├── README.md
└── Shaurya_Sinha.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # SHAPEAI PYTHON AND MACHINE LEARNING BOOTCAMP
2 | Hi I made this project during the 7 Days Free Bootcamp, conducted by SHAPEAI
3 | .
4 | The instructor during the session was Mr. Shaurya Sinha (Data Analyst Intern at Jio). I got to
5 | learn a lot during these 7 days and it was an amazing experience learning with SHAPEAI.
6 |
Here's the link for you to watch the sessions as well
7 |
8 |
I got to have hands on experience on:
9 |
Python
10 | Machine Learning
11 | Tensorflow
12 |
during these 7 days, and everything was explained from the very basics so that
13 | anyone with zero experience on programming can learn.
14 | I enjoyed these 7 days, you can as well. To register for next free 7 days bootcamp, visit:
15 | www.shapeai.tech
16 | or follow SHAPEAI on:
17 | LinkedIn
19 | Instagram
21 | YouTu
24 | be
25 | GitHub
27 |
28 |
--------------------------------------------------------------------------------
/Shaurya_Sinha.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "Shaurya_Sinha.ipynb",
7 | "provenance": []
8 | },
9 | "kernelspec": {
10 | "name": "python3",
11 | "display_name": "Python 3"
12 | },
13 | "language_info": {
14 | "name": "python"
15 | }
16 | },
17 | "cells": [
18 | {
19 | "cell_type": "code",
20 | "metadata": {
21 | "id": "WIXb3W-v1AeN"
22 | },
23 | "source": [
24 | "import numpy as np\n",
25 | "import pandas as pd\n",
26 | "import sklearn"
27 | ],
28 | "execution_count": null,
29 | "outputs": []
30 | },
31 | {
32 | "cell_type": "code",
33 | "metadata": {
34 | "id": "BGS-QWId1DL4"
35 | },
36 | "source": [
37 | "from sklearn.datasets import load_boston\n",
38 | "df = load_boston()"
39 | ],
40 | "execution_count": null,
41 | "outputs": []
42 | },
43 | {
44 | "cell_type": "code",
45 | "metadata": {
46 | "colab": {
47 | "base_uri": "https://localhost:8080/"
48 | },
49 | "id": "IESAMkc-1GS3",
50 | "outputId": "dc5e4ade-e963-4267-881d-8b88c77aac69"
51 | },
52 | "source": [
53 | "df.keys()"
54 | ],
55 | "execution_count": null,
56 | "outputs": [
57 | {
58 | "output_type": "execute_result",
59 | "data": {
60 | "text/plain": [
61 | "dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])"
62 | ]
63 | },
64 | "metadata": {
65 | "tags": []
66 | },
67 | "execution_count": 3
68 | }
69 | ]
70 | },
71 | {
72 | "cell_type": "code",
73 | "metadata": {
74 | "colab": {
75 | "base_uri": "https://localhost:8080/",
76 | "height": 224
77 | },
78 | "id": "a0cB_2-E1L0z",
79 | "outputId": "6315a86e-fdf8-44d8-9a71-1823c086a88a"
80 | },
81 | "source": [
82 | "boston = pd.DataFrame(df.data, columns=df.feature_names)\n",
83 | "boston.head()"
84 | ],
85 | "execution_count": null,
86 | "outputs": [
87 | {
88 | "output_type": "execute_result",
89 | "data": {
90 | "text/html": [
91 | "\n",
92 | "\n",
105 | "
\n",
106 | " \n",
107 | " \n",
108 | " | \n",
109 | " CRIM | \n",
110 | " ZN | \n",
111 | " INDUS | \n",
112 | " CHAS | \n",
113 | " NOX | \n",
114 | " RM | \n",
115 | " AGE | \n",
116 | " DIS | \n",
117 | " RAD | \n",
118 | " TAX | \n",
