├── LICENSE
├── README.md
├── shapekeyimport.py
└── shapekeyimport_2_8.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | 
2 | # Blender add-on to import paths as shape keys
3 | This add-on lets you import paths from an SVG file as paths as well as shape keys
4 | Supported Blender versions
5 | 2.8+ and 3.x (Script File - shapekeyimport_2_8.py)
6 | 2.79b (Script File - shapekeyimport.py)
7 |
8 | # Installation
9 | For Blender 2.8+ and 3.x, download shapekeyimport_2_8.py; for 2.79b download svgimport.py
10 | In Blender select File->User Preferences
11 | Click install Add-ons tab and then Install Add-on from File
12 | Select the downloaded file
13 | Check the 'Import Paths and Shape Keys' option in the add-ons dialog
14 |
15 | You can invoke the add-on in 2.79 by pressing spacebar or in 2.8+ / 3.x by pressing F3 in the 3d view and selecting the
16 | 'Import Paths & Shape Keys' option
The add-on is also accesible from Import menu under File
17 |
18 | 'demo.blend' and 'demo ver 2.blend' illustrate the basic functionality and the new enhancements of version 2. You can import one of the SVGs (via import shape keys option) in a new blender file to verify the functionality.
19 |
20 |
21 | # Quick start
22 | 
23 | (SVG Editor: Inkscape)
24 | Group the paths in the SVG editor, make sure the group is in some Layer and the target is the first node in the XML group node <svg:g>
25 | Invoke the add-on in Blender, select the svg file and click 'Import Paths & Shapekeys' button
26 | The target now has the shapekeys that correspond to the paths in the svg group
27 |
28 | (SVG Editor: Inkscape and others)
29 | Alternatively, you can create target-shapekey relationship by adding an xml attribute 'shapekeys' in the
30 | target path and setting its value to the comma separated IDs of the shapekey paths
31 | In case you are using SVG Editor other than Inkscape, you may have to uncheck 'Import by Group' checkbox
32 |
33 | The introductory video and the enhancements overview are a good starting point for exploring the add-on functionality
34 |
35 | # Examples & Demos
36 | You can find [here](https://github.com/Shriinivas/etc/tree/master/shapekeyimport/samples) the demo files used on this page as well as some samples demonstrating the add-on functionality
37 |
38 | # Limitations
39 | Exercise caution when using this add-on in production as it's in beta stage
40 |
41 | As of now the Add-on is tested with Inkscape only. If you face issues with other SVG editors, try exporting the file as plain SVG
Please report such and other issues along with the sample files here and I will look into them as soon as I can
42 |
43 | Keep watching this space, as there will be updates to the code as and when bugs are discovered and fixed
44 |
45 | # Credits
46 | The add-on file includes python converted a2c js function (Copyright (C) 2013-2015 by Vitaly Puzrin)
47 | and some portion imported from svgpathtools (Copyright (c) 2015 Andrew Allan Port, Copyright (c) 2013-2014 Lennart Regebro)
48 | A few of the bezier curve related algorithms were inspired by the answers on stackoverflow; their links can be found in the code.
49 |
50 | # License
51 | MIT
52 |
--------------------------------------------------------------------------------
/shapekeyimport.py:
--------------------------------------------------------------------------------
1 | #
2 | #
3 | # This Blender add-on imports paths and shapeKeys from an SVG file
4 | # Supported Blender Version: 2.79b
5 | #
6 | # License: GPL (https://github.com/Shriinivas/shapeKeyimport/blob/master/LICENSE)
7 | #
8 |
9 | # Not yet pep8 compliant
10 |
11 | # Scaling not done based on the unit of the SVG document, but based simply on value
12 | # If precise scaling is needed, appropriate unit (mm) needs to be set in the source SVG
13 |
14 | import bpy, copy, math, re, time
15 | from bpy.props import IntProperty, FloatProperty, BoolProperty, StringProperty
16 | from bpy.props import CollectionProperty, EnumProperty
17 | from xml.dom import minidom
18 | from collections import OrderedDict
19 | from mathutils import Vector, Matrix
20 | from math import sqrt, cos, sin, acos, degrees, radians, tan
21 | from cmath import exp, sqrt as csqrt, phase
22 | from collections import MutableSequence
23 |
24 | #################### UI and Registration Stuff ####################
25 |
26 | bl_info = {
27 | "name": "Import Paths and Shape Keys from SVG",
28 | "category": "Import-Export",
29 | }
30 |
31 | noneStr = "-None-"
32 | CURVE_NAME_PREFIX = 'Curve'
33 |
34 | def getCurveNames(scene, context):
35 | return [(noneStr, noneStr, '-1')] + [(obj.name, obj.name, str(i)) for i, obj in
36 | enumerate(context.scene.objects) if obj.type == 'CURVE']
37 |
38 | def getAlignmentList(scene, context):
39 | alignListStrs = [*getAlignSegsFn().keys()]
40 | return [(noneStr, noneStr, '-1')] + [(str(align), str(align), str(i))
41 | for i, align in enumerate(alignListStrs)]
42 |
43 | def getMatchPartList(scene, context):
44 | arrangeListStrs = [*getAlignPartsFn().keys()]
45 | return [(noneStr, noneStr, '-1')] + [(str(arrange), str(arrange), str(i))
46 | for i, arrange in enumerate(arrangeListStrs)]
47 |
48 | class ObjectImportShapeKeys(bpy.types.Operator):
49 |
50 | bl_idname = "object.import_shapekeys"
51 | bl_label = "Import Paths & Shape Keys"
52 | bl_options = {'REGISTER', 'UNDO'}
53 |
54 | filter_glob = StringProperty(default="*.svg")
55 | filepath = StringProperty(subtype='FILE_PATH')
56 |
57 | #User input
58 |
59 | byGroup = BoolProperty(name="Import By Group", \
60 | description = "Import target and shape key paths forming a group in SVG", \
61 | default = True)
62 |
63 | byAttrib = BoolProperty(name="Import By Attribute", \
64 | description = "Import targets having attribute defining shape key path IDs in SVG", \
65 | default = True)
66 |
67 | shapeKeyAttribName = StringProperty(name="Attribute", \
68 | description = "Name of target path attribute used to define shape keys in SVG",
69 | default = 'shapekeys')
70 |
71 | addShapeKeyPaths = BoolProperty(name="Retain Shape Key Paths", \
72 | description = "Import shape key paths as paths as well as shape keys", \
73 | default = False)
74 |
75 | addNontargetPaths = BoolProperty(name="Import Non-target Paths", \
76 | description = "Import paths that are neither targets nor shape keys", \
77 | default = True)
78 |
79 | addPathsFromHiddenLayer = BoolProperty(name="Import Hidden Layer Paths",
80 | description='Import paths from layers marked as hidden in SVG', \
81 | default = False)
82 |
83 | originToGeometry = BoolProperty(name="Origin To Geometry", \
84 | description="Shift the imported path's origin to its geometry center", \
85 | default = False)
86 |
87 | xScale = FloatProperty(name="X", \
88 | description="X scale factor for imported paths", \
89 | default = 0.01)
90 |
91 | yScale = FloatProperty(name="Y", \
92 | description="Y scale factor for imported paths", \
93 | default = 0.01)
94 |
95 | zLocation = FloatProperty(name="Z Location", \
96 | description='Z coordiate value for imported paths', default = 0)
97 |
98 | resolution = IntProperty(name="Resolution", \
99 | description='Higher value gives smoother transition but more complex geometry', \
100 | default = 50, min=0)
101 |
102 | objList = EnumProperty(name="Copy Properties From", items = getCurveNames, \
103 | description='Curve whose material, depth etc. should be copied on to imported paths')
104 |
105 | partMatchList = EnumProperty(name="Match Parts By", items = getMatchPartList, \
106 | description='Match disconnected parts of target and shape key based on (BBox -> Bounding Box)')
107 |
108 | alignList = EnumProperty(name="Node Alignment Order", items = getAlignmentList, \
109 | description = 'Start aligning the nodes of target and shape keys (paths or parts) from')
110 |
111 | def execute(self, context):
112 | createdObjsMap = main(infilePath = self.filepath, \
113 | shapeKeyAttribName = self.shapeKeyAttribName, \
114 | byGroup = self.byGroup, \
115 | byAttrib = self.byAttrib, \
116 | addShapeKeyPaths = self.addShapeKeyPaths, \
117 | addNontargetPaths = self.addNontargetPaths, \
118 | scale = [self.xScale, -self.yScale, 1], \
119 | zVal = self.zLocation, \
120 | resolution = self.resolution, \
121 | copyObjName = self.objList, \
122 | partArrangeOrder = self.partMatchList, \
123 | alignOrder = self.alignList, \
124 | pathsFromHiddenLayer = self.addPathsFromHiddenLayer, \
125 | originToGeometry = self.originToGeometry)
126 | return {'FINISHED'}
127 |
128 | def draw(self, context):
129 | layout = self.layout
130 | col = layout.column()
131 | row = col.row()
132 | row.prop(self, "byGroup")
133 | row = col.row()
134 | row.prop(self, "byAttrib")
135 | row = col.row()
136 | row.prop(self, "shapeKeyAttribName")
137 | row = col.row()
138 | row.prop(self, "addShapeKeyPaths")
139 | row = col.row()
140 | row.prop(self, "addNontargetPaths")
141 | row = col.row()
142 | row.prop(self, "addPathsFromHiddenLayer")
143 | row = col.row()
144 | row.prop(self, "originToGeometry")
145 | layout.row().separator()
146 | row = col.row()
147 | row.label('Scale')
148 | row = col.row()
149 | row.prop(self, "xScale")
150 | row.prop(self, "yScale")
151 | row = col.row()
152 | row.prop(self, "zLocation")
153 | layout.row().separator()
154 | row = col.row()
155 | row.prop(self, "resolution")
156 | row = col.row()
157 | row.prop(self, "objList")
158 | row = col.row()
159 | row.prop(self, "partMatchList")
160 | row = col.row()
161 | row.prop(self, "alignList")
162 |
163 | def invoke(self, context, event):
164 | alignListStrs = [*getAlignSegsFn().keys()]
165 | arrangeListStrs = [*getAlignPartsFn().keys()]
166 |
167 | #default values
168 | self.objList = noneStr
169 | self.partMatchList = str(arrangeListStrs[-1])
170 | self.alignList = str(alignListStrs[-1])
171 |
172 | context.window_manager.fileselect_add(self)
173 |
174 | return {'RUNNING_MODAL'}
175 |
176 | def menuImportShapeKeys(self, context):
177 | self.layout.operator(ObjectImportShapeKeys.bl_idname,
178 | text="Import Paths & Shape Keys (.svg)")
179 |
180 | def register():
181 | bpy.utils.register_class(ObjectImportShapeKeys)
182 | bpy.types.INFO_MT_file_import.append(menuImportShapeKeys)
183 |
184 | def unregister():
185 | bpy.utils.unregister_class(ObjectImportShapeKeys)
186 | bpy.types.INFO_MT_file_import.remove(menuImportShapeKeys)
187 |
188 | if __name__ == "__main__":
189 | register()
190 |
191 | ###################### addon code start ####################
192 |
193 | DEF_ERR_MARGIN = 0.0001
194 | hiddenLayerAttr = 'display:none'
195 |
196 | def isValidPath(pathElem):
197 | dVal = pathElem.getAttribute('d')
198 | return (dVal != None) and (dVal.strip() != "") and \
199 | (dVal[0] in set('MLHVCSQTAmlhvcsqa'))
200 |
201 | class OrderedSet(OrderedDict):
202 | def add(self, item):
203 | super(OrderedSet, self).__setitem__(item, '')
204 |
205 | def __iter__(self):
206 | return super.keys().__iter__()
207 |
208 | #...Other methods to be added when needed
209 |
210 | class Part():
211 | def __init__(self, segments, isClosed):
212 | self.segs = segments
213 | self.isClosed = isClosed
214 |
215 | if(len(segments) > 0):
216 | self.partToClose = self.isContinuous()
217 |
218 | def copy(self, start, end):
219 | if(start == None):
220 | start = 0
221 | if(end == None):
222 | end = len(self.segs)
223 | return Part(self.segs[start:end], None)#IsClosing not defined, so set to None
224 |
225 | def getSeg(self, idx):
226 | return self.segs[idx]
227 |
228 | def getSegs(self):
229 | return self.segs
230 |
231 | def getSegsCopy(self, start, end):
232 | if(start == None):
233 | start = 0
234 | if(end == None):
235 | end = len(self.segs)
236 | return self.segs[start:end]
237 |
238 | def bbox(self):
239 | leftBot_rgtTop = [[None]*2,[None]*2]
240 | for seg in self.segs:
241 | bb = bboxCubicBezier(seg)
242 | for i in range(0, 2):
243 | if (leftBot_rgtTop[0][i] == None or bb[0][i] < leftBot_rgtTop[0][i]):
244 | leftBot_rgtTop[0][i] = bb[0][i]
245 | for i in range(0, 2):
246 | if (leftBot_rgtTop[1][i] == None or bb[1][i] > leftBot_rgtTop[1][i]):
247 | leftBot_rgtTop[1][i] = bb[1][i]
248 |
249 | return leftBot_rgtTop
250 |
251 | def isContinuous(self):
252 | return cmplxCmpWithMargin(self.segs[0].start, self.segs[-1].end)
253 |
254 | def getSegCnt(self):
255 | return len(self.segs)
256 |
257 | def length(self, error):
258 | return sum(seg.length(error = error) for seg in self.segs)
259 |
260 | class PathElem:
261 | def __init__(self, path, attributes, transList, seqId):
262 | self.parts = getDisconnParts(path)
263 | self.pathId = attributes['id'].value
264 | self.attributes = attributes
265 | self.transList = transList
266 | self.seqId = seqId
267 |
268 | def getPartCnt(self):
269 | return len(self.parts)
270 |
271 | def getPartView(self):
272 | p = Part([seg for part in self.parts for seg in part.getSegs()], None)
273 | return p
274 |
275 | def getPartBoundaryIdxs(self):
276 | cumulCntList = set()
277 | cumulCnt = 0
278 |
279 | for p in self.parts:
280 | cumulCnt += p.getSegCnt()
281 | cumulCntList.add(cumulCnt)
282 |
283 | return cumulCntList
284 |
285 | def updatePartsList(self, segCntsPerPart, byPart):
286 | monolithicSegList = [seg for part in self.parts for seg in part.getSegs()]
287 | self.parts.clear()
288 |
289 | for i in range(0, len(segCntsPerPart)):
290 | if( i == 0):
291 | currIdx = 0
292 | else:
293 | currIdx = segCntsPerPart[i-1]
294 |
295 | nextIdx = segCntsPerPart[i]
296 | isClosed = None
297 |
298 | if(byPart == True and i < len(self.parts)):
299 | isClosed = self.parts[i].isClosed # Let's retain as far as possible
300 |
301 | self.parts.append(Part(monolithicSegList[currIdx:nextIdx], isClosed))
302 |
303 | def __repr__(self):
304 | return self.pathId
305 |
306 | class BlenderBezierPoint:
307 | #all points are complex values not 3d vectors
308 | def __init__(self, pt, handleLeft, handleRight):
309 | self.pt = pt
310 | self.handleLeft = handleLeft
311 | self.handleRight = handleRight
312 |
313 | def __repr__(self):
314 | return str(self.pt)
315 |
316 | def getPathElemMap(doc, pathsFromHiddenLayer):
317 | elemMap = {}
318 | seqId = 0
319 | for pathXMLElem in doc.getElementsByTagName('path'):
320 | if (isElemSelectable(pathXMLElem, pathsFromHiddenLayer) and
321 | isValidPath(pathXMLElem)):
322 | dVal = pathXMLElem.getAttribute('d')
323 | transList = []
324 | idAttr = pathXMLElem.getAttribute('id')
325 | parsedPath = parse_path(dVal)
326 | getTransformAttribs(pathXMLElem, transList)
327 | pathElem = PathElem(parsedPath, pathXMLElem.attributes, transList, seqId)
328 | elemMap[idAttr] = pathElem
329 | seqId += 1
330 | return elemMap
331 |
332 | def main(infilePath, shapeKeyAttribName, byGroup, byAttrib, addShapeKeyPaths,
333 | addNontargetPaths, scale, zVal, resolution, copyObjName, partArrangeOrder, alignOrder,
334 | pathsFromHiddenLayer, originToGeometry):
335 |
336 | doc = minidom.parse(infilePath)
337 |
338 | pathElemsMap = getPathElemMap(doc, pathsFromHiddenLayer)
339 |
340 | pathElems = [*pathElemsMap.values()]
341 |
342 | normalizePathElems(pathElems, alignOrder, partArrangeOrder)
343 |
344 | targetShapeKeyMap = {}
345 | allShapeKeyIdsSet = set()
346 |
347 | if(byGroup == True):
348 | updateShapeKeyMapByGroup(targetShapeKeyMap, allShapeKeyIdsSet, doc, pathsFromHiddenLayer)
349 |
350 | if(byAttrib == True):
351 | updateShapeKeyMapByAttrib(targetShapeKeyMap, pathElemsMap, allShapeKeyIdsSet, shapeKeyAttribName)
352 |
353 | #List of lists with all the interdependent paths that need to be homogenized
354 | dependentPathIdsSets = getDependentPathIdsSets(targetShapeKeyMap)
355 |
356 | byPart = (partArrangeOrder != noneStr)
357 | for prntIdx, dependentPathIdsSet in enumerate(dependentPathIdsSets):
358 | dependentPathsSet = [pathElemsMap.get(dependentPathId) for dependentPathId in dependentPathIdsSet
359 | if pathElemsMap.get(dependentPathId) != None]
360 |
361 | addMissingSegs(dependentPathsSet, byPart = byPart, resolution = resolution)
362 |
363 | bIdxs = set()
364 | for pathElem in dependentPathsSet:
365 | bIdxs = bIdxs.union(pathElem.getPartBoundaryIdxs())
366 |
367 | for pathElem in dependentPathsSet:
368 | pathElem.updatePartsList(sorted(list(bIdxs)), byPart)
369 |
370 | #All will have same part count by now
371 | allToClose = [all(pathElem.parts[j].partToClose for pathElem in dependentPathsSet)
372 | for j in range(0, len(dependentPathsSet[0].parts))]
373 |
374 | #All interdependent paths will have the same no of splines with the same no of bezier points
375 | for pathElem in dependentPathsSet:
376 | for j, part in enumerate(pathElem.parts):
377 | part.partToClose = allToClose[j]
378 |
379 | objPathIds = set(targetShapeKeyMap.keys())
380 |
381 | if(addNontargetPaths == True):
382 | nontargetIds = (pathElemsMap.keys() - targetShapeKeyMap.keys()) - allShapeKeyIdsSet
383 | objPathIds = objPathIds.union(nontargetIds)
384 |
385 | if(addShapeKeyPaths == True):
386 | #in case shapeKeys are also targets
387 | shapeKeyIdsToAdd = allShapeKeyIdsSet - targetShapeKeyMap.keys()
388 | objPathIds = objPathIds.union(shapeKeyIdsToAdd.intersection(pathElemsMap.keys()))
389 |
390 | copyObj = bpy.data.objects.get(copyObjName)#Can be None
391 |
392 | objMap = {}
393 |
394 | for objPathId in objPathIds:
395 | addSvg2Blender(objMap, pathElemsMap[objPathId], scale, zVal, copyObj, originToGeometry)
396 |
397 | for pathElemId in targetShapeKeyMap.keys():
398 | pathObj = objMap[pathElemId]
399 | pathObj.shape_key_add('Basis')
400 | shapeKeyElemIds = targetShapeKeyMap[pathElemId].keys()
401 | for shapeKeyElemId in shapeKeyElemIds:
402 | shapeKeyElem = pathElemsMap.get(shapeKeyElemId)
403 | if(shapeKeyElem != None):#Maybe no need after so many checks earlier
404 | addShapeKey(pathObj, shapeKeyElem, shapeKeyElemId, scale, zVal, originToGeometry)
405 |
406 | return objMap
407 |
408 | #Avoid errors due to floating point conversions/comparisons
