├── README.md └── Untitled6.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # DSBDA-Assignment: 2 | - DSBDA-Assignment 3 | -------------------------------------------------------------------------------- /Untitled6.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "authorship_tag": "ABX9TyP5zL+OQ0umPfW8iJfmPJgy", 8 | "include_colab_link": true 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | } 17 | }, 18 | "cells": [ 19 | { 20 | "cell_type": "markdown", 21 | "metadata": { 22 | "id": "view-in-github", 23 | "colab_type": "text" 24 | }, 25 | "source": [ 26 | "\"Open" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "source": [ 32 | "# 1. import all required python libraries\n", 33 | "#import numpy as np\n", 34 | "import pandas as pd\n", 35 | "\n", 36 | "import matplotlib\n", 37 | "from matplotlib import pyplot as plt\n", 38 | "#matplotlib.style.use('ggplot')\n", 39 | "\n", 40 | "import seaborn as sns" 41 | ], 42 | "metadata": { 43 | "id": "scOyYw1CUgQW" 44 | }, 45 | "execution_count": 17, 46 | "outputs": [] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "source": [ 51 | "#2. preparing to load data into colab from loacal drive\n", 52 | "from google.colab import files \n", 53 | "uploaded=files.upload()" 54 | ], 55 | "metadata": { 56 | "colab": { 57 | "base_uri": "https://localhost:8080/", 58 | "height": 73 59 | }, 60 | "id": "uB99Y0HCU1Zu", 61 | "outputId": "111917f3-a174-4ad9-b6ea-f8991b3b4767" 62 | }, 63 | "execution_count": 18, 64 | "outputs": [ 65 | { 66 | "output_type": "display_data", 67 | "data": { 68 | "text/plain": [ 69 | "" 70 | ], 71 | "text/html": [ 72 | "\n", 73 | " \n", 75 | " \n", 76 | " Upload widget is only available when the cell has been executed in the\n", 77 | " current browser session. Please rerun this cell to enable.\n", 78 | " \n", 79 | " " 255 | ] 256 | }, 257 | "metadata": {} 258 | }, 259 | { 260 | "output_type": "stream", 261 | "name": "stdout", 262 | "text": [ 263 | "Saving iris_dataset.csv to iris_dataset (1).csv\n" 264 | ] 265 | } 266 | ] 267 | }, 268 | { 269 | "cell_type": "code", 270 | "source": [ 271 | "# 3. Loading data into dataframe\n", 272 | "import io \n", 273 | "df=pd.read_csv(io.BytesIO(uploaded['iris_dataset.csv'])) #import csv file in dataframe called df\n", 274 | "# Dataset is now stored in a pandas Dataframe" 275 | ], 276 | "metadata": { 277 | "id": "u-LxVkH5U883" 278 | }, 279 | "execution_count": 19, 280 | "outputs": [] 281 | }, 282 | { 283 | "cell_type": "code", 284 | "source": [ 285 | "#classes = df['Species'].unique().tolist()\n", 286 | "#classes" 287 | ], 288 | "metadata": { 289 | "id": "KvlKKoMYVCGG" 290 | }, 291 | "execution_count": 20, 292 | "outputs": [] 293 | }, 294 | { 295 | "cell_type": "code", 296 | "source": [ 297 | "#4.1 Information of the data present in dataset\n", 298 | "df.info()" 299 | ], 300 | "metadata": { 301 | "colab": { 302 | "base_uri": "https://localhost:8080/" 303 | }, 304 | "id": "EUlhTdxOVFzF", 305 | "outputId": "7a128231-ae1d-4241-9143-174993af4a91" 306 | }, 307 | "execution_count": 21, 308 | "outputs": [ 309 | { 310 | "output_type": "stream", 311 | "name": "stdout", 312 | "text": [ 313 | "\n", 314 | "RangeIndex: 150 entries, 0 to 149\n", 315 | "Data columns (total 5 columns):\n", 316 | " # Column Non-Null Count Dtype \n", 317 | "--- ------ -------------- ----- \n", 318 | " 0 sepal length (cm) 150 non-null float64\n", 319 | " 1 sepal width (cm) 150 non-null float64\n", 320 | " 2 petal length (cm) 150 non-null float64\n", 321 | " 3 petal width (cm) 150 non-null float64\n", 322 | " 4 target 150 non-null object \n", 323 | "dtypes: float64(4), object(1)\n", 324 | "memory usage: 6.0+ KB\n" 325 | ] 326 | } 327 | ] 328 | }, 329 | { 330 | "cell_type": "code", 331 | "source": [ 332 | "#4.2 Getting the dimension/shape of the data.\n", 333 | "# Expect it to be 150 rows and 5 columns.\n", 334 | "\n", 335 | "print(df.shape)" 336 | ], 337 | "metadata": { 338 | "colab": { 339 | "base_uri": "https://localhost:8080/" 340 | }, 341 | "id": "jFrx7TVjVJFs", 342 | "outputId": "8a663e60-cc7e-4ee5-bdeb-4c9b4d3d90ed" 343 | }, 344 | "execution_count": 22, 345 | "outputs": [ 346 | { 347 | "output_type": "stream", 348 | "name": "stdout", 349 | "text": [ 350 | "(150, 5)\n" 351 | ] 352 | } 353 | ] 354 | }, 355 | { 356 | "cell_type": "code", 357 | "source": [ 358 | "# print the first 20 data points--the head of the dataset\n", 359 | "print(df.head(10))" 360 | ], 361 | "metadata": { 362 | "colab": { 363 | "base_uri": "https://localhost:8080/" 364 | }, 365 | "id": "Gc90dSDcVMi0", 366 | "outputId": "cd94bdfe-9331-4e72-92e9-e234b44108bb" 367 | }, 368 | "execution_count": 23, 369 | "outputs": [ 370 | { 371 | "output_type": "stream", 372 | "name": "stdout", 373 | "text": [ 374 | " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", 375 | "0 5.1 3.5 1.4 0.2 \n", 376 | "1 4.9 3.0 1.4 0.2 \n", 377 | "2 4.7 3.2 1.3 0.2 \n", 378 | "3 4.6 3.1 1.5 0.2 \n", 379 | "4 5.0 3.6 1.4 0.2 \n", 380 | "5 5.4 3.9 1.7 0.4 \n", 381 | "6 4.6 3.4 1.4 0.3 \n", 382 | "7 5.0 3.4 1.5 0.2 \n", 383 | "8 4.4 2.9 1.4 0.2 \n", 384 | "9 4.9 3.1 1.5 0.1 \n", 385 | "\n", 386 | " target \n", 387 | "0 Iris-setosa \n", 388 | "1 Iris-setosa \n", 389 | "2 Iris-setosa \n", 390 | "3 Iris-setosa \n", 391 | "4 Iris-setosa \n", 392 | "5 Iris-setosa \n", 393 | "6 Iris-setosa \n", 394 | "7 Iris-setosa \n", 395 | "8 Iris-setosa \n", 396 | "9 Iris-setosa \n" 397 | ] 398 | } 399 | ] 400 | }, 401 | { 402 | "cell_type": "code", 403 | "source": [ 404 | "#4.3 Describing the data present in dataset\n", 405 | "# Use the describe function to describe same of the\n", 406 | "print(df.describe())" 407 | ], 408 | "metadata": { 409 | "colab": { 410 | "base_uri": "https://localhost:8080/" 411 | }, 412 | "id": "uOJiXby8VP9k", 413 | "outputId": "b4008e03-3184-4ce5-c44e-97b0fe2ba5a8" 414 | }, 415 | "execution_count": 24, 416 | "outputs": [ 417 | { 418 | "output_type": "stream", 419 | "name": "stdout", 420 | "text": [ 421 | " sepal length (cm) sepal width (cm) petal length (cm) \\\n", 422 | "count 150.000000 150.000000 150.000000 \n", 423 | "mean 5.843333 3.054000 3.758667 \n", 424 | "std 0.828066 0.433594 1.764420 \n", 425 | "min 4.300000 2.000000 1.000000 \n", 426 | "25% 5.100000 2.800000 1.600000 \n", 427 | "50% 5.800000 3.000000 4.350000 \n", 428 | "75% 6.400000 3.300000 5.100000 \n", 429 | "max 7.900000 4.400000 6.900000 \n", 430 | "\n", 431 | " petal width (cm) \n", 432 | "count 150.000000 \n", 433 | "mean 1.198667 \n", 434 | "std 0.763161 \n", 435 | "min 0.100000 \n", 436 | "25% 0.300000 \n", 437 | "50% 1.300000 \n", 438 | "75% 1.800000 \n", 439 | "max 2.500000 \n" 440 | ] 441 | } 442 | ] 443 | }, 444 | { 445 | "cell_type": "code", 446 | "source": [ 447 | "#4.4 check the data types in the dataframe\n", 448 | "df.dtypes" 449 | ], 450 | "metadata": { 451 | "colab": { 452 | "base_uri": "https://localhost:8080/" 453 | }, 454 | "id": "2XHIJP-bVWSO", 455 | "outputId": "83b06a1b-26da-41ce-f47a-14e8a87d668c" 456 | }, 457 | "execution_count": 25, 458 | "outputs": [ 459 | { 460 | "output_type": "execute_result", 461 | "data": { 462 | "text/plain": [ 463 | "sepal length (cm) float64\n", 464 | "sepal width (cm) float64\n", 465 | "petal length (cm) float64\n", 466 | "petal width (cm) float64\n", 467 | "target object\n", 468 | "dtype: object" 469 | ] 470 | }, 471 | "metadata": {}, 472 | "execution_count": 25 473 | } 474 | ] 475 | }, 476 | { 477 | "cell_type": "code", 478 | "source": [ 479 | "df[\"target\"].unique()" 480 | ], 481 | "metadata": { 482 | "colab": { 483 | "base_uri": "https://localhost:8080/" 484 | }, 485 | "id": "CQVj0Hj9VZuk", 486 | "outputId": "1fbed8c1-9e5f-4533-eed8-0f18843b5eba" 487 | }, 488 | "execution_count": 26, 489 | "outputs": [ 490 | { 491 | "output_type": "execute_result", 492 | "data": { 493 | "text/plain": [ 494 | "array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)" 495 | ] 496 | }, 497 | "metadata": {}, 498 | "execution_count": 26 499 | } 500 | ] 501 | }, 502 | { 503 | "cell_type": "code", 504 | "source": [ 505 | "#4.5 Use the groupby method to determine the class distribution\n", 506 | "print(df.groupby('target').size())" 507 | ], 508 | "metadata": { 509 | "colab": { 510 | "base_uri": "https://localhost:8080/" 511 | }, 512 | "id": "ivDuBCywVdTA", 513 | "outputId": "9916574d-262b-40f4-d662-d2f3f1c70023" 514 | }, 515 | "execution_count": 27, 516 | "outputs": [ 517 | { 518 | "output_type": "stream", 519 | "name": "stdout", 520 | "text": [ 521 | "target\n", 522 | "Iris-setosa 50\n", 523 | "Iris-versicolor 50\n", 524 | "Iris-virginica 50\n", 525 | "dtype: int64\n" 526 | ] 527 | } 528 | ] 529 | }, 530 | { 531 | "cell_type": "code", 532 | "source": [ 533 | "#4.6 Data points count value for each class labels.\n", 534 | "df.target.value_counts()" 535 | ], 536 | "metadata": { 537 | "colab": { 538 | "base_uri": "https://localhost:8080/" 539 | }, 540 | "id": "A_OPKiYZVhox", 541 | "outputId": "afbbe2ec-d6a2-4106-e2c0-c01475f32854" 542 | }, 543 | "execution_count": 28, 544 | "outputs": [ 545 | { 546 | "output_type": "execute_result", 547 | "data": { 548 | "text/plain": [ 549 | "Iris-setosa 50\n", 550 | "Iris-versicolor 50\n", 551 | "Iris-virginica 50\n", 552 | "Name: target, dtype: int64" 553 | ] 554 | }, 555 | "metadata": {}, 556 | "execution_count": 28 557 | } 558 | ] 559 | }, 560 | { 561 | "cell_type": "code", 562 | "source": [ 563 | "\n", 564 | "#4.5 checking for missing value\n", 565 | "df.isnull().sum()" 566 | ], 567 | "metadata": { 568 | "colab": { 569 | "base_uri": "https://localhost:8080/" 570 | }, 571 | "id": "vZrUj29KVmT6", 572 | "outputId": "21f17a25-15a2-4f6c-8241-40dcf87db99c" 573 | }, 574 | "execution_count": 29, 575 | "outputs": [ 576 | { 577 | "output_type": "execute_result", 578 | "data": { 579 | "text/plain": [ 580 | "sepal length (cm) 0\n", 581 | "sepal width (cm) 0\n", 582 | "petal length (cm) 0\n", 583 | "petal width (cm) 0\n", 584 | "target 0\n", 585 | "dtype: int64" 586 | ] 587 | }, 588 | "metadata": {}, 589 | "execution_count": 29 590 | } 591 | ] 592 | }, 593 | { 594 | "cell_type": "code", 595 | "source": [ 596 | "#6. Turning categorical variables into quantitative variables\n", 597 | "\n", 598 | "from sklearn import preprocessing\n", 599 | "#Label_encoder object knows how to understand word labels\n", 600 | "Label_encoder= preprocessing.LabelEncoder()\n", 601 | "\n", 602 | "#Encoder Labels in column 'species\n", 603 | "df['target']=Label_encoder.fit_transform(df['target'])\n", 604 | "df['target'].unique()\n", 605 | " " 606 | ], 607 | "metadata": { 608 | "colab": { 609 | "base_uri": "https://localhost:8080/" 610 | }, 611 | "id": "0MRbb27vVo3k", 612 | "outputId": "ad977fe0-d5f3-4ab6-d417-96b2f5b154d3" 613 | }, 614 | "execution_count": 30, 615 | "outputs": [ 616 | { 617 | "output_type": "execute_result", 618 | "data": { 619 | "text/plain": [ 620 | "array([0, 1, 2])" 621 | ] 622 | }, 623 | "metadata": {}, 624 | "execution_count": 30 625 | } 626 | ] 627 | }, 628 | { 629 | "cell_type": "code", 630 | "source": [ 631 | "import pandas as pd" 632 | ], 633 | "metadata": { 634 | "id": "tVGBXIBBQuPn" 635 | }, 636 | "execution_count": 31, 637 | "outputs": [] 638 | }, 639 | { 640 | "cell_type": "code", 641 | "source": [ 642 | "csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'" 643 | ], 644 | "metadata": { 645 | "id": "J4UF3fhRQdG8" 646 | }, 647 | "execution_count": 32, 648 | "outputs": [] 649 | }, 650 | { 651 | "cell_type": "code", 652 | "source": [ 653 | "iris = pd.read_csv(csv_url, header = None)" 654 | ], 655 | "metadata": { 656 | "id": "O495VIXDQ3g4" 657 | }, 658 | "execution_count": 33, 659 | "outputs": [] 660 | }, 661 | { 662 | "cell_type": "code", 663 | "source": [ 664 | "#Iris doesnt have column name so give it\n", 665 | "col_names =['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width','Species']" 666 | ], 667 | "metadata": { 668 | "id": "_4gD0aJsQ7A3" 669 | }, 670 | "execution_count": 34, 671 | "outputs": [] 672 | }, 673 | { 674 | "cell_type": "code", 675 | "source": [ 676 | "iris = pd.read_csv(csv_url, names = col_names)" 677 | ], 678 | "metadata": { 679 | "id": "xaRiNwS4Q_H4" 680 | }, 681 | "execution_count": 35, 682 | "outputs": [] 683 | }, 684 | { 685 | "cell_type": "code", 686 | "source": [ 687 | "df1=df=iris" 688 | ], 689 | "metadata": { 690 | "id": "eGZHEyHERBUP" 691 | }, 692 | "execution_count": 36, 693 | "outputs": [] 694 | }, 695 | { 696 | "cell_type": "code", 697 | "source": [ 698 | "iris.head(8)" 699 | ], 700 | "metadata": { 701 | "colab": { 702 | "base_uri": "https://localhost:8080/", 703 | "height": 300 704 | }, 705 | "id": "cJSpBviKRGjy", 706 | "outputId": "d0106c58-ca99-4125-b91f-3ea8160d2fea" 707 | }, 708 | "execution_count": 37, 709 | "outputs": [ 710 | { 711 | "output_type": "execute_result", 712 | "data": { 713 | "text/plain": [ 714 | " Sepal_Length Sepal_Width Petal_Length Petal_Width Species\n", 715 | "0 5.1 3.5 1.4 0.2 Iris-setosa\n", 716 | "1 4.9 3.0 1.4 0.2 Iris-setosa\n", 717 | "2 4.7 3.2 1.3 0.2 Iris-setosa\n", 718 | "3 4.6 3.1 1.5 0.2 Iris-setosa\n", 719 | "4 5.0 3.6 1.4 0.2 Iris-setosa\n", 720 | "5 5.4 3.9 1.7 0.4 Iris-setosa\n", 721 | "6 4.6 3.4 1.4 0.3 Iris-setosa\n", 722 | "7 5.0 3.4 1.5 0.2 Iris-setosa" 723 | ], 724 | "text/html": [ 725 | "\n", 726 | "
\n", 727 | "
\n", 728 | "
\n", 729 | "\n", 742 | "\n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_WidthSpecies
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
55.43.91.70.4Iris-setosa
64.63.41.40.3Iris-setosa
75.03.41.50.2Iris-setosa
\n", 820 | "
