├── house-price-prediction.ipynb ├── pima-indians-diabetes-database-svm-accuracy-79.ipynb └── winequality-prediction.ipynb /house-price-prediction.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 3, 6 | "id": "6dac32b6", 7 | "metadata": { 8 | "execution": { 9 | "iopub.execute_input": "2022-11-05T08:25:27.182542Z", 10 | "iopub.status.busy": "2022-11-05T08:25:27.182052Z", 11 | "iopub.status.idle": "2022-11-05T08:25:28.811001Z", 12 | "shell.execute_reply": "2022-11-05T08:25:28.809695Z" 13 | }, 14 | "papermill": { 15 | "duration": 1.645588, 16 | "end_time": "2022-11-05T08:25:28.814117", 17 | "exception": false, 18 | "start_time": "2022-11-05T08:25:27.168529", 19 | "status": "completed" 20 | }, 21 | "tags": [] 22 | }, 23 | "outputs": [], 24 | "source": [ 25 | "import pandas as pd \n", 26 | "import numpy as np \n", 27 | "import matplotlib.pyplot as plt\n", 28 | "import seaborn as sns\n", 29 | "from sklearn.preprocessing import LabelEncoder\n", 30 | "from sklearn.linear_model import LinearRegression\n", 31 | "from sklearn.ensemble import RandomForestRegressor\n", 32 | "from sklearn.model_selection import train_test_split \n", 33 | "from sklearn.metrics import mean_squared_error,mean_absolute_percentage_error" 34 | ] 35 | }, 36 | { 37 | "cell_type": "code", 38 | "execution_count": 4, 39 | "id": "c9020f95", 40 | "metadata": { 41 | "execution": { 42 | "iopub.execute_input": "2022-11-05T08:25:28.860843Z", 43 | "iopub.status.busy": "2022-11-05T08:25:28.859652Z", 44 | "iopub.status.idle": "2022-11-05T08:25:28.913453Z", 45 | "shell.execute_reply": "2022-11-05T08:25:28.912083Z" 46 | }, 47 | "papermill": { 48 | "duration": 0.069995, 49 | "end_time": "2022-11-05T08:25:28.916626", 50 | "exception": false, 51 | "start_time": "2022-11-05T08:25:28.846631", 52 | "status": "completed" 53 | }, 54 | "tags": [] 55 | }, 56 | "outputs": [], 57 | "source": [ 58 | "data =pd.read_csv(\"D:\\House pricece\\data.csv\")" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": 5, 64 | "id": "819a0220", 65 | "metadata": { 66 | "execution": { 67 | "iopub.execute_input": "2022-11-05T08:25:28.958510Z", 68 | "iopub.status.busy": "2022-11-05T08:25:28.958043Z", 69 | "iopub.status.idle": "2022-11-05T08:25:28.994409Z", 70 | "shell.execute_reply": "2022-11-05T08:25:28.993136Z" 71 | }, 72 | "papermill": { 73 | "duration": 0.051362, 74 | "end_time": "2022-11-05T08:25:28.997674", 75 | "exception": false, 76 | "start_time": "2022-11-05T08:25:28.946312", 77 | "status": "completed" 78 | }, 79 | "tags": [] 80 | }, 81 | "outputs": [ 82 | { 83 | "data": { 84 | "text/html": [ 85 | "
\n", 86 | "\n", 99 | "\n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | "
pricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontviewconditionsqft_abovesqft_basementcity
0313000.03.01.50134079121.500313400Shoreline
12384000.05.02.50365090502.00453370280Seattle
2342000.03.02.001930119471.000419300Kent
3420000.03.02.25200080301.000410001000Bellevue
4550000.04.02.501940105001.00041140800Redmond
\n", 195 | "
" 196 | ], 197 | "text/plain": [ 198 | " price bedrooms bathrooms sqft_living sqft_lot floors waterfront \\\n", 199 | "0 313000.0 3.0 1.50 1340 7912 1.5 0 \n", 200 | "1 2384000.0 5.0 2.50 3650 9050 2.0 0 \n", 201 | "2 342000.0 3.0 2.00 1930 11947 1.0 0 \n", 202 | "3 420000.0 3.0 2.25 2000 8030 1.0 0 \n", 203 | "4 550000.0 4.0 2.50 1940 10500 1.0 0 \n", 204 | "\n", 205 | " view condition sqft_above sqft_basement city \n", 206 | "0 0 3 1340 0 Shoreline \n", 207 | "1 4 5 3370 280 Seattle \n", 208 | "2 0 4 1930 0 Kent \n", 209 | "3 0 4 1000 1000 Bellevue \n", 210 | "4 0 4 1140 800 Redmond " 211 | ] 212 | }, 213 | "execution_count": 5, 214 | "metadata": {}, 215 | "output_type": "execute_result" 216 | } 217 | ], 218 | "source": [ 219 | "\n", 220 | "data = data.drop(['date','country',\"street\",\"statezip\",\"yr_built\",\"yr_renovated\"],axis=1)\n", 221 | "data.head()" 222 | ] 223 | }, 224 | { 225 | "cell_type": "code", 226 | "execution_count": 6, 227 | "id": "87b54c71", 228 | "metadata": { 229 | "execution": { 230 | "iopub.execute_input": "2022-11-05T08:25:29.020509Z", 231 | "iopub.status.busy": "2022-11-05T08:25:29.019655Z", 232 | "iopub.status.idle": "2022-11-05T08:25:29.025233Z", 233 | "shell.execute_reply": "2022-11-05T08:25:29.023946Z" 234 | }, 235 | "papermill": { 236 | "duration": 0.01951, 237 | "end_time": "2022-11-05T08:25:29.027633", 238 | "exception": false, 239 | "start_time": "2022-11-05T08:25:29.008123", 240 | "status": "completed" 241 | }, 242 | "tags": [] 243 | }, 244 | "outputs": [], 245 | "source": [ 246 | "le = LabelEncoder()" 247 | ] 248 | }, 249 | { 250 | "cell_type": "code", 251 | "execution_count": 7, 252 | "id": "79e08a06", 253 | "metadata": { 254 | "execution": { 255 | "iopub.execute_input": "2022-11-05T08:25:29.050061Z", 256 | "iopub.status.busy": "2022-11-05T08:25:29.049622Z", 257 | "iopub.status.idle": "2022-11-05T08:25:29.058985Z", 258 | "shell.execute_reply": "2022-11-05T08:25:29.057952Z" 259 | }, 260 | "papermill": { 261 | "duration": 0.023815, 262 | "end_time": "2022-11-05T08:25:29.061671", 263 | "exception": false, 264 | "start_time": "2022-11-05T08:25:29.037856", 265 | "status": "completed" 266 | }, 267 | "tags": [] 268 | }, 269 | "outputs": [], 270 | "source": [ 271 | "data['city_new'] = le.fit_transform(data['city'])\n" 272 | ] 273 | }, 274 | { 275 | "cell_type": "code", 276 | "execution_count": 8, 277 | "id": "58495df7", 278 | "metadata": { 279 | "execution": { 280 | "iopub.execute_input": "2022-11-05T08:25:29.085329Z", 281 | "iopub.status.busy": "2022-11-05T08:25:29.084522Z", 282 | "iopub.status.idle": "2022-11-05T08:25:29.094941Z", 283 | "shell.execute_reply": "2022-11-05T08:25:29.093411Z" 284 | }, 285 | "papermill": { 286 | "duration": 0.026067, 287 | "end_time": "2022-11-05T08:25:29.098176", 288 | "exception": false, 289 | "start_time": "2022-11-05T08:25:29.072109", 290 | "status": "completed" 291 | }, 292 | "tags": [] 293 | }, 294 | "outputs": [], 295 | "source": [ 296 | "cols = ['bedrooms',\"bathrooms\",\"floors\",\"price\"]\n", 297 | "\n", 298 | "for col in cols :\n", 299 | " data[col] = data[col].astype(int)\n", 300 | "\n", 301 | "# Because how can 1.50 bathroom exists" 302 | ] 303 | }, 304 | { 305 | "cell_type": "code", 306 | "execution_count": 9, 307 | "id": "101ec19d", 308 | "metadata": { 309 | "execution": { 310 | "iopub.execute_input": "2022-11-05T08:25:29.120976Z", 311 | "iopub.status.busy": "2022-11-05T08:25:29.120502Z", 312 | "iopub.status.idle": "2022-11-05T08:25:29.136886Z", 313 | "shell.execute_reply": "2022-11-05T08:25:29.135439Z" 314 | }, 315 | "papermill": { 316 | "duration": 0.031037, 317 | "end_time": "2022-11-05T08:25:29.139498", 318 | "exception": false, 319 | "start_time": "2022-11-05T08:25:29.108461", 320 | "status": "completed" 321 | }, 322 | "tags": [] 323 | }, 324 | "outputs": [ 325 | { 326 | "data": { 327 | "text/html": [ 328 | "
\n", 329 | "\n", 342 | "\n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | "
pricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontviewconditionsqft_abovesqft_basementcitycity_new
03130003113407912100313400Shoreline36
12384000523650905020453370280Seattle35
234200032193011947100419300Kent18
34200003220008030100410001000Bellevue3
45500004219401050010041140800Redmond31
\n", 444 | "
" 445 | ], 446 | "text/plain": [ 447 | " price bedrooms bathrooms sqft_living sqft_lot floors waterfront \\\n", 448 | "0 313000 3 1 1340 7912 1 0 \n", 449 | "1 2384000 5 2 3650 9050 2 0 \n", 450 | "2 342000 3 2 1930 11947 1 0 \n", 451 | "3 420000 3 2 2000 8030 1 0 \n", 452 | "4 550000 4 2 1940 10500 1 0 \n", 453 | "\n", 454 | " view condition sqft_above sqft_basement city city_new \n", 455 | "0 0 3 1340 0 Shoreline 36 \n", 456 | "1 4 5 3370 280 Seattle 35 \n", 457 | "2 0 4 1930 0 Kent 18 \n", 458 | "3 0 4 1000 1000 Bellevue 3 \n", 459 | "4 0 4 1140 800 Redmond 31 " 460 | ] 461 | }, 462 | "execution_count": 9, 463 | "metadata": {}, 464 | "output_type": "execute_result" 465 | } 466 | ], 467 | "source": [ 468 | "data.head()" 469 | ] 470 | }, 471 | { 472 | "cell_type": "code", 473 | "execution_count": 10, 474 | "id": "ea52dc4b", 475 | "metadata": { 476 | "execution": { 477 | "iopub.execute_input": "2022-11-05T08:25:29.479804Z", 478 | "iopub.status.busy": "2022-11-05T08:25:29.478912Z", 479 | "iopub.status.idle": "2022-11-05T08:25:29.695123Z", 480 | "shell.execute_reply": "2022-11-05T08:25:29.693698Z" 481 | }, 482 | "papermill": { 483 | "duration": 0.231745, 484 | "end_time": "2022-11-05T08:25:29.698138", 485 | "exception": false, 486 | "start_time": "2022-11-05T08:25:29.466393", 487 | "status": "completed" 488 | }, 489 | "tags": [] 490 | }, 491 | "outputs": [ 492 | { 493 | "data": { 494 | "text/plain": [ 495 | "" 496 | ] 497 | }, 498 | "execution_count": 10, 499 | "metadata": {}, 500 | "output_type": "execute_result" 501 | }, 502 | { 503 | "data": { 504 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG0CAYAAADTmjjeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsCklEQVR4nO3df1iUdb7/8dcAgvhjBlFh5PhjKVsVU9us1TmWlbKgsV55Yjv9cJXS9OQB9xitcnFtmfZjKU9mZqVtncKuo9/KNmvTk4qoeDJMY6PUjCtd95KuGPBkMEEKCPf3j/Pl/jppP0TgHvw8H9c119Xc94d73rfTdfG8Zu4ZXJZlWQIAADBYmNMDAAAAOI0gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMZzNIhWrVqlkSNHyu12y+12y+fz6d1337X3nzp1SpmZmerdu7d69Oih9PR0VVZWBh3j2LFjSktLU7du3RQXF6cFCxbo9OnTQWt27typK6+8UlFRURo8eLDy8/M74vQAAEAnEeHkg/fv31+PPfaYLrvsMlmWpTVr1uimm27SRx99pOHDh+vee+/Vpk2btH79enk8HmVlZenmm2/W7t27JUlNTU1KS0uT1+vV+++/r4qKCs2YMUNdunTRH//4R0nS0aNHlZaWpnvuuUdr165VYWGh7r77bvXr10+pqak/ac7m5mZ9+eWX6tmzp1wuV7v9ewAAgLZjWZa++eYbJSQkKCzsR14DskJMr169rBdffNGqrq62unTpYq1fv97ed+jQIUuSVVxcbFmWZf3Xf/2XFRYWZvn9fnvNqlWrLLfbbdXX11uWZVkLFy60hg8fHvQYt956q5WamvqTZyovL7ckcePGjRs3btw64a28vPxHf9c7+grRmZqamrR+/XrV1dXJ5/OppKREjY2NSk5OttcMHTpUAwcOVHFxscaOHavi4mKNGDFC8fHx9prU1FTNnTtXBw8e1C9+8QsVFxcHHaNlzfz58793lvr6etXX19v3LcuSJJWXl8vtdrfRGQMAgPYUCAQ0YMAA9ezZ80fXOh5E+/fvl8/n06lTp9SjRw9t2LBBSUlJKi0tVWRkpGJiYoLWx8fHy+/3S5L8fn9QDLXsb9n3Q2sCgYBOnjyp6Ojos2bKy8vTkiVLztrecq0TAADoPH7K5S6Of8psyJAhKi0t1QcffKC5c+cqIyNDn376qaMz5ebmqqamxr6Vl5c7Og8AAGhfjr9CFBkZqcGDB0uSRo8erX379mnFihW69dZb1dDQoOrq6qBXiSorK+X1eiVJXq9Xe/fuDTpey6fQzlzz3U+mVVZWyu12n/PVIUmKiopSVFRUm5wfAAAIfY6/QvRdzc3Nqq+v1+jRo9WlSxcVFhba+8rKynTs2DH5fD5Jks/n0/79+1VVVWWvKSgokNvtVlJSkr3mzGO0rGk5BgAAgKOvEOXm5mry5MkaOHCgvvnmG61bt047d+7Uli1b5PF4NGvWLGVnZys2NlZut1vz5s2Tz+fT2LFjJUkpKSlKSkrS9OnTtXTpUvn9ft1///3KzMy0X+G555579Mwzz2jhwoWaOXOmtm/frtdff12bNm1y8tQBAEAIcTSIqqqqNGPGDFVUVMjj8WjkyJHasmWLfvWrX0mSli9frrCwMKWnp6u+vl6pqal67rnn7J8PDw/Xxo0bNXfuXPl8PnXv3l0ZGRl66KGH7DWJiYnatGmT7r33Xq1YsUL9+/fXiy+++JO/gwgAAFz8XFbLZ8rxvQKBgDwej2pqaviUGQAAncT5/P4OuWuIAAAAOhpBBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADCe43/tHoAZxq0c5/QIndbuebudHgG46PEKEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeI4GUV5enq6++mr17NlTcXFxmjp1qsrKyoLWXH/99XK5XEG3e+65J2jNsWPHlJaWpm7duikuLk4LFizQ6dOng9bs3LlTV155paKiojR48GDl5+e39+kBAIBOwtEgKioqUmZmpvbs2aOCggI1NjYqJSVFdXV1Qetmz56tiooK+7Z06VJ7X1NTk9LS0tTQ0KD3339fa9asUX5+vhYtWmSvOXr0qNLS0nTDDTeotLRU8+fP1913360tW7Z02LkCAIDQFeHkg2/evDnofn5+vuLi4lRSUqLx48fb27t16yav13vOY2zdulWffvqptm3bpvj4eF1xxRV6+OGHlZOTo8WLFysyMlKrV69WYmKili1bJkkaNmyY3nvvPS1fvlypqantd4IAAKBTCKlriGpqaiRJsbGxQdvXrl2rPn366PLLL1dubq6+/fZbe19xcbFGjBih+Ph4e1tqaqoCgYAOHjxor0lOTg46ZmpqqoqLi9vrVAAAQCfi6CtEZ2pubtb8+fM1btw4XX755fb2O+64Q4MGDVJCQoI++eQT5eTkqKysTG+++aYkye/3B8WQJPu+3+//wTWBQEAnT55UdHR00L76+nrV19fb9wOBQNudKAAACDkhE0SZmZk6cOCA3nvvvaDtc+bMsf97xIgR6tevnyZOnKgjR47o0ksvbZdZ8vLytGTJknY5NgAACD0h8ZZZVlaWNm7cqB07dqh///4/uHbMmDGSpMOHD0uSvF6vKisrg9a03G+57uj71rjd7rNeHZKk3Nxc1dTU2Lfy8vLWnRgAAOgUHA0iy7KUlZWlDRs2aPv27UpMTPzRnyktLZUk9evXT5Lk8/m0f/9+VVVV2WsKCgrkdruVlJRkryksLAw6TkFBgXw+3zkfIyoqSm63O+gGAAAuXo4GUWZmpv7zP/9T69atU8+ePeX3++X3+3Xy5ElJ0pEjR/Twww+rpKREf//73/WXv/xFM2bM0Pjx4zVy5EhJUkpKipKSkjR9+nR9/PHH2rJli+6//35lZmYqKipKknTPPffob3/7mxYuXKjPPvtMzz33nF5//XXde++9jp07AAAIHY4G0apVq1RTU6Prr79e/fr1s2+vvfaaJCkyMlLbtm1TSkqKhg4dqvvuu0/p6el655137GOEh4dr48aNCg8Pl8/n029/+1vNmDFDDz30kL0mMTFRmzZtUkFBgUaNGqVly5bpxRdf5CP3AABAkuSyLMtyeohQFwgE5PF4VFNTw9tnQCuNWznO6RE6rd3zdjs9AtApnc/v75C4qBoAAMBJBBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADCeo0GUl5enq6++Wj179lRcXJymTp2qsrKyoDWnTp1SZmamevfurR49eig9PV2VlZVBa44dO6a0tDR169ZNcXFxWrBggU6fPh20ZufOnbryyisVFRWlwYMHKz8/v71PDwAAdBKOBlFRUZEyMzO1Z88eFRQUqLGxUSkpKaqrq7PX3HvvvXrnnXe0fv16FRUV6csvv9TNN99s729qalJaWpoaGhr0/vvva82aNcrPz9eiRYvsNUePHlVaWppuuOEGlZaWav78+br77ru1ZcuWDj1fAAAQmlyWZVlOD9Hi+PHjiouLU1FRkcaPH6+amhr17dtX69at029+8xtJ0meffaZhw4apuLhYY8eO1bvvvqtf//rX+vLLLxUfHy9JWr16tXJycnT8+HFFRkYqJydHmzZt0oEDB+zHuu2221RdXa3Nmzf/6FyBQEAej0c1NTVyu93tc/LARW7cynFOj9Bp7Z632+kRgE7pfH5/h9Q1RDU1NZKk2NhYSVJJSYkaGxuVnJxsrxk6dKgGDhyo4uJiSVJxcbFGjBhhx5AkpaamKhAI6ODBg/aaM4/RsqblGAAAwGwRTg/Qorm5WfPnz9e4ceN0+eWXS5L8fr8iIyMVExMTtDY+Pl5+v99ec2YMtexv2fdDawKBgE6ePKno6OigffX19aqvr7fvBwKBCz9BAAAQskLmFaLMzEwdOHBAr776qtOjKC8vTx6Px74NGDDA6ZEAAEA7CokgysrK0saNG7Vjxw7179/f3u71etXQ0KDq6uqg9ZWVlfJ6vfaa737qrOX+j61xu91nvTokSbm5uaqpqbFv5eXlF3yOAAAgdDkaRJZlKSsrSxs2bND27duVmJgYtH/06NHq0qWLCgsL7W1lZWU6duyYfD6fJMnn82n//v2qqqqy1xQUFMjtdispKclec+YxWta0HOO7oqKi5Ha7g24AAODi5eg1RJmZmVq3bp3efvtt9ezZ077mx+PxKDo6Wh6PR7NmzVJ2drZiY2Pldrs1b948+Xw+jR07VpKUkpKipKQkTZ8+XUuXLpXf79f999+vzMxMRUVFSZLuuecePfPMM1q4cKFmzpyp7du36/XXX9emTZscO3cAABA6HH2FaNWqVaqpqdH111+vfv362bfXXnvNXrN8+XL9+te/Vnp6usaPHy+v16s333zT3h8eHq6NGzcqPDxcPp9Pv/3tbzVjxgw99NBD9prExERt2rRJBQUFGjVqlJYtW6YXX3xRqampHXq+AAAgNIXU9xCFKr6HCLhwfA9R6/E9REDrdNrvIQIAAHACQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADBeq4JowoQJqq6uPmt7IBDQhAkTLnQmAACADtWqINq5c6caGhrO2n7q1Cn993//9wUPBQAA0JEizmfxJ598Yv/3p59+Kr/fb99vamrS5s2b9Q//8A9tNx0AAEAHOK8guuKKK+RyueRyuc751lh0dLRWrlzZZsMBAAB0hPMKoqNHj8qyLF1yySXau3ev+vbta++LjIxUXFycwsPD23xIAACA9nReQTRo0CBJUnNzc7sMAwAA4ITzCqIzff7559qxY4eqqqrOCqRFixZd8GAAAAAdpVVB9MILL2ju3Lnq06ePvF6vXC6Xvc/lchFEAACgU2lVED3yyCN69NFHlZOT09bzAAAAdLhWfQ/R119/rVtuuaWtZwEAAHBEq4Lolltu0datW9t6FgAAAEe06i2zwYMH64EHHtCePXs0YsQIdenSJWj/7373uzYZDgAAoCO4LMuyzveHEhMTv/+ALpf+9re/XdBQoSYQCMjj8aimpkZut9vpcYBOadzKcU6P0Gntnrfb6RGATul8fn+36hWio0ePtmowAACAUNSqa4jayq5duzRlyhQlJCTI5XLprbfeCtp/55132n8qpOU2adKkoDUnTpzQtGnT5Ha7FRMTo1mzZqm2tjZozSeffKJrr71WXbt21YABA7R06dL2PjUAANCJtOoVopkzZ/7g/pdeeuknHaeurk6jRo3SzJkzdfPNN59zzaRJk/Tyyy/b96OiooL2T5s2TRUVFSooKFBjY6PuuusuzZkzR+vWrZP0vy+XpaSkKDk5WatXr9b+/fs1c+ZMxcTEaM6cOT9pTgAAcHFrVRB9/fXXQfcbGxt14MABVVdXn/OPvn6fyZMna/LkyT+4JioqSl6v95z7Dh06pM2bN2vfvn266qqrJEkrV67UjTfeqCeeeEIJCQlau3atGhoa9NJLLykyMlLDhw9XaWmpnnzySYIIAABIamUQbdiw4axtzc3Nmjt3ri699NILHupMO3fuVFxcnHr16qUJEybokUceUe/evSVJxcXFiomJsWNIkpKTkxUWFqYPPvhA//RP/6Ti4mKNHz9ekZGR9prU1FQ9/vjj+vrrr9WrV6+zHrO+vl719fX2/UAg0KbnBAAAQkubXUMUFham7OxsLV++vK0OqUmTJumVV15RYWGhHn/8cRUVFWny5MlqamqSJPn9fsXFxQX9TEREhGJjY+X3++018fHxQWta7res+a68vDx5PB77NmDAgDY7JwAAEHpa/cddz+XIkSM6ffp0mx3vtttus/97xIgRGjlypC699FLt3LlTEydObLPH+a7c3FxlZ2fb9wOBAFEEAMBFrFVBdGYsSJJlWaqoqNCmTZuUkZHRJoOdyyWXXKI+ffro8OHDmjhxorxer6qqqoLWnD59WidOnLCvO/J6vaqsrAxa03L/+65NioqKOuvibQAAcPFqVRB99NFHQffDwsLUt29fLVu27Ec/gXYhvvjiC3311Vfq16+fJMnn86m6ulolJSUaPXq0JGn79u1qbm7WmDFj7DV/+MMf1NjYaH+jdkFBgYYMGXLO64cAAIB5WhVEO3bsaJMHr62t1eHDh+37R48eVWlpqWJjYxUbG6slS5YoPT1dXq9XR44c0cKFCzV48GClpqZKkoYNG6ZJkyZp9uzZWr16tRobG5WVlaXbbrtNCQkJkqQ77rhDS5Ys0axZs5STk6MDBw5oxYoVbXqtEwAA6Nwu6Bqi48ePq6ysTJI0ZMgQ9e3b97x+/sMPP9QNN9xg3295Ky4jI0OrVq3SJ598ojVr1qi6uloJCQlKSUnRww8/HPR21tq1a5WVlaWJEycqLCxM6enpevrpp+39Ho9HW7duVWZmpkaPHq0+ffpo0aJFfOQeAADYWvW3zOrq6jRv3jy98soram5uliSFh4drxowZWrlypbp169bmgzqJv2UGXDj+llnr8bfMgNY5n9/frfrYfXZ2toqKivTOO++ourpa1dXVevvtt1VUVKT77ruvVUMDAAA4pVVvmf35z3/WG2+8oeuvv97eduONNyo6Olr//M//rFWrVrXVfAAAAO2uVa8Qffvtt2d92aEkxcXF6dtvv73goQAAADpSq4LI5/PpwQcf1KlTp+xtJ0+e1JIlS+Tz+dpsOAAAgI7QqrfMnnrqKU2aNEn9+/fXqFGjJEkff/yxoqKitHXr1jYdEAAAoL21KohGjBihzz//XGvXrtVnn30mSbr99ts1bdo0RUdHt+mAAAAA7a1VQZSXl6f4+HjNnj07aPtLL72k48ePKycnp02GAwAA6Aituobo+eef19ChQ8/aPnz4cK1evfqChwIAAOhIrQoiv99v/z2xM/Xt21cVFRUXPBQAAEBHalUQDRgwQLt3n/3Nqbt377b/hhgAAEBn0apriGbPnq358+ersbFREyZMkCQVFhZq4cKFfFM1AADodFoVRAsWLNBXX32lf/3Xf1VDQ4MkqWvXrsrJyVFubm6bDggAANDeWhVELpdLjz/+uB544AEdOnRI0dHRuuyyy4L+Cj0AAEBn0aogatGjRw9dffXVbTULAACAI1p1UTUAAMDFhCACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGO+CvqkaAND5FI2/zukROq3rdhU5PQLaCa8QAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeI4G0a5duzRlyhQlJCTI5XLprbfeCtpvWZYWLVqkfv36KTo6WsnJyfr888+D1pw4cULTpk2T2+1WTEyMZs2apdra2qA1n3zyia699lp17dpVAwYM0NKlS9v71AAAQCfiaBDV1dVp1KhRevbZZ8+5f+nSpXr66ae1evVqffDBB+revbtSU1N16tQpe820adN08OBBFRQUaOPGjdq1a5fmzJlj7w8EAkpJSdGgQYNUUlKif//3f9fixYv1pz/9qd3PDwAAdA4RTj745MmTNXny5HPusyxLTz31lO6//37ddNNNkqRXXnlF8fHxeuutt3Tbbbfp0KFD2rx5s/bt26errrpKkrRy5UrdeOONeuKJJ5SQkKC1a9eqoaFBL730kiIjIzV8+HCVlpbqySefDAonAABgrpC9hujo0aPy+/1KTk62t3k8Ho0ZM0bFxcWSpOLiYsXExNgxJEnJyckKCwvTBx98YK8ZP368IiMj7TWpqakqKyvT119/fc7Hrq+vVyAQCLoBAICLV8gGkd/vlyTFx8cHbY+Pj7f3+f1+xcXFBe2PiIhQbGxs0JpzHePMx/iuvLw8eTwe+zZgwIALPyEAABCyQjaInJSbm6uamhr7Vl5e7vRIAACgHYVsEHm9XklSZWVl0PbKykp7n9frVVVVVdD+06dP68SJE0FrznWMMx/ju6KiouR2u4NuAADg4hWyQZSYmCiv16vCwkJ7WyAQ0AcffCCfzydJ8vl8qq6uVklJib1m+/btam5u1pgxY+w1u3btUmNjo72moKBAQ4YMUa9evTrobAAAQChzNIhqa2tVWlqq0tJSSf97IXVpaamOHTsml8ul+fPn65FHHtFf/vIX7d+/XzNmzFBCQoKmTp0qSRo2bJgmTZqk2bNna+/evdq9e7eysrJ02223KSEhQZJ0xx13KDIyUrNmzdLBgwf12muvacWKFcrOznborAEAQKhx9GP3H374oW644Qb7fkukZGRkKD8/XwsXLlRdXZ3mzJmj6upqXXPNNdq8ebO6du1q/8zatWuVlZWliRMnKiwsTOnp6Xr66aft/R6PR1u3blVmZqZGjx6tPn36aNGiRXzkHgAA2FyWZVlODxHqAoGAPB6PampquJ4IaKVxK8c5PUKntXve7jY9XtH469r0eCa5bleR0yPgPJzP7++QvYYIAACgoxBEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeCEdRIsXL5bL5Qq6DR061N5/6tQpZWZmqnfv3urRo4fS09NVWVkZdIxjx44pLS1N3bp1U1xcnBYsWKDTp0939KkAAIAQFuH0AD9m+PDh2rZtm30/IuL/j3zvvfdq06ZNWr9+vTwej7KysnTzzTdr9+7dkqSmpialpaXJ6/Xq/fffV0VFhWbMmKEuXbroj3/8Y4efCwAACE0hH0QRERHyer1nba+pqdF//Md/aN26dZowYYIk6eWXX9awYcO0Z88ejR07Vlu3btWnn36qbdu2KT4+XldccYUefvhh5eTkaPHixYqMjOzo0wEAACEopN8yk6TPP/9cCQkJuuSSSzRt2jQdO3ZMklRSUqLGxkYlJyfba4cOHaqBAwequLhYklRcXKwRI0YoPj7eXpOamqpAIKCDBw927IkAAICQFdKvEI0ZM0b5+fkaMmSIKioqtGTJEl177bU6cOCA/H6/IiMjFRMTE/Qz8fHx8vv9kiS/3x8UQy37W/Z9n/r6etXX19v3A4FAG50RAAAIRSEdRJMnT7b/e+TIkRozZowGDRqk119/XdHR0e32uHl5eVqyZEm7HR8AAISWkH/L7EwxMTH6+c9/rsOHD8vr9aqhoUHV1dVBayorK+1rjrxe71mfOmu5f67rklrk5uaqpqbGvpWXl7ftiQAAgJDSqYKotrZWR44cUb9+/TR69Gh16dJFhYWF9v6ysjIdO3ZMPp9PkuTz+bR//35VVVXZawoKCuR2u5WUlPS9jxMVFSW32x10AwAAF6+Qfsvs97//vaZMmaJBgwbpyy+/1IMPPqjw8HDdfvvt8ng8mjVrlrKzsxUbGyu326158+bJ5/Np7NixkqSUlBQlJSVp+vTpWrp0qfx+v+6//35lZmYqKirK4bMDAAChIqSD6IsvvtDtt9+ur776Sn379tU111yjPXv2qG/fvpKk5cuXKywsTOnp6aqvr1dqaqqee+45++fDw8O1ceNGzZ07Vz6fT927d1dGRoYeeughp04JAACEIJdlWZbTQ4S6QCAgj8ejmpoa3j4DWmncynFOj9Bp7Z63u02PVzT+ujY9nkmu21Xk9Ag4D+fz+7tTXUMEAADQHkL6LTMAAC5mz9z3jtMjdFpZy6a06fF4hQgAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8o4Lo2Wef1c9+9jN17dpVY8aM0d69e50eCQAAhIAIpwfoKK+99pqys7O1evVqjRkzRk899ZRSU1NVVlamuLg4p8dDOzn20AinR+i0Bi7a7/QIANBhjHmF6Mknn9Ts2bN11113KSkpSatXr1a3bt300ksvOT0aAABwmBFB1NDQoJKSEiUnJ9vbwsLClJycrOLiYgcnAwAAocCIt8z+53/+R01NTYqPjw/aHh8fr88+++ys9fX19aqvr7fv19TUSJICgcCPPtb4+//PBU5rtl2P3N6mx/vmVFObHs8kP+X/9/Nx+uTpNj2eSdr6uag7zXPRWm39XJys/7ZNj2eSn/