├── StudentPerformance.csv
├── README.md
├── Iris.csv
├── Covid-Vaccine.ipynb
├── Mall_Customers.csv
├── Social_Network_Ads.csv
├── MovieRecommendation.ipynb
├── Assignment_7.ipynb
├── BostonHousing.csv
├── Assignment_9.ipynb
└── Assignment_6.ipynb
/StudentPerformance.csv:
--------------------------------------------------------------------------------
1 | gender,math_score,reading_score,writing_score,placement_score,club_join_year,placement_offer
2 | female,63,84,64,84,2020,2
3 | female,71,80,76,86,2018,3
4 | female,64,81,66,81,2020,2
5 | male,71,85,77,96,2018,1
6 | male,68,86,76,,2021,3
7 | female,94,86,61,100,2019,1
8 | male,75,79,66,-99,2020,1
9 | female,,,66,95,2019,3
10 | male,66,88,66,88,2020,3
11 | male,70,79,61,87,2021,2
12 | female,-99,80,65,85,2021,1
13 | male,76,84,-99,,2020,2
14 | female,74,79,79,98,2019,2
15 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Third Year Data Science And Big Data Analysis Lab Practicals
2 |
3 | ## Assignment 1 - Data Wrangling Part 1
4 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment1.ipynb)
5 |
6 |
7 | ## Assignment 2 - Data Wrangling Part 2
8 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment2.ipynb)
9 |
10 |
11 | ## Assignment 3 - Statistics Operations
12 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_3.ipynb)
13 |
14 |
15 | ## Assignment 4 - Linear Regression Model
16 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment4.ipynb)
17 |
18 |
19 | ## Assignment 5 - Logistic Regression
20 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment%205_1.ipynb)
21 |
22 |
23 | ## Assignment 6 - Naïve Bayes Classification Algorithm
24 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_6.ipynb)
25 |
26 |
27 | ## Assignment 7 - Text Analytics
28 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_7.ipynb)
29 |
30 |
31 | ## Assignment 8 - Data Visualization-I
32 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_8.ipynb)
33 |
34 |
35 | ## Assignment 9 - Data Visualization II
36 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_9.ipynb)
37 |
38 |
39 | ## Assignment 10 - Data Visualization III
40 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment%2010.ipynb)
41 |
42 |
43 |
44 | # Mini Projects:
45 | ## Project 1 - Covid Data Analytics
46 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Covid-Vaccine.ipynb)
47 |
48 | ## Project 2 - Movie Recommendation System
49 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/MovieRecommendation.ipynb)
50 |
--------------------------------------------------------------------------------
/Iris.csv:
--------------------------------------------------------------------------------
1 | "sepal.length","sepal.width","petal.length","petal.width","variety"
2 | 5.1,3.5,1.4,.2,"Setosa"
3 | 4.9,3,1.4,.2,"Setosa"
4 | 4.7,3.2,1.3,.2,"Setosa"
5 | 4.6,3.1,1.5,.2,"Setosa"
6 | 5,3.6,1.4,.2,"Setosa"
7 | 5.4,3.9,1.7,.4,"Setosa"
8 | 4.6,3.4,1.4,.3,"Setosa"
9 | 5,3.4,1.5,.2,"Setosa"
10 | 4.4,2.9,1.4,.2,"Setosa"
11 | 4.9,3.1,1.5,.1,"Setosa"
12 | 5.4,3.7,1.5,.2,"Setosa"
13 | 4.8,3.4,1.6,.2,"Setosa"
14 | 4.8,3,1.4,.1,"Setosa"
15 | 4.3,3,1.1,.1,"Setosa"
16 | 5.8,4,1.2,.2,"Setosa"
17 | 5.7,4.4,1.5,.4,"Setosa"
18 | 5.4,3.9,1.3,.4,"Setosa"
19 | 5.1,3.5,1.4,.3,"Setosa"
20 | 5.7,3.8,1.7,.3,"Setosa"
21 | 5.1,3.8,1.5,.3,"Setosa"
22 | 5.4,3.4,1.7,.2,"Setosa"
23 | 5.1,3.7,1.5,.4,"Setosa"
24 | 4.6,3.6,1,.2,"Setosa"
25 | 5.1,3.3,1.7,.5,"Setosa"
26 | 4.8,3.4,1.9,.2,"Setosa"
27 | 5,3,1.6,.2,"Setosa"
28 | 5,3.4,1.6,.4,"Setosa"
29 | 5.2,3.5,1.5,.2,"Setosa"
30 | 5.2,3.4,1.4,.2,"Setosa"
31 | 4.7,3.2,1.6,.2,"Setosa"
32 | 4.8,3.1,1.6,.2,"Setosa"
33 | 5.4,3.4,1.5,.4,"Setosa"
34 | 5.2,4.1,1.5,.1,"Setosa"
35 | 5.5,4.2,1.4,.2,"Setosa"
36 | 4.9,3.1,1.5,.2,"Setosa"
37 | 5,3.2,1.2,.2,"Setosa"
38 | 5.5,3.5,1.3,.2,"Setosa"
39 | 4.9,3.6,1.4,.1,"Setosa"
40 | 4.4,3,1.3,.2,"Setosa"
41 | 5.1,3.4,1.5,.2,"Setosa"
42 | 5,3.5,1.3,.3,"Setosa"
43 | 4.5,2.3,1.3,.3,"Setosa"
44 | 4.4,3.2,1.3,.2,"Setosa"
45 | 5,3.5,1.6,.6,"Setosa"
46 | 5.1,3.8,1.9,.4,"Setosa"
47 | 4.8,3,1.4,.3,"Setosa"
48 | 5.1,3.8,1.6,.2,"Setosa"
49 | 4.6,3.2,1.4,.2,"Setosa"
50 | 5.3,3.7,1.5,.2,"Setosa"
51 | 5,3.3,1.4,.2,"Setosa"
52 | 7,3.2,4.7,1.4,"Versicolor"
53 | 6.4,3.2,4.5,1.5,"Versicolor"
54 | 6.9,3.1,4.9,1.5,"Versicolor"
55 | 5.5,2.3,4,1.3,"Versicolor"
56 | 6.5,2.8,4.6,1.5,"Versicolor"
57 | 5.7,2.8,4.5,1.3,"Versicolor"
58 | 6.3,3.3,4.7,1.6,"Versicolor"
59 | 4.9,2.4,3.3,1,"Versicolor"
60 | 6.6,2.9,4.6,1.3,"Versicolor"
61 | 5.2,2.7,3.9,1.4,"Versicolor"
62 | 5,2,3.5,1,"Versicolor"
63 | 5.9,3,4.2,1.5,"Versicolor"
64 | 6,2.2,4,1,"Versicolor"
65 | 6.1,2.9,4.7,1.4,"Versicolor"
66 | 5.6,2.9,3.6,1.3,"Versicolor"
67 | 6.7,3.1,4.4,1.4,"Versicolor"
68 | 5.6,3,4.5,1.5,"Versicolor"
69 | 5.8,2.7,4.1,1,"Versicolor"
70 | 6.2,2.2,4.5,1.5,"Versicolor"
71 | 5.6,2.5,3.9,1.1,"Versicolor"
72 | 5.9,3.2,4.8,1.8,"Versicolor"
73 | 6.1,2.8,4,1.3,"Versicolor"
74 | 6.3,2.5,4.9,1.5,"Versicolor"
75 | 6.1,2.8,4.7,1.2,"Versicolor"
76 | 6.4,2.9,4.3,1.3,"Versicolor"
77 | 6.6,3,4.4,1.4,"Versicolor"
78 | 6.8,2.8,4.8,1.4,"Versicolor"
