\n",
350 | "\t# --- Removes all the -8 values using kNN imputation ---\n",
351 | "\t\t# -- Remove the order column -- \n",
352 | "\t\torder = self.X[:,0]\n",
353 | "\t\torder = order.reshape((order.shape[0],1))\n",
354 | "\t\tself.X = np.delete(self.X, 0, axis = 1)\n",
355 | "\n",
356 | "\t\t# -- Removes all special values (-7,-8,-9) --\n",
357 | "\t\tX_good, hold1, hold2, hold3 = self.__remove_row_with_vals(self.X, self.y, [-7,-8,-9])\n",
358 | "\n",
359 | "\t\tscaler = StandardScaler()\n",
360 | "\t\tX_good_scaled = scaler.fit_transform(X_good)\n",
361 | "\n",
362 | "\t\t# -- Create a copy of the data matrix X to edit -- \n",
363 | "\t\tX_no_8 = np.copy(self.X)\n",
364 | "\n",
365 | "\t\tcols_with_8 = [1,8,14,17,18,19,20,21,22]\n",
366 | "\n",
367 | "\t\t# -- Fixing each -8 column -- \n",
368 | "\t\tfor fix_col in cols_with_8:\n",
369 | "\t\t\tprint(\"Column being fixed:\", str(fix_col))\n",
370 | "\t\t\t# -- Looping through all samples -- \n",
371 | "\t\t\tfor row in range(self.num_samples):\n",
372 | "\n",
373 | "\t\t\t\tif self.X[row][fix_col] == -8:\n",
374 | "\t\t\t\t\trow_to_comp = []\n",
375 | "\t\t\t\t\tmask = []\n",
376 | "\t\t\t\t\tscaled = self.__scaled_row(self.X[row],scaler)\n",
377 | "\n",
378 | "\t\t\t\t\t# -- Looping through each value --\n",
379 | "\t\t\t\t\tfor col in range(self.num_features):\n",
380 | "\t\t\t\t\t\tif self.X[row][col] >= 0:\n",
381 | "\t\t\t\t\t\t\tmask.append(1)\n",
382 | "\t\t\t\t\t\t\trow_to_comp.append(scaled[col])\n",
383 | "\t\t\t\t\t\telse:\n",
384 | "\t\t\t\t\t\t\tmask.append(0)\n",
385 | "\n",
386 | "\t\t\t\t\trow_to_comp = np.array(row_to_comp)\n",
387 | "\t\t\t\t\tmask = np.array(mask)\n",
388 | "\t\t \n",
389 | "\t\t\t\t\t# -- Getting the array of samples without special values in the good datasets-- \n",
390 | "\t\t\t\t\tX_good_masked = self.__masked_arr(X_good_scaled, mask)\n",
391 | "\n",
392 | "\t\t\t\t\tif (prediction_type == \"mean\"):\n",
393 | "\t\t\t\t\t\timputed = self.__predict_feature_mean(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
394 | "\n",
395 | "\t\t\t\t\telif (prediction_type == \"weighted\"):\n",
396 | "\t\t\t\t\t\timputed = self.__predict_feature_weighted(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
397 | "\t\t\t\t\t\n",
398 | "\t\t\t\t\tX_no_8[row][fix_col] = imputed*scaler.scale_[fix_col] + scaler.mean_[fix_col]\n",
399 | "\n",
400 | "\t\tself.X = X_no_8\n",
401 | "\n",
402 | "\t\t# -- Add back order column -- \n",
403 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
404 | "\n",
405 | "\tdef remove_all_9(self):\n",
406 | "\t# --- Removes the columns with all -9 values -- \n",
407 | "\t\tself.rem_X = []\n",
408 | "\t\tself.rem_y = []\n",
409 | "\t\trow_no = 0 \n",
410 | "\t\tfor row in self.X:\n",
411 | "\t\t\tfor col_i in range(1,row.shape[0]):\n",
412 | "\t\t\t\tif (row[col_i] == -9):\n",
413 | "\t\t\t\t\tremove = True\n",
414 | "\t\t\t\telse:\n",
415 | "\t\t\t\t\tremove = False\n",
416 | "\t\t\t\t\tbreak\n",
417 | "\t\t\tif remove:\n",
418 | "\t\t\t\tself.rem_X.append(self.X[row_no])\n",
419 | "\t\t\t\tself.X = np.delete(self.X, row_no, 0)\n",
420 | "\n",
421 | "\t\t\t\tself.rem_y.append(self.y[row_no])\n",
422 | "\t\t\t\tself.y = np.delete(self.y, row_no, 0) \n",
423 | "\n",
424 | "\t\t\telse:\n",
425 | "\t\t\t\trow_no += 1\n",
426 | "\n",
427 | "\t\tself.rem_X = np.array(self.rem_X)\n",
428 | "\t\tself.rem_y = np.array(self.rem_y)\n",
429 | "\n",
430 | "\tdef remove_9(self):\n",
431 | "\t# --- Removes the -9 values by using linear regression ---\n",
432 | "\t\tself.X = self.__process_and_predict(self.X,0,-9,[-7])\n",
433 | "\n",
434 | "\tdef remove_7_est(self):\n",
435 | "\t# --- Removes the -7 values by using an approximated value ---\n",
436 | "\t\tvalue_replace = 150\n",
437 | "\t\tnp.place(self.X, self.X == -7, value_replace)\n",
438 | "\n",
439 | "\tdef output_all_data(self):\n",
440 | "\t# --- Combines all the data into a single array in order and outputs it ---\n",
441 | "\t\tall_X = np.append(self.X,self.rem_X,axis=0)\n",
442 | "\t\tall_y = np.append(self.y,self.rem_y,axis=0)\n",
443 | "\n",
444 | "\t\tall_X = all_X[all_X[:,0].argsort()]\n",
445 | "\t\tall_y = all_y[all_y[:,0].argsort()]\n",
446 | "\n",
447 | "\t\tall_X = np.delete(all_X, 0, axis=1) \n",
448 | "\t\tall_y = np.delete(all_y, 0, axis=1) \n",
449 | "\t\t\n",
450 | "\t\tdata_output = np.append(all_y,all_X,axis=1)\n",
451 | "\n",
452 | "\t\treturn data_output\n",
453 | "\n",
454 | "\tdef output_to_CSV(self, filename):\n",
455 | "\t# --- Outputs the data to a CSV according to assigned filename --- \n",
456 | "\t\tdata_output = self.output_all_data()\n",
457 | "\n",
458 | "\t\tnp.savetxt(filename, data_output.astype(int), fmt='%i', delimiter=\",\")\n",
459 | "\n",
460 | "\tdef revert_to_original(self):\n",
461 | "\t# --- Allows to retrieve the original dataset ---\n",
462 | "\t\tself.__init__(\"pass\",self.data_set)\n",
463 | "\n",
464 | "testing123 = Data_Cleaner(\"./heloc_dataset_v1.csv\")\n",
465 | "testing123.shift()\n",
466 | "testing123.remove_8(5,\"mean\")\n",
467 | "testing123.remove_all_9()\n",
468 | "testing123.remove_9()\n",
469 | "testing123.remove_7_est()\n",
470 | "testing123.output_to_CSV(\"test_file1.csv\")"
471 | ]
472 | },
473 | {
474 | "cell_type": "code",
475 | "execution_count": 69,
476 | "metadata": {
477 | "ExecuteTime": {
478 | "end_time": "2020-05-28T02:34:55.972490Z",
479 | "start_time": "2020-05-28T02:34:55.852496Z"
480 | }
481 | },
482 | "outputs": [],
483 | "source": [
484 | "pd.DataFrame(np.hstack([testing123.X, testing123.y])).to_csv(\"fico.csv\")"
485 | ]
486 | },
487 | {
488 | "cell_type": "code",
489 | "execution_count": 74,
490 | "metadata": {
491 | "ExecuteTime": {
492 | "end_time": "2020-05-28T02:36:57.680689Z",
493 | "start_time": "2020-05-28T02:36:57.624935Z"
494 | }
495 | },
496 | "outputs": [],
497 | "source": [
498 | "data = pd.read_csv(\"fico.csv\", index_col=[0, 1])\n",
499 | "x, y = data.iloc[:,0:].values, data.iloc[:,[-1]].values"
500 | ]
501 | }
502 | ],
503 | "metadata": {
504 | "kernelspec": {
505 | "display_name": "Python (tf2)",
506 | "language": "python",
507 | "name": "tf2"
508 | },
509 | "language_info": {
510 | "codemirror_mode": {
511 | "name": "ipython",
512 | "version": 3
513 | },
514 | "file_extension": ".py",
515 | "mimetype": "text/x-python",
516 | "name": "python",
517 | "nbconvert_exporter": "python",
518 | "pygments_lexer": "ipython3",
519 | "version": "3.6.8"
520 | },
521 | "latex_envs": {
522 | "LaTeX_envs_menu_present": true,
523 | "autoclose": false,
524 | "autocomplete": true,
525 | "bibliofile": "biblio.bib",
526 | "cite_by": "apalike",
527 | "current_citInitial": 1,
528 | "eqLabelWithNumbers": true,
529 | "eqNumInitial": 1,
530 | "hotkeys": {
531 | "equation": "Ctrl-E",
532 | "itemize": "Ctrl-I"
533 | },
534 | "labels_anchors": false,
535 | "latex_user_defs": false,
536 | "report_style_numbering": false,
537 | "user_envs_cfg": false
538 | },
539 | "varInspector": {
540 | "cols": {
541 | "lenName": 16,
542 | "lenType": 16,
543 | "lenVar": 40
544 | },
545 | "kernels_config": {
546 | "python": {
547 | "delete_cmd_postfix": "",
548 | "delete_cmd_prefix": "del ",
549 | "library": "var_list.py",
550 | "varRefreshCmd": "print(var_dic_list())"
551 | },
552 | "r": {
553 | "delete_cmd_postfix": ") ",
554 | "delete_cmd_prefix": "rm(",
555 | "library": "var_list.r",
556 | "varRefreshCmd": "cat(var_dic_list()) "
557 | }
558 | },
559 | "types_to_exclude": [
560 | "module",
561 | "function",
562 | "builtin_function_or_method",
563 | "instance",
564 | "_Feature"
565 | ],
566 | "window_display": false
567 | }
568 | },
569 | "nbformat": 4,
570 | "nbformat_minor": 2
571 | }
572 |
--------------------------------------------------------------------------------
/examples/fico/data_types.json:
--------------------------------------------------------------------------------
1 | {"ExternalRiskEstimate":{"type":"continuous"},
2 | "MSinceOldestTradeOpen":{"type":"continuous"},
3 | "MSinceMostRecentTradeOpen":{"type":"continuous"},
4 | "AverageMInFile":{"type":"continuous"},
5 | "NumSatisfactoryTrades":{"type":"continuous"},
6 | "NumTrades60Ever2DerogPubRec":{"type":"continuous"},
7 | "NumTrades90Ever2DerogPubRec":{"type":"continuous"},
8 | "PercentTradesNeverDelq":{"type":"continuous"},
9 | "MSinceMostRecentDelq":{"type":"continuous"},
10 | "MaxDelq2PublicRecLast12M":{"type":"continuous"},
11 | "MaxDelqEver":{"type":"continuous"},
12 | "NumTotalTrades":{"type":"continuous"},
13 | "NumTradesOpeninLast12M":{"type":"continuous"},
14 | "PercentInstallTrades":{"type":"continuous"},
15 | "MSinceMostRecentInqexcl7days":{"type":"continuous"},
16 | "NumInqLast6M":{"type":"continuous"},
17 | "NumInqLast6Mexcl7days":{"type":"continuous"},
18 | "NetFractionRevolvingBurden":{"type":"continuous"},
19 | "NetFractionInstallBurden":{"type":"continuous"},
20 | "NumRevolvingTradesWBalance":{"type":"continuous"},
21 | "NumInstallTradesWBalance":{"type":"continuous"},
22 | "NumBank2NatlTradesWHighUtilization":{"type":"continuous"},
23 | "PercentTradesWBalance":{"type":"continuous"},
24 | "RiskPerformance":{"type":"target"}}
25 |
--------------------------------------------------------------------------------
/examples/fico/heloc_data_dictionary-2.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/fico/heloc_data_dictionary-2.xlsx
--------------------------------------------------------------------------------
/examples/fico/load.py:
--------------------------------------------------------------------------------
1 | import json
2 | import numpy as np
3 | import pandas as pd
4 |
5 | def load_fico_challange(path="./"):
6 |
7 | data = pd.read_csv(path + "heloc_dataset_v1.csv")
8 | meta_info = json.load(open(path + "data_types.json"))
9 | data = data.replace(-9, np.nan).replace(-8, np.nan).replace(-7, np.nan)
10 |
11 | imp = SimpleImputer(missing_values=np.nan, strategy="median")
12 | imp.fit(data.iloc[:,1:])
13 | data.iloc[:,1:] = imp.transform(data.iloc[:,1:])
14 | x, y = data.iloc[:,1:].values, data.iloc[:,[0]].values
15 | return x, y, "Regression", meta_info
16 |
--------------------------------------------------------------------------------
/examples/fico/preprocess.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "ExecuteTime": {
8 | "end_time": "2020-05-27T04:16:46.019095Z",
9 | "start_time": "2020-05-27T04:08:26.163560Z"
10 | }
11 | },
12 | "outputs": [
13 | {
14 | "name": "stdout",
15 | "output_type": "stream",
16 | "text": [
17 | "Column being fixed: 1\n",
18 | "Column being fixed: 8\n",
19 | "Column being fixed: 14\n",
20 | "Column being fixed: 17\n",
21 | "Column being fixed: 18\n",
22 | "Column being fixed: 19\n",
23 | "Column being fixed: 20\n",
24 | "Column being fixed: 21\n",
25 | "Column being fixed: 22\n"
26 | ]
27 | }
28 | ],
29 | "source": [
30 | "# --- Imports section --- \n",
31 | "import numpy as np\n",
32 | "import pandas as pd\n",
33 | "from sklearn.preprocessing import StandardScaler\n",
34 | "from sklearn import datasets, linear_model, preprocessing\n",
35 | "import copy\n",
36 | "\n",
37 | "class ModelError(Exception):\n",
38 | "\tpass\n",
39 | "\n",
40 | "class Data_Cleaner():\n",
41 | "\n",
42 | "\tdef __init__ (self, file_name, data = None):\n",
43 | "\t# --- Retrieves the data from CSV or array, as well as basic organisation ---\n",
44 | "\n",
45 | "\t\t# -- Get data from CSV or given array --\n",
46 | "\t\tif (data == None):\n",
47 | "\t\t\tself.data_set = pd.read_csv(file_name).values\n",
48 | "\n",
49 | "\t\telse:\n",
50 | "\t\t\tself.data_set = data\n",
51 | "\n",
52 | "\t\t# -- Converting target to binary --\n",
53 | "\t\tnp.place(self.data_set, self.data_set == \"Bad\", 0)\n",
54 | "\t\tnp.place(self.data_set, self.data_set == \"Good\", 1)\n",
55 | "\n",
56 | "\t\t# -- Creating Model Variable -- \n",
57 | "\t\tself.model = None\n",
58 | "\n",
59 | "\t\t# -- Creating an Order Column --\n",
60 | "\t\torder = np.arange(self.data_set.shape[0])\n",
61 | "\t\torder = order.reshape((order.shape[0],1))\n",
62 | "\n",
63 | "\t\t# -- Scale and Split --\n",
64 | "\t\t# self.y = self.data_set[:,:1]\n",
65 | "\t\t# scaler = StandardScaler()\n",
66 | "\t\t# self.X = scaler.fit_transform(self.data_set[:,1:])\n",
67 | "\n",
68 | "\t\tself.y = self.data_set[:,:1]\n",
69 | "\t\tself.X = self.data_set[:,1:]\n",
70 | "\n",
71 | "\n",
72 | "\t\t# -- Needs to be retained for inserting new samples\n",
73 | "\t\t# self.mean = scaler.mean_\n",
74 | "\t\t# self.scale = scaler.scale_\n",
75 | "\n",
76 | "\t\t# -- Assiging general useful variables --\n",
77 | "\t\tself.num_samples , self.num_features = self.X.shape\n",