\n", 821 | " \n", 831 | " \n", 832 | " \n", 869 | "\n", 870 | " \n", 894 | "
\n", 895 | "
\n", 896 | " " 897 | ] 898 | }, 899 | "metadata": {}, 900 | "execution_count": 37 901 | } 902 | ] 903 | }, 904 | { 905 | "cell_type": "code", 906 | "source": [ 907 | "iris.tail()" 908 | ], 909 | "metadata": { 910 | "colab": { 911 | "base_uri": "https://localhost:8080/", 912 | "height": 206 913 | }, 914 | "id": "6qwWkY7oRJVW", 915 | "outputId": "06a810e2-c895-423d-cc3e-90ee06f3913d" 916 | }, 917 | "execution_count": 38, 918 | "outputs": [ 919 | { 920 | "output_type": "execute_result", 921 | "data": { 922 | "text/plain": [ 923 | " Sepal_Length Sepal_Width Petal_Length Petal_Width Species\n", 924 | "145 6.7 3.0 5.2 2.3 Iris-virginica\n", 925 | "146 6.3 2.5 5.0 1.9 Iris-virginica\n", 926 | "147 6.5 3.0 5.2 2.0 Iris-virginica\n", 927 | "148 6.2 3.4 5.4 2.3 Iris-virginica\n", 928 | "149 5.9 3.0 5.1 1.8 Iris-virginica" 929 | ], 930 | "text/html": [ 931 | "\n", 932 | "
\n", 933 | "
\n", 934 | "
\n", 935 | "\n", 948 | "\n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_WidthSpecies
1456.73.05.22.3Iris-virginica
1466.32.55.01.9Iris-virginica
1476.53.05.22.0Iris-virginica
1486.23.45.42.3Iris-virginica
1495.93.05.11.8Iris-virginica
\n", 1002 | "
\n", 1003 | " \n", 1013 | " \n", 1014 | " \n", 1051 | "\n", 1052 | " \n", 1076 | "
\n", 1077 | "
\n", 1078 | " " 1079 | ] 1080 | }, 1081 | "metadata": {}, 1082 | "execution_count": 38 1083 | } 1084 | ] 1085 | }, 1086 | { 1087 | "cell_type": "code", 1088 | "source": [ 1089 | "iris.index" 1090 | ], 1091 | "metadata": { 1092 | "colab": { 1093 | "base_uri": "https://localhost:8080/" 1094 | }, 1095 | "id": "5gcbNQ4dRMvT", 1096 | "outputId": "523d67b4-8846-4cbf-b291-6fc0a0a26a79" 1097 | }, 1098 | "execution_count": 39, 1099 | "outputs": [ 1100 | { 1101 | "output_type": "execute_result", 1102 | "data": { 1103 | "text/plain": [ 1104 | "RangeIndex(start=0, stop=150, step=1)" 1105 | ] 1106 | }, 1107 | "metadata": {}, 1108 | "execution_count": 39 1109 | } 1110 | ] 1111 | }, 1112 | { 1113 | "cell_type": "code", 1114 | "source": [ 1115 | "iris.columns" 1116 | ], 1117 | "metadata": { 1118 | "colab": { 1119 | "base_uri": "https://localhost:8080/" 1120 | }, 1121 | "id": "waqwYSLPRQVB", 1122 | "outputId": "a7bdccf6-46de-4e98-c1e1-ab9d4be1173d" 1123 | }, 1124 | "execution_count": 40, 1125 | "outputs": [ 1126 | { 1127 | "output_type": "execute_result", 1128 | "data": { 1129 | "text/plain": [ 1130 | "Index(['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width',\n", 1131 | " 'Species'],\n", 1132 | " dtype='object')" 1133 | ] 1134 | }, 1135 | "metadata": {}, 1136 | "execution_count": 40 1137 | } 1138 | ] 1139 | }, 1140 | { 1141 | "cell_type": "code", 1142 | "source": [ 1143 | "iris.shape" 1144 | ], 1145 | "metadata": { 1146 | "colab": { 1147 | "base_uri": "https://localhost:8080/" 1148 | }, 1149 | "id": "qr9VBcdvRVvo", 1150 | "outputId": "7a3725fc-7505-4ee1-fce1-b41edd8eaa1c" 1151 | }, 1152 | "execution_count": 41, 1153 | "outputs": [ 1154 | { 1155 | "output_type": "execute_result", 1156 | "data": { 1157 | "text/plain": [ 1158 | "(150, 5)" 1159 | ] 1160 | }, 1161 | "metadata": {}, 1162 | "execution_count": 41 1163 | } 1164 | ] 1165 | }, 1166 | { 1167 | "cell_type": "code", 1168 | "source": [ 1169 | "iris.dtypes\n", 1170 | " " 1171 | ], 1172 | "metadata": { 1173 | "colab": { 1174 | "base_uri": "https://localhost:8080/" 1175 | }, 1176 | "id": "8QOwlrJKRY8Y", 1177 | "outputId": "3ca8169b-dfe8-442e-f35a-3742e06cc3f7" 1178 | }, 1179 | "execution_count": 42, 1180 | "outputs": [ 1181 | { 1182 | "output_type": "execute_result", 1183 | "data": { 1184 | "text/plain": [ 1185 | "Sepal_Length float64\n", 1186 | "Sepal_Width float64\n", 1187 | "Petal_Length float64\n", 1188 | "Petal_Width float64\n", 1189 | "Species object\n", 1190 | "dtype: object" 1191 | ] 1192 | }, 1193 | "metadata": {}, 1194 | "execution_count": 42 1195 | } 1196 | ] 1197 | }, 1198 | { 1199 | "cell_type": "code", 1200 | "source": [ 1201 | "\n", 1202 | "iris.describe()" 1203 | ], 1204 | "metadata": { 1205 | "colab": { 1206 | "base_uri": "https://localhost:8080/", 1207 | "height": 300 1208 | }, 1209 | "id": "LI2SxXxERb8E", 1210 | "outputId": "cf34ed87-4b8b-4372-ca25-d98b4b3558ad" 1211 | }, 1212 | "execution_count": 43, 1213 | "outputs": [ 1214 | { 1215 | "output_type": "execute_result", 1216 | "data": { 1217 | "text/plain": [ 1218 | " Sepal_Length Sepal_Width Petal_Length Petal_Width\n", 1219 | "count 150.000000 150.000000 150.000000 150.000000\n", 1220 | "mean 5.843333 3.054000 3.758667 1.198667\n", 1221 | "std 0.828066 0.433594 1.764420 0.763161\n", 1222 | "min 4.300000 2.000000 1.000000 0.100000\n", 1223 | "25% 5.100000 2.800000 1.600000 0.300000\n", 1224 | "50% 5.800000 3.000000 4.350000 1.300000\n", 1225 | "75% 6.400000 3.300000 5.100000 1.800000\n", 1226 | "max 7.900000 4.400000 6.900000 2.500000" 1227 | ], 1228 | "text/html": [ 1229 | "\n", 1230 | "
\n", 1231 | "
\n", 1232 | "
\n", 1233 | "\n", 1246 | "\n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | " \n", 1264 | " \n", 1265 | " \n", 1266 | " \n", 1267 | " \n", 1268 | " \n", 1269 | " \n", 1270 | " \n", 1271 | " \n", 1272 | " \n", 1273 | " \n", 1274 | " \n", 1275 | " \n", 1276 | " \n", 1277 | " \n", 1278 | " \n", 1279 | " \n", 1280 | " \n", 1281 | " \n", 1282 | " \n", 1283 | " \n", 1284 | " \n", 1285 | " \n", 1286 | " \n", 1287 | " \n", 1288 | " \n", 1289 | " \n", 1290 | " \n", 1291 | " \n", 1292 | " \n", 1293 | " \n", 1294 | " \n", 1295 | " \n", 1296 | " \n", 1297 | " \n", 1298 | " \n", 1299 | " \n", 1300 | " \n", 1301 | " \n", 1302 | " \n", 1303 | " \n", 1304 | " \n", 1305 | " \n", 1306 | " \n", 1307 | " \n", 1308 | " \n", 1309 | " \n", 1310 | " \n", 1311 | " \n", 1312 | " \n", 1313 | " \n", 1314 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_Width
count150.000000150.000000150.000000150.000000
mean5.8433333.0540003.7586671.198667
std0.8280660.4335941.7644200.763161
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
\n", 1315 | "
\n", 1316 | " \n", 1326 | " \n", 1327 | " \n", 1364 | "\n", 1365 | " \n", 1389 | "
\n", 1390 | "