79 | 6.7,3,5,1.7,"Versicolor"
80 | 6,2.9,4.5,1.5,"Versicolor"
81 | 5.7,2.6,3.5,1,"Versicolor"
82 | 5.5,2.4,3.8,1.1,"Versicolor"
83 | 5.5,2.4,3.7,1,"Versicolor"
84 | 5.8,2.7,3.9,1.2,"Versicolor"
85 | 6,2.7,5.1,1.6,"Versicolor"
86 | 5.4,3,4.5,1.5,"Versicolor"
87 | 6,3.4,4.5,1.6,"Versicolor"
88 | 6.7,3.1,4.7,1.5,"Versicolor"
89 | 6.3,2.3,4.4,1.3,"Versicolor"
90 | 5.6,3,4.1,1.3,"Versicolor"
91 | 5.5,2.5,4,1.3,"Versicolor"
92 | 5.5,2.6,4.4,1.2,"Versicolor"
93 | 6.1,3,4.6,1.4,"Versicolor"
94 | 5.8,2.6,4,1.2,"Versicolor"
95 | 5,2.3,3.3,1,"Versicolor"
96 | 5.6,2.7,4.2,1.3,"Versicolor"
97 | 5.7,3,4.2,1.2,"Versicolor"
98 | 5.7,2.9,4.2,1.3,"Versicolor"
99 | 6.2,2.9,4.3,1.3,"Versicolor"
100 | 5.1,2.5,3,1.1,"Versicolor"
101 | 5.7,2.8,4.1,1.3,"Versicolor"
102 | 6.3,3.3,6,2.5,"Virginica"
103 | 5.8,2.7,5.1,1.9,"Virginica"
104 | 7.1,3,5.9,2.1,"Virginica"
105 | 6.3,2.9,5.6,1.8,"Virginica"
106 | 6.5,3,5.8,2.2,"Virginica"
107 | 7.6,3,6.6,2.1,"Virginica"
108 | 4.9,2.5,4.5,1.7,"Virginica"
109 | 7.3,2.9,6.3,1.8,"Virginica"
110 | 6.7,2.5,5.8,1.8,"Virginica"
111 | 7.2,3.6,6.1,2.5,"Virginica"
112 | 6.5,3.2,5.1,2,"Virginica"
113 | 6.4,2.7,5.3,1.9,"Virginica"
114 | 6.8,3,5.5,2.1,"Virginica"
115 | 5.7,2.5,5,2,"Virginica"
116 | 5.8,2.8,5.1,2.4,"Virginica"
117 | 6.4,3.2,5.3,2.3,"Virginica"
118 | 6.5,3,5.5,1.8,"Virginica"
119 | 7.7,3.8,6.7,2.2,"Virginica"
120 | 7.7,2.6,6.9,2.3,"Virginica"
121 | 6,2.2,5,1.5,"Virginica"
122 | 6.9,3.2,5.7,2.3,"Virginica"
123 | 5.6,2.8,4.9,2,"Virginica"
124 | 7.7,2.8,6.7,2,"Virginica"
125 | 6.3,2.7,4.9,1.8,"Virginica"
126 | 6.7,3.3,5.7,2.1,"Virginica"
127 | 7.2,3.2,6,1.8,"Virginica"
128 | 6.2,2.8,4.8,1.8,"Virginica"
129 | 6.1,3,4.9,1.8,"Virginica"
130 | 6.4,2.8,5.6,2.1,"Virginica"
131 | 7.2,3,5.8,1.6,"Virginica"
132 | 7.4,2.8,6.1,1.9,"Virginica"
133 | 7.9,3.8,6.4,2,"Virginica"
134 | 6.4,2.8,5.6,2.2,"Virginica"
135 | 6.3,2.8,5.1,1.5,"Virginica"
136 | 6.1,2.6,5.6,1.4,"Virginica"
137 | 7.7,3,6.1,2.3,"Virginica"
138 | 6.3,3.4,5.6,2.4,"Virginica"
139 | 6.4,3.1,5.5,1.8,"Virginica"
140 | 6,3,4.8,1.8,"Virginica"
141 | 6.9,3.1,5.4,2.1,"Virginica"
142 | 6.7,3.1,5.6,2.4,"Virginica"
143 | 6.9,3.1,5.1,2.3,"Virginica"
144 | 5.8,2.7,5.1,1.9,"Virginica"
145 | 6.8,3.2,5.9,2.3,"Virginica"
146 | 6.7,3.3,5.7,2.5,"Virginica"
147 | 6.7,3,5.2,2.3,"Virginica"
148 | 6.3,2.5,5,1.9,"Virginica"
149 | 6.5,3,5.2,2,"Virginica"
150 | 6.2,3.4,5.4,2.3,"Virginica"
151 | 5.9,3,5.1,1.8,"Virginica"
--------------------------------------------------------------------------------
/Covid-Vaccine.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "### Use the covid_vaccine_statewise.csv dataset and perform following analytics on the given dataset"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 18,
13 | "metadata": {},
14 | "outputs": [],
15 | "source": [
16 | "import numpy as np \n",
17 | "import pandas as pd\n",
18 | "import warnings \n",
19 | "warnings.filterwarnings(\"ignore\")\n"
20 | ]
21 | },
22 | {
23 | "cell_type": "code",
24 | "execution_count": null,
25 | "metadata": {},
26 | "outputs": [],
27 | "source": [
28 | "df=pd.read_csv(\"https://raw.githubusercontent.com/kunalnandre/TE-Laboratory-Practicals/main/Data%20Science%20and%20Big%20Data/Mini%20Project/covid_vaccine_statewise.csv\")\n"
29 | ]
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "metadata": {},
34 | "source": [
35 | "### Describe the dataset"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": null,
41 | "metadata": {},
42 | "outputs": [],
43 | "source": [
44 | "df.describe()"
45 | ]
46 | },
47 | {
48 | "cell_type": "markdown",
49 | "metadata": {},
50 | "source": [
51 | "### Number of persons state wise vaccinated for first dose in India"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": null,
57 | "metadata": {},
58 | "outputs": [],
59 | "source": [
60 | "print(\"Number of persons state wise vaccinated for first dose in India\")\n",
61 | "first_dose = df.groupby('State')[['First Dose Administered']].sum()\n",
62 | "first_dose"
63 | ]
64 | },
65 | {
66 | "cell_type": "markdown",
67 | "metadata": {},
68 | "source": [
69 | "### Number of persons state wise vaccinated for first dose in India"
70 | ]
71 | },
72 | {
73 | "cell_type": "code",
74 | "execution_count": null,
75 | "metadata": {},
76 | "outputs": [],
77 | "source": [
78 | "print(\"Number of persons state wise vaccinated for second dose in India\")\n",
79 | "\n",
80 | "first_dose = df.groupby('State')[['Second Dose Administered']].sum()\n",
81 | "first_dose"
82 | ]
83 | },
84 | {
85 | "cell_type": "markdown",
86 | "metadata": {},
87 | "source": [
88 | "### Number of Males vaccinated"
89 | ]
90 | },
91 | {
92 | "cell_type": "code",
93 | "execution_count": null,
94 | "metadata": {},
95 | "outputs": [],
96 | "source": [
97 | "male = df[\"Male(Individuals Vaccinated)\"].sum()\n",
98 | "print(\"Number of Males vaccinated are\", int(male))"
99 | ]
100 | },
101 | {
102 | "cell_type": "markdown",
103 | "metadata": {},
104 | "source": [
105 | "### Number of females vaccinated"