78 | "\n",
79 | "\t\t# -- Add the Order Column -- \n",
80 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
81 | "\t\tself.y = np.append(order,self.y,axis=1)\n",
82 | "\n",
83 | "\tdef shift(self):\n",
84 | "\t# --- Perform the shift for the two categorical features --- \n",
85 | "\n",
86 | "\t\t# -- Shift is hardcoded based on requirements -- \n",
87 | "\t\tfirst_col = self.X[:,10]\n",
88 | "\t\tnp.place(first_col, first_col == 1, 100) # hold value\n",
89 | "\t\tnp.place(first_col, first_col == 6, 1)\n",
90 | "\t\tnp.place(first_col, first_col == 5, 1)\n",
91 | "\t\tnp.place(first_col, first_col == 4, 6)\n",
92 | "\t\tnp.place(first_col, first_col == 3, 5)\n",
93 | "\t\tnp.place(first_col, first_col == 2, 4)\n",
94 | "\t\tnp.place(first_col, first_col == 100, 3)\n",
95 | "\t\tnp.place(first_col, first_col == 0, 2)\n",
96 | "\t\tnp.place(first_col, first_col == 8, 0)\n",
97 | "\t\tnp.place(first_col, first_col == 9, 0)\n",
98 | "\n",
99 | "\t\tsecond_col= self.X[:,11]\n",
100 | "\t\tnp.place(second_col, second_col == 1, 0)\n",
101 | "\t\tnp.place(second_col, second_col == 9, 0)\n",
102 | "\t\tnp.place(second_col, second_col == 7, 1)\n",
103 | "\t\tnp.place(second_col, second_col == 8, 7)\n",
104 | "\n",
105 | "\t\tself.X[:,10] = first_col\n",
106 | "\t\tself.X[:,11] = second_col\n",
107 | "\n",
108 | "\tdef __scaled_row(self,row,scaler):\n",
109 | "\t# --- Returns the Row Scaled ---\n",
110 | "\t\tmean = scaler.mean_\n",
111 | "\t\tscale = scaler.scale_\n",
112 | "\t\tscld = []\n",
113 | "\t\tfor k in range(row.shape[0]):\n",
114 | "\t\t\tscld.append((row[k] - mean[k])/scale[k])\n",
115 | "\t\tscld = np.array(scld)\n",
116 | "\n",
117 | "\t\treturn scld\n",
118 | "\t \n",
119 | "\tdef __masked_arr(self,orig_array, mask):\n",
120 | "\t# --- Returns XOR of Array and Mask --- \n",
121 | "\t\tmasked_array = []\n",
122 | "\n",
123 | "\t\tfor i in range(len(orig_array)):\n",
124 | "\t\t\trow = []\n",
125 | "\t\t\tfor j in range(len(orig_array[0])):\n",
126 | "\t\t\t\tif mask[j] != 0:\n",
127 | "\t\t\t\t\trow.append(orig_array[i][j])\n",
128 | "\t\t\tmasked_array.append(row)\n",
129 | "\n",
130 | "\t\tmasked_array = np.array(masked_array)\n",
131 | "\n",
132 | "\t\treturn masked_array\n",
133 | "\n",
134 | "\tdef __euc_distance(self,row1, row2):\n",
135 | "\t# --- Returns Euclidian Distance between Rows --- \n",
136 | "\t\tdist = 0\n",
137 | "\t\tfor i in range(len(row1)):\n",
138 | "\t\t\tt = (row1[i]-row2[i])**2\n",
139 | "\t\t\tdist += t\n",
140 | "\t\tdist = np.sqrt(dist)\n",
141 | "\t\treturn dist\n",
142 | "\n",
143 | "\tdef __predict_feature_weighted(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
144 | "\t# --- Returns the single special value replaced by kNN imputation using weights---\n",
145 | "\n",
146 | "\t\tdistances = []\n",
147 | "\t\t# -- Loops through the good data with no special values -- \n",
148 | "\t\t\t# - Good data has the changing feature removed -\n",
149 | "\t\tfor i in range(len(good_data_masked)):\t\n",
150 | "\t\t\tdistances.append(self.__euc_distance(row, good_data_masked[i]))\n",
151 | "\n",
152 | "\t\tdistances = np.array(distances)\n",
153 | "\t\tmax_dist = np.max(distances)\n",
154 | "\t \n",
155 | "\t\t# -- Sorts the first no_neigbours features --\n",
156 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
157 | "\n",
158 | "\t\tvalues = []\n",
159 | "\t\tmin_dists = []\n",
160 | "\t \n",
161 | "\t\t# -- Retrieving values with which to replace -- \n",
162 | "\t\tfor i in range(no_neighbours):\n",
163 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
164 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
165 | "\n",
166 | "\t\tvalues = np.array(values) \n",
167 | "\t\tmin_dists = np.array(min_dists)\n",
168 | "\n",
169 | "\t\t# -- Assigning the weights -- \n",
170 | "\t\tweights = []\n",
171 | "\t\tfor i in min_dists:\n",
172 | "\t\t\tweights.append(1 - (i/max_dist))\n",
173 | "\t \n",
174 | "\t # -- Calculating final result -- \n",
175 | "\t\timputed_val = 0\n",
176 | "\t\tfor i in range(len(weights)):\n",
177 | "\t\t\timputed_val += weights[i] * values[i]\n",
178 | "\t \n",
179 | "\t\treturn imputed_val \n",
180 | "\n",
181 | "\tdef __predict_feature_mean(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
182 | "\t# --- Returns the single special value replaced by kNN imputation using the mean ---\n",
183 | "\n",
184 | "\t\tdistances = []\n",
185 | "\t\t# -- Loops through the good data with no special values -- \n",
186 | "\t \t# - Good data has the changing feature removed -\n",
187 | "\t\tfor i in range(len(good_data_masked)):\n",
188 | "\t\t\tdistances.append(self.__euc_distance(row,good_data_masked[i]))\n",
189 | "\t\tdistances = np.array(distances)\n",
190 | "\t \n",
191 | "\t\t# -- Sorts the first no_neigbours features --\n",
192 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
193 | "\n",
194 | "\t\tvalues = []\n",
195 | "\t\tmin_dists = []\n",
196 | "\t \n",
197 | "\t\t# -- Retrieving values with which to replace -- \n",
198 | "\t\tfor i in range(no_neighbours):\n",
199 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
200 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
201 | "\n",
202 | "\t\tvalues = np.array(values) \n",
203 | "\t\tmin_dists = np.array(min_dists)\n",
204 | "\t \n",
205 | "\t\t# -- Calculating final result -- \n",
206 | "\t\timputed_val = 0\n",
207 | "\t\tfor i in range(len(values)):\n",
208 | "\t\t\timputed_val += values[i]\n",
209 | "\n",
210 | "\t\timputed_val = imputed_val/len(values)\n",
211 | "\n",
212 | "\t\treturn imputed_val\n",
213 | "\n",
214 | "\tdef __remove_row_with_vals(self, data, target, vals):\n",
215 | "\t# --- Returns the data/target without the rows that have any instance of vals list ---\n",
216 | "\t\tremoved_data = []\n",
217 | "\t\tremoved_target = []\n",
218 | "\n",
219 | "\t\trow_no = 0 \n",
220 | "\t\tfor row in data:\n",
221 | "\t\t\tfor col in row:\n",
222 | "\t\t\t\tif (col in vals):\n",
223 | "\t\t\t\t\tremoved_data.append(data[row_no])\n",
224 | "\t\t\t\t\tdata = np.delete(data, row_no, 0)\n",
225 | "\n",
226 | "\t\t\t\t\tremoved_target.append(target[row_no])\n",
227 | "\t\t\t\t\ttarget = np.delete(target, row_no, 0) \n",
228 | "\t\t\t\t\trow_no -= 1\n",
229 | "\t\t\t\t\tbreak\n",
230 | "\t\t\trow_no += 1\n",
231 | "\n",
232 | "\t\tremoved_data = np.array(removed_data)\n",
233 | "\t\tremoved_target = np.array(removed_target)\n",
234 | "\n",
235 | "\t\treturn data, target, removed_data, removed_target\n",
236 | "\n",
237 | "\tdef __remove_col_with_vals(self, data, vals):\n",
238 | "\t# --- Returns the data without the coloumns that have the desired special values ---\n",
239 | "\t\tno_cols = data.shape[1]\n",
240 | "\t\tno_rows = data.shape[0]\n",
241 | "\t\trow = 0\n",
242 | "\t\twhile (no_rows > row):\n",
243 | "\t\t\tcol = 0\n",
244 | "\t\t\twhile (no_cols > col):\n",
245 | "\t\t\t\tif (data[row][col] in vals):\n",
246 | "\t\t\t\t\tdata = np.delete(data, col, 1)\n",
247 | "\t\t\t\t\tno_cols -= 1\n",
248 | "\t\t\t\telse:\n",
249 | "\t\t\t\t\tcol += 1\n",
250 | "\t\t\trow += 1 \n",
251 | "\t\treturn data\n",
252 | "\n",
253 | "\tdef __predict_values_lin_reg(self,X_tr,y_tr,X_test):\n",
254 | "\t# --- Uses linear regression to extrapolate values ---\n",
255 | "\t\tmodel = linear_model.LinearRegression()\n",
256 | "\t\tmodel.fit(X_tr, y_tr)\n",
257 | "\t\tpred = model.predict(X_test)\n",
258 | "\t\treturn pred\n",
259 | "\n",
260 | "\tdef __data_spliter(self,all_data,target_col,target_val):\n",
261 | "\t# --- Splits the data such to identify target col --- \n",
262 | "\t\ttarget_col += 1\n",
263 | "\n",
264 | "\t\ty = all_data[:,target_col:target_col+1]\n",
265 | "\t\tX = np.delete(all_data,target_col,1)\n",
266 | "\t \n",
267 | "\t\t# -- Will hold the X for the y values that need to be predicted--\n",
268 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
269 | "\n",
270 | "\t\trow_no = 0 \n",
271 | "\t\t# -- Finds the rows with a target val -- \n",
272 | "\t\tfor val in y:\n",
273 | "\t\t\tif (val[0] == target_val):\n",
274 | "\t\t\t\tX_target = np.append(X_target,X[row_no:row_no+1,:],axis=0)\n",
275 | "\t\t\t\tX = np.delete(X, row_no, 0)\n",
276 | "\t\t\t\ty = np.delete(y, row_no, 0) \n",
277 | "\t\t\telse:\n",
278 | "\t\t\t\trow_no += 1\n",
279 | "\n",
280 | "\t\tX_target = np.delete(X_target,0,0)\n",
281 | "\t \n",
282 | "\t\treturn X,y,X_target # Note that the order column is still attached\n",
283 | "\n",
284 | "\tdef __combine_parts_inorder(self,X,y,X_target,y_target,target_col):\n",
285 | "\t# --- Combines all the small parts into a single data matrix ---\n",
286 | "\t\ttarget_col += 1 # To account for the order column\n",
287 | "\n",
288 | "\t\ty_target = y_target.reshape((y_target.shape[0],1))\n",
289 | "\t\ty_full = np.append(y_target,y,axis=0)\n",
290 | "\t\tX_full = np.append(X_target,X,axis=0)\n",
291 | "\n",
292 | "\t\tdata = np.append(X_full[:,:target_col],y_full,axis=1)\n",
293 | "\t\tdata = np.append(data,X_full[:,target_col:],axis=1)\n",
294 | "\t\treturn data\n",
295 | "\n",
296 | "\tdef __average_each_feature(self,X):\n",
297 | "\t# --- Finds the mean values for each feature ---\n",
298 | "\n",
299 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
300 | "\t \n",
301 | "\t\tfor i in range(X.shape[1]):\n",
302 | "\t\t\tcol = X[:,i]\n",
303 | "\t\t\tcol = np.mean(col,axis=0)\n",
304 | "\t\t\tX_target[:,i] = col\n",
305 | "\t \n",
306 | "\t\treturn X_target\n",
307 | "\n",
308 | "\tdef __process_and_predict(self,all_data,target_col,target_val,exclude=None,model=\"linear\"):\n",
309 | "\t\t# -- Split data --\n",
310 | "\t\tX,y,X_target = self.__data_spliter(all_data,target_col,target_val)\n",
311 | "\t\t# -- Record order columns -- \n",
312 | "\n",
313 | "\t\torder_data = X[:,0:1]\n",
314 | "\t\torder_target = X_target[:,0:1]\n",
315 | "\t \n",
316 | "\t # -- Remove certain columns --\n",
317 | "\t\tif (exclude != None or exclude == []):\n",
318 | "\t\t\ty_tr = np.copy(y)\n",
319 | "\t\t\tX_tr = self.__remove_col_with_vals(X,exclude)\n",
320 | "\t\t\tX_tr = np.delete(X_tr,0,axis=1) # Removes the order column\n",
321 | "\t\t\tX_pred = self.__remove_col_with_vals(X_target,exclude) # The x used to predict\n",
322 | "\t\t\tX_pred = np.delete(X_pred,0,axis=1)\n",
323 | "\n",
324 | "\n",
325 | "\t\telse:\n",
326 | "\t\t\ty_tr = np.copy(y)\n",
327 | "\t\t\tX_tr = np.delete(X,0,axis=1) # Removes the order column\n",
328 | "\t\t\tX_pred = np.delete(X_target,0,axis=1)\n",
329 | "\n",
330 | "\n",
331 | "\t # -- Run regression --\n",
332 | "\t\tif (model == \"linear\"):\n",
333 | "\t\t\ty_target = self.__predict_values_lin_reg(X_tr,y_tr,X_pred)\n",
334 | "\n",
335 | "\t\telif (model == \"polynomial\"):\n",
336 | "\t\t\tpass\n",
337 | "\n",
338 | "\t\telif (model == \"special\"):\n",
339 | "\t\t\tX_avg = self.__average_each_feature(X_pred)\n",
340 | "\t\t\tpred = self.__predict_values_lin_reg(X_tr,y_tr,X_avg)\n",
341 | "\t \n",
342 | "\t\telse:\n",
343 | "\t\t\traise ModelError(\"Model currently not available\")\n",
344 | "\t \n",
345 | "\t\tfinal_data = self.__combine_parts_inorder(X,y,X_target,y_target,target_col)\n",
346 | "\t\treturn final_data\n",
347 | "\t# --- Processes the data and uses linear regression to extrapolate --- \n",
348 | "\n",
349 | "\tdef remove_8(self, kNN, prediction_type):\n",
350 | "\t# --- Removes all the -8 values using kNN imputation ---\n",
351 | "\t\t# -- Remove the order column -- \n",
352 | "\t\torder = self.X[:,0]\n",
353 | "\t\torder = order.reshape((order.shape[0],1))\n",
354 | "\t\tself.X = np.delete(self.X, 0, axis = 1)\n",
355 | "\n",
356 | "\t\t# -- Removes all special values (-7,-8,-9) --\n",
357 | "\t\tX_good, hold1, hold2, hold3 = self.__remove_row_with_vals(self.X, self.y, [-7,-8,-9])\n",
358 | "\n",
359 | "\t\tscaler = StandardScaler()\n",
360 | "\t\tX_good_scaled = scaler.fit_transform(X_good)\n",
361 | "\n",
362 | "\t\t# -- Create a copy of the data matrix X to edit -- \n",
363 | "\t\tX_no_8 = np.copy(self.X)\n",
364 | "\n",
365 | "\t\tcols_with_8 = [1,8,14,17,18,19,20,21,22]\n",
366 | "\n",
367 | "\t\t# -- Fixing each -8 column -- \n",
368 | "\t\tfor fix_col in cols_with_8:\n",
369 | "\t\t\tprint(\"Column being fixed:\", str(fix_col))\n",
370 | "\t\t\t# -- Looping through all samples -- \n",
371 | "\t\t\tfor row in range(self.num_samples):\n",
372 | "\n",
373 | "\t\t\t\tif self.X[row][fix_col] == -8:\n",
374 | "\t\t\t\t\trow_to_comp = []\n",
375 | "\t\t\t\t\tmask = []\n",
376 | "\t\t\t\t\tscaled = self.__scaled_row(self.X[row],scaler)\n",
377 | "\n",
378 | "\t\t\t\t\t# -- Looping through each value --\n",
