├── house-price-prediction.ipynb
├── pima-indians-diabetes-database-svm-accuracy-79.ipynb
└── winequality-prediction.ipynb
/house-price-prediction.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 3,
6 | "id": "6dac32b6",
7 | "metadata": {
8 | "execution": {
9 | "iopub.execute_input": "2022-11-05T08:25:27.182542Z",
10 | "iopub.status.busy": "2022-11-05T08:25:27.182052Z",
11 | "iopub.status.idle": "2022-11-05T08:25:28.811001Z",
12 | "shell.execute_reply": "2022-11-05T08:25:28.809695Z"
13 | },
14 | "papermill": {
15 | "duration": 1.645588,
16 | "end_time": "2022-11-05T08:25:28.814117",
17 | "exception": false,
18 | "start_time": "2022-11-05T08:25:27.168529",
19 | "status": "completed"
20 | },
21 | "tags": []
22 | },
23 | "outputs": [],
24 | "source": [
25 | "import pandas as pd \n",
26 | "import numpy as np \n",
27 | "import matplotlib.pyplot as plt\n",
28 | "import seaborn as sns\n",
29 | "from sklearn.preprocessing import LabelEncoder\n",
30 | "from sklearn.linear_model import LinearRegression\n",
31 | "from sklearn.ensemble import RandomForestRegressor\n",
32 | "from sklearn.model_selection import train_test_split \n",
33 | "from sklearn.metrics import mean_squared_error,mean_absolute_percentage_error"
34 | ]
35 | },
36 | {
37 | "cell_type": "code",
38 | "execution_count": 4,
39 | "id": "c9020f95",
40 | "metadata": {
41 | "execution": {
42 | "iopub.execute_input": "2022-11-05T08:25:28.860843Z",
43 | "iopub.status.busy": "2022-11-05T08:25:28.859652Z",
44 | "iopub.status.idle": "2022-11-05T08:25:28.913453Z",
45 | "shell.execute_reply": "2022-11-05T08:25:28.912083Z"
46 | },
47 | "papermill": {
48 | "duration": 0.069995,
49 | "end_time": "2022-11-05T08:25:28.916626",
50 | "exception": false,
51 | "start_time": "2022-11-05T08:25:28.846631",
52 | "status": "completed"
53 | },
54 | "tags": []
55 | },
56 | "outputs": [],
57 | "source": [
58 | "data =pd.read_csv(\"D:\\House pricece\\data.csv\")"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": 5,
64 | "id": "819a0220",
65 | "metadata": {
66 | "execution": {
67 | "iopub.execute_input": "2022-11-05T08:25:28.958510Z",
68 | "iopub.status.busy": "2022-11-05T08:25:28.958043Z",
69 | "iopub.status.idle": "2022-11-05T08:25:28.994409Z",
70 | "shell.execute_reply": "2022-11-05T08:25:28.993136Z"
71 | },
72 | "papermill": {
73 | "duration": 0.051362,
74 | "end_time": "2022-11-05T08:25:28.997674",
75 | "exception": false,
76 | "start_time": "2022-11-05T08:25:28.946312",
77 | "status": "completed"
78 | },
79 | "tags": []
80 | },
81 | "outputs": [
82 | {
83 | "data": {
84 | "text/html": [
85 | "
\n",
86 | "\n",
99 | "
\n",
100 | " \n",
101 | " \n",
102 | " \n",
103 | " price \n",
104 | " bedrooms \n",
105 | " bathrooms \n",
106 | " sqft_living \n",
107 | " sqft_lot \n",
108 | " floors \n",
109 | " waterfront \n",
110 | " view \n",
111 | " condition \n",
112 | " sqft_above \n",
113 | " sqft_basement \n",
114 | " city \n",
115 | " \n",
116 | " \n",
117 | " \n",
118 | " \n",
119 | " 0 \n",
120 | " 313000.0 \n",
121 | " 3.0 \n",
122 | " 1.50 \n",
123 | " 1340 \n",
124 | " 7912 \n",
125 | " 1.5 \n",
126 | " 0 \n",
127 | " 0 \n",
128 | " 3 \n",
129 | " 1340 \n",
130 | " 0 \n",
131 | " Shoreline \n",
132 | " \n",
133 | " \n",
134 | " 1 \n",
135 | " 2384000.0 \n",
136 | " 5.0 \n",
137 | " 2.50 \n",
138 | " 3650 \n",
139 | " 9050 \n",
140 | " 2.0 \n",
141 | " 0 \n",
142 | " 4 \n",
143 | " 5 \n",
144 | " 3370 \n",
145 | " 280 \n",
146 | " Seattle \n",
147 | " \n",
148 | " \n",
149 | " 2 \n",
150 | " 342000.0 \n",
151 | " 3.0 \n",
152 | " 2.00 \n",
153 | " 1930 \n",
154 | " 11947 \n",
155 | " 1.0 \n",
156 | " 0 \n",
157 | " 0 \n",
158 | " 4 \n",
159 | " 1930 \n",
160 | " 0 \n",
161 | " Kent \n",
162 | " \n",
163 | " \n",
164 | " 3 \n",
165 | " 420000.0 \n",
166 | " 3.0 \n",
167 | " 2.25 \n",
168 | " 2000 \n",
169 | " 8030 \n",
170 | " 1.0 \n",
171 | " 0 \n",
172 | " 0 \n",
173 | " 4 \n",
174 | " 1000 \n",
175 | " 1000 \n",
176 | " Bellevue \n",
177 | " \n",
178 | " \n",
179 | " 4 \n",
180 | " 550000.0 \n",
181 | " 4.0 \n",
182 | " 2.50 \n",
183 | " 1940 \n",
184 | " 10500 \n",
185 | " 1.0 \n",
186 | " 0 \n",
187 | " 0 \n",
188 | " 4 \n",
189 | " 1140 \n",
190 | " 800 \n",
191 | " Redmond \n",
192 | " \n",
193 | " \n",
194 | "
\n",
195 | "
"
196 | ],
197 | "text/plain": [
198 | " price bedrooms bathrooms sqft_living sqft_lot floors waterfront \\\n",
199 | "0 313000.0 3.0 1.50 1340 7912 1.5 0 \n",
200 | "1 2384000.0 5.0 2.50 3650 9050 2.0 0 \n",
201 | "2 342000.0 3.0 2.00 1930 11947 1.0 0 \n",
202 | "3 420000.0 3.0 2.25 2000 8030 1.0 0 \n",
203 | "4 550000.0 4.0 2.50 1940 10500 1.0 0 \n",
204 | "\n",
205 | " view condition sqft_above sqft_basement city \n",
206 | "0 0 3 1340 0 Shoreline \n",
207 | "1 4 5 3370 280 Seattle \n",
208 | "2 0 4 1930 0 Kent \n",
209 | "3 0 4 1000 1000 Bellevue \n",
210 | "4 0 4 1140 800 Redmond "
211 | ]
212 | },
213 | "execution_count": 5,
214 | "metadata": {},
215 | "output_type": "execute_result"
216 | }
217 | ],
218 | "source": [
219 | "\n",
220 | "data = data.drop(['date','country',\"street\",\"statezip\",\"yr_built\",\"yr_renovated\"],axis=1)\n",
221 | "data.head()"
222 | ]
223 | },
224 | {
225 | "cell_type": "code",
226 | "execution_count": 6,
227 | "id": "87b54c71",
228 | "metadata": {
229 | "execution": {
230 | "iopub.execute_input": "2022-11-05T08:25:29.020509Z",
231 | "iopub.status.busy": "2022-11-05T08:25:29.019655Z",
232 | "iopub.status.idle": "2022-11-05T08:25:29.025233Z",
233 | "shell.execute_reply": "2022-11-05T08:25:29.023946Z"
234 | },
235 | "papermill": {
236 | "duration": 0.01951,
237 | "end_time": "2022-11-05T08:25:29.027633",
238 | "exception": false,
239 | "start_time": "2022-11-05T08:25:29.008123",
240 | "status": "completed"
241 | },
242 | "tags": []
243 | },
244 | "outputs": [],
245 | "source": [
246 | "le = LabelEncoder()"
247 | ]
248 | },
249 | {
250 | "cell_type": "code",
251 | "execution_count": 7,
252 | "id": "79e08a06",
253 | "metadata": {
254 | "execution": {
255 | "iopub.execute_input": "2022-11-05T08:25:29.050061Z",
256 | "iopub.status.busy": "2022-11-05T08:25:29.049622Z",
257 | "iopub.status.idle": "2022-11-05T08:25:29.058985Z",
258 | "shell.execute_reply": "2022-11-05T08:25:29.057952Z"
259 | },
260 | "papermill": {
261 | "duration": 0.023815,
262 | "end_time": "2022-11-05T08:25:29.061671",
263 | "exception": false,
264 | "start_time": "2022-11-05T08:25:29.037856",
265 | "status": "completed"
266 | },
267 | "tags": []
268 | },
269 | "outputs": [],
270 | "source": [
271 | "data['city_new'] = le.fit_transform(data['city'])\n"
272 | ]
273 | },
274 | {
275 | "cell_type": "code",
276 | "execution_count": 8,
277 | "id": "58495df7",
278 | "metadata": {
279 | "execution": {
280 | "iopub.execute_input": "2022-11-05T08:25:29.085329Z",
281 | "iopub.status.busy": "2022-11-05T08:25:29.084522Z",
282 | "iopub.status.idle": "2022-11-05T08:25:29.094941Z",
283 | "shell.execute_reply": "2022-11-05T08:25:29.093411Z"
284 | },
285 | "papermill": {
286 | "duration": 0.026067,
287 | "end_time": "2022-11-05T08:25:29.098176",
288 | "exception": false,
289 | "start_time": "2022-11-05T08:25:29.072109",
290 | "status": "completed"
291 | },
292 | "tags": []
293 | },
294 | "outputs": [],
295 | "source": [
296 | "cols = ['bedrooms',\"bathrooms\",\"floors\",\"price\"]\n",
297 | "\n",
298 | "for col in cols :\n",
299 | " data[col] = data[col].astype(int)\n",
300 | "\n",
301 | "# Because how can 1.50 bathroom exists"
302 | ]
303 | },
304 | {
305 | "cell_type": "code",
306 | "execution_count": 9,
307 | "id": "101ec19d",
308 | "metadata": {
309 | "execution": {
310 | "iopub.execute_input": "2022-11-05T08:25:29.120976Z",
311 | "iopub.status.busy": "2022-11-05T08:25:29.120502Z",
312 | "iopub.status.idle": "2022-11-05T08:25:29.136886Z",
313 | "shell.execute_reply": "2022-11-05T08:25:29.135439Z"
314 | },
315 | "papermill": {
316 | "duration": 0.031037,
317 | "end_time": "2022-11-05T08:25:29.139498",
318 | "exception": false,
319 | "start_time": "2022-11-05T08:25:29.108461",
320 | "status": "completed"
321 | },
322 | "tags": []
323 | },
324 | "outputs": [
325 | {
326 | "data": {
327 | "text/html": [
328 | "\n",
329 | "\n",
342 | "
\n",
343 | " \n",
344 | " \n",
345 | " \n",
346 | " price \n",
347 | " bedrooms \n",
348 | " bathrooms \n",
349 | " sqft_living \n",
350 | " sqft_lot \n",
351 | " floors \n",
352 | " waterfront \n",
353 | " view \n",
354 | " condition \n",
355 | " sqft_above \n",
356 | " sqft_basement \n",
357 | " city \n",
358 | " city_new \n",
359 | " \n",
360 | " \n",
361 | " \n",
362 | " \n",
363 | " 0 \n",
364 | " 313000 \n",
365 | " 3 \n",
366 | " 1 \n",
367 | " 1340 \n",
368 | " 7912 \n",
369 | " 1 \n",
370 | " 0 \n",
371 | " 0 \n",
372 | " 3 \n",
373 | " 1340 \n",
374 | " 0 \n",
375 | " Shoreline \n",
376 | " 36 \n",
377 | " \n",
378 | " \n",
379 | " 1 \n",
380 | " 2384000 \n",
381 | " 5 \n",
382 | " 2 \n",
383 | " 3650 \n",
384 | " 9050 \n",
385 | " 2 \n",
386 | " 0 \n",
387 | " 4 \n",
388 | " 5 \n",
389 | " 3370 \n",
390 | " 280 \n",
391 | " Seattle \n",
392 | " 35 \n",
393 | " \n",
394 | " \n",
395 | " 2 \n",
396 | " 342000 \n",
397 | " 3 \n",
398 | " 2 \n",
399 | " 1930 \n",
400 | " 11947 \n",
401 | " 1 \n",
402 | " 0 \n",
403 | " 0 \n",
404 | " 4 \n",
405 | " 1930 \n",
406 | " 0 \n",
407 | " Kent \n",
408 | " 18 \n",
409 | " \n",
410 | " \n",
411 | " 3 \n",
412 | " 420000 \n",
413 | " 3 \n",
414 | " 2 \n",
415 | " 2000 \n",
416 | " 8030 \n",
417 | " 1 \n",
418 | " 0 \n",
419 | " 0 \n",
420 | " 4 \n",
421 | " 1000 \n",
422 | " 1000 \n",
423 | " Bellevue \n",
424 | " 3 \n",
425 | " \n",
426 | " \n",
427 | " 4 \n",
428 | " 550000 \n",
429 | " 4 \n",
430 | " 2 \n",
431 | " 1940 \n",
432 | " 10500 \n",
433 | " 1 \n",
434 | " 0 \n",
435 | " 0 \n",
436 | " 4 \n",
437 | " 1140 \n",
438 | " 800 \n",
439 | " Redmond \n",
440 | " 31 \n",
441 | " \n",
442 | " \n",
443 | "
\n",
444 | "
"
445 | ],
446 | "text/plain": [
447 | " price bedrooms bathrooms sqft_living sqft_lot floors waterfront \\\n",
448 | "0 313000 3 1 1340 7912 1 0 \n",
449 | "1 2384000 5 2 3650 9050 2 0 \n",
450 | "2 342000 3 2 1930 11947 1 0 \n",
451 | "3 420000 3 2 2000 8030 1 0 \n",
452 | "4 550000 4 2 1940 10500 1 0 \n",
453 | "\n",
454 | " view condition sqft_above sqft_basement city city_new \n",
455 | "0 0 3 1340 0 Shoreline 36 \n",
456 | "1 4 5 3370 280 Seattle 35 \n",
457 | "2 0 4 1930 0 Kent 18 \n",
458 | "3 0 4 1000 1000 Bellevue 3 \n",
459 | "4 0 4 1140 800 Redmond 31 "
460 | ]
461 | },
462 | "execution_count": 9,
463 | "metadata": {},
464 | "output_type": "execute_result"
465 | }
466 | ],
467 | "source": [
468 | "data.head()"
469 | ]
470 | },
471 | {
472 | "cell_type": "code",
473 | "execution_count": 10,
474 | "id": "ea52dc4b",
475 | "metadata": {
476 | "execution": {
477 | "iopub.execute_input": "2022-11-05T08:25:29.479804Z",
478 | "iopub.status.busy": "2022-11-05T08:25:29.478912Z",
479 | "iopub.status.idle": "2022-11-05T08:25:29.695123Z",
480 | "shell.execute_reply": "2022-11-05T08:25:29.693698Z"
481 | },
482 | "papermill": {
483 | "duration": 0.231745,
484 | "end_time": "2022-11-05T08:25:29.698138",
485 | "exception": false,
486 | "start_time": "2022-11-05T08:25:29.466393",
487 | "status": "completed"
488 | },
489 | "tags": []
490 | },
491 | "outputs": [
492 | {
493 | "data": {
494 | "text/plain": [
495 | ""
496 | ]
497 | },
498 | "execution_count": 10,
499 | "metadata": {},
500 | "output_type": "execute_result"
501 | },
502 | {
503 | "data": {
504 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG0CAYAAADTmjjeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsCklEQVR4nO3df1iUdb7/8dcAgvhjBlFh5PhjKVsVU9us1TmWlbKgsV55Yjv9cJXS9OQB9xitcnFtmfZjKU9mZqVtncKuo9/KNmvTk4qoeDJMY6PUjCtd95KuGPBkMEEKCPf3j/Pl/jppP0TgHvw8H9c119Xc94d73rfTdfG8Zu4ZXJZlWQIAADBYmNMDAAAAOI0gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMZzNIhWrVqlkSNHyu12y+12y+fz6d1337X3nzp1SpmZmerdu7d69Oih9PR0VVZWBh3j2LFjSktLU7du3RQXF6cFCxbo9OnTQWt27typK6+8UlFRURo8eLDy8/M74vQAAEAnEeHkg/fv31+PPfaYLrvsMlmWpTVr1uimm27SRx99pOHDh+vee+/Vpk2btH79enk8HmVlZenmm2/W7t27JUlNTU1KS0uT1+vV+++/r4qKCs2YMUNdunTRH//4R0nS0aNHlZaWpnvuuUdr165VYWGh7r77bvXr10+pqak/ac7m5mZ9+eWX6tmzp1wuV7v9ewAAgLZjWZa++eYbJSQkKCzsR14DskJMr169rBdffNGqrq62unTpYq1fv97ed+jQIUuSVVxcbFmWZf3Xf/2XFRYWZvn9fnvNqlWrLLfbbdXX11uWZVkLFy60hg8fHvQYt956q5WamvqTZyovL7ckcePGjRs3btw64a28vPxHf9c7+grRmZqamrR+/XrV1dXJ5/OppKREjY2NSk5OttcMHTpUAwcOVHFxscaOHavi4mKNGDFC8fHx9prU1FTNnTtXBw8e1C9+8QsVFxcHHaNlzfz58793lvr6etXX19v3LcuSJJWXl8vtdrfRGQMAgPYUCAQ0YMAA9ezZ80fXOh5E+/fvl8/n06lTp9SjRw9t2LBBSUlJKi0tVWRkpGJiYoLWx8fHy+/3S5L8fn9QDLXsb9n3Q2sCgYBOnjyp6Ojos2bKy8vTkiVLztrecq0TAADoPH7K5S6Of8psyJAhKi0t1QcffKC5c+cqIyNDn376qaMz5ebmqqamxr6Vl5c7Og8AAGhfjr9CFBkZqcGDB0uSRo8erX379mnFihW69dZb1dDQoOrq6qBXiSorK+X1eiVJXq9Xe/fuDTpey6fQzlzz3U+mVVZWyu12n/PVIUmKiopSVFRUm5wfAAAIfY6/QvRdzc3Nqq+v1+jRo9WlSxcVFhba+8rKynTs2DH5fD5Jks/n0/79+1VVVWWvKSgokNvtVlJSkr3mzGO0rGk5BgAAgKOvEOXm5mry5MkaOHCgvvnmG61bt047d+7Uli1b5PF4NGvWLGVnZys2NlZut1vz5s2Tz+fT2LFjJUkpKSlKSkrS9OnTtXTpUvn9ft1///3KzMy0X+G555579Mwzz2jhwoWaOXOmtm/frtdff12bNm1y8tQBAEAIcTSIqqqqNGPGDFVUVMjj8WjkyJHasmWLfvWrX0mSli9frrCwMKWnp6u+vl6pqal67rnn7J8PDw/Xxo0bNXfuXPl8PnXv3l0ZGRl66KGH7DWJiYnatGmT7r33Xq1YsUL9+/fXiy+++JO/gwgAAFz8XFbLZ8rxvQKBgDwej2pqaviUGQAAncT5/P4OuWuIAAAAOhpBBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADCe43/tHoAZxq0c5/QIndbuebudHgG46PEKEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeI4GUV5enq6++mr17NlTcXFxmjp1qsrKyoLWXH/99XK5XEG3e+65J2jNsWPHlJaWpm7duikuLk4LFizQ6dOng9bs3LlTV155paKiojR48GDl5+e39+kBAIBOwtEgKioqUmZmpvbs2aOCggI1NjYqJSVFdXV1Qetmz56tiooK+7Z06VJ7X1NTk9LS0tTQ0KD3339fa9asUX5+vhYtWmSvOXr0qNLS0nTDDTeotLRU8+fP1913360tW7Z02LkCAIDQFeHkg2/evDnofn5+vuLi4lRSUqLx48fb27t16yav13vOY2zdulWffvqptm3bpvj4eF1xxRV6+OGHlZOTo8WLFysyMlKrV69WYmKili1bJkkaNmyY3nvvPS1fvlypqantd4IAAKBTCKlriGpqaiRJsbGxQdvXrl2rPn366PLLL1dubq6+/fZbe19xcbFGjBih+Ph4e1tqaqoCgYAOHjxor0lOTg46ZmpqqoqLi9vrVAAAQCfi6CtEZ2pubtb8+fM1btw4XX755fb2O+64Q4MGDVJCQoI++eQT5eTkqKysTG+++aYkye/3B8WQJPu+3+//wTWBQEAnT55UdHR00L76+nrV19fb9wOBQNudKAAACDkhE0SZmZk6cOCA3nvvvaDtc+bMsf97xIgR6tevnyZOnKgjR47o0ksvbZdZ8vLytGTJknY5NgAACD0h8ZZZVlaWNm7cqB07dqh///4/uHbMmDGSpMOHD0uSvF6vKisrg9a03G+57uj71rjd7rNeHZKk3Nxc1dTU2Lfy8vLWnRgAAOgUHA0iy7KUlZWlDRs2aPv27UpMTPzRnyktLZUk9evXT5Lk8/m0f/9+VVVV2WsKCgrkdruVlJRkryksLAw6TkFBgXw+3zkfIyoqSm63O+gGAAAuXo4GUWZmpv7zP/9T69atU8+ePeX3++X3+3Xy5ElJ0pEjR/Twww+rpKREf//73/WXv/xFM2bM0Pjx4zVy5EhJUkpKipKSkjR9+nR9/PHH2rJli+6//35lZmYqKipKknTPPffob3/7mxYuXKjPPvtMzz33nF5//XXde++9jp07AAAIHY4G0apVq1RTU6Prr79e/fr1s2+vvfaaJCkyMlLbtm1TSkqKhg4dqvvuu0/p6el655137GOEh4dr48aNCg8Pl8/n029/+1vNmDFDDz30kL0mMTFRmzZtUkFBgUaNGqVly5bpxRdf5CP3AABAkuSyLMtyeohQFwgE5PF4VFNTw9tnQCuNWznO6RE6rd3zdjs9AtApnc/v75C4qBoAAMBJBBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADCeo0GUl5enq6++Wj179lRcXJymTp2qsrKyoDWnTp1SZmamevfurR49eig9PV2VlZVBa44dO6a0tDR169ZNcXFxWrBggU6fPh20ZufOnbryyisVFRWlwYMHKz8/v71PDwAAdBKOBlFRUZEyMzO1Z88eFRQUqLGxUSkpKaqrq7PX3HvvvXrnnXe0fv16FRUV6csvv9TNN99s729qalJaWpoaGhr0/vvva82aNcrPz9eiRYvsNUePHlVaWppuuOEGlZaWav78+br77ru1ZcuWDj1fAAAQmlyWZVlOD9Hi+PHjiouLU1FRkcaPH6+amhr17dtX69at029+8xtJ0meffaZhw4apuLhYY8eO1bvvvqtf//rX+vLLLxUfHy9JWr16tXJycnT8+HFFRkYqJydHmzZt0oEDB+zHuu2221RdXa3Nmzf/6FyBQEAej0c1NTVyu93tc/LARW7cynFOj9Bp7Z632+kRgE7pfH5/h9Q1RDU1NZKk2NhYSVJJSYkaGxuVnJxsrxk6dKgGDhyo4uJiSVJxcbFGjBhhx5AkpaamKhAI6ODBg/aaM4/RsqblGAAAwGwRTg/Qorm5WfPnz9e4ceN0+eWXS5L8fr8iIyMVExMTtDY+Pl5+v99ec2YMtexv2fdDawKBgE6ePKno6OigffX19aqvr7fvBwKBCz9BAAAQskLmFaLMzEwdOHBAr776qtOjKC8vTx6Px74NGDDA6ZEAAEA7CokgysrK0saNG7Vjxw7179/f3u71etXQ0KDq6uqg9ZWVlfJ6vfaa737qrOX+j61xu91nvTokSbm5uaqpqbFv5eXlF3yOAAAgdDkaRJZlKSsrSxs2bND27duVmJgYtH/06NHq0qWLCgsL7W1lZWU6duyYfD6fJMnn82n//v2qqqqy1xQUFMjtdispKclec+YxWta0HOO7oqKi5Ha7g24AAODi5eg1RJmZmVq3bp3efvtt9ezZ077mx+PxKDo6Wh6PR7NmzVJ2drZiY2Pldrs1b948+Xw+jR07VpKUkpKipKQkTZ8+XUuXLpXf79f999+vzMxMRUVFSZLuuecePfPMM1q4cKFmzpyp7du36/XXX9emTZscO3cAABA6HH2FaNWqVaqpqdH111+vfv362bfXXnvNXrN8+XL9+te/Vnp6usaPHy+v16s333zT3h8eHq6NGzcqPDxcPp9Pv/3tbzVjxgw99NBD9prExERt2rRJBQUFGjVqlJYtW6YXX3xRqampHXq+AAAgNIXU9xCFKr6HCLhwfA9R6/E9REDrdNrvIQIAAHACQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADBeq4JowoQJqq6uPmt7IBDQhAkTLnQmAACADtWqINq5c6caGhrO2n7q1Cn993//9wUPBQAA0JEizmfxJ598Yv/3p59+Kr/fb99vamrS5s2b9Q//8A9tNx0AAEAHOK8guuKKK+RyueRyuc751lh0dLRWrlzZZsMBAAB0hPMKoqNHj8qyLF1yySXau3ev+vbta++LjIxUXFycwsPD23xIAACA9nReQTRo0CBJUnNzc7sMAwAA4ITzCqIzff7559qxY4eqqqrOCqRFixZd8GAAAAAdpVVB9MILL2ju3Lnq06ePvF6vXC6Xvc/lchFEAACgU2lVED3yyCN69NFHlZOT09bzAAAAdLhWfQ/R119/rVtuuaWtZwEAAHBEq4Lolltu0datW9t6FgAAAEe06i2zwYMH64EHHtCePXs0YsQIdenSJWj/7373uzYZDgAAoCO4LMuyzveHEhMTv/+ALpf+9re/XdBQoSYQCMjj8aimpkZut9vpcYBOadzKcU6P0Gntnrfb6RGATul8fn+36hWio0ePtmowAACAUNSqa4jayq5duzRlyhQlJCTI5XLprbfeCtp/55132n8qpOU2adKkoDUnTpzQtGnT5Ha7FRMTo1mzZqm2tjZozSeffKJrr71WXbt21YABA7R06dL2PjUAANCJtOoVopkzZ/7g/pdeeuknHaeurk6jRo3SzJkzdfPNN59zzaRJk/Tyyy/b96OiooL2T5s2TRUVFSooKFBjY6PuuusuzZkzR+vWrZP0vy+XpaSkKDk5WatXr9b+/fs1c+ZMxcTEaM6cOT9pTgAAcHFrVRB9/fXXQfcbGxt14MABVVdXn/OPvn6fyZMna/LkyT+4JioqSl6v95z7Dh06pM2bN2vfvn266qqrJEkrV67UjTfeqCeeeEIJCQlau3atGhoa9NJLLykyMlLDhw9XaWmpnnzySYIIAABIamUQbdiw4axtzc3Nmjt3ri699NILHupMO3fuVFxcnHr16qUJEybokUceUe/evSVJxcXFiomJsWNIkpKTkxUWFqYPPvhA//RP/6Ti4mKNHz9ekZGR9prU1FQ9/vjj+vrrr9WrV6+zHrO+vl719fX2/UAg0KbnBAAAQkubXUMUFham7OxsLV++vK0OqUmTJumVV15RYWGhHn/8cRUVFWny5MlqamqSJPn9fsXFxQX9TEREhGJjY+X3++018fHxQWta7res+a68vDx5PB77NmDAgDY7JwAAEHpa/cddz+XIkSM6ffp0mx3vtttus/97xIgRGjlypC699FLt3LlTEydObLPH+a7c3FxlZ2fb9wOBAFEEAMBFrFVBdGYsSJJlWaqoqNCmTZuUkZHRJoOdyyWXXKI+ffro8OHDmjhxorxer6qqqoLWnD59WidOnLCvO/J6vaqsrAxa03L/+65NioqKOuvibQAAcPFqVRB99NFHQffDwsLUt29fLVu27Ec/gXYhvvjiC3311Vfq16+fJMnn86m6ulolJSUaPXq0JGn79u1qbm7WmDFj7DV/+MMf1NjYaH+jdkFBgYYMGXLO64cAAIB5WhVEO3bsaJMHr62t1eHDh+37R48eVWlpqWJjYxUbG6slS5YoPT1dXq9XR44c0cKFCzV48GClpqZKkoYNG6ZJkyZp9uzZWr16tRobG5WVlaXbbrtNCQkJkqQ77rhDS5Ys0axZs5STk6MDBw5oxYoVbXqtEwAA6Nwu6Bqi48ePq6ysTJI0ZMgQ9e3b97x+/sMPP9QNN9xg3295Ky4jI0OrVq3SJ598ojVr1qi6uloJCQlKSUnRww8/HPR21tq1a5WVlaWJEycqLCxM6enpevrpp+39Ho9HW7duVWZmpkaPHq0+ffpo0aJFfOQeAADYWvW3zOrq6jRv3jy98soram5uliSFh4drxowZWrlypbp169bmgzqJv2UGXDj+llnr8bfMgNY5n9/frfrYfXZ2toqKivTOO++ourpa1dXVevvtt1VUVKT77ruvVUMDAAA4pVVvmf35z3/WG2+8oeuvv97eduONNyo6Olr//M//rFWrVrXVfAAAAO2uVa8Qffvtt2d92aEkxcXF6dtvv73goQAAADpSq4LI5/PpwQcf1KlTp+xtJ0+e1JIlS+Tz+dpsOAAAgI7QqrfMnnrqKU2aNEn9+/fXqFGjJEkff/yxoqKitHXr1jYdEAAAoL21KohGjBihzz//XGvXrtVnn30mSbr99ts1bdo0RUdHt+mAAAAA7a1VQZSXl6f4+HjNnj07aPtLL72k48ePKycnp02GAwAA6Aituobo+eef19ChQ8/aPnz4cK1evfqChwIAAOhIrQoiv99v/z2xM/Xt21cVFRUXPBQAAEBHalUQDRgwQLt3n/3Nqbt377b/hhgAAEBn0apriGbPnq358+ersbFREyZMkCQVFhZq4cKFfFM1AADodFoVRAsWLNBXX32lf/3Xf1VDQ4MkqWvXrsrJyVFubm6bDggAANDeWhVELpdLjz/+uB544AEdOnRI0dHRuuyyy4L+Cj0AAEBn0aogatGjRw9dffXVbTULAACAI1p1UTUAAMDFhCACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGO+CvqkaAND5FI2/zukROq3rdhU5PQLaCa8QAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeI4G0a5duzRlyhQlJCTI5XLprbfeCtpvWZYWLVqkfv36KTo6WsnJyfr888+D1pw4cULTpk2T2+1WTEyMZs2apdra2qA1n3zyia699lp17dpVAwYM0NKlS9v71AAAQCfiaBDV1dVp1KhRevbZZ8+5f+nSpXr66ae1evVqffDBB+revbtSU1N16tQpe820adN08OBBFRQUaOPGjdq1a5fmzJlj7w8EAkpJSdGgQYNUUlKif//3f9fixYv1pz/9qd3PDwAAdA4RTj745MmTNXny5HPusyxLTz31lO6//37ddNNNkqRXXnlF8fHxeuutt3Tbbbfp0KFD2rx5s/bt26errrpKkrRy5UrdeOONeuKJJ5SQkKC1a9eqoaFBL730kiIjIzV8+HCVlpbqySefDAonAABgrpC9hujo0aPy+/1KTk62t3k8Ho0ZM0bFxcWSpOLiYsXExNgxJEnJyckKCwvTBx98YK8ZP368IiMj7TWpqakqKyvT119/fc7Hrq+vVyAQCLoBAICLV8gGkd/vlyTFx8cHbY+Pj7f3+f1+xcXFBe2PiIhQbGxs0JpzHePMx/iuvLw8eTwe+zZgwIALPyEAABCyQjaInJSbm6uamhr7Vl5e7vRIAACgHYVsEHm9XklSZWVl0PbKykp7n9frVVVVVdD+06dP68SJE0FrznWMMx/ju6KiouR2u4NuAADg4hWyQZSYmCiv16vCwkJ7WyAQ0AcffCCfzydJ8vl8qq6uVklJib1m+/btam5u1pgxY+w1u3btUmNjo72moKBAQ4YMUa9evTrobAAAQChzNIhqa2tVWlqq0tJSSf97IXVpaamOHTsml8ul+fPn65FHHtFf/vIX7d+/XzNmzFBCQoKmTp0qSRo2bJgmTZqk2bNna+/evdq9e7eysrJ02223KSEhQZJ0xx13KDIyUrNmzdLBgwf12muvacWKFcrOznborAEAQKhx9GP3H374oW644Qb7fkukZGRkKD8/XwsXLlRdXZ3mzJmj6upqXXPNNdq8ebO6du1q/8zatWuVlZWliRMnKiwsTOnp6Xr66aft/R6PR1u3blVmZqZGjx6tPn36aNGiRXzkHgAA2FyWZVlODxHqAoGAPB6PampquJ4IaKVxK8c5PUKntXve7jY9XtH469r0eCa5bleR0yPgPJzP7++QvYYIAACgoxBEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeCEdRIsXL5bL5Qq6DR061N5/6tQpZWZmqnfv3urRo4fS09NVWVkZdIxjx44pLS1N3bp1U1xcnBYsWKDTp0939KkAAIAQFuH0AD9m+PDh2rZtm30/IuL/j3zvvfdq06ZNWr9+vTwej7KysnTzzTdr9+7dkqSmpialpaXJ6/Xq/fffV0VFhWbMmKEuXbroj3/8Y4efCwAACE0hH0QRERHyer1nba+pqdF//Md/aN26dZowYYIk6eWXX9awYcO0Z88ejR07Vlu3btWnn36qbdu2KT4+XldccYUefvhh5eTkaPHixYqMjOzo0wEAACEopN8yk6TPP/9cCQkJuuSSSzRt2jQdO3ZMklRSUqLGxkYlJyfba4cOHaqBAwequLhYklRcXKwRI0YoPj7eXpOamqpAIKCDBw927IkAAICQFdKvEI0ZM0b5+fkaMmSIKioqtGTJEl177bU6cOCA/H6/IiMjFRMTE/Qz8fHx8vv9kiS/3x8UQy37W/Z9n/r6etXX19v3A4FAG50RAAAIRSEdRJMnT7b/e+TIkRozZowGDRqk119/XdHR0e32uHl5eVqyZEm7HR8AAISWkH/L7EwxMTH6+c9/rsOHD8vr9aqhoUHV1dVBayorK+1rjrxe71mfOmu5f67rklrk5uaqpqbGvpWXl7ftiQAAgJDSqYKotrZWR44cUb9+/TR69Gh16dJFhYWF9v6ysjIdO3ZMPp9PkuTz+bR//35VVVXZawoKCuR2u5WUlPS9jxMVFSW32x10AwAAF6+Qfsvs97//vaZMmaJBgwbpyy+/1IMPPqjw8HDdfvvt8ng8mjVrlrKzsxUbGyu326158+bJ5/Np7NixkqSUlBQlJSVp+vTpWrp0qfx+v+6//35lZmYqKirK4bMDAAChIqSD6IsvvtDtt9+ur776Sn379tU111yjPXv2qG/fvpKk5cuXKywsTOnp6aqvr1dqaqqee+45++fDw8O1ceNGzZ07Vz6fT927d1dGRoYeeughp04JAACEIJdlWZbTQ4S6QCAgj8ejmpoa3j4DWmncynFOj9Bp7Z63u02PVzT+ujY9nkmu21Xk9Ag4D+fz+7tTXUMEAADQHkL6LTMAAC5mz9z3jtMjdFpZy6a06fF4hQgAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8o4Lo2Wef1c9+9jN17dpVY8aM0d69e50eCQAAhIAIpwfoKK+99pqys7O1evVqjRkzRk899ZRSU1NVVlamuLg4p8dDOzn20AinR+i0Bi7a7/QIANBhjHmF6Mknn9Ts2bN11113KSkpSatXr1a3bt300ksvOT0aAABwmBFB1NDQoJKSEiUnJ9vbwsLClJycrOLiYgcnAwAAocCIt8z+53/+R01NTYqPjw/aHh8fr88+++ys9fX19aqvr7fv19TUSJICgcCPPtb4+//PBU5rtl2P3N6mx/vmVFObHs8kP+X/9/Nx+uTpNj2eSdr6uag7zXPRWm39XJys/7ZNj2eSn/JctKyxLOtH1xoRROcrLy9PS5YsOWv7gAEDHJjGLJ6V9zg9AlrkeZyeAP+PJ4fnImR4eC5CxcJnf/rab775Rp4fee6MCKI+ffooPDxclZWVQdsrKyvl9XrPWp+bm6vs7Gz7fnNzs06cOKHevXvL5XK1+7ztJRAIaMCAASovL5fb7XZ6HKPxXIQOnovQwvMROi6G58KyLH3zzTdKSEj40bVGBFFkZKRGjx6twsJCTZ06VdL/Rk5hYaGysrLOWh8VFaWoqKigbTExMR0wacdwu92d9n/uiw3PRejguQgtPB+ho7M/Fz/2ylALI4JIkrKzs5WRkaGrrrpKv/zlL/XUU0+prq5Od911l9OjAQAAhxkTRLfeequOHz+uRYsWye/364orrtDmzZvPutAaAACYx5ggkqSsrKxzvkVmiqioKD344INnvR2IjsdzETp4LkILz0foMO25cFk/5bNoAAAAFzEjvpgRAADghxBEAADAeAQRAAAwHkEEAACMRxAZYNeuXZoyZYoSEhLkcrn01ltvOT2SsfLy8nT11VerZ8+eiouL09SpU1VWVub0WEZatWqVRo4caX/pnM/n07vvvuv0WJD02GOPyeVyaf78+U6PYpzFixfL5XIF3YYOHer0WB2CIDJAXV2dRo0apWefPY8//IJ2UVRUpMzMTO3Zs0cFBQVqbGxUSkqK6urqnB7NOP3799djjz2mkpISffjhh5owYYJuuukmHTx40OnRjLZv3z49//zzGjlypNOjGGv48OGqqKiwb++9957TI3UIo76HyFSTJ0/W5MmTnR4DkjZv3hx0Pz8/X3FxcSopKdH48eMdmspMU6ZMCbr/6KOPatWqVdqzZ4+GDx/u0FRmq62t1bRp0/TCCy/okUcecXocY0VERJzz73xe7HiFCHBQTU2NJCk2NtbhSczW1NSkV199VXV1dfL5fE6PY6zMzEylpaUpOTnZ6VGM9vnnnyshIUGXXHKJpk2bpmPHjjk9UofgFSLAIc3NzZo/f77GjRunyy+/3OlxjLR//375fD6dOnVKPXr00IYNG5SUlOT0WEZ69dVX9de//lX79u1zehSjjRkzRvn5+RoyZIgqKiq0ZMkSXXvttTpw4IB69uzp9HjtiiACHJKZmakDBw4Y8/58KBoyZIhKS0tVU1OjN954QxkZGSoqKiKKOlh5ebn+7d/+TQUFBeratavT4xjtzMsrRo4cqTFjxmjQoEF6/fXXNWvWLAcna38EEeCArKwsbdy4Ubt27VL//v2dHsdYkZGRGjx4sCRp9OjR2rdvn1asWKHnn3/e4cnMUlJSoqqqKl155ZX2tqamJu3atUvPPPOM6uvrFR4e7uCE5oqJidHPf/5zHT582OlR2h1BBHQgy7I0b948bdiwQTt37lRiYqLTI+EMzc3Nqq+vd3oM40ycOFH79+8P2nbXXXdp6NChysnJIYYcVFtbqyNHjmj69OlOj9LuCCID1NbWBtX90aNHVVpaqtjYWA0cONDBycyTmZmpdevW6e2331bPnj3l9/slSR6PR9HR0Q5PZ5bc3FxNnjxZAwcO1DfffKN169Zp586d2rJli9OjGadnz55nXUfXvXt39e7dm+vrOtjvf/97TZkyRYMGDdKXX36pBx98UOHh4br99tudHq3dEUQG+PDDD3XDDTfY97OzsyVJGRkZys/Pd2gqM61atUqSdP311wdtf/nll3XnnXd2/EAGq6qq0owZM1RRUSGPx6ORI0dqy5Yt+tWvfuX0aIBjvvjiC91+++366quv1LdvX11zzTXas2eP+vbt6/Ro7c5lWZbl9BAAAABO4nuIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAJgtJ/97Gd66qmn7Psul0tvvfXWD/7MnXfeqalTp7brXAA6Ft9UDQBnqKioUK9evSRJf//735WYmKiPPvpIV1xxhb1mxYoV4jttgYsLQQQAZ/B6vT+6xuPxdMAkADoSb5kBCBnNzc1aunSpBg8erKioKA0cOFCPPvqoJGn//v2aMGGCoqOj1bt3b82ZM0e1tbX2z7a8jfXEE0+oX79+6t27tzIzM9XY2Givqaqq0pQpUxQdHa3ExEStXbv2rBnOfMssMTFRkvSLX/xCLpfL/ht0333LrL6+Xr/73e8UFxenrl276pprrtG+ffvs/Tt37pTL5VJhYaGuuuoqdevWTf/4j/+osrKytvqnA3CBCCIAISM3N1ePPfaYHnjgAX366adat26d4uPjVVdXp9TUVPXq1Uv79u3T+vXrtW3bNmVlZQX9/I4dO3TkyBHt2LFDa9asUX5+ftAfML7zzjtVXl6uHTt26I033tBzzz2nqqqq751n7969kqRt27apoqJCb7755jnXLVy4UH/+85+1Zs0a/fWvf9XgwYOVmpqqEydOBK37wx/+oGXLlunDDz9URESEZs6c2cp/KQBtzgKAEBAIBKyoqCjrhRdeOGvfn/70J6tXr15WbW2tvW3Tpk1WWFiY5ff7LcuyrIyMDGvQoEHW6dOn7TW33HKLdeutt1qWZVllZWWWJGvv3r32/kOHDlmSrOXLl9vbJFkbNmywLMuyjh49akmyPvroo6B5MjIyrJtuusmyLMuqra21unTpYq1du9be39DQYCUkJFhLly61LMuyduzYYUmytm3bFjS/JOvkyZPn8a8EoL3wChGAkHDo0CHV19dr4sSJ59w3atQode/e3d42btw4NTc3B73tNHz4cIWHh9v3+/XrZ78CdOjQIUVERGj06NH2/qFDhyomJuaC5j5y5IgaGxs1btw4e1uXLl30y1/+UocOHQpaO3LkyKDZJP3gK1QAOg5BBCAkREdHX/AxunTpEnTf5XKpubn5go/bVs6cz+VySVJIzQeYjCACEBIuu+wyRUdHq7Cw8Kx9w4YN08cff6y6ujp72+7duxUWFqYhQ4b8pOMPHTpUp0+fVklJib2trKxM1dXV3/szkZGRkqSmpqbvXXPppZcqMjJSu3fvtrc1NjZq3759SkpK+kmzAXAeH7sHEBK6du2qnJwcLVy4UJGRkRo3bpyOHz+ugwcPatq0aXrwwQeVkZGhxYsX6/jx45o3b56mT5+u+Pj4n3T8IUOGaNKkSfqXf/kXrVq1ShEREZo/f/4PvjIVFxen6Ohobd68Wf3791fXrl3P+sh99+7dNXfuXC1YsECxsbEaOHCgli5dqm+//VazZs26oH8TAB2HV4gAhIwHHnhA9913nxYtWqRhw4bp1ltvVVVVlbp166YtW7boxIkTuvrqq/Wb3/xGEydO1DPPPHNex3/55ZeVkJCg6667TjfffLPmzJmjuLi4710fERGhp59+Ws8//7wSEhJ00003nXPdY489pvT0dE2fPl1XXnmlDh8+rC1btthf8Agg9Lksi69bBQAAZuMVIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPH+LzgpuuGOqUwfAAAAAElFTkSuQmCC",
505 | "text/plain": [
506 | ""
507 | ]
508 | },
509 | "metadata": {},
510 | "output_type": "display_data"
511 | }
512 | ],
513 | "source": [
514 | "sns.countplot(data=data,x=data['condition'])"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 11,
520 | "id": "41e4d100",
521 | "metadata": {
522 | "execution": {
523 | "iopub.execute_input": "2022-11-05T08:25:30.328068Z",
524 | "iopub.status.busy": "2022-11-05T08:25:30.327436Z",
525 | "iopub.status.idle": "2022-11-05T08:25:30.337400Z",
526 | "shell.execute_reply": "2022-11-05T08:25:30.336508Z"
527 | },
528 | "papermill": {
529 | "duration": 0.025507,
530 | "end_time": "2022-11-05T08:25:30.339545",
531 | "exception": false,
532 | "start_time": "2022-11-05T08:25:30.314038",
533 | "status": "completed"
534 | },
535 | "tags": []
536 | },
537 | "outputs": [
538 | {
539 | "data": {
540 | "text/plain": [
541 | "city\n",
542 | "Seattle 1573\n",
543 | "Renton 293\n",
544 | "Bellevue 286\n",
545 | "Redmond 235\n",
546 | "Issaquah 187\n",
547 | "Kirkland 187\n",
548 | "Kent 185\n",
549 | "Auburn 176\n",
550 | "Sammamish 175\n",
551 | "Federal Way 148\n",
552 | "Shoreline 123\n",
553 | "Woodinville 115\n",
554 | "Maple Valley 96\n",
555 | "Mercer Island 86\n",
556 | "Burien 74\n",
557 | "Snoqualmie 71\n",
558 | "Kenmore 66\n",
559 | "Des Moines 58\n",
560 | "North Bend 50\n",
561 | "Covington 43\n",
562 | "Duvall 42\n",
563 | "Lake Forest Park 36\n",
564 | "Bothell 33\n",
565 | "Newcastle 33\n",
566 | "SeaTac 29\n",
567 | "Tukwila 29\n",
568 | "Vashon 29\n",
569 | "Enumclaw 28\n",
570 | "Carnation 22\n",
571 | "Normandy Park 18\n",
572 | "Clyde Hill 11\n",
573 | "Medina 11\n",
574 | "Fall City 11\n",
575 | "Black Diamond 9\n",
576 | "Ravensdale 7\n",
577 | "Pacific 6\n",
578 | "Algona 5\n",
579 | "Yarrow Point 4\n",
580 | "Skykomish 3\n",
581 | "Preston 2\n",
582 | "Milton 2\n",
583 | "Inglewood-Finn Hill 1\n",
584 | "Snoqualmie Pass 1\n",
585 | "Beaux Arts Village 1\n",
586 | "Name: count, dtype: int64"
587 | ]
588 | },
589 | "execution_count": 11,
590 | "metadata": {},
591 | "output_type": "execute_result"
592 | }
593 | ],
594 | "source": [
595 | "data['city'].value_counts()"
596 | ]
597 | },
598 | {
599 | "cell_type": "code",
600 | "execution_count": 12,
601 | "id": "8f160844",
602 | "metadata": {
603 | "execution": {
604 | "iopub.execute_input": "2022-11-05T08:25:30.365700Z",
605 | "iopub.status.busy": "2022-11-05T08:25:30.365038Z",
606 | "iopub.status.idle": "2022-11-05T08:25:30.602652Z",
607 | "shell.execute_reply": "2022-11-05T08:25:30.601799Z"
608 | },
609 | "papermill": {
610 | "duration": 0.253522,
611 | "end_time": "2022-11-05T08:25:30.605014",
612 | "exception": false,
613 | "start_time": "2022-11-05T08:25:30.351492",
614 | "status": "completed"
615 | },
616 | "tags": []
617 | },
618 | "outputs": [
619 | {
620 | "data": {
621 | "text/plain": [
622 | ""
623 | ]
624 | },
625 | "execution_count": 12,
626 | "metadata": {},
627 | "output_type": "execute_result"
628 | },
629 | {
630 | "data": {
631 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJrElEQVR4nO3deXwT1cL/8W/K0oK0ZW9ZiqAoiMgiCBSvglcUERd8/KmPF2VxV/CKuFxxARWlqI/KVUH0InBRWUQFXAApZRMoS4Gyyl4oW0sLtGkLXTO/P0pD0iZp0m1a+Lxfr74gkzMzJ5lk5pszZ85YDMMwBAAAYBI/sysAAAAubYQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAkiSLxaK3337b7GoAuAQRRgCYpnfv3rJYLPa/WrVqqUOHDpowYYJsNpvZ1QNQQaqbXQEAlcO5c+dUvXrF7xKaN2+uiIgISVJycrJmzpypF198UUlJSXr//fcrvD4AKp6FG+UBly6bzabs7GwFBASYsv7evXsrOTlZO3bssE/LzMxU27Ztdfr0aZ05c0bVqlUzpW4AKg6naYAq7u2335bFYtHu3bv14IMPKigoSA0aNNALL7ygzMxMp7IWi0XDhw/X999/r2uvvVb+/v5avHix/bnCfUaOHTumxx9/XE2bNpW/v79atWqlZ599VtnZ2fYyKSkpGjFihMLCwuTv76/WrVvrgw8+KPFploCAAN1www1KS0vTyZMn7dO3bdumIUOG6IorrlBAQIBCQ0P12GOP6dSpUy7fj/3792vIkCGqW7eugoODNXToUJ09e9ap7Llz5/TPf/5TDRs2VGBgoO655x4dO3bM7Xvx2GOPKSQkRP7+/rr22ms1derUEr1GAM44TQNcJB588EG1bNlSERERWrdunT777DOdOXNGM2bMcCq3bNky/fDDDxo+fLgaNmyoli1bulze8ePH1a1bN6WkpOipp55S27ZtdezYMf344486e/asatasqbNnz6pXr146duyYnn76abVo0UJr167VqFGjdOLECU2YMKFEr+XQoUOyWCyqW7eufVpkZKQOHjyooUOHKjQ0VDt37tTXX3+tnTt3at26dbJYLEXej1atWikiIkKbN2/WlClT1LhxY33wwQf2MkOGDNEPP/ygRx99VD169NDKlSvVv3//IvVJTExUjx497GGuUaNGWrRokR5//HFZrVaNGDGiRK8TwHkGgCptzJgxhiTjnnvucZr+3HPPGZKMrVu32qdJMvz8/IydO3cWWY4kY8yYMfbHgwYNMvz8/IyNGzcWKWuz2QzDMIyxY8cal112mbF3716n51977TWjWrVqRnx8vMe69+rVy2jbtq2RlJRkJCUlGbt37zZeeeUVQ5LRv39/p7Jnz54tMv+sWbMMScaqVavs0wrej8cee8yp7H333Wc0aNDA/njTpk2GJGPEiBFO5YYMGVLkvXj88ceNJk2aGMnJyU5l//d//9cIDg52WTcA3uM0DXCRGDZsmNPj559/XpK0cOFCp+m9evVSu3btPC7LZrNp/vz5uvvuu9W1a9cizxe0QsydO1c33XST6tWrp+TkZPtfnz59lJeXp1WrVhVb7927d6tRo0Zq1KiR2rZtq48++kj33HOPpk+f7lSuVq1a9v9nZmYqOTlZPXr0kCRt3ry5yHKfeeYZp8c33XSTTp06JavVKkn201PPPfecU7mC962AYRj66aefdPfdd8swDKfX2bdvX6WmprpcPwDvVakwsmrVKt19991q2rSpLBaL5s+f79P8BeeSC/9ddtll5VNhoAJdddVVTo+vvPJK+fn56dChQ07TW7VqVeyykpKSZLVa1b59e4/l9u3bp8WLF9vDRMFfnz59JMmpz4c7LVu2VGRkpP744w9NmjRJzZo1U1JSUpFOtadPn9YLL7ygkJAQ1apVS40aNbK/ltTU1CLLbdGihdPjevXqSZLOnDkjSTp8+LD8/PyKvB+tW7d2epyUlKSUlBR9/fXXRV7n0KFDvX6dANyrUn1GMjIy1LFjRz322GP6n//5H5/nf/nll4v8Wrr11lt1ww03lFUVgUqjcB+KAo4tDKVls9l022236dVXX3X5/NVXX13sMi677DJ7eJGkG2+8Uddff71ef/11ffbZZ/bpDz74oNauXatXXnlFnTp1Up06dWSz2XTHHXe47Czr7iocw8cLCAuW/cgjj2jw4MEuy3To0MGnZQJwVqXCSL9+/dSvXz+3z2dlZemNN97QrFmzlJKSovbt2+uDDz5Q7969JUl16tRRnTp17OW3bt2qXbt2afLkyeVddaDc7du3z+lX/v79+2Wz2dx2UPWkUaNGCgoKcrrk1pUrr7xS6enpTmGitDp06KBHHnlEX331lV5++WW1aNFCZ86cUVRUlN555x2NHj3aXnbfvn0lXs/ll18um82muLg4p1al/fv3O5Vr1KiRAgMDlZeXV6avE8AFVeo0TXGGDx+u6OhozZ49W9u2bdMDDzygO+64w+0Oa8qUKbr66qt10003VXBNgbI3ceJEp8eff/65JHkM8O74+flpwIAB+vXXXxUTE1Pk+YLWhQcffFDR0dH6448/ipRJSUlRbm6uz+uWpFdffVU5OTn65JNPJF1o5SjcqlHSq3UkqW/fvpKkSZMmOU0veN8KVKtWTffff79++uknl+EsKSmpxHUAkK9KtYx4Eh8fr2nTpik+Pl5NmzaVlH9aZvHixZo2bZrGjRvnVD4zM1Pff/+9XnvtNTOqC5S5uLg43XPPPbrjjjsUHR2t7777Tv/4xz/UsWPHEi1v3LhxWrJkiXr16qWnnnpK11xzjU6cOKG5c+dq9erVqlu3rl555RX98ssvuuuuuzRkyBB16dJFGRkZ2r59u3788UcdOnRIDRs29Hnd7dq105133qkpU6borbfeUoMGDXTzzTfrww8/VE5Ojpo1a6YlS5YoLi6uRK9Nkrp06aL7779fEyZM0KlTp+yX9u7du1eS82mu8ePHa/ny5erevbuefPJJtWvXTqdPn9bmzZu1dOlSnT59usT1AHARhZHt27crLy+vyDnqrKwsNWjQoEj5efPmKS0tze05YKCqmTNnjkaPHq3XXntN1atX1/Dhw/XRRx+VeHnNmjXT+vXr9dZbb+n777+X1WpVs2bN1K9fP9WuXVuSVLt2ba1cuVLjxo3T3LlzNWPGDAUFBenqq6/WO++8o+Dg4BKv/5VXXtHvv/+uzz//XG+//bZmzpyp559/XhMnTpRhGLr99tu1aNEi+4+PkpgxY4ZCQ0M1a9YszZs3T3369NGcOXPUpk0bpw60ISEh2rBhg9599139/PPPmjRpkho0aKBrr73WadwSACVTZYeDt1gsmjdvngYMGCApf0c8cOBA7dy5s0jHtTp16ig0NNRp2q233qqgoCDNmzevoqoMlIu3335b77zzjpKSkkrUCgFnsbGx6ty5s7777jsNHDjQ7OoAl4SLpmWkc+fOysvL08mTJ4vtAxIXF6fly5frl19+qaDaAaiMzp07V+TqogkTJsjPz08333yzSbUCLj1VKoykp6c79XSPi4tTbGys6tevr6uvvloDBw7UoEGD9PHHH6tz585KSkpSVFSUOnTo4DTE89SpU9WkSZMSdewDcPH48MMPtWnTJt1yyy2qXr26Fi1apEWLFumpp55SWFiY2dUDLhlVKozExMTolltusT8eOXKkJGnw4MGaPn26pk2bpvfee08vvfSSjh07poYNG6pHjx6666677PPYbDZNnz5dQ4YM4W6gwCWuZ8+eioyM1NixY5Wenq4WLVro7bff1htvvGF21YBLSpXtMwIAAC4OF9U4IwAAoOohjAAAAFNViT4jNptNx48fV2BgoNv7bQAAgMrFMAylpaWpadOm8vNz3/5RJcLI8ePH6dkOAEAVdeTIETVv3tzt81UijAQGBkrKfzFBQUEm1wYAAHjDarUqLCzMfhx3p0qEkYJTM0FBQYQRAACqmOK6WNCBFQAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAKik8myGpq6O045jqWZXpVxVibv2AgBwKfpp81G9+9suSdKh8f1Nrk35oWUEAIBKaveJNLOrUCEIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABT+RRGIiIidMMNNygwMFCNGzfWgAEDtGfPHo/zTJ8+XRaLxekvICCgVJUGAAAXD5/CyMqVKzVs2DCtW7dOkZGRysnJ0e23366MjAyP8wUFBenEiRP2v8OHD5eq0gAA4OJR3ZfCixcvdno8ffp0NW7cWJs2bdLNN9/sdj6LxaLQ0NCS1RAAAFzUStVnJDU1VZJUv359j+XS09N1+eWXKywsTPfee6927tzpsXxWVpasVqvTHwAAuDiVOIzYbDaNGDFCN954o9q3b++2XJs2bTR16lQtWLBA3333nWw2m3r27KmjR4+6nSciIkLBwcH2v7CwsJJWEwAAVHIWwzCMksz47LPPatGiRVq9erWaN2/u9Xw5OTm65ppr9PDDD2vs2LEuy2RlZSkrK8v+2Gq1KiwsTKmpqQoKCipJdQEAqHLe/XWXpq6JkyQdGt/f5Nr4zmq1Kjg4uNjjt099RgoMHz5cv/32m1atWuVTEJGkGjVqqHPnztq/f7/bMv7+/vL39y9J1QAAQBXj02kawzA0fPhwzZs3T8uWLVOrVq18XmFeXp62b9+uJk2a+DwvAAC4+PjUMjJs2DDNnDlTCxYsUGBgoBISEiRJwcHBqlWrliRp0KBBatasmSIiIiRJ7777rnr06KHWrVsrJSVFH330kQ4fPqwnnniijF8KAACoinwKI19++aUkqXfv3k7Tp02bpiFDhkiS4uPj5ed3ocHlzJkzevLJJ5WQkKB69eqpS5cuWrt2rdq1a1e6mgMAgIuCT2HEm76uK1ascHr86aef6tNPP/WpUgAA4NLBvWkAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAFRShgyzq1AhCCMAAMBUhBEAACopiyxmV6FCEEYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABT+RRGIiIidMMNNygwMFCNGzfWgAEDtGfPnmLnmzt3rtq2bauAgABdd911WrhwYYkrDADApcKQYXYVKoRPYWTlypUaNmyY1q1bp8jISOXk5Oj2229XRkaG23nWrl2rhx9+WI8//ri2bNmiAQMGaMCAAdqxY0epKw8AAKo+i2EYJY5dSUlJaty4sVauXKmbb77ZZZmHHnpIGRkZ+u233+zTevTooU6dOmny5MlercdqtSo4OFipqakKCgoqaXUBAKhS3v11l6auiZMkHRrf3+Ta+M7b43ep+oykpqZKkurXr++2THR0tPr06eM0rW/fvoqOjnY7T1ZWlqxWq9MfAAC4OJU4jNhsNo0YMUI33nij2rdv77ZcQkKCQkJCnKaFhIQoISHB7TwREREKDg62/4WFhZW0mgAAoJIrcRgZNmyYduzYodmzZ5dlfSRJo0aNUmpqqv3vyJEjZb4OAABQOVQvyUzDhw/Xb7/9plWrVql58+Yey4aGhioxMdFpWmJiokJDQ93O4+/vL39//5JUDQAAVDE+tYwYhqHhw4dr3rx5WrZsmVq1alXsPOHh4YqKinKaFhkZqfDwcN9qCgAALko+tYwMGzZMM2fO1IIFCxQYGGjv9xEcHKxatWpJkgYNGqRmzZopIiJCkvTCCy+oV69e+vjjj9W/f3/Nnj1bMTEx+vrrr8v4pQAAgKrIp5aRL7/8Uqmpqerdu7eaNGli/5szZ469THx8vE6cOGF/3LNnT82cOVNff/21OnbsqB9//FHz58/32OkVAABcOnxqGfFmSJIVK1YUmfbAAw/ogQce8GVVAADgEsG9aQAAgKkIIwAAwFSEEQAAKilulAcAAFABCCMAAFRSFlnMrkKFIIwAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAFBJGTLMrkKFIIwAAABTEUYAAKikLLKYXYUKQRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAqKS4UR4AAEAFIIwAAFBJcaM8AACACkAYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwlc9hZNWqVbr77rvVtGlTWSwWzZ8/32P5FStWyGKxFPlLSEgoaZ0BAMBFxOcwkpGRoY4dO2rixIk+zbdnzx6dOHHC/te4cWNfVw0AAC5C1X2doV+/furXr5/PK2rcuLHq1q3r83wAAODiVmF9Rjp16qQmTZrotttu05o1azyWzcrKktVqdfoDAAAXp3IPI02aNNHkyZP1008/6aefflJYWJh69+6tzZs3u50nIiJCwcHB9r+wsLDyriYAAJXOpXLXXp9P0/iqTZs2atOmjf1xz549deDAAX366af69ttvXc4zatQojRw50v7YarUSSAAAuEiVexhxpVu3blq9erXb5/39/eXv71+BNQIAoPLhrr3lKDY2Vk2aNDFj1QAAoJLxuWUkPT1d+/fvtz+Oi4tTbGys6tevrxYtWmjUqFE6duyYZsyYIUmaMGGCWrVqpWuvvVaZmZmaMmWKli1bpiVLlpTdqwAAAFWWz2EkJiZGt9xyi/1xQd+OwYMHa/r06Tpx4oTi4+Ptz2dnZ+ull17SsWPHVLt2bXXo0EFLly51WgYAALh0WQzDqPRdda1Wq4KDg5WamqqgoCCzqwMAQIV499ddmromTpJ0aHx/k2vjO2+P39ybBgAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAAAqqUvlRnmEEQAAYCrCCAAAlRQ3ygMAAKgAhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAKqn40xlmV6FCEEYAAKiklv510uwqVAjCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKp/DyKpVq3T33XeradOmslgsmj9/frHzrFixQtdff738/f3VunVrTZ8+vQRVBQAAFyOfw0hGRoY6duyoiRMnelU+Li5O/fv31y233KLY2FiNGDFCTzzxhP744w+fKwsAAC4+1X2doV+/furXr5/X5SdPnqxWrVrp448/liRdc801Wr16tT799FP17dvX19UDAICLTLn3GYmOjlafPn2cpvXt21fR0dFu58nKypLVanX6AwAAF6dyDyMJCQkKCQlxmhYSEiKr1apz5865nCciIkLBwcH2v7CwsPKuJgAAMEmlvJpm1KhRSk1Ntf8dOXLE7CoBAIBy4nOfEV+FhoYqMTHRaVpiYqKCgoJUq1Ytl/P4+/vL39+/vKsGAAAqgXJvGQkPD1dUVJTTtMjISIWHh5f3qgEAQBXgcxhJT09XbGysYmNjJeVfuhsbG6v4+HhJ+adYBg0aZC//zDPP6ODBg3r11Ve1e/duTZo0ST/88INefPHFsnkFAACgSvM5jMTExKhz587q3LmzJGnkyJHq3LmzRo8eLUk6ceKEPZhIUqtWrfT7778rMjJSHTt21Mcff6wpU6ZwWS8AAJAkWQzDMMyuRHGsVquCg4OVmpqqoKAgs6sDAECFaPna7/b/Hxrf38SalIy3x+9KeTUNAAC4dBBGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEgCmiD5zSY9M36sjps2ZXBYDJqptdAQCXpof/s06SlHouRz8929Pk2gAwEy0jAEx1IuWc2VUAYDLCCAAAMBVhBAAAmIowAgAATEUYAWAqw+wKADAdYQQAAJiKMAIAAExFGAFgKoPzNMAljzACAABMRRgBAACmIowAAABTEUYAAICpCCMATGUw0ghwySOMAAAAUxFGAJiKS3sBEEYAAICpCCMAAMBUhBEAAGAqwggAADAVYQSAqei/CoAwAgAATFWiMDJx4kS1bNlSAQEB6t69uzZs2OC27PTp02WxWJz+AgICSlxhAABwcfE5jMyZM0cjR47UmDFjtHnzZnXs2FF9+/bVyZMn3c4TFBSkEydO2P8OHz5cqkoDAICLh89h5JNPPtGTTz6poUOHql27dpo8ebJq166tqVOnup3HYrEoNDTU/hcSElKqSgO4eDDoGQCfwkh2drY2bdqkPn36XFiAn5/69Omj6Ohot/Olp6fr8ssvV1hYmO69917t3LnT43qysrJktVqd/gAAwMXJpzCSnJysvLy8Ii0bISEhSkhIcDlPmzZtNHXqVC1YsEDfffedbDabevbsqaNHj7pdT0REhIKDg+1/YWFhvlQTAABUIeV+NU14eLgGDRqkTp06qVevXvr555/VqFEjffXVV27nGTVqlFJTU+1/R44cKe9qAjAN52mAS111Xwo3bNhQ1apVU2JiotP0xMREhYaGerWMGjVqqHPnztq/f7/bMv7+/vL39/elagAAoIryqWWkZs2a6tKli6KiouzTbDaboqKiFB4e7tUy8vLytH37djVp0sS3mgJAOTqZlqn/rDqo0xnZZlcFuOT41DIiSSNHjtTgwYPVtWtXdevWTRMmTFBGRoaGDh0qSRo0aJCaNWumiIgISdK7776rHj16qHXr1kpJSdFHH32kw4cP64knnijbVwIApfDY9I3accyqFXtP6vsnephdHeCS4nMYeeihh5SUlKTRo0crISFBnTp10uLFi+2dWuPj4+Xnd6HB5cyZM3ryySeVkJCgevXqqUuXLlq7dq3atWtXdq8CAEppx7H8q/bW7D9VbNnjKedUvZpFjQMZwBEoCz6HEUkaPny4hg8f7vK5FStWOD3+9NNP9emnn5ZkNQAuAVVtnJGz2bnqOX6ZJOnguDvl52cxuUZA1ce9aQDAB4nWLPv/86pakgIqKcIIAFNxOAdAGAEAAKYijACADwxOzQBljjACAABMRRgBAACmIowAMFVVPu1RhasOVCqEEQBAlfH9+sNavS/Z7GqgjBFGAJMYhqE/diboyOmzZlcFJWRwYXKF2hJ/Rm/M26FHvllvdlVQxko0AiuA0luyK1FPf7tJknRofH+TawNUfsdTMs2uAsoJLSOASTbEnTa7CpVCVW5boM8IUDYIIwCAKoHTYhcvwghgEm6vBgD5CCOASfiNl49THfCWhQh/0SKMAEAJEaSAskEYKUeGYeihr6L1+PSNZlcFlRAHMgDIx6W95ejI6XNaf/6KicycPAXUqGZyjVDRDMNQxKLdurxBbQ3sfrnZ1UEZo0NlxeL9vnjRMlKOHL84Fk51XpJij6To61UH9ca8HUWe4zNR9TESKFA2CCNAObJm5rp9jtM0+RzvTZNnq1pvylPfblJSWpbZ1QCqPMIIUI5o/PDe0l2JunbMYv2+7YTZVfHJqQzCCFBahBGgHDmeiil8d1rOf+creBeemBGjzBybhs3cbGp9AFQ8wkgFoUm+bK3Zn6x3f92lrNw8s6vikeO4CIt3JJhYk9KLP3VWb83fwY39gDK041iqNh3m1hCEEVRJA6es19Q1cZq25pDZVfHa/NhjZlehVP4xZZ2+XXdYj3LHVKBMGIahuz5frfu/jFbK2Wyzq2MqwshFbtaGeA2aukEZWe47UlZllf1X+sV0xczRM+ckSYdOlfF7TqshLlGO/bWT08smjPzrx216+tuYIqeFKzvCSAUx63Mx6uftWrU3Sd+sjjOnAuWssn7dUs5m68sVB5SQeuGW51Vs34Dzvlkdp6dmxCgnz+by+co+RPmi7Sf0xrztbuuPsnMuO08fL9mjHcdSvSrvHBhKv4PIsxmaE3NEf+xM1MHkjFIvryJd0mFk65EUvTV/h85klH/zmK+dFXPzbBoybYM+XrKnTNZvPZdTJsuBd16cE6sPFu/WS3O32qcZkiYs3atBUzcoJ89WbuHkz31JuveL1frrhLV8VnCJGfvbLi3Zlahftx4v1/Ws3pese79YrV3Hy3a7Pfv9Zn2/Pl4/xBwp0+VWNqv3JZeq70Vunk27jltL1aLw76h9+nzZft31+WqvyjtFkTLeH9AyUoXcO3GNvl13WG//utOr8ifTMrX+4KlyrlW+FXuStGJPkj5ftr9C1ldVVdbv28q9SUWmGYY0Yek+rdqbpMhdieW27ke/2aCtR1P1xH9jym0dl6L0cj7V+cg367X1aKoeK6fbR7gbDyXm0Gl9Grm3SrecTFy+X498s173fxnt8vlT6VnFjgfz0tytuvOzP/XVqoMlrscuH38AOO6/HvwqutSn06taAHF0SYeRAvsS070q131clB76ep3+3Ff0QFMcXz8jWbmudwz7EtP04FfRij7gWyiquh/Ri8mFrZDtZvuWpdMV0OJXnp7+NkYPTF4rWyUZCM2X73Dq2RytO3iqRAeH0xXckfH/TY7Wv6P2aeb6+Apdb1lJTs/SR3+4b0HOzbOpy3tLdcP7S5WZ4/7quwWx+S1fk5ZX3A9AxxbzM2dzNCP6cCmXV3URRnxQsF9Zvd/3IaDL6kPyxIwYbYg7rYf/s8639ZeiApX98tnCcvNsenP+9ko3eFZFH1Or8jgmhmHoj52J2njojPYnefdjobzZfPgS3fnZn/rfr9eV7AoqkzZbXBXrY1CgcGtC4QB41iGAeHPa21KKXueOc/7ixWm9wh+pc9mlbRkp1eymIoxUMYnWzOILlaH3ftulNm8u9rpDVsUr+u37afNRfbcu3tTBs1zt0Hw5mJWFqrJjclVNx7pX9PtWFo6l5F95tGi772PLZLs5XfKfVQf11vwdVbopvqSm/HlQ87Yc9aqsp7fnP3/GKS3Tc/+50lwB5zjvP2dtKbZ84bqW9gdLVf4BQhipIGbvQEr6IZ1y/iqcTyL3ui2z67hVA6es05b4MyVaR1nz5l4h2bk2PTUjRv9de6hM1plozdQvW497PO/u7Y5m+9FU7UlIK3WdHFd3KDlD93yxWou2V67WInfKs2NfSZVVPfJsRonuZ/P+wr/07brD2nIkpWwqUkhZXoY+fU2cJpbR6Y645Ay99/tfenHO1uILq2i4LbzdcvI8b8jSvA2+zlt4v1zaMFFZvislQRgpByfTMl0M/V02vP2wpWfl6rt1F84/lvZD6ilMPfLNeq3Zf0r3TVpbupVUoPmxx7RkV6LG/OJd5+Xi3P7pKv1z1haPl1AXfg+3u2htSj2bo7u/WK2+E1aVKMAeP/+LPH+FF/776o/btO1oqp79vmxaiyJ3JWpBOQ7i5vjay2MHm2cz9M9ZW/T1qgPe18nNdF8P4gOnrNMN7y8tcXg/l125T5vm5tn09q+79NEfe5wubffFN6vj9ND5Dp2pPl4J6O33JtGa6XLZpTpN4+O8VTk8lDXCSBmbEX1I3d6P0uBpG5VrK98dqidvzNuuN+cXvW19SXmqfmk7Su5NTCvx6IOu3ldv3mtXO/SMrNwS7zwLdmrLd590W8bxdEN6Vq42HS56MEpKz3Qo73s9HPsSOf7K8rRD35uYptSzvu3wn5wRoxdmx3p12tAwDMUlZ7g9SLia7jz6Qtl/eVbsOalfth7XuIW7vZ6nJOGw4Ni09UiKvVVq3cH8y0+raofR4jh+bs8W6gMReyRF/117qNj3cuxvu7Q+7rRmRB8uQWtD8c5kZKv7uCh1fGdJkecqtmWk0ONS/2gs3fxmIoyUsdEL8n9pr9qbpLd8CANLdibow8W7i71ywNtbrC/ZWbaXjpZX58vdCVbd/ukqdX1vafmswI0a1Yp+9Lu9v1Q9IqKcWxfOO5OR7dXByFMRm8MZHHfhwPGXlbfb2tFhh9FRvZl9x7FU3f7pKnUbV7L335tfrf+O2qdb/m+Fxi/25cDv+v/FWbIzQVvPn8bIzMnTDxuP6GShwJRozSzRZbol2dEXzHPvxDV69vvN2nn8QmtYeR03Snr1kavB20qyLE99fAZMXKMxv+zUQi/70uxLTCt0s8ni5/GmzF8JFy7B/X698xUsp0rx48rXRpWybkGnzwhcWut4+W0xn5Gnvt2kSSsO6I+dCeeLF51hzf5kp9YWT4qcizQMzdoQrxfnxCq3BOMJlFefl9X78q9MyrUZuuvzP4scOErCmx1C9WpFC2Wcby2JWOR80Fy0/YQ6j43U2N/+Kna5nnYGeV68h461qoiOmwXjobi7lLwsTFi6T5L01Urvx29w9T6mns3R/V+u1bfrXF/+uDcxTU99u0n3Tlyjv05Y9dEfe/TqT9s0YOIae5lfth5X93FRGvXzdh9fRdns6B2vWCmPzTtnY7w6vrukRIN/Ff7ebD2Sok7vLnE63esNx9dVEK4L7z/2nfSuT9TPW445hSTH70Svj5Zr0or9RfpXFdlOhR8ahtMy35i3w2Nfr4ysXJ1M83a/5H0aOZiUXmRMmdJ+52kZgSRpqYeBrLzdkZ3wcJrg+UK9s3/efNTr86mG8oeGn7flmFeXnFUUxy/PjmNWfbC46KV387YcdXlKQ5JmbzyiU+nedQbck5Cm/p/9qai/ElXdz3mn4Xia6Netx7UnIU0z18fr5blbNfa3XZKkqWvc9wcp4Ckregp0S3Ym6K35O5xaQ0q/Y6oae6birqYp+P+XKw9o0+EzblscDzkc6F+cE6ulf+V/H487fKc+OX9p59kS9LsYt3C3IhYVH0gr2oLYY/bw8a+ftistM1fDvi/+So7CCh9GX5wTK2tmrs+nex0/t4Zh6KQ1U93GRelDh5YxxzAwbU2cXp+33e3n1V3LyOFTZ/Xh4j166ttNTuULL8abfW+39923DF4/NlLd3o/yqtOxY12L+1H09LebtPGQ836t1IOelWpucxFGysiZjGw9McPziJebDp/Wr1uPa/vRVN3+6UqX/QtSfOisNfKHrXr2u00unyvc5Oo4mE5JhoavqOPauZzc8+sz9J9VB/X1qgN6cc5W3f/lhc6xhcPHe797d4B47vtN2nncqsf/G1NkR/E/hTrfxiVn6PV52/XjpqNOB7PiFOxQXe2HPAWVp77dpG/XHdasDReG7C7JaRqnupRq7sqj4GDiy47aXUuPL+9Jdq5N/f79p9O0r1Ye9PiD4cdNRzV02ga3zzuFrDLYQtuPpuqF2bFFRh4tybILfydKWrvCLYCTVhxQUlqWJq1w3Vn4nV93aeb6eEW7Gd3aMQR4850oEkZczFL4tZ7x0Geq4LO02YsOxxY3/y/g2CpdcONJR9+ti7dfFl4SzoGuct8zqTDCiKRDpzwP9pOelevUEevrVQeLDARmLebadcOQ7v8yWs/P2qK7v1itvYnpGupi2OfPovbZyxfm6qO11s1IrN7sjE6lZ3nd+dSXX+l5NkNb4s+UaJTRgtUs3J6g9xf+5bKD4fI9ziPgetvpNPXchW3oV2hvVPSmUsW/3nPZeTp6xvkOttZM951g3bXuONqbeKHJudRjDjg1l3s3z/I9J7Xfyyb08vTnvqIDC/pyPj6/Kb50Vu1Ncnl/n8KjeBasJys3Ty/P3er0+VyyK1EH3A3a5rB9dieU7H40h0+73neV5MdDaa4icVq3w9c+PSvXZYuHq1WlZ7oOm44twt6c6ix6uWzhdZfs1oZPf7tJB30YgK/w+/lDzBG1eWuxx07ukvRLbOVpua5IhBHlN9n+ts31ByArN0/tx/yha8f8YZ9mGEXPfxf38S7NceXz8wHFkzybockrD2j7Ue8GJ8vOzR8i+fqxkV7dk8KXndvHS/bovklr9eqPxY8L4C40xSW7/9IX7lTnzT7UZjOU7OZ0jqud5TPfFX8J7N8/XqG/fbDcKUDsP5muHhFRxfbtcTd8tWPorehh0LceSdHQaRvV55NVkqS5MUf04FfRpgwr73jZsKfP3up9yS7Dk80ofcuQuwDurj6FW9cKDPrGfUtJgTfnOZ8KOXwqw6vt726/U5LX7rik/SfTnPq3/LkvqdiRmBOtmZq9IV4/bb4wONk9X6xxWdZVrd3V2bGzsTenHjcfTnF6XHg7bog7XWzwcvfe//3jlR7nczpNI+nb6EP2y/1f/XGb8mxGsS3opcmEZdsdtmIRRs6b6mZ8iMTU/ANY4e/AtqMpPi3fl/P3+xKdd64fexhwTMo/RTTlz4Mav2i37v5itdYeSC42PDj2NSn8i6Sgro7Nhd42+2bm5NmbY+e7SfhZuXm6899/qtdHy326tLJA4V9HRZqXXVT1v9GHnB47toz4csz/PGqfRi/IHwWzoLm+oG9CWdgcn2L/vze/AiXp2e82afDUDR5bNAovauOh0+oxLsreYVpyvsnXlD8P6pUft+XfeuDrdRr5Q6yHZRtFPt9ZuXkyDEPxp866mct93STpN4eh/Auedgx4yelZ2nT4jB75Zr09PDkt083n1ZdQ7a6ou5Cy083ddp2/R66XX3iJvT5aoX/Odt3vw+lUgJsDl6sqTli6T2mZOYo+cMr1wdZhWYVDxKPfbNBj0zdqxOwtLluLsnLz1H1clF77ebvePd/Hyl4X11V0UWdDeTbD44+j17zoePzIN+udHheu74a44jv3njnfh8zVWDCeBg50DIe5NkNvLdipsb/tcjq1XNyppoLubIZh+HzJveN2/6OYKyp3Hbfq4a/XedViWxEII+c5HgQc+bl5hwp/2Uf/UnZjetz2adGdq+R+x7Px0GltPHThC/aP/6x3XdCBu531lysOqEdElI6cPqsbxy+zT/f2gN32rcUup6/el6xvVsfJMAwt352kXSesTpehesOamaM+n6zUB4UuEfWzWJSbZ9Oy3YmaujrO5fnfaWsOOT12bGr35RTUx5F7NSP6sPadvNBy4+rcb1nwpl5ns3O1aEeCVu5NcnlQdueJ/8YowZqpbW5a0hz74exJTNPPm10PcGYY0n2T1uqhr9bZA8nKvUlq8+Zi9YiI0s0fLXcqH7kr0enyVm+czsjSqz9udRqXo+t7S536ERVmK+XFQQ9MXut1v5OjJTzH7xjgXH21nQKZF58Fx+9rQfnCB74Hv1qnh/+zTt9vKDrGiePpA1cdfNfsP6X5scedrk4qMGaBb4MH7kksGpxnRB/Wla8v1A0eOpOW5PTTi3NinR7bDKPYcY0+PN+R3tVAjo4DBzqeil61N0mLd7q+ZDnTh1PWBYFm5A9b1fHdouOgeOTw/sQc8hy6Hv1mvaIPnvL4PapI1c2uQGVXzc99M+gvW4/rP6sOatLA67Vij+c7+S7a4fs9Khx5ujeMqybHYpv6HD60exPT9NPmo/rnrVfZD/T/V+iGUsdKecAt+LXSNjTQ40HW085m5vp47T/p+vTN/y3Zq8kr3Y+mWXg7OpYtSUfRVXsvbO/yGryq8AF1d0J+gLu9XYjDJZOel7H9aKquax5cZHppO8cWOJF6TrHnx/VIy8pVUEANvTI3//RcorXoabEnzzdRHxrf/0JdDMPj8PfPfrfZq0uPHTtA5h+MLU6P/9yX7PW9nTYeOuP29FThYDB02kaNu+86r5brLlTEuPl1uunwaXW5vL7TjwHHJTh+rF21wBRuFSh4/PPmo3q0x+U67NBfbq+Xdy93tS1mbzziouT5urhp+friH87TCvq/pfjYGuBKZk6eAmpUO/9/5/pOX3tI04u5DUT8ac8/lKyZOZryZ5w+i9qnzx/urJuuaqhBUz11XPb++1aw7563xfcRjh1/ZBZ3Kqo046mUB8JIMQp3dCxgGIb9RkhvLSi+VcTd5XG7jluLDLojFf31NcvFL5kCrm6LXfgL6Gn5D32dP2rnDzEXzvUW/u4cSzmnpLQsNQr097jc4up39MxZBQbUKHaelXuLhjt346NYLBa3QSQtM0f/nLWlyB1JHa+IKMmoq8uK6YRWFnYcS1VocID98R0T8q/sqF2zmna9e4dXy7j7i9U6NL5/kQBYw8U4K6Xt9FjQ9H/Si0sg73X4dZ2da1PfCe5bdbwdA8Wx9cuQ8+tZsitRT3/r+sozdw4kue4c6irHFQ7v7mw94tugZ/d/Ga0D4+70cDBzv3/ypGBbZWSVbGj5CUv3qmlwLXUIC1bb0CCPZd21wt768QpFvdS7ROsvTtu3Fuvhbi30XO8rS3SJfHGnSDu8faHFovCQC64UXlzModM652K/LXkOEYeSM7Q7IU19rw1xWc75knhDE5fv1xUNL1O/65robHauatesvIf8yluzSsLdZ9JxcmmuDb/zsz9dTi98x0dPP2S9+TI4Sk7PLnZ8ElcNQjuPp6p7qwYKqOHnU8/768dG2v9vkaXYq2xmb4gvcv29lN/64Uqyh4PfdW+7buas5lD/wue4veHuKqay9MSMGG18o48aBfo7BSbHJnRvxowZv2i302klSaruYgTaknA86HV6N1Ijb7vaq/m2lvHN3gpf4l74AORrEPHkORf39/H2l6/jWDULYo8rIytPdfyreZznXE6e/Ktf2F5e9Rk5/6+7Tqdbj6aW6h43BQPZSc6tXK64OxV4ICnD532XL2ZtiFfModMlCiNl3Xl8caGW8f83OdpNSc8X5Pb+vxWSpKlDuurvbUOKPO9Y602Hz9iv7AquVUOp53L0QJfm+uiBjt5Wu0IRRgrJzrUpz2Zo5/FU/b/J0bqxdQOX5RxPy5TVJXGeGIah5PSyaVb7Yvl+fVHMHTVdjXey9UiqnvhvjAZ0bqYP7++gL1ceUNfL63lczks/bHU+/2yRRhQ6h+to8c4Et+dd3dnlokNdcRw3WUW0cpTUDe8v1Z+v3qKbPnTue7EnIU1b4s94NZJo4Vaj2RviXQ7gVFzTtCu5he6A6unuzuWp8GlQV6eI3Pl92wlNWFq6ensap8ITbzo/9/5ohda+9nf746xcW/6lyx4uUU05m6M3529329dHkp6ftVm7CnW6nbh8vy6r6Tkc+cpdGJHyBxgsT4VDuLdiDp9RZ1/7a3jw/kLvB8v7ZnWcUx9AV7bEp7gOIw7By+pwYULBj8+5m45qUHhLl6duzUYYcfDz5qMa+YPz5ahr9hf/C9ib3tml5emcbHlw1Qfm0/M77B83HVXTurXsY6J44niZn6QiOz+zWN2MaVAZFQ4ikvTVqgMeDzSeuLsiwVOfG3cq02i+JTVsZtncybi8JKdn6RWHy+SHTt+onlc20J3XNdHXq9wPsf/dOs99mZb+VTSEu7vk3BNPd6quykoaMEvrWMo5nwc+y8rN0/fr4r0KGcdSzhFGKrvCQQTueRNEXCmu4xi8U9IgUtYuhjBSFSwodJn82gOnKuRUoTfGluA0J0rHMPI7p7duXEc1qln01cqDXrdKZuXmleoUXXkhjAAAUIU4nmqvUc2inDzv+7i8MDu2yLRz2XmqVcan53zFOCMAAFRRvgQRd75ZfdCHOxOXD8IIAACXsP9bslfd3o8ytQ6EEQAAYCrCCAAAKLORmUuCMAIAAJzukFzRShRGJk6cqJYtWyogIEDdu3fXhg2eb5E9d+5ctW3bVgEBAbruuuu0cOHCElW2rL11VzuPz//vDWEVVBMAuGD0Xe204uXe2j3Wu2H/kW9Uv7almn/svdeWUU1K5vOHO5u6/jkby+c+W97wOYzMmTNHI0eO1JgxY7R582Z17NhRffv21cmTrkexXLt2rR5++GE9/vjj2rJliwYMGKABAwZox46yu8ttST3+t1Y6OO5OjbvvOs17rqc2v3WbBodfrrWv/V2HxvfX+Ps76POHO+uLf3TWoz0ut893eYPaWvFybz3+t1a6tqnzfRlev/PCl6H/dU30j+4t1LJBbc0fdqM6htX1WJ/wKxqocaC/hvRsqad7XeH03PdPdNetbRtLktqEBGrsgPbq36GJy+W82f8aLfznTUWmz3qyhx67sZXHOhRn2Uu9NKRnS6f3Q5L+1rqhJj/SRT2vdD1iraPOLepq8iPXKzQoQFeH1CnyfHEh0RtP33xF8YVc+NcdbXVofH9tfKOP3hvQXktH3qwD4+7U8pd7q881jb1axog+VxWZVvh9v7xBbfv/P3mwo74ceL3e7H+N/nr3Ds18orv2vtdP296+XVc0vExDerZ0e1DqcUV9j3X5dfjf9P0T3Z2mrX/9Vu157w61DQ0sMuz/tKE3aNe7fRUXcWeR52JH36bY0bfp93/+TePuu05j7m6n29uFqGlwgG5oeWEk3uLep8aB/prxWDd99WgX+7QmDvfgkaR7OjbVn6/eorahgfZpy17qpZ3v9NU9HZvqno5NPa5DkmY81k2SdFXjOnrjzmuKPH9f52aaOqRrscvp0DxYD3Ztro1v9NHA7i30n0Fd1a5J0fuxzHyyuwZ2b+FyGTdd1VAHxt2pmU921/N/b+12Xc3q1tLt7UI09MaWatnwMgXUqKad7/R1GhX1rg5NNKRnS3VuUVcv3Fr0s+bo3k5N9Wb/a4p8fgL980d1CAy4MLrD8Fta66rGzt/HxSNuUuzo21wuu2PzYPW/roneueda7R57h+Ii7tTQG1t6rE+BmtX8VP+ymvbHfhbp28e7uSw756keTq9z9F3tNPeZcL3Z33mbxrzZR0/3ulKLR9zk9LreuedaHRx3p6YO6arY0bdp+cu9dV/nZmpwWU1NHdJVD3Rpbi/b5fIL36dOYXWLjMBdeL/3St82Rer7XO8r7f//1x3uw9GKl3urYR3/8+utp++f6K67OzbVlrdu04JhN2rVK7e4nbe8DApvWeHrLGAxfLmdoKTu3bvrhhtu0BdffCFJstlsCgsL0/PPP6/XXnutSPmHHnpIGRkZ+u233+zTevTooU6dOmny5Mku15GVlaWsrAvDOVutVoWFhSk1NVVBQZ5vymSGuOQMvf/7LvW4ooGeuOkKZefaVN3PIr9Ce/MVe05qyLSNkqTlL/dWzKHT+mNngj57uLPLGxjZbIYsFs/DzVszcxRQvZq2H0vR/V9Gy2KRYt+6XcG1a+hMRrb+HbXPPtBYwT0kzmXn6Z1fd+qBrmEKrlVDfT5ZqcmPdNEd7UMl5Q8dbLHk77AK1r3/ZLrq1q5h//JI0umMbB0+laHQ4AA1Ca7lVK88m6F3ft2p+VuOyZqZq3/+vbUOJGVo3P9cp+BaRW+UF7HwLy3Zlah5z/VU3do1ZRiGzuXknX9tqWoTGqiAGtW09UiKov5K1HO3tFaezVBaZq4aBfrri2X71aRugHLybLr5qkbaeTxVz3yXP7LmP7q30Ig+V2n3iTRNXnnAPljUpjf7qG7tmoo9ckbV/fy072S6/qdzsyLbrbDlu09q38k0DQpvqRrV/LTu4Cm9++su7UlM05+v3qKw+rW19UiKftp8VD2vbCDruVy1axqkuz5fLUnaPfYO+Vf30+b4M2pwmb9aNrzM4/oc5eTZlJtnaNKK/bq9Xaiuax4swzC09Wiq2oQEKqCGn1qNym95fP7vrfXS7fk7y7G/7dK0NXHa9nZf1fF3/qydycjW6v3JuvnqRkW2zemMbK3Zn6xWDS9T+2bej9qYmZOntm8tliQ9dfMVGnZLa82NOaIW9Wvr9mtDi5RPSM3U0Okb9dcJq1O9z2RkK/70WbdB/mx2rqatOaS+14Yo/vRZ/Ttqv57tdYXahAapVcPLdNKaqQZ1/FXNz6LDpzL0Q8wR9biiga5vUU+XnX8f0jJzVMe/unJthtYfPK3rL6+r9Kxc/d8fe/SP7perk5t1b4g7rdRzOWoTEqgWDuFSyh+We+6mo3pr/g799GzPIu9dWmaOjpw+p3ZNy25/tu7gKdXxr66cPJtW70vW5Q0vcwptkbsS9fu24xo7oL3TzSoLhpYvsPZAsrbEp+i53lfap6/am6Ttx1L1XO8rZRjS7oQ0tQkNdHlX8+/XH1ZgQA37un/adFQxh8/ovQHtVc3PIpvNUK7NUHU/S5H925gFO/Tf6MN6s/816taqvurVrqmw+rWVnWtT1F+J6n5FA6cQs3JvkgZP3aArGl2mZYVuupeelaujZ866vZFfwes2DMP+ndn5Tl/VqlGtSL2OnD6r1HM5at8sWNm5Nu04nqqT1kzd0b6JDMPQgElrtfVIiobf0lov3X61Jq04oKtDAnVbuxAdSzmncQv/UkhggB7p0UIfLt6jwT1bKvzKBvbbj3ga46Pla7+7fa4sTRnUVX3aFR1ivrSsVquCg4OLPX77FEays7NVu3Zt/fjjjxowYIB9+uDBg5WSkqIFCxYUmadFixYaOXKkRowYYZ82ZswYzZ8/X1u3uh7x9O2339Y777xTZHplDSO+OJScoaZ1a6lm9bLvrmOzGcrOs9lvnV1g29EUBQbUUCsfDnplyYwBdQzD0E+bj+m6ZsFq4/DrWpIOJqXrbHaeTwfXsrB0V6Ka1q1VpgcgdwofYMyQmZOnk9asIgdqTyr7nUV9VRm2Q1VisxmKO5WhKxpe5vX7dtKaqbq1a5Zqn5pyNlvZeTY1DgwovrAbeTbDZTgrreW7T2ro9I1lvtzClo68Wa0bBxZf0EfehhGftl5ycrLy8vIUEuKcnkJCQpSQ4PrmZgkJCT6Vl6RRo0YpNTXV/nfkSMXel6U8tWx4WbkEEUny87MUCSKS1KF5XdOCiCRTRvazWCz6f12aFwkiknRFozoVHkQkqU+7kAoJIlLF3LyxOAE1qvkURCRdVEFEqhzboSrx87PoykZ1fHrfGgcFlHqfWrd2zVIFEUnlEkQk6Za2jfXE3/JP8/697YVToH9r3VCSdPPVjbTmtb/rhVuvUmhQgL56tIue7nWFrmkSpIe7hSn8igZqUb+27urQRAE1/HSXw+n9q0PqaMzd7TTxH9eXSxDxRaX85vv7+8vf37/4ggAAXOTevKud3iymL92Lt12tF2+7WpLU99pQjernvuwX/yjL2pUNn+Jkw4YNVa1aNSUmOt/2OjExUaGhRc8DS1JoaKhP5QEAwKXFpzBSs2ZNdenSRVFRF4aNtdlsioqKUnh4uMt5wsPDncpLUmRkpNvyAADg0uLzaZqRI0dq8ODB6tq1q7p166YJEyYoIyNDQ4cOlSQNGjRIzZo1U0REhCTphRdeUK9evfTxxx+rf//+mj17tmJiYvT111+X7SsBAABVks9h5KGHHlJSUpJGjx6thIQEderUSYsXL7Z3Uo2Pj5ef34UGl549e2rmzJl688039frrr+uqq67S/Pnz1b59+7J7FQAAoMryeZwRM3h7aRAAAKg8yuXSXgAAgLJGGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmKpS3rW3sIJx2axWq8k1AQAA3io4bhc3vmqVCCNpaWmSpLCwMJNrAgAAfJWWlqbg4GC3z1eJ4eBtNpuOHz+uwMBAWSyWMluu1WpVWFiYjhw5wjDzJmI7VA5sh8qB7VA5sB3KhmEYSktLU9OmTZ3uW1dYlWgZ8fPzU/Pmzctt+UFBQXzYKgG2Q+XAdqgc2A6VA9uh9Dy1iBSgAysAADAVYQQAAJjqkg4j/v7+GjNmjPz9/c2uyiWN7VA5sB0qB7ZD5cB2qFhVogMrAAC4eF3SLSMAAMB8hBEAAGAqwggAADAVYQQAAJiKMAIAAEx1SYeRiRMnqmXLlgoICFD37t21YcMGs6tUZa1atUp33323mjZtKovFovnz5zs9bxiGRo8erSZNmqhWrVrq06eP9u3b51Tm9OnTGjhwoIKCglS3bl09/vjjSk9Pdyqzbds23XTTTQoICFBYWJg+/PDD8n5pVUpERIRuuOEGBQYGqnHjxhowYID27NnjVCYzM1PDhg1TgwYNVKdOHd1///1KTEx0KhMfH6/+/furdu3aaty4sV555RXl5uY6lVmxYoWuv/56+fv7q3Xr1po+fXp5v7wq48svv1SHDh3so3eGh4dr0aJF9ufZBuYYP368LBaLRowYYZ/GtqgkjEvU7NmzjZo1axpTp041du7caTz55JNG3bp1jcTERLOrViUtXLjQeOONN4yff/7ZkGTMmzfP6fnx48cbwcHBxvz5842tW7ca99xzj9GqVSvj3Llz9jJ33HGH0bFjR2PdunXGn3/+abRu3dp4+OGH7c+npqYaISEhxsCBA40dO3YYs2bNMmrVqmV89dVXFfUyK72+ffsa06ZNM3bs2GHExsYad955p9GiRQsjPT3dXuaZZ54xwsLCjKioKCMmJsbo0aOH0bNnT/vzubm5Rvv27Y0+ffoYW7ZsMRYuXGg0bNjQGDVqlL3MwYMHjdq1axsjR440du3aZXz++edGtWrVjMWLF1fo662sfvnlF+P333839u7da+zZs8d4/fXXjRo1ahg7duwwDINtYIYNGzYYLVu2NDp06GC88MIL9ulsi8rhkg0j3bp1M4YNG2Z/nJeXZzRt2tSIiIgwsVYXh8JhxGazGaGhocZHH31kn5aSkmL4+/sbs2bNMgzDMHbt2mVIMjZu3Ggvs2jRIsNisRjHjh0zDMMwJk2aZNSrV8/Iysqyl/nXv/5ltGnTppxfUdV18uRJQ5KxcuVKwzDy3/caNWoYc+fOtZf566+/DElGdHS0YRj5wdLPz89ISEiwl/nyyy+NoKAg+3v/6quvGtdee63Tuh566CGjb9++5f2Sqqx69eoZU6ZMYRuYIC0tzbjqqquMyMhIo1evXvYwwraoPC7J0zTZ2dnatGmT+vTpY5/m5+enPn36KDo62sSaXZzi4uKUkJDg9H4HBwere/fu9vc7OjpadevWVdeuXe1l+vTpIz8/P61fv95e5uabb1bNmjXtZfr27as9e/bozJkzFfRqqpbU1FRJUv369SVJmzZtUk5OjtO2aNu2rVq0aOG0La677jqFhITYy/Tt21dWq1U7d+60l3FcRkEZvj9F5eXlafbs2crIyFB4eDjbwATDhg1T//79i7xfbIvKo0rctbesJScnKy8vz+nDJUkhISHavXu3SbW6eCUkJEiSy/e74LmEhAQ1btzY6fnq1aurfv36TmVatWpVZBkFz9WrV69c6l9V2Ww2jRgxQjfeeKPat28vKf99qlmzpurWretUtvC2cLWtCp7zVMZqtercuXOqVatWebykKmX79u0KDw9XZmam6tSpo3nz5qldu3aKjY1lG1Sg2bNna/Pmzdq4cWOR5/g+VB6XZBgBLgXDhg3Tjh07tHr1arOrcklq06aNYmNjlZqaqh9//FGDBw/WypUrza7WJeXIkSN64YUXFBkZqYCAALOrAw8uydM0DRs2VLVq1Yr0mE5MTFRoaKhJtbp4Fbynnt7v0NBQnTx50un53NxcnT592qmMq2U4rgP5hg8frt9++03Lly9X8+bN7dNDQ0OVnZ2tlJQUp/KFt0Vx77O7MkFBQfwKPK9mzZpq3bq1unTpooiICHXs2FH//ve/2QYVaNOmTTp58qSuv/56Va9eXdWrV9fKlSv12WefqXr16goJCWFbVBKXZBipWbOmunTpoqioKPs0m82mqKgohYeHm1izi1OrVq0UGhrq9H5brVatX7/e/n6Hh4crJSVFmzZtspdZtmyZbDabunfvbi+zatUq5eTk2MtERkaqTZs2nKI5zzAMDR8+XPPmzdOyZcuKnNbq0qWLatSo4bQt9uzZo/j4eKdtsX37dqdwGBkZqaCgILVr185exnEZBWX4/rhns9mUlZXFNqhAt956q7Zv367Y2Fj7X9euXTVw4ED7/9kWlYTZPWjNMnv2bMPf39+YPn26sWvXLuOpp54y6tat69RjGt5LS0sztmzZYmzZssWQZHzyySfGli1bjMOHDxuGkX9pb926dY0FCxYY27ZtM+69916Xl/Z27tzZWL9+vbF69Wrjqquucrq0NyUlxQgJCTEeffRRY8eOHcbs2bON2rVrc2mvg2effdYIDg42VqxYYZw4ccL+d/bsWXuZZ555xmjRooWxbNkyIyYmxggPDzfCw8Ptzxdcynj77bcbsbGxxuLFi41GjRq5vJTxlVdeMf766y9j4sSJXMro4LXXXjNWrlxpxMXFGdu2bTNee+01w2KxGEuWLDEMg21gJseraQyDbVFZXLJhxDAM4/PPPzdatGhh1KxZ0+jWrZuxbt06s6tUZS1fvtyQVORv8ODBhmHkX9771ltvGSEhIYa/v79x6623Gnv27HFaxqlTp4yHH37YqFOnjhEUFGQMHTrUSEtLcyqzdetW429/+5vh7+9vNGvWzBg/fnxFvcQqwdU2kGRMmzbNXubcuXPGc889Z9SrV8+oXbu2cd999xknTpxwWs6hQ4eMfv36GbVq1TIaNmxovPTSS0ZOTo5TmeXLlxudOnUyatasaVxxxRVO67jUPfbYY8bll19u1KxZ02jUqJFx66232oOIYbANzFQ4jLAtKgeLYRiGOW0yAAAAl2ifEQAAUHkQRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVP8fq6hDPWW3sxAAAAAASUVORK5CYII=",
632 | "text/plain": [
633 | ""
634 | ]
635 | },
636 | "metadata": {},
637 | "output_type": "display_data"
638 | }
639 | ],
640 | "source": [
641 | "data['price'].plot(title='price Range')"
642 | ]
643 | },
644 | {
645 | "cell_type": "code",
646 | "execution_count": 13,
647 | "id": "a67df3de",
648 | "metadata": {
649 | "execution": {
650 | "iopub.execute_input": "2022-11-05T08:25:30.632224Z",
651 | "iopub.status.busy": "2022-11-05T08:25:30.631444Z",
652 | "iopub.status.idle": "2022-11-05T08:25:30.638410Z",
653 | "shell.execute_reply": "2022-11-05T08:25:30.637266Z"
654 | },
655 | "papermill": {
656 | "duration": 0.023171,
657 | "end_time": "2022-11-05T08:25:30.640841",
658 | "exception": false,
659 | "start_time": "2022-11-05T08:25:30.617670",
660 | "status": "completed"
661 | },
662 | "tags": []
663 | },
664 | "outputs": [
665 | {
666 | "data": {
667 | "text/plain": [
668 | "551962.9754347826"
669 | ]
670 | },
671 | "execution_count": 13,
672 | "metadata": {},
673 | "output_type": "execute_result"
674 | }
675 | ],
676 | "source": [
677 | "np.mean(data['price'])"
678 | ]
679 | },
680 | {
681 | "cell_type": "code",
682 | "execution_count": 14,
683 | "id": "e93dadf9",
684 | "metadata": {
685 | "execution": {
686 | "iopub.execute_input": "2022-11-05T08:25:30.667111Z",
687 | "iopub.status.busy": "2022-11-05T08:25:30.666605Z",
688 | "iopub.status.idle": "2022-11-05T08:25:30.861896Z",
689 | "shell.execute_reply": "2022-11-05T08:25:30.860676Z"
690 | },
691 | "papermill": {
692 | "duration": 0.21127,
693 | "end_time": "2022-11-05T08:25:30.864446",
694 | "exception": false,
695 | "start_time": "2022-11-05T08:25:30.653176",
696 | "status": "completed"
697 | },
698 | "tags": []
699 | },
700 | "outputs": [
701 | {
702 | "data": {
703 | "text/plain": [
704 | ""
705 | ]
706 | },
707 | "execution_count": 14,
708 | "metadata": {},
709 | "output_type": "execute_result"
710 | },
711 | {
712 | "data": {
713 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlFklEQVR4nO3df3BU9b3/8dcmkCVIdmOEZJMSIooC4ZfXQHEvmuHXTUB0ZEpVlArUFEZvQgdjIc1cifzovbkFwV9F0PZidC5cwVoQgw3EIOGKATW3KT/EDHDphA5soECyECEJyd4/+uV8XYOoIcnZ8Hk+ZnaGc84nZ9+nk5Znd88ujkAgEBAAAIDBwuweAAAAwG4EEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACM18XuATqD5uZmHT9+XFFRUXI4HHaPAwAAvoNAIKBz584pISFBYWFXfw2IIPoOjh8/rsTERLvHAAAArXDs2DH17t37qmsIou8gKipK0t//A3W5XDZPAwAAvgu/36/ExETr7/GrIYi+g8tvk7lcLoIIAIBO5rvc7sJN1QAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjNfF7gFMkjLvTbtHQAgpXzbd7hEAAP8PrxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwnq1BlJ+frxEjRigqKkqxsbGaPHmyKisrg9aMHj1aDocj6PHEE08EramqqtKkSZPUvXt3xcbGat68ebp06VLQmh07dujOO++U0+lUv379VFBQ0N6XBwAAOglbg6i0tFSZmZnavXu3iouL1djYqLS0NNXV1QWtmzVrlk6cOGE9li5dah1ramrSpEmT1NDQoI8//lhvvPGGCgoKlJeXZ605evSoJk2apDFjxqiiokJz587Vz372M23durXDrhUAAIQuW/+1+6KioqDtgoICxcbGqry8XKmpqdb+7t27y+PxXPEc27Zt0+eff64PPvhAcXFxuuOOO7RkyRLl5ORo4cKFioiI0OrVq9W3b18tX75ckjRw4EB99NFHev7555Went5+FwgAADqFkLqHqLa2VpIUExMTtH/t2rXq2bOnBg8erNzcXH355ZfWsbKyMg0ZMkRxcXHWvvT0dPn9fh04cMBaM378+KBzpqenq6ys7Ipz1NfXy+/3Bz0AAMD1y9ZXiL6qublZc+fO1ahRozR48GBr/6OPPqqkpCQlJCRo7969ysnJUWVlpf7whz9Iknw+X1AMSbK2fT7fVdf4/X5duHBBkZGRQcfy8/O1aNGiNr9GAAAQmkImiDIzM7V//3599NFHQftnz55t/XnIkCGKj4/XuHHjdOTIEd16663tMktubq6ys7Otbb/fr8TExHZ5LgAAYL+QeMssKytLhYWF+vDDD9W7d++rrh05cqQk6fDhw5Ikj8ej6urqoDWXty/fd/RNa1wuV4tXhyTJ6XTK5XIFPQAAwPXL1iAKBALKysrSxo0btX37dvXt2/dbf6aiokKSFB8fL0nyer3at2+fTp48aa0pLi6Wy+VScnKytaakpCToPMXFxfJ6vW10JQAAoDOzNYgyMzP1n//5n1q3bp2ioqLk8/nk8/l04cIFSdKRI0e0ZMkSlZeX6y9/+Ys2b96s6dOnKzU1VUOHDpUkpaWlKTk5WY899pj+/Oc/a+vWrXrmmWeUmZkpp9MpSXriiSf0v//7v5o/f76++OILvfLKK9qwYYOeeuop264dAACEDluDaNWqVaqtrdXo0aMVHx9vPdavXy9JioiI0AcffKC0tDQNGDBATz/9tKZMmaL33nvPOkd4eLgKCwsVHh4ur9ern/zkJ5o+fboWL15srenbt6+2bNmi4uJiDRs2TMuXL9fvfvc7PnIPAAAkSY5AIBCwe4hQ5/f75Xa7VVtbe033E6XMe7MNp0JnV75sut0jAMB17fv8/R0SN1UDAADYiSACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDxbgyg/P18jRoxQVFSUYmNjNXnyZFVWVgatuXjxojIzM3XTTTepR48emjJliqqrq4PWVFVVadKkSerevbtiY2M1b948Xbp0KWjNjh07dOedd8rpdKpfv34qKCho78sDAACdhK1BVFpaqszMTO3evVvFxcVqbGxUWlqa6urqrDVPPfWU3nvvPb399tsqLS3V8ePH9aMf/cg63tTUpEmTJqmhoUEff/yx3njjDRUUFCgvL89ac/ToUU2aNEljxoxRRUWF5s6dq5/97GfaunVrh14vAAAITY5AIBCwe4jLTp06pdjYWJWWlio1NVW1tbXq1auX1q1bpx//+MeSpC+++EIDBw5UWVmZ7rrrLv3xj3/Ufffdp+PHjysuLk6StHr1auXk5OjUqVOKiIhQTk6OtmzZov3791vPNXXqVNXU1KioqOhb5/L7/XK73aqtrZXL5Wr19aXMe7PVP4vrT/my6XaPAADXte/z93dI3UNUW1srSYqJiZEklZeXq7GxUePHj7fWDBgwQH369FFZWZkkqaysTEOGDLFiSJLS09Pl9/t14MABa81Xz3F5zeVzfF19fb38fn/QAwAAXL9CJoiam5s1d+5cjRo1SoMHD5Yk+Xw+RUREKDo6OmhtXFycfD6ftearMXT5+OVjV1vj9/t14cKFFrPk5+fL7XZbj8TExDa5RgAAEJpCJogyMzO1f/9+vfXWW3aPotzcXNXW1lqPY8eO2T0SAABoR13sHkCSsrKyVFhYqJ07d6p3797Wfo/Ho4aGBtXU1AS9SlRdXS2Px2Ot+eSTT4LOd/lTaF9d8/VPplVXV8vlcikyMrLFPE6nU06ns02uDQAAhD5bXyEKBALKysrSxo0btX37dvXt2zfoeEpKirp27aqSkhJrX2VlpaqqquT1eiVJXq9X+/bt08mTJ601xcXFcrlcSk5OttZ89RyX11w+BwAAMJutrxBlZmZq3bp1evfddxUVFWXd8+N2uxUZGSm3262MjAxlZ2crJiZGLpdLc+bMkdfr1V133SVJSktLU3Jysh577DEtXbpUPp9PzzzzjDIzM61XeZ544gn95je/0fz58/X4449r+/bt2rBhg7Zs2WLbtQMAgNBh6ytEq1atUm1trUaPHq34+HjrsX79emvN888/r/vuu09TpkxRamqqPB6P/vCHP1jHw8PDVVhYqPDwcHm9Xv3kJz/R9OnTtXjxYmtN3759tWXLFhUXF2vYsGFavny5fve73yk9Pb1DrxcAAISmkPoeolDF9xChPfA9RADQvjrt9xABAADYgSACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYr4vdAwCwT9XiIXaPgBDTJ2+f3SMAtuAVIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYz9Yg2rlzp+6//34lJCTI4XBo06ZNQcdnzpwph8MR9JgwYULQmjNnzmjatGlyuVyKjo5WRkaGzp8/H7Rm7969uueee9StWzclJiZq6dKl7X1pAACgE7E1iOrq6jRs2DCtXLnyG9dMmDBBJ06csB7/9V//FXR82rRpOnDggIqLi1VYWKidO3dq9uzZ1nG/36+0tDQlJSWpvLxcy5Yt08KFC/Xaa6+123UBAIDOpYudTz5x4kRNnDjxqmucTqc8Hs8Vjx08eFBFRUX69NNPNXz4cEnSyy+/rHvvvVfPPfecEhIStHbtWjU0NGjNmjWKiIjQoEGDVFFRoRUrVgSFEwAAMFfI30O0Y8cOxcbGqn///nryySd1+vRp61hZWZmio6OtGJKk8ePHKywsTHv27LHWpKamKiIiwlqTnp6uyspKnT179orPWV9fL7/fH/QAAADXr1YF0dixY1VTU9Niv9/v19ixY691JsuECRP05ptvqqSkRL/+9a9VWlqqiRMnqqmpSZLk8/kUGxsb9DNdunRRTEyMfD6ftSYuLi5ozeXty2u+Lj8/X26323okJia22TUBAIDQ06q3zHbs2KGGhoYW+y9evKj//u//vuahLps6dar15yFDhmjo0KG69dZbtWPHDo0bN67NnufrcnNzlZ2dbW37/X6iCACA69j3CqK9e/daf/7888+DXmFpampSUVGRfvCDH7TddF9zyy23qGfPnjp8+LDGjRsnj8ejkydPBq25dOmSzpw5Y9135PF4VF1dHbTm8vY33ZvkdDrldDrb4QoAAEAo+l5BdMcdd1gff7/SW2ORkZF6+eWX22y4r/vrX/+q06dPKz4+XpLk9XpVU1Oj8vJypaSkSJK2b9+u5uZmjRw50lrzL//yL2psbFTXrl0lScXFxerfv79uvPHGdpsVAAB0Ht8riI4ePapAIKBbbrlFn3zyiXr16mUdi4iIUGxsrMLDw7/z+c6fP6/Dhw8Hnb+iokIxMTGKiYnRokWLNGXKFHk8Hh05ckTz589Xv379lJ6eLkkaOHCgJkyYoFmzZmn16tVqbGxUVlaWpk6dqoSEBEnSo48+qkWLFikjI0M5OTnav3+/XnzxRT3//PPf59IBAMB17HsFUVJSkiSpubm5TZ78s88+05gxY6zty/ftzJgxQ6tWrdLevXv1xhtvqKamRgkJCUpLS9OSJUuC3s5au3atsrKyNG7cOIWFhWnKlCl66aWXrONut1vbtm1TZmamUlJS1LNnT+Xl5fGRewAAYGn19xAdOnRIH374oU6ePNkikPLy8r7TOUaPHq1AIPCNx7du3fqt54iJidG6deuuumbo0KFterM3AAC4vrQqiH7729/qySefVM+ePeXxeORwOKxjDofjOwcRAABAKGhVEP3qV7/Sv/7rvyonJ6et5wEAAOhwrfpixrNnz+rBBx9s61kAAABs0aogevDBB7Vt27a2ngUAAMAWrXrLrF+/flqwYIF2796tIUOGWN/vc9nPf/7zNhkOAACgI7QqiF577TX16NFDpaWlKi0tDTrmcDgIIgAA0Km0KoiOHj3a1nMAAADYplX3EAEAAFxPWvUK0eOPP37V42vWrGnVMAAAAHZoVRCdPXs2aLuxsVH79+9XTU3NFf/RVwAAgFDWqiDauHFji33Nzc168skndeutt17zUAAAAB2pze4hCgsLU3Z2Nv+KPAAA6HTa9KbqI0eO6NKlS215SgAAgHbXqrfMsrOzg7YDgYBOnDihLVu2aMaMGW0yGAAAQEdpVRD96U9/CtoOCwtTr169tHz58m/9BBoAAECoaVUQffjhh209BwAAgG1aFUSXnTp1SpWVlZKk/v37q1evXm0yFAAAQEdq1U3VdXV1evzxxxUfH6/U1FSlpqYqISFBGRkZ+vLLL9t6RgAAgHbVqiDKzs5WaWmp3nvvPdXU1KimpkbvvvuuSktL9fTTT7f1jAAAAO2qVW+ZvfPOO/r973+v0aNHW/vuvfdeRUZG6qGHHtKqVavaaj4AAIB216pXiL788kvFxcW12B8bG8tbZgAAoNNpVRB5vV49++yzunjxorXvwoULWrRokbxeb5sNBwAA0BFa9ZbZCy+8oAkTJqh3794aNmyYJOnPf/6znE6ntm3b1qYDAgAAtLdWBdGQIUN06NAhrV27Vl988YUk6ZFHHtG0adMUGRnZpgMCAAC0t1YFUX5+vuLi4jRr1qyg/WvWrNGpU6eUk5PTJsMBAAB0hFbdQ/Tqq69qwIABLfYPGjRIq1evvuahAAAAOlKrgsjn8yk+Pr7F/l69eunEiRPXPBQAAEBHalUQJSYmateuXS3279q1SwkJCdc8FAAAQEdq1T1Es2bN0ty5c9XY2KixY8dKkkpKSjR//ny+qRoAAHQ6rQqiefPm6fTp0/rnf/5nNTQ0SJK6deumnJwc5ebmtumAAAAA7a1VQeRwOPTrX/9aCxYs0MGDBxUZGanbbrtNTqezrecDAABod60Kost69OihESNGtNUsAAAAtmjVTdUAAADXE4IIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPFuDaOfOnbr//vuVkJAgh8OhTZs2BR0PBALKy8tTfHy8IiMjNX78eB06dChozZkzZzRt2jS5XC5FR0crIyND58+fD1qzd+9e3XPPPerWrZsSExO1dOnS9r40AADQidgaRHV1dRo2bJhWrlx5xeNLly7VSy+9pNWrV2vPnj264YYblJ6erosXL1prpk2bpgMHDqi4uFiFhYXauXOnZs+ebR33+/1KS0tTUlKSysvLtWzZMi1cuFCvvfZau18fAADoHLrY+eQTJ07UxIkTr3gsEAjohRde0DPPPKMHHnhAkvTmm28qLi5OmzZt0tSpU3Xw4EEVFRXp008/1fDhwyVJL7/8su69914999xzSkhI0Nq1a9XQ0KA1a9YoIiJCgwYNUkVFhVasWBEUTl9VX1+v+vp6a9vv97fxlQMAgFASsvcQHT16VD6fT+PHj7f2ud1ujRw5UmVlZZKksrIyRUdHWzEkSePHj1dYWJj27NljrUlNTVVERIS1Jj09XZWVlTp79uwVnzs/P19ut9t6JCYmtsclAgCAEBGyQeTz+SRJcXFxQfvj4uKsYz6fT7GxsUHHu3TpopiYmKA1VzrHV5/j63Jzc1VbW2s9jh07du0XBAAAQpatb5mFKqfTKafTafcYAACgg4TsK0Qej0eSVF1dHbS/urraOubxeHTy5Mmg45cuXdKZM2eC1lzpHF99DgAAYLaQDaK+ffvK4/GopKTE2uf3+7Vnzx55vV5JktfrVU1NjcrLy60127dvV3Nzs0aOHGmt2blzpxobG601xcXF6t+/v2688cYOuhoAABDKbA2i8+fPq6KiQhUVFZL+fiN1RUWFqqqq5HA4NHfuXP3qV7/S5s2btW/fPk2fPl0JCQmaPHmyJGngwIGaMGGCZs2apU8++US7du1SVlaWpk6dqoSEBEnSo48+qoiICGVkZOjAgQNav369XnzxRWVnZ9t01QAAINTYeg/RZ599pjFjxljblyNlxowZKigo0Pz581VXV6fZs2erpqZGd999t4qKitStWzfrZ9auXausrCyNGzdOYWFhmjJlil566SXruNvt1rZt25SZmamUlBT17NlTeXl53/iRewAAYB5HIBAI2D1EqPP7/XK73aqtrZXL5Wr1eVLmvdmGU6GzK1823e4RVLV4iN0jIMT0ydtn9whAm/k+f3+H7D1EAAAAHYUgAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGC8kA6ihQsXyuFwBD0GDBhgHb948aIyMzN10003qUePHpoyZYqqq6uDzlFVVaVJkyape/fuio2N1bx583Tp0qWOvhQAABDCutg9wLcZNGiQPvjgA2u7S5f/P/JTTz2lLVu26O2335bb7VZWVpZ+9KMfadeuXZKkpqYmTZo0SR6PRx9//LFOnDih6dOnq2vXrvq3f/u3Dr8WAAAQmkI+iLp06SKPx9Nif21trf7jP/5D69at09ixYyVJr7/+ugYOHKjdu3frrrvu0rZt2/T555/rgw8+UFxcnO644w4tWbJEOTk5WrhwoSIiIq74nPX19aqvr7e2