├── cover6.png
├── The Summary of Linear Algebra and the Analytic Geometry.pdf
├── README.md
├── .gitignore
├── LICENSE
└── The Summary of Linear Algebra and the Analytic Geometry.tex
/cover6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ShevonKuan/The-Summary-of-Linear-Algebra-and-the-Analytic-Geometry/HEAD/cover6.png
--------------------------------------------------------------------------------
/The Summary of Linear Algebra and the Analytic Geometry.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ShevonKuan/The-Summary-of-Linear-Algebra-and-the-Analytic-Geometry/HEAD/The Summary of Linear Algebra and the Analytic Geometry.pdf
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 线性代数与解析几何笔记
2 | #### Shevon Kuan
3 | ## 简介
4 |
5 | 这是我基于 Latex2$\varepsilon$ 的数学笔记,它是一个系列并将使用一致的模板(目前仅部分开源),将来我可能会对该模板作独立开源处理.这个笔记基于华南理工大学的线性代数课本进行总结.目前由于期末考前只完成了笔者最需要复习的部分,剩余部分仍未完工,并且目前暂不考虑完工,有意加入并希望帮忙完善的的请发邮件[联系我][contact]
6 |
7 | [contact]: mailto:331749486@qq.com
8 |
9 | **Demo:**
10 | 
11 |
12 |
13 | ----
14 |
15 | ## 编译介绍
16 | ```Latex``` 编译链```XeLaTex -> bibtex -> makeindex -> texindy -> xeLaTex重复编译```对应```VS Code```设置如下:
17 | ```json
18 | "latex-workshop.latex.recipes": [
19 | {
20 | "name": "完整编译链",
21 | "tools": [
22 | "xelatex",
23 | "bibtex",
24 | "makeindex",
25 | "texindy",
26 | "xelatex",
27 | "xelatex"
28 | ]
29 | },
30 | ]
31 | ```
32 | 各命令具体配置如下:
33 | ```json
34 | "latex-workshop.latex.tools": [
35 | {
36 | // 编译工具和命令
37 | "name": "xelatex",
38 | "command": "xelatex",
39 | "args": [
40 | "-synctex=1",
41 | "-interaction=nonstopmode",
42 | "%DOCFILE%"
43 | ]
44 | },
45 | {
46 | "name": "bibtex",
47 | "command": "bibtex",
48 | "args": [
49 | "%DOCFILE%"
50 | ]
51 | },
52 | {
53 | "name": "texindy",
54 | "command": "texindy",
55 | "args": [
56 | "%DOCFILE%.idx"
57 | ]
58 | },
59 | {
60 | "name": "makeindex",
61 | "command": "makeindex",
62 | "args": [
63 | "%DOCFILE%.nlo",
64 | "-s",
65 | "nomencl.ist",
66 | "-o",
67 | "%DOCFILE%.nls"
68 | ]
69 | }
70 | ],
71 | ```
72 | ----
73 | ## TODO:
74 | 目前不打算继续完善.
75 |
76 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | ## Core latex/pdflatex auxiliary files:
2 | *.aux
3 | *.lof
4 | *.log
5 | *.lot
6 | *.fls
7 | *.out
8 | *.toc
9 | *.fmt
10 | *.fot
11 | *.cb
12 | *.cb2
13 | .*.lb
14 |
15 | ## Intermediate documents:
16 | *.dvi
17 | *.xdv
18 | *-converted-to.*
19 | # these rules might exclude image files for figures etc.
20 | # *.ps
21 | # *.eps
22 | # *.pdf
23 |
24 | ## Generated if empty string is given at "Please type another file name for output:"
25 | .pdf
26 |
27 | ## Bibliography auxiliary files (bibtex/biblatex/biber):
28 | *.bbl
29 | *.bcf
30 | *.blg
31 | *-blx.aux
32 | *-blx.bib
33 | *.run.xml
34 |
35 | ## Build tool auxiliary files:
36 | *.fdb_latexmk
37 | *.synctex
38 | *.synctex(busy)
39 | *.synctex.gz
40 | *.synctex.gz(busy)
41 | *.pdfsync
42 |
43 | ## Build tool directories for auxiliary files
44 | # latexrun
45 | latex.out/
46 |
47 | ## Auxiliary and intermediate files from other packages:
48 | # algorithms
49 | *.alg
50 | *.loa
51 |
52 | # achemso
53 | acs-*.bib
54 |
55 | # amsthm
56 | *.thm
57 |
58 | # beamer
59 | *.nav
60 | *.pre
61 | *.snm
62 | *.vrb
63 |
64 | # changes
65 | *.soc
66 |
67 | # comment
68 | *.cut
69 |
70 | # cprotect
71 | *.cpt
72 |
73 | # elsarticle (documentclass of Elsevier journals)
74 | *.spl
75 |
76 | # endnotes
77 | *.ent
78 |
79 | # fixme
80 | *.lox
81 |
82 | # feynmf/feynmp
83 | *.mf
84 | *.mp
85 | *.t[1-9]
86 | *.t[1-9][0-9]
87 | *.tfm
88 |
89 | #(r)(e)ledmac/(r)(e)ledpar
90 | *.end
91 | *.?end
92 | *.[1-9]
93 | *.[1-9][0-9]
94 | *.[1-9][0-9][0-9]
95 | *.[1-9]R
96 | *.[1-9][0-9]R
97 | *.[1-9][0-9][0-9]R
98 | *.eledsec[1-9]
99 | *.eledsec[1-9]R
100 | *.eledsec[1-9][0-9]
101 | *.eledsec[1-9][0-9]R
102 | *.eledsec[1-9][0-9][0-9]
103 | *.eledsec[1-9][0-9][0-9]R
104 |
105 | # glossaries
106 | *.acn
107 | *.acr
108 | *.glg
109 | *.glo
110 | *.gls
111 | *.glsdefs
112 | *.lzo
113 | *.lzs
114 |
115 | # uncomment this for glossaries-extra (will ignore makeindex's style files!)