379 | "\t\t\t\t\tfor col in range(self.num_features):\n",
380 | "\t\t\t\t\t\tif self.X[row][col] >= 0:\n",
381 | "\t\t\t\t\t\t\tmask.append(1)\n",
382 | "\t\t\t\t\t\t\trow_to_comp.append(scaled[col])\n",
383 | "\t\t\t\t\t\telse:\n",
384 | "\t\t\t\t\t\t\tmask.append(0)\n",
385 | "\n",
386 | "\t\t\t\t\trow_to_comp = np.array(row_to_comp)\n",
387 | "\t\t\t\t\tmask = np.array(mask)\n",
388 | "\t\t \n",
389 | "\t\t\t\t\t# -- Getting the array of samples without special values in the good datasets-- \n",
390 | "\t\t\t\t\tX_good_masked = self.__masked_arr(X_good_scaled, mask)\n",
391 | "\n",
392 | "\t\t\t\t\tif (prediction_type == \"mean\"):\n",
393 | "\t\t\t\t\t\timputed = self.__predict_feature_mean(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
394 | "\n",
395 | "\t\t\t\t\telif (prediction_type == \"weighted\"):\n",
396 | "\t\t\t\t\t\timputed = self.__predict_feature_weighted(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
397 | "\t\t\t\t\t\n",
398 | "\t\t\t\t\tX_no_8[row][fix_col] = imputed*scaler.scale_[fix_col] + scaler.mean_[fix_col]\n",
399 | "\n",
400 | "\t\tself.X = X_no_8\n",
401 | "\n",
402 | "\t\t# -- Add back order column -- \n",
403 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
404 | "\n",
405 | "\tdef remove_all_9(self):\n",
406 | "\t# --- Removes the columns with all -9 values -- \n",
407 | "\t\tself.rem_X = []\n",
408 | "\t\tself.rem_y = []\n",
409 | "\t\trow_no = 0 \n",
410 | "\t\tfor row in self.X:\n",
411 | "\t\t\tfor col_i in range(1,row.shape[0]):\n",
412 | "\t\t\t\tif (row[col_i] == -9):\n",
413 | "\t\t\t\t\tremove = True\n",
414 | "\t\t\t\telse:\n",
415 | "\t\t\t\t\tremove = False\n",
416 | "\t\t\t\t\tbreak\n",
417 | "\t\t\tif remove:\n",
418 | "\t\t\t\tself.rem_X.append(self.X[row_no])\n",
419 | "\t\t\t\tself.X = np.delete(self.X, row_no, 0)\n",
420 | "\n",
421 | "\t\t\t\tself.rem_y.append(self.y[row_no])\n",
422 | "\t\t\t\tself.y = np.delete(self.y, row_no, 0) \n",
423 | "\n",
424 | "\t\t\telse:\n",
425 | "\t\t\t\trow_no += 1\n",
426 | "\n",
427 | "\t\tself.rem_X = np.array(self.rem_X)\n",
428 | "\t\tself.rem_y = np.array(self.rem_y)\n",
429 | "\n",
430 | "\tdef remove_9(self):\n",
431 | "\t# --- Removes the -9 values by using linear regression ---\n",
432 | "\t\tself.X = self.__process_and_predict(self.X,0,-9,[-7])\n",
433 | "\n",
434 | "\tdef remove_7_est(self):\n",
435 | "\t# --- Removes the -7 values by using an approximated value ---\n",
436 | "\t\tvalue_replace = 150\n",
437 | "\t\tnp.place(self.X, self.X == -7, value_replace)\n",
438 | "\n",
439 | "\tdef output_all_data(self):\n",
440 | "\t# --- Combines all the data into a single array in order and outputs it ---\n",
441 | "\t\tall_X = np.append(self.X,self.rem_X,axis=0)\n",
442 | "\t\tall_y = np.append(self.y,self.rem_y,axis=0)\n",
443 | "\n",
444 | "\t\tall_X = all_X[all_X[:,0].argsort()]\n",
445 | "\t\tall_y = all_y[all_y[:,0].argsort()]\n",
446 | "\n",
447 | "\t\tall_X = np.delete(all_X, 0, axis=1) \n",
448 | "\t\tall_y = np.delete(all_y, 0, axis=1) \n",
449 | "\t\t\n",
450 | "\t\tdata_output = np.append(all_y,all_X,axis=1)\n",
451 | "\n",
452 | "\t\treturn data_output\n",
453 | "\n",
454 | "\tdef output_to_CSV(self, filename):\n",
455 | "\t# --- Outputs the data to a CSV according to assigned filename --- \n",
456 | "\t\tdata_output = self.output_all_data()\n",
457 | "\n",
458 | "\t\tnp.savetxt(filename, data_output.astype(int), fmt='%i', delimiter=\",\")\n",
459 | "\n",
460 | "\tdef revert_to_original(self):\n",
461 | "\t# --- Allows to retrieve the original dataset ---\n",
462 | "\t\tself.__init__(\"pass\",self.data_set)\n",
463 | "\n",
464 | "testing123 = Data_Cleaner(\"./heloc_dataset_v1.csv\")\n",
465 | "testing123.shift()\n",
466 | "testing123.remove_8(5,\"mean\")\n",
467 | "testing123.remove_all_9()\n",
468 | "testing123.remove_9()\n",
469 | "testing123.remove_7_est()\n",
470 | "testing123.output_to_CSV(\"test_file1.csv\")"
471 | ]
472 | },
473 | {
474 | "cell_type": "code",
475 | "execution_count": 69,
476 | "metadata": {
477 | "ExecuteTime": {
478 | "end_time": "2020-05-28T02:34:55.972490Z",
479 | "start_time": "2020-05-28T02:34:55.852496Z"
480 | }
481 | },
482 | "outputs": [],
483 | "source": [
484 | "pd.DataFrame(np.hstack([testing123.X, testing123.y])).to_csv(\"fico.csv\")"
485 | ]
486 | },
487 | {
488 | "cell_type": "code",
489 | "execution_count": 74,
490 | "metadata": {
491 | "ExecuteTime": {
492 | "end_time": "2020-05-28T02:36:57.680689Z",
493 | "start_time": "2020-05-28T02:36:57.624935Z"
494 | }
495 | },
496 | "outputs": [],
497 | "source": [
498 | "data = pd.read_csv(\"fico.csv\", index_col=[0, 1])\n",
499 | "x, y = data.iloc[:,0:].values, data.iloc[:,[-1]].values"
500 | ]
501 | }
502 | ],
503 | "metadata": {
504 | "kernelspec": {
505 | "display_name": "Python (tf2)",
506 | "language": "python",
507 | "name": "tf2"
508 | },
509 | "language_info": {
510 | "codemirror_mode": {
511 | "name": "ipython",
512 | "version": 3
513 | },
514 | "file_extension": ".py",
515 | "mimetype": "text/x-python",
516 | "name": "python",
517 | "nbconvert_exporter": "python",
518 | "pygments_lexer": "ipython3",
519 | "version": "3.6.8"
520 | },
521 | "latex_envs": {
522 | "LaTeX_envs_menu_present": true,
523 | "autoclose": false,
524 | "autocomplete": true,
525 | "bibliofile": "biblio.bib",
526 | "cite_by": "apalike",
527 | "current_citInitial": 1,
528 | "eqLabelWithNumbers": true,
529 | "eqNumInitial": 1,
530 | "hotkeys": {
531 | "equation": "Ctrl-E",
532 | "itemize": "Ctrl-I"
533 | },
534 | "labels_anchors": false,
535 | "latex_user_defs": false,
536 | "report_style_numbering": false,
537 | "user_envs_cfg": false
538 | },
539 | "varInspector": {
540 | "cols": {
541 | "lenName": 16,
542 | "lenType": 16,
543 | "lenVar": 40
544 | },
545 | "kernels_config": {
546 | "python": {
547 | "delete_cmd_postfix": "",
548 | "delete_cmd_prefix": "del ",
549 | "library": "var_list.py",
550 | "varRefreshCmd": "print(var_dic_list())"
551 | },
552 | "r": {
553 | "delete_cmd_postfix": ") ",
554 | "delete_cmd_prefix": "rm(",
555 | "library": "var_list.r",
556 | "varRefreshCmd": "cat(var_dic_list()) "
557 | }
558 | },
559 | "types_to_exclude": [
560 | "module",
561 | "function",
562 | "builtin_function_or_method",
563 | "instance",
564 | "_Feature"
565 | ],
566 | "window_display": false
567 | }
568 | },
569 | "nbformat": 4,
570 | "nbformat_minor": 2
571 | }
572 |
--------------------------------------------------------------------------------
/examples/model_saved.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/model_saved.pickle
--------------------------------------------------------------------------------
/examples/results/bank_global.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/bank_global.npy
--------------------------------------------------------------------------------
/examples/results/bank_global.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/bank_global.png
--------------------------------------------------------------------------------
/examples/results/bank_regu.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/bank_regu.png
--------------------------------------------------------------------------------
/examples/results/bank_traj.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/bank_traj.png
--------------------------------------------------------------------------------
/examples/results/ch_global.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/ch_global.npy
--------------------------------------------------------------------------------
/examples/results/ch_global.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/ch_global.png
--------------------------------------------------------------------------------
/examples/results/ch_regu.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/ch_regu.png
--------------------------------------------------------------------------------
/examples/results/ch_traj.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/ch_traj.png
--------------------------------------------------------------------------------
/examples/results/fico_global.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/fico_global.npy
--------------------------------------------------------------------------------
/examples/results/fico_global.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/fico_global.png
--------------------------------------------------------------------------------
/examples/results/fico_regu.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/fico_regu.png
--------------------------------------------------------------------------------
/examples/results/fico_traj.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/fico_traj.png
--------------------------------------------------------------------------------
/examples/results/s1_feature.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/s1_feature.png
--------------------------------------------------------------------------------
/examples/results/s1_global.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/s1_global.png
--------------------------------------------------------------------------------
/examples/results/s1_local.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/s1_local.png
--------------------------------------------------------------------------------
/examples/results/s1_regu_plot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/s1_regu_plot.png
--------------------------------------------------------------------------------
/examples/results/s1_traj_plot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/examples/results/s1_traj_plot.png
--------------------------------------------------------------------------------
/gaminet/__init__.py:
--------------------------------------------------------------------------------
1 | from .gaminet import GAMINet
2 |
3 | __all__ = ["GAMINet"]
4 |
5 | __version__ = '0.5.8'
6 | __author__ = 'Zebin Yang and Aijun Zhang'
7 |
--------------------------------------------------------------------------------
/gaminet/interpret.py:
--------------------------------------------------------------------------------
1 | # All the codes in this file are derived from interpret package by Microsoft Corporation
2 |
3 | # Distributed under the MIT software license
4 |
5 | import os
6 | import struct
7 | import numpy as np
8 | import ctypes as ct
9 | from sys import platform
10 | from numpy.ctypeslib import ndpointer
11 | from collections import OrderedDict
12 | from pandas.core.generic import NDFrame
13 | from sklearn.utils.validation import check_is_fitted
14 | from sklearn.base import BaseEstimator, TransformerMixin
15 | try:
16 | from pandas.api.types import is_numeric_dtype, is_string_dtype
17 | except ImportError: # pragma: no cover
18 | from pandas.core.dtypes.common import is_numeric_dtype, is_string_dtype
19 |
20 | def gen_attributes(col_types, col_n_bins):
21 | # Create Python form of attributes
22 | # Undocumented.
23 | attributes = [None] * len(col_types)
24 | for col_idx, _ in enumerate(attributes):
25 | attributes[col_idx] = {
26 | # NOTE: Ordinal only handled at native, override.
27 | # 'type': col_types[col_idx],
28 | "type": "continuous",
29 | # NOTE: Missing not implemented at native, always set to false.
30 | "has_missing": False,
31 | "n_bins": col_n_bins[col_idx],
32 | }
33 | return attributes
34 |
35 |
36 | def gen_attribute_sets(attribute_indices):
37 | attribute_sets = [None] * len(attribute_indices)
38 | for i, indices in enumerate(attribute_indices):
39 | attribute_set = {"n_attributes": len(indices), "attributes": indices}
40 | attribute_sets[i] = attribute_set
41 | return attribute_sets
42 |
43 |
44 | def autogen_schema(X, ordinal_max_items=2, feature_names=None, feature_types=None):
45 | """ Generates data schema for a given dataset as JSON representable.
46 | Args:
47 | X: Dataframe/ndarray to build schema from.
48 | ordinal_max_items: If a numeric column's cardinality
49 | is at most this integer,
50 | consider it as ordinal instead of continuous.
51 | feature_names: Feature names
52 | feature_types: Feature types
53 | Returns:
54 | A dictionary - schema that encapsulates column information,
55 | such as type and domain.
56 | """
57 | col_number = 0
58 | schema = OrderedDict()
59 | for idx, (name, col_dtype) in enumerate(zip(X.dtypes.index, X.dtypes)):
60 | schema[name] = {}
61 | if feature_types is not None:
62 | schema[name]["type"] = feature_types[idx]
63 | else:
64 | if is_numeric_dtype(col_dtype):
65 | if len(set(X[name])) > ordinal_max_items:
66 | schema[name]["type"] = "continuous"
67 | else:
68 | # TODO: Work with ordinal later.