409 | def cmplxCmpWithMargin(complex1, complex2, margin = DEF_ERR_MARGIN):
410 | return floatCmpWithMargin(complex1.real, complex2.real, margin) and \
411 | floatCmpWithMargin(complex1.imag, complex2.imag, margin)
412 |
413 | def floatCmpWithMargin(float1, float2, margin = DEF_ERR_MARGIN):
414 | return abs(float1 - float2) < margin
415 |
416 | #TODO: Would be more conditions like defs. Need a better solution
417 | def isElemSelectable(elem, pathsFromHiddenLayer):
418 | return getParentInHierarchy(elem, 'defs') == None and \
419 | (pathsFromHiddenLayer == True or not isInHiddenLayer(elem))
420 |
421 | def getParentInHierarchy(elem, parentTag):
422 | parent = elem.parentNode
423 |
424 | while(parent != None and parent.parentNode != None and parent.tagName != parentTag):
425 | parent = parent.parentNode
426 |
427 | #TODO: Better way to detect the Document node
428 | if(parent.parentNode == None):
429 | return None
430 |
431 | return parent
432 |
433 | def getTransformAttribs(elem, transList):
434 | if(elem.nodeType == elem.DOCUMENT_NODE):
435 | return
436 |
437 | transAttr = elem.getAttribute('transform')
438 | if(transAttr != None):
439 | transList.append(transAttr)
440 | if(elem.parentNode != None):
441 | getTransformAttribs(elem.parentNode, transList)
442 |
443 | def isInHiddenLayer(elem):
444 | parent = elem.parentNode
445 |
446 | while(parent != None and parent.nodeType == parent.ELEMENT_NODE and \
447 | (parent.tagName != 'g' or (parent.parentNode != None and \
448 | parent.parentNode.tagName != 'svg'))):
449 | parent = parent.parentNode
450 |
451 | if(parent != None and parent.nodeType == parent.ELEMENT_NODE):
452 | return parent.getAttribute('style').startswith(hiddenLayerAttr)
453 |
454 | return False
455 |
456 | def getDependentPathIdsSets(shapeKeyMap):
457 | pathIdSets = []
458 | allAddedPathIds = set()
459 | for targetId in shapeKeyMap.keys():
460 | #Keep track of the added path Ids since the target can be a shapeKey,
461 | #or a target of one of the shapeKeys of this target (many->many relation)
462 | if(targetId not in allAddedPathIds):
463 | pathIdSet = set()
464 | addDependentPathsToList(shapeKeyMap, pathIdSet, targetId)
465 | pathIdSets.append(pathIdSet)
466 | allAddedPathIds = allAddedPathIds.union(pathIdSet)
467 | return pathIdSets
468 |
469 | #Reverse lookup
470 | def getKeysetWithValue(srcMap, value):
471 | keySet = set()
472 | for key in srcMap:
473 | if(value in srcMap[key]):
474 | keySet.add(key)
475 | return keySet
476 |
477 | #All the shape keys and their other targets are added recursively
478 | def addDependentPathsToList(shapeKeyMap, pathIdSet, targetId):
479 | if(targetId in pathIdSet):
480 | return pathIdSet
481 |
482 | pathIdSet.add(targetId)
483 | shapeKeyElemIdMap = shapeKeyMap.get(targetId)
484 |
485 | if(shapeKeyElemIdMap == None):
486 | return pathIdSet
487 |
488 | shapeKeyElemIdList = shapeKeyElemIdMap.keys()
489 | if(shapeKeyElemIdList == None):
490 | return pathIdSet
491 |
492 | for shapeKeyElemId in shapeKeyElemIdList:
493 | #Recuresively add the Ids that are shape key of this shape key
494 | addDependentPathsToList(shapeKeyMap, pathIdSet, shapeKeyElemId)
495 |
496 | #Recursively add the Ids that are other targets of this shape key
497 | keyset = getKeysetWithValue(shapeKeyMap, shapeKeyElemId)
498 | for key in keyset:
499 | addDependentPathsToList(shapeKeyMap, pathIdSet, key)
500 |
501 | return pathIdSet
502 |
503 | def getAllPathElemsInGroup(parentElem, pathElems):
504 | for childNode in parentElem.childNodes:
505 | if childNode.nodeType == childNode.ELEMENT_NODE:
506 | if(childNode.tagName == 'path' and isValidPath(childNode)):
507 | pathElems.append(childNode)
508 | elif(childNode.tagName == 'g'):
509 | getAllPathElemsInGroup(childNode, pathElems)
510 |
511 | def updateShapeKeyMapByGroup(targetShapeKeyMap, allShapeKeyIdsSet, doc, pathsFromHiddenLayer):
512 | groupElems = [groupElem for groupElem in doc.getElementsByTagName('g')
513 | if (groupElem.parentNode.tagName != 'svg' and
514 | isElemSelectable(groupElem, pathsFromHiddenLayer))]
515 |
516 | for groupElem in groupElems:
517 | pathElems = []
518 | getAllPathElemsInGroup(groupElem, pathElems)
519 | if(pathElems != None and len(pathElems) > 1 ):
520 | targetId = pathElems[0].getAttribute('id')
521 | if(targetShapeKeyMap.get(targetId) == None):
522 | targetShapeKeyMap[targetId] = OrderedSet()
523 |
524 | for i in range(1, len(pathElems)):
525 | shapeKeyId = pathElems[i].getAttribute('id')
526 | targetShapeKeyMap[targetId].add(shapeKeyId)
527 | allShapeKeyIdsSet.add(shapeKeyId)
528 |
529 | def updateShapeKeyMapByAttrib(targetShapeKeyMap, pathElemsMap, \
530 | allShapeKeyIdsSet, shapeKeyAttribName):
531 | for key in pathElemsMap.keys():
532 | targetPathElem = pathElemsMap[key]
533 | attributes = targetPathElem.attributes
534 | shapeKeyIdAttrs = attributes.get(shapeKeyAttribName)
535 | if(shapeKeyIdAttrs != None):
536 | shapeKeyIds = shapeKeyIdAttrs.value
537 | shapeKeyIdsStr = str(shapeKeyIds)
538 | shapeKeyIdList = shapeKeyIdsStr.replace(' ','').split(',')
539 | if(targetShapeKeyMap.get(key) == None):
540 | targetShapeKeyMap[key] = OrderedSet()
541 | for keyId in shapeKeyIdList:
542 | if(pathElemsMap.get(keyId) != None):
543 | targetShapeKeyMap[key].add(keyId)
544 | allShapeKeyIdsSet.add(keyId)
545 |
546 | def bboxArea(leftBot_rgtTop):
547 | return abs((leftBot_rgtTop[1][0]-leftBot_rgtTop[0][0]) * \
548 | (leftBot_rgtTop[1][1]-leftBot_rgtTop[0][1]))
549 |
550 | #see https://stackoverflow.com/questions/24809978/calculating-the-bounding-box-of-cubic-bezier-curve
551 | #(3 D - 9 C + 9 B - 3 A) t^2 + (6 A - 12 B + 6 C) t + 3 (B - A)
552 | def bboxCubicBezier(bezier):
553 | def evalBez(AA, BB, CC, DD, t):
554 | return AA * (1 - t) * (1 - t) * (1 - t) + \
555 | 3 * BB * t * (1 - t) * (1 - t) + \
556 | 3 * CC * t * t * (1 - t) + \
557 | DD * t * t * t
558 |
559 | A = [bezier.start.real, bezier.start.imag]
560 | B = [bezier.control1.real, bezier.control1.imag]
561 | C = [bezier.control2.real, bezier.control2.imag]
562 | D = [bezier.end.real, bezier.end.imag]
563 |
564 | MINXY = [min([A[0], D[0]]), min([A[1], D[1]])]
565 | MAXXY = [max([A[0], D[0]]), max([A[1], D[1]])]
566 | leftBot_rgtTop = [MINXY, MAXXY]
567 |
568 | a = [3 * D[i] - 9 * C[i] + 9 * B[i] - 3 * A[i] for i in range(0, 2)]
569 | b = [6 * A[i] - 12 * B[i] + 6 * C[i] for i in range(0, 2)]
570 | c = [3 * (B[i] - A[i]) for i in range(0, 2)]
571 |
572 | solnsxy = []
573 | for i in range(0, 2):
574 | solns = []
575 | if(a[i] == 0):
576 | if(b[i] == 0):
577 | solns.append(0)#Independent of t so lets take the starting pt
578 | else:
579 | solns.append(c[i] / b[i])
580 | else:
581 | rootFact = b[i] * b[i] - 4 * a[i] * c[i]
582 | if(rootFact >=0 ):
583 | #Two solutions with + and - sqrt
584 | solns.append((-b[i] + sqrt(rootFact)) / (2 * a[i]))
585 | solns.append((-b[i] - sqrt(rootFact)) / (2 * a[i]))
586 | solnsxy.append(solns)
587 |
588 | for i, soln in enumerate(solnsxy):
589 | for j, t in enumerate(soln):
590 | if(t < 1 and t > 0):
591 | co = evalBez(A[i], B[i], C[i], D[i], t)
592 | if(co < leftBot_rgtTop[0][i]):
593 | leftBot_rgtTop[0][i] = co
594 | if(co > leftBot_rgtTop[1][i]):
595 | leftBot_rgtTop[1][i] = co
596 |
597 | return leftBot_rgtTop
598 |
599 | def getLineSegment(start, end, t0, t1):
600 | xt0, yt0 = (1 - t0) * start.real + t0 * end.real , (1 - t0) * start.imag + t0 * end.imag
601 | xt1, yt1 = (1 - t1) * start.real + t1 * end.real , (1 - t1) * start.imag + t1 * end.imag
602 |
603 | return CubicBezier(complex(xt0, yt0), complex(xt0, yt0),
604 | complex(xt1, yt1), complex(xt1, yt1))
605 |
606 | #see https://stackoverflow.com/questions/878862/drawing-part-of-a-b%c3%a9zier-curve-by-reusing-a-basic-b%c3%a9zier-curve-function/879213#879213
607 | def getCurveSegment(seg, t0, t1):
608 | ctrlPts = seg
609 |
610 | if(t0 > t1):
611 | tt = t1
612 | t1 = t0
613 | t0 = tt
614 |
615 | #Let's make at least the line segments of predictable length :)
616 | if(ctrlPts[0] == ctrlPts[1] and ctrlPts[2] == ctrlPts[3]):
617 | return getLineSegment(ctrlPts[0], ctrlPts[2], t0, t1)
618 |
619 | x1, y1 = ctrlPts[0].real, ctrlPts[0].imag
620 | bx1, by1 = ctrlPts[1].real, ctrlPts[1].imag
621 | bx2, by2 = ctrlPts[2].real, ctrlPts[2].imag
622 | x2, y2 = ctrlPts[3].real, ctrlPts[3].imag
623 |
624 | u0 = 1.0 - t0
625 | u1 = 1.0 - t1
626 |
627 | qxa = x1*u0*u0 + bx1*2*t0*u0 + bx2*t0*t0
628 | qxb = x1*u1*u1 + bx1*2*t1*u1 + bx2*t1*t1
629 | qxc = bx1*u0*u0 + bx2*2*t0*u0 + x2*t0*t0
630 | qxd = bx1*u1*u1 + bx2*2*t1*u1 + x2*t1*t1
631 |
632 | qya = y1*u0*u0 + by1*2*t0*u0 + by2*t0*t0
633 | qyb = y1*u1*u1 + by1*2*t1*u1 + by2*t1*t1
634 | qyc = by1*u0*u0 + by2*2*t0*u0 + y2*t0*t0
635 | qyd = by1*u1*u1 + by2*2*t1*u1 + y2*t1*t1
636 |
637 | xa = qxa*u0 + qxc*t0
638 | xb = qxa*u1 + qxc*t1
639 | xc = qxb*u0 + qxd*t0
640 | xd = qxb*u1 + qxd*t1
641 |
642 | ya = qya*u0 + qyc*t0
643 | yb = qya*u1 + qyc*t1
644 | yc = qyb*u0 + qyd*t0
645 | yd = qyb*u1 + qyd*t1
646 |
647 | return CubicBezier(complex(xa, ya), complex(xb, yb),
648 | complex(xc, yc), complex(xd, yd))
649 |
650 |
651 | def subdivideSeg(origSeg, noSegs):
652 | if(noSegs < 2):
653 | return [origSeg]
654 |
655 | segs = []
656 | oldT = 0
657 | segLen = origSeg.length(error = DEF_ERR_MARGIN) / noSegs
658 | for i in range(0, noSegs-1):
659 | t = float(i+1) / noSegs
660 | cBezier = getCurveSegment(origSeg, oldT, t)
661 | segs.append(cBezier)
662 | oldT = t
663 |
664 | cBezier = getCurveSegment(origSeg, oldT, 1)
665 | segs.append(cBezier)
666 |
667 | return segs
668 |
669 |
670 | def getSubdivCntPerSeg(part, toAddCnt):
671 |
672 | class ItemWrapper:
673 | def __init__(self, idx, item):
674 | self.idx = idx
675 | self.item = item
676 | self.length = item.length(error = DEF_ERR_MARGIN)
677 |
678 | class PartWrapper:
679 | def __init__(self, part):
680 | self.itemList = []
681 | self.itemCnt = len(part.getSegs())
682 | for idx, seg in enumerate(part.getSegs()):
683 | self.itemList.append(ItemWrapper(idx, seg))
684 |
685 | partWrapper = PartWrapper(part)
686 | partLen = part.length(DEF_ERR_MARGIN)
687 | avgLen = partLen / (partWrapper.itemCnt + toAddCnt)
688 |
689 | segsToDivide = [item for item in partWrapper.itemList if item.length >= avgLen]
690 | segToDivideCnt = len(segsToDivide)
691 | avgLen = sum(item.length for item in segsToDivide) / (segToDivideCnt + toAddCnt)
692 |
693 | segsToDivide = sorted(segsToDivide, key=lambda x: x.length, reverse = True)
694 |
695 | cnts = [0] * partWrapper.itemCnt
696 | addedCnt = 0
697 |
698 |
699 | for i in range(0, segToDivideCnt):
700 | segLen = segsToDivide[i].length
701 |
702 | divideCnt = int(round(segLen/avgLen)) - 1
703 | if(divideCnt == 0):
704 | break
705 |
706 | if((addedCnt + divideCnt) >= toAddCnt):
707 | cnts[segsToDivide[i].idx] = toAddCnt - addedCnt
708 | addedCnt = toAddCnt
709 | break
710 |
711 | cnts[segsToDivide[i].idx] = divideCnt
712 |
713 | addedCnt += divideCnt
714 |
715 | #TODO: Verify if needed
716 | while(toAddCnt > addedCnt):
717 | for i in range(0, segToDivideCnt):
718 | cnts[segsToDivide[i].idx] += 1
719 | addedCnt += 1
720 | if(toAddCnt == addedCnt):
721 | break
722 |
723 | return cnts
724 |
725 | def getDisconnParts(path):
726 | prevSeg = None
727 | disconnParts = []
728 | segs = []
729 |
730 | for i in range(0, len(path)):
731 | seg = path[i]
732 | if((prevSeg== None) or not cmplxCmpWithMargin(prevSeg.end, seg.start)):
733 | if(len(segs) > 0):
734 | disconnParts.append(Part(segs, segs[-1].isClosing))
735 | segs = []
736 | prevSeg = seg
737 | segs.append(seg)
738 |
739 | if(len(path) > 0 and len(segs) > 0):
740 | disconnParts.append(Part(segs, segs[-1].isClosing))
741 |
742 | return disconnParts
743 |
744 | def normalizePathElems(pathElems, alignOrder, partArrangeOrder):
745 | for pathElem in pathElems:
746 | toTransformedCBezier(pathElem)
747 | alignPath(pathElem, alignOrder, partArrangeOrder)
748 |
749 | #Resolution is mapped to parts
750 | #The value 100 means 1 segment per unit length (whatever it is in source SVG) of Part
751 | def getSegCntForResolution(part, resolution):
752 | segCnt = part.getSegCnt()
753 | segCntForRes = int(part.length(error = DEF_ERR_MARGIN) * resolution / 100)
754 |
755 | if(segCnt > segCntForRes):
756 | return segCnt
757 | else:
758 | return segCntForRes
759 |
760 | #Distribute equally; this is likely a rare condition. So why complicate?
761 | def distributeCnt(maxSegCntsByPart, startIdx, extraCnt):
762 | added = 0
763 | elemCnt = len(maxSegCntsByPart) - startIdx
764 | cntPerElem = math.floor(extraCnt / elemCnt)
765 | remainder = extraCnt % elemCnt
766 | for i in range(startIdx, len(maxSegCntsByPart)):
767 | maxSegCntsByPart[i] += cntPerElem
768 | if(i < remainder + startIdx):
769 | maxSegCntsByPart[i] += 1
770 |
771 | #Make all the paths to have the maximum number of segments in the set
772 | def addMissingSegs(pathElems, byPart, resolution):
773 | maxSegCntsByPart = []
774 | samePartCnt = True
775 | maxSegCnt = 0
776 |
777 | resSegCnt = []
778 | sortedElems = sorted(pathElems, key = lambda p: -len(p.parts))
779 | for i, pathElem in enumerate(sortedElems):
780 | if(byPart == False):
781 | segCnt = getSegCntForResolution(pathElem.getPartView(), resolution)
782 | if(segCnt > maxSegCnt):
783 | maxSegCnt = segCnt
784 |
785 | else:
786 | resSegCnt.append([])
787 | for j, part in enumerate(pathElem.parts):
788 | partSegCnt = getSegCntForResolution(part, resolution)
789 | resSegCnt[i].append(partSegCnt)
790 | #First path
791 | if(j == len(maxSegCntsByPart)):
792 | maxSegCntsByPart.append(partSegCnt)
793 |
794 | #last part of this path, but other paths in set have more parts
795 | elif((j == len(pathElem.parts) - 1) and
796 | len(maxSegCntsByPart) > len(pathElem.parts)):
797 |
798 | remainingSegs = sum(maxSegCntsByPart[j:])
799 | if(partSegCnt <= remainingSegs):
800 | resSegCnt[i][j] = remainingSegs
801 | else:
802 | #This part has more segs than the sum of the remaining part segs
803 | #So distribute the extra count
804 | distributeCnt(maxSegCntsByPart, j, (partSegCnt - remainingSegs))
805 |
806 | #Also, adjust the seg count of the last part of the previous
807 | #segments that had fewer than max number of parts
808 | for k in range(0, i):
809 | if(len(sortedElems[k].parts) < len(maxSegCntsByPart)):
810 | totalSegs = sum(maxSegCntsByPart)
811 | existingSegs = sum(maxSegCntsByPart[:len(sortedElems[k].parts)-1])
812 | resSegCnt[k][-1] = totalSegs - existingSegs
813 |
814 | elif(partSegCnt > maxSegCntsByPart[j]):
815 | maxSegCntsByPart[j] = partSegCnt
816 |
817 | for i, pathElem in enumerate(sortedElems):
818 |
819 | if(byPart == False):
820 | partView = pathElem.getPartView()
821 | segCnt = partView.getSegCnt()
822 | diff = maxSegCnt - segCnt
823 |
824 | if(diff > 0):
825 | cnts = getSubdivCntPerSeg(partView, diff)
826 | cumulSegIdx = 0
827 | for j in range(0, len(pathElem.parts)):
828 | part = pathElem.parts[j]
829 | newSegs = []
830 | for k, seg in enumerate(part.getSegs()):
831 | numSubdivs = cnts[cumulSegIdx] + 1
832 | newSegs += subdivideSeg(seg, numSubdivs)
833 | cumulSegIdx += 1
834 |
835 | #isClosed won't be used, but let's update anyway
836 | pathElem.parts[j] = Part(newSegs, part.isClosed)
837 |
838 | else:
839 | for j in range(0, len(pathElem.parts)):
840 | part = pathElem.parts[j]
841 | newSegs = []
842 |
843 | partSegCnt = part.getSegCnt()
844 |
845 | #TODO: Adding everything in the last part?
846 | if(j == (len(pathElem.parts)-1) and
847 | len(maxSegCntsByPart) > len(pathElem.parts)):
848 | diff = resSegCnt[i][j] - partSegCnt
849 | else:
850 | diff = maxSegCntsByPart[j] - partSegCnt
851 |
852 | if(diff > 0):
853 | cnts = getSubdivCntPerSeg(part, diff)
854 |
855 | for k, seg in enumerate(part.getSegs()):
856 | seg = part.getSeg(k)
857 | subdivCnt = cnts[k] + 1 #1 for the existing one
858 | newSegs += subdivideSeg(seg, subdivCnt)
859 |
860 | #isClosed won't be used, but let's update anyway
861 | pathElem.parts[j] = Part(newSegs, part.isClosed)
862 |
863 |
864 | def transTranslate(elems):
865 | y = 0
866 | if(len(elems) > 1):
867 | y = elems[1]
868 | return Matrix.Translation((elems[0], y, 0))
869 |
870 | def transScale(elems):
871 | y = 0
872 | if(len(elems) > 1):
873 | y = elems[1]
874 |
875 | return Matrix.Scale(elems[0], 4, (1, 0, 0)) * \
876 | Matrix.Scale(y, 4, (0, 1, 0))
877 |
878 | def transRotate(elems):
879 | m = Matrix()
880 | if(len(elems) > 1):
881 | m = transTranslate(elems[1:])
882 |
883 | return m * Matrix.Rotation(radians(elems[0]), 4, Vector((0, 0, 1))) \
884 | * m.inverted()
885 |
886 | def transSkewX(elems):
887 | mat = Matrix()
888 | mat[0][1] = tan(radians(elems[0]))
889 | return mat
890 |
891 | def transSkewY(elems):
892 | mat = Matrix()
893 | mat[1][0] = tan(radians(elems[0]))
894 | return mat
895 |
896 | def transMatrix(elems):
897 | #standard matrix with diagonal elems = 1
898 | mat = Matrix()
899 | mat[0][0] = elems[0]
900 | mat[0][1] = elems[2]
901 | mat[0][3] = elems[4]
902 | mat[1][0] = elems[1]
903 | mat[1][1] = elems[3]
904 | mat[1][3] = elems[5]
905 | return mat
906 |
907 | transforms = {'translate': transTranslate,
908 | 'scale': transScale,
909 | 'rotate': transRotate,
910 | 'skewX': transSkewX,
911 | 'skewY': transSkewY,
912 | 'matrix': transMatrix}
913 |
914 | def getTransformMatrix(transList):
915 | mat = Matrix()
916 | regEx = re.compile('([^\(]+)\(([^\)]+)\)')
917 | for transform in transList:
918 | results = regEx.findall(transform)
919 | if(results != None and len(results) > 0):
920 | for res in results:
921 | fnStr = res[0]
922 | elems = [float(e) for e in res[1].split(',')]
923 | fn = transforms.get(fnStr)
924 | if(fn != None):
925 | mat = fn(elems) * mat
926 | return mat
927 |
928 | def getTransformedSeg(bezierSeg, mat):
929 | pts = []
930 | for pt in bezierSeg:
931 | pt3d = Vector((pt.real, pt.imag, 0))
932 | pt3d = mat * pt3d
933 | pts.append(complex(pt3d[0], pt3d[1]))
934 | return CubicBezier(*pts)
935 |
936 | #format (key, value): [(order_str, seg_cmp_fn), ...]