/X5/+1wcAAAICSH9lpkkHTp0SAkJCbrllls0bdo0VVVVSZLKy8vV2Nio8ePHW2sHDBigPn36qKysTJJUVlamIUOGKC4uzlqTnp4uv9+vAwcOfONz5ufny+12W4/ExMR2ujoAABAKQjqIRo4cqYKCAhUVFWnVqlU6evSo7rnnHp07d04+n08RERGKjo4O+pm4uDj5fD5Jks/nC4qhy8cvH/smubm5qq2ttR7Hjh1r2wsDAAAhJaTfMps4caL156FDh2rkyJFKSkrShg0bFBkZ2W7P63Q65XQ62+38AAAgtIT0K0RfFx0drdtvv12HDx+Wx+NRQ0ODampqgtZUV1db9xx5PJ4Wnzq7vH2l+5IAAICZOlUQnT9/XkeOHFF8fLxSUlLUtWtXlZSUWMcrKytVVVUlr9crSfJ6vdq3b59OnjxprSkuLpbL5VJycnKHzw8AAEJTSL9l9otf/EL333+/kpKSdPz4cT377LMKDw/XI488IrfbrYyMDGVnZysmJkYul0tz5syR1+vVXXfdJUlKS0tTcnKyHnvsMS1dulQ+n0/PPPOMMjMzeUsMAABYQjqI/vrXv+qRRx7R6dOn1atXL919993avXu3evXqJUl6/vnnFRYWpilTpqi+vl7p6el65ZVXrJ8PDw9XYWGhnnzySXm9Xt1www2aMWOGFi9ebNclAQCAEBTSQfTWW29d9Xi3bt20cuVKrVy58hvXJCUl6f3332/r0QAAwHWkU91DBAAA0B4IIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgvC52DwAAwFeNenmU3SMghOyas6tDnodXiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPGMCqKVK1fq5ptvVrdu3TRy5Eh98skndo8EAABCgDFBtH79emVnZ+vZZ5/V//zP/2jYsGFKT0/XyZMn7R4NAADYzJggWrFihWbNmqWf/vSnSk5O1urVq9W9e3etWbPG7tEAAIDNutg9QEdoaGhQeXm5cnNzrX1hYWEaP368ysrKWqyvr69XfX29tV1bWytJ8vv91zRHU/2Fa/p5XF+u9fepLZy72GT3CAgxofB7eenCJbtHQAi5lt/Jyz8bCAS+da0RQfS3v/1NTU1NiouLC9ofFxenL774osX6/Px8LVq0qMX+xMTEdpsR5nG//ITdIwAt5bvtngAI4s659t/Jc+fOye2++nmMCKLvKzc3V9nZ2dZ2c3Ozzpw5o5tuukkOh8PGyTo/v9+vxMREHTt2TC6Xy+5xAH4nEZL4vWwbgUBA586dU0JCwreuNSKIevbsqfDwcFVXVwftr66ulsfjabHe6XTK6XQG7YuOjm7PEY3jcrn4LzlCCr+TCEX8Xl67b3tl6DIjbqqOiIhQSkqKSkpKrH3Nzc0qKSmR1+u1cTIAABAKjHiFSJKys7M1Y8YMDR8+XD/84Q/1wgsvqK6uTj/96U/tHg0AANjMmCB6+OGHderUKeXl5cnn8+mOO+5QUVFRixut0b6cTqeeffbZFm9JAnbhdxKhiN/LjucIfJfPogEAAFzHjLiHCAAA4GoIIgAAYDyCCAAAGI8gAgAAxiOI0CF27typ+++/XwkJCXI4HNq0aZPdI8Fw+fn5GjFihKKiohQbG6vJkyersrLS7rFgsFWrVmno0KHWlzF6vV798Y9/tHssYxBE6BB1dXUaNmyYVq5cafcogCSptLRUmZmZ2r17t4qLi9XY2Ki0tDTV1dXZPRoM1bt3b/37v/+7ysvL9dlnn2ns2LF64IEHdODAAbtHMwIfu0eHczgc2rhxoyZPnmz3KIDl1KlTio2NVWlpqVJTU+0eB5AkxcTEaNmyZcrIyLB7lOueMV/MCABXU1tbK+nvfwEBdmtqatLbb7+turo6/ompDkIQATBec3Oz5s6dq1GjRmnw4MF2jwOD7du3T16vVxcvXlSPHj20ceNGJScn2z2WEQgiAMbLzMzU/v379dFHH9k9CgzXv39/VVRUqLa2Vr///e81Y8YMlZaWEkUdgCACYLSsrCwVFhZq586d6t27t93jwHARERHq16+fJCklJUWffvqpXnzxRb366qs2T3b9I4gAGCkQCGjOnDnauHGjduzYob59+9o9EtBCc3Oz6uvr7R7DCAQROsT58+d1+PBha/vo0aOqqKhQTEyM+vTpY+NkMFVmZqbWrVund999V1FRUfL5fJIkt9utyMhIm6eDiXJzczVx4kT16dNH586d07p167Rjxw5t3brV7tGMwMfu0SF27NihMWPGtNg/Y8YMFRQUdPxAMJ7D4bji/tdff10zZ87s2GEASRkZGSopKdGJEyfkdrs1dOhQ5eTk6J/+6Z/sHs0IBBEAADAe31QNAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBKDTCgQCmj17tmJiYuRwOBQdHa25c+faPRaAToggAtBpFRUVqaCgQIWFhTpx4oQGDx5s90gAOin+cVcAndaRI0cUHx+vf/zHf5QkdenS/v+T1tDQoIiIiHZ/HgAdi1eIAHRKM2fO1Jw5c1RVVSWHw6Gbb765xZqzZ89q+vTpuvHGG9W9e3dNnDhRhw4dClrzzjvvaNCgQXI6nbr55pu1fPnyoOM333yzlixZounTp8vlcmn27NlqaGhQVlaW4uPj1a1bNyUlJSk/P789LxdAOyOIAHRKL774ohYvXqzevXvrxIkT+vTTT1usmTlzpj777DNt3rxZZWVlCgQCuvfee9XY2ChJKi8v10MPPaSpU6dq3759WrhwoRYsWKCCgoKg8zz33HMaNmyY/vSnP2nBggV66aWXtHnzZm3YsEGVlZVau3btFYMMQOfBW2YAOiW3262oqCiFh4fL4/G0OH7o0CFt3rxZu3btst5SW7t2rRITE7Vp0yY9+OCDWrFihcaNG6cFCxZIkm6//XZ9/vnnWrZsmWbOnGmda+zYsXr66aet7aqqKt122226++675XA4lJSU1L4XC6Dd8QoRgOvSwYMH1aVLF40cOdLad9NNN6l///46ePCgtWbUqFFBPzdq1CgdOnRITU1N1r7hw4cHrZk5c6YqKirUv39//fznP9e2bdva8UoAdASCCAC+xQ033BC0feedd+ro0aNasmSJLly4oIceekg//vGPbZoOQFsgiABclwYOHKhLly5pz5491r7Tp0+rsrJSycnJ1ppdu3YF/dyuXbt0++23Kzw8/Krnd7lcevjhh/Xb3/5W69ev1zvvvKMzZ860/YUA6BDcQwTgunTbbbfpgQce0KxZs/Tqq68qKipKv/zlL/WDH/xADzzwgCTp6aef1ogRI7RkyRI9/PDDKisr029+8xu98sorVz33ihUrFB8fr3/4h39QWFiY3n77bXk8HkVHR3fAlQFoD7xCBOC69frrryslJUX33XefvF6vAoGA3n//fXXt2lXS39/62rBhg9566y0NHjxYeXl5Wrx4cdAN1VcSFRWlpUuXavjw4RoxYoT+8pe/6P3331dYGP+TCnRWjkAgELB7CAAAADvxf2cAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAY7/8AX8u1/ILIqEMAAAAASUVORK5CYII=",
714 | "text/plain": [
715 | ""
716 | ]
717 | },
718 | "metadata": {},
719 | "output_type": "display_data"
720 | }
721 | ],
722 | "source": [
723 | "sns.countplot(data=data,x=data['floors'])"
724 | ]
725 | },
726 | {
727 | "cell_type": "code",
728 | "execution_count": 15,
729 | "id": "9b40aea2",
730 | "metadata": {
731 | "execution": {
732 | "iopub.execute_input": "2022-11-05T08:25:30.891036Z",
733 | "iopub.status.busy": "2022-11-05T08:25:30.889937Z",
734 | "iopub.status.idle": "2022-11-05T08:25:31.110151Z",
735 | "shell.execute_reply": "2022-11-05T08:25:31.109298Z"
736 | },
737 | "papermill": {
738 | "duration": 0.236117,
739 | "end_time": "2022-11-05T08:25:31.112606",
740 | "exception": false,
741 | "start_time": "2022-11-05T08:25:30.876489",
742 | "status": "completed"
743 | },
744 | "tags": []
745 | },
746 | "outputs": [
747 | {
748 | "data": {
749 | "text/plain": [
750 | ""
751 | ]
752 | },
753 | "execution_count": 15,
754 | "metadata": {},
755 | "output_type": "execute_result"
756 | },
757 | {
758 | "data": {
759 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAow0lEQVR4nO3de3RU5b3/8c8kMEkgN27JJJJE8AIEuRUkRK5CFuFSqkuKommlwsFTTBRMi8ipAmo1iqIoUhBbpBc4olVUQJEYJLGYcIlNBYSIHGpoIYEDJAMRct2/P3qYn1MQNWRmDzzv11p7LWfvJzPfp6tdvjuzM3FYlmUJAADAYEF2DwAAAGA3gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxmth9wCXgsbGRh06dEgRERFyOBx2jwMAAL4Dy7J08uRJxcfHKyjowu8BEUTfwaFDh5SQkGD3GAAAoAkOHjyojh07XnANQfQdRERESPrXf6CRkZE2TwMAAL4Lt9uthIQEz7/HL4Qg+g7OfkwWGRlJEAEAcIn5Lre7cFM1AAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjtbB7AOBSM3DRQLtHuGhb7t1i9wgAEFB4hwgAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxrM1iHJycnT99dcrIiJCMTExuvnmm1VaWuq15syZM8rMzFS7du0UHh6u8ePHq6KiwmtNWVmZxo4dq1atWikmJkYzZ85UfX2915rNmzfrBz/4gUJCQnT11VdrxYoVvt4eAAC4RNgaRPn5+crMzFRRUZFyc3NVV1enkSNHqrq62rPm/vvv19q1a/X6668rPz9fhw4d0i233OK53tDQoLFjx6q2tlYff/yxfv/732vFihWaM2eOZ82BAwc0duxY3XjjjSopKdGMGTP0H//xH3r//ff9ul8AABCYHJZlWXYPcdbRo0cVExOj/Px8DRkyRFVVVerQoYNWrVqlH//4x5KkvXv3qlu3biosLNSAAQP03nvv6Yc//KEOHTqk2NhYSdLSpUs1a9YsHT16VE6nU7NmzdL69eu1a9cuz2tNnDhRlZWV2rBhw7fO5Xa7FRUVpaqqKkVGRvpm87hkDFw00O4RLtqWe7fYPQIA+Nz3+fd3QN1DVFVVJUlq27atJKm4uFh1dXVKS0vzrOnatasSExNVWFgoSSosLFSPHj08MSRJ6enpcrvd2r17t2fN15/j7Jqzz/Hvampq5Ha7vQ4AAHD5Cpggamxs1IwZMzRw4EBdd911kqTy8nI5nU5FR0d7rY2NjVV5eblnzddj6Oz1s9cutMbtduv06dPnzJKTk6OoqCjPkZCQ0Cx7BAAAgSlggigzM1O7du3Sq6++avcomj17tqqqqjzHwYMH7R4JAAD4UAu7B5CkrKwsrVu3TgUFBerYsaPnvMvlUm1trSorK73eJaqoqJDL5fKs2bZtm9fznf0ttK+v+fffTKuoqFBkZKTCwsLOmSckJEQhISHNsjcAABD4bH2HyLIsZWVlac2aNdq0aZM6derkdb1v375q2bKl8vLyPOdKS0tVVlam1NRUSVJqaqp27typI0eOeNbk5uYqMjJSycnJnjVff46za84+BwAAMJut7xBlZmZq1apVevvttxUREeG55ycqKkphYWGKiorSlClTlJ2drbZt2yoyMlL33nuvUlNTNWDAAEnSyJEjlZycrJ/+9KeaP3++ysvL9dBDDykzM9PzLs/Pf/5zvfjii3rggQc0efJkbdq0Sa+99prWr19v294BAEDgsPUdoiVLlqiqqkrDhg1TXFyc51i9erVnzXPPPacf/vCHGj9+vIYMGSKXy6U333zTcz04OFjr1q1TcHCwUlNT9ZOf/ER33nmnHn30Uc+aTp06af369crNzVWvXr20YMEC/fa3v1V6erpf9wsAAAJTQH0PUaDie4jwdXwPEQBcGi7Z7yECAACwA0EEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgt7B4Al66yR3vYPcJFS5yz0+4RAAABgHeIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPFsDaKCggKNGzdO8fHxcjgceuutt7yu/+xnP5PD4fA6Ro0a5bXm+PHjysjIUGRkpKKjozVlyhSdOnXKa82nn36qwYMHKzQ0VAkJCZo/f76vtwYAAC4htgZRdXW1evXqpcWLF3/jmlGjRunw4cOe47//+7+9rmdkZGj37t3Kzc3VunXrVFBQoLvvvttz3e12a+TIkUpKSlJxcbGefvppzZs3T8uWLfPZvgAAwKWlhZ0vPnr0aI0ePfqCa0JCQuRyuc57bc+ePdqwYYO2b9+ufv36SZIWLVqkMWPG6JlnnlF8fLxWrlyp2tpaLV++XE6nU927d1dJSYmeffZZr3D6upqaGtXU1Hgeu93uJu4QAABcCgL+HqLNmzcrJiZGXbp00bRp03Ts2DHPtcLCQkVHR3tiSJLS0tIUFBSkrVu3etYMGTJETqfTsyY9PV2lpaU6ceLEeV8zJydHUVFRniMhIcFHuwMAAIEgoINo1KhR+sMf/qC8vDw99dRTys/P1+jRo9XQ0CBJKi8vV0xMjNfPtGjRQm3btlV5eblnTWxsrNeas4/Prvl3s2fPVlVVlec4ePBgc28NAAAEEFs/Mvs2EydO9Pxzjx491LNnT1111VXavHmzRowY4bPXDQkJUUhIiM+eHwAABJaAfofo33Xu3Fnt27fXF198IUlyuVw6cuSI15r6+nodP37cc9+Ry+VSRUWF15qzj7/p3iQAAGCWSyqI/vGPf+jYsWOKi4uTJKWmpqqyslLFxcWeNZs2bVJjY6NSUlI8awoKClRXV+dZk5ubqy5duqhNmzb+3QAAAAhItgbRqVOnVFJSopKSEknSgQMHVFJSorKyMp06dUozZ85UUVGR/v73vysvL0833XSTrr76aqWnp0uSunXrplGjRmnq1Knatm2btmzZoqysLE2cOFHx8fGSpDvuuENOp1NTpkzR7t27tXr1aj3//PPKzs62a9sAACDA2BpEO3bsUJ8+fdSnTx9JUnZ2tvr06aM5c+YoODhYn376qX70ox/p2muv1ZQpU9S3b1999NFHXvf3rFy5Ul27dtWIESM0ZswYDRo0yOs7hqKiorRx40YdOHBAffv21S9+8QvNmTPnG3/lHgAAmMfWm6qHDRsmy7K+8fr777//rc/Rtm1brVq16oJrevbsqY8++uh7zwcAAMxwSd1DBAAA4AsEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACM16QgGj58uCorK88573a7NXz48IudCQAAwK+aFESbN29WbW3tOefPnDmjjz766KKHAgAA8KcW32fxp59+6vnnzz77TOXl5Z7HDQ0N2rBhg6644ormmw4AAMAPvlcQ9e7dWw6HQw6H47wfjYWFhWnRokXNNhwAAIA/fK8gOnDggCzLUufOnbVt2zZ16NDBc83pdComJkbBwcHNPiQAAIAvfa8gSkpKkiQ1Njb6ZBgAAAA7fK8g+rp9+/bpww8/1JEjR84JpDlz5lz0YAAAAP7SpCB6+eWXNW3aNLVv314ul0sOh8NzzeFwEEQAAOCS0qQg+vWvf63HH39cs2bNau55AAAA/K5J30N04sQJTZgwoblnAQAAsEWTgmjChAnauHFjc88CAABgiyZ9ZHb11Vfr4YcfVlFRkXr06KGWLVt6Xb/vvvuaZTgAAAB/aFIQLVu2TOHh4crPz1d+fr7XNYfDQRABAIBLSpOC6MCBA809BwAAgG2adA8RAADA5aRJ7xBNnjz5gteXL1/epGEAAADs0KQgOnHihNfjuro67dq1S5WVlef9o68AAACBrElBtGbNmnPONTY2atq0abrqqqsueigAAAB/arZ7iIKCgpSdna3nnnuuuZ4SAADAL5r1pur9+/ervr6+OZ8SAADA55r0kVl2drbXY8uydPjwYa1fv16TJk1qlsEAAAD8pUlB9Ne//tXrcVBQkDp06KAFCxZ862+gAQAABJomBdGHH37Y3HMAAADYpklBdNbRo0dVWloqSerSpYs6dOjQLEMBAAD4U5Nuqq6urtbkyZMVFxenIUOGaMiQIYqPj9eUKVP01VdfNfeMAAAAPtWkIMrOzlZ+fr7Wrl2ryspKVVZW6u2331Z+fr5+8YtfNPeMAAAAPtWkj8zeeOMN/fnPf9awYcM858aMGaOwsDDdeuutWrJkSXPNBwAA4HNNeofoq6++Umxs7DnnY2Ji+MgMAABccpoURKmpqZo7d67OnDnjOXf69Gk98sgjSk1NbbbhAAAA/KFJH5ktXLhQo0aNUseOHdWrVy9J0t/+9jeFhIRo48aNzTogAACArzUpiHr06KF9+/Zp5cqV2rt3ryTp9ttvV0ZGhsLCwpp1QAAAAF9rUhDl5OQoNjZWU6dO9Tq/fPlyHT16VLNmzWqW4QAAAPyhSfcQvfTSS+rates557t3766lS5de9FAAAAD+1KQgKi8vV1xc3DnnO3TooMOHD1/0UAAAAP7UpCBKSEjQli1bzjm/ZcsWxcfHX/RQAAAA/tSke4imTp2qGTNmqK6uTsOHD5ck5eXl6YEHHuCbqgEAwCWnSUE0c+ZMHTt2TPfcc49qa2slSaGhoZo1a5Zmz57drAMCAAD4WpOCyOFw6KmnntLDDz+sPXv2KCwsTNdcc41CQkKaez4AAACfa1IQnRUeHq7rr7++uWYBAACwRZNuqgYAALicEEQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMJ6tQVRQUKBx48YpPj5eDodDb731ltd1y7I0Z84cxcXFKSwsTGlpadq3b5/XmuPHjysjI0ORkZGKjo7WlClTdOrUKa81n376qQYPHqzQ0FAlJCRo/vz5vt4aAAC4hNgaRNXV1erVq5cWL1583uvz58/XCy+8oKVLl2rr1q1q3bq10tPTdebMGc+ajIwM7d69W7m5uVq3bp0KCgp09913e6673W6NHDlSSUlJKi4u1tNPP6158+Zp2bJlPt8fAAC4NFzUN1VfrNGjR2v06NHnvWZZlhYuXKiHHnpIN910kyTpD3/4g2JjY/XWW29p4sSJ2rNnjzZs2KDt27erX79+kqRFixZpzJgxeuaZZxQfH6+VK1eqtrZWy5cvl9PpVPfu3VVSUqJnn33WK5y+rqamRjU1NZ7Hbre7mXcOAAACScDeQ3TgwAGVl5crLS3Ncy4qKkopKSkqLCyUJBUWFio6OtoTQ5KUlpamoKAgbd261bNmyJAhcjqdnjXp6ekqLS3ViRMnzvvaOTk5ioqK8hwJCQm+2CIAAAgQARtE5eXlkqTY2Fiv87GxsZ5r5eXliomJ8breokULtW3b1mvN+Z7j66/x72bPnq2qqirPcfDgwYvfEAAACFi2fmQWqEJCQhQSEmL3GAAAwE8C9h0il8slSaqoqPA6X1FR4bnmcrl05MgRr+v19fU6fvy415rzPcfXXwMAAJgtYIOoU6dOcrlcysvL85xzu93aunWrUlNTJUmpqamqrKxUcXGxZ82mTZvU2NiolJQUz5qCggLV1dV51uTm5qpLly5q06aNn3YDAAACma1BdOrUKZWUlKikpETSv26kLikpUVlZmRwOh2bMmKFf//rXeuedd7Rz507deeedio+P18033yxJ6tatm0aNGqWpU6dq27Zt2rJli7KysjRx4kTFx8dLku644w45nU5NmTJFu3fv1urVq/X8888rOzvbpl0DAIBAY+s9RDt27NCNN97oeXw2UiZNmqQVK1bogQceUHV1te6++25VVlZq0KBB2rBhg0JDQz0/s3LlSmVlZWnEiBEKCgrS+PHj9cILL3iuR0VFaePGjcrMzFTfvn3Vvn17zZkz5xt/5R4AAJjHYVmWZfcQgc7tdisqKkpVVVWKjIy0e5yAUfZoD7tHuGiJc3Z+758ZuGigDybxry33brF7BADwue/z7++AvYcIAADAXwgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxAjqI5s2bJ4fD4XV07drVc/3MmTPKzMxUu3btFB4ervHjx6uiosLrOcrKyjR27Fi1atVKMTExmjlzpurr6/29FQAAEMBa2D3At+nevbs++OADz+MWLf7/yPfff7/Wr1+v119/XVFRUcrKytItt9yiLVu2SJIaGho0duxYuVwuffzxxzp8+LDuvPNOtWzZUk888YTf9wIAAAJTwAdRixYt5HK5zjlfVVWl3/3ud1q1apWGDx8uSXrllVfUrVs3FRUVacCAAdq4caM+++wzffDBB4qNjVXv3r312GOPadasWZo3b56cTqe/twMAAAJQwAfRvn37FB8fr9DQUKWmpionJ0eJiYkqLi5WXV2d0tLSPGu7du2qxMREFRYWasCAASosLFSPHj0UGxvrWZOenq5p06Zp9+7d6tOnz3lfs6amRjU1NZ7HbrfbdxsELhH5Q4baPcJFG1qQb/cIAAJUQN9DlJKSohUrVmjDhg1asmSJDhw4oMGDB+vkyZMqLy+X0+lUdHS018/ExsaqvLxcklReXu4VQ2evn732TXJychQVFeU5EhISmndjAAAgoAT0O0SjR4/2/HPPnj2VkpKipKQkvfbaawoLC/PZ686ePVvZ2dmex263mygCAOAyFtDvEP276OhoXXvttfriiy/kcrlUW1uryspKrzUVFRWee45cLtc5v3V29vH57ks6KyQkRJGRkV4HAAC4fF1SQXTq1Cnt379fcXFx6tu3r1q2bKm8vDzP9dLSUpWVlSk1NVWSlJqaqp07d+rIkSOeNbm5uYqMjFRycrLf5wcAAIEpoD8y++Uvf6lx48YpKSlJhw4d0ty5cxUcHKzbb79dUVFRmjJlirKzs9W2bVtFRkbq3nvvVWpqqgYMGCBJGjlypJKTk/XTn/5U8+fPV3l5uR566CFlZmYqJCTE5t0BAIBAEdBB9I9//EO33367jh07pg4dOmjQoEEqKipShw4dJEnPPfecgoKCNH78eNXU1Cg9PV2/+c1vPD8fHBysdevWadq0aUpNTVXr1q01adIkPfroo3ZtCQAABKCADqJXX331gtdDQ0O1ePFiLV68+BvXJCUl6d13323u0QAAwGXkkrqHCAAAwBcIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGa2H3AAAQyF78xVq7R7hoWQvG2T0CEPB4hwgAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPKOCaPHixbryyisVGhqqlJQUbdu2ze6RAABAADDmm6pXr16t7OxsLV26VCkpKVq4cKHS09NVWlqqmJiYi3ruvjP/0ExT2qf46TvtHgFAAHn8Jz+2e4SL9qs//dnuEXAJMeYdomeffVZTp07VXXfdpeTkZC1dulStWrXS8uXL7R4NAADYzIh3iGpra1VcXKzZs2d7zgUFBSktLU2FhYXnrK+pqVFNTY3ncVVVlSTJ7Xaf9/kbak4388T+9017u5CTZxp8MIl/NWXf9afrfTCJfzVl39X1Zu77dM1XPpjEv5qy7zN1dT6YxL+asu/Sp/N9MIl/dZk51O4RAsbZ/w5YlvXtiy0D/POf/7QkWR9//LHX+ZkzZ1r9+/c/Z/3cuXMtSRwcHBwcHByXwXHw4MFvbQUj3iH6vmbPnq3s7GzP48bGRh0/flzt2rWTw+Hw6yxut1sJCQk6ePCgIiMj/fradmLf7NsE7Jt9m8DOfVuWpZMnTyo+Pv5b1xoRRO3bt1dwcLAqKiq8zldUVMjlcp2zPiQkRCEhIV7noqOjfTnit4qMjDTqf0BnsW+zsG+zsG+z2LXvqKio77TOiJuqnU6n+vbtq7y8PM+5xsZG5eXlKTU11cbJAABAIDDiHSJJys7O1qRJk9SvXz/1799fCxcuVHV1te666y67RwMAADYzJohuu+02HT16VHPmzFF5ebl69+6tDRs2KDY21u7RLigkJERz58495yO8yx37Zt8mYN/s2wSXyr4dlvVdfhcNAADg8mXEPUQAAAAXQhABAADjEUQAAMB4BBEAADAeQRTgFi9erCuvvFKhoaFKSUnRtm3b7B7J5woKCjRu3DjFx8fL4XDorbfesnskn8vJydH111+viIgIxcTE6Oabb1ZpaandY/nckiVL1LNnT88XtqWmpuq9996zeyy/e/LJJ+VwODRjxgy7R/GpefPmyeFweB1du3a1eyy/+Oc//6mf/OQnateuncLCwtSjRw/t2LHD7rF8qqGhQQ8//LA6deqksLAwXXXVVXrssce+298VswFBFMBWr16t7OxszZ07V5988ol69eql9PR0HTlyxO7RfKq6ulq9evXS4sWL7R7Fb/Lz85WZmamioiLl5uaqrq5OI0eOVHV1td2j+VTHjh315JNPqri4WDt27NDw4cN10003affu3XaP5jfbt2/XSy+9pJ49e9o9il90795dhw8f9hx/+ctf7B7J506cOKGBAweqZcuWeu+99/TZZ59pwYIFatOmjd2j+dRTTz2lJUuW6MUXX9SePXv01FNPaf78+Vq0aJHdo51fs/z1VPhE//79rczMTM/jhoYGKz4+3srJybFxKv+SZK1Zs8buMfzuyJEjliQrPz/f7lH8rk2bNtZvf/tbu8fwi5MnT1rXXHONlZubaw0dOtSaPn263SP51Ny5c61evXrZPYbfzZo1yxo0aJDdY/jd2LFjrcmTJ3udu+WWW6yMjAybJrow3iEKULW1tSouLlZaWprnXFBQkNLS0lRYWGjjZPCHqqoqSVLbtm1tnsR/Ghoa9Oqrr6q6utqYP6mTmZmpsWPHev3v/HK3b98+xcfHq3PnzsrIyFBZWZndI/ncO++8o379+mnChAmKiYlRnz599PLLL9s9ls/dcMMNysvL0+effy5J+tvf/qa//OUvGj16tM2TnZ8x31R9qfnf//1fNTQ0nPNN2rGxsdq7d69NU8EfGhsbNWPGDA0cOFDXXXed3eP43M6dO5WamqozZ84oPDxca9asUXJyst1j+dyrr76qTz75RNu3b7d7FL9JSUnRihUr1KVLFx0+fFiPPPKIBg8erF27dikiIsLu8Xzmf/7nf7RkyRJlZ2frv/7rv7R9+3bdd999cjqdmjRpkt3j+cyDDz4ot9utrl27Kjg4WA0NDXr88ceVkZFh92jnRRABASYzM1O7du0y4t4KSerSpYtKSkpUVVWlP//5z5o0aZLy8/Mv6yg6ePCgpk+frtzcXIWGhto9jt98/Z2Bnj17KiUlRUlJSXrttdc0ZcoUGyfzrcbGRvXr109PPPGEJKlPnz7atWuXli5delkH0WuvvaaVK1dq1apV6t69u0pKSjRjxgzFx8cH5L4JogDVvn17BQcHq6Kiwut8RUWFXC6XTVPB17KysrRu3ToVFBSoY8eOdo/jF06nU1dffbUkqW/fvtq+fbuef/55vfTSSzZP5jvFxcU6cuSIfvCDH3jONTQ0qKCgQC+++KJqamoUHBxs44T+ER0drWuvvVZffPGF3aP4VFxc3DmB361bN73xxhs2TeQfM2fO1IMPPqiJEydKknr06KEvv/xSOTk5ARlE3EMUoJxOp/r27au8vDzPucbGRuXl5Rlzf4VJLMtSVlaW1qxZo02bNqlTp052j2SbxsZG1dTU2D2GT40YMUI7d+5USUmJ5+jXr58yMjJUUlJiRAxJ0qlTp7R//37FxcXZPYpPDRw48Jyv0fj888+VlJRk00T+8dVXXykoyDszgoOD1djYaNNEF8Y7RAEsOztbkyZNUr9+/dS/f38tXLhQ1dXVuuuuu+wezadOnTrl9f8YDxw4oJKSErVt21aJiYk2TuY7mZmZWrVqld5++21FRESovLxckhQVFaWwsDCbp/Od2bNna/To0UpMTNTJkye1atUqbd68We+//77do/lURETEOfeHtW7dWu3atbus7xv75S9/qXHjxikpKUmHDh3S3LlzFRwcrNtvv93u0Xzq/vvv1w033KAnnnhCt956q7Zt26Zly5Zp2bJldo/mU+PGjdPjjz+uxMREde/eXX/961/17LPPavLkyXaPdn52/5obLmzRokVWYmKi5XQ6rf79+1tFRUV2j+RzH374oSXpnGPSpEl2j+Yz59uvJOuVV16xezSfmjx5spWUlGQ5nU6rQ4cO1ogRI6yNGzfaPZYtTPi1+9tuu82Ki4uznE6ndcUVV1i33Xab9cUXX9g9ll+sXbvWuu6666yQkBCra9eu1rJly+weyefcbrc1ffp0KzEx0QoNDbU6d+5s/epXv7JqamrsHu28HJYVoF8ZCQAA4CfcQwQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEwO+GDRumGTNmXDLPC+DyRxABuORs3rxZDodDlZWVdo8C4DJBEAEwWl1dnd0jAAgABBEAW9TX1ysrK0tRUVFq3769Hn74YZ3904p//OMf1a9fP0VERMjlcumOO+7QkSNHJEl///vfdeONN0qS2rRpI4fDoZ/97Gee521sbNQDDzygtm3byuVyad68eV6v63A4tGTJEv3oRz9S69at9fjjj0uSlixZoquuukpOp1NdunTRH//4R6+fKysr00033aTw8HBFRkbq1ltvVUVFhef6vHnz1Lt3by1fvlyJiYkKDw/XPffco4aGBs2fP18ul0sxMTGe15Mky7I0b948JSYmKiQkRPHx8brvvvua7T9jAN+DvX9bFoCJhg4daoWHh1vTp0+39u7da/3pT3+yWrVq5fkL4L/73e+sd99919q/f79VWFhopaamWqNHj7Ysy7Lq6+utN954w5JklZaWWocPH7YqKys9zxsZGWnNmzfP+vzzz63f//73lsPhsDZu3Oh5bUlWTEyMtXz5cmv//v3Wl19+ab355ptWy5YtrcWLF1ulpaXWggULrODgYGvTpk2WZVlWQ0OD1bt3b2vQoEHWjh07rKKiIqtv377W0KFDPc87d+5cKzw83Prxj39s7d6923rnnXcsp9NppaenW/fee6+1d+9ea/ny5ZYkq6ioyLIsy3r99detyMhI691337W+/PJLa+vWrUb8FXQgEBFEAPxu6NChVrdu3azGxkbPuVmzZlndunU77/rt27dbkqyTJ09almVZH374oSXJOnHixDnPO2jQIK9z119/vTVr1izPY0nWjBkzvNbccMMN1tSpU73OTZgwwRozZoxlWZa1ceNGKzg42CorK/Nc3717tyXJ2rZtm2VZ/wqiVq1aWW6327MmPT3duvLKK62GhgbPuS5dulg5OTmWZVnWggULrGuvvdaqra09774B+A8fmQGwxYABA+RwODyPU1NTtW/fPjU0NKi4uFjjxo1TYmKiIiIiNHToUEn/+tjq2/Ts2dPrcVxcnOfjtrP69evn9XjPnj0aOHCg17mBAwdqz549nusJCQlKSEjwXE9OTlZ0dLRnjSRdeeWVioiI8DyOjY1VcnKygoKCvM6dnWfChAk6ffq0OnfurKlTp2rNmjWqr6//1j0CaH4EEYCAcubMGaWnpysyMlIrV67U9u3btWbNGklSbW3tt/58y5YtvR47HA41NjZ6nWvdunXzDfwtr32heRISElRaWqrf/OY3CgsL0z333KMhQ4ZwozdgA4IIgC22bt3q9bioqEjXXHON9u7dq2PHjunJJ5/U4MGD1bVr13Pe4XE6nZKkhoaGZpmlW7du2rJli9e5LVu2KDk52XP94MGDOnjwoOf6Z599psrKSs+apgoLC9O4ceP0wgsvaPPmzSosLNTOnTsv6jkBfH8t7B4AgJnKysqUnZ2t//zP/9Qnn3yiRYsWacGCBUpMTJTT6dSiRYv085//XLt27dJjjz3m9bNJSUlyOBxat26dxowZo7CwMIWHhzd5lpkzZ+rWW29Vnz59lJaWprVr1+rNN9/UBx98IElKS0tTjx49lJGRoYULF6q+vl733HOPhg4des7Hb9/HihUr1NDQoJSUFLVq1Up/+tOfFBYWpqSkpCY/J4Cm4R0iALa48847dfr0afXv31+ZmZmaPn267r77bnXo0EErVqzQ66+/ruTkZD355JN65plnvH72iiuu0COPPKIHH3xQsbGxysrKuqhZbr75Zj3//PN65pln1L17d7300kt65ZVXNGzYMEn/+pjr7bffVps2bTRkyBClpaWpc+fOWr169UW9bnR0tF5++WUNHDhQPXv21AcffKC1a9eqXbt2F/W8AL4/h2X93xd/AAAAGIp3iAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABjv/wGeqPEfnfcFYAAAAABJRU5ErkJggg==",
760 | "text/plain": [
761 | ""
762 | ]
763 | },
764 | "metadata": {},
765 | "output_type": "display_data"
766 | }
767 | ],
768 | "source": [
769 | "sns.countplot(data=data,x=data['bathrooms'])"
770 | ]
771 | },
772 | {
773 | "cell_type": "code",
774 | "execution_count": 16,
775 | "id": "ecc0c0fa",
776 | "metadata": {
777 | "execution": {
778 | "iopub.execute_input": "2022-11-05T08:25:31.140448Z",
779 | "iopub.status.busy": "2022-11-05T08:25:31.139323Z",
780 | "iopub.status.idle": "2022-11-05T08:25:31.391756Z",
781 | "shell.execute_reply": "2022-11-05T08:25:31.390457Z"
782 | },
783 | "papermill": {
784 | "duration": 0.26891,
785 | "end_time": "2022-11-05T08:25:31.394121",
786 | "exception": false,
787 | "start_time": "2022-11-05T08:25:31.125211",
788 | "status": "completed"
789 | },
790 | "tags": []
791 | },
792 | "outputs": [
793 | {
794 | "data": {
795 | "text/plain": [
796 | ""
797 | ]
798 | },
799 | "execution_count": 16,
800 | "metadata": {},
801 | "output_type": "execute_result"
802 | },
803 | {
804 | "data": {
