├── .gitignore
├── LICENSE
├── README.md
├── examples
├── FicoHeloc.ipynb
├── GAMINet-bike-share.ipynb
├── GAMINet-demo.ipynb
├── TF-Pytorch-Check.ipynb
├── bike_share_hour
│ ├── bike_share_hour.csv
│ ├── data_types.json
│ └── readme.txt
├── cocircle.ipynb
├── credit_default
│ ├── TaiwanCreditDataset.xls
│ ├── credit_data_processed.csv
│ ├── credit_default.names
│ ├── data_types.json
│ ├── load.py
│ └── undocumented values
├── dataset.py
├── fico
│ ├── .ipynb_checkpoints
│ │ └── preprocess-checkpoint.ipynb
│ ├── data_types.json
│ ├── fico.csv
│ ├── heloc_data_dictionary-2.xlsx
│ ├── heloc_dataset_v1.csv
│ ├── load.py
│ ├── preprocess.ipynb
│ └── test_file1.csv
├── friedman.ipynb
├── results
│ ├── demo.eps
│ ├── demo.png
│ ├── s1_feature.png
│ ├── s1_local.png
│ ├── s1_regu_plot.png
│ └── s1_traj_plot.png
└── twiwan credit.ipynb
├── gaminet
├── __init__.py
├── api.py
├── base.py
├── dataloader.py
├── interpret.py
├── layers.py
├── lib
│ ├── lib_ebm_native_linux_x64.so
│ ├── lib_ebm_native_mac_x64.dylib
│ └── lib_ebm_native_win_x64.dll
└── utils.py
└── setup.py
/.gitignore:
--------------------------------------------------------------------------------
1 | examples/.ipynb_checkpoints/*
2 | examples/__pycache__/*
3 | scripts/*
4 | .ipynb_checkpoints/*
5 | gaminet/__pycache__/*
6 | interpret/*.ipynb
7 | build/*
8 | gaminet.egg-info/*
9 | dist/*
10 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # GAMI-Net Pytorch version
2 | Generalized additive models with structured interactions - PyTorch version
3 |
4 | ## Installation
5 |
6 | ```shell
7 | pip install git+https://github.com/SelfExplainML/GamiNet-PyTorch
8 | ```
9 |
10 | ## Citations
11 |
12 | ```latex
13 | @article{yang2021gami,
14 | title={GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions},
15 | author={Yang, Zebin and Zhang, Aijun and Sudjianto, Agus},
16 | journal={Pattern Recognition},
17 | volume = {120},
18 | pages = {108192},
19 | year={2021}
20 | }
21 | ```
22 |
--------------------------------------------------------------------------------
/examples/TF-Pytorch-Check.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "ExecuteTime": {
8 | "end_time": "2022-04-03T02:42:01.439988Z",
9 | "start_time": "2022-04-03T02:41:59.900308Z"
10 | },
11 | "scrolled": true
12 | },
13 | "outputs": [],
14 | "source": [
15 | "%matplotlib inline\n",
16 | "\n",
17 | "import os\n",
18 | "import sys\n",
19 | "\n",
20 | "PACKAGE_PARENT = '..'\n",
21 | "sys.path.append(PACKAGE_PARENT)\n",
22 | "\n",
23 | "import torch\n",
24 | "import numpy as np\n",
25 | "from sklearn.preprocessing import MinMaxScaler\n",
26 | "from sklearn.model_selection import train_test_split\n",
27 | "\n",
28 | "from gaminet import GAMINetRegressor\n",
29 | "from gaminet.utils import local_visualize\n",
30 | "from gaminet.utils import global_visualize_density\n",
31 | "from gaminet.utils import feature_importance_visualize\n",
32 | "from gaminet.utils import plot_trajectory\n",
33 | "from gaminet.utils import plot_regularization"
34 | ]
35 | },
36 | {
37 | "cell_type": "markdown",
38 | "metadata": {},
39 | "source": [
40 | "## Load data"
41 | ]
42 | },
43 | {
44 | "cell_type": "code",
45 | "execution_count": 2,
46 | "metadata": {
47 | "ExecuteTime": {
48 | "end_time": "2022-04-03T02:42:03.637759Z",
49 | "start_time": "2022-04-03T02:42:01.441368Z"
50 | }
51 | },
52 | "outputs": [],
53 | "source": [
54 | "def metric_wrapper(metric, scaler):\n",
55 | " def wrapper(label, pred):\n",
56 | " return metric(label, pred, scaler=scaler)\n",
57 | " return wrapper\n",
58 | "\n",
59 | "def rmse(label, pred, scaler):\n",
60 | " pred = scaler.inverse_transform(pred.reshape([-1, 1]))\n",
61 | " label = scaler.inverse_transform(label.reshape([-1, 1]))\n",
62 | " return np.sqrt(np.mean((pred - label)**2))\n",
63 | "\n",
64 | "def data_generator1(datanum, dist=\"uniform\", random_state=0):\n",
65 | " \n",
66 | " nfeatures = 100\n",
67 | " np.random.seed(random_state)\n",
68 | " x = np.random.uniform(0, 1, [datanum, nfeatures])\n",
69 | " x1, x2, x3, x4, x5, x6 = [x[:, [i]] for i in range(6)]\n",
70 | "\n",
71 | " def cliff(x1, x2):\n",
72 | " # x1: -20,20\n",
73 | " # x2: -10,5\n",
74 | " x1 = (2 * x1 - 1) * 20\n",
75 | " x2 = (2 * x2 - 1) * 7.5 - 2.5\n",
76 | " term1 = -0.5 * x1 ** 2 / 100\n",
77 | " term2 = -0.5 * (x2 + 0.03 * x1 ** 2 - 3) ** 2\n",
78 | " y = 10 * np.exp(term1 + term2)\n",
79 | " return y\n",
80 | "\n",
81 | " y = (8 * (x1 - 0.5) ** 2\n",
82 | " + 0.1 * np.exp(-8 * x2 + 4)\n",
83 | " + 3 * np.sin(2 * np.pi * x3 * x4) + cliff(x5, x6)\n",
84 | " ).reshape([-1,1]) + 1 * np.random.normal(0, 1, [datanum, 1])\n",
85 | "\n",
86 | " task_type = \"Regression\"\n",
87 | " meta_info = {\"X\" + str(i + 1):{'type':'continuous'} for i in range(nfeatures)}\n",
88 | " meta_info.update({'Y':{'type':'target'}}) \n",
89 | " for i, (key, item) in enumerate(meta_info.items()):\n",
90 | " if item['type'] == 'target':\n",
91 | " sy = MinMaxScaler((0, 1))\n",
92 | " y = sy.fit_transform(y)\n",
93 | " meta_info[key]['scaler'] = sy\n",
94 | " else:\n",
95 | " sx = MinMaxScaler((0, 1))\n",
96 | " sx.fit([[0], [1]])\n",
97 | " x[:,[i]] = sx.transform(x[:,[i]])\n",
98 | " meta_info[key]['scaler'] = sx\n",
99 | "\n",
100 | " train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.2, random_state=random_state)\n",
101 | " return train_x, test_x, train_y, test_y, task_type, meta_info, metric_wrapper(rmse, sy)\n",
102 | "\n",
103 | "random_state = 0\n",
104 | "train_x, test_x, train_y, test_y, task_type, meta_info, get_metric = data_generator1(datanum=1000000, random_state=random_state)"
105 | ]
106 | },
107 | {
108 | "cell_type": "markdown",
109 | "metadata": {
110 | "ExecuteTime": {
111 | "end_time": "2022-04-03T02:38:14.163923Z",
112 | "start_time": "2022-04-03T02:38:14.162077Z"
113 | }
114 | },
115 | "source": [
116 | "# Compare pytorch and tensorflow GAM"
117 | ]
118 | },
119 | {
120 | "cell_type": "code",
121 | "execution_count": 3,
122 | "metadata": {
123 | "ExecuteTime": {
124 | "end_time": "2022-04-03T02:42:03.657084Z",
125 | "start_time": "2022-04-03T02:42:03.638916Z"
126 | }
127 | },
128 | "outputs": [
129 | {
130 | "data": {
131 | "text/plain": [
132 | "tensor([-0.0842, -0.0735, -0.0710, -0.1213, 0.0126, -0.1070, -0.2776, -0.0694,\n",
133 | " -0.2091, 0.1363], grad_fn=)"
134 | ]
135 | },
136 | "execution_count": 3,
137 | "metadata": {},
138 | "output_type": "execute_result"
139 | }
140 | ],
141 | "source": [
142 | "import torch\n",
143 | "\n",
144 | "\n",
145 | "class TensorLayer(torch.nn.Module):\n",
146 | "\n",
147 | " def __init__(self, n_subnets, subnet_arch, n_input_nodes, activation_func, device):\n",
148 | " super().__init__()\n",
149 | "\n",
150 | " self.device = device\n",
151 | " self.n_subnets = n_subnets\n",
152 | " self.n_input_nodes = n_input_nodes\n",
153 | " self.activation_func = activation_func\n",
154 | " self.n_hidden_layers = len(subnet_arch)\n",
155 | "\n",
156 | " all_biases = [] \n",
157 | " all_weights = []\n",
158 | " n_hidden_nodes_prev = n_input_nodes\n",
159 | " for i, n_hidden_nodes in enumerate(subnet_arch + [1]):\n",
160 | " if i == 0:\n",
161 | " w = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes_prev, n_hidden_nodes),\n",
162 | " dtype=torch.float, requires_grad=True, device=device))\n",
163 | " b = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes),\n",
164 | " dtype=torch.float, requires_grad=True, device=device))\n",
165 | " elif i == self.n_hidden_layers:\n",
166 | " w = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes_prev, 1),\n",
167 | " dtype=torch.float, requires_grad=True, device=device))\n",
168 | " b = torch.nn.Parameter(torch.empty(size=(n_subnets, 1),\n",
169 | " dtype=torch.float, requires_grad=True, device=device))\n",
170 | " else:\n",
171 | " w = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes_prev, n_hidden_nodes),\n",
172 | " dtype=torch.float, requires_grad=True, device=device))\n",
173 | " b = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes),\n",
174 | " dtype=torch.float, requires_grad=True, device=device))\n",
175 | " n_hidden_nodes_prev = n_hidden_nodes\n",
176 | " torch.nn.init.zeros_(b)\n",
177 | " for j in range(n_subnets):\n",
178 | " torch.nn.init.orthogonal_(w[j])\n",
179 | " all_biases.append(b)\n",
180 | " all_weights.append(w)\n",
181 | " self.all_biases = torch.nn.ParameterList(all_biases)\n",
182 | " self.all_weights = torch.nn.ParameterList(all_weights)\n",
183 | "\n",
184 | " def individual_forward(self, inputs, idx):\n",
185 | "\n",
186 | " xs = inputs\n",
187 | " for i in range(self.n_hidden_layers):\n",
188 | " xs = self.activation_func(torch.matmul(xs, self.all_weights[i][idx]) + self.all_biases[i][idx])\n",
189 | " outputs = torch.matmul(xs, self.all_weights[-1][idx]) + self.all_biases[-1][idx]\n",
190 | " return outputs\n",
191 | "\n",
192 | " def forward(self, inputs):\n",
193 | "\n",
194 | " xs = torch.unsqueeze(torch.transpose(inputs, 0, 1), 2)\n",
195 | " for i in range(self.n_hidden_layers):\n",
196 | " xs = self.activation_func(torch.matmul(xs, self.all_weights[i])\n",
197 | " + torch.reshape(self.all_biases[i], [self.n_subnets, 1, -1]))\n",
198 | "\n",
199 | " outputs = torch.matmul(xs, self.all_weights[-1]) + torch.reshape(self.all_biases[-1], [self.n_subnets, 1, -1])\n",
200 | " outputs = torch.squeeze(torch.transpose(outputs, 0, 1), dim=2)\n",
201 | " outputs = outputs.sum(1)\n",
202 | " return outputs\n",
203 | "\n",
204 | "random_state = 0\n",
205 | "np.random.seed(random_state)\n",
206 | "torch.manual_seed(random_state)\n",
207 | "net = TensorLayer(n_subnets=5, subnet_arch=[10], n_input_nodes=1, activation_func=torch.nn.ReLU(), device=\"cpu\")\n",
208 | "coefs = [[net.all_weights[0][i].detach().numpy().copy(), net.all_weights[1][i].detach().numpy().copy()] for i in range(5)]\n",
209 | "net.forward(torch.tensor(train_x[:10, :5], dtype=torch.float32))"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": 4,
215 | "metadata": {
216 | "ExecuteTime": {
217 | "end_time": "2022-04-03T02:42:03.675409Z",
218 | "start_time": "2022-04-03T02:42:03.658185Z"
219 | }
220 | },
221 | "outputs": [
222 | {
223 | "name": "stdout",
224 | "output_type": "stream",
225 | "text": [
226 | "[ 0.077 0.1 0.124 0.051 0.149 0.053 -0.112 0.072 -0.029 0.291]\n",
227 | "[0.233 0.264 0.312 0.217 0.277 0.205 0.047 0.209 0.145 0.435]\n",
228 | "[0.373 0.41 0.477 0.367 0.388 0.342 0.191 0.333 0.301 0.564]\n",
229 | "[0.479 0.52 0.603 0.482 0.474 0.448 0.302 0.425 0.421 0.66 ]\n",
230 | "[0.539 0.583 0.674 0.549 0.521 0.509 0.367 0.479 0.489 0.713]\n",
231 | "[0.555 0.599 0.694 0.568 0.533 0.528 0.386 0.494 0.509 0.725]\n",
232 | "[0.539 0.582 0.674 0.552 0.518 0.513 0.372 0.481 0.493 0.708]\n",
233 | "[0.502 0.541 0.628 0.512 0.485 0.476 0.336 0.448 0.453 0.669]\n",
234 | "[0.453 0.488 0.566 0.457 0.442 0.426 0.286 0.404 0.399 0.619]\n",
235 | "[0.398 0.428 0.498 0.396 0.395 0.37 0.23 0.354 0.339 0.564]\n"
236 | ]
237 | }
238 | ],
239 | "source": [
240 | "from gaminet.dataloader import FastTensorDataLoader\n",
241 | "loss_fn = torch.nn.MSELoss(reduction=\"none\")\n",
242 | "opt = torch.optim.Adam(list(net.parameters()), lr=0.01)\n",
243 | "for epoch in range(10):\n",
244 | " net.train()\n",
245 | " opt.zero_grad(set_to_none=True)\n",
246 | " batch_xx = torch.tensor(train_x[:100, :5], dtype=torch.float32)\n",
247 | " batch_yy = torch.tensor(train_y[:100], dtype=torch.float32).ravel()\n",
248 | " pred = net(batch_xx).ravel()\n",
249 | " loss = torch.mean(loss_fn(pred, batch_yy))\n",
250 | " loss.backward()\n",
251 | " opt.step()\n",
252 | " print(net(torch.tensor(train_x[:10, :5], dtype=torch.float32)).ravel().detach().numpy().round(3))"
253 | ]
254 | },
255 | {
256 | "cell_type": "code",
257 | "execution_count": 5,
258 | "metadata": {
259 | "ExecuteTime": {
260 | "end_time": "2022-04-03T02:42:06.381597Z",
261 | "start_time": "2022-04-03T02:42:03.676457Z"
262 | }
263 | },
264 | "outputs": [
265 | {
266 | "name": "stderr",
267 | "output_type": "stream",
268 | "text": [
269 | "2022-04-03 10:42:04.035523: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n",
270 | "2022-04-03 10:42:04.035549: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n"
271 | ]
272 | },
273 | {
274 | "name": "stdout",
275 | "output_type": "stream",
276 | "text": [
277 | "[-0.08416221 -0.07353798 -0.07099413 -0.12131885 0.01259092 -0.10699715\n",
278 | " -0.2775642 -0.06943712 -0.20914906 0.13627838]\n"
279 | ]
280 | },
281 | {
282 | "name": "stderr",
283 | "output_type": "stream",
284 | "text": [
285 | "2022-04-03 10:42:06.359079: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n",
286 | "2022-04-03 10:42:06.359102: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)\n",
287 | "2022-04-03 10:42:06.359116: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (iZwz989gvg9q1cbx1wnjqlZ): /proc/driver/nvidia/version does not exist\n",
288 | "2022-04-03 10:42:06.359312: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
289 | "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
290 | ]
291 | }
292 | ],
293 | "source": [
294 | "import tensorflow as tf\n",
295 | "from tensorflow.keras import layers\n",
296 | "\n",
297 | "class NumerNet(tf.keras.layers.Layer):\n",
298 | "\n",
299 | " def __init__(self, subnet_arch, activation_func, weight_init, subnet_id):\n",
300 | " super(NumerNet, self).__init__()\n",
301 | " self.layers = []\n",
302 | " self.subnet_arch = subnet_arch\n",
303 | " self.activation_func = activation_func\n",
304 | " self.subnet_id = subnet_id\n",
305 | " for nodes in self.subnet_arch:\n",
306 | " self.layers.append(layers.Dense(nodes, activation=self.activation_func,\n",
307 | " kernel_initializer=tf.keras.initializers.Constant(weight_init[0])))\n",
308 | " self.output_layer = layers.Dense(1, activation=tf.identity, kernel_initializer=tf.keras.initializers.Constant(weight_init[1]))\n",
309 | "\n",
310 | " def call(self, inputs):\n",
311 | "\n",
312 | " x = inputs\n",
313 | " for dense_layer in self.layers:\n",
314 | " x = dense_layer(x)\n",
315 | " output = self.output_layer(x)\n",
316 | " return output\n",
317 | "\n",
318 | "\n",
319 | "class MainEffectBlock(tf.keras.layers.Layer):\n",
320 | "\n",
321 | " def __init__(self, n_subnets, subnet_arch, activation_func):\n",
322 | " super(MainEffectBlock, self).__init__()\n",
323 | "\n",
324 | " self.n_subnets = n_subnets\n",
325 | " self.subnet_arch = subnet_arch\n",
326 | " self.activation_func = activation_func\n",
327 | " self.subnets = []\n",
328 | " for i in range(self.n_subnets):\n",
329 | " self.subnets.append(NumerNet(self.subnet_arch, self.activation_func, weight_init=coefs[i], subnet_id=i))\n",
330 | "\n",
331 | " def call(self, inputs):\n",
332 | "\n",
333 | " self.subnet_outputs = []\n",
334 | " for i in range(self.n_subnets):\n",
335 | " subnet = self.subnets[i]\n",
336 | " subnet_output = subnet(tf.gather(inputs, [i], axis=1))\n",
337 | " self.subnet_outputs.append(subnet_output)\n",
338 | " output = tf.reshape(tf.squeeze(tf.stack(self.subnet_outputs, 1)), [-1, self.n_subnets])\n",
339 | " output = tf.reduce_sum(output, 1)\n",
340 | " return output\n",
341 | "\n",
342 | "tfnet = MainEffectBlock(5, [10], activation_func=tf.nn.relu)\n",
343 | "print(tfnet.__call__(train_x[:10, :5]).numpy())"
344 | ]
345 | },
346 | {
347 | "cell_type": "code",
348 | "execution_count": 6,
349 | "metadata": {
350 | "ExecuteTime": {
351 | "end_time": "2022-04-03T02:42:06.530659Z",
352 | "start_time": "2022-04-03T02:42:06.382732Z"
353 | }
354 | },
355 | "outputs": [
356 | {
357 | "name": "stdout",
358 | "output_type": "stream",
359 | "text": [
360 | "[ 0.077 0.1 0.124 0.051 0.149 0.053 -0.112 0.072 -0.029 0.291]\n",
361 | "[0.233 0.264 0.312 0.217 0.277 0.205 0.047 0.209 0.145 0.435]\n",
362 | "[0.373 0.41 0.477 0.367 0.388 0.342 0.191 0.333 0.301 0.564]\n",
363 | "[0.479 0.52 0.603 0.482 0.474 0.448 0.302 0.425 0.421 0.66 ]\n",
364 | "[0.539 0.583 0.674 0.549 0.521 0.509 0.367 0.479 0.489 0.713]\n",
365 | "[0.555 0.599 0.694 0.568 0.533 0.528 0.386 0.494 0.509 0.725]\n",
366 | "[0.539 0.582 0.674 0.552 0.518 0.513 0.372 0.481 0.493 0.708]\n",
367 | "[0.502 0.541 0.628 0.512 0.485 0.476 0.336 0.448 0.453 0.669]\n",
368 | "[0.453 0.488 0.566 0.457 0.442 0.426 0.286 0.404 0.399 0.619]\n",
369 | "[0.398 0.428 0.498 0.396 0.395 0.37 0.23 0.354 0.339 0.564]\n"
370 | ]
371 | }
372 | ],
373 | "source": [
374 | "optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)\n",
375 | "loss_fn = tf.keras.losses.MeanSquaredError()\n",
376 | "for epoch in range(10):\n",
377 | " batch_xx = train_x[:100, :5]\n",
378 | " batch_yy = train_y[:100].ravel()\n",
379 | " with tf.GradientTape() as tape:\n",
380 | " pred = tfnet.__call__(batch_xx)\n",
381 | " total_loss = loss_fn(batch_yy, pred)\n",
382 | " grads = tape.gradient(total_loss, tfnet.trainable_weights)\n",
383 | " optimizer.apply_gradients(zip(grads, tfnet.trainable_weights))\n",
384 | " print(tfnet.__call__(train_x[:10, :5]).numpy().round(3))"
385 | ]
386 | }
387 | ],
388 | "metadata": {
389 | "kernelspec": {
390 | "display_name": "py39",
391 | "language": "python",
392 | "name": "py39"
393 | },
394 | "language_info": {
395 | "codemirror_mode": {
396 | "name": "ipython",
397 | "version": 3
398 | },
399 | "file_extension": ".py",
400 | "mimetype": "text/x-python",
401 | "name": "python",
402 | "nbconvert_exporter": "python",
403 | "pygments_lexer": "ipython3",
404 | "version": "3.9.10"
405 | },
406 | "latex_envs": {
407 | "LaTeX_envs_menu_present": true,
408 | "autoclose": false,
409 | "autocomplete": true,
410 | "bibliofile": "biblio.bib",
411 | "cite_by": "apalike",
412 | "current_citInitial": 1,
413 | "eqLabelWithNumbers": true,
414 | "eqNumInitial": 1,
415 | "hotkeys": {
416 | "equation": "Ctrl-E",
417 | "itemize": "Ctrl-I"
418 | },
419 | "labels_anchors": false,
420 | "latex_user_defs": false,
421 | "report_style_numbering": false,
422 | "user_envs_cfg": false
423 | },
424 | "varInspector": {
425 | "cols": {
426 | "lenName": 16,
427 | "lenType": 16,
428 | "lenVar": 40
429 | },
430 | "kernels_config": {
431 | "python": {
432 | "delete_cmd_postfix": "",
433 | "delete_cmd_prefix": "del ",
434 | "library": "var_list.py",
435 | "varRefreshCmd": "print(var_dic_list())"
436 | },
437 | "r": {
438 | "delete_cmd_postfix": ") ",
439 | "delete_cmd_prefix": "rm(",
440 | "library": "var_list.r",
441 | "varRefreshCmd": "cat(var_dic_list()) "
442 | }
443 | },
444 | "types_to_exclude": [
445 | "module",
446 | "function",
447 | "builtin_function_or_method",
448 | "instance",
449 | "_Feature"
450 | ],
451 | "window_display": false
452 | }
453 | },
454 | "nbformat": 4,
455 | "nbformat_minor": 2
456 | }
457 |
--------------------------------------------------------------------------------
/examples/bike_share_hour/data_types.json:
--------------------------------------------------------------------------------
1 | {"season":{"type":"categorical"},
2 | "yr":{"type":"categorical"},
3 | "mnth":{"type":"categorical"},
4 | "hr":{"type":"continuous"},
5 | "holiday":{"type":"categorical"},
6 | "weekday":{"type":"categorical"},
7 | "workingday":{"type":"categorical"},
8 | "weathersit":{"type":"categorical"},
9 | "temp":{"type":"continuous"},
10 | "atemp":{"type":"continuous"},
11 | "hum":{"type":"continuous"},
12 | "windspeed":{"type":"continuous"},
13 | "cnt":{"type":"target"}}
--------------------------------------------------------------------------------
/examples/bike_share_hour/readme.txt:
--------------------------------------------------------------------------------
1 | ==========================================
2 | Bike Sharing Dataset
3 | ==========================================
4 |
5 | Hadi Fanaee-T
6 |
7 | Laboratory of Artificial Intelligence and Decision Support (LIAAD), University of Porto
8 | INESC Porto, Campus da FEUP
9 | Rua Dr. Roberto Frias, 378
10 | 4200 - 465 Porto, Portugal
11 |
12 |
13 | =========================================
14 | Background
15 | =========================================
16 |
17 | Bike sharing systems are new generation of traditional bike rentals where whole process from membership, rental and return
18 | back has become automatic. Through these systems, user is able to easily rent a bike from a particular position and return
19 | back at another position. Currently, there are about over 500 bike-sharing programs around the world which is composed of
20 | over 500 thousands bicycles. Today, there exists great interest in these systems due to their important role in traffic,
21 | environmental and health issues.