937 | #(Listed clockwise in the dropdown)
938 | #round-off to int as we don't want to be over-precise with the comparison...
939 | #...der Gleichheitsbedingung wird lediglich visuell geprueft werden :)
940 | def getAlignSegsFn():
941 | return OrderedDict([
942 | ('Top-Left', lambda x, y: ((int(x.imag) < int(y.imag)) or \
943 | (int(x.imag) == int(y.imag) and int(x.real) < int(y.real)))),
944 |
945 | ('Top-Right', lambda x, y: ((int(x.imag) < int(y.imag)) or \
946 | (int(x.imag) == int(y.imag) and int(x.real) > int(y.real)))),
947 |
948 | ('Right-Top', lambda x, y: ((int(x.real) > int(y.real)) or \
949 | (int(x.real) == int(y.real) and int(x.imag) < int(y.imag)))),
950 |
951 | ('Right-Bottom', lambda x, y: ((int(x.real) > int(y.real)) or \
952 | (int(x.real) == int(y.real) and int(x.imag) > int(y.imag)))),
953 |
954 | ('Bottom-Right', lambda x, y: ((int(x.imag) > int(y.imag)) or \
955 | (int(x.imag) == int(y.imag) and int(x.real) > int(y.real)))),
956 |
957 | ('Bottom-left', lambda x, y: ((int(x.imag) > int(y.imag)) or \
958 | (int(x.imag) == int(y.imag) and int(x.real) < int(y.real)))),
959 |
960 | ('Left-Bottom', lambda x, y: ((int(x.real) < int(y.real)) or \
961 | (int(x.real) == int(y.real) and int(x.imag) > int(y.imag)))),
962 |
963 | ('Left-Top', lambda x, y: ((int(x.real) < int(y.real)) or \
964 | (int(x.real) == int(y.real) and int(x.imag) < int(y.imag)))),
965 | ])
966 |
967 |
968 | def getAlignPartsFn():
969 |
970 | #Order of the list returned by bbox - Left[0,0]-bottom[0,1]-right[1,0]-top[1,1]
971 | return OrderedDict([
972 | #Sorting in reverse order so that the bigger parts get matched first
973 | ('Node Count ', lambda part: -1 * part.getSegCnt()),
974 |
975 | ('BBox Area', lambda part: -1 * bboxArea(part.bbox())),
976 |
977 | ('BBox Height', lambda part: -1 * (part.bbox()[1][1] - part.bbox()[0][1])),
978 |
979 | ('BBox Width', lambda part: -1 * (part.bbox()[1][0] - part.bbox()[0][0])),
980 |
981 | ('BBox:Top-Left', lambda part: (part.bbox()[0][1], #Top of SVG is bottom of blender
982 | part.bbox()[0][0])),
983 |
984 | ('BBox:Top-Right', lambda part: (part.bbox()[0][1],
985 | part.bbox()[1][0])),
986 |
987 | ('BBox:Right-Top', lambda part: (part.bbox()[1][0],
988 | part.bbox()[0][1])),
989 |
990 | ('BBox:Right-Bottom', lambda part: (part.bbox()[1][0],
991 | part.bbox()[1][1])),
992 |
993 | ('BBox:Bottom-Right', lambda part: (part.bbox()[1][1],
994 | part.bbox()[1][0])),
995 |
996 | ('BBox:Bottom-left', lambda part: (part.bbox()[1][1],
997 | part.bbox()[0][0])),
998 |
999 | ('BBox:Left-Bottom', lambda part: (part.bbox()[0][0],
1000 | part.bbox()[1][1])),
1001 |
1002 | ('BBox:Left-Top', lambda part: (part.bbox()[0][0],
1003 | part.bbox()[0][1])),
1004 | ])
1005 |
1006 | def alignPath(pathElem, alignOrderSegs, partArrangeOrder):
1007 |
1008 | alignSegCmpFn = getAlignSegsFn().get(alignOrderSegs)
1009 | alignPartCmpFn = getAlignPartsFn().get(partArrangeOrder)
1010 |
1011 | parts = pathElem.parts[:]
1012 |
1013 | if(alignPartCmpFn != None):
1014 | parts = sorted(parts, key = alignPartCmpFn)
1015 |
1016 | startPt = None
1017 | startIdx = None
1018 |
1019 | for i in range(0, len(parts)):
1020 |
1021 | #Only truly closed parts
1022 | if(alignSegCmpFn != None and parts[i].isClosed):
1023 | for j in range(0, parts[i].getSegCnt()):
1024 | seg = parts[i].getSeg(j)
1025 | if(j == 0 or alignSegCmpFn(seg.start, startPt)):
1026 | startPt = seg.start
1027 | startIdx = j
1028 | pathElem.parts[i]= Part(parts[i].getSegsCopy(startIdx, None) + \
1029 | parts[i].getSegsCopy(None, startIdx), parts[i].isClosed)
1030 | else:
1031 | pathElem.parts[i] = parts[i]
1032 |
1033 | #Convert all segments to cubic bezier and apply transforms
1034 | def toTransformedCBezier(pathElem):
1035 | for i in range(0, len(pathElem.parts)):
1036 | part = pathElem.parts[i]
1037 | newPartSegs = []
1038 |
1039 | for seg in part.getSegs():
1040 |
1041 | if(type(seg).__name__ is 'Line'):
1042 | newPartSegs.append(CubicBezier(seg[0], seg[0], seg[1], seg[1]))
1043 |
1044 | elif(type(seg).__name__ is 'QuadraticBezier'):
1045 | cp0 = seg[0]
1046 | cp3 = seg[2]
1047 |
1048 | cp1 = seg[0] + 2/3 *(seg[1]-seg[0])
1049 | cp2 = seg[2] + 2/3 *(seg[1]-seg[2])
1050 |
1051 | newPartSegs.append(CubicBezier(cp0, cp1, cp2, cp3))
1052 |
1053 | elif(type(seg).__name__ is 'Arc'):
1054 | x1, y1 = seg.start.real, seg.start.imag
1055 | x2, y2 = seg.end.real, seg.end.imag
1056 | fa = seg.large_arc
1057 | fs = seg.sweep
1058 | rx, ry = seg.radius.real, seg.radius.imag
1059 | phi = seg.rotation
1060 | curvesPts = a2c(x1, y1, x2, y2, fa, fs, rx, ry, phi)
1061 |
1062 | for curvePts in curvesPts:
1063 | newPartSegs.append(CubicBezier(curvePts[0], curvePts[1],
1064 | curvePts[2], curvePts[3]))
1065 |
1066 | elif(type(seg).__name__ is 'CubicBezier'):
1067 | newPartSegs.append(seg)
1068 |
1069 | else:
1070 | print('Strange! Never thought of this.', type(seg).__name__)
1071 | # ~ assert False #nope.. let's continue for now
1072 | continue
1073 |
1074 | if(len(pathElem.transList) > 0):
1075 | mat = getTransformMatrix(pathElem.transList)
1076 | newPartSegs = [getTransformedSeg(seg, mat) for seg in newPartSegs]
1077 |
1078 | pathElem.parts[i] = Part(newPartSegs, part.isClosed)
1079 |
1080 | #Paths must have already been homogenized
1081 | def addShapeKey(targetCurve, shapeKeyElem, shapeKeyName, scale, zVal, originToGeometry):
1082 | splineData = getSplineDataForPath(shapeKeyElem, scale, zVal)
1083 |
1084 | offsetLocation = Vector([0,0,0])
1085 | if(originToGeometry == True):
1086 | offsetLocation = targetCurve.location
1087 |
1088 | key = targetCurve.shape_key_add(shapeKeyName)
1089 |
1090 | i = 0
1091 | for ptSet in splineData:
1092 | for bezierPt in ptSet:
1093 | co = Vector(get3DPt(bezierPt.pt, scale, zVal)) - offsetLocation
1094 | handleLeft = Vector(get3DPt(bezierPt.handleLeft, scale, zVal)) - offsetLocation
1095 | handleRight = Vector(get3DPt(bezierPt.handleRight, scale, zVal)) - offsetLocation
1096 |
1097 | key.data[i].co = co
1098 | key.data[i].handle_left = handleLeft
1099 | key.data[i].handle_right = handleRight
1100 |
1101 | i += 1
1102 |
1103 | def get3DPt(point, scale, zVal):
1104 | return [point.real * scale[0], point.imag * scale[1], zVal * scale[2]]
1105 |
1106 | #All segments must have already been converted to cubic bezier
1107 | def addSvg2Blender(objMap, pathElem, scale, zVal, copyObj, originToGeometry):
1108 |
1109 | pathId = pathElem.pathId
1110 | splineData = getSplineDataForPath(pathElem, scale, zVal)
1111 |
1112 | curveName = CURVE_NAME_PREFIX + str(pathElem.seqId).zfill(5)
1113 | obj = createCurveFromData(curveName, splineData, copyObj, pathElem,
1114 | originToGeometry, scale, zVal)
1115 |
1116 | objMap[pathId] = obj
1117 |
1118 | def createCurveFromData(curveName, splineData, copyObj, pathElem,
1119 | originToGeometry, scale, zVal):
1120 |
1121 | curveData = getNewCurveData(bpy, splineData, copyObj, pathElem, scale, zVal)
1122 | obj = bpy.data.objects.new(curveName, curveData)
1123 | bpy.context.scene.objects.link(obj)
1124 |
1125 | if(originToGeometry == True):
1126 | obj.select = True
1127 | bpy.ops.object.origin_set(type='ORIGIN_GEOMETRY', center='BOUNDS')
1128 |
1129 | return obj
1130 |
1131 | def copySrcObjProps(copyObj, newCurveData):
1132 |
1133 | #Copying just a few attributes
1134 | copyObjData = copyObj.data
1135 |
1136 | newCurveData.dimensions = copyObjData.dimensions
1137 |
1138 | newCurveData.resolution_u = copyObjData.resolution_u
1139 | newCurveData.render_resolution_u = copyObjData.render_resolution_u
1140 | newCurveData.fill_mode = copyObjData.fill_mode
1141 |
1142 | newCurveData.use_fill_deform = copyObjData.use_fill_deform
1143 | newCurveData.use_radius = copyObjData.use_radius
1144 | newCurveData.use_stretch = copyObjData.use_stretch
1145 | newCurveData.use_deform_bounds = copyObjData.use_deform_bounds
1146 |
1147 | newCurveData.twist_smooth = copyObjData.twist_smooth
1148 | newCurveData.twist_mode = copyObjData.twist_mode
1149 |
1150 | newCurveData.offset = copyObjData.offset
1151 | newCurveData.extrude = copyObjData.extrude
1152 | newCurveData.bevel_depth = copyObjData.bevel_depth
1153 | newCurveData.bevel_resolution = copyObjData.bevel_resolution
1154 |
1155 | for material in copyObjData.materials:
1156 | newCurveData.materials.append(material)
1157 |
1158 |
1159 | def getNewCurveData(bpy, splinesData, copyObj, pathElem, scale, zVal):
1160 |
1161 | newCurveData = bpy.data.curves.new(pathElem.pathId, 'CURVE')
1162 | if(copyObj != None):
1163 | copySrcObjProps(copyObj, newCurveData)
1164 | #Copying won't work, params set from too many places
1165 | # ~ newCurveData = copyObj.data.copy()
1166 | # ~ newCurveData.splines.clear()
1167 | # ~ newCurveData.animation_data_clear()
1168 | else:
1169 | newCurveData.dimensions = '3D'
1170 |
1171 |
1172 | for i, pointSets in enumerate(splinesData):
1173 | spline = newCurveData.splines.new('BEZIER')
1174 | spline.bezier_points.add(len(pointSets)-1)
1175 | spline.use_cyclic_u = pathElem.parts[i].partToClose
1176 |
1177 | for j in range(0, len(spline.bezier_points)):
1178 | pointSet = pointSets[j]
1179 | spline.bezier_points[j].co = get3DPt(pointSet.pt, scale, zVal)
1180 | spline.bezier_points[j].handle_left = get3DPt(pointSet.handleLeft, scale, zVal)
1181 | spline.bezier_points[j].handle_right = get3DPt(pointSet.handleRight, scale, zVal)
1182 | spline.bezier_points[j].handle_right_type = 'FREE'
1183 |
1184 | return newCurveData
1185 |
1186 | def getSplineDataForPath(pathElem, scale = None, zVal = None):
1187 | splinesData = []
1188 |
1189 | for i, part in enumerate(pathElem.parts):
1190 | prevSeg = None
1191 | pointSets = []
1192 |
1193 | for j, seg in enumerate(part.getSegs()):
1194 |
1195 | pt = seg.start
1196 | handleRight = seg.control1
1197 |
1198 | if(j == 0):
1199 | if(pathElem.parts[i].partToClose):
1200 | handleLeft = part.getSeg(-1).control2
1201 | else:
1202 | handleLeft = pt
1203 | else:
1204 | handleLeft = prevSeg.control2
1205 |
1206 | pointSets.append(BlenderBezierPoint(pt, handleLeft = handleLeft,
1207 | handleRight = handleRight))
1208 | prevSeg = seg
1209 |
1210 | if(pathElem.parts[i].partToClose == True):
1211 | pointSets[-1].handleRight = seg.control1
1212 | else:
1213 | pointSets.append(BlenderBezierPoint(prevSeg.end,
1214 | handleLeft = prevSeg.control2, handleRight = prevSeg.end))
1215 |
1216 | splinesData.append(pointSets)
1217 |
1218 | return splinesData
1219 |
1220 |
1221 | ###################### addon code end ####################
1222 |
1223 | #
1224 | # The following section is a Python conversion of the javascript
1225 | # a2c function at: https://github.com/fontello/svgpath
1226 | # (Copyright (C) 2013-2015 by Vitaly Puzrin)
1227 | #
1228 | ######################## a2c start #######################
1229 |
1230 | TAU = math.pi * 2
1231 |
1232 | # eslint-disable space-infix-ops
1233 |
1234 | # Calculate an angle between two unit vectors
1235 | #
1236 | # Since we measure angle between radii of circular arcs,
1237 | # we can use simplified math (without length normalization)
1238 | #
1239 | def unit_vector_angle(ux, uy, vx, vy):
1240 | if(ux * vy - uy * vx < 0):
1241 | sign = -1
1242 | else:
1243 | sign = 1
1244 |
1245 | dot = ux * vx + uy * vy
1246 |
1247 | # Add this to work with arbitrary vectors:
1248 | # dot /= math.sqrt(ux * ux + uy * uy) * math.sqrt(vx * vx + vy * vy)
1249 |
1250 | # rounding errors, e.g. -1.0000000000000002 can screw up this
1251 | if (dot > 1.0):
1252 | dot = 1.0
1253 |
1254 | if (dot < -1.0):
1255 | dot = -1.0
1256 |
1257 | return sign * math.acos(dot)
1258 |
1259 |
1260 | # Convert from endpoint to center parameterization,
1261 | # see http:#www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
1262 | #
1263 | # Return [cx, cy, theta1, delta_theta]
1264 | #
1265 | def get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi):
1266 | # Step 1.
1267 | #
1268 | # Moving an ellipse so origin will be the middlepoint between our two
1269 | # points. After that, rotate it to line up ellipse axes with coordinate
1270 | # axes.
1271 | #
1272 | x1p = cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2
1273 | y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2
1274 |
1275 | rx_sq = rx * rx
1276 | ry_sq = ry * ry
1277 | x1p_sq = x1p * x1p
1278 | y1p_sq = y1p * y1p
1279 |
1280 | # Step 2.
1281 | #
1282 | # Compute coordinates of the centre of this ellipse (cx', cy')
1283 | # in the new coordinate system.
1284 | #
1285 | radicant = (rx_sq * ry_sq) - (rx_sq * y1p_sq) - (ry_sq * x1p_sq)
1286 |
1287 | if (radicant < 0):
1288 | # due to rounding errors it might be e.g. -1.3877787807814457e-17
1289 | radicant = 0
1290 |
1291 | radicant /= (rx_sq * y1p_sq) + (ry_sq * x1p_sq)
1292 | factor = 1
1293 | if(fa == fs):# Migration Note: note ===
1294 | factor = -1
1295 | radicant = math.sqrt(radicant) * factor #(fa === fs ? -1 : 1)
1296 |
1297 | cxp = radicant * rx/ry * y1p
1298 | cyp = radicant * -ry/rx * x1p
1299 |
1300 | # Step 3.
1301 | #
1302 | # Transform back to get centre coordinates (cx, cy) in the original
1303 | # coordinate system.
1304 | #
1305 | cx = cos_phi*cxp - sin_phi*cyp + (x1+x2)/2
1306 | cy = sin_phi*cxp + cos_phi*cyp + (y1+y2)/2
1307 |
1308 | # Step 4.
1309 | #
1310 | # Compute angles (theta1, delta_theta).
1311 | #
1312 | v1x = (x1p - cxp) / rx
1313 | v1y = (y1p - cyp) / ry
1314 | v2x = (-x1p - cxp) / rx
1315 | v2y = (-y1p - cyp) / ry
1316 |
1317 | theta1 = unit_vector_angle(1, 0, v1x, v1y)
1318 | delta_theta = unit_vector_angle(v1x, v1y, v2x, v2y)
1319 |
1320 | if (fs == 0 and delta_theta > 0):#Migration Note: note ===
1321 | delta_theta -= TAU
1322 |
1323 | if (fs == 1 and delta_theta < 0):#Migration Note: note ===
1324 | delta_theta += TAU
1325 |
1326 | return [ cx, cy, theta1, delta_theta ]
1327 |
1328 | #
1329 | # Approximate one unit arc segment with bezier curves,
1330 | # see http:#math.stackexchange.com/questions/873224
1331 | #
1332 | def approximate_unit_arc(theta1, delta_theta):
1333 | alpha = 4.0/3 * math.tan(delta_theta/4)
1334 |
1335 | x1 = math.cos(theta1)
1336 | y1 = math.sin(theta1)
1337 | x2 = math.cos(theta1 + delta_theta)
1338 | y2 = math.sin(theta1 + delta_theta)
1339 |
1340 | return [ x1, y1, x1 - y1*alpha, y1 + x1*alpha, x2 + y2*alpha, y2 - x2*alpha, x2, y2 ]
1341 |
1342 | def a2c(x1, y1, x2, y2, fa, fs, rx, ry, phi):
1343 | sin_phi = math.sin(phi * TAU / 360)
1344 | cos_phi = math.cos(phi * TAU / 360)
1345 |
1346 | # Make sure radii are valid
1347 | #
1348 | x1p = cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2
1349 | y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2
1350 |
1351 | if (x1p == 0 and y1p == 0): # Migration Note: note ===
1352 | # we're asked to draw line to itself
1353 | return []
1354 |
1355 | if (rx == 0 or ry == 0): # Migration Note: note ===
1356 | # one of the radii is zero
1357 | return []
1358 |
1359 | # Compensate out-of-range radii
1360 | #
1361 | rx = abs(rx)
1362 | ry = abs(ry)
1363 |
1364 | lmbd = (x1p * x1p) / (rx * rx) + (y1p * y1p) / (ry * ry)
1365 | if (lmbd > 1):
1366 | rx *= math.sqrt(lmbd)
1367 | ry *= math.sqrt(lmbd)
1368 |
1369 |
1370 | # Get center parameters (cx, cy, theta1, delta_theta)
1371 | #
1372 | cc = get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi)
1373 |
1374 | result = []
1375 | theta1 = cc[2]
1376 | delta_theta = cc[3]
1377 |
1378 | # Split an arc to multiple segments, so each segment
1379 | # will be less than 90
1380 | #
1381 | segments = int(max(math.ceil(abs(delta_theta) / (TAU / 4)), 1))
1382 | delta_theta /= segments
1383 |
1384 | for i in range(0, segments):
1385 | result.append(approximate_unit_arc(theta1, delta_theta))
1386 |
1387 | theta1 += delta_theta
1388 |
1389 | # We have a bezier approximation of a unit circle,
1390 | # now need to transform back to the original ellipse
1391 | #
1392 | return getMappedList(result, rx, ry, sin_phi, cos_phi, cc)
1393 |
1394 | def getMappedList(result, rx, ry, sin_phi, cos_phi, cc):
1395 | mappedList = []
1396 | for elem in result:
1397 | curve = []
1398 | for i in range(0, len(elem), 2):
1399 | x = elem[i + 0]
1400 | y = elem[i + 1]
1401 |
1402 | # scale
1403 | x *= rx
1404 | y *= ry
1405 |
1406 | # rotate
1407 | xp = cos_phi*x - sin_phi*y
1408 | yp = sin_phi*x + cos_phi*y
1409 |
1410 | # translate
1411 | elem[i + 0] = xp + cc[0]
1412 | elem[i + 1] = yp + cc[1]
1413 | curve.append(complex(elem[i + 0], elem[i + 1]))
1414 | mappedList.append(curve)
1415 | return mappedList
1416 |
1417 | ######################### a2c end ########################
1418 |
1419 |
1420 | #
1421 | # The following section is an extract
1422 | # from svgpathtools (https://github.com/mathandy/svgpathtools)
1423 | # (Copyright (c) 2015 Andrew Allan Port, Copyright (c) 2013-2014 Lennart Regebro)
1424 | #
1425 | # Changes are mde to maintain which of the disconnected parts are closed (isClosing)
1426 | # and floating point comparison in parse_path is changed to have tolerance
1427 | #
1428 | # Many explanatory comments are excluded
1429 | #
1430 | #################### svgpathtools start ###################
1431 |
1432 | LENGTH_MIN_DEPTH = 5
1433 |
1434 | LENGTH_ERROR = 1e-12
1435 |
1436 | COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
1437 | UPPERCASE = set('MZLHVCSQTA')
1438 |
1439 | COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
1440 | FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
1441 |
1442 | def _tokenize_path(pathdef):
1443 | for x in COMMAND_RE.split(pathdef):
1444 | if x in COMMANDS:
1445 | yield x
1446 | for token in FLOAT_RE.findall(x):
1447 | yield token
1448 |
1449 |
1450 | def parse_path(pathdef, current_pos=0j):
1451 | # In the SVG specs, initial movetos are absolute, even if
1452 | # specified as 'm'. This is the default behavior here as well.