69 | schema[name]["type"] = "categorical"
70 | # schema[name]['type'] = 'ordinal'
71 | # schema[name]['order'] = list(set(X[name]))
72 | elif is_string_dtype(col_dtype):
73 | schema[name]["type"] = "categorical"
74 | else: # pragma: no cover
75 | warnings.warn("Unknown column: " + name, RuntimeWarning)
76 | schema[name]["type"] = "unknown"
77 | schema[name]["column_number"] = col_number
78 | col_number += 1
79 | return schema
80 |
81 |
82 | class EBMPreprocessor(BaseEstimator, TransformerMixin):
83 | """ Transformer that preprocesses data to be ready before EBM. """
84 |
85 | def __init__(
86 | self,
87 | schema=None,
88 | max_n_bins=255,
89 | missing_constant=0,
90 | unknown_constant=0,
91 | feature_names=None,
92 | binning_strategy="uniform",
93 | ):
94 | """ Initializes EBM preprocessor.
95 | Args:
96 | schema: A dictionary that encapsulates column information,
97 | such as type and domain.
98 | max_n_bins: Max number of bins to process numeric features.
99 | missing_constant: Missing encoded as this constant.
100 | unknown_constant: Unknown encoded as this constant.
101 | feature_names: Feature names as list.
102 | binning_strategy: Strategy to compute bins according to density if "quantile" or equidistant if "uniform".
103 | """
104 | self.schema = schema
105 | self.max_n_bins = max_n_bins
106 | self.missing_constant = missing_constant
107 | self.unknown_constant = unknown_constant
108 | self.feature_names = feature_names
109 | self.binning_strategy = binning_strategy
110 |
111 | def fit(self, X):
112 | """ Fits transformer to provided instances.
113 | Args:
114 | X: Numpy array for training instances.
115 | Returns:
116 | Itself.
117 | """
118 | # self.col_bin_counts_ = {}
119 | self.col_bin_edges_ = {}
120 |
121 | self.hist_counts_ = {}
122 | self.hist_edges_ = {}
123 |
124 | self.col_mapping_ = {}
125 | self.col_mapping_counts_ = {}
126 |
127 | self.col_n_bins_ = {}
128 |
129 | self.col_names_ = []
130 | self.col_types_ = []
131 | self.has_fitted_ = False
132 |
133 | self.schema_ = (
134 | self.schema
135 | if self.schema is not None
136 | else autogen_schema(X, feature_names=self.feature_names)
137 | )
138 | schema = self.schema_
139 |
140 | for col_idx in range(X.shape[1]):
141 | col_name = list(schema.keys())[col_idx]
142 | self.col_names_.append(col_name)
143 |
144 | col_info = schema[col_name]
145 | assert col_info["column_number"] == col_idx
146 | col_data = X[:, col_idx]
147 |
148 | self.col_types_.append(col_info["type"])
149 | if col_info["type"] == "continuous":
150 | col_data = col_data.astype(float)
151 | col_data = col_data[~np.isnan(col_data)]
152 |
153 | iteration = 0
154 | uniq_vals = set()
155 | batch_size = 1000
156 | small_unival = True
157 | while True:
158 | start = iteration * batch_size
159 | end = (iteration + 1) * batch_size
160 | uniq_vals.update(set(col_data[start:end]))
161 | iteration += 1
162 | if len(uniq_vals) >= self.max_n_bins:
163 | small_unival = False
164 | break
165 | if end >= col_data.shape[0]:
166 | break
167 |
168 | if small_unival:
169 | bins = list(sorted(uniq_vals))
170 | else:
171 | if self.binning_strategy == "uniform":
172 | bins = self.max_n_bins
173 | elif self.binning_strategy == "quantile":
174 | bins = np.unique(
175 | np.quantile(
176 | col_data, q=np.linspace(0, 1, self.max_n_bins + 1)
177 | )
178 | )
179 | else:
180 | raise ValueError(
181 | "Unknown binning_strategy: '{}'.".format(
182 | self.binning_strategy
183 | )
184 | )
185 |
186 | _, bin_edges = np.histogram(col_data, bins=bins)
187 |
188 | # hist_counts, hist_edges = np.histogram(col_data, bins="doane")
189 | self.col_bin_edges_[col_idx] = bin_edges
190 |
191 | # self.hist_edges_[col_idx] = hist_edges
192 | # self.hist_counts_[col_idx] = hist_counts
193 | self.col_n_bins_[col_idx] = len(bin_edges)
194 | elif col_info["type"] == "ordinal":
195 | mapping = {val: indx for indx, val in enumerate(col_info["order"])}
196 | self.col_mapping_[col_idx] = mapping
197 | self.col_n_bins_[col_idx] = len(col_info["order"])
198 | elif col_info["type"] == "categorical":
199 | uniq_vals, counts = np.unique(col_data, return_counts=True)
200 |
201 | non_nan_index = ~np.isnan(counts)
202 | uniq_vals = uniq_vals[non_nan_index]
203 | counts = counts[non_nan_index]
204 |
205 | mapping = {val: indx for indx, val in enumerate(uniq_vals)}
206 | self.col_mapping_counts_[col_idx] = counts
207 | self.col_mapping_[col_idx] = mapping
208 |
209 | # TODO: Review NA as we don't support it yet.
210 | self.col_n_bins_[col_idx] = len(uniq_vals)
211 |
212 | self.has_fitted_ = True
213 | return self
214 |
215 | def transform(self, X):
216 | """ Transform on provided instances.
217 | Args:
218 | X: Numpy array for instances.
219 | Returns:
220 | Transformed numpy array.
221 | """
222 | check_is_fitted(self, "has_fitted_")
223 |
224 | schema = self.schema
225 | X_new = np.copy(X)
226 | for col_idx in range(X.shape[1]):
227 | col_info = schema[list(schema.keys())[col_idx]]
228 | assert col_info["column_number"] == col_idx
229 | col_data = X[:, col_idx]
230 | if col_info["type"] == "continuous":
231 | col_data = col_data.astype(float)
232 | bin_edges = self.col_bin_edges_[col_idx].copy()
233 |
234 | digitized = np.digitize(col_data, bin_edges, right=False)
235 | digitized[digitized == 0] = 1
236 | digitized -= 1
237 |
238 | # NOTE: NA handling done later.
239 | # digitized[np.isnan(col_data)] = self.missing_constant
240 | X_new[:, col_idx] = digitized
241 | elif col_info["type"] == "ordinal":
242 | mapping = self.col_mapping_[col_idx]
243 | mapping[np.nan] = self.missing_constant
244 | vec_map = np.vectorize(
245 | lambda x: mapping[x] if x in mapping else self.unknown_constant
246 | )
247 | X_new[:, col_idx] = vec_map(col_data)
248 | elif col_info["type"] == "categorical":
249 | mapping = self.col_mapping_[col_idx]
250 | mapping[np.nan] = self.missing_constant
251 | vec_map = np.vectorize(
252 | lambda x: mapping[x] if x in mapping else self.unknown_constant
253 | )
254 | X_new[:, col_idx] = vec_map(col_data)
255 |
256 | return X_new.astype(np.int64)
257 |
258 |
259 | class Native:
260 | """Layer/Class responsible for native function calls."""
261 |
262 | # enum FeatureType : int64_t
263 | # Ordinal = 0
264 | FeatureTypeOrdinal = 0
265 | # Nominal = 1
266 | FeatureTypeNominal = 1
267 |
268 | class EbmCoreFeature(ct.Structure):
269 | _fields_ = [
270 | # FeatureType featureType;
271 | ("featureType", ct.c_longlong),
272 | # int64_t hasMissing;
273 | ("hasMissing", ct.c_longlong),
274 | # int64_t countBins;
275 | ("countBins", ct.c_longlong),
276 | ]
277 |
278 | class EbmCoreFeatureCombination(ct.Structure):
279 | _fields_ = [
280 | # int64_t countFeaturesInCombination;
281 | ("countFeaturesInCombination", ct.c_longlong)
282 | ]
283 |
284 | LogFuncType = ct.CFUNCTYPE(None, ct.c_char, ct.c_char_p)
285 |
286 | # const signed char TraceLevelOff = 0;
287 | TraceLevelOff = 0
288 | # const signed char TraceLevelError = 1;
289 | TraceLevelError = 1
290 | # const signed char TraceLevelWarning = 2;
291 | TraceLevelWarning = 2
292 | # const signed char TraceLevelInfo = 3;
293 | TraceLevelInfo = 3
294 | # const signed char TraceLevelVerbose = 4;
295 | TraceLevelVerbose = 4
296 |
297 | def __init__(self):
298 |
299 | self.lib = ct.cdll.LoadLibrary(self.get_ebm_lib_path())
300 | self.harden_function_signatures()
301 |
302 | def harden_function_signatures(self):
303 | """ Adds types to function signatures. """
304 |
305 | self.lib.InitializeInteractionClassification.argtypes = [
306 | # int64_t countFeatures
307 | ct.c_longlong,
308 | # EbmCoreFeature * features
309 | ct.POINTER(self.EbmCoreFeature),
310 | # int64_t countTargetClasses
311 | ct.c_longlong,
312 | # int64_t countInstances
313 | ct.c_longlong,
314 | # int64_t * targets
315 | ndpointer(dtype=ct.c_longlong, flags="F_CONTIGUOUS", ndim=1),
316 | # int64_t * binnedData
317 | ndpointer(dtype=ct.c_longlong, flags="F_CONTIGUOUS", ndim=2),
318 | # double * predictorScores
319 | ndpointer(dtype=ct.c_double, flags="F_CONTIGUOUS", ndim=1),
320 | ]
321 | self.lib.InitializeInteractionClassification.restype = ct.c_void_p
322 |
323 | self.lib.InitializeInteractionRegression.argtypes = [
324 | # int64_t countFeatures
325 | ct.c_longlong,
326 | # EbmCoreFeature * features
327 | ct.POINTER(self.EbmCoreFeature),
328 | # int64_t countInstances
329 | ct.c_longlong,
330 | # double * targets
331 | ndpointer(dtype=ct.c_double, flags="F_CONTIGUOUS", ndim=1),
332 | # int64_t * binnedData
333 | ndpointer(dtype=ct.c_longlong, flags="F_CONTIGUOUS", ndim=2),
334 | # double * predictorScores
335 | ndpointer(dtype=ct.c_double, flags="F_CONTIGUOUS", ndim=1),
336 | ]
337 | self.lib.InitializeInteractionRegression.restype = ct.c_void_p
338 |
339 | self.lib.GetInteractionScore.argtypes = [
340 | # void * ebmInteraction
341 | ct.c_void_p,
342 | # int64_t countFeaturesInCombination
343 | ct.c_longlong,
344 | # int64_t * featureIndexes
345 | ndpointer(dtype=ct.c_longlong, flags="F_CONTIGUOUS", ndim=1),
346 | # double * interactionScoreReturn
347 | ct.POINTER(ct.c_double),
348 | ]
349 | self.lib.GetInteractionScore.restype = ct.c_longlong
350 |
351 | self.lib.FreeInteraction.argtypes = [
352 | # void * ebmInteraction
353 | ct.c_void_p
354 | ]
355 |
356 | def get_ebm_lib_path(self):
357 | """ Returns filepath of core EBM library.
358 | Returns:
359 | A string representing filepath.
360 | """
361 | bitsize = struct.calcsize("P") * 8
362 | is_64_bit = bitsize == 64
363 |
364 | script_path = os.path.dirname(os.path.abspath(__file__))
365 | package_path = script_path # os.path.join(script_path, "..", "..")
366 |
367 | debug_str = ""
368 | if platform == "linux" or platform == "linux2" and is_64_bit:
369 | return os.path.join(
370 | package_path, "lib", "lib_ebmcore_linux_x64{0}.so".format(debug_str)
371 | )
372 | elif platform == "win32" and is_64_bit:
373 | return os.path.join(
374 | package_path, "lib", "lib_ebmcore_win_x64{0}.dll".format(debug_str)
375 | )
376 | elif platform == "darwin" and is_64_bit:
377 | return os.path.join(
378 | package_path, "lib", "lib_ebmcore_mac_x64{0}.dylib".format(debug_str)
379 | )
380 | else:
381 | msg = "Platform {0} at {1} bit not supported for EBM".format(
382 | platform, bitsize
383 | )
384 | raise Exception(msg)
385 |
386 |
387 | class NativeEBM:
388 | """Lightweight wrapper for EBM C code.
389 | """
390 |
391 | def __init__(
392 | self,
393 | attributes,
394 | attribute_sets,
395 | X_train,
396 | y_train,
397 | X_val,
398 | y_val,
399 | model_type="regression",
400 | num_inner_bags=0,
401 | num_classification_states=2,
402 | training_scores=None,
403 | validation_scores=None,
404 | random_state=1337,
405 | ):
406 |
407 | # TODO: Update documentation for training/val scores args.
408 | """ Initializes internal wrapper for EBM C code.
409 | Args:
410 | attributes: List of attributes represented individually as
411 | dictionary of keys ('type', 'has_missing', 'n_bins').
412 | attribute_sets: List of attribute sets represented as
413 | a dictionary of keys ('n_attributes', 'attributes')
414 | X_train: Training design matrix as 2-D ndarray.
415 | y_train: Training response as 1-D ndarray.
416 | X_val: Validation design matrix as 2-D ndarray.
417 | y_val: Validation response as 1-D ndarray.
418 | model_type: 'regression'/'classification'.
419 | num_inner_bags: Per feature training step, number of inner bags.
420 | num_classification_states: Specific to classification,
421 | number of unique classes.
422 | training_scores: Undocumented.
423 | validation_scores: Undocumented.
424 | random_state: Random seed as integer.
425 | """
426 | if not hasattr(self, "native"):
427 | self.native = Native()
428 |
429 | # Store args
430 | self.attributes = attributes
431 | self.attribute_sets = attribute_sets
432 | self.attribute_array, self.attribute_sets_array, self.attribute_set_indexes = self._convert_attribute_info_to_c(
433 | attributes, attribute_sets
434 | )
435 |
436 | self.X_train = X_train
437 | self.y_train = y_train
438 | self.X_val = X_val
439 | self.y_val = y_val
440 | self.model_type = model_type
441 | self.num_inner_bags = num_inner_bags
442 | self.num_classification_states = num_classification_states
443 |
444 | # # Set train/val scores to zeros if not passed.
445 | # if isinstance(intercept, numbers.Number) or len(intercept) == 1:
446 | # score_vector = np.zeros(X.shape[0])
447 | # else:
448 | # score_vector = np.zeros((X.shape[0], len(intercept)))
449 |
450 | self.training_scores = training_scores
451 | self.validation_scores = validation_scores
452 | if self.training_scores is None:
453 | if self.num_classification_states > 2:
454 | self.training_scores = np.zeros(
455 | (X_train.shape[0], self.num_classification_states)
456 | ).reshape(-1)
457 | else:
458 | self.training_scores = np.zeros(X_train.shape[0])
459 | if self.validation_scores is None:
460 | if self.num_classification_states > 2:
461 | self.validation_scores = np.zeros(
462 | (X_train.shape[0], self.num_classification_states)
463 | ).reshape(-1)
464 | else:
465 | self.validation_scores = np.zeros(X_train.shape[0])
466 | self.random_state = random_state
467 |
468 | # Convert n-dim arrays ready for C.