JctKyxLOtH1xoRROcrLy9PS5YsOWv7gAEDHJjGLJ6V9zg9AlrkeZyeAP+PJ4fnImR4eC5CxcJnf/rab775Rp4fee6MCKI+ffooPDxclZWVQdsrKyvl9XrPWp+bm6vs7Gz7fnNzs06cOKHevXvL5XK1+7ztJRAIaMCAASovL5fb7XZ6HKPxXIQOnovQwvMROi6G58KyLH3zzTdKSEj40bVGBFFkZKRGjx6twsJCTZ06VdL/Rk5hYaGysrLOWh8VFaWoqKigbTExMR0wacdwu92d9n/uiw3PRejguQgtPB+ho7M/Fz/2ylALI4JIkrKzs5WRkaGrrrpKv/zlL/XUU0+prq5Od911l9OjAQAAhxkTRLfeequOHz+uRYsWye/364orrtDmzZvPutAaAACYx5ggkqSsrKxzvkVmiqioKD344INnvR2IjsdzETp4LkILz0foMO25cFk/5bNoAAAAFzEjvpgRAADghxBEAADAeAQRAAAwHkEEAACMRxAZYNeuXZoyZYoSEhLkcrn01ltvOT2SsfLy8nT11VerZ8+eiouL09SpU1VWVub0WEZatWqVRo4caX/pnM/n07vvvuv0WJD02GOPyeVyaf78+U6PYpzFixfL5XIF3YYOHer0WB2CIDJAXV2dRo0apWefPY8//IJ2UVRUpMzMTO3Zs0cFBQVqbGxUSkqK6urqnB7NOP3799djjz2mkpISffjhh5owYYJuuukmHTx40OnRjLZv3z49//zzGjlypNOjGGv48OGqqKiwb++9957TI3UIo76HyFSTJ0/W5MmTnR4DkjZv3hx0Pz8/X3FxcSopKdH48eMdmspMU6ZMCbr/6KOPatWqVdqzZ4+GDx/u0FRmq62t1bRp0/TCCy/okUcecXocY0VERJzz73xe7HiFCHBQTU2NJCk2NtbhSczW1NSkV199VXV1dfL5fE6PY6zMzEylpaUpOTnZ6VGM9vnnnyshIUGXXHKJpk2bpmPHjjk9UofgFSLAIc3NzZo/f77GjRunyy+/3OlxjLR//375fD6dOnVKPXr00IYNG5SUlOT0WEZ69dVX9de//lX79u1zehSjjRkzRvn5+RoyZIgqKiq0ZMkSXXvttTpw4IB69uzp9HjtiiACHJKZmakDBw4Y8/58KBoyZIhKS0tVU1OjN954QxkZGSoqKiKKOlh5ebn+7d/+TQUFBeratavT4xjtzMsrRo4cqTFjxmjQoEF6/fXXNWvWLAcna38EEeCArKwsbdy4Ubt27VL//v2dHsdYkZGRGjx4sCRp9OjR2rdvn1asWKHnn3/e4cnMUlJSoqqqKl155ZX2tqamJu3atUvPPPOM6uvrFR4e7uCE5oqJidHPf/5zHT582OlR2h1BBHQgy7I0b948bdiwQTt37lRiYqLTI+EMzc3Nqq+vd3oM40ycOFH79+8P2nbXXXdp6NChysnJIYYcVFtbqyNHjmj69OlOj9LuCCID1NbWBtX90aNHVVpaqtjYWA0cONDBycyTmZmpdevW6e2331bPnj3l9/slSR6PR9HR0Q5PZ5bc3FxNnjxZAwcO1DfffKN169Zp586d2rJli9OjGadnz55nXUfXvXt39e7dm+vrOtjvf/97TZkyRYMGDdKXX36pBx98UOHh4br99tudHq3dEUQG+PDDD3XDDTfY97OzsyVJGRkZys/Pd2gqM61atUqSdP311wdtf/nll3XnnXd2/EAGq6qq0owZM1RRUSGPx6ORI0dqy5Yt+tWvfuX0aIBjvvjiC91+++366quv1LdvX11zzTXas2eP+vbt6/Ro7c5lWZbl9BAAAABO4nuIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAJgtJ/97Gd66qmn7Psul0tvvfXWD/7MnXfeqalTp7brXAA6Ft9UDQBnqKioUK9evSRJf//735WYmKiPPvpIV1xxhb1mxYoV4jttgYsLQQQAZ/B6vT+6xuPxdMAkADoSb5kBCBnNzc1aunSpBg8erKioKA0cOFCPPvqoJGn//v2aMGGCoqOj1bt3b82ZM0e1tbX2z7a8jfXEE0+oX79+6t27tzIzM9XY2Givqaqq0pQpUxQdHa3ExEStXbv2rBnOfMssMTFRkvSLX/xCLpfL/ht0333LrL6+Xr/73e8UFxenrl276pprrtG+ffvs/Tt37pTL5VJhYaGuuuoqdevWTf/4j/+osrKytvqnA3CBCCIAISM3N1ePPfaYHnjgAX366adat26d4uPjVVdXp9TUVPXq1Uv79u3T+vXrtW3bNmVlZQX9/I4dO3TkyBHt2LFDa9asUX5+ftAfML7zzjtVXl6uHTt26I033tBzzz2nqqqq751n7969kqRt27apoqJCb7755jnXLVy4UH/+85+1Zs0a/fWvf9XgwYOVmpqqEydOBK37wx/+oGXLlunDDz9URESEZs6c2cp/KQBtzgKAEBAIBKyoqCjrhRdeOGvfn/70J6tXr15WbW2tvW3Tpk1WWFiY5ff7LcuyrIyMDGvQoEHW6dOn7TW33HKLdeutt1qWZVllZWWWJGvv3r32/kOHDlmSrOXLl9vbJFkbNmywLMuyjh49akmyPvroo6B5MjIyrJtuusmyLMuqra21unTpYq1du9be39DQYCUkJFhLly61LMuyduzYYUmytm3bFjS/JOvkyZPn8a8EoL3wChGAkHDo0CHV19dr4sSJ59w3atQode/e3d42btw4NTc3B73tNHz4cIWHh9v3+/XrZ78CdOjQIUVERGj06NH2/qFDhyomJuaC5j5y5IgaGxs1btw4e1uXLl30y1/+UocOHQpaO3LkyKDZJP3gK1QAOg5BBCAkREdHX/AxunTpEnTf5XKpubn5go/bVs6cz+VySVJIzQeYjCACEBIuu+wyRUdHq7Cw8Kx9w4YN08cff6y6ujp72+7duxUWFqYhQ4b8pOMPHTpUp0+fVklJib2trKxM1dXV3/szkZGRkqSmpqbvXXPppZcqMjJSu3fvtrc1NjZq3759SkpK+kmzAXAeH7sHEBK6du2qnJwcLVy4UJGRkRo3bpyOHz+ugwcPatq0aXrwwQeVkZGhxYsX6/jx45o3b56mT5+u+Pj4n3T8IUOGaNKkSfqXf/kXrVq1ShEREZo/f/4PvjIVFxen6Ohobd68Wf3791fXrl3P+sh99+7dNXfuXC1YsECxsbEaOHCgli5dqm+//VazZs26oH8TAB2HV4gAhIwHHnhA9913nxYtWqRhw4bp1ltvVVVVlbp166YtW7boxIkTuvrqq/Wb3/xGEydO1DPPPHNex3/55ZeVkJCg6667TjfffLPmzJmjuLi4710fERGhp59+Ws8//7wSEhJ00003nXPdY489pvT0dE2fPl1XXnmlDh8+rC1btthf8Agg9Lksi69bBQAAZuMVIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPH+LzgpuuGOqUwfAAAAAElFTkSuQmCC", 505 | "text/plain": [ 506 | "
" 507 | ] 508 | }, 509 | "metadata": {}, 510 | "output_type": "display_data" 511 | } 512 | ], 513 | "source": [ 514 | "sns.countplot(data=data,x=data['condition'])" 515 | ] 516 | }, 517 | { 518 | "cell_type": "code", 519 | "execution_count": 11, 520 | "id": "41e4d100", 521 | "metadata": { 522 | "execution": { 523 | "iopub.execute_input": "2022-11-05T08:25:30.328068Z", 524 | "iopub.status.busy": "2022-11-05T08:25:30.327436Z", 525 | "iopub.status.idle": "2022-11-05T08:25:30.337400Z", 526 | "shell.execute_reply": "2022-11-05T08:25:30.336508Z" 527 | }, 528 | "papermill": { 529 | "duration": 0.025507, 530 | "end_time": "2022-11-05T08:25:30.339545", 531 | "exception": false, 532 | "start_time": "2022-11-05T08:25:30.314038", 533 | "status": "completed" 534 | }, 535 | "tags": [] 536 | }, 537 | "outputs": [ 538 | { 539 | "data": { 540 | "text/plain": [ 541 | "city\n", 542 | "Seattle 1573\n", 543 | "Renton 293\n", 544 | "Bellevue 286\n", 545 | "Redmond 235\n", 546 | "Issaquah 187\n", 547 | "Kirkland 187\n", 548 | "Kent 185\n", 549 | "Auburn 176\n", 550 | "Sammamish 175\n", 551 | "Federal Way 148\n", 552 | "Shoreline 123\n", 553 | "Woodinville 115\n", 554 | "Maple Valley 96\n", 555 | "Mercer Island 86\n", 556 | "Burien 74\n", 557 | "Snoqualmie 71\n", 558 | "Kenmore 66\n", 559 | "Des Moines 58\n", 560 | "North Bend 50\n", 561 | "Covington 43\n", 562 | "Duvall 42\n", 563 | "Lake Forest Park 36\n", 564 | "Bothell 33\n", 565 | "Newcastle 33\n", 566 | "SeaTac 29\n", 567 | "Tukwila 29\n", 568 | "Vashon 29\n", 569 | "Enumclaw 28\n", 570 | "Carnation 22\n", 571 | "Normandy Park 18\n", 572 | "Clyde Hill 11\n", 573 | "Medina 11\n", 574 | "Fall City 11\n", 575 | "Black Diamond 9\n", 576 | "Ravensdale 7\n", 577 | "Pacific 6\n", 578 | "Algona 5\n", 579 | "Yarrow Point 4\n", 580 | "Skykomish 3\n", 581 | "Preston 2\n", 582 | "Milton 2\n", 583 | "Inglewood-Finn Hill 1\n", 584 | "Snoqualmie Pass 1\n", 585 | "Beaux Arts Village 1\n", 586 | "Name: count, dtype: int64" 587 | ] 588 | }, 589 | "execution_count": 11, 590 | "metadata": {}, 591 | "output_type": "execute_result" 592 | } 593 | ], 594 | "source": [ 595 | "data['city'].value_counts()" 596 | ] 597 | }, 598 | { 599 | "cell_type": "code", 600 | "execution_count": 12, 601 | "id": "8f160844", 602 | "metadata": { 603 | "execution": { 604 | "iopub.execute_input": "2022-11-05T08:25:30.365700Z", 605 | "iopub.status.busy": "2022-11-05T08:25:30.365038Z", 606 | "iopub.status.idle": "2022-11-05T08:25:30.602652Z", 607 | "shell.execute_reply": "2022-11-05T08:25:30.601799Z" 608 | }, 609 | "papermill": { 610 | "duration": 0.253522, 611 | "end_time": "2022-11-05T08:25:30.605014", 612 | "exception": false, 613 | "start_time": "2022-11-05T08:25:30.351492", 614 | "status": "completed" 615 | }, 616 | "tags": [] 617 | }, 618 | "outputs": [ 619 | { 620 | "data": { 621 | "text/plain": [ 622 | "" 623 | ] 624 | }, 625 | "execution_count": 12, 626 | "metadata": {}, 627 | "output_type": "execute_result" 628 | }, 629 | { 630 | "data": { 631 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJrElEQVR4nO3deXwT1cL/8W/K0oK0ZW9ZiqAoiMgiCBSvglcUERd8/KmPF2VxV/CKuFxxARWlqI/KVUH0InBRWUQFXAApZRMoS4Gyyl4oW0sLtGkLXTO/P0pD0iZp0m1a+Lxfr74gkzMzJ5lk5pszZ85YDMMwBAAAYBI/sysAAAAubYQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAkiSLxaK3337b7GoAuAQRRgCYpnfv3rJYLPa/WrVqqUOHDpowYYJsNpvZ1QNQQaqbXQEAlcO5c+dUvXrF7xKaN2+uiIgISVJycrJmzpypF198UUlJSXr//fcrvD4AKp6FG+UBly6bzabs7GwFBASYsv7evXsrOTlZO3bssE/LzMxU27Ztdfr0aZ05c0bVqlUzpW4AKg6naYAq7u2335bFYtHu3bv14IMPKigoSA0aNNALL7ygzMxMp7IWi0XDhw/X999/r2uvvVb+/v5avHix/bnCfUaOHTumxx9/XE2bNpW/v79atWqlZ599VtnZ2fYyKSkpGjFihMLCwuTv76/WrVvrgw8+KPFploCAAN1www1KS0vTyZMn7dO3bdumIUOG6IorrlBAQIBCQ0P12GOP6dSpUy7fj/3792vIkCGqW7eugoODNXToUJ09e9ap7Llz5/TPf/5TDRs2VGBgoO655x4dO3bM7Xvx2GOPKSQkRP7+/rr22ms1derUEr1GAM44TQNcJB588EG1bNlSERERWrdunT777DOdOXNGM2bMcCq3bNky/fDDDxo+fLgaNmyoli1bulze8ePH1a1bN6WkpOipp55S27ZtdezYMf344486e/asatasqbNnz6pXr146duyYnn76abVo0UJr167VqFGjdOLECU2YMKFEr+XQoUOyWCyqW7eufVpkZKQOHjyooUOHKjQ0VDt37tTXX3+tnTt3at26dbJYLEXej1atWikiIkKbN2/WlClT1LhxY33wwQf2MkOGDNEPP/ygRx99VD169NDKlSvVv3//IvVJTExUjx497GGuUaNGWrRokR5//HFZrVaNGDGiRK8TwHkGgCptzJgxhiTjnnvucZr+3HPPGZKMrVu32qdJMvz8/IydO3cWWY4kY8yYMfbHgwYNMvz8/IyNGzcWKWuz2QzDMIyxY8cal112mbF3716n51977TWjWrVqRnx8vMe69+rVy2jbtq2RlJRkJCUlGbt37zZeeeUVQ5LRv39/p7Jnz54tMv+sWbMMScaqVavs0wrej8cee8yp7H333Wc0aNDA/njTpk2GJGPEiBFO5YYMGVLkvXj88ceNJk2aGMnJyU5l//d//9cIDg52WTcA3uM0DXCRGDZsmNPj559/XpK0cOFCp+m9evVSu3btPC7LZrNp/vz5uvvuu9W1a9cizxe0QsydO1c33XST6tWrp+TkZPtfnz59lJeXp1WrVhVb7927d6tRo0Zq1KiR2rZtq48++kj33HOPpk+f7lSuVq1a9v9nZmYqOTlZPXr0kCRt3ry5yHKfeeYZp8c33XSTTp06JavVKkn201PPPfecU7mC962AYRj66aefdPfdd8swDKfX2bdvX6WmprpcPwDvVakwsmrVKt19991q2rSpLBaL5s+f79P8BeeSC/9ddtll5VNhoAJdddVVTo+vvPJK+fn56dChQ07TW7VqVeyykpKSZLVa1b59e4/l9u3bp8WLF9vDRMFfnz59JMmpz4c7LVu2VGRkpP744w9NmjRJzZo1U1JSUpFOtadPn9YLL7ygkJAQ1apVS40aNbK/ltTU1CLLbdGihdPjevXqSZLOnDkjSTp8+LD8/PyKvB+tW7d2epyUlKSUlBR9/fXXRV7n0KFDvX6dANyrUn1GMjIy1LFjRz322GP6n//5H5/nf/nll4v8Wrr11lt1ww03lFUVgUqjcB+KAo4tDKVls9l022236dVXX3X5/NVXX13sMi677DJ7eJGkG2+8Uddff71ef/11ffbZZ/bpDz74oNauXatXXnlFnTp1Up06dWSz2XTHHXe47Czr7iocw8cLCAuW/cgjj2jw4MEuy3To0MGnZQJwVqXCSL9+/dSvXz+3z2dlZemNN97QrFmzlJKSovbt2+uDDz5Q7969JUl16tRRnTp17OW3bt2qXbt2afLkyeVddaDc7du3z+lX/v79+2Wz2dx2UPWkUaNGCgoKcrrk1pUrr7xS6enpTmGitDp06KBHHnlEX331lV5++WW1aNFCZ86cUVRUlN555x2NHj3aXnbfvn0lXs/ll18um82muLg4p1al/fv3O5Vr1KiRAgMDlZeXV6avE8AFVeo0TXGGDx+u6OhozZ49W9u2bdMDDzygO+64w+0Oa8qUKbr66qt10003VXBNgbI3ceJEp8eff/65JHkM8O74+flpwIAB+vXXXxUTE1Pk+YLWhQcffFDR0dH6448/ipRJSUlRbm6uz+uWpFdffVU5OTn65JNPJF1o5SjcqlHSq3UkqW/fvpKkSZMmOU0veN8KVKtWTffff79++uknl+EsKSmpxHUAkK9KtYx4Eh8fr2nTpik+Pl5NmzaVlH9aZvHixZo2bZrGjRvnVD4zM1Pff/+9XnvtNTOqC5S5uLg43XPPPbrjjjsUHR2t7777Tv/4xz/UsWPHEi1v3LhxWrJkiXr16qWnnnpK11xzjU6cOKG5c+dq9erVqlu3rl555RX98ssvuuuuuzRkyBB16dJFGRkZ2r59u3788UcdOnRIDRs29Hnd7dq105133qkpU6borbfeUoMGDXTzzTfrww8/VE5Ojpo1a6YlS5YoLi6uRK9Nkrp06aL7779fEyZM0KlTp+yX9u7du1eS82mu8ePHa/ny5erevbuefPJJtWvXTqdPn9bmzZu1dOlSnT59usT1AHARhZHt27crLy+vyDnqrKwsNWjQoEj5efPmKS0tze05YKCqmTNnjkaPHq3XXntN1atX1/Dhw/XRRx+VeHnNmjXT+vXr9dZbb+n777+X1WpVs2bN1K9fP9WuXVuSVLt2ba1cuVLjxo3T3LlzNWPGDAUFBenqq6/WO++8o+Dg4BKv/5VXXtHvv/+uzz//XG+//bZmzpyp559/XhMnTpRhGLr99tu1aNEi+4+PkpgxY4ZCQ0M1a9YszZs3T3369NGcOXPUpk0bpw60ISEh2rBhg9599139/PPPmjRpkho0aKBrr73WadwSACVTZYeDt1gsmjdvngYMGCApf0c8cOBA7dy5s0jHtTp16ig0NNRp2q233qqgoCDNmzevoqoMlIu3335b77zzjpKSkkrUCgFnsbGx6ty5s7777jsNHDjQ7OoAl4SLpmWkc+fOysvL08mTJ4vtAxIXF6fly5frl19+qaDaAaiMzp07V+TqogkTJsjPz08333yzSbUCLj1VKoykp6c79XSPi4tTbGys6tevr6uvvloDBw7UoEGD9PHHH6tz585KSkpSVFSUOnTo4DTE89SpU9WkSZMSdewDcPH48MMPtWnTJt1yyy2qXr26Fi1apEWLFumpp55SWFiY2dUDLhlVKozExMTolltusT8eOXKkJGnw4MGaPn26pk2bpvfee08vvfSSjh07poYNG6pHjx6666677PPYbDZNnz5dQ4YM4W6gwCWuZ8+eioyM1NixY5Wenq4WLVro7bff1htvvGF21YBLSpXtMwIAAC4OF9U4IwAAoOohjAAAAFNViT4jNptNx48fV2BgoNv7bQAAgMrFMAylpaWpadOm8vNz3/5RJcLI8ePH6dkOAEAVdeTIETVv3tzt81UijAQGBkrKfzFBQUEm1wYAAHjDarUqLCzMfhx3p0qEkYJTM0FBQYQRAACqmOK6WNCBFQAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAKik8myGpq6O045jqWZXpVxVibv2AgBwKfpp81G9+9suSdKh8f1Nrk35oWUEAIBKaveJNLOrUCEIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABT+RRGIiIidMMNNygwMFCNGzfWgAEDtGfPHo/zTJ8+XRaLxekvICCgVJUGAAAXD5/CyMqVKzVs2DCtW7dOkZGRysnJ0e23366MjAyP8wUFBenEiRP2v8OHD5eq0gAA4OJR3ZfCixcvdno8ffp0NW7cWJs2bdLNN9/sdj6LxaLQ0NCS1RAAAFzUStVnJDU1VZJUv359j+XS09N1+eWXKywsTPfee6927tzpsXxWVpasVqvTHwAAuDiVOIzYbDaNGDFCN954o9q3b++2XJs2bTR16lQtWLBA3333nWw2m3r27KmjR4+6nSciIkLBwcH2v7CwsJJWEwAAVHIWwzCMksz47LPPatGiRVq9erWaN2/u9Xw5OTm65ppr9PDDD2vs2LEuy2RlZSkrK8v+2Gq1KiwsTKmpqQoKCipJdQEAqHLe/XWXpq6JkyQdGt/f5Nr4zmq1Kjg4uNjjt099RgoMHz5cv/32m1atWuVTEJGkGjVqqHPnztq/f7/bMv7+/vL39y9J1QAAQBXj02kawzA0fPhwzZs3T8uWLVOrVq18XmFeXp62b9+uJk2a+DwvAAC4+PjUMjJs2DDNnDlTCxYsUGBgoBISEiRJwcHBqlWrliRp0KBBatasmSIiIiRJ7777rnr06KHWrVsrJSVFH330kQ4fPqwnnniijF8KAACoinwKI19++aUkqXfv3k7Tp02bpiFDhkiS4uPj5ed3ocHlzJkzevLJJ5WQkKB69eqpS5cuWrt2rdq1a1e6mgMAgIuCT2HEm76uK1ascHr86aef6tNPP/WpUgAA4NLBvWkAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAFRShgyzq1AhCCMAAMBUhBEAACopiyxmV6FCEEYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABT+RRGIiIidMMNNygwMFCNGzfWgAEDtGfPnmLnmzt3rtq2bauAgABdd911WrhwYYkrDADApcKQYXYVKoRPYWTlypUaNmyY1q1bp8jISOXk5Oj2229XRkaG23nWrl2rhx9+WI8//ri2bNmiAQMGaMCAAdqxY0epKw8AAKo+i2EYJY5dSUlJaty4sVauXKmbb77ZZZmHHnpIGRkZ+u233+zTevTooU6dOmny5MlercdqtSo4OFipqakKCgoqaXUBAKhS3v11l6auiZMkHRrf3+Ta+M7b43ep+oykpqZKkurXr++2THR0tPr06eM0rW/fvoqOjnY7T1ZWlqxWq9MfAAC4OJU4jNhsNo0YMUI33nij2rdv77ZcQkKCQkJCnKaFhIQoISHB7TwREREKDg62/4WFhZW0mgAAoJIrcRgZNmyYduzYodmzZ5dlfSRJo0aNUmpqqv3vyJEjZb4OAABQOVQvyUzDhw/Xb7/9plWrVql58+Yey4aGhioxMdFpWmJiokJDQ93O4+/vL39//5JUDQAAVDE+tYwYhqHhw4dr3rx5WrZsmVq1alXsPOHh4YqKinKaFhkZqfDwcN9qCgAALko+tYwMGzZMM2fO1IIFCxQYGGjv9xEcHKxatWpJkgYNGqRmzZopIiJCkvTCCy+oV69e+vjjj9W/f3/Nnj1bMTEx+vrrr8v4pQAAgKrIp5aRL7/8Uqmpqerdu7eaNGli/5szZ469THx8vE6cOGF/3LNnT82cOVNff/21OnbsqB9//FHz58/32OkVAABcOnxqGfFmSJIVK1YUmfbAAw/ogQce8GVVAADgEsG9aQAAgKkIIwAAwFSEEQAAKilulAcAAFABCCMAAFRSFlnMrkKFIIwAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAFBJGTLMrkKFIIwAAABTEUYAAKikLLKYXYUKQRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAqKS4UR4AAEAFIIwAAFBJcaM8AACACkAYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwlc9hZNWqVbr77rvVtGlTWSwWzZ8/32P5FStWyGKxFPlLSEgoaZ0BAMBFxOcwkpGRoY4dO2rixIk+zbdnzx6dOHHC/te4cWNfVw0AAC5C1X2doV+/furXr5/PK2rcuLHq1q3r83wAAODiVmF9Rjp16qQmTZrotttu05o1azyWzcrKktVqdfoDAAAXp3IPI02aNNHkyZP1008/6aefflJYWJh69+6tzZs3u50nIiJCwcHB9r+wsLDyriYAAJXOpXLXXp9P0/iqTZs2atOmjf1xz549deDAAX366af69ttvXc4zatQojRw50v7YarUSSAAAuEiVexhxpVu3blq9erXb5/39/eXv71+BNQIAoPLhrr3lKDY2Vk2aNDFj1QAAoJLxuWUkPT1d+/fvtz+Oi4tTbGys6tevrxYtWmjUqFE6duyYZsyYIUmaMGGCWrVqpWuvvVaZmZmaMmWKli1bpiVLlpTdqwAAAFWWz2EkJiZGt9xyi/1xQd+OwYMHa/r06Tpx4oTi4+Ptz2dnZ+ull17SsWPHVLt2bXXo0EFLly51WgYAALh0WQzDqPRdda1Wq4KDg5WamqqgoCCzqwMAQIV499ddmromTpJ0aHx/k2vjO2+P39ybBgAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAAAqqUvlRnmEEQAAYCrCCAAAlRQ3ygMAAKgAhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAKqn40xlmV6FCEEYAAKiklv510uwqVAjCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKp/DyKpVq3T33XeradOmslgsmj9/frHzrFixQtdff738/f3VunVrTZ8+vQRVBQAAFyOfw0hGRoY6duyoiRMnelU+Li5O/fv31y233KLY2FiNGDFCTzzxhP744w+fKwsAAC4+1X2doV+/furXr5/X5SdPnqxWrVrp448/liRdc801Wr16tT799FP17dvX19UDAICLTLn3GYmOjlafPn2cpvXt21fR0dFu58nKypLVanX6AwAAF6dyDyMJCQkKCQlxmhYSEiKr1apz5865nCciIkLBwcH2v7CwsPKuJgAAMEmlvJpm1KhRSk1Ntf8dOXLE7CoBAIBy4nOfEV+FhoYqMTHRaVpiYqKCgoJUq1Ytl/P4+/vL39+/vKsGAAAqgXJvGQkPD1dUVJTTtMjISIWHh5f3qgEAQBXgcxhJT09XbGysYmNjJeVfuhsbG6v4+HhJ+adYBg0aZC//zDPP6ODBg3r11Ve1e/duTZo0ST/88INefPHFsnkFAACgSvM5jMTExKhz587q3LmzJGnkyJHq3LmzRo8eLUk6ceKEPZhIUqtWrfT7778rMjJSHTt21Mcff6wpU6ZwWS8AAJAkWQzDMMyuRHGsVquCg4OVmpqqoKAgs6sDAECFaPna7/b/Hxrf38SalIy3x+9KeTUNAAC4dBBGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEgCmiD5zSY9M36sjps2ZXBYDJqptdAQCXpof/s06SlHouRz8929Pk2gAwEy0jAEx1IuWc2VUAYDLCCAAAMBVhBAAAmIowAgAATEUYAWAqw+wKADAdYQQAAJiKMAIAAExFGAFgKoPzNMAljzACAABMRRgBAACmIowAAABTEUYAAICpCCMATGUw0ghwySOMAAAAUxFGAJiKS3sBEEYAAICpCCMAAMBUhBEAAGAqwggAADAVYQSAqei/CoAwAgAATFWiMDJx4kS1bNlSAQEB6t69uzZs2OC27PTp02WxWJz+AgICSlxhAABwcfE5jMyZM0cjR47UmDFjtHnzZnXs2FF9+/bVyZMn3c4TFBSkEydO2P8OHz5cqkoDAICLh89h5JNPPtGTTz6poUOHql27dpo8ebJq166tqVOnup3HYrEoNDTU/hcSElKqSgO4eDDoGQCfwkh2drY2bdqkPn36XFiAn5/69Omj6Ohot/Olp6fr8ssvV1hYmO69917t3LnT43qysrJktVqd/gAAwMXJpzCSnJysvLy8Ii0bISEhSkhIcDlPmzZtNHXqVC1YsEDfffedbDabevbsqaNHj7pdT0REhIKDg+1/YWFhvlQTAABUIeV+NU14eLgGDRqkTp06qVevXvr555/VqFEjffXVV27nGTVqlFJTU+1/R44cKe9qAjAN52mAS111Xwo3bNhQ1apVU2JiotP0xMREhYaGerWMGjVqqHPnztq/f7/bMv7+/vL39/elagAAoIryqWWkZs2a6tKli6KiouzTbDaboqKiFB4e7tUy8vLytH37djVp0sS3mgJAOTqZlqn/rDqo0xnZZlcFuOT41DIiSSNHjtTgwYPVtWtXdevWTRMmTFBGRoaGDh0qSRo0aJCaNWumiIgISdK7776rHj16qHXr1kpJSdFHH32kw4cP64knnijbVwIApfDY9I3accyqFXtP6vsnephdHeCS4nMYeeihh5SUlKTRo0crISFBnTp10uLFi+2dWuPj4+Xnd6HB5cyZM3ryySeVkJCgevXqqUuXLlq7dq3atWtXdq8CAEppx7H8q/bW7D9VbNnjKedUvZpFjQMZwBEoCz6HEUkaPny4hg8f7vK5FStWOD3+9NNP9emnn5ZkNQAuAVVtnJGz2bnqOX6ZJOnguDvl52cxuUZA1ce9aQDAB4nWLPv/86pakgIqKcIIAFNxOAdAGAEAAKYijACADwxOzQBljjACAABMRRgBAACmIowAMFVVPu1RhasOVCqEEQBAlfH9+sNavS/Z7GqgjBFGAJMYhqE/diboyOmzZlcFJWRwYXKF2hJ/Rm/M26FHvllvdlVQxko0AiuA0luyK1FPf7tJknRofH+TawNUfsdTMs2uAsoJLSOASTbEnTa7CpVCVW5boM8IUDYIIwCAKoHTYhcvwghgEm6vBgD5CCOASfiNl49THfCWhQh/0SKMAEAJEaSAskEYKUeGYeihr6L1+PSNZlcFlRAHMgDIx6W95ejI6XNaf/6KicycPAXUqGZyjVDRDMNQxKLdurxBbQ3sfrnZ1UEZo0NlxeL9vnjRMlKOHL84Fk51XpJij6To61UH9ca8HUWe4zNR9TESKFA2CCNAObJm5rp9jtM0+RzvTZNnq1pvylPfblJSWpbZ1QCqPMIIUI5o/PDe0l2JunbMYv2+7YTZVfHJqQzCCFBahBGgHDmeiil8d1rOf+creBeemBGjzBybhs3cbGp9AFQ8wkgFoUm+bK3Zn6x3f92lrNw8s6vikeO4CIt3JJhYk9KLP3VWb83fwY39gDK041iqNh3m1hCEEVRJA6es19Q1cZq25pDZVfHa/NhjZlehVP4xZZ2+XXdYj3LHVKBMGIahuz5frfu/jFbK2Wyzq2MqwshFbtaGeA2aukEZWe47UlZllf1X+sV0xczRM+ckSYdOlfF7TqshLlGO/bWT08smjPzrx216+tuYIqeFKzvCSAUx63Mx6uftWrU3Sd+sjjOnAuWssn7dUs5m68sVB5SQeuGW51Vs34Dzvlkdp6dmxCgnz+by+co+RPmi7Sf0xrztbuuPsnMuO08fL9mjHcdSvSrvHBhKv4PIsxmaE3NEf+xM1MHkjFIvryJd0mFk65EUvTV/h85klH/zmK+dFXPzbBoybYM+XrKnTNZvPZdTJsuBd16cE6sPFu/WS3O32qcZkiYs3atBUzcoJ89WbuHkz31JuveL1frrhLV8VnCJGfvbLi3Zlahftx4v1/Ws3pese79YrV3Hy3a7Pfv9Zn2/Pl4/xBwp0+VWNqv3JZeq70Vunk27jltL1aLw76h9+nzZft31+WqvyjtFkTLeH9AyUoXcO3GNvl13WG//utOr8ifTMrX+4KlyrlW+FXuStGJPkj5ftr9C1ldVVdbv28q9SUWmGYY0Yek+rdqbpMhdieW27ke/2aCtR1P1xH9jym0dl6L0cj7V+cg367X1aKoeK6fbR7gbDyXm0Gl9Grm3SrecTFy+X498s173fxnt8vlT6VnFjgfz0tytuvOzP/XVqoMlrscuH38AOO6/HvwqutSn06taAHF0SYeRAvsS070q131clB76ep3+3Ff0QFMcXz8jWbmudwz7EtP04FfRij7gWyiquh/Ri8mFrZDtZvuWpdMV0OJXnp7+NkYPTF4rWyUZCM2X73Dq2RytO3iqRAeH0xXckfH/TY7Wv6P2aeb6+Apdb1lJTs/SR3+4b0HOzbOpy3tLdcP7S5WZ4/7quwWx+S1fk5ZX3A9AxxbzM2dzNCP6cCmXV3URRnxQsF9Zvd/3IaDL6kPyxIwYbYg7rYf/s8639ZeiApX98tnCcvNsenP+9ko3eFZFH1Or8jgmhmHoj52J2njojPYnefdjobzZfPgS3fnZn/rfr9eV7AoqkzZbXBXrY1CgcGtC4QB41iGAeHPa21KKXueOc/7ixWm9wh+pc9mlbRkp1eymIoxUMYnWzOILlaH3ftulNm8u9rpDVsUr+u37afNRfbcu3tTBs1zt0Hw5mJWFqrJjclVNx7pX9PtWFo6l5F95tGi772PLZLs5XfKfVQf11vwdVbopvqSm/HlQ87Yc9aqsp7fnP3/GKS3Tc/+50lwB5zjvP2dtKbZ84bqW9gdLVf4BQhipIGbvQEr6IZ1y/iqcTyL3ui2z67hVA6es05b4MyVaR1nz5l4h2bk2PTUjRv9de6hM1plozdQvW497PO/u7Y5m+9FU7UlIK3WdHFd3KDlD93yxWou2V67WInfKs2NfSZVVPfJsRonuZ/P+wr/07brD2nIkpWwqUkhZXoY+fU2cJpbR6Y645Ay99/tfenHO1uILq2i4LbzdcvI8b8jSvA2+zlt4v1zaMFFZvislQRgpByfTMl0M/V02vP2wpWfl6rt1F84/lvZD6ilMPfLNeq3Zf0r3TVpbupVUoPmxx7RkV6LG/OJd5+Xi3P7pKv1z1haPl1AXfg+3u2htSj2bo7u/WK2+E1aVKMAeP/+LPH+FF/776o/btO1oqp79vmxaiyJ3JWpBOQ7i5vjay2MHm2cz9M9ZW/T1qgPe18nNdF8P4gOnrNMN7y8tcXg/l125T5vm5tn09q+79NEfe5wubffFN6vj9ND5Dp2pPl4J6O33JtGa6XLZpTpN4+O8VTk8lDXCSBmbEX1I3d6P0uBpG5VrK98dqidvzNuuN+cXvW19SXmqfmk7Su5NTCvx6IOu3ldv3mtXO/SMrNwS7zwLdmrLd590W8bxdEN6Vq42HS56MEpKz3Qo73s9HPsSOf7K8rRD35uYptSzvu3wn5wRoxdmx3p12tAwDMUlZ7g9SLia7jz6Qtl/eVbsOalfth7XuIW7vZ6nJOGw4Ni09UiKvVVq3cH8y0+raofR4jh+bs8W6gMReyRF/117qNj3cuxvu7Q+7rRmRB8uQWtD8c5kZKv7uCh1fGdJkecqtmWk0ONS/2gs3fxmIoyUsdEL8n9pr9qbpLd8CANLdibow8W7i71ywNtbrC/ZWbaXjpZX58vdCVbd/ukqdX1vafmswI0a1Yp+9Lu9v1Q9IqKcWxfOO5OR7dXByFMRm8MZHHfhwPGXlbfb2tFhh9FRvZl9x7FU3f7pKnUbV7L335tfrf+O2qdb/m+Fxi/25cDv+v/FWbIzQVvPn8bIzMnTDxuP6GShwJRozSzRZbol2dEXzHPvxDV69vvN2nn8QmtYeR03Snr1kavB20qyLE99fAZMXKMxv+zUQi/70uxLTCt0s8ni5/GmzF8JFy7B/X698xUsp0rx48rXRpWybkGnzwhcWut4+W0xn5Gnvt2kSSsO6I+dCeeLF51hzf5kp9YWT4qcizQMzdoQrxfnxCq3BOMJlFefl9X78q9MyrUZuuvzP4scOErCmx1C9WpFC2Wcby2JWOR80Fy0/YQ6j43U2N/+Kna5nnYGeV68h461qoiOmwXjobi7lLwsTFi6T5L01Urvx29w9T6mns3R/V+u1bfrXF/+uDcxTU99u0n3Tlyjv05Y9dEfe/TqT9s0YOIae5lfth5X93FRGvXzdh9fRdns6B2vWCmPzTtnY7w6vrukRIN/Ff7ebD2Sok7vLnE63esNx9dVEK4L7z/2nfSuT9TPW445hSTH70Svj5Zr0or9RfpXFdlOhR8ahtMy35i3w2Nfr4ysXJ1M83a/5H0aOZiUXmRMmdJ+52kZgSRpqYeBrLzdkZ3wcJrg+UK9s3/efNTr86mG8oeGn7flmFeXnFUUxy/PjmNWfbC46KV387YcdXlKQ5JmbzyiU+nedQbck5Cm/p/9qai/ElXdz3mn4Xia6Netx7UnIU0z18fr5blbNfa3XZKkqWvc9wcp4Ckregp0S3Ym6K35O5xaQ0q/Y6oae6birqYp+P+XKw9o0+EzblscDzkc6F+cE6ulf+V/H487fKc+OX9p59kS9LsYt3C3IhYVH0gr2oLYY/bw8a+ftistM1fDvi/+So7CCh9GX5wTK2tmrs+nex0/t4Zh6KQ1U93GRelDh5YxxzAwbU2cXp+33e3n1V3LyOFTZ/Xh4j166ttNTuULL8abfW+39923DF4/NlLd3o/yqtOxY12L+1H09LebtPGQ836t1IOelWpucxFGysiZjGw9McPziJebDp/Wr1uPa/vRVN3+6UqX/QtSfOisNfKHrXr2u00unyvc5Oo4mE5JhoavqOPauZzc8+sz9J9VB/X1qgN6cc5W3f/lhc6xhcPHe797d4B47vtN2nncqsf/G1NkR/E/hTrfxiVn6PV52/XjpqNOB7PiFOxQXe2HPAWVp77dpG/XHdasDReG7C7JaRqnupRq7sqj4GDiy47aXUuPL+9Jdq5N/f79p9O0r1Ye9PiD4cdNRzV02ga3zzuFrDLYQtuPpuqF2bFFRh4tybILfydKWrvCLYCTVhxQUlqWJq1w3Vn4nV93aeb6eEW7Gd3aMQR4850oEkZczFL4tZ7x0Geq4LO02YsOxxY3/y/g2CpdcONJR9+ti7dfFl4SzoGuct8zqTDCiKRDpzwP9pOelevUEevrVQeLDARmLebadcOQ7v8yWs/P2qK7v1itvYnpGupi2OfPovbZyxfm6qO11s1IrN7sjE6lZ3nd+dSXX+l5NkNb4s+UaJTRgtUs3J6g9xf+5bKD4fI9ziPgetvpNPXchW3oV2hvVPSmUsW/3nPZeTp6xvkOttZM951g3bXuONqbeKHJudRjDjg1l3s3z/I9J7Xfyyb08vTnvqIDC/pyPj6/Kb50Vu1Ncnl/n8KjeBasJys3Ty/P3er0+VyyK1EH3A3a5rB9dieU7H40h0+73neV5MdDaa4icVq3w9c+PSvXZYuHq1WlZ7oOm44twt6c6ix6uWzhdZfs1oZPf7tJB30YgK/w+/lDzBG1eWuxx07ukvRLbOVpua5IhBHlN9n+ts31ByArN0/tx/yha8f8YZ9mGEXPfxf38S7NceXz8wHFkzybockrD2j7Ue8GJ8vOzR8i+fqxkV7dk8KXndvHS/bovklr9eqPxY8L4C40xSW7/9IX7lTnzT7UZjOU7OZ0jqud5TPfFX8J7N8/XqG/fbDcKUDsP5muHhFRxfbtcTd8tWPorehh0LceSdHQaRvV55NVkqS5MUf04FfRpgwr73jZsKfP3up9yS7Dk80ofcuQuwDurj6FW9cKDPrGfUtJgTfnOZ8KOXwqw6vt726/U5LX7rik/SfTnPq3/LkvqdiRmBOtmZq9IV4/bb4wONk9X6xxWdZVrd3V2bGzsTenHjcfTnF6XHg7bog7XWzwcvfe//3jlR7nczpNI+nb6EP2y/1f/XGb8mxGsS3opcmEZdsdtmIRRs6b6mZ8iMTU/ANY4e/AtqMpPi3fl/P3+xKdd64fexhwTMo/RTTlz4Mav2i37v5itdYeSC42PDj2NSn8i6Sgro7Nhd42+2bm5NmbY+e7SfhZuXm6899/qtdHy326tLJA4V9HRZqXXVT1v9GHnB47toz4csz/PGqfRi/IHwWzoLm+oG9CWdgcn2L/vze/AiXp2e82afDUDR5bNAovauOh0+oxLsreYVpyvsnXlD8P6pUft+XfeuDrdRr5Q6yHZRtFPt9ZuXkyDEPxp866mct93STpN4eh/Auedgx4yelZ2nT4jB75Zr09PDkt083n1ZdQ7a6ou5Cy083ddp2/R66XX3iJvT5aoX/Odt3vw+lUgJsDl6sqTli6T2mZOYo+cMr1wdZhWYVDxKPfbNBj0zdqxOwtLluLsnLz1H1clF77ebvePd/Hyl4X11V0UWdDeTbD44+j17zoePzIN+udHheu74a44jv3njnfh8zVWDCeBg50DIe5NkNvLdipsb/tcjq1XNyppoLubIZh+HzJveN2/6OYKyp3Hbfq4a/XedViWxEII+c5HgQc+bl5hwp/2Uf/UnZjetz2adGdq+R+x7Px0GltPHThC/aP/6x3XdCBu531lysOqEdElI6cPqsbxy+zT/f2gN32rcUup6/el6xvVsfJMAwt352kXSesTpehesOamaM+n6zUB4UuEfWzWJSbZ9Oy3YmaujrO5fnfaWsOOT12bGr35RTUx5F7NSP6sPadvNBy4+rcb1nwpl5ns3O1aEeCVu5NcnlQdueJ/8YowZqpbW5a0hz74exJTNPPm10PcGYY0n2T1uqhr9bZA8nKvUlq8+Zi9YiI0s0fLXcqH7kr0enyVm+czsjSqz9udRqXo+t7S536ERVmK+XFQQ9MXut1v5OjJTzH7xjgXH21nQKZF58Fx+9rQfnCB74Hv1qnh/+zTt9vKDrGiePpA1cdfNfsP6X5scedrk4qMGaBb4MH7kksGpxnRB/Wla8v1A0eOpOW5PTTi3NinR7bDKPYcY0+PN+R3tVAjo4DBzqeil61N0mLd7q+ZDnTh1PWBYFm5A9b1fHdouOgeOTw/sQc8hy6Hv1mvaIPnvL4PapI1c2uQGVXzc99M+gvW4/rP6sOatLA67Vij+c7+S7a4fs9Khx5ujeMqybHYpv6HD60exPT9NPmo/rnrVfZD/T/V+iGUsdKecAt+LXSNjTQ40HW085m5vp47T/p+vTN/y3Zq8kr3Y+mWXg7OpYtSUfRVXsvbO/yGryq8AF1d0J+gLu9XYjDJZOel7H9aKquax5cZHppO8cWOJF6TrHnx/VIy8pVUEANvTI3//RcorXoabEnzzdRHxrf/0JdDMPj8PfPfrfZq0uPHTtA5h+MLU6P/9yX7PW9nTYeOuP29FThYDB02kaNu+86r5brLlTEuPl1uunwaXW5vL7TjwHHJTh+rF21wBRuFSh4/PPmo3q0x+U67NBfbq+Xdy93tS1mbzziouT5urhp+friH87TCvq/pfjYGuBKZk6eAmpUO/9/5/pOX3tI04u5DUT8ac8/lKyZOZryZ5w+i9qnzx/urJuuaqhBUz11XPb++1aw7563xfcRjh1/ZBZ3Kqo046mUB8JIMQp3dCxgGIb9RkhvLSi+VcTd5XG7jluLDLojFf31NcvFL5kCrm6LXfgL6Gn5D32dP2rnDzEXzvUW/u4cSzmnpLQsNQr097jc4up39MxZBQbUKHaelXuLhjt346NYLBa3QSQtM0f/nLWlyB1JHa+IKMmoq8uK6YRWFnYcS1VocID98R0T8q/sqF2zmna9e4dXy7j7i9U6NL5/kQBYw8U4K6Xt9FjQ9H/Si0sg73X4dZ2da1PfCe5bdbwdA8Wx9cuQ8+tZsitRT3/r+sozdw4kue4c6irHFQ7v7mw94tugZ/d/Ga0D4+70cDBzv3/ypGBbZWSVbGj5CUv3qmlwLXUIC1bb0CCPZd21wt768QpFvdS7ROsvTtu3Fuvhbi30XO8rS3SJfHGnSDu8faHFovCQC64UXlzModM652K/LXkOEYeSM7Q7IU19rw1xWc75knhDE5fv1xUNL1O/65robHauatesvIf8yluzSsLdZ9JxcmmuDb/zsz9dTi98x0dPP2S9+TI4Sk7PLnZ8ElcNQjuPp6p7qwYKqOHnU8/768dG2v9vkaXYq2xmb4gvcv29lN/64Uqyh4PfdW+7buas5lD/wue4veHuKqay9MSMGG18o48aBfo7BSbHJnRvxowZv2i302klSaruYgTaknA86HV6N1Ijb7vaq/m2lvHN3gpf4l74AORrEPHkORf39/H2l6/jWDULYo8rIytPdfyreZznXE6e/Ktf2F5e9Rk5/6+7Tqdbj6aW6h43BQPZSc6tXK64OxV4ICnD532XL2ZtiFfModMlCiNl3Xl8caGW8f83OdpNSc8X5Pb+vxWSpKlDuurvbUOKPO9Y602Hz9iv7AquVUOp53L0QJfm+uiBjt5Wu0IRRgrJzrUpz2Zo5/FU/b/J0bqxdQOX5RxPy5TVJXGeGIah5PSyaVb7Yvl+fVHMHTVdjXey9UiqnvhvjAZ0bqYP7++gL1ceUNfL63lczks/bHU+/2yRRhQ6h+to8c4Et+dd3dnlokNdcRw3WUW0cpTUDe8v1Z+v3qKbPnTue7EnIU1b4s94NZJo4Vaj2RviXQ7gVFzTtCu5he6A6unuzuWp8GlQV6eI3Pl92wlNWFq6ensap8ITbzo/9/5ohda+9nf746xcW/6lyx4uUU05m6M3529329dHkp6ftVm7CnW6nbh8vy6r6Tkc+cpdGJHyBxgsT4VDuLdiDp9RZ1/7a3jw/kLvB8v7ZnWcUx9AV7bEp7gOIw7By+pwYULBj8+5m45qUHhLl6duzUYYcfDz5qMa+YPz5ahr9hf/C9ib3tml5emcbHlw1Qfm0/M77B83HVXTurXsY6J44niZn6QiOz+zWN2MaVAZFQ4ikvTVqgMeDzSeuLsiwVOfG3cq02i+JTVsZtncybi8JKdn6RWHy+SHTt+onlc20J3XNdHXq9wPsf/dOs99mZb+VTSEu7vk3BNPd6quykoaMEvrWMo5nwc+y8rN0/fr4r0KGcdSzhFGKrvCQQTueRNEXCmu4xi8U9IgUtYuhjBSFSwodJn82gOnKuRUoTfGluA0J0rHMPI7p7duXEc1qln01cqDXrdKZuXmleoUXXkhjAAAUIU4nmqvUc2inDzv+7i8MDu2yLRz2XmqVcan53zFOCMAAFRRvgQRd75ZfdCHOxOXD8IIAACXsP9bslfd3o8ytQ6EEQAAYCrCCAAAKLORmUuCMAIAAJzukFzRShRGJk6cqJYtWyogIEDdu3fXhg2eb5E9d+5ctW3bVgEBAbruuuu0cOHCElW2rL11VzuPz//vDWEVVBMAuGD0Xe204uXe2j3Wu2H/kW9Uv7almn/svdeWUU1K5vOHO5u6/jkby+c+W97wOYzMmTNHI0eO1JgxY7R582Z17NhRffv21cmTrkexXLt2rR5++GE9/vjj2rJliwYMGKABAwZox46yu8ttST3+t1Y6OO5OjbvvOs17rqc2v3WbBodfrrWv/V2HxvfX+Ps76POHO+uLf3TWoz0ut893eYPaWvFybz3+t1a6tqnzfRlev/PCl6H/dU30j+4t1LJBbc0fdqM6htX1WJ/wKxqocaC/hvRsqad7XeH03PdPdNetbRtLktqEBGrsgPbq36GJy+W82f8aLfznTUWmz3qyhx67sZXHOhRn2Uu9NKRnS6f3Q5L+1rqhJj/SRT2vdD1iraPOLepq8iPXKzQoQFeH1CnyfHEh0RtP33xF8YVc+NcdbXVofH9tfKOP3hvQXktH3qwD4+7U8pd7q881jb1axog+VxWZVvh9v7xBbfv/P3mwo74ceL3e7H+N/nr3Ds18orv2vtdP296+XVc0vExDerZ0e1DqcUV9j3X5dfjf9P0T3Z2mrX/9Vu157w61DQ0sMuz/tKE3aNe7fRUXcWeR52JH36bY0bfp93/+TePuu05j7m6n29uFqGlwgG5oeWEk3uLep8aB/prxWDd99WgX+7QmDvfgkaR7OjbVn6/eorahgfZpy17qpZ3v9NU9HZvqno5NPa5DkmY81k2SdFXjOnrjzmuKPH9f52aaOqRrscvp0DxYD3Ztro1v9NHA7i30n0Fd1a5J0fuxzHyyuwZ2b+FyGTdd1VAHxt2pmU921/N/b+12Xc3q1tLt7UI09MaWatnwMgXUqKad7/R1GhX1rg5NNKRnS3VuUVcv3Fr0s+bo3k5N9Wb/a4p8fgL980d1CAy4MLrD8Fta66rGzt/HxSNuUuzo21wuu2PzYPW/roneueda7R57h+Ii7tTQG1t6rE+BmtX8VP+ymvbHfhbp28e7uSw756keTq9z9F3tNPeZcL3Z33mbxrzZR0/3ulKLR9zk9LreuedaHRx3p6YO6arY0bdp+cu9dV/nZmpwWU1NHdJVD3Rpbi/b5fIL36dOYXWLjMBdeL/3St82Rer7XO8r7f//1x3uw9GKl3urYR3/8+utp++f6K67OzbVlrdu04JhN2rVK7e4nbe8DApvWeHrLGAxfLmdoKTu3bvrhhtu0BdffCFJstlsCgsL0/PPP6/XXnutSPmHHnpIGRkZ+u233+zTevTooU6dOmny5Mku15GVlaWsrAvDOVutVoWFhSk1NVVBQZ5vymSGuOQMvf/7LvW4ooGeuOkKZefaVN3PIr9Ce/MVe05qyLSNkqTlL/dWzKHT+mNngj57uLPLGxjZbIYsFs/DzVszcxRQvZq2H0vR/V9Gy2KRYt+6XcG1a+hMRrb+HbXPPtBYwT0kzmXn6Z1fd+qBrmEKrlVDfT5ZqcmPdNEd7UMl5Q8dbLHk77AK1r3/ZLrq1q5h//JI0umMbB0+laHQ4AA1Ca7lVK88m6F3ft2p+VuOyZqZq3/+vbUOJGVo3P9cp+BaRW+UF7HwLy3Zlah5z/VU3do1ZRiGzuXknX9tqWoTGqiAGtW09UiKov5K1HO3tFaezVBaZq4aBfrri2X71aRugHLybLr5qkbaeTxVz3yXP7LmP7q30Ig+V2n3iTRNXnnAPljUpjf7qG7tmoo9ckbV/fy072S6/qdzsyLbrbDlu09q38k0DQpvqRrV/LTu4Cm9++su7UlM05+v3qKw+rW19UiKftp8VD2vbCDruVy1axqkuz5fLUnaPfYO+Vf30+b4M2pwmb9aNrzM4/oc5eTZlJtnaNKK/bq9Xaiuax4swzC09Wiq2oQEKqCGn1qNym95fP7vrfXS7fk7y7G/7dK0NXHa9nZf1fF3/qydycjW6v3JuvnqRkW2zemMbK3Zn6xWDS9T+2bej9qYmZOntm8tliQ9dfMVGnZLa82NOaIW9Wvr9mtDi5RPSM3U0Okb9dcJq1O9z2RkK/70WbdB/mx2rqatOaS+14Yo/vRZ/Ttqv57tdYXahAapVcPLdNKaqQZ1/FXNz6LDpzL0Q8wR9biiga5vUU+XnX8f0jJzVMe/unJthtYfPK3rL6+r9Kxc/d8fe/SP7perk5t1b4g7rdRzOWoTEqgWDuFSyh+We+6mo3pr/g799GzPIu9dWmaOjpw+p3ZNy25/tu7gKdXxr66cPJtW70vW5Q0vcwptkbsS9fu24xo7oL3TzSoLhpYvsPZAsrbEp+i53lfap6/am6Ttx1L1XO8rZRjS7oQ0tQkNdHlX8+/XH1ZgQA37un/adFQxh8/ovQHtVc3PIpvNUK7NUHU/S5H925gFO/Tf6MN6s/816taqvurVrqmw+rWVnWtT1F+J6n5FA6cQs3JvkgZP3aArGl2mZYVuupeelaujZ866vZFfwes2DMP+ndn5Tl/VqlGtSL2OnD6r1HM5at8sWNm5Nu04nqqT1kzd0b6JDMPQgElrtfVIiobf0lov3X61Jq04oKtDAnVbuxAdSzmncQv/UkhggB7p0UIfLt6jwT1bKvzKBvbbj3ga46Pla7+7fa4sTRnUVX3aFR1ivrSsVquCg4OLPX77FEays7NVu3Zt/fjjjxowYIB9+uDBg5WSkqIFCxYUmadFixYaOXKkRowYYZ82ZswYzZ8/X1u3uh7x9O2339Y777xTZHplDSO+OJScoaZ1a6lm9bLvrmOzGcrOs9lvnV1g29EUBQbUUCsfDnplyYwBdQzD0E+bj+m6ZsFq4/DrWpIOJqXrbHaeTwfXsrB0V6Ka1q1VpgcgdwofYMyQmZOnk9asIgdqTyr7nUV9VRm2Q1VisxmKO5WhKxpe5vX7dtKaqbq1a5Zqn5pyNlvZeTY1DgwovrAbeTbDZTgrreW7T2ro9I1lvtzClo68Wa0bBxZf0EfehhGftl5ycrLy8vIUEuKcnkJCQpSQ4PrmZgkJCT6Vl6RRo0YpNTXV/nfkSMXel6U8tWx4WbkEEUny87MUCSKS1KF5XdOCiCRTRvazWCz6f12aFwkiknRFozoVHkQkqU+7kAoJIlLF3LyxOAE1qvkURCRdVEFEqhzboSrx87PoykZ1fHrfGgcFlHqfWrd2zVIFEUnlEkQk6Za2jfXE3/JP8/697YVToH9r3VCSdPPVjbTmtb/rhVuvUmhQgL56tIue7nWFrmkSpIe7hSn8igZqUb+27urQRAE1/HSXw+n9q0PqaMzd7TTxH9eXSxDxRaX85vv7+8vf37/4ggAAXOTevKud3iymL92Lt12tF2+7WpLU99pQjernvuwX/yjL2pUNn+Jkw4YNVa1aNSUmOt/2OjExUaGhRc8DS1JoaKhP5QEAwKXFpzBSs2ZNdenSRVFRF4aNtdlsioqKUnh4uMt5wsPDncpLUmRkpNvyAADg0uLzaZqRI0dq8ODB6tq1q7p166YJEyYoIyNDQ4cOlSQNGjRIzZo1U0REhCTphRdeUK9evfTxxx+rf//+mj17tmJiYvT111+X7SsBAABVks9h5KGHHlJSUpJGjx6thIQEderUSYsXL7Z3Uo2Pj5ef34UGl549e2rmzJl688039frrr+uqq67S/Pnz1b59+7J7FQAAoMryeZwRM3h7aRAAAKg8yuXSXgAAgLJGGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmKpS3rW3sIJx2axWq8k1AQAA3io4bhc3vmqVCCNpaWmSpLCwMJNrAgAAfJWWlqbg4GC3z1eJ4eBtNpuOHz+uwMBAWSyWMluu1WpVWFiYjhw5wjDzJmI7VA5sh8qB7VA5sB3KhmEYSktLU9OmTZ3uW1dYlWgZ8fPzU/Pmzctt+UFBQXzYKgG2Q+XAdqgc2A6VA9uh9Dy1iBSgAysAADAVYQQAAJjqkg4j/v7+GjNmjPz9/c2uyiWN7VA5sB0qB7ZD5cB2qFhVogMrAAC4eF3SLSMAAMB8hBEAAGAqwggAADAVYQQAAJiKMAIAAEx1SYeRiRMnqmXLlgoICFD37t21YcMGs6tUZa1atUp33323mjZtKovFovnz5zs9bxiGRo8erSZNmqhWrVrq06eP9u3b51Tm9OnTGjhwoIKCglS3bl09/vjjSk9Pdyqzbds23XTTTQoICFBYWJg+/PDD8n5pVUpERIRuuOEGBQYGqnHjxhowYID27NnjVCYzM1PDhg1TgwYNVKdOHd1///1KTEx0KhMfH6/+/furdu3aaty4sV555RXl5uY6lVmxYoWuv/56+fv7q3Xr1po+fXp5v7wq48svv1SHDh3so3eGh4dr0aJF9ufZBuYYP368LBaLRowYYZ/GtqgkjEvU7NmzjZo1axpTp041du7caTz55JNG3bp1jcTERLOrViUtXLjQeOONN4yff/7ZkGTMmzfP6fnx48cbwcHBxvz5842tW7ca99xzj9GqVSvj3Llz9jJ33HGH0bFjR2PdunXGn3/+abRu3dp4+OGH7c+npqYaISEhxsCBA40dO3YYs2bNMmrVqmV89dVXFfUyK72+ffsa06ZNM3bs2GHExsYad955p9GiRQsjPT3dXuaZZ54xwsLCjKioKCMmJsbo0aOH0bNnT/vzubm5Rvv27Y0+ffoYW7ZsMRYuXGg0bNjQGDVqlL3MwYMHjdq1axsjR440du3aZXz++edGtWrVjMWLF1fo662sfvnlF+P333839u7da+zZs8d4/fXXjRo1ahg7duwwDINtYIYNGzYYLVu2NDp06GC88MIL9ulsi8rhkg0j3bp1M4YNG2Z/nJeXZzRt2tSIiIgwsVYXh8JhxGazGaGhocZHH31kn5aSkmL4+/sbs2bNMgzDMHbt2mVIMjZu3Ggvs2jRIsNisRjHjh0zDMMwJk2aZNSrV8/Iysqyl/nXv/5ltGnTppxfUdV18uRJQ5KxcuVKwzDy3/caNWoYc+fOtZf566+/DElGdHS0YRj5wdLPz89ISEiwl/nyyy+NoKAg+3v/6quvGtdee63Tuh566CGjb9++5f2Sqqx69eoZU6ZMYRuYIC0tzbjqqquMyMhIo1evXvYwwraoPC7J0zTZ2dnatGmT+vTpY5/m5+enPn36KDo62sSaXZzi4uKUkJDg9H4HBwere/fu9vc7OjpadevWVdeuXe1l+vTpIz8/P61fv95e5uabb1bNmjXtZfr27as9e/bozJkzFfRqqpbU1FRJUv369SVJmzZtUk5OjtO2aNu2rVq0aOG0La677jqFhITYy/Tt21dWq1U7d+60l3FcRkEZvj9F5eXlafbs2crIyFB4eDjbwATDhg1T//79i7xfbIvKo0rctbesJScnKy8vz+nDJUkhISHavXu3SbW6eCUkJEiSy/e74LmEhAQ1btzY6fnq1aurfv36TmVatWpVZBkFz9WrV69c6l9V2Ww2jRgxQjfeeKPat28vKf99qlmzpurWretUtvC2cLWtCp7zVMZqtercuXOqVatWebykKmX79u0KDw9XZmam6tSpo3nz5qldu3aKjY1lG1Sg2bNna/Pmzdq4cWOR5/g+VB6XZBgBLgXDhg3Tjh07tHr1arOrcklq06aNYmNjlZqaqh9//FGDBw/WypUrza7WJeXIkSN64YUXFBkZqYCAALOrAw8uydM0DRs2VLVq1Yr0mE5MTFRoaKhJtbp4Fbynnt7v0NBQnTx50un53NxcnT592qmMq2U4rgP5hg8frt9++03Lly9X8+bN7dNDQ0OVnZ2tlJQUp/KFt0Vx77O7MkFBQfwKPK9mzZpq3bq1unTpooiICHXs2FH//ve/2QYVaNOmTTp58qSuv/56Va9eXdWrV9fKlSv12WefqXr16goJCWFbVBKXZBipWbOmunTpoqioKPs0m82mqKgohYeHm1izi1OrVq0UGhrq9H5brVatX7/e/n6Hh4crJSVFmzZtspdZtmyZbDabunfvbi+zatUq5eTk2MtERkaqTZs2nKI5zzAMDR8+XPPmzdOyZcuKnNbq0qWLatSo4bQt9uzZo/j4eKdtsX37dqdwGBkZqaCgILVr185exnEZBWX4/rhns9mUlZXFNqhAt956q7Zv367Y2Fj7X9euXTVw4ED7/9kWlYTZPWjNMnv2bMPf39+YPn26sWvXLuOpp54y6tat69RjGt5LS0sztmzZYmzZssWQZHzyySfGli1bjMOHDxuGkX9pb926dY0FCxYY27ZtM+69916Xl/Z27tzZWL9+vbF69Wrjqquucrq0NyUlxQgJCTEeffRRY8eOHcbs2bON2rVrc2mvg2effdYIDg42VqxYYZw4ccL+d/bsWXuZZ555xmjRooWxbNkyIyYmxggPDzfCw8Ptzxdcynj77bcbsbGxxuLFi41GjRq5vJTxlVdeMf766y9j4sSJXMro4LXXXjNWrlxpxMXFGdu2bTNee+01w2KxGEuWLDEMg21gJseraQyDbVFZXLJhxDAM4/PPPzdatGhh1KxZ0+jWrZuxbt06s6tUZS1fvtyQVORv8ODBhmHkX9771ltvGSEhIYa/v79x6623Gnv27HFaxqlTp4yHH37YqFOnjhEUFGQMHTrUSEtLcyqzdetW429/+5vh7+9vNGvWzBg/fnxFvcQqwdU2kGRMmzbNXubcuXPGc889Z9SrV8+oXbu2cd999xknTpxwWs6hQ4eMfv36GbVq1TIaNmxovPTSS0ZOTo5TmeXLlxudOnUyatasaVxxxRVO67jUPfbYY8bll19u1KxZ02jUqJFx66232oOIYbANzFQ4jLAtKgeLYRiGOW0yAAAAl2ifEQAAUHkQRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVP8fq6hDPWW3sxAAAAAASUVORK5CYII=", 632 | "text/plain": [ 633 | "
" 634 | ] 635 | }, 636 | "metadata": {}, 637 | "output_type": "display_data" 638 | } 639 | ], 640 | "source": [ 641 | "data['price'].plot(title='price Range')" 642 | ] 643 | }, 644 | { 645 | "cell_type": "code", 646 | "execution_count": 13, 647 | "id": "a67df3de", 648 | "metadata": { 649 | "execution": { 650 | "iopub.execute_input": "2022-11-05T08:25:30.632224Z", 651 | "iopub.status.busy": "2022-11-05T08:25:30.631444Z", 652 | "iopub.status.idle": "2022-11-05T08:25:30.638410Z", 653 | "shell.execute_reply": "2022-11-05T08:25:30.637266Z" 654 | }, 655 | "papermill": { 656 | "duration": 0.023171, 657 | "end_time": "2022-11-05T08:25:30.640841", 658 | "exception": false, 659 | "start_time": "2022-11-05T08:25:30.617670", 660 | "status": "completed" 661 | }, 662 | "tags": [] 663 | }, 664 | "outputs": [ 665 | { 666 | "data": { 667 | "text/plain": [ 668 | "551962.9754347826" 669 | ] 670 | }, 671 | "execution_count": 13, 672 | "metadata": {}, 673 | "output_type": "execute_result" 674 | } 675 | ], 676 | "source": [ 677 | "np.mean(data['price'])" 678 | ] 679 | }, 680 | { 681 | "cell_type": "code", 682 | "execution_count": 14, 683 | "id": "e93dadf9", 684 | "metadata": { 685 | "execution": { 686 | "iopub.execute_input": "2022-11-05T08:25:30.667111Z", 687 | "iopub.status.busy": "2022-11-05T08:25:30.666605Z", 688 | "iopub.status.idle": "2022-11-05T08:25:30.861896Z", 689 | "shell.execute_reply": "2022-11-05T08:25:30.860676Z" 690 | }, 691 | "papermill": { 692 | "duration": 0.21127, 693 | "end_time": "2022-11-05T08:25:30.864446", 694 | "exception": false, 695 | "start_time": "2022-11-05T08:25:30.653176", 696 | "status": "completed" 697 | }, 698 | "tags": [] 699 | }, 700 | "outputs": [ 701 | { 702 | "data": { 703 | "text/plain": [ 704 | "" 705 | ] 706 | }, 707 | "execution_count": 14, 708 | "metadata": {}, 709 | "output_type": "execute_result" 710 | }, 711 | { 712 | "data": { 713 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlFklEQVR4nO3df3BU9b3/8dcmkCVIdmOEZJMSIooC4ZfXQHEvmuHXTUB0ZEpVlArUFEZvQgdjIc1cifzovbkFwV9F0PZidC5cwVoQgw3EIOGKATW3KT/EDHDphA5soECyECEJyd4/+uV8XYOoIcnZ8Hk+ZnaGc84nZ9+nk5Znd88ujkAgEBAAAIDBwuweAAAAwG4EEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACM18XuATqD5uZmHT9+XFFRUXI4HHaPAwAAvoNAIKBz584pISFBYWFXfw2IIPoOjh8/rsTERLvHAAAArXDs2DH17t37qmsIou8gKipK0t//A3W5XDZPAwAAvgu/36/ExETr7/GrIYi+g8tvk7lcLoIIAIBO5rvc7sJN1QAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjNfF7gFMkjLvTbtHQAgpXzbd7hEAAP8PrxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwnq1BlJ+frxEjRigqKkqxsbGaPHmyKisrg9aMHj1aDocj6PHEE08EramqqtKkSZPUvXt3xcbGat68ebp06VLQmh07dujOO++U0+lUv379VFBQ0N6XBwAAOglbg6i0tFSZmZnavXu3iouL1djYqLS0NNXV1QWtmzVrlk6cOGE9li5dah1ramrSpEmT1NDQoI8//lhvvPGGCgoKlJeXZ605evSoJk2apDFjxqiiokJz587Vz372M23durXDrhUAAIQuW/+1+6KioqDtgoICxcbGqry8XKmpqdb+7t27y+PxXPEc27Zt0+eff64PPvhAcXFxuuOOO7RkyRLl5ORo4cKFioiI0OrVq9W3b18tX75ckjRw4EB99NFHev7555Went5+FwgAADqFkLqHqLa2VpIUExMTtH/t2rXq2bOnBg8erNzcXH355ZfWsbKyMg0ZMkRxcXHWvvT0dPn9fh04cMBaM378+KBzpqenq6ys7Ipz1NfXy+/3Bz0AAMD1y9ZXiL6qublZc+fO1ahRozR48GBr/6OPPqqkpCQlJCRo7969ysnJUWVlpf7whz9Iknw+X1AMSbK2fT7fVdf4/X5duHBBkZGRQcfy8/O1aNGiNr9GAAAQmkImiDIzM7V//3599NFHQftnz55t/XnIkCGKj4/XuHHjdOTIEd16663tMktubq6ys7Otbb/fr8TExHZ5LgAAYL+QeMssKytLhYWF+vDDD9W7d++rrh05cqQk6fDhw5Ikj8ej6urqoDWXty/fd/RNa1wuV4tXhyTJ6XTK5XIFPQAAwPXL1iAKBALKysrSxo0btX37dvXt2/dbf6aiokKSFB8fL0nyer3at2+fTp48aa0pLi6Wy+VScnKytaakpCToPMXFxfJ6vW10JQAAoDOzNYgyMzP1n//5n1q3bp2ioqLk8/nk8/l04cIFSdKRI0e0ZMkSlZeX6y9/+Ys2b96s6dOnKzU1VUOHDpUkpaWlKTk5WY899pj+/Oc/a+vWrXrmmWeUmZkpp9MpSXriiSf0v//7v5o/f76++OILvfLKK9qwYYOeeuop264dAACEDluDaNWqVaqtrdXo0aMVHx9vPdavXy9JioiI0AcffKC0tDQNGDBATz/9tKZMmaL33nvPOkd4eLgKCwsVHh4ur9ern/zkJ5o+fboWL15srenbt6+2bNmi4uJiDRs2TMuXL9fvfvc7PnIPAAAkSY5AIBCwe4hQ5/f75Xa7VVtbe033E6XMe7MNp0JnV75sut0jAMB17fv8/R0SN1UDAADYiSACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDxbgyg/P18jRoxQVFSUYmNjNXnyZFVWVgatuXjxojIzM3XTTTepR48emjJliqqrq4PWVFVVadKkSerevbtiY2M1b948Xbp0KWjNjh07dOedd8rpdKpfv34qKCho78sDAACdhK1BVFpaqszMTO3evVvFxcVqbGxUWlqa6urqrDVPPfWU3nvvPb399tsqLS3V8ePH9aMf/cg63tTUpEmTJqmhoUEff/yx3njjDRUUFCgvL89ac/ToUU2aNEljxoxRRUWF5s6dq5/97GfaunVrh14vAAAITY5AIBCwe4jLTp06pdjYWJWWlio1NVW1tbXq1auX1q1bpx//+MeSpC+++EIDBw5UWVmZ7rrrLv3xj3/Ufffdp+PHjysuLk6StHr1auXk5OjUqVOKiIhQTk6OtmzZov3791vPNXXqVNXU1KioqOhb5/L7/XK73aqtrZXL5Wr19aXMe7PVP4vrT/my6XaPAADXte/z93dI3UNUW1srSYqJiZEklZeXq7GxUePHj7fWDBgwQH369FFZWZkkqaysTEOGDLFiSJLS09Pl9/t14MABa81Xz3F5zeVzfF19fb38fn/QAwAAXL9CJoiam5s1d+5cjRo1SoMHD5Yk+Xw+RUREKDo6OmhtXFycfD6ftearMXT5+OVjV1vj9/t14cKFFrPk5+fL7XZbj8TExDa5RgAAEJpCJogyMzO1f/9+vfXWW3aPotzcXNXW1lqPY8eO2T0SAABoR13sHkCSsrKyVFhYqJ07d6p3797Wfo/Ho4aGBtXU1AS9SlRdXS2Px2Ot+eSTT4LOd/lTaF9d8/VPplVXV8vlcikyMrLFPE6nU06ns02uDQAAhD5bXyEKBALKysrSxo0btX37dvXt2zfoeEpKirp27aqSkhJrX2VlpaqqquT1eiVJXq9X+/bt08mTJ601xcXFcrlcSk5OttZ89RyX11w+BwAAMJutrxBlZmZq3bp1evfddxUVFWXd8+N2uxUZGSm3262MjAxlZ2crJiZGLpdLc+bMkdfr1V133SVJSktLU3Jysh577DEtXbpUPp9PzzzzjDIzM61XeZ544gn95je/0fz58/X4449r+/bt2rBhg7Zs2WLbtQMAgNBh6ytEq1atUm1trUaPHq34+HjrsX79emvN888/r/vuu09TpkxRamqqPB6P/vCHP1jHw8PDVVhYqPDwcHm9Xv3kJz/R9OnTtXjxYmtN3759tWXLFhUXF2vYsGFavny5fve73yk9Pb1DrxcAAISmkPoeolDF9xChPfA9RADQvjrt9xABAADYgSACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYr4vdAwCwT9XiIXaPgBDTJ2+f3SMAtuAVIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYz9Yg2rlzp+6//34lJCTI4XBo06ZNQcdnzpwph8MR9JgwYULQmjNnzmjatGlyuVyKjo5WRkaGzp8/H7Rm7969uueee9StWzclJiZq6dKl7X1pAACgE7E1iOrq6jRs2DCtXLnyG9dMmDBBJ06csB7/9V//FXR82rRpOnDggIqLi1VYWKidO3dq9uzZ1nG/36+0tDQlJSWpvLxcy5Yt08KFC/Xaa6+123UBAIDOpYudTz5x4kRNnDjxqmucTqc8Hs8Vjx08eFBFRUX69NNPNXz4cEnSyy+/rHvvvVfPPfecEhIStHbtWjU0NGjNmjWKiIjQoEGDVFFRoRUrVgSFEwAAMFfI30O0Y8cOxcbGqn///nryySd1+vRp61hZWZmio6OtGJKk8ePHKywsTHv27LHWpKamKiIiwlqTnp6uyspKnT179orPWV9fL7/fH/QAAADXr1YF0dixY1VTU9Niv9/v19ixY691JsuECRP05ptvqqSkRL/+9a9VWlqqiRMnqqmpSZLk8/kUGxsb9DNdunRRTEyMfD6ftSYuLi5ozeXty2u+Lj8/X26323okJia22TUBAIDQ06q3zHbs2KGGhoYW+y9evKj//u//vuahLps6dar15yFDhmjo0KG69dZbtWPHDo0bN67NnufrcnNzlZ2dbW37/X6iCACA69j3CqK9e/daf/7888+DXmFpampSUVGRfvCDH7TddF9zyy23qGfPnjp8+LDGjRsnj8ejkydPBq25dOmSzpw5Y9135PF4VF1dHbTm8vY33ZvkdDrldDrb4QoAAEAo+l5BdMcdd1gff7/SW2ORkZF6+eWX22y4r/vrX/+q06dPKz4+XpLk9XpVU1Oj8vJypaSkSJK2b9+u5uZmjRw50lrzL//yL2psbFTXrl0lScXFxerfv79uvPHGdpsVAAB0Ht8riI4ePapAIKBbbrlFn3zyiXr16mUdi4iIUGxsrMLDw7/z+c6fP6/Dhw8Hnb+iokIxMTGKiYnRokWLNGXKFHk8Hh05ckTz589Xv379lJ6eLkkaOHCgJkyYoFmzZmn16tVqbGxUVlaWpk6dqoSEBEnSo48+qkWLFikjI0M5OTnav3+/XnzxRT3//PPf59IBAMB17HsFUVJSkiSpubm5TZ78s88+05gxY6zty/ftzJgxQ6tWrdLevXv1xhtvqKamRgkJCUpLS9OSJUuC3s5au3atsrKyNG7cOIWFhWnKlCl66aWXrONut1vbtm1TZmamUlJS1LNnT+Xl5fGRewAAYGn19xAdOnRIH374oU6ePNkikPLy8r7TOUaPHq1AIPCNx7du3fqt54iJidG6deuuumbo0KFterM3AAC4vrQqiH7729/qySefVM+ePeXxeORwOKxjDofjOwcRAABAKGhVEP3qV7/Sv/7rvyonJ6et5wEAAOhwrfpixrNnz+rBBx9s61kAAABs0aogevDBB7Vt27a2ngUAAMAWrXrLrF+/flqwYIF2796tIUOGWN/vc9nPf/7zNhkOAACgI7QqiF577TX16NFDpaWlKi0tDTrmcDgIIgAA0Km0KoiOHj3a1nMAAADYplX3EAEAAFxPWvUK0eOPP37V42vWrGnVMAAAAHZoVRCdPXs2aLuxsVH79+9XTU3NFf/RVwAAgFDWqiDauHFji33Nzc168skndeutt17zUAAAAB2pze4hCgsLU3Z2Nv+KPAAA6HTa9KbqI0eO6NKlS215SgAAgHbXqrfMsrOzg7YDgYBOnDihLVu2aMaMGW0yGAAAQEdpVRD96U9/CtoOCwtTr169tHz58m/9BBoAAECoaVUQffjhh209BwAAgG1aFUSXnTp1SpWVlZKk/v37q1evXm0yFAAAQEdq1U3VdXV1evzxxxUfH6/U1FSlpqYqISFBGRkZ+vLLL9t6RgAAgHbVqiDKzs5WaWmp3nvvPdXU1KimpkbvvvuuSktL9fTTT7f1jAAAAO2qVW+ZvfPOO/r973+v0aNHW/vuvfdeRUZG6qGHHtKqVavaaj4AAIB216pXiL788kvFxcW12B8bG8tbZgAAoNNpVRB5vV49++yzunjxorXvwoULWrRokbxeb5sNBwAA0BFa9ZbZCy+8oAkTJqh3794aNmyYJOnPf/6znE6ntm3b1qYDAgAAtLdWBdGQIUN06NAhrV27Vl988YUk6ZFHHtG0adMUGRnZpgMCAAC0t1YFUX5+vuLi4jRr1qyg/WvWrNGpU6eUk5PTJsMBAAB0hFbdQ/Tqq69qwIABLfYPGjRIq1evvuahAAAAOlKrgsjn8yk+Pr7F/l69eunEiRPXPBQAAEBHalUQJSYmateuXS3279q1SwkJCdc8FAAAQEdq1T1Es2bN0ty5c9XY2KixY8dKkkpKSjR//ny+qRoAAHQ6rQqiefPm6fTp0/rnf/5nNTQ0SJK6deumnJwc5ebmtumAAAAA7a1VQeRwOPTrX/9aCxYs0MGDBxUZGanbbrtNTqezrecDAABod60Kost69OihESNGtNUsAAAAtmjVTdUAAADXE4IIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPFuDaOfOnbr//vuVkJAgh8OhTZs2BR0PBALKy8tTfHy8IiMjNX78eB06dChozZkzZzRt2jS5XC5FR0crIyND58+fD1qzd+9e3XPPPerWrZsSExO1dOnS9r40AADQidgaRHV1dRo2bJhWrlx5xeNLly7VSy+9pNWrV2vPnj264YYblJ6erosXL1prpk2bpgMHDqi4uFiFhYXauXOnZs+ebR33+/1KS0tTUlKSysvLtWzZMi1cuFCvvfZau18fAADoHLrY+eQTJ07UxIkTr3gsEAjohRde0DPPPKMHHnhAkvTmm28qLi5OmzZt0tSpU3Xw4EEVFRXp008/1fDhwyVJL7/8su69914999xzSkhI0Nq1a9XQ0KA1a9YoIiJCgwYNUkVFhVasWBEUTl9VX1+v+vp6a9vv97fxlQMAgFASsvcQHT16VD6fT+PHj7f2ud1ujRw5UmVlZZKksrIyRUdHWzEkSePHj1dYWJj27NljrUlNTVVERIS1Jj09XZWVlTp79uwVnzs/P19ut9t6JCYmtsclAgCAEBGyQeTz+SRJcXFxQfvj4uKsYz6fT7GxsUHHu3TpopiYmKA1VzrHV5/j63Jzc1VbW2s9jh07du0XBAAAQpatb5mFKqfTKafTafcYAACgg4TsK0Qej0eSVF1dHbS/urraOubxeHTy5Mmg45cuXdKZM2eC1lzpHF99DgAAYLaQDaK+ffvK4/GopKTE2uf3+7Vnzx55vV5JktfrVU1NjcrLy60127dvV3Nzs0aOHGmt2blzpxobG601xcXF6t+/v2688cYOuhoAABDKbA2i8+fPq6KiQhUVFZL+fiN1RUWFqqqq5HA4NHfuXP3qV7/S5s2btW/fPk2fPl0JCQmaPHmyJGngwIGaMGGCZs2apU8++US7du1SVlaWpk6dqoSEBEnSo48+qoiICGVkZOjAgQNav369XnzxRWVnZ9t01QAAINTYeg/RZ599pjFjxljblyNlxowZKigo0Pz581VXV6fZs2erpqZGd999t4qKitStWzfrZ9auXausrCyNGzdOYWFhmjJlil566SXruNvt1rZt25SZmamUlBT17NlTeXl53/iRewAAYB5HIBAI2D1EqPP7/XK73aqtrZXL5Wr1eVLmvdmGU6GzK1823e4RVLV4iN0jIMT0ydtn9whAm/k+f3+H7D1EAAAAHYUgAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGC8kA6ihQsXyuFwBD0GDBhgHb948aIyMzN10003qUePHpoyZYqqq6uDzlFVVaVJkyape/fuio2N1bx583Tp0qWOvhQAABDCutg9wLcZNGiQPvjgA2u7S5f/P/JTTz2lLVu26O2335bb7VZWVpZ+9KMfadeuXZKkpqYmTZo0SR6PRx9//LFOnDih6dOnq2vXrvq3f/u3Dr8WAAAQmkI+iLp06SKPx9Nif21trf7jP/5D69at09ixYyVJr7/+ugYOHKjdu3frrrvu0rZt2/T555/rgw8+UFxcnO644w4tWbJEOTk5WrhwoSIiIq74nPX19aqvr7e2/X5/+1wcAAAICSH9lpkkHTp0SAkJCbrllls0bdo0VVVVSZLKy8vV2Nio8ePHW2sHDBigPn36qKysTJJUVlamIUOGKC4uzlqTnp4uv9+vAwcOfONz5ufny+12W4/ExMR2ujoAABAKQjqIRo4cqYKCAhUVFWnVqlU6evSo7rnnHp07d04+n08RERGKjo4O+pm4uDj5fD5Jks/nC4qhy8cvH/smubm5qq2ttR7Hjh1r2wsDAAAhJaTfMps4caL156FDh2rkyJFKSkrShg0bFBkZ2W7P63Q65XQ62+38AAAgtIT0K0RfFx0drdtvv12HDx+Wx+NRQ0ODampqgtZUV1db9xx5PJ4Wnzq7vH2l+5IAAICZOlUQnT9/XkeOHFF8fLxSUlLUtWtXlZSUWMcrKytVVVUlr9crSfJ6vdq3b59OnjxprSkuLpbL5VJycnKHzw8AAEJTSL9l9otf/EL333+/kpKSdPz4cT377LMKDw/XI488IrfbrYyMDGVnZysmJkYul0tz5syR1+vVXXfdJUlKS0tTcnKyHnvsMS1dulQ+n0/PPPOMMjMzeUsMAABYQjqI/vrXv+qRRx7R6dOn1atXL919993avXu3evXqJUl6/vnnFRYWpilTpqi+vl7p6el65ZVXrJ8PDw9XYWGhnnzySXm9Xt1www2aMWOGFi9ebNclAQCAEBTSQfTWW29d9Xi3bt20cuVKrVy58hvXJCUl6f3332/r0QAAwHWkU91DBAAA0B4IIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgvC52DwAAwFeNenmU3SMghOyas6tDnodXiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPGMCqKVK1fq5ptvVrdu3TRy5Eh98skndo8EAABCgDFBtH79emVnZ+vZZ5/V//zP/2jYsGFKT0/XyZMn7R4NAADYzJggWrFihWbNmqWf/vSnSk5O1urVq9W9e3etWbPG7tEAAIDNutg9QEdoaGhQeXm5cnNzrX1hYWEaP368ysrKWqyvr69XfX29tV1bWytJ8vv91zRHU/2Fa/p5XF+u9fepLZy72GT3CAgxofB7eenCJbtHQAi5lt/Jyz8bCAS+da0RQfS3v/1NTU1NiouLC9ofFxenL774osX6/Px8LVq0qMX+xMTEdpsR5nG//ITdIwAt5bvtngAI4s659t/Jc+fOye2++nmMCKLvKzc3V9nZ2dZ2c3Ozzpw5o5tuukkOh8PGyTo/v9+vxMREHTt2TC6Xy+5xAH4nEZL4vWwbgUBA586dU0JCwreuNSKIevbsqfDwcFVXVwftr66ulsfjabHe6XTK6XQG7YuOjm7PEY3jcrn4LzlCCr+TCEX8Xl67b3tl6DIjbqqOiIhQSkqKSkpKrH3Nzc0qKSmR1+u1cTIAABAKjHiFSJKys7M1Y8YMDR8+XD/84Q/1wgsvqK6uTj/96U/tHg0AANjMmCB6+OGHderUKeXl5cnn8+mOO+5QUVFRixut0b6cTqeeffbZFm9JAnbhdxKhiN/LjucIfJfPogEAAFzHjLiHCAAA4GoIIgAAYDyCCAAAGI8gAgAAxiOI0CF27typ+++/XwkJCXI4HNq0aZPdI8Fw+fn5GjFihKKiohQbG6vJkyersrLS7rFgsFWrVmno0KHWlzF6vV798Y9/tHssYxBE6BB1dXUaNmyYVq5cafcogCSptLRUmZmZ2r17t4qLi9XY2Ki0tDTV1dXZPRoM1bt3b/37v/+7ysvL9dlnn2ns2LF64IEHdODAAbtHMwIfu0eHczgc2rhxoyZPnmz3KIDl1KlTio2NVWlpqVJTU+0eB5AkxcTEaNmyZcrIyLB7lOueMV/MCABXU1tbK+nvfwEBdmtqatLbb7+turo6/ompDkIQATBec3Oz5s6dq1GjRmnw4MF2jwOD7du3T16vVxcvXlSPHj20ceNGJScn2z2WEQgiAMbLzMzU/v379dFHH9k9CgzXv39/VVRUqLa2Vr///e81Y8YMlZaWEkUdgCACYLSsrCwVFhZq586d6t27t93jwHARERHq16+fJCklJUWffvqpXnzxRb366qs2T3b9I4gAGCkQCGjOnDnauHGjduzYob59+9o9EtBCc3Oz6uvr7R7DCAQROsT58+d1+PBha/vo0aOqqKhQTEyM+vTpY+NkMFVmZqbWrVund999V1FRUfL5fJIkt9utyMhIm6eDiXJzczVx4kT16dNH586d07p167Rjxw5t3brV7tGMwMfu0SF27NihMWPGtNg/Y8YMFRQUdPxAMJ7D4bji/tdff10zZ87s2GEASRkZGSopKdGJEyfkdrs1dOhQ5eTk6J/+6Z/sHs0IBBEAADAe31QNAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBKDTCgQCmj17tmJiYuRwOBQdHa25c+faPRaAToggAtBpFRUVqaCgQIWFhTpx4oQGDx5s90gAOin+cVcAndaRI0cUHx+vf/zHf5QkdenS/v+T1tDQoIiIiHZ/HgAdi1eIAHRKM2fO1Jw5c1RVVSWHw6Gbb765xZqzZ89q+vTpuvHGG9W9e3dNnDhRhw4dClrzzjvvaNCgQXI6nbr55pu1fPnyoOM333yzlixZounTp8vlcmn27NlqaGhQVlaW4uPj1a1bNyUlJSk/P789LxdAOyOIAHRKL774ohYvXqzevXvrxIkT+vTTT1usmTlzpj777DNt3rxZZWVlCgQCuvfee9XY2ChJKi8v10MPPaSpU6dq3759WrhwoRYsWKCCgoKg8zz33HMaNmyY/vSnP2nBggV66aWXtHnzZm3YsEGVlZVau3btFYMMQOfBW2YAOiW3262oqCiFh4fL4/G0OH7o0CFt3rxZu3btst5SW7t2rRITE7Vp0yY9+OCDWrFihcaNG6cFCxZIkm6//XZ9/vnnWrZsmWbOnGmda+zYsXr66aet7aqqKt122226++675XA4lJSU1L4XC6Dd8QoRgOvSwYMH1aVLF40cOdLad9NNN6l///46ePCgtWbUqFFBPzdq1CgdOnRITU1N1r7hw4cHrZk5c6YqKirUv39//fznP9e2bdva8UoAdASCCAC+xQ033BC0feedd+ro0aNasmSJLly4oIceekg//vGPbZoOQFsgiABclwYOHKhLly5pz5491r7Tp0+rsrJSycnJ1ppdu3YF/dyuXbt0++23Kzw8/Krnd7lcevjhh/Xb3/5W69ev1zvvvKMzZ860/YUA6BDcQwTgunTbbbfpgQce0KxZs/Tqq68qKipKv/zlL/WDH/xADzzwgCTp6aef1ogRI7RkyRI9/PDDKisr029+8xu98sorVz33ihUrFB8fr3/4h39QWFiY3n77bXk8HkVHR3fAlQFoD7xCBOC69frrryslJUX33XefvF6vAoGA3n//fXXt2lXS39/62rBhg9566y0NHjxYeXl5Wrx4cdAN1VcSFRWlpUuXavjw4RoxYoT+8pe/6P3331dYGP+TCnRWjkAgELB7CAAAADvxf2cAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAY7/8AX8u1/ILIqEMAAAAASUVORK5CYII=", 714 | "text/plain": [ 715 | "
" 716 | ] 717 | }, 718 | "metadata": {}, 719 | "output_type": "display_data" 720 | } 721 | ], 722 | "source": [ 723 | "sns.countplot(data=data,x=data['floors'])" 724 | ] 725 | }, 726 | { 727 | "cell_type": "code", 728 | "execution_count": 15, 729 | "id": "9b40aea2", 730 | "metadata": { 731 | "execution": { 732 | "iopub.execute_input": "2022-11-05T08:25:30.891036Z", 733 | "iopub.status.busy": "2022-11-05T08:25:30.889937Z", 734 | "iopub.status.idle": "2022-11-05T08:25:31.110151Z", 735 | "shell.execute_reply": "2022-11-05T08:25:31.109298Z" 736 | }, 737 | "papermill": { 738 | "duration": 0.236117, 739 | "end_time": "2022-11-05T08:25:31.112606", 740 | "exception": false, 741 | "start_time": "2022-11-05T08:25:30.876489", 742 | "status": "completed" 743 | }, 744 | "tags": [] 745 | }, 746 | "outputs": [ 747 | { 748 | "data": { 749 | "text/plain": [ 750 | "" 751 | ] 752 | }, 753 | "execution_count": 15, 754 | "metadata": {}, 755 | "output_type": "execute_result" 756 | }, 757 | { 758 | "data": { 759 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAow0lEQVR4nO3de3RU5b3/8c8kMEkgN27JJJJE8AIEuRUkRK5CFuFSqkuKommlwsFTTBRMi8ipAmo1iqIoUhBbpBc4olVUQJEYJLGYcIlNBYSIHGpoIYEDJAMRct2/P3qYn1MQNWRmDzzv11p7LWfvJzPfp6tdvjuzM3FYlmUJAADAYEF2DwAAAGA3gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxmth9wCXgsbGRh06dEgRERFyOBx2jwMAAL4Dy7J08uRJxcfHKyjowu8BEUTfwaFDh5SQkGD3GAAAoAkOHjyojh07XnANQfQdRERESPrXf6CRkZE2TwMAAL4Lt9uthIQEz7/HL4Qg+g7OfkwWGRlJEAEAcIn5Lre7cFM1AAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjtbB7AOBSM3DRQLtHuGhb7t1i9wgAEFB4hwgAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxrM1iHJycnT99dcrIiJCMTExuvnmm1VaWuq15syZM8rMzFS7du0UHh6u8ePHq6KiwmtNWVmZxo4dq1atWikmJkYzZ85UfX2915rNmzfrBz/4gUJCQnT11VdrxYoVvt4eAAC4RNgaRPn5+crMzFRRUZFyc3NVV1enkSNHqrq62rPm/vvv19q1a/X6668rPz9fhw4d0i233OK53tDQoLFjx6q2tlYff/yxfv/732vFihWaM2eOZ82BAwc0duxY3XjjjSopKdGMGTP0H//xH3r//ff9ul8AABCYHJZlWXYPcdbRo0cVExOj/Px8DRkyRFVVVerQoYNWrVqlH//4x5KkvXv3qlu3biosLNSAAQP03nvv6Yc//KEOHTqk2NhYSdLSpUs1a9YsHT16VE6nU7NmzdL69eu1a9cuz2tNnDhRlZWV2rBhw7fO5Xa7FRUVpaqqKkVGRvpm87hkDFw00O4RLtqWe7fYPQIA+Nz3+fd3QN1DVFVVJUlq27atJKm4uFh1dXVKS0vzrOnatasSExNVWFgoSSosLFSPHj08MSRJ6enpcrvd2r17t2fN15/j7Jqzz/Hvampq5Ha7vQ4AAHD5Cpggamxs1IwZMzRw4EBdd911kqTy8nI5nU5FR0d7rY2NjVV5eblnzddj6Oz1s9cutMbtduv06dPnzJKTk6OoqCjPkZCQ0Cx7BAAAgSlggigzM1O7du3Sq6++avcomj17tqqqqjzHwYMH7R4JAAD4UAu7B5CkrKwsrVu3TgUFBerYsaPnvMvlUm1trSorK73eJaqoqJDL5fKs2bZtm9fznf0ttK+v+fffTKuoqFBkZKTCwsLOmSckJEQhISHNsjcAABD4bH2HyLIsZWVlac2aNdq0aZM6derkdb1v375q2bKl8vLyPOdKS0tVVlam1NRUSVJqaqp27typI0eOeNbk5uYqMjJSycnJnjVff46za84+BwAAMJut7xBlZmZq1apVevvttxUREeG55ycqKkphYWGKiorSlClTlJ2drbZt2yoyMlL33nuvUlNTNWDAAEnSyJEjlZycrJ/+9KeaP3++ysvL9dBDDykzM9PzLs/Pf/5zvfjii3rggQc0efJkbdq0Sa+99prWr19v294BAEDgsPUdoiVLlqiqqkrDhg1TXFyc51i9erVnzXPPPacf/vCHGj9+vIYMGSKXy6U333zTcz04OFjr1q1TcHCwUlNT9ZOf/ER33nmnHn30Uc+aTp06af369crNzVWvXr20YMEC/fa3v1V6erpf9wsAAAJTQH0PUaDie4jwdXwPEQBcGi7Z7yECAACwA0EEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgt7B4Al66yR3vYPcJFS5yz0+4RAAABgHeIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPFsDaKCggKNGzdO8fHxcjgceuutt7yu/+xnP5PD4fA6Ro0a5bXm+PHjysjIUGRkpKKjozVlyhSdOnXKa82nn36qwYMHKzQ0VAkJCZo/f76vtwYAAC4htgZRdXW1evXqpcWLF3/jmlGjRunw4cOe47//+7+9rmdkZGj37t3Kzc3VunXrVFBQoLvvvttz3e12a+TIkUpKSlJxcbGefvppzZs3T8uWLfPZvgAAwKWlhZ0vPnr0aI0ePfqCa0JCQuRyuc57bc+ePdqwYYO2b9+ufv36SZIWLVqkMWPG6JlnnlF8fLxWrlyp2tpaLV++XE6nU927d1dJSYmeffZZr3D6upqaGtXU1Hgeu93uJu4QAABcCgL+HqLNmzcrJiZGXbp00bRp03Ts2DHPtcLCQkVHR3tiSJLS0tIUFBSkrVu3etYMGTJETqfTsyY9PV2lpaU6ceLEeV8zJydHUVFRniMhIcFHuwMAAIEgoINo1KhR+sMf/qC8vDw99dRTys/P1+jRo9XQ0CBJKi8vV0xMjNfPtGjRQm3btlV5eblnTWxsrNeas4/Prvl3s2fPVlVVlec4ePBgc28NAAAEEFs/Mvs2EydO9Pxzjx491LNnT1111VXavHmzRowY4bPXDQkJUUhIiM+eHwAABJaAfofo33Xu3Fnt27fXF198IUlyuVw6cuSI15r6+nodP37cc9+Ry+VSRUWF15qzj7/p3iQAAGCWSyqI/vGPf+jYsWOKi4uTJKWmpqqyslLFxcWeNZs2bVJjY6NSUlI8awoKClRXV+dZk5ubqy5duqhNmzb+3QAAAAhItgbRqVOnVFJSopKSEknSgQMHVFJSorKyMp06dUozZ85UUVGR/v73vysvL0833XSTrr76aqWnp0uSunXrplGjRmnq1Knatm2btmzZoqysLE2cOFHx8fGSpDvuuENOp1NTpkzR7t27tXr1aj3//PPKzs62a9sAACDA2BpEO3bsUJ8+fdSnTx9JUnZ2tvr06aM5c+YoODhYn376qX70ox/p2muv1ZQpU9S3b1999NFHXvf3rFy5Ul27dtWIESM0ZswYDRo0yOs7hqKiorRx40YdOHBAffv21S9+8QvNmTPnG3/lHgAAmMfWm6qHDRsmy7K+8fr777//rc/Rtm1brVq16oJrevbsqY8++uh7zwcAAMxwSd1DBAAA4AsEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACM16QgGj58uCorK88573a7NXz48IudCQAAwK+aFESbN29WbW3tOefPnDmjjz766KKHAgAA8KcW32fxp59+6vnnzz77TOXl5Z7HDQ0N2rBhg6644ormmw4AAMAPvlcQ9e7dWw6HQw6H47wfjYWFhWnRokXNNhwAAIA/fK8gOnDggCzLUufOnbVt2zZ16NDBc83pdComJkbBwcHNPiQAAIAvfa8gSkpKkiQ1Njb6ZBgAAAA7fK8g+rp9+/bpww8/1JEjR84JpDlz5lz0YAAAAP7SpCB6+eWXNW3aNLVv314ul0sOh8NzzeFwEEQAAOCS0qQg+vWvf63HH39cs2bNau55AAAA/K5J30N04sQJTZgwoblnAQAAsEWTgmjChAnauHFjc88CAABgiyZ9ZHb11Vfr4YcfVlFRkXr06KGWLVt6Xb/vvvuaZTgAAAB/aFIQLVu2TOHh4crPz1d+fr7XNYfDQRABAIBLSpOC6MCBA809BwAAgG2adA8RAADA5aRJ7xBNnjz5gteXL1/epGEAAADs0KQgOnHihNfjuro67dq1S5WVlef9o68AAACBrElBtGbNmnPONTY2atq0abrqqqsueigAAAB/arZ7iIKCgpSdna3nnnuuuZ4SAADAL5r1pur9+/ervr6+OZ8SAADA55r0kVl2drbXY8uydPjwYa1fv16TJk1qlsEAAAD8pUlB9Ne//tXrcVBQkDp06KAFCxZ862+gAQAABJomBdGHH37Y3HMAAADYpklBdNbRo0dVWloqSerSpYs6dOjQLEMBAAD4U5Nuqq6urtbkyZMVFxenIUOGaMiQIYqPj9eUKVP01VdfNfeMAAAAPtWkIMrOzlZ+fr7Wrl2ryspKVVZW6u2331Z+fr5+8YtfNPeMAAAAPtWkj8zeeOMN/fnPf9awYcM858aMGaOwsDDdeuutWrJkSXPNBwAA4HNNeofoq6++Umxs7DnnY2Ji+MgMAABccpoURKmpqZo7d67OnDnjOXf69Gk98sgjSk1NbbbhAAAA/KFJH5ktXLhQo0aNUseOHdWrVy9J0t/+9jeFhIRo48aNzTogAACArzUpiHr06KF9+/Zp5cqV2rt3ryTp9ttvV0ZGhsLCwpp1QAAAAF9rUhDl5OQoNjZWU6dO9Tq/fPlyHT16VLNmzWqW4QAAAPyhSfcQvfTSS+rates557t3766lS5de9FAAAAD+1KQgKi8vV1xc3DnnO3TooMOHD1/0UAAAAP7UpCBKSEjQli1bzjm/ZcsWxcfHX/RQAAAA/tSke4imTp2qGTNmqK6uTsOHD5ck5eXl6YEHHuCbqgEAwCWnSUE0c+ZMHTt2TPfcc49qa2slSaGhoZo1a5Zmz57drAMCAAD4WpOCyOFw6KmnntLDDz+sPXv2KCwsTNdcc41CQkKaez4AAACfa1IQnRUeHq7rr7++uWYBAACwRZNuqgYAALicEEQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMJ6tQVRQUKBx48YpPj5eDodDb731ltd1y7I0Z84cxcXFKSwsTGlpadq3b5/XmuPHjysjI0ORkZGKjo7WlClTdOrUKa81n376qQYPHqzQ0FAlJCRo/vz5vt4aAAC4hNgaRNXV1erVq5cWL1583uvz58/XCy+8oKVLl2rr1q1q3bq10tPTdebMGc+ajIwM7d69W7m5uVq3bp0KCgp09913e6673W6NHDlSSUlJKi4u1tNPP6158+Zp2bJlPt8fAAC4NFzUN1VfrNGjR2v06NHnvWZZlhYuXKiHHnpIN910kyTpD3/4g2JjY/XWW29p4sSJ2rNnjzZs2KDt27erX79+kqRFixZpzJgxeuaZZxQfH6+VK1eqtrZWy5cvl9PpVPfu3VVSUqJnn33WK5y+rqamRjU1NZ7Hbre7mXcOAAACScDeQ3TgwAGVl5crLS3Ncy4qKkopKSkqLCyUJBUWFio6OtoTQ5KUlpamoKAgbd261bNmyJAhcjqdnjXp6ekqLS3ViRMnzvvaOTk5ioqK8hwJCQm+2CIAAAgQARtE5eXlkqTY2Fiv87GxsZ5r5eXliomJ8breokULtW3b1mvN+Z7j66/x72bPnq2qqirPcfDgwYvfEAAACFi2fmQWqEJCQhQSEmL3GAAAwE8C9h0il8slSaqoqPA6X1FR4bnmcrl05MgRr+v19fU6fvy415rzPcfXXwMAAJgtYIOoU6dOcrlcysvL85xzu93aunWrUlNTJUmpqamqrKxUcXGxZ82mTZvU2NiolJQUz5qCggLV1dV51uTm5qpLly5q06aNn3YDAAACma1BdOrUKZWUlKikpETSv26kLikpUVlZmRwOh2bMmKFf//rXeuedd7Rz507deeedio+P18033yxJ6tatm0aNGqWpU6dq27Zt2rJli7KysjRx4kTFx8dLku644w45nU5NmTJFu3fv1urVq/X8888rOzvbpl0DAIBAY+s9RDt27NCNN97oeXw2UiZNmqQVK1bogQceUHV1te6++25VVlZq0KBB2rBhg0JDQz0/s3LlSmVlZWnEiBEKCgrS+PHj9cILL3iuR0VFaePGjcrMzFTfvn3Vvn17zZkz5xt/5R4AAJjHYVmWZfcQgc7tdisqKkpVVVWKjIy0e5yAUfZoD7tHuGiJc3Z+758ZuGigDybxry33brF7BADwue/z7++AvYcIAADAXwgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxAjqI5s2bJ4fD4XV07drVc/3MmTPKzMxUu3btFB4ervHjx6uiosLrOcrKyjR27Fi1atVKMTExmjlzpurr6/29FQAAEMBa2D3At+nevbs++OADz+MWLf7/yPfff7/Wr1+v119/XVFRUcrKytItt9yiLVu2SJIaGho0duxYuVwuffzxxzp8+LDuvPNOtWzZUk888YTf9wIAAAJTwAdRixYt5HK5zjlfVVWl3/3ud1q1apWGDx8uSXrllVfUrVs3FRUVacCAAdq4caM+++wzffDBB4qNjVXv3r312GOPadasWZo3b56cTqe/twMAAAJQwAfRvn37FB8fr9DQUKWmpionJ0eJiYkqLi5WXV2d0tLSPGu7du2qxMREFRYWasCAASosLFSPHj0UGxvrWZOenq5p06Zp9+7d6tOnz3lfs6amRjU1NZ7HbrfbdxsELhH5Q4baPcJFG1qQb/cIAAJUQN9DlJKSohUrVmjDhg1asmSJDhw4oMGDB+vkyZMqLy+X0+lUdHS018/ExsaqvLxcklReXu4VQ2evn732TXJychQVFeU5EhISmndjAAAgoAT0O0SjR4/2/HPPnj2VkpKipKQkvfbaawoLC/PZ686ePVvZ2dmex263mygCAOAyFtDvEP276OhoXXvttfriiy/kcrlUW1uryspKrzUVFRWee45cLtc5v3V29vH57ks6KyQkRJGRkV4HAAC4fF1SQXTq1Cnt379fcXFx6tu3r1q2bKm8vDzP9dLSUpWVlSk1NVWSlJqaqp07d+rIkSOeNbm5uYqMjFRycrLf5wcAAIEpoD8y++Uvf6lx48YpKSlJhw4d0ty5cxUcHKzbb79dUVFRmjJlirKzs9W2bVtFRkbq3nvvVWpqqgYMGCBJGjlypJKTk/XTn/5U8+fPV3l5uR566CFlZmYqJCTE5t0BAIBAEdBB9I9//EO33367jh07pg4dOmjQoEEqKipShw4dJEnPPfecgoKCNH78eNXU1Cg9PV2/+c1vPD8fHBysdevWadq0aUpNTVXr1q01adIkPfroo3ZtCQAABKCADqJXX331gtdDQ0O1ePFiLV68+BvXJCUl6d13323u0QAAwGXkkrqHCAAAwBcIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGa2H3AAAQyF78xVq7R7hoWQvG2T0CEPB4hwgAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPKOCaPHixbryyisVGhqqlJQUbdu2ze6RAABAADDmm6pXr16t7OxsLV26VCkpKVq4cKHS09NVWlqqmJiYi3ruvjP/0ExT2qf46TvtHgFAAHn8Jz+2e4SL9qs//dnuEXAJMeYdomeffVZTp07VXXfdpeTkZC1dulStWrXS8uXL7R4NAADYzIh3iGpra1VcXKzZs2d7zgUFBSktLU2FhYXnrK+pqVFNTY3ncVVVlSTJ7Xaf9/kbak4388T+9017u5CTZxp8MIl/NWXf9afrfTCJfzVl39X1Zu77dM1XPpjEv5qy7zN1dT6YxL+asu/Sp/N9MIl/dZk51O4RAsbZ/w5YlvXtiy0D/POf/7QkWR9//LHX+ZkzZ1r9+/c/Z/3cuXMtSRwcHBwcHByXwXHw4MFvbQUj3iH6vmbPnq3s7GzP48bGRh0/flzt2rWTw+Hw6yxut1sJCQk6ePCgIiMj/fradmLf7NsE7Jt9m8DOfVuWpZMnTyo+Pv5b1xoRRO3bt1dwcLAqKiq8zldUVMjlcp2zPiQkRCEhIV7noqOjfTnit4qMjDTqf0BnsW+zsG+zsG+z2LXvqKio77TOiJuqnU6n+vbtq7y8PM+5xsZG5eXlKTU11cbJAABAIDDiHSJJys7O1qRJk9SvXz/1799fCxcuVHV1te666y67RwMAADYzJohuu+02HT16VHPmzFF5ebl69+6tDRs2KDY21u7RLigkJERz58495yO8yx37Zt8mYN/s2wSXyr4dlvVdfhcNAADg8mXEPUQAAAAXQhABAADjEUQAAMB4BBEAADAeQRTgFi9erCuvvFKhoaFKSUnRtm3b7B7J5woKCjRu3DjFx8fL4XDorbfesnskn8vJydH111+viIgIxcTE6Oabb1ZpaandY/nckiVL1LNnT88XtqWmpuq9996zeyy/e/LJJ+VwODRjxgy7R/GpefPmyeFweB1du3a1eyy/+Oc//6mf/OQnateuncLCwtSjRw/t2LHD7rF8qqGhQQ8//LA6deqksLAwXXXVVXrssce+298VswFBFMBWr16t7OxszZ07V5988ol69eql9PR0HTlyxO7RfKq6ulq9evXS4sWL7R7Fb/Lz85WZmamioiLl5uaqrq5OI0eOVHV1td2j+VTHjh315JNPqri4WDt27NDw4cN10003affu3XaP5jfbt2/XSy+9pJ49e9o9il90795dhw8f9hx/+ctf7B7J506cOKGBAweqZcuWeu+99/TZZ59pwYIFatOmjd2j+dRTTz2lJUuW6MUXX9SePXv01FNPaf78+Vq0aJHdo51fs/z1VPhE//79rczMTM/jhoYGKz4+3srJybFxKv+SZK1Zs8buMfzuyJEjliQrPz/f7lH8rk2bNtZvf/tbu8fwi5MnT1rXXHONlZubaw0dOtSaPn263SP51Ny5c61evXrZPYbfzZo1yxo0aJDdY/jd2LFjrcmTJ3udu+WWW6yMjAybJrow3iEKULW1tSouLlZaWprnXFBQkNLS0lRYWGjjZPCHqqoqSVLbtm1tnsR/Ghoa9Oqrr6q6utqYP6mTmZmpsWPHev3v/HK3b98+xcfHq3PnzsrIyFBZWZndI/ncO++8o379+mnChAmKiYlRnz599PLLL9s9ls/dcMMNysvL0+effy5J+tvf/qa//OUvGj16tM2TnZ8x31R9qfnf//1fNTQ0nPNN2rGxsdq7d69NU8EfGhsbNWPGDA0cOFDXXXed3eP43M6dO5WamqozZ84oPDxca9asUXJyst1j+dyrr76qTz75RNu3b7d7FL9JSUnRihUr1KVLFx0+fFiPPPKIBg8erF27dikiIsLu8Xzmf/7nf7RkyRJlZ2frv/7rv7R9+3bdd999cjqdmjRpkt3j+cyDDz4ot9utrl27Kjg4WA0NDXr88ceVkZFh92jnRRABASYzM1O7du0y4t4KSerSpYtKSkpUVVWlP//5z5o0aZLy8/Mv6yg6ePCgpk+frtzcXIWGhto9jt98/Z2Bnj17KiUlRUlJSXrttdc0ZcoUGyfzrcbGRvXr109PPPGEJKlPnz7atWuXli5delkH0WuvvaaVK1dq1apV6t69u0pKSjRjxgzFx8cH5L4JogDVvn17BQcHq6Kiwut8RUWFXC6XTVPB17KysrRu3ToVFBSoY8eOdo/jF06nU1dffbUkqW/fvtq+fbuef/55vfTSSzZP5jvFxcU6cuSIfvCDH3jONTQ0qKCgQC+++KJqamoUHBxs44T+ER0drWuvvVZffPGF3aP4VFxc3DmB361bN73xxhs2TeQfM2fO1IMPPqiJEydKknr06KEvv/xSOTk5ARlE3EMUoJxOp/r27au8vDzPucbGRuXl5Rlzf4VJLMtSVlaW1qxZo02bNqlTp052j2SbxsZG1dTU2D2GT40YMUI7d+5USUmJ5+jXr58yMjJUUlJiRAxJ0qlTp7R//37FxcXZPYpPDRw48Jyv0fj888+VlJRk00T+8dVXXykoyDszgoOD1djYaNNEF8Y7RAEsOztbkyZNUr9+/dS/f38tXLhQ1dXVuuuuu+wezadOnTrl9f8YDxw4oJKSErVt21aJiYk2TuY7mZmZWrVqld5++21FRESovLxckhQVFaWwsDCbp/Od2bNna/To0UpMTNTJkye1atUqbd68We+//77do/lURETEOfeHtW7dWu3atbus7xv75S9/qXHjxikpKUmHDh3S3LlzFRwcrNtvv93u0Xzq/vvv1w033KAnnnhCt956q7Zt26Zly5Zp2bJldo/mU+PGjdPjjz+uxMREde/eXX/961/17LPPavLkyXaPdn52/5obLmzRokVWYmKi5XQ6rf79+1tFRUV2j+RzH374oSXpnGPSpEl2j+Yz59uvJOuVV16xezSfmjx5spWUlGQ5nU6rQ4cO1ogRI6yNGzfaPZYtTPi1+9tuu82Ki4uznE6ndcUVV1i33Xab9cUXX9g9ll+sXbvWuu6666yQkBCra9eu1rJly+weyefcbrc1ffp0KzEx0QoNDbU6d+5s/epXv7JqamrsHu28HJYVoF8ZCQAA4CfcQwQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEwO+GDRumGTNmXDLPC+DyRxABuORs3rxZDodDlZWVdo8C4DJBEAEwWl1dnd0jAAgABBEAW9TX1ysrK0tRUVFq3769Hn74YZ3904p//OMf1a9fP0VERMjlcumOO+7QkSNHJEl///vfdeONN0qS2rRpI4fDoZ/97Gee521sbNQDDzygtm3byuVyad68eV6v63A4tGTJEv3oRz9S69at9fjjj0uSlixZoquuukpOp1NdunTRH//4R6+fKysr00033aTw8HBFRkbq1ltvVUVFhef6vHnz1Lt3by1fvlyJiYkKDw/XPffco4aGBs2fP18ul0sxMTGe15Mky7I0b948JSYmKiQkRPHx8brvvvua7T9jAN+DvX9bFoCJhg4daoWHh1vTp0+39u7da/3pT3+yWrVq5fkL4L/73e+sd99919q/f79VWFhopaamWqNHj7Ysy7Lq6+utN954w5JklZaWWocPH7YqKys9zxsZGWnNmzfP+vzzz63f//73lsPhsDZu3Oh5bUlWTEyMtXz5cmv//v3Wl19+ab355ptWy5YtrcWLF1ulpaXWggULrODgYGvTpk2WZVlWQ0OD1bt3b2vQoEHWjh07rKKiIqtv377W0KFDPc87d+5cKzw83Prxj39s7d6923rnnXcsp9NppaenW/fee6+1d+9ea/ny5ZYkq6ioyLIsy3r99detyMhI691337W+/PJLa+vWrUb8FXQgEBFEAPxu6NChVrdu3azGxkbPuVmzZlndunU77/rt27dbkqyTJ09almVZH374oSXJOnHixDnPO2jQIK9z119/vTVr1izPY0nWjBkzvNbccMMN1tSpU73OTZgwwRozZoxlWZa1ceNGKzg42CorK/Nc3717tyXJ2rZtm2VZ/wqiVq1aWW6327MmPT3duvLKK62GhgbPuS5dulg5OTmWZVnWggULrGuvvdaqra09774B+A8fmQGwxYABA+RwODyPU1NTtW/fPjU0NKi4uFjjxo1TYmKiIiIiNHToUEn/+tjq2/Ts2dPrcVxcnOfjtrP69evn9XjPnj0aOHCg17mBAwdqz549nusJCQlKSEjwXE9OTlZ0dLRnjSRdeeWVioiI8DyOjY1VcnKygoKCvM6dnWfChAk6ffq0OnfurKlTp2rNmjWqr6//1j0CaH4EEYCAcubMGaWnpysyMlIrV67U9u3btWbNGklSbW3tt/58y5YtvR47HA41NjZ6nWvdunXzDfwtr32heRISElRaWqrf/OY3CgsL0z333KMhQ4ZwozdgA4IIgC22bt3q9bioqEjXXHON9u7dq2PHjunJJ5/U4MGD1bVr13Pe4XE6nZKkhoaGZpmlW7du2rJli9e5LVu2KDk52XP94MGDOnjwoOf6Z599psrKSs+apgoLC9O4ceP0wgsvaPPmzSosLNTOnTsv6jkBfH8t7B4AgJnKysqUnZ2t//zP/9Qnn3yiRYsWacGCBUpMTJTT6dSiRYv085//XLt27dJjjz3m9bNJSUlyOBxat26dxowZo7CwMIWHhzd5lpkzZ+rWW29Vnz59lJaWprVr1+rNN9/UBx98IElKS0tTjx49lJGRoYULF6q+vl733HOPhg4des7Hb9/HihUr1NDQoJSUFLVq1Up/+tOfFBYWpqSkpCY/J4Cm4R0iALa48847dfr0afXv31+ZmZmaPn267r77bnXo0EErVqzQ66+/ruTkZD355JN65plnvH72iiuu0COPPKIHH3xQsbGxysrKuqhZbr75Zj3//PN65pln1L17d7300kt65ZVXNGzYMEn/+pjr7bffVps2bTRkyBClpaWpc+fOWr169UW9bnR0tF5++WUNHDhQPXv21AcffKC1a9eqXbt2F/W8AL4/h2X93xd/AAAAGIp3iAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABjv/wGeqPEfnfcFYAAAAABJRU5ErkJggg==", 760 | "text/plain": [ 761 | "