1453 | # But if you pass in a current_pos variable, the initial moveto
1454 | # will be relative to that current_pos. This is useful.
1455 | elements = list(_tokenize_path(pathdef))
1456 | # Reverse for easy use of .pop()
1457 | elements.reverse()
1458 |
1459 | segments = Path()
1460 | start_pos = None
1461 | command = None
1462 |
1463 | while elements:
1464 |
1465 | if elements[-1] in COMMANDS:
1466 | # New command.
1467 | last_command = command # Used by S and T
1468 | command = elements.pop()
1469 | absolute = command in UPPERCASE
1470 | command = command.upper()
1471 | else:
1472 | # If this element starts with numbers, it is an implicit command
1473 | # and we don't change the command. Check that it's allowed:
1474 | if command is None:
1475 | raise ValueError("Unallowed implicit command in %s, position %s" % (
1476 | pathdef, len(pathdef.split()) - len(elements)))
1477 |
1478 | if command == 'M':
1479 | # Moveto command.
1480 | x = elements.pop()
1481 | y = elements.pop()
1482 | pos = float(x) + float(y) * 1j
1483 | if absolute:
1484 | current_pos = pos
1485 | else:
1486 | current_pos += pos
1487 |
1488 | # when M is called, reset start_pos
1489 | # This behavior of Z is defined in svg spec:
1490 | # http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand
1491 | start_pos = current_pos
1492 |
1493 | # Implicit moveto commands are treated as lineto commands.
1494 | # So we set command to lineto here, in case there are
1495 | # further implicit commands after this moveto.
1496 | command = 'L'
1497 |
1498 | elif command == 'Z':
1499 | # Close path
1500 | if not (cmplxCmpWithMargin(current_pos, start_pos)): #For Shape key import
1501 | #~ if not (current_pos == start_pos):
1502 | segments.append(Line(current_pos, start_pos))
1503 | segments[-1].isClosing = True #For Shape key import
1504 | segments.closed = True
1505 | current_pos = start_pos
1506 | start_pos = None
1507 | command = None # You can't have implicit commands after closing.
1508 |
1509 | elif command == 'L':
1510 | x = elements.pop()
1511 | y = elements.pop()
1512 | pos = float(x) + float(y) * 1j
1513 | if not absolute:
1514 | pos += current_pos
1515 | segments.append(Line(current_pos, pos))
1516 | current_pos = pos
1517 |
1518 | elif command == 'H':
1519 | x = elements.pop()
1520 | pos = float(x) + current_pos.imag * 1j
1521 | if not absolute:
1522 | pos += current_pos.real
1523 | segments.append(Line(current_pos, pos))
1524 | current_pos = pos
1525 |
1526 | elif command == 'V':
1527 | y = elements.pop()
1528 | pos = current_pos.real + float(y) * 1j
1529 | if not absolute:
1530 | pos += current_pos.imag * 1j
1531 | segments.append(Line(current_pos, pos))
1532 | current_pos = pos
1533 |
1534 | elif command == 'C':
1535 | control1 = float(elements.pop()) + float(elements.pop()) * 1j
1536 | control2 = float(elements.pop()) + float(elements.pop()) * 1j
1537 | end = float(elements.pop()) + float(elements.pop()) * 1j
1538 |
1539 | if not absolute:
1540 | control1 += current_pos
1541 | control2 += current_pos
1542 | end += current_pos
1543 |
1544 | segments.append(CubicBezier(current_pos, control1, control2, end))
1545 | current_pos = end
1546 |
1547 | elif command == 'S':
1548 | # Smooth curve. First control point is the "reflection" of
1549 | # the second control point in the previous path.
1550 |
1551 | if last_command not in 'CS':
1552 | # If there is no previous command or if the previous command
1553 | # was not an C, c, S or s, assume the first control point is
1554 | # coincident with the current point.
1555 | control1 = current_pos
1556 | else:
1557 | # The first control point is assumed to be the reflection of
1558 | # the second control point on the previous command relative
1559 | # to the current point.
1560 | control1 = current_pos + current_pos - segments[-1].control2
1561 |
1562 | control2 = float(elements.pop()) + float(elements.pop()) * 1j
1563 | end = float(elements.pop()) + float(elements.pop()) * 1j
1564 |
1565 | if not absolute:
1566 | control2 += current_pos
1567 | end += current_pos
1568 |
1569 | segments.append(CubicBezier(current_pos, control1, control2, end))
1570 | current_pos = end
1571 |
1572 | elif command == 'Q':
1573 | control = float(elements.pop()) + float(elements.pop()) * 1j
1574 | end = float(elements.pop()) + float(elements.pop()) * 1j
1575 |
1576 | if not absolute:
1577 | control += current_pos
1578 | end += current_pos
1579 |
1580 | segments.append(QuadraticBezier(current_pos, control, end))
1581 | current_pos = end
1582 |
1583 | elif command == 'T':
1584 | # Smooth curve. Control point is the "reflection" of
1585 | # the second control point in the previous path.
1586 |
1587 | if last_command not in 'QT':
1588 | # If there is no previous command or if the previous command
1589 | # was not an Q, q, T or t, assume the first control point is
1590 | # coincident with the current point.
1591 | control = current_pos
1592 | else:
1593 | # The control point is assumed to be the reflection of
1594 | # the control point on the previous command relative
1595 | # to the current point.
1596 | control = current_pos + current_pos - segments[-1].control
1597 |
1598 | end = float(elements.pop()) + float(elements.pop()) * 1j
1599 |
1600 | if not absolute:
1601 | end += current_pos
1602 |
1603 | segments.append(QuadraticBezier(current_pos, control, end))
1604 | current_pos = end
1605 |
1606 | elif command == 'A':
1607 | radius = float(elements.pop()) + float(elements.pop()) * 1j
1608 | rotation = float(elements.pop())
1609 | arc = float(elements.pop())
1610 | sweep = float(elements.pop())
1611 | end = float(elements.pop()) + float(elements.pop()) * 1j
1612 |
1613 | if not absolute:
1614 | end += current_pos
1615 |
1616 | segments.append(Arc(current_pos, radius, rotation, arc, sweep, end))
1617 | current_pos = end
1618 |
1619 | return segments
1620 |
1621 | def segment_length(curve, start, end, start_point, end_point,
1622 | error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH, depth=0):
1623 |
1624 | mid = (start + end)/2
1625 | mid_point = curve.point(mid)
1626 | length = abs(end_point - start_point)
1627 | first_half = abs(mid_point - start_point)
1628 | second_half = abs(end_point - mid_point)
1629 |
1630 | length2 = first_half + second_half
1631 | if (length2 - length > error) or (depth < min_depth):
1632 | depth += 1
1633 | return (segment_length(curve, start, mid, start_point, mid_point,
1634 | error, min_depth, depth) +
1635 | segment_length(curve, mid, end, mid_point, end_point,
1636 | error, min_depth, depth))
1637 | return length2
1638 |
1639 |
1640 | class Line(object):
1641 | def __init__(self, start, end):
1642 | self.start = start
1643 | self.end = end
1644 | self.isClosing = False #For Shape key import
1645 |
1646 | def __repr__(self):
1647 | return 'Line(start=%s, end=%s)' % (self.start, self.end)
1648 |
1649 | def __eq__(self, other):
1650 | if not isinstance(other, Line):
1651 | return NotImplemented
1652 | return self.start == other.start and self.end == other.end
1653 |
1654 | def __ne__(self, other):
1655 | if not isinstance(other, Line):
1656 | return NotImplemented
1657 | return not self == other
1658 |
1659 | def __getitem__(self, item):
1660 | return self.bpoints()[item]
1661 |
1662 | def __len__(self):
1663 | return 2
1664 |
1665 | def bpoints(self):
1666 | return self.start, self.end
1667 |
1668 | def length(self, t0=0, t1=1, error=None, min_depth=None):
1669 | """returns the length of the line segment between t0 and t1."""
1670 | return abs(self.end - self.start)*(t1-t0)
1671 |
1672 |
1673 | class QuadraticBezier(object):
1674 | def __init__(self, start, control, end):
1675 | self.start = start
1676 | self.end = end
1677 | self.control = control
1678 |
1679 | self._length_info = {'length': None, 'bpoints': None}
1680 | self.isClosing = False #For Shape key import
1681 |
1682 | def __repr__(self):
1683 | return 'QuadraticBezier(start=%s, control=%s, end=%s)' % (
1684 | self.start, self.control, self.end)
1685 |
1686 | def __eq__(self, other):
1687 | if not isinstance(other, QuadraticBezier):
1688 | return NotImplemented
1689 | return self.start == other.start and self.end == other.end \
1690 | and self.control == other.control
1691 |
1692 | def __ne__(self, other):
1693 | if not isinstance(other, QuadraticBezier):
1694 | return NotImplemented
1695 | return not self == other
1696 |
1697 | def __getitem__(self, item):
1698 | return self.bpoints()[item]
1699 |
1700 | def __len__(self):
1701 | return 3
1702 |
1703 | def bpoints(self):
1704 | return self.start, self.control, self.end
1705 |
1706 | class CubicBezier(object):
1707 | _length_info = {'length': None, 'bpoints': None, 'error': None,
1708 | 'min_depth': None}
1709 |
1710 | def __init__(self, start, control1, control2, end):
1711 | self.start = start
1712 | self.control1 = control1
1713 | self.control2 = control2
1714 | self.end = end
1715 |
1716 | self._length_info = {'length': None, 'bpoints': None, 'error': None,
1717 | 'min_depth': None}
1718 | self.isClosing = False #For Shape key import
1719 |
1720 | def __repr__(self):
1721 | return 'CubicBezier(start=%s, control1=%s, control2=%s, end=%s)' % (
1722 | self.start, self.control1, self.control2, self.end)
1723 |
1724 | def __eq__(self, other):
1725 | if not isinstance(other, CubicBezier):
1726 | return NotImplemented
1727 | return self.start == other.start and self.end == other.end \
1728 | and self.control1 == other.control1 \
1729 | and self.control2 == other.control2
1730 |
1731 | def __ne__(self, other):
1732 | if not isinstance(other, CubicBezier):
1733 | return NotImplemented
1734 | return not self == other
1735 |
1736 | def __getitem__(self, item):
1737 | return self.bpoints()[item]
1738 |
1739 | def __len__(self):
1740 | return 4
1741 |
1742 | def bpoints(self):
1743 | return self.start, self.control1, self.control2, self.end
1744 |
1745 | def length(self, t0=0, t1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
1746 | if t0 == 0 and t1 == 1:
1747 | if self._length_info['bpoints'] == self.bpoints() \
1748 | and self._length_info['error'] >= error \
1749 | and self._length_info['min_depth'] >= min_depth:
1750 | return self._length_info['length']
1751 |
1752 | s = segment_length(self, t0, t1, self.point(t0), self.point(t1),
1753 | error, min_depth, 0)
1754 |
1755 | if t0 == 0 and t1 == 1:
1756 | self._length_info['length'] = s
1757 | self._length_info['bpoints'] = self.bpoints()
1758 | self._length_info['error'] = error
1759 | self._length_info['min_depth'] = min_depth
1760 | return self._length_info['length']
1761 | else:
1762 | return s
1763 |
1764 | def point(self, t):
1765 | return self.start + t*(
1766 | 3*(self.control1 - self.start) + t*(
1767 | 3*(self.start + self.control2) - 6*self.control1 + t*(
1768 | -self.start + 3*(self.control1 - self.control2) + self.end
1769 | )))
1770 |
1771 | class Arc(object):
1772 | def __init__(self, start, radius, rotation, large_arc, sweep, end,
1773 | autoscale_radius=True):
1774 | assert start != end
1775 | assert radius.real != 0 and radius.imag != 0
1776 |
1777 | self.start = start
1778 | self.radius = abs(radius.real) + 1j*abs(radius.imag)
1779 | self.rotation = rotation
1780 | self.large_arc = bool(large_arc)
1781 | self.sweep = bool(sweep)
1782 | self.end = end
1783 | self.autoscale_radius = autoscale_radius
1784 |
1785 | self.phi = radians(self.rotation)
1786 | self.rot_matrix = exp(1j*self.phi)
1787 |
1788 | self._parameterize()
1789 | self.isClosing = False #For Shape key import
1790 |
1791 | def __repr__(self):
1792 | params = (self.start, self.radius, self.rotation,
1793 | self.large_arc, self.sweep, self.end)
1794 | return ("Arc(start={}, radius={}, rotation={}, "
1795 | "large_arc={}, sweep={}, end={})".format(*params))
1796 |
1797 | def __eq__(self, other):
1798 | if not isinstance(other, Arc):
1799 | return NotImplemented
1800 | return self.start == other.start and self.end == other.end \
1801 | and self.radius == other.radius \
1802 | and self.rotation == other.rotation \
1803 | and self.large_arc == other.large_arc and self.sweep == other.sweep
1804 |
1805 | def __ne__(self, other):
1806 | if not isinstance(other, Arc):
1807 | return NotImplemented
1808 | return not self == other
1809 |
1810 | def _parameterize(self):
1811 | rx = self.radius.real
1812 | ry = self.radius.imag
1813 | rx_sqd = rx*rx
1814 | ry_sqd = ry*ry
1815 |
1816 | zp1 = (1/self.rot_matrix)*(self.start - self.end)/2
1817 | x1p, y1p = zp1.real, zp1.imag
1818 | x1p_sqd = x1p*x1p
1819 | y1p_sqd = y1p*y1p
1820 |
1821 | radius_check = (x1p_sqd/rx_sqd) + (y1p_sqd/ry_sqd)
1822 | if radius_check > 1:
1823 | if self.autoscale_radius:
1824 | rx *= sqrt(radius_check)
1825 | ry *= sqrt(radius_check)
1826 | self.radius = rx + 1j*ry
1827 | rx_sqd = rx*rx
1828 | ry_sqd = ry*ry
1829 | else:
1830 | raise ValueError("No such elliptic arc exists.")
1831 |
1832 | tmp = rx_sqd*y1p_sqd + ry_sqd*x1p_sqd
1833 | radicand = (rx_sqd*ry_sqd - tmp) / tmp
1834 | try:
1835 | radical = sqrt(radicand)
1836 | except ValueError:
1837 | radical = 0
1838 | if self.large_arc == self.sweep:
1839 | cp = -radical*(rx*y1p/ry - 1j*ry*x1p/rx)
1840 | else:
1841 | cp = radical*(rx*y1p/ry - 1j*ry*x1p/rx)
1842 |
1843 | self.center = exp(1j*self.phi)*cp + (self.start + self.end)/2
1844 |
1845 | u1 = (x1p - cp.real)/rx + 1j*(y1p - cp.imag)/ry # transformed start
1846 | u2 = (-x1p - cp.real)/rx + 1j*(-y1p - cp.imag)/ry # transformed end
1847 |
1848 | u1_real_rounded = u1.real
1849 | if u1.real > 1 or u1.real < -1:
1850 | u1_real_rounded = round(u1.real)
1851 | if u1.imag > 0:
1852 | self.theta = degrees(acos(u1_real_rounded))
1853 | elif u1.imag < 0:
1854 | self.theta = -degrees(acos(u1_real_rounded))
1855 | else:
1856 | if u1.real > 0: # start is on pos u_x axis
1857 | self.theta = 0
1858 | else: # start is on neg u_x axis
1859 | self.theta = 180
1860 |
1861 | det_uv = u1.real*u2.imag - u1.imag*u2.real
1862 |
1863 | acosand = u1.real*u2.real + u1.imag*u2.imag
1864 | if acosand > 1 or acosand < -1:
1865 | acosand = round(acosand)
1866 | if det_uv > 0:
1867 | self.delta = degrees(acos(acosand))
1868 | elif det_uv < 0:
1869 | self.delta = -degrees(acos(acosand))
1870 | else:
1871 | if u1.real*u2.real + u1.imag*u2.imag > 0:
1872 | # u1 == u2
1873 | self.delta = 0
1874 | else:
1875 | # u1 == -u2
1876 | self.delta = 180
1877 |
1878 | if not self.sweep and self.delta >= 0:
1879 | self.delta -= 360
1880 | elif self.large_arc and self.delta <= 0:
1881 | self.delta += 360
1882 |
1883 | class Path(MutableSequence):
1884 |
1885 | _closed = False
1886 | _start = None
1887 | _end = None
1888 |
1889 | def __init__(self, *segments, **kw):
1890 | self._segments = list(segments)
1891 | self._length = None
1892 | self._lengths = None
1893 | if 'closed' in kw:
1894 | self.closed = kw['closed'] # DEPRECATED
1895 | if self._segments:
1896 | self._start = self._segments[0].start
1897 | self._end = self._segments[-1].end
1898 | else:
1899 | self._start = None
1900 | self._end = None
1901 |
1902 | def __getitem__(self, index):
1903 | return self._segments[index]
1904 |
1905 | def __setitem__(self, index, value):
1906 | self._segments[index] = value
1907 | self._length = None
1908 | self._start = self._segments[0].start
1909 | self._end = self._segments[-1].end
1910 |
1911 | def __delitem__(self, index):
1912 | del self._segments[index]
1913 | self._length = None
1914 | self._start = self._segments[0].start
1915 | self._end = self._segments[-1].end
1916 |
1917 | def __iter__(self):
1918 | return self._segments.__iter__()
1919 |
1920 | def __contains__(self, x):
1921 | return self._segments.__contains__(x)
1922 |
1923 | def insert(self, index, value):
1924 | self._segments.insert(index, value)
1925 | self._length = None
1926 | self._start = self._segments[0].start
1927 | self._end = self._segments[-1].end
1928 |
1929 | def reversed(self):
1930 | newpath = [seg.reversed() for seg in self]
1931 | newpath.reverse()
1932 | return Path(*newpath)
1933 |
1934 | def __len__(self):
1935 | return len(self._segments)
1936 |
1937 | def __repr__(self):
1938 | return "Path({})".format(
1939 | ",\n ".join(repr(x) for x in self._segments))
1940 |
1941 | def __eq__(self, other):
1942 | if not isinstance(other, Path):
1943 | return NotImplemented
1944 | if len(self) != len(other):
1945 | return False
1946 | for s, o in zip(self._segments, other._segments):
1947 | if not s == o:
1948 | return False
1949 | return True
1950 |
1951 | def __ne__(self, other):
1952 | if not isinstance(other, Path):
1953 | return NotImplemented
1954 | return not self == other
1955 |
1956 | def _calc_lengths(self, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
1957 | if self._length is not None:
1958 | return
1959 |
1960 | lengths = [each.length(error=error, min_depth=min_depth) for each in
1961 | self._segments]
1962 | self._length = sum(lengths)
1963 | self._lengths = [each/self._length for each in lengths]
1964 |
1965 | def length(self, T0=0, T1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
1966 | self._calc_lengths(error=error, min_depth=min_depth)
1967 | if T0 == 0 and T1 == 1:
1968 | return self._length
1969 | else:
1970 | if len(self) == 1:
1971 | return self[0].length(t0=T0, t1=T1)
1972 | idx0, t0 = self.T2t(T0)
1973 | idx1, t1 = self.T2t(T1)
1974 | if idx0 == idx1:
1975 | return self[idx0].length(t0=t0, t1=t1)
1976 | return (self[idx0].length(t0=t0) +
1977 | sum(self[idx].length() for idx in range(idx0 + 1, idx1)) +
1978 | self[idx1].length(t1=t1))
1979 |
1980 | @property
1981 | def start(self):
1982 | if not self._start:
1983 | self._start = self._segments[0].start
1984 | return self._start
1985 |
1986 | @start.setter
1987 | def start(self, pt):
1988 | self._start = pt
1989 | self._segments[0].start = pt
1990 |
1991 | @property
1992 | def end(self):
1993 | if not self._end:
1994 | self._end = self._segments[-1].end
1995 | return self._end
1996 |
1997 | @end.setter
1998 | def end(self, pt):
1999 | self._end = pt
2000 | self._segments[-1].end = pt
2001 |
2002 | def d(self, useSandT=False, use_closed_attrib=False):
2003 |
2004 | if use_closed_attrib:
2005 | self_closed = self.closed(warning_on=False)
2006 | if self_closed:
2007 | segments = self[:-1]
2008 | else:
2009 | segments = self[:]
2010 | else:
2011 | self_closed = False
2012 | segments = self[:]
2013 |
2014 | current_pos = None
2015 | parts = []
2016 | previous_segment = None
2017 | end = self[-1].end
2018 |
2019 | for segment in segments:
2020 | seg_start = segment.start
2021 | if current_pos != seg_start or \
2022 | (self_closed and seg_start == end and use_closed_attrib):
2023 | parts.append('M {},{}'.format(seg_start.real, seg_start.imag))
2024 |
2025 | if isinstance(segment, Line):
2026 | args = segment.end.real, segment.end.imag
2027 | parts.append('L {},{}'.format(*args))
2028 | elif isinstance(segment, CubicBezier):
2029 | if useSandT and segment.is_smooth_from(previous_segment,
2030 | warning_on=False):
2031 | args = (segment.control2.real, segment.control2.imag,
2032 | segment.end.real, segment.end.imag)
2033 | parts.append('S {},{} {},{}'.format(*args))
2034 | else:
2035 | args = (segment.control1.real, segment.control1.imag,
2036 | segment.control2.real, segment.control2.imag,
2037 | segment.end.real, segment.end.imag)
2038 | parts.append('C {},{} {},{} {},{}'.format(*args))
2039 | elif isinstance(segment, QuadraticBezier):
2040 | if useSandT and segment.is_smooth_from(previous_segment,
2041 | warning_on=False):
2042 | args = segment.end.real, segment.end.imag
2043 | parts.append('T {},{}'.format(*args))
2044 | else:
2045 | args = (segment.control.real, segment.control.imag,
2046 | segment.end.real, segment.end.imag)
2047 | parts.append('Q {},{} {},{}'.format(*args))
2048 |
2049 | elif isinstance(segment, Arc):
2050 | args = (segment.radius.real, segment.radius.imag,
2051 | segment.rotation,int(segment.large_arc),
2052 | int(segment.sweep),segment.end.real, segment.end.imag)
2053 | parts.append('A {},{} {} {:d},{:d} {},{}'.format(*args))
2054 | current_pos = segment.end
2055 | previous_segment = segment
2056 |
2057 | if self_closed:
2058 | parts.append('Z')
2059 |
2060 | return ' '.join(parts)
2061 |
2062 | ##################### svgpathtools end ####################
2063 |
2064 |
--------------------------------------------------------------------------------
/shapekeyimport_2_8.py:
--------------------------------------------------------------------------------
1 | #
2 | #
3 | # This Blender add-on imports paths and shapeKeys from an SVG file
4 | # Supported Blender Version: 2.8 Beta
5 | #
6 | # Copyright (C) 2018 Shrinivas Kulkarni
7 | #
8 | # License: GPL (https://github.com/Shriinivas/shapeKeyimport/blob/master/LICENSE)
9 | #
10 |
11 | # Not yet pep8 compliant
12 |
13 | # Scaling not done based on the unit of the SVG document, but based simply on value
14 | # If precise scaling is needed, appropriate unit (mm) needs to be set in the source SVG
15 |
16 | import bpy, copy, math, re, time, os
17 | from bpy.props import IntProperty, FloatProperty, BoolProperty, StringProperty
18 | from bpy.props import CollectionProperty, EnumProperty
19 | from xml.dom import minidom
20 | from collections import OrderedDict
21 | from mathutils import Vector, Matrix
22 | from math import sqrt, cos, sin, acos, degrees, radians, tan
23 | from cmath import exp, sqrt as csqrt, phase
24 | from collections.abc import MutableSequence
25 |
26 | #################### UI and Registration Stuff ####################
27 |
28 | bl_info = {
29 | "name": "Import Paths and Shape Keys from SVG",
30 | "author": "Shrinivas Kulkarni",
31 | "location": "File > Import > Import Paths & Shape Keys (.svg)",
32 | "category": "Import-Export",
33 | "blender": (2, 80, 0),
34 | }
35 |
36 | noneStr = "-None-"
37 | CURVE_NAME_PREFIX = 'Curve'
38 |
39 | def getCurveNames(scene, context):
40 | return [(noneStr, noneStr, '-1')] + [(obj.name, obj.name, str(i)) for i, obj in
41 | enumerate(context.scene.objects) if obj.type == 'CURVE']
42 |
43 | def getAlignmentList(scene, context):
44 | alignListStrs = [*getAlignSegsFn().keys()]
45 | return [(noneStr, noneStr, '-1')] + [(str(align), str(align), str(i))
46 | for i, align in enumerate(alignListStrs)]
47 |
48 | def getMatchPartList(scene, context):
49 | arrangeListStrs = [*getAlignPartsFn().keys()]
50 | return [(noneStr, noneStr, '-1')] + [(str(arrange), str(arrange), str(i))
51 | for i, arrange in enumerate(arrangeListStrs)]
52 |
53 | class ObjectImportShapeKeys(bpy.types.Operator):
54 |
55 | bl_idname = "object.import_shapekeys"
56 | bl_label = "Import Paths & Shape Keys"
57 | bl_options = {'REGISTER', 'UNDO'}
58 |
59 | filter_glob : StringProperty(default="*.svg")
60 | filepath : StringProperty(subtype='FILE_PATH')
61 |
62 | #User input
63 |
64 | byGroup : BoolProperty(name="Import By Group", \
65 | description = "Import target and shape key paths forming a group in SVG", \
66 | default = True)
67 |
68 | byAttrib : BoolProperty(name="Import By Attribute", \
69 | description = "Import targets having attribute defining shape key path IDs in SVG", \
70 | default = True)
71 |
72 | shapeKeyAttribName : StringProperty(name="Attribute", \
73 | description = "Name of target path attribute used to define shape keys in SVG",
74 | default = 'shapekeys')
75 |
76 | addShapeKeyPaths : BoolProperty(name="Retain Shape Key Paths", \
77 | description = "Import shape key paths as paths as well as shape keys", \
78 | default = False)
79 |
80 | addNontargetPaths : BoolProperty(name="Import Non-target Paths", \
81 | description = "Import paths that are neither targets nor shape keys", \
82 | default = True)
83 |
84 | addPathsFromHiddenLayer : BoolProperty(name="Import Hidden Layer Paths",
85 | description='Import paths from layers marked as hidden in SVG', \
86 | default = False)
87 |
88 | originToGeometry : BoolProperty(name="Origin To Geometry", \
89 | description="Shift the imported path's origin to its geometry center", \
90 | default = False)
91 |
92 | xScale : FloatProperty(name="X", \
93 | description="X scale factor for imported paths", \
94 | default = 0.01)
95 |
96 | yScale : FloatProperty(name="Y", \
97 | description="Y scale factor for imported paths", \
98 | default = 0.01)
99 |
100 | zLocation : FloatProperty(name="Z Location", \
101 | description='Z coordiate value for imported paths', default = 0)
102 |
103 | resolution : IntProperty(name="Resolution", \
104 | description='Higher value gives smoother transition but more complex geometry', \
105 | default = 0, min=0)
106 |
107 | objList : EnumProperty(name="Copy Properties From", items = getCurveNames, \
108 | description='Curve whose material, depth etc. should be copied on to imported paths')
109 |
110 | partMatchList : EnumProperty(name="Match Parts By", items = getMatchPartList, \
111 | description='Match disconnected parts of target and shape key based on (BBox -> Bounding Box)')
112 |
113 | alignList : EnumProperty(name="Node Alignment Order", items = getAlignmentList, \
114 | description = 'Start aligning the nodes of target and shape keys (paths or parts) from')
115 |
116 | def execute(self, context):
117 | createdObjsMap = main(infilePath = self.filepath, \
118 | shapeKeyAttribName = self.shapeKeyAttribName, \
119 | byGroup = self.byGroup, \
120 | byAttrib = self.byAttrib, \
121 | addShapeKeyPaths = self.addShapeKeyPaths, \
122 | addNontargetPaths = self.addNontargetPaths, \
123 | scale = [self.xScale, -self.yScale, 1], \
124 | zVal = self.zLocation, \
125 | resolution = self.resolution, \
126 | copyObjName = self.objList, \
127 | partArrangeOrder = self.partMatchList, \
128 | alignOrder = self.alignList, \
129 | pathsFromHiddenLayer = self.addPathsFromHiddenLayer, \
130 | originToGeometry = self.originToGeometry)
131 | return {'FINISHED'}
132 |
133 | def draw(self, context):
134 | layout = self.layout
135 | col = layout.column()
136 | row = col.row()
137 | row.prop(self, "byGroup")
138 | row = col.row()
139 | row.prop(self, "byAttrib")
140 | row = col.row()
141 | row.prop(self, "shapeKeyAttribName")
142 | row = col.row()
143 | row.prop(self, "addShapeKeyPaths")
144 | row = col.row()
145 | row.prop(self, "addNontargetPaths")
146 | row = col.row()
147 | row.prop(self, "addPathsFromHiddenLayer")
148 | row = col.row()
149 | row.prop(self, "originToGeometry")
150 | layout.row().separator()
151 | row = col.row()
152 | row.label(text = 'Scale')
153 | row = col.row()
154 | row.prop(self, "xScale")
155 | row.prop(self, "yScale")
156 | row = col.row()
157 | row.prop(self, "zLocation")
158 | layout.row().separator()
159 | row = col.row()
160 | row.prop(self, "resolution")
161 | row = col.row()
162 | row.prop(self, "objList")
163 | row = col.row()
164 | row.prop(self, "partMatchList")
165 | row = col.row()
166 | row.prop(self, "alignList")
167 |
168 | def invoke(self, context, event):
169 | alignListStrs = [*getAlignSegsFn().keys()]
170 | arrangeListStrs = [*getAlignPartsFn().keys()]
171 |
172 | #default values
173 | self.objList = noneStr
174 | self.partMatchList = str(arrangeListStrs[-1])
175 | self.alignList = str(alignListStrs[-1])
176 |
177 | context.window_manager.fileselect_add(self)
178 |
179 | return {'RUNNING_MODAL'}
180 |
181 | def menuImportShapeKeys(self, context):
182 | self.layout.operator(ObjectImportShapeKeys.bl_idname,
183 | text="Import Paths & Shape Keys (.svg)")
184 |
185 | def register():
186 | bpy.utils.register_class(ObjectImportShapeKeys)
187 | bpy.types.TOPBAR_MT_file_import.append(menuImportShapeKeys)
188 |
189 | def unregister():
190 | bpy.utils.unregister_class(ObjectImportShapeKeys)
191 | bpy.types.TOPBAR_MT_file_import.remove(menuImportShapeKeys)
192 |
193 | if __name__ == "__main__":
194 | register()
195 |
196 | ###################### addon code start ####################
197 |
198 | DEF_ERR_MARGIN = 0.0001
199 | hiddenLayerAttr = 'display:none'
200 |
201 | def isValidPath(pathElem):
202 | dVal = pathElem.getAttribute('d')
203 | return (dVal != None) and (dVal.strip() != "") and \
204 | (dVal[0] in set('MLHVCSQTAmlhvcsqa'))
205 |
206 | class OrderedSet(OrderedDict):
207 | def add(self, item):
208 | super(OrderedSet, self).__setitem__(item, '')
209 |
210 | def __iter__(self):
211 | return super.keys().__iter__()
212 |
213 | #...Other methods to be added when needed
214 |
215 | class Part():
216 | def __init__(self, segments, isClosed):
217 | self.segs = segments
218 | self.isClosed = isClosed
219 |
220 | if(len(segments) > 0):
221 | self.partToClose = self.isContinuous()
222 |
223 | def copy(self, start, end):
224 | if(start == None):
225 | start = 0
226 | if(end == None):
227 | end = len(self.segs)
228 | return Part(self.segs[start:end], None)#IsClosing not defined, so set to None
229 |
230 | def getSeg(self, idx):
231 | return self.segs[idx]
232 |
233 | def getSegs(self):
234 | return self.segs
235 |
236 | def getSegsCopy(self, start, end):
237 | if(start == None):
238 | start = 0
239 | if(end == None):
240 | end = len(self.segs)
241 | return self.segs[start:end]
242 |
243 | def bbox(self):
244 | leftBot_rgtTop = [[None]*2,[None]*2]
245 | for seg in self.segs:
246 | bb = bboxCubicBezier(seg)
247 | for i in range(0, 2):
248 | if (leftBot_rgtTop[0][i] == None or bb[0][i] < leftBot_rgtTop[0][i]):
249 | leftBot_rgtTop[0][i] = bb[0][i]
250 | for i in range(0, 2):
251 | if (leftBot_rgtTop[1][i] == None or bb[1][i] > leftBot_rgtTop[1][i]):
252 | leftBot_rgtTop[1][i] = bb[1][i]
253 |
254 | return leftBot_rgtTop
255 |
256 | def isContinuous(self):
257 | return cmplxCmpWithMargin(self.segs[0].start, self.segs[-1].end)
258 |
259 | def getSegCnt(self):
260 | return len(self.segs)
261 |
262 | def length(self, error):
263 | return sum(seg.length(error = error) for seg in self.segs)
264 |
265 | class PathElem:
266 | def __init__(self, path, attributes, transList, seqId):
267 | self.parts = getDisconnParts(path)
268 | self.pathId = attributes['id'].value
269 | self.attributes = attributes
270 | self.transList = transList
271 | self.seqId = seqId
272 |
273 | def getPartCnt(self):
274 | return len(self.parts)
275 |
276 | def getPartView(self):
277 | p = Part([seg for part in self.parts for seg in part.getSegs()], None)
278 | return p
279 |
280 | def getPartBoundaryIdxs(self):
281 | cumulCntList = set()
282 | cumulCnt = 0
283 |
284 | for p in self.parts:
285 | cumulCnt += p.getSegCnt()
286 | cumulCntList.add(cumulCnt)
287 |
288 | return cumulCntList
289 |
290 | def updatePartsList(self, segCntsPerPart, byPart):
291 | monolithicSegList = [seg for part in self.parts for seg in part.getSegs()]
292 | self.parts.clear()
293 |
294 | for i in range(0, len(segCntsPerPart)):
295 | if( i == 0):
296 | currIdx = 0
297 | else:
298 | currIdx = segCntsPerPart[i-1]
299 |
300 | nextIdx = segCntsPerPart[i]
301 | isClosed = None
302 |
303 | if(byPart == True and i < len(self.parts)):
304 | isClosed = self.parts[i].isClosed # Let's retain as far as possible
305 |
306 | self.parts.append(Part(monolithicSegList[currIdx:nextIdx], isClosed))
307 |
308 | def __repr__(self):
309 | return self.pathId
310 |
311 | class BlenderBezierPoint:
312 | #all points are complex values not 3d vectors
313 | def __init__(self, pt, handleLeft, handleRight):
314 | self.pt = pt
315 | self.handleLeft = handleLeft
316 | self.handleRight = handleRight
317 |
318 | def __repr__(self):
319 | return str(self.pt)
320 |
321 | def getPathElemMap(doc, pathsFromHiddenLayer):
322 | elemMap = {}
323 | seqId = 0
324 | for pathXMLElem in doc.getElementsByTagName('path'):
325 | if (isElemSelectable(pathXMLElem, pathsFromHiddenLayer) and
326 | isValidPath(pathXMLElem)):
327 | dVal = pathXMLElem.getAttribute('d')
328 | transList = []
329 | idAttr = pathXMLElem.getAttribute('id')
330 | parsedPath = parse_path(dVal)
331 | getTransformAttribs(pathXMLElem, transList)
332 | pathElem = PathElem(parsedPath, pathXMLElem.attributes, transList, seqId)
333 | elemMap[idAttr] = pathElem
334 | seqId += 1
335 | return elemMap
336 |
337 | def main(infilePath, shapeKeyAttribName, byGroup, byAttrib, addShapeKeyPaths,
338 | addNontargetPaths, scale, zVal, resolution, copyObjName, partArrangeOrder, alignOrder,
339 | pathsFromHiddenLayer, originToGeometry):
340 |
341 | doc = minidom.parse(infilePath)
342 |
343 | pathElemsMap = getPathElemMap(doc, pathsFromHiddenLayer)
344 |
345 | pathElems = [*pathElemsMap.values()]
346 |
347 | normalizePathElems(pathElems, alignOrder, partArrangeOrder)
348 |
349 | targetShapeKeyMap = {}
350 | allShapeKeyIdsSet = set()
351 |
352 | if(byGroup == True):
353 | updateShapeKeyMapByGroup(targetShapeKeyMap, allShapeKeyIdsSet, doc, pathsFromHiddenLayer)
354 |
355 | if(byAttrib == True):
356 | updateShapeKeyMapByAttrib(targetShapeKeyMap, pathElemsMap, allShapeKeyIdsSet, shapeKeyAttribName)
357 |
358 | #List of lists with all the interdependent paths that need to be homogenized
359 | dependentPathIdsSets = getDependentPathIdsSets(targetShapeKeyMap)
360 |
361 | byPart = (partArrangeOrder != noneStr)
362 | for prntIdx, dependentPathIdsSet in enumerate(dependentPathIdsSets):
363 | dependentPathsSet = [pathElemsMap.get(dependentPathId) for dependentPathId in dependentPathIdsSet
364 | if pathElemsMap.get(dependentPathId) != None]
365 |
366 | addMissingSegs(dependentPathsSet, byPart = byPart, resolution = resolution)
367 |
368 | bIdxs = set()
369 | for pathElem in dependentPathsSet:
370 | bIdxs = bIdxs.union(pathElem.getPartBoundaryIdxs())
371 |
372 | for pathElem in dependentPathsSet:
373 | pathElem.updatePartsList(sorted(list(bIdxs)), byPart)
374 |
375 | #All will have same part count by now
376 | allToClose = [all(pathElem.parts[j].partToClose for pathElem in dependentPathsSet)
377 | for j in range(0, len(dependentPathsSet[0].parts))]
378 |
379 | #All interdependent paths will have the same no of splines with the same no of bezier points
380 | for pathElem in dependentPathsSet:
381 | for j, part in enumerate(pathElem.parts):
382 | part.partToClose = allToClose[j]
383 |
384 | objPathIds = set(targetShapeKeyMap.keys())
385 |
386 | if(addNontargetPaths == True):
387 | nontargetIds = (pathElemsMap.keys() - targetShapeKeyMap.keys()) - allShapeKeyIdsSet
388 | objPathIds = objPathIds.union(nontargetIds)
389 |
390 | if(addShapeKeyPaths == True):
391 | #in case shapeKeys are also targets
392 | shapeKeyIdsToAdd = allShapeKeyIdsSet - targetShapeKeyMap.keys()
393 | objPathIds = objPathIds.union(shapeKeyIdsToAdd.intersection(pathElemsMap.keys()))
394 |
395 | copyObj = bpy.data.objects.get(copyObjName)#Can be None
396 |
397 | objMap = {}
398 |
399 | if(len(objPathIds) > 0):
400 | groupName = os.path.basename(infilePath)
401 | group = bpy.data.collections.new(groupName)
402 | bpy.context.scene.collection.children.link(group)
403 |
404 | for objPathId in objPathIds:
405 | addSvg2Blender(group, objMap, pathElemsMap[objPathId], scale, zVal, copyObj, originToGeometry)
406 |
407 | for pathElemId in targetShapeKeyMap.keys():
408 | pathObj = objMap[pathElemId]
409 | pathObj.shape_key_add(name = 'Basis')
410 | shapeKeyElemIds = targetShapeKeyMap[pathElemId].keys()
411 | for shapeKeyElemId in shapeKeyElemIds:
412 | shapeKeyElem = pathElemsMap.get(shapeKeyElemId)
413 | if(shapeKeyElem != None):#Maybe no need after so many checks earlier
414 | addShapeKey(pathObj, shapeKeyElem, shapeKeyElemId, scale, zVal, originToGeometry)
415 |
416 | return objMap
417 |
418 | #Avoid errors due to floating point conversions/comparisons
419 | def cmplxCmpWithMargin(complex1, complex2, margin = DEF_ERR_MARGIN):
420 | return floatCmpWithMargin(complex1.real, complex2.real, margin) and \
421 | floatCmpWithMargin(complex1.imag, complex2.imag, margin)
422 |
423 | def floatCmpWithMargin(float1, float2, margin = DEF_ERR_MARGIN):