22 |
23 | Apart from interesting real world applications of bike sharing systems, the characteristics of data being generated by
24 | these systems make them attractive for the research. Opposed to other transport services such as bus or subway, the duration
25 | of travel, departure and arrival position is explicitly recorded in these systems. This feature turns bike sharing system into
26 | a virtual sensor network that can be used for sensing mobility in the city. Hence, it is expected that most of important
27 | events in the city could be detected via monitoring these data.
28 |
29 | =========================================
30 | Data Set
31 | =========================================
32 | Bike-sharing rental process is highly correlated to the environmental and seasonal settings. For instance, weather conditions,
33 | precipitation, day of week, season, hour of the day, etc. can affect the rental behaviors. The core data set is related to
34 | the two-year historical log corresponding to years 2011 and 2012 from Capital Bikeshare system, Washington D.C., USA which is
35 | publicly available in http://capitalbikeshare.com/system-data. We aggregated the data on two hourly and daily basis and then
36 | extracted and added the corresponding weather and seasonal information. Weather information are extracted from http://www.freemeteo.com.
37 |
38 | =========================================
39 | Associated tasks
40 | =========================================
41 |
42 | - Regression:
43 | Predication of bike rental count hourly or daily based on the environmental and seasonal settings.
44 |
45 | - Event and Anomaly Detection:
46 | Count of rented bikes are also correlated to some events in the town which easily are traceable via search engines.
47 | For instance, query like "2012-10-30 washington d.c." in Google returns related results to Hurricane Sandy. Some of the important events are
48 | identified in [1]. Therefore the data can be used for validation of anomaly or event detection algorithms as well.
49 |
50 |
51 | =========================================
52 | Files
53 | =========================================
54 |
55 | - Readme.txt
56 | - hour.csv : bike sharing counts aggregated on hourly basis. Records: 17379 hours
57 | - day.csv - bike sharing counts aggregated on daily basis. Records: 731 days
58 |
59 |
60 | =========================================
61 | Dataset characteristics
62 | =========================================
63 | Both hour.csv and day.csv have the following fields, except hr which is not available in day.csv
64 |
65 | - instant: record index
66 | - dteday : date
67 | - season : season (1:springer, 2:summer, 3:fall, 4:winter)
68 | - yr : year (0: 2011, 1:2012)
69 | - mnth : month (1 to 12)
70 | - hr : hour (0 to 23)
71 | - holiday : weather day is holiday or not (extracted from http://dchr.dc.gov/page/holiday-schedule)
72 | - weekday : day of the week
73 | - workingday : if day is neither weekend nor holiday is 1, otherwise is 0.
74 | + weathersit :
75 | - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
76 | - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
77 | - 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
78 | - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
79 | - temp : Normalized temperature in Celsius. The values are divided to 41 (max)
80 | - atemp: Normalized feeling temperature in Celsius. The values are divided to 50 (max)
81 | - hum: Normalized humidity. The values are divided to 100 (max)
82 | - windspeed: Normalized wind speed. The values are divided to 67 (max)
83 | - casual: count of casual users
84 | - registered: count of registered users
85 | - cnt: count of total rental bikes including both casual and registered
86 |
87 | =========================================
88 | License
89 | =========================================
90 | Use of this dataset in publications must be cited to the following publication:
91 |
92 | [1] Fanaee-T, Hadi, and Gama, Joao, "Event labeling combining ensemble detectors and background knowledge", Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg, doi:10.1007/s13748-013-0040-3.
93 |
94 | @article{
95 | year={2013},
96 | issn={2192-6352},
97 | journal={Progress in Artificial Intelligence},
98 | doi={10.1007/s13748-013-0040-3},
99 | title={Event labeling combining ensemble detectors and background knowledge},
100 | url={http://dx.doi.org/10.1007/s13748-013-0040-3},
101 | publisher={Springer Berlin Heidelberg},
102 | keywords={Event labeling; Event detection; Ensemble learning; Background knowledge},
103 | author={Fanaee-T, Hadi and Gama, Joao},
104 | pages={1-15}
105 | }
106 |
107 | =========================================
108 | Contact
109 | =========================================
110 |
111 | For further information about this dataset please contact Hadi Fanaee-T (hadi.fanaee@fe.up.pt)
112 |
--------------------------------------------------------------------------------
/examples/credit_default/TaiwanCreditDataset.xls:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/examples/credit_default/TaiwanCreditDataset.xls
--------------------------------------------------------------------------------
/examples/credit_default/credit_default.names:
--------------------------------------------------------------------------------
1 | X1: Amount of the given credit (NT dollar): it includes both the individual consumer credit and his/her family (supplementary) credit.
2 | X2: Gender (1 = male; 2 = female).
3 | X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
4 | X4: Marital status (1 = married; 2 = single; 3 = others).
5 | X5: Age (year).
6 | X6 - X11: History of past payment. We tracked the past monthly payment records (from April to September, 2005) as follows: X6 = the repayment status in September, 2005; X7 = the repayment status in August, 2005; . . .;X11 = the repayment status in April, 2005. The measurement scale for the repayment status is: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above.
7 | X12-X17: Amount of bill statement (NT dollar). X12 = amount of bill statement in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 = amount of bill statement in April, 2005.
8 | X18-X23: Amount of previous payment (NT dollar). X18 = amount paid in September, 2005; X19 = amount paid in August, 2005; . . .;X23 = amount paid in April, 2005.
9 |
10 |
--------------------------------------------------------------------------------
/examples/credit_default/data_types.json:
--------------------------------------------------------------------------------
1 | {"Given Credit":{"type":"continuous"},
2 | "Gender":{"type":"categorical"},
3 | "Education":{"type":"categorical"},
4 | "Marital":{"type":"categorical"},
5 | "Age":{"type":"continuous"},
6 | "PAY1":{"type":"continuous"},
7 | "PAY2":{"type":"continuous"},
8 | "PAY3":{"type":"continuous"},
9 | "PAY4":{"type":"continuous"},
10 | "PAY5":{"type":"continuous"},
11 | "PAY6":{"type":"continuous"},
12 | "BILL_AMT1":{"type":"continuous"},
13 | "BILL_AMT2":{"type":"continuous"},
14 | "BILL_AMT3":{"type":"continuous"},
15 | "BILL_AMT4":{"type":"continuous"},
16 | "BILL_AMT5":{"type":"continuous"},
17 | "BILL_AMT6":{"type":"continuous"},
18 | "PAY_AMT1":{"type":"continuous"},
19 | "PAY_AMT2":{"type":"continuous"},
20 | "PAY_AMT3":{"type":"continuous"},
21 | "PAY_AMT4":{"type":"continuous"},
22 | "PAY_AMT5":{"type":"continuous"},
23 | "PAY_AMT6":{"type":"continuous"},
24 | "Default Payment":{"type":"target"}}
--------------------------------------------------------------------------------
/examples/credit_default/load.py:
--------------------------------------------------------------------------------
1 | import json
2 | import numpy as np
3 | import pandas as pd
4 | from sklearn.model_selection import train_test_split
5 | from sklearn.preprocessing import OrdinalEncoder, MinMaxScaler
6 |
7 |
8 | def load_credit_default(random_state=0):
9 |
10 | data = pd.read_excel('./data/credit_default/default of credit card clients.xls', header=1)
11 | meta_info = json.load(open('./data/credit_default/data_types.json'))
12 | payment_list = ['BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6',
13 | 'PAY_AMT1', 'PAY_AMT2','PAY_AMT3', 'PAY_AMT4','PAY_AMT5', 'PAY_AMT6']
14 | data.loc[:,payment_list] = (np.sign(data.loc[:,payment_list]).values * np.log10(np.abs(data.loc[:,payment_list]) + 1))
15 | x, y = data.iloc[:,1:-1].values, data.iloc[:,[-1]].values
16 |
17 | xx = np.zeros(x.shape)
18 | task_type = 'Classification'
19 | for i, (key, item) in enumerate(meta_info.items()):
20 | if item['type'] == 'target':
21 | enc = OrdinalEncoder()
22 | enc.fit(y)
23 | y = enc.transform(y)
24 | meta_info[key]['values'] = enc.categories_[0].tolist()
25 | elif item['type'] == 'categorical':
26 | enc = OrdinalEncoder()
27 | enc.fit(x[:,[i]])
28 | ordinal_feature = enc.transform(x[:,[i]])
29 | xx[:,[i]] = ordinal_feature
30 | meta_info[key]['values'] = enc.categories_[0].tolist()
31 | else:
32 | sx = MinMaxScaler((0, 1))
33 | xx[:,[i]] = sx.fit_transform(x[:,[i]])
34 | meta_info[key]['scaler'] = sx
35 |
36 | train_x, test_x, train_y, test_y = train_test_split(xx.astype(np.float32), y, test_size=0.2, random_state=random_state)
37 |
38 | meta_info = {'LIMIT_BAL':{'type':'continuous'},
39 | 'PAY_0':{'type':'continuous'},
40 | 'PAY_2':{'type':'continuous'},
41 | 'PAY_3':{'type':'continuous'},
42 | 'PAY_4':{'type':'continuous'},
43 | 'PAY_5':{'type':'continuous'},
44 | 'PAY_6':{'type':'continuous'},
45 | 'BILL_AMT1':{'type':'continuous'},
46 | 'BILL_AMT2':{'type':'continuous'},
47 | 'BILL_AMT3':{'type':'continuous'},
48 | 'BILL_AMT4':{'type':'continuous'},
49 | 'BILL_AMT5':{'type':'continuous'},
50 | 'BILL_AMT6':{'type':'continuous'},
51 | 'PAY_AMT1':{'type':'continuous'},
52 | 'PAY_AMT2':{'type':'continuous'},
53 | 'PAY_AMT3':{'type':'continuous'},
54 | 'PAY_AMT456':{'type':'continuous'},
55 | 'FLAG_UTIL_RAT1':{'type':'categorical'},
56 | 'UTIL_RAT1':{'type':'continuous'},
57 | 'UTIL_RAT_AVG':{'type':'continuous'},
58 | 'UTIL_RAT_RANGE':{'type':'continuous'},
59 | 'UTIL_RAT_MAX':{'type':'continuous'},
60 | 'FLAG_PAY_RAT1':{'type':'categorical'},
61 | 'PAY_RAT1':{'type':'continuous'},
62 | 'PAY_RAT_AVG':{'type':'continuous'},
63 | 'PAY_RAT_RANGE':{'type':'continuous'},
64 | 'PAY_RAT_MAX':{'type':'continuous'},
65 | 'Default Payment':{'type':'target'}}
66 |
67 | data = pd.read_csv('./data/credit_default/credit_data_processed.csv', index_col=[0])
68 | x, y = data.loc[:,list(meta_info.keys())[:-1]].values, data.loc[:,['default.payment.next.month']].values
69 |
70 | xx = np.zeros(x.shape)
71 | task_type = 'Classification'
72 | for i, (key, item) in enumerate(meta_info.items()):
73 | if item['type'] == 'target':
74 | enc = OrdinalEncoder()
75 | enc.fit(y)
76 | y = enc.transform(y)
77 | meta_info[key]['values'] = enc.categories_[0].tolist()
78 | elif item['type'] == 'categorical':
79 | enc = OrdinalEncoder()
80 | enc.fit(x[:,[i]])
81 | ordinal_feature = enc.transform(x[:,[i]])
82 | xx[:,[i]] = ordinal_feature
83 | meta_info[key]['values'] = enc.categories_[0].tolist()
84 | else:
85 | sx = MinMaxScaler((0, 1))
86 | xx[:,[i]] = sx.fit_transform(x[:,[i]])
87 | meta_info[key]['scaler'] = sx
88 |
89 | train_x, test_x, train_y, test_y = train_test_split(xx.astype(np.float32), y, test_size=0.2, random_state=random_state)
90 | return train_x, test_x, train_y, test_y, task_type, meta_info
--------------------------------------------------------------------------------
/examples/credit_default/undocumented values:
--------------------------------------------------------------------------------
1 | I emailed the professor who created the data set. Listed here
2 |
3 | Below is the response regarding the values used for fields X6:X11
4 |
5 | "This research employed a binary variable, default payment (Yes = 1, No = 0), as the response variable. This study reviewed the literature and used the following 23 variables as explanatory variables:
6 |
7 | X1: Amount of the given credit (NT dollar): it includes both the individual consumer credit and his/her family (supplementary) credit.
8 |
9 | X2: Gender (1 = male; 2 = female).
10 |
11 | X3: Education (1 = graduate school; 2 = university; 3 = high school; 0, 4, 5, 6 = others).
12 |
13 | X4: Marital status (1 = married; 2 = single; 3 = divorce; 0=others).
14 |
15 | X5: Age (year).
16 |
17 | X6 - X11: History of past payment. We tracked the past monthly payment records (from April to September, 2005) as follows: X6 = the repayment status in September, 2005; X7 = the repayment status in August, 2005; . . .;X11 = the repayment status in April, 2005. The measurement scale for the repayment status is:
18 |
19 | -2: No consumption; -1: Paid in full; 0: The use of revolving credit; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above.
20 |
21 | X12-X17: Amount of bill statement (NT dollar). X12 = amount of bill statement in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 = amount of bill statement in April, 2005.
22 |
23 | X18-X23: Amount of previous payment (NT dollar). X18 = amount paid in September, 2005; X19 = amount paid in August, 2005; . . .;X23 = amount paid in April, 2005.