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": null,
111 | "metadata": {},
112 | "outputs": [],
113 | "source": [
114 | "female = df[\"Female(Individuals Vaccinated)\"].sum()\n",
115 | "print(\"Number of females vaccinated are\", int(female))"
116 | ]
117 | },
118 | {
119 | "cell_type": "code",
120 | "execution_count": null,
121 | "metadata": {},
122 | "outputs": [],
123 | "source": [
124 | "df.info()"
125 | ]
126 | },
127 | {
128 | "cell_type": "code",
129 | "execution_count": null,
130 | "metadata": {},
131 | "outputs": [],
132 | "source": [
133 | "df.describe(include='object')"
134 | ]
135 | },
136 | {
137 | "cell_type": "code",
138 | "execution_count": null,
139 | "metadata": {},
140 | "outputs": [],
141 | "source": [
142 | "df.shape"
143 | ]
144 | },
145 | {
146 | "cell_type": "code",
147 | "execution_count": null,
148 | "metadata": {},
149 | "outputs": [],
150 | "source": [
151 | "df.head()"
152 | ]
153 | },
154 | {
155 | "cell_type": "code",
156 | "execution_count": null,
157 | "metadata": {},
158 | "outputs": [],
159 | "source": [
160 | "df.tail()"
161 | ]
162 | },
163 | {
164 | "cell_type": "code",
165 | "execution_count": null,
166 | "metadata": {},
167 | "outputs": [],
168 | "source": []
169 | },
170 | {
171 | "cell_type": "code",
172 | "execution_count": null,
173 | "metadata": {},
174 | "outputs": [],
175 | "source": []
176 | }
177 | ],
178 | "metadata": {
179 | "kernelspec": {
180 | "display_name": "Python 3",
181 | "language": "python",
182 | "name": "python3"
183 | },
184 | "language_info": {
185 | "codemirror_mode": {
186 | "name": "ipython",
187 | "version": 3
188 | },
189 | "file_extension": ".py",
190 | "mimetype": "text/x-python",
191 | "name": "python",
192 | "nbconvert_exporter": "python",
193 | "pygments_lexer": "ipython3",
194 | "version": "3.6.4"
195 | }
196 | },
197 | "nbformat": 4,
198 | "nbformat_minor": 2
199 | }
200 |
--------------------------------------------------------------------------------
/Mall_Customers.csv:
--------------------------------------------------------------------------------
1 | CustomerID,Genre,Age Group,Age,Annual Income (k$),Spending Score (1-100)
2 | 1,Male,Teen,19,15,39
3 | 2,Male,Middle Age,21,15,81
4 | 3,Female,Middle Age,20,16,6
5 | 4,Female,Middle Age,23,16,77
6 | 5,Female,Middle Age,31,17,40
7 | 6,Female,Middle Age,22,17,76
8 | 7,Female,Middle Age,35,18,6
9 | 8,Female,Middle Age,23,18,94
10 | 9,Male,Elder,64,19,3
11 | 10,Female,Middle Age,30,19,72
12 | 11,Male,Elder,67,19,14
13 | 12,Female,Middle Age,35,19,99
14 | 13,Female,Elder,58,20,15
15 | 14,Female,Middle Age,24,20,77
16 | 15,Male,Middle Age,37,20,13
17 | 16,Male,Middle Age,22,20,79
18 | 17,Female,Middle Age,35,21,35
19 | 18,Male,Middle Age,20,21,66
20 | 19,Male,Elder,52,23,29
21 | 20,Female,Middle Age,35,23,98
22 | 21,Male,Middle Age,35,24,35
23 | 22,Male,Middle Age,25,24,73
24 | 23,Female,Elder,46,25,5
25 | 24,Male,Middle Age,31,25,73
26 | 25,Female,Elder,54,28,14
27 | 26,Male,Middle Age,29,28,82
28 | 27,Female,Elder,45,28,32
29 | 28,Male,Middle Age,35,28,61
30 | 29,Female,Elder,40,29,31
31 | 30,Female,Middle Age,23,29,87
32 | 31,Male,Elder,60,30,4
33 | 32,Female,Middle Age,21,30,73
34 | 33,Male,Elder,53,33,4
35 | 34,Male,Teen,18,33,92
36 | 35,Female,Elder,49,33,14
37 | 36,Female,Middle Age,21,33,81
38 | 37,Female,Elder,42,34,17
39 | 38,Female,Middle Age,30,34,73
40 | 39,Female,Middle Age,36,37,26
41 | 40,Female,Middle Age,20,37,75
42 | 41,Female,Elder,65,38,35
43 | 42,Male,Middle Age,24,38,92
44 | 43,Male,Elder,48,39,36
45 | 44,Female,Middle Age,31,39,61
46 | 45,Female,Elder,49,39,28
47 | 46,Female,Middle Age,24,39,65
48 | 47,Female,Elder,50,40,55
49 | 48,Female,Middle Age,27,40,47
50 | 49,Female,Middle Age,29,40,42
51 | 50,Female,Middle Age,31,40,42
52 | 51,Female,Elder,49,42,52
53 | 52,Male,Middle Age,33,42,60
54 | 53,Female,Middle Age,31,43,54
55 | 54,Male,Elder,59,43,60
56 | 55,Female,Elder,50,43,45
57 | 56,Male,Elder,47,43,41
58 | 57,Female,Elder,51,44,50
59 | 58,Male,Elder,69,44,46
60 | 59,Female,Middle Age,27,46,51
61 | 60,Male,Elder,53,46,46
62 | 61,Male,Elder,70,46,56
63 | 62,Male,Teen,19,46,55
64 | 63,Female,Elder,67,47,52
65 | 64,Female,Elder,54,47,59
66 | 65,Male,Elder,63,48,51
67 | 66,Male,Teen,18,48,59
68 | 67,Female,Elder,43,48,50
69 | 68,Female,Elder,68,48,48
70 | 69,Male,Teen,19,48,59
71 | 70,Female,Middle Age,32,48,47
72 | 71,Male,Elder,70,49,55
73 | 72,Female,Elder,47,49,42
74 | 73,Female,Elder,60,50,49
75 | 74,Female,Elder,60,50,56
76 | 75,Male,Elder,59,54,47
77 | 76,Male,Middle Age,26,54,54
78 | 77,Female,Elder,45,54,53
79 | 78,Male,Elder,40,54,48
80 | 79,Female,Middle Age,23,54,52
81 | 80,Female,Elder,49,54,42
82 | 81,Male,Elder,57,54,51
83 | 82,Male,Middle Age,38,54,55
84 | 83,Male,Elder,67,54,41
85 | 84,Female,Elder,46,54,44
86 | 85,Female,Middle Age,21,54,57
87 | 86,Male,Elder,48,54,46
88 | 87,Female,Elder,55,57,58
89 | 88,Female,Middle Age,22,57,55
90 | 89,Female,Middle Age,34,58,60
91 | 90,Female,Elder,50,58,46
92 | 91,Female,Elder,68,59,55
93 | 92,Male,Teen,18,59,41
94 | 93,Male,Elder,48,60,49