" 762 | ] 763 | }, 764 | "metadata": {}, 765 | "output_type": "display_data" 766 | } 767 | ], 768 | "source": [ 769 | "sns.countplot(data=data,x=data['bathrooms'])" 770 | ] 771 | }, 772 | { 773 | "cell_type": "code", 774 | "execution_count": 16, 775 | "id": "ecc0c0fa", 776 | "metadata": { 777 | "execution": { 778 | "iopub.execute_input": "2022-11-05T08:25:31.140448Z", 779 | "iopub.status.busy": "2022-11-05T08:25:31.139323Z", 780 | "iopub.status.idle": "2022-11-05T08:25:31.391756Z", 781 | "shell.execute_reply": "2022-11-05T08:25:31.390457Z" 782 | }, 783 | "papermill": { 784 | "duration": 0.26891, 785 | "end_time": "2022-11-05T08:25:31.394121", 786 | "exception": false, 787 | "start_time": "2022-11-05T08:25:31.125211", 788 | "status": "completed" 789 | }, 790 | "tags": [] 791 | }, 792 | "outputs": [ 793 | { 794 | "data": { 795 | "text/plain": [ 796 | "" 797 | ] 798 | }, 799 | "execution_count": 16, 800 | "metadata": {}, 801 | "output_type": "execute_result" 802 | }, 803 | { 804 | "data": { 805 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1WUlEQVR4nO3df1xX9f3///tL9AX+APwJL0gktfkzUNMkskyTN4jM2XJWSunStDWolGaMzZTsB6ZluvJtWan7oWnb1JYuFc2gDH/RyJ9j6ly4FOxTwisxQeB8/9jX8+411ADB88Jzu14u53J5nefzec55PHGNO+c8X6+XwzAMQwAAADbWxOoCAAAArEYgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAttfU6gIag6qqKp04cUL+/v5yOBxWlwMAAGrAMAx98803Cg0NVZMml78HRCCqgRMnTigsLMzqMgAAQB0cP35cHTt2vOwYAlEN+Pv7S/rPDzQgIMDiagAAQE243W6FhYWZv8cvh0BUAxcekwUEBBCIAABoZGqy3IVF1QAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPaaWl0AgP+TNfgOq0u4rDuys6wuAQAaBHeIAACA7VkaiDIyMnTzzTfL399fQUFBuuuuu5Sfn+8x5ty5c0pKSlK7du3UqlUrjR49WkVFRR5jCgoKlJCQoBYtWigoKEjTp09XRUWFx5gPP/xQN910k3x9fXXDDTdo+fLlDT09AADQSFgaiLKyspSUlKQdO3YoMzNT58+fV2xsrEpLS80x06ZN03vvvac//vGPysrK0okTJ3T33Xeb/ZWVlUpISFB5ebk++eQT/fa3v9Xy5cs1c+ZMc8yxY8eUkJCgoUOHKi8vT1OnTtVDDz2kTZs2XdX5AgAA7+QwDMOwuogLvvzySwUFBSkrK0uDBw9WSUmJOnTooJUrV+onP/mJJOnvf/+7evbsqZycHN1yyy16//339cMf/lAnTpxQcHCwJOm1115TamqqvvzySzmdTqWmpmrDhg3av3+/ea377rtPxcXF2rhxY7U6ysrKVFZWZu673W6FhYWppKREAQEBDfxTgJ2xhggA6o/b7VZgYGCNfn971RqikpISSVLbtm0lSbm5uTp//rxiYmLMMT169FCnTp2Uk5MjScrJyVFERIQZhiQpLi5ObrdbBw4cMMd89xwXxlw4x3/LyMhQYGCguYWFhdXfJAEAgNfxmkBUVVWlqVOnatCgQbrxxhslSYWFhXI6nWrdurXH2ODgYBUWFppjvhuGLvRf6LvcGLfbrW+//bZaLWlpaSopKTG348eP18scAQCAd/Kat90nJSVp//79+vjjj60uRb6+vvL19bW6DAAAcJV4xR2i5ORkrV+/Xtu2bVPHjh3NdpfLpfLychUXF3uMLyoqksvlMsf897vOLux/35iAgAA1b968vqcDAAAaGUsDkWEYSk5O1tq1a/XBBx+oc+fOHv39+/dXs2bNtHXrVrMtPz9fBQUFio6OliRFR0dr3759OnXqlDkmMzNTAQEB6tWrlznmu+e4MObCOQAAgL1Z+sgsKSlJK1eu1Lvvvit/f39zzU9gYKCaN2+uwMBATZo0SSkpKWrbtq0CAgL06KOPKjo6WrfccoskKTY2Vr169dIDDzyguXPnqrCwUDNmzFBSUpL52OtnP/uZXn31VT355JOaOHGiPvjgA73zzjvasGGDZXMHAADew9I7RIsXL1ZJSYmGDBmikJAQc1u9erU55uWXX9YPf/hDjR49WoMHD5bL5dKaNWvMfh8fH61fv14+Pj6Kjo7W/fffr/Hjx2v27NnmmM6dO2vDhg3KzMxUnz599NJLL+nNN99UXFzcVZ0vAADwTl71OUTeqjafYwBcCT6HCADqT6P9HCIAAAArEIgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtWRqIsrOzNXLkSIWGhsrhcGjdunUe/Q6H46LbvHnzzDHXX399tf45c+Z4nGfv3r26/fbb5efnp7CwMM2dO/dqTA8AADQSlgai0tJS9enTR4sWLbpo/8mTJz22pUuXyuFwaPTo0R7jZs+e7THu0UcfNfvcbrdiY2MVHh6u3NxczZs3T+np6VqyZEmDzg0AADQeTa28eHx8vOLj4y/Z73K5PPbfffddDR06VF26dPFo9/f3rzb2ghUrVqi8vFxLly6V0+lU7969lZeXp/nz52vKlClXPgkAANDoNZo1REVFRdqwYYMmTZpUrW/OnDlq166d+vXrp3nz5qmiosLsy8nJ0eDBg+V0Os22uLg45efn6/Tp0xe9VllZmdxut8cGAACuXZbeIaqN3/72t/L399fdd9/t0f7YY4/ppptuUtu2bfXJJ58oLS1NJ0+e1Pz58yVJhYWF6ty5s8cxwcHBZl+bNm2qXSsjI0NPP/10A80EAAB4m0YTiJYuXarExET5+fl5tKekpJivIyMj5XQ69fDDDysjI0O+vr51ulZaWprHed1ut8LCwupWOAAA8HqNIhB99NFHys/P1+rVq793bFRUlCoqKvSvf/1L3bt3l8vlUlFRkceYC/uXWnfk6+tb5zAFAAAan0axhuitt95S//791adPn+8dm5eXpyZNmigoKEiSFB0drezsbJ0/f94ck5mZqe7du1/0cRkAALAfSwPRmTNnlJeXp7y8PEnSsWPHlJeXp4KCAnOM2+3WH//4Rz300EPVjs/JydGCBQv02Wef6Z///KdWrFihadOm6f777zfDzrhx4+R0OjVp0iQdOHBAq1ev1sKFCz0eiQEAAHuz9JHZnj17NHToUHP/QkiZMGGCli9fLklatWqVDMPQ2LFjqx3v6+urVatWKT09XWVlZercubOmTZvmEXYCAwO1efNmJSUlqX///mrfvr1mzpzJW+4BAIDJYRiGYXUR3s7tdiswMFAlJSUKCAiwuhxcw7IG32F1CZd1R3aW1SUAQI3V5vd3o1hDBAAA0JAIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPaaWl0AgGvPq0+8Z3UJl5T80kirSwDghSy9Q5Sdna2RI0cqNDRUDodD69at8+j/6U9/KofD4bENHz7cY8zXX3+txMREBQQEqHXr1po0aZLOnDnjMWbv3r26/fbb5efnp7CwMM2dO7ehpwYAABoRSwNRaWmp+vTpo0WLFl1yzPDhw3Xy5Elze/vttz36ExMTdeDAAWVmZmr9+vXKzs7WlClTzH63263Y2FiFh4crNzdX8+bNU3p6upYsWdJg8wIAAI2LpY/M4uPjFR8ff9kxvr6+crlcF+07dOiQNm7cqN27d2vAgAGSpFdeeUUjRozQiy++qNDQUK1YsULl5eVaunSpnE6nevfurby8PM2fP98jOAEAAPvy+kXVH374oYKCgtS9e3c98sgj+uqrr8y+nJwctW7d2gxDkhQTE6MmTZpo586d5pjBgwfL6XSaY+Li4pSfn6/Tp09f9JplZWVyu90eGwAAuHZ5dSAaPny4fve732nr1q164YUXlJWVpfj4eFVWVkqSCgsLFRQU5HFM06ZN1bZtWxUWFppjgoODPcZc2L8w5r9lZGQoMDDQ3MLCwup7agAAwIt49bvM7rvvPvN1RESEIiMj1bVrV3344YcaNmxYg103LS1NKSkp5r7b7SYUAQBwDfPqO0T/rUuXLmrfvr2OHDkiSXK5XDp16pTHmIqKCn399dfmuiOXy6WioiKPMRf2L7U2ydfXVwEBAR4bAAC4djWqQPTvf/9bX331lUJCQiRJ0dHRKi4uVm5urjnmgw8+UFVVlaKioswx2dnZOn/+vDkmMzNT3bt3V5s2ba7uBAAAgFeyNBCdOXNGeXl5ysvLkyQdO3ZMeXl5Kigo0JkzZzR9+nTt2LFD//rXv7R161aNGjVKN9xwg+Li4iRJPXv21PDhwzV58mTt2rVL27dvV3Jysu677z6FhoZKksaNGyen06lJkybpwIEDWr16tRYuXOjxSAwAANibpYFoz5496tevn/r16ydJSklJUb9+/TRz5kz5+Pho7969+tGPfqRu3bpp0qRJ6t+/vz766CP5+vqa51ixYoV69OihYcOGacSIEbrttts8PmMoMDBQmzdv1rFjx9S/f3898cQTmjlzJm+5BwAAJksXVQ8ZMkSGYVyyf9OmTd97jrZt22rlypWXHRMZGamPPvqo1vUBAAB7aFRriAAAABoCgQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANiepYEoOztbI0eOVGhoqBwOh9atW2f2nT9/XqmpqYqIiFDLli0VGhqq8ePH68SJEx7nuP766+VwODy2OXPmeIzZu3evbr/9dvn5+SksLExz5869GtMDAACNhKWBqLS0VH369NGiRYuq9Z09e1affvqpnnrqKX366adas2aN8vPz9aMf/aja2NmzZ+vkyZPm9uijj5p9brdbsbGxCg8PV25urubNm6f09HQtWbKkQecGAAAaj6ZWXjw+Pl7x8fEX7QsMDFRmZqZH26uvvqqBAweqoKBAnTp1Mtv9/f3lcrkuep4VK1aovLxcS5culdPpVO/evZWXl6f58+drypQpFz2mrKxMZWVl5r7b7a7t1AAAQCPSqNYQlZSUyOFwqHXr1h7tc+bMUbt27dSvXz/NmzdPFRUVZl9OTo4GDx4sp9NptsXFxSk/P1+nT5++6HUyMjIUGBhobmFhYQ0yHwAA4B0aTSA6d+6cUlNTNXbsWAUEBJjtjz32mFatWqVt27bp4Ycf1vPPP68nn3zS7C8sLFRwcLDHuS7sFxYWXvRaaWlpKikpMbfjx483wIwAAIC3sPSRWU2dP39e99xzjwzD0OLFiz36UlJSzNeRkZFyOp16+OGHlZGRIV9f3zpdz9fXt87HAgCAxsfr7xBdCEOff/65MjMzPe4OXUxUVJQqKir0r3/9S5LkcrlUVFTkMebC/qXWHQEAAHvx6kB0IQwdPnxYW7ZsUbt27b73mLy8PDVp0kRBQUGSpOjoaGVnZ+v8+fPmmMzMTHXv3l1t2rRpsNoBAEDjYekjszNnzujIkSPm/rFjx5SXl6e2bdsqJCREP/nJT/Tpp59q/fr1qqysNNf8tG3bVk6nUzk5Odq5c6eGDh0qf39/5eTkaNq0abr//vvNsDNu3Dg9/fTTmjRpklJTU7V//34tXLhQL7/8siVzBgAA3sfSQLRnzx4NHTrU3L+wHmjChAlKT0/XX/7yF0lS3759PY7btm2bhgwZIl9fX61atUrp6ekqKytT586dNW3aNI91RYGBgdq8ebOSkpLUv39/tW/fXjNnzrzkW+4BAID9WBqIhgwZIsMwLtl/uT5Juummm7Rjx47vvU5kZKQ++uijWtcHAADswavXEAEAAFwNBCIAAGB7BCIAAGB7BCIAAGB7BCIAAGB7BCIAAGB7BCIAAGB7dQpEd955p4qLi6u1u91u3XnnnVdaEwAAwFVVp0D04Ycfqry8vFr7uXPn+ABEAADQ6NTqk6r37t1rvj548KD53WKSVFlZqY0bN+q6666rv+oAAACugloFor59+8rhcMjhcFz00Vjz5s31yiuv1FtxAAAAV0OtAtGxY8dkGIa6dOmiXbt2qUOHDmaf0+lUUFCQfHx86r1IAACAhlSrQBQeHi5JqqqqapBiAAAArFDnb7s/fPiwtm3bplOnTlULSDNnzrziwgAAAK6WOgWiN954Q4888ojat28vl8slh8Nh9jkcDgIRAABoVOoUiJ599lk999xzSk1Nre96AAAArro6fQ7R6dOnNWbMmPquBQAAwBJ1CkRjxozR5s2b67sWAAAAS9TpkdkNN9ygp556Sjt27FBERISaNWvm0f/YY4/VS3EAAABXQ50C0ZIlS9SqVStlZWUpKyvLo8/hcBCIAABAo1KnQHTs2LH6rgMAAMAydVpDBAAAcC2p0x2iiRMnXrZ/6dKldSoGAADACnUKRKdPn/bYP3/+vPbv36/i4uKLfukrAACAN6tTIFq7dm21tqqqKj3yyCPq2rXrFRcFAABwNdXbGqImTZooJSVFL7/8cn2dEgAA4Kqo10XVR48eVUVFRX2eEgAAoMHV6ZFZSkqKx75hGDp58qQ2bNigCRMm1EthAAAAV0udAtHf/vY3j/0mTZqoQ4cOeumll773HWgAAADepk6BaNu2bfVdBwAAgGXqFIgu+PLLL5Wfny9J6t69uzp06FAvRQEAAFxNdVpUXVpaqokTJyokJESDBw/W4MGDFRoaqkmTJuns2bP1XSMAAECDqlMgSklJUVZWlt577z0VFxeruLhY7777rrKysvTEE0/U+DzZ2dkaOXKkQkND5XA4tG7dOo9+wzA0c+ZMhYSEqHnz5oqJidHhw4c9xnz99ddKTExUQECAWrdurUmTJunMmTMeY/bu3avbb79dfn5+CgsL09y5c+sybQAAcI2qUyD685//rLfeekvx8fEKCAhQQECARowYoTfeeEN/+tOfanye0tJS9enTR4sWLbpo/9y5c/Wb3/xGr732mnbu3KmWLVsqLi5O586dM8ckJibqwIEDyszM1Pr165Wdna0pU6aY/W63W7GxsQoPD1dubq7mzZun9PR0LVmypC5TBwAA16A6rSE6e/asgoODq7UHBQXV6pFZfHy84uPjL9pnGIYWLFigGTNmaNSoUZKk3/3udwoODta6det033336dChQ9q4caN2796tAQMGSJJeeeUVjRgxQi+++KJCQ0O1YsUKlZeXa+nSpXI6nerdu7fy8vI0f/58j+D0XWVlZSorKzP33W53jecEAAAanzrdIYqOjtasWbM87tR8++23evrppxUdHV0vhR07dkyFhYWKiYkx2wIDAxUVFaWcnBxJUk5Ojlq3bm2GIUmKiYlRkyZNtHPnTnPM4MGD5XQ6zTFxcXHKz8+v9p1sF2RkZCgwMNDcwsLC6mVOAADAO9XpDtGCBQs0fPhwdezYUX369JEkffbZZ/L19dXmzZvrpbDCwkJJqnYnKjg42OwrLCxUUFCQR3/Tpk3Vtm1bjzGdO3eudo4LfW3atKl27bS0NI8Pn3S73YQiAACuYXUKRBERETp8+LBWrFihv//975KksWPHKjExUc2bN6/XAq3g6+srX19fq8sAAABXSZ0CUUZGhoKDgzV58mSP9qVLl+rLL79UamrqFRfmcrkkSUVFRQoJCTHbi4qK1LdvX3PMqVOnPI6rqKjQ119/bR7vcrlUVFTkMebC/oUxAADA3uq0huj1119Xjx49qrX37t1br7322hUXJUmdO3eWy+XS1q1bzTa3262dO3ea65Sio6NVXFys3Nxcc8wHH3ygqqoqRUVFmWOys7N1/vx5c0xmZqa6d+9+0cdlAADAfuoUiAoLCz3u2lzQoUMHnTx5ssbnOXPmjPLy8pSXlyfpPwup8/LyVFBQIIfDoalTp+rZZ5/VX/7yF+3bt0/jx49XaGio7rrrLklSz549NXz4cE2ePFm7du3S9u3blZycrPvuu0+hoaGSpHHjxsnpdGrSpEk6cOCAVq9erYULF1b7gloAAGBfdXpkFhYWpu3bt1dbrLx9+3YziNTEnj17NHToUHP/QkiZMGGCli9frieffFKlpaWaMmWKiouLddttt2njxo3y8/Mzj1mxYoWSk5M1bNgwNWnSRKNHj9ZvfvMbsz8wMFCbN29WUlKS+vfvr/bt22vmzJmXfMs9AACwnzoFosmTJ2vq1Kk6f/687rzzTknS1q1b9eSTT9bqk6qHDBkiwzAu2e9wODR79mzNnj37kmPatm2rlStXXvY6kZGR+uijj2pcFwAAsJc6BaLp06frq6++0s9//nOVl5dLkvz8/JSamqq0tLR6LRAAAKCh1SkQORwOvfDCC3rqqad06NAhNW/eXD/4wQ94qzoAAGiU6hSILmjVqpVuvvnm+qoFAADAEnV6lxkAAMC1hEAEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsz+sD0fXXXy+Hw1FtS0pKkiQNGTKkWt/PfvYzj3MUFBQoISFBLVq0UFBQkKZPn66KigorpgMAALxQU6sL+D67d+9WZWWlub9//379z//8j8aMGWO2TZ48WbNnzzb3W7RoYb6urKxUQkKCXC6XPvnkE508eVLjx49Xs2bN9Pzzz1+dSQAAAK/m9YGoQ4cOHvtz5sxR165ddccdd5htLVq0kMvluujxmzdv1sGDB7VlyxYFBwerb9++euaZZ5Samqr09HQ5nc4GrR8AAHg/r39k9l3l5eX6wx/+oIkTJ8rhcJjtK1asUPv27XXjjTcqLS1NZ8+eNftycnIUERGh4OBgsy0uLk5ut1sHDhy46HXKysrkdrs9NgAAcO3y+jtE37Vu3ToVFxfrpz/9qdk2btw4hYeHKzQ0VHv37lVqaqry8/O1Zs0aSVJhYaFHGJJk7hcWFl70OhkZGXr66acbZhIAAMDrNKpA9NZbbyk+Pl6hoaFm25QpU8zXERERCgkJ0bBhw3T06FF17dq1TtdJS0tTSkqKue92uxUWFlb3wgEAgFdrNIHo888/15YtW8w7P5cSFRUlSTpy5Ii6du0ql8ulXbt2eYwpKiqSpEuuO/L19ZWvr289VA0AABqDRrOGaNmyZQoKClJCQsJlx+Xl5UmSQkJCJEnR0dHat2+fTp06ZY7JzMxUQECAevXq1WD1AgCAxqNR3CGqqqrSsmXLNGHCBDVt+n8lHz16VCtXrtSIESPUrl077d27V9OmTdPgwYMVGRkpSYqNjVWvXr30wAMPaO7cuSosLNSMGTOUlJTEXSAAACCpkQSiLVu2qKCgQBMnTvRodzqd2rJlixYsWKDS0lKFhYVp9OjRmjFjhjnGx8dH69ev1yOPPKLo6Gi1bNlSEyZM8PjcIgAAYG+NIhDFxsbKMIxq7WFhYcrKyvre48PDw/XXv/61IUoDAADXgEazhggAAKChEIgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtNbW6AKC+DHplkNUlXNL2R7dbXQIA4DK4QwQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGzPqwNRenq6HA6Hx9ajRw+z/9y5c0pKSlK7du3UqlUrjR49WkVFRR7nKCgoUEJCglq0aKGgoCBNnz5dFRUVV3sqAADAi3n95xD17t1bW7ZsMfebNv2/kqdNm6YNGzboj3/8owIDA5WcnKy7775b27f/5zNfKisrlZCQIJfLpU8++UQnT57U+PHj1axZMz3//PNXfS4AAMA7eX0gatq0qVwuV7X2kpISvfXWW1q5cqXuvPNOSdKyZcvUs2dP7dixQ7fccos2b96sgwcPasuWLQoODlbfvn31zDPPKDU1Venp6XI6nVd7OgAAwAt59SMzSTp8+LBCQ0PVpUsXJSYmqqCgQJKUm5ur8+fPKyYmxhzbo0cPderUSTk5OZKknJwcRUREKDg42BwTFxcnt9utAwcOXPKaZWVlcrvdHhsAALh2eXUgioqK0vLly7Vx40YtXrxYx44d0+23365vvvlGhYWFcjqdat26tccxwcHBKiwslCQVFhZ6hKEL/Rf6LiUjI0OBgYHmFhYWVr8TAwAAXsWrH5nFx8ebryMjIxUVFaXw8HC98847at68eYNdNy0tTSkpKea+2+0mFAEAcA3z6jtE/61169bq1q2bjhw5IpfLpfLychUXF3uMKSoqMtccuVyuau86u7B/sXVJF/j6+iogIMBjAwAA165GFYjOnDmjo0ePKiQkRP3791ezZs20detWsz8/P18FBQWKjo6WJEVHR2vfvn06deqUOSYzM1MBAQHq1avXVa8fAAB4J69+ZPaLX/xCI0eOVHh4uE6cOKFZs2bJx8dHY8eOVWBgoCZNmqSUlBS1bdtWAQEBevTRRxUdHa1bbrlFkhQbG6tevXrpgQce0Ny5c1VYWKgZM2YoKSlJvr6+Fs8OAAB4C68ORP/+9781duxYffXVV+rQoYNuu+027dixQx06dJAkvfzyy2rSpIlGjx6tsrIyxcXF6X//93/N4318fLR+/Xo98sgjio6OVsuWLTVhwgTNnj3bqikBAAAv5NWBaNWqVZft9/Pz06JFi7Ro0aJLjgkPD9df//rX+i4NAABcQxrVGiIAAICGQCACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC219TqAgDAGz13/0+sLuGyfv2HP1ldAnBN4Q4RAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPa8ORBkZGbr55pvl7++voKAg3XXXXcrPz/cYM2TIEDkcDo/tZz/7mceYgoICJSQkqEWLFgoKCtL06dNVUVFxNacCAAC8WFOrC7icrKwsJSUl6eabb1ZFRYV+9atfKTY2VgcPHlTLli3NcZMnT9bs2bPN/RYtWpivKysrlZCQIJfLpU8++UQnT57U+PHj1axZMz3//PNXdT4AAMA7eXUg2rhxo8f+8uXLFRQUpNzcXA0ePNhsb9GihVwu10XPsXnzZh08eFBbtmxRcHCw+vbtq2eeeUapqalKT0+X0+msdkxZWZnKysrMfbfbXU8zAgAA3sirH5n9t5KSEklS27ZtPdpXrFih9u3b68Ybb1RaWprOnj1r9uXk5CgiIkLBwcFmW1xcnNxutw4cOHDR62RkZCgwMNDcwsLCGmA2AADAW3j1HaLvqqqq0tSpUzVo0CDdeOONZvu4ceMUHh6u0NBQ7d27V6mpqcrPz9eaNWskSYWFhR5hSJK5X1hYeNFrpaWlKSUlxdx3u92EIgAArmGNJhAlJSVp//79+vjjjz3ap0yZYr6OiIhQSEiIhg0bpqNHj6pr1651upavr698fX2vqF4AANB4NIpHZsnJyVq/fr22bdumjh07XnZsVFSUJOnIkSOSJJfLpaKiIo8xF/Yvte4IAADYi1cHIsMwlJycrLVr1+qDDz5Q586dv/eYvLw8SVJISIgkKTo6Wvv27dOpU6fMMZmZmQoICFCvXr0apG4AANC4ePUjs6SkJK1cuVLvvvuu/P39zTU/gYGBat68uY4ePaqVK1dqxIgRateunfbu3atp06Zp8ODBioyMlCTFxsaqV69eeuCBBzR37lwVFhZqxowZSkpK4rEYAACQ5OV3iBYvXqySkhINGTJEISEh5rZ69WpJktPp1JYtWxQbG6sePXroiSee0OjRo/Xee++Z5/Dx8dH69evl4+Oj6Oho3X///Ro/frzH5xYBAAB78+o7RIZhXLY/LCxMWVlZ33ue8PBw/fWvf62vsgAAwDXGq+8QAQAAXA0EIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHtNrS4AANBwDj33gdUlXFbPX99pdQmAJO4QAQAAEIgAAAAIRAAAwPZYQwQVzI6wuoTL6jRzn9UlAACucdwhAgAAtkcgAgAAtmerQLRo0SJdf/318vPzU1RUlHbt2mV1SQAAwAvYZg3R6tWrlZKSotdee01RUVFasGCB4uLilJ+fr6CgIKvLAwBcRnp6utUlXJI314aas80dovnz52vy5Ml68MEH1atXL7322mtq0aKFli5danVpAADAYra4Q1ReXq7c3FylpaWZbU2aNFFMTIxycnKqjS8rK1NZWZm5X1JSIklyu90e4wbPeLuBKq4f2c+OrdG4b85VNnAlV+a/f+6XUvFtRQNXUnc1nUNphffOQar5PL4tO9vAldRdTedw7vz5Bq7kytR0HmfOlTZwJVempvP47v8ne5uazmHN2qENXMmVufvH26wuod5d+LcxDOP7Bxs28MUXXxiSjE8++cSjffr06cbAgQOrjZ81a5YhiY2NjY2Nje0a2I4fP/69WcEWd4hqKy0tTSkpKeZ+VVWVvv76a7Vr104Oh6NBrul2uxUWFqbjx48rICCgQa5xNVwL87gW5iAxD29yLcxBujbmcS3MQWIeNWUYhr755huFhoZ+71hbBKL27dvLx8dHRUVFHu1FRUVyuVzVxvv6+srX19ejrXXr1g1ZoikgIKBR/4/7gmthHtfCHCTm4U2uhTlI18Y8roU5SMyjJgIDA2s0zhaLqp1Op/r376+tW7eabVVVVdq6dauio6MtrAwAAHgDW9whkqSUlBRNmDBBAwYM0MCBA7VgwQKVlpbqwQcftLo0AABgMdsEonvvvVdffvmlZs6cqcLCQvXt21cbN25UcHCw1aVJ+s9julmzZlV7VNfYXAvzuBbmIDEPb3ItzEG6NuZxLcxBYh4NwWEYNXkvGgAAwLXLFmuIAAAALodABAAAbI9ABAAAbI9ABAAAbI9A5CUWLVqk66+/Xn5+foqKitKuXbusLqlWsrOzNXLkSIWGhsrhcGjdunVWl1RrGRkZuvnmm+Xv76+goCDdddddys/Pt7qsWlu8eLEiIyPNDzqLjo7W+++/b3VZV2TOnDlyOByaOnWq1aXUSnp6uhwOh8fWo0cPq8uqtS+++EL333+/2rVrp+bNmysiIkJ79uyxuqxauf7666v9WzgcDiUlJVldWq1UVlbqqaeeUufOndW8eXN17dpVzzzzTM2+q8uLfPPNN5o6darCw8PVvHlz3Xrrrdq9e7elNRGIvMDq1auVkpKiWbNm6dNPP1WfPn0UFxenU6dOWV1ajZWWlqpPnz5atGiR1aXUWVZWlpKSkrRjxw5lZmbq/Pnzio2NVWmpd3855n/r2LGj5syZo9zcXO3Zs0d33nmnRo0apQMHDlhdWp3s3r1br7/+uiIjI60upU569+6tkydPmtvHH39sdUm1cvr0aQ0aNEjNmjXT+++/r4MHD+qll15SmzZtrC6tVnbv3u3x75CZmSlJGjNmjMWV1c4LL7ygxYsX69VXX9WhQ4f0wgsvaO7cuXrllVesLq1WHnroIWVmZur3v/+99u3bp9jYWMXExOiLL76wrqh6+fZUXJGBAwcaSUlJ5n5lZaURGhpqZGRkWFhV3Uky1q5da3UZV+zUqVOGJCMrK8vqUq5YmzZtjDfffNPqMmrtm2++MX7wgx8YmZmZxh133GE8/vjjVpdUK7NmzTL69OljdRlXJDU11bjtttusLqPePf7440bXrl2Nqqoqq0uplYSEBGPixIkebXfffbeRmJhoUUW1d/bsWcPHx8dYv369R/tNN91k/PrXv7aoKsPgDpHFysvLlZubq5iYGLOtSZMmiomJUU5OjoWVoaSkRJLUtm1biyupu8rKSq1atUqlpaWN8mtqkpKSlJCQ4PHfR2Nz+PBhhYaGqkuXLkpMTFRBQYHVJdXKX/7yFw0YMEBjxoxRUFCQ+vXrpzfeeMPqsq5IeXm5/vCHP2jixIkN9oXdDeXWW2/V1q1b9Y9//EOS9Nlnn+njjz9WfHy8xZXVXEVFhSorK+Xn5+fR3rx5c0vvoNrmk6q91f/7f/9PlZWV1T4xOzg4WH//+98tqgpVVVWaOnWqBg0apBtvvNHqcmpt3759io6O1rlz59SqVSutXbtWvXr1srqsWlm1apU+/fRTy9cVXImoqCgtX75c3bt318mTJ/X000/r9ttv1/79++Xv7291eTXyz3/+U4sXL1ZKSop+9atfaffu3XrsscfkdDo1YcIEq8urk3Xr1qm4uFg//elPrS6l1n75y1/K7XarR48e8vHxUWVlpZ577jklJiZaXVqN+fv7Kzo6Ws8884x69uyp4OBgvf3228rJydENN9xgWV0EIuAikpKStH///ka33uOC7t27Ky8vTyUlJfrTn/6kCRMmKCsrq9GEouPHj+vxxx9XZmZmtb8iG5Pv/tUeGRmpqKgohYeH65133tGkSZMsrKzmqqqqNGDAAD3//POSpH79+mn//v167bXXGm0geuuttxQfH6/Q0FCrS6m1d955RytWrNDKlSvVu3dv5eXlaerUqQoNDW1U/x6///3vNXHiRF133XXy8fHRTTfdpLFjxyo3N9eymghEFmvfvr18fHxUVFTk0V5UVCSXy2VRVfaWnJys9evXKzs7Wx07drS6nDpxOp3mX1r9+/fX7t27tXDhQr3++usWV1Yzubm5OnXqlG666SazrbKyUtnZ2Xr11VdVVlYmHx8fCyusm9atW6tbt246cuSI1aXUWEhISLUg3bNnT/35z3+2qKIr8/nnn2vLli1as2aN1aXUyfTp0/XLX/5S9913nyQpIiJCn3/+uTIyMhpVIOratauysrJUWloqt9utkJAQ3XvvverSpYtlNbGGyGJOp1P9+/fX1q1bzbaqqipt3bq1Ua75aMwMw1BycrLWrl2rDz74QJ07d7a6pHpTVVWlsrIyq8uosWHDhmnfvn3Ky8sztwEDBigxMVF5eXmNMgxJ0pkzZ3T06FGFhIRYXUqNDRo0qNrHT/zjH/9QeHi4RRVdmWXLlikoKEgJCQlWl1InZ8+eVZMmnr+6fXx8VFVVZVFFV6Zly5YKCQnR6dOntWnTJo0aNcqyWrhD5AVSUlI0YcIEDRgwQAMHDtSCBQtUWlqqBx980OrSauzMmTMef/UeO3ZMeXl5atu2rTp16mRhZTWXlJSklStX6t1335W/v78KCwslSYGBgWrevLnF1dVcWlqa4uPj1alTJ33zzTdauXKlPvzwQ23atMnq0mrM39+/2tqtli1bql27do1qTdcvfvELjRw5UuHh4Tpx4oRmzZolHx8fjR071urSamzatGm69dZb9fzzz+uee+7Rrl27tGTJEi1ZssTq0mqtqqpKy5Yt04QJE9S0aeP89Tdy5Eg999xz6tSpk3r37q2//e1vmj9/viZOnGh1abWyadMmGYah7t2768iRI5o+fbp69Ohh7e89y97fBg+vvPKK0alTJ8PpdBoDBw40duzYYXVJtbJt2zZDUrVtwoQJVpdWYxerX5KxbNkyq0urlYkTJxrh4eGG0+k0OnToYAwbNszYvHmz1WVdscb4tvt7773XCAkJMZxOp3HdddcZ9957r3HkyBGry6q19957z7jxxhsNX19fo0ePHsaSJUusLqlONm3aZEgy8vPzrS6lztxut/H4448bnTp1Mvz8/IwuXboYv/71r42ysjKrS6uV1atXG126dDGcTqfhcrmMpKQko7i42NKaHIbRyD7eEgAAoJ6xhggAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQgAANgegQiApYYMGaKpU6fW6zmXL1+u1q1b1+s5AVzbCEQAAMD2CEQAbKe8vNzqEgB4GQIRAMtVVFQoOTlZgYGBat++vZ566ild+JrFsrIy/eIXv9B1112nli1bKioqSh9++KHH8cuXL1enTp3UokUL/fjHP9ZXX33l0Z+enq6+ffvqzTffVOfOneXn5ydJKigo0KhRo9SqVSsFBATonnvuUVFRkcexixcvVteuXeV0OtW9e3f9/ve/9+h3OBx6/fXX9cMf/lAtWrRQz549lZOToyNHjmjIkCFq2bKlbr31Vh09etQ85rPPPtPQoUPl7++vgIAA9e/fX3v27KmvHyeAOiAQAbDcb3/7WzVt2lS7du3SwoULNX/+fL355puSpOTkZOXk5GjVqlXau3evxowZo+HDh+vw4cOSpJ07d2rSpElKTk5WXl6ehg4dqmeffbbaNY4cOaI///nPWrNmjfLy8lRVVaVRo0bp66+/VlZWljIzM/XPf/5T9957r3nM2rVr9fjjj+uJJ57Q/v379fDDD+vBBx/Utm3bPM79zDPPaPz48crLy1OPHj00btw4Pfzww0pLS9OePXtkGIaSk5PN8YmJierYsaN2796t3Nxc/fKXv1SzZs0a4kcLoKYMALDQHXfcYfTs2dOoqqoy21JTU42ePXsan3/+ueHj42N88cUXHscMGzbMSEtLMwzDMMaOHWuMGDHCo//ee+81AgMDzf1Zs2YZzZo1M06dOmW2bd682fDx8TEKCgrMtgMHDhiSjF27dhmGYRi33nqrMXnyZI9zjxkzxuN6kowZM2aY+zk5OYYk46233jLb3n77bcPPz8/c9/f3N5YvX/79PxwAVw13iABY7pZbbpHD4TD3o6OjdfjwYe3bt0+VlZXq1q2bWrVqZW5ZWVnmI6hDhw4pKirK43zR0dHVrhEeHq4OHTqY+4cOHVJYWJjCwsLMtl69eql169Y6dOiQOWbQoEEe5xk0aJDZf0FkZKT5Ojg4WJIUERHh0Xbu3Dm53W5JUkpKih566CHFxMRozpw5Ho/TAFijqdUFAMClnDlzRj4+PsrNzZWPj49HX6tWrWp1rpYtW9ZnaR6++7jrQrC7WFtVVZWk/6xpGjdunDZs2KD3339fs2bN0qpVq/TjH/+4wWoEcHncIQJguZ07d3rs79ixQz/4wQ/Ur18/VVZW6tSpU7rhhhs8NpfLJUnq2bPnRY//Pj179tTx48d1/Phxs+3gwYMqLi5Wr169zDHbt2/3OG779u1m/5Xo1q2bpk2bps2bN+vuu+/WsmXLrvicAOqOO0QALFdQUKCUlBQ9/PDD+vTTT/XKK6/opZdeUrdu3ZSYmKjx48frpZdeUr9+/fTll19q69atioyMVEJCgh577DENGjRIL774okaNGqVNmzZp48aN33vNmJgYRUREKDExUQsWLFBFRYV+/vOf64477tCAAQMkSdOnT9c999yjfv36KSYmRu+9957WrFmjLVu21Hmu3377raZPn66f/OQn6ty5s/79739r9+7dGj16dJ3PCeDKcYcIgOXGjx+vb7/9VgMHDlRSUpIef/xxTZkyRZK0bNkyjR8/Xk888YS6d++uu+66S7t371anTp0k/Wf90RtvvKGFCxeqT58+2rx5s2bMmPG913Q4HHr33XfVpk0bDR48WDExMerSpYtWr15tjrnrrru0cOFCvfjii+rdu7def/11LVu2TEOGDKnzXH18fPTVV19p/Pjx6tatm+655x7Fx8fr6aefrvM5AVw5h2H8/x/2AQAAYFPcIQIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALb3/wEeQPZ/RQdyGAAAAABJRU5ErkJggg==", 806 | "text/plain": [ 807 | "