24 |
25 | Y: client's behavior; Y=0 then not default, Y=1 then default"
26 |
27 |
--------------------------------------------------------------------------------
/examples/dataset.py:
--------------------------------------------------------------------------------
1 | import json
2 | import numpy as np
3 | import pandas as pd
4 | from sklearn.datasets import fetch_california_housing
5 | from sklearn.model_selection import train_test_split
6 | from sklearn.preprocessing import OrdinalEncoder, MinMaxScaler
7 |
8 |
9 | def metric_wrapper(metric, scaler):
10 | def wrapper(label, pred):
11 | return metric(label, pred, scaler=scaler)
12 | return wrapper
13 |
14 | def rmse(label, pred, scaler):
15 | pred = scaler.inverse_transform(pred.reshape([-1, 1]))
16 | label = scaler.inverse_transform(label.reshape([-1, 1]))
17 | return np.sqrt(np.mean((pred - label)**2))
18 |
19 |
20 | def get_bike_share(random_state=0):
21 |
22 | # we use hour dataset and predict total cnt
23 | task_type = "Regression"
24 | data = pd.read_csv("./bike_share_hour/bike_share_hour.csv", index_col=[0])
25 | meta_info = json.load(open("./bike_share_hour/data_types.json"))
26 | x, y = data.iloc[:,1:-3].values, data.iloc[:,[-1]].values
27 | xx = np.zeros((x.shape[0], x.shape[1]), dtype=np.float32)
28 | for i, (key, item) in enumerate(meta_info.items()):
29 | if item['type'] == 'target':
30 | sy = MinMaxScaler((0, 1))
31 | y = sy.fit_transform(y)
32 | meta_info[key]['scaler'] = sy
33 | elif item['type'] == 'categorical':
34 | enc = OrdinalEncoder()
35 | xx[:,[i]] = enc.fit_transform(x[:,[i]])
36 | meta_info[key]['values'] = []
37 | for item in enc.categories_[0].tolist():
38 | try:
39 | if item == int(item):
40 | meta_info[key]['values'].append(str(int(item)))
41 | else:
42 | meta_info[key]['values'].append(str(item))
43 | except ValueError:
44 | meta_info[key]['values'].append(str(item))
45 | else:
46 | sx = MinMaxScaler((0, 1))
47 | xx[:,[i]] = sx.fit_transform(x[:,[i]])
48 | meta_info[key]['scaler'] = sx
49 | selected_features = ['season', 'mnth', 'hr', 'weekday', 'workingday', 'weathersit', 'temp', 'hum', 'windspeed', 'cnt']
50 | meta_info = {key: meta_info[key] for key in selected_features}
51 |
52 | train_x, test_x, train_y, test_y = train_test_split(xx.astype(np.float32)[:, [0, 2, 3, 5, 6, 7, 8, 10, 11]],
53 | y.astype(np.float32),
54 | test_size=0.2, random_state=random_state)
55 | return train_x, test_x, train_y, test_y, task_type, meta_info, metric_wrapper(rmse,sy)
56 |
57 |
58 | def get_credit_default(random_state=0):
59 |
60 | meta_info = {'LIMIT_BAL':{'type':'continuous'},
61 | 'PAY_0':{'type':'continuous'},
62 | 'PAY_2':{'type':'continuous'},
63 | 'PAY_3':{'type':'continuous'},
64 | 'PAY_4':{'type':'continuous'},
65 | 'PAY_5':{'type':'continuous'},
66 | 'PAY_6':{'type':'continuous'},
67 | 'BILL_AMT1':{'type':'continuous'},
68 | 'BILL_AMT2':{'type':'continuous'},
69 | 'BILL_AMT3':{'type':'continuous'},
70 | 'BILL_AMT4':{'type':'continuous'},
71 | 'BILL_AMT5':{'type':'continuous'},
72 | 'BILL_AMT6':{'type':'continuous'},
73 | 'PAY_AMT1':{'type':'continuous'},
74 | 'PAY_AMT2':{'type':'continuous'},
75 | 'PAY_AMT3':{'type':'continuous'},
76 | 'PAY_AMT456':{'type':'continuous'},
77 | 'FLAG_UTIL_RAT1':{'type':'categorical'},
78 | 'UTIL_RAT1':{'type':'continuous'},
79 | 'UTIL_RAT_AVG':{'type':'continuous'},
80 | 'UTIL_RAT_RANGE':{'type':'continuous'},
81 | 'UTIL_RAT_MAX':{'type':'continuous'},
82 | 'FLAG_PAY_RAT1':{'type':'categorical'},
83 | 'PAY_RAT1':{'type':'continuous'},
84 | 'PAY_RAT_AVG':{'type':'continuous'},
85 | 'PAY_RAT_RANGE':{'type':'continuous'},
86 | 'PAY_RAT_MAX':{'type':'continuous'},
87 | 'Default Payment':{'type':'target'}}
88 |
89 | data = pd.read_csv('./credit_default/credit_data_processed.csv', index_col=[0])
90 | x, y = data.loc[:,list(meta_info.keys())[:-1]].values, data.loc[:,['default.payment.next.month']].values
91 |
92 | xx = np.zeros(x.shape)
93 | task_type = 'Classification'
94 | for i, (key, item) in enumerate(meta_info.items()):
95 | if item['type'] == 'target':
96 | enc = OrdinalEncoder()
97 | enc.fit(y)
98 | y = enc.transform(y)
99 | meta_info[key]['values'] = enc.categories_[0].tolist()
100 | elif item['type'] == 'categorical':
101 | enc = OrdinalEncoder()
102 | enc.fit(x[:,[i]])
103 | ordinal_feature = enc.transform(x[:,[i]])
104 | xx[:,[i]] = ordinal_feature
105 | meta_info[key]['values'] = enc.categories_[0].tolist()
106 | else:
107 | sx = MinMaxScaler((0, 1))
108 | xx[:,[i]] = sx.fit_transform(x[:,[i]])
109 | meta_info[key]['scaler'] = sx
110 |
111 | train_x, test_x, train_y, test_y = train_test_split(xx.astype(np.float32), y, test_size=0.2, random_state=random_state)
112 | return train_x, test_x, train_y, test_y, task_type, meta_info
113 |
114 |
115 | def get_california_housing(random_state=0):
116 |
117 | task_type = "Regression"
118 | cal_housing = fetch_california_housing()
119 | sx = MinMaxScaler((0, 1))
120 | sy = MinMaxScaler((0, 1))
121 | xx = sx.fit_transform(cal_housing.data)
122 | yy = sy.fit_transform(cal_housing.target.reshape(-1, 1))
123 |
124 | get_metric = metric_wrapper(rmse, sy)
125 | meta_info = {name: {"type": "continuous"} for name in cal_housing.feature_names}
126 | meta_info.update({cal_housing.target_names[0]: {"type": "target"}})
127 | train_x, test_x, train_y, test_y = train_test_split(xx, yy, test_size=0.2, random_state=random_state)
128 | return train_x, test_x, train_y, test_y, task_type, meta_info, metric_wrapper(rmse,sy)
129 |
--------------------------------------------------------------------------------
/examples/fico/.ipynb_checkpoints/preprocess-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "ExecuteTime": {
8 | "end_time": "2020-05-27T04:16:46.019095Z",
9 | "start_time": "2020-05-27T04:08:26.163560Z"
10 | }
11 | },
12 | "outputs": [
13 | {
14 | "name": "stdout",
15 | "output_type": "stream",
16 | "text": [
17 | "Column being fixed: 1\n",
18 | "Column being fixed: 8\n",
19 | "Column being fixed: 14\n",
20 | "Column being fixed: 17\n",
21 | "Column being fixed: 18\n",
22 | "Column being fixed: 19\n",
23 | "Column being fixed: 20\n",
24 | "Column being fixed: 21\n",
25 | "Column being fixed: 22\n"
26 | ]
27 | }
28 | ],
29 | "source": [
30 | "# --- Imports section --- \n",
31 | "import numpy as np\n",
32 | "import pandas as pd\n",
33 | "from sklearn.preprocessing import StandardScaler\n",
34 | "from sklearn import datasets, linear_model, preprocessing\n",
35 | "import copy\n",
36 | "\n",
37 | "class ModelError(Exception):\n",
38 | "\tpass\n",
39 | "\n",
40 | "class Data_Cleaner():\n",
41 | "\n",
42 | "\tdef __init__ (self, file_name, data = None):\n",
43 | "\t# --- Retrieves the data from CSV or array, as well as basic organisation ---\n",
44 | "\n",
45 | "\t\t# -- Get data from CSV or given array --\n",
46 | "\t\tif (data == None):\n",
47 | "\t\t\tself.data_set = pd.read_csv(file_name).values\n",
48 | "\n",
49 | "\t\telse:\n",
50 | "\t\t\tself.data_set = data\n",
51 | "\n",
52 | "\t\t# -- Converting target to binary --\n",
53 | "\t\tnp.place(self.data_set, self.data_set == \"Bad\", 0)\n",
54 | "\t\tnp.place(self.data_set, self.data_set == \"Good\", 1)\n",
55 | "\n",
56 | "\t\t# -- Creating Model Variable -- \n",
57 | "\t\tself.model = None\n",
58 | "\n",
59 | "\t\t# -- Creating an Order Column --\n",
60 | "\t\torder = np.arange(self.data_set.shape[0])\n",
61 | "\t\torder = order.reshape((order.shape[0],1))\n",
62 | "\n",
63 | "\t\t# -- Scale and Split --\n",
64 | "\t\t# self.y = self.data_set[:,:1]\n",
65 | "\t\t# scaler = StandardScaler()\n",
66 | "\t\t# self.X = scaler.fit_transform(self.data_set[:,1:])\n",
67 | "\n",
68 | "\t\tself.y = self.data_set[:,:1]\n",
69 | "\t\tself.X = self.data_set[:,1:]\n",
70 | "\n",
71 | "\n",
72 | "\t\t# -- Needs to be retained for inserting new samples\n",
73 | "\t\t# self.mean = scaler.mean_\n",
74 | "\t\t# self.scale = scaler.scale_\n",
75 | "\n",
76 | "\t\t# -- Assiging general useful variables --\n",
77 | "\t\tself.num_samples , self.num_features = self.X.shape\n",
78 | "\n",
79 | "\t\t# -- Add the Order Column -- \n",
80 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
81 | "\t\tself.y = np.append(order,self.y,axis=1)\n",
82 | "\n",
83 | "\tdef shift(self):\n",
84 | "\t# --- Perform the shift for the two categorical features --- \n",
85 | "\n",
86 | "\t\t# -- Shift is hardcoded based on requirements -- \n",
87 | "\t\tfirst_col = self.X[:,10]\n",
88 | "\t\tnp.place(first_col, first_col == 1, 100) # hold value\n",
89 | "\t\tnp.place(first_col, first_col == 6, 1)\n",
90 | "\t\tnp.place(first_col, first_col == 5, 1)\n",
91 | "\t\tnp.place(first_col, first_col == 4, 6)\n",
92 | "\t\tnp.place(first_col, first_col == 3, 5)\n",
93 | "\t\tnp.place(first_col, first_col == 2, 4)\n",
94 | "\t\tnp.place(first_col, first_col == 100, 3)\n",
95 | "\t\tnp.place(first_col, first_col == 0, 2)\n",
96 | "\t\tnp.place(first_col, first_col == 8, 0)\n",
97 | "\t\tnp.place(first_col, first_col == 9, 0)\n",
98 | "\n",
99 | "\t\tsecond_col= self.X[:,11]\n",
100 | "\t\tnp.place(second_col, second_col == 1, 0)\n",
101 | "\t\tnp.place(second_col, second_col == 9, 0)\n",
102 | "\t\tnp.place(second_col, second_col == 7, 1)\n",
103 | "\t\tnp.place(second_col, second_col == 8, 7)\n",
104 | "\n",
105 | "\t\tself.X[:,10] = first_col\n",
106 | "\t\tself.X[:,11] = second_col\n",
107 | "\n",
108 | "\tdef __scaled_row(self,row,scaler):\n",
109 | "\t# --- Returns the Row Scaled ---\n",
110 | "\t\tmean = scaler.mean_\n",
111 | "\t\tscale = scaler.scale_\n",
112 | "\t\tscld = []\n",
113 | "\t\tfor k in range(row.shape[0]):\n",
114 | "\t\t\tscld.append((row[k] - mean[k])/scale[k])\n",
115 | "\t\tscld = np.array(scld)\n",
116 | "\n",
117 | "\t\treturn scld\n",
118 | "\t \n",
119 | "\tdef __masked_arr(self,orig_array, mask):\n",
120 | "\t# --- Returns XOR of Array and Mask --- \n",
121 | "\t\tmasked_array = []\n",
122 | "\n",
123 | "\t\tfor i in range(len(orig_array)):\n",
124 | "\t\t\trow = []\n",
125 | "\t\t\tfor j in range(len(orig_array[0])):\n",
126 | "\t\t\t\tif mask[j] != 0:\n",
127 | "\t\t\t\t\trow.append(orig_array[i][j])\n",
128 | "\t\t\tmasked_array.append(row)\n",
129 | "\n",
130 | "\t\tmasked_array = np.array(masked_array)\n",
131 | "\n",
132 | "\t\treturn masked_array\n",
133 | "\n",
134 | "\tdef __euc_distance(self,row1, row2):\n",
135 | "\t# --- Returns Euclidian Distance between Rows --- \n",
136 | "\t\tdist = 0\n",
137 | "\t\tfor i in range(len(row1)):\n",
138 | "\t\t\tt = (row1[i]-row2[i])**2\n",
139 | "\t\t\tdist += t\n",
140 | "\t\tdist = np.sqrt(dist)\n",
141 | "\t\treturn dist\n",
142 | "\n",
143 | "\tdef __predict_feature_weighted(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
144 | "\t# --- Returns the single special value replaced by kNN imputation using weights---\n",
145 | "\n",
146 | "\t\tdistances = []\n",
147 | "\t\t# -- Loops through the good data with no special values -- \n",
148 | "\t\t\t# - Good data has the changing feature removed -\n",
149 | "\t\tfor i in range(len(good_data_masked)):\t\n",
150 | "\t\t\tdistances.append(self.__euc_distance(row, good_data_masked[i]))\n",
151 | "\n",
152 | "\t\tdistances = np.array(distances)\n",
153 | "\t\tmax_dist = np.max(distances)\n",
154 | "\t \n",
155 | "\t\t# -- Sorts the first no_neigbours features --\n",
156 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
157 | "\n",
158 | "\t\tvalues = []\n",
159 | "\t\tmin_dists = []\n",
160 | "\t \n",
161 | "\t\t# -- Retrieving values with which to replace -- \n",
162 | "\t\tfor i in range(no_neighbours):\n",
163 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
164 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
165 | "\n",
166 | "\t\tvalues = np.array(values) \n",
167 | "\t\tmin_dists = np.array(min_dists)\n",
168 | "\n",
169 | "\t\t# -- Assigning the weights -- \n",
170 | "\t\tweights = []\n",
171 | "\t\tfor i in min_dists:\n",
172 | "\t\t\tweights.append(1 - (i/max_dist))\n",
173 | "\t \n",
174 | "\t # -- Calculating final result -- \n",
175 | "\t\timputed_val = 0\n",
176 | "\t\tfor i in range(len(weights)):\n",
177 | "\t\t\timputed_val += weights[i] * values[i]\n",
178 | "\t \n",
179 | "\t\treturn imputed_val \n",
180 | "\n",
181 | "\tdef __predict_feature_mean(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
182 | "\t# --- Returns the single special value replaced by kNN imputation using the mean ---\n",
183 | "\n",
184 | "\t\tdistances = []\n",
185 | "\t\t# -- Loops through the good data with no special values -- \n",
186 | "\t \t# - Good data has the changing feature removed -\n",
187 | "\t\tfor i in range(len(good_data_masked)):\n",
188 | "\t\t\tdistances.append(self.__euc_distance(row,good_data_masked[i]))\n",
189 | "\t\tdistances = np.array(distances)\n",
190 | "\t \n",
191 | "\t\t# -- Sorts the first no_neigbours features --\n",
192 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
193 | "\n",
194 | "\t\tvalues = []\n",
195 | "\t\tmin_dists = []\n",
196 | "\t \n",
197 | "\t\t# -- Retrieving values with which to replace -- \n",
198 | "\t\tfor i in range(no_neighbours):\n",
199 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
200 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
201 | "\n",
202 | "\t\tvalues = np.array(values) \n",
203 | "\t\tmin_dists = np.array(min_dists)\n",
204 | "\t \n",
205 | "\t\t# -- Calculating final result -- \n",
206 | "\t\timputed_val = 0\n",
207 | "\t\tfor i in range(len(values)):\n",
208 | "\t\t\timputed_val += values[i]\n",
209 | "\n",
210 | "\t\timputed_val = imputed_val/len(values)\n",
211 | "\n",
212 | "\t\treturn imputed_val\n",
213 | "\n",
214 | "\tdef __remove_row_with_vals(self, data, target, vals):\n",
215 | "\t# --- Returns the data/target without the rows that have any instance of vals list ---\n",
216 | "\t\tremoved_data = []\n",
217 | "\t\tremoved_target = []\n",
218 | "\n",
219 | "\t\trow_no = 0 \n",
220 | "\t\tfor row in data:\n",
221 | "\t\t\tfor col in row:\n",
222 | "\t\t\t\tif (col in vals):\n",
223 | "\t\t\t\t\tremoved_data.append(data[row_no])\n",
224 | "\t\t\t\t\tdata = np.delete(data, row_no, 0)\n",
225 | "\n",
226 | "\t\t\t\t\tremoved_target.append(target[row_no])\n",
227 | "\t\t\t\t\ttarget = np.delete(target, row_no, 0) \n",
228 | "\t\t\t\t\trow_no -= 1\n",
229 | "\t\t\t\t\tbreak\n",
230 | "\t\t\trow_no += 1\n",
231 | "\n",
232 | "\t\tremoved_data = np.array(removed_data)\n",
233 | "\t\tremoved_target = np.array(removed_target)\n",
234 | "\n",
235 | "\t\treturn data, target, removed_data, removed_target\n",
236 | "\n",
237 | "\tdef __remove_col_with_vals(self, data, vals):\n",
238 | "\t# --- Returns the data without the coloumns that have the desired special values ---\n",
239 | "\t\tno_cols = data.shape[1]\n",
240 | "\t\tno_rows = data.shape[0]\n",
241 | "\t\trow = 0\n",
242 | "\t\twhile (no_rows > row):\n",
243 | "\t\t\tcol = 0\n",
244 | "\t\t\twhile (no_cols > col):\n",
245 | "\t\t\t\tif (data[row][col] in vals):\n",
246 | "\t\t\t\t\tdata = np.delete(data, col, 1)\n",
247 | "\t\t\t\t\tno_cols -= 1\n",
248 | "\t\t\t\telse:\n",
249 | "\t\t\t\t\tcol += 1\n",
250 | "\t\t\trow += 1 \n",
251 | "\t\treturn data\n",
252 | "\n",
253 | "\tdef __predict_values_lin_reg(self,X_tr,y_tr,X_test):\n",
254 | "\t# --- Uses linear regression to extrapolate values ---\n",
255 | "\t\tmodel = linear_model.LinearRegression()\n",
256 | "\t\tmodel.fit(X_tr, y_tr)\n",
257 | "\t\tpred = model.predict(X_test)\n",
258 | "\t\treturn pred\n",
259 | "\n",
260 | "\tdef __data_spliter(self,all_data,target_col,target_val):\n",
261 | "\t# --- Splits the data such to identify target col --- \n",
262 | "\t\ttarget_col += 1\n",
263 | "\n",
264 | "\t\ty = all_data[:,target_col:target_col+1]\n",
265 | "\t\tX = np.delete(all_data,target_col,1)\n",
266 | "\t \n",
267 | "\t\t# -- Will hold the X for the y values that need to be predicted--\n",
268 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
269 | "\n",
270 | "\t\trow_no = 0 \n",
271 | "\t\t# -- Finds the rows with a target val -- \n",
272 | "\t\tfor val in y:\n",
273 | "\t\t\tif (val[0] == target_val):\n",
274 | "\t\t\t\tX_target = np.append(X_target,X[row_no:row_no+1,:],axis=0)\n",
275 | "\t\t\t\tX = np.delete(X, row_no, 0)\n",
276 | "\t\t\t\ty = np.delete(y, row_no, 0) \n",
277 | "\t\t\telse:\n",
278 | "\t\t\t\trow_no += 1\n",
279 | "\n",
280 | "\t\tX_target = np.delete(X_target,0,0)\n",
281 | "\t \n",
282 | "\t\treturn X,y,X_target # Note that the order column is still attached\n",
283 | "\n",
284 | "\tdef __combine_parts_inorder(self,X,y,X_target,y_target,target_col):\n",
285 | "\t# --- Combines all the small parts into a single data matrix ---\n",
286 | "\t\ttarget_col += 1 # To account for the order column\n",
287 | "\n",
288 | "\t\ty_target = y_target.reshape((y_target.shape[0],1))\n",
289 | "\t\ty_full = np.append(y_target,y,axis=0)\n",
290 | "\t\tX_full = np.append(X_target,X,axis=0)\n",
291 | "\n",
292 | "\t\tdata = np.append(X_full[:,:target_col],y_full,axis=1)\n",
293 | "\t\tdata = np.append(data,X_full[:,target_col:],axis=1)\n",
294 | "\t\treturn data\n",
295 | "\n",
296 | "\tdef __average_each_feature(self,X):\n",
297 | "\t# --- Finds the mean values for each feature ---\n",
298 | "\n",
299 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
300 | "\t \n",
301 | "\t\tfor i in range(X.shape[1]):\n",
302 | "\t\t\tcol = X[:,i]\n",
303 | "\t\t\tcol = np.mean(col,axis=0)\n",
304 | "\t\t\tX_target[:,i] = col\n",
305 | "\t \n",
306 | "\t\treturn X_target\n",
307 | "\n",
308 | "\tdef __process_and_predict(self,all_data,target_col,target_val,exclude=None,model=\"linear\"):\n",
309 | "\t\t# -- Split data --\n",
310 | "\t\tX,y,X_target = self.__data_spliter(all_data,target_col,target_val)\n",
311 | "\t\t# -- Record order columns -- \n",
312 | "\n",
313 | "\t\torder_data = X[:,0:1]\n",
314 | "\t\torder_target = X_target[:,0:1]\n",
315 | "\t \n",
316 | "\t # -- Remove certain columns --\n",
317 | "\t\tif (exclude != None or exclude == []):\n",
318 | "\t\t\ty_tr = np.copy(y)\n",
319 | "\t\t\tX_tr = self.__remove_col_with_vals(X,exclude)\n",
320 | "\t\t\tX_tr = np.delete(X_tr,0,axis=1) # Removes the order column\n",
321 | "\t\t\tX_pred = self.__remove_col_with_vals(X_target,exclude) # The x used to predict\n",
322 | "\t\t\tX_pred = np.delete(X_pred,0,axis=1)\n",
323 | "\n",
324 | "\n",
325 | "\t\telse:\n",
326 | "\t\t\ty_tr = np.copy(y)\n",
327 | "\t\t\tX_tr = np.delete(X,0,axis=1) # Removes the order column\n",
328 | "\t\t\tX_pred = np.delete(X_target,0,axis=1)\n",
329 | "\n",
330 | "\n",
331 | "\t # -- Run regression --\n",
332 | "\t\tif (model == \"linear\"):\n",