95 | 94,Female,Elder,40,60,40
96 | 95,Female,Middle Age,32,60,42
97 | 96,Male,Middle Age,24,60,52
98 | 97,Female,Elder,47,60,47
99 | 98,Female,Middle Age,27,60,50
100 | 99,Male,Elder,48,61,42
101 | 100,Male,Middle Age,20,61,49
102 | 101,Female,Middle Age,23,62,41
103 | 102,Female,Elder,49,62,48
104 | 103,Male,Elder,67,62,59
105 | 104,Male,Middle Age,26,62,55
106 | 105,Male,Elder,49,62,56
107 | 106,Female,Middle Age,21,62,42
108 | 107,Female,Elder,66,63,50
109 | 108,Male,Elder,54,63,46
110 | 109,Male,Elder,68,63,43
111 | 110,Male,Elder,66,63,48
112 | 111,Male,Elder,65,63,52
113 | 112,Female,Teen,19,63,54
114 | 113,Female,Middle Age,38,64,42
115 | 114,Male,Teen,19,64,46
116 | 115,Female,Teen,18,65,48
117 | 116,Female,Teen,19,65,50
118 | 117,Female,Elder,63,65,43
119 | 118,Female,Elder,49,65,59
120 | 119,Female,Elder,51,67,43
121 | 120,Female,Elder,50,67,57
122 | 121,Male,Middle Age,27,67,56
123 | 122,Female,Middle Age,38,67,40
124 | 123,Female,Elder,40,69,58
125 | 124,Male,Middle Age,39,69,91
126 | 125,Female,Middle Age,23,70,29
127 | 126,Female,Middle Age,31,70,77
128 | 127,Male,Elder,43,71,35
129 | 128,Male,Elder,40,71,95
130 | 129,Male,Elder,59,71,11
131 | 130,Male,Middle Age,38,71,75
132 | 131,Male,Elder,47,71,9
133 | 132,Male,Middle Age,39,71,75
134 | 133,Female,Middle Age,25,72,34
135 | 134,Female,Middle Age,31,72,71
136 | 135,Male,Middle Age,20,73,5
137 | 136,Female,Middle Age,29,73,88
138 | 137,Female,Elder,44,73,7
139 | 138,Male,Middle Age,32,73,73
140 | 139,Male,Teen,19,74,10
141 | 140,Female,Middle Age,35,74,72
142 | 141,Female,Elder,57,75,5
143 | 142,Male,Middle Age,32,75,93
144 | 143,Female,Middle Age,28,76,40
145 | 144,Female,Middle Age,32,76,87
146 | 145,Male,Middle Age,25,77,12
147 | 146,Male,Middle Age,28,77,97
148 | 147,Male,Elder,48,77,36
149 | 148,Female,Middle Age,32,77,74
150 | 149,Female,Middle Age,34,78,22
151 | 150,Male,Middle Age,34,78,90
152 | 151,Male,Elder,43,78,17
153 | 152,Male,Middle Age,39,78,88
154 | 153,Female,Elder,44,78,20
155 | 154,Female,Middle Age,38,78,76
156 | 155,Female,Elder,47,78,16
157 | 156,Female,Middle Age,27,78,89
158 | 157,Male,Middle Age,37,78,1
159 | 158,Female,Middle Age,30,78,78
160 | 159,Male,Middle Age,34,78,1
161 | 160,Female,Middle Age,30,78,73
162 | 161,Female,Elder,56,79,35
163 | 162,Female,Middle Age,29,79,83
164 | 163,Male,Teen,19,81,5
165 | 164,Female,Middle Age,31,81,93
166 | 165,Male,Elder,50,85,26
167 | 166,Female,Middle Age,36,85,75
168 | 167,Male,Elder,42,86,20
169 | 168,Female,Middle Age,33,86,95
170 | 169,Female,Middle Age,36,87,27
171 | 170,Male,Middle Age,32,87,63
172 | 171,Male,Elder,40,87,13
173 | 172,Male,Middle Age,28,87,75
174 | 173,Male,Middle Age,36,87,10
175 | 174,Male,Middle Age,36,87,92
176 | 175,Female,Elder,52,88,13
177 | 176,Female,Middle Age,30,88,86
178 | 177,Male,Elder,58,88,15
179 | 178,Male,Middle Age,27,88,69
180 | 179,Male,Elder,59,93,14
181 | 180,Male,Middle Age,35,93,90
182 | 181,Female,Middle Age,37,97,32
183 | 182,Female,Middle Age,32,97,86
184 | 183,Male,Elder,46,98,15
185 | 184,Female,Middle Age,29,98,88
186 | 185,Female,Elder,41,99,39
187 | 186,Male,Middle Age,30,99,97
188 | 187,Female,Elder,54,101,24
189 | 188,Male,Middle Age,28,101,68
190 | 189,Female,Elder,41,103,17
191 | 190,Female,Middle Age,36,103,85
192 | 191,Female,Middle Age,34,103,23
193 | 192,Female,Middle Age,32,103,69
194 | 193,Male,Middle Age,33,113,8
195 | 194,Female,Middle Age,38,113,91
196 | 195,Female,Elder,47,120,16
197 | 196,Female,Middle Age,35,120,79
198 | 197,Female,Elder,45,126,28
199 | 198,Male,Middle Age,32,126,74
200 | 199,Male,Middle Age,32,137,18
201 | 200,Male,Middle Age,30,137,83
202 |
--------------------------------------------------------------------------------
/Social_Network_Ads.csv:
--------------------------------------------------------------------------------
1 | User ID,Gender,Age,EstimatedSalary,Purchased
2 | 15624510,Male,19,19000,0
3 | 15810944,Male,35,20000,0
4 | 15668575,Female,26,43000,0
5 | 15603246,Female,27,57000,0
6 | 15804002,Male,19,76000,0
7 | 15728773,Male,27,58000,0
8 | 15598044,Female,27,84000,0
9 | 15694829,Female,32,150000,1
10 | 15600575,Male,25,33000,0
11 | 15727311,Female,35,65000,0
12 | 15570769,Female,26,80000,0
13 | 15606274,Female,26,52000,0
14 | 15746139,Male,20,86000,0
15 | 15704987,Male,32,18000,0
16 | 15628972,Male,18,82000,0
17 | 15697686,Male,29,80000,0
18 | 15733883,Male,47,25000,1
19 | 15617482,Male,45,26000,1
20 | 15704583,Male,46,28000,1
21 | 15621083,Female,48,29000,1
22 | 15649487,Male,45,22000,1
23 | 15736760,Female,47,49000,1
24 | 15714658,Male,48,41000,1
25 | 15599081,Female,45,22000,1
26 | 15705113,Male,46,23000,1
27 | 15631159,Male,47,20000,1
28 | 15792818,Male,49,28000,1
29 | 15633531,Female,47,30000,1
30 | 15744529,Male,29,43000,0
31 | 15669656,Male,31,18000,0
32 | 15581198,Male,31,74000,0
33 | 15729054,Female,27,137000,1
34 | 15573452,Female,21,16000,0
35 | 15776733,Female,28,44000,0
36 | 15724858,Male,27,90000,0
37 | 15713144,Male,35,27000,0
38 | 15690188,Female,33,28000,0