805 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1WUlEQVR4nO3df1xX9f3///tL9AX+APwJL0gktfkzUNMkskyTN4jM2XJWSunStDWolGaMzZTsB6ZluvJtWan7oWnb1JYuFc2gDH/RyJ9j6ly4FOxTwisxQeB8/9jX8+411ADB88Jzu14u53J5nefzec55PHGNO+c8X6+XwzAMQwAAADbWxOoCAAAArEYgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAttfU6gIag6qqKp04cUL+/v5yOBxWlwMAAGrAMAx98803Cg0NVZMml78HRCCqgRMnTigsLMzqMgAAQB0cP35cHTt2vOwYAlEN+Pv7S/rPDzQgIMDiagAAQE243W6FhYWZv8cvh0BUAxcekwUEBBCIAABoZGqy3IVF1QAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPaaWl0AgP+TNfgOq0u4rDuys6wuAQAaBHeIAACA7VkaiDIyMnTzzTfL399fQUFBuuuuu5Sfn+8x5ty5c0pKSlK7du3UqlUrjR49WkVFRR5jCgoKlJCQoBYtWigoKEjTp09XRUWFx5gPP/xQN910k3x9fXXDDTdo+fLlDT09AADQSFgaiLKyspSUlKQdO3YoMzNT58+fV2xsrEpLS80x06ZN03vvvac//vGPysrK0okTJ3T33Xeb/ZWVlUpISFB5ebk++eQT/fa3v9Xy5cs1c+ZMc8yxY8eUkJCgoUOHKi8vT1OnTtVDDz2kTZs2XdX5AgAA7+QwDMOwuogLvvzySwUFBSkrK0uDBw9WSUmJOnTooJUrV+onP/mJJOnvf/+7evbsqZycHN1yyy16//339cMf/lAnTpxQcHCwJOm1115TamqqvvzySzmdTqWmpmrDhg3av3+/ea377rtPxcXF2rhxY7U6ysrKVFZWZu673W6FhYWppKREAQEBDfxTgJ2xhggA6o/b7VZgYGCNfn971RqikpISSVLbtm0lSbm5uTp//rxiYmLMMT169FCnTp2Uk5MjScrJyVFERIQZhiQpLi5ObrdbBw4cMMd89xwXxlw4x3/LyMhQYGCguYWFhdXfJAEAgNfxmkBUVVWlqVOnatCgQbrxxhslSYWFhXI6nWrdurXH2ODgYBUWFppjvhuGLvRf6LvcGLfbrW+//bZaLWlpaSopKTG348eP18scAQCAd/Kat90nJSVp//79+vjjj60uRb6+vvL19bW6DAAAcJV4xR2i5ORkrV+/Xtu2bVPHjh3NdpfLpfLychUXF3uMLyoqksvlMsf897vOLux/35iAgAA1b968vqcDAAAaGUsDkWEYSk5O1tq1a/XBBx+oc+fOHv39+/dXs2bNtHXrVrMtPz9fBQUFio6OliRFR0dr3759OnXqlDkmMzNTAQEB6tWrlznmu+e4MObCOQAAgL1Z+sgsKSlJK1eu1Lvvvit/f39zzU9gYKCaN2+uwMBATZo0SSkpKWrbtq0CAgL06KOPKjo6WrfccoskKTY2Vr169dIDDzyguXPnqrCwUDNmzFBSUpL52OtnP/uZXn31VT355JOaOHGiPvjgA73zzjvasGGDZXMHAADew9I7RIsXL1ZJSYmGDBmikJAQc1u9erU55uWXX9YPf/hDjR49WoMHD5bL5dKaNWvMfh8fH61fv14+Pj6Kjo7W/fffr/Hjx2v27NnmmM6dO2vDhg3KzMxUnz599NJLL+nNN99UXFzcVZ0vAADwTl71OUTeqjafYwBcCT6HCADqT6P9HCIAAAArEIgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtWRqIsrOzNXLkSIWGhsrhcGjdunUe/Q6H46LbvHnzzDHXX399tf45c+Z4nGfv3r26/fbb5efnp7CwMM2dO/dqTA8AADQSlgai0tJS9enTR4sWLbpo/8mTJz22pUuXyuFwaPTo0R7jZs+e7THu0UcfNfvcbrdiY2MVHh6u3NxczZs3T+np6VqyZEmDzg0AADQeTa28eHx8vOLj4y/Z73K5PPbfffddDR06VF26dPFo9/f3rzb2ghUrVqi8vFxLly6V0+lU7969lZeXp/nz52vKlClXPgkAANDoNZo1REVFRdqwYYMmTZpUrW/OnDlq166d+vXrp3nz5qmiosLsy8nJ0eDBg+V0Os22uLg45efn6/Tp0xe9VllZmdxut8cGAACuXZbeIaqN3/72t/L399fdd9/t0f7YY4/ppptuUtu2bfXJJ58oLS1NJ0+e1Pz58yVJhYWF6ty5s8cxwcHBZl+bNm2qXSsjI0NPP/10A80EAAB4m0YTiJYuXarExET5+fl5tKekpJivIyMj5XQ69fDDDysjI0O+vr51ulZaWprHed1ut8LCwupWOAAA8HqNIhB99NFHys/P1+rVq793bFRUlCoqKvSvf/1L3bt3l8vlUlFRkceYC/uXWnfk6+tb5zAFAAAan0axhuitt95S//791adPn+8dm5eXpyZNmigoKEiSFB0drezsbJ0/f94ck5mZqe7du1/0cRkAALAfSwPRmTNnlJeXp7y8PEnSsWPHlJeXp4KCAnOM2+3WH//4Rz300EPVjs/JydGCBQv02Wef6Z///KdWrFihadOm6f777zfDzrhx4+R0OjVp0iQdOHBAq1ev1sKFCz0eiQEAAHuz9JHZnj17NHToUHP/QkiZMGGCli9fLklatWqVDMPQ2LFjqx3v6+urVatWKT09XWVlZercubOmTZvmEXYCAwO1efNmJSUlqX///mrfvr1mzpzJW+4BAIDJYRiGYXUR3s7tdiswMFAlJSUKCAiwuhxcw7IG32F1CZd1R3aW1SUAQI3V5vd3o1hDBAAA0JAIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPaaWl0AgGvPq0+8Z3UJl5T80kirSwDghSy9Q5Sdna2RI0cqNDRUDodD69at8+j/6U9/KofD4bENHz7cY8zXX3+txMREBQQEqHXr1po0aZLOnDnjMWbv3r26/fbb5efnp7CwMM2dO7ehpwYAABoRSwNRaWmp+vTpo0WLFl1yzPDhw3Xy5Elze/vttz36ExMTdeDAAWVmZmr9+vXKzs7WlClTzH63263Y2FiFh4crNzdX8+bNU3p6upYsWdJg8wIAAI2LpY/M4uPjFR8ff9kxvr6+crlcF+07dOiQNm7cqN27d2vAgAGSpFdeeUUjRozQiy++qNDQUK1YsULl5eVaunSpnE6nevfurby8PM2fP98jOAEAAPvy+kXVH374oYKCgtS9e3c98sgj+uqrr8y+nJwctW7d2gxDkhQTE6MmTZpo586d5pjBgwfL6XSaY+Li4pSfn6/Tp09f9JplZWVyu90eGwAAuHZ5dSAaPny4fve732nr1q164YUXlJWVpfj4eFVWVkqSCgsLFRQU5HFM06ZN1bZtWxUWFppjgoODPcZc2L8w5r9lZGQoMDDQ3MLCwup7agAAwIt49bvM7rvvPvN1RESEIiMj1bVrV3344YcaNmxYg103LS1NKSkp5r7b7SYUAQBwDfPqO0T/rUuXLmrfvr2OHDkiSXK5XDp16pTHmIqKCn399dfmuiOXy6WioiKPMRf2L7U2ydfXVwEBAR4bAAC4djWqQPTvf/9bX331lUJCQiRJ0dHRKi4uVm5urjnmgw8+UFVVlaKioswx2dnZOn/+vDkmMzNT3bt3V5s2ba7uBAAAgFeyNBCdOXNGeXl5ysvLkyQdO3ZMeXl5Kigo0JkzZzR9+nTt2LFD//rXv7R161aNGjVKN9xwg+Li4iRJPXv21PDhwzV58mTt2rVL27dvV3Jysu677z6FhoZKksaNGyen06lJkybpwIEDWr16tRYuXOjxSAwAANibpYFoz5496tevn/r16ydJSklJUb9+/TRz5kz5+Pho7969+tGPfqRu3bpp0qRJ6t+/vz766CP5+vqa51ixYoV69OihYcOGacSIEbrttts8PmMoMDBQmzdv1rFjx9S/f3898cQTmjlzJm+5BwAAJksXVQ8ZMkSGYVyyf9OmTd97jrZt22rlypWXHRMZGamPPvqo1vUBAAB7aFRriAAAABoCgQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANiepYEoOztbI0eOVGhoqBwOh9atW2f2nT9/XqmpqYqIiFDLli0VGhqq8ePH68SJEx7nuP766+VwODy2OXPmeIzZu3evbr/9dvn5+SksLExz5869GtMDAACNhKWBqLS0VH369NGiRYuq9Z09e1affvqpnnrqKX366adas2aN8vPz9aMf/aja2NmzZ+vkyZPm9uijj5p9brdbsbGxCg8PV25urubNm6f09HQtWbKkQecGAAAaj6ZWXjw+Pl7x8fEX7QsMDFRmZqZH26uvvqqBAweqoKBAnTp1Mtv9/f3lcrkuep4VK1aovLxcS5culdPpVO/evZWXl6f58+drypQpFz2mrKxMZWVl5r7b7a7t1AAAQCPSqNYQlZSUyOFwqHXr1h7tc+bMUbt27dSvXz/NmzdPFRUVZl9OTo4GDx4sp9NptsXFxSk/P1+nT5++6HUyMjIUGBhobmFhYQ0yHwAA4B0aTSA6d+6cUlNTNXbsWAUEBJjtjz32mFatWqVt27bp4Ycf1vPPP68nn3zS7C8sLFRwcLDHuS7sFxYWXvRaaWlpKikpMbfjx483wIwAAIC3sPSRWU2dP39e99xzjwzD0OLFiz36UlJSzNeRkZFyOp16+OGHlZGRIV9f3zpdz9fXt87HAgCAxsfr7xBdCEOff/65MjMzPe4OXUxUVJQqKir0r3/9S5LkcrlUVFTkMebC/qXWHQEAAHvx6kB0IQwdPnxYW7ZsUbt27b73mLy8PDVp0kRBQUGSpOjoaGVnZ+v8+fPmmMzMTHXv3l1t2rRpsNoBAEDjYekjszNnzujIkSPm/rFjx5SXl6e2bdsqJCREP/nJT/Tpp59q/fr1qqysNNf8tG3bVk6nUzk5Odq5c6eGDh0qf39/5eTkaNq0abr//vvNsDNu3Dg9/fTTmjRpklJTU7V//34tXLhQL7/8siVzBgAA3sfSQLRnzx4NHTrU3L+wHmjChAlKT0/XX/7yF0lS3759PY7btm2bhgwZIl9fX61atUrp6ekqKytT586dNW3aNI91RYGBgdq8ebOSkpLUv39/tW/fXjNnzrzkW+4BAID9WBqIhgwZIsMwLtl/uT5Juummm7Rjx47vvU5kZKQ++uijWtcHAADswavXEAEAAFwNBCIAAGB7BCIAAGB7BCIAAGB7BCIAAGB7BCIAAGB7BCIAAGB7dQpEd955p4qLi6u1u91u3XnnnVdaEwAAwFVVp0D04Ycfqry8vFr7uXPn+ABEAADQ6NTqk6r37t1rvj548KD53WKSVFlZqY0bN+q6666rv+oAAACugloFor59+8rhcMjhcFz00Vjz5s31yiuv1FtxAAAAV0OtAtGxY8dkGIa6dOmiXbt2qUOHDmaf0+lUUFCQfHx86r1IAACAhlSrQBQeHi5JqqqqapBiAAAArFDnb7s/fPiwtm3bplOnTlULSDNnzrziwgAAAK6WOgWiN954Q4888ojat28vl8slh8Nh9jkcDgIRAABoVOoUiJ599lk999xzSk1Nre96AAAArro6fQ7R6dOnNWbMmPquBQAAwBJ1CkRjxozR5s2b67sWAAAAS9TpkdkNN9ygp556Sjt27FBERISaNWvm0f/YY4/VS3EAAABXQ50C0ZIlS9SqVStlZWUpKyvLo8/hcBCIAABAo1KnQHTs2LH6rgMAAMAydVpDBAAAcC2p0x2iiRMnXrZ/6dKldSoGAADACnUKRKdPn/bYP3/+vPbv36/i4uKLfukrAACAN6tTIFq7dm21tqqqKj3yyCPq2rXrFRcFAABwNdXbGqImTZooJSVFL7/8cn2dEgAA4Kqo10XVR48eVUVFRX2eEgAAoMHV6ZFZSkqKx75hGDp58qQ2bNigCRMm1EthAAAAV0udAtHf/vY3j/0mTZqoQ4cOeumll773HWgAAADepk6BaNu2bfVdBwAAgGXqFIgu+PLLL5Wfny9J6t69uzp06FAvRQEAAFxNdVpUXVpaqokTJyokJESDBw/W4MGDFRoaqkmTJuns2bP1XSMAAECDqlMgSklJUVZWlt577z0VFxeruLhY7777rrKysvTEE0/U+DzZ2dkaOXKkQkND5XA4tG7dOo9+wzA0c+ZMhYSEqHnz5oqJidHhw4c9xnz99ddKTExUQECAWrdurUmTJunMmTMeY/bu3avbb79dfn5+CgsL09y5c+sybQAAcI2qUyD685//rLfeekvx8fEKCAhQQECARowYoTfeeEN/+tOfanye0tJS9enTR4sWLbpo/9y5c/Wb3/xGr732mnbu3KmWLVsqLi5O586dM8ckJibqwIEDyszM1Pr165Wdna0pU6aY/W63W7GxsQoPD1dubq7mzZun9PR0LVmypC5TBwAA16A6rSE6e/asgoODq7UHBQXV6pFZfHy84uPjL9pnGIYWLFigGTNmaNSoUZKk3/3udwoODta6det033336dChQ9q4caN2796tAQMGSJJeeeUVjRgxQi+++KJCQ0O1YsUKlZeXa+nSpXI6nerdu7fy8vI0f/58j+D0XWVlZSorKzP33W53jecEAAAanzrdIYqOjtasWbM87tR8++23evrppxUdHV0vhR07dkyFhYWKiYkx2wIDAxUVFaWcnBxJUk5Ojlq3bm2GIUmKiYlRkyZNtHPnTnPM4MGD5XQ6zTFxcXHKz8+v9p1sF2RkZCgwMNDcwsLC6mVOAADAO9XpDtGCBQs0fPhwdezYUX369JEkffbZZ/L19dXmzZvrpbDCwkJJqnYnKjg42OwrLCxUUFCQR3/Tpk3Vtm1bjzGdO3eudo4LfW3atKl27bS0NI8Pn3S73YQiAACuYXUKRBERETp8+LBWrFihv//975KksWPHKjExUc2bN6/XAq3g6+srX19fq8sAAABXSZ0CUUZGhoKDgzV58mSP9qVLl+rLL79UamrqFRfmcrkkSUVFRQoJCTHbi4qK1LdvX3PMqVOnPI6rqKjQ119/bR7vcrlUVFTkMebC/oUxAADA3uq0huj1119Xjx49qrX37t1br7322hUXJUmdO3eWy+XS1q1bzTa3262dO3ea65Sio6NVXFys3Nxcc8wHH3ygqqoqRUVFmWOys7N1/vx5c0xmZqa6d+9+0cdlAADAfuoUiAoLCz3u2lzQoUMHnTx5ssbnOXPmjPLy8pSXlyfpPwup8/LyVFBQIIfDoalTp+rZZ5/VX/7yF+3bt0/jx49XaGio7rrrLklSz549NXz4cE2ePFm7du3S9u3blZycrPvuu0+hoaGSpHHjxsnpdGrSpEk6cOCAVq9erYULF1b7gloAAGBfdXpkFhYWpu3bt1dbrLx9+3YziNTEnj17NHToUHP/QkiZMGGCli9frieffFKlpaWaMmWKiouLddttt2njxo3y8/Mzj1mxYoWSk5M1bNgwNWnSRKNHj9ZvfvMbsz8wMFCbN29WUlKS+vfvr/bt22vmzJmXfMs9AACwnzoFosmTJ2vq1Kk6f/687rzzTknS1q1b9eSTT9bqk6qHDBkiwzAu2e9wODR79mzNnj37kmPatm2rlStXXvY6kZGR+uijj2pcFwAAsJc6BaLp06frq6++0s9//nOVl5dLkvz8/JSamqq0tLR6LRAAAKCh1SkQORwOvfDCC3rqqad06NAhNW/eXD/4wQ94qzoAAGiU6hSILmjVqpVuvvnm+qoFAADAEnV6lxkAAMC1hEAEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsz+sD0fXXXy+Hw1FtS0pKkiQNGTKkWt/PfvYzj3MUFBQoISFBLVq0UFBQkKZPn66KigorpgMAALxQU6sL+D67d+9WZWWlub9//379z//8j8aMGWO2TZ48WbNnzzb3W7RoYb6urKxUQkKCXC6XPvnkE508eVLjx49Xs2bN9Pzzz1+dSQAAAK/m9YGoQ4cOHvtz5sxR165ddccdd5htLVq0kMvluujxmzdv1sGDB7VlyxYFBwerb9++euaZZ5Samqr09HQ5nc4GrR8AAHg/r39k9l3l5eX6wx/+oIkTJ8rhcJjtK1asUPv27XXjjTcqLS1NZ8+eNftycnIUERGh4OBgsy0uLk5ut1sHDhy46HXKysrkdrs9NgAAcO3y+jtE37Vu3ToVFxfrpz/9qdk2btw4hYeHKzQ0VHv37lVqaqry8/O1Zs0aSVJhYaFHGJJk7hcWFl70OhkZGXr66acbZhIAAMDrNKpA9NZbbyk+Pl6hoaFm25QpU8zXERERCgkJ0bBhw3T06FF17dq1TtdJS0tTSkqKue92uxUWFlb3wgEAgFdrNIHo888/15YtW8w7P5cSFRUlSTpy5Ii6du0ql8ulXbt2eYwpKiqSpEuuO/L19ZWvr289VA0AABqDRrOGaNmyZQoKClJCQsJlx+Xl5UmSQkJCJEnR0dHat2+fTp06ZY7JzMxUQECAevXq1WD1AgCAxqNR3CGqqqrSsmXLNGHCBDVt+n8lHz16VCtXrtSIESPUrl077d27V9OmTdPgwYMVGRkpSYqNjVWvXr30wAMPaO7cuSosLNSMGTOUlJTEXSAAACCpkQSiLVu2qKCgQBMnTvRodzqd2rJlixYsWKDS0lKFhYVp9OjRmjFjhjnGx8dH69ev1yOPPKLo6Gi1bNlSEyZM8PjcIgAAYG+NIhDFxsbKMIxq7WFhYcrKyvre48PDw/XXv/61IUoDAADXgEazhggAAKChEIgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtNbW6AKC+DHplkNUlXNL2R7dbXQIA4DK4QwQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGzPqwNRenq6HA6Hx9ajRw+z/9y5c0pKSlK7du3UqlUrjR49WkVFRR7nKCgoUEJCglq0aKGgoCBNnz5dFRUVV3sqAADAi3n95xD17t1bW7ZsMfebNv2/kqdNm6YNGzboj3/8owIDA5WcnKy7775b27f/5zNfKisrlZCQIJfLpU8++UQnT57U+PHj1axZMz3//PNXfS4AAMA7eX0gatq0qVwuV7X2kpISvfXWW1q5cqXuvPNOSdKyZcvUs2dP7dixQ7fccos2b96sgwcPasuWLQoODlbfvn31zDPPKDU1Venp6XI6nVd7OgAAwAt59SMzSTp8+LBCQ0PVpUsXJSYmqqCgQJKUm5ur8+fPKyYmxhzbo0cPderUSTk5OZKknJwcRUREKDg42BwTFxcnt9utAwcOXPKaZWVlcrvdHhsAALh2eXUgioqK0vLly7Vx40YtXrxYx44d0+23365vvvlGhYWFcjqdat26tccxwcHBKiwslCQVFhZ6hKEL/Rf6LiUjI0OBgYHmFhYWVr8TAwAAXsWrH5nFx8ebryMjIxUVFaXw8HC98847at68eYNdNy0tTSkpKea+2+0mFAEAcA3z6jtE/61169bq1q2bjhw5IpfLpfLychUXF3uMKSoqMtccuVyuau86u7B/sXVJF/j6+iogIMBjAwAA165GFYjOnDmjo0ePKiQkRP3791ezZs20detWsz8/P18FBQWKjo6WJEVHR2vfvn06deqUOSYzM1MBAQHq1avXVa8fAAB4J69+ZPaLX/xCI0eOVHh4uE6cOKFZs2bJx8dHY8eOVWBgoCZNmqSUlBS1bdtWAQEBevTRRxUdHa1bbrlFkhQbG6tevXrpgQce0Ny5c1VYWKgZM2YoKSlJvr6+Fs8OAAB4C68ORP/+9781duxYffXVV+rQoYNuu+027dixQx06dJAkvfzyy2rSpIlGjx6tsrIyxcXF6X//93/N4318fLR+/Xo98sgjio6OVsuWLTVhwgTNnj3bqikBAAAv5NWBaNWqVZft9/Pz06JFi7Ro0aJLjgkPD9df//rX+i4NAABcQxrVGiIAAICGQCACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC219TqAgDAGz13/0+sLuGyfv2HP1ldAnBN4Q4RAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPa8ORBkZGbr55pvl7++voKAg3XXXXcrPz/cYM2TIEDkcDo/tZz/7mceYgoICJSQkqEWLFgoKCtL06dNVUVFxNacCAAC8WFOrC7icrKwsJSUl6eabb1ZFRYV+9atfKTY2VgcPHlTLli3NcZMnT9bs2bPN/RYtWpivKysrlZCQIJfLpU8++UQnT57U+PHj1axZMz3//PNXdT4AAMA7eXUg2rhxo8f+8uXLFRQUpNzcXA0ePNhsb9GihVwu10XPsXnzZh08eFBbtmxRcHCw+vbtq2eeeUapqalKT0+X0+msdkxZWZnKysrMfbfbXU8zAgAA3sirH5n9t5KSEklS27ZtPdpXrFih9u3b68Ybb1RaWprOnj1r9uXk5CgiIkLBwcFmW1xcnNxutw4cOHDR62RkZCgwMNDcwsLCGmA2AADAW3j1HaLvqqqq0tSpUzVo0CDdeOONZvu4ceMUHh6u0NBQ7d27V6mpqcrPz9eaNWskSYWFhR5hSJK5X1hYeNFrpaWlKSUlxdx3u92EIgAArmGNJhAlJSVp//79+vjjjz3ap0yZYr6OiIhQSEiIhg0bpqNHj6pr1651upavr698fX2vqF4AANB4NIpHZsnJyVq/fr22bdumjh07XnZsVFSUJOnIkSOSJJfLpaKiIo8xF/Yvte4IAADYi1cHIsMwlJycrLVr1+qDDz5Q586dv/eYvLw8SVJISIgkKTo6Wvv27dOpU6fMMZmZmQoICFCvXr0apG4AANC4ePUjs6SkJK1cuVLvvvuu/P39zTU/gYGBat68uY4ePaqVK1dqxIgRateunfbu3atp06Zp8ODBioyMlCTFxsaqV69eeuCBBzR37lwVFhZqxowZSkpK4rEYAACQ5OV3iBYvXqySkhINGTJEISEh5rZ69WpJktPp1JYtWxQbG6sePXroiSee0OjRo/Xee++Z5/Dx8dH69evl4+Oj6Oho3X///Ro/frzH5xYBAAB78+o7RIZhXLY/LCxMWVlZ33ue8PBw/fWvf62vsgAAwDXGq+8QAQAAXA0EIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHtNrS4AANBwDj33gdUlXFbPX99pdQmAJO4QAQAAEIgAAAAIRAAAwPZYQwQVzI6wuoTL6jRzn9UlAACucdwhAgAAtkcgAgAAtmerQLRo0SJdf/318vPzU1RUlHbt2mV1SQAAwAvYZg3R6tWrlZKSotdee01RUVFasGCB4uLilJ+fr6CgIKvLAwBcRnp6utUlXJI314aas80dovnz52vy5Ml68MEH1atXL7322mtq0aKFli5danVpAADAYra4Q1ReXq7c3FylpaWZbU2aNFFMTIxycnKqjS8rK1NZWZm5X1JSIklyu90e4wbPeLuBKq4f2c+OrdG4b85VNnAlV+a/f+6XUvFtRQNXUnc1nUNphffOQar5PL4tO9vAldRdTedw7vz5Bq7kytR0HmfOlTZwJVempvP47v8ne5uazmHN2qENXMmVufvH26wuod5d+LcxDOP7Bxs28MUXXxiSjE8++cSjffr06cbAgQOrjZ81a5YhiY2NjY2Nje0a2I4fP/69WcEWd4hqKy0tTSkpKeZ+VVWVvv76a7Vr104Oh6NBrul2uxUWFqbjx48rICCgQa5xNVwL87gW5iAxD29yLcxBujbmcS3MQWIeNWUYhr755huFhoZ+71hbBKL27dvLx8dHRUVFHu1FRUVyuVzVxvv6+srX19ejrXXr1g1ZoikgIKBR/4/7gmthHtfCHCTm4U2uhTlI18Y8roU5SMyjJgIDA2s0zhaLqp1Op/r376+tW7eabVVVVdq6dauio6MtrAwAAHgDW9whkqSUlBRNmDBBAwYM0MCBA7VgwQKVlpbqwQcftLo0AABgMdsEonvvvVdffvmlZs6cqcLCQvXt21cbN25UcHCw1aVJ+s9julmzZlV7VNfYXAvzuBbmIDEPb3ItzEG6NuZxLcxBYh4NwWEYNXkvGgAAwLXLFmuIAAAALodABAAAbI9ABAAAbI9ABAAAbI9A5CUWLVqk66+/Xn5+foqKitKuXbusLqlWsrOzNXLkSIWGhsrhcGjdunVWl1RrGRkZuvnmm+Xv76+goCDdddddys/Pt7qsWlu8eLEiIyPNDzqLjo7W+++/b3VZV2TOnDlyOByaOnWq1aXUSnp6uhwOh8fWo0cPq8uqtS+++EL333+/2rVrp+bNmysiIkJ79uyxuqxauf7666v9WzgcDiUlJVldWq1UVlbqqaeeUufOndW8eXN17dpVzzzzTM2+q8uLfPPNN5o6darCw8PVvHlz3Xrrrdq9e7elNRGIvMDq1auVkpKiWbNm6dNPP1WfPn0UFxenU6dOWV1ajZWWlqpPnz5atGiR1aXUWVZWlpKSkrRjxw5lZmbq/Pnzio2NVWmpd3855n/r2LGj5syZo9zcXO3Zs0d33nmnRo0apQMHDlhdWp3s3r1br7/+uiIjI60upU569+6tkydPmtvHH39sdUm1cvr0aQ0aNEjNmjXT+++/r4MHD+qll15SmzZtrC6tVnbv3u3x75CZmSlJGjNmjMWV1c4LL7ygxYsX69VXX9WhQ4f0wgsvaO7cuXrllVesLq1WHnroIWVmZur3v/+99u3bp9jYWMXExOiLL76wrqh6+fZUXJGBAwcaSUlJ5n5lZaURGhpqZGRkWFhV3Uky1q5da3UZV+zUqVOGJCMrK8vqUq5YmzZtjDfffNPqMmrtm2++MX7wgx8YmZmZxh133GE8/vjjVpdUK7NmzTL69OljdRlXJDU11bjtttusLqPePf7440bXrl2Nqqoqq0uplYSEBGPixIkebXfffbeRmJhoUUW1d/bsWcPHx8dYv369R/tNN91k/PrXv7aoKsPgDpHFysvLlZubq5iYGLOtSZMmiomJUU5OjoWVoaSkRJLUtm1biyupu8rKSq1atUqlpaWN8mtqkpKSlJCQ4PHfR2Nz+PBhhYaGqkuXLkpMTFRBQYHVJdXKX/7yFw0YMEBjxoxRUFCQ+vXrpzfeeMPqsq5IeXm5/vCHP2jixIkN9oXdDeXWW2/V1q1b9Y9//EOS9Nlnn+njjz9WfHy8xZXVXEVFhSorK+Xn5+fR3rx5c0vvoNrmk6q91f/7f/9PlZWV1T4xOzg4WH//+98tqgpVVVWaOnWqBg0apBtvvNHqcmpt3759io6O1rlz59SqVSutXbtWvXr1srqsWlm1apU+/fRTy9cVXImoqCgtX75c3bt318mTJ/X000/r9ttv1/79++Xv7291eTXyz3/+U4sXL1ZKSop+9atfaffu3XrsscfkdDo1YcIEq8urk3Xr1qm4uFg//elPrS6l1n75y1/K7XarR48e8vHxUWVlpZ577jklJiZaXVqN+fv7Kzo6Ws8884x69uyp4OBgvf3228rJydENN9xgWV0EIuAikpKStH///ka33uOC7t27Ky8vTyUlJfrTn/6kCRMmKCsrq9GEouPHj+vxxx9XZmZmtb8iG5Pv/tUeGRmpqKgohYeH65133tGkSZMsrKzmqqqqNGDAAD3//POSpH79+mn//v167bXXGm0geuuttxQfH6/Q0FCrS6m1d955RytWrNDKlSvVu3dv5eXlaerUqQoNDW1U/x6///3vNXHiRF133XXy8fHRTTfdpLFjxyo3N9eymghEFmvfvr18fHxUVFTk0V5UVCSXy2VRVfaWnJys9evXKzs7Wx07drS6nDpxOp3mX1r9+/fX7t27tXDhQr3++usWV1Yzubm5OnXqlG666SazrbKyUtnZ2Xr11VdVVlYmHx8fCyusm9atW6tbt246cuSI1aXUWEhISLUg3bNnT/35z3+2qKIr8/nnn2vLli1as2aN1aXUyfTp0/XLX/5S9913nyQpIiJCn3/+uTIyMhpVIOratauysrJUWloqt9utkJAQ3XvvverSpYtlNbGGyGJOp1P9+/fX1q1bzbaqqipt3bq1Ua75aMwMw1BycrLWrl2rDz74QJ07d7a6pHpTVVWlsrIyq8uosWHDhmnfvn3Ky8sztwEDBigxMVF5eXmNMgxJ0pkzZ3T06FGFhIRYXUqNDRo0qNrHT/zjH/9QeHi4RRVdmWXLlikoKEgJCQlWl1InZ8+eVZMmnr+6fXx8VFVVZVFFV6Zly5YKCQnR6dOntWnTJo0aNcqyWrhD5AVSUlI0YcIEDRgwQAMHDtSCBQtUWlqqBx980OrSauzMmTMef/UeO3ZMeXl5atu2rTp16mRhZTWXlJSklStX6t1335W/v78KCwslSYGBgWrevLnF1dVcWlqa4uPj1alTJ33zzTdauXKlPvzwQ23atMnq0mrM39+/2tqtli1bql27do1qTdcvfvELjRw5UuHh4Tpx4oRmzZolHx8fjR071urSamzatGm69dZb9fzzz+uee+7Rrl27tGTJEi1ZssTq0mqtqqpKy5Yt04QJE9S0aeP89Tdy5Eg999xz6tSpk3r37q2//e1vmj9/viZOnGh1abWyadMmGYah7t2768iRI5o+fbp69Ohh7e89y97fBg+vvPKK0alTJ8PpdBoDBw40duzYYXVJtbJt2zZDUrVtwoQJVpdWYxerX5KxbNkyq0urlYkTJxrh4eGG0+k0OnToYAwbNszYvHmz1WVdscb4tvt7773XCAkJMZxOp3HdddcZ9957r3HkyBGry6q19957z7jxxhsNX19fo0ePHsaSJUusLqlONm3aZEgy8vPzrS6lztxut/H4448bnTp1Mvz8/IwuXboYv/71r42ysjKrS6uV1atXG126dDGcTqfhcrmMpKQko7i42NKaHIbRyD7eEgAAoJ6xhggAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQiApYYMGaKpU6fW6zmXL1+u1q1b1+s5AVzbCEQAAMD2CEQAbKe8vNzqEgB4GQIRAMtVVFQoOTlZgYGBat++vZ566ild+JrFsrIy/eIXv9B1112nli1bKioqSh9++KHH8cuXL1enTp3UokUL/fjHP9ZXX33l0Z+enq6+ffvqzTffVOfOneXn5ydJKigo0KhRo9SqVSsFBATonnvuUVFRkcexixcvVteuXeV0OtW9e3f9/ve/9+h3OBx6/fXX9cMf/lAtWrRQz549lZOToyNHjmjIkCFq2bKlbr31Vh09etQ85rPPPtPQoUPl7++vgIAA9e/fX3v27KmvHyeAOiAQAbDcb3/7WzVt2lS7du3SwoULNX/+fL355puSpOTkZOXk5GjVqlXau3evxowZo+HDh+vw4cOSpJ07d2rSpElKTk5WXl6ehg4dqmeffbbaNY4cOaI///nPWrNmjfLy8lRVVaVRo0bp66+/VlZWljIzM/XPf/5T9957r3nM2rVr9fjjj+uJJ57Q/v379fDDD+vBBx/Utm3bPM79zDPPaPz48crLy1OPHj00btw4Pfzww0pLS9OePXtkGIaSk5PN8YmJierYsaN2796t3Nxc/fKXv1SzZs0a4kcLoKYMALDQHXfcYfTs2dOoqqoy21JTU42ePXsan3/+ueHj42N88cUXHscMGzbMSEtLMwzDMMaOHWuMGDHCo//ee+81AgMDzf1Zs2YZzZo1M06dOmW2bd682fDx8TEKCgrMtgMHDhiSjF27dhmGYRi33nqrMXnyZI9zjxkzxuN6kowZM2aY+zk5OYYk46233jLb3n77bcPPz8/c9/f3N5YvX/79PxwAVw13iABY7pZbbpHD4TD3o6OjdfjwYe3bt0+VlZXq1q2bWrVqZW5ZWVnmI6hDhw4pKirK43zR0dHVrhEeHq4OHTqY+4cOHVJYWJjCwsLMtl69eql169Y6dOiQOWbQoEEe5xk0aJDZf0FkZKT5Ojg4WJIUERHh0Xbu3Dm53W5JUkpKih566CHFxMRozpw5Ho/TAFijqdUFAMClnDlzRj4+PsrNzZWPj49HX6tWrWp1rpYtW9ZnaR6++7jrQrC7WFtVVZWk/6xpGjdunDZs2KD3339fs2bN0qpVq/TjH/+4wWoEcHncIQJguZ07d3rs79ixQz/4wQ/Ur18/VVZW6tSpU7rhhhs8NpfLJUnq2bPnRY//Pj179tTx48d1/Phxs+3gwYMqLi5Wr169zDHbt2/3OG779u1m/5Xo1q2bpk2bps2bN+vuu+/WsmXLrvicAOqOO0QALFdQUKCUlBQ9/PDD+vTTT/XKK6/opZdeUrdu3ZSYmKjx48frpZdeUr9+/fTll19q69atioyMVEJCgh577DENGjRIL774okaNGqVNmzZp48aN33vNmJgYRUREKDExUQsWLFBFRYV+/vOf64477tCAAQMkSdOnT9c999yjfv36KSYmRu+9957WrFmjLVu21Hmu3377raZPn66f/OQn6ty5s/79739r9+7dGj16dJ3PCeDKcYcIgOXGjx+vb7/9VgMHDlRSUpIef/xxTZkyRZK0bNkyjR8/Xk888YS6d++uu+66S7t371anTp0k/Wf90RtvvKGFCxeqT58+2rx5s2bMmPG913Q4HHr33XfVpk0bDR48WDExMerSpYtWr15tjrnrrru0cOFCvfjii+rdu7def/11LVu2TEOGDKnzXH18fPTVV19p/Pjx6tatm+655x7Fx8fr6aefrvM5AVw5h2H8/x/2AQAAYFPcIQIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALb3/wEeQPZ/RQdyGAAAAABJRU5ErkJggg==",
806 | "text/plain": [
807 | ""
808 | ]
809 | },
810 | "metadata": {},
811 | "output_type": "display_data"
812 | }
813 | ],
814 | "source": [
815 | "sns.countplot(data=data,x=data['bedrooms'])"
816 | ]
817 | },
818 | {
819 | "cell_type": "code",
820 | "execution_count": 17,
821 | "id": "d491175d",
822 | "metadata": {
823 | "execution": {
824 | "iopub.execute_input": "2022-11-05T08:25:31.421492Z",
825 | "iopub.status.busy": "2022-11-05T08:25:31.421059Z",
826 | "iopub.status.idle": "2022-11-05T08:25:31.604739Z",
827 | "shell.execute_reply": "2022-11-05T08:25:31.603899Z"
828 | },
829 | "papermill": {
830 | "duration": 0.200317,
831 | "end_time": "2022-11-05T08:25:31.607467",
832 | "exception": false,
833 | "start_time": "2022-11-05T08:25:31.407150",
834 | "status": "completed"
835 | },
836 | "tags": []
837 | },
838 | "outputs": [
839 | {
840 | "data": {
841 | "text/plain": [
842 | ""
843 | ]
844 | },
845 | "execution_count": 17,
846 | "metadata": {},
847 | "output_type": "execute_result"
848 | },
849 | {
850 | "data": {
851 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkAElEQVR4nO3dfVCVdf7/8dcBPYjggVA5SGJaOiqFtmLp2Xa9iySjNje7XUtKs7XFCik1Zsy+3Q2llTdp2s0atZvb/a1MGoOBrZIaRakpuY4tNnrASjhqCgrX749drp8n3VIELujzfMycGc91fbjO+2rGfM51rnNwWZZlCQAAwGAhTg8AAADgNIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMZr5/QAbUF9fb12796tTp06yeVyOT0OAAA4CZZlaf/+/YqPj1dIyM9fAyKITsLu3buVkJDg9BgAAKARdu3ape7du//sGoLoJHTq1EnSf/6Dejweh6cBAAAnIxAIKCEhwf53/OcQRCeh4W0yj8dDEAEA0MaczO0u3FQNAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB47ZweAP9f8vSXnB4BaJVK5k5wegQAv3JcIQIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYLxWE0SPPvqoXC6XMjMz7W2HDx9WRkaGOnfurMjISI0bN04VFRVBP1deXq60tDR17NhRsbGxmj59uo4ePRq0prCwUIMGDVJYWJh69+6t3NzcFjgjAADQVrSKINq4caOeeeYZDRgwIGj7tGnT9P777+v1119XUVGRdu/erauuusreX1dXp7S0NNXW1mrdunV68cUXlZubq9mzZ9trdu7cqbS0NI0cOVKlpaXKzMzUrbfeqlWrVrXY+QEAgNbN8SA6cOCAxo8fr+eee05nnHGGvb26ulp//etf9eSTT2rUqFFKTk7WCy+8oHXr1umTTz6RJH344Yf66quv9Pe//13nn3++xowZo4ceekiLFy9WbW2tJGnp0qXq1auXnnjiCfXv319Tp07V1VdfrXnz5v3PmWpqahQIBIIeAADg18vxIMrIyFBaWppSUlKCtpeUlOjIkSNB2/v166cePXqouLhYklRcXKykpCR5vV57TWpqqgKBgLZs2WKv+emxU1NT7WOcSE5OjqKiouxHQkLCaZ8nAABovRwNoldeeUWfffaZcnJyjtvn9/vldrsVHR0dtN3r9crv99trjo2hhv0N+35uTSAQ0KFDh044V3Z2tqqrq+3Hrl27GnV+AACgbWjn1Avv2rVLd911l/Lz89WhQwenxjihsLAwhYWFOT0GAABoIY5dISopKVFlZaUGDRqkdu3aqV27dioqKtLChQvVrl07eb1e1dbWqqqqKujnKioqFBcXJ0mKi4s77lNnDc9/aY3H41F4eHgznR0AAGhLHAuiiy++WJs2bVJpaan9GDx4sMaPH2//uX379iooKLB/pqysTOXl5fL5fJIkn8+nTZs2qbKy0l6Tn58vj8ejxMREe82xx2hY03AMAAAAx94y69Spk84777ygbREREercubO9fdKkScrKylJMTIw8Ho/uuOMO+Xw+DR06VJI0evRoJSYm6qabbtKcOXPk9/s1a9YsZWRk2G95TZkyRYsWLdKMGTM0ceJErV69Wq+99pry8vJa9oQBAECr5VgQnYx58+YpJCRE48aNU01NjVJTU/X000/b+0NDQ7VixQrdfvvt8vl8ioiIUHp6uh588EF7Ta9evZSXl6dp06ZpwYIF6t69u55//nmlpqY6cUoAAKAVclmWZTk9RGsXCAQUFRWl6upqeTyeZnud5OkvNduxgbasZO4Ep0cA0Aadyr/fjn8PEQAAgNMIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPEeDaMmSJRowYIA8Ho88Ho98Pp8++OADe//hw4eVkZGhzp07KzIyUuPGjVNFRUXQMcrLy5WWlqaOHTsqNjZW06dP19GjR4PWFBYWatCgQQoLC1Pv3r2Vm5vbEqcHAADaCEeDqHv37nr00UdVUlKiTz/9VKNGjdKVV16pLVu2SJKmTZum999/X6+//rqKioq0e/duXXXVVfbP19XVKS0tTbW1tVq3bp1efPFF5ebmavbs2faanTt3Ki0tTSNHjlRpaakyMzN16623atWqVS1+vgAAoHVyWZZlOT3EsWJiYjR37lxdffXV6tq1q5YvX66rr75akrRt2zb1799fxcXFGjp0qD744ANdfvnl2r17t7xeryRp6dKlmjlzpvbu3Su3262ZM2cqLy9Pmzdvtl/j+uuvV1VVlVauXHnCGWpqalRTU2M/DwQCSkhIUHV1tTweT7Ode/L0l5rt2EBbVjJ3gtMjAGiDAoGAoqKiTurf71ZzD1FdXZ1eeeUVHTx4UD6fTyUlJTpy5IhSUlLsNf369VOPHj1UXFwsSSouLlZSUpIdQ5KUmpqqQCBgX2UqLi4OOkbDmoZjnEhOTo6ioqLsR0JCQlOeKgAAaGUcD6JNmzYpMjJSYWFhmjJlit5++20lJibK7/fL7XYrOjo6aL3X65Xf75ck+f3+oBhq2N+w7+fWBAIBHTp06IQzZWdnq7q62n7s2rWrKU4VAAC0Uu2cHqBv374qLS1VdXW13njjDaWnp6uoqMjRmcLCwhQWFuboDAAAoOU4HkRut1u9e/eWJCUnJ2vjxo1asGCBrrvuOtXW1qqqqiroKlFFRYXi4uIkSXFxcdqwYUPQ8Ro+hXbsmp9+Mq2iokIej0fh4eHNdVoAAKANcfwts5+qr69XTU2NkpOT1b59exUUFNj7ysrKVF5eLp/PJ0ny+XzatGmTKisr7TX5+fnyeDxKTEy01xx7jIY1DccAAABw9ApRdna2xowZox49emj//v1avny5CgsLtWrVKkVFRWnSpEnKyspSTEyMPB6P7rjjDvl8Pg0dOlSSNHr0aCUmJuqmm27SnDlz5Pf7NWvWLGVkZNhveU2ZMkWLFi3SjBkzNHHiRK1evVqvvfaa8vLynDx1AADQijgaRJWVlZowYYL27NmjqKgoDRgwQKtWrdIll1wiSZo3b55CQkI0btw41dTUKDU1VU8//bT986GhoVqxYoVuv/12+Xw+RUREKD09XQ8++KC9plevXsrLy9O0adO0YMECde/eXc8//7xSU1Nb/HwBAEDr1Oq+h6g1OpXvMTgdfA8RcGJ8DxGAxmiT30MEAADgFIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGK9RQTRq1ChVVVUdtz0QCGjUqFGnOxMAAECLalQQFRYWqra29rjthw8f1scff3zaQwEAALSkdqey+Msvv7T//NVXX8nv99vP6+rqtHLlSp155plNNx0AAEALOKUgOv/88+VyueRyuU741lh4eLieeuqpJhsOAACgJZxSEO3cuVOWZenss8/Whg0b1LVrV3uf2+1WbGysQkNDm3xIAACA5nRKQXTWWWdJkurr65tlGAAAACecUhAda/v27froo49UWVl5XCDNnj37tAcDAABoKY0Koueee0633367unTpori4OLlcLnufy+UiiAAAQJvSqCB6+OGH9cgjj2jmzJlNPQ8AAECLa9T3EO3bt0/XXHNNU88CAADgiEYF0TXXXKMPP/ywqWcBAABwRKPeMuvdu7fuu+8+ffLJJ0pKSlL79u2D9t95551NMhwAAEBLaFQQPfvss4qMjFRRUZGKioqC9rlcLoIIAAC0KY0Kop07dzb1HAAAAI5p1D1EAAAAvyaNukI0ceLEn92/bNmyRg0DAADghEYF0b59+4KeHzlyRJs3b1ZVVdUJf+krAABAa9aoIHr77beP21ZfX6/bb79d55xzzmkPBQAA0JKa7B6ikJAQZWVlad68eU11SAAAgBbRpDdV79ixQ0ePHm3KQwIAADS7Rr1llpWVFfTcsizt2bNHeXl5Sk9Pb5LBAAAAWkqjgujzzz8Peh4SEqKuXbvqiSee+MVPoAEAALQ2jQqijz76qKnnAAAAcEyjgqjB3r17VVZWJknq27evunbt2iRDAQAAtKRG3VR98OBBTZw4Ud26ddOwYcM0bNgwxcfHa9KkSfrxxx+bekYAAIBm1aggysrKUlFRkd5//31VVVWpqqpK7777roqKinT33Xc39YwAAADNqlFvmb355pt64403NGLECHvbZZddpvDwcF177bVasmRJU80HAADQ7Bp1hejHH3+U1+s9bntsbCxvmQEAgDanUUHk8/l0//336/Dhw/a2Q4cO6YEHHpDP52uy4QAAAFpCo94ymz9/vi699FJ1795dAwcOlCR98cUXCgsL04cfftikAwIAADS3RgVRUlKStm/frpdfflnbtm2TJN1www0aP368wsPDm3RAAACA5taoIMrJyZHX69XkyZODti9btkx79+7VzJkzm2Q4AACAltCoe4ieeeYZ9evX77jt5557rpYuXXraQwEAALSkRgWR3+9Xt27djtvetWtX7dmz57SHAgAAaEmNCqKEhAStXbv2uO1r165VfHz8aQ8FAADQkhp1D9HkyZOVmZmpI0eOaNSoUZKkgoICzZgxg2+qBgAAbU6jgmj69On6/vvv9Ze//EW1tbWSpA4dOmjmzJnKzs5u0gEBAACaW6OCyOVy6bHHHtN9992nrVu3Kjw8XH369FFYWFhTzwcAANDsGhVEDSIjI3XBBRc01SwAAACOaNRN1QAAAL8mBBEAADAeQQQAAIxHEAEAAOMRRAAAwHiOBlFOTo4uuOACderUSbGxsRo7dqzKysqC1hw+fFgZGRnq3LmzIiMjNW7cOFVUVAStKS8vV1pamjp27KjY2FhNnz5dR48eDVpTWFioQYMGKSwsTL1791Zubm5znx4AAGgjHA2ioqIiZWRk6JNPPlF+fr6OHDmi0