333 | "\t\t\ty_target = self.__predict_values_lin_reg(X_tr,y_tr,X_pred)\n",
334 | "\n",
335 | "\t\telif (model == \"polynomial\"):\n",
336 | "\t\t\tpass\n",
337 | "\n",
338 | "\t\telif (model == \"special\"):\n",
339 | "\t\t\tX_avg = self.__average_each_feature(X_pred)\n",
340 | "\t\t\tpred = self.__predict_values_lin_reg(X_tr,y_tr,X_avg)\n",
341 | "\t \n",
342 | "\t\telse:\n",
343 | "\t\t\traise ModelError(\"Model currently not available\")\n",
344 | "\t \n",
345 | "\t\tfinal_data = self.__combine_parts_inorder(X,y,X_target,y_target,target_col)\n",
346 | "\t\treturn final_data\n",
347 | "\t# --- Processes the data and uses linear regression to extrapolate --- \n",
348 | "\n",
349 | "\tdef remove_8(self, kNN, prediction_type):\n",
350 | "\t# --- Removes all the -8 values using kNN imputation ---\n",
351 | "\t\t# -- Remove the order column -- \n",
352 | "\t\torder = self.X[:,0]\n",
353 | "\t\torder = order.reshape((order.shape[0],1))\n",
354 | "\t\tself.X = np.delete(self.X, 0, axis = 1)\n",
355 | "\n",
356 | "\t\t# -- Removes all special values (-7,-8,-9) --\n",
357 | "\t\tX_good, hold1, hold2, hold3 = self.__remove_row_with_vals(self.X, self.y, [-7,-8,-9])\n",
358 | "\n",
359 | "\t\tscaler = StandardScaler()\n",
360 | "\t\tX_good_scaled = scaler.fit_transform(X_good)\n",
361 | "\n",
362 | "\t\t# -- Create a copy of the data matrix X to edit -- \n",
363 | "\t\tX_no_8 = np.copy(self.X)\n",
364 | "\n",
365 | "\t\tcols_with_8 = [1,8,14,17,18,19,20,21,22]\n",
366 | "\n",
367 | "\t\t# -- Fixing each -8 column -- \n",
368 | "\t\tfor fix_col in cols_with_8:\n",
369 | "\t\t\tprint(\"Column being fixed:\", str(fix_col))\n",
370 | "\t\t\t# -- Looping through all samples -- \n",
371 | "\t\t\tfor row in range(self.num_samples):\n",
372 | "\n",
373 | "\t\t\t\tif self.X[row][fix_col] == -8:\n",
374 | "\t\t\t\t\trow_to_comp = []\n",
375 | "\t\t\t\t\tmask = []\n",
376 | "\t\t\t\t\tscaled = self.__scaled_row(self.X[row],scaler)\n",
377 | "\n",
378 | "\t\t\t\t\t# -- Looping through each value --\n",
379 | "\t\t\t\t\tfor col in range(self.num_features):\n",
380 | "\t\t\t\t\t\tif self.X[row][col] >= 0:\n",
381 | "\t\t\t\t\t\t\tmask.append(1)\n",
382 | "\t\t\t\t\t\t\trow_to_comp.append(scaled[col])\n",
383 | "\t\t\t\t\t\telse:\n",
384 | "\t\t\t\t\t\t\tmask.append(0)\n",
385 | "\n",
386 | "\t\t\t\t\trow_to_comp = np.array(row_to_comp)\n",
387 | "\t\t\t\t\tmask = np.array(mask)\n",
388 | "\t\t \n",
389 | "\t\t\t\t\t# -- Getting the array of samples without special values in the good datasets-- \n",
390 | "\t\t\t\t\tX_good_masked = self.__masked_arr(X_good_scaled, mask)\n",
391 | "\n",
392 | "\t\t\t\t\tif (prediction_type == \"mean\"):\n",
393 | "\t\t\t\t\t\timputed = self.__predict_feature_mean(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
394 | "\n",
395 | "\t\t\t\t\telif (prediction_type == \"weighted\"):\n",
396 | "\t\t\t\t\t\timputed = self.__predict_feature_weighted(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
397 | "\t\t\t\t\t\n",
398 | "\t\t\t\t\tX_no_8[row][fix_col] = imputed*scaler.scale_[fix_col] + scaler.mean_[fix_col]\n",
399 | "\n",
400 | "\t\tself.X = X_no_8\n",
401 | "\n",
402 | "\t\t# -- Add back order column -- \n",
403 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
404 | "\n",
405 | "\tdef remove_all_9(self):\n",
406 | "\t# --- Removes the columns with all -9 values -- \n",
407 | "\t\tself.rem_X = []\n",
408 | "\t\tself.rem_y = []\n",
409 | "\t\trow_no = 0 \n",
410 | "\t\tfor row in self.X:\n",
411 | "\t\t\tfor col_i in range(1,row.shape[0]):\n",
412 | "\t\t\t\tif (row[col_i] == -9):\n",
413 | "\t\t\t\t\tremove = True\n",
414 | "\t\t\t\telse:\n",
415 | "\t\t\t\t\tremove = False\n",
416 | "\t\t\t\t\tbreak\n",
417 | "\t\t\tif remove:\n",
418 | "\t\t\t\tself.rem_X.append(self.X[row_no])\n",
419 | "\t\t\t\tself.X = np.delete(self.X, row_no, 0)\n",
420 | "\n",
421 | "\t\t\t\tself.rem_y.append(self.y[row_no])\n",
422 | "\t\t\t\tself.y = np.delete(self.y, row_no, 0) \n",
423 | "\n",
424 | "\t\t\telse:\n",
425 | "\t\t\t\trow_no += 1\n",
426 | "\n",
427 | "\t\tself.rem_X = np.array(self.rem_X)\n",
428 | "\t\tself.rem_y = np.array(self.rem_y)\n",
429 | "\n",
430 | "\tdef remove_9(self):\n",
431 | "\t# --- Removes the -9 values by using linear regression ---\n",
432 | "\t\tself.X = self.__process_and_predict(self.X,0,-9,[-7])\n",
433 | "\n",
434 | "\tdef remove_7_est(self):\n",
435 | "\t# --- Removes the -7 values by using an approximated value ---\n",
436 | "\t\tvalue_replace = 150\n",
437 | "\t\tnp.place(self.X, self.X == -7, value_replace)\n",
438 | "\n",
439 | "\tdef output_all_data(self):\n",
440 | "\t# --- Combines all the data into a single array in order and outputs it ---\n",
441 | "\t\tall_X = np.append(self.X,self.rem_X,axis=0)\n",
442 | "\t\tall_y = np.append(self.y,self.rem_y,axis=0)\n",
443 | "\n",
444 | "\t\tall_X = all_X[all_X[:,0].argsort()]\n",
445 | "\t\tall_y = all_y[all_y[:,0].argsort()]\n",
446 | "\n",
447 | "\t\tall_X = np.delete(all_X, 0, axis=1) \n",
448 | "\t\tall_y = np.delete(all_y, 0, axis=1) \n",
449 | "\t\t\n",
450 | "\t\tdata_output = np.append(all_y,all_X,axis=1)\n",
451 | "\n",
452 | "\t\treturn data_output\n",
453 | "\n",
454 | "\tdef output_to_CSV(self, filename):\n",
455 | "\t# --- Outputs the data to a CSV according to assigned filename --- \n",
456 | "\t\tdata_output = self.output_all_data()\n",
457 | "\n",
458 | "\t\tnp.savetxt(filename, data_output.astype(int), fmt='%i', delimiter=\",\")\n",
459 | "\n",
460 | "\tdef revert_to_original(self):\n",
461 | "\t# --- Allows to retrieve the original dataset ---\n",
462 | "\t\tself.__init__(\"pass\",self.data_set)\n",
463 | "\n",
464 | "testing123 = Data_Cleaner(\"./heloc_dataset_v1.csv\")\n",
465 | "testing123.shift()\n",
466 | "testing123.remove_8(5,\"mean\")\n",
467 | "testing123.remove_all_9()\n",
468 | "testing123.remove_9()\n",
469 | "testing123.remove_7_est()\n",
470 | "testing123.output_to_CSV(\"test_file1.csv\")"
471 | ]
472 | },
473 | {
474 | "cell_type": "code",
475 | "execution_count": 69,
476 | "metadata": {
477 | "ExecuteTime": {
478 | "end_time": "2020-05-28T02:34:55.972490Z",
479 | "start_time": "2020-05-28T02:34:55.852496Z"
480 | }
481 | },
482 | "outputs": [],
483 | "source": [
484 | "pd.DataFrame(np.hstack([testing123.X, testing123.y])).to_csv(\"fico.csv\")"
485 | ]
486 | },
487 | {
488 | "cell_type": "code",
489 | "execution_count": 74,
490 | "metadata": {
491 | "ExecuteTime": {
492 | "end_time": "2020-05-28T02:36:57.680689Z",
493 | "start_time": "2020-05-28T02:36:57.624935Z"
494 | }
495 | },
496 | "outputs": [],
497 | "source": [
498 | "data = pd.read_csv(\"fico.csv\", index_col=[0, 1])\n",
499 | "x, y = data.iloc[:,0:].values, data.iloc[:,[-1]].values"
500 | ]
501 | }
502 | ],
503 | "metadata": {
504 | "kernelspec": {
505 | "display_name": "Python (tf2)",
506 | "language": "python",
507 | "name": "tf2"
508 | },
509 | "language_info": {
510 | "codemirror_mode": {
511 | "name": "ipython",
512 | "version": 3
513 | },
514 | "file_extension": ".py",
515 | "mimetype": "text/x-python",
516 | "name": "python",
517 | "nbconvert_exporter": "python",
518 | "pygments_lexer": "ipython3",
519 | "version": "3.6.8"
520 | },
521 | "latex_envs": {
522 | "LaTeX_envs_menu_present": true,
523 | "autoclose": false,
524 | "autocomplete": true,
525 | "bibliofile": "biblio.bib",
526 | "cite_by": "apalike",
527 | "current_citInitial": 1,
528 | "eqLabelWithNumbers": true,
529 | "eqNumInitial": 1,
530 | "hotkeys": {
531 | "equation": "Ctrl-E",
532 | "itemize": "Ctrl-I"
533 | },
534 | "labels_anchors": false,
535 | "latex_user_defs": false,
536 | "report_style_numbering": false,
537 | "user_envs_cfg": false
538 | },
539 | "varInspector": {
540 | "cols": {
541 | "lenName": 16,
542 | "lenType": 16,
543 | "lenVar": 40
544 | },
545 | "kernels_config": {
546 | "python": {
547 | "delete_cmd_postfix": "",
548 | "delete_cmd_prefix": "del ",
549 | "library": "var_list.py",
550 | "varRefreshCmd": "print(var_dic_list())"
551 | },
552 | "r": {
553 | "delete_cmd_postfix": ") ",
554 | "delete_cmd_prefix": "rm(",
555 | "library": "var_list.r",
556 | "varRefreshCmd": "cat(var_dic_list()) "
557 | }
558 | },
559 | "types_to_exclude": [
560 | "module",
561 | "function",
562 | "builtin_function_or_method",
563 | "instance",
564 | "_Feature"
565 | ],
566 | "window_display": false
567 | }
568 | },
569 | "nbformat": 4,
570 | "nbformat_minor": 2
571 | }
572 |
--------------------------------------------------------------------------------
/examples/fico/data_types.json:
--------------------------------------------------------------------------------
1 | {"ExternalRiskEstimate":{"type":"continuous"},
2 | "MSinceOldestTradeOpen":{"type":"continuous"},
3 | "MSinceMostRecentTradeOpen":{"type":"continuous"},
4 | "AverageMInFile":{"type":"continuous"},
5 | "NumSatisfactoryTrades":{"type":"continuous"},
6 | "NumTrades60Ever2DerogPubRec":{"type":"continuous"},
7 | "NumTrades90Ever2DerogPubRec":{"type":"continuous"},
8 | "PercentTradesNeverDelq":{"type":"continuous"},
9 | "MSinceMostRecentDelq":{"type":"continuous"},
10 | "MaxDelq2PublicRecLast12M":{"type":"continuous"},
11 | "MaxDelqEver":{"type":"continuous"},
12 | "NumTotalTrades":{"type":"continuous"},
13 | "NumTradesOpeninLast12M":{"type":"continuous"},
14 | "PercentInstallTrades":{"type":"continuous"},
15 | "MSinceMostRecentInqexcl7days":{"type":"continuous"},
16 | "NumInqLast6M":{"type":"continuous"},
17 | "NumInqLast6Mexcl7days":{"type":"continuous"},
18 | "NetFractionRevolvingBurden":{"type":"continuous"},
19 | "NetFractionInstallBurden":{"type":"continuous"},
20 | "NumRevolvingTradesWBalance":{"type":"continuous"},
21 | "NumInstallTradesWBalance":{"type":"continuous"},
22 | "NumBank2NatlTradesWHighUtilization":{"type":"continuous"},
23 | "PercentTradesWBalance":{"type":"continuous"},
24 | "RiskPerformance":{"type":"target"}}
25 |
--------------------------------------------------------------------------------
/examples/fico/heloc_data_dictionary-2.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/examples/fico/heloc_data_dictionary-2.xlsx
--------------------------------------------------------------------------------
/examples/fico/load.py:
--------------------------------------------------------------------------------
1 | import json
2 | import numpy as np
3 | import pandas as pd
4 |
5 | def load_fico_challange(path="./"):
6 |
7 | data = pd.read_csv(path + "heloc_dataset_v1.csv")
8 | meta_info = json.load(open(path + "data_types.json"))
9 | data = data.replace(-9, np.nan).replace(-8, np.nan).replace(-7, np.nan)
10 |
11 | imp = SimpleImputer(missing_values=np.nan, strategy="median")
12 | imp.fit(data.iloc[:,1:])
13 | data.iloc[:,1:] = imp.transform(data.iloc[:,1:])
14 | x, y = data.iloc[:,1:].values, data.iloc[:,[0]].values
15 | return x, y, "Regression", meta_info
16 |
--------------------------------------------------------------------------------
/examples/fico/preprocess.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "ExecuteTime": {
8 | "end_time": "2020-05-27T04:16:46.019095Z",
9 | "start_time": "2020-05-27T04:08:26.163560Z"
10 | }
11 | },
12 | "outputs": [
13 | {
14 | "name": "stdout",
15 | "output_type": "stream",
16 | "text": [
17 | "Column being fixed: 1\n",
18 | "Column being fixed: 8\n",
19 | "Column being fixed: 14\n",
20 | "Column being fixed: 17\n",
21 | "Column being fixed: 18\n",
22 | "Column being fixed: 19\n",
23 | "Column being fixed: 20\n",
24 | "Column being fixed: 21\n",
25 | "Column being fixed: 22\n"
26 | ]
27 | }
28 | ],
29 | "source": [
30 | "# --- Imports section --- \n",
31 | "import numpy as np\n",
32 | "import pandas as pd\n",
33 | "from sklearn.preprocessing import StandardScaler\n",
34 | "from sklearn import datasets, linear_model, preprocessing\n",
35 | "import copy\n",
36 | "\n",
37 | "class ModelError(Exception):\n",
38 | "\tpass\n",
39 | "\n",
40 | "class Data_Cleaner():\n",
41 | "\n",
42 | "\tdef __init__ (self, file_name, data = None):\n",
43 | "\t# --- Retrieves the data from CSV or array, as well as basic organisation ---\n",
44 | "\n",
45 | "\t\t# -- Get data from CSV or given array --\n",
46 | "\t\tif (data == None):\n",
47 | "\t\t\tself.data_set = pd.read_csv(file_name).values\n",
48 | "\n",
49 | "\t\telse:\n",
50 | "\t\t\tself.data_set = data\n",
51 | "\n",
52 | "\t\t# -- Converting target to binary --\n",
53 | "\t\tnp.place(self.data_set, self.data_set == \"Bad\", 0)\n",
54 | "\t\tnp.place(self.data_set, self.data_set == \"Good\", 1)\n",
55 | "\n",
56 | "\t\t# -- Creating Model Variable -- \n",
57 | "\t\tself.model = None\n",
58 | "\n",
59 | "\t\t# -- Creating an Order Column --\n",
60 | "\t\torder = np.arange(self.data_set.shape[0])\n",
61 | "\t\torder = order.reshape((order.shape[0],1))\n",
62 | "\n",
63 | "\t\t# -- Scale and Split --\n",
64 | "\t\t# self.y = self.data_set[:,:1]\n",
65 | "\t\t# scaler = StandardScaler()\n",
66 | "\t\t# self.X = scaler.fit_transform(self.data_set[:,1:])\n",
67 | "\n",
68 | "\t\tself.y = self.data_set[:,:1]\n",
69 | "\t\tself.X = self.data_set[:,1:]\n",
70 | "\n",
71 | "\n",
72 | "\t\t# -- Needs to be retained for inserting new samples\n",
73 | "\t\t# self.mean = scaler.mean_\n",
74 | "\t\t# self.scale = scaler.scale_\n",
75 | "\n",
76 | "\t\t# -- Assiging general useful variables --\n",
77 | "\t\tself.num_samples , self.num_features = self.X.shape\n",
78 | "\n",
79 | "\t\t# -- Add the Order Column -- \n",
80 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
81 | "\t\tself.y = np.append(order,self.y,axis=1)\n",
82 | "\n",
83 | "\tdef shift(self):\n",
84 | "\t# --- Perform the shift for the two categorical features --- \n",
85 | "\n",
86 | "\t\t# -- Shift is hardcoded based on requirements -- \n",
87 | "\t\tfirst_col = self.X[:,10]\n",
88 | "\t\tnp.place(first_col, first_col == 1, 100) # hold value\n",
89 | "\t\tnp.place(first_col, first_col == 6, 1)\n",
90 | "\t\tnp.place(first_col, first_col == 5, 1)\n",
91 | "\t\tnp.place(first_col, first_col == 4, 6)\n",
92 | "\t\tnp.place(first_col, first_col == 3, 5)\n",
93 | "\t\tnp.place(first_col, first_col == 2, 4)\n",
94 | "\t\tnp.place(first_col, first_col == 100, 3)\n",
95 | "\t\tnp.place(first_col, first_col == 0, 2)\n",
96 | "\t\tnp.place(first_col, first_col == 8, 0)\n",
97 | "\t\tnp.place(first_col, first_col == 9, 0)\n",
98 | "\n",
99 | "\t\tsecond_col= self.X[:,11]\n",
100 | "\t\tnp.place(second_col, second_col == 1, 0)\n",
101 | "\t\tnp.place(second_col, second_col == 9, 0)\n",
102 | "\t\tnp.place(second_col, second_col == 7, 1)\n",
103 | "\t\tnp.place(second_col, second_col == 8, 7)\n",
104 | "\n",
105 | "\t\tself.X[:,10] = first_col\n",
106 | "\t\tself.X[:,11] = second_col\n",
107 | "\n",
108 | "\tdef __scaled_row(self,row,scaler):\n",
109 | "\t# --- Returns the Row Scaled ---\n",
110 | "\t\tmean = scaler.mean_\n",
111 | "\t\tscale = scaler.scale_\n",
112 | "\t\tscld = []\n",
113 | "\t\tfor k in range(row.shape[0]):\n",
114 | "\t\t\tscld.append((row[k] - mean[k])/scale[k])\n",
115 | "\t\tscld = np.array(scld)\n",
116 | "\n",
117 | "\t\treturn scld\n",
118 | "\t \n",
119 | "\tdef __masked_arr(self,orig_array, mask):\n",
120 | "\t# --- Returns XOR of Array and Mask --- \n",
121 | "\t\tmasked_array = []\n",
122 | "\n",
123 | "\t\tfor i in range(len(orig_array)):\n",
124 | "\t\t\trow = []\n",
125 | "\t\t\tfor j in range(len(orig_array[0])):\n",
126 | "\t\t\t\tif mask[j] != 0:\n",
127 | "\t\t\t\t\trow.append(orig_array[i][j])\n",
128 | "\t\t\tmasked_array.append(row)\n",
129 | "\n",
130 | "\t\tmasked_array = np.array(masked_array)\n",
131 | "\n",
132 | "\t\treturn masked_array\n",
133 | "\n",
134 | "\tdef __euc_distance(self,row1, row2):\n",
135 | "\t# --- Returns Euclidian Distance between Rows --- \n",
136 | "\t\tdist = 0\n",
137 | "\t\tfor i in range(len(row1)):\n",
138 | "\t\t\tt = (row1[i]-row2[i])**2\n",
139 | "\t\t\tdist += t\n",
140 | "\t\tdist = np.sqrt(dist)\n",
141 | "\t\treturn dist\n",
142 | "\n",
143 | "\tdef __predict_feature_weighted(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
144 | "\t# --- Returns the single special value replaced by kNN imputation using weights---\n",
145 | "\n",
146 | "\t\tdistances = []\n",
147 | "\t\t# -- Loops through the good data with no special values -- \n",
148 | "\t\t\t# - Good data has the changing feature removed -\n",
149 | "\t\tfor i in range(len(good_data_masked)):\t\n",
150 | "\t\t\tdistances.append(self.__euc_distance(row, good_data_masked[i]))\n",
151 | "\n",
152 | "\t\tdistances = np.array(distances)\n",
153 | "\t\tmax_dist = np.max(distances)\n",
154 | "\t \n",
155 | "\t\t# -- Sorts the first no_neigbours features --\n",
156 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
157 | "\n",
158 | "\t\tvalues = []\n",
159 | "\t\tmin_dists = []\n",
160 | "\t \n",
161 | "\t\t# -- Retrieving values with which to replace -- \n",
162 | "\t\tfor i in range(no_neighbours):\n",
163 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
164 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
165 | "\n",
166 | "\t\tvalues = np.array(values) \n",
167 | "\t\tmin_dists = np.array(min_dists)\n",
168 | "\n",
169 | "\t\t# -- Assigning the weights -- \n",
170 | "\t\tweights = []\n",
171 | "\t\tfor i in min_dists:\n",
172 | "\t\t\tweights.append(1 - (i/max_dist))\n",
173 | "\t \n",
174 | "\t # -- Calculating final result -- \n",
175 | "\t\timputed_val = 0\n",
176 | "\t\tfor i in range(len(weights)):\n",
177 | "\t\t\timputed_val += weights[i] * values[i]\n",
178 | "\t \n",
179 | "\t\treturn imputed_val \n",
180 | "\n",
181 | "\tdef __predict_feature_mean(self,row, good_data_masked, no_neighbours, orig_array, ft_idx):\n",
182 | "\t# --- Returns the single special value replaced by kNN imputation using the mean ---\n",
183 | "\n",
184 | "\t\tdistances = []\n",
185 | "\t\t# -- Loops through the good data with no special values -- \n",
186 | "\t \t# - Good data has the changing feature removed -\n",
187 | "\t\tfor i in range(len(good_data_masked)):\n",
188 | "\t\t\tdistances.append(self.__euc_distance(row,good_data_masked[i]))\n",
189 | "\t\tdistances = np.array(distances)\n",
190 | "\t \n",
191 | "\t\t# -- Sorts the first no_neigbours features --\n",
192 | "\t\tidx = np.argpartition(distances, no_neighbours)\n",
193 | "\n",
194 | "\t\tvalues = []\n",
195 | "\t\tmin_dists = []\n",
196 | "\t \n",
197 | "\t\t# -- Retrieving values with which to replace -- \n",
198 | "\t\tfor i in range(no_neighbours):\n",
199 | "\t\t\tvalues.append(orig_array[idx[i]][ft_idx])\n",
200 | "\t\t\tmin_dists.append(distances[idx[i]])\n",
201 | "\n",