\n", 1391 | " " 1392 | ] 1393 | }, 1394 | "metadata": {}, 1395 | "execution_count": 43 1396 | } 1397 | ] 1398 | }, 1399 | { 1400 | "cell_type": "code", 1401 | "source": [ 1402 | "iris.columns.values" 1403 | ], 1404 | "metadata": { 1405 | "colab": { 1406 | "base_uri": "https://localhost:8080/" 1407 | }, 1408 | "id": "nZsEFbl5Rft6", 1409 | "outputId": "b0091b8a-d449-4cf6-e883-393dd69d8e3a" 1410 | }, 1411 | "execution_count": 44, 1412 | "outputs": [ 1413 | { 1414 | "output_type": "execute_result", 1415 | "data": { 1416 | "text/plain": [ 1417 | "array(['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width',\n", 1418 | " 'Species'], dtype=object)" 1419 | ] 1420 | }, 1421 | "metadata": {}, 1422 | "execution_count": 44 1423 | } 1424 | ] 1425 | }, 1426 | { 1427 | "cell_type": "code", 1428 | "source": [ 1429 | "iris.iloc[5]" 1430 | ], 1431 | "metadata": { 1432 | "colab": { 1433 | "base_uri": "https://localhost:8080/" 1434 | }, 1435 | "id": "n5SX_lRzRkKZ", 1436 | "outputId": "f379c9cd-bca8-4836-c1dd-3d9df7cbb29f" 1437 | }, 1438 | "execution_count": 45, 1439 | "outputs": [ 1440 | { 1441 | "output_type": "execute_result", 1442 | "data": { 1443 | "text/plain": [ 1444 | "Sepal_Length 5.4\n", 1445 | "Sepal_Width 3.9\n", 1446 | "Petal_Length 1.7\n", 1447 | "Petal_Width 0.4\n", 1448 | "Species Iris-setosa\n", 1449 | "Name: 5, dtype: object" 1450 | ] 1451 | }, 1452 | "metadata": {}, 1453 | "execution_count": 45 1454 | } 1455 | ] 1456 | }, 1457 | { 1458 | "cell_type": "code", 1459 | "source": [ 1460 | "iris[47:51]" 1461 | ], 1462 | "metadata": { 1463 | "colab": { 1464 | "base_uri": "https://localhost:8080/", 1465 | "height": 175 1466 | }, 1467 | "id": "iEZgPQiGRnpf", 1468 | "outputId": "42f99d8a-0060-4464-cb88-9982f89d1b33" 1469 | }, 1470 | "execution_count": 46, 1471 | "outputs": [ 1472 | { 1473 | "output_type": "execute_result", 1474 | "data": { 1475 | "text/plain": [ 1476 | " Sepal_Length Sepal_Width Petal_Length Petal_Width Species\n", 1477 | "47 4.6 3.2 1.4 0.2 Iris-setosa\n", 1478 | "48 5.3 3.7 1.5 0.2 Iris-setosa\n", 1479 | "49 5.0 3.3 1.4 0.2 Iris-setosa\n", 1480 | "50 7.0 3.2 4.7 1.4 Iris-versicolor" 1481 | ], 1482 | "text/html": [ 1483 | "\n", 1484 | "
\n", 1485 | "
\n", 1486 | "
\n", 1487 | "\n", 1500 | "\n", 1501 | " \n", 1502 | " \n", 1503 | " \n", 1504 | " \n", 1505 | " \n", 1506 | " \n", 1507 | " \n", 1508 | " \n", 1509 | " \n", 1510 | " \n", 1511 | " \n", 1512 | " \n", 1513 | " \n", 1514 | " \n", 1515 | " \n", 1516 | " \n", 1517 | " \n", 1518 | " \n", 1519 | " \n", 1520 | " \n", 1521 | " \n", 1522 | " \n", 1523 | " \n", 1524 | " \n", 1525 | " \n", 1526 | " \n", 1527 | " \n", 1528 | " \n", 1529 | " \n", 1530 | " \n", 1531 | " \n", 1532 | " \n", 1533 | " \n", 1534 | " \n", 1535 | " \n", 1536 | " \n", 1537 | " \n", 1538 | " \n", 1539 | " \n", 1540 | " \n", 1541 | " \n", 1542 | " \n", 1543 | " \n", 1544 | " \n", 1545 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_WidthSpecies
474.63.21.40.2Iris-setosa
485.33.71.50.2Iris-setosa
495.03.31.40.2Iris-setosa
507.03.24.71.4Iris-versicolor
\n", 1546 | "
\n", 1547 | " \n", 1557 | " \n", 1558 | " \n", 1595 | "\n", 1596 | " \n", 1620 | "
\n", 1621 | "
\n", 1622 | " " 1623 | ] 1624 | }, 1625 | "metadata": {}, 1626 | "execution_count": 46 1627 | } 1628 | ] 1629 | }, 1630 | { 1631 | "cell_type": "code", 1632 | "source": [ 1633 | "iris.loc[:,[\"Sepal_Length\",\"Sepal_Width\"]] #See data column wise" 1634 | ], 1635 | "metadata": { 1636 | "colab": { 1637 | "base_uri": "https://localhost:8080/", 1638 | "height": 424 1639 | }, 1640 | "id": "6-kbFJ_nRq8f", 1641 | "outputId": "c974f457-c0b1-498b-c76c-3c32f044c574" 1642 | }, 1643 | "execution_count": 47, 1644 | "outputs": [ 1645 | { 1646 | "output_type": "execute_result", 1647 | "data": { 1648 | "text/plain": [ 1649 | " Sepal_Length Sepal_Width\n", 1650 | "0 5.1 3.5\n", 1651 | "1 4.9 3.0\n", 1652 | "2 4.7 3.2\n", 1653 | "3 4.6 3.1\n", 1654 | "4 5.0 3.6\n", 1655 | ".. ... ...\n", 1656 | "145 6.7 3.0\n", 1657 | "146 6.3 2.5\n", 1658 | "147 6.5 3.0\n", 1659 | "148 6.2 3.4\n", 1660 | "149 5.9 3.0\n", 1661 | "\n", 1662 | "[150 rows x 2 columns]" 1663 | ], 1664 | "text/html": [ 1665 | "\n", 1666 | "
\n", 1667 | "
\n", 1668 | "
\n", 1669 | "\n", 1682 | "\n", 1683 | " \n", 1684 | " \n", 1685 | " \n", 1686 | " \n", 1687 | " \n", 1688 | " \n", 1689 | " \n", 1690 | " \n", 1691 | " \n", 1692 | " \n", 1693 | " \n", 1694 | " \n", 1695 | " \n", 1696 | " \n", 1697 | " \n", 1698 | " \n", 1699 | " \n", 1700 | " \n", 1701 | " \n", 1702 | " \n", 1703 | " \n", 1704 | " \n", 1705 | " \n", 1706 | " \n", 1707 | " \n", 1708 | " \n", 1709 | " \n", 1710 | " \n", 1711 | " \n", 1712 | " \n", 1713 | " \n", 1714 | " \n", 1715 | " \n", 1716 | " \n", 1717 | " \n", 1718 | " \n", 1719 | " \n", 1720 | " \n", 1721 | " \n", 1722 | " \n", 1723 | " \n", 1724 | " \n", 1725 | " \n", 1726 | " \n", 1727 | " \n", 1728 | " \n", 1729 | " \n", 1730 | " \n", 1731 | " \n", 1732 | " \n", 1733 | " \n", 1734 | " \n", 1735 | " \n", 1736 | " \n", 1737 | " \n", 1738 | " \n", 1739 | " \n", 1740 | " \n", 1741 | " \n", 1742 | " \n", 1743 | " \n", 1744 | " \n", 1745 | " \n", 1746 | " \n", 1747 | "
Sepal_LengthSepal_Width
05.13.5
14.93.0
24.73.2
34.63.1
45.03.6
.........
1456.73.0
1466.32.5
1476.53.0
1486.23.4
1495.93.0
\n", 1748 | "

150 rows × 2 columns

\n", 1749 | "
\n", 1750 | " \n", 1760 | " \n", 1761 | " \n", 1798 | "\n", 1799 | " \n", 1823 | "
\n", 1824 | "
\n", 1825 | " " 1826 | ] 1827 | }, 1828 | "metadata": {}, 1829 | "execution_count": 47 1830 | } 1831 | ] 1832 | }, 1833 | { 1834 | "cell_type": "code", 1835 | "source": [ 1836 | "cols_2_4=iris.columns[2:4]\n", 1837 | "iris[cols_2_4]\n", 1838 | " " 1839 | ], 1840 | "metadata": { 1841 | "colab": { 1842 | "base_uri": "https://localhost:8080/", 1843 | "height": 424 1844 | }, 1845 | "id": "ekMGhHz7Rt5e", 1846 | "outputId": "4a1188aa-2ce3-4c07-acab-f25807e46c07" 1847 | }, 1848 | "execution_count": 48, 1849 | "outputs": [ 1850 | { 1851 | "output_type": "execute_result", 1852 | "data": { 1853 | "text/plain": [ 1854 | " Petal_Length Petal_Width\n", 1855 | "0 1.4 0.2\n", 1856 | "1 1.4 0.2\n", 1857 | "2 1.3 0.2\n", 1858 | "3 1.5 0.2\n", 1859 | "4 1.4 0.2\n", 1860 | ".. ... ...\n", 1861 | "145 5.2 2.3\n", 1862 | "146 5.0 1.9\n", 1863 | "147 5.2 2.0\n", 1864 | "148 5.4 2.3\n", 1865 | "149 5.1 1.8\n", 1866 | "\n", 1867 | "[150 rows x 2 columns]" 1868 | ], 1869 | "text/html": [ 1870 | "\n", 1871 | "
\n", 1872 | "
\n", 1873 | "
\n", 1874 | "\n", 1887 | "\n", 1888 | " \n", 1889 | " \n", 1890 | " \n", 1891 | " \n", 1892 | " \n", 1893 | " \n", 1894 | " \n", 1895 | " \n", 1896 | " \n", 1897 | " \n", 1898 | " \n", 1899 | " \n", 1900 | " \n", 1901 | " \n", 1902 | " \n", 1903 | " \n", 1904 | " \n", 1905 | " \n", 1906 | " \n", 1907 | " \n", 1908 | " \n", 1909 | " \n", 1910 | " \n", 1911 | " \n", 1912 | " \n", 1913 | " \n", 1914 | " \n", 1915 | " \n", 1916 | " \n", 1917 | " \n", 1918 | " \n", 1919 | " \n", 1920 | " \n", 1921 | " \n", 1922 | " \n", 1923 | " \n", 1924 | " \n", 1925 | " \n", 1926 | " \n", 1927 | " \n", 1928 | " \n", 1929 | " \n", 1930 | " \n", 1931 | " \n", 1932 | " \n", 1933 | " \n", 1934 | " \n", 1935 | " \n", 1936 | " \n", 1937 | " \n", 1938 | " \n", 1939 | " \n", 1940 | " \n", 1941 | " \n", 1942 | " \n", 1943 | " \n", 1944 | " \n", 1945 | " \n", 1946 | " \n", 1947 | " \n", 1948 | " \n", 1949 | " \n", 1950 | " \n", 1951 | " \n", 1952 | "
Petal_LengthPetal_Width
01.40.2
11.40.2
21.30.2
31.50.2
41.40.2
.........