39 | 15689425,Male,30,49000,0
40 | 15671766,Female,26,72000,0
41 | 15782806,Female,27,31000,0
42 | 15764419,Female,27,17000,0
43 | 15591915,Female,33,51000,0
44 | 15772798,Male,35,108000,0
45 | 15792008,Male,30,15000,0
46 | 15715541,Female,28,84000,0
47 | 15639277,Male,23,20000,0
48 | 15798850,Male,25,79000,0
49 | 15776348,Female,27,54000,0
50 | 15727696,Male,30,135000,1
51 | 15793813,Female,31,89000,0
52 | 15694395,Female,24,32000,0
53 | 15764195,Female,18,44000,0
54 | 15744919,Female,29,83000,0
55 | 15671655,Female,35,23000,0
56 | 15654901,Female,27,58000,0
57 | 15649136,Female,24,55000,0
58 | 15775562,Female,23,48000,0
59 | 15807481,Male,28,79000,0
60 | 15642885,Male,22,18000,0
61 | 15789109,Female,32,117000,0
62 | 15814004,Male,27,20000,0
63 | 15673619,Male,25,87000,0
64 | 15595135,Female,23,66000,0
65 | 15583681,Male,32,120000,1
66 | 15605000,Female,59,83000,0
67 | 15718071,Male,24,58000,0
68 | 15679760,Male,24,19000,0
69 | 15654574,Female,23,82000,0
70 | 15577178,Female,22,63000,0
71 | 15595324,Female,31,68000,0
72 | 15756932,Male,25,80000,0
73 | 15726358,Female,24,27000,0
74 | 15595228,Female,20,23000,0
75 | 15782530,Female,33,113000,0
76 | 15592877,Male,32,18000,0
77 | 15651983,Male,34,112000,1
78 | 15746737,Male,18,52000,0
79 | 15774179,Female,22,27000,0
80 | 15667265,Female,28,87000,0
81 | 15655123,Female,26,17000,0
82 | 15595917,Male,30,80000,0
83 | 15668385,Male,39,42000,0
84 | 15709476,Male,20,49000,0
85 | 15711218,Male,35,88000,0
86 | 15798659,Female,30,62000,0
87 | 15663939,Female,31,118000,1
88 | 15694946,Male,24,55000,0
89 | 15631912,Female,28,85000,0
90 | 15768816,Male,26,81000,0
91 | 15682268,Male,35,50000,0
92 | 15684801,Male,22,81000,0
93 | 15636428,Female,30,116000,0
94 | 15809823,Male,26,15000,0
95 | 15699284,Female,29,28000,0
96 | 15786993,Female,29,83000,0
97 | 15709441,Female,35,44000,0
98 | 15710257,Female,35,25000,0
99 | 15582492,Male,28,123000,1
100 | 15575694,Male,35,73000,0
101 | 15756820,Female,28,37000,0
102 | 15766289,Male,27,88000,0
103 | 15593014,Male,28,59000,0
104 | 15584545,Female,32,86000,0
105 | 15675949,Female,33,149000,1
106 | 15672091,Female,19,21000,0
107 | 15801658,Male,21,72000,0
108 | 15706185,Female,26,35000,0
109 | 15789863,Male,27,89000,0
110 | 15720943,Male,26,86000,0
111 | 15697997,Female,38,80000,0
112 | 15665416,Female,39,71000,0
113 | 15660200,Female,37,71000,0
114 | 15619653,Male,38,61000,0
115 | 15773447,Male,37,55000,0
116 | 15739160,Male,42,80000,0
117 | 15689237,Male,40,57000,0
118 | 15679297,Male,35,75000,0
119 | 15591433,Male,36,52000,0
120 | 15642725,Male,40,59000,0
121 | 15701962,Male,41,59000,0
122 | 15811613,Female,36,75000,0
123 | 15741049,Male,37,72000,0
124 | 15724423,Female,40,75000,0
125 | 15574305,Male,35,53000,0
126 | 15678168,Female,41,51000,0
127 | 15697020,Female,39,61000,0
128 | 15610801,Male,42,65000,0
129 | 15745232,Male,26,32000,0
130 | 15722758,Male,30,17000,0
131 | 15792102,Female,26,84000,0
132 | 15675185,Male,31,58000,0
133 | 15801247,Male,33,31000,0
134 | 15725660,Male,30,87000,0
135 | 15638963,Female,21,68000,0
136 | 15800061,Female,28,55000,0
137 | 15578006,Male,23,63000,0
138 | 15668504,Female,20,82000,0
139 | 15687491,Male,30,107000,1
140 | 15610403,Female,28,59000,0
141 | 15741094,Male,19,25000,0
142 | 15807909,Male,19,85000,0
143 | 15666141,Female,18,68000,0
144 | 15617134,Male,35,59000,0
145 | 15783029,Male,30,89000,0
146 | 15622833,Female,34,25000,0
147 | 15746422,Female,24,89000,0
148 | 15750839,Female,27,96000,1
149 | 15749130,Female,41,30000,0
150 | 15779862,Male,29,61000,0
151 | 15767871,Male,20,74000,0
152 | 15679651,Female,26,15000,0
153 | 15576219,Male,41,45000,0
154 | 15699247,Male,31,76000,0
155 | 15619087,Female,36,50000,0
156 | 15605327,Male,40,47000,0
157 | 15610140,Female,31,15000,0
158 | 15791174,Male,46,59000,0
159 | 15602373,Male,29,75000,0
160 | 15762605,Male,26,30000,0
161 | 15598840,Female,32,135000,1
162 | 15744279,Male,32,100000,1
163 | 15670619,Male,25,90000,0
164 | 15599533,Female,37,33000,0
165 | 15757837,Male,35,38000,0
166 | 15697574,Female,33,69000,0
167 | 15578738,Female,18,86000,0
168 | 15762228,Female,22,55000,0
169 | 15614827,Female,35,71000,0
170 | 15789815,Male,29,148000,1
171 | 15579781,Female,29,47000,0
172 | 15587013,Male,21,88000,0
173 | 15570932,Male,34,115000,0
174 | 15794661,Female,26,118000,0
175 | 15581654,Female,34,43000,0
176 | 15644296,Female,34,72000,0
177 | 15614420,Female,23,28000,0
178 | 15609653,Female,35,47000,0
179 | 15594577,Male,25,22000,0
180 | 15584114,Male,24,23000,0
181 | 15673367,Female,31,34000,0
182 | 15685576,Male,26,16000,0
183 | 15774727,Female,31,71000,0
184 | 15694288,Female,32,117000,1
185 | 15603319,Male,33,43000,0
186 | 15759066,Female,33,60000,0
187 | 15814816,Male,31,66000,0
188 | 15724402,Female,20,82000,0
189 | 15571059,Female,33,41000,0
190 | 15674206,Male,35,72000,0
191 | 15715160,Male,28,32000,0
192 | 15730448,Male,24,84000,0
193 | 15662067,Female,19,26000,0
194 | 15779581,Male,29,43000,0
195 | 15662901,Male,19,70000,0
196 | 15689751,Male,28,89000,0