116 | # *.ist
117 |
118 | # gnuplottex
119 | *-gnuplottex-*
120 |
121 | # gregoriotex
122 | *.gaux
123 | *.gtex
124 |
125 | # htlatex
126 | *.4ct
127 | *.4tc
128 | *.idv
129 | *.lg
130 | *.trc
131 | *.xref
132 |
133 | # hyperref
134 | *.brf
135 |
136 | # knitr
137 | *-concordance.tex
138 | # TODO Comment the next line if you want to keep your tikz graphics files
139 | *.tikz
140 | *-tikzDictionary
141 |
142 | # listings
143 | *.lol
144 |
145 | # luatexja-ruby
146 | *.ltjruby
147 |
148 | # makeidx
149 | *.idx
150 | *.ilg
151 | *.ind
152 |
153 | # minitoc
154 | *.maf
155 | *.mlf
156 | *.mlt
157 | *.mtc[0-9]*
158 | *.slf[0-9]*
159 | *.slt[0-9]*
160 | *.stc[0-9]*
161 |
162 | # minted
163 | _minted*
164 | *.pyg
165 |
166 | # morewrites
167 | *.mw
168 |
169 | # nomencl
170 | *.nlg
171 | *.nlo
172 | *.nls
173 |
174 | # pax
175 | *.pax
176 |
177 | # pdfpcnotes
178 | *.pdfpc
179 |
180 | # sagetex
181 | *.sagetex.sage
182 | *.sagetex.py
183 | *.sagetex.scmd
184 |
185 | # scrwfile
186 | *.wrt
187 |
188 | # sympy
189 | *.sout
190 | *.sympy
191 | sympy-plots-for-*.tex/
192 |
193 | # pdfcomment
194 | *.upa
195 | *.upb
196 |
197 | # pythontex
198 | *.pytxcode
199 | pythontex-files-*/
200 |
201 | # tcolorbox
202 | *.listing
203 |
204 | # thmtools
205 | *.loe
206 |
207 | # TikZ & PGF
208 | *.dpth
209 | *.md5
210 | *.auxlock
211 |
212 | # todonotes
213 | *.tdo
214 |
215 | # vhistory
216 | *.hst
217 | *.ver
218 |
219 | # easy-todo
220 | *.lod
221 |
222 | # xcolor
223 | *.xcp
224 |
225 | # xmpincl
226 | *.xmpi
227 |
228 | # xindy
229 | *.xdy
230 |
231 | # xypic precompiled matrices and outlines
232 | *.xyc
233 | *.xyd
234 |
235 | # endfloat
236 | *.ttt
237 | *.fff
238 |
239 | # Latexian
240 | TSWLatexianTemp*
241 |
242 | ## Editors:
243 | # WinEdt
244 | *.bak
245 | *.sav
246 |
247 | # Texpad
248 | .texpadtmp
249 |
250 | # LyX
251 | *.lyx~
252 |
253 | # Kile
254 | *.backup
255 |
256 | # gummi
257 | .*.swp
258 |
259 | # KBibTeX
260 | *~[0-9]*
261 |
262 | # TeXnicCenter
263 | *.tps
264 |
265 | # auto folder when using emacs and auctex
266 | ./auto/*
267 | *.el
268 |
269 | # expex forward references with \gathertags
270 | *-tags.tex
271 |
272 | # standalone packages
273 | *.sta
274 |
275 | # Makeindex log files
276 | *.lpz
277 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/The Summary of Linear Algebra and the Analytic Geometry.tex:
--------------------------------------------------------------------------------
1 | \documentclass[9pt,a4paper]{book}
2 | \usepackage{shevonNotebook}
3 | %标题配置—————————————
4 | \title{线性代数与解析几何\\ \large{ 重要知识点总结}\\ \small{The Summary of Linear Algebra and the Analytic Geometry}\\
5 | \ \\
6 | \begin{center}
7 | \includegraphics[width=10cm]{cover6.png}
8 |
9 | \end{center}
10 | }
11 | \author{关舒文\\\small{\kaishu{华南理工大学}}}
12 | \date{\small{Latest Update\ :\ \today}}
13 | %正文部分—————————————
14 | \begin{document}
15 | %目录与公式编号生成——————————
16 | \numberwithin{equation}{section}
17 | \allowdisplaybreaks%强制自动换行
18 | \newgeometry{left=2cm,right=2cm,marginparwidth=0cm,marginparsep=0cm}%封面设置
19 | \pagenumbering{roman}
20 | \maketitle
21 | \thispagestyle{empty}
22 | %页面重新配置----------------------------
23 | \restoregeometry
24 | {\printnomenclature
25 | \setcounter{page}{0}\pagenumbering{roman}
26 | \addcontentsline{toc}{chapter}{符号说明}}
27 | \newpage
28 | \pagenumbering{Roman}
29 | \setcounter{page}{0}
30 | \tableofcontents
31 |
32 |
33 |
34 | %正文开始—————————————可以使用\boldmath输入粗斜体与\unboldmath合用
35 | \chapter{行列式\\Determinant}
36 | \pagenumbering{arabic}
37 | \setcounter{page}{2}
38 | \section{二阶与三阶行列式}
39 | \begin{defination}[二阶行列式的定义]
40 | 令\[ D= \begin{vmatrix}
41 | a_{11}&a_{12}\\a_{21}&a_{22}
42 | \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} \]其中$ \begin{vmatrix}
43 | a_{11}&a_{12}\\a_{21}&a_{22}
44 | \end{vmatrix} $称为\textbf{二阶行列式}\index{EJHLS@二阶行列式},这里$ a_{11},a_{22} $所在的斜线称为二阶行列式的主对角线,相应的$ a_{11},a_{22} $称为\textbf{主对角线元素},而$ a_{12},a_{21} $称为\textbf{副对角线元素}.\index{ZDJXYS@主对角线元素}\index{FDJXYS@副对角线元素}
45 | \end{defination}
46 | \begin{defination}[三阶行列式的定义]
47 | 令\[D={\begin{vmatrix}
48 | {{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
49 | {{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
50 | {{a_{31}}}&{{a_{32}}}&{{a_{33}}}
51 | \end{vmatrix}} = {a_{11}}{a_{22}}{a_{33}} + {a_{12}}{a_{23}}{a_{31}} + {a_{13}}{a_{21}}{a_{32}} - {a_{11}}{a_{23}}{a_{32}} - {a_{12}}{a_{21}}{a_{33}} - {a_{13}}{a_{22}}{a_{31}},\]我们称之为\textbf{三阶行列式}.\index{SJHLS@三阶行列式}
52 | \end{defination}
53 | \section{$ n $阶排列及其逆序数,对换}
54 | \begin{defination}[排列的定义]
55 | 由自然数$ 1,2,\cdots,n $组成(不能重复)的任意一个$ n $元有序数组$ i_1i_2\cdots i_n $称为一个\textbf{$ n $阶排列},其中排列$ 12\cdots n $称为\textbf{自然排列}.\index{PL@排列}\index{ZRPL@自然排列}
56 | \end{defination}
57 | \begin{theorem}
58 | $ n $阶排列一共有$ n!=(n-1)(n-2)\cdots 3\cdot 2\cdot 1 $个.
59 | \end{theorem}
60 | \begin{defination}
61 | 在一个排列中,如果一个较大的数字排在了一个较小的数字之前,则称这两个数字构成一个\textbf{逆序}.否则,称这两个数字构成一个\textbf{顺序}.两个数字之间的关系只能是顺序或逆序.有以下定义
62 | \begin{enumerate}
63 | \item 在一个排列$ i_1i_2\cdots i_n $中,逆序的总数称为这个排列的\textbf{逆序数},记为$ \tau(i_1i_2\cdots i_n) $.
64 | \item 逆序数为奇数的排列称为\textbf{奇排列},逆序数为偶数的排列称为\textbf{偶排列}.
65 | \index{LX@逆序}\index{SX@顺序}\index{LXS@逆序数}\index{JPL@奇排列}\index{OPL@偶排列}
66 | \end{enumerate}
67 | 特别地,根据定义我们可得:\begin{enumerate}
68 | \item 逆序数最小的排列为自然排列,$ \tau(12\cdots n)=0 $;
69 | \item 逆序数最大的排列为反向自然排列,$ \displaystyle \tau\Bigl( n(n-1)\cdots321\Bigr) =\sum_{i=1}^{n-1}i=\frac{n(n-1)}{2} $.
70 | \end{enumerate}
71 | \end{defination}
72 | \begin{defination}[对换的定义]
73 | 把一个排列中的两个数字$ i,j $的位置互换而保持其余数字的位置不动,则称对这个排列施行了一次\textbf{对换}\index{DH@对换},记作$ (i,j) $.两个相邻位置数字的对换称为\textbf{不相邻对换},否则称为\textbf{一般对换}.\index{BXLDH@不相邻对换}\index{YBDH@一般对换}
74 | \end{defination}
75 | \begin{theorem}
76 | 对换具有可逆性.
77 | \end{theorem}
78 | \begin{theorem}
79 | 对换改变排列的奇偶性.
80 | \end{theorem}
81 | \begin{inference}
82 | 排列经过奇数次对换其奇偶性发生变化,经过偶数次对换其奇偶性不变.
83 | \end{inference}
84 | \begin{inference}
85 | 当$ n\geqslant 2 $时,在$ n $阶排列中,奇偶排列数目相等各有$ \dfrac{n!}{2} $个.
86 | \end{inference}
87 | \begin{theorem}
88 | 自然排列$ 12\cdots n $可以与任意$ n $阶排列$ i_1i_2\cdots i_n $经过一系列对换相互转换,且所作对换次数与排列$ i_1i_2\cdots i_n $具有相同的奇偶性.