aNH6+DBg/aaadOm6f3339frr7+uoqIi7d69W1dddZW9v66uTmlpaaqtrdW6dev04osvKjc3V7Nnz7bX7Ny5U2lpaRo5cqRKS0uVmZmpW2+9VatWrWrR8wUAAK2Ty7Isy+khGuzdu1exsbEqKirSsGHDVF1dra5du2r58uW6+uqrJUnbtm1T//79VVxcrKFDh+qDDz7Q5Zdfrt27d8vr9UqSli5dqpkzZ2rv3r1yu92aOXOm8vLytHnzZvu1rr/+elVVVWnlypW/OFcgEFBUVJSqq6vl8Xia5+QlJU9/qdmODbRlJXMnOD0CgDboVP79blX3EFVXV0uSYmJiJEklJSU6cuSIUlJS7DX9+vVTjx49VFxcLEkqLi5WUlKSHUOSlJqaqkAgoC1btthrjj1Gw5qGY/xUTU2NAoFA0AMAAPx6tZogqq+vV2Zmpi666CKdd955kiS/3y+3263o6OigtV6vV36/315zbAw17G/Y93NrAoGADh06dNwsOTk5ioqKsh8JCQlNco4AAKB1ajVBlJGRoc2bN+uVV15xehRlZ2erurrafuzatcvpkQAAQDM6rd9l1lSmTp2qFStWaM2aNerevbu9PS4uTrW1taqqqgq6SlRRUaG4uDh7zYYNG4KO1/AptGPX/PSTaRUVFfJ4PAoPDz9unrCwMH5RLQAABnH0CpFlWZo6darefvttrV69Wr169Qran5ycrPbt26ugoMDeVlZWpvLycvl8PkmSz+fTpk2bVFlZaa/Jz8+Xx+NRYmKivebYYzSsaTgGAAAwm6NXiDIyMrR8+XK9++676tSpk33PT1RUlMLDwxUVFaVJkyYpKytLMTEx8ng8uuOOO+Tz+TR06FBJ0ujRo5WYmKibbrpJc+bMkd/v16xZs5SRkWFf5ZkyZYoWLVqkGTNmaOLEiVq9erVee+015eXlOXbuAACg9XD0CtGSJUtUXV2tESNGqFu3bvbj1VdftdfMmzdPl19+ucaNG6dhw4YpLi5Ob731lr0/NDRUK1asUGhoqHw+n2688UZNmDBBDz74oL2mV69eysvLU35+vgYOHKgnnnhCzz//vFJTU1v0fAEAQOvUqr6HqLXie4gAZ/E9RAAao81+DxEAAIATCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDxHg2jNmjW64oorFB8fL5fLpXfeeSdov2VZmj17trp166bw8HClpKRo+/btQWt++OEHjR8/Xh6PR9HR0Zo0aZIOHDgQtObLL7/U73//e3Xo0EEJCQmaM2dOc58aAABoQxwNooMHD2rgwIFavHjxCffPmTNHCxcu1NKlS7V+/XpFREQoNTVVhw8ftteMHz9eW7ZsUX5+vlasWKE1a9botttus/cHAgGNHj1aZ511lkpKSjR37lz93//9n5599tlmPz8AANA2tHPyxceMGaMxY8accJ9lWZo/f75mzZqlK6+8UpL00ksvyev16p133tH111+vrVu3auXKldq4caMGDx4sSXrqqad02WWX6fHHH1d8fLxefvll1dbWatmyZXK73Tr33HNVWlqqJ598MiicAACAuVrtPUQ7d+6U3+9XSkqKvS0qKkpDhgxRcXGxJKm4uFjR0dF2DElSSkqKQkJCtH79envNsGHD5Ha77TWpqakqKyvTvn37TvjaNTU1CgQCQQ8AAPDr1WqDyO/3S5K8Xm/Qdq/Xa+/z+/2KjY0N2t+uXTvFxMQErTnRMY59jZ/KyclRVFSU/UhISDj9EwIAAK1Wqw0iJ2VnZ6u6utp+7Nq1y+mRAABAM2q1QRQXFydJqqioCNpeUVFh74uLi1NlZWXQ/qNHj+qHH34IWnOiYxz7Gj8VFhYmj8cT9AAAAL9erTaIevXqpbi4OBUUFNjbAoGA1q9fL5/PJ0ny+XyqqqpSSUmJvWb16tWqr6/XkCFD7DVr1qzRkSNH7DX5+fnq27evzjjjjBY6GwAA0Jo5GkQHDhxQaWmpSktLJf3nRurS0lKVl5fL5XIpMzNTDz/8sN577z1t2rRJEyZMUHx8vMaOHStJ6t+/vy699FJNnjxZGzZs0Nq1azV16lRdf/31io+PlyT96U9/ktvt1qRJk7Rlyxa9+uqrWrBggbKyshw6awAA0No4+rH7Tz/9VCNHjrSfN0RKenq6cnNzNWPGDB08eFC33Xabqqqq9Lvf/U4rV65Uhw4d7J95+eWXNXXqVF188cUKCQnRuHHjtHDhQnt/VFSUPvzwQ2VkZCg5OVldunTR7Nmz+cg9AACwuSzLspweorULBAKKiopSdXV1s95PlDz9pWY7NtCWlcyd4PQIANqgU/n3u9XeQwQAANBSCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyjgmjx4sXq2bOnOnTooCFDhmjDhg1OjwQAAFqBdk4P0FJeffVVZWVlaenSpRoyZIjmz5+v1NRUlZWVKTY21unxAPzKlT+Y5PQIQKvUY/Ymp0eQZNAVoieffFKTJ0/WLbfcosTERC1dulQdO3bUsmXLnB4NAAA4zIgrRLW1tSopKVF2dra9LSQkRCkpKSouLj5ufU1NjWpqauzn1dXVkqRAINCsc9bVHGrW4wNtVXP/3WsJ+w/XOT0C0Co159/vhmNblvWLa40Iou+++051dXXyer1B271er7Zt23bc+pycHD3wwAPHbU9ISGi2GQH8b1FPTXF6BADNJSeq2V9i//79ior6+dcxIohOVXZ2trKysuzn9fX1+uGHH9S5c2e5XC4HJ0NLCAQCSkhI0K5du+TxeJweB0AT4u+3WSzL0v79+xUfH/+La40Ioi5duig0NFQVFRVB2ysqKhQXF3fc+rCwMIWFhQVti46Obs4R0Qp5PB7+hwn8SvH32xy/dGWogRE3VbvdbiUnJ6ugoMDeVl9fr4KCAvl8PgcnAwAArYERV4gkKSsrS+np6Ro8eLAuvPBCzZ8/XwcPHtQtt9zi9GgAAMBhxgTRddddp71792r27Nny+/06//zztXLlyuNutAbCwsJ0//33H/e2KYC2j7/f+F9c1sl8Fg0AAOBXzIh7iAAAAH4OQQQAAIxHEAEAAOMRRAAAwHgEEfATixcvVs+ePdWhQwcNGTJEGzZscHokAE1gzZo1uuKKKxQfHy+Xy6V33nnH6ZHQihBEwDFeffVVZWVl6f7779dnn32mgQMHKjU1VZWVlU6PBuA0HTx4UAMHDtTixYudHgWtEB+7B44xZMgQXXDBBVq0aJGk/3yjeUJCgu644w7de++9Dk8HoKm4XC69/fbbGjt2rNOjoJXgChHwX7W1tSopKVFKSoq9LSQkRCkpKSouLnZwMgBAcyOIgP/67rvvVFdXd9y3l3u9Xvn9foemAgC0BIIIAAAYjyAC/qtLly4KDQ1VRUVF0PaKigrFxcU5NBUAoCUQRMB/ud1uJScnq6CgwN5WX1+vgoIC+Xw+BycDADQ3Y37bPXAysrKylJ6ersGDB+vCCy/U/PnzdfDgQd1yyy1OjwbgNB04cED/+te/7Oc7d+5UaWmpYmJi1KNHDwcnQ2vAx+6Bn1i0aJHmzp0rv9+v888/XwsXLtSQIUOcHgvAaSosLNTIkSOP256enq7c3NyWHwitCkEEAACMxz1EAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRADwE36/X5dccokiIiIUHR3t9DgAWgBBBKDNGzFihDIzM5vsePPmzdOePXtUWlqqr7/+usmOeyKFhYVyuVyqqqpq1tcB8PP45a4A8F+1tbVyu93asWOHkpOT1adPn/+59siRI2rfvn0LTgegOXGFCECLW7FihaKjo1VXVydJKi0tlcvl0r333muvufXWW3XjjTfq+++/1w033KAzzzxTHTt2VFJSkv7xj3/Y626++WYVFRVpwYIFcrlccrlc+uabbyRJmzdv1pgxYxQZGSmv16ubbrpJ3333nf2zI0aM0NSpU5WZmakuXbooNTVVPXv21JtvvqmXXnpJLpdLN998syTJ5XJpyZIl+sMf/qCIiAg98sgjkqQlS5bonHPOkdvtVt++ffW3v/0t6FxdLpeef/55/fGPf1THjh3Vp08fvffee5Kkb775xv5lo2eccUbQ6wFoYRYAtLCqqiorJCTE2rhxo2VZljV//nyrS5cu1pAhQ+w1vXv3tp577jnr22+/tebOnWt9/vnn1o4dO6yFCxdaoaGh1vr16+1j+Xw+a/LkydaePXusPXv2WEePHrX27dtnde3a1crOzra2bt1qffbZZ9Yll1xijRw50n6N4cOHW5GRkdb06dOtbdu2Wdu2bbMqKyutSy+91Lr22mutPXv2WFVVVZZlWZYkKzY21lq2bJm1Y8cO69///rf11ltvWe3bt7cWL15slZWVWU888YQVGhpqrV692n4NSVb37t2t5cuXW9u3b7fuvPNOKzIy0vr++++to0ePWm+++aYlySorKwt6PQAtiyAC4IhBgwZZc+fOtSzLssaOHWs98sgjltvttvbv3299++23liTr66+/PuHPpqWlWXfffbf9fPjw4dZdd90VtOahhx6yRo8eHbRt165ddnw0/NxvfvOb445/5ZVXWunp6UHbJFmZmZlB2377299akydPDtp2zTXXWJdddlnQz82aNct+fuDAAUuS9cEHH1iWZVkfffSRJcnat2/fCc8VQMvgLTMAjhg+fLgKCwtlWZY+/vhjXXXVVerfv7/++c9/qqioSPHx8erTp4/q6ur00EMPKSkpSTExMYqMjNSqVatUXl7+s8f/4osv9NFHHykyMtJ+9OvXT5K0Y8cOe11ycvJJzzx48OCg51u3btVFF10UtO2iiy7S1q1bg7YNGDDA/nNERIQ8Ho8qKytP+nUBND9uqgbgiBEjRmjZsmX64osv1L59e/Xr108jRoxQYWGh9u3bp+HDh0uS5s6dqwULFmj+/PlKSkpSRESEMjMzVVtb+7PHP3DggK644go99thjx+3r1q2b/eeIiIiTnvlU1h7rpzdfu1wu1dfXN+pYAJoHV4gAOOL3v/+99u/fr3nz5tnx0xBEhYWFGjFihCRp7dq1uvLKK3XjjTdq4MCBOvvss4/7KLzb7bZv0G4waNAgbdmyRT179lTv3r2DHo0Nm5/q37+/1q5dG7Rt7dq1SkxMPOljuN1uSTpufgAtiyAC4IgzzjhDAwYM0Msvv2zHz7Bhw/TZZ5/p66+/tiOpT58+ys/P17p167R161b9+c9/VkVFRdCxevbsqfXr1+ubb77Rd999p/r6emVkZOiHH37QDTfcoI0bN2rHjh1atWqVbrnlliaLj+nTpys3N1dLlizR9u3b9eSTT+qtt97SPffcc9LHOOuss+RyubRixQrt3btXBw4caJLZAJwaggiAY4YPH666ujo7iGJiYpSYmKi4uDj17dtXkjRr1iwNGjRIqampGjFihOLi4jR27Nig49xzzz0KDQ1VYmKiunbtqvLycsXHx2vt2rWqq6vT6NGjlZSUpMzMTEVHRyskpGn+1zd27FgtWLBAjz/+uM4991w988wzeuGFF+zzORlnnnmmHnjgAd17773yer2aOnVqk8wG4NS4LMuynB4CAADASVwhAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYLz/B9O/eykCE80tAAAAAElFTkSuQmCC",
852 | "text/plain": [
853 | ""
854 | ]
855 | },
856 | "metadata": {},
857 | "output_type": "display_data"
858 | }
859 | ],
860 | "source": [
861 | "sns.countplot(data=data,x=data['waterfront'])"
862 | ]
863 | },
864 | {
865 | "cell_type": "markdown",
866 | "id": "160e09e0",
867 | "metadata": {
868 | "papermill": {
869 | "duration": 0.013553,
870 | "end_time": "2022-11-05T08:25:31.660822",
871 | "exception": false,
872 | "start_time": "2022-11-05T08:25:31.647269",
873 | "status": "completed"
874 | },
875 | "tags": []
876 | },
877 | "source": [
878 | "## Model Creation"
879 | ]
880 | },
881 | {
882 | "cell_type": "code",
883 | "execution_count": 18,
884 | "id": "a00ed84d",
885 | "metadata": {
886 | "execution": {
887 | "iopub.execute_input": "2022-11-05T08:25:31.689713Z",
888 | "iopub.status.busy": "2022-11-05T08:25:31.689309Z",
889 | "iopub.status.idle": "2022-11-05T08:25:31.699095Z",
890 | "shell.execute_reply": "2022-11-05T08:25:31.698235Z"
891 | },
892 | "papermill": {
893 | "duration": 0.027012,
894 | "end_time": "2022-11-05T08:25:31.701749",
895 | "exception": false,
896 | "start_time": "2022-11-05T08:25:31.674737",
897 | "status": "completed"
898 | },
899 | "tags": []
900 | },
901 | "outputs": [
902 | {
903 | "data": {
904 | "text/plain": [
905 | "sqft_basement\n",
906 | "0 2745\n",
907 | "500 53\n",
908 | "600 45\n",
909 | "800 43\n",
910 | "900 41\n",
911 | " ... \n",
912 | "2300 1\n",
913 | "265 1\n",
914 | "1610 1\n",
915 | "862 1\n",
916 | "1640 1\n",
917 | "Name: count, Length: 207, dtype: int64"
918 | ]
919 | },
920 | "execution_count": 18,
921 | "metadata": {},
922 | "output_type": "execute_result"
923 | }
924 | ],
925 | "source": [
926 | "data['sqft_basement'].value_counts()"
927 | ]
928 | },
929 | {
930 | "cell_type": "code",
931 | "execution_count": 19,
932 | "id": "cf79255f",
933 | "metadata": {
934 | "execution": {
935 | "iopub.execute_input": "2022-11-05T08:25:31.731019Z",
936 | "iopub.status.busy": "2022-11-05T08:25:31.730556Z",
937 | "iopub.status.idle": "2022-11-05T08:25:31.738304Z",
938 | "shell.execute_reply": "2022-11-05T08:25:31.736852Z"
939 | },
940 | "papermill": {
941 | "duration": 0.025349,
942 | "end_time": "2022-11-05T08:25:31.740891",
943 | "exception": false,
944 | "start_time": "2022-11-05T08:25:31.715542",
945 | "status": "completed"
946 | },
947 | "tags": []
948 | },
949 | "outputs": [],
950 | "source": [
951 | "data = data.drop([\"city\",\"view\",\"waterfront\",\"sqft_basement\"],axis=1)"
952 | ]
953 | },
954 | {
955 | "cell_type": "code",
956 | "execution_count": 20,
957 | "id": "40dce89c",
958 | "metadata": {
959 | "execution": {
960 | "iopub.execute_input": "2022-11-05T08:25:31.822281Z",
961 | "iopub.status.busy": "2022-11-05T08:25:31.821767Z",
962 | "iopub.status.idle": "2022-11-05T08:25:31.829605Z",
963 | "shell.execute_reply": "2022-11-05T08:25:31.828190Z"
964 | },
965 | "papermill": {
966 | "duration": 0.025326,
967 | "end_time": "2022-11-05T08:25:31.832232",
968 | "exception": false,
969 | "start_time": "2022-11-05T08:25:31.806906",
970 | "status": "completed"
971 | },
972 | "tags": []
973 | },
974 | "outputs": [],
975 | "source": [
976 | "x = np.array(data.loc[:,data.columns != \"price\"].values)\n",
977 | "y = np.array(data[\"price\"].values)"
978 | ]
979 | },
980 | {
981 | "cell_type": "code",
982 | "execution_count": 21,
983 | "id": "2cada5be",
984 | "metadata": {
985 | "execution": {
986 | "iopub.execute_input": "2022-11-05T08:25:31.860997Z",
987 | "iopub.status.busy": "2022-11-05T08:25:31.860507Z",
988 | "iopub.status.idle": "2022-11-05T08:25:31.868697Z",
989 | "shell.execute_reply": "2022-11-05T08:25:31.867705Z"
990 | },
991 | "papermill": {
992 | "duration": 0.02536,
993 | "end_time": "2022-11-05T08:25:31.871073",
994 | "exception": false,
995 | "start_time": "2022-11-05T08:25:31.845713",
996 | "status": "completed"
997 | },
998 | "tags": []
999 | },
1000 | "outputs": [
1001 | {
1002 | "data": {
1003 | "text/plain": [
1004 | "array([[ 3, 1, 1340, ..., 3, 1340, 36],\n",
1005 | " [ 5, 2, 3650, ..., 5, 3370, 35],\n",
1006 | " [ 3, 2, 1930, ..., 4, 1930, 18],\n",
1007 | " ...,\n",
1008 | " [ 3, 2, 3010, ..., 3, 3010, 32],\n",
1009 | " [ 4, 2, 2090, ..., 3, 1070, 35],\n",
1010 | " [ 3, 2, 1490, ..., 4, 1490, 9]], dtype=int64)"
1011 | ]
1012 | },
1013 | "execution_count": 21,
1014 | "metadata": {},
1015 | "output_type": "execute_result"
1016 | }
1017 | ],
1018 | "source": [
1019 | "x"
1020 | ]
1021 | },
1022 | {
1023 | "cell_type": "code",
1024 | "execution_count": 22,
1025 | "id": "2dba4b6c",
1026 | "metadata": {
1027 | "execution": {
1028 | "iopub.execute_input": "2022-11-05T08:25:31.899555Z",
1029 | "iopub.status.busy": "2022-11-05T08:25:31.899146Z",
1030 | "iopub.status.idle": "2022-11-05T08:25:31.905957Z",
1031 | "shell.execute_reply": "2022-11-05T08:25:31.904792Z"
1032 | },
1033 | "papermill": {
1034 | "duration": 0.024129,
1035 | "end_time": "2022-11-05T08:25:31.908496",
1036 | "exception": false,
1037 | "start_time": "2022-11-05T08:25:31.884367",
1038 | "status": "completed"
1039 | },
1040 | "tags": []
1041 | },
1042 | "outputs": [
1043 | {
1044 | "data": {
1045 | "text/plain": [
1046 | "array([ 313000, 2384000, 342000, ..., 416904, 203400, 220600])"
1047 | ]
1048 | },
1049 | "execution_count": 22,
1050 | "metadata": {},
1051 | "output_type": "execute_result"
1052 | }
1053 | ],
1054 | "source": [
1055 | "y"
1056 | ]
1057 | },
1058 | {
1059 | "cell_type": "code",
1060 | "execution_count": 23,
1061 | "id": "03618f50",
1062 | "metadata": {
1063 | "execution": {
1064 | "iopub.execute_input": "2022-11-05T08:25:31.937320Z",
1065 | "iopub.status.busy": "2022-11-05T08:25:31.936881Z",
1066 | "iopub.status.idle": "2022-11-05T08:25:31.944616Z",
1067 | "shell.execute_reply": "2022-11-05T08:25:31.943245Z"
1068 | },
1069 | "papermill": {
1070 | "duration": 0.024941,
1071 | "end_time": "2022-11-05T08:25:31.947081",
1072 | "exception": false,
1073 | "start_time": "2022-11-05T08:25:31.922140",
1074 | "status": "completed"
1075 | },
1076 | "tags": []
1077 | },
1078 | "outputs": [],
1079 | "source": [
1080 | "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.1,random_state=42)"
1081 | ]
1082 | },
1083 | {
1084 | "cell_type": "code",
1085 | "execution_count": 24,
1086 | "id": "17dbd7a0",
1087 | "metadata": {
1088 | "execution": {
1089 | "iopub.execute_input": "2022-11-05T08:25:31.975637Z",
1090 | "iopub.status.busy": "2022-11-05T08:25:31.975207Z",
1091 | "iopub.status.idle": "2022-11-05T08:25:31.982824Z",
1092 | "shell.execute_reply": "2022-11-05T08:25:31.981979Z"
1093 | },
1094 | "papermill": {
1095 | "duration": 0.024459,
1096 | "end_time": "2022-11-05T08:25:31.984999",
1097 | "exception": false,
1098 | "start_time": "2022-11-05T08:25:31.960540",
1099 | "status": "completed"
1100 | },
1101 | "tags": []
1102 | },
1103 | "outputs": [
1104 | {
1105 | "data": {
1106 | "text/plain": [
1107 | "array([[ 3, 1, 1340, ..., 3, 1340, 36],\n",
1108 | " [ 5, 2, 3650, ..., 5, 3370, 35],\n",
1109 | " [ 3, 2, 1930, ..., 4, 1930, 18],\n",
1110 | " ...,\n",
1111 | " [ 3, 2, 3010, ..., 3, 3010, 32],\n",
1112 | " [ 4, 2, 2090, ..., 3, 1070, 35],\n",
1113 | " [ 3, 2, 1490, ..., 4, 1490, 9]], dtype=int64)"
1114 | ]
1115 | },
1116 | "execution_count": 24,
1117 | "metadata": {},
1118 | "output_type": "execute_result"
1119 | }
1120 | ],
1121 | "source": [
1122 | "x"
1123 | ]
1124 | },
1125 | {
1126 | "cell_type": "code",
1127 | "execution_count": 25,
1128 | "id": "4b754402",
1129 | "metadata": {
1130 | "execution": {
1131 | "iopub.execute_input": "2022-11-05T08:25:32.040456Z",
1132 | "iopub.status.busy": "2022-11-05T08:25:32.040032Z",
1133 | "iopub.status.idle": "2022-11-05T08:25:32.067598Z",
1134 | "shell.execute_reply": "2022-11-05T08:25:32.066056Z"
1135 | },
1136 | "papermill": {
1137 | "duration": 0.044743,
1138 | "end_time": "2022-11-05T08:25:32.070063",
1139 | "exception": false,
1140 | "start_time": "2022-11-05T08:25:32.025320",
1141 | "status": "completed"
1142 | },
1143 | "tags": []
1144 | },
1145 | "outputs": [
1146 | {
1147 | "data": {
1148 | "text/html": [
1149 | "LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
1150 | ],
1151 | "text/plain": [
1152 | "LinearRegression()"
1153 | ]
1154 | },
1155 | "execution_count": 25,
1156 | "metadata": {},
1157 | "output_type": "execute_result"
1158 | }
1159 | ],
1160 | "source": [
1161 | "model_lr = LinearRegression()\n",
1162 | "model_lr.fit(x_train,y_train)"
1163 | ]
1164 | },
1165 | {
1166 | "cell_type": "code",
1167 | "execution_count": 26,
1168 | "id": "4154b24a",
1169 | "metadata": {
1170 | "execution": {
1171 | "iopub.execute_input": "2022-11-05T08:25:32.099871Z",
1172 | "iopub.status.busy": "2022-11-05T08:25:32.099154Z",
1173 | "iopub.status.idle": "2022-11-05T08:25:32.108611Z",
1174 | "shell.execute_reply": "2022-11-05T08:25:32.107058Z"
1175 | },
1176 | "papermill": {
1177 | "duration": 0.027656,
1178 | "end_time": "2022-11-05T08:25:32.111250",
1179 | "exception": false,
1180 | "start_time": "2022-11-05T08:25:32.083594",
1181 | "status": "completed"
1182 | },
1183 | "tags": []
1184 | },
1185 | "outputs": [],
1186 | "source": [
1187 | "predictions_lr = model_lr.predict(x_test)"
1188 | ]
1189 | },
1190 | {
1191 | "cell_type": "code",
1192 | "execution_count": 27,
1193 | "id": "e7210f04",
1194 | "metadata": {
1195 | "execution": {
1196 | "iopub.execute_input": "2022-11-05T08:25:32.143266Z",
1197 | "iopub.status.busy": "2022-11-05T08:25:32.141898Z",
1198 | "iopub.status.idle": "2022-11-05T08:25:32.154013Z",
1199 | "shell.execute_reply": "2022-11-05T08:25:32.152405Z"
1200 | },
1201 | "papermill": {
1202 | "duration": 0.03151,
1203 | "end_time": "2022-11-05T08:25:32.156761",
1204 | "exception": false,
1205 | "start_time": "2022-11-05T08:25:32.125251",
1206 | "status": "completed"
1207 | },
1208 | "tags": []
1209 | },
1210 | "outputs": [
1211 | {
1212 | "data": {
1213 | "text/plain": [
1214 | "0.3183144703701215"
1215 | ]
1216 | },
1217 | "execution_count": 27,
1218 | "metadata": {},
1219 | "output_type": "execute_result"
1220 | }
1221 | ],
1222 | "source": [
1223 | "mean_absolute_percentage_error(predictions_lr,y_test)"
1224 | ]
1225 | },
1226 | {
1227 | "cell_type": "code",
1228 | "execution_count": 28,
1229 | "id": "ac1f2b3e",
1230 | "metadata": {
1231 | "execution": {
1232 | "iopub.execute_input": "2022-11-05T08:25:32.216071Z",
1233 | "iopub.status.busy": "2022-11-05T08:25:32.215312Z",
1234 | "iopub.status.idle": "2022-11-05T08:25:32.369227Z",
1235 | "shell.execute_reply": "2022-11-05T08:25:32.367811Z"
1236 | },
1237 | "papermill": {
1238 | "duration": 0.172599,
1239 | "end_time": "2022-11-05T08:25:32.372327",
1240 | "exception": false,
1241 | "start_time": "2022-11-05T08:25:32.199728",
1242 | "status": "completed"
1243 | },
1244 | "tags": []
1245 | },
1246 | "outputs": [],
1247 | "source": [
1248 | "model = RandomForestRegressor(n_estimators=10)\n",
1249 | "model.fit(x_train,y_train)\n",
1250 | "predictions = model.predict(x_test)"
1251 | ]
1252 | },
1253 | {
1254 | "cell_type": "code",
1255 | "execution_count": 29,
1256 | "id": "4bbf64d2",
1257 | "metadata": {
1258 | "execution": {
1259 | "iopub.execute_input": "2022-11-05T08:25:32.401682Z",
1260 | "iopub.status.busy": "2022-11-05T08:25:32.401256Z",
1261 | "iopub.status.idle": "2022-11-05T08:25:32.409150Z",
1262 | "shell.execute_reply": "2022-11-05T08:25:32.408030Z"
1263 | },
1264 | "papermill": {
1265 | "duration": 0.025347,
1266 | "end_time": "2022-11-05T08:25:32.411577",
1267 | "exception": false,
1268 | "start_time": "2022-11-05T08:25:32.386230",
1269 | "status": "completed"
1270 | },
1271 | "tags": []
1272 | },
1273 | "outputs": [
1274 | {
1275 | "data": {
1276 | "text/plain": [
1277 | "0.24210417557737207"
1278 | ]
1279 | },
1280 | "execution_count": 29,
1281 | "metadata": {},
1282 | "output_type": "execute_result"
1283 | }
1284 | ],
1285 | "source": [
1286 | "mean_absolute_percentage_error(predictions,y_test)"
1287 | ]
1288 | },
1289 | {
1290 | "cell_type": "code",
1291 | "execution_count": 32,
1292 | "id": "0a16e9cb",
1293 | "metadata": {},
1294 | "outputs": [
1295 | {
1296 | "data": {
1297 | "text/html": [
1298 | "\n",
1299 | "\n",
1312 | "
\n",
1313 | " \n",
1314 | " \n",
1315 | " \n",
1316 | " price \n",
1317 | " bedrooms \n",
1318 | " bathrooms \n",
1319 | " sqft_living \n",
1320 | " sqft_lot \n",
1321 | " floors \n",
1322 | " condition \n",
1323 | " sqft_above \n",
1324 | " city_new \n",
1325 | " \n",
1326 | " \n",
1327 | " \n",
1328 | " \n",
1329 | " 0 \n",
1330 | " 313000 \n",
1331 | " 3 \n",
1332 | " 1 \n",
1333 | " 1340 \n",
1334 | " 7912 \n",
1335 | " 1 \n",
1336 | " 3 \n",
1337 | " 1340 \n",
1338 | " 36 \n",
1339 | " \n",
1340 | " \n",
1341 | " 1 \n",
1342 | " 2384000 \n",
1343 | " 5 \n",
1344 | " 2 \n",
1345 | " 3650 \n",
1346 | " 9050 \n",
1347 | " 2 \n",
1348 | " 5 \n",
1349 | " 3370 \n",
1350 | " 35 \n",
1351 | " \n",
1352 | " \n",
1353 | " 2 \n",
1354 | " 342000 \n",
1355 | " 3 \n",
1356 | " 2 \n",
1357 | " 1930 \n",
1358 | " 11947 \n",
1359 | " 1 \n",
1360 | " 4 \n",
1361 | " 1930 \n",
1362 | " 18 \n",
1363 | " \n",
1364 | " \n",
1365 | " 3 \n",
1366 | " 420000 \n",
1367 | " 3 \n",
1368 | " 2 \n",
1369 | " 2000 \n",
1370 | " 8030 \n",
1371 | " 1 \n",
1372 | " 4 \n",
1373 | " 1000 \n",
1374 | " 3 \n",
1375 | " \n",
1376 | " \n",
1377 | " 4 \n",
1378 | " 550000 \n",
1379 | " 4 \n",
1380 | " 2 \n",
1381 | " 1940 \n",
1382 | " 10500 \n",
1383 | " 1 \n",
1384 | " 4 \n",
1385 | " 1140 \n",
1386 | " 31 \n",
1387 | " \n",
1388 | " \n",
1389 | "
\n",
1390 | "
"
1391 | ],
1392 | "text/plain": [
1393 | " price bedrooms bathrooms sqft_living sqft_lot floors condition \\\n",
1394 | "0 313000 3 1 1340 7912 1 3 \n",
1395 | "1 2384000 5 2 3650 9050 2 5 \n",
1396 | "2 342000 3 2 1930 11947 1 4 \n",
1397 | "3 420000 3 2 2000 8030 1 4 \n",
1398 | "4 550000 4 2 1940 10500 1 4 \n",
1399 | "\n",
1400 | " sqft_above city_new \n",
1401 | "0 1340 36 \n",
1402 | "1 3370 35 \n",
1403 | "2 1930 18 \n",
1404 | "3 1000 3 \n",
1405 | "4 1140 31 "
1406 | ]
1407 | },
1408 | "execution_count": 32,
1409 | "metadata": {},
1410 | "output_type": "execute_result"
1411 | }
1412 | ],
1413 | "source": [
1414 | "data.head()"
1415 | ]
1416 | },
1417 | {
1418 | "cell_type": "code",
1419 | "execution_count": 33,
1420 | "id": "32b3dfde",
1421 | "metadata": {
1422 | "execution": {
1423 | "iopub.execute_input": "2022-11-05T08:25:32.495627Z",
1424 | "iopub.status.busy": "2022-11-05T08:25:32.495195Z",
1425 | "iopub.status.idle": "2022-11-05T08:25:32.504061Z",
1426 | "shell.execute_reply": "2022-11-05T08:25:32.503047Z"
1427 | },
1428 | "papermill": {
1429 | "duration": 0.026607,
1430 | "end_time": "2022-11-05T08:25:32.506128",
1431 | "exception": false,
1432 | "start_time": "2022-11-05T08:25:32.479521",
1433 | "status": "completed"
1434 | },
1435 | "tags": []
1436 | },
1437 | "outputs": [
1438 | {
1439 | "data": {
1440 | "text/plain": [
1441 | "array([284900.])"