469 | self.X_train_f = np.asfortranarray(self.X_train)
470 | self.X_val_f = np.asfortranarray(self.X_val)
471 |
472 | # Define extra properties
473 | self.model_pointer = None
474 | self.interaction_pointer = None
475 |
476 | # Allocate external resources
477 | if self.model_type == "regression":
478 | self.y_train = self.y_train.astype("float64")
479 | self.y_val = self.y_val.astype("float64")
480 | self._initialize_interaction_regression()
481 | elif self.model_type == "classification":
482 | self.y_train = self.y_train.astype("int64")
483 | self.y_val = self.y_val.astype("int64")
484 | self._initialize_interaction_classification()
485 |
486 | def _convert_attribute_info_to_c(self, attributes, attribute_sets):
487 | # Create C form of attributes
488 | attribute_ar = (self.native.EbmCoreFeature * len(attributes))()
489 | for idx, attribute in enumerate(attributes):
490 | if attribute["type"] == "categorical":
491 | attribute_ar[idx].featureType = self.native.FeatureTypeNominal
492 | else:
493 | attribute_ar[idx].featureType = self.native.FeatureTypeOrdinal
494 | attribute_ar[idx].hasMissing = 1 * attribute["has_missing"]
495 | attribute_ar[idx].countBins = attribute["n_bins"]
496 |
497 | attribute_set_indexes = []
498 | attribute_sets_ar = (
499 | self.native.EbmCoreFeatureCombination * len(attribute_sets)
500 | )()
501 | for idx, attribute_set in enumerate(attribute_sets):
502 | attribute_sets_ar[idx].countFeaturesInCombination = attribute_set[
503 | "n_attributes"
504 | ]
505 |
506 | for attr_idx in attribute_set["attributes"]:
507 | attribute_set_indexes.append(attr_idx)
508 |
509 | attribute_set_indexes = np.array(attribute_set_indexes, dtype="int64")
510 |
511 | return attribute_ar, attribute_sets_ar, attribute_set_indexes
512 |
513 | def _initialize_interaction_regression(self):
514 | self.interaction_pointer = self.native.lib.InitializeInteractionRegression(
515 | len(self.attribute_array),
516 | self.attribute_array,
517 | self.X_train.shape[0],
518 | self.y_train,
519 | self.X_train_f,
520 | self.training_scores,
521 | )
522 |
523 | def _initialize_interaction_classification(self):
524 | self.interaction_pointer = self.native.lib.InitializeInteractionClassification(
525 | len(self.attribute_array),
526 | self.attribute_array,
527 | self.num_classification_states,
528 | self.X_train.shape[0],
529 | self.y_train,
530 | self.X_train_f,
531 | self.training_scores,
532 | )
533 |
534 | def close(self):
535 | """ Deallocates C objects used to train EBM. """
536 | self.native.lib.FreeInteraction(self.interaction_pointer)
537 |
538 | def fast_interaction_score(self, attribute_index_tuple):
539 | """ Provides score for an attribute interaction. Higher is better."""
540 | score = ct.c_double(0.0)
541 | self.native.lib.GetInteractionScore(
542 | self.interaction_pointer,
543 | len(attribute_index_tuple),
544 | np.array(attribute_index_tuple, dtype=np.int64),
545 | ct.byref(score),
546 | )
547 | return score.value
548 |
--------------------------------------------------------------------------------
/gaminet/layers.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import tensorflow as tf
3 | import tensorflow_lattice as tfl
4 | from tensorflow.keras import layers
5 |
6 |
7 | class CategNet(tf.keras.layers.Layer):
8 |
9 | def __init__(self, category_num, cagetnet_id):
10 | super(CategNet, self).__init__()
11 | self.category_num = category_num
12 | self.cagetnet_id = cagetnet_id
13 |
14 | self.output_layer_bias = self.add_weight(name="output_layer_bias_" + str(self.cagetnet_id),
15 | shape=[1, 1],
16 | initializer=tf.zeros_initializer(),
17 | trainable=False)
18 | self.categ_bias = self.add_weight(name="cate_bias_" + str(self.cagetnet_id),
19 | shape=[self.category_num, 1],
20 | initializer=tf.zeros_initializer(),
21 | trainable=True)
22 | self.moving_mean = self.add_weight(name="mean" + str(self.cagetnet_id), shape=[1],
23 | initializer=tf.zeros_initializer(), trainable=False)
24 | self.moving_norm = self.add_weight(name="norm" + str(self.cagetnet_id), shape=[1],
25 | initializer=tf.ones_initializer(), trainable=False)
26 |
27 | def call(self, inputs, sample_weight=None, training=False):
28 |
29 | dummy = tf.one_hot(indices=tf.cast(inputs[:, 0], tf.int32), depth=self.category_num)
30 | self.output_original = tf.matmul(dummy, self.categ_bias) + self.output_layer_bias
31 |
32 | if training:
33 | if sample_weight is None:
34 | if inputs.shape[0] is not None:
35 | sample_weight = tf.ones([inputs.shape[0], 1])
36 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
37 | frequency_weights=sample_weight, axes=0)
38 | else:
39 | sample_weight = tf.reshape(sample_weight, shape=(-1, 1))
40 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
41 | frequency_weights=sample_weight, axes=0)
42 | self.moving_mean.assign(self.subnet_mean)
43 | self.moving_norm.assign(self.subnet_norm)
44 | else:
45 | self.subnet_mean = self.moving_mean
46 | self.subnet_norm = self.moving_norm
47 |
48 | output = self.output_original
49 | return output
50 |
51 |
52 | class NumerNet(tf.keras.layers.Layer):
53 |
54 | def __init__(self, subnet_arch, activation_func, subnet_id):
55 | super(NumerNet, self).__init__()
56 | self.layers = []
57 | self.subnet_arch = subnet_arch
58 | self.activation_func = activation_func
59 | self.subnet_id = subnet_id
60 |
61 | for nodes in self.subnet_arch:
62 | self.layers.append(layers.Dense(nodes, activation=self.activation_func, kernel_initializer=tf.keras.initializers.Orthogonal()))
63 | self.output_layer = layers.Dense(1, activation=tf.identity, kernel_initializer=tf.keras.initializers.Orthogonal())
64 |
65 | self.min_value = self.add_weight(name="min" + str(self.subnet_id), shape=[1], initializer=tf.constant_initializer(np.inf), trainable=False)
66 | self.max_value = self.add_weight(name="max" + str(self.subnet_id), shape=[1], initializer=tf.constant_initializer(-np.inf), trainable=False)
67 | self.moving_mean = self.add_weight(name="mean" + str(self.subnet_id), shape=[1], initializer=tf.zeros_initializer(), trainable=False)
68 | self.moving_norm = self.add_weight(name="norm" + str(self.subnet_id), shape=[1], initializer=tf.ones_initializer(), trainable=False)
69 |
70 | def call(self, inputs, sample_weight=None, training=False):
71 |
72 | if training:
73 | self.min_value.assign(tf.minimum(self.min_value, tf.reduce_min(inputs)))
74 | self.max_value.assign(tf.maximum(self.max_value, tf.reduce_max(inputs)))
75 |
76 | x = tf.clip_by_value(inputs, self.min_value, self.max_value)
77 | for dense_layer in self.layers:
78 | x = dense_layer(x)
79 | self.output_original = self.output_layer(x)
80 |
81 | if training:
82 | if sample_weight is None:
83 | if inputs.shape[0] is not None:
84 | sample_weight = tf.ones([inputs.shape[0], 1])
85 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
86 | frequency_weights=sample_weight, axes=0)
87 | else:
88 | sample_weight = tf.reshape(sample_weight, shape=(-1, 1))
89 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
90 | frequency_weights=sample_weight, axes=0)
91 | self.moving_mean.assign(self.subnet_mean)
92 | self.moving_norm.assign(self.subnet_norm)
93 | else:
94 | self.subnet_mean = self.moving_mean
95 | self.subnet_norm = self.moving_norm
96 |
97 | output = self.output_original
98 | return output
99 |
100 |
101 | class MonoConNumerNet(tf.keras.layers.Layer):
102 |
103 | def __init__(self, monotonicity, convexity, lattice_size, subnet_id):
104 | super(MonoConNumerNet, self).__init__()
105 |
106 | self.subnet_id = subnet_id
107 | self.monotonicity = monotonicity
108 | self.convexity = convexity
109 | self.lattice_size = lattice_size
110 | self.lattice_layer = tfl.layers.Lattice(lattice_sizes=[self.lattice_size], monotonicities=['increasing'])
111 |
112 | self.lattice_layer_input = tfl.layers.PWLCalibration(input_keypoints=np.linspace(0, 1, num=8, dtype=np.float32),
113 | output_min=0.0, output_max=self.lattice_size - 1.0)
114 | if monotonicity:
115 | self.lattice_layer_input.monotonicity = monotonicity
116 | if convexity:
117 | self.lattice_layer_input.convexity = convexity
118 | self.lattice_layer_bias = self.add_weight(name="lattice_layer_bias_" + str(self.subnet_id), shape=[1],
119 | initializer=tf.zeros_initializer(), trainable=False)
120 |
121 | self.min_value = self.add_weight(name="min" + str(self.subnet_id), shape=[1], initializer=tf.constant_initializer(np.inf), trainable=False)
122 | self.max_value = self.add_weight(name="max" + str(self.subnet_id), shape=[1], initializer=tf.constant_initializer(-np.inf), trainable=False)
123 | self.moving_mean = self.add_weight(name="mean" + str(self.subnet_id), shape=[1], initializer=tf.zeros_initializer(), trainable=False)
124 | self.moving_norm = self.add_weight(name="norm" + str(self.subnet_id), shape=[1], initializer=tf.ones_initializer(), trainable=False)
125 |
126 | def call(self, inputs, sample_weight=None, training=False):
127 |
128 | if training:
129 | self.min_value.assign(tf.minimum(self.min_value, tf.reduce_min(inputs)))
130 | self.max_value.assign(tf.maximum(self.max_value, tf.reduce_max(inputs)))
131 |
132 | x = tf.clip_by_value(inputs, self.min_value, self.max_value)
133 | lattice_input = self.lattice_layer_input(x)
134 | self.output_original = self.lattice_layer(lattice_input) + self.lattice_layer_bias
135 |
136 | if training:
137 | if sample_weight is None:
138 | if inputs.shape[0] is not None:
139 | sample_weight = tf.ones([inputs.shape[0], 1])
140 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
141 | frequency_weights=sample_weight, axes=0)
142 | else:
143 | sample_weight = tf.reshape(sample_weight, shape=(-1, 1))
144 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
145 | frequency_weights=sample_weight, axes=0)
146 | self.moving_mean.assign(self.subnet_mean)
147 | self.moving_norm.assign(self.subnet_norm)
148 | else:
149 | self.subnet_mean = self.moving_mean
150 | self.subnet_norm = self.moving_norm
151 |
152 | output = self.output_original
153 | return output
154 |
155 |
156 | class MainEffectBlock(tf.keras.layers.Layer):
157 |
158 | def __init__(self, feature_list, nfeature_index_list, cfeature_index_list, dummy_values,
159 | subnet_arch, activation_func, mono_increasing_list, mono_decreasing_list, convex_list, concave_list, lattice_size):
160 | super(MainEffectBlock, self).__init__()
161 |
162 | self.subnet_arch = subnet_arch
163 | self.lattice_size = lattice_size
164 | self.activation_func = activation_func
165 |
166 | self.dummy_values = dummy_values
167 | self.feature_list = feature_list
168 | self.subnet_num = len(feature_list)
169 | self.nfeature_index_list = nfeature_index_list
170 | self.cfeature_index_list = cfeature_index_list
171 | self.mono_increasing_list = mono_increasing_list
172 | self.mono_decreasing_list = mono_decreasing_list
173 | self.convex_list = convex_list
174 | self.concave_list = concave_list
175 |
176 | self.subnets = []
177 | for i in range(self.subnet_num):
178 | if i in self.nfeature_index_list:
179 | convexity = None
180 | monotonicity = None
181 | if i in self.mono_increasing_list:
182 | monotonicity = "increasing"
183 | elif i in self.mono_decreasing_list:
184 | monotonicity = "decreasing"
185 | if i in self.convex_list:
186 | convexity = "convex"
187 | elif i in self.concave_list:
188 | convexity = "concave"
189 | if monotonicity or convexity:
190 | self.subnets.append(MonoConNumerNet(monotonicity, convexity, self.lattice_size, subnet_id=i))
191 | else:
192 | self.subnets.append(NumerNet(self.subnet_arch, self.activation_func, subnet_id=i))
193 | elif i in self.cfeature_index_list:
194 | feature_name = self.feature_list[i]
195 | self.subnets.append(CategNet(category_num=len(self.dummy_values[feature_name]), cagetnet_id=i))
196 |
197 | def call(self, inputs, sample_weight=None, training=False):
198 |
199 | self.subnet_outputs = []
200 | for i in range(self.subnet_num):
201 | subnet = self.subnets[i]
202 | subnet_output = subnet(tf.gather(inputs, [i], axis=1), sample_weight=sample_weight, training=training)
203 | self.subnet_outputs.append(subnet_output)
204 | output = tf.reshape(tf.squeeze(tf.stack(self.subnet_outputs, 1)), [-1, self.subnet_num])
205 |
206 | return output
207 |
208 |
209 | class Interactnetwork(tf.keras.layers.Layer):
210 |
211 | def __init__(self, feature_list, cfeature_index_list, dummy_values, interact_arch,
212 | activation_func, interact_id):
213 | super(Interactnetwork, self).__init__()
214 |
215 | self.feature_list = feature_list
216 | self.dummy_values = dummy_values
217 | self.cfeature_index_list = cfeature_index_list
218 |
219 | self.layers = []
220 | self.interact_arch = interact_arch
221 | self.activation_func = activation_func
222 | self.interact_id = interact_id
223 | self.interaction = None
224 |
225 | def set_interaction(self, interaction):
226 |
227 | self.interaction = interaction
228 | for nodes in self.interact_arch:
229 | self.layers.append(layers.Dense(nodes, activation=self.activation_func, kernel_initializer=tf.keras.initializers.Orthogonal()))
230 | self.output_layer = layers.Dense(1, activation=tf.identity, kernel_initializer=tf.keras.initializers.Orthogonal())
231 |
232 | self.min_value1 = self.add_weight(name="min1" + str(self.interact_id), shape=[1],
233 | initializer=tf.constant_initializer(np.inf), trainable=False)
234 | self.max_value1 = self.add_weight(name="max1" + str(self.interact_id), shape=[1],
235 | initializer=tf.constant_initializer(-np.inf), trainable=False)
236 | self.min_value2 = self.add_weight(name="min2" + str(self.interact_id), shape=[1],
237 | initializer=tf.constant_initializer(np.inf), trainable=False)