89 | \end{theorem}
90 | \section{$ n $阶行列式的定义}
91 | \begin{defination}[$ n $阶行列式的定义]
92 | \[ D = {\begin{vmatrix}
93 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
94 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\
95 | \vdots & \vdots &\;& \vdots \\
96 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
97 | \end{vmatrix}} \]表示一个\textbf{$ n $阶行列式}.其中元素$ a_{ij}\in \mathbb{C}\quad(i,j=1,2,\cdots,n) $.\index{NJHLS@$ n $阶行列式}
98 | \end{defination}
99 | \begin{defination}
100 | $ n $阶行列式等于所有来自不同行不同列的$ n $个元素乘积的代数和.由于代数和的项数为$ n! $个,为了表达方便,我们可以将每项中的$ n $个元素按行指标有小及大的顺序排列,即写作$ a_{1j_1}a_{2j_2}\cdots a_{nj_n} $的形式,并规定当列指标$ j_1j_2\cdots j_n $是偶排列时,此项前面带正号,若是奇排列则前面带负号.这样,$ n $阶行列式被定义为\[ D = {\begin{vmatrix}
101 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
102 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\
103 | \vdots & \vdots &\;& \vdots \\
104 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
105 | \end{vmatrix}}=\sum_{j_1j_2\cdots j_n}{{(-1)}^{\tau (j_1j_2\cdots j_n)} a_{1j_1}a_{2j_2}\cdots a_{nj_n}}. \]其中$ \displaystyle \sum_{j_1j_2\cdots j_n} $表示对所有可能的$ n $阶排列求和.上式称为\textbf{行列式的展开式}.\index{HLSDZJKS@行列式的展开式}
106 |
107 | 上述$ n $阶行列式通常记为$ D=\mathrm{det}(a_{ij}) $或着$ |a_{ij}| $.当$ n=1 $时我们规定$ |a_{11}|=a_{11} $.
108 |
109 | 若行或列指标均不为自然排列,则我们有以下展开式:\[ D = {\begin{vmatrix}
110 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
111 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\
112 | \vdots & \vdots &\;& \vdots \\
113 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
114 | \end{vmatrix}}=\sum_{j_1j_2\cdots j_n}{{(-1)}^{\tau(i_1i_2\cdots i_n)+\tau (j_1j_2\cdots j_n)} a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n}}. \]
115 | \end{defination}
116 | \begin{defination}
117 | 在行列式中,由左上角到右下角所形成的斜线称为\textbf{主对角线},由右上角到左上角所形成的斜线称为\textbf{副对角线}.在主对角线下方的元素全为零,称为\textbf{上三角行列式},如果主对角线上方的元素全为零,则称为\textbf{下三角行列式}.上三角行列式和下三角行列式统称为\textbf{三角行列式}.如果除了主对角线之外的元素全为零,则称为\textbf{对角行列式}.
118 | \index{ZDJX@主对角线}
119 | \index{FDJX@副对角线}
120 | \index{SSJHLS@上三角行列式}
121 | \index{XSJHLS@下三角行列式}
122 | \index{SJHLS@三角行列式}
123 | \index{DJHLS@对角行列式}
124 | \end{defination}
125 | \section{$ n $阶行列式的性质及运算}
126 | \begin{feature}
127 | 行与列互换,行列式的值不变,即 \[ {\begin{vmatrix}
128 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
129 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\
130 | \vdots & \vdots &{\rm{ }}& \vdots \\
131 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
132 | \end{vmatrix}} = {\begin{vmatrix}
133 | {{a_{11}}}&{{a_{21}}}& \cdots &{{a_{n1}}}\\
134 | {{a_{12}}}&{{a_{22}}}& \cdots &{{a_{n2}}}\\
135 | \vdots & \vdots &{\rm{ }}& \vdots \\
136 | {{a_{1n}}}&{{a_{2n}}}& \cdots &{{a_{nn}}}
137 | \end{vmatrix}} .\]假设\[ D={\begin{vmatrix}
138 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
139 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\
140 | \vdots & \vdots &{\rm{ }}& \vdots \\
141 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
142 | \end{vmatrix}} \qquad D^{\mathrm{T}}{\begin{vmatrix}
143 | {{a_{11}}}&{{a_{21}}}& \cdots &{{a_{n1}}}\\
144 | {{a_{12}}}&{{a_{22}}}& \cdots &{{a_{n2}}}\\
145 | \vdots & \vdots &{\rm{ }}& \vdots \\
146 | {{a_{1n}}}&{{a_{2n}}}& \cdots &{{a_{nn}}}
147 | \end{vmatrix}} \]那么称$ D^{\mathrm{T}} $为$ D $的\textbf{转置行列式}\index{ZZHLS@转置行列式},由此性质可知行列式中行与列的地位是对称的,具有相同的性质.上述性质可改写成$ D^{\mathrm{T}}=D $.
148 | \end{feature}
149 | \begin{feature}
150 | 在行列式中,如果某一行(列)元素全为零,则该行列式的值为零.
151 | \end{feature}
152 | \begin{feature}
153 | 交换任意两行(列)的位置,行列式的值变号,即\[ {\begin{vmatrix}
154 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
155 | \vdots & \vdots &{\rm{ }}& \vdots \\
156 | {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\
157 | \vdots & \vdots &{\rm{ }}& \vdots \\
158 | {{a_{j1}}}&{{a_{j2}}}& \cdots &{{a_{jn}}}\\
159 | \vdots & \vdots &{\rm{ }}& \vdots \\
160 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
161 | \end{vmatrix}} + {\begin{vmatrix}
162 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
163 | \vdots & \vdots &{\rm{ }}& \vdots \\
164 | {{a_{j1}}}&{{a_{j2}}}& \cdots &{{a_{jn}}}\\
165 | \vdots & \vdots &{\rm{ }}& \vdots \\
166 | {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\
167 | \vdots & \vdots &{\rm{ }}& \vdots \\
168 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
169 | \end{vmatrix}} .\]
170 | \end{feature}
171 | \begin{feature}
172 | 如果行列式有两行(列)完全相同,则行列式为零.
173 | \end{feature}
174 | \begin{feature}
175 | 行列式具有线性型,即
176 | \begin{enumerate}
177 | \item\[ {\begin{vmatrix}
178 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
179 | \vdots & \vdots &{\rm{ }}& \vdots \\
180 | {{b_1} + {c_1}}&{{b_2} + {c_2}}& \cdots &{{b_n} + {c_n}}\\
181 | \vdots & \vdots &{\rm{ }}& \vdots \\
182 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
183 | \end{vmatrix}}{\rm{ = }} {\begin{vmatrix}
184 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
185 | \vdots & \vdots &{\rm{ }}& \vdots \\
186 | {{b_1}}&{{b_2}}& \cdots &{{b_n}}\\
187 | \vdots & \vdots &{\rm{ }}& \vdots \\
188 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
189 | \end{vmatrix}} + {\begin{vmatrix}
190 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
191 | \vdots & \vdots &{\rm{ }}& \vdots \\
192 | {{c_1}}&{{c_2}}& \cdots &{{c_n}}\\
193 | \vdots & \vdots &{\rm{ }}& \vdots \\
194 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
195 | \end{vmatrix}} ;\]
196 | \item\[ {\begin{vmatrix}
197 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
198 | \vdots & \vdots &{\rm{ }}& \vdots \\
199 | {k{a_{i1}}}&{k{a_{i2}}}& \cdots &{k{a_{in}}}\\
200 | \vdots & \vdots &{\rm{ }}& \vdots \\
201 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
202 | \end{vmatrix}} = k {\begin{vmatrix}
203 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
204 | \vdots & \vdots &{\rm{ }}& \vdots \\
205 | {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\
206 | \vdots & \vdots &{\rm{ }}& \vdots \\
207 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
208 | \end{vmatrix}} .\]
209 | \end{enumerate}
210 | \end{feature}
211 | \begin{feature}
212 | 如果行列式有两行(列)成比例,则行列式为零,即\[ {\begin{vmatrix}
213 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
214 | \vdots & \vdots &{\rm{ }}& \vdots \\
215 | {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\
216 | \vdots & \vdots &{\rm{ }}& \vdots \\
217 | {k{a_{i1}}}&{k{a_{i2}}}& \cdots &{k{a_{in}}}\\
218 | \vdots & \vdots &{\rm{ }}& \vdots \\
219 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
220 | \end{vmatrix}} =0. \]
221 | \end{feature}
222 | \begin{feature}
223 | 行列式某一行(列)的$ k $倍加到令一行(列),行列式的值不变,即\[ {\begin{vmatrix}
224 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
225 | \vdots & \vdots &{\rm{ }}& \vdots \\
226 | {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\
227 | \vdots & \vdots &{\rm{ }}& \vdots \\
228 | {{a_{j1}}}&{{a_{j2}}}& \cdots &{{a_{jn}}}\\
229 | \vdots & \vdots &{\rm{ }}& \vdots \\
230 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
231 | \end{vmatrix}} {\rm{ = }} {\begin{vmatrix}
232 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
233 | \vdots & \vdots &{\rm{ }}& \vdots \\
234 | {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\
235 | \vdots & \vdots &{\rm{ }}& \vdots \\
236 | {{a_{j1}} + k{a_{i1}}}&{{a_{j2}}{\rm{ + }}k{a_{i2}}}& \cdots &{{a_{jn}}{\rm{ + }}k{a_{in}}}\\
237 | \vdots & \vdots &{\rm{ }}& \vdots \\
238 | {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
239 | \end{vmatrix}} . \]
240 | \end{feature}
241 | \begin{defination}
242 | 我们引入如下记号以描述行列式的变形:
243 | \begin{enumerate}
244 | \item $ r_i\div k $(或 $ c_i\div k $)表示从第$ i $行(列)提取公因子$ k $;
245 | \item $ r_i+kr_j $(或$ c_i+kc_j $)表示将第$ j $行(列)的$ k $倍加到第$ i $行(列);
246 | \item $ r_i\leftrightarrow r_j $(或$ c_i\leftrightarrow c_j $)表示交换第$ i $行(列)与第$ j $行(列)的位置.