119 | " PTRATIO | \n",
120 | " B | \n",
121 | " LSTAT | \n",
122 | "
\n",
123 | " \n",
124 | " \n",
125 | " \n",
126 | " | 0 | \n",
127 | " 0.00632 | \n",
128 | " 18.0 | \n",
129 | " 2.31 | \n",
130 | " 0.0 | \n",
131 | " 0.538 | \n",
132 | " 6.575 | \n",
133 | " 65.2 | \n",
134 | " 4.0900 | \n",
135 | " 1.0 | \n",
136 | " 296.0 | \n",
137 | " 15.3 | \n",
138 | " 396.90 | \n",
139 | " 4.98 | \n",
140 | "
\n",
141 | " \n",
142 | " | 1 | \n",
143 | " 0.02731 | \n",
144 | " 0.0 | \n",
145 | " 7.07 | \n",
146 | " 0.0 | \n",
147 | " 0.469 | \n",
148 | " 6.421 | \n",
149 | " 78.9 | \n",
150 | " 4.9671 | \n",
151 | " 2.0 | \n",
152 | " 242.0 | \n",
153 | " 17.8 | \n",
154 | " 396.90 | \n",
155 | " 9.14 | \n",
156 | "
\n",
157 | " \n",
158 | " | 2 | \n",
159 | " 0.02729 | \n",
160 | " 0.0 | \n",
161 | " 7.07 | \n",
162 | " 0.0 | \n",
163 | " 0.469 | \n",
164 | " 7.185 | \n",
165 | " 61.1 | \n",
166 | " 4.9671 | \n",
167 | " 2.0 | \n",
168 | " 242.0 | \n",
169 | " 17.8 | \n",
170 | " 392.83 | \n",
171 | " 4.03 | \n",
172 | "
\n",
173 | " \n",
174 | " | 3 | \n",
175 | " 0.03237 | \n",
176 | " 0.0 | \n",
177 | " 2.18 | \n",
178 | " 0.0 | \n",
179 | " 0.458 | \n",
180 | " 6.998 | \n",
181 | " 45.8 | \n",
182 | " 6.0622 | \n",
183 | " 3.0 | \n",
184 | " 222.0 | \n",
185 | " 18.7 | \n",
186 | " 394.63 | \n",
187 | " 2.94 | \n",
188 | "
\n",
189 | " \n",
190 | " | 4 | \n",
191 | " 0.06905 | \n",
192 | " 0.0 | \n",
193 | " 2.18 | \n",
194 | " 0.0 | \n",
195 | " 0.458 | \n",
196 | " 7.147 | \n",
197 | " 54.2 | \n",
198 | " 6.0622 | \n",
199 | " 3.0 | \n",
200 | " 222.0 | \n",
201 | " 18.7 | \n",
202 | " 396.90 | \n",
203 | " 5.33 | \n",
204 | "
\n",
205 | " \n",
206 | "
\n",
207 | "
"
208 | ],
209 | "text/plain": [
210 | " CRIM ZN INDUS CHAS NOX ... RAD TAX PTRATIO B LSTAT\n",
211 | "0 0.00632 18.0 2.31 0.0 0.538 ... 1.0 296.0 15.3 396.90 4.98\n",
212 | "1 0.02731 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 396.90 9.14\n",
213 | "2 0.02729 0.0 7.07 0.0 0.469 ... 2.0 242.0 17.8 392.83 4.03\n",
214 | "3 0.03237 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 394.63 2.94\n",
215 | "4 0.06905 0.0 2.18 0.0 0.458 ... 3.0 222.0 18.7 396.90 5.33\n",
216 | "\n",
217 | "[5 rows x 13 columns]"
218 | ]
219 | },
220 | "metadata": {
221 | "tags": []
222 | },
223 | "execution_count": 4
224 | }
225 | ]
226 | },
227 | {
228 | "cell_type": "code",
229 | "metadata": {
230 | "colab": {
231 | "base_uri": "https://localhost:8080/",
232 | "height": 224
233 | },
234 | "id": "7XAaiG291NEp",
235 | "outputId": "947850f1-7bc6-4760-c0dc-7f5443101b47"
236 | },
237 | "source": [
238 | "boston['MEDV'] = df.target\n",
239 | "boston.head()"
240 | ],
241 | "execution_count": null,
242 | "outputs": [
243 | {
244 | "output_type": "execute_result",
245 | "data": {
246 | "text/html": [
247 | "\n",
248 | "\n",
261 | "
\n",
262 | " \n",
263 | " \n",
264 | " | \n",
265 | " CRIM | \n",
266 | " ZN | \n",
267 | " INDUS | \n",
268 | " CHAS | \n",
269 | " NOX | \n",
270 | " RM | \n",
271 | " AGE | \n",
272 | " DIS | \n",
273 | " RAD | \n",