202 | "\t\tvalues = np.array(values) \n",
203 | "\t\tmin_dists = np.array(min_dists)\n",
204 | "\t \n",
205 | "\t\t# -- Calculating final result -- \n",
206 | "\t\timputed_val = 0\n",
207 | "\t\tfor i in range(len(values)):\n",
208 | "\t\t\timputed_val += values[i]\n",
209 | "\n",
210 | "\t\timputed_val = imputed_val/len(values)\n",
211 | "\n",
212 | "\t\treturn imputed_val\n",
213 | "\n",
214 | "\tdef __remove_row_with_vals(self, data, target, vals):\n",
215 | "\t# --- Returns the data/target without the rows that have any instance of vals list ---\n",
216 | "\t\tremoved_data = []\n",
217 | "\t\tremoved_target = []\n",
218 | "\n",
219 | "\t\trow_no = 0 \n",
220 | "\t\tfor row in data:\n",
221 | "\t\t\tfor col in row:\n",
222 | "\t\t\t\tif (col in vals):\n",
223 | "\t\t\t\t\tremoved_data.append(data[row_no])\n",
224 | "\t\t\t\t\tdata = np.delete(data, row_no, 0)\n",
225 | "\n",
226 | "\t\t\t\t\tremoved_target.append(target[row_no])\n",
227 | "\t\t\t\t\ttarget = np.delete(target, row_no, 0) \n",
228 | "\t\t\t\t\trow_no -= 1\n",
229 | "\t\t\t\t\tbreak\n",
230 | "\t\t\trow_no += 1\n",
231 | "\n",
232 | "\t\tremoved_data = np.array(removed_data)\n",
233 | "\t\tremoved_target = np.array(removed_target)\n",
234 | "\n",
235 | "\t\treturn data, target, removed_data, removed_target\n",
236 | "\n",
237 | "\tdef __remove_col_with_vals(self, data, vals):\n",
238 | "\t# --- Returns the data without the coloumns that have the desired special values ---\n",
239 | "\t\tno_cols = data.shape[1]\n",
240 | "\t\tno_rows = data.shape[0]\n",
241 | "\t\trow = 0\n",
242 | "\t\twhile (no_rows > row):\n",
243 | "\t\t\tcol = 0\n",
244 | "\t\t\twhile (no_cols > col):\n",
245 | "\t\t\t\tif (data[row][col] in vals):\n",
246 | "\t\t\t\t\tdata = np.delete(data, col, 1)\n",
247 | "\t\t\t\t\tno_cols -= 1\n",
248 | "\t\t\t\telse:\n",
249 | "\t\t\t\t\tcol += 1\n",
250 | "\t\t\trow += 1 \n",
251 | "\t\treturn data\n",
252 | "\n",
253 | "\tdef __predict_values_lin_reg(self,X_tr,y_tr,X_test):\n",
254 | "\t# --- Uses linear regression to extrapolate values ---\n",
255 | "\t\tmodel = linear_model.LinearRegression()\n",
256 | "\t\tmodel.fit(X_tr, y_tr)\n",
257 | "\t\tpred = model.predict(X_test)\n",
258 | "\t\treturn pred\n",
259 | "\n",
260 | "\tdef __data_spliter(self,all_data,target_col,target_val):\n",
261 | "\t# --- Splits the data such to identify target col --- \n",
262 | "\t\ttarget_col += 1\n",
263 | "\n",
264 | "\t\ty = all_data[:,target_col:target_col+1]\n",
265 | "\t\tX = np.delete(all_data,target_col,1)\n",
266 | "\t \n",
267 | "\t\t# -- Will hold the X for the y values that need to be predicted--\n",
268 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
269 | "\n",
270 | "\t\trow_no = 0 \n",
271 | "\t\t# -- Finds the rows with a target val -- \n",
272 | "\t\tfor val in y:\n",
273 | "\t\t\tif (val[0] == target_val):\n",
274 | "\t\t\t\tX_target = np.append(X_target,X[row_no:row_no+1,:],axis=0)\n",
275 | "\t\t\t\tX = np.delete(X, row_no, 0)\n",
276 | "\t\t\t\ty = np.delete(y, row_no, 0) \n",
277 | "\t\t\telse:\n",
278 | "\t\t\t\trow_no += 1\n",
279 | "\n",
280 | "\t\tX_target = np.delete(X_target,0,0)\n",
281 | "\t \n",
282 | "\t\treturn X,y,X_target # Note that the order column is still attached\n",
283 | "\n",
284 | "\tdef __combine_parts_inorder(self,X,y,X_target,y_target,target_col):\n",
285 | "\t# --- Combines all the small parts into a single data matrix ---\n",
286 | "\t\ttarget_col += 1 # To account for the order column\n",
287 | "\n",
288 | "\t\ty_target = y_target.reshape((y_target.shape[0],1))\n",
289 | "\t\ty_full = np.append(y_target,y,axis=0)\n",
290 | "\t\tX_full = np.append(X_target,X,axis=0)\n",
291 | "\n",
292 | "\t\tdata = np.append(X_full[:,:target_col],y_full,axis=1)\n",
293 | "\t\tdata = np.append(data,X_full[:,target_col:],axis=1)\n",
294 | "\t\treturn data\n",
295 | "\n",
296 | "\tdef __average_each_feature(self,X):\n",
297 | "\t# --- Finds the mean values for each feature ---\n",
298 | "\n",
299 | "\t\tX_target = np.zeros((1,X.shape[1]))\n",
300 | "\t \n",
301 | "\t\tfor i in range(X.shape[1]):\n",
302 | "\t\t\tcol = X[:,i]\n",
303 | "\t\t\tcol = np.mean(col,axis=0)\n",
304 | "\t\t\tX_target[:,i] = col\n",
305 | "\t \n",
306 | "\t\treturn X_target\n",
307 | "\n",
308 | "\tdef __process_and_predict(self,all_data,target_col,target_val,exclude=None,model=\"linear\"):\n",
309 | "\t\t# -- Split data --\n",
310 | "\t\tX,y,X_target = self.__data_spliter(all_data,target_col,target_val)\n",
311 | "\t\t# -- Record order columns -- \n",
312 | "\n",
313 | "\t\torder_data = X[:,0:1]\n",
314 | "\t\torder_target = X_target[:,0:1]\n",
315 | "\t \n",
316 | "\t # -- Remove certain columns --\n",
317 | "\t\tif (exclude != None or exclude == []):\n",
318 | "\t\t\ty_tr = np.copy(y)\n",
319 | "\t\t\tX_tr = self.__remove_col_with_vals(X,exclude)\n",
320 | "\t\t\tX_tr = np.delete(X_tr,0,axis=1) # Removes the order column\n",
321 | "\t\t\tX_pred = self.__remove_col_with_vals(X_target,exclude) # The x used to predict\n",
322 | "\t\t\tX_pred = np.delete(X_pred,0,axis=1)\n",
323 | "\n",
324 | "\n",
325 | "\t\telse:\n",
326 | "\t\t\ty_tr = np.copy(y)\n",
327 | "\t\t\tX_tr = np.delete(X,0,axis=1) # Removes the order column\n",
328 | "\t\t\tX_pred = np.delete(X_target,0,axis=1)\n",
329 | "\n",
330 | "\n",
331 | "\t # -- Run regression --\n",
332 | "\t\tif (model == \"linear\"):\n",
333 | "\t\t\ty_target = self.__predict_values_lin_reg(X_tr,y_tr,X_pred)\n",
334 | "\n",
335 | "\t\telif (model == \"polynomial\"):\n",
336 | "\t\t\tpass\n",
337 | "\n",
338 | "\t\telif (model == \"special\"):\n",
339 | "\t\t\tX_avg = self.__average_each_feature(X_pred)\n",
340 | "\t\t\tpred = self.__predict_values_lin_reg(X_tr,y_tr,X_avg)\n",
341 | "\t \n",
342 | "\t\telse:\n",
343 | "\t\t\traise ModelError(\"Model currently not available\")\n",
344 | "\t \n",
345 | "\t\tfinal_data = self.__combine_parts_inorder(X,y,X_target,y_target,target_col)\n",
346 | "\t\treturn final_data\n",
347 | "\t# --- Processes the data and uses linear regression to extrapolate --- \n",
348 | "\n",
349 | "\tdef remove_8(self, kNN, prediction_type):\n",
350 | "\t# --- Removes all the -8 values using kNN imputation ---\n",
351 | "\t\t# -- Remove the order column -- \n",
352 | "\t\torder = self.X[:,0]\n",
353 | "\t\torder = order.reshape((order.shape[0],1))\n",
354 | "\t\tself.X = np.delete(self.X, 0, axis = 1)\n",
355 | "\n",
356 | "\t\t# -- Removes all special values (-7,-8,-9) --\n",
357 | "\t\tX_good, hold1, hold2, hold3 = self.__remove_row_with_vals(self.X, self.y, [-7,-8,-9])\n",
358 | "\n",
359 | "\t\tscaler = StandardScaler()\n",
360 | "\t\tX_good_scaled = scaler.fit_transform(X_good)\n",
361 | "\n",
362 | "\t\t# -- Create a copy of the data matrix X to edit -- \n",
363 | "\t\tX_no_8 = np.copy(self.X)\n",
364 | "\n",
365 | "\t\tcols_with_8 = [1,8,14,17,18,19,20,21,22]\n",
366 | "\n",
367 | "\t\t# -- Fixing each -8 column -- \n",
368 | "\t\tfor fix_col in cols_with_8:\n",
369 | "\t\t\tprint(\"Column being fixed:\", str(fix_col))\n",
370 | "\t\t\t# -- Looping through all samples -- \n",
371 | "\t\t\tfor row in range(self.num_samples):\n",
372 | "\n",
373 | "\t\t\t\tif self.X[row][fix_col] == -8:\n",
374 | "\t\t\t\t\trow_to_comp = []\n",
375 | "\t\t\t\t\tmask = []\n",
376 | "\t\t\t\t\tscaled = self.__scaled_row(self.X[row],scaler)\n",
377 | "\n",
378 | "\t\t\t\t\t# -- Looping through each value --\n",
379 | "\t\t\t\t\tfor col in range(self.num_features):\n",
380 | "\t\t\t\t\t\tif self.X[row][col] >= 0:\n",
381 | "\t\t\t\t\t\t\tmask.append(1)\n",
382 | "\t\t\t\t\t\t\trow_to_comp.append(scaled[col])\n",
383 | "\t\t\t\t\t\telse:\n",
384 | "\t\t\t\t\t\t\tmask.append(0)\n",
385 | "\n",
386 | "\t\t\t\t\trow_to_comp = np.array(row_to_comp)\n",
387 | "\t\t\t\t\tmask = np.array(mask)\n",
388 | "\t\t \n",
389 | "\t\t\t\t\t# -- Getting the array of samples without special values in the good datasets-- \n",
390 | "\t\t\t\t\tX_good_masked = self.__masked_arr(X_good_scaled, mask)\n",
391 | "\n",
392 | "\t\t\t\t\tif (prediction_type == \"mean\"):\n",
393 | "\t\t\t\t\t\timputed = self.__predict_feature_mean(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
394 | "\n",
395 | "\t\t\t\t\telif (prediction_type == \"weighted\"):\n",
396 | "\t\t\t\t\t\timputed = self.__predict_feature_weighted(row_to_comp, X_good_masked, kNN, X_good_scaled, fix_col)\n",
397 | "\t\t\t\t\t\n",
398 | "\t\t\t\t\tX_no_8[row][fix_col] = imputed*scaler.scale_[fix_col] + scaler.mean_[fix_col]\n",
399 | "\n",
400 | "\t\tself.X = X_no_8\n",
401 | "\n",
402 | "\t\t# -- Add back order column -- \n",
403 | "\t\tself.X = np.append(order,self.X,axis=1)\n",
404 | "\n",
405 | "\tdef remove_all_9(self):\n",
406 | "\t# --- Removes the columns with all -9 values -- \n",
407 | "\t\tself.rem_X = []\n",
408 | "\t\tself.rem_y = []\n",
409 | "\t\trow_no = 0 \n",
410 | "\t\tfor row in self.X:\n",
411 | "\t\t\tfor col_i in range(1,row.shape[0]):\n",
412 | "\t\t\t\tif (row[col_i] == -9):\n",
413 | "\t\t\t\t\tremove = True\n",
414 | "\t\t\t\telse:\n",
415 | "\t\t\t\t\tremove = False\n",
416 | "\t\t\t\t\tbreak\n",
417 | "\t\t\tif remove:\n",
418 | "\t\t\t\tself.rem_X.append(self.X[row_no])\n",
419 | "\t\t\t\tself.X = np.delete(self.X, row_no, 0)\n",
420 | "\n",
421 | "\t\t\t\tself.rem_y.append(self.y[row_no])\n",
422 | "\t\t\t\tself.y = np.delete(self.y, row_no, 0) \n",
423 | "\n",
424 | "\t\t\telse:\n",
425 | "\t\t\t\trow_no += 1\n",
426 | "\n",
427 | "\t\tself.rem_X = np.array(self.rem_X)\n",
428 | "\t\tself.rem_y = np.array(self.rem_y)\n",
429 | "\n",
430 | "\tdef remove_9(self):\n",
431 | "\t# --- Removes the -9 values by using linear regression ---\n",
432 | "\t\tself.X = self.__process_and_predict(self.X,0,-9,[-7])\n",
433 | "\n",
434 | "\tdef remove_7_est(self):\n",
435 | "\t# --- Removes the -7 values by using an approximated value ---\n",
436 | "\t\tvalue_replace = 150\n",
437 | "\t\tnp.place(self.X, self.X == -7, value_replace)\n",
438 | "\n",
439 | "\tdef output_all_data(self):\n",
440 | "\t# --- Combines all the data into a single array in order and outputs it ---\n",
441 | "\t\tall_X = np.append(self.X,self.rem_X,axis=0)\n",
442 | "\t\tall_y = np.append(self.y,self.rem_y,axis=0)\n",
443 | "\n",
444 | "\t\tall_X = all_X[all_X[:,0].argsort()]\n",
445 | "\t\tall_y = all_y[all_y[:,0].argsort()]\n",
446 | "\n",
447 | "\t\tall_X = np.delete(all_X, 0, axis=1) \n",
448 | "\t\tall_y = np.delete(all_y, 0, axis=1) \n",
449 | "\t\t\n",
450 | "\t\tdata_output = np.append(all_y,all_X,axis=1)\n",
451 | "\n",
452 | "\t\treturn data_output\n",
453 | "\n",
454 | "\tdef output_to_CSV(self, filename):\n",
455 | "\t# --- Outputs the data to a CSV according to assigned filename --- \n",
456 | "\t\tdata_output = self.output_all_data()\n",
457 | "\n",
458 | "\t\tnp.savetxt(filename, data_output.astype(int), fmt='%i', delimiter=\",\")\n",
459 | "\n",
460 | "\tdef revert_to_original(self):\n",
461 | "\t# --- Allows to retrieve the original dataset ---\n",
462 | "\t\tself.__init__(\"pass\",self.data_set)\n",
463 | "\n",
464 | "testing123 = Data_Cleaner(\"./heloc_dataset_v1.csv\")\n",
465 | "testing123.shift()\n",
466 | "testing123.remove_8(5,\"mean\")\n",
467 | "testing123.remove_all_9()\n",
468 | "testing123.remove_9()\n",
469 | "testing123.remove_7_est()\n",
470 | "testing123.output_to_CSV(\"test_file1.csv\")"
471 | ]
472 | },
473 | {
474 | "cell_type": "code",
475 | "execution_count": 69,
476 | "metadata": {
477 | "ExecuteTime": {
478 | "end_time": "2020-05-28T02:34:55.972490Z",
479 | "start_time": "2020-05-28T02:34:55.852496Z"
480 | }
481 | },
482 | "outputs": [],
483 | "source": [
484 | "pd.DataFrame(np.hstack([testing123.X, testing123.y])).to_csv(\"fico.csv\")"
485 | ]
486 | },
487 | {
488 | "cell_type": "code",
489 | "execution_count": 74,
490 | "metadata": {
491 | "ExecuteTime": {
492 | "end_time": "2020-05-28T02:36:57.680689Z",
493 | "start_time": "2020-05-28T02:36:57.624935Z"
494 | }
495 | },
496 | "outputs": [],
497 | "source": [
498 | "data = pd.read_csv(\"fico.csv\", index_col=[0, 1])\n",
499 | "x, y = data.iloc[:,0:].values, data.iloc[:,[-1]].values"
500 | ]
501 | }
502 | ],
503 | "metadata": {
504 | "kernelspec": {
505 | "display_name": "Python (tf2)",
506 | "language": "python",
507 | "name": "tf2"
508 | },
509 | "language_info": {
510 | "codemirror_mode": {
511 | "name": "ipython",
512 | "version": 3
513 | },
514 | "file_extension": ".py",
515 | "mimetype": "text/x-python",
516 | "name": "python",
517 | "nbconvert_exporter": "python",
518 | "pygments_lexer": "ipython3",
519 | "version": "3.6.8"
520 | },
521 | "latex_envs": {
522 | "LaTeX_envs_menu_present": true,
523 | "autoclose": false,
524 | "autocomplete": true,
525 | "bibliofile": "biblio.bib",
526 | "cite_by": "apalike",
527 | "current_citInitial": 1,
528 | "eqLabelWithNumbers": true,
529 | "eqNumInitial": 1,
530 | "hotkeys": {
531 | "equation": "Ctrl-E",
532 | "itemize": "Ctrl-I"
533 | },
534 | "labels_anchors": false,
535 | "latex_user_defs": false,
536 | "report_style_numbering": false,
537 | "user_envs_cfg": false
538 | },
539 | "varInspector": {
540 | "cols": {
541 | "lenName": 16,
542 | "lenType": 16,
543 | "lenVar": 40
544 | },
545 | "kernels_config": {
546 | "python": {
547 | "delete_cmd_postfix": "",
548 | "delete_cmd_prefix": "del ",
549 | "library": "var_list.py",
550 | "varRefreshCmd": "print(var_dic_list())"
551 | },
552 | "r": {
553 | "delete_cmd_postfix": ") ",
554 | "delete_cmd_prefix": "rm(",
555 | "library": "var_list.r",
556 | "varRefreshCmd": "cat(var_dic_list()) "
557 | }
558 | },
559 | "types_to_exclude": [
560 | "module",
561 | "function",
562 | "builtin_function_or_method",
563 | "instance",
564 | "_Feature"
565 | ],
566 | "window_display": false
567 | }
568 | },
569 | "nbformat": 4,
570 | "nbformat_minor": 2
571 | }
572 |
--------------------------------------------------------------------------------
/examples/results/demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/examples/results/demo.png
--------------------------------------------------------------------------------
/examples/results/s1_feature.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/examples/results/s1_feature.png
--------------------------------------------------------------------------------
/examples/results/s1_local.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/examples/results/s1_local.png
--------------------------------------------------------------------------------
/examples/results/s1_regu_plot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/examples/results/s1_regu_plot.png
--------------------------------------------------------------------------------
/examples/results/s1_traj_plot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/examples/results/s1_traj_plot.png
--------------------------------------------------------------------------------
/gaminet/__init__.py:
--------------------------------------------------------------------------------
1 | from .api import GAMINetRegressor, GAMINetClassifier
2 |
3 | __all__ = ["GAMINetRegressor", "GAMINetClassifier"]
4 |
5 | __version__ = '1.0.0'
6 | __author__ = 'Zebin Yang and Aijun Zhang'
7 |
--------------------------------------------------------------------------------
/gaminet/api.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | from sklearn.utils import column_or_1d
4 | from sklearn.utils.extmath import softmax
5 | from sklearn.preprocessing import LabelBinarizer
6 | from sklearn.model_selection import train_test_split
7 | from sklearn.utils.validation import check_is_fitted
8 | from sklearn.base import RegressorMixin, ClassifierMixin
9 |
10 | from pygam.terms import TermList
11 | from pygam import LinearGAM, s, te
12 |
13 | from .base import GAMINet
14 |
15 |
16 | class GAMINetRegressor(GAMINet, RegressorMixin):
17 |
18 | def __init__(self, meta_info=None, interact_num=10,
19 | subnet_size_main_effect=(20,), subnet_size_interaction=(20, 20), activation_func="ReLU",
20 | max_epochs=(1000, 1000, 1000), learning_rates=(1e-3, 1e-3, 1e-4), early_stop_thres=("auto", "auto", "auto"),
21 | batch_size=200, batch_size_inference=10000, max_iter_per_epoch=100, val_ratio=0.2,
22 | warm_start=True, gam_sample_size=5000, mlp_sample_size=1000,
23 | heredity=True, reg_clarity=0.1, loss_threshold=0.0,
24 | reg_mono=0.1, mono_increasing_list=(), mono_decreasing_list=(), mono_sample_size=1000,
25 | boundary_clip=True, normalize=True, verbose=False, n_jobs=10, device="cpu", random_state=0):
26 |
27 | super(GAMINetRegressor, self).__init__(loss_fn=torch.nn.MSELoss(reduction="none"),
28 | meta_info=meta_info,
29 | interact_num=interact_num,
30 | subnet_size_main_effect=subnet_size_main_effect,
31 | subnet_size_interaction=subnet_size_interaction,
32 | activation_func=activation_func,
33 | max_epochs=max_epochs,
34 | learning_rates=learning_rates,
35 | early_stop_thres=early_stop_thres,
36 | batch_size=batch_size,
37 | batch_size_inference=batch_size_inference,
38 | max_iter_per_epoch=max_iter_per_epoch,
39 | val_ratio=val_ratio,
40 | warm_start=warm_start,
41 | gam_sample_size=gam_sample_size,
42 | mlp_sample_size=mlp_sample_size,
43 | heredity=heredity,
44 | reg_clarity=reg_clarity,
45 | loss_threshold=loss_threshold,
46 | reg_mono=reg_mono,
47 | mono_sample_size=mono_sample_size,
48 | mono_increasing_list=mono_increasing_list,
49 | mono_decreasing_list=mono_decreasing_list,
50 | boundary_clip=boundary_clip,
51 | normalize=normalize,
52 | verbose=verbose,
53 | n_jobs=n_jobs,
54 | device=device,
55 | random_state=random_state)
56 |
57 | def _more_tags(self):
58 | """
59 | Internal function for skipping some sklearn estimator checks.
60 | """
61 | return {"_xfail_checks": {"check_sample_weights_invariance":
62 | ("zero sample_weight is not equivalent to removing samples")}}
63 |
64 | def _validate_input(self, x, y, sample_weight):
65 | """
66 | Internal function for validating the inputs of the fit function.
67 |
68 | Samples with zero sample_weight are removed.
69 | Sample_weight would be normalized, such that the sum equals sample size.
70 | Will raise an error if only one sample is given.
71 |
72 | Parameters
73 | ----------
74 | x : np.ndarray of shape (n_samples, n_features)
75 | Data features.
76 | y : np.ndarray of shape (n_samples, )
77 | Target response.
78 | sample_weight : np.ndarray of shape (n_samples, )
79 | Sample weight.
80 |
81 | Returns
82 | -------
83 | x : np.ndarray of shape (n_samples, n_features)
84 | Data features.
85 | y : np.ndarray of shape (n_samples, )
86 | Target response.
87 | sample_weight : np.ndarray of shape (n_samples, )
88 | Sample weight.