247 | \end{enumerate}
248 | \end{defination}
249 | \section{行列式按一行展开及克拉默法则}
250 | \section{八大类型行列式及其解法}
251 | \subsection{}
252 |
253 | \chapter{矩阵\\Matrix}
254 | \section{矩阵及其运算}
255 | \section{矩阵的分块}
256 | \section{矩阵的秩}
257 | \section{矩阵的逆}
258 | \section{初等矩阵}
259 | \chapter{向量代数与几何应用\\Vector Algebra and Geometry}
260 | \section{向量的线性运算与空间直角坐标系}
261 | \section{向量的内积,外积与混合积}
262 | \section{空间平面及其方程}
263 | \section{空间直线及其方程}
264 | \chapter{线性方程组\\System of Linear Equations}
265 | \section{消元法}
266 | \begin{defination}[相容方程组与不相容方程组的定义]
267 | \index{XRFCZ@相容方程组}
268 | \index{BXRFCZ@不相容方程组}
269 | 有解的方程组称为\textbf{相容方程组};没有解的方程组称为\textbf{不相容方程组}.
270 | \end{defination}
271 | \begin{defination}
272 | 设给定两个线性方程组.如果第一个方程组的解都是第二个方程组的解,同时第二个方程组的解也都是第一个方程组的解,则称他们是\textbf{同解方程组}.
273 | \index{TJFCZ@同解方程组}
274 | 对于下述线性方程组:
275 | \begin{equation}\label{xxfcz}
276 | \left\{
277 | \begin{array}{c}
278 | a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\\
279 | a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\\
280 | \vdots \\
281 | a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m
282 | \end{array}
283 | \right.,
284 | \end{equation}
285 | \index{XSJZ@系数矩阵}
286 | \index{WZLJZ@未知量矩阵}
287 | \index{CSXJZ@常数项矩阵}
288 | 若令\[
289 | \text{系数矩阵}\ \bm{A}=\begin{bmatrix}
290 | a_{11} & a_{12} & \cdots & a_{1n}\\
291 | a_{21} & a_{22} & \cdots & a_{2n}\\
292 | \vdots & \vdots & \ & \vdots\\
293 | a_{m1} & a_{m2} & \cdots & a_{mn}
294 | \end{bmatrix},
295 | \text{未知量矩阵}\ \bm{X}=\begin{bmatrix}
296 | x_1\\
297 | x_2\\
298 | \vdots\\
299 | x_n
300 | \end{bmatrix},
301 | \text{常数项矩阵}\ \bm{b}=\begin{bmatrix}
302 | b_1\\
303 | b_2\\
304 | \vdots\\
305 | b_n
306 | \end{bmatrix},
307 | \]
308 | 则方程组\ref{xxfcz}可以改写成矩阵的形式\[ \bm{AX}=\bm{b}, \]
309 | 称$ \bm{A} $为方程组\ref{xxfcz}的系数矩阵,而
310 | $$
311 | \widetilde{\bm{A}}=[\bm{A}|\bm{b}]=
312 | \left[
313 | \begin{array}{cccc|c}
314 | a_{11} & a_{12} & \cdots & a_{1n}&b_1\\
315 | a_{21} & a_{22} & \cdots & a_{2n}&b_2\\
316 | \vdots & \vdots & \ & \vdots&\vdots\\
317 | a_{m1} & a_{m2} & \cdots & a_{mn}&b_m
318 | \end{array}
319 | \right]
320 | $$
321 | 称为方程组\ref{xxfcz}的\textbf{增广矩阵}.其中增广矩阵唯一确定线性方程组.
322 | \index{ZGJZ@增广矩阵}
323 | \nomenclature{$ \widetilde{\bm{A}} $}{矩阵$ \bm{A} $的增广矩阵}
324 | \nomenclature{$\mathrm{det}(\bm{A}) $}{矩阵$ \bm{A} $的行列式}
325 | \end{defination}
326 | \begin{feature}
327 | 线性方程组的初等变换\CJKunderdot{一定}把方程组变成\textbf{同解的方程组}.
328 | \end{feature}
329 | \begin{theorem}[初等行变换对于增广矩阵的同解不变性定理]若线性方程组\ref{xxfcz}的增广矩阵$ \widetilde{\bm{A}} $经过一系列\CJKunderdot{有限次}的初等行变换变成$ \widetilde{\bm{B}} $,则以$ \widetilde{\bm{B}} $为增广矩阵的线性方程组与\ref{xxfcz}同解.
330 | \end{theorem}
331 | \begin{theorem}[线性方程组有解的充要条件]
332 | 线性方程组有解的\CJKunderdot{充分必要条件}是系数矩阵$ \bm{A} $的秩等于其对应的增广矩阵$ \widetilde{\bm{A}} $的秩,即\[ \mathrm{rank}(\bm{A})=\mathrm{rank}(\widetilde{\bm{A}}) .\]
333 | \end{theorem}
334 | \begin{theorem}[线性方程组解的结构判定充分必要条件]
335 | 线性方程组解的情况如下:\\
336 | \begin{enumerate}
337 | \item 方程组有\textbf{唯一解}$\Leftrightarrow \mathrm{rank}(\widetilde{\bm{A}})=\mathrm{rank}(\bm{A})=n; $
338 | \item 方程组有\textbf{无穷多个解}$\Leftrightarrow \mathrm{rank}(\widetilde{\bm{A}})=\mathrm{rank}(\bm{A})s $,
677 | \end{enumerate}
678 | 则向量组(I)线性相关.
679 | \end{theorem}
680 | \begin{inference}
681 | 若$ \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_r $可由$ \bm{\beta}_1,\bm{\beta}_2,\cdots,\bm{\beta}_s $线性表示,且$ \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_r $线性无关,则$ r\leqslant s $.
682 | \end{inference}
683 | \begin{inference}
684 | 任意$ n+1 $个$ n $维向量一定线性相关,从而当$ m>n $时任意$ m $个$ n $维向量一定线性相关.
685 | \end{inference}
686 | \begin{inference}
687 | 一个向量组的极大线性无关组所含向量个数相同.
688 | \end{inference}
689 | \begin{defination}[向量组的秩]
690 | 一个向量组$ \bm{A} $的极大线性无关向量组所含向量个数$ r $称为向量组$ \bm{A} $的秩,记为$ \mathrm{rank}(\bm{A}) $.