238 | self.max_value2 = self.add_weight(name="max2" + str(self.interact_id), shape=[1],
239 | initializer=tf.constant_initializer(-np.inf), trainable=False)
240 |
241 | self.moving_mean = self.add_weight(name="mean_" + str(self.interact_id),
242 | shape=[1], initializer=tf.zeros_initializer(), trainable=False)
243 | self.moving_norm = self.add_weight(name="norm_" + str(self.interact_id),
244 | shape=[1], initializer=tf.ones_initializer(), trainable=False)
245 |
246 | def preprocessing(self, inputs):
247 |
248 | interact_input_list = []
249 | if self.interaction[0] in self.cfeature_index_list:
250 | interact_input1 = tf.one_hot(indices=tf.cast(inputs[:, 0], tf.int32),
251 | depth=len(self.dummy_values[self.feature_list[self.interaction[0]]]))
252 | interact_input_list.extend(tf.unstack(interact_input1, axis=-1))
253 | else:
254 | interact_input_list.append(tf.clip_by_value(inputs[:, 0], self.min_value1, self.max_value1))
255 | if self.interaction[1] in self.cfeature_index_list:
256 | interact_input2 = tf.one_hot(indices=tf.cast(inputs[:, 1], tf.int32),
257 | depth=len(self.dummy_values[self.feature_list[self.interaction[1]]]))
258 | interact_input_list.extend(tf.unstack(interact_input2, axis=-1))
259 | else:
260 | interact_input_list.append(tf.clip_by_value(inputs[:, 1], self.min_value2, self.max_value2))
261 | return interact_input_list
262 |
263 | def call(self, inputs, sample_weight=None, training=False):
264 |
265 | if training:
266 | self.min_value1.assign(tf.minimum(self.min_value1, tf.reduce_min(inputs[:, 0])))
267 | self.max_value1.assign(tf.maximum(self.max_value1, tf.reduce_max(inputs[:, 0])))
268 | self.min_value2.assign(tf.minimum(self.min_value2, tf.reduce_min(inputs[:, 1])))
269 | self.max_value2.assign(tf.maximum(self.max_value2, tf.reduce_max(inputs[:, 1])))
270 |
271 | x = tf.stack(self.preprocessing(inputs), 1)
272 | for dense_layer in self.layers:
273 | x = dense_layer(x)
274 | self.output_original = self.output_layer(x)
275 |
276 | if training:
277 | if sample_weight is None:
278 | if inputs.shape[0] is not None:
279 | sample_weight = tf.ones([inputs.shape[0], 1])
280 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
281 | frequency_weights=sample_weight, axes=0)
282 | else:
283 | sample_weight = tf.reshape(sample_weight, shape=(-1, 1))
284 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
285 | frequency_weights=sample_weight, axes=0)
286 | self.moving_mean.assign(self.subnet_mean)
287 | self.moving_norm.assign(self.subnet_norm)
288 | else:
289 | self.subnet_mean = self.moving_mean
290 | self.subnet_norm = self.moving_norm
291 |
292 | output = self.output_original
293 | return output
294 |
295 |
296 | class MonoConInteractnetwork(tf.keras.layers.Layer):
297 |
298 | def __init__(self, feature_list, cfeature_index_list, dummy_values, lattice_size, monotonicity, convexity, interact_id):
299 | super(MonoConInteractnetwork, self).__init__()
300 |
301 | self.feature_list = feature_list
302 | self.dummy_values = dummy_values
303 | self.cfeature_index_list = cfeature_index_list
304 |
305 | self.monotonicity = monotonicity
306 | self.convexity = convexity
307 | self.lattice_size = lattice_size
308 | self.interact_id = interact_id
309 | self.interaction = None
310 |
311 | def set_interaction(self, interaction):
312 |
313 | self.interaction = interaction
314 | if self.interaction[0] in self.cfeature_index_list:
315 | depth = len(self.dummy_values[self.feature_list[self.interaction[0]]])
316 | self.lattice_layer_input1 = tfl.layers.CategoricalCalibration(num_buckets=depth, output_min=0.0, output_max=1.0)
317 | else:
318 | self.lattice_layer_input1 = tfl.layers.PWLCalibration(input_keypoints=np.linspace(0, 1, num=8, dtype=np.float32),
319 | output_min=0.0, output_max=self.lattice_size[0] - 1.0)
320 | if self.monotonicity[0]:
321 | self.lattice_layer_input1.monotonicity = self.monotonicity[0]
322 | if self.convexity[0]:
323 | self.lattice_layer_input1.convexity = self.convexity[0]
324 |
325 | if self.interaction[1] in self.cfeature_index_list:
326 | depth = len(self.dummy_values[self.feature_list[self.interaction[1]]])
327 | self.lattice_layer_input2 = tfl.layers.CategoricalCalibration(num_buckets=depth, output_min=0.0, output_max=1.0)
328 | else:
329 | self.lattice_layer_input2 = tfl.layers.PWLCalibration(input_keypoints=np.linspace(0, 1, num=8, dtype=np.float32),
330 | output_min=0.0, output_max=self.lattice_size[1] - 1.0)
331 | if self.monotonicity[1]:
332 | self.lattice_layer_input2.monotonicity = self.monotonicity[1]
333 | if self.convexity[1]:
334 | self.lattice_layer_input2.convexity = self.convexity[1]
335 |
336 | self.lattice_layer2d = tfl.layers.Lattice(lattice_sizes=self.lattice_size, monotonicities=['increasing', 'increasing'])
337 | self.lattice_layer_bias = self.add_weight(name="lattice_layer2d_bias_" + str(self.interact_id), shape=[1],
338 | initializer=tf.zeros_initializer(), trainable=False)
339 |
340 | self.min_value1 = self.add_weight(name="min1" + str(self.interact_id), shape=[1],
341 | initializer=tf.constant_initializer(np.inf), trainable=False)
342 | self.max_value1 = self.add_weight(name="max1" + str(self.interact_id), shape=[1],
343 | initializer=tf.constant_initializer(-np.inf), trainable=False)
344 | self.min_value2 = self.add_weight(name="min2" + str(self.interact_id), shape=[1],
345 | initializer=tf.constant_initializer(np.inf), trainable=False)
346 | self.max_value2 = self.add_weight(name="max2" + str(self.interact_id), shape=[1],
347 | initializer=tf.constant_initializer(-np.inf), trainable=False)
348 |
349 | self.moving_mean = self.add_weight(name="mean_" + str(self.interact_id),
350 | shape=[1], initializer=tf.zeros_initializer(), trainable=False)
351 | self.moving_norm = self.add_weight(name="norm_" + str(self.interact_id),
352 | shape=[1], initializer=tf.ones_initializer(), trainable=False)
353 |
354 | def preprocessing(self, inputs):
355 |
356 | interact_input_list = []
357 | if self.interaction[0] in self.cfeature_index_list:
358 | interact_input_list.append(tf.reshape(inputs[:, 0], (-1, 1)))
359 | else:
360 | interact_input_list.append(tf.reshape(tf.clip_by_value(inputs[:, 0], self.min_value1, self.max_value1), (-1, 1)))
361 | if self.interaction[1] in self.cfeature_index_list:
362 | interact_input_list.append(tf.reshape(inputs[:, 1], (-1, 1)))
363 | else:
364 | interact_input_list.append(tf.reshape(tf.clip_by_value(inputs[:, 1], self.min_value2, self.max_value2), (-1, 1)))
365 | return interact_input_list
366 |
367 | def call(self, inputs, sample_weight=None, training=False):
368 |
369 | if training:
370 | self.min_value1.assign(tf.minimum(self.min_value1, tf.reduce_min(inputs[:, 0])))
371 | self.max_value1.assign(tf.maximum(self.max_value1, tf.reduce_max(inputs[:, 0])))
372 | self.min_value2.assign(tf.minimum(self.min_value2, tf.reduce_min(inputs[:, 1])))
373 | self.max_value2.assign(tf.maximum(self.max_value2, tf.reduce_max(inputs[:, 1])))
374 |
375 | x = self.preprocessing(inputs)
376 | lattice_input2d = tf.keras.layers.Concatenate(axis=1)([self.lattice_layer_input1(x[0]), self.lattice_layer_input2(x[1])])
377 | self.output_original = self.lattice_layer2d(lattice_input2d) + self.lattice_layer_bias
378 |
379 | if training:
380 | if sample_weight is None:
381 | if inputs.shape[0] is not None:
382 | sample_weight = tf.ones([inputs.shape[0], 1])
383 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
384 | frequency_weights=sample_weight, axes=0)
385 | else:
386 | sample_weight = tf.reshape(sample_weight, shape=(-1, 1))
387 | self.subnet_mean, self.subnet_norm = tf.nn.weighted_moments(self.output_original,
388 | frequency_weights=sample_weight, axes=0)
389 | self.moving_mean.assign(self.subnet_mean)
390 | self.moving_norm.assign(self.subnet_norm)
391 | else:
392 | self.subnet_mean = self.moving_mean
393 | self.subnet_norm = self.moving_norm
394 |
395 | output = self.output_original
396 | return output
397 |
398 |
399 | class InteractionBlock(tf.keras.layers.Layer):
400 |
401 | def __init__(self, interact_num, feature_list, cfeature_index_list, dummy_values,
402 | interact_arch, activation_func, mono_increasing_list, mono_decreasing_list, convex_list, concave_list, lattice_size):
403 |
404 | super(InteractionBlock, self).__init__()
405 |
406 | self.feature_list = feature_list
407 | self.dummy_values = dummy_values
408 | self.cfeature_index_list = cfeature_index_list
409 |
410 | self.interact_num_added = 0
411 | self.interact_num = interact_num
412 | self.interact_arch = interact_arch
413 | self.activation_func = activation_func
414 | self.lattice_size = lattice_size
415 | self.mono_increasing_list = mono_increasing_list
416 | self.mono_decreasing_list = mono_decreasing_list
417 | self.mono_list = mono_increasing_list + mono_decreasing_list
418 | self.convex_list = convex_list
419 | self.concave_list = concave_list
420 | self.con_list = convex_list + concave_list
421 |
422 | def set_interaction_list(self, interaction_list):
423 |
424 | self.interacts = []
425 | self.interaction_list = interaction_list
426 | self.interact_num_added = len(interaction_list)
427 | for i in range(self.interact_num_added):
428 | if (interaction_list[i][0] in self.mono_list + self.con_list) or (interaction_list[i][1] in self.mono_list + self.con_list):
429 | lattice_size = [2, 2]
430 | convexity = [None, None]
431 | monotonicity = [None, None]
432 | if interaction_list[i][0] in self.mono_increasing_list:
433 | monotonicity[0] = "increasing"
434 | lattice_size[0] = self.lattice_size
435 | elif interaction_list[i][0] in self.mono_decreasing_list:
436 | monotonicity[0] = "decreasing"
437 | lattice_size[0] = self.lattice_size
438 | if interaction_list[i][0] in self.convex_list:
439 | convexity[0] = "convex"
440 | lattice_size[0] = self.lattice_size
441 | elif interaction_list[i][0] in self.concave_list:
442 | convexity[0] = "concave"
443 | lattice_size[0] = self.lattice_size
444 |
445 | if interaction_list[i][1] in self.mono_increasing_list:
446 | monotonicity[1] = "increasing"
447 | lattice_size[1] = self.lattice_size
448 | elif interaction_list[i][1] in self.mono_decreasing_list:
449 | monotonicity[1] = "decreasing"
450 | lattice_size[1] = self.lattice_size
451 | if interaction_list[i][1] in self.convex_list:
452 | convexity[1] = "convex"
453 | lattice_size[1] = self.lattice_size
454 | elif interaction_list[i][1] in self.concave_list:
455 | convexity[1] = "concave"
456 | lattice_size[1] = self.lattice_size
457 |
458 | interact = MonoConInteractnetwork(self.feature_list,
459 | self.cfeature_index_list,
460 | self.dummy_values,
461 | monotonicity=monotonicity,
462 | convexity=convexity,
463 | lattice_size=lattice_size,
464 | interact_id=i)
465 | else:
466 | interact = Interactnetwork(self.feature_list,
467 | self.cfeature_index_list,
468 | self.dummy_values,
469 | self.interact_arch,
470 | self.activation_func,
471 | interact_id=i)
472 | interact.set_interaction(interaction_list[i])
473 | self.interacts.append(interact)
474 |
475 | def call(self, inputs, sample_weight=None, training=False):
476 |
477 | self.interact_outputs = []
478 | for i in range(self.interact_num):
479 | if i >= self.interact_num_added:
480 | self.interact_outputs.append(tf.zeros([inputs.shape[0], 1]))
481 | else:
482 | interact = self.interacts[i]
483 | interact_input = tf.gather(inputs, self.interaction_list[i], axis=1)
484 | interact_output = interact(interact_input, sample_weight=sample_weight, training=training)
485 | self.interact_outputs.append(interact_output)
486 |
487 | if len(self.interact_outputs) > 0:
488 | output = tf.reshape(tf.squeeze(tf.stack(self.interact_outputs, 1)), [-1, self.interact_num])
489 | else:
490 | output = 0
491 | return output
492 |
493 |
494 | class NonNegative(tf.keras.constraints.Constraint):
495 |
496 | def __init__(self, mono_increasing_list, mono_decreasing_list, convex_list, concave_list):
497 |
498 | self.mono_increasing_list = mono_increasing_list
499 | self.mono_decreasing_list = mono_decreasing_list
500 | self.convex_list = convex_list
501 | self.concave_list = concave_list
502 |
503 | def __call__(self, w):
504 |
505 | if len(self.mono_increasing_list) > 0:
506 | mono_increasing_weights = tf.abs(tf.gather(w, self.mono_increasing_list))
507 | w = tf.tensor_scatter_nd_update(w, [[item] for item in self.mono_increasing_list], mono_increasing_weights)
508 | if len(self.mono_decreasing_list) > 0:
509 | mono_decreasing_weights = tf.abs(tf.gather(w, self.mono_decreasing_list))
510 | w = tf.tensor_scatter_nd_update(w, [[item] for item in self.mono_decreasing_list], mono_decreasing_weights)
511 | if len(self.convex_list) > 0:
512 | convex_weights = tf.abs(tf.gather(w, self.convex_list))
513 | w = tf.tensor_scatter_nd_update(w, [[item] for item in self.convex_list], convex_weights)
514 | if len(self.concave_list) > 0:
515 | concave_weights = tf.abs(tf.gather(w, self.concave_list))
516 | w = tf.tensor_scatter_nd_update(w, [[item] for item in self.concave_list], concave_weights)
517 | return w
518 |
519 | class OutputLayer(tf.keras.layers.Layer):
520 |
521 | def __init__(self, input_num, interact_num, mono_increasing_list, mono_decreasing_list, convex_list, concave_list):
522 |
523 | super(OutputLayer, self).__init__()
524 |
525 | self.interaction = []
526 | self.input_num = input_num
527 | self.interact_num_added = 0
528 | self.interact_num = interact_num
529 | self.mono_increasing_list = mono_increasing_list
530 | self.mono_decreasing_list = mono_decreasing_list
531 | self.convex_list = convex_list
532 | self.concave_list = concave_list