1455.22.3
1465.01.9
1475.22.0
1485.42.3
1495.11.8
\n", 1953 | "

150 rows × 2 columns

\n", 1954 | "
\n", 1955 | " \n", 1965 | " \n", 1966 | " \n", 2003 | "\n", 2004 | " \n", 2028 | "
\n", 2029 | "
\n", 2030 | " " 2031 | ] 2032 | }, 2033 | "metadata": {}, 2034 | "execution_count": 48 2035 | } 2036 | ] 2037 | }, 2038 | { 2039 | "cell_type": "code", 2040 | "source": [ 2041 | "iris.isnull().any()" 2042 | ], 2043 | "metadata": { 2044 | "colab": { 2045 | "base_uri": "https://localhost:8080/" 2046 | }, 2047 | "id": "X6iSrfeVRxS5", 2048 | "outputId": "e020a857-5d45-4e33-ea13-7b6891801bbb" 2049 | }, 2050 | "execution_count": 49, 2051 | "outputs": [ 2052 | { 2053 | "output_type": "execute_result", 2054 | "data": { 2055 | "text/plain": [ 2056 | "Sepal_Length False\n", 2057 | "Sepal_Width False\n", 2058 | "Petal_Length False\n", 2059 | "Petal_Width False\n", 2060 | "Species False\n", 2061 | "dtype: bool" 2062 | ] 2063 | }, 2064 | "metadata": {}, 2065 | "execution_count": 49 2066 | } 2067 | ] 2068 | }, 2069 | { 2070 | "cell_type": "code", 2071 | "source": [ 2072 | "iris.isnull().sum()" 2073 | ], 2074 | "metadata": { 2075 | "colab": { 2076 | "base_uri": "https://localhost:8080/" 2077 | }, 2078 | "id": "TieDzHG1Rz-2", 2079 | "outputId": "bfbb27a7-6b51-4058-971b-15cf48896a2e" 2080 | }, 2081 | "execution_count": 50, 2082 | "outputs": [ 2083 | { 2084 | "output_type": "execute_result", 2085 | "data": { 2086 | "text/plain": [ 2087 | "Sepal_Length 0\n", 2088 | "Sepal_Width 0\n", 2089 | "Petal_Length 0\n", 2090 | "Petal_Width 0\n", 2091 | "Species 0\n", 2092 | "dtype: int64" 2093 | ] 2094 | }, 2095 | "metadata": {}, 2096 | "execution_count": 50 2097 | } 2098 | ] 2099 | }, 2100 | { 2101 | "cell_type": "code", 2102 | "source": [ 2103 | "iris.dtypes" 2104 | ], 2105 | "metadata": { 2106 | "colab": { 2107 | "base_uri": "https://localhost:8080/" 2108 | }, 2109 | "id": "Hifc2iyQR25-", 2110 | "outputId": "2fafd84f-4f15-411b-a5f5-f62dbb6a7ff9" 2111 | }, 2112 | "execution_count": 51, 2113 | "outputs": [ 2114 | { 2115 | "output_type": "execute_result", 2116 | "data": { 2117 | "text/plain": [ 2118 | "Sepal_Length float64\n", 2119 | "Sepal_Width float64\n", 2120 | "Petal_Length float64\n", 2121 | "Petal_Width float64\n", 2122 | "Species object\n", 2123 | "dtype: object" 2124 | ] 2125 | }, 2126 | "metadata": {}, 2127 | "execution_count": 51 2128 | } 2129 | ] 2130 | }, 2131 | { 2132 | "cell_type": "code", 2133 | "source": [ 2134 | "df=iris\n", 2135 | "df['petal Length(cm)']=iris['Petal_Length'].astype(\"int\")" 2136 | ], 2137 | "metadata": { 2138 | "id": "xOLC5WdOR5s8" 2139 | }, 2140 | "execution_count": 52, 2141 | "outputs": [] 2142 | }, 2143 | { 2144 | "cell_type": "code", 2145 | "source": [ 2146 | "df1=df" 2147 | ], 2148 | "metadata": { 2149 | "id": "b1gsd_49R8vK" 2150 | }, 2151 | "execution_count": 53, 2152 | "outputs": [] 2153 | }, 2154 | { 2155 | "cell_type": "code", 2156 | "source": [ 2157 | "df" 2158 | ], 2159 | "metadata": { 2160 | "colab": { 2161 | "base_uri": "https://localhost:8080/", 2162 | "height": 424 2163 | }, 2164 | "id": "PT4v4WsuR_Iy", 2165 | "outputId": "7800571c-c3d5-43a6-fab0-db0e6cd71ab8" 2166 | }, 2167 | "execution_count": 54, 2168 | "outputs": [ 2169 | { 2170 | "output_type": "execute_result", 2171 | "data": { 2172 | "text/plain": [ 2173 | " Sepal_Length Sepal_Width Petal_Length Petal_Width Species \\\n", 2174 | "0 5.1 3.5 1.4 0.2 Iris-setosa \n", 2175 | "1 4.9 3.0 1.4 0.2 Iris-setosa \n", 2176 | "2 4.7 3.2 1.3 0.2 Iris-setosa \n", 2177 | "3 4.6 3.1 1.5 0.2 Iris-setosa \n", 2178 | "4 5.0 3.6 1.4 0.2 Iris-setosa \n", 2179 | ".. ... ... ... ... ... \n", 2180 | "145 6.7 3.0 5.2 2.3 Iris-virginica \n", 2181 | "146 6.3 2.5 5.0 1.9 Iris-virginica \n", 2182 | "147 6.5 3.0 5.2 2.0 Iris-virginica \n", 2183 | "148 6.2 3.4 5.4 2.3 Iris-virginica \n", 2184 | "149 5.9 3.0 5.1 1.8 Iris-virginica \n", 2185 | "\n", 2186 | " petal Length(cm) \n", 2187 | "0 1 \n", 2188 | "1 1 \n", 2189 | "2 1 \n", 2190 | "3 1 \n", 2191 | "4 1 \n", 2192 | ".. ... \n", 2193 | "145 5 \n", 2194 | "146 5 \n", 2195 | "147 5 \n", 2196 | "148 5 \n", 2197 | "149 5 \n", 2198 | "\n", 2199 | "[150 rows x 6 columns]" 2200 | ], 2201 | "text/html": [ 2202 | "\n", 2203 | "
\n", 2204 | "
\n", 2205 | "
\n", 2206 | "\n", 2219 | "\n", 2220 | " \n", 2221 | " \n", 2222 | " \n", 2223 | " \n", 2224 | " \n", 2225 | " \n", 2226 | " \n", 2227 | " \n", 2228 | " \n", 2229 | " \n", 2230 | " \n", 2231 | " \n", 2232 | " \n", 2233 | " \n", 2234 | " \n", 2235 | " \n", 2236 | " \n", 2237 | " \n", 2238 | " \n", 2239 | " \n", 2240 | " \n", 2241 | " \n", 2242 | " \n", 2243 | " \n", 2244 | " \n", 2245 | " \n", 2246 | " \n", 2247 | " \n", 2248 | " \n", 2249 | " \n", 2250 | " \n", 2251 | " \n", 2252 | " \n", 2253 | " \n", 2254 | " \n", 2255 | " \n", 2256 | " \n", 2257 | " \n", 2258 | " \n", 2259 | " \n", 2260 | " \n", 2261 | " \n", 2262 | " \n", 2263 | " \n", 2264 | " \n", 2265 | " \n", 2266 | " \n", 2267 | " \n", 2268 | " \n", 2269 | " \n", 2270 | " \n", 2271 | " \n", 2272 | " \n", 2273 | " \n", 2274 | " \n", 2275 | " \n", 2276 | " \n", 2277 | " \n", 2278 | " \n", 2279 | " \n", 2280 | " \n", 2281 | " \n", 2282 | " \n", 2283 | " \n", 2284 | " \n", 2285 | " \n", 2286 | " \n", 2287 | " \n", 2288 | " \n", 2289 | " \n", 2290 | " \n", 2291 | " \n", 2292 | " \n", 2293 | " \n", 2294 | " \n", 2295 | " \n", 2296 | " \n", 2297 | " \n", 2298 | " \n", 2299 | " \n", 2300 | " \n", 2301 | " \n", 2302 | " \n", 2303 | " \n", 2304 | " \n", 2305 | " \n", 2306 | " \n", 2307 | " \n", 2308 | " \n", 2309 | " \n", 2310 | " \n", 2311 | " \n", 2312 | " \n", 2313 | " \n", 2314 | " \n", 2315 | " \n", 2316 | " \n", 2317 | " \n", 2318 | " \n", 2319 | " \n", 2320 | " \n", 2321 | " \n", 2322 | " \n", 2323 | " \n", 2324 | " \n", 2325 | " \n", 2326 | " \n", 2327 | " \n", 2328 | " \n", 2329 | " \n", 2330 | " \n", 2331 | " \n", 2332 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_WidthSpeciespetal Length(cm)
05.13.51.40.2Iris-setosa1
14.93.01.40.2Iris-setosa1
24.73.21.30.2Iris-setosa1
34.63.11.50.2Iris-setosa1
45.03.61.40.2Iris-setosa1
.....................