691 | \end{defination}
692 | \begin{inference}
693 | 等价的向量组有相同的秩.
694 | \end{inference}
695 | \subsection{矩阵秩的进一步讨论}
696 | \begin{defination}
697 | 设\[ \bm{A}_{m\times n}=\left[ {\begin{array}{*{20}{c}}
698 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
699 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\
700 | \vdots &{ \vdots} &{} & \vdots \\
701 | {{a_{m1}}}&{{a_{m2}}}& \cdots &{{a_{mn}}}
702 | \end{array}} \right] \]是数域$ F $上的一个$ m\times n $矩阵.
703 | \begin{itemize}
704 | \item[\color{HotPink1} \textleaf ] {\color{HotPink1}\heiti{行向量}}\ 将 $ \bm{A} $的每一行看作$ F^n $的向量,称之为\textbf{行向量}.\index{HXL@行向量}设\[ \bm{\alpha}_i=[a_{i1},a_{i2},\cdots,a_{in}],\quad (i=1,2,\cdots,m), \]则\[ \bm{A}=\begin{bmatrix}
705 | \bm{\alpha}_1\\\bm{\alpha}_2\\\cdots\\\bm{\alpha}_m
706 | \end{bmatrix} ,\]这里$ \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_m $为$ \bm{A} $的\textbf{行向量组}\index{HXLZ@行向量组}.$ \bm{A} $可以看作由行向量组构成的分块矩阵.
707 | \item[\color{HotPink1} \textleaf ] {\color{HotPink1}\heiti{列向量}}\ 将 $ \bm{A} $的每一列看作$ F^m $的向量,称之为\textbf{列向量}.\index{LXL@列向量}设\[ \bm{\beta}_i=\begin{bmatrix}
708 | a_{1i}\\a_{2i}\\\vdots\\a_{mi}
709 | \end{bmatrix},\quad (i=1,2,\cdots,n), \]则\[ \bm{A}=[\bm{\beta}_1,\bm{\beta}_2,\cdots,\bm{\beta}_n] ,\]这里$\bm{\beta}_1,\bm{\beta}_2,\cdots,\bm{\beta}_n$为$ \bm{A} $的\textbf{列向量组}\index{LXLZ@列向量组}.$ \bm{A} $可以看作由列向量组构成的分块矩阵.
710 | \end{itemize}
711 | \end{defination}
712 | \begin{defination}[行秩与列秩的定义]
713 | 设矩阵\[ \bm{A}_{m\times n}=\left[ {\begin{array}{*{20}{c}}
714 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\
715 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\
716 | \vdots &{ \vdots} &{} & \vdots \\
717 | {{a_{m1}}}&{{a_{m2}}}& \cdots &{{a_{mn}}}
718 | \end{array}} \right] \]有$ m $个行向量与$ n $个列向量.矩阵$ \bm{A} $行向量组的秩称为矩阵$ \bm{A} $的\textbf{行秩},列向量组的秩称为矩阵$ \bm{A} $的\textbf{列秩}.\index{HZ@行秩}\index{LZ@列秩}
719 | \end{defination}
720 | \begin{theorem}
721 | 矩阵的行秩和列秩都等于矩阵的秩.
722 | \end{theorem}
723 | \begin{inference}[初等行变换后行向量组秩不变]
724 | 矩阵经数次初等行变换后,新矩阵的行向量组都与原矩阵的行向量组等价,故其秩相等.
725 | \end{inference}
726 | \begin{inference}[初等列变换后列向量组秩不变]
727 | 矩阵经数次初等列变换后,新矩阵的列向量组都与原矩阵的列向量组等价,故其秩相等.
728 | \end{inference}
729 | \begin{method}[求极大线性无关组与向量组的秩的方法]
730 | 我们以$ 4 $阶方阵 \[ \bm{A}_{4\times 4}=\begin{bNiceArrayRC}{CCCC}%
731 | [columns-width = auto,
732 | code-for-first-row = \color{HotPink1},
733 | code-for-last-col = \color{HotPink1},]
734 | \bm{\beta}_1&\bm{\beta}_2&\bm{\beta}_3&\bm{\beta}_4\\
735 | {{a_{11}}}&{{a_{12}}}& a_{13} &{{a_{14}}}&\bm{\alpha}_1\\
736 | {{a_{21}}}&{{a_{22}}}& a_{23} &{{a_{24}}}&\bm{\alpha}_2\\
737 | a_{31} &a_{32}&a_{33} & a_{34} &\bm{\alpha}_3\\
738 | {{a_{41}}}&{{a_{42}}}& a_{43} &{{a_{44}}}&\bm{\alpha}_4\\
739 | \end{bNiceArrayRC} \]来演示构造过程,其他矩阵同理.$ \bm{A} $中有行向量组$ \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3,\bm{\alpha}_4 $和列向量组$ \bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4 $,现以列向量组为例,讨论其极大线性无关组和秩.
740 | \begin{enumerate}
741 | \item 将上述矩阵$ \bm{A} $化为最简行阶梯矩阵(以下仅为其中一种可能):
742 | \[ \bm{A}_{4\times4}=\begin{bmatrix}
743 | {{a_{11}}}&{{a_{12}}}& a_{13} &{{a_{14}}}\\
744 | {{a_{21}}}&{{a_{22}}}& a_{23} &{{a_{24}}}\\
745 | a_{31} &a_{32}&a_{33} & a_{34} \\
746 | {{a_{41}}}&{{a_{42}}}& a_{43} &{{a_{44}}}\\
747 | \end{bmatrix}
748 | \overset{c}{\sim}
749 | \begin{bNiceArrayRC}{CCCC}%
750 | [name=bb,columns-width = auto,
751 | code-for-first-row = \color{HotPink1}]
752 | \bm{\beta}'_1&\bm{\beta}'_2&\bm{\beta}'_3&\bm{\beta}'_4\\
753 | b_{11} & b_{12} & b_{13} & b_{14}\\
754 | 0&0 & b_{23} & b_{24}\\
755 | 0& 0 & 0 & b_{34}\\
756 | 0&0 &0&0\\
757 | \end{bNiceArrayRC} \]
758 | \tikzset{myoptions/.style={remember picture,
759 | overlay,
760 | name prefix =bb-,
761 | every node/.style = {fill =blue!15,
762 | blend mode = multiply}}}
763 | \begin{tikzpicture}[myoptions]
764 | \node [fit = (1-1) (1-4)] {} ;
765 | \node [fit = (2-3) (2-4)] {} ;
766 | \node [fit = (3-4) (3-4)] {} ;
767 | \end{tikzpicture}此时我们知道向量组$\bm{\beta}'_1,\bm{\beta}'_2,\bm{\beta}'_3,\bm{\beta}'_4$与向量组$ \bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4 $等价,则我们可以得出原向量组的秩与向量组$ \bm{\beta}'_1,\bm{\beta}'_2,\bm{\beta}'_3,\bm{\beta}'_4 $的秩相等,故求出向量组的秩即为最简型矩阵的秩.同时$ \bm{\beta}'_1,\bm{\beta}'_2 $线性相关,考虑方程$ [\bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4]\bm{X}=\bm{0} $与方程$ [\bm{\beta}'_1,\bm{\beta}'_2,\bm{\beta}'_3,\bm{\beta}'_4]\bm{X}=\bm{0} $同解,因此向量$ \bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4 $之间的线性关系与向量$\bm{\beta}'_1,\bm{\beta}'_2,\bm{\beta}'_3,\bm{\beta}'_4$之间的线性关系相同.同时,同解保证了列与列之间的关系不变,那么$ \bm{\beta}'_1 $可=由向量$ \bm{\beta}'_2,\bm{\beta}'_3,\bm{\beta}'_4 $线性表出即\[ k_0\bm{\beta}'_1=k_1 \bm{\beta}'_2+k_2\bm{\beta}'_3+k_3\bm{\beta}'_4 \]以及\[ k_0\bm{\beta}_1=k_1 \bm{\beta}_2+k_2\bm{\beta}_3+k_3\bm{\beta}_4 ,\]若根据题意$ k_0\neq 0 $则可得$ \bm{\beta}'_1 $可由$ \bm{\beta}'_2,\bm{\beta}'_3,\bm{\beta}'_4 $线性表出同理可得$ \bm{\beta}'_2 $可由$ \bm{\beta}'_1,\bm{\beta}'_3,\bm{\beta}'_4 $线性表出,则我们构造极大线性无关组时,只需要选择$\bm{\beta}'_1,\bm{\beta}'_2$其中一个向量即可,对应原向量组向量$\bm{\beta}_1,\bm{\beta}_2$之一.