197 | 15667742,Male,34,43000,0
198 | 15738448,Female,30,79000,0
199 | 15680243,Female,20,36000,0
200 | 15745083,Male,26,80000,0
201 | 15708228,Male,35,22000,0
202 | 15628523,Male,35,39000,0
203 | 15708196,Male,49,74000,0
204 | 15735549,Female,39,134000,1
205 | 15809347,Female,41,71000,0
206 | 15660866,Female,58,101000,1
207 | 15766609,Female,47,47000,0
208 | 15654230,Female,55,130000,1
209 | 15794566,Female,52,114000,0
210 | 15800890,Female,40,142000,1
211 | 15697424,Female,46,22000,0
212 | 15724536,Female,48,96000,1
213 | 15735878,Male,52,150000,1
214 | 15707596,Female,59,42000,0
215 | 15657163,Male,35,58000,0
216 | 15622478,Male,47,43000,0
217 | 15779529,Female,60,108000,1
218 | 15636023,Male,49,65000,0
219 | 15582066,Male,40,78000,0
220 | 15666675,Female,46,96000,0
221 | 15732987,Male,59,143000,1
222 | 15789432,Female,41,80000,0
223 | 15663161,Male,35,91000,1
224 | 15694879,Male,37,144000,1
225 | 15593715,Male,60,102000,1
226 | 15575002,Female,35,60000,0
227 | 15622171,Male,37,53000,0
228 | 15795224,Female,36,126000,1
229 | 15685346,Male,56,133000,1
230 | 15691808,Female,40,72000,0
231 | 15721007,Female,42,80000,1
232 | 15794253,Female,35,147000,1
233 | 15694453,Male,39,42000,0
234 | 15813113,Male,40,107000,1
235 | 15614187,Male,49,86000,1
236 | 15619407,Female,38,112000,0
237 | 15646227,Male,46,79000,1
238 | 15660541,Male,40,57000,0
239 | 15753874,Female,37,80000,0
240 | 15617877,Female,46,82000,0
241 | 15772073,Female,53,143000,1
242 | 15701537,Male,42,149000,1
243 | 15736228,Male,38,59000,0
244 | 15780572,Female,50,88000,1
245 | 15769596,Female,56,104000,1
246 | 15586996,Female,41,72000,0
247 | 15722061,Female,51,146000,1
248 | 15638003,Female,35,50000,0
249 | 15775590,Female,57,122000,1
250 | 15730688,Male,41,52000,0
251 | 15753102,Female,35,97000,1
252 | 15810075,Female,44,39000,0
253 | 15723373,Male,37,52000,0
254 | 15795298,Female,48,134000,1
255 | 15584320,Female,37,146000,1
256 | 15724161,Female,50,44000,0
257 | 15750056,Female,52,90000,1
258 | 15609637,Female,41,72000,0
259 | 15794493,Male,40,57000,0
260 | 15569641,Female,58,95000,1
261 | 15815236,Female,45,131000,1
262 | 15811177,Female,35,77000,0
263 | 15680587,Male,36,144000,1
264 | 15672821,Female,55,125000,1
265 | 15767681,Female,35,72000,0
266 | 15600379,Male,48,90000,1
267 | 15801336,Female,42,108000,1
268 | 15721592,Male,40,75000,0
269 | 15581282,Male,37,74000,0
270 | 15746203,Female,47,144000,1
271 | 15583137,Male,40,61000,0
272 | 15680752,Female,43,133000,0
273 | 15688172,Female,59,76000,1
274 | 15791373,Male,60,42000,1
275 | 15589449,Male,39,106000,1
276 | 15692819,Female,57,26000,1
277 | 15727467,Male,57,74000,1
278 | 15734312,Male,38,71000,0
279 | 15764604,Male,49,88000,1
280 | 15613014,Female,52,38000,1
281 | 15759684,Female,50,36000,1
282 | 15609669,Female,59,88000,1
283 | 15685536,Male,35,61000,0
284 | 15750447,Male,37,70000,1
285 | 15663249,Female,52,21000,1
286 | 15638646,Male,48,141000,0
287 | 15734161,Female,37,93000,1
288 | 15631070,Female,37,62000,0
289 | 15761950,Female,48,138000,1
290 | 15649668,Male,41,79000,0
291 | 15713912,Female,37,78000,1
292 | 15586757,Male,39,134000,1
293 | 15596522,Male,49,89000,1
294 | 15625395,Male,55,39000,1
295 | 15760570,Male,37,77000,0
296 | 15566689,Female,35,57000,0
297 | 15725794,Female,36,63000,0
298 | 15673539,Male,42,73000,1
299 | 15705298,Female,43,112000,1
300 | 15675791,Male,45,79000,0
301 | 15747043,Male,46,117000,1
302 | 15736397,Female,58,38000,1
303 | 15678201,Male,48,74000,1
304 | 15720745,Female,37,137000,1
305 | 15637593,Male,37,79000,1
306 | 15598070,Female,40,60000,0
307 | 15787550,Male,42,54000,0
308 | 15603942,Female,51,134000,0
309 | 15733973,Female,47,113000,1
310 | 15596761,Male,36,125000,1
311 | 15652400,Female,38,50000,0
312 | 15717893,Female,42,70000,0
313 | 15622585,Male,39,96000,1
314 | 15733964,Female,38,50000,0
315 | 15753861,Female,49,141000,1
316 | 15747097,Female,39,79000,0
317 | 15594762,Female,39,75000,1
318 | 15667417,Female,54,104000,1
319 | 15684861,Male,35,55000,0
320 | 15742204,Male,45,32000,1
321 | 15623502,Male,36,60000,0
322 | 15774872,Female,52,138000,1
323 | 15611191,Female,53,82000,1
324 | 15674331,Male,41,52000,0
325 | 15619465,Female,48,30000,1
326 | 15575247,Female,48,131000,1
327 | 15695679,Female,41,60000,0
328 | 15713463,Male,41,72000,0
329 | 15785170,Female,42,75000,0
330 | 15796351,Male,36,118000,1
331 | 15639576,Female,47,107000,1
332 | 15693264,Male,38,51000,0
333 | 15589715,Female,48,119000,1
334 | 15769902,Male,42,65000,0
335 | 15587177,Male,40,65000,0
336 | 15814553,Male,57,60000,1
337 | 15601550,Female,36,54000,0
338 | 15664907,Male,58,144000,1
339 | 15612465,Male,35,79000,0
340 | 15810800,Female,38,55000,0
341 | 15665760,Male,39,122000,1
342 | 15588080,Female,53,104000,1
343 | 15776844,Male,35,75000,0
344 | 15717560,Female,38,65000,0
345 | 15629739,Female,47,51000,1
346 | 15729908,Male,47,105000,1
347 | 15716781,Female,41,63000,0
348 | 15646936,Male,53,72000,1
349 | 15768151,Female,54,108000,1
350 | 15579212,Male,39,77000,0