424 | return abs(float1 - float2) < margin
425 |
426 | #TODO: Would be more conditions like defs. Need a better solution
427 | def isElemSelectable(elem, pathsFromHiddenLayer):
428 | return getParentInHierarchy(elem, 'defs') == None and \
429 | (pathsFromHiddenLayer == True or not isInHiddenLayer(elem))
430 |
431 | def getParentInHierarchy(elem, parentTag):
432 | parent = elem.parentNode
433 |
434 | while(parent != None and parent.parentNode != None and parent.tagName != parentTag):
435 | parent = parent.parentNode
436 |
437 | #TODO: Better way to detect the Document node
438 | if(parent.parentNode == None):
439 | return None
440 |
441 | return parent
442 |
443 | def getTransformAttribs(elem, transList):
444 | if(elem.nodeType == elem.DOCUMENT_NODE):
445 | return
446 |
447 | transAttr = elem.getAttribute('transform')
448 | if(transAttr != None):
449 | transList.append(transAttr)
450 | if(elem.parentNode != None):
451 | getTransformAttribs(elem.parentNode, transList)
452 |
453 | def isInHiddenLayer(elem):
454 | parent = elem.parentNode
455 |
456 | while(parent != None and parent.nodeType == parent.ELEMENT_NODE and \
457 | (parent.tagName != 'g' or (parent.parentNode != None and \
458 | parent.parentNode.tagName != 'svg'))):
459 | parent = parent.parentNode
460 |
461 | if(parent != None and parent.nodeType == parent.ELEMENT_NODE):
462 | return parent.getAttribute('style').startswith(hiddenLayerAttr)
463 |
464 | return False
465 |
466 | def getDependentPathIdsSets(shapeKeyMap):
467 | pathIdSets = []
468 | allAddedPathIds = set()
469 | for targetId in shapeKeyMap.keys():
470 | #Keep track of the added path Ids since the target can be a shapeKey,
471 | #or a target of one of the shapeKeys of this target (many->many relation)
472 | if(targetId not in allAddedPathIds):
473 | pathIdSet = set()
474 | addDependentPathsToList(shapeKeyMap, pathIdSet, targetId)
475 | pathIdSets.append(pathIdSet)
476 | allAddedPathIds = allAddedPathIds.union(pathIdSet)
477 | return pathIdSets
478 |
479 | #Reverse lookup
480 | def getKeysetWithValue(srcMap, value):
481 | keySet = set()
482 | for key in srcMap:
483 | if(value in srcMap[key]):
484 | keySet.add(key)
485 | return keySet
486 |
487 | #All the shape keys and their other targets are added recursively
488 | def addDependentPathsToList(shapeKeyMap, pathIdSet, targetId):
489 | if(targetId in pathIdSet):
490 | return pathIdSet
491 |
492 | pathIdSet.add(targetId)
493 | shapeKeyElemIdMap = shapeKeyMap.get(targetId)
494 |
495 | if(shapeKeyElemIdMap == None):
496 | return pathIdSet
497 |
498 | shapeKeyElemIdList = shapeKeyElemIdMap.keys()
499 | if(shapeKeyElemIdList == None):
500 | return pathIdSet
501 |
502 | for shapeKeyElemId in shapeKeyElemIdList:
503 | #Recuresively add the Ids that are shape key of this shape key
504 | addDependentPathsToList(shapeKeyMap, pathIdSet, shapeKeyElemId)
505 |
506 | #Recursively add the Ids that are other targets of this shape key
507 | keyset = getKeysetWithValue(shapeKeyMap, shapeKeyElemId)
508 | for key in keyset:
509 | addDependentPathsToList(shapeKeyMap, pathIdSet, key)
510 |
511 | return pathIdSet
512 |
513 | def getAllPathElemsInGroup(parentElem, pathElems):
514 | for childNode in parentElem.childNodes:
515 | if childNode.nodeType == childNode.ELEMENT_NODE:
516 | if(childNode.tagName == 'path' and isValidPath(childNode)):
517 | pathElems.append(childNode)
518 | elif(childNode.tagName == 'g'):
519 | getAllPathElemsInGroup(childNode, pathElems)
520 |
521 | def updateShapeKeyMapByGroup(targetShapeKeyMap, allShapeKeyIdsSet, doc, pathsFromHiddenLayer):
522 | groupElems = [groupElem for groupElem in doc.getElementsByTagName('g')
523 | if (groupElem.parentNode.tagName != 'svg' and
524 | isElemSelectable(groupElem, pathsFromHiddenLayer))]
525 |
526 | for groupElem in groupElems:
527 | pathElems = []
528 | getAllPathElemsInGroup(groupElem, pathElems)
529 | if(pathElems != None and len(pathElems) > 1 ):
530 | targetId = pathElems[0].getAttribute('id')
531 | if(targetShapeKeyMap.get(targetId) == None):
532 | targetShapeKeyMap[targetId] = OrderedSet()
533 |
534 | for i in range(1, len(pathElems)):
535 | shapeKeyId = pathElems[i].getAttribute('id')
536 | targetShapeKeyMap[targetId].add(shapeKeyId)
537 | allShapeKeyIdsSet.add(shapeKeyId)
538 |
539 | def updateShapeKeyMapByAttrib(targetShapeKeyMap, pathElemsMap, \
540 | allShapeKeyIdsSet, shapeKeyAttribName):
541 | for key in pathElemsMap.keys():
542 | targetPathElem = pathElemsMap[key]
543 | attributes = targetPathElem.attributes
544 | shapeKeyIdAttrs = attributes.get(shapeKeyAttribName)
545 | if(shapeKeyIdAttrs != None):
546 | shapeKeyIds = shapeKeyIdAttrs.value
547 | shapeKeyIdsStr = str(shapeKeyIds)
548 | shapeKeyIdList = shapeKeyIdsStr.replace(' ','').split(',')
549 | if(targetShapeKeyMap.get(key) == None):
550 | targetShapeKeyMap[key] = OrderedSet()
551 | for keyId in shapeKeyIdList:
552 | if(pathElemsMap.get(keyId) != None):
553 | targetShapeKeyMap[key].add(keyId)
554 | allShapeKeyIdsSet.add(keyId)
555 |
556 | def bboxArea(leftBot_rgtTop):
557 | return abs((leftBot_rgtTop[1][0]-leftBot_rgtTop[0][0]) * \
558 | (leftBot_rgtTop[1][1]-leftBot_rgtTop[0][1]))
559 |
560 | #see https://stackoverflow.com/questions/24809978/calculating-the-bounding-box-of-cubic-bezier-curve
561 | #(3 D - 9 C + 9 B - 3 A) t^2 + (6 A - 12 B + 6 C) t + 3 (B - A)
562 | def bboxCubicBezier(bezier):
563 | def evalBez(AA, BB, CC, DD, t):
564 | return AA * (1 - t) * (1 - t) * (1 - t) + \
565 | 3 * BB * t * (1 - t) * (1 - t) + \
566 | 3 * CC * t * t * (1 - t) + \
567 | DD * t * t * t
568 |
569 | A = [bezier.start.real, bezier.start.imag]
570 | B = [bezier.control1.real, bezier.control1.imag]
571 | C = [bezier.control2.real, bezier.control2.imag]
572 | D = [bezier.end.real, bezier.end.imag]
573 |
574 | MINXY = [min([A[0], D[0]]), min([A[1], D[1]])]
575 | MAXXY = [max([A[0], D[0]]), max([A[1], D[1]])]
576 | leftBot_rgtTop = [MINXY, MAXXY]
577 |
578 | a = [3 * D[i] - 9 * C[i] + 9 * B[i] - 3 * A[i] for i in range(0, 2)]
579 | b = [6 * A[i] - 12 * B[i] + 6 * C[i] for i in range(0, 2)]
580 | c = [3 * (B[i] - A[i]) for i in range(0, 2)]
581 |
582 | solnsxy = []
583 | for i in range(0, 2):
584 | solns = []
585 | if(a[i] == 0):
586 | if(b[i] == 0):
587 | solns.append(0)#Independent of t so lets take the starting pt
588 | else:
589 | solns.append(c[i] / b[i])
590 | else:
591 | rootFact = b[i] * b[i] - 4 * a[i] * c[i]
592 | if(rootFact >=0 ):
593 | #Two solutions with + and - sqrt
594 | solns.append((-b[i] + sqrt(rootFact)) / (2 * a[i]))
595 | solns.append((-b[i] - sqrt(rootFact)) / (2 * a[i]))
596 | solnsxy.append(solns)
597 |
598 | for i, soln in enumerate(solnsxy):
599 | for j, t in enumerate(soln):
600 | if(t < 1 and t > 0):
601 | co = evalBez(A[i], B[i], C[i], D[i], t)
602 | if(co < leftBot_rgtTop[0][i]):
603 | leftBot_rgtTop[0][i] = co
604 | if(co > leftBot_rgtTop[1][i]):
605 | leftBot_rgtTop[1][i] = co
606 |
607 | return leftBot_rgtTop
608 |
609 | def getLineSegment(start, end, t0, t1):
610 | xt0, yt0 = (1 - t0) * start.real + t0 * end.real , (1 - t0) * start.imag + t0 * end.imag
611 | xt1, yt1 = (1 - t1) * start.real + t1 * end.real , (1 - t1) * start.imag + t1 * end.imag
612 |
613 | return CubicBezier(complex(xt0, yt0), complex(xt0, yt0),
614 | complex(xt1, yt1), complex(xt1, yt1))
615 |
616 | #see https://stackoverflow.com/questions/878862/drawing-part-of-a-b%c3%a9zier-curve-by-reusing-a-basic-b%c3%a9zier-curve-function/879213#879213
617 | def getCurveSegment(seg, t0, t1):
618 | ctrlPts = seg
619 |
620 | if(t0 > t1):
621 | tt = t1
622 | t1 = t0
623 | t0 = tt
624 |
625 | #Let's make at least the line segments of predictable length :)
626 | if(ctrlPts[0] == ctrlPts[1] and ctrlPts[2] == ctrlPts[3]):
627 | return getLineSegment(ctrlPts[0], ctrlPts[2], t0, t1)
628 |
629 | x1, y1 = ctrlPts[0].real, ctrlPts[0].imag
630 | bx1, by1 = ctrlPts[1].real, ctrlPts[1].imag
631 | bx2, by2 = ctrlPts[2].real, ctrlPts[2].imag
632 | x2, y2 = ctrlPts[3].real, ctrlPts[3].imag
633 |
634 | u0 = 1.0 - t0
635 | u1 = 1.0 - t1
636 |
637 | qxa = x1*u0*u0 + bx1*2*t0*u0 + bx2*t0*t0
638 | qxb = x1*u1*u1 + bx1*2*t1*u1 + bx2*t1*t1
639 | qxc = bx1*u0*u0 + bx2*2*t0*u0 + x2*t0*t0
640 | qxd = bx1*u1*u1 + bx2*2*t1*u1 + x2*t1*t1
641 |
642 | qya = y1*u0*u0 + by1*2*t0*u0 + by2*t0*t0
643 | qyb = y1*u1*u1 + by1*2*t1*u1 + by2*t1*t1
644 | qyc = by1*u0*u0 + by2*2*t0*u0 + y2*t0*t0
645 | qyd = by1*u1*u1 + by2*2*t1*u1 + y2*t1*t1
646 |
647 | xa = qxa*u0 + qxc*t0
648 | xb = qxa*u1 + qxc*t1
649 | xc = qxb*u0 + qxd*t0
650 | xd = qxb*u1 + qxd*t1
651 |
652 | ya = qya*u0 + qyc*t0
653 | yb = qya*u1 + qyc*t1
654 | yc = qyb*u0 + qyd*t0
655 | yd = qyb*u1 + qyd*t1
656 |
657 | return CubicBezier(complex(xa, ya), complex(xb, yb),
658 | complex(xc, yc), complex(xd, yd))
659 |
660 |
661 | def subdivideSeg(origSeg, noSegs):
662 | if(noSegs < 2):
663 | return [origSeg]
664 |
665 | segs = []
666 | oldT = 0
667 | segLen = origSeg.length(error = DEF_ERR_MARGIN) / noSegs
668 | for i in range(0, noSegs-1):
669 | t = float(i+1) / noSegs
670 | cBezier = getCurveSegment(origSeg, oldT, t)
671 | segs.append(cBezier)
672 | oldT = t
673 |
674 | cBezier = getCurveSegment(origSeg, oldT, 1)
675 | segs.append(cBezier)
676 |
677 | return segs
678 |
679 |
680 | def getSubdivCntPerSeg(part, toAddCnt):
681 |
682 | class ItemWrapper:
683 | def __init__(self, idx, item):
684 | self.idx = idx
685 | self.item = item
686 | self.length = item.length(error = DEF_ERR_MARGIN)
687 |
688 | class PartWrapper:
689 | def __init__(self, part):
690 | self.itemList = []
691 | self.itemCnt = len(part.getSegs())
692 | for idx, seg in enumerate(part.getSegs()):
693 | self.itemList.append(ItemWrapper(idx, seg))
694 |
695 | partWrapper = PartWrapper(part)
696 | partLen = part.length(DEF_ERR_MARGIN)
697 | avgLen = partLen / (partWrapper.itemCnt + toAddCnt)
698 |
699 | segsToDivide = [item for item in partWrapper.itemList if item.length >= avgLen]
700 | segToDivideCnt = len(segsToDivide)
701 | avgLen = sum(item.length for item in segsToDivide) / (segToDivideCnt + toAddCnt)
702 |
703 | segsToDivide = sorted(segsToDivide, key=lambda x: x.length, reverse = True)
704 |
705 | cnts = [0] * partWrapper.itemCnt
706 | addedCnt = 0
707 |
708 |
709 | for i in range(0, segToDivideCnt):
710 | segLen = segsToDivide[i].length
711 |
712 | divideCnt = int(round(segLen/avgLen)) - 1
713 | if(divideCnt == 0):
714 | break
715 |
716 | if((addedCnt + divideCnt) >= toAddCnt):
717 | cnts[segsToDivide[i].idx] = toAddCnt - addedCnt
718 | addedCnt = toAddCnt
719 | break
720 |
721 | cnts[segsToDivide[i].idx] = divideCnt
722 |
723 | addedCnt += divideCnt
724 |
725 | #TODO: Verify if needed
726 | while(toAddCnt > addedCnt):
727 | for i in range(0, segToDivideCnt):
728 | cnts[segsToDivide[i].idx] += 1
729 | addedCnt += 1
730 | if(toAddCnt == addedCnt):
731 | break
732 |
733 | return cnts
734 |
735 | def getDisconnParts(path):
736 | prevSeg = None
737 | disconnParts = []
738 | segs = []
739 |
740 | for i in range(0, len(path)):
741 | seg = path[i]
742 | if((prevSeg== None) or not cmplxCmpWithMargin(prevSeg.end, seg.start)):
743 | if(len(segs) > 0):
744 | disconnParts.append(Part(segs, segs[-1].isClosing))
745 | segs = []
746 | prevSeg = seg
747 | segs.append(seg)
748 |
749 | if(len(path) > 0 and len(segs) > 0):
750 | disconnParts.append(Part(segs, segs[-1].isClosing))
751 |
752 | return disconnParts
753 |
754 | def normalizePathElems(pathElems, alignOrder, partArrangeOrder):
755 | for pathElem in pathElems:
756 | toTransformedCBezier(pathElem)
757 | alignPath(pathElem, alignOrder, partArrangeOrder)
758 |
759 | #Resolution is mapped to parts
760 | #The value 100 means 1 segment per unit length (whatever it is in source SVG) of Part
761 | def getSegCntForResolution(part, resolution):
762 | segCnt = part.getSegCnt()
763 | segCntForRes = int(part.length(error = DEF_ERR_MARGIN) * resolution / 100)
764 |
765 | if(segCnt > segCntForRes):
766 | return segCnt
767 | else:
768 | return segCntForRes
769 |
770 | #Distribute equally; this is likely a rare condition. So why complicate?
771 | def distributeCnt(maxSegCntsByPart, startIdx, extraCnt):
772 | added = 0
773 | elemCnt = len(maxSegCntsByPart) - startIdx
774 | cntPerElem = math.floor(extraCnt / elemCnt)
775 | remainder = extraCnt % elemCnt
776 | for i in range(startIdx, len(maxSegCntsByPart)):
777 | maxSegCntsByPart[i] += cntPerElem
778 | if(i < remainder + startIdx):
779 | maxSegCntsByPart[i] += 1
780 |
781 | #Make all the paths to have the maximum number of segments in the set
782 | def addMissingSegs(pathElems, byPart, resolution):
783 | maxSegCntsByPart = []
784 | samePartCnt = True
785 | maxSegCnt = 0
786 |
787 | resSegCnt = []
788 | sortedElems = sorted(pathElems, key = lambda p: -len(p.parts))
789 | for i, pathElem in enumerate(sortedElems):
790 | if(byPart == False):
791 | segCnt = getSegCntForResolution(pathElem.getPartView(), resolution)
792 | if(segCnt > maxSegCnt):
793 | maxSegCnt = segCnt
794 |
795 | else:
796 | resSegCnt.append([])
797 | for j, part in enumerate(pathElem.parts):
798 | partSegCnt = getSegCntForResolution(part, resolution)
799 | resSegCnt[i].append(partSegCnt)
800 | #First path
801 | if(j == len(maxSegCntsByPart)):
802 | maxSegCntsByPart.append(partSegCnt)
803 |
804 | #last part of this path, but other paths in set have more parts
805 | elif((j == len(pathElem.parts) - 1) and
806 | len(maxSegCntsByPart) > len(pathElem.parts)):
807 |
808 | remainingSegs = sum(maxSegCntsByPart[j:])
809 | if(partSegCnt <= remainingSegs):
810 | resSegCnt[i][j] = remainingSegs
811 | else:
812 | #This part has more segs than the sum of the remaining part segs
813 | #So distribute the extra count
814 | distributeCnt(maxSegCntsByPart, j, (partSegCnt - remainingSegs))
815 |
816 | #Also, adjust the seg count of the last part of the previous
817 | #segments that had fewer than max number of parts
818 | for k in range(0, i):
819 | if(len(sortedElems[k].parts) < len(maxSegCntsByPart)):
820 | totalSegs = sum(maxSegCntsByPart)
821 | existingSegs = sum(maxSegCntsByPart[:len(sortedElems[k].parts)-1])
822 | resSegCnt[k][-1] = totalSegs - existingSegs
823 |
824 | elif(partSegCnt > maxSegCntsByPart[j]):
825 | maxSegCntsByPart[j] = partSegCnt
826 |
827 | for i, pathElem in enumerate(sortedElems):
828 |
829 | if(byPart == False):
830 | partView = pathElem.getPartView()
831 | segCnt = partView.getSegCnt()
832 | diff = maxSegCnt - segCnt
833 |
834 | if(diff > 0):
835 | cnts = getSubdivCntPerSeg(partView, diff)
836 | cumulSegIdx = 0
837 | for j in range(0, len(pathElem.parts)):
838 | part = pathElem.parts[j]
839 | newSegs = []
840 | for k, seg in enumerate(part.getSegs()):
841 | numSubdivs = cnts[cumulSegIdx] + 1
842 | newSegs += subdivideSeg(seg, numSubdivs)
843 | cumulSegIdx += 1
844 |
845 | #isClosed won't be used, but let's update anyway
846 | pathElem.parts[j] = Part(newSegs, part.isClosed)
847 |
848 | else:
849 | for j in range(0, len(pathElem.parts)):
850 | part = pathElem.parts[j]
851 | newSegs = []
852 |
853 | partSegCnt = part.getSegCnt()
854 |
855 | #TODO: Adding everything in the last part?
856 | if(j == (len(pathElem.parts)-1) and
857 | len(maxSegCntsByPart) > len(pathElem.parts)):
858 | diff = resSegCnt[i][j] - partSegCnt
859 | else:
860 | diff = maxSegCntsByPart[j] - partSegCnt
861 |
862 | if(diff > 0):
863 | cnts = getSubdivCntPerSeg(part, diff)
864 |
865 | for k, seg in enumerate(part.getSegs()):
866 | seg = part.getSeg(k)
867 | subdivCnt = cnts[k] + 1 #1 for the existing one
868 | newSegs += subdivideSeg(seg, subdivCnt)
869 |
870 | #isClosed won't be used, but let's update anyway
871 | pathElem.parts[j] = Part(newSegs, part.isClosed)
872 |
873 |
874 | def transTranslate(elems):
875 | y = 0
876 | if(len(elems) > 1):
877 | y = elems[1]
878 | return Matrix.Translation((elems[0], y, 0))
879 |
880 | def transScale(elems):
881 | y = 0
882 | if(len(elems) > 1):
883 | y = elems[1]
884 |
885 | return Matrix.Scale(elems[0], 4, (1, 0, 0)) @ \
886 | Matrix.Scale(y, 4, (0, 1, 0))
887 |
888 | def transRotate(elems):
889 | m = Matrix()
890 | if(len(elems) > 1):
891 | m = transTranslate(elems[1:])
892 |
893 | return m @ Matrix.Rotation(radians(elems[0]), 4, Vector((0, 0, 1))) \
894 | @ m.inverted()
895 |
896 | def transSkewX(elems):
897 | mat = Matrix()
898 | mat[0][1] = tan(radians(elems[0]))
899 | return mat
900 |
901 | def transSkewY(elems):
902 | mat = Matrix()
903 | mat[1][0] = tan(radians(elems[0]))
904 | return mat
905 |
906 | def transMatrix(elems):
907 | #standard matrix with diagonal elems = 1
908 | mat = Matrix()
909 | mat[0][0] = elems[0]
910 | mat[0][1] = elems[2]
911 | mat[0][3] = elems[4]
912 | mat[1][0] = elems[1]
913 | mat[1][1] = elems[3]
914 | mat[1][3] = elems[5]
915 | return mat
916 |
917 | transforms = {'translate': transTranslate,
918 | 'scale': transScale,
919 | 'rotate': transRotate,
920 | 'skewX': transSkewX,
921 | 'skewY': transSkewY,
922 | 'matrix': transMatrix}
923 |
924 | def getTransformMatrix(transList):
925 | mat = Matrix()
926 | regEx = re.compile('([^\(]+)\(([^\)]+)\)')
927 | for transform in transList:
928 | results = regEx.findall(transform)
929 | if(results != None and len(results) > 0):
930 | for res in results:
931 | fnStr = res[0]
932 | elems = [float(e) for e in res[1].split(',')]
933 | fn = transforms.get(fnStr)
934 | if(fn != None):
935 | mat = fn(elems) @ mat
936 | res = regEx.search(transform)
937 | return mat
938 |
939 | def getTransformedSeg(bezierSeg, mat):
940 | pts = []
941 | for pt in bezierSeg:
942 | pt3d = Vector((pt.real, pt.imag, 0))
943 | pt3d = mat @ pt3d
944 | pts.append(complex(pt3d[0], pt3d[1]))
945 | return CubicBezier(*pts)
946 |
947 | #format (key, value): [(order_str, seg_cmp_fn), ...]
948 | #(Listed clockwise in the dropdown)
949 | #round-off to int as we don't want to be over-precise with the comparison...