" 808 | ] 809 | }, 810 | "metadata": {}, 811 | "output_type": "display_data" 812 | } 813 | ], 814 | "source": [ 815 | "sns.countplot(data=data,x=data['bedrooms'])" 816 | ] 817 | }, 818 | { 819 | "cell_type": "code", 820 | "execution_count": 17, 821 | "id": "d491175d", 822 | "metadata": { 823 | "execution": { 824 | "iopub.execute_input": "2022-11-05T08:25:31.421492Z", 825 | "iopub.status.busy": "2022-11-05T08:25:31.421059Z", 826 | "iopub.status.idle": "2022-11-05T08:25:31.604739Z", 827 | "shell.execute_reply": "2022-11-05T08:25:31.603899Z" 828 | }, 829 | "papermill": { 830 | "duration": 0.200317, 831 | "end_time": "2022-11-05T08:25:31.607467", 832 | "exception": false, 833 | "start_time": "2022-11-05T08:25:31.407150", 834 | "status": "completed" 835 | }, 836 | "tags": [] 837 | }, 838 | "outputs": [ 839 | { 840 | "data": { 841 | "text/plain": [ 842 | "" 843 | ] 844 | }, 845 | "execution_count": 17, 846 | "metadata": {}, 847 | "output_type": "execute_result" 848 | }, 849 | { 850 | "data": { 851 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkAElEQVR4nO3dfVCVdf7/8dcBPYjggVA5SGJaOiqFtmLp2Xa9iySjNje7XUtKs7XFCik1Zsy+3Q2llTdp2s0atZvb/a1MGoOBrZIaRakpuY4tNnrASjhqCgrX749drp8n3VIELujzfMycGc91fbjO+2rGfM51rnNwWZZlCQAAwGAhTg8AAADgNIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMZr5/QAbUF9fb12796tTp06yeVyOT0OAAA4CZZlaf/+/YqPj1dIyM9fAyKITsLu3buVkJDg9BgAAKARdu3ape7du//sGoLoJHTq1EnSf/6Dejweh6cBAAAnIxAIKCEhwf53/OcQRCeh4W0yj8dDEAEA0MaczO0u3FQNAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRAAAwHgEEQAAMB5BBAAAjEcQAQAA4xFEAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB47ZweAP9f8vSXnB4BaJVK5k5wegQAv3JcIQIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYLxWE0SPPvqoXC6XMjMz7W2HDx9WRkaGOnfurMjISI0bN04VFRVBP1deXq60tDR17NhRsbGxmj59uo4ePRq0prCwUIMGDVJYWJh69+6t3NzcFjgjAADQVrSKINq4caOeeeYZDRgwIGj7tGnT9P777+v1119XUVGRdu/erauuusreX1dXp7S0NNXW1mrdunV68cUXlZubq9mzZ9trdu7cqbS0NI0cOVKlpaXKzMzUrbfeqlWrVrXY+QEAgNbN8SA6cOCAxo8fr+eee05nnHGGvb26ulp//etf9eSTT2rUqFFKTk7WCy+8oHXr1umTTz6RJH344Yf66quv9Pe//13nn3++xowZo4ceekiLFy9WbW2tJGnp0qXq1auXnnjiCfXv319Tp07V1VdfrXnz5v3PmWpqahQIBIIeAADg18vxIMrIyFBaWppSUlKCtpeUlOjIkSNB2/v166cePXqouLhYklRcXKykpCR5vV57TWpqqgKBgLZs2WKv+emxU1NT7WOcSE5OjqKiouxHQkLCaZ8nAABovRwNoldeeUWfffaZcnJyjtvn9/vldrsVHR0dtN3r9crv99trjo2hhv0N+35uTSAQ0KFDh044V3Z2tqqrq+3Hrl27GnV+AACgbWjn1Avv2rVLd911l/Lz89WhQwenxjihsLAwhYWFOT0GAABoIY5dISopKVFlZaUGDRqkdu3aqV27dioqKtLChQvVrl07eb1e1dbWqqqqKujnKioqFBcXJ0mKi4s77lNnDc9/aY3H41F4eHgznR0AAGhLHAuiiy++WJs2bVJpaan9GDx4sMaPH2//uX379iooKLB/pqysTOXl5fL5fJIkn8+nTZs2qbKy0l6Tn58vj8ejxMREe82xx2hY03AMAAAAx94y69Spk84777ygbREREercubO9fdKkScrKylJMTIw8Ho/uuOMO+Xw+DR06VJI0evRoJSYm6qabbtKcOXPk9/s1a9YsZWRk2G95TZkyRYsWLdKMGTM0ceJErV69Wq+99pry8vJa9oQBAECr5VgQnYx58+YpJCRE48aNU01NjVJTU/X000/b+0NDQ7VixQrdfvvt8vl8ioiIUHp6uh588EF7Ta9evZSXl6dp06ZpwYIF6t69u55//nmlpqY6cUoAAKAVclmWZTk9RGsXCAQUFRWl6upqeTyeZnud5OkvNduxgbasZO4Ep0cA0Aadyr/fjn8PEQAAgNMIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPEeDaMmSJRowYIA8Ho88Ho98Pp8++OADe//hw4eVkZGhzp07KzIyUuPGjVNFRUXQMcrLy5WWlqaOHTsqNjZW06dP19GjR4PWFBYWatCgQQoLC1Pv3r2Vm5vbEqcHAADaCEeDqHv37nr00UdVUlKiTz/9VKNGjdKVV16pLVu2SJKmTZum999/X6+//rqKioq0e/duXXXVVfbP19XVKS0tTbW1tVq3bp1efPFF5ebmavbs2faanTt3Ki0tTSNHjlRpaakyMzN16623atWqVS1+vgAAoHVyWZZlOT3EsWJiYjR37lxdffXV6tq1q5YvX66rr75akrRt2zb1799fxcXFGjp0qD744ANdfvnl2r17t7xeryRp6dKlmjlzpvbu3Su3262ZM2cqLy9Pmzdvtl/j+uuvV1VVlVauXHnCGWpqalRTU2M/DwQCSkhIUHV1tTweT7Ode/L0l5rt2EBbVjJ3gtMjAGiDAoGAoqKiTurf71ZzD1FdXZ1eeeUVHTx4UD6fTyUlJTpy5IhSUlLsNf369VOPHj1UXFwsSSouLlZSUpIdQ5KUmpqqQCBgX2UqLi4OOkbDmoZjnEhOTo6ioqLsR0JCQlOeKgAAaGUcD6JNmzYpMjJSYWFhmjJlit5++20lJibK7/fL7XYrOjo6aL3X65Xf75ck+f3+oBhq2N+w7+fWBAIBHTp06IQzZWdnq7q62n7s2rWrKU4VAAC0Uu2cHqBv374qLS1VdXW13njjDaWnp6uoqMjRmcLCwhQWFuboDAAAoOU4HkRut1u9e/eWJCUnJ2vjxo1asGCBrrvuOtXW1qqqqiroKlFFRYXi4uIkSXFxcdqwYUPQ8Ro+hXbsmp9+Mq2iokIej0fh4eHNdVoAAKANcfwts5+qr69XTU2NkpOT1b59exUUFNj7ysrKVF5eLp/PJ0ny+XzatGmTKisr7TX5+fnyeDxKTEy01xx7jIY1DccAAABw9ApRdna2xowZox49emj//v1avny5CgsLtWrVKkVFRWnSpEnKyspSTEyMPB6P7rjjDvl8Pg0dOlSSNHr0aCUmJuqmm27SnDlz5Pf7NWvWLGVkZNhveU2ZMkWLFi3SjBkzNHHiRK1evVqvvfaa8vLynDx1AADQijgaRJWVlZowYYL27NmjqKgoDRgwQKtWrdIll1wiSZo3b55CQkI0btw41dTUKDU1VU8//bT986GhoVqxYoVuv/12+Xw+RUREKD09XQ8++KC9plevXsrLy9O0adO0YMECde/eXc8//7xSU1Nb/HwBAEDr1Oq+h6g1OpXvMTgdfA8RcGJ8DxGAxmiT30MEAADgFIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGK9RQTRq1ChVVVUdtz0QCGjUqFGnOxMAAECLalQQFRYWqra29rjthw8f1scff3zaQwEAALSkdqey+Msvv7T//NVXX8nv99vP6+rqtHLlSp155plNNx0AAEALOKUgOv/88+VyueRyuU741lh4eLieeuqpJhsOAACgJZxSEO3cuVOWZenss8/Whg0b1LVrV3uf2+1WbGysQkNDm3xIAACA5nRKQXTWWWdJkurr65tlGAAAACecUhAda/v27froo49UWVl5XCDNnj37tAcDAABoKY0Koueee0633367unTpori4OLlcLnufy+UiiAAAQJvSqCB6+OGH9cgjj2jmzJlNPQ8AAECLa9T3EO3bt0/XXHNNU88CAADgiEYF0TXXXKMPP/ywqWcBAABwRKPeMuvdu7fuu+8+ffLJJ0pKSlL79u2D9t95551NMhwAAEBLaFQQPfvss4qMjFRRUZGKioqC9rlcLoIIAAC0KY0Kop07dzb1HAAAAI5p1D1EAAAAvyaNukI0ceLEn92/bNmyRg0DAADghEYF0b59+4KeHzlyRJs3b1ZVVdUJf+krAABAa9aoIHr77beP21ZfX6/bb79d55xzzmkPBQAA0JKa7B6ikJAQZWVlad68eU11SAAAgBbRpDdV79ixQ0ePHm3KQwIAADS7Rr1llpWVFfTcsizt2bNHeXl5Sk9Pb5LBAAAAWkqjgujzzz8Peh4SEqKuXbvqiSee+MVPoAEAALQ2jQqijz76qKnnAAAAcEyjgqjB3r17VVZWJknq27evunbt2iRDAQAAtKRG3VR98OBBTZw4Ud26ddOwYcM0bNgwxcfHa9KkSfrxxx+bekYAAIBm1aggysrKUlFRkd5//31VVVWpqqpK7777roqKinT33Xc39YwAAADNqlFvmb355pt64403NGLECHvbZZddpvDwcF177bVasmRJU80HAADQ7Bp1hejHH3+U1+s9bntsbCxvmQEAgDanUUHk8/l0//336/Dhw/a2Q4cO6YEHHpDP52uy4QAAAFpCo94ymz9/vi699FJ1795dAwcOlCR98cUXCgsL04cfftikAwIAADS3RgVRUlKStm/frpdfflnbtm2TJN1www0aP368wsPDm3RAAACA5taoIMrJyZHX69XkyZODti9btkx79+7VzJkzm2Q4AACAltCoe4ieeeYZ9evX77jt5557rpYuXXraQwEAALSkRgWR3+9Xt27djtvetWtX7dmz57SHAgAAaEmNCqKEhAStXbv2uO1r165VfHz8aQ8FAADQkhp1D9HkyZOVmZmpI0eOaNSoUZKkgoICzZgxg2+qBgAAbU6jgmj69On6/vvv9Ze//EW1tbWSpA4dOmjmzJnKzs5u0gEBAACaW6OCyOVy6bHHHtN9992nrVu3Kjw8XH369FFYWFhTzwcAANDsGhVEDSIjI3XBBRc01SwAAACOaNRN1QAAAL8mBBEAADAeQQQAAIxHEAEAAOMRRAAAwHiOBlFOTo4uuOACderUSbGxsRo7dqzKysqC1hw+fFgZGRnq3LmzIiMjNW7cOFVUVAStKS8vV1pamjp27KjY2FhNnz5dR48eDVpTWFioQYMGKSwsTL1791Zubm5znx4AAGgjHA2ioqIiZWRk6JNPPlF+fr6OHDmi0aNH6+DBg/aaadOm6f3339frr7+uoqIi7d69W1dddZW9v66uTmlpaaqtrdW6dev04osvKjc3V7Nnz7bX7Ny5U2lpaRo5cqRKS0uVmZmpW2+9VatWrWrR8wUAAK2Ty7Isy+khGuzdu1exsbEqKirSsGHDVF1dra5du2r58uW6+uqrJUnbtm1T//79VVxcrKFDh+qDDz7Q5Zdfrt27d8vr9UqSli5dqpkzZ2rv3r1yu92aOXOm8vLytHnzZvu1rr/+elVVVWnlypW/OFcgEFBUVJSqq6vl8Xia5+QlJU9/qdmODbRlJXMnOD0CgDboVP79blX3EFVXV0uSYmJiJEklJSU6cuSIUlJS7DX9+vVTjx49VFxcLEkqLi5WUlKSHUOSlJqaqkAgoC1btthrjj1Gw5qGY/xUTU2NAoFA0AMAAPx6tZogqq+vV2Zmpi666CKdd955kiS/3y+3263o6OigtV6vV36/315zbAw17G/Y93NrAoGADh06dNwsOTk5ioqKsh8JCQlNco4AAKB1ajVBlJGRoc2bN+uVV15xehRlZ2erurrafuzatcvpkQAAQDM6rd9l1lSmTp2qFStWaM2aNerevbu9PS4uTrW1taqqqgq6SlRRUaG4uDh7zYYNG4KO1/AptGPX/PSTaRUVFfJ4PAoPDz9unrCwMH5RLQAABnH0CpFlWZo6darefvttrV69Wr169Qran5ycrPbt26ugoMDeVlZWpvLycvl8PkmSz+fTpk2bVFlZaa/Jz8+Xx+NRYmKivebYYzSsaTgGAAAwm6NXiDIyMrR8+XK9++676tSpk33PT1RUlMLDwxUVFaVJkyYpKytLMTEx8ng8uuOOO+Tz+TR06FBJ0ujRo5WYmKibbrpJc+bMkd/v16xZs5SRkWFf5ZkyZYoWLVqkGTNmaOLEiVq9erVee+015eXlOXbuAACg9XD0CtGSJUtUXV2tESNGqFu3bvbj1VdftdfMmzdPl19+ucaNG6dhw4YpLi5Ob731lr0/NDRUK1asUGhoqHw+n2688UZNmDBBDz74oL2mV69eysvLU35+vgYOHKgnnnhCzz//vFJTU1v0fAEAQOvUqr6HqLXie4gAZ/E9RAAao81+DxEAAIATCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDxHg2jNmjW64oorFB8fL5fLpXfeeSdov2VZmj17trp166bw8HClpKRo+/btQWt++OEHjR8/Xh6PR9HR0Zo0aZIOHDgQtObLL7/U73//e3Xo0EEJCQmaM2dOc58aAABoQxwNooMHD2rgwIFavHjxCffPmTNHCxcu1NKlS7V+/XpFREQoNTVVhw8ftteMHz9eW7ZsUX5+vlasWKE1a9botttus/cHAgGNHj1aZ511lkpKSjR37lz93//9n5599tlmPz8AANA2tHPyxceMGaMxY8accJ9lWZo/f75mzZqlK6+8UpL00ksvyev16p133tH111+vrVu3auXKldq4caMGDx4sSXrqqad02WWX6fHHH1d8fLxefvll1dbWatmyZXK73Tr33HNVWlqqJ598MiicAACAuVrtPUQ7d+6U3+9XSkqKvS0qKkpDhgxRcXGxJKm4uFjR0dF2DElSSkqKQkJCtH79envNsGHD5Ha77TWpqakqKyvTvn37TvjaNTU1CgQCQQ8AAPDr1WqDyO/3S5K8Xm/Qdq/Xa+/z+/2KjY0N2t+uXTvFxMQErTnRMY59jZ/KyclRVFSU/UhISDj9EwIAAK1Wqw0iJ2VnZ6u6utp+7Nq1y+mRAABAM2q1QRQXFydJqqioCNpeUVFh74uLi1NlZWXQ/qNHj+qHH34IWnOiYxz7Gj8VFhYmj8cT9AAAAL9erTaIevXqpbi4OBUUFNjbAoGA1q9fL5/PJ0ny+XyqqqpSSUmJvWb16tWqr6/XkCFD7DVr1qzRkSNH7DX5+fnq27evzjjjjBY6GwAA0Jo5GkQHDhxQaWmpSktLJf3nRurS0lKVl5fL5XIpMzNTDz/8sN577z1t2rRJEyZMUHx8vMaOHStJ6t+/vy699FJNnjxZGzZs0Nq1azV16lRdf/31io+PlyT96U9/ktvt1qRJk7Rlyxa9+uqrWrBggbKyshw6awAA0No4+rH7Tz/9VCNHjrSfN0RKenq6cnNzNWPGDB08eFC33Xabqqqq9Lvf/U4rV65Uhw4d7J95+eWXNXXqVF188cUKCQnRuHHjtHDhQnt/VFSUPvzwQ2VkZCg5OVldunTR7Nmz+cg9AACwuSzLspweorULBAKKiopSdXV1s95PlDz9pWY7NtCWlcyd4PQIANqgU/n3u9XeQwQAANBSCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyCCAAAGI8gAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYDyjgmjx4sXq2bOnOnTooCFDhmjDhg1OjwQAAFqBdk4P0FJeffVVZWVlaenSpRoyZIjmz5+v1NRUlZWVKTY21unxAPzKlT+Y5PQIQKvUY/Ymp0eQZNAVoieffFKTJ0/WLbfcosTERC1dulQdO3bUsmXLnB4NAAA4zIgrRLW1tSopKVF2dra9LSQkRCkpKSouLj5ufU1NjWpqauzn1dXVkqRAINCsc9bVHGrW4wNtVXP/3WsJ+w/XOT0C0Co159/vhmNblvWLa40Iou+++051dXXyer1B271er7Zt23bc+pycHD3wwAPHbU9ISGi2GQH8b1FPTXF6BADNJSeq2V9i//79ior6+dcxIohOVXZ2trKysuzn9fX1+uGHH9S5c2e5XC4HJ0NLCAQCSkhI0K5du+TxeJweB0AT4u+3WSzL0v79+xUfH/+La40Ioi5duig0NFQVFRVB2ysqKhQXF3fc+rCwMIWFhQVti46Obs4R0Qp5PB7+hwn8SvH32xy/dGWogRE3VbvdbiUnJ6ugoMDeVl9fr4KCAvl8PgcnAwAArYERV4gkKSsrS+np6Ro8eLAuvPBCzZ8/XwcPHtQtt9zi9GgAAMBhxgTRddddp71792r27Nny+/06//zztXLlyuNutAbCwsJ0//33H/e2KYC2j7/f+F9c1sl8Fg0AAOBXzIh7iAAAAH4OQQQAAIxHEAEAAOMRRAAAwHgEEfATixcvVs+ePdWhQwcNGTJEGzZscHokAE1gzZo1uuKKKxQfHy+Xy6V33nnH6ZHQihBEwDFeffVVZWVl6f7779dnn32mgQMHKjU1VZWVlU6PBuA0HTx4UAMHDtTixYudHgWtEB+7B44xZMgQXXDBBVq0aJGk/3yjeUJCgu644w7de++9Dk8HoKm4XC69/fbbGjt2rNOjoJXgChHwX7W1tSopKVFKSoq9LSQkRCkpKSouLnZwMgBAcyOIgP/67rvvVFdXd9y3l3u9Xvn9foemAgC0BIIIAAAYjyAC/qtLly4KDQ1VRUVF0PaKigrFxcU5NBUAoCUQRMB/ud1uJScnq6CgwN5WX1+vgoIC+Xw+BycDADQ3Y37bPXAysrKylJ6ersGDB+vCCy/U/PnzdfDgQd1yyy1OjwbgNB04cED/+te/7Oc7d+5UaWmpYmJi1KNHDwcnQ2vAx+6Bn1i0aJHmzp0rv9+v888/XwsXLtSQIUOcHgvAaSosLNTIkSOP256enq7c3NyWHwitCkEEAACMxz1EAADAeAQRAAAwHkEEAACMRxABAADjEUQAAMB4BBEAADAeQQQAAIxHEAEAAOMRRADwE36/X5dccokiIiIUHR3t9DgAWgBBBKDNGzFihDIzM5vsePPmzdOePXtUWlqqr7/+usmOeyKFhYVyuVyqqqpq1tcB8PP45a4A8F+1tbVyu93asWOHkpOT1adPn/+59siRI2rfvn0LTgegOXGFCECLW7FihaKjo1VXVydJKi0tlcvl0r333muvufXWW3XjjTfq+++/1w033KAzzzxTHTt2VFJSkv7xj3/Y626++WYVFRVpwYIFcrlccrlc+uabbyRJmzdv1pgxYxQZGSmv16ubbrpJ3333nf2zI0aM0NSpU5WZmakuXbooNTVVPXv21JtvvqmXXnpJLpdLN998syTJ5XJpyZIl+sMf/qCIiAg98sgjkqQlS5bonHPOkdvtVt++ffW3v/0t6FxdLpeef/55/fGPf1THjh3Vp08fvffee5Kkb775xv5lo2eccUbQ6wFoYRYAtLCqqiorJCTE2rhxo2VZljV//nyrS5cu1pAhQ+w1vXv3tp577jnr22+/tebOnWt9/vnn1o4dO6yFCxdaoaGh1vr16+1j+Xw+a/LkydaePXusPXv2WEePHrX27dtnde3a1crOzra2bt1qffbZZ9Yll1xijRw50n6N4cOHW5GRkdb06dOtbdu2Wdu2bbMqKyutSy+91Lr22mutPXv2WFVVVZZlWZYkKzY21lq2bJm1Y8cO69///rf11ltvWe3bt7cWL15slZWVWU888YQVGhpqrV692n4NSVb37t2t5cuXW9u3b7fuvPNOKzIy0vr++++to0ePWm+++aYlySorKwt6PQAtiyAC4IhBgwZZc+fOtSzLssaOHWs98sgjltvttvbv3299++23liTr66+/PuHPpqWlWXfffbf9fPjw4dZdd90VtOahhx6yRo8eHbRt165ddnw0/NxvfvOb445/5ZVXWunp6UHbJFmZmZlB2377299akydPDtp2zTXXWJdddlnQz82aNct+fuDAAUuS9cEHH1iWZVkfffSRJcnat2/fCc8VQMvgLTMAjhg+fLgKCwtlWZY+/vhjXXXVVerfv7/++c9/qqioSPHx8erTp4/q6ur00EMPKSkpSTExMYqMjNSqVatUXl7+s8f/4osv9NFHHykyMtJ+9OvXT5K0Y8cOe11ycvJJzzx48OCg51u3btVFF10UtO2iiy7S1q1bg7YNGDDA/nNERIQ8Ho8qKytP+nUBND9uqgbgiBEjRmjZsmX64osv1L59e/Xr108jRoxQYWGh9u3bp+HDh0uS5s6dqwULFmj+/PlKSkpSRESEMjMzVVtb+7PHP3DggK644go99thjx+3r1q2b/eeIiIiTnvlU1h7rpzdfu1wu1dfXN+pYAJoHV4gAOOL3v/+99u/fr3nz5tnx0xBEhYWFGjFihCRp7dq1uvLKK3XjjTdq4MCBOvvss4/7KLzb7bZv0G4waNAgbdmyRT179lTv3r2DHo0Nm5/q37+/1q5dG7Rt7dq1SkxMPOljuN1uSTpufgAtiyAC4IgzzjhDAwYM0Msvv2zHz7Bhw/TZZ5/p66+/tiOpT58+ys/P17p167R161b9+c9/VkVFRdCxevbsqfXr1+ubb77Rd999p/r6emVkZOiHH37QDTfcoI0bN2rHjh1atWqVbrnlliaLj+nTpys3N1dLlizR9u3b9eSTT+qtt97SPffcc9LHOOuss+RyubRixQrt3btXBw4caJLZAJwaggiAY4YPH666ujo7iGJiYpSYmKi4uDj17dtXkjRr1iwNGjRIqampGjFihOLi4jR27Nig49xzzz0KDQ1VYmKiunbtqvLycsXHx2vt2rWqq6vT6NGjlZSUpMzMTEVHRyskpGn+1zd27FgtWLBAjz/+uM4991w988wzeuGFF+zzORlnnnmmHnjgAd17773yer2aOnVqk8wG4NS4LMuynB4CAADASVwhAgAAxiOIAACA8QgiAABgPIIIAAAYjyACAADGI4gAAIDxCCIAAGA8gggAABiPIAIAAMYjiAAAgPEIIgAAYLz/B9O/eykCE80tAAAAAElFTkSuQmCC", 852 | "text/plain": [ 853 | "
" 854 | ] 855 | }, 856 | "metadata": {}, 857 | "output_type": "display_data" 858 | } 859 | ], 860 | "source": [ 861 | "sns.countplot(data=data,x=data['waterfront'])" 862 | ] 863 | }, 864 | { 865 | "cell_type": "markdown", 866 | "id": "160e09e0", 867 | "metadata": { 868 | "papermill": { 869 | "duration": 0.013553, 870 | "end_time": "2022-11-05T08:25:31.660822", 871 | "exception": false, 872 | "start_time": "2022-11-05T08:25:31.647269", 873 | "status": "completed" 874 | }, 875 | "tags": [] 876 | }, 877 | "source": [ 878 | "## Model Creation" 879 | ] 880 | }, 881 | { 882 | "cell_type": "code", 883 | "execution_count": 18, 884 | "id": "a00ed84d", 885 | "metadata": { 886 | "execution": { 887 | "iopub.execute_input": "2022-11-05T08:25:31.689713Z", 888 | "iopub.status.busy": "2022-11-05T08:25:31.689309Z", 889 | "iopub.status.idle": "2022-11-05T08:25:31.699095Z", 890 | "shell.execute_reply": "2022-11-05T08:25:31.698235Z" 891 | }, 892 | "papermill": { 893 | "duration": 0.027012, 894 | "end_time": "2022-11-05T08:25:31.701749", 895 | "exception": false, 896 | "start_time": "2022-11-05T08:25:31.674737", 897 | "status": "completed" 898 | }, 899 | "tags": [] 900 | }, 901 | "outputs": [ 902 | { 903 | "data": { 904 | "text/plain": [ 905 | "sqft_basement\n", 906 | "0 2745\n", 907 | "500 53\n", 908 | "600 45\n", 909 | "800 43\n", 910 | "900 41\n", 911 | " ... \n", 912 | "2300 1\n", 913 | "265 1\n", 914 | "1610 1\n", 915 | "862 1\n", 916 | "1640 1\n", 917 | "Name: count, Length: 207, dtype: int64" 918 | ] 919 | }, 920 | "execution_count": 18, 921 | "metadata": {}, 922 | "output_type": "execute_result" 923 | } 924 | ], 925 | "source": [ 926 | "data['sqft_basement'].value_counts()" 927 | ] 928 | }, 929 | { 930 | "cell_type": "code", 931 | "execution_count": 19, 932 | "id": "cf79255f", 933 | "metadata": { 934 | "execution": { 935 | "iopub.execute_input": "2022-11-05T08:25:31.731019Z", 936 | "iopub.status.busy": "2022-11-05T08:25:31.730556Z", 937 | "iopub.status.idle": "2022-11-05T08:25:31.738304Z", 938 | "shell.execute_reply": "2022-11-05T08:25:31.736852Z" 939 | }, 940 | "papermill": { 941 | "duration": 0.025349, 942 | "end_time": "2022-11-05T08:25:31.740891", 943 | "exception": false, 944 | "start_time": "2022-11-05T08:25:31.715542", 945 | "status": "completed" 946 | }, 947 | "tags": [] 948 | }, 949 | "outputs": [], 950 | "source": [ 951 | "data = data.drop([\"city\",\"view\",\"waterfront\",\"sqft_basement\"],axis=1)" 952 | ] 953 | }, 954 | { 955 | "cell_type": "code", 956 | "execution_count": 20, 957 | "id": "40dce89c", 958 | "metadata": { 959 | "execution": { 960 | "iopub.execute_input": "2022-11-05T08:25:31.822281Z", 961 | "iopub.status.busy": "2022-11-05T08:25:31.821767Z", 962 | "iopub.status.idle": "2022-11-05T08:25:31.829605Z", 963 | "shell.execute_reply": "2022-11-05T08:25:31.828190Z" 964 | }, 965 | "papermill": { 966 | "duration": 0.025326, 967 | "end_time": "2022-11-05T08:25:31.832232", 968 | "exception": false, 969 | "start_time": "2022-11-05T08:25:31.806906", 970 | "status": "completed" 971 | }, 972 | "tags": [] 973 | }, 974 | "outputs": [], 975 | "source": [ 976 | "x = np.array(data.loc[:,data.columns != \"price\"].values)\n", 977 | "y = np.array(data[\"price\"].values)" 978 | ] 979 | }, 980 | { 981 | "cell_type": "code", 982 | "execution_count": 21, 983 | "id": "2cada5be", 984 | "metadata": { 985 | "execution": { 986 | "iopub.execute_input": "2022-11-05T08:25:31.860997Z", 987 | "iopub.status.busy": "2022-11-05T08:25:31.860507Z", 988 | "iopub.status.idle": "2022-11-05T08:25:31.868697Z", 989 | "shell.execute_reply": "2022-11-05T08:25:31.867705Z" 990 | }, 991 | "papermill": { 992 | "duration": 0.02536, 993 | "end_time": "2022-11-05T08:25:31.871073", 994 | "exception": false, 995 | "start_time": "2022-11-05T08:25:31.845713", 996 | "status": "completed" 997 | }, 998 | "tags": [] 999 | }, 1000 | "outputs": [ 1001 | { 1002 | "data": { 1003 | "text/plain": [ 1004 | "array([[ 3, 1, 1340, ..., 3, 1340, 36],\n", 1005 | " [ 5, 2, 3650, ..., 5, 3370, 35],\n", 1006 | " [ 3, 2, 1930, ..., 4, 1930, 18],\n", 1007 | " ...,\n", 1008 | " [ 3, 2, 3010, ..., 3, 3010, 32],\n", 1009 | " [ 4, 2, 2090, ..., 3, 1070, 35],\n", 1010 | " [ 3, 2, 1490, ..., 4, 1490, 9]], dtype=int64)" 1011 | ] 1012 | }, 1013 | "execution_count": 21, 1014 | "metadata": {}, 1015 | "output_type": "execute_result" 1016 | } 1017 | ], 1018 | "source": [ 1019 | "x" 1020 | ] 1021 | }, 1022 | { 1023 | "cell_type": "code", 1024 | "execution_count": 22, 1025 | "id": "2dba4b6c", 1026 | "metadata": { 1027 | "execution": { 1028 | "iopub.execute_input": "2022-11-05T08:25:31.899555Z", 1029 | "iopub.status.busy": "2022-11-05T08:25:31.899146Z", 1030 | "iopub.status.idle": "2022-11-05T08:25:31.905957Z", 1031 | "shell.execute_reply": "2022-11-05T08:25:31.904792Z" 1032 | }, 1033 | "papermill": { 1034 | "duration": 0.024129, 1035 | "end_time": "2022-11-05T08:25:31.908496", 1036 | "exception": false, 1037 | "start_time": "2022-11-05T08:25:31.884367", 1038 | "status": "completed" 1039 | }, 1040 | "tags": [] 1041 | }, 1042 | "outputs": [ 1043 | { 1044 | "data": { 1045 | "text/plain": [ 1046 | "array([ 313000, 2384000, 342000, ..., 416904, 203400, 220600])" 1047 | ] 1048 | }, 1049 | "execution_count": 22, 1050 | "metadata": {}, 1051 | "output_type": "execute_result" 1052 | } 1053 | ], 1054 | "source": [ 1055 | "y" 1056 | ] 1057 | }, 1058 | { 1059 | "cell_type": "code", 1060 | "execution_count": 23, 1061 | "id": "03618f50", 1062 | "metadata": { 1063 | "execution": { 1064 | "iopub.execute_input": "2022-11-05T08:25:31.937320Z", 1065 | "iopub.status.busy": "2022-11-05T08:25:31.936881Z", 1066 | "iopub.status.idle": "2022-11-05T08:25:31.944616Z", 1067 | "shell.execute_reply": "2022-11-05T08:25:31.943245Z" 1068 | }, 1069 | "papermill": { 1070 | "duration": 0.024941, 1071 | "end_time": "2022-11-05T08:25:31.947081", 1072 | "exception": false, 1073 | "start_time": "2022-11-05T08:25:31.922140", 1074 | "status": "completed" 1075 | }, 1076 | "tags": [] 1077 | }, 1078 | "outputs": [], 1079 | "source": [ 1080 | "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.1,random_state=42)" 1081 | ] 1082 | }, 1083 | { 1084 | "cell_type": "code", 1085 | "execution_count": 24, 1086 | "id": "17dbd7a0", 1087 | "metadata": { 1088 | "execution": { 1089 | "iopub.execute_input": "2022-11-05T08:25:31.975637Z", 1090 | "iopub.status.busy": "2022-11-05T08:25:31.975207Z", 1091 | "iopub.status.idle": "2022-11-05T08:25:31.982824Z", 1092 | "shell.execute_reply": "2022-11-05T08:25:31.981979Z" 1093 | }, 1094 | "papermill": { 1095 | "duration": 0.024459, 1096 | "end_time": "2022-11-05T08:25:31.984999", 1097 | "exception": false, 1098 | "start_time": "2022-11-05T08:25:31.960540", 1099 | "status": "completed" 1100 | }, 1101 | "tags": [] 1102 | }, 1103 | "outputs": [ 1104 | { 1105 | "data": { 1106 | "text/plain": [ 1107 | "array([[ 3, 1, 1340, ..., 3, 1340, 36],\n", 1108 | " [ 5, 2, 3650, ..., 5, 3370, 35],\n", 1109 | " [ 3, 2, 1930, ..., 4, 1930, 18],\n", 1110 | " ...,\n", 1111 | " [ 3, 2, 3010, ..., 3, 3010, 32],\n", 1112 | " [ 4, 2, 2090, ..., 