274 | " TAX | \n",
275 | " PTRATIO | \n",
276 | " B | \n",
277 | " LSTAT | \n",
278 | " MEDV | \n",
279 | "
\n",
280 | " \n",
281 | " \n",
282 | " \n",
283 | " | 0 | \n",
284 | " 0.00632 | \n",
285 | " 18.0 | \n",
286 | " 2.31 | \n",
287 | " 0.0 | \n",
288 | " 0.538 | \n",
289 | " 6.575 | \n",
290 | " 65.2 | \n",
291 | " 4.0900 | \n",
292 | " 1.0 | \n",
293 | " 296.0 | \n",
294 | " 15.3 | \n",
295 | " 396.90 | \n",
296 | " 4.98 | \n",
297 | " 24.0 | \n",
298 | "
\n",
299 | " \n",
300 | " | 1 | \n",
301 | " 0.02731 | \n",
302 | " 0.0 | \n",
303 | " 7.07 | \n",
304 | " 0.0 | \n",
305 | " 0.469 | \n",
306 | " 6.421 | \n",
307 | " 78.9 | \n",
308 | " 4.9671 | \n",
309 | " 2.0 | \n",
310 | " 242.0 | \n",
311 | " 17.8 | \n",
312 | " 396.90 | \n",
313 | " 9.14 | \n",
314 | " 21.6 | \n",
315 | "
\n",
316 | " \n",
317 | " | 2 | \n",
318 | " 0.02729 | \n",
319 | " 0.0 | \n",
320 | " 7.07 | \n",
321 | " 0.0 | \n",
322 | " 0.469 | \n",
323 | " 7.185 | \n",
324 | " 61.1 | \n",
325 | " 4.9671 | \n",
326 | " 2.0 | \n",
327 | " 242.0 | \n",
328 | " 17.8 | \n",
329 | " 392.83 | \n",
330 | " 4.03 | \n",
331 | " 34.7 | \n",
332 | "
\n",
333 | " \n",
334 | " | 3 | \n",
335 | " 0.03237 | \n",
336 | " 0.0 | \n",
337 | " 2.18 | \n",
338 | " 0.0 | \n",
339 | " 0.458 | \n",
340 | " 6.998 | \n",
341 | " 45.8 | \n",
342 | " 6.0622 | \n",
343 | " 3.0 | \n",
344 | " 222.0 | \n",
345 | " 18.7 | \n",
346 | " 394.63 | \n",
347 | " 2.94 | \n",
348 | " 33.4 | \n",
349 | "
\n",
350 | " \n",
351 | " | 4 | \n",
352 | " 0.06905 | \n",
353 | " 0.0 | \n",
354 | " 2.18 | \n",
355 | " 0.0 | \n",
356 | " 0.458 | \n",
357 | " 7.147 | \n",
358 | " 54.2 | \n",
359 | " 6.0622 | \n",
360 | " 3.0 | \n",
361 | " 222.0 | \n",
362 | " 18.7 | \n",
363 | " 396.90 | \n",
364 | " 5.33 | \n",
365 | " 36.2 | \n",
366 | "
\n",
367 | " \n",
368 | "
\n",
369 | "
"
370 | ],
371 | "text/plain": [
372 | " CRIM ZN INDUS CHAS NOX ... TAX PTRATIO B LSTAT MEDV\n",
373 | "0 0.00632 18.0 2.31 0.0 0.538 ... 296.0 15.3 396.90 4.98 24.0\n",
374 | "1 0.02731 0.0 7.07 0.0 0.469 ... 242.0 17.8 396.90 9.14 21.6\n",
375 | "2 0.02729 0.0 7.07 0.0 0.469 ... 242.0 17.8 392.83 4.03 34.7\n",
376 | "3 0.03237 0.0 2.18 0.0 0.458 ... 222.0 18.7 394.63 2.94 33.4\n",
377 | "4 0.06905 0.0 2.18 0.0 0.458 ... 222.0 18.7 396.90 5.33 36.2\n",
378 | "\n",
379 | "[5 rows x 14 columns]"
380 | ]
381 | },
382 | "metadata": {
383 | "tags": []
384 | },
385 | "execution_count": 5
386 | }
387 | ]
388 | },
389 | {
390 | "cell_type": "code",
391 | "metadata": {
392 | "colab": {
393 | "base_uri": "https://localhost:8080/",
394 | "height": 439
395 | },
396 | "id": "4Pl58dP11Pxd",
397 | "outputId": "6ee7b6f7-c3aa-458b-8c2e-3064497da3d9"
398 | },
399 | "source": [
400 | "boston.isnull()"
401 | ],
402 | "execution_count": null,
403 | "outputs": [
404 | {
405 | "output_type": "execute_result",
406 | "data": {
407 | "text/html": [
408 | "\n",
409 | "\n",
422 | "
\n",
423 | " \n",
424 | " \n",
425 | " | \n",
426 | " CRIM | \n",
427 | " ZN | \n",
428 | " INDUS | \n",
429 | " CHAS | \n",
430 | " NOX | \n",
431 | " RM | \n",