351 | 15721835,Male,38,61000,0
352 | 15800515,Female,38,113000,1
353 | 15591279,Male,37,75000,0
354 | 15587419,Female,42,90000,1
355 | 15750335,Female,37,57000,0
356 | 15699619,Male,36,99000,1
357 | 15606472,Male,60,34000,1
358 | 15778368,Male,54,70000,1
359 | 15671387,Female,41,72000,0
360 | 15573926,Male,40,71000,1
361 | 15709183,Male,42,54000,0
362 | 15577514,Male,43,129000,1
363 | 15778830,Female,53,34000,1
364 | 15768072,Female,47,50000,1
365 | 15768293,Female,42,79000,0
366 | 15654456,Male,42,104000,1
367 | 15807525,Female,59,29000,1
368 | 15574372,Female,58,47000,1
369 | 15671249,Male,46,88000,1
370 | 15779744,Male,38,71000,0
371 | 15624755,Female,54,26000,1
372 | 15611430,Female,60,46000,1
373 | 15774744,Male,60,83000,1
374 | 15629885,Female,39,73000,0
375 | 15708791,Male,59,130000,1
376 | 15793890,Female,37,80000,0
377 | 15646091,Female,46,32000,1
378 | 15596984,Female,46,74000,0
379 | 15800215,Female,42,53000,0
380 | 15577806,Male,41,87000,1
381 | 15749381,Female,58,23000,1
382 | 15683758,Male,42,64000,0
383 | 15670615,Male,48,33000,1
384 | 15715622,Female,44,139000,1
385 | 15707634,Male,49,28000,1
386 | 15806901,Female,57,33000,1
387 | 15775335,Male,56,60000,1
388 | 15724150,Female,49,39000,1
389 | 15627220,Male,39,71000,0
390 | 15672330,Male,47,34000,1
391 | 15668521,Female,48,35000,1
392 | 15807837,Male,48,33000,1
393 | 15592570,Male,47,23000,1
394 | 15748589,Female,45,45000,1
395 | 15635893,Male,60,42000,1
396 | 15757632,Female,39,59000,0
397 | 15691863,Female,46,41000,1
398 | 15706071,Male,51,23000,1
399 | 15654296,Female,50,20000,1
400 | 15755018,Male,36,33000,0
401 | 15594041,Female,49,36000,1
--------------------------------------------------------------------------------
/MovieRecommendation.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "Develop a movie recommendation model using the scikit-learn library in python. "
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {},
14 | "outputs": [],
15 | "source": [
16 | "from sklearn.metrics.pairwise import cosine_similarity\n",
17 | "import pandas as pd\n",
18 | "import numpy as np\n",
19 | "from sklearn.feature_extraction.text import CountVectorizer\n",
20 | "from sklearn.metrics.pairwise import cosine_similarity"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 2,
26 | "metadata": {},
27 | "outputs": [],
28 | "source": [
29 | "df = pd.read_csv(\"https://raw.githubusercontent.com/rashida048/Some-NLP-Projects/master/movie_dataset.csv\")"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "execution_count": 3,
35 | "metadata": {},
36 | "outputs": [
37 | {
38 | "data": {
39 | "text/html": [
40 | "
\n",
41 | "\n",
54 | "
\n",
55 | " \n",
56 | " \n",
57 | " | \n",
58 | " index | \n",
59 | " budget | \n",
60 | " genres | \n",
61 | " homepage | \n",
62 | " id | \n",
63 | " keywords | \n",
64 | " original_language | \n",
65 | " original_title | \n",
66 | " overview | \n",
67 | " popularity | \n",
68 | " ... | \n",
69 | " runtime | \n",
70 | " spoken_languages | \n",
71 | " status | \n",
72 | " tagline | \n",
73 | " title | \n",
74 | " vote_average | \n",
75 | " vote_count | \n",
76 | " cast | \n",
77 | " crew | \n",
78 | " director | \n",
79 | "
\n",
80 | " \n",
81 | " \n",
82 | " \n",
83 | " | 0 | \n",
84 | " 0 | \n",
85 | " 237000000 | \n",
86 | " Action Adventure Fantasy Science Fiction | \n",
87 | " http://www.avatarmovie.com/ | \n",
88 | " 19995 | \n",
89 | " culture clash future space war space colony so... | \n",
90 | " en | \n",
91 | " Avatar | \n",
92 | " In the 22nd century, a paraplegic Marine is di... | \n",
93 | " 150.437577 | \n",
94 | " ... | \n",
95 | " 162.0 | \n",
96 | " [{\"iso_639_1\": \"en\", \"name\": \"English\"}, {\"iso... | \n",
97 | " Released | \n",
98 | " Enter the World of Pandora. | \n",
99 | " Avatar | \n",
100 | " 7.2 | \n",
101 | " 11800 | \n",
102 | " Sam Worthington Zoe Saldana Sigourney Weaver S... | \n",
103 | " [{'name': 'Stephen E. Rivkin', 'gender': 0, 'd... | \n",
104 | " James Cameron | \n",
105 | "
\n",
106 | " \n",
107 | " | 1 | \n",
108 | " 1 | \n",
109 | " 300000000 | \n",
110 | " Adventure Fantasy Action | \n",
111 | " http://disney.go.com/disneypictures/pirates/ | \n",
112 | " 285 | \n",
113 | " ocean drug abuse exotic island east india trad... | \n",
114 | " en | \n",
115 | " Pirates of the Caribbean: At World's End | \n",
116 | " Captain Barbossa, long believed to be dead, ha... | \n",
117 | " 139.082615 | \n",
118 | " ... | \n",
119 | " 169.0 | \n",
120 | " [{\"iso_639_1\": \"en\", \"name\": \"English\"}] | \n",
121 | " Released | \n",
122 | " At the end of the world, the adventure begins. | \n",
123 | " Pirates of the Caribbean: At World's End | \n",
124 | " 6.9 | \n",
125 | " 4500 | \n",
126 | " Johnny Depp Orlando Bloom Keira Knightley Stel... | \n",
127 | " [{'name': 'Dariusz Wolski', 'gender': 2, 'depa... | \n",
128 | " Gore Verbinski | \n",
129 | "
\n",
130 | " \n",
131 | " | 2 | \n",
132 | " 2 | \n",
133 | " 245000000 | \n",
134 | " Action Adventure Crime | \n",
135 | " http://www.sonypictures.com/movies/spectre/ | \n",