1456.73.05.22.3Iris-virginica5
1466.32.55.01.9Iris-virginica5
1476.53.05.22.0Iris-virginica5
1486.23.45.42.3Iris-virginica5
1495.93.05.11.8Iris-virginica5
\n", 2333 | "

150 rows × 6 columns

\n", 2334 | "
\n", 2335 | " \n", 2345 | " \n", 2346 | " \n", 2383 | "\n", 2384 | " \n", 2408 | "
\n", 2409 | "
\n", 2410 | " " 2411 | ] 2412 | }, 2413 | "metadata": {}, 2414 | "execution_count": 54 2415 | } 2416 | ] 2417 | }, 2418 | { 2419 | "cell_type": "markdown", 2420 | "source": [ 2421 | "Data Normalization" 2422 | ], 2423 | "metadata": { 2424 | "id": "bpB03y4vSDsB" 2425 | } 2426 | }, 2427 | { 2428 | "cell_type": "code", 2429 | "source": [ 2430 | "#Import pandas and sklearn library for preprocessing\n", 2431 | "from sklearn import preprocessing\n", 2432 | "min_max_scaler = preprocessing.MinMaxScaler()" 2433 | ], 2434 | "metadata": { 2435 | "id": "zIYCseXSSBM6" 2436 | }, 2437 | "execution_count": 55, 2438 | "outputs": [] 2439 | }, 2440 | { 2441 | "cell_type": "code", 2442 | "source": [ 2443 | "\n", 2444 | "X=iris.iloc[:,:4]" 2445 | ], 2446 | "metadata": { 2447 | "id": "RS5YUmoBSGaw" 2448 | }, 2449 | "execution_count": 56, 2450 | "outputs": [] 2451 | }, 2452 | { 2453 | "cell_type": "code", 2454 | "source": [ 2455 | "X" 2456 | ], 2457 | "metadata": { 2458 | "colab": { 2459 | "base_uri": "https://localhost:8080/", 2460 | "height": 424 2461 | }, 2462 | "id": "NQiNEnDzSM38", 2463 | "outputId": "9675f22e-3930-40b6-dd1c-120329cda471" 2464 | }, 2465 | "execution_count": 57, 2466 | "outputs": [ 2467 | { 2468 | "output_type": "execute_result", 2469 | "data": { 2470 | "text/plain": [ 2471 | " Sepal_Length Sepal_Width Petal_Length Petal_Width\n", 2472 | "0 5.1 3.5 1.4 0.2\n", 2473 | "1 4.9 3.0 1.4 0.2\n", 2474 | "2 4.7 3.2 1.3 0.2\n", 2475 | "3 4.6 3.1 1.5 0.2\n", 2476 | "4 5.0 3.6 1.4 0.2\n", 2477 | ".. ... ... ... ...\n", 2478 | "145 6.7 3.0 5.2 2.3\n", 2479 | "146 6.3 2.5 5.0 1.9\n", 2480 | "147 6.5 3.0 5.2 2.0\n", 2481 | "148 6.2 3.4 5.4 2.3\n", 2482 | "149 5.9 3.0 5.1 1.8\n", 2483 | "\n", 2484 | "[150 rows x 4 columns]" 2485 | ], 2486 | "text/html": [ 2487 | "\n", 2488 | "
\n", 2489 | "
\n", 2490 | "
\n", 2491 | "\n", 2504 | "\n", 2505 | " \n", 2506 | " \n", 2507 | " \n", 2508 | " \n", 2509 | " \n", 2510 | " \n", 2511 | " \n", 2512 | " \n", 2513 | " \n", 2514 | " \n", 2515 | " \n", 2516 | " \n", 2517 | " \n", 2518 | " \n", 2519 | " \n", 2520 | " \n", 2521 | " \n", 2522 | " \n", 2523 | " \n", 2524 | " \n", 2525 | " \n", 2526 | " \n", 2527 | " \n", 2528 | " \n", 2529 | " \n", 2530 | " \n", 2531 | " \n", 2532 | " \n", 2533 | " \n", 2534 | " \n", 2535 | " \n", 2536 | " \n", 2537 | " \n", 2538 | " \n", 2539 | " \n", 2540 | " \n", 2541 | " \n", 2542 | " \n", 2543 | " \n", 2544 | " \n", 2545 | " \n", 2546 | " \n", 2547 | " \n", 2548 | " \n", 2549 | " \n", 2550 | " \n", 2551 | " \n", 2552 | " \n", 2553 | " \n", 2554 | " \n", 2555 | " \n", 2556 | " \n", 2557 | " \n", 2558 | " \n", 2559 | " \n", 2560 | " \n", 2561 | " \n", 2562 | " \n", 2563 | " \n", 2564 | " \n", 2565 | " \n", 2566 | " \n", 2567 | " \n", 2568 | " \n", 2569 | " \n", 2570 | " \n", 2571 | " \n", 2572 | " \n", 2573 | " \n", 2574 | " \n", 2575 | " \n", 2576 | " \n", 2577 | " \n", 2578 | " \n", 2579 | " \n", 2580 | " \n", 2581 | " \n", 2582 | " \n", 2583 | " \n", 2584 | " \n", 2585 | " \n", 2586 | " \n", 2587 | " \n", 2588 | " \n", 2589 | " \n", 2590 | " \n", 2591 | " \n", 2592 | " \n", 2593 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_Width
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
...............