1442 | ]
1443 | },
1444 | "execution_count": 33,
1445 | "metadata": {},
1446 | "output_type": "execute_result"
1447 | }
1448 | ],
1449 | "source": [
1450 | "a = [1,1,200,200,1,2,200,36]\n",
1451 | "model.predict([a])"
1452 | ]
1453 | },
1454 | {
1455 | "cell_type": "code",
1456 | "execution_count": 35,
1457 | "id": "76fa023e",
1458 | "metadata": {},
1459 | "outputs": [
1460 | {
1461 | "data": {
1462 | "text/plain": [
1463 | "array([314950.])"
1464 | ]
1465 | },
1466 | "execution_count": 35,
1467 | "metadata": {},
1468 | "output_type": "execute_result"
1469 | }
1470 | ],
1471 | "source": [
1472 | "b =[3,1,1340,7912,1,3,1340,36]\n",
1473 | "model.predict([b])"
1474 | ]
1475 | },
1476 | {
1477 | "cell_type": "code",
1478 | "execution_count": null,
1479 | "id": "7b7c018b",
1480 | "metadata": {},
1481 | "outputs": [],
1482 | "source": []
1483 | }
1484 | ],
1485 | "metadata": {
1486 | "kernelspec": {
1487 | "display_name": "Python 3",
1488 | "language": "python",
1489 | "name": "python3"
1490 | },
1491 | "language_info": {
1492 | "codemirror_mode": {
1493 | "name": "ipython",
1494 | "version": 3
1495 | },
1496 | "file_extension": ".py",
1497 | "mimetype": "text/x-python",
1498 | "name": "python",
1499 | "nbconvert_exporter": "python",
1500 | "pygments_lexer": "ipython3",
1501 | "version": "3.10.0"
1502 | },
1503 | "papermill": {
1504 | "default_parameters": {},
1505 | "duration": 16.918623,
1506 | "end_time": "2022-11-05T08:25:33.493433",
1507 | "environment_variables": {},
1508 | "exception": null,
1509 | "input_path": "__notebook__.ipynb",
1510 | "output_path": "__notebook__.ipynb",
1511 | "parameters": {},
1512 | "start_time": "2022-11-05T08:25:16.574810",
1513 | "version": "2.3.4"
1514 | }
1515 | },
1516 | "nbformat": 4,
1517 | "nbformat_minor": 5
1518 | }
1519 |
--------------------------------------------------------------------------------
/pima-indians-diabetes-database-svm-accuracy-79.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "149d2d1e",
7 | "metadata": {
8 | "execution": {
9 | "iopub.execute_input": "2023-05-17T05:30:26.966373Z",
10 | "iopub.status.busy": "2023-05-17T05:30:26.965827Z",
11 | "iopub.status.idle": "2023-05-17T05:30:28.438333Z",
12 | "shell.execute_reply": "2023-05-17T05:30:28.437064Z"
13 | },
14 | "papermill": {
15 | "duration": 1.480344,
16 | "end_time": "2023-05-17T05:30:28.440911",
17 | "exception": false,
18 | "start_time": "2023-05-17T05:30:26.960567",
19 | "status": "completed"
20 | },
21 | "tags": []
22 | },
23 | "outputs": [],
24 | "source": [
25 | "import pandas as pd\n",
26 | "import numpy as np\n",
27 | "import matplotlib.pyplot as plt\n",
28 | "import sklearn \n",
29 | "from sklearn import svm\n",
30 | "from sklearn import metrics"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": 2,
36 | "id": "49a07ff9",
37 | "metadata": {
38 | "execution": {
39 | "iopub.execute_input": "2023-05-17T05:30:28.452774Z",
40 | "iopub.status.busy": "2023-05-17T05:30:28.452446Z",
41 | "iopub.status.idle": "2023-05-17T05:30:28.478510Z",
42 | "shell.execute_reply": "2023-05-17T05:30:28.477000Z"
43 | },
44 | "papermill": {
45 | "duration": 0.03423,
46 | "end_time": "2023-05-17T05:30:28.481010",
47 | "exception": false,
48 | "start_time": "2023-05-17T05:30:28.446780",
49 | "status": "completed"
50 | },
51 | "tags": []
52 | },
53 | "outputs": [],
54 | "source": [
55 | "data = pd.read_csv(\"C:/Users/harin/Downloads/diabetes.csv\")"
56 | ]
57 | },
58 | {
59 | "cell_type": "code",
60 | "execution_count": 3,
61 | "id": "e9fabbaf",
62 | "metadata": {
63 | "execution": {
64 | "iopub.execute_input": "2023-05-17T05:30:28.490963Z",
65 | "iopub.status.busy": "2023-05-17T05:30:28.490629Z",
66 | "iopub.status.idle": "2023-05-17T05:30:28.524254Z",
67 | "shell.execute_reply": "2023-05-17T05:30:28.523300Z"
68 | },
69 | "papermill": {
70 | "duration": 0.041305,
71 | "end_time": "2023-05-17T05:30:28.526516",
72 | "exception": false,
73 | "start_time": "2023-05-17T05:30:28.485211",
74 | "status": "completed"
75 | },
76 | "tags": []
77 | },
78 | "outputs": [
79 | {
80 | "data": {
81 | "text/html": [
82 | "\n",
83 | "\n",
96 | "
\n",
97 | " \n",
98 | " \n",
99 | " \n",
100 | " Pregnancies \n",
101 | " Glucose \n",
102 | " BloodPressure \n",
103 | " SkinThickness \n",
104 | " Insulin \n",
105 | " BMI \n",
106 | " DiabetesPedigreeFunction \n",
107 | " Age \n",
108 | " Outcome \n",
109 | " \n",
110 | " \n",
111 | " \n",
112 | " \n",
113 | " 0 \n",
114 | " 6 \n",
115 | " 148 \n",
116 | " 72 \n",
117 | " 35 \n",
118 | " 0 \n",
119 | " 33.6 \n",
120 | " 0.627 \n",
121 | " 50 \n",
122 | " 1 \n",
123 | " \n",
124 | " \n",
125 | " 1 \n",
126 | " 1 \n",
127 | " 85 \n",
128 | " 66 \n",
129 | " 29 \n",
130 | " 0 \n",
131 | " 26.6 \n",
132 | " 0.351 \n",
133 | " 31 \n",
134 | " 0 \n",
135 | " \n",
136 | " \n",
137 | " 2 \n",
138 | " 8 \n",
139 | " 183 \n",
140 | " 64 \n",
141 | " 0 \n",
142 | " 0 \n",
143 | " 23.3 \n",
144 | " 0.672 \n",
145 | " 32 \n",
146 | " 1 \n",
147 | " \n",
148 | " \n",
149 | " 3 \n",
150 | " 1 \n",
151 | " 89 \n",
152 | " 66 \n",
153 | " 23 \n",
154 | " 94 \n",
155 | " 28.1 \n",
156 | " 0.167 \n",
157 | " 21 \n",
158 | " 0 \n",
159 | " \n",
160 | " \n",
161 | " 4 \n",
162 | " 0 \n",
163 | " 137 \n",
164 | " 40 \n",
165 | " 35 \n",
166 | " 168 \n",
167 | " 43.1 \n",
168 | " 2.288 \n",
169 | " 33 \n",
170 | " 1 \n",
171 | " \n",
172 | " \n",
173 | " 5 \n",
174 | " 5 \n",
175 | " 116 \n",
176 | " 74 \n",
177 | " 0 \n",
178 | " 0 \n",
179 | " 25.6 \n",
180 | " 0.201 \n",
181 | " 30 \n",
182 | " 0 \n",
183 | " \n",
184 | " \n",
185 | " 6 \n",
186 | " 3 \n",
187 | " 78 \n",
188 | " 50 \n",
189 | " 32 \n",
190 | " 88 \n",
191 | " 31.0 \n",
192 | " 0.248 \n",
193 | " 26 \n",
194 | " 1 \n",
195 | " \n",
196 | " \n",
197 | " 7 \n",
198 | " 10 \n",
199 | " 115 \n",
200 | " 0 \n",
201 | " 0 \n",
202 | " 0 \n",
203 | " 35.3 \n",
204 | " 0.134 \n",
205 | " 29 \n",
206 | " 0 \n",
207 | " \n",
208 | " \n",
209 | " 8 \n",
210 | " 2 \n",
211 | " 197 \n",
212 | " 70 \n",
213 | " 45 \n",
214 | " 543 \n",
215 | " 30.5 \n",
216 | " 0.158 \n",
217 | " 53 \n",
218 | " 1 \n",
219 | " \n",
220 | " \n",
221 | " 9 \n",
222 | " 8 \n",
223 | " 125 \n",
224 | " 96 \n",
225 | " 0 \n",
226 | " 0 \n",
227 | " 0.0 \n",
228 | " 0.232 \n",
229 | " 54 \n",
230 | " 1 \n",
231 | " \n",
232 | " \n",
233 | "
\n",
234 | "
"
235 | ],
236 | "text/plain": [
237 | " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n",
238 | "0 6 148 72 35 0 33.6 \n",
239 | "1 1 85 66 29 0 26.6 \n",
240 | "2 8 183 64 0 0 23.3 \n",
241 | "3 1 89 66 23 94 28.1 \n",
242 | "4 0 137 40 35 168 43.1 \n",
243 | "5 5 116 74 0 0 25.6 \n",
244 | "6 3 78 50 32 88 31.0 \n",
245 | "7 10 115 0 0 0 35.3 \n",
246 | "8 2 197 70 45 543 30.5 \n",
247 | "9 8 125 96 0 0 0.0 \n",
248 | "\n",
249 | " DiabetesPedigreeFunction Age Outcome \n",
250 | "0 0.627 50 1 \n",
251 | "1 0.351 31 0 \n",
252 | "2 0.672 32 1 \n",
253 | "3 0.167 21 0 \n",
254 | "4 2.288 33 1 \n",
255 | "5 0.201 30 0 \n",
256 | "6 0.248 26 1 \n",
257 | "7 0.134 29 0 \n",
258 | "8 0.158 53 1 \n",
259 | "9 0.232 54 1 "
260 | ]
261 | },
262 | "execution_count": 3,
263 | "metadata": {},
264 | "output_type": "execute_result"
265 | }
266 | ],
267 | "source": [
268 | "data.head(10)"
269 | ]
270 | },
271 | {
272 | "cell_type": "code",
273 | "execution_count": 5,
274 | "id": "abd6d66a",
275 | "metadata": {
276 | "execution": {
277 | "iopub.execute_input": "2023-05-17T05:30:28.609497Z",
278 | "iopub.status.busy": "2023-05-17T05:30:28.609183Z",
279 | "iopub.status.idle": "2023-05-17T05:30:28.616414Z",
280 | "shell.execute_reply": "2023-05-17T05:30:28.615121Z"
281 | },
282 | "papermill": {
283 | "duration": 0.015147,
284 | "end_time": "2023-05-17T05:30:28.618308",
285 | "exception": false,
286 | "start_time": "2023-05-17T05:30:28.603161",
287 | "status": "completed"
288 | },
289 | "tags": []
290 | },
291 | "outputs": [
292 | {
293 | "data": {
294 | "text/plain": [
295 | "(768, 9)"
296 | ]
297 | },
298 | "execution_count": 5,
299 | "metadata": {},
300 | "output_type": "execute_result"
301 | }
302 | ],
303 | "source": [
304 | "data.shape"
305 | ]
306 | },
307 | {
308 | "cell_type": "code",
309 | "execution_count": 6,
310 | "id": "bf342298",
311 | "metadata": {
312 | "execution": {
313 | "iopub.execute_input": "2023-05-17T05:30:28.629370Z",
314 | "iopub.status.busy": "2023-05-17T05:30:28.629046Z",
315 | "iopub.status.idle": "2023-05-17T05:30:28.663119Z",
316 | "shell.execute_reply": "2023-05-17T05:30:28.662087Z"
317 | },
318 | "papermill": {
319 | "duration": 0.041756,
320 | "end_time": "2023-05-17T05:30:28.664927",
321 | "exception": false,
322 | "start_time": "2023-05-17T05:30:28.623171",
323 | "status": "completed"
324 | },
325 | "tags": []
326 | },
327 | "outputs": [
328 | {
329 | "data": {
330 | "text/html": [
331 | "\n",
332 | "\n",
345 | "
\n",
346 | " \n",
347 | " \n",
348 | " \n",
349 | " Pregnancies \n",
350 | " Glucose \n",
351 | " BloodPressure \n",
352 | " SkinThickness \n",
353 | " Insulin \n",
354 | " BMI \n",
355 | " DiabetesPedigreeFunction \n",
356 | " Age \n",
357 | " Outcome \n",
358 | " \n",
359 | " \n",
360 | " \n",
361 | " \n",
362 | " count \n",
363 | " 768.000000 \n",
364 | " 768.000000 \n",
365 | " 768.000000 \n",
366 | " 768.000000 \n",
367 | " 768.000000 \n",
368 | " 768.000000 \n",
369 | " 768.000000 \n",
370 | " 768.000000 \n",
371 | " 768.000000 \n",
372 | " \n",
373 | " \n",
374 | " mean \n",
375 | " 3.845052 \n",
376 | " 120.894531 \n",
377 | " 69.105469 \n",
378 | " 20.536458 \n",
379 | " 79.799479 \n",
380 | " 31.992578 \n",
381 | " 0.471876 \n",
382 | " 33.240885 \n",
383 | " 0.348958 \n",
384 | " \n",
385 | " \n",
386 | " std \n",
387 | " 3.369578 \n",
388 | " 31.972618 \n",
389 | " 19.355807 \n",
390 | " 15.952218 \n",
391 | " 115.244002 \n",
392 | " 7.884160 \n",
393 | " 0.331329 \n",
394 | " 11.760232 \n",
395 | " 0.476951 \n",
396 | " \n",
397 | " \n",
398 | " min \n",
399 | " 0.000000 \n",
400 | " 0.000000 \n",
401 | " 0.000000 \n",
402 | " 0.000000 \n",
403 | " 0.000000 \n",
404 | " 0.000000 \n",
405 | " 0.078000 \n",
406 | " 21.000000 \n",
407 | " 0.000000 \n",
408 | " \n",
409 | " \n",
410 | " 25% \n",
411 | " 1.000000 \n",
412 | " 99.000000 \n",
413 | " 62.000000 \n",
414 | " 0.000000 \n",
415 | " 0.000000 \n",
416 | " 27.300000 \n",
417 | " 0.243750 \n",
418 | " 24.000000 \n",
419 | " 0.000000 \n",
420 | " \n",
421 | " \n",
422 | " 50% \n",
423 | " 3.000000 \n",
424 | " 117.000000 \n",
425 | " 72.000000 \n",
426 | " 23.000000 \n",
427 | " 30.500000 \n",
428 | " 32.000000 \n",
429 | " 0.372500 \n",
430 | " 29.000000 \n",
431 | " 0.000000 \n",
432 | " \n",
433 | " \n",
434 | " 75% \n",
435 | " 6.000000 \n",
436 | " 140.250000 \n",
437 | " 80.000000 \n",
438 | " 32.000000 \n",
439 | " 127.250000 \n",
440 | " 36.600000 \n",
441 | " 0.626250 \n",
442 | " 41.000000 \n",
443 | " 1.000000 \n",
444 | " \n",
445 | " \n",
446 | " max \n",
447 | " 17.000000 \n",
448 | " 199.000000 \n",
449 | " 122.000000 \n",
450 | " 99.000000 \n",
451 | " 846.000000 \n",
452 | " 67.100000 \n",
453 | " 2.420000 \n",
454 | " 81.000000 \n",
455 | " 1.000000 \n",
456 | " \n",
457 | " \n",
458 | "
\n",
459 | "
"
460 | ],
461 | "text/plain": [
462 | " Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n",
463 | "count 768.000000 768.000000 768.000000 768.000000 768.000000 \n",
464 | "mean 3.845052 120.894531 69.105469 20.536458 79.799479 \n",
465 | "std 3.369578 31.972618 19.355807 15.952218 115.244002 \n",
466 | "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
467 | "25% 1.000000 99.000000 62.000000 0.000000 0.000000 \n",
468 | "50% 3.000000 117.000000 72.000000 23.000000 30.500000 \n",
469 | "75% 6.000000 140.250000 80.000000 32.000000 127.250000 \n",
470 | "max 17.000000 199.000000 122.000000 99.000000 846.000000 \n",
471 | "\n",
472 | " BMI DiabetesPedigreeFunction Age Outcome \n",
473 | "count 768.000000 768.000000 768.000000 768.000000 \n",
474 | "mean 31.992578 0.471876 33.240885 0.348958 \n",
475 | "std 7.884160 0.331329 11.760232 0.476951 \n",
476 | "min 0.000000 0.078000 21.000000 0.000000 \n",
477 | "25% 27.300000 0.243750 24.000000 0.000000 \n",
478 | "50% 32.000000 0.372500 29.000000 0.000000 \n",
479 | "75% 36.600000 0.626250 41.000000 1.000000 \n",
480 | "max 67.100000 2.420000 81.000000 1.000000 "
481 | ]
482 | },
483 | "execution_count": 6,
484 | "metadata": {},
485 | "output_type": "execute_result"
486 | }
487 | ],
488 | "source": [
489 | "data.describe()"
490 | ]
491 | },
492 | {
493 | "cell_type": "code",
494 | "execution_count": 7,
495 | "id": "ce6226fb",
496 | "metadata": {
497 | "execution": {
498 | "iopub.execute_input": "2023-05-17T05:30:28.677344Z",
499 | "iopub.status.busy": "2023-05-17T05:30:28.675884Z",
500 | "iopub.status.idle": "2023-05-17T05:30:28.688803Z",
501 | "shell.execute_reply": "2023-05-17T05:30:28.686983Z"
502 | },
503 | "papermill": {
504 | "duration": 0.021206,
505 | "end_time": "2023-05-17T05:30:28.691089",
506 | "exception": false,
507 | "start_time": "2023-05-17T05:30:28.669883",
508 | "status": "completed"
509 | },
510 | "tags": []
511 | },
512 | "outputs": [],
513 | "source": [
514 | "label = data[[\"Outcome\"]]"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 8,
520 | "id": "d3ee4364",
521 | "metadata": {
522 | "execution": {
523 | "iopub.execute_input": "2023-05-17T05:30:28.702419Z",
524 | "iopub.status.busy": "2023-05-17T05:30:28.702124Z",
525 | "iopub.status.idle": "2023-05-17T05:30:28.707547Z",
526 | "shell.execute_reply": "2023-05-17T05:30:28.706698Z"
527 | },
528 | "papermill": {
529 | "duration": 0.013589,
530 | "end_time": "2023-05-17T05:30:28.709617",
531 | "exception": false,
532 | "start_time": "2023-05-17T05:30:28.696028",
533 | "status": "completed"
534 | },
535 | "tags": []
536 | },
537 | "outputs": [],
538 | "source": [
539 | "feature = data.drop(data[['Outcome',\"Age\",\"SkinThickness\",\"Pregnancies\"]],axis=1)"
540 | ]
541 | },
542 | {
543 | "cell_type": "code",
544 | "execution_count": 9,
545 | "id": "2ce00ebd",
546 | "metadata": {
547 | "execution": {
548 | "iopub.execute_input": "2023-05-17T05:30:28.720429Z",
549 | "iopub.status.busy": "2023-05-17T05:30:28.720118Z",
550 | "iopub.status.idle": "2023-05-17T05:30:28.732930Z",
551 | "shell.execute_reply": "2023-05-17T05:30:28.731499Z"
552 | },
553 | "papermill": {
554 | "duration": 0.021368,
555 | "end_time": "2023-05-17T05:30:28.735697",
556 | "exception": false,
557 | "start_time": "2023-05-17T05:30:28.714329",
558 | "status": "completed"
559 | },
560 | "tags": []
561 | },
562 | "outputs": [
563 | {
564 | "data": {
565 | "text/html": [
566 | "\n",
567 | "\n",
580 | "
\n",
581 | " \n",
582 | " \n",
583 | " \n",
584 | " Glucose \n",
585 | " BloodPressure \n",
586 | " Insulin \n",
587 | " BMI \n",
588 | " DiabetesPedigreeFunction \n",
589 | " \n",
590 | " \n",
591 | " \n",
592 | " \n",
593 | " 0 \n",
594 | " 148 \n",
595 | " 72 \n",
596 | " 0 \n",
597 | " 33.6 \n",
598 | " 0.627 \n",
599 | " \n",
600 | " \n",
601 | " 1 \n",
602 | " 85 \n",
603 | " 66 \n",
604 | " 0 \n",
605 | " 26.6 \n",
606 | " 0.351 \n",
607 | " \n",
608 | " \n",
609 | " 2 \n",
610 | " 183 \n",
611 | " 64 \n",
612 | " 0 \n",
613 | " 23.3 \n",
614 | " 0.672 \n",
615 | " \n",
616 | " \n",
617 | " 3 \n",
618 | " 89 \n",
619 | " 66 \n",
620 | " 94 \n",
621 | " 28.1 \n",
622 | " 0.167 \n",
623 | " \n",
624 | " \n",
625 | " 4 \n",
626 | " 137 \n",
627 | " 40 \n",
628 | " 168 \n",
629 | " 43.1 \n",
630 | " 2.288 \n",
631 | " \n",
632 | " \n",
633 | " ... \n",
634 | " ... \n",
635 | " ... \n",
636 | " ... \n",
637 | " ... \n",
638 | " ... \n",
639 | " \n",
640 | " \n",
641 | " 763 \n",
642 | " 101 \n",
643 | " 76 \n",
644 | " 180 \n",
645 | " 32.9 \n",
646 | " 0.171 \n",
647 | " \n",
648 | " \n",
649 | " 764 \n",
650 | " 122 \n",
651 | " 70 \n",
652 | " 0 \n",
653 | " 36.8 \n",
654 | " 0.340 \n",
655 | " \n",
656 | " \n",
657 | " 765 \n",
658 | " 121 \n",
659 | " 72 \n",
660 | " 112 \n",
661 | " 26.2 \n",
662 | " 0.245 \n",
663 | " \n",
664 | " \n",
665 | " 766 \n",
666 | " 126 \n",
667 | " 60 \n",
668 | " 0 \n",
669 | " 30.1 \n",
670 | " 0.349 \n",
671 | " \n",
672 | " \n",
673 | " 767 \n",
674 | " 93 \n",
675 | " 70 \n",
676 | " 0 \n",
677 | " 30.4 \n",
678 | " 0.315 \n",
679 | " \n",
680 | " \n",
681 | "
\n",
682 | "
768 rows × 5 columns
\n",
683 | "
"
684 | ],
685 | "text/plain": [
686 | " Glucose BloodPressure Insulin BMI DiabetesPedigreeFunction\n",
687 | "0 148 72 0 33.6 0.627\n",
688 | "1 85 66 0 26.6 0.351\n",
689 | "2 183 64 0 23.3 0.672\n",
690 | "3 89 66 94 28.1 0.167\n",
691 | "4 137 40 168 43.1 2.288\n",
692 | ".. ... ... ... ... ...\n",
693 | "763 101 76 180 32.9 0.171\n",
694 | "764 122 70 0 36.8 0.340\n",
695 | "765 121 72 112 26.2 0.245\n",
696 | "766 126 60 0 30.1 0.349\n",
697 | "767 93 70 0 30.4 0.315\n",
698 | "\n",
699 | "[768 rows x 5 columns]"
700 | ]
701 | },
702 | "execution_count": 9,
703 | "metadata": {},
704 | "output_type": "execute_result"
705 | }
706 | ],
707 | "source": [
708 | "feature"
709 | ]
710 | },
711 | {
712 | "cell_type": "code",
713 | "execution_count": 10,
714 | "id": "8f76abae",
715 | "metadata": {
716 | "execution": {
717 | "iopub.execute_input": "2023-05-17T05:30:28.747604Z",
718 | "iopub.status.busy": "2023-05-17T05:30:28.747263Z",
719 | "iopub.status.idle": "2023-05-17T05:30:28.752607Z",
720 | "shell.execute_reply": "2023-05-17T05:30:28.751452Z"
721 | },
722 | "papermill": {
723 | "duration": 0.013865,
724 | "end_time": "2023-05-17T05:30:28.754867",
725 | "exception": false,
726 | "start_time": "2023-05-17T05:30:28.741002",
727 | "status": "completed"
728 | },
729 | "tags": []
730 | },
731 | "outputs": [],
732 | "source": [
733 | "data['BMI'] = data['BMI'].astype(\"int\")"
734 | ]
735 | },
736 | {
737 | "cell_type": "code",
738 | "execution_count": 11,
739 | "id": "831d83b6",
740 | "metadata": {
741 | "execution": {
742 | "iopub.execute_input": "2023-05-17T05:30:28.766969Z",
743 | "iopub.status.busy": "2023-05-17T05:30:28.766669Z",
744 | "iopub.status.idle": "2023-05-17T05:30:34.068993Z",
745 | "shell.execute_reply": "2023-05-17T05:30:34.067738Z"
746 | },
747 | "papermill": {
748 | "duration": 5.310809,
749 | "end_time": "2023-05-17T05:30:34.071057",
750 | "exception": false,
751 | "start_time": "2023-05-17T05:30:28.760248",
752 | "status": "completed"
753 | },
754 | "tags": []
755 | },
756 | "outputs": [
757 | {
758 | "name": "stderr",
759 | "output_type": "stream",
760 | "text": [
761 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
762 | " y = column_or_1d(y, warn=True)\n"
763 | ]
764 | },
765 | {
766 | "name": "stdout",
767 | "output_type": "stream",
768 | "text": [
769 | "The accuracy of kernel: linear is 80%\n",
770 | "The accuracy of kernel: rbf is 77%\n",
771 | "The accuracy of kernel: poly is 75%\n"
772 | ]
773 | },
774 | {
775 | "name": "stderr",
776 | "output_type": "stream",
777 | "text": [
778 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
779 | " y = column_or_1d(y, warn=True)\n",
780 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
781 | " y = column_or_1d(y, warn=True)\n"
782 | ]
783 | }
784 | ],
785 | "source": [
786 | "li = []\n",
787 | "kernels = [\"linear\",\"rbf\",\"poly\"]\n",
788 | "for i in range(0,len(kernels)):\n",
789 | " model = svm.SVC(kernel=kernels[i])\n",
790 | " x_train,x_test,y_train,y_test = sklearn.model_selection.train_test_split(feature,label,test_size=0.2)\n",
791 | " model.fit(x_train,y_train)\n",
792 | " prediction = model.predict(x_test)\n",
793 | " accuracy = metrics.accuracy_score(y_test,prediction)\n",
794 | " print(f\"The accuracy of kernel: {kernels[i]} is {int(accuracy*100)}%\")\n",
795 | " \n",
796 | " #li.append(accuracy)\n",
797 | "#print(\"Average Accuracy is:\",f\"{int(np.mean(li)*100)}%\")"
798 | ]
799 | },
800 | {
801 | "cell_type": "code",
802 | "execution_count": 12,
803 | "id": "70fef5f2",
804 | "metadata": {
805 | "execution": {
806 | "iopub.execute_input": "2023-05-17T05:30:34.092791Z",
807 | "iopub.status.busy": "2023-05-17T05:30:34.092474Z",
808 | "iopub.status.idle": "2023-05-17T05:32:37.351981Z",
809 | "shell.execute_reply": "2023-05-17T05:32:37.351110Z"
810 | },
811 | "papermill": {
812 | "duration": 123.273413,
813 | "end_time": "2023-05-17T05:32:37.359547",
814 | "exception": false,
815 | "start_time": "2023-05-17T05:30:34.086134",
816 | "status": "completed"
817 | },
818 | "tags": []
819 | },
820 | "outputs": [
821 | {
822 | "name": "stderr",
823 | "output_type": "stream",
824 | "text": [
825 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
826 | " y = column_or_1d(y, warn=True)\n"
827 | ]
828 | },
829 | {
830 | "name": "stdout",
831 | "output_type": "stream",
832 | "text": [
833 | "The accuracy of kernel: Linear is 74% C: 1\n"
834 | ]
835 | },
836 | {
837 | "name": "stderr",
838 | "output_type": "stream",
839 | "text": [
840 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
841 | " y = column_or_1d(y, warn=True)\n"
842 | ]
843 | },
844 | {
845 | "name": "stdout",
846 | "output_type": "stream",
847 | "text": [
848 | "The accuracy of kernel: Linear is 77% C: 2\n"
849 | ]
850 | },
851 | {
852 | "name": "stderr",
853 | "output_type": "stream",
854 | "text": [
855 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
856 | " y = column_or_1d(y, warn=True)\n"
857 | ]
858 | },
859 | {
860 | "name": "stdout",
861 | "output_type": "stream",
862 | "text": [
863 | "The accuracy of kernel: Linear is 75% C: 3\n"
864 | ]
865 | },
866 | {
867 | "name": "stderr",
868 | "output_type": "stream",
869 | "text": [
870 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
871 | " y = column_or_1d(y, warn=True)\n"
872 | ]
873 | },
874 | {
875 | "name": "stdout",
876 | "output_type": "stream",
877 | "text": [
878 | "The accuracy of kernel: Linear is 77% C: 4\n"
879 | ]
880 | },
881 | {
882 | "name": "stderr",
883 | "output_type": "stream",
884 | "text": [
885 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
886 | " y = column_or_1d(y, warn=True)\n"
887 | ]
888 | },
889 | {
890 | "name": "stdout",
891 | "output_type": "stream",
892 | "text": [
893 | "The accuracy of kernel: Linear is 78% C: 5\n"
894 | ]
895 | },
896 | {
897 | "name": "stderr",
898 | "output_type": "stream",
899 | "text": [
900 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
901 | " y = column_or_1d(y, warn=True)\n"
902 | ]
903 | }
904 | ],
905 | "source": [
906 | "for i in range(1,10):\n",
907 | " model = svm.SVC(kernel=\"linear\",C=i)\n",
908 | " x_train,x_test,y_train,y_test = sklearn.model_selection.train_test_split(feature,label,test_size=0.2)\n",
909 | " model.fit(x_train,y_train)\n",
910 | " prediction = model.predict(x_test)\n",
911 | " accuracy = metrics.accuracy_score(y_test,prediction)\n",
912 | " print(f\"The accuracy of kernel: Linear is {int(accuracy*100)}% C: {i}\")"
913 | ]
914 | }
915 | ],
916 | "metadata": {
917 | "kernelspec": {
918 | "display_name": "Python 3",
919 | "language": "python",
920 | "name": "python3"
921 | },
922 | "language_info": {
923 | "codemirror_mode": {
924 | "name": "ipython",
925 | "version": 3
926 | },
927 | "file_extension": ".py",
928 | "mimetype": "text/x-python",
929 | "name": "python",
930 | "nbconvert_exporter": "python",
931 | "pygments_lexer": "ipython3",
932 | "version": "3.10.0"
933 | },
934 | "papermill": {
935 | "default_parameters": {},
936 | "duration": 142.857483,
937 | "end_time": "2023-05-17T05:32:38.300466",
938 | "environment_variables": {},
939 | "exception": null,
940 | "input_path": "__notebook__.ipynb",
941 | "output_path": "__notebook__.ipynb",
942 | "parameters": {},
943 | "start_time": "2023-05-17T05:30:15.442983",
944 | "version": "2.4.0"
945 | }
946 | },
947 | "nbformat": 4,
948 | "nbformat_minor": 5
949 | }
950 |
--------------------------------------------------------------------------------
/winequality-prediction.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 3,
6 | "id": "a9c11110",
7 | "metadata": {
8 | "execution": {
9 | "iopub.execute_input": "2023-08-07T07:07:49.414411Z",
10 | "iopub.status.busy": "2023-08-07T07:07:49.413913Z",
11 | "iopub.status.idle": "2023-08-07T07:07:49.426948Z",
12 | "shell.execute_reply": "2023-08-07T07:07:49.425982Z"
13 | },
14 | "papermill": {
15 | "duration": 0.023536,
16 | "end_time": "2023-08-07T07:07:49.429167",
17 | "exception": false,
18 | "start_time": "2023-08-07T07:07:49.405631",
19 | "status": "completed"
20 | },
21 | "tags": []
22 | },
23 | "outputs": [],
24 | "source": [
25 | "import pandas as pd\n",
26 | "import numpy as np\n",
27 | "import matplotlib.pyplot as plt\n",
28 | "%matplotlib inline"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 4,
34 | "id": "8431d5c0",
35 | "metadata": {
36 | "execution": {
37 | "iopub.execute_input": "2023-08-07T07:07:49.441953Z",
38 | "iopub.status.busy": "2023-08-07T07:07:49.441587Z",
39 | "iopub.status.idle": "2023-08-07T07:07:49.499514Z",
40 | "shell.execute_reply": "2023-08-07T07:07:49.498507Z"
41 | },
42 | "papermill": {
43 | "duration": 0.066537,
44 | "end_time": "2023-08-07T07:07:49.501606",
45 | "exception": false,
46 | "start_time": "2023-08-07T07:07:49.435069",
47 | "status": "completed"
48 | },
49 | "tags": []
50 | },
51 | "outputs": [
52 | {
53 | "data": {
54 | "text/html": [
55 | "\n",
56 | "\n",
69 | "
\n",
70 | " \n",
71 | " \n",
72 | " \n",
73 | " fixed acidity \n",
74 | " volatile acidity \n",
75 | " citric acid \n",
76 | " residual sugar \n",
77 | " chlorides \n",
78 | " free sulfur dioxide \n",
79 | " total sulfur dioxide \n",
80 | " density \n",
81 | " pH \n",
82 | " sulphates \n",
83 | " alcohol \n",
84 | " quality \n",
85 | " \n",
86 | " \n",
87 | " \n",
88 | " \n",
89 | " 0 \n",
90 | " 7.4 \n",
91 | " 0.700 \n",
92 | " 0.00 \n",
93 | " 1.9 \n",
94 | " 0.076 \n",
95 | " 11.0 \n",
96 | " 34.0 \n",
97 | " 0.99780 \n",
98 | " 3.51 \n",
99 | " 0.56 \n",
100 | " 9.4 \n",
101 | " 5 \n",
102 | " \n",
103 | " \n",
104 | " 1 \n",
105 | " 7.8 \n",
106 | " 0.880 \n",
107 | " 0.00 \n",
108 | " 2.6 \n",
109 | " 0.098 \n",
110 | " 25.0 \n",
111 | " 67.0 \n",
112 | " 0.99680 \n",
113 | " 3.20 \n",
114 | " 0.68 \n",
115 | " 9.8 \n",
116 | " 5 \n",
117 | " \n",
118 | " \n",
119 | " 2 \n",
120 | " 7.8 \n",