89 | """
90 | x, y = self._validate_data(x, y, y_numeric=True)
91 | if y.ndim == 2 and y.shape[1] == 1:
92 | y = column_or_1d(y, warn=True)
93 | if sample_weight is None:
94 | sample_weight = np.ones(x.shape[0])
95 | else:
96 | sample_weight = np.asarray(sample_weight)
97 | if sample_weight.shape[0] != x.shape[0]:
98 | raise ValueError("sample_weight shape mismatches the input")
99 | valid_idx = np.where(sample_weight > 0)[0]
100 | x, y, sample_weight = x[valid_idx], y[valid_idx], sample_weight[valid_idx]
101 | if np.sum(sample_weight) > 0:
102 | sample_weight = x.shape[0] * sample_weight.ravel() / np.sum(sample_weight)
103 | if x.shape[0] == 1:
104 | raise ValueError("n_samples=1")
105 | return x, y.ravel(), sample_weight.ravel()
106 |
107 | def _build_teacher_main_effect(self):
108 | """
109 | Internal function for fiting a spline based additive interaction model.
110 |
111 | It works as follows.
112 | 1) Subsample at most self.gam_sample_size data from training set.
113 | 2) Get the residual with respect to the fitted main effect networks,
114 | for classification case, the residual is y_label - pred_proba.
115 | 3) Fit a tensor-product spline GAM for selected interactions, to make it
116 | scalable for large number of interactions, the number of knots
117 | in spline is adaptively adjusted from 10 to 2, according to
118 | the number of interactions.
119 | 4) Wrap the partial function of each effect and intercept.
120 |
121 | Returns
122 | -------
123 | surrogate_estimator : object
124 | List of wrapped functions, each element is a fitted effect.
125 | intercept : float
126 | Fitted intercept.
127 | """
128 |
129 | x = self.training_generator_.tensors[0].cpu().numpy()
130 | y = self.training_generator_.tensors[1].cpu().numpy()
131 | sw = self.training_generator_.tensors[2].cpu().numpy()
132 | if self.gam_sample_size >= x.shape[0]:
133 | xx, yy, swsw = x, y, sw
134 | else:
135 | _, xx, _, yy, _, swsw = train_test_split(x, y, sw, test_size=self.gam_sample_size, random_state=self.random_state)
136 |
137 | termlist = TermList()
138 | n_splines = max(11 - np.ceil(self.n_features_ / 100).astype(int), 2)
139 | for idx in range(self.n_features_):
140 | termlist += s(idx, n_splines=n_splines, spline_order=1, lam=0.6)
141 |
142 | gam = LinearGAM(termlist)
143 | gam.fit((xx - self.mu_list_.cpu().numpy()) / self.std_list_.cpu().numpy(), yy, weights=swsw)
144 |
145 | def margial_effect(i):
146 | return lambda x: gam.partial_dependence(i, x)
147 |
148 | intercept = gam.coef_[-1]
149 | surrogate_estimator = [margial_effect(i) for i in range(self.n_features_)]
150 | return surrogate_estimator, intercept
151 |
152 | def _build_teacher_interaction(self):
153 | """
154 | Internal function for fiting a spline based additive interaction model.
155 |
156 | It works as follows.
157 | 1) Subsample at most self.gam_sample_size data from training set.
158 | 2) Get the residual with respect to the fitted main effect networks,
159 | for classification case, the residual is y_label - pred_proba.
160 | 3) Fit a tensor-product spline GAM for selected interactions, to make it
161 | scalable for large number of interactions, the number of knots
162 | in spline is adaptively adjusted from 10 to 2, according to
163 | the number of interactions.
164 | 4) Wrap the partial function of each effect and intercept.
165 |
166 | Returns
167 | -------
168 | surrogate_estimator : object
169 | List of wrapped functions, each element is a fitted effect.
170 | intercept : float
171 | Fitted intercept.
172 | """
173 | x = self.training_generator_.tensors[0].cpu().numpy()
174 | y = self.training_generator_.tensors[1].cpu().numpy()
175 | sw = self.training_generator_.tensors[2].cpu().numpy()
176 | if self.gam_sample_size >= x.shape[0]:
177 | xx, yy, swsw = x, y, sw
178 | else:
179 | _, xx, _, yy, _, swsw = train_test_split(x, y, sw, test_size=self.gam_sample_size, random_state=self.random_state)
180 | residual = yy - self.get_aggregate_output(xx, main_effect=True, interaction=False).detach().cpu().numpy().ravel()
181 |
182 | termlist = TermList()
183 | n_splines = max(11 - np.ceil(self.n_interactions_ / 10).astype(int), 2)
184 | for i, (idx1, idx2) in enumerate(self.interaction_list_):
185 | termlist += te(s(idx1, n_splines=n_splines, spline_order=1, lam=0.6),
186 | s(idx2, n_splines=n_splines, spline_order=1, lam=0.6))
187 |
188 | gam = LinearGAM(termlist)
189 | gam.fit((xx - self.mu_list_.cpu().numpy()) / self.std_list_.cpu().numpy(), residual, weights=swsw)
190 |
191 | def margial_effect(i):
192 | return lambda x: gam.partial_dependence(i, x)
193 |
194 | intercept = gam.coef_[-1]
195 | surrogate_estimator = [margial_effect(i) for i in range(self.n_interactions_)]
196 | return surrogate_estimator, intercept
197 |
198 | def _get_interaction_list(self, x, y, w, scores, feature_names, feature_types):
199 | """
200 | Internal function for screening interactions in regression setting.
201 |
202 | Returns
203 | -------
204 | interaction_list : list of int
205 | List of paired tuple index, each indicating the feature index.
206 | """
207 | num_classes = -1
208 | model_type = "regression"
209 | interaction_list = self._interaction_screening(x, y.astype(np.float64), w, scores, feature_names, feature_types,
210 | model_type, num_classes)
211 | return interaction_list
212 |
213 | def fit(self, x, y, sample_weight=None):
214 | """
215 | Fit GAMINetRegressor model.
216 |
217 | Parameters
218 | ----------
219 | x : np.ndarray of shape (n_samples, n_features)
220 | Data features.
221 | y : np.ndarray of shape (n_samples, )
222 | Target response.
223 | sample_weight : np.ndarray of shape (n_samples, )
224 | Sample weight.
225 |
226 | Returns
227 | -------
228 | self : object
229 | Fitted Estimator.
230 | """
231 | self._init_fit(x, y, sample_weight)
232 | return self._fit()
233 |
234 | def predict(self, x, main_effect=True, interaction=True):
235 | """
236 | Returns numpy array of predicted values.
237 |
238 | Parameters
239 | ----------
240 | x : np.ndarray of shape (n_samples, n_features)
241 | Data features.
242 | main_effect : boolean
243 | Whether to include main effects, default to True.
244 | interaction : boolean
245 | Whether to include interactions, default to True.
246 |
247 | Returns
248 | -------
249 | pred: np.ndarray of shape (n_samples, )
250 | numpy array of predicted values.
251 | """
252 | check_is_fitted(self)
253 | x = self._validate_data(x)
254 | pred = self.get_aggregate_output(x, main_effect=main_effect, interaction=interaction).detach().cpu().numpy().ravel()
255 | return pred
256 |
257 |
258 | class GAMINetClassifier(GAMINet, ClassifierMixin):
259 |
260 | def __init__(self, meta_info=None, interact_num=10,
261 | subnet_size_main_effect=(20,), subnet_size_interaction=(20, 20), activation_func="ReLU",
262 | max_epochs=(1000, 1000, 1000), learning_rates=(1e-3, 1e-3, 1e-4), early_stop_thres=("auto", "auto", "auto"),
263 | batch_size=200, batch_size_inference=10000, max_iter_per_epoch=100, val_ratio=0.2,
264 | warm_start=True, gam_sample_size=5000, mlp_sample_size=1000,
265 | heredity=True, reg_clarity=0.1, loss_threshold=0.0,
266 | reg_mono=0.1, mono_increasing_list=(), mono_decreasing_list=(), mono_sample_size=1000,
267 | boundary_clip=True, normalize=True, verbose=False, n_jobs=10, device="cpu", random_state=0):
268 |
269 | super(GAMINetClassifier, self).__init__(loss_fn=torch.nn.BCEWithLogitsLoss(reduction="none"),
270 | meta_info=meta_info,
271 | interact_num=interact_num,
272 | subnet_size_main_effect=subnet_size_main_effect,
273 | subnet_size_interaction=subnet_size_interaction,
274 | activation_func=activation_func,
275 | max_epochs=max_epochs,
276 | learning_rates=learning_rates,
277 | early_stop_thres=early_stop_thres,
278 | batch_size=batch_size,
279 | batch_size_inference=batch_size_inference,
280 | max_iter_per_epoch=max_iter_per_epoch,
281 | val_ratio=val_ratio,
282 | warm_start=warm_start,
283 | gam_sample_size=gam_sample_size,
284 | mlp_sample_size=mlp_sample_size,
285 | heredity=heredity,
286 | reg_clarity=reg_clarity,
287 | loss_threshold=loss_threshold,
288 | reg_mono=reg_mono,
289 | mono_sample_size=mono_sample_size,
290 | mono_increasing_list=mono_increasing_list,
291 | mono_decreasing_list=mono_decreasing_list,
292 | boundary_clip=boundary_clip,
293 | normalize=normalize,
294 | verbose=verbose,
295 | n_jobs=n_jobs,
296 | device=device,
297 | random_state=random_state)
298 |
299 | def _more_tags(self):
300 | """
301 | Internal function for skipping some sklearn estimator checks.
302 | """
303 | return {"binary_only": True,
304 | "_xfail_checks": {"check_sample_weights_invariance":
305 | ("zero sample_weight is not equivalent to removing samples")}}
306 |
307 | def _validate_input(self, x, y, sample_weight):
308 | """
309 | Internal function for validating the inputs of the fit function.
310 |
311 | Samples with zero sample_weight are removed.
312 | Sample_weight would be normalized, such that the sum equals sample size.
313 | Will raise an error if only one sample is given.
314 | The target label would be encoded as 0 and 1.
315 |
316 | Parameters
317 | ----------
318 | x : np.ndarray of shape (n_samples, n_features)
319 | Data features.
320 | y : np.ndarray of shape (n_samples, )
321 | Target response.
322 | sample_weight : np.ndarray of shape (n_samples, )
323 | Sample weight.
324 |
325 | Returns
326 | -------
327 | x : np.ndarray of shape (n_samples, n_features)
328 | Data features.
329 | y : np.ndarray of shape (n_samples, )
330 | Target response.
331 | sample_weight : np.ndarray of shape (n_samples, )
332 | Sample weight.
333 | """
334 | x, y = self._validate_data(x, y)
335 | if y.ndim == 2 and y.shape[1] == 1:
336 | y = column_or_1d(y, warn=False)
337 | if sample_weight is None:
338 | sample_weight = np.ones(x.shape[0])
339 | else:
340 | sample_weight = np.asarray(sample_weight)
341 | if sample_weight.shape[0] != x.shape[0]:
342 | raise ValueError("sample_weight shape mismatches the input")
343 | valid_idx = np.where(sample_weight > 0)[0]
344 | x, y, sample_weight = x[valid_idx], y[valid_idx], sample_weight[valid_idx]
345 | if np.sum(sample_weight) > 0:
346 | sample_weight = x.shape[0] * sample_weight.ravel() / np.sum(sample_weight)
347 | if x.shape[0] == 1:
348 | raise ValueError("n_samples=1")
349 |
350 | self.label_binarizer_ = LabelBinarizer()
351 | self.label_binarizer_.fit(y)
352 | self.classes_ = self.label_binarizer_.classes_
353 | if len(self.classes_) > 2:
354 | raise ValueError("multi-classification not supported")
355 | y = self.label_binarizer_.transform(y) * 1.0
356 | return x, y.ravel(), sample_weight.ravel()
357 |
358 | def _build_teacher_main_effect(self):
359 | """
360 | Internal function for fiting a spline based additive model.
361 |
362 | It works as follows.
363 | 1) Subsample at most self.gam_sample_size data from training set.
364 | 2) Fit a B-spline GAM for all input features, to make it
365 | scalable for large number of interactions, the number of knots
366 | in spline is adaptively adjusted from 10 to 2, according to
367 | the number of features.
368 | 3) Wrap the partial function of each effect and intercept.
369 |
370 | Returns
371 | -------
372 | surrogate_estimator : object
373 | List of wrapped functions, each element is a fitted effect.
374 | intercept : float
375 | Fitted intercept.
376 | """
377 | x = self.training_generator_.tensors[0].cpu().numpy()
378 | y = self.training_generator_.tensors[1].cpu().numpy() * 4 - 2
379 | sw = self.training_generator_.tensors[2].cpu().numpy()
380 | if self.gam_sample_size >= x.shape[0]:
381 | xx, yy, swsw = x, y, sw
382 | else:
383 | _, xx, _, yy, _, swsw = train_test_split(x, y, sw,
384 | test_size=self.gam_sample_size, stratify=y, random_state=self.random_state)
385 |
386 | termlist = TermList()
387 | n_splines = max(11 - np.ceil(self.n_features_ / 100).astype(int), 2)
388 | for idx in range(self.n_features_):
389 | termlist += s(idx, n_splines=n_splines, spline_order=1, lam=0.6)
390 |
391 | gam = LinearGAM(termlist)
392 | gam.fit((xx - self.mu_list_.cpu().numpy()) / self.std_list_.cpu().numpy(),
393 | yy, weights=swsw)
394 |
395 | def margial_effect(i):
396 | return lambda x: gam.partial_dependence(i, x)
397 |
398 | intercept = gam.coef_[-1]
399 | surrogate_estimator = [margial_effect(i) for i in range(self.n_features_)]
400 | return surrogate_estimator, intercept
401 |
402 | def _build_teacher_interaction(self):
403 | """
404 | Internal function for fiting a spline based additive interaction model.
405 |
406 | It works as follows.
407 | 1) Subsample at most self.gam_sample_size data from training set.
408 | 2) Get the residual with respect to the fitted main effect networks,
409 | for classification case, the residual is y_label - pred_proba.
410 | 3) Fit a tensor-product spline GAM for selected interactions, to make it
411 | scalable for large number of interactions, the number of knots
412 | in spline is adaptively adjusted from 10 to 2, according to
413 | the number of interactions.
414 | 4) Wrap the partial function of each effect and intercept.
415 |
416 | Returns
417 | -------
418 | surrogate_estimator : object
419 | List of wrapped functions, each element is a fitted effect.
420 | intercept : float
421 | Fitted intercept.
422 | """
423 | x = self.training_generator_.tensors[0].cpu().numpy()
424 | y = self.training_generator_.tensors[1].cpu().numpy()
425 | sw = self.training_generator_.tensors[2].cpu().numpy()
426 | if self.gam_sample_size >= x.shape[0]:
427 | xx, yy, swsw = x, y, sw
428 | else:
429 | _, xx, _, yy, _, swsw = train_test_split(x, y, sw,
430 | test_size=self.gam_sample_size, stratify=y, random_state=self.random_state)
431 |
432 | pred = self.get_aggregate_output(xx, main_effect=True,
433 | interaction=False).detach().cpu().numpy().ravel()
434 | pred_proba = softmax(np.vstack([-pred, pred]).T / 2, copy=False)[:, 1]
435 | residual = yy - pred_proba
436 |
437 | termlist = TermList()
438 | n_splines = max(11 - np.ceil(self.n_interactions_ / 10).astype(int), 2)
439 | for i, (idx1, idx2) in enumerate(self.interaction_list_):
440 | termlist += te(s(idx1, n_splines=n_splines, spline_order=1, lam=0.6),
441 | s(idx2, n_splines=n_splines, spline_order=1, lam=0.6))
442 |
443 | gam = LinearGAM(termlist)
444 | gam.fit((xx - self.mu_list_.cpu().numpy()) / self.std_list_.cpu().numpy(),
445 | residual, weights=swsw)
446 |
447 | def margial_effect(i):
448 | return lambda x: gam.partial_dependence(i, x)
449 |
450 | intercept = gam.coef_[-1]
451 | surrogate_estimator = [margial_effect(i) for i in range(self.n_interactions_)]
452 | return surrogate_estimator, intercept
453 |
454 | def _get_interaction_list(self, x, y, w, scores, feature_names, feature_types):
455 | """
456 | Internal function for screening interactions in classification setting.
457 |
458 | Returns
459 | -------
460 | interaction_list : list of int
461 | List of paired tuple index, each indicating the feature index.
462 | """
463 | num_classes = 2
464 | model_type = "classification"
465 |
466 | interaction_list = self._interaction_screening(x, y.astype(np.int64), w,
467 | scores, feature_names, feature_types, model_type, num_classes)
468 | return interaction_list
469 |
470 | def fit(self, x, y, sample_weight=None):
471 | """
472 | Fit GAMINetClassifier model.
473 |
474 | Parameters
475 | ----------
476 | x : np.ndarray of shape (n_samples, n_features)
477 | Data features.
478 | y : np.ndarray of shape (n_samples, )
479 | Target response.
480 | sample_weight : np.ndarray of shape (n_samples, )
481 | Sample weight.
482 |
483 | Returns
484 | -------
485 | self : object
486 | Fitted Estimator.
487 | """
488 | self._init_fit(x, y, sample_weight, stratified=True)
489 | return self._fit()
490 |
491 | def decision_function(self, x, main_effect=True, interaction=True):
492 | """
493 | Returns numpy array of raw predicted value before softmax.
494 |
495 | Parameters
496 | ----------
497 | x : np.ndarray of shape (n_samples, n_features)
498 | Data features.
499 | main_effect : boolean
500 | Whether to include main effects, default to True.
501 | interaction : boolean
502 | Whether to include interactions, default to True.
503 |
504 | Returns
505 | -------
506 | pred : np.ndarray of shape (n_samples, )
507 | numpy array of predicted class values.
508 | """
509 | check_is_fitted(self)
510 | x = self._validate_data(x)
511 | pred = self.get_aggregate_output(x, main_effect=main_effect,
512 | interaction=interaction).detach().cpu().numpy().ravel()
513 | return pred
514 |
515 | def predict_proba(self, x, main_effect=True, interaction=True):
516 | """
517 | Returns numpy array of predicted probabilities of each class.
518 |
519 | Parameters
520 | ----------
521 | x : np.ndarray of shape (n_samples, n_features)
522 | Data features.
523 | main_effect : boolean
524 | Whether to include main effects, default to True.
525 | interaction : boolean
526 | Whether to include interactions, default to True.
527 |
528 | Returns
529 | -------
530 | pred_proba : np.ndarray of shape (n_samples, 2)
531 | numpy array of predicted proba values.
532 | """
533 | pred = self.decision_function(x, main_effect=main_effect, interaction=interaction)
534 | pred_proba = softmax(np.vstack([-pred, pred]).T / 2, copy=False)
535 | return pred_proba
536 |
537 | def predict(self, x, main_effect=True, interaction=True):
538 | """
539 | Returns numpy array of predicted class.
540 |
541 | Parameters
542 | ----------
543 | x : np.ndarray of shape (n_samples, n_features)
544 | Data features
545 | main_effect : boolean
546 | Whether to include main effects, default to True.
547 | interaction : boolean
548 | Whether to include interactions, default to True.
549 |
550 | Returns
551 | -------
552 | pred : np.ndarray of shape (n_samples, )
553 | numpy array of predicted class values.
554 | """
555 | pred_proba = self.predict_proba(x, main_effect=main_effect, interaction=interaction)[:, 1]
556 | pred = np.array(pred_proba > 0.5, dtype=np.int)
557 | return self.label_binarizer_.inverse_transform(pred)
558 |
--------------------------------------------------------------------------------
/gaminet/dataloader.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | class FastTensorDataLoader:
5 | """
6 | A DataLoader-like object for a set of tensors that can be much faster than
7 | TensorDataset + DataLoader because dataloader grabs individual indices of
8 | the dataset and calls cat (slow).
9 | Source: https://discuss.pytorch.org/t/dataloader-much-slower-than-manual-batching/27014/6
10 | """
11 | def __init__(self, *tensors, batch_size=32, shuffle=False):
12 | """
13 | Initialize a FastTensorDataLoader.
14 | :param *tensors: tensors to store. Must have the same length @ dim 0.
15 | :param batch_size: batch size to load.
16 | :param shuffle: if True, shuffle the data *in-place* whenever an
17 | iterator is created out of this object.
18 | :returns: A FastTensorDataLoader.