3, 1070, 35],\n", 1113 | " [ 3, 2, 1490, ..., 4, 1490, 9]], dtype=int64)" 1114 | ] 1115 | }, 1116 | "execution_count": 24, 1117 | "metadata": {}, 1118 | "output_type": "execute_result" 1119 | } 1120 | ], 1121 | "source": [ 1122 | "x" 1123 | ] 1124 | }, 1125 | { 1126 | "cell_type": "code", 1127 | "execution_count": 25, 1128 | "id": "4b754402", 1129 | "metadata": { 1130 | "execution": { 1131 | "iopub.execute_input": "2022-11-05T08:25:32.040456Z", 1132 | "iopub.status.busy": "2022-11-05T08:25:32.040032Z", 1133 | "iopub.status.idle": "2022-11-05T08:25:32.067598Z", 1134 | "shell.execute_reply": "2022-11-05T08:25:32.066056Z" 1135 | }, 1136 | "papermill": { 1137 | "duration": 0.044743, 1138 | "end_time": "2022-11-05T08:25:32.070063", 1139 | "exception": false, 1140 | "start_time": "2022-11-05T08:25:32.025320", 1141 | "status": "completed" 1142 | }, 1143 | "tags": [] 1144 | }, 1145 | "outputs": [ 1146 | { 1147 | "data": { 1148 | "text/html": [ 1149 | "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" 1150 | ], 1151 | "text/plain": [ 1152 | "LinearRegression()" 1153 | ] 1154 | }, 1155 | "execution_count": 25, 1156 | "metadata": {}, 1157 | "output_type": "execute_result" 1158 | } 1159 | ], 1160 | "source": [ 1161 | "model_lr = LinearRegression()\n", 1162 | "model_lr.fit(x_train,y_train)" 1163 | ] 1164 | }, 1165 | { 1166 | "cell_type": "code", 1167 | "execution_count": 26, 1168 | "id": "4154b24a", 1169 | "metadata": { 1170 | "execution": { 1171 | "iopub.execute_input": "2022-11-05T08:25:32.099871Z", 1172 | "iopub.status.busy": "2022-11-05T08:25:32.099154Z", 1173 | "iopub.status.idle": "2022-11-05T08:25:32.108611Z", 1174 | "shell.execute_reply": "2022-11-05T08:25:32.107058Z" 1175 | }, 1176 | "papermill": { 1177 | "duration": 0.027656, 1178 | "end_time": "2022-11-05T08:25:32.111250", 1179 | "exception": false, 1180 | "start_time": "2022-11-05T08:25:32.083594", 1181 | "status": "completed" 1182 | }, 1183 | "tags": [] 1184 | }, 1185 | "outputs": [], 1186 | "source": [ 1187 | "predictions_lr = model_lr.predict(x_test)" 1188 | ] 1189 | }, 1190 | { 1191 | "cell_type": "code", 1192 | "execution_count": 27, 1193 | "id": "e7210f04", 1194 | "metadata": { 1195 | "execution": { 1196 | "iopub.execute_input": "2022-11-05T08:25:32.143266Z", 1197 | "iopub.status.busy": "2022-11-05T08:25:32.141898Z", 1198 | "iopub.status.idle": "2022-11-05T08:25:32.154013Z", 1199 | "shell.execute_reply": "2022-11-05T08:25:32.152405Z" 1200 | }, 1201 | "papermill": { 1202 | "duration": 0.03151, 1203 | "end_time": "2022-11-05T08:25:32.156761", 1204 | "exception": false, 1205 | "start_time": "2022-11-05T08:25:32.125251", 1206 | "status": "completed" 1207 | }, 1208 | "tags": [] 1209 | }, 1210 | "outputs": [ 1211 | { 1212 | "data": { 1213 | "text/plain": [ 1214 | "0.3183144703701215" 1215 | ] 1216 | }, 1217 | "execution_count": 27, 1218 | "metadata": {}, 1219 | "output_type": "execute_result" 1220 | } 1221 | ], 1222 | "source": [ 1223 | "mean_absolute_percentage_error(predictions_lr,y_test)" 1224 | ] 1225 | }, 1226 | { 1227 | "cell_type": "code", 1228 | "execution_count": 28, 1229 | "id": "ac1f2b3e", 1230 | "metadata": { 1231 | "execution": { 1232 | "iopub.execute_input": "2022-11-05T08:25:32.216071Z", 1233 | "iopub.status.busy": "2022-11-05T08:25:32.215312Z", 1234 | "iopub.status.idle": "2022-11-05T08:25:32.369227Z", 1235 | "shell.execute_reply": "2022-11-05T08:25:32.367811Z" 1236 | }, 1237 | "papermill": { 1238 | "duration": 0.172599, 1239 | "end_time": "2022-11-05T08:25:32.372327", 1240 | "exception": false, 1241 | "start_time": "2022-11-05T08:25:32.199728", 1242 | "status": "completed" 1243 | }, 1244 | "tags": [] 1245 | }, 1246 | "outputs": [], 1247 | "source": [ 1248 | "model = RandomForestRegressor(n_estimators=10)\n", 1249 | "model.fit(x_train,y_train)\n", 1250 | "predictions = model.predict(x_test)" 1251 | ] 1252 | }, 1253 | { 1254 | "cell_type": "code", 1255 | "execution_count": 29, 1256 | "id": "4bbf64d2", 1257 | "metadata": { 1258 | "execution": { 1259 | "iopub.execute_input": "2022-11-05T08:25:32.401682Z", 1260 | "iopub.status.busy": "2022-11-05T08:25:32.401256Z", 1261 | "iopub.status.idle": "2022-11-05T08:25:32.409150Z", 1262 | "shell.execute_reply": "2022-11-05T08:25:32.408030Z" 1263 | }, 1264 | "papermill": { 1265 | "duration": 0.025347, 1266 | "end_time": "2022-11-05T08:25:32.411577", 1267 | "exception": false, 1268 | "start_time": "2022-11-05T08:25:32.386230", 1269 | "status": "completed" 1270 | }, 1271 | "tags": [] 1272 | }, 1273 | "outputs": [ 1274 | { 1275 | "data": { 1276 | "text/plain": [ 1277 | "0.24210417557737207" 1278 | ] 1279 | }, 1280 | "execution_count": 29, 1281 | "metadata": {}, 1282 | "output_type": "execute_result" 1283 | } 1284 | ], 1285 | "source": [ 1286 | "mean_absolute_percentage_error(predictions,y_test)" 1287 | ] 1288 | }, 1289 | { 1290 | "cell_type": "code", 1291 | "execution_count": 32, 1292 | "id": "0a16e9cb", 1293 | "metadata": {}, 1294 | "outputs": [ 1295 | { 1296 | "data": { 1297 | "text/html": [ 1298 | "
\n", 1299 | "\n", 1312 | "\n", 1313 | " \n", 1314 | " \n", 1315 | " \n", 1316 | " \n", 1317 | " \n", 1318 | " \n", 1319 | " \n", 1320 | " \n", 1321 | " \n", 1322 | " \n", 1323 | " \n", 1324 | " \n", 1325 | " \n", 1326 | " \n", 1327 | " \n", 1328 | " \n", 1329 | " \n", 1330 | " \n", 1331 | " \n", 1332 | " \n", 1333 | " \n", 1334 | " \n", 1335 | " \n", 1336 | " \n", 1337 | " \n", 1338 | " \n", 1339 | " \n", 1340 | " \n", 1341 | " \n", 1342 | " \n", 1343 | " \n", 1344 | " \n", 1345 | " \n", 1346 | " \n", 1347 | " \n", 1348 | " \n", 1349 | " \n", 1350 | " \n", 1351 | " \n", 1352 | " \n", 1353 | " \n", 1354 | " \n", 1355 | " \n", 1356 | " \n", 1357 | " \n", 1358 | " \n", 1359 | " \n", 1360 | " \n", 1361 | " \n", 1362 | " \n", 1363 | " \n", 1364 | " \n", 1365 | " \n", 1366 | " \n", 1367 | " \n", 1368 | " \n", 1369 | " \n", 1370 | " \n", 1371 | " \n", 1372 | " \n", 1373 | " \n", 1374 | " \n", 1375 | " \n", 1376 | " \n", 1377 | " \n", 1378 | " \n", 1379 | " \n", 1380 | " \n", 1381 | " \n", 1382 | " \n", 1383 | " \n", 1384 | " \n", 1385 | " \n", 1386 | " \n", 1387 | " \n", 1388 | " \n", 1389 | "
pricebedroomsbathroomssqft_livingsqft_lotfloorsconditionsqft_abovecity_new
0313000311340791213134036
12384000523650905025337035
23420003219301194714193018
342000032200080301410003
45500004219401050014114031
\n", 1390 | "
" 1391 | ], 1392 | "text/plain": [ 1393 | " price bedrooms bathrooms sqft_living sqft_lot floors condition \\\n", 1394 | "0 313000 3 1 1340 7912 1 3 \n", 1395 | "1 2384000 5 2 3650 9050 2 5 \n", 1396 | "2 342000 3 2 1930 11947 1 4 \n", 1397 | "3 420000 3 2 2000 8030 1 4 \n", 1398 | "4 550000 4 2 1940 10500 1 4 \n", 1399 | "\n", 1400 | " sqft_above city_new \n", 1401 | "0 1340 36 \n", 1402 | "1 3370 35 \n", 1403 | "2 1930 18 \n", 1404 | "3 1000 3 \n", 1405 | "4 1140 31 " 1406 | ] 1407 | }, 1408 | "execution_count": 32, 1409 | "metadata": {}, 1410 | "output_type": "execute_result" 1411 | } 1412 | ], 1413 | "source": [ 1414 | "data.head()" 1415 | ] 1416 | }, 1417 | { 1418 | "cell_type": "code", 1419 | "execution_count": 33, 1420 | "id": "32b3dfde", 1421 | "metadata": { 1422 | "execution": { 1423 | "iopub.execute_input": "2022-11-05T08:25:32.495627Z", 1424 | "iopub.status.busy": "2022-11-05T08:25:32.495195Z", 1425 | "iopub.status.idle": "2022-11-05T08:25:32.504061Z", 1426 | "shell.execute_reply": "2022-11-05T08:25:32.503047Z" 1427 | }, 1428 | "papermill": { 1429 | "duration": 0.026607, 1430 | "end_time": "2022-11-05T08:25:32.506128", 1431 | "exception": false, 1432 | "start_time": "2022-11-05T08:25:32.479521", 1433 | "status": "completed" 1434 | }, 1435 | "tags": [] 1436 | }, 1437 | "outputs": [ 1438 | { 1439 | "data": { 1440 | "text/plain": [ 1441 | "array([284900.])" 1442 | ] 1443 | }, 1444 | "execution_count": 33, 1445 | "metadata": {}, 1446 | "output_type": "execute_result" 1447 | } 1448 | ], 1449 | "source": [ 1450 | "a = [1,1,200,200,1,2,200,36]\n", 1451 | "model.predict([a])" 1452 | ] 1453 | }, 1454 | { 1455 | "cell_type": "code", 1456 | "execution_count": 35, 1457 | "id": "76fa023e", 1458 | "metadata": {}, 1459 | "outputs": [ 1460 | { 1461 | "data": { 1462 | "text/plain": [ 1463 | "array([314950.])" 1464 | ] 1465 | }, 1466 | "execution_count": 35, 1467 | "metadata": {}, 1468 | "output_type": "execute_result" 1469 | } 1470 | ], 1471 | "source": [ 1472 | "b =[3,1,1340,7912,1,3,1340,36]\n", 1473 | "model.predict([b])" 1474 | ] 1475 | }, 1476 | { 1477 | "cell_type": "code", 1478 | "execution_count": null, 1479 | "id": "7b7c018b", 1480 | "metadata": {}, 1481 | "outputs": [], 1482 | "source": [] 1483 | } 1484 | ], 1485 | "metadata": { 1486 | "kernelspec": { 1487 | "display_name": "Python 3", 1488 | "language": "python", 1489 | "name": "python3" 1490 | }, 1491 | "language_info": { 1492 | "codemirror_mode": { 1493 | "name": "ipython", 1494 | "version": 3 1495 | }, 1496 | "file_extension": ".py", 1497 | "mimetype": "text/x-python", 1498 | "name": "python", 1499 | "nbconvert_exporter": "python", 1500 | "pygments_lexer": "ipython3", 1501 | "version": "3.10.0" 1502 | }, 1503 | "papermill": { 1504 | "default_parameters": {}, 1505 | "duration": 16.918623, 1506 | "end_time": "2022-11-05T08:25:33.493433", 1507 | "environment_variables": {}, 1508 | "exception": null, 1509 | "input_path": "__notebook__.ipynb", 1510 | "output_path": "__notebook__.ipynb", 1511 | "parameters": {}, 1512 | "start_time": "2022-11-05T08:25:16.574810", 1513 | "version": "2.3.4" 1514 | } 1515 | }, 1516 | "nbformat": 4, 1517 | "nbformat_minor": 5 1518 | } 1519 | -------------------------------------------------------------------------------- /pima-indians-diabetes-database-svm-accuracy-79.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "149d2d1e", 7 | "metadata": { 8 | "execution": { 9 | "iopub.execute_input": "2023-05-17T05:30:26.966373Z", 10 | "iopub.status.busy": "2023-05-17T05:30:26.965827Z", 11 | "iopub.status.idle": "2023-05-17T05:30:28.438333Z", 12 | "shell.execute_reply": "2023-05-17T05:30:28.437064Z" 13 | }, 14 | "papermill": { 15 | "duration": 1.480344, 16 | "end_time": "2023-05-17T05:30:28.440911", 17 | "exception": false, 18 | "start_time": "2023-05-17T05:30:26.960567", 19 | "status": "completed" 20 | }, 21 | "tags": [] 22 | }, 23 | "outputs": [], 24 | "source": [ 25 | "import pandas as pd\n", 26 | "import numpy as np\n", 27 | "import matplotlib.pyplot as plt\n", 28 | "import sklearn \n", 29 | "from sklearn import svm\n", 30 | "from sklearn import metrics" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 2, 36 | "id": "49a07ff9", 37 | "metadata": { 38 | "execution": { 39 | "iopub.execute_input": "2023-05-17T05:30:28.452774Z", 40 | "iopub.status.busy": "2023-05-17T05:30:28.452446Z", 41 | "iopub.status.idle": "2023-05-17T05:30:28.478510Z", 42 | "shell.execute_reply": "2023-05-17T05:30:28.477000Z" 43 | }, 44 | "papermill": { 45 | "duration": 0.03423, 46 | "end_time": "2023-05-17T05:30:28.481010", 47 | "exception": false, 48 | "start_time": "2023-05-17T05:30:28.446780", 49 | "status": "completed" 50 | }, 51 | "tags": [] 52 | }, 53 | "outputs": [], 54 | "source": [ 55 | "data = pd.read_csv(\"C:/Users/harin/Downloads/diabetes.csv\")" 56 | ] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "execution_count": 3, 61 | "id": "e9fabbaf", 62 | "metadata": { 63 | "execution": { 64 | "iopub.execute_input": "2023-05-17T05:30:28.490963Z", 65 | "iopub.status.busy": "2023-05-17T05:30:28.490629Z", 66 | "iopub.status.idle": "2023-05-17T05:30:28.524254Z", 67 | "shell.execute_reply": "2023-05-17T05:30:28.523300Z" 68 | }, 69 | "papermill": { 70 | "duration": 0.041305, 71 | "end_time": "2023-05-17T05:30:28.526516", 72 | "exception": false, 73 | "start_time": "2023-05-17T05:30:28.485211", 74 | "status": "completed" 75 | }, 76 | "tags": [] 77 | }, 78 | "outputs": [ 79 | { 80 | "data": { 81 | "text/html": [ 82 | "
\n", 83 | "\n", 96 | "\n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
55116740025.60.201300
637850328831.00.248261
71011500035.30.134290
82197704554330.50.158531
9812596000.00.232541
\n", 234 | "
" 235 | ], 236 | "text/plain": [ 237 | " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", 238 | "0 6 148 72 35 0 33.6 \n", 239 | "1 1 85 66 29 0 26.6 \n", 240 | "2 8 183 64 0 0 23.3 \n", 241 | "3 1 89 66 23 94 28.1 \n", 242 | "4 0 137 40 35 168 43.1 \n", 243 | "5 5 116 74 0 0 25.6 \n", 244 | "6 3 78 50 32 88 31.0 \n", 245 | "7 10 115 0 0 0 35.3 \n", 246 | "8 2 197 70 45 543 30.5 \n", 247 | "9 8 125 96 0 0 0.0 \n", 248 | "\n", 249 | " DiabetesPedigreeFunction Age Outcome \n", 250 | "0 0.627 50 1 \n", 251 | "1 0.351 31 0 \n", 252 | "2 0.672 32 1 \n", 253 | "3 0.167 21 0 \n", 254 | "4 2.288 33 1 \n", 255 | "5 0.201 30 0 \n", 256 | "6 0.248 26 1 \n", 257 | "7 0.134 29 0 \n", 258 | "8 0.158 53 1 \n", 259 | "9 0.232 54 1 " 260 | ] 261 | }, 262 | "execution_count": 3, 263 | "metadata": {}, 264 | "output_type": "execute_result" 265 | } 266 | ], 267 | "source": [ 268 | "data.head(10)" 269 | ] 270 | }, 271 | { 272 | "cell_type": "code", 273 | "execution_count": 5, 274 | "id": "abd6d66a", 275 | "metadata": { 276 | "execution": { 277 | "iopub.execute_input": "2023-05-17T05:30:28.609497Z", 278 | "iopub.status.busy": "2023-05-17T05:30:28.609183Z", 279 | "iopub.status.idle": "2023-05-17T05:30:28.616414Z", 280 | "shell.execute_reply": "2023-05-17T05:30:28.615121Z" 281 | }, 282 | "papermill": { 283 | "duration": 0.015147, 284 | "end_time": "2023-05-17T05:30:28.618308", 285 | "exception": false, 286 | "start_time": "2023-05-17T05:30:28.603161", 287 | "status": "completed" 288 | }, 289 | "tags": [] 290 | }, 291 | "outputs": [ 292 | { 293 | "data": { 294 | "text/plain": [ 295 | "(768, 9)" 296 | ] 297 | }, 298 | "execution_count": 5, 299 | "metadata": {}, 300 | "output_type": "execute_result" 301 | } 302 | ], 303 | "source": [ 304 | "data.shape" 305 | ] 306 | }, 307 | { 308 | "cell_type": "code", 309 | "execution_count": 6, 310 | "id": "bf342298", 311 | "metadata": { 312 | "execution": { 313 | "iopub.execute_input": "2023-05-17T05:30:28.629370Z", 314 | "iopub.status.busy": "2023-05-17T05:30:28.629046Z", 315 | "iopub.status.idle": "2023-05-17T05:30:28.663119Z", 316 | "shell.execute_reply": "2023-05-17T05:30:28.662087Z" 317 | }, 318 | "papermill": { 319 | "duration": 0.041756, 320 | "end_time": "2023-05-17T05:30:28.664927", 321 | "exception": false, 322 | "start_time": "2023-05-17T05:30:28.623171", 323 | "status": "completed" 324 | }, 325 | "tags": [] 326 | }, 327 | "outputs": [ 328 | { 329 | "data": { 330 | "text/html": [ 331 | "
\n", 332 | "\n", 345 | "\n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
count768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000
mean3.845052120.89453169.10546920.53645879.79947931.9925780.47187633.2408850.348958
std3.36957831.97261819.35580715.952218115.2440027.8841600.33132911.7602320.476951
min0.0000000.0000000.0000000.0000000.0000000.0000000.07800021.0000000.000000
25%1.00000099.00000062.0000000.0000000.00000027.3000000.24375024.0000000.000000
50%3.000000117.00000072.00000023.00000030.50000032.0000000.37250029.0000000.000000
75%6.000000140.25000080.00000032.000000127.25000036.6000000.62625041.0000001.000000
max17.000000199.000000122.00000099.000000846.00000067.1000002.42000081.0000001.000000
\n", 459 | "
" 460 | ], 461 | "text/plain": [ 462 | " Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n", 463 | "count 768.000000 768.000000 768.000000 768.000000 768.000000 \n", 464 | "mean 3.845052 120.894531 69.105469 20.536458 79.799479 \n", 465 | "std 3.369578 31.972618 19.355807 15.952218 115.244002 \n", 466 | "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", 467 | "25% 1.000000 99.000000 62.000000 0.000000 0.000000 \n", 468 | "50% 3.000000 117.000000 72.000000 23.000000 30.500000 \n", 469 | "75% 6.000000 140.250000 80.000000 32.000000 127.250000 \n", 470 | "max 17.000000 199.000000 122.000000 99.000000 846.000000 \n", 471 | "\n", 472 | " BMI DiabetesPedigreeFunction Age Outcome \n", 473 | "count 768.000000 768.000000 768.000000 768.000000 \n", 474 | "mean 31.992578 0.471876 33.240885 0.348958 \n", 475 | "std 7.884160 0.331329 11.760232 0.476951 \n", 476 | "min 0.000000 0.078000 21.000000 0.000000 \n", 477 | "25% 27.300000 0.243750 24.000000 0.000000 \n", 478 | "50% 32.000000 0.372500 29.000000 0.000000 \n", 479 | "75% 36.600000 0.626250 41.000000 1.000000 \n", 480 | "max 67.100000 2.420000 81.000000 1.000000 " 481 | ] 482 | }, 483 | "execution_count": 6, 484 | "metadata": {}, 485 | "output_type": "execute_result" 486 | } 487 | ], 488 | "source": [ 489 | "data.describe()" 490 | ] 491 | }, 492 | { 493 | "cell_type": "code", 494 | "execution_count": 7, 495 | "id": "ce6226fb", 496 | "metadata": { 497 | "execution": { 498 | "iopub.execute_input": "2023-05-17T05:30:28.677344Z", 499 | "iopub.status.busy": "2023-05-17T05:30:28.675884Z", 500 | "iopub.status.idle": "2023-05-17T05:30:28.688803Z", 501 | "shell.execute_reply": "2023-05-17T05:30:28.686983Z" 502 | }, 503 | "papermill": { 504 | "duration": 0.021206, 505 | "end_time": "2023-05-17T05:30:28.691089", 506 | "exception": false, 507 | "start_time": "2023-05-17T05:30:28.669883", 508 | "status": "completed" 509 | }, 510 | "tags": [] 511 | }, 512 | "outputs": [], 513 | "source": [ 514 | "label = data[[\"Outcome\"]]" 515 | ] 516 | }, 517 | { 518 | "cell_type": "code", 519 | "execution_count": 8, 520 | "id": "d3ee4364", 521 | "metadata": { 522 | "execution": { 523 | "iopub.execute_input": "2023-05-17T05:30:28.702419Z", 524 | "iopub.status.busy": "2023-05-17T05:30:28.702124Z", 525 | "iopub.status.idle": "2023-05-17T05:30:28.707547Z", 526 | "shell.execute_reply": "2023-05-17T05:30:28.706698Z" 527 | }, 528 | "papermill": { 529 | "duration": 0.013589, 530 | "end_time": "2023-05-17T05:30:28.709617", 531 | "exception": false, 532 | "start_time": "2023-05-17T05:30:28.696028", 533 | "status": "completed" 534 | }, 535 | "tags": [] 536 | }, 537 | "outputs": [], 538 | "source": [ 539 | "feature = data.drop(data[['Outcome',\"Age\",\"SkinThickness\",\"Pregnancies\"]],axis=1)" 540 | ] 541 | }, 542 | { 543 | "cell_type": "code", 544 | "execution_count": 9, 545 | "id": "2ce00ebd", 546 | "metadata": { 547 | "execution": { 548 | "iopub.execute_input": "2023-05-17T05:30:28.720429Z", 549 | "iopub.status.busy": "2023-05-17T05:30:28.720118Z", 550 | "iopub.status.idle": "2023-05-17T05:30:28.732930Z", 551 | "shell.execute_reply": "2023-05-17T05:30:28.731499Z" 552 | }, 553 | "papermill": { 554 | "duration": 0.021368, 555 | "end_time": "2023-05-17T05:30:28.735697", 556 | "exception": false, 557 | "start_time": "2023-05-17T05:30:28.714329", 558 | "status": "completed" 559 | }, 560 | "tags": [] 561 | }, 562 | "outputs": [ 563 | { 564 | "data": { 565 | "text/html": [ 566 | "
\n", 567 | "\n", 580 | "\n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | "
GlucoseBloodPressureInsulinBMIDiabetesPedigreeFunction
014872033.60.627
18566026.60.351
218364023.30.672
389669428.10.167
41374016843.12.288
..................