432 | " AGE | \n",
433 | " DIS | \n",
434 | " RAD | \n",
435 | " TAX | \n",
436 | " PTRATIO | \n",
437 | " B | \n",
438 | " LSTAT | \n",
439 | " MEDV | \n",
440 | "
\n",
441 | " \n",
442 | " \n",
443 | " \n",
444 | " | 0 | \n",
445 | " False | \n",
446 | " False | \n",
447 | " False | \n",
448 | " False | \n",
449 | " False | \n",
450 | " False | \n",
451 | " False | \n",
452 | " False | \n",
453 | " False | \n",
454 | " False | \n",
455 | " False | \n",
456 | " False | \n",
457 | " False | \n",
458 | " False | \n",
459 | "
\n",
460 | " \n",
461 | " | 1 | \n",
462 | " False | \n",
463 | " False | \n",
464 | " False | \n",
465 | " False | \n",
466 | " False | \n",
467 | " False | \n",
468 | " False | \n",
469 | " False | \n",
470 | " False | \n",
471 | " False | \n",
472 | " False | \n",
473 | " False | \n",
474 | " False | \n",
475 | " False | \n",
476 | "
\n",
477 | " \n",
478 | " | 2 | \n",
479 | " False | \n",
480 | " False | \n",
481 | " False | \n",
482 | " False | \n",
483 | " False | \n",
484 | " False | \n",
485 | " False | \n",
486 | " False | \n",
487 | " False | \n",
488 | " False | \n",
489 | " False | \n",
490 | " False | \n",
491 | " False | \n",
492 | " False | \n",
493 | "
\n",
494 | " \n",
495 | " | 3 | \n",
496 | " False | \n",
497 | " False | \n",
498 | " False | \n",
499 | " False | \n",
500 | " False | \n",
501 | " False | \n",
502 | " False | \n",
503 | " False | \n",
504 | " False | \n",
505 | " False | \n",
506 | " False | \n",
507 | " False | \n",
508 | " False | \n",
509 | " False | \n",
510 | "
\n",
511 | " \n",
512 | " | 4 | \n",
513 | " False | \n",
514 | " False | \n",
515 | " False | \n",
516 | " False | \n",
517 | " False | \n",
518 | " False | \n",
519 | " False | \n",
520 | " False | \n",
521 | " False | \n",
522 | " False | \n",
523 | " False | \n",
524 | " False | \n",
525 | " False | \n",
526 | " False | \n",
527 | "
\n",
528 | " \n",
529 | " | ... | \n",
530 | " ... | \n",
531 | " ... | \n",
532 | " ... | \n",
533 | " ... | \n",
534 | " ... | \n",
535 | " ... | \n",
536 | " ... | \n",
537 | " ... | \n",
538 | " ... | \n",
539 | " ... | \n",
540 | " ... | \n",
541 | " ... | \n",
542 | " ... | \n",
543 | " ... | \n",
544 | "
\n",
545 | " \n",
546 | " | 501 | \n",
547 | " False | \n",
548 | " False | \n",
549 | " False | \n",
550 | " False | \n",
551 | " False | \n",
552 | " False | \n",
553 | " False | \n",
554 | " False | \n",
555 | " False | \n",
556 | " False | \n",
557 | " False | \n",
558 | " False | \n",
559 | " False | \n",
560 | " False | \n",
561 | "
\n",
562 | " \n",
563 | " | 502 | \n",
564 | " False | \n",
565 | " False | \n",
566 | " False | \n",
567 | " False | \n",
568 | " False | \n",
569 | " False | \n",
570 | " False | \n",
571 | " False | \n",
572 | " False | \n",
573 | " False | \n",
574 | " False | \n",
575 | " False | \n",
576 | " False | \n",
577 | " False | \n",
578 | "
\n",
579 | " \n",
580 | " | 503 | \n",
581 | " False | \n",
582 | " False | \n",
583 | " False | \n",
584 | " False | \n",
585 | " False | \n",
586 | " False | \n",