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8
\n", 2594 | "

150 rows × 4 columns

\n", 2595 | "
\n", 2596 | " \n", 2606 | " \n", 2607 | " \n", 2644 | "\n", 2645 | " \n", 2669 | "
\n", 2670 | "
\n", 2671 | " " 2672 | ] 2673 | }, 2674 | "metadata": {}, 2675 | "execution_count": 57 2676 | } 2677 | ] 2678 | }, 2679 | { 2680 | "cell_type": "code", 2681 | "source": [ 2682 | "# Create an object to transfrom the data to fit minmax processor\n", 2683 | "X_scaled = min_max_scaler.fit_transform(X)" 2684 | ], 2685 | "metadata": { 2686 | "id": "evPPvj5rSPkl" 2687 | }, 2688 | "execution_count": 58, 2689 | "outputs": [] 2690 | }, 2691 | { 2692 | "cell_type": "code", 2693 | "source": [ 2694 | "df_normalized = pd.DataFrame(X_scaled)" 2695 | ], 2696 | "metadata": { 2697 | "id": "2l__PfG6SSqn" 2698 | }, 2699 | "execution_count": 59, 2700 | "outputs": [] 2701 | }, 2702 | { 2703 | "cell_type": "code", 2704 | "source": [ 2705 | "df_normalized" 2706 | ], 2707 | "metadata": { 2708 | "colab": { 2709 | "base_uri": "https://localhost:8080/", 2710 | "height": 424 2711 | }, 2712 | "id": "NST1NBIESVXB", 2713 | "outputId": "e3db8b46-905b-4029-e058-16a92b023dfc" 2714 | }, 2715 | "execution_count": 60, 2716 | "outputs": [ 2717 | { 2718 | "output_type": "execute_result", 2719 | "data": { 2720 | "text/plain": [ 2721 | " 0 1 2 3\n", 2722 | "0 0.222222 0.625000 0.067797 0.041667\n", 2723 | "1 0.166667 0.416667 0.067797 0.041667\n", 2724 | "2 0.111111 0.500000 0.050847 0.041667\n", 2725 | "3 0.083333 0.458333 0.084746 0.041667\n", 2726 | "4 0.194444 0.666667 0.067797 0.041667\n", 2727 | ".. ... ... ... ...\n", 2728 | "145 0.666667 0.416667 0.711864 0.916667\n", 2729 | "146 0.555556 0.208333 0.677966 0.750000\n", 2730 | "147 0.611111 0.416667 0.711864 0.791667\n", 2731 | "148 0.527778 0.583333 0.745763 0.916667\n", 2732 | "149 0.444444 0.416667 0.694915 0.708333\n", 2733 | "\n", 2734 | "[150 rows x 4 columns]" 2735 | ], 2736 | "text/html": [ 2737 | "\n", 2738 | "
\n", 2739 | "
\n", 2740 | "
\n", 2741 | "\n", 2754 | "\n", 2755 | " \n", 2756 | " \n", 2757 | " \n", 2758 | " \n", 2759 | " \n", 2760 | " \n", 2761 | " \n", 2762 | " \n", 2763 | " \n", 2764 | " \n", 2765 | " \n", 2766 | " \n", 2767 | " \n", 2768 | " \n", 2769 | " \n", 2770 | " \n", 2771 | " \n", 2772 | " \n", 2773 | " \n", 2774 | " \n", 2775 | " \n", 2776 | " \n", 2777 | " \n", 2778 | " \n", 2779 | " \n", 2780 | " \n", 2781 | " \n", 2782 | " \n", 2783 | " \n", 2784 | " \n", 2785 | " \n", 2786 | " \n", 2787 | " \n", 2788 | " \n", 2789 | " \n", 2790 | " \n", 2791 | " \n", 2792 | " \n", 2793 | " \n", 2794 | " \n", 2795 | " \n", 2796 | " \n", 2797 | " \n", 2798 | " \n", 2799 | " \n", 2800 | " \n", 2801 | " \n", 2802 | " \n", 2803 | " \n", 2804 | " \n", 2805 | " \n", 2806 | " \n", 2807 | " \n", 2808 | " \n", 2809 | " \n", 2810 | " \n", 2811 | " \n", 2812 | " \n", 2813 | " \n", 2814 | " \n", 2815 | " \n", 2816 | " \n", 2817 | " \n", 2818 | " \n", 2819 | " \n", 2820 | " \n", 2821 | " \n", 2822 | " \n", 2823 | " \n", 2824 | " \n", 2825 | " \n", 2826 | " \n", 2827 | " \n", 2828 | " \n", 2829 | " \n", 2830 | " \n", 2831 | " \n", 2832 | " \n", 2833 | " \n", 2834 | " \n", 2835 | " \n", 2836 | " \n", 2837 | " \n", 2838 | " \n", 2839 | " \n", 2840 | " \n", 2841 | " \n", 2842 | " \n", 2843 | "
0123
00.2222220.6250000.0677970.041667
10.1666670.4166670.0677970.041667
20.1111110.5000000.0508470.041667
30.0833330.4583330.0847460.041667
40.1944440.6666670.0677970.041667
...............
1450.6666670.4166670.7118640.916667
1460.5555560.2083330.6779660.750000
1470.6111110.4166670.7118640.791667
1480.5277780.5833330.7457630.916667
1490.4444440.4166670.6949150.708333
\n", 2844 | "

150 rows × 4 columns

\n", 2845 | "
\n", 2846 | " \n", 2856 | " \n", 2857 | " \n", 2894 | "\n", 2895 | " \n", 2919 | "
\n", 2920 | "
\n", 2921 | " " 2922 | ] 2923 | }, 2924 | "metadata": {}, 2925 | "execution_count": 60 2926 | } 2927 | ] 2928 | }, 2929 | { 2930 | "cell_type": "markdown", 2931 | "source": [ 2932 | "Handaling Categorical Variables" 2933 | ], 2934 | "metadata": { 2935 | "id": "dsuQ5tFFSaXn" 2936 | } 2937 | }, 2938 | { 2939 | "cell_type": "code", 2940 | "source": [ 2941 | "df2=df\n", 2942 | "df2['Species'].unique()" 2943 | ], 2944 | "metadata": { 2945 | "colab": { 2946 | "base_uri": "https://localhost:8080/" 2947 | }, 2948 | "id": "kYQM_iJoSYEV", 2949 | "outputId": "c80f8cda-f230-4035-dae0-618550c8c9c7" 2950 | }, 2951 | "execution_count": 61, 2952 | "outputs": [ 2953 | { 2954 | "output_type": "execute_result", 2955 | "data": { 2956 | "text/plain": [ 2957 | "array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)" 2958 | ] 2959 | }, 2960 | "metadata": {}, 2961 | "execution_count": 61 2962 | } 2963 | ] 2964 | }, 2965 | { 2966 | "cell_type": "code", 2967 | "source": [ 2968 | "from sklearn import preprocessing\n", 2969 | "enc = preprocessing.OneHotEncoder()" 2970 | ], 2971 | "metadata": { 2972 | "id": "hxRkilNdSfyR" 2973 | }, 2974 | "execution_count": 62, 2975 | "outputs": [] 2976 | }, 2977 | { 2978 | "cell_type": "code", 2979 | "source": [ 2980 | "features_df=df2.drop(columns=['Species'])" 2981 | ], 2982 | "metadata": { 2983 | "id": "WI-k4YvRSnOR" 2984 | }, 2985 | "execution_count": 63, 2986 | "outputs": [] 2987 | }, 2988 | { 2989 | "cell_type": "code", 2990 | "source": [ 2991 | "features_df" 2992 | ], 2993 | "metadata": { 2994 | "colab": { 2995 | "base_uri": "https://localhost:8080/", 2996 | "height": 424 2997 | }, 2998 | "id": "eW4mOi_VSqK0", 2999 | "outputId": "741f8b00-3030-4cdc-9652-dfacba54fe37" 3000 | }, 3001 | "execution_count": 64, 3002 | "outputs": [ 3003 | { 3004 | "output_type": "execute_result", 3005 | "data": { 3006 | "text/plain": [ 3007 | " Sepal_Length Sepal_Width Petal_Length Petal_Width petal Length(cm)\n", 3008 | "0 5.1 3.5 1.4 0.2 1\n", 3009 | "1 4.9 3.0 1.4 0.2 1\n", 3010 | "2 4.7 3.2 1.3 0.2 1\n", 3011 | "3 4.6 3.1 1.5 0.2 1\n", 3012 | "4 5.0 3.6 1.4 0.2 1\n", 3013 | ".. ... ... ... ... ...\n", 3014 | "145 6.7 3.0 5.2 2.3 5\n", 3015 | "146 6.3 2.5 5.0 1.9 5\n", 3016 | "147 6.5 3.0 5.2 2.0 5\n", 3017 | "148 6.2 3.4 5.4 2.3 5\n", 3018 | "149 5.9 3.0 5.1 1.8 5\n", 3019 | "\n", 3020 | "[150 rows x 5 columns]" 3021 | ], 3022 | "text/html": [ 3023 | "\n", 3024 | "
\n", 3025 | "
\n", 3026 | "
\n", 3027 | "\n", 3040 | "\n", 3041 | " \n", 3042 | " \n", 3043 | " \n", 3044 | " \n", 3045 | " \n", 3046 | " \n", 3047 | " \n", 3048 | " \n", 3049 | " \n", 3050 | " \n", 3051 | " \n", 3052 | " \n", 3053 | " \n", 3054 | " \n", 3055 | " \n", 3056 | " \n", 3057 | " \n", 3058 | " \n", 3059 | " \n", 3060 | " \n", 3061 | " \n", 3062 | " \n", 3063 | " \n", 3064 | " \n", 3065 | " \n", 3066 | " \n", 3067 | " \n", 3068 | " \n", 3069 | " \n", 3070 | " \n", 3071 | " \n", 3072 | " \n", 3073 | " \n", 3074 | " \n", 3075 | " \n", 3076 | " \n", 3077 | " \n", 3078 | " \n", 3079 | " \n", 3080 | " \n", 3081 | " \n", 3082 | " \n", 3083 | " \n", 3084 | " \n", 3085 | " \n", 3086 | " \n", 3087 | " \n", 3088 | " \n", 3089 | " \n", 3090 | " \n", 3091 | " \n", 3092 | " \n", 3093 | " \n", 3094 | " \n", 3095 | " \n", 3096 | " \n", 3097 | " \n", 3098 | " \n", 3099 | " \n", 3100 | " \n", 3101 | " \n", 3102 | " \n", 3103 | " \n", 3104 | " \n", 3105 | " \n", 3106 | " \n", 3107 | " \n", 3108 | " \n", 3109 | " \n", 3110 | " \n", 3111 | " \n", 3112 | " \n", 3113 | " \n", 3114 | " \n", 3115 | " \n", 3116 | " \n", 3117 | " \n", 3118 | " \n", 3119 | " \n", 3120 | " \n", 3121 | " \n", 3122 | " \n", 3123 | " \n", 3124 | " \n", 3125 | " \n", 3126 | " \n", 3127 | " \n", 3128 | " \n", 3129 | " \n", 3130 | " \n", 3131 | " \n", 3132 | " \n", 3133 | " \n", 3134 | " \n", 3135 | " \n", 3136 | " \n", 3137 | " \n", 3138 | " \n", 3139 | " \n", 3140 | " \n", 3141 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_Widthpetal Length(cm)
05.13.51.40.21
14.93.01.40.21
24.73.21.30.21
34.63.11.50.21
45.03.61.40.21
..................