768 | \item 从不同阶梯中各选出一个向量,组成的向量组即为原向量组$ \bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4 $的极大线性无关组.此处可选向量组$ \bm{\beta}_1,\bm{\beta}_3,\bm{\beta}_4 $或向量组$\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4$即为极大线性无关组.
769 | \end{enumerate}
770 | \end{method}
771 | \begin{theorem}
772 | 设$ \bm{A},\bm{B} $分别为$ m\times n,n\times s $矩阵,则\[ \mathrm{rank}(\bm{AB})\leqslant \min{\left\lbrace \mathrm{rank}(\bm{A}),\mathrm{rank}(\bm{B})\right\rbrace }. \]
773 | \end{theorem}
774 | \begin{inference}
775 | 若$ \bm{A}=\displaystyle\prod_{i=1}^t{\bm{A}_i} $,则$ \mathrm{rank}(\bm{A})\leqslant\min\left\lbrace \mathrm{rank}(\bm{A}_1),\mathrm{rank}(\bm{A}_2),\cdots,\mathrm{rank}(\bm{A}_t)\right\rbrace $.
776 | \end{inference}
777 | \begin{inference}
778 | 设$ \bm{A} $是一个$ m\times n $矩阵,若$ \bm{P} $是$ m\times m $可逆矩阵,$ \bm{Q} $是$ n\times n$可逆矩阵,则\[ \mathrm{rank}(\bm{A})=\mathrm{rank}(\bm{PA})=\mathrm{rank}(\bm{AQ}). \]
779 | \end{inference}
780 | \subsection{向量组的秩与向量组特征的关系}
781 | \begin{feature}
782 | 线性相关性与秩的关系如下:
783 | \begin{enumerate}
784 | \item 向量组$ \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_m $线性无关$ \Leftrightarrow r( \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_m)=m $;
785 | \item 向量组$ \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_m $线性相关$ \Leftrightarrow r( \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_m),black!75](0,0,0)--(6,0,0) node[below left] {$\bm{\beta}_1,\bm{\alpha}_1$};
1211 | \draw[->,black!75](0,0,0)--(0,6,0) node[right] {$\bm{\beta}_2$};
1212 | \draw[->,black!75](0,0,0)--(0,0,6) node[right] {$\bm{\beta}_3$};
1213 | \draw[-stealth,red](0,0,0)--(6,0,0);
1214 | \draw[-stealth,red](0,0,0)--(4,6,0) node[below right] {$\bm{\alpha}_2$};
1215 | \draw[-stealth,red](0,0,0)--(2,-2,6) node[below right] {$\bm{\alpha}_3$};
1216 | \draw[-stealth,blue!50](0,0,0)--(0,-2,0) node[left] {$\hat{\bm{\alpha}_3}\prod_{\bm{\beta}_2}{\bm{\alpha}_3}$};
1217 | \draw[-stealth,purple!50](0,0,0)--(2,-2,0);
1218 | \draw[-stealth,orange](0,0,0)--(4,0,0) node[ left] {$\hat{\bm{\alpha}_2}\prod_{\bm{\beta}_1}{\bm{\alpha}_2}$};
1219 | \draw[-stealth,blue!50](0,0,0)--(2,0,0) node[below right] {$\hat{\bm{\alpha}_3}\prod_{\bm{\beta}_1}{\bm{\alpha}_3}$};
1220 | \draw[dashed,line width=0](4,6,0)--(4,0,0);
1221 | \draw[dashed,line width=0](4,6,0)--(0,6,0);
1222 | \draw[dashed,line width=0](2,0,0)--(2,-2,0);
1223 | \draw[dashed,line width=0](2,-2,0)--(0,-2,0);
1224 | \draw[dashed,line width=0](2,-2,6)--(2,-2,0);
1225 | \draw[dashed,line width=0](2,-2,6)--(2,0,0);
1226 | \draw[dashed,line width=0](2,-2,6)--(0,-2,0);
1227 | \draw[dashed,line width=0](2,-2,6)--(0,0,6);
1228 | \end{tikzpicture}
1229 | \end{minipage}}
1230 | \caption{施密特正交化的几何意义}
1231 | \end{figure}
1232 | \begin{multicols}{2}
1233 | \small
1234 | \kaishu
1235 | \begin{itemize}
1236 | \item 二维平面空间\ 如图\ref{fig-ew}\ 中,\\ 设$ \bm{\alpha}_1,\bm{\alpha}_2 $线性无关,尝试求出$ k $使得:$$ \bm{\alpha}_1\perp\bm{\alpha}_2+k\cdot\bm{\alpha}_1 $$
1237 | \begin{align*}
1238 | \because&\bm{\alpha}_1\perp\bm{\alpha}_2+k\cdot\bm{\alpha}_1 \\ \therefore& (\bm{\alpha}_1,\bm{\alpha}_2+k\bm{\alpha}_1)=0\\
1239 | \therefore& (\bm{\alpha}_1,\bm{\alpha}_2)+(\bm{\alpha}_1,\bm{\alpha}_1)k=0\\
1240 | \therefore& k=-\frac{(\bm{\alpha}_2,\bm{\alpha}_1)}{(\bm{\alpha}_1,\bm{\alpha}_1)}\\
1241 | \end{align*}
1242 | 此时我们令$ \bm{\gamma}=-k\bm{\alpha}_1 $则有$ \bm{\alpha}_1\perp\bm{\alpha}_2-\bm{\gamma} $,已求得与$ \bm{\alpha}_1,\bm{\alpha}_2 $等价的正交基$ \bm{\alpha}_1,\bm{\alpha}_2-\bm{\gamma} $.在二维空间,如图\ref{fig-ew}中$ \bm{\alpha}_2 $在$ \bm{\alpha}_1 $的投影即为$ \bm{\gamma} $.