587 | " False | \n",
588 | " False | \n",
589 | " False | \n",
590 | " False | \n",
591 | " False | \n",
592 | " False | \n",
593 | " False | \n",
594 | " False | \n",
595 | "
\n",
596 | " \n",
597 | " | 504 | \n",
598 | " False | \n",
599 | " False | \n",
600 | " False | \n",
601 | " False | \n",
602 | " False | \n",
603 | " False | \n",
604 | " False | \n",
605 | " False | \n",
606 | " False | \n",
607 | " False | \n",
608 | " False | \n",
609 | " False | \n",
610 | " False | \n",
611 | " False | \n",
612 | "
\n",
613 | " \n",
614 | " | 505 | \n",
615 | " False | \n",
616 | " False | \n",
617 | " False | \n",
618 | " False | \n",
619 | " False | \n",
620 | " False | \n",
621 | " False | \n",
622 | " False | \n",
623 | " False | \n",
624 | " False | \n",
625 | " False | \n",
626 | " False | \n",
627 | " False | \n",
628 | " False | \n",
629 | "
\n",
630 | " \n",
631 | "
\n",
632 | "
506 rows × 14 columns
\n",
633 | "
"
634 | ],
635 | "text/plain": [
636 | " CRIM ZN INDUS CHAS NOX ... TAX PTRATIO B LSTAT MEDV\n",
637 | "0 False False False False False ... False False False False False\n",
638 | "1 False False False False False ... False False False False False\n",
639 | "2 False False False False False ... False False False False False\n",
640 | "3 False False False False False ... False False False False False\n",
641 | "4 False False False False False ... False False False False False\n",
642 | ".. ... ... ... ... ... ... ... ... ... ... ...\n",
643 | "501 False False False False False ... False False False False False\n",
644 | "502 False False False False False ... False False False False False\n",
645 | "503 False False False False False ... False False False False False\n",
646 | "504 False False False False False ... False False False False False\n",
647 | "505 False False False False False ... False False False False False\n",
648 | "\n",
649 | "[506 rows x 14 columns]"
650 | ]
651 | },
652 | "metadata": {
653 | "tags": []
654 | },
655 | "execution_count": 6
656 | }
657 | ]
658 | },
659 | {
660 | "cell_type": "code",
661 | "metadata": {
662 | "colab": {
663 | "base_uri": "https://localhost:8080/"
664 | },
665 | "id": "eN8kAfnj1SFf",
666 | "outputId": "de8fc440-e213-4718-ea4c-dba3a6ce7423"
667 | },
668 | "source": [
669 | "boston.isnull().sum()"
670 | ],
671 | "execution_count": null,
672 | "outputs": [
673 | {
674 | "output_type": "execute_result",
675 | "data": {
676 | "text/plain": [
677 | "CRIM 0\n",
678 | "ZN 0\n",
679 | "INDUS 0\n",
680 | "CHAS 0\n",
681 | "NOX 0\n",
682 | "RM 0\n",
683 | "AGE 0\n",
684 | "DIS 0\n",
685 | "RAD 0\n",
686 | "TAX 0\n",
687 | "PTRATIO 0\n",
688 | "B 0\n",
689 | "LSTAT 0\n",
690 | "MEDV 0\n",
691 | "dtype: int64"
692 | ]
693 | },
694 | "metadata": {
695 | "tags": []
696 | },
697 | "execution_count": 7
698 | }
699 | ]
700 | },
701 | {
702 | "cell_type": "code",
703 | "metadata": {
704 | "colab": {
705 | "base_uri": "https://localhost:8080/"
706 | },
707 | "id": "Zepb99391UBB",
708 | "outputId": "7fba68e7-c1ba-4cc5-f361-ce9f2d97dbfe"
709 | },
710 | "source": [