533 |
534 | self.main_effect_weights = self.add_weight(name="subnet_weights",
535 | shape=[self.input_num, 1],
536 | initializer=tf.keras.initializers.Orthogonal(),
537 | constraint=NonNegative(self.mono_increasing_list, self.mono_decreasing_list,
538 | self.convex_list, self.concave_list),
539 | trainable=True)
540 | self.main_effect_switcher = self.add_weight(name="subnet_switcher",
541 | shape=[self.input_num, 1],
542 | initializer=tf.ones_initializer(),
543 | trainable=False)
544 |
545 | self.interaction_weights = self.add_weight(name="interaction_weights",
546 | shape=[self.interact_num, 1],
547 | initializer=tf.keras.initializers.Orthogonal(),
548 | constraint=NonNegative([], [], [], []),
549 | trainable=True)
550 | self.interaction_switcher = self.add_weight(name="interaction_switcher",
551 | shape=[self.interact_num, 1],
552 | initializer=tf.ones_initializer(),
553 | trainable=False)
554 | self.output_bias = self.add_weight(name="output_bias",
555 | shape=[1],
556 | initializer=tf.zeros_initializer(),
557 | trainable=True)
558 |
559 | def set_interaction_list(self, interaction_list):
560 |
561 | self.convex_interact_list = []
562 | self.concave_interact_list = []
563 | self.mono_increasing_interact_list = []
564 | self.mono_decreasing_interact_list = []
565 | self.interaction_list = interaction_list
566 | self.interact_num_added = len(interaction_list)
567 | for i, interaction in enumerate(self.interaction_list):
568 | if (interaction[0] in self.mono_increasing_list) or (interaction[1] in self.mono_increasing_list):
569 | self.mono_increasing_interact_list.append(i)
570 | if (interaction[0] in self.mono_decreasing_list) or (interaction[1] in self.mono_decreasing_list):
571 | self.mono_decreasing_interact_list.append(i)
572 |
573 | if (interaction[0] in self.convex_list) or (interaction[1] in self.convex_list):
574 | self.convex_interact_list.append(i)
575 | if (interaction[0] in self.concave_list) or (interaction[1] in self.concave_list):
576 | self.concave_interact_list.append(i)
577 |
578 | self.interaction_weights.constraint.mono_increasing_list = self.mono_increasing_interact_list
579 | self.interaction_weights.constraint.mono_decreasing_list = self.mono_decreasing_interact_list
580 | self.interaction_weights.constraint.convex_list = self.convex_interact_list
581 | self.interaction_weights.constraint.concave_list = self.concave_interact_list
582 |
583 | def call(self, inputs):
584 |
585 | self.input_main_effect = inputs[:, :self.input_num]
586 | if self.interact_num_added > 0:
587 | self.input_interaction = inputs[:, self.input_num:]
588 | output = (tf.matmul(self.input_main_effect, self.main_effect_switcher * self.main_effect_weights)
589 | + tf.matmul(self.input_interaction, self.interaction_switcher * self.interaction_weights)
590 | + self.output_bias)
591 | else:
592 | output = (tf.matmul(self.input_main_effect, self.main_effect_switcher * self.main_effect_weights)
593 | + self.output_bias)
594 | return output
595 |
--------------------------------------------------------------------------------
/gaminet/lib/lib_ebmcore_linux_x64.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/gaminet/lib/lib_ebmcore_linux_x64.so
--------------------------------------------------------------------------------
/gaminet/lib/lib_ebmcore_mac_x64.dylib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/gaminet/lib/lib_ebmcore_mac_x64.dylib
--------------------------------------------------------------------------------
/gaminet/lib/lib_ebmcore_win_x64.dll:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/gaminet/lib/lib_ebmcore_win_x64.dll
--------------------------------------------------------------------------------
/gaminet/lib/lib_ebmcore_win_x64.pdb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet/62aed4fec32aa31fd18fed549aa68e29d20d98bc/gaminet/lib/lib_ebmcore_win_x64.pdb
--------------------------------------------------------------------------------
/gaminet/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | import pandas as pd
4 | from contextlib import closing
5 | from itertools import combinations
6 |
7 | import matplotlib
8 | from matplotlib import gridspec
9 | from matplotlib import pyplot as plt
10 | from matplotlib.ticker import MaxNLocator
11 | from joblib import Parallel, delayed
12 |
13 | from .interpret import *
14 |
15 |
16 | def get_interaction_list(tr_x, val_x, tr_y, val_y, pred_tr, pred_val, feature_list, feature_type_list,
17 | active_main_effect_index, task_type="Regression", n_jobs=1):
18 |
19 | if task_type == "Regression":
20 | num_classes_ = -1
21 | model_type = "regression"
22 | elif task_type == "Classification":
23 | num_classes_ = 2
24 | model_type = "classification"
25 | pred_tr = np.minimum(np.maximum(pred_tr, 0.0000001), 0.9999999)
26 | pred_val = np.minimum(np.maximum(pred_val, 0.0000001), 0.9999999)
27 | pred_tr = np.log(pred_tr / (1 - pred_tr))
28 | pred_val = np.log(pred_val / (1 - pred_val))
29 |
30 | train_num = tr_x.shape[0]
31 | x = np.vstack([tr_x, val_x])
32 | schema_ = autogen_schema(pd.DataFrame(x), feature_names=feature_list, feature_types=feature_type_list)
33 | preprocessor_ = EBMPreprocessor(schema=schema_)
34 | preprocessor_.fit(x)
35 | xt = preprocessor_.transform(x)
36 |
37 | tr_x, val_x = xt[:train_num, :], xt[train_num:, :]
38 | attributes_ = gen_attributes(preprocessor_.col_types_, preprocessor_.col_n_bins_)
39 | main_attr_sets = gen_attribute_sets([[item] for item in range(len(attributes_))])
40 |
41 | with closing(
42 | NativeEBM(
43 | attributes_,
44 | main_attr_sets,
45 | tr_x,
46 | tr_y,
47 | val_x,
48 | val_y,
49 | num_inner_bags=0,
50 | num_classification_states=num_classes_,
51 | model_type=model_type,
52 | training_scores=pred_tr,
53 | validation_scores=pred_val,
54 | )
55 | ) as native_ebm:
56 |
57 | def evaluate_parallel(pair):
58 | return pair, native_ebm.fast_interaction_score(pair)
59 |
60 | all_pairs = [pair for pair in combinations(range(len(preprocessor_.col_types_)), 2)
61 | if (pair[0] in active_main_effect_index) or (pair[1] in active_main_effect_index)]
62 | interaction_scores = Parallel(n_jobs=n_jobs, backend="threading")(delayed(evaluate_parallel)(pair) for pair in all_pairs)
63 |
64 | ranked_scores = list(sorted(interaction_scores, key=lambda item: item[1], reverse=True))
65 | interaction_list = [ranked_scores[i][0] for i in range(len(ranked_scores))]
66 | return interaction_list
67 |
68 |
69 | def plot_regularization(data_dict_logs, log_scale=True, save_eps=False, save_png=False, folder="./results/", name="demo"):
70 |
71 | main_loss = data_dict_logs["main_effect_val_loss"]
72 | inter_loss = data_dict_logs["interaction_val_loss"]
73 | active_main_effect_index = data_dict_logs["active_main_effect_index"]
74 | active_interaction_index = data_dict_logs["active_interaction_index"]
75 |
76 | fig = plt.figure(figsize=(14, 4))
77 | if len(main_loss) > 0:
78 | ax1 = plt.subplot(1, 2, 1)
79 | ax1.plot(np.arange(0, len(main_loss), 1), main_loss)
80 | ax1.axvline(np.argmin(main_loss), linestyle="dotted", color="red")
81 | ax1.axvline(len(active_main_effect_index), linestyle="dotted", color="red")
82 | ax1.plot(np.argmin(main_loss), np.min(main_loss), "*", markersize=12, color="red")
83 | ax1.plot(len(active_main_effect_index), main_loss[len(active_main_effect_index)], "o", markersize=8, color="red")
84 | ax1.set_xlabel("Number of Main Effects", fontsize=12)
85 | ax1.set_xlim(-0.5, len(main_loss) - 0.5)
86 | ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
87 | if log_scale:
88 | ax1.set_yscale("log")
89 | ax1.set_yticks((10 ** np.linspace(np.log10(np.nanmin(main_loss)), np.log10(np.nanmax(main_loss)), 5)).round(5))
90 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
91 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
92 | ax1.set_ylabel("Validation Loss (Log Scale)", fontsize=12)
93 | else:
94 | ax1.set_yticks((np.linspace(np.nanmin(main_loss), np.nanmax(main_loss), 5)).round(5))
95 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
96 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
97 | ax1.set_ylabel("Validation Loss", fontsize=12)
98 |
99 | if len(inter_loss) > 0:
100 | ax2 = plt.subplot(1, 2, 2)
101 | ax2.plot(np.arange(0, len(inter_loss), 1), inter_loss)
102 | ax2.axvline(np.argmin(inter_loss), linestyle="dotted", color="red")
103 | ax2.axvline(len(active_interaction_index), linestyle="dotted", color="red")
104 | ax2.plot(np.argmin(inter_loss), np.min(inter_loss), "*", markersize=12, color="red")
105 | ax2.plot(len(active_interaction_index), inter_loss[len(active_interaction_index)], "o", markersize=8, color="red")
106 | ax2.set_xlabel("Number of Interactions", fontsize=12)
107 | ax2.set_xlim(-0.5, len(inter_loss) - 0.5)
108 | ax2.xaxis.set_major_locator(MaxNLocator(integer=True))
109 | if log_scale:
110 | ax2.set_yscale("log")
111 | ax2.set_yticks((10 ** np.linspace(np.log10(np.nanmin(inter_loss)), np.log10(np.nanmax(inter_loss)), 5)).round(5))
112 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
113 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
114 | ax2.set_ylabel("Validation Loss (Log Scale)", fontsize=12)
115 | else:
116 | ax2.set_yticks((np.linspace(np.nanmin(inter_loss), np.nanmax(inter_loss), 5)).round(5))
117 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
118 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
119 | ax2.set_ylabel("Validation Loss", fontsize=12)
120 | plt.show()
121 |
122 | save_path = folder + name
123 | if save_eps:
124 | if not os.path.exists(folder):
125 | os.makedirs(folder)
126 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
127 | if save_png:
128 | if not os.path.exists(folder):
129 | os.makedirs(folder)
130 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
131 |
132 |
133 | def plot_trajectory(data_dict_logs, log_scale=True, save_eps=False, save_png=False, folder="./results/", name="demo"):
134 |
135 | t1, t2, t3 = [data_dict_logs["err_train_main_effect_training"],
136 | data_dict_logs["err_train_interaction_training"], data_dict_logs["err_train_tuning"]]
137 | v1, v2, v3= [data_dict_logs["err_val_main_effect_training"],
138 | data_dict_logs["err_val_interaction_training"], data_dict_logs["err_val_tuning"]]
139 |
140 | fig = plt.figure(figsize=(14, 4))
141 | ax1 = plt.subplot(1, 2, 1)
142 | ax1.plot(np.arange(1, len(t1) + 1, 1), t1, color="r")
143 | ax1.plot(np.arange(len(t1) + 1, len(t1 + t2) + 1, 1), t2, color="b")
144 | ax1.plot(np.arange(len(t1 + t2) + 1, len(t1 + t2 + t3) + 1, 1), t3, color="y")
145 | if log_scale:
146 | ax1.set_yscale("log")
147 | ax1.set_yticks((10 ** np.linspace(np.log10(np.nanmin(t1 + t2 + t3)), np.log10(np.nanmax(t1 + t2 + t3)), 5)).round(5))
148 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
149 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
150 | ax1.set_xlabel("Number of Epochs", fontsize=12)
151 | ax1.set_ylabel("Training Loss (Log Scale)", fontsize=12)
152 | else:
153 | ax1.set_yticks((np.linspace(np.nanmin(t1 + t2), np.nanmax(t1 + t2), 5)).round(5))
154 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
155 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
156 | ax1.set_xlabel("Number of Epochs", fontsize=12)
157 | ax1.set_ylabel("Training Loss", fontsize=12)
158 |
159 | ax1.legend(["Stage 1: Training Main Effects", "Stage 2: Training Interactions", "Stage 3: Fine Tuning"])
160 |
161 | ax2 = plt.subplot(1, 2, 2)
162 | ax2.plot(np.arange(1, len(v1) + 1, 1), v1, color="r")
163 | ax2.plot(np.arange(len(v1) + 1, len(v1 + v2) + 1, 1), v2, color="b")
164 | ax2.plot(np.arange(len(v1 + v2) + 1, len(v1 + v2 + v3) + 1, 1), v3, color="y")
165 | if log_scale:
166 | ax2.set_yscale("log")
167 | ax2.set_yticks((10 ** np.linspace(np.log10(np.nanmin(v1 + v2 + v3)), np.log10(np.nanmax(v1 + v2 + v3)), 5)).round(5))
168 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
169 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
170 | ax2.set_xlabel("Number of Epochs", fontsize=12)
171 | ax2.set_ylabel("Validation Loss (Log Scale)", fontsize=12)
172 | else:
173 | ax2.set_yticks((np.linspace(np.nanmin(v1 + v2 + v3), np.nanmax(v1 + v2 + v3), 5)).round(5))
174 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
175 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
176 | ax2.set_xlabel("Number of Epochs", fontsize=12)
177 | ax2.set_ylabel("Validation Loss", fontsize=12)
178 | ax2.legend(["Stage 1: Training Main Effects", "Stage 2: Training Interactions", "Stage 3: Fine Tuning"])
179 | plt.show()
180 |
181 | save_path = folder + name
182 | if save_eps:
183 | if not os.path.exists(folder):
184 | os.makedirs(folder)
185 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
186 | if save_png:
187 | if not os.path.exists(folder):
188 | os.makedirs(folder)
189 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
190 |
191 |
192 | def feature_importance_visualize(data_dict_global, folder="./results/", name="demo", save_png=False, save_eps=False):
193 |
194 | all_ir = []
195 | all_names = []
196 | for key, item in data_dict_global.items():
197 | if item["importance"] > 0:
198 | all_ir.append(item["importance"])
199 | all_names.append(key)
200 |
201 | max_ids = len(all_names)
202 | if max_ids > 0:
203 | fig = plt.figure(figsize=(0.4 + 0.6 * max_ids, 4))
204 | ax = plt.axes()
205 | ax.bar(np.arange(len(all_ir)), [ir for ir, _ in sorted(zip(all_ir, all_names))][::-1])
206 | ax.set_xticks(np.arange(len(all_ir)))
207 | ax.set_xticklabels([name for _, name in sorted(zip(all_ir, all_names))][::-1], rotation=60)
208 | plt.xlabel("Feature Name", fontsize=12)
209 | plt.ylim(0, np.max(all_ir) + 0.05)