1243 | \begin{align*}
1244 | \mbox{又}\because\bm{\gamma}&=\textstyle{\prod_{\bm{\alpha}_1}{\bm{\alpha}_2}}\displaystyle\cdot\hat{\bm{\alpha}_1}=\frac{(\bm{\alpha}_2,\bm{\alpha}_1)}{|\bm{\alpha}_1|}\cdot\hat{\bm{\alpha}_1}\\&=\frac{(\bm{\alpha}_2,\bm{\alpha}_1)}{|\bm{\alpha}_1|}\cdot\frac{\bm{\alpha}_1}{|\bm{\alpha}_1|}\\
1245 | &=\frac{(\bm{\alpha}_2,\bm{\alpha}_1)}{|\bm{\alpha}_1|}\bm{\alpha}_1\\
1246 | &=\frac{(\bm{\alpha}_2,\bm{\alpha}_1)}{(\bm{\alpha}_1,\bm{\alpha}_1)}\bm{\alpha}_1
1247 | \end{align*}
1248 | 则有平面内积空间$ \mathbb{R}^n $中的一组正交基$ \bm{\beta}_,\bm{\beta}_2 $其中
1249 | \begin{align*}
1250 | \bm{\beta}_1&=\bm{\alpha}_{1},\\
1251 | \bm{\beta}_2&=\bm{\alpha}_2-\bm{\gamma}\\&=\bm{\alpha}_{2}-\dfrac{(\bm{\alpha}_2,\bm{\beta}_1)}{(\bm{\beta}_1,\bm{\beta}_1)}\bm{\beta}_1. \end{align*}
1252 |
1253 | \item 三维立体空间\ 如图\ref{fig-sw}\ 中,\\设$ \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 $线性无关,以$ \bm{\alpha}_1 $作为正交基中的一个向量$ \bm{\beta}_1 $,并以该向量开始正交化.\\$ \bm{\alpha}_2 $所对应的正交基中的向量$ \bm{\beta}_2 $只需满足$ \bm{\beta}_2\perp \bm{\beta}_1$,按照二维空间的做法进行正交化:(1)作$ \bm{\alpha}_2 $在$ \bm{\alpha}_1 $($ \bm{\beta}_1 $)上的投影$\prod_{\bm{\beta}_1}{\bm{\alpha}_2}$(2)由此可得$ \bm{\beta}_2 =\bm{\alpha}_2-\prod_{\bm{\beta}_1}{\bm{\alpha}_2}\cdot\hat{\bm{\alpha}_2}$.\\$ \bm{\alpha}_3 $所对应的正交基中的向量$ \bm{\beta}_3 $需满足$ \bm{\beta}_3\perp \bm{\beta}_1$且$ \bm{\beta}_3\perp \bm{\beta}_2$因此作$ \bm{\alpha}_3 $在$ \bm{\beta}_1,\bm{\beta}_1 $上的投影$\prod_{\bm{\beta}_1}{\bm{\alpha}_3}$,$\prod_{\bm{\beta}_2}{\bm{\alpha}_3}$.由此可得$ \bm{\beta}_3=\bm{\alpha}_3-\hat{\bm{\alpha}_3}\left(\prod_{\bm{\beta}_1}{\bm{\alpha}_3}+\prod_{\bm{\beta}_2}{\bm{\alpha}_3} \right) $.综上所述有:\begin{align*}
1254 | \bm{\beta}_1&=\bm{\alpha}_{1},\\
1255 | \bm{\beta}_2&=\bm{\alpha}_{2}-\dfrac{(\bm{\alpha}_2,\bm{\beta}_1)}{(\bm{\beta}_1,\bm{\beta}_1)}\bm{\beta}_1,\\
1256 | \bm{\beta}_3&=\bm{\alpha}_{3}-\dfrac{(\bm{\alpha}_3,\bm{\beta}_1)}{(\bm{\beta}_1,\bm{\beta}_1)}\bm{\beta}_1-\dfrac{(\bm{\alpha}_3,\bm{\beta}_2)}{(\bm{\beta}_2,\bm{\beta}_2)}\bm{\beta}_2-\dfrac{(\bm{\alpha}_3,\bm{\beta}_{2})}{(\bm{\beta}_{2},\bm{\beta}_{2})}\bm{\beta}_{2}.\\
1257 | \end{align*}
1258 | \end{itemize}
1259 | \end{multicols}
1260 | \end{theorem}
1261 | \begin{method}[标准正交化的方法]
1262 | 设$\bm{\alpha}_{1},\bm{\alpha}_{2},\bm{\alpha}_{3},\cdots,\bm{\alpha}_{n} $为内积空间$ \mathbb{R}^n $的一组基,则有以下\textbf{标准正交化}方法:
1263 | \begin{enumerate}
1264 | \item 由格拉姆-施密特正交化定理(定理\ref{gspt})对$\bm{\alpha}_{1},\bm{\alpha}_{2},\bm{\alpha}_{3},\cdots,\bm{\alpha}_{n} $实施正交化得到正交向量组$ \bm{\beta}_{1},\bm{\beta}_{2},\bm{\beta}_{3},\cdots,\bm{\beta}_{n} $;
1265 | \item 由单位化定义(定义\ref{zjhdy})依次对$ \bm{\beta}_{1},\bm{\beta}_{2},\bm{\beta}_{3},\cdots,\bm{\beta}_{n} $单位化,得标准正交基$ \bm{\eta}_1,\bm{\eta}_2,\cdots,\bm{\eta}_n $.
1266 | \end{enumerate}
1267 | \end{method}
1268 |
1269 |
1270 | \subsection{正交矩阵}
1271 | \begin{defination}[正交矩阵的定义]
1272 | 若$ n $阶\CJKunderdot{实矩阵}$ \bm{A} $满足:\[ \bm{A}^{\mathrm{T}}\bm{A}=\bm{E} ,\]则称$ \bm{A} $为\textbf{正交矩阵}.
1273 | \index{ZJJZ@正交矩阵}
1274 | \end{defination}
1275 | \begin{feature}[正交矩阵的性质]
1276 | $ n $阶正交矩阵$ \bm{A} $有以下性质:
1277 | \begin{enumerate}
1278 | \item $ \bm{A} $可逆,且$ \bm{A}^{-1}=\bm{A}^{\mathrm{T}} $;
1279 | \item$ \bm{A}^{-1},\bm{A}^{\mathrm{T}} $也是\textbf{正交矩阵};
1280 | \item $ |\bm{A}|=\pm1; $
1281 | \item 正交矩阵的乘积仍为正交矩阵.
1282 | \end{enumerate}
1283 | \end{feature}
1284 | \begin{theorem}[正交矩阵构造定理]
1285 | 设$ \bm{A} $为$ n $阶实矩阵,且$ \bm{A}=[\bm{\alpha}_{1},\bm{\alpha}_{2},\bm{\alpha}_{3},\cdots,\bm{\alpha}_{n}] $则$ \bm{A} $是正交矩阵的\CJKunderdot{充分必要条件}是列向量$ \bm{\alpha}_{1},\bm{\alpha}_{2},\bm{\alpha}_{3},\cdots,\bm{\alpha}_{n} $构成$ \mathbb{R}^n $的一组标准正交基.
1286 | \end{theorem}
1287 | \subsection{实对称矩阵的对角化}
1288 | \begin{theorem}
1289 | 实对称矩阵的特征值必都为常数,且可以取到实的特征向量.
1290 | \end{theorem}
1291 | \begin{theorem}\label{3.5}
1292 | 实对称矩阵$ \bm{A} $属于\CJKunderdot{不同特征值}的特征向量必正交.(由该定理可知若某个特征值只对应一个特征向量时,该特征向量可不进行正交化.)
1293 | \end{theorem}
1294 | \begin{theorem}\label{SDCJZBKDJH}
1295 | 设$ \bm{A} $是一个$ n $阶实对称矩阵,则必定存在\CJKunderdot{正交矩阵}$ \bm{T} $使得\[ \bm{T}^{-1} \bm{A} \bm{T}=\bm{\varLambda} \quad( \bm{\varLambda}\mbox{为对角矩阵}).\]
1296 | \end{theorem}
1297 | \begin{inference}
1298 | 由\ 定理\ref{SDCJZBKDJH}\ 可知:\textbf{实对称矩阵必可对角化}.
1299 | \end{inference}
1300 | \begin{method}[求正交矩阵的方法]
1301 | \begin{enumerate}
1302 | \item 求出$ \bm{A} $的全部特征值$\lambda_1,\lambda_2,\lambda_3,\cdots,\lambda_n $和属于每一个$ \lambda_i\,(i=1,2,3,\cdots,t) $的特征向量$ \bm{\alpha}_{i1},\bm{\alpha}_{i2},\bm{\alpha}_{i3},\cdots,\bm{\alpha}_{is} $;
1303 | \item 将属于$ \lambda_i\,(i=1,2,3,\cdots,t) $的特征向量$ \bm{\alpha}_{i1},\bm{\alpha}_{i2},\bm{\alpha}_{i3},\cdots,\bm{\alpha}_{is} $正交化和单位化,记为$\bm{\eta}_{i1},\bm{\eta}_{i2},\bm{\eta}_{i3},\cdots,\bm{\eta}_{is} $,他们仍然是属于$ \lambda_i $的线性无关的特征向量;
1304 | \item 由\ 定理\ref{3.5}\ 知,上一步处理后所有特征向量合并之后的向量组仍然为正交的单位向量组,且所含的向量总个数仍为$ n $,以这$ n $个向量为列向量构成的矩阵$ \bm{T} $即为所求.