950 | #...der Gleichheitsbedingung wird lediglich visuell geprueft werden :)
951 | def getAlignSegsFn():
952 | return OrderedDict([
953 | ('Top-Left', lambda x, y: ((int(x.imag) < int(y.imag)) or \
954 | (int(x.imag) == int(y.imag) and int(x.real) < int(y.real)))),
955 |
956 | ('Top-Right', lambda x, y: ((int(x.imag) < int(y.imag)) or \
957 | (int(x.imag) == int(y.imag) and int(x.real) > int(y.real)))),
958 |
959 | ('Right-Top', lambda x, y: ((int(x.real) > int(y.real)) or \
960 | (int(x.real) == int(y.real) and int(x.imag) < int(y.imag)))),
961 |
962 | ('Right-Bottom', lambda x, y: ((int(x.real) > int(y.real)) or \
963 | (int(x.real) == int(y.real) and int(x.imag) > int(y.imag)))),
964 |
965 | ('Bottom-Right', lambda x, y: ((int(x.imag) > int(y.imag)) or \
966 | (int(x.imag) == int(y.imag) and int(x.real) > int(y.real)))),
967 |
968 | ('Bottom-left', lambda x, y: ((int(x.imag) > int(y.imag)) or \
969 | (int(x.imag) == int(y.imag) and int(x.real) < int(y.real)))),
970 |
971 | ('Left-Bottom', lambda x, y: ((int(x.real) < int(y.real)) or \
972 | (int(x.real) == int(y.real) and int(x.imag) > int(y.imag)))),
973 |
974 | ('Left-Top', lambda x, y: ((int(x.real) < int(y.real)) or \
975 | (int(x.real) == int(y.real) and int(x.imag) < int(y.imag)))),
976 | ])
977 |
978 |
979 | def getAlignPartsFn():
980 |
981 | #Order of the list returned by bbox - Left[0,0]-bottom[0,1]-right[1,0]-top[1,1]
982 | return OrderedDict([
983 | #Sorting in reverse order so that the bigger parts get matched first
984 | ('Node Count ', lambda part: -1 * part.getSegCnt()),
985 |
986 | ('BBox Area', lambda part: -1 * bboxArea(part.bbox())),
987 |
988 | ('BBox Height', lambda part: -1 * (part.bbox()[1][1] - part.bbox()[0][1])),
989 |
990 | ('BBox Width', lambda part: -1 * (part.bbox()[1][0] - part.bbox()[0][0])),
991 |
992 | ('BBox:Top-Left', lambda part: (part.bbox()[0][1], #Top of SVG is bottom of blender
993 | part.bbox()[0][0])),
994 |
995 | ('BBox:Top-Right', lambda part: (part.bbox()[0][1],
996 | part.bbox()[1][0])),
997 |
998 | ('BBox:Right-Top', lambda part: (part.bbox()[1][0],
999 | part.bbox()[0][1])),
1000 |
1001 | ('BBox:Right-Bottom', lambda part: (part.bbox()[1][0],
1002 | part.bbox()[1][1])),
1003 |
1004 | ('BBox:Bottom-Right', lambda part: (part.bbox()[1][1],
1005 | part.bbox()[1][0])),
1006 |
1007 | ('BBox:Bottom-left', lambda part: (part.bbox()[1][1],
1008 | part.bbox()[0][0])),
1009 |
1010 | ('BBox:Left-Bottom', lambda part: (part.bbox()[0][0],
1011 | part.bbox()[1][1])),
1012 |
1013 | ('BBox:Left-Top', lambda part: (part.bbox()[0][0],
1014 | part.bbox()[0][1])),
1015 | ])
1016 |
1017 | def alignPath(pathElem, alignOrderSegs, partArrangeOrder):
1018 |
1019 | alignSegCmpFn = getAlignSegsFn().get(alignOrderSegs)
1020 | alignPartCmpFn = getAlignPartsFn().get(partArrangeOrder)
1021 |
1022 | parts = pathElem.parts[:]
1023 |
1024 | if(alignPartCmpFn != None):
1025 | parts = sorted(parts, key = alignPartCmpFn)
1026 |
1027 | startPt = None
1028 | startIdx = None
1029 |
1030 | for i in range(0, len(parts)):
1031 |
1032 | #Only truly closed parts
1033 | if(alignSegCmpFn != None and parts[i].isClosed):
1034 | for j in range(0, parts[i].getSegCnt()):
1035 | seg = parts[i].getSeg(j)
1036 | if(j == 0 or alignSegCmpFn(seg.start, startPt)):
1037 | startPt = seg.start
1038 | startIdx = j
1039 | pathElem.parts[i]= Part(parts[i].getSegsCopy(startIdx, None) + \
1040 | parts[i].getSegsCopy(None, startIdx), parts[i].isClosed)
1041 | else:
1042 | pathElem.parts[i] = parts[i]
1043 |
1044 | #Convert all segments to cubic bezier and apply transforms
1045 | def toTransformedCBezier(pathElem):
1046 | for i in range(0, len(pathElem.parts)):
1047 | part = pathElem.parts[i]
1048 | newPartSegs = []
1049 |
1050 | for seg in part.getSegs():
1051 |
1052 | if(type(seg).__name__ is 'Line'):
1053 | newPartSegs.append(CubicBezier(seg[0], seg[0], seg[1], seg[1]))
1054 |
1055 | elif(type(seg).__name__ is 'QuadraticBezier'):
1056 | cp0 = seg[0]
1057 | cp3 = seg[2]
1058 |
1059 | cp1 = seg[0] + 2/3 *(seg[1]-seg[0])
1060 | cp2 = seg[2] + 2/3 *(seg[1]-seg[2])
1061 |
1062 | newPartSegs.append(CubicBezier(cp0, cp1, cp2, cp3))
1063 |
1064 | elif(type(seg).__name__ is 'Arc'):
1065 | x1, y1 = seg.start.real, seg.start.imag
1066 | x2, y2 = seg.end.real, seg.end.imag
1067 | fa = seg.large_arc
1068 | fs = seg.sweep
1069 | rx, ry = seg.radius.real, seg.radius.imag
1070 | phi = seg.rotation
1071 | curvesPts = a2c(x1, y1, x2, y2, fa, fs, rx, ry, phi)
1072 |
1073 | for curvePts in curvesPts:
1074 | newPartSegs.append(CubicBezier(curvePts[0], curvePts[1],
1075 | curvePts[2], curvePts[3]))
1076 |
1077 | elif(type(seg).__name__ is 'CubicBezier'):
1078 | newPartSegs.append(seg)
1079 |
1080 | else:
1081 | print('Strange! Never thought of this.', type(seg).__name__)
1082 | # ~ assert False #nope.. let's continue for now
1083 | continue
1084 |
1085 | if(len(pathElem.transList) > 0):
1086 | mat = getTransformMatrix(pathElem.transList)
1087 | newPartSegs = [getTransformedSeg(seg, mat) for seg in newPartSegs]
1088 |
1089 | pathElem.parts[i] = Part(newPartSegs, part.isClosed)
1090 |
1091 | #Paths must have already been homogenized
1092 | def addShapeKey(targetCurve, shapeKeyElem, shapeKeyName, scale, zVal, originToGeometry):
1093 | splineData = getSplineDataForPath(shapeKeyElem, scale, zVal)
1094 |
1095 | offsetLocation = Vector([0,0,0])
1096 | if(originToGeometry == True):
1097 | offsetLocation = targetCurve.location
1098 |
1099 | key = targetCurve.shape_key_add(name = shapeKeyName)
1100 |
1101 | i = 0
1102 | for ptSet in splineData:
1103 | for bezierPt in ptSet:
1104 | co = Vector(get3DPt(bezierPt.pt, scale, zVal)) - offsetLocation
1105 | handleLeft = Vector(get3DPt(bezierPt.handleLeft, scale, zVal)) - offsetLocation
1106 | handleRight = Vector(get3DPt(bezierPt.handleRight, scale, zVal)) - offsetLocation
1107 |
1108 | key.data[i].co = co
1109 | key.data[i].handle_left = handleLeft
1110 | key.data[i].handle_right = handleRight
1111 |
1112 | i += 1
1113 |
1114 | def get3DPt(point, scale, zVal):
1115 | return [point.real * scale[0], point.imag * scale[1], zVal * scale[2]]
1116 |
1117 | #All segments must have already been converted to cubic bezier
1118 | def addSvg2Blender(group, objMap, pathElem, scale, zVal, copyObj, originToGeometry):
1119 |
1120 | pathId = pathElem.pathId
1121 | splineData = getSplineDataForPath(pathElem, scale, zVal)
1122 |
1123 | curveName = CURVE_NAME_PREFIX + str(pathElem.seqId).zfill(5)
1124 | obj = createCurveFromData(group, curveName, splineData, copyObj, pathElem,
1125 | originToGeometry, scale, zVal)
1126 |
1127 | objMap[pathId] = obj
1128 |
1129 | def createCurveFromData(group, curveName, splineData, copyObj, pathElem,
1130 | originToGeometry, scale, zVal):
1131 |
1132 | curveData = getNewCurveData(bpy, splineData, copyObj, pathElem, scale, zVal)
1133 | obj = bpy.data.objects.new(curveName, curveData)
1134 | # ~ bpy.context.scene.collection.objects.link(obj)
1135 | group.objects.link(obj)
1136 |
1137 | if(originToGeometry == True):
1138 | obj.select_set(True)
1139 | bpy.ops.object.origin_set(type='ORIGIN_GEOMETRY', center='BOUNDS')
1140 |
1141 | return obj
1142 |
1143 | def copySrcObjProps(copyObj, newCurveData):
1144 |
1145 | #Copying just a few attributes
1146 | copyObjData = copyObj.data
1147 |
1148 | newCurveData.dimensions = copyObjData.dimensions
1149 |
1150 | newCurveData.resolution_u = copyObjData.resolution_u
1151 | newCurveData.render_resolution_u = copyObjData.render_resolution_u
1152 | newCurveData.fill_mode = copyObjData.fill_mode
1153 |
1154 | newCurveData.use_fill_deform = copyObjData.use_fill_deform
1155 | newCurveData.use_radius = copyObjData.use_radius
1156 | newCurveData.use_stretch = copyObjData.use_stretch
1157 | newCurveData.use_deform_bounds = copyObjData.use_deform_bounds
1158 |
1159 | newCurveData.twist_smooth = copyObjData.twist_smooth
1160 | newCurveData.twist_mode = copyObjData.twist_mode
1161 |
1162 | newCurveData.offset = copyObjData.offset
1163 | newCurveData.extrude = copyObjData.extrude
1164 | newCurveData.bevel_depth = copyObjData.bevel_depth
1165 | newCurveData.bevel_resolution = copyObjData.bevel_resolution
1166 |
1167 | for material in copyObjData.materials:
1168 | newCurveData.materials.append(material)
1169 |
1170 |
1171 | def getNewCurveData(bpy, splinesData, copyObj, pathElem, scale, zVal):
1172 |
1173 | newCurveData = bpy.data.curves.new(pathElem.pathId, 'CURVE')
1174 | if(copyObj != None):
1175 | copySrcObjProps(copyObj, newCurveData)
1176 | #Copying won't work, params set from too many places
1177 | # ~ newCurveData = copyObj.data.copy()
1178 | # ~ newCurveData.splines.clear()
1179 | # ~ newCurveData.animation_data_clear()
1180 | else:
1181 | newCurveData.dimensions = '3D'
1182 |
1183 |
1184 | for i, pointSets in enumerate(splinesData):
1185 | spline = newCurveData.splines.new('BEZIER')
1186 | spline.bezier_points.add(len(pointSets)-1)
1187 | spline.use_cyclic_u = pathElem.parts[i].partToClose
1188 |
1189 | for j in range(0, len(spline.bezier_points)):
1190 | pointSet = pointSets[j]
1191 | spline.bezier_points[j].co = get3DPt(pointSet.pt, scale, zVal)
1192 | spline.bezier_points[j].handle_left = get3DPt(pointSet.handleLeft, scale, zVal)
1193 | spline.bezier_points[j].handle_right = get3DPt(pointSet.handleRight, scale, zVal)
1194 | spline.bezier_points[j].handle_right_type = 'FREE'
1195 |
1196 | return newCurveData
1197 |
1198 | def getSplineDataForPath(pathElem, scale = None, zVal = None):
1199 | splinesData = []
1200 |
1201 | for i, part in enumerate(pathElem.parts):
1202 | prevSeg = None
1203 | pointSets = []
1204 |
1205 | for j, seg in enumerate(part.getSegs()):
1206 |
1207 | pt = seg.start
1208 | handleRight = seg.control1
1209 |
1210 | if(j == 0):
1211 | if(pathElem.parts[i].partToClose):
1212 | handleLeft = part.getSeg(-1).control2
1213 | else:
1214 | handleLeft = pt
1215 | else:
1216 | handleLeft = prevSeg.control2
1217 |
1218 | pointSets.append(BlenderBezierPoint(pt, handleLeft = handleLeft,
1219 | handleRight = handleRight))
1220 | prevSeg = seg
1221 |
1222 | if(pathElem.parts[i].partToClose == True):
1223 | pointSets[-1].handleRight = seg.control1
1224 | else:
1225 | pointSets.append(BlenderBezierPoint(prevSeg.end,
1226 | handleLeft = prevSeg.control2, handleRight = prevSeg.end))
1227 |
1228 | splinesData.append(pointSets)
1229 |
1230 | return splinesData
1231 |
1232 |
1233 | ###################### addon code end ####################
1234 |
1235 | #
1236 | # The following section is a Python conversion of the javascript
1237 | # a2c function at: https://github.com/fontello/svgpath
1238 | # (Copyright (C) 2013-2015 by Vitaly Puzrin)
1239 | #
1240 | ######################## a2c start #######################
1241 |
1242 | TAU = math.pi * 2
1243 |
1244 | # eslint-disable space-infix-ops
1245 |
1246 | # Calculate an angle between two unit vectors
1247 | #
1248 | # Since we measure angle between radii of circular arcs,
1249 | # we can use simplified math (without length normalization)
1250 | #
1251 | def unit_vector_angle(ux, uy, vx, vy):
1252 | if(ux * vy - uy * vx < 0):
1253 | sign = -1
1254 | else:
1255 | sign = 1
1256 |
1257 | dot = ux * vx + uy * vy
1258 |
1259 | # Add this to work with arbitrary vectors:
1260 | # dot /= math.sqrt(ux * ux + uy * uy) * math.sqrt(vx * vx + vy * vy)
1261 |
1262 | # rounding errors, e.g. -1.0000000000000002 can screw up this
1263 | if (dot > 1.0):
1264 | dot = 1.0
1265 |
1266 | if (dot < -1.0):
1267 | dot = -1.0
1268 |
1269 | return sign * math.acos(dot)
1270 |
1271 |
1272 | # Convert from endpoint to center parameterization,
1273 | # see http:#www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
1274 | #
1275 | # Return [cx, cy, theta1, delta_theta]
1276 | #
1277 | def get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi):
1278 | # Step 1.
1279 | #
1280 | # Moving an ellipse so origin will be the middlepoint between our two
1281 | # points. After that, rotate it to line up ellipse axes with coordinate
1282 | # axes.
1283 | #
1284 | x1p = cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2
1285 | y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2
1286 |
1287 | rx_sq = rx * rx
1288 | ry_sq = ry * ry
1289 | x1p_sq = x1p * x1p
1290 | y1p_sq = y1p * y1p
1291 |
1292 | # Step 2.
1293 | #
1294 | # Compute coordinates of the centre of this ellipse (cx', cy')
1295 | # in the new coordinate system.
1296 | #
1297 | radicant = (rx_sq * ry_sq) - (rx_sq * y1p_sq) - (ry_sq * x1p_sq)
1298 |
1299 | if (radicant < 0):
1300 | # due to rounding errors it might be e.g. -1.3877787807814457e-17
1301 | radicant = 0
1302 |
1303 | radicant /= (rx_sq * y1p_sq) + (ry_sq * x1p_sq)
1304 | factor = 1
1305 | if(fa == fs):# Migration Note: note ===
1306 | factor = -1
1307 | radicant = math.sqrt(radicant) * factor #(fa === fs ? -1 : 1)
1308 |
1309 | cxp = radicant * rx/ry * y1p
1310 | cyp = radicant * -ry/rx * x1p
1311 |
1312 | # Step 3.
1313 | #
1314 | # Transform back to get centre coordinates (cx, cy) in the original
1315 | # coordinate system.
1316 | #
1317 | cx = cos_phi*cxp - sin_phi*cyp + (x1+x2)/2
1318 | cy = sin_phi*cxp + cos_phi*cyp + (y1+y2)/2
1319 |
1320 | # Step 4.
1321 | #
1322 | # Compute angles (theta1, delta_theta).
1323 | #
1324 | v1x = (x1p - cxp) / rx
1325 | v1y = (y1p - cyp) / ry
1326 | v2x = (-x1p - cxp) / rx
1327 | v2y = (-y1p - cyp) / ry
1328 |
1329 | theta1 = unit_vector_angle(1, 0, v1x, v1y)
1330 | delta_theta = unit_vector_angle(v1x, v1y, v2x, v2y)
1331 |
1332 | if (fs == 0 and delta_theta > 0):#Migration Note: note ===
1333 | delta_theta -= TAU
1334 |
1335 | if (fs == 1 and delta_theta < 0):#Migration Note: note ===
1336 | delta_theta += TAU
1337 |
1338 | return [ cx, cy, theta1, delta_theta ]
1339 |
1340 | #
1341 | # Approximate one unit arc segment with bezier curves,
1342 | # see http:#math.stackexchange.com/questions/873224
1343 | #
1344 | def approximate_unit_arc(theta1, delta_theta):
1345 | alpha = 4.0/3 * math.tan(delta_theta/4)
1346 |
1347 | x1 = math.cos(theta1)
1348 | y1 = math.sin(theta1)
1349 | x2 = math.cos(theta1 + delta_theta)
1350 | y2 = math.sin(theta1 + delta_theta)
1351 |
1352 | return [ x1, y1, x1 - y1*alpha, y1 + x1*alpha, x2 + y2*alpha, y2 - x2*alpha, x2, y2 ]
1353 |
1354 | def a2c(x1, y1, x2, y2, fa, fs, rx, ry, phi):
1355 | sin_phi = math.sin(phi * TAU / 360)
1356 | cos_phi = math.cos(phi * TAU / 360)
1357 |
1358 | # Make sure radii are valid
1359 | #
1360 | x1p = cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2
1361 | y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2
1362 |
1363 | if (x1p == 0 and y1p == 0): # Migration Note: note ===
1364 | # we're asked to draw line to itself
1365 | return []
1366 |
1367 | if (rx == 0 or ry == 0): # Migration Note: note ===
1368 | # one of the radii is zero
1369 | return []
1370 |
1371 | # Compensate out-of-range radii
1372 | #
1373 | rx = abs(rx)
1374 | ry = abs(ry)
1375 |
1376 | lmbd = (x1p * x1p) / (rx * rx) + (y1p * y1p) / (ry * ry)
1377 | if (lmbd > 1):
1378 | rx *= math.sqrt(lmbd)
1379 | ry *= math.sqrt(lmbd)
1380 |
1381 |
1382 | # Get center parameters (cx, cy, theta1, delta_theta)
1383 | #
1384 | cc = get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi)
1385 |
1386 | result = []
1387 | theta1 = cc[2]
1388 | delta_theta = cc[3]
1389 |
1390 | # Split an arc to multiple segments, so each segment
1391 | # will be less than 90
1392 | #
1393 | segments = int(max(math.ceil(abs(delta_theta) / (TAU / 4)), 1))
1394 | delta_theta /= segments
1395 |
1396 | for i in range(0, segments):
1397 | result.append(approximate_unit_arc(theta1, delta_theta))
1398 |
1399 | theta1 += delta_theta
1400 |
1401 | # We have a bezier approximation of a unit circle,
1402 | # now need to transform back to the original ellipse
1403 | #
1404 | return getMappedList(result, rx, ry, sin_phi, cos_phi, cc)
1405 |
1406 | def getMappedList(result, rx, ry, sin_phi, cos_phi, cc):
1407 | mappedList = []
1408 | for elem in result:
1409 | curve = []
1410 | for i in range(0, len(elem), 2):
1411 | x = elem[i + 0]
1412 | y = elem[i + 1]
1413 |
1414 | # scale
1415 | x *= rx
1416 | y *= ry
1417 |
1418 | # rotate
1419 | xp = cos_phi*x - sin_phi*y
1420 | yp = sin_phi*x + cos_phi*y
1421 |
1422 | # translate
1423 | elem[i + 0] = xp + cc[0]
1424 | elem[i + 1] = yp + cc[1]
1425 | curve.append(complex(elem[i + 0], elem[i + 1]))
1426 | mappedList.append(curve)
1427 | return mappedList
1428 |
1429 | ######################### a2c end ########################
1430 |
1431 |
1432 | #
1433 | # The following section is an extract
1434 | # from svgpathtools (https://github.com/mathandy/svgpathtools)
1435 | # (Copyright (c) 2015 Andrew Allan Port, Copyright (c) 2013-2014 Lennart Regebro)
1436 | #
1437 | # Changes are mde to maintain which of the disconnected parts are closed (isClosing)
1438 | # and floating point comparison in parse_path is changed to have tolerance
1439 | #
1440 | # Many explanatory comments are excluded
1441 | #
1442 | #################### svgpathtools start ###################
1443 |
1444 | LENGTH_MIN_DEPTH = 5
1445 |
1446 | LENGTH_ERROR = 1e-12
1447 |
1448 | COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
1449 | UPPERCASE = set('MZLHVCSQTA')
1450 |
1451 | COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
1452 | FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
1453 |
1454 | def _tokenize_path(pathdef):
1455 | for x in COMMAND_RE.split(pathdef):
1456 | if x in COMMANDS:
1457 | yield x
1458 | for token in FLOAT_RE.findall(x):
1459 | yield token
1460 |
1461 |
1462 | def parse_path(pathdef, current_pos=0j):
1463 | # In the SVG specs, initial movetos are absolute, even if
1464 | # specified as 'm'. This is the default behavior here as well.
1465 | # But if you pass in a current_pos variable, the initial moveto
1466 | # will be relative to that current_pos. This is useful.
1467 | elements = list(_tokenize_path(pathdef))
1468 | # Reverse for easy use of .pop()
1469 | elements.reverse()
1470 |
1471 | segments = Path()
1472 | start_pos = None
1473 | command = None
1474 |
1475 | while elements:
1476 |
1477 | if elements[-1] in COMMANDS:
1478 | # New command.
1479 | last_command = command # Used by S and T
1480 | command = elements.pop()
1481 | absolute = command in UPPERCASE
1482 | command = command.upper()
1483 | else:
1484 | # If this element starts with numbers, it is an implicit command
1485 | # and we don't change the command. Check that it's allowed:
1486 | if command is None:
1487 | raise ValueError("Unallowed implicit command in %s, position %s" % (
1488 | pathdef, len(pathdef.split()) - len(elements)))
1489 |
1490 | if command == 'M':
1491 | # Moveto command.