19 | """
20 | assert all(t.shape[0] == tensors[0].shape[0] for t in tensors)
21 | self.tensors = tensors
22 |
23 | self.dataset_len = self.tensors[0].shape[0]
24 | self.batch_size = batch_size
25 | self.shuffle = shuffle
26 |
27 | # Calculate # batches
28 | n_batches, remainder = divmod(self.dataset_len, self.batch_size)
29 | if remainder > 0:
30 | n_batches += 1
31 | self.n_batches = n_batches
32 |
33 | def __iter__(self):
34 | if self.shuffle:
35 | r = torch.randperm(self.dataset_len)
36 | self.tensors = [t[r] for t in self.tensors]
37 | self.i = 0
38 | return self
39 |
40 | def __next__(self):
41 | if self.i >= self.dataset_len:
42 | raise StopIteration
43 | batch = tuple(t[self.i: self.i + self.batch_size] for t in self.tensors)
44 | self.i += self.batch_size
45 | return batch
46 |
47 | def __len__(self):
48 | return self.n_batches
49 |
--------------------------------------------------------------------------------
/gaminet/layers.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | class TensorLayer(torch.nn.Module):
5 |
6 | def __init__(self, n_subnets, subnet_arch, n_input_nodes, activation_func, device):
7 | super().__init__()
8 |
9 | self.device = device
10 | self.n_subnets = n_subnets
11 | self.n_input_nodes = n_input_nodes
12 | self.activation_func = activation_func
13 | self.n_hidden_layers = len(subnet_arch)
14 |
15 | all_biases = []
16 | all_weights = []
17 | n_hidden_nodes_prev = n_input_nodes
18 | for i, n_hidden_nodes in enumerate(subnet_arch + [1]):
19 | if i == 0:
20 | w = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes_prev, n_hidden_nodes),
21 | dtype=torch.float, requires_grad=True, device=device))
22 | b = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes),
23 | dtype=torch.float, requires_grad=True, device=device))
24 | elif i == self.n_hidden_layers:
25 | w = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes_prev, 1),
26 | dtype=torch.float, requires_grad=True, device=device))
27 | b = torch.nn.Parameter(torch.empty(size=(n_subnets, 1),
28 | dtype=torch.float, requires_grad=True, device=device))
29 | else:
30 | w = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes_prev, n_hidden_nodes),
31 | dtype=torch.float, requires_grad=True, device=device))
32 | b = torch.nn.Parameter(torch.empty(size=(n_subnets, n_hidden_nodes),
33 | dtype=torch.float, requires_grad=True, device=device))
34 | n_hidden_nodes_prev = n_hidden_nodes
35 | torch.nn.init.zeros_(b)
36 | for j in range(n_subnets):
37 | torch.nn.init.orthogonal_(w[j])
38 | all_biases.append(b)
39 | all_weights.append(w)
40 | self.all_biases = torch.nn.ParameterList(all_biases)
41 | self.all_weights = torch.nn.ParameterList(all_weights)
42 |
43 | def individual_forward(self, inputs, idx):
44 |
45 | xs = inputs
46 | for i in range(self.n_hidden_layers):
47 | xs = self.activation_func(torch.matmul(xs, self.all_weights[i][idx]) +
48 | self.all_biases[i][idx])
49 | outputs = torch.matmul(xs, self.all_weights[-1][idx]) + self.all_biases[-1][idx]
50 | return outputs
51 |
52 | def forward(self, inputs):
53 |
54 | xs = inputs
55 | for i in range(self.n_hidden_layers):
56 | xs = self.activation_func(torch.matmul(xs, self.all_weights[i]) +
57 | torch.reshape(self.all_biases[i], [self.n_subnets, 1, -1]))
58 |
59 | outputs = (torch.matmul(xs, self.all_weights[-1]) +
60 | torch.reshape(self.all_biases[-1], [self.n_subnets, 1, -1]))
61 | outputs = torch.squeeze(torch.transpose(outputs, 0, 1), dim=2)
62 | return outputs
63 |
64 |
65 | class UnivariateOneHotEncodingLayer(torch.nn.Module):
66 |
67 | def __init__(self, num_classes_list, device):
68 |
69 | super(UnivariateOneHotEncodingLayer, self).__init__()
70 |
71 | self.class_bias = []
72 | self.global_bias = []
73 | self.num_classes_list = num_classes_list
74 | for i in range(len(num_classes_list)):
75 | cb = torch.nn.Parameter(torch.empty(size=(num_classes_list[i], 1),
76 | dtype=torch.float, requires_grad=True, device=device))
77 | gb = torch.nn.Parameter(torch.empty(size=(1, 1),
78 | dtype=torch.float, requires_grad=False, device=device))
79 | torch.nn.init.zeros_(cb)
80 | torch.nn.init.zeros_(gb)
81 | self.class_bias.append(cb)
82 | self.global_bias.append(gb)
83 |
84 | def forward(self, inputs, sample_weight=None, training=False):
85 |
86 | output = []
87 | for i in range(len(self.num_classes_list)):
88 | dummy = torch.nn.functional.one_hot(inputs[:, i].to(torch.int64),
89 | num_classes=self.num_classes_list[i]).to(torch.float)
90 | output.append(torch.matmul(dummy, self.class_bias[i]) + self.global_bias[i])
91 | output = torch.squeeze(torch.hstack(output))
92 | return output
93 |
94 |
95 | class pyGAMNet(torch.nn.Module):
96 |
97 | def __init__(self, nfeature_index_list, cfeature_index_list, num_classes_list,
98 | subnet_arch, activation_func, device):
99 |
100 | super(pyGAMNet, self).__init__()
101 |
102 | self.device = device
103 | self.nfeature_index_list = nfeature_index_list
104 | self.cfeature_index_list = cfeature_index_list
105 | self.num_classes_list = num_classes_list
106 | self.subnet_arch = subnet_arch
107 | self.activation_func = activation_func
108 |
109 | if len(self.nfeature_index_list) > 0:
110 | self.nsubnets = TensorLayer(len(nfeature_index_list), subnet_arch,
111 | 1, activation_func, device)
112 | if len(self.cfeature_index_list) > 0:
113 | self.csubnets = UnivariateOneHotEncodingLayer(num_classes_list, device)
114 |
115 | def forward(self, inputs):
116 |
117 | output = torch.zeros(size=(inputs.shape[0], inputs.shape[1]), dtype=torch.float, device=self.device)
118 | if len(self.nfeature_index_list) > 0:
119 | ntensor_inputs = torch.unsqueeze(torch.transpose(inputs[:,
120 | self.nfeature_index_list], 0, 1), 2)
121 | output[:, self.nfeature_index_list] = self.nsubnets(ntensor_inputs)
122 | if len(self.cfeature_index_list) > 0:
123 | ctensor_inputs = inputs[:, self.cfeature_index_list]
124 | output[:, self.cfeature_index_list] = self.csubnets(ctensor_inputs)
125 | return output
126 |
127 |
128 | class pyInteractionNet(torch.nn.Module):
129 |
130 | def __init__(self, interaction_list, nfeature_index_list, cfeature_index_list, num_classes_list,
131 | subnet_arch, activation_func, device):
132 | super(pyInteractionNet, self).__init__()
133 |
134 | self.interaction_list = interaction_list
135 | self.n_interactions = len(interaction_list)
136 | self.nfeature_index_list = nfeature_index_list
137 | self.cfeature_index_list = cfeature_index_list
138 | self.num_classes_list = num_classes_list
139 | self.subnet_arch = subnet_arch
140 | self.activation_func = activation_func
141 | self.device = device
142 |
143 | self.n_inputs1 = []
144 | self.n_inputs2 = []
145 | for i in range(self.n_interactions):
146 | if self.interaction_list[i][0] in self.cfeature_index_list:
147 | self.n_inputs1.append(self.num_classes_list[
148 | self.cfeature_index_list.index(self.interaction_list[i][0])])
149 | else:
150 | self.n_inputs1.append(1)
151 |
152 | if self.interaction_list[i][1] in self.cfeature_index_list:
153 | self.n_inputs2.append(self.num_classes_list[
154 | self.cfeature_index_list.index(self.interaction_list[i][1])])
155 | else:
156 | self.n_inputs2.append(1)
157 |
158 | self.max_n_inputs = max([self.n_inputs1[i] + self.n_inputs2[i]
159 | for i in range(self.n_interactions)])
160 | self.subnets = TensorLayer(self.n_interactions, subnet_arch, self.max_n_inputs,
161 | activation_func, device)
162 |
163 | def preprocessing(self, inputs):
164 |
165 | preprocessed_inputs = []
166 | for i in range(self.n_interactions):
167 | interact_input_list = []
168 | idx1 = self.interaction_list[i][0]
169 | idx2 = self.interaction_list[i][1]
170 | if self.interaction_list[i][0] in self.cfeature_index_list:
171 | interact_input1 = torch.nn.functional.one_hot(inputs[:, idx1].to(torch.int64),
172 | num_classes=self.n_inputs1[i]).to(torch.float)
173 | interact_input_list.append(interact_input1)
174 | else:
175 | interact_input_list.append(inputs[:, [idx1]])
176 | if self.interaction_list[i][1] in self.cfeature_index_list:
177 | interact_input2 = torch.nn.functional.one_hot(inputs[:, idx2].to(torch.int64),
178 | num_classes=self.n_inputs2[i]).to(torch.float)
179 | interact_input_list.append(interact_input2)
180 | else:
181 | interact_input_list.append(inputs[:, [idx2]])
182 |
183 | if (self.n_inputs1[i] + self.n_inputs2[i]) < self.max_n_inputs:
184 | interact_input_list.append(torch.zeros(size=(inputs.shape[0],
185 | self.max_n_inputs - (self.n_inputs1[i] + self.n_inputs2[i])),
186 | dtype=torch.float, requires_grad=True, device=self.device))
187 | preprocessed_inputs.append(torch.hstack(interact_input_list))
188 | preprocessed_inputs = torch.hstack(preprocessed_inputs)
189 | return preprocessed_inputs
190 |
191 | def forward(self, inputs):
192 |
193 | tensor_inputs = torch.transpose(torch.reshape(self.preprocessing(inputs),
194 | [-1, self.n_interactions, self.max_n_inputs]), 0, 1)
195 | subnet_output = self.subnets(tensor_inputs)
196 | return subnet_output
197 |
198 |
199 | class pyGAMINet(torch.nn.Module):
200 |
201 | def __init__(self, nfeature_index_list, cfeature_index_list, num_classes_list,
202 | subnet_size_main_effect, subnet_size_interaction, activation_func,
203 | heredity, mono_increasing_list, mono_decreasing_list,
204 | boundary_clip, min_value, max_value, mu_list, std_list, device):
205 |
206 | super(pyGAMINet, self).__init__()
207 |
208 | self.n_features = len(nfeature_index_list) + len(cfeature_index_list)
209 | self.nfeature_index_list = nfeature_index_list
210 | self.cfeature_index_list = cfeature_index_list
211 | self.num_classes_list = num_classes_list
212 | self.subnet_size_main_effect = subnet_size_main_effect
213 | self.subnet_size_interaction = subnet_size_interaction
214 | self.activation_func = activation_func
215 | self.heredity = heredity
216 | self.mono_increasing_list = mono_increasing_list
217 | self.mono_decreasing_list = mono_decreasing_list
218 |
219 | self.boundary_clip = boundary_clip
220 | self.min_value = min_value
221 | self.max_value = max_value
222 | self.mu_list = mu_list
223 | self.std_list = std_list
224 |
225 | self.device = device
226 | self.interaction_status = False
227 | self.main_effect_blocks = pyGAMNet(nfeature_index_list=nfeature_index_list,
228 | cfeature_index_list=cfeature_index_list,
229 | num_classes_list=num_classes_list,
230 | subnet_arch=subnet_size_main_effect,
231 | activation_func=activation_func,
232 | device=device)
233 | self.main_effect_weights = torch.nn.Parameter(torch.empty(size=(self.n_features, 1),
234 | dtype=torch.float, requires_grad=True, device=device))
235 | self.main_effect_switcher = torch.nn.Parameter(torch.empty(size=(self.n_features, 1),
236 | dtype=torch.float, requires_grad=False, device=device))
237 |
238 | self.output_bias = torch.nn.Parameter(torch.empty(size=(1, ),
239 | dtype=torch.float, requires_grad=True, device=device))
240 | torch.nn.init.zeros_(self.output_bias)
241 | torch.nn.init.ones_(self.main_effect_switcher)
242 | torch.nn.init.ones_(self.main_effect_weights)
243 |
244 | def init_interaction_blocks(self, interaction_list):
245 |
246 | if len(interaction_list) > 0:
247 | self.interaction_status = True
248 | self.n_interactions = len(interaction_list)
249 | self.interaction_blocks = pyInteractionNet(interaction_list=interaction_list,
250 | nfeature_index_list=self.nfeature_index_list,
251 | cfeature_index_list=self.cfeature_index_list,
252 | num_classes_list=self.num_classes_list,
253 | subnet_arch=self.subnet_size_interaction,
254 | activation_func=self.activation_func,
255 | device=self.device)
256 | self.interaction_weights = torch.nn.Parameter(torch.empty(size=(self.n_interactions, 1),
257 | dtype=torch.float, requires_grad=True, device=self.device))
258 | self.interaction_switcher = torch.nn.Parameter(torch.empty(size=(self.n_interactions, 1),
259 | dtype=torch.float, requires_grad=False, device=self.device))
260 | torch.nn.init.ones_(self.interaction_switcher)
261 | torch.nn.init.ones_(self.interaction_weights)
262 |
263 | def get_mono_loss(self, inputs, outputs=None, monotonicity=False, sample_weight=None):
264 |
265 | mono_loss = torch.tensor(0.0, requires_grad=True)
266 | if not monotonicity:
267 | return mono_loss
268 |
269 | grad = torch.autograd.grad(outputs=torch.sum(outputs),
270 | inputs=inputs, create_graph=True)[0]
271 |
272 | if sample_weight is not None:
273 | if len(self.mono_increasing_list) > 0:
274 | mono_loss = mono_loss + torch.mean(torch.nn.ReLU()(
275 | -grad[:, self.mono_increasing_list]) * sample_weight.reshape(-1, 1))
276 | if len(self.mono_decreasing_list) > 0:
277 | mono_loss = mono_loss + torch.mean(torch.nn.ReLU()(
278 | grad[:, self.mono_decreasing_list]) * sample_weight.reshape(-1, 1))
279 | else:
280 | if len(self.mono_increasing_list) > 0:
281 | mono_loss = mono_loss + torch.mean(torch.nn.ReLU()(
282 | -grad[:, self.mono_increasing_list]))
283 | if len(self.mono_decreasing_list) > 0:
284 | mono_loss = mono_loss + torch.mean(torch.nn.ReLU()(
285 | grad[:, self.mono_decreasing_list]))
286 | return mono_loss
287 |
288 | def get_clarity_loss(self, main_effect_outputs=None, interaction_outputs=None,
289 | sample_weight=None, clarity=False):
290 |
291 | clarity_loss = torch.tensor(0.0, requires_grad=True)
292 | if main_effect_outputs is None:
293 | return clarity_loss
294 | if interaction_outputs is None:
295 | return clarity_loss
296 | if not clarity:
297 | return clarity_loss
298 |
299 | for i, (k1, k2) in enumerate(self.interaction_blocks.interaction_list):
300 | if sample_weight is not None:
301 | clarity_loss = clarity_loss + torch.abs((main_effect_outputs[:, k1] *
302 | interaction_outputs[:, i] * sample_weight.ravel()).mean())
303 | clarity_loss = clarity_loss + torch.abs((main_effect_outputs[:, k2] *
304 | interaction_outputs[:, i] * sample_weight.ravel()).mean())
305 | else:
306 | clarity_loss = clarity_loss + torch.abs((main_effect_outputs[:, k1]
307 | * interaction_outputs[:, i]).mean())
308 | clarity_loss = clarity_loss + torch.abs((main_effect_outputs[:, k2]
309 | * interaction_outputs[:, i]).mean())
310 | return clarity_loss
311 |
312 | def forward_main_effect(self, inputs):
313 |
314 | inputs = torch.max(torch.min(inputs, self.max_value), self.min_value) if self.boundary_clip else inputs
315 | inputs = (inputs - self.mu_list) / self.std_list
316 | main_effect_weights = self.main_effect_switcher * self.main_effect_weights
317 | outputs = self.main_effect_blocks(inputs) * main_effect_weights.ravel()
318 | return outputs
319 |
320 | def forward_interaction(self, inputs):
321 |
322 | inputs = torch.max(torch.min(inputs, self.max_value), self.min_value) if self.boundary_clip else inputs
323 | inputs = (inputs - self.mu_list) / self.std_list
324 | interaction_weights = self.interaction_switcher * self.interaction_weights
325 | outputs = self.interaction_blocks(inputs) * interaction_weights.ravel()
326 | return outputs
327 |
328 | def forward(self, inputs, sample_weight=None, main_effect=True, interaction=True,
329 | clarity=False, monotonicity=False):
330 |
331 | main_effect_outputs = None
332 | interaction_outputs = None
333 | inputs.requires_grad = True
334 | outputs = self.output_bias * torch.ones(inputs.shape[0], 1, device=self.device)
335 | inputs = torch.max(torch.min(inputs, self.max_value), self.min_value) if self.boundary_clip else inputs
336 | inputs = (inputs - self.mu_list) / self.std_list
337 | if main_effect:
338 | main_effect_weights = self.main_effect_switcher * self.main_effect_weights
339 | main_effect_outputs = self.main_effect_blocks(inputs) * main_effect_weights.ravel()
340 | outputs = outputs + main_effect_outputs.sum(1, keepdim=True)
341 | if interaction and self.interaction_status:
342 | interaction_weights = self.interaction_switcher * self.interaction_weights
343 | interaction_outputs = self.interaction_blocks(inputs) * interaction_weights.ravel()
344 | outputs = outputs + interaction_outputs.sum(1, keepdim=True)
345 |
346 | self.mono_loss = self.get_mono_loss(inputs, outputs, monotonicity, sample_weight)
347 | self.clarity_loss = self.get_clarity_loss(main_effect_outputs, interaction_outputs,
348 | sample_weight, clarity)
349 | return outputs
350 |
--------------------------------------------------------------------------------
/gaminet/lib/lib_ebm_native_linux_x64.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/gaminet/lib/lib_ebm_native_linux_x64.so
--------------------------------------------------------------------------------
/gaminet/lib/lib_ebm_native_mac_x64.dylib:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/gaminet/lib/lib_ebm_native_mac_x64.dylib
--------------------------------------------------------------------------------
/gaminet/lib/lib_ebm_native_win_x64.dll:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SelfExplainML/GamiNet-PyTorch/54598abdcd97ffd4f8e0d74930fe6a25b62d08b2/gaminet/lib/lib_ebm_native_win_x64.dll
--------------------------------------------------------------------------------
/gaminet/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 |
4 | import matplotlib
5 | from matplotlib import gridspec
6 | from matplotlib import pyplot as plt
7 | from matplotlib.ticker import MaxNLocator
8 |
9 |
10 | def plot_regularization(data_dict_logs, log_scale=True, folder="./results/", name="regularization_path", save_eps=False, save_png=False):
11 | """
12 | Helper function for visualizing regularization path.
13 |
14 | Parameters
15 | ----------
16 | data_dict_logs : dict
17 | Dictionary containing regularization path information.
18 | log_scale : boolean
19 | Whether to use log scale for y-axis.
20 | folder : str
21 | The path of folder to save figure, by default "./".
22 | name : str
23 | Name of the file, by default "regularization_path".
24 | save_png : boolean
25 | Whether to save the plot in PNG format, by default False.
26 | save_eps : boolean
27 | Whether to save the plot in EPS format, by default False.
28 | """
29 |
30 | main_loss = data_dict_logs["main_effect_val_loss"]
31 | inter_loss = data_dict_logs["interaction_val_loss"]
32 | active_main_effect_index = data_dict_logs["active_main_effect_index"]
33 | active_interaction_index = data_dict_logs["active_interaction_index"]
34 |
35 | fig = plt.figure(figsize=(14, 4))
36 | if len(main_loss) > 0:
37 | ax1 = plt.subplot(1, 2, 1)
38 | ax1.plot(np.arange(0, len(main_loss), 1), main_loss)
39 | ax1.axvline(np.argmin(main_loss), linestyle="dotted", color="red")
40 | ax1.axvline(len(active_main_effect_index), linestyle="dotted", color="red")
41 | ax1.plot(np.argmin(main_loss), np.min(main_loss), "*", markersize=12, color="red")
42 | ax1.plot(len(active_main_effect_index), main_loss[len(active_main_effect_index)], "o", markersize=8, color="red")
43 | ax1.set_xlabel("Number of Main Effects", fontsize=12)
44 | ax1.set_xlim(-0.5, len(main_loss) - 0.5)
45 | ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
46 | if log_scale:
47 | ax1.set_yscale("log")
48 | ax1.set_yticks((10 ** np.linspace(np.log10(np.nanmin(main_loss)), np.log10(np.nanmax(main_loss)), 5)).round(5))
49 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
50 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
51 | ax1.set_ylabel("Validation Loss (Log Scale)", fontsize=12)
52 | else:
53 | ax1.set_yticks((np.linspace(np.nanmin(main_loss), np.nanmax(main_loss), 5)).round(5))
54 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
55 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
56 | ax1.set_ylabel("Validation Loss", fontsize=12)
57 |
58 | if len(inter_loss) > 0:
59 | ax2 = plt.subplot(1, 2, 2)
60 | ax2.plot(np.arange(0, len(inter_loss), 1), inter_loss)
61 | ax2.axvline(np.argmin(inter_loss), linestyle="dotted", color="red")
62 | ax2.axvline(len(active_interaction_index), linestyle="dotted", color="red")
63 | ax2.plot(np.argmin(inter_loss), np.min(inter_loss), "*", markersize=12, color="red")
64 | ax2.plot(len(active_interaction_index), inter_loss[len(active_interaction_index)], "o", markersize=8, color="red")
65 | ax2.set_xlabel("Number of Interactions", fontsize=12)
66 | ax2.set_xlim(-0.5, len(inter_loss) - 0.5)
67 | ax2.xaxis.set_major_locator(MaxNLocator(integer=True))
68 | if log_scale:
69 | ax2.set_yscale("log")
70 | ax2.set_yticks((10 ** np.linspace(np.log10(np.nanmin(inter_loss)), np.log10(np.nanmax(inter_loss)), 5)).round(5))
71 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
72 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
73 | ax2.set_ylabel("Validation Loss (Log Scale)", fontsize=12)
74 | else:
75 | ax2.set_yticks((np.linspace(np.nanmin(inter_loss), np.nanmax(inter_loss), 5)).round(5))
76 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
77 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
78 | ax2.set_ylabel("Validation Loss", fontsize=12)
79 | plt.show()
80 |
81 | save_path = folder + name
82 | if save_eps:
83 | if not os.path.exists(folder):
84 | os.makedirs(folder)
85 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
86 | if save_png:
87 | if not os.path.exists(folder):
88 | os.makedirs(folder)
89 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
90 |
91 |
92 | def plot_trajectory(data_dict_logs, log_scale=True, folder="./", name="loss_trajectory", save_eps=False, save_png=False):
93 | """
94 | Helper function for visualizing loss trajectory.
95 |
96 | Parameters
97 | ----------
98 | data_dict_logs : dict
99 | Dictionary containing loss trajectory information.
100 | log_scale : boolean
101 | Whether to use log scale for y-axis.