711 | "from sklearn.model_selection import train_test_split\n",
712 | "\n",
713 | "X = boston.drop('MEDV', axis=1)\n",
714 | "Y = boston['MEDV']\n",
715 | "\n",
716 | "X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.15, random_state=5)\n",
717 | "\n",
718 | "print(X_train.shape)\n",
719 | "print(X_test.shape)\n",
720 | "print(Y_train.shape)\n",
721 | "print(Y_test.shape)"
722 | ],
723 | "execution_count": null,
724 | "outputs": [
725 | {
726 | "output_type": "stream",
727 | "text": [
728 | "(430, 13)\n",
729 | "(76, 13)\n",
730 | "(430,)\n",
731 | "(76,)\n"
732 | ],
733 | "name": "stdout"
734 | }
735 | ]
736 | },
737 | {
738 | "cell_type": "code",
739 | "metadata": {
740 | "id": "LruUPstO1WAL"
741 | },
742 | "source": [
743 | "from sklearn.linear_model import LinearRegression\n",
744 | "from sklearn.metrics import mean_squared_error"
745 | ],
746 | "execution_count": null,
747 | "outputs": []
748 | },
749 | {
750 | "cell_type": "code",
751 | "metadata": {
752 | "id": "ftS3-sXQ1X3a",
753 | "colab": {
754 | "base_uri": "https://localhost:8080/"
755 | },
756 | "outputId": "5f6c0992-2614-47fc-c88f-e8a5d7ee9055"
757 | },
758 | "source": [
759 | "## FITTING MODEL ON THE TRAINING DATASET\n",
760 | "\n",
761 | "lin_model = LinearRegression()\n",
762 | "\n",
763 | "lin_model.fit(X_train, Y_train)"
764 | ],
765 | "execution_count": null,
766 | "outputs": [
767 | {
768 | "output_type": "execute_result",
769 | "data": {
770 | "text/plain": [
771 | "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)"
772 | ]
773 | },
774 | "metadata": {
775 | "tags": []
776 | },
777 | "execution_count": 10
778 | }
779 | ]
780 | },
781 | {
782 | "cell_type": "code",
783 | "metadata": {
784 | "id": "cqZdPPFZ1ZuX",
785 | "colab": {
786 | "base_uri": "https://localhost:8080/"
787 | },
788 | "outputId": "d6a926dc-1389-436e-88ec-1f9e0ee797cd"
789 | },
790 | "source": [
791 | "y_train_predict = lin_model.predict(X_train)\n",
792 | "rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))\n",
793 | "\n",
794 | "print(\"The model performance for training set\")\n",
795 | "print('RMSE is {}'.format(rmse))\n",
796 | "print(\"\\n\")\n",
797 | "\n",
798 | "# on testing set\n",
799 | "y_test_predict = lin_model.predict(X_test)\n",
800 | "rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))\n",
801 | "\n",
802 | "print(\"The model performance for testing set\")\n",
803 | "print('RMSE is {}'.format(rmse))\n"
804 | ],
805 | "execution_count": null,
806 | "outputs": [
807 | {
808 | "output_type": "stream",
809 | "text": [
810 | "The model performance for training set\n",
811 | "RMSE is 4.710901797319796\n",
812 | "\n",
813 | "\n",
814 | "The model performance for testing set\n",
815 | "RMSE is 4.687543527902972\n"
816 | ],
817 | "name": "stdout"
818 | }
819 | ]
820 | },
821 | {
822 | "cell_type": "code",
823 | "metadata": {
824 | "id": "g2LsTrpi1brz"
825 | },
826 | "source": [
827 | ""
828 | ],
829 | "execution_count": null,
830 | "outputs": []
831 | }
832 | ]
833 | }
--------------------------------------------------------------------------------