1492 | x = elements.pop()
1493 | y = elements.pop()
1494 | pos = float(x) + float(y) * 1j
1495 | if absolute:
1496 | current_pos = pos
1497 | else:
1498 | current_pos += pos
1499 |
1500 | # when M is called, reset start_pos
1501 | # This behavior of Z is defined in svg spec:
1502 | # http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand
1503 | start_pos = current_pos
1504 |
1505 | # Implicit moveto commands are treated as lineto commands.
1506 | # So we set command to lineto here, in case there are
1507 | # further implicit commands after this moveto.
1508 | command = 'L'
1509 |
1510 | elif command == 'Z':
1511 | # Close path
1512 | if not (cmplxCmpWithMargin(current_pos, start_pos)): #For Shape key import
1513 | #~ if not (current_pos == start_pos):
1514 | segments.append(Line(current_pos, start_pos))
1515 | segments[-1].isClosing = True #For Shape key import
1516 | segments.closed = True
1517 | current_pos = start_pos
1518 | start_pos = None
1519 | command = None # You can't have implicit commands after closing.
1520 |
1521 | elif command == 'L':
1522 | x = elements.pop()
1523 | y = elements.pop()
1524 | pos = float(x) + float(y) * 1j
1525 | if not absolute:
1526 | pos += current_pos
1527 | segments.append(Line(current_pos, pos))
1528 | current_pos = pos
1529 |
1530 | elif command == 'H':
1531 | x = elements.pop()
1532 | pos = float(x) + current_pos.imag * 1j
1533 | if not absolute:
1534 | pos += current_pos.real
1535 | segments.append(Line(current_pos, pos))
1536 | current_pos = pos
1537 |
1538 | elif command == 'V':
1539 | y = elements.pop()
1540 | pos = current_pos.real + float(y) * 1j
1541 | if not absolute:
1542 | pos += current_pos.imag * 1j
1543 | segments.append(Line(current_pos, pos))
1544 | current_pos = pos
1545 |
1546 | elif command == 'C':
1547 | control1 = float(elements.pop()) + float(elements.pop()) * 1j
1548 | control2 = float(elements.pop()) + float(elements.pop()) * 1j
1549 | end = float(elements.pop()) + float(elements.pop()) * 1j
1550 |
1551 | if not absolute:
1552 | control1 += current_pos
1553 | control2 += current_pos
1554 | end += current_pos
1555 |
1556 | segments.append(CubicBezier(current_pos, control1, control2, end))
1557 | current_pos = end
1558 |
1559 | elif command == 'S':
1560 | # Smooth curve. First control point is the "reflection" of
1561 | # the second control point in the previous path.
1562 |
1563 | if last_command not in 'CS':
1564 | # If there is no previous command or if the previous command
1565 | # was not an C, c, S or s, assume the first control point is
1566 | # coincident with the current point.
1567 | control1 = current_pos
1568 | else:
1569 | # The first control point is assumed to be the reflection of
1570 | # the second control point on the previous command relative
1571 | # to the current point.
1572 | control1 = current_pos + current_pos - segments[-1].control2
1573 |
1574 | control2 = float(elements.pop()) + float(elements.pop()) * 1j
1575 | end = float(elements.pop()) + float(elements.pop()) * 1j
1576 |
1577 | if not absolute:
1578 | control2 += current_pos
1579 | end += current_pos
1580 |
1581 | segments.append(CubicBezier(current_pos, control1, control2, end))
1582 | current_pos = end
1583 |
1584 | elif command == 'Q':
1585 | control = float(elements.pop()) + float(elements.pop()) * 1j
1586 | end = float(elements.pop()) + float(elements.pop()) * 1j
1587 |
1588 | if not absolute:
1589 | control += current_pos
1590 | end += current_pos
1591 |
1592 | segments.append(QuadraticBezier(current_pos, control, end))
1593 | current_pos = end
1594 |
1595 | elif command == 'T':
1596 | # Smooth curve. Control point is the "reflection" of
1597 | # the second control point in the previous path.
1598 |
1599 | if last_command not in 'QT':
1600 | # If there is no previous command or if the previous command
1601 | # was not an Q, q, T or t, assume the first control point is
1602 | # coincident with the current point.
1603 | control = current_pos
1604 | else:
1605 | # The control point is assumed to be the reflection of
1606 | # the control point on the previous command relative
1607 | # to the current point.
1608 | control = current_pos + current_pos - segments[-1].control
1609 |
1610 | end = float(elements.pop()) + float(elements.pop()) * 1j
1611 |
1612 | if not absolute:
1613 | end += current_pos
1614 |
1615 | segments.append(QuadraticBezier(current_pos, control, end))
1616 | current_pos = end
1617 |
1618 | elif command == 'A':
1619 | radius = float(elements.pop()) + float(elements.pop()) * 1j
1620 | rotation = float(elements.pop())
1621 | arc = float(elements.pop())
1622 | sweep = float(elements.pop())
1623 | end = float(elements.pop()) + float(elements.pop()) * 1j
1624 |
1625 | if not absolute:
1626 | end += current_pos
1627 |
1628 | segments.append(Arc(current_pos, radius, rotation, arc, sweep, end))
1629 | current_pos = end
1630 |
1631 | return segments
1632 |
1633 | def segment_length(curve, start, end, start_point, end_point,
1634 | error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH, depth=0):
1635 |
1636 | mid = (start + end)/2
1637 | mid_point = curve.point(mid)
1638 | length = abs(end_point - start_point)
1639 | first_half = abs(mid_point - start_point)
1640 | second_half = abs(end_point - mid_point)
1641 |
1642 | length2 = first_half + second_half
1643 | if (length2 - length > error) or (depth < min_depth):
1644 | depth += 1
1645 | return (segment_length(curve, start, mid, start_point, mid_point,
1646 | error, min_depth, depth) +
1647 | segment_length(curve, mid, end, mid_point, end_point,
1648 | error, min_depth, depth))
1649 | return length2
1650 |
1651 |
1652 | class Line(object):
1653 | def __init__(self, start, end):
1654 | self.start = start
1655 | self.end = end
1656 | self.isClosing = False #For Shape key import
1657 |
1658 | def __repr__(self):
1659 | return 'Line(start=%s, end=%s)' % (self.start, self.end)
1660 |
1661 | def __eq__(self, other):
1662 | if not isinstance(other, Line):
1663 | return NotImplemented
1664 | return self.start == other.start and self.end == other.end
1665 |
1666 | def __ne__(self, other):
1667 | if not isinstance(other, Line):
1668 | return NotImplemented
1669 | return not self == other
1670 |
1671 | def __getitem__(self, item):
1672 | return self.bpoints()[item]
1673 |
1674 | def __len__(self):
1675 | return 2
1676 |
1677 | def bpoints(self):
1678 | return self.start, self.end
1679 |
1680 | def length(self, t0=0, t1=1, error=None, min_depth=None):
1681 | """returns the length of the line segment between t0 and t1."""
1682 | return abs(self.end - self.start)*(t1-t0)
1683 |
1684 |
1685 | class QuadraticBezier(object):
1686 | def __init__(self, start, control, end):
1687 | self.start = start
1688 | self.end = end
1689 | self.control = control
1690 |
1691 | self._length_info = {'length': None, 'bpoints': None}
1692 | self.isClosing = False #For Shape key import
1693 |
1694 | def __repr__(self):
1695 | return 'QuadraticBezier(start=%s, control=%s, end=%s)' % (
1696 | self.start, self.control, self.end)
1697 |
1698 | def __eq__(self, other):
1699 | if not isinstance(other, QuadraticBezier):
1700 | return NotImplemented
1701 | return self.start == other.start and self.end == other.end \
1702 | and self.control == other.control
1703 |
1704 | def __ne__(self, other):
1705 | if not isinstance(other, QuadraticBezier):
1706 | return NotImplemented
1707 | return not self == other
1708 |
1709 | def __getitem__(self, item):
1710 | return self.bpoints()[item]
1711 |
1712 | def __len__(self):
1713 | return 3
1714 |
1715 | def bpoints(self):
1716 | return self.start, self.control, self.end
1717 |
1718 | class CubicBezier(object):
1719 | _length_info = {'length': None, 'bpoints': None, 'error': None,
1720 | 'min_depth': None}
1721 |
1722 | def __init__(self, start, control1, control2, end):
1723 | self.start = start
1724 | self.control1 = control1
1725 | self.control2 = control2
1726 | self.end = end
1727 |
1728 | self._length_info = {'length': None, 'bpoints': None, 'error': None,
1729 | 'min_depth': None}
1730 | self.isClosing = False #For Shape key import
1731 |
1732 | def __repr__(self):
1733 | return 'CubicBezier(start=%s, control1=%s, control2=%s, end=%s)' % (
1734 | self.start, self.control1, self.control2, self.end)
1735 |
1736 | def __eq__(self, other):
1737 | if not isinstance(other, CubicBezier):
1738 | return NotImplemented
1739 | return self.start == other.start and self.end == other.end \
1740 | and self.control1 == other.control1 \
1741 | and self.control2 == other.control2
1742 |
1743 | def __ne__(self, other):
1744 | if not isinstance(other, CubicBezier):
1745 | return NotImplemented
1746 | return not self == other
1747 |
1748 | def __getitem__(self, item):
1749 | return self.bpoints()[item]
1750 |
1751 | def __len__(self):
1752 | return 4
1753 |
1754 | def bpoints(self):
1755 | return self.start, self.control1, self.control2, self.end
1756 |
1757 | def length(self, t0=0, t1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
1758 | if t0 == 0 and t1 == 1:
1759 | if self._length_info['bpoints'] == self.bpoints() \
1760 | and self._length_info['error'] >= error \
1761 | and self._length_info['min_depth'] >= min_depth:
1762 | return self._length_info['length']
1763 |
1764 | s = segment_length(self, t0, t1, self.point(t0), self.point(t1),
1765 | error, min_depth, 0)
1766 |
1767 | if t0 == 0 and t1 == 1:
1768 | self._length_info['length'] = s
1769 | self._length_info['bpoints'] = self.bpoints()
1770 | self._length_info['error'] = error
1771 | self._length_info['min_depth'] = min_depth
1772 | return self._length_info['length']
1773 | else:
1774 | return s
1775 |
1776 | def point(self, t):
1777 | return self.start + t*(
1778 | 3*(self.control1 - self.start) + t*(
1779 | 3*(self.start + self.control2) - 6*self.control1 + t*(
1780 | -self.start + 3*(self.control1 - self.control2) + self.end
1781 | )))
1782 |
1783 | class Arc(object):
1784 | def __init__(self, start, radius, rotation, large_arc, sweep, end,
1785 | autoscale_radius=True):
1786 | assert start != end
1787 | assert radius.real != 0 and radius.imag != 0
1788 |
1789 | self.start = start
1790 | self.radius = abs(radius.real) + 1j*abs(radius.imag)
1791 | self.rotation = rotation
1792 | self.large_arc = bool(large_arc)
1793 | self.sweep = bool(sweep)
1794 | self.end = end
1795 | self.autoscale_radius = autoscale_radius
1796 |
1797 | self.phi = radians(self.rotation)
1798 | self.rot_matrix = exp(1j*self.phi)
1799 |
1800 | self._parameterize()
1801 | self.isClosing = False #For Shape key import
1802 |
1803 | def __repr__(self):
1804 | params = (self.start, self.radius, self.rotation,
1805 | self.large_arc, self.sweep, self.end)
1806 | return ("Arc(start={}, radius={}, rotation={}, "
1807 | "large_arc={}, sweep={}, end={})".format(*params))
1808 |
1809 | def __eq__(self, other):
1810 | if not isinstance(other, Arc):
1811 | return NotImplemented
1812 | return self.start == other.start and self.end == other.end \
1813 | and self.radius == other.radius \
1814 | and self.rotation == other.rotation \
1815 | and self.large_arc == other.large_arc and self.sweep == other.sweep
1816 |
1817 | def __ne__(self, other):
1818 | if not isinstance(other, Arc):
1819 | return NotImplemented
1820 | return not self == other
1821 |
1822 | def _parameterize(self):
1823 | rx = self.radius.real
1824 | ry = self.radius.imag
1825 | rx_sqd = rx*rx
1826 | ry_sqd = ry*ry
1827 |
1828 | zp1 = (1/self.rot_matrix)*(self.start - self.end)/2
1829 | x1p, y1p = zp1.real, zp1.imag
1830 | x1p_sqd = x1p*x1p
1831 | y1p_sqd = y1p*y1p
1832 |
1833 | radius_check = (x1p_sqd/rx_sqd) + (y1p_sqd/ry_sqd)
1834 | if radius_check > 1:
1835 | if self.autoscale_radius:
1836 | rx *= sqrt(radius_check)
1837 | ry *= sqrt(radius_check)
1838 | self.radius = rx + 1j*ry
1839 | rx_sqd = rx*rx
1840 | ry_sqd = ry*ry
1841 | else:
1842 | raise ValueError("No such elliptic arc exists.")
1843 |
1844 | tmp = rx_sqd*y1p_sqd + ry_sqd*x1p_sqd
1845 | radicand = (rx_sqd*ry_sqd - tmp) / tmp
1846 | try:
1847 | radical = sqrt(radicand)
1848 | except ValueError:
1849 | radical = 0
1850 | if self.large_arc == self.sweep:
1851 | cp = -radical*(rx*y1p/ry - 1j*ry*x1p/rx)
1852 | else:
1853 | cp = radical*(rx*y1p/ry - 1j*ry*x1p/rx)
1854 |
1855 | self.center = exp(1j*self.phi)*cp + (self.start + self.end)/2
1856 |
1857 | u1 = (x1p - cp.real)/rx + 1j*(y1p - cp.imag)/ry # transformed start
1858 | u2 = (-x1p - cp.real)/rx + 1j*(-y1p - cp.imag)/ry # transformed end
1859 |
1860 | u1_real_rounded = u1.real
1861 | if u1.real > 1 or u1.real < -1:
1862 | u1_real_rounded = round(u1.real)
1863 | if u1.imag > 0:
1864 | self.theta = degrees(acos(u1_real_rounded))
1865 | elif u1.imag < 0:
1866 | self.theta = -degrees(acos(u1_real_rounded))
1867 | else:
1868 | if u1.real > 0: # start is on pos u_x axis
1869 | self.theta = 0
1870 | else: # start is on neg u_x axis
1871 | self.theta = 180
1872 |
1873 | det_uv = u1.real*u2.imag - u1.imag*u2.real
1874 |
1875 | acosand = u1.real*u2.real + u1.imag*u2.imag
1876 | if acosand > 1 or acosand < -1:
1877 | acosand = round(acosand)
1878 | if det_uv > 0:
1879 | self.delta = degrees(acos(acosand))
1880 | elif det_uv < 0:
1881 | self.delta = -degrees(acos(acosand))
1882 | else:
1883 | if u1.real*u2.real + u1.imag*u2.imag > 0:
1884 | # u1 == u2
1885 | self.delta = 0
1886 | else:
1887 | # u1 == -u2
1888 | self.delta = 180
1889 |
1890 | if not self.sweep and self.delta >= 0:
1891 | self.delta -= 360
1892 | elif self.large_arc and self.delta <= 0:
1893 | self.delta += 360
1894 |
1895 | class Path(MutableSequence):
1896 |
1897 | _closed = False
1898 | _start = None
1899 | _end = None
1900 |
1901 | def __init__(self, *segments, **kw):
1902 | self._segments = list(segments)
1903 | self._length = None
1904 | self._lengths = None
1905 | if 'closed' in kw:
1906 | self.closed = kw['closed'] # DEPRECATED
1907 | if self._segments:
1908 | self._start = self._segments[0].start
1909 | self._end = self._segments[-1].end
1910 | else:
1911 | self._start = None
1912 | self._end = None
1913 |
1914 | def __getitem__(self, index):
1915 | return self._segments[index]
1916 |
1917 | def __setitem__(self, index, value):
1918 | self._segments[index] = value
1919 | self._length = None
1920 | self._start = self._segments[0].start
1921 | self._end = self._segments[-1].end
1922 |
1923 | def __delitem__(self, index):
1924 | del self._segments[index]
1925 | self._length = None
1926 | self._start = self._segments[0].start
1927 | self._end = self._segments[-1].end
1928 |
1929 | def __iter__(self):
1930 | return self._segments.__iter__()
1931 |
1932 | def __contains__(self, x):
1933 | return self._segments.__contains__(x)
1934 |
1935 | def insert(self, index, value):
1936 | self._segments.insert(index, value)
1937 | self._length = None
1938 | self._start = self._segments[0].start
1939 | self._end = self._segments[-1].end
1940 |
1941 | def reversed(self):
1942 | newpath = [seg.reversed() for seg in self]
1943 | newpath.reverse()
1944 | return Path(*newpath)
1945 |
1946 | def __len__(self):
1947 | return len(self._segments)
1948 |
1949 | def __repr__(self):
1950 | return "Path({})".format(
1951 | ",\n ".join(repr(x) for x in self._segments))
1952 |
1953 | def __eq__(self, other):
1954 | if not isinstance(other, Path):
1955 | return NotImplemented
1956 | if len(self) != len(other):
1957 | return False
1958 | for s, o in zip(self._segments, other._segments):
1959 | if not s == o:
1960 | return False
1961 | return True
1962 |
1963 | def __ne__(self, other):
1964 | if not isinstance(other, Path):
1965 | return NotImplemented
1966 | return not self == other
1967 |
1968 | def _calc_lengths(self, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
1969 | if self._length is not None:
1970 | return
1971 |
1972 | lengths = [each.length(error=error, min_depth=min_depth) for each in
1973 | self._segments]
1974 | self._length = sum(lengths)
1975 | self._lengths = [each/self._length for each in lengths]
1976 |
1977 | def length(self, T0=0, T1=1, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH):
1978 | self._calc_lengths(error=error, min_depth=min_depth)
1979 | if T0 == 0 and T1 == 1:
1980 | return self._length
1981 | else:
1982 | if len(self) == 1:
1983 | return self[0].length(t0=T0, t1=T1)
1984 | idx0, t0 = self.T2t(T0)
1985 | idx1, t1 = self.T2t(T1)
1986 | if idx0 == idx1:
1987 | return self[idx0].length(t0=t0, t1=t1)
1988 | return (self[idx0].length(t0=t0) +
1989 | sum(self[idx].length() for idx in range(idx0 + 1, idx1)) +
1990 | self[idx1].length(t1=t1))
1991 |
1992 | @property
1993 | def start(self):
1994 | if not self._start:
1995 | self._start = self._segments[0].start
1996 | return self._start
1997 |
1998 | @start.setter
1999 | def start(self, pt):
2000 | self._start = pt
2001 | self._segments[0].start = pt
2002 |
2003 | @property
2004 | def end(self):
2005 | if not self._end:
2006 | self._end = self._segments[-1].end
2007 | return self._end
2008 |
2009 | @end.setter
2010 | def end(self, pt):
2011 | self._end = pt
2012 | self._segments[-1].end = pt
2013 |
2014 | def d(self, useSandT=False, use_closed_attrib=False):
2015 |
2016 | if use_closed_attrib:
2017 | self_closed = self.closed(warning_on=False)
2018 | if self_closed:
2019 | segments = self[:-1]
2020 | else:
2021 | segments = self[:]
2022 | else:
2023 | self_closed = False
2024 | segments = self[:]
2025 |
2026 | current_pos = None
2027 | parts = []
2028 | previous_segment = None
2029 | end = self[-1].end
2030 |
2031 | for segment in segments:
2032 | seg_start = segment.start
2033 | if current_pos != seg_start or \
2034 | (self_closed and seg_start == end and use_closed_attrib):
2035 | parts.append('M {},{}'.format(seg_start.real, seg_start.imag))
2036 |
2037 | if isinstance(segment, Line):
2038 | args = segment.end.real, segment.end.imag
2039 | parts.append('L {},{}'.format(*args))
2040 | elif isinstance(segment, CubicBezier):
2041 | if useSandT and segment.is_smooth_from(previous_segment,
2042 | warning_on=False):
2043 | args = (segment.control2.real, segment.control2.imag,
2044 | segment.end.real, segment.end.imag)
2045 | parts.append('S {},{} {},{}'.format(*args))
2046 | else:
2047 | args = (segment.control1.real, segment.control1.imag,
2048 | segment.control2.real, segment.control2.imag,
2049 | segment.end.real, segment.end.imag)
2050 | parts.append('C {},{} {},{} {},{}'.format(*args))
2051 | elif isinstance(segment, QuadraticBezier):
2052 | if useSandT and segment.is_smooth_from(previous_segment,
2053 | warning_on=False):
2054 | args = segment.end.real, segment.end.imag
2055 | parts.append('T {},{}'.format(*args))
2056 | else:
2057 | args = (segment.control.real, segment.control.imag,
2058 | segment.end.real, segment.end.imag)
2059 | parts.append('Q {},{} {},{}'.format(*args))
2060 |
2061 | elif isinstance(segment, Arc):
2062 | args = (segment.radius.real, segment.radius.imag,
2063 | segment.rotation,int(segment.large_arc),
2064 | int(segment.sweep),segment.end.real, segment.end.imag)
2065 | parts.append('A {},{} {} {:d},{:d} {},{}'.format(*args))
2066 | current_pos = segment.end
2067 | previous_segment = segment
2068 |
2069 | if self_closed:
2070 | parts.append('Z')
2071 |
2072 | return ' '.join(parts)
2073 |
2074 | ##################### svgpathtools end ####################
2075 |
2076 |
--------------------------------------------------------------------------------