1305 | \end{enumerate}
1306 | \end{method}
1307 |
1308 |
1309 | \chapter{二次型与二次曲面\\Homogeneous Quadratic Polynomials and Quadrics}
1310 | \section{二次型及其标准型}
1311 | \subsection{二次型及其矩阵}
1312 | \begin{defination}[二次型及二次型矩阵的定义]
1313 | 含有$ n $个变量$ x_1,x_2,\cdots,x_n $且系数属于数域$ F $的二次齐次多项式
1314 | \begin{align*}
1315 | f( x_1,x_2,\cdots,x_n )=a_{11}x_1^2+2a_{12}x_1x_2&+\cdots+2a_{1n}x_1x_n\\
1316 | +a_{22}x_2^2&+\cdots+2a_{2n}x_2x_n\\
1317 | &+\cdots\\
1318 | &+a_{nn}x_n^2
1319 | \end{align*}
1320 | 称为\textbf{关于数域$ F $的一个$ n $元二次型},简称\textbf{二次型}.
1321 | $ F=\mathbb{R} $时的二次型称为\textbf{实二次型},$ F=\mathbb{C} $时的二次型称为\textbf{复二次型}.
1322 | \index{ECX@二次型}
1323 | \index{SECX@实二次型}
1324 | \index{FECX@复二次型}
1325 |
1326 | 下面我们给出二次型的另外一表述方式.令$ a_{ij}=a_{ji}\quad (i0$,则称$f(x_{1},x_{2},\cdots,x_{n})$为\textbf{正定二次型};\index{ZDECX@正定二次型}
1549 | \item $f(c_{1},c_{2},\cdots,c_{n})<0$,则称$f(x_{1},x_{2},\cdots,x_{n})$为\textbf{负定二次型};\index{FDECX@负定二次型}
1550 | \end{itemize}
1551 | \item
1552 | 若对任意$n$个\CJKunderdot{实数}$c_{1},c_{2},\cdots,c_{n}$,总有:
1553 | \begin{itemize}
1554 | \item $f(c_{1},c_{2},\cdots,c_{n})\geqslant0$,则称$f(x_{1},x_{2},\cdots,x_{n})$为\textbf{半正定二次型};\index{BZDECX@半正定二次型}
1555 | \item $f(c_{1},c_{2},\cdots,c_{n})\leqslant0$,则称$f(x_{1},x_{2},\cdots,x_{n})$为\textbf{半负定二次型}.\index{BFDECX@半负定二次型}
1556 | \end{itemize}
1557 | \end{enumerate}
1558 |
1559 | 因此,正定二次型一定是半正定二次型,半正定二次型不一定是正定二次型,即\[ \mbox{正定二次型} \subsetneqq \mbox{半正定二次型}.\]
1560 | 显然$f(x_{1},x_{2},\cdots,x_{n})$为负定的当且仅当$-f(x_{1},x_{2},\cdots,x_{n})$为正定的.所以,负定二次型的问题总可以借助正定二次型的理论解决.
1561 | \end{defination}
1562 | \begin{example}
1563 | 二次型$f(x_{1},x_{2},\cdots,x_{n})=x_1^2 + x_2^2 + x_3^2 + \cdots + x_{n - 1}^2$是半正定的,但不是正定二次型.实际上,令$ ({x_1},{x_2}, \cdots ,{x_{n - 1}},{x_n}) = (0,0, \cdots ,0,1) \ne 0 $则$ f(x_{1},x_{2},\cdots,x_{n}) $的值为$ 0 $.
1564 | \end{example}
1565 | \begin{feature}
1566 | 非退化线性替换将正定实二次型(负定实二次型)仍变为正定实二次型(负定实二次型).
1567 | \end{feature}
1568 | \begin{theorem}[正定二次型的判定定理]
1569 | 关于正定二次型的判定,有以下\CJKunderdot{等价条件},他们可以互相等价,因此常被用于判定正定二次型.
1570 |
1571 | 设有$ n $元实二次型$f(x_{1},x_{2},\cdots,x_{n})=\bm{X}^{\mathrm{T}}\bm{AX}$,则下列命题相互等价:
1572 | \begin{enumerate}
1573 | \item $f(x_{1},x_{2},\cdots,x_{n})$为正定二次型;
1574 | \item $ \bm{A} $的所有特征值都是\CJKunderdot{正实数};
1575 | \item $ \bm{A} $的秩和正惯性指数都是$ n $;
1576 | \item $ \bm{A} $与单位矩阵$ \bm{E} $合同;
1577 | \item 存在可逆矩阵$ \bm{P} $,使得$ \bm{A}=\bm{P}^{\mathrm{T}}\bm{P} $.
1578 | \end{enumerate}
1579 | \end{theorem}
1580 | \begin{defination}
1581 | 如果一个$ n\times n $实对称矩阵$ \bm{A} $所对应的二次型为正定二次型,那么$ \bm{A} $称为\textbf{正定矩阵}.\index{ZDJZ@正定矩阵}
1582 | \end{defination}
1583 | \begin{feature}
1584 | 实正对称矩阵$ \bm{A} $的行列式大于$ 0 $,即$ |\bm{A}|>0 $.
1585 | \end{feature}
1586 | \begin{defination}[$ \bm{A} $的$ k $阶顺序主子式的定义]
1587 | $ n $阶顺序$ \bm{A}=(a_{ij})_{nn} $的$ k\ (k=1,2,\cdots,n) $阶子式:
1588 | \[{p_k} = \left| {\begin{array}{cccc}
1589 | {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1k}}}\\
1590 | {{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2k}}}\\
1591 | \vdots & \vdots &{}& \vdots \\
1592 | {{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{kk}}}
1593 | \end{array}} \right|\]
1594 | 称为$ \bm{A} $的$ k $阶\textbf{顺序主子式}.\index{KJSXZZS@$ k $阶顺序主子式}
1595 | \end{defination}
1596 | \begin{theorem}[实对称矩阵与正定矩阵的关系]
1597 | \,\\
1598 | \begin{itemize}
1599 | \item 实对称矩阵是\CJKunderdot{正定矩阵}$ \Leftrightarrow P_k>0 \ (k=1,2,\cdots,n) $恒成立;
1600 | \item 实对称矩阵是\CJKunderdot{负定矩阵}$ \Leftrightarrow (-1)^kP_k>0 \ (k=1,2,\cdots,n) $恒成立.
1601 | \end{itemize}
1602 | \end{theorem}
1603 |
1604 | \section{曲面及其方程}
1605 | 我们认为:\textbf{曲面}是由\CJKunderdot{一个动点}或一条\CJKunderdot{动曲线}按照一定的条件或规律运动所形成的轨迹.由此可以导出曲面上动点$ P $的坐标$ (x,y,z) $所满足的方程为\index{QM@曲面}
1606 | \[
1607 | F(x,y,z)=0.
1608 | \]
1609 |
1610 | 当且仅当$ P $为曲面上的点时其坐标才满足上述方程,那么曲面的几何性质必然可以由该方程反映.因此可以用方程来表述曲面.则把上述方程称为\textbf{曲面的方程}\index{QMDFC@曲面的方程},把上述曲面称为\textbf{方程的图形}\index{FCDTX@方程的图形}.
1611 | \subsection{球面及其方程}
1612 | \begin{defination}[球面定义]
1613 | 空间中到定点的距离等于定长的点的集合称为\textbf{球面}.定点称为\textbf{球心},定长称为\textbf{半径}.
1614 | \index{QM@球面}
1615 | \index{QX@球心}
1616 | \index{BJ@半径}
1617 | \end{defination}
1618 |
1619 |
1620 |
1621 |
1622 |
1623 |
1624 | %打印索引—————————————
1625 | \newpage
1626 | \addcontentsline{toc}{chapter}{附录}
1627 | \addcontentsline{toc}{section}{索引}
1628 | \appendix
1629 | \kaishu
1630 | \printindex
1631 | %———————————————
1632 | \end{document}
--------------------------------------------------------------------------------