121 | " 0.760 \n",
122 | " 0.04 \n",
123 | " 2.3 \n",
124 | " 0.092 \n",
125 | " 15.0 \n",
126 | " 54.0 \n",
127 | " 0.99700 \n",
128 | " 3.26 \n",
129 | " 0.65 \n",
130 | " 9.8 \n",
131 | " 5 \n",
132 | " \n",
133 | " \n",
134 | " 3 \n",
135 | " 11.2 \n",
136 | " 0.280 \n",
137 | " 0.56 \n",
138 | " 1.9 \n",
139 | " 0.075 \n",
140 | " 17.0 \n",
141 | " 60.0 \n",
142 | " 0.99800 \n",
143 | " 3.16 \n",
144 | " 0.58 \n",
145 | " 9.8 \n",
146 | " 6 \n",
147 | " \n",
148 | " \n",
149 | " 4 \n",
150 | " 7.4 \n",
151 | " 0.700 \n",
152 | " 0.00 \n",
153 | " 1.9 \n",
154 | " 0.076 \n",
155 | " 11.0 \n",
156 | " 34.0 \n",
157 | " 0.99780 \n",
158 | " 3.51 \n",
159 | " 0.56 \n",
160 | " 9.4 \n",
161 | " 5 \n",
162 | " \n",
163 | " \n",
164 | " ... \n",
165 | " ... \n",
166 | " ... \n",
167 | " ... \n",
168 | " ... \n",
169 | " ... \n",
170 | " ... \n",
171 | " ... \n",
172 | " ... \n",
173 | " ... \n",
174 | " ... \n",
175 | " ... \n",
176 | " ... \n",
177 | " \n",
178 | " \n",
179 | " 1594 \n",
180 | " 6.2 \n",
181 | " 0.600 \n",
182 | " 0.08 \n",
183 | " 2.0 \n",
184 | " 0.090 \n",
185 | " 32.0 \n",
186 | " 44.0 \n",
187 | " 0.99490 \n",
188 | " 3.45 \n",
189 | " 0.58 \n",
190 | " 10.5 \n",
191 | " 5 \n",
192 | " \n",
193 | " \n",
194 | " 1595 \n",
195 | " 5.9 \n",
196 | " 0.550 \n",
197 | " 0.10 \n",
198 | " 2.2 \n",
199 | " 0.062 \n",
200 | " 39.0 \n",
201 | " 51.0 \n",
202 | " 0.99512 \n",
203 | " 3.52 \n",
204 | " 0.76 \n",
205 | " 11.2 \n",
206 | " 6 \n",
207 | " \n",
208 | " \n",
209 | " 1596 \n",
210 | " 6.3 \n",
211 | " 0.510 \n",
212 | " 0.13 \n",
213 | " 2.3 \n",
214 | " 0.076 \n",
215 | " 29.0 \n",
216 | " 40.0 \n",
217 | " 0.99574 \n",
218 | " 3.42 \n",
219 | " 0.75 \n",
220 | " 11.0 \n",
221 | " 6 \n",
222 | " \n",
223 | " \n",
224 | " 1597 \n",
225 | " 5.9 \n",
226 | " 0.645 \n",
227 | " 0.12 \n",
228 | " 2.0 \n",
229 | " 0.075 \n",
230 | " 32.0 \n",
231 | " 44.0 \n",
232 | " 0.99547 \n",
233 | " 3.57 \n",
234 | " 0.71 \n",
235 | " 10.2 \n",
236 | " 5 \n",
237 | " \n",
238 | " \n",
239 | " 1598 \n",
240 | " 6.0 \n",
241 | " 0.310 \n",
242 | " 0.47 \n",
243 | " 3.6 \n",
244 | " 0.067 \n",
245 | " 18.0 \n",
246 | " 42.0 \n",
247 | " 0.99549 \n",
248 | " 3.39 \n",
249 | " 0.66 \n",
250 | " 11.0 \n",
251 | " 6 \n",
252 | " \n",
253 | " \n",
254 | "
\n",
255 | "
1599 rows × 12 columns
\n",
256 | "
"
257 | ],
258 | "text/plain": [
259 | " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
260 | "0 7.4 0.700 0.00 1.9 0.076 \n",
261 | "1 7.8 0.880 0.00 2.6 0.098 \n",
262 | "2 7.8 0.760 0.04 2.3 0.092 \n",
263 | "3 11.2 0.280 0.56 1.9 0.075 \n",
264 | "4 7.4 0.700 0.00 1.9 0.076 \n",
265 | "... ... ... ... ... ... \n",
266 | "1594 6.2 0.600 0.08 2.0 0.090 \n",
267 | "1595 5.9 0.550 0.10 2.2 0.062 \n",
268 | "1596 6.3 0.510 0.13 2.3 0.076 \n",
269 | "1597 5.9 0.645 0.12 2.0 0.075 \n",
270 | "1598 6.0 0.310 0.47 3.6 0.067 \n",
271 | "\n",
272 | " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
273 | "0 11.0 34.0 0.99780 3.51 0.56 \n",
274 | "1 25.0 67.0 0.99680 3.20 0.68 \n",
275 | "2 15.0 54.0 0.99700 3.26 0.65 \n",
276 | "3 17.0 60.0 0.99800 3.16 0.58 \n",
277 | "4 11.0 34.0 0.99780 3.51 0.56 \n",
278 | "... ... ... ... ... ... \n",
279 | "1594 32.0 44.0 0.99490 3.45 0.58 \n",
280 | "1595 39.0 51.0 0.99512 3.52 0.76 \n",
281 | "1596 29.0 40.0 0.99574 3.42 0.75 \n",
282 | "1597 32.0 44.0 0.99547 3.57 0.71 \n",
283 | "1598 18.0 42.0 0.99549 3.39 0.66 \n",
284 | "\n",
285 | " alcohol quality \n",
286 | "0 9.4 5 \n",
287 | "1 9.8 5 \n",
288 | "2 9.8 5 \n",
289 | "3 9.8 6 \n",
290 | "4 9.4 5 \n",
291 | "... ... ... \n",
292 | "1594 10.5 5 \n",
293 | "1595 11.2 6 \n",
294 | "1596 11.0 6 \n",
295 | "1597 10.2 5 \n",
296 | "1598 11.0 6 \n",
297 | "\n",
298 | "[1599 rows x 12 columns]"
299 | ]
300 | },
301 | "execution_count": 4,
302 | "metadata": {},
303 | "output_type": "execute_result"
304 | }
305 | ],
306 | "source": [
307 | "df= pd.read_csv(\"C:/Users/User/Downloads/winequality-red.csv\")\n",
308 | "df"
309 | ]
310 | },
311 | {
312 | "cell_type": "code",
313 | "execution_count": 5,
314 | "id": "7bab339d",
315 | "metadata": {
316 | "execution": {
317 | "iopub.execute_input": "2023-08-07T07:07:49.514590Z",
318 | "iopub.status.busy": "2023-08-07T07:07:49.514173Z",
319 | "iopub.status.idle": "2023-08-07T07:07:49.544718Z",
320 | "shell.execute_reply": "2023-08-07T07:07:49.543381Z"
321 | },
322 | "papermill": {
323 | "duration": 0.03933,
324 | "end_time": "2023-08-07T07:07:49.546661",
325 | "exception": false,
326 | "start_time": "2023-08-07T07:07:49.507331",
327 | "status": "completed"
328 | },
329 | "tags": []
330 | },
331 | "outputs": [
332 | {
333 | "data": {
334 | "text/html": [
335 | "\n",
336 | "\n",
349 | "
\n",
350 | " \n",
351 | " \n",
352 | " \n",
353 | " fixed acidity \n",
354 | " volatile acidity \n",
355 | " citric acid \n",
356 | " residual sugar \n",
357 | " chlorides \n",
358 | " free sulfur dioxide \n",
359 | " total sulfur dioxide \n",
360 | " density \n",
361 | " pH \n",
362 | " sulphates \n",
363 | " alcohol \n",
364 | " \n",
365 | " \n",
366 | " \n",
367 | " \n",
368 | " 0 \n",
369 | " 7.4 \n",
370 | " 0.700 \n",
371 | " 0.00 \n",
372 | " 1.9 \n",
373 | " 0.076 \n",
374 | " 11.0 \n",
375 | " 34.0 \n",
376 | " 0.99780 \n",
377 | " 3.51 \n",
378 | " 0.56 \n",
379 | " 9.4 \n",
380 | " \n",
381 | " \n",
382 | " 1 \n",
383 | " 7.8 \n",
384 | " 0.880 \n",
385 | " 0.00 \n",
386 | " 2.6 \n",
387 | " 0.098 \n",
388 | " 25.0 \n",
389 | " 67.0 \n",
390 | " 0.99680 \n",
391 | " 3.20 \n",
392 | " 0.68 \n",
393 | " 9.8 \n",
394 | " \n",
395 | " \n",
396 | " 2 \n",
397 | " 7.8 \n",
398 | " 0.760 \n",
399 | " 0.04 \n",
400 | " 2.3 \n",
401 | " 0.092 \n",
402 | " 15.0 \n",
403 | " 54.0 \n",
404 | " 0.99700 \n",
405 | " 3.26 \n",
406 | " 0.65 \n",
407 | " 9.8 \n",
408 | " \n",
409 | " \n",
410 | " 3 \n",
411 | " 11.2 \n",
412 | " 0.280 \n",
413 | " 0.56 \n",
414 | " 1.9 \n",
415 | " 0.075 \n",
416 | " 17.0 \n",
417 | " 60.0 \n",
418 | " 0.99800 \n",
419 | " 3.16 \n",
420 | " 0.58 \n",
421 | " 9.8 \n",
422 | " \n",
423 | " \n",
424 | " 4 \n",
425 | " 7.4 \n",
426 | " 0.700 \n",
427 | " 0.00 \n",
428 | " 1.9 \n",
429 | " 0.076 \n",
430 | " 11.0 \n",
431 | " 34.0 \n",
432 | " 0.99780 \n",
433 | " 3.51 \n",
434 | " 0.56 \n",
435 | " 9.4 \n",
436 | " \n",
437 | " \n",
438 | " ... \n",
439 | " ... \n",
440 | " ... \n",
441 | " ... \n",
442 | " ... \n",
443 | " ... \n",
444 | " ... \n",
445 | " ... \n",
446 | " ... \n",
447 | " ... \n",
448 | " ... \n",
449 | " ... \n",
450 | " \n",
451 | " \n",
452 | " 1594 \n",
453 | " 6.2 \n",
454 | " 0.600 \n",
455 | " 0.08 \n",
456 | " 2.0 \n",
457 | " 0.090 \n",
458 | " 32.0 \n",
459 | " 44.0 \n",
460 | " 0.99490 \n",
461 | " 3.45 \n",
462 | " 0.58 \n",
463 | " 10.5 \n",
464 | " \n",
465 | " \n",
466 | " 1595 \n",
467 | " 5.9 \n",
468 | " 0.550 \n",
469 | " 0.10 \n",
470 | " 2.2 \n",
471 | " 0.062 \n",
472 | " 39.0 \n",
473 | " 51.0 \n",
474 | " 0.99512 \n",
475 | " 3.52 \n",
476 | " 0.76 \n",
477 | " 11.2 \n",
478 | " \n",
479 | " \n",
480 | " 1596 \n",
481 | " 6.3 \n",
482 | " 0.510 \n",
483 | " 0.13 \n",
484 | " 2.3 \n",
485 | " 0.076 \n",
486 | " 29.0 \n",
487 | " 40.0 \n",
488 | " 0.99574 \n",
489 | " 3.42 \n",
490 | " 0.75 \n",
491 | " 11.0 \n",
492 | " \n",
493 | " \n",
494 | " 1597 \n",
495 | " 5.9 \n",
496 | " 0.645 \n",
497 | " 0.12 \n",
498 | " 2.0 \n",
499 | " 0.075 \n",
500 | " 32.0 \n",
501 | " 44.0 \n",
502 | " 0.99547 \n",
503 | " 3.57 \n",
504 | " 0.71 \n",
505 | " 10.2 \n",
506 | " \n",
507 | " \n",
508 | " 1598 \n",
509 | " 6.0 \n",
510 | " 0.310 \n",
511 | " 0.47 \n",
512 | " 3.6 \n",
513 | " 0.067 \n",
514 | " 18.0 \n",
515 | " 42.0 \n",
516 | " 0.99549 \n",
517 | " 3.39 \n",
518 | " 0.66 \n",
519 | " 11.0 \n",
520 | " \n",
521 | " \n",
522 | "
\n",
523 | "
1599 rows × 11 columns
\n",
524 | "
"
525 | ],
526 | "text/plain": [
527 | " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
528 | "0 7.4 0.700 0.00 1.9 0.076 \n",
529 | "1 7.8 0.880 0.00 2.6 0.098 \n",
530 | "2 7.8 0.760 0.04 2.3 0.092 \n",
531 | "3 11.2 0.280 0.56 1.9 0.075 \n",
532 | "4 7.4 0.700 0.00 1.9 0.076 \n",
533 | "... ... ... ... ... ... \n",
534 | "1594 6.2 0.600 0.08 2.0 0.090 \n",
535 | "1595 5.9 0.550 0.10 2.2 0.062 \n",
536 | "1596 6.3 0.510 0.13 2.3 0.076 \n",
537 | "1597 5.9 0.645 0.12 2.0 0.075 \n",
538 | "1598 6.0 0.310 0.47 3.6 0.067 \n",
539 | "\n",
540 | " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
541 | "0 11.0 34.0 0.99780 3.51 0.56 \n",
542 | "1 25.0 67.0 0.99680 3.20 0.68 \n",
543 | "2 15.0 54.0 0.99700 3.26 0.65 \n",
544 | "3 17.0 60.0 0.99800 3.16 0.58 \n",
545 | "4 11.0 34.0 0.99780 3.51 0.56 \n",
546 | "... ... ... ... ... ... \n",
547 | "1594 32.0 44.0 0.99490 3.45 0.58 \n",
548 | "1595 39.0 51.0 0.99512 3.52 0.76 \n",
549 | "1596 29.0 40.0 0.99574 3.42 0.75 \n",
550 | "1597 32.0 44.0 0.99547 3.57 0.71 \n",
551 | "1598 18.0 42.0 0.99549 3.39 0.66 \n",
552 | "\n",
553 | " alcohol \n",
554 | "0 9.4 \n",
555 | "1 9.8 \n",
556 | "2 9.8 \n",
557 | "3 9.8 \n",
558 | "4 9.4 \n",
559 | "... ... \n",
560 | "1594 10.5 \n",
561 | "1595 11.2 \n",
562 | "1596 11.0 \n",
563 | "1597 10.2 \n",
564 | "1598 11.0 \n",
565 | "\n",
566 | "[1599 rows x 11 columns]"
567 | ]
568 | },
569 | "execution_count": 5,
570 | "metadata": {},
571 | "output_type": "execute_result"
572 | }
573 | ],
574 | "source": [
575 | "#splitting input and output features\n",
576 | "X=df.drop(\"quality\",axis=1)\n",
577 | "Y=df[\"quality\"]\n",
578 | "X\n"
579 | ]
580 | },
581 | {
582 | "cell_type": "code",
583 | "execution_count": 6,
584 | "id": "37c1eedc",
585 | "metadata": {
586 | "execution": {
587 | "iopub.execute_input": "2023-08-07T07:07:49.560673Z",
588 | "iopub.status.busy": "2023-08-07T07:07:49.560279Z",
589 | "iopub.status.idle": "2023-08-07T07:07:49.567578Z",
590 | "shell.execute_reply": "2023-08-07T07:07:49.566745Z"
591 | },
592 | "papermill": {
593 | "duration": 0.016584,
594 | "end_time": "2023-08-07T07:07:49.569561",
595 | "exception": false,
596 | "start_time": "2023-08-07T07:07:49.552977",
597 | "status": "completed"
598 | },
599 | "tags": []
600 | },
601 | "outputs": [
602 | {
603 | "data": {
604 | "text/plain": [
605 | "0 5\n",
606 | "1 5\n",
607 | "2 5\n",
608 | "3 6\n",
609 | "4 5\n",
610 | " ..\n",
611 | "1594 5\n",
612 | "1595 6\n",
613 | "1596 6\n",
614 | "1597 5\n",
615 | "1598 6\n",
616 | "Name: quality, Length: 1599, dtype: int64"
617 | ]
618 | },
619 | "execution_count": 6,
620 | "metadata": {},
621 | "output_type": "execute_result"
622 | }
623 | ],
624 | "source": [
625 | "Y"
626 | ]
627 | },
628 | {
629 | "cell_type": "code",
630 | "execution_count": 7,
631 | "id": "22c404f5",
632 | "metadata": {
633 | "execution": {
634 | "iopub.execute_input": "2023-08-07T07:07:49.584536Z",
635 | "iopub.status.busy": "2023-08-07T07:07:49.583774Z",
636 | "iopub.status.idle": "2023-08-07T07:07:50.921198Z",
637 | "shell.execute_reply": "2023-08-07T07:07:50.919600Z"
638 | },
639 | "papermill": {
640 | "duration": 1.348708,
641 | "end_time": "2023-08-07T07:07:50.924625",
642 | "exception": false,
643 | "start_time": "2023-08-07T07:07:49.575917",
644 | "status": "completed"
645 | },
646 | "tags": []
647 | },
648 | "outputs": [],
649 | "source": [
650 | "#splitting the data into training and testing sets (70% training and 30% testing)\n",
651 | "from sklearn.model_selection import train_test_split,cross_val_score\n",
652 | "X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3,random_state=42)\n"
653 | ]
654 | },
655 | {
656 | "cell_type": "code",
657 | "execution_count": 8,
658 | "id": "3610bf65",
659 | "metadata": {
660 | "execution": {
661 | "iopub.execute_input": "2023-08-07T07:07:50.941093Z",
662 | "iopub.status.busy": "2023-08-07T07:07:50.940199Z",
663 | "iopub.status.idle": "2023-08-07T07:07:50.947492Z",
664 | "shell.execute_reply": "2023-08-07T07:07:50.946150Z"
665 | },
666 | "papermill": {
667 | "duration": 0.018691,
668 | "end_time": "2023-08-07T07:07:50.950277",
669 | "exception": false,
670 | "start_time": "2023-08-07T07:07:50.931586",
671 | "status": "completed"
672 | },
673 | "tags": []
674 | },
675 | "outputs": [
676 | {
677 | "name": "stdout",
678 | "output_type": "stream",
679 | "text": [
680 | "Shape of X_train: (1119, 11)\n",
681 | "Shape of X_test: (480, 11)\n",
682 | "Shape of Y_train: (1119,)\n",
683 | "Shape of Y_test: (480,)\n"
684 | ]
685 | }
686 | ],
687 | "source": [
688 | "import numpy as np\n",
689 | "\n",
690 | "# Assuming you have split the data into X_train, X_test, y_train, y_test\n",
691 | "print(\"Shape of X_train:\", X_train.shape)\n",
692 | "print(\"Shape of X_test:\", X_test.shape)\n",
693 | "print(\"Shape of Y_train:\", Y_train.shape)\n",
694 | "print(\"Shape of Y_test:\", Y_test.shape)"
695 | ]
696 | },
697 | {
698 | "cell_type": "code",
699 | "execution_count": 9,
700 | "id": "bae513aa",
701 | "metadata": {
702 | "execution": {
703 | "iopub.execute_input": "2023-08-07T07:07:50.966761Z",
704 | "iopub.status.busy": "2023-08-07T07:07:50.966234Z",
705 | "iopub.status.idle": "2023-08-07T07:07:51.130001Z",
706 | "shell.execute_reply": "2023-08-07T07:07:51.128498Z"
707 | },
708 | "papermill": {
709 | "duration": 0.176061,
710 | "end_time": "2023-08-07T07:07:51.133273",
711 | "exception": false,
712 | "start_time": "2023-08-07T07:07:50.957212",
713 | "status": "completed"
714 | },
715 | "tags": []
716 | },
717 | "outputs": [
718 | {
719 | "data": {
720 | "text/html": [
721 | "LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
722 | ],
723 | "text/plain": [
724 | "LinearRegression()"
725 | ]
726 | },
727 | "execution_count": 9,
728 | "metadata": {},
729 | "output_type": "execute_result"
730 | }
731 | ],
732 | "source": [
733 | "#creating LogisticRegression model\n",
734 | "from sklearn.linear_model import LinearRegression\n",
735 | "model = LinearRegression()\n",
736 | "\n",
737 | "#train the model using training data\n",
738 | "model.fit(X_train,Y_train)"
739 | ]
740 | },
741 | {
742 | "cell_type": "code",
743 | "execution_count": 10,
744 | "id": "ebde7927",
745 | "metadata": {
746 | "execution": {
747 | "iopub.execute_input": "2023-08-07T07:07:51.162479Z",
748 | "iopub.status.busy": "2023-08-07T07:07:51.161422Z",
749 | "iopub.status.idle": "2023-08-07T07:07:51.172331Z",
750 | "shell.execute_reply": "2023-08-07T07:07:51.171039Z"
751 | },
752 | "papermill": {
753 | "duration": 0.032875,
754 | "end_time": "2023-08-07T07:07:51.177836",
755 | "exception": false,
756 | "start_time": "2023-08-07T07:07:51.144961",
757 | "status": "completed"
758 | },
759 | "tags": []
760 | },
761 | "outputs": [],
762 | "source": [
763 | "#make predictions on train data\n",
764 | "\n",
765 | "train_pred=model.predict(X_train)\n",
766 | "#train_pred=train_pred.astype(int)"
767 | ]
768 | },
769 | {
770 | "cell_type": "code",
771 | "execution_count": 11,
772 | "id": "a97b86a7",
773 | "metadata": {
774 | "execution": {
775 | "iopub.execute_input": "2023-08-07T07:07:51.265837Z",
776 | "iopub.status.busy": "2023-08-07T07:07:51.265163Z",
777 | "iopub.status.idle": "2023-08-07T07:07:51.282683Z",
778 | "shell.execute_reply": "2023-08-07T07:07:51.281095Z"
779 | },
780 | "papermill": {
781 | "duration": 0.035588,
782 | "end_time": "2023-08-07T07:07:51.286915",
783 | "exception": false,
784 | "start_time": "2023-08-07T07:07:51.251327",
785 | "status": "completed"
786 | },
787 | "tags": []
788 | },
789 | "outputs": [
790 | {
791 | "name": "stdout",
792 | "output_type": "stream",
793 | "text": [
794 | "MAE: 0.49518748493865494\n",
795 | "RMSE: 0.6486806989670354\n",
796 | "R-Squared: 0.36119824413213175\n"
797 | ]
798 | }
799 | ],
800 | "source": [
801 | "from sklearn import metrics\n",
802 | "\n",
803 | "# evaluating the model on the training data\n",
804 | "\n",
805 | "print(\"MAE:\",metrics.mean_absolute_error(Y_train,train_pred))\n",
806 | "print(\"RMSE:\",np.sqrt(metrics.mean_squared_error(Y_train,train_pred)))\n",
807 | "print(\"R-Squared:\",metrics.r2_score(Y_train,train_pred))"
808 | ]
809 | },
810 | {
811 | "cell_type": "code",
812 | "execution_count": 12,
813 | "id": "8a002e4e",
814 | "metadata": {
815 | "execution": {
816 | "iopub.execute_input": "2023-08-07T07:07:51.305107Z",
817 | "iopub.status.busy": "2023-08-07T07:07:51.304634Z",
818 | "iopub.status.idle": "2023-08-07T07:07:51.312423Z",
819 | "shell.execute_reply": "2023-08-07T07:07:51.311247Z"
820 | },
821 | "papermill": {
822 | "duration": 0.018979,
823 | "end_time": "2023-08-07T07:07:51.314834",
824 | "exception": false,
825 | "start_time": "2023-08-07T07:07:51.295855",
826 | "status": "completed"
827 | },
828 | "tags": []
829 | },
830 | "outputs": [],
831 | "source": [
832 | "# Make predictions on test data\n",
833 | "\n",
834 | "test_pred = model.predict(X_test)"
835 | ]
836 | },
837 | {
838 | "cell_type": "code",
839 | "execution_count": 13,
840 | "id": "1630eb92",
841 | "metadata": {
842 | "execution": {
843 | "iopub.execute_input": "2023-08-07T07:07:51.331995Z",
844 | "iopub.status.busy": "2023-08-07T07:07:51.331108Z",
845 | "iopub.status.idle": "2023-08-07T07:07:51.339214Z",
846 | "shell.execute_reply": "2023-08-07T07:07:51.337915Z"
847 | },
848 | "papermill": {
849 | "duration": 0.019394,
850 | "end_time": "2023-08-07T07:07:51.341607",
851 | "exception": false,
852 | "start_time": "2023-08-07T07:07:51.322213",
853 | "status": "completed"
854 | },
855 | "tags": []
856 | },
857 | "outputs": [
858 | {
859 | "name": "stdout",
860 | "output_type": "stream",
861 | "text": [
862 | "MAE: 0.513395608245112\n",
863 | "RMSE: 0.6412759715991394\n",
864 | "R-Squared: 0.3513885332505232\n"
865 | ]
866 | }
867 | ],
868 | "source": [
869 | "# evaluating the model on the testing data\n",
870 | "\n",
871 | "print(\"MAE:\",metrics.mean_absolute_error(Y_test,test_pred))\n",
872 | "print(\"RMSE:\",np.sqrt(metrics.mean_squared_error(Y_test,test_pred)))\n",
873 | "print(\"R-Squared:\",metrics.r2_score(Y_test,test_pred))"
874 | ]
875 | },
876 | {
877 | "cell_type": "code",
878 | "execution_count": 14,
879 | "id": "ceda0c78",
880 | "metadata": {
881 | "execution": {
882 | "iopub.execute_input": "2023-08-07T07:07:51.386950Z",
883 | "iopub.status.busy": "2023-08-07T07:07:51.386011Z",
884 | "iopub.status.idle": "2023-08-07T07:07:51.444225Z",
885 | "shell.execute_reply": "2023-08-07T07:07:51.442615Z"
886 | },
887 | "papermill": {
888 | "duration": 0.070712,
889 | "end_time": "2023-08-07T07:07:51.447748",
890 | "exception": false,
891 | "start_time": "2023-08-07T07:07:51.377036",
892 | "status": "completed"
893 | },
894 | "tags": []
895 | },
896 | "outputs": [
897 | {
898 | "name": "stdout",
899 | "output_type": "stream",
900 | "text": [
901 | "The r2 using 5-fold cross-validation on training data: 0.334985992062552\n"
902 | ]
903 | }
904 | ],
905 | "source": [
906 | "# Perform k-fold cross-validation on the training data \n",
907 | "\n",
908 | "from sklearn.model_selection import cross_val_score\n",
909 | "\n",
910 | "r2_cv_scores = cross_val_score(model,X_train,Y_train,cv=5,scoring='r2')\n",
911 | "mean_r2train_cv = r2_cv_scores.mean()\n",
912 | "print(\"The r2 using 5-fold cross-validation on training data:\", mean_r2train_cv)\n"
913 | ]
914 | },
915 | {
916 | "cell_type": "code",
917 | "execution_count": 15,
918 | "id": "eade077a",
919 | "metadata": {
920 | "execution": {
921 | "iopub.execute_input": "2023-08-07T07:07:51.483401Z",
922 | "iopub.status.busy": "2023-08-07T07:07:51.482683Z",
923 | "iopub.status.idle": "2023-08-07T07:07:51.556137Z",
924 | "shell.execute_reply": "2023-08-07T07:07:51.554781Z"
925 | },
926 | "papermill": {
927 | "duration": 0.094352,
928 | "end_time": "2023-08-07T07:07:51.559680",
929 | "exception": false,
930 | "start_time": "2023-08-07T07:07:51.465328",
931 | "status": "completed"
932 | },
933 | "tags": []
934 | },
935 | "outputs": [
936 | {
937 | "name": "stdout",
938 | "output_type": "stream",
939 | "text": [
940 | "The r2 using 5-fold cross-validation on testing data: 0.326678061098226\n"
941 | ]
942 | }
943 | ],
944 | "source": [
945 | "# Perform k-fold cross-validation on the testing data \n",
946 | "\n",
947 | "r2test_cv_scores = cross_val_score(model,X_test,Y_test,cv=5,scoring='r2')\n",
948 | "mean_r2test_cv= r2test_cv_scores.mean()\n",
949 | "print(\"The r2 using 5-fold cross-validation on testing data:\", mean_r2test_cv)\n"
950 | ]
951 | },
952 | {
953 | "cell_type": "code",
954 | "execution_count": 16,
955 | "id": "f2e8f598",
956 | "metadata": {
957 | "execution": {
958 | "iopub.execute_input": "2023-08-07T07:07:51.591703Z",
959 | "iopub.status.busy": "2023-08-07T07:07:51.591246Z",
960 | "iopub.status.idle": "2023-08-07T07:07:51.644925Z",
961 | "shell.execute_reply": "2023-08-07T07:07:51.643797Z"
962 | },
963 | "papermill": {
964 | "duration": 0.06555,
965 | "end_time": "2023-08-07T07:07:51.648211",
966 | "exception": false,
967 | "start_time": "2023-08-07T07:07:51.582661",
968 | "status": "completed"
969 | },
970 | "tags": []
971 | },
972 | "outputs": [
973 | {
974 | "name": "stdout",
975 | "output_type": "stream",
976 | "text": [
977 | "The mean squared error using 5-fold cross-validation on training data: -0.43652212341343855\n"
978 | ]
979 | }
980 | ],
981 | "source": [
982 | "# Perform k-fold cross-validation on the training data \n",
983 | "msetrain_cv_scores = cross_val_score(model,X_train,Y_train,cv=5,scoring='neg_mean_squared_error')\n",
984 | "mean_msetrain_cv = msetrain_cv_scores.mean()\n",
985 | "print(\"The mean squared error using 5-fold cross-validation on training data:\", mean_msetrain_cv)"
986 | ]
987 | },
988 | {
989 | "cell_type": "code",
990 | "execution_count": 17,
991 | "id": "d8eca687",
992 | "metadata": {
993 | "execution": {
994 | "iopub.execute_input": "2023-08-07T07:07:51.675607Z",
995 | "iopub.status.busy": "2023-08-07T07:07:51.674949Z",
996 | "iopub.status.idle": "2023-08-07T07:07:51.721929Z",
997 | "shell.execute_reply": "2023-08-07T07:07:51.720700Z"
998 | },
999 | "papermill": {
1000 | "duration": 0.064823,
1001 | "end_time": "2023-08-07T07:07:51.725314",
1002 | "exception": false,
1003 | "start_time": "2023-08-07T07:07:51.660491",
1004 | "status": "completed"
1005 | },
1006 | "tags": []
1007 | },
1008 | "outputs": [
1009 | {
1010 | "name": "stdout",
1011 | "output_type": "stream",
1012 | "text": [
1013 | "The mean squared error using 5-fold cross-validation on testing data: -0.4235962818050936\n"
1014 | ]
1015 | }
1016 | ],
1017 | "source": [
1018 | "# Perform k-fold cross-validation on the training data \n",
1019 | "msetest_cv_scores = cross_val_score(model,X_test,Y_test,cv=5,scoring='neg_mean_squared_error')\n",
1020 | "mean_msetest_cv = msetest_cv_scores.mean()\n",
1021 | "print(\"The mean squared error using 5-fold cross-validation on testing data:\", mean_msetest_cv)"
1022 | ]
1023 | },
1024 | {
1025 | "cell_type": "code",
1026 | "execution_count": 18,
1027 | "id": "f2be066f",
1028 | "metadata": {
1029 | "execution": {
1030 | "iopub.execute_input": "2023-08-07T07:07:51.782441Z",
1031 | "iopub.status.busy": "2023-08-07T07:07:51.781493Z",
1032 | "iopub.status.idle": "2023-08-07T07:07:51.836107Z",
1033 | "shell.execute_reply": "2023-08-07T07:07:51.834934Z"
1034 | },
1035 | "papermill": {
1036 | "duration": 0.067354,
1037 | "end_time": "2023-08-07T07:07:51.839451",
1038 | "exception": false,
1039 | "start_time": "2023-08-07T07:07:51.772097",
1040 | "status": "completed"
1041 | },
1042 | "tags": []
1043 | },
1044 | "outputs": [
1045 | {
1046 | "name": "stdout",
1047 | "output_type": "stream",
1048 | "text": [
1049 | "The root mean squared error using 5-fold cross-validation on training data: -0.6592628863743302\n"
1050 | ]
1051 | }
1052 | ],
1053 | "source": [
1054 | "rmsetrain_cv_scores = cross_val_score(model,X_train,Y_train,cv=5,scoring='neg_root_mean_squared_error')\n",
1055 | "mean_rmsetrain_cv= rmsetrain_cv_scores.mean()\n",
1056 | "print(\"The root mean squared error using 5-fold cross-validation on training data:\", mean_rmsetrain_cv)\n"
1057 | ]
1058 | },
1059 | {
1060 | "cell_type": "code",
1061 | "execution_count": 19,
1062 | "id": "aaeadaf6",
1063 | "metadata": {
1064 | "execution": {
1065 | "iopub.execute_input": "2023-08-07T07:07:51.867554Z",
1066 | "iopub.status.busy": "2023-08-07T07:07:51.866990Z",
1067 | "iopub.status.idle": "2023-08-07T07:07:51.917291Z",
1068 | "shell.execute_reply": "2023-08-07T07:07:51.915704Z"
1069 | },
1070 | "papermill": {
1071 | "duration": 0.06848,
1072 | "end_time": "2023-08-07T07:07:51.920600",
1073 | "exception": false,
1074 | "start_time": "2023-08-07T07:07:51.852120",
1075 | "status": "completed"
1076 | },
1077 | "tags": []
1078 | },
1079 | "outputs": [
1080 | {
1081 | "name": "stdout",
1082 | "output_type": "stream",
1083 | "text": [
1084 | "The root mean squared error using 5-fold cross-validation on testing data: -0.6496133904328669\n"
1085 | ]
1086 | }
1087 | ],
1088 | "source": [
1089 | "rmsetest_cv_scores = cross_val_score(model,X_test,Y_test,cv=5,scoring='neg_root_mean_squared_error')\n",
1090 | "mean_rmsetest_cv= rmsetest_cv_scores.mean()\n",
1091 | "print(\"The root mean squared error using 5-fold cross-validation on testing data:\", mean_rmsetest_cv)\n"
1092 | ]
1093 | }
1094 | ],
1095 | "metadata": {
1096 | "kernelspec": {
1097 | "display_name": "Python 3",
1098 | "language": "python",
1099 | "name": "python3"
1100 | },
1101 | "language_info": {
1102 | "codemirror_mode": {
1103 | "name": "ipython",
1104 | "version": 3
1105 | },
1106 | "file_extension": ".py",
1107 | "mimetype": "text/x-python",
1108 | "name": "python",
1109 | "nbconvert_exporter": "python",
1110 | "pygments_lexer": "ipython3",
1111 | "version": "3.10.0"
1112 | },
1113 | "papermill": {
1114 | "default_parameters": {},
1115 | "duration": 13.529599,
1116 | "end_time": "2023-08-07T07:07:52.877766",
1117 | "environment_variables": {},
1118 | "exception": null,
1119 | "input_path": "__notebook__.ipynb",
1120 | "output_path": "__notebook__.ipynb",
1121 | "parameters": {},
1122 | "start_time": "2023-08-07T07:07:39.348167",
1123 | "version": "2.4.0"
1124 | }
1125 | },
1126 | "nbformat": 4,
1127 | "nbformat_minor": 5
1128 | }
1129 |
--------------------------------------------------------------------------------