1456.73.05.22.35
1466.32.55.01.95
1476.53.05.22.05
1486.23.45.42.35
1495.93.05.11.85
\n", 3142 | "

150 rows × 5 columns

\n", 3143 | "
\n", 3144 | " \n", 3154 | " \n", 3155 | " \n", 3192 | "\n", 3193 | " \n", 3217 | "
\n", 3218 | "
\n", 3219 | " " 3220 | ] 3221 | }, 3222 | "metadata": {}, 3223 | "execution_count": 64 3224 | } 3225 | ] 3226 | }, 3227 | { 3228 | "cell_type": "code", 3229 | "source": [ 3230 | "enc_df=(enc.fit_transform(df2[['Species']])).toarray()\n", 3231 | " \n" 3232 | ], 3233 | "metadata": { 3234 | "id": "FLjh34boStCG" 3235 | }, 3236 | "execution_count": 65, 3237 | "outputs": [] 3238 | }, 3239 | { 3240 | "cell_type": "code", 3241 | "source": [ 3242 | "\n", 3243 | "enc_df = pd.DataFrame(enc_df, columns = ['Iris-Setosa','Iris-Versicolor','Iris-Virginica'])" 3244 | ], 3245 | "metadata": { 3246 | "id": "CVaiaYtOSwqs" 3247 | }, 3248 | "execution_count": 66, 3249 | "outputs": [] 3250 | }, 3251 | { 3252 | "cell_type": "code", 3253 | "source": [ 3254 | "df_encode = features_df.join(enc_df)" 3255 | ], 3256 | "metadata": { 3257 | "id": "GlZ4eFowSz4f" 3258 | }, 3259 | "execution_count": 67, 3260 | "outputs": [] 3261 | }, 3262 | { 3263 | "cell_type": "code", 3264 | "source": [ 3265 | "df_encode" 3266 | ], 3267 | "metadata": { 3268 | "colab": { 3269 | "base_uri": "https://localhost:8080/", 3270 | "height": 424 3271 | }, 3272 | "id": "vzebBKUFS2U7", 3273 | "outputId": "dcd6ddab-d283-4004-d72e-cdf603007b74" 3274 | }, 3275 | "execution_count": 68, 3276 | "outputs": [ 3277 | { 3278 | "output_type": "execute_result", 3279 | "data": { 3280 | "text/plain": [ 3281 | " Sepal_Length Sepal_Width Petal_Length Petal_Width petal Length(cm) \\\n", 3282 | "0 5.1 3.5 1.4 0.2 1 \n", 3283 | "1 4.9 3.0 1.4 0.2 1 \n", 3284 | "2 4.7 3.2 1.3 0.2 1 \n", 3285 | "3 4.6 3.1 1.5 0.2 1 \n", 3286 | "4 5.0 3.6 1.4 0.2 1 \n", 3287 | ".. ... ... ... ... ... \n", 3288 | "145 6.7 3.0 5.2 2.3 5 \n", 3289 | "146 6.3 2.5 5.0 1.9 5 \n", 3290 | "147 6.5 3.0 5.2 2.0 5 \n", 3291 | "148 6.2 3.4 5.4 2.3 5 \n", 3292 | "149 5.9 3.0 5.1 1.8 5 \n", 3293 | "\n", 3294 | " Iris-Setosa Iris-Versicolor Iris-Virginica \n", 3295 | "0 1.0 0.0 0.0 \n", 3296 | "1 1.0 0.0 0.0 \n", 3297 | "2 1.0 0.0 0.0 \n", 3298 | "3 1.0 0.0 0.0 \n", 3299 | "4 1.0 0.0 0.0 \n", 3300 | ".. ... ... ... \n", 3301 | "145 0.0 0.0 1.0 \n", 3302 | "146 0.0 0.0 1.0 \n", 3303 | "147 0.0 0.0 1.0 \n", 3304 | "148 0.0 0.0 1.0 \n", 3305 | "149 0.0 0.0 1.0 \n", 3306 | "\n", 3307 | "[150 rows x 8 columns]" 3308 | ], 3309 | "text/html": [ 3310 | "\n", 3311 | "
\n", 3312 | "
\n", 3313 | "
\n", 3314 | "\n", 3327 | "\n", 3328 | " \n", 3329 | " \n", 3330 | " \n", 3331 | " \n", 3332 | " \n", 3333 | " \n", 3334 | " \n", 3335 | " \n", 3336 | " \n", 3337 | " \n", 3338 | " \n", 3339 | " \n", 3340 | " \n", 3341 | " \n", 3342 | " \n", 3343 | " \n", 3344 | " \n", 3345 | " \n", 3346 | " \n", 3347 | " \n", 3348 | " \n", 3349 | " \n", 3350 | " \n", 3351 | " \n", 3352 | " \n", 3353 | " \n", 3354 | " \n", 3355 | " \n", 3356 | " \n", 3357 | " \n", 3358 | " \n", 3359 | " \n", 3360 | " \n", 3361 | " \n", 3362 | " \n", 3363 | " \n", 3364 | " \n", 3365 | " \n", 3366 | " \n", 3367 | " \n", 3368 | " \n", 3369 | " \n", 3370 | " \n", 3371 | " \n", 3372 | " \n", 3373 | " \n", 3374 | " \n", 3375 | " \n", 3376 | " \n", 3377 | " \n", 3378 | " \n", 3379 | " \n", 3380 | " \n", 3381 | " \n", 3382 | " \n", 3383 | " \n", 3384 | " \n", 3385 | " \n", 3386 | " \n", 3387 | " \n", 3388 | " \n", 3389 | " \n", 3390 | " \n", 3391 | " \n", 3392 | " \n", 3393 | " \n", 3394 | " \n", 3395 | " \n", 3396 | " \n", 3397 | " \n", 3398 | " \n", 3399 | " \n", 3400 | " \n", 3401 | " \n", 3402 | " \n", 3403 | " \n", 3404 | " \n", 3405 | " \n", 3406 | " \n", 3407 | " \n", 3408 | " \n", 3409 | " \n", 3410 | " \n", 3411 | " \n", 3412 | " \n", 3413 | " \n", 3414 | " \n", 3415 | " \n", 3416 | " \n", 3417 | " \n", 3418 | " \n", 3419 | " \n", 3420 | " \n", 3421 | " \n", 3422 | " \n", 3423 | " \n", 3424 | " \n", 3425 | " \n", 3426 | " \n", 3427 | " \n", 3428 | " \n", 3429 | " \n", 3430 | " \n", 3431 | " \n", 3432 | " \n", 3433 | " \n", 3434 | " \n", 3435 | " \n", 3436 | " \n", 3437 | " \n", 3438 | " \n", 3439 | " \n", 3440 | " \n", 3441 | " \n", 3442 | " \n", 3443 | " \n", 3444 | " \n", 3445 | " \n", 3446 | " \n", 3447 | " \n", 3448 | " \n", 3449 | " \n", 3450 | " \n", 3451 | " \n", 3452 | " \n", 3453 | " \n", 3454 | " \n", 3455 | " \n", 3456 | " \n", 3457 | " \n", 3458 | " \n", 3459 | " \n", 3460 | " \n", 3461 | " \n", 3462 | " \n", 3463 | " \n", 3464 | "
Sepal_LengthSepal_WidthPetal_LengthPetal_Widthpetal Length(cm)Iris-SetosaIris-VersicolorIris-Virginica
05.13.51.40.211.00.00.0
14.93.01.40.211.00.00.0
24.73.21.30.211.00.00.0
34.63.11.50.211.00.00.0
45.03.61.40.211.00.00.0
...........................
1456.73.05.22.350.00.01.0
1466.32.55.01.950.00.01.0
1476.53.05.22.050.00.01.0
1486.23.45.42.350.00.01.0
1495.93.05.11.850.00.01.0
\n", 3465 | "

150 rows × 8 columns

\n", 3466 | "
\n", 3467 | " \n", 3477 | " \n", 3478 | " \n", 3515 | "\n", 3516 | " \n", 3540 | "
\n", 3541 | "
\n", 3542 | " " 3543 | ] 3544 | }, 3545 | "metadata": {}, 3546 | "execution_count": 68 3547 | } 3548 | ] 3549 | } 3550 | ] 3551 | } --------------------------------------------------------------------------------