7631017618032.90.171
76412270036.80.340
7651217211226.20.245
76612660030.10.349
7679370030.40.315
\n", 682 | "

768 rows × 5 columns

\n", 683 | "
" 684 | ], 685 | "text/plain": [ 686 | " Glucose BloodPressure Insulin BMI DiabetesPedigreeFunction\n", 687 | "0 148 72 0 33.6 0.627\n", 688 | "1 85 66 0 26.6 0.351\n", 689 | "2 183 64 0 23.3 0.672\n", 690 | "3 89 66 94 28.1 0.167\n", 691 | "4 137 40 168 43.1 2.288\n", 692 | ".. ... ... ... ... ...\n", 693 | "763 101 76 180 32.9 0.171\n", 694 | "764 122 70 0 36.8 0.340\n", 695 | "765 121 72 112 26.2 0.245\n", 696 | "766 126 60 0 30.1 0.349\n", 697 | "767 93 70 0 30.4 0.315\n", 698 | "\n", 699 | "[768 rows x 5 columns]" 700 | ] 701 | }, 702 | "execution_count": 9, 703 | "metadata": {}, 704 | "output_type": "execute_result" 705 | } 706 | ], 707 | "source": [ 708 | "feature" 709 | ] 710 | }, 711 | { 712 | "cell_type": "code", 713 | "execution_count": 10, 714 | "id": "8f76abae", 715 | "metadata": { 716 | "execution": { 717 | "iopub.execute_input": "2023-05-17T05:30:28.747604Z", 718 | "iopub.status.busy": "2023-05-17T05:30:28.747263Z", 719 | "iopub.status.idle": "2023-05-17T05:30:28.752607Z", 720 | "shell.execute_reply": "2023-05-17T05:30:28.751452Z" 721 | }, 722 | "papermill": { 723 | "duration": 0.013865, 724 | "end_time": "2023-05-17T05:30:28.754867", 725 | "exception": false, 726 | "start_time": "2023-05-17T05:30:28.741002", 727 | "status": "completed" 728 | }, 729 | "tags": [] 730 | }, 731 | "outputs": [], 732 | "source": [ 733 | "data['BMI'] = data['BMI'].astype(\"int\")" 734 | ] 735 | }, 736 | { 737 | "cell_type": "code", 738 | "execution_count": 11, 739 | "id": "831d83b6", 740 | "metadata": { 741 | "execution": { 742 | "iopub.execute_input": "2023-05-17T05:30:28.766969Z", 743 | "iopub.status.busy": "2023-05-17T05:30:28.766669Z", 744 | "iopub.status.idle": "2023-05-17T05:30:34.068993Z", 745 | "shell.execute_reply": "2023-05-17T05:30:34.067738Z" 746 | }, 747 | "papermill": { 748 | "duration": 5.310809, 749 | "end_time": "2023-05-17T05:30:34.071057", 750 | "exception": false, 751 | "start_time": "2023-05-17T05:30:28.760248", 752 | "status": "completed" 753 | }, 754 | "tags": [] 755 | }, 756 | "outputs": [ 757 | { 758 | "name": "stderr", 759 | "output_type": "stream", 760 | "text": [ 761 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 762 | " y = column_or_1d(y, warn=True)\n" 763 | ] 764 | }, 765 | { 766 | "name": "stdout", 767 | "output_type": "stream", 768 | "text": [ 769 | "The accuracy of kernel: linear is 80%\n", 770 | "The accuracy of kernel: rbf is 77%\n", 771 | "The accuracy of kernel: poly is 75%\n" 772 | ] 773 | }, 774 | { 775 | "name": "stderr", 776 | "output_type": "stream", 777 | "text": [ 778 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 779 | " y = column_or_1d(y, warn=True)\n", 780 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 781 | " y = column_or_1d(y, warn=True)\n" 782 | ] 783 | } 784 | ], 785 | "source": [ 786 | "li = []\n", 787 | "kernels = [\"linear\",\"rbf\",\"poly\"]\n", 788 | "for i in range(0,len(kernels)):\n", 789 | " model = svm.SVC(kernel=kernels[i])\n", 790 | " x_train,x_test,y_train,y_test = sklearn.model_selection.train_test_split(feature,label,test_size=0.2)\n", 791 | " model.fit(x_train,y_train)\n", 792 | " prediction = model.predict(x_test)\n", 793 | " accuracy = metrics.accuracy_score(y_test,prediction)\n", 794 | " print(f\"The accuracy of kernel: {kernels[i]} is {int(accuracy*100)}%\")\n", 795 | " \n", 796 | " #li.append(accuracy)\n", 797 | "#print(\"Average Accuracy is:\",f\"{int(np.mean(li)*100)}%\")" 798 | ] 799 | }, 800 | { 801 | "cell_type": "code", 802 | "execution_count": 12, 803 | "id": "70fef5f2", 804 | "metadata": { 805 | "execution": { 806 | "iopub.execute_input": "2023-05-17T05:30:34.092791Z", 807 | "iopub.status.busy": "2023-05-17T05:30:34.092474Z", 808 | "iopub.status.idle": "2023-05-17T05:32:37.351981Z", 809 | "shell.execute_reply": "2023-05-17T05:32:37.351110Z" 810 | }, 811 | "papermill": { 812 | "duration": 123.273413, 813 | "end_time": "2023-05-17T05:32:37.359547", 814 | "exception": false, 815 | "start_time": "2023-05-17T05:30:34.086134", 816 | "status": "completed" 817 | }, 818 | "tags": [] 819 | }, 820 | "outputs": [ 821 | { 822 | "name": "stderr", 823 | "output_type": "stream", 824 | "text": [ 825 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 826 | " y = column_or_1d(y, warn=True)\n" 827 | ] 828 | }, 829 | { 830 | "name": "stdout", 831 | "output_type": "stream", 832 | "text": [ 833 | "The accuracy of kernel: Linear is 74% C: 1\n" 834 | ] 835 | }, 836 | { 837 | "name": "stderr", 838 | "output_type": "stream", 839 | "text": [ 840 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 841 | " y = column_or_1d(y, warn=True)\n" 842 | ] 843 | }, 844 | { 845 | "name": "stdout", 846 | "output_type": "stream", 847 | "text": [ 848 | "The accuracy of kernel: Linear is 77% C: 2\n" 849 | ] 850 | }, 851 | { 852 | "name": "stderr", 853 | "output_type": "stream", 854 | "text": [ 855 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 856 | " y = column_or_1d(y, warn=True)\n" 857 | ] 858 | }, 859 | { 860 | "name": "stdout", 861 | "output_type": "stream", 862 | "text": [ 863 | "The accuracy of kernel: Linear is 75% C: 3\n" 864 | ] 865 | }, 866 | { 867 | "name": "stderr", 868 | "output_type": "stream", 869 | "text": [ 870 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 871 | " y = column_or_1d(y, warn=True)\n" 872 | ] 873 | }, 874 | { 875 | "name": "stdout", 876 | "output_type": "stream", 877 | "text": [ 878 | "The accuracy of kernel: Linear is 77% C: 4\n" 879 | ] 880 | }, 881 | { 882 | "name": "stderr", 883 | "output_type": "stream", 884 | "text": [ 885 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 886 | " y = column_or_1d(y, warn=True)\n" 887 | ] 888 | }, 889 | { 890 | "name": "stdout", 891 | "output_type": "stream", 892 | "text": [ 893 | "The accuracy of kernel: Linear is 78% C: 5\n" 894 | ] 895 | }, 896 | { 897 | "name": "stderr", 898 | "output_type": "stream", 899 | "text": [ 900 | "c:\\Users\\harin\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\sklearn\\utils\\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 901 | " y = column_or_1d(y, warn=True)\n" 902 | ] 903 | } 904 | ], 905 | "source": [ 906 | "for i in range(1,10):\n", 907 | " model = svm.SVC(kernel=\"linear\",C=i)\n", 908 | " x_train,x_test,y_train,y_test = sklearn.model_selection.train_test_split(feature,label,test_size=0.2)\n", 909 | " model.fit(x_train,y_train)\n", 910 | " prediction = model.predict(x_test)\n", 911 | " accuracy = metrics.accuracy_score(y_test,prediction)\n", 912 | " print(f\"The accuracy of kernel: Linear is {int(accuracy*100)}% C: {i}\")" 913 | ] 914 | } 915 | ], 916 | "metadata": { 917 | "kernelspec": { 918 | "display_name": "Python 3", 919 | "language": "python", 920 | "name": "python3" 921 | }, 922 | "language_info": { 923 | "codemirror_mode": { 924 | "name": "ipython", 925 | "version": 3 926 | }, 927 | "file_extension": ".py", 928 | "mimetype": "text/x-python", 929 | "name": "python", 930 | "nbconvert_exporter": "python", 931 | "pygments_lexer": "ipython3", 932 | "version": "3.10.0" 933 | }, 934 | "papermill": { 935 | "default_parameters": {}, 936 | "duration": 142.857483, 937 | "end_time": "2023-05-17T05:32:38.300466", 938 | "environment_variables": {}, 939 | "exception": null, 940 | "input_path": "__notebook__.ipynb", 941 | "output_path": "__notebook__.ipynb", 942 | "parameters": {}, 943 | "start_time": "2023-05-17T05:30:15.442983", 944 | "version": "2.4.0" 945 | } 946 | }, 947 | "nbformat": 4, 948 | "nbformat_minor": 5 949 | } 950 | -------------------------------------------------------------------------------- /winequality-prediction.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 3, 6 | "id": "a9c11110", 7 | "metadata": { 8 | "execution": { 9 | "iopub.execute_input": "2023-08-07T07:07:49.414411Z", 10 | "iopub.status.busy": "2023-08-07T07:07:49.413913Z", 11 | "iopub.status.idle": "2023-08-07T07:07:49.426948Z", 12 | "shell.execute_reply": "2023-08-07T07:07:49.425982Z" 13 | }, 14 | "papermill": { 15 | "duration": 0.023536, 16 | "end_time": "2023-08-07T07:07:49.429167", 17 | "exception": false, 18 | "start_time": "2023-08-07T07:07:49.405631", 19 | "status": "completed" 20 | }, 21 | "tags": [] 22 | }, 23 | "outputs": [], 24 | "source": [ 25 | "import pandas as pd\n", 26 | "import numpy as np\n", 27 | "import matplotlib.pyplot as plt\n", 28 | "%matplotlib inline" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 4, 34 | "id": "8431d5c0", 35 | "metadata": { 36 | "execution": { 37 | "iopub.execute_input": "2023-08-07T07:07:49.441953Z", 38 | "iopub.status.busy": "2023-08-07T07:07:49.441587Z", 39 | "iopub.status.idle": "2023-08-07T07:07:49.499514Z", 40 | "shell.execute_reply": "2023-08-07T07:07:49.498507Z" 41 | }, 42 | "papermill": { 43 | "duration": 0.066537, 44 | "end_time": "2023-08-07T07:07:49.501606", 45 | "exception": false, 46 | "start_time": "2023-08-07T07:07:49.435069", 47 | "status": "completed" 48 | }, 49 | "tags": [] 50 | }, 51 | "outputs": [ 52 | { 53 | "data": { 54 | "text/html": [ 55 | "
\n", 56 | "\n", 69 | "\n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcoholquality
07.40.7000.001.90.07611.034.00.997803.510.569.45
17.80.8800.002.60.09825.067.00.996803.200.689.85
27.80.7600.042.30.09215.054.00.997003.260.659.85
311.20.2800.561.90.07517.060.00.998003.160.589.86
47.40.7000.001.90.07611.034.00.997803.510.569.45
.......................................
15946.20.6000.082.00.09032.044.00.994903.450.5810.55
15955.90.5500.102.20.06239.051.00.995123.520.7611.26
15966.30.5100.132.30.07629.040.00.995743.420.7511.06
15975.90.6450.122.00.07532.044.00.995473.570.7110.25
15986.00.3100.473.60.06718.042.00.995493.390.6611.06
\n", 255 | "

1599 rows × 12 columns

\n", 256 | "
" 257 | ], 258 | "text/plain": [ 259 | " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n", 260 | "0 7.4 0.700 0.00 1.9 0.076 \n", 261 | "1 7.8 0.880 0.00 2.6 0.098 \n", 262 | "2 7.8 0.760 0.04 2.3 0.092 \n", 263 | "3 11.2 0.280 0.56 1.9 0.075 \n", 264 | "4 7.4 0.700 0.00 1.9 0.076 \n", 265 | "... ... ... ... ... ... \n", 266 | "1594 6.2 0.600 0.08 2.0 0.090 \n", 267 | "1595 5.9 0.550 0.10 2.2 0.062 \n", 268 | "1596 6.3 0.510 0.13 2.3 0.076 \n", 269 | "1597 5.9 0.645 0.12 2.0 0.075 \n", 270 | "1598 6.0 0.310 0.47 3.6 0.067 \n", 271 | "\n", 272 | " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n", 273 | "0 11.0 34.0 0.99780 3.51 0.56 \n", 274 | "1 25.0 67.0 0.99680 3.20 0.68 \n", 275 | "2 15.0 54.0 0.99700 3.26 0.65 \n", 276 | "3 17.0 60.0 0.99800 3.16 0.58 \n", 277 | "4 11.0 34.0 0.99780 3.51 0.56 \n", 278 | "... ... ... ... ... ... \n", 279 | "1594 32.0 44.0 0.99490 3.45 0.58 \n", 280 | "1595 39.0 51.0 0.99512 3.52 0.76 \n", 281 | "1596 29.0 40.0 0.99574 3.42 0.75 \n", 282 | "1597 32.0 44.0 0.99547 3.57 0.71 \n", 283 | "1598 18.0 42.0 0.99549 3.39 0.66 \n", 284 | "\n", 285 | " alcohol quality \n", 286 | "0 9.4 5 \n", 287 | "1 9.8 5 \n", 288 | "2 9.8 5 \n", 289 | "3 9.8 6 \n", 290 | "4 9.4 5 \n", 291 | "... ... ... \n", 292 | "1594 10.5 5 \n", 293 | "1595 11.2 6 \n", 294 | "1596 11.0 6 \n", 295 | "1597 10.2 5 \n", 296 | "1598 11.0 6 \n", 297 | "\n", 298 | "[1599 rows x 12 columns]" 299 | ] 300 | }, 301 | "execution_count": 4, 302 | "metadata": {}, 303 | "output_type": "execute_result" 304 | } 305 | ], 306 | "source": [ 307 | "df= pd.read_csv(\"C:/Users/User/Downloads/winequality-red.csv\")\n", 308 | "df" 309 | ] 310 | }, 311 | { 312 | "cell_type": "code", 313 | "execution_count": 5, 314 | "id": "7bab339d", 315 | "metadata": { 316 | "execution": { 317 | "iopub.execute_input": "2023-08-07T07:07:49.514590Z", 318 | "iopub.status.busy": "2023-08-07T07:07:49.514173Z", 319 | "iopub.status.idle": "2023-08-07T07:07:49.544718Z", 320 | "shell.execute_reply": "2023-08-07T07:07:49.543381Z" 321 | }, 322 | "papermill": { 323 | "duration": 0.03933, 324 | "end_time": "2023-08-07T07:07:49.546661", 325 | "exception": false, 326 | "start_time": "2023-08-07T07:07:49.507331", 327 | "status": "completed" 328 | }, 329 | "tags": [] 330 | }, 331 | "outputs": [ 332 | { 333 | "data": { 334 | "text/html": [ 335 | "
\n", 336 | "\n", 349 | "\n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | "
fixed acidityvolatile aciditycitric acidresidual sugarchloridesfree sulfur dioxidetotal sulfur dioxidedensitypHsulphatesalcohol
07.40.7000.001.90.07611.034.00.997803.510.569.4
17.80.8800.002.60.09825.067.00.996803.200.689.8
27.80.7600.042.30.09215.054.00.997003.260.659.8
311.20.2800.561.90.07517.060.00.998003.160.589.8
47.40.7000.001.90.07611.034.00.997803.510.569.4
....................................
15946.20.6000.082.00.09032.044.00.994903.450.5810.5
15955.90.5500.102.20.06239.051.00.995123.520.7611.2
15966.30.5100.132.30.07629.040.00.995743.420.7511.0
15975.90.6450.122.00.07532.044.00.995473.570.7110.2
15986.00.3100.473.60.06718.042.00.995493.390.6611.0
\n", 523 | "

1599 rows × 11 columns

\n", 524 | "
" 525 | ], 526 | "text/plain": [ 527 | " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n", 528 | "0 7.4 0.700 0.00 1.9 0.076 \n", 529 | "1 7.8 0.880 0.00 2.6 0.098 \n", 530 | "2 7.8 0.760 0.04 2.3 0.092 \n", 531 | "3 11.2 0.280 0.56 1.9 0.075 \n", 532 | "4 7.4 0.700 0.00 1.9 0.076 \n", 533 | "... ... ... ... ... ... \n", 534 | "1594 6.2 0.600 0.08 2.0 0.090 \n", 535 | "1595 5.9 0.550 0.10 2.2 0.062 \n", 536 | "1596 6.3 0.510 0.13 2.3 0.076 \n", 537 | "1597 5.9 0.645 0.12 2.0 0.075 \n", 538 | "1598 6.0 0.310 0.47 3.6 0.067 \n", 539 | "\n", 540 | " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n", 541 | "0 11.0 34.0 0.99780 3.51 0.56 \n", 542 | "1 25.0 67.0 0.99680 3.20 0.68 \n", 543 | "2 15.0 54.0 0.99700 3.26 0.65 \n", 544 | "3 17.0 60.0 0.99800 3.16 0.58 \n", 545 | "4 11.0 34.0 0.99780 3.51 0.56 \n", 546 | "... ... ... ... ... ... \n", 547 | "1594 32.0 44.0 0.99490 3.45 0.58 \n", 548 | "1595 39.0 51.0 0.99512 3.52 0.76 \n", 549 | "1596 29.0 40.0 0.99574 3.42 0.75 \n", 550 | "1597 32.0 44.0 0.99547 3.57 0.71 \n", 551 | "1598 18.0 42.0 0.99549 3.39 0.66 \n", 552 | "\n", 553 | " alcohol \n", 554 | "0 9.4 \n", 555 | "1 9.8 \n", 556 | "2 9.8 \n", 557 | "3 9.8 \n", 558 | "4 9.4 \n", 559 | "... ... \n", 560 | "1594 10.5 \n", 561 | "1595 11.2 \n", 562 | "1596 11.0 \n", 563 | "1597 10.2 \n", 564 | "1598 11.0 \n", 565 | "\n", 566 | "[1599 rows x 11 columns]" 567 | ] 568 | }, 569 | "execution_count": 5, 570 | "metadata": {}, 571 | "output_type": "execute_result" 572 | } 573 | ], 574 | "source": [ 575 | "#splitting input and output features\n", 576 | "X=df.drop(\"quality\",axis=1)\n", 577 | "Y=df[\"quality\"]\n", 578 | "X\n" 579 | ] 580 | }, 581 | { 582 | "cell_type": "code", 583 | "execution_count": 6, 584 | "id": "37c1eedc", 585 | "metadata": { 586 | "execution": { 587 | "iopub.execute_input": "2023-08-07T07:07:49.560673Z", 588 | "iopub.status.busy": "2023-08-07T07:07:49.560279Z", 589 | "iopub.status.idle": "2023-08-07T07:07:49.567578Z", 590 | "shell.execute_reply": "2023-08-07T07:07:49.566745Z" 591 | }, 592 | "papermill": { 593 | "duration": 0.016584, 594 | "end_time": "2023-08-07T07:07:49.569561", 595 | "exception": false, 596 | "start_time": "2023-08-07T07:07:49.552977", 597 | "status": "completed" 598 | }, 599 | "tags": [] 600 | }, 601 | "outputs": [ 602 | { 603 | "data": { 604 | "text/plain": [ 605 | "0 5\n", 606 | "1 5\n", 607 | "2 5\n", 608 | "3 6\n", 609 | "4 5\n", 610 | " ..\n", 611 | "1594 5\n", 612 | "1595 6\n", 613 | "1596 6\n", 614 | "1597 5\n", 615 | "1598 6\n", 616 | "Name: quality, Length: 1599, dtype: int64" 617 | ] 618 | }, 619 | "execution_count": 6, 620 | "metadata": {}, 621 | "output_type": "execute_result" 622 | } 623 | ], 624 | "source": [ 625 | "Y" 626 | ] 627 | }, 628 | { 629 | "cell_type": "code", 630 | "execution_count": 7, 631 | "id": "22c404f5", 632 | "metadata": { 633 | "execution": { 634 | "iopub.execute_input": "2023-08-07T07:07:49.584536Z", 635 | "iopub.status.busy": "2023-08-07T07:07:49.583774Z", 636 | "iopub.status.idle": "2023-08-07T07:07:50.921198Z", 637 | "shell.execute_reply": "2023-08-07T07:07:50.919600Z" 638 | }, 639 | "papermill": { 640 | "duration": 1.348708, 641 | "end_time": "2023-08-07T07:07:50.924625", 642 | "exception": false, 643 | "start_time": "2023-08-07T07:07:49.575917", 644 | "status": "completed" 645 | }, 646 | "tags": [] 647 | }, 648 | "outputs": [], 649 | "source": [ 650 | "#splitting the data into training and testing sets (70% training and 30% testing)\n", 651 | "from sklearn.model_selection import train_test_split,cross_val_score\n", 652 | "X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3,random_state=42)\n" 653 | ] 654 | }, 655 | { 656 | "cell_type": "code", 657 | "execution_count": 8, 658 | "id": "3610bf65", 659 | "metadata": { 660 | "execution": { 661 | "iopub.execute_input": "2023-08-07T07:07:50.941093Z", 662 | "iopub.status.busy": "2023-08-07T07:07:50.940199Z", 663 | "iopub.status.idle": "2023-08-07T07:07:50.947492Z", 664 | "shell.execute_reply": "2023-08-07T07:07:50.946150Z" 665 | }, 666 | "papermill": { 667 | "duration": 0.018691, 668 | "end_time": "2023-08-07T07:07:50.950277", 669 | "exception": false, 670 | "start_time": "2023-08-07T07:07:50.931586", 671 | "status": "completed" 672 | }, 673 | "tags": [] 674 | }, 675 | "outputs": [ 676 | { 677 | "name": "stdout", 678 | "output_type": "stream", 679 | "text": [ 680 | "Shape of X_train: (1119, 11)\n", 681 | "Shape of X_test: (480, 11)\n", 682 | "Shape of Y_train: (1119,)\n", 683 | "Shape of Y_test: (480,)\n" 684 | ] 685 | } 686 | ], 687 | "source": [ 688 | "import numpy as np\n", 689 | "\n", 690 | "# Assuming you have split the data into X_train, X_test, y_train, y_test\n", 691 | "print(\"Shape of X_train:\", X_train.shape)\n", 692 | "print(\"Shape of X_test:\", X_test.shape)\n", 693 | "print(\"Shape of Y_train:\", Y_train.shape)\n", 694 | "print(\"Shape of Y_test:\", Y_test.shape)" 695 | ] 696 | }, 697 | { 698 | "cell_type": "code", 699 | "execution_count": 9, 700 | "id": "bae513aa", 701 | "metadata": { 702 | "execution": { 703 | "iopub.execute_input": "2023-08-07T07:07:50.966761Z", 704 | "iopub.status.busy": "2023-08-07T07:07:50.966234Z", 705 | "iopub.status.idle": "2023-08-07T07:07:51.130001Z", 706 | "shell.execute_reply": "2023-08-07T07:07:51.128498Z" 707 | }, 708 | "papermill": { 709 | "duration": 0.176061, 710 | "end_time": "2023-08-07T07:07:51.133273", 711 | "exception": false, 712 | "start_time": "2023-08-07T07:07:50.957212", 713 | "status": "completed" 714 | }, 715 | "tags": [] 716 | }, 717 | "outputs": [ 718 | { 719 | "data": { 720 | "text/html": [ 721 | "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" 722 | ], 723 | "text/plain": [ 724 | "LinearRegression()" 725 | ] 726 | }, 727 | "execution_count": 9, 728 | "metadata": {}, 729 | "output_type": "execute_result" 730 | } 731 | ], 732 | "source": [ 733 | "#creating LogisticRegression model\n", 734 | "from sklearn.linear_model import LinearRegression\n", 735 | "model = LinearRegression()\n", 736 | "\n", 737 | "#train the model using training data\n", 738 | "model.fit(X_train,Y_train)" 739 | ] 740 | }, 741 | { 742 | "cell_type": "code", 743 | "execution_count": 10, 744 | "id": "ebde7927", 745 | "metadata": { 746 | "execution": { 747 | "iopub.execute_input": "2023-08-07T07:07:51.162479Z", 748 | "iopub.status.busy": "2023-08-07T07:07:51.161422Z", 749 | "iopub.status.idle": "2023-08-07T07:07:51.172331Z", 750 | "shell.execute_reply": "2023-08-07T07:07:51.171039Z" 751 | }, 752 | "papermill": { 753 | "duration": 0.032875, 754 | "end_time": "2023-08-07T07:07:51.177836", 755 | "exception": false, 756 | "start_time": "2023-08-07T07:07:51.144961", 757 | "status": "completed" 758 | }, 759 | "tags": [] 760 | }, 761 | "outputs": [], 762 | "source": [ 763 | "#make predictions on train data\n", 764 | "\n", 765 | "train_pred=model.predict(X_train)\n", 766 | "#train_pred=train_pred.astype(int)" 767 | ] 768 | }, 769 | { 770 | "cell_type": "code", 771 | "execution_count": 11, 772 | "id": "a97b86a7", 773 | "metadata": { 774 | "execution": { 775 | "iopub.execute_input": "2023-08-07T07:07:51.265837Z", 776 | "iopub.status.busy": "2023-08-07T07:07:51.265163Z", 777 | "iopub.status.idle": "2023-08-07T07:07:51.282683Z", 778 | "shell.execute_reply": "2023-08-07T07:07:51.281095Z" 779 | }, 780 | "papermill": { 781 | "duration": 0.035588, 782 | "end_time": "2023-08-07T07:07:51.286915", 783 | "exception": false, 784 | "start_time": "2023-08-07T07:07:51.251327", 785 | "status": "completed" 786 | }, 787 | "tags": [] 788 | }, 789 | "outputs": [ 790 | { 791 | "name": "stdout", 792 | "output_type": "stream", 793 | "text": [ 794 | "MAE: 0.49518748493865494\n", 795 | "RMSE: 0.6486806989670354\n", 796 | "R-Squared: 0.36119824413213175\n" 797 | ] 798 | } 799 | ], 800 | "source": [ 801 | "from sklearn import metrics\n", 802 | "\n", 803 | "# evaluating the model on the training data\n", 804 | "\n", 805 | "print(\"MAE:\",metrics.mean_absolute_error(Y_train,train_pred))\n", 806 | "print(\"RMSE:\",np.sqrt(metrics.mean_squared_error(Y_train,train_pred)))\n", 807 | "print(\"R-Squared:\",metrics.r2_score(Y_train,train_pred))" 808 | ] 809 | }, 810 | { 811 | "cell_type": "code", 812 | "execution_count": 12, 813 | "id": "8a002e4e", 814 | "metadata": { 815 | "execution": { 816 | "iopub.execute_input": "2023-08-07T07:07:51.305107Z", 817 | "iopub.status.busy": "2023-08-07T07:07:51.304634Z", 818 | "iopub.status.idle": "2023-08-07T07:07:51.312423Z", 819 | "shell.execute_reply": "2023-08-07T07:07:51.311247Z" 820 | }, 821 | "papermill": { 822 | "duration": 0.018979, 823 | "end_time": "2023-08-07T07:07:51.314834", 824 | "exception": false, 825 | "start_time": "2023-08-07T07:07:51.295855", 826 | "status": "completed" 827 | }, 828 | "tags": [] 829 | }, 830 | "outputs": [], 831 | "source": [ 832 | "# Make predictions on test data\n", 833 | "\n", 834 | "test_pred = model.predict(X_test)" 835 | ] 836 | }, 837 | { 838 | "cell_type": "code", 839 | "execution_count": 13, 840 | "id": "1630eb92", 841 | "metadata": { 842 | "execution": { 843 | "iopub.execute_input": "2023-08-07T07:07:51.331995Z", 844 | "iopub.status.busy": "2023-08-07T07:07:51.331108Z", 845 | "iopub.status.idle": "2023-08-07T07:07:51.339214Z", 846 | "shell.execute_reply": "2023-08-07T07:07:51.337915Z" 847 | }, 848 | "papermill": { 849 | "duration": 0.019394, 850 | "end_time": "2023-08-07T07:07:51.341607", 851 | "exception": false, 852 | "start_time": "2023-08-07T07:07:51.322213", 853 | "status": "completed" 854 | }, 855 | "tags": [] 856 | }, 857 | "outputs": [ 858 | { 859 | "name": "stdout", 860 | "output_type": "stream", 861 | "text": [ 862 | "MAE: 0.513395608245112\n", 863 | "RMSE: 0.6412759715991394\n", 864 | "R-Squared: 0.3513885332505232\n" 865 | ] 866 | } 867 | ], 868 | "source": [ 869 | "# evaluating the model on the testing data\n", 870 | "\n", 871 | "print(\"MAE:\",metrics.mean_absolute_error(Y_test,test_pred))\n", 872 | "print(\"RMSE:\",np.sqrt(metrics.mean_squared_error(Y_test,test_pred)))\n", 873 | "print(\"R-Squared:\",metrics.r2_score(Y_test,test_pred))" 874 | ] 875 | }, 876 | { 877 | "cell_type": "code", 878 | "execution_count": 14, 879 | "id": "ceda0c78", 880 | "metadata": { 881 | "execution": { 882 | "iopub.execute_input": "2023-08-07T07:07:51.386950Z", 883 | "iopub.status.busy": "2023-08-07T07:07:51.386011Z", 884 | "iopub.status.idle": "2023-08-07T07:07:51.444225Z", 885 | "shell.execute_reply": "2023-08-07T07:07:51.442615Z" 886 | }, 887 | "papermill": { 888 | "duration": 0.070712, 889 | "end_time": "2023-08-07T07:07:51.447748", 890 | "exception": false, 891 | "start_time": "2023-08-07T07:07:51.377036", 892 | "status": "completed" 893 | }, 894 | "tags": [] 895 | }, 896 | "outputs": [ 897 | { 898 | "name": "stdout", 899 | "output_type": "stream", 900 | "text": [ 901 | "The r2 using 5-fold cross-validation on training data: 0.334985992062552\n" 902 | ] 903 | } 904 | ], 905 | "source": [ 906 | "# Perform k-fold cross-validation on the training data \n", 907 | "\n", 908 | "from sklearn.model_selection import cross_val_score\n", 909 | "\n", 910 | "r2_cv_scores = cross_val_score(model,X_train,Y_train,cv=5,scoring='r2')\n", 911 | "mean_r2train_cv = r2_cv_scores.mean()\n", 912 | "print(\"The r2 using 5-fold cross-validation on training data:\", mean_r2train_cv)\n" 913 | ] 914 | }, 915 | { 916 | "cell_type": "code", 917 | "execution_count": 15, 918 | "id": "eade077a", 919 | "metadata": { 920 | "execution": { 921 | "iopub.execute_input": "2023-08-07T07:07:51.483401Z", 922 | "iopub.status.busy": "2023-08-07T07:07:51.482683Z", 923 | "iopub.status.idle": "2023-08-07T07:07:51.556137Z", 924 | "shell.execute_reply": "2023-08-07T07:07:51.554781Z" 925 | }, 926 | "papermill": { 927 | "duration": 0.094352, 928 | "end_time": "2023-08-07T07:07:51.559680", 929 | "exception": false, 930 | "start_time": "2023-08-07T07:07:51.465328", 931 | "status": "completed" 932 | }, 933 | "tags": [] 934 | }, 935 | "outputs": [ 936 | { 937 | "name": "stdout", 938 | "output_type": "stream", 939 | "text": [ 940 | "The r2 using 5-fold cross-validation on testing data: 0.326678061098226\n" 941 | ] 942 | } 943 | ], 944 | "source": [ 945 | "# Perform k-fold cross-validation on the testing data \n", 946 | "\n", 947 | "r2test_cv_scores = cross_val_score(model,X_test,Y_test,cv=5,scoring='r2')\n", 948 | "mean_r2test_cv= r2test_cv_scores.mean()\n", 949 | "print(\"The r2 using 5-fold cross-validation on testing data:\", mean_r2test_cv)\n" 950 | ] 951 | }, 952 | { 953 | "cell_type": "code", 954 | "execution_count": 16, 955 | "id": "f2e8f598", 956 | "metadata": { 957 | "execution": { 958 | "iopub.execute_input": "2023-08-07T07:07:51.591703Z", 959 | "iopub.status.busy": "2023-08-07T07:07:51.591246Z", 960 | "iopub.status.idle": "2023-08-07T07:07:51.644925Z", 961 | "shell.execute_reply": "2023-08-07T07:07:51.643797Z" 962 | }, 963 | "papermill": { 964 | "duration": 0.06555, 965 | "end_time": "2023-08-07T07:07:51.648211", 966 | "exception": false, 967 | "start_time": "2023-08-07T07:07:51.582661", 968 | "status": "completed" 969 | }, 970 | "tags": [] 971 | }, 972 | "outputs": [ 973 | { 974 | "name": "stdout", 975 | "output_type": "stream", 976 | "text": [ 977 | "The mean squared error using 5-fold cross-validation on training data: -0.43652212341343855\n" 978 | ] 979 | } 980 | ], 981 | "source": [ 982 | "# Perform k-fold cross-validation on the training data \n", 983 | "msetrain_cv_scores = cross_val_score(model,X_train,Y_train,cv=5,scoring='neg_mean_squared_error')\n", 984 | "mean_msetrain_cv = msetrain_cv_scores.mean()\n", 985 | "print(\"The mean squared error using 5-fold cross-validation on training data:\", mean_msetrain_cv)" 986 | ] 987 | }, 988 | { 989 | "cell_type": "code", 990 | "execution_count": 17, 991 | "id": "d8eca687", 992 | "metadata": { 993 | "execution": { 994 | "iopub.execute_input": "2023-08-07T07:07:51.675607Z", 995 | "iopub.status.busy": "2023-08-07T07:07:51.674949Z", 996 | "iopub.status.idle": "2023-08-07T07:07:51.721929Z", 997 | "shell.execute_reply": "2023-08-07T07:07:51.720700Z" 998 | }, 999 | "papermill": { 1000 | "duration": 0.064823, 1001 | "end_time": "2023-08-07T07:07:51.725314", 1002 | "exception": false, 1003 | "start_time": "2023-08-07T07:07:51.660491", 1004 | "status": "completed" 1005 | }, 1006 | "tags": [] 1007 | }, 1008 | "outputs": [ 1009 | { 1010 | "name": "stdout", 1011 | "output_type": "stream", 1012 | "text": [ 1013 | "The mean squared error using 5-fold cross-validation on testing data: -0.4235962818050936\n" 1014 | ] 1015 | } 1016 | ], 1017 | "source": [ 1018 | "# Perform k-fold cross-validation on the training data \n", 1019 | "msetest_cv_scores = cross_val_score(model,X_test,Y_test,cv=5,scoring='neg_mean_squared_error')\n", 1020 | "mean_msetest_cv = msetest_cv_scores.mean()\n", 1021 | "print(\"The mean squared error using 5-fold cross-validation on testing data:\", mean_msetest_cv)" 1022 | ] 1023 | }, 1024 | { 1025 | "cell_type": "code", 1026 | "execution_count": 18, 1027 | "id": "f2be066f", 1028 | "metadata": { 1029 | "execution": { 1030 | "iopub.execute_input": "2023-08-07T07:07:51.782441Z", 1031 | "iopub.status.busy": "2023-08-07T07:07:51.781493Z", 1032 | "iopub.status.idle": "2023-08-07T07:07:51.836107Z", 1033 | "shell.execute_reply": "2023-08-07T07:07:51.834934Z" 1034 | }, 1035 | "papermill": { 1036 | "duration": 0.067354, 1037 | "end_time": "2023-08-07T07:07:51.839451", 1038 | "exception": false, 1039 | "start_time": "2023-08-07T07:07:51.772097", 1040 | "status": "completed" 1041 | }, 1042 | "tags": [] 1043 | }, 1044 | "outputs": [ 1045 | { 1046 | "name": "stdout", 1047 | "output_type": "stream", 1048 | "text": [ 1049 | "The root mean squared error using 5-fold cross-validation on training data: -0.6592628863743302\n" 1050 | ] 1051 | } 1052 | ], 1053 | "source": [ 1054 | "rmsetrain_cv_scores = cross_val_score(model,X_train,Y_train,cv=5,scoring='neg_root_mean_squared_error')\n", 1055 | "mean_rmsetrain_cv= rmsetrain_cv_scores.mean()\n", 1056 | "print(\"The root mean squared error using 5-fold cross-validation on training data:\", mean_rmsetrain_cv)\n" 1057 | ] 1058 | }, 1059 | { 1060 | "cell_type": "code", 1061 | "execution_count": 19, 1062 | "id": "aaeadaf6", 1063 | "metadata": { 1064 | "execution": { 1065 | "iopub.execute_input": "2023-08-07T07:07:51.867554Z", 1066 | "iopub.status.busy": "2023-08-07T07:07:51.866990Z", 1067 | "iopub.status.idle": "2023-08-07T07:07:51.917291Z", 1068 | "shell.execute_reply": "2023-08-07T07:07:51.915704Z" 1069 | }, 1070 | "papermill": { 1071 | "duration": 0.06848, 1072 | "end_time": "2023-08-07T07:07:51.920600", 1073 | "exception": false, 1074 | "start_time": "2023-08-07T07:07:51.852120", 1075 | "status": "completed" 1076 | }, 1077 | "tags": [] 1078 | }, 1079 | "outputs": [ 1080 | { 1081 | "name": "stdout", 1082 | "output_type": "stream", 1083 | "text": [ 1084 | "The root mean squared error using 5-fold cross-validation on testing data: -0.6496133904328669\n" 1085 | ] 1086 | } 1087 | ], 1088 | "source": [ 1089 | "rmsetest_cv_scores = cross_val_score(model,X_test,Y_test,cv=5,scoring='neg_root_mean_squared_error')\n", 1090 | "mean_rmsetest_cv= rmsetest_cv_scores.mean()\n", 1091 | "print(\"The root mean squared error using 5-fold cross-validation on testing data:\", mean_rmsetest_cv)\n" 1092 | ] 1093 | } 1094 | ], 1095 | "metadata": { 1096 | "kernelspec": { 1097 | "display_name": "Python 3", 1098 | "language": "python", 1099 | "name": "python3" 1100 | }, 1101 | "language_info": { 1102 | "codemirror_mode": { 1103 | "name": "ipython", 1104 | "version": 3 1105 | }, 1106 | "file_extension": ".py", 1107 | "mimetype": "text/x-python", 1108 | "name": "python", 1109 | "nbconvert_exporter": "python", 1110 | "pygments_lexer": "ipython3", 1111 | "version": "3.10.0" 1112 | }, 1113 | "papermill": { 1114 | "default_parameters": {}, 1115 | "duration": 13.529599, 1116 | "end_time": "2023-08-07T07:07:52.877766", 1117 | "environment_variables": {}, 1118 | "exception": null, 1119 | "input_path": "__notebook__.ipynb", 1120 | "output_path": "__notebook__.ipynb", 1121 | "parameters": {}, 1122 | "start_time": "2023-08-07T07:07:39.348167", 1123 | "version": "2.4.0" 1124 | } 1125 | }, 1126 | "nbformat": 4, 1127 | "nbformat_minor": 5 1128 | } 1129 | --------------------------------------------------------------------------------