210 | plt.xlim(-1, len(all_names))
211 | plt.title("Feature Importance")
212 |
213 | save_path = folder + name
214 | if save_eps:
215 | if not os.path.exists(folder):
216 | os.makedirs(folder)
217 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
218 | if save_png:
219 | if not os.path.exists(folder):
220 | os.makedirs(folder)
221 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
222 |
223 |
224 | def global_visualize_density(data_dict_global, main_effect_num=None, interaction_num=None, cols_per_row=4,
225 | save_png=False, save_eps=False, folder="./results/", name="demo"):
226 |
227 | maineffect_count = 0
228 | componment_scales = []
229 | for key, item in data_dict_global.items():
230 | componment_scales.append(item["importance"])
231 | if item["type"] != "pairwise":
232 | maineffect_count += 1
233 |
234 | componment_scales = np.array(componment_scales)
235 | sorted_index = np.argsort(componment_scales)
236 | active_index = sorted_index[componment_scales[sorted_index].cumsum() > 0][::-1]
237 | active_univariate_index = active_index[active_index < maineffect_count][:main_effect_num]
238 | active_interaction_index = active_index[active_index >= maineffect_count][:interaction_num]
239 | max_ids = len(active_univariate_index) + len(active_interaction_index)
240 |
241 | idx = 0
242 | fig = plt.figure(figsize=(6 * cols_per_row, 4.6 * int(np.ceil(max_ids / cols_per_row))))
243 | outer = gridspec.GridSpec(int(np.ceil(max_ids / cols_per_row)), cols_per_row, wspace=0.25, hspace=0.35)
244 | for indice in active_univariate_index:
245 |
246 | feature_name = list(data_dict_global.keys())[indice]
247 | if data_dict_global[feature_name]["type"] == "continuous":
248 |
249 | inner = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=outer[idx], wspace=0.1, hspace=0.1, height_ratios=[6, 1])
250 | ax1 = plt.Subplot(fig, inner[0])
251 | ax1.plot(data_dict_global[feature_name]["inputs"], data_dict_global[feature_name]["outputs"])
252 | ax1.set_xticklabels([])
253 | fig.add_subplot(ax1)
254 |
255 | ax2 = plt.Subplot(fig, inner[1])
256 | xint = ((np.array(data_dict_global[feature_name]["density"]["names"][1:])
257 | + np.array(data_dict_global[feature_name]["density"]["names"][:-1])) / 2).reshape([-1, 1]).reshape([-1])
258 | ax2.bar(xint, data_dict_global[feature_name]["density"]["scores"], width=xint[1] - xint[0])
259 | ax2.get_shared_x_axes().join(ax1, ax2)
260 | ax2.set_yticklabels([])
261 | ax2.autoscale()
262 | fig.add_subplot(ax2)
263 |
264 | elif data_dict_global[feature_name]["type"] == "categorical":
265 |
266 | inner = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=outer[idx],
267 | wspace=0.1, hspace=0.1, height_ratios=[6, 1])
268 | ax1 = plt.Subplot(fig, inner[0])
269 | ax1.bar(np.arange(len(data_dict_global[feature_name]["inputs"])),
270 | data_dict_global[feature_name]["outputs"])
271 | ax1.set_xticklabels([])
272 | fig.add_subplot(ax1)
273 |
274 | ax2 = plt.Subplot(fig, inner[1])
275 | ax2.bar(np.arange(len(data_dict_global[feature_name]["density"]["names"])),
276 | data_dict_global[feature_name]["density"]["scores"])
277 | ax2.get_shared_x_axes().join(ax1, ax2)
278 | ax2.autoscale()
279 | ax2.set_xticks(data_dict_global[feature_name]["input_ticks"])
280 | ax2.set_xticklabels(data_dict_global[feature_name]["input_labels"])
281 | ax2.set_yticklabels([])
282 | fig.add_subplot(ax2)
283 |
284 | idx = idx + 1
285 | if len(str(ax2.get_xticks())) > 60:
286 | ax2.xaxis.set_tick_params(rotation=20)
287 | ax1.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
288 |
289 | for indice in active_interaction_index:
290 |
291 | feature_name = list(data_dict_global.keys())[indice]
292 | feature_name1 = feature_name.split(" vs. ")[0]
293 | feature_name2 = feature_name.split(" vs. ")[1]
294 | axis_extent = data_dict_global[feature_name]["axis_extent"]
295 |
296 | inner = gridspec.GridSpecFromSubplotSpec(2, 4, subplot_spec=outer[idx],
297 | wspace=0.1, hspace=0.1, height_ratios=[6, 1], width_ratios=[0.6, 3, 0.15, 0.2])
298 | ax_main = plt.Subplot(fig, inner[1])
299 | interact_plot = ax_main.imshow(data_dict_global[feature_name]["outputs"], interpolation="nearest",
300 | aspect="auto", extent=axis_extent)
301 | ax_main.set_xticklabels([])
302 | ax_main.set_yticklabels([])
303 | ax_main.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
304 | fig.add_subplot(ax_main)
305 |
306 | ax_bottom = plt.Subplot(fig, inner[5])
307 | if data_dict_global[feature_name]["xtype"] == "categorical":
308 | xint = np.arange(len(data_dict_global[feature_name1]["density"]["names"]))
309 | ax_bottom.bar(xint, data_dict_global[feature_name1]["density"]["scores"])
310 | ax_bottom.set_xticks(data_dict_global[feature_name]["input1_ticks"])
311 | ax_bottom.set_xticklabels(data_dict_global[feature_name]["input1_labels"])
312 | else:
313 | xint = ((np.array(data_dict_global[feature_name1]["density"]["names"][1:])
314 | + np.array(data_dict_global[feature_name1]["density"]["names"][:-1])) / 2).reshape([-1])
315 | ax_bottom.bar(xint, data_dict_global[feature_name1]["density"]["scores"], width=xint[1] - xint[0])
316 | ax_bottom.set_yticklabels([])
317 | ax_bottom.set_xlim([axis_extent[0], axis_extent[1]])
318 | ax_bottom.get_shared_x_axes().join(ax_bottom, ax_main)
319 | ax_bottom.autoscale()
320 | fig.add_subplot(ax_bottom)
321 | if len(str(ax_bottom.get_xticks())) > 60:
322 | ax_bottom.xaxis.set_tick_params(rotation=20)
323 |
324 | ax_left = plt.Subplot(fig, inner[0])
325 | if data_dict_global[feature_name]["ytype"] == "categorical":
326 | xint = np.arange(len(data_dict_global[feature_name2]["density"]["names"]))
327 | ax_left.barh(xint, data_dict_global[feature_name2]["density"]["scores"])
328 | ax_left.set_yticks(data_dict_global[feature_name]["input2_ticks"])
329 | ax_left.set_yticklabels(data_dict_global[feature_name]["input2_labels"])
330 | else:
331 | xint = ((np.array(data_dict_global[feature_name2]["density"]["names"][1:])
332 | + np.array(data_dict_global[feature_name2]["density"]["names"][:-1])) / 2).reshape([-1])
333 | ax_left.barh(xint, data_dict_global[feature_name2]["density"]["scores"], height=xint[1] - xint[0])
334 | ax_left.set_xticklabels([])
335 | ax_left.set_ylim([axis_extent[2], axis_extent[3]])
336 | ax_left.get_shared_y_axes().join(ax_left, ax_main)
337 | ax_left.autoscale()
338 | fig.add_subplot(ax_left)
339 |
340 | ax_colorbar = plt.Subplot(fig, inner[2])
341 | response_precision = max(int(- np.log10(np.max(data_dict_global[feature_name]["outputs"])
342 | - np.min(data_dict_global[feature_name]["outputs"]))) + 2, 0)
343 | fig.colorbar(interact_plot, cax=ax_colorbar, orientation="vertical",
344 | format="%0." + str(response_precision) + "f", use_gridspec=True)
345 | fig.add_subplot(ax_colorbar)
346 | idx = idx + 1
347 |
348 | if max_ids > 0:
349 | save_path = folder + name
350 | if save_eps:
351 | if not os.path.exists(folder):
352 | os.makedirs(folder)
353 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
354 | if save_png:
355 | if not os.path.exists(folder):
356 | os.makedirs(folder)
357 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
358 |
359 |
360 | def global_visualize_wo_density(data_dict_global, main_effect_num=None, interaction_num=None, cols_per_row=4,
361 | save_png=False, save_eps=False, folder="./results/", name="demo"):
362 |
363 | maineffect_count = 0
364 | componment_scales = []
365 | for key, item in data_dict_global.items():
366 | componment_scales.append(item["importance"])
367 | if item["type"] != "pairwise":
368 | maineffect_count += 1
369 |
370 | componment_scales = np.array(componment_scales)
371 | sorted_index = np.argsort(componment_scales)
372 | active_index = sorted_index[componment_scales[sorted_index].cumsum() > 0][::-1]
373 | active_univariate_index = active_index[active_index < maineffect_count][:main_effect_num]
374 | active_interaction_index = active_index[active_index >= maineffect_count][:interaction_num]
375 | max_ids = len(active_univariate_index) + len(active_interaction_index)
376 |
377 | idx = 0
378 | fig = plt.figure(figsize=(5.2 * cols_per_row, 4 * int(np.ceil(max_ids / cols_per_row))))
379 | outer = gridspec.GridSpec(int(np.ceil(max_ids / cols_per_row)), cols_per_row, wspace=0.25, hspace=0.35)
380 | for indice in active_univariate_index:
381 |
382 | feature_name = list(data_dict_global.keys())[indice]
383 | if data_dict_global[feature_name]["type"] == "continuous":
384 |
385 | ax1 = plt.Subplot(fig, outer[idx])
386 | ax1.plot(data_dict_global[feature_name]["inputs"], data_dict_global[feature_name]["outputs"])
387 | ax1.set_title(feature_name, fontsize=12)
388 | fig.add_subplot(ax1)
389 | if len(str(ax1.get_xticks())) > 80:
390 | ax1.xaxis.set_tick_params(rotation=20)
391 |
392 | elif data_dict_global[feature_name]["type"] == "categorical":
393 |
394 | ax1 = plt.Subplot(fig, outer[idx])
395 | ax1.bar(np.arange(len(data_dict_global[feature_name]["inputs"])),
396 | data_dict_global[feature_name]["outputs"])
397 | ax1.set_title(feature_name, fontsize=12)
398 | ax1.set_xticks(data_dict_global[feature_name]["input_ticks"])
399 | ax1.set_xticklabels(data_dict_global[feature_name]["input_labels"])
400 | fig.add_subplot(ax1)
401 |
402 | idx = idx + 1
403 | if len(str(ax1.get_xticks())) > 60:
404 | ax1.xaxis.set_tick_params(rotation=20)
405 | ax1.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
406 |
407 | for indice in active_interaction_index:
408 |
409 | feature_name = list(data_dict_global.keys())[indice]
410 | axis_extent = data_dict_global[feature_name]["axis_extent"]
411 |
412 | ax_main = plt.Subplot(fig, outer[idx])
413 | interact_plot = ax_main.imshow(data_dict_global[feature_name]["outputs"], interpolation="nearest",
414 | aspect="auto", extent=axis_extent)
415 |
416 | if data_dict_global[feature_name]["xtype"] == "categorical":
417 | ax_main.set_xticks(data_dict_global[feature_name]["input1_ticks"])
418 | ax_main.set_xticklabels(data_dict_global[feature_name]["input1_labels"])
419 | if data_dict_global[feature_name]["ytype"] == "categorical":
420 | ax_main.set_yticks(data_dict_global[feature_name]["input2_ticks"])
421 | ax_main.set_yticklabels(data_dict_global[feature_name]["input2_labels"])
422 |
423 | response_precision = max(int(- np.log10(np.max(data_dict_global[feature_name]["outputs"])
424 | - np.min(data_dict_global[feature_name]["outputs"]))) + 2, 0)
425 | fig.colorbar(interact_plot, ax=ax_main, orientation="vertical",
426 | format="%0." + str(response_precision) + "f", use_gridspec=True)
427 |
428 | ax_main.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
429 | fig.add_subplot(ax_main)
430 |
431 | idx = idx + 1
432 | if len(str(ax_main.get_xticks())) > 60:
433 | ax_main.xaxis.set_tick_params(rotation=20)
434 |
435 | if max_ids > 0:
436 | save_path = folder + name
437 | if save_eps:
438 | if not os.path.exists(folder):
439 | os.makedirs(folder)
440 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
441 | if save_png:
442 | if not os.path.exists(folder):
443 | os.makedirs(folder)
444 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
445 |
446 |
447 | def local_visualize(data_dict_local, folder="./results/", name="demo", save_png=False, save_eps=False):
448 |
449 | idx = np.argsort(np.abs(data_dict_local["scores"][data_dict_local["active_indice"]]))[::-1]
450 |
451 | max_ids = len(data_dict_local["active_indice"])
452 | fig = plt.figure(figsize=(round((len(data_dict_local["active_indice"]) + 1) * 0.6), 4))
453 | plt.bar(np.arange(len(data_dict_local["active_indice"])), data_dict_local["scores"][data_dict_local["active_indice"]][idx])
454 | plt.xticks(np.arange(len(data_dict_local["active_indice"])),
455 | data_dict_local["effect_names"][data_dict_local["active_indice"]][idx], rotation=60)
456 |
457 | if "actual" in data_dict_local.keys():
458 | title = "Predicted: %0.4f | Actual: %0.4f" % (data_dict_local["predicted"], data_dict_local["actual"])
459 | else:
460 | title = "Predicted: %0.4f" % (data_dict_local["predicted"])
461 | plt.title(title, fontsize=12)
462 |
463 | if max_ids > 0:
464 | save_path = folder + name
465 | if save_eps:
466 | if not os.path.exists(folder):
467 | os.makedirs(folder)
468 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
469 | if save_png:
470 | if not os.path.exists(folder):
471 | os.makedirs(folder)
472 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
473 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | ### Dependencies
2 | ### To install, run:
3 | ### $ pip install -r requirements.txt
4 |
5 | ## data processing ##
6 | numpy>=1.15.2
7 | pandas>=0.19.2
8 |
9 | ## visualization ##
10 | matplotlib>=3.1.3
11 |
12 | ## network platform
13 | tensorflow>=2.0.0
14 |
15 | ## external tools
16 | scikit-learn>=0.23.0
17 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | package_data = {
4 | "gaminet": [
5 | "lib/lib_ebmcore_win_x64.dll",
6 | "lib/lib_ebmcore_linux_x64.so",
7 | "lib/lib_ebmcore_mac_x64.dylib",
8 | "lib/lib_ebmcore_win_x64.pdb"
9 | ]
10 | }
11 |
12 | setup(name='gaminet',
13 | version='0.5.8',
14 | description='Explainable Neural Networks based on Generalized Additive Models with Structured Interactions',
15 | url='https://github.com/ZebinYang/GAMINet',
16 | author='Zebin Yang',
17 | author_email='yangzb2010@connect.hku.hk',
18 | license='GPL',
19 | packages=['gaminet'],
20 | package_data=package_data,
21 | install_requires=['matplotlib>=3.1.3', 'tensorflow>=2.0.0', 'numpy>=1.15.2', 'pandas>=0.19.2', 'scikit-learn>=0.23.0', 'tensorflow_lattice>=2.0.8'],
22 | zip_safe=False)
23 |
--------------------------------------------------------------------------------