102 | folder : str
103 | The path of folder to save figure, by default "./".
104 | name : str
105 | Name of the file, by default "trajectory_plot".
106 | save_png : boolean
107 | Whether to save the plot in PNG format, by default False.
108 | save_eps : boolean
109 | Whether to save the plot in EPS format, by default False.
110 | """
111 | t1, t2, t3 = [data_dict_logs["err_train_main_effect_training"],
112 | data_dict_logs["err_train_interaction_training"], data_dict_logs["err_train_tuning"]]
113 | v1, v2, v3 = [data_dict_logs["err_val_main_effect_training"],
114 | data_dict_logs["err_val_interaction_training"], data_dict_logs["err_val_tuning"]]
115 |
116 | if len(t1) + len(t2) + len(t3) == 0:
117 | return
118 |
119 | fig = plt.figure(figsize=(14, 4))
120 | ax1 = plt.subplot(1, 2, 1)
121 | ax1.plot(np.arange(1, len(t1) + 1, 1), t1, color="r")
122 | ax1.plot(np.arange(len(t1) + 1, len(t1 + t2) + 1, 1), t2, color="b")
123 | ax1.plot(np.arange(len(t1 + t2) + 1, len(t1 + t2 + t3) + 1, 1), t3, color="y")
124 | if log_scale:
125 | ax1.set_yscale("log")
126 | ax1.set_yticks((10 ** np.linspace(np.log10(np.nanmin(t1 + t2 + t3)), np.log10(np.nanmax(t1 + t2 + t3)), 5)).round(5))
127 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
128 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
129 | ax1.set_xlabel("Number of Epochs", fontsize=12)
130 | ax1.set_ylabel("Training Loss (Log Scale)", fontsize=12)
131 | else:
132 | ax1.set_yticks((np.linspace(np.nanmin(t1 + t2), np.nanmax(t1 + t2), 5)).round(5))
133 | ax1.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
134 | ax1.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
135 | ax1.set_xlabel("Number of Epochs", fontsize=12)
136 | ax1.set_ylabel("Training Loss", fontsize=12)
137 |
138 | ax1.legend(["Stage 1: Training Main Effects", "Stage 2: Training Interactions", "Stage 3: Fine Tuning"])
139 |
140 | ax2 = plt.subplot(1, 2, 2)
141 | ax2.plot(np.arange(1, len(v1) + 1, 1), v1, color="r")
142 | ax2.plot(np.arange(len(v1) + 1, len(v1 + v2) + 1, 1), v2, color="b")
143 | ax2.plot(np.arange(len(v1 + v2) + 1, len(v1 + v2 + v3) + 1, 1), v3, color="y")
144 | if log_scale:
145 | ax2.set_yscale("log")
146 | ax2.set_yticks((10 ** np.linspace(np.log10(np.nanmin(v1 + v2 + v3)), np.log10(np.nanmax(v1 + v2 + v3)), 5)).round(5))
147 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
148 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
149 | ax2.set_xlabel("Number of Epochs", fontsize=12)
150 | ax2.set_ylabel("Validation Loss (Log Scale)", fontsize=12)
151 | else:
152 | ax2.set_yticks((np.linspace(np.nanmin(v1 + v2 + v3), np.nanmax(v1 + v2 + v3), 5)).round(5))
153 | ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
154 | ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())
155 | ax2.set_xlabel("Number of Epochs", fontsize=12)
156 | ax2.set_ylabel("Validation Loss", fontsize=12)
157 | ax2.legend(["Stage 1: Training Main Effects", "Stage 2: Training Interactions", "Stage 3: Fine Tuning"])
158 | plt.show()
159 |
160 | save_path = folder + name
161 | if save_eps:
162 | if not os.path.exists(folder):
163 | os.makedirs(folder)
164 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
165 | if save_png:
166 | if not os.path.exists(folder):
167 | os.makedirs(folder)
168 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
169 |
170 |
171 | def feature_importance_visualize(feature_importance, feature_names, folder="./", name="feature_importance", save_png=False, save_eps=False):
172 | """
173 | Helper function for visualizing feature importance.
174 |
175 | Parameters
176 | ----------
177 | feature_importance : np.ndarray of shape (n_features, )
178 | Feature importance based on Shapley value.
179 | feature_names : list of str of shape (n_features, )
180 | Feature name list.
181 | folder : str
182 | The path of folder to save figure, by default "./".
183 | name : str
184 | Name of the file, by default "feature_importance".
185 | save_png : boolean
186 | Whether to save the plot in PNG format, by default False.
187 | save_eps : boolean
188 | Whether to save the plot in EPS format, by default False.
189 | """
190 | all_ir = []
191 | all_names = []
192 | for name, importance in zip(feature_names, feature_importance):
193 | if importance > 0:
194 | all_ir.append(importance)
195 | all_names.append(name)
196 |
197 | max_ids = len(all_names)
198 | if max_ids > 0:
199 | fig = plt.figure(figsize=(0.4 + 0.65 * max_ids, 4))
200 | ax = plt.axes()
201 | ax.bar(np.arange(len(all_ir)), [ir for ir, _ in sorted(zip(all_ir, all_names))][::-1])
202 | ax.set_xticks(np.arange(len(all_ir)))
203 | ax.set_xticklabels([name for _, name in sorted(zip(all_ir, all_names))][::-1], rotation=60)
204 | plt.ylim(0, np.max(all_ir) + 0.05)
205 | plt.xlim(-1, len(all_names))
206 | plt.title("Feature Importance")
207 |
208 | save_path = folder + name
209 | if save_eps:
210 | if not os.path.exists(folder):
211 | os.makedirs(folder)
212 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
213 | if save_png:
214 | if not os.path.exists(folder):
215 | os.makedirs(folder)
216 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
217 |
218 |
219 | def effect_importance_visualize(data_dict_global, folder="./", name="effect_importance", save_png=False, save_eps=False):
220 | """
221 | Helper function for visualizing effect importance.
222 |
223 | Parameters
224 | ----------
225 | data_dict_global : dict
226 | Dictionary with global explanation information.
227 | folder : str
228 | The path of folder to save figure, by default "./".
229 | name : str
230 | Name of the file, by default "effect_importance".
231 | save_png : boolean
232 | Whether to save the plot in PNG format, by default False.
233 | save_eps : boolean
234 | Whether to save the plot in EPS format, by default False.
235 | """
236 | all_ir = []
237 | all_names = []
238 | for key, item in data_dict_global.items():
239 | if item["importance"] > 0:
240 | all_ir.append(item["importance"])
241 | all_names.append(key)
242 |
243 | max_ids = len(all_names)
244 | if max_ids > 0:
245 | fig = plt.figure(figsize=(0.4 + 0.65 * max_ids, 4))
246 | ax = plt.axes()
247 | ax.bar(np.arange(len(all_ir)), [ir for ir, _ in sorted(zip(all_ir, all_names))][::-1])
248 | ax.set_xticks(np.arange(len(all_ir)))
249 | ax.set_xticklabels([name for _, name in sorted(zip(all_ir, all_names))][::-1], rotation=60)
250 | plt.ylim(0, np.max(all_ir) + 0.05)
251 | plt.xlim(-1, len(all_names))
252 | plt.title("Effect Importance")
253 |
254 | save_path = folder + name
255 | if save_eps:
256 | if not os.path.exists(folder):
257 | os.makedirs(folder)
258 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
259 | if save_png:
260 | if not os.path.exists(folder):
261 | os.makedirs(folder)
262 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
263 |
264 |
265 | def global_visualize_density(data_dict_global, main_effect_num=None, interaction_num=None, cols_per_row=4,
266 | save_png=False, save_eps=False, folder="./", name="global_explain"):
267 | """
268 | Helper function for visualizing global explanation with density plots.
269 |
270 | Parameters
271 | ----------
272 | data_dict_global : dict
273 | Dictionary with global explanation information.
274 | main_effect_num : int or None
275 | The number of top main effects to show, by default None,
276 | As main_effect_num=None, all main effects would be shown.
277 | interaction_num : int or None
278 | The number of top interactions to show, by default None,
279 | As interaction_num=None, all main effects would be shown.
280 | cols_per_row : int
281 | The number of subfigures each row, by default 4.
282 | folder : str
283 | The path of folder to save figure, by default "./".
284 | name : str
285 | Name of the file, by default "global_explain".
286 | save_png : boolean
287 | Whether to save the plot in PNG format, by default False.
288 | save_eps : boolean
289 | Whether to save the plot in EPS format, by default False.
290 | """
291 | maineffect_count = 0
292 | componment_scales = []
293 | for key, item in data_dict_global.items():
294 | componment_scales.append(item["importance"])
295 | if item["type"] != "pairwise":
296 | maineffect_count += 1
297 |
298 | componment_scales = np.array(componment_scales)
299 | sorted_index = np.argsort(componment_scales)
300 | active_index = sorted_index[componment_scales[sorted_index].cumsum() > 0][::-1]
301 | active_univariate_index = active_index[active_index < maineffect_count][:main_effect_num]
302 | active_interaction_index = active_index[active_index >= maineffect_count][:interaction_num]
303 | max_ids = len(active_univariate_index) + len(active_interaction_index)
304 |
305 | if max_ids == 0:
306 | return
307 |
308 | idx = 0
309 | fig = plt.figure(figsize=(6 * cols_per_row, 4.6 * int(np.ceil(max_ids / cols_per_row))))
310 | outer = gridspec.GridSpec(int(np.ceil(max_ids / cols_per_row)), cols_per_row, wspace=0.25, hspace=0.35)
311 | for indice in active_univariate_index:
312 |
313 | feature_name = list(data_dict_global.keys())[indice]
314 | if data_dict_global[feature_name]["type"] == "continuous":
315 |
316 | inner = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=outer[idx], wspace=0.1, hspace=0.1, height_ratios=[6, 1])
317 | ax1 = plt.Subplot(fig, inner[0])
318 | ax1.plot(data_dict_global[feature_name]["inputs"], data_dict_global[feature_name]["outputs"])
319 | ax1.set_xticklabels([])
320 | fig.add_subplot(ax1)
321 |
322 | ax2 = plt.Subplot(fig, inner[1])
323 | xint = ((np.array(data_dict_global[feature_name]["density"]["names"][1:])
324 | + np.array(data_dict_global[feature_name]["density"]["names"][:-1])) / 2).reshape([-1, 1]).reshape([-1])
325 | ax2.bar(xint, data_dict_global[feature_name]["density"]["scores"], width=xint[1] - xint[0])
326 | ax2.get_shared_x_axes().join(ax1, ax2)
327 | ax2.set_yticklabels([])
328 | ax2.autoscale()
329 | fig.add_subplot(ax2)
330 |
331 | elif data_dict_global[feature_name]["type"] == "categorical":
332 |
333 | inner = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=outer[idx],
334 | wspace=0.1, hspace=0.1, height_ratios=[6, 1])
335 | ax1 = plt.Subplot(fig, inner[0])
336 | ax1.bar(np.arange(len(data_dict_global[feature_name]["inputs"])),
337 | data_dict_global[feature_name]["outputs"])
338 | ax1.set_xticklabels([])
339 | fig.add_subplot(ax1)
340 |
341 | ax2 = plt.Subplot(fig, inner[1])
342 | ax2.bar(np.arange(len(data_dict_global[feature_name]["density"]["names"])),
343 | data_dict_global[feature_name]["density"]["scores"])
344 | ax2.get_shared_x_axes().join(ax1, ax2)
345 | ax2.autoscale()
346 | ax2.set_xticks(data_dict_global[feature_name]["input_ticks"])
347 | ax2.set_xticklabels(data_dict_global[feature_name]["input_labels"])
348 | ax2.set_yticklabels([])
349 | fig.add_subplot(ax2)
350 |
351 | idx = idx + 1
352 | if len(str(ax2.get_xticks())) > 60:
353 | ax2.xaxis.set_tick_params(rotation=20)
354 | ax1.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
355 |
356 | for indice in active_interaction_index:
357 |
358 | feature_name = list(data_dict_global.keys())[indice]
359 | axis_extent = data_dict_global[feature_name]["axis_extent"]
360 |
361 | ax_main = plt.Subplot(fig, outer[idx])
362 | interact_plot = ax_main.imshow(data_dict_global[feature_name]["outputs"], interpolation="nearest",
363 | aspect="auto", extent=axis_extent)
364 |
365 | if data_dict_global[feature_name]["xtype"] == "categorical":
366 | ax_main.set_xticks(data_dict_global[feature_name]["input1_ticks"])
367 | ax_main.set_xticklabels(data_dict_global[feature_name]["input1_labels"])
368 | if data_dict_global[feature_name]["ytype"] == "categorical":
369 | ax_main.set_yticks(data_dict_global[feature_name]["input2_ticks"])
370 | ax_main.set_yticklabels(data_dict_global[feature_name]["input2_labels"])
371 |
372 | response_precision = max(int(- np.log10(np.max(data_dict_global[feature_name]["outputs"])
373 | - np.min(data_dict_global[feature_name]["outputs"]))) + 2, 0)
374 | ax_main.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
375 | fig.add_subplot(ax_main)
376 | fig.colorbar(interact_plot, ax=ax_main, orientation="vertical",
377 | format="%0." + str(response_precision) + "f", use_gridspec=True)
378 | idx = idx + 1
379 | if len(str(ax_main.get_xticks())) > 60:
380 | ax_main.xaxis.set_tick_params(rotation=20)
381 |
382 | if max_ids > 0:
383 | save_path = folder + name
384 | if save_eps:
385 | if not os.path.exists(folder):
386 | os.makedirs(folder)
387 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
388 | if save_png:
389 | if not os.path.exists(folder):
390 | os.makedirs(folder)
391 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
392 |
393 |
394 | def global_visualize_wo_density(data_dict_global, main_effect_num=None, interaction_num=None, cols_per_row=4,
395 | save_png=False, save_eps=False, folder="./", name="global_explain"):
396 | """
397 | Helper function for visualizing global explanation without density plots.
398 |
399 | Parameters
400 | ----------
401 | data_dict_global : dict
402 | Dictionary with global explanation information.
403 | main_effect_num : int or None
404 | The number of top main effects to show, by default None,
405 | As main_effect_num=None, all main effects would be shown.
406 | interaction_num : int or None
407 | The number of top interactions to show, by default None,
408 | As interaction_num=None, all main effects would be shown.
409 | cols_per_row : int
410 | The number of subfigures each row, by default 4.
411 | folder : str
412 | The path of folder to save figure, by default "./".
413 | name : str
414 | Name of the file, by default "global_explain".
415 | save_png : boolean
416 | Whether to save the plot in PNG format, by default False.
417 | save_eps : boolean
418 | Whether to save the plot in EPS format, by default False.
419 | """
420 | maineffect_count = 0
421 | componment_scales = []
422 | for key, item in data_dict_global.items():
423 | componment_scales.append(item["importance"])
424 | if item["type"] != "pairwise":
425 | maineffect_count += 1
426 |
427 | componment_scales = np.array(componment_scales)
428 | sorted_index = np.argsort(componment_scales)
429 | active_index = sorted_index[componment_scales[sorted_index].cumsum() > 0][::-1]
430 | active_univariate_index = active_index[active_index < maineffect_count][:main_effect_num]
431 | active_interaction_index = active_index[active_index >= maineffect_count][:interaction_num]
432 | max_ids = len(active_univariate_index) + len(active_interaction_index)
433 |
434 | idx = 0
435 | fig = plt.figure(figsize=(5.2 * cols_per_row, 4 * int(np.ceil(max_ids / cols_per_row))))
436 | outer = gridspec.GridSpec(int(np.ceil(max_ids / cols_per_row)), cols_per_row, wspace=0.25, hspace=0.35)
437 | for indice in active_univariate_index:
438 |
439 | feature_name = list(data_dict_global.keys())[indice]
440 | if data_dict_global[feature_name]["type"] == "continuous":
441 |
442 | ax1 = plt.Subplot(fig, outer[idx])
443 | ax1.plot(data_dict_global[feature_name]["inputs"], data_dict_global[feature_name]["outputs"])
444 | ax1.set_title(feature_name, fontsize=12)
445 | fig.add_subplot(ax1)
446 | if len(str(ax1.get_xticks())) > 80:
447 | ax1.xaxis.set_tick_params(rotation=20)
448 |
449 | elif data_dict_global[feature_name]["type"] == "categorical":
450 |
451 | ax1 = plt.Subplot(fig, outer[idx])
452 | ax1.bar(np.arange(len(data_dict_global[feature_name]["inputs"])),
453 | data_dict_global[feature_name]["outputs"])
454 | ax1.set_title(feature_name, fontsize=12)
455 | ax1.set_xticks(data_dict_global[feature_name]["input_ticks"])
456 | ax1.set_xticklabels(data_dict_global[feature_name]["input_labels"])
457 | fig.add_subplot(ax1)
458 |
459 | idx = idx + 1
460 | if len(str(ax1.get_xticks())) > 60:
461 | ax1.xaxis.set_tick_params(rotation=20)
462 | ax1.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
463 |
464 | for indice in active_interaction_index:
465 |
466 | feature_name = list(data_dict_global.keys())[indice]
467 | axis_extent = data_dict_global[feature_name]["axis_extent"]
468 |
469 | ax_main = plt.Subplot(fig, outer[idx])
470 | interact_plot = ax_main.imshow(data_dict_global[feature_name]["outputs"], interpolation="nearest",
471 | aspect="auto", extent=axis_extent)
472 |
473 | if data_dict_global[feature_name]["xtype"] == "categorical":
474 | ax_main.set_xticks(data_dict_global[feature_name]["input1_ticks"])
475 | ax_main.set_xticklabels(data_dict_global[feature_name]["input1_labels"])
476 | if data_dict_global[feature_name]["ytype"] == "categorical":
477 | ax_main.set_yticks(data_dict_global[feature_name]["input2_ticks"])
478 | ax_main.set_yticklabels(data_dict_global[feature_name]["input2_labels"])
479 |
480 | response_precision = max(int(- np.log10(np.max(data_dict_global[feature_name]["outputs"])
481 | - np.min(data_dict_global[feature_name]["outputs"]))) + 2, 0)
482 | ax_main.set_title(feature_name + " (" + str(np.round(100 * data_dict_global[feature_name]["importance"], 1)) + "%)", fontsize=12)
483 | fig.add_subplot(ax_main)
484 | fig.colorbar(interact_plot, ax=ax_main, orientation="vertical",
485 | format="%0." + str(response_precision) + "f", use_gridspec=True)
486 |
487 | idx = idx + 1
488 | if len(str(ax_main.get_xticks())) > 60:
489 | ax_main.xaxis.set_tick_params(rotation=20)
490 |
491 | if max_ids > 0:
492 | save_path = folder + name
493 | if save_eps:
494 | if not os.path.exists(folder):
495 | os.makedirs(folder)
496 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
497 | if save_png:
498 | if not os.path.exists(folder):
499 | os.makedirs(folder)
500 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
501 |
502 |
503 | def local_visualize(data_dict_local, folder="./", name="local_explain", save_png=False, save_eps=False):
504 | """
505 | Helper function for visualizing local explanation.
506 |
507 | Parameters
508 | ----------
509 | data_dict_local : dict
510 | Dictionary with local explanation information.
511 | folder : str
512 | The path of folder to save figure, by default "./".
513 | name : str
514 | Name of the file, by default "local_explain".
515 | save_png : boolean
516 | Whether to save the plot in PNG format, by default False.
517 | save_eps : boolean
518 | Whether to save the plot in EPS format, by default False.
519 | """
520 | idx = np.argsort(np.abs(data_dict_local["scores"][data_dict_local["active_indice"]]))[::-1]
521 |
522 | max_ids = len(data_dict_local["active_indice"])
523 | fig = plt.figure(figsize=(round((len(data_dict_local["active_indice"]) + 1) * 0.6), 4))
524 | plt.bar(np.arange(len(data_dict_local["active_indice"])), data_dict_local["scores"][data_dict_local["active_indice"]][idx])
525 | plt.xticks(np.arange(len(data_dict_local["active_indice"])),
526 | data_dict_local["effect_names"][data_dict_local["active_indice"]][idx], rotation=60)
527 |
528 | if "actual" in data_dict_local.keys():
529 | title = "Predicted: %0.4f | Actual: %0.4f" % (data_dict_local["predicted"], data_dict_local["actual"])
530 | else:
531 | title = "Predicted: %0.4f" % (data_dict_local["predicted"])
532 | plt.title(title, fontsize=12)
533 |
534 | if max_ids > 0:
535 | save_path = folder + name
536 | if save_eps:
537 | if not os.path.exists(folder):
538 | os.makedirs(folder)
539 | fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
540 | if save_png:
541 | if not os.path.exists(folder):
542 | os.makedirs(folder)
543 | fig.savefig("%s.png" % save_path, bbox_inches="tight", dpi=100)
544 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | package_data = {
4 | "gaminet": [
5 | "lib/lib_ebm_native_win_x64.dll",
6 | "lib/lib_ebm_native_linux_x64.so",
7 | "lib/lib_ebm_native_mac_x64.dylib",
8 | "lib/lib_ebm_native_win_x64.pdb"
9 | ]
10 | }
11 |
12 | setup(name='gaminet',
13 | version='1.0.0',
14 | description='Pytorch version of GAMINet; it was done when I was PhD student in HKU',
15 | url='https://github.com/ZebinYang/GAMINet-Pytorch',
16 | author='Zebin Yang',
17 | author_email='yangzb2010@connect.hku.hk',
18 | license='GPL',
19 | packages=['gaminet'],
20 | package_data=package_data,
21 | install_requires=['matplotlib>=3.1.3', 'numpy>=1.15.2', 'scikit-learn>=1.0.2',
22 | 'joblib', 'pygam', 'tqdm', 'torch>=1.9'],
23 | zip_safe=False)
24 |
--------------------------------------------------------------------------------