136 | " 206647 | \n",
137 | " spy based on novel secret agent sequel mi6 | \n",
138 | " en | \n",
139 | " Spectre | \n",
140 | " A cryptic message from Bond’s past sends him o... | \n",
141 | " 107.376788 | \n",
142 | " ... | \n",
143 | " 148.0 | \n",
144 | " [{\"iso_639_1\": \"fr\", \"name\": \"Fran\\u00e7ais\"},... | \n",
145 | " Released | \n",
146 | " A Plan No One Escapes | \n",
147 | " Spectre | \n",
148 | " 6.3 | \n",
149 | " 4466 | \n",
150 | " Daniel Craig Christoph Waltz L\\u00e9a Seydoux ... | \n",
151 | " [{'name': 'Thomas Newman', 'gender': 2, 'depar... | \n",
152 | " Sam Mendes | \n",
153 | "
\n",
154 | " \n",
155 | " | 3 | \n",
156 | " 3 | \n",
157 | " 250000000 | \n",
158 | " Action Crime Drama Thriller | \n",
159 | " http://www.thedarkknightrises.com/ | \n",
160 | " 49026 | \n",
161 | " dc comics crime fighter terrorist secret ident... | \n",
162 | " en | \n",
163 | " The Dark Knight Rises | \n",
164 | " Following the death of District Attorney Harve... | \n",
165 | " 112.312950 | \n",
166 | " ... | \n",
167 | " 165.0 | \n",
168 | " [{\"iso_639_1\": \"en\", \"name\": \"English\"}] | \n",
169 | " Released | \n",
170 | " The Legend Ends | \n",
171 | " The Dark Knight Rises | \n",
172 | " 7.6 | \n",
173 | " 9106 | \n",
174 | " Christian Bale Michael Caine Gary Oldman Anne ... | \n",
175 | " [{'name': 'Hans Zimmer', 'gender': 2, 'departm... | \n",
176 | " Christopher Nolan | \n",
177 | "
\n",
178 | " \n",
179 | " | 4 | \n",
180 | " 4 | \n",
181 | " 260000000 | \n",
182 | " Action Adventure Science Fiction | \n",
183 | " http://movies.disney.com/john-carter | \n",
184 | " 49529 | \n",
185 | " based on novel mars medallion space travel pri... | \n",
186 | " en | \n",
187 | " John Carter | \n",
188 | " John Carter is a war-weary, former military ca... | \n",
189 | " 43.926995 | \n",
190 | " ... | \n",
191 | " 132.0 | \n",
192 | " [{\"iso_639_1\": \"en\", \"name\": \"English\"}] | \n",
193 | " Released | \n",
194 | " Lost in our world, found in another. | \n",
195 | " John Carter | \n",
196 | " 6.1 | \n",
197 | " 2124 | \n",
198 | " Taylor Kitsch Lynn Collins Samantha Morton Wil... | \n",
199 | " [{'name': 'Andrew Stanton', 'gender': 2, 'depa... | \n",
200 | " Andrew Stanton | \n",
201 | "
\n",
202 | " \n",
203 | "
\n",
204 | "
5 rows × 24 columns
\n",
205 | "
"
206 | ],
207 | "text/plain": [
208 | " index budget genres \\\n",
209 | "0 0 237000000 Action Adventure Fantasy Science Fiction \n",
210 | "1 1 300000000 Adventure Fantasy Action \n",
211 | "2 2 245000000 Action Adventure Crime \n",
212 | "3 3 250000000 Action Crime Drama Thriller \n",
213 | "4 4 260000000 Action Adventure Science Fiction \n",
214 | "\n",
215 | " homepage id \\\n",
216 | "0 http://www.avatarmovie.com/ 19995 \n",
217 | "1 http://disney.go.com/disneypictures/pirates/ 285 \n",
218 | "2 http://www.sonypictures.com/movies/spectre/ 206647 \n",
219 | "3 http://www.thedarkknightrises.com/ 49026 \n",
220 | "4 http://movies.disney.com/john-carter 49529 \n",
221 | "\n",
222 | " keywords original_language \\\n",
223 | "0 culture clash future space war space colony so... en \n",
224 | "1 ocean drug abuse exotic island east india trad... en \n",
225 | "2 spy based on novel secret agent sequel mi6 en \n",
226 | "3 dc comics crime fighter terrorist secret ident... en \n",
227 | "4 based on novel mars medallion space travel pri... en \n",
228 | "\n",
229 | " original_title \\\n",
230 | "0 Avatar \n",
231 | "1 Pirates of the Caribbean: At World's End \n",
232 | "2 Spectre \n",
233 | "3 The Dark Knight Rises \n",
234 | "4 John Carter \n",
235 | "\n",
236 | " overview popularity \\\n",
237 | "0 In the 22nd century, a paraplegic Marine is di... 150.437577 \n",
238 | "1 Captain Barbossa, long believed to be dead, ha... 139.082615 \n",
239 | "2 A cryptic message from Bond’s past sends him o... 107.376788 \n",
240 | "3 Following the death of District Attorney Harve... 112.312950 \n",
241 | "4 John Carter is a war-weary, former military ca... 43.926995 \n",
242 | "\n",
243 | " ... runtime \\\n",
244 | "0 ... 162.0 \n",
245 | "1 ... 169.0 \n",
246 | "2 ... 148.0 \n",
247 | "3 ... 165.0 \n",
248 | "4 ... 132.0 \n",
249 | "\n",
250 | " spoken_languages status \\\n",
251 | "0 [{\"iso_639_1\": \"en\", \"name\": \"English\"}, {\"iso... Released \n",
252 | "1 [{\"iso_639_1\": \"en\", \"name\": \"English\"}] Released \n",
253 | "2 [{\"iso_639_1\": \"fr\", \"name\": \"Fran\\u00e7ais\"},... Released \n",
254 | "3 [{\"iso_639_1\": \"en\", \"name\": \"English\"}] Released \n",
255 | "4 [{\"iso_639_1\": \"en\", \"name\": \"English\"}] Released \n",
256 | "\n",
257 | " tagline \\\n",
258 | "0 Enter the World of Pandora. \n",
259 | "1 At the end of the world, the adventure begins. \n",
260 | "2 A Plan No One Escapes \n",
261 | "3 The Legend Ends \n",
262 | "4 Lost in our world, found in another. \n",
263 | "\n",
264 | " title vote_average vote_count \\\n",
265 | "0 Avatar 7.2 11800 \n",
266 | "1 Pirates of the Caribbean: At World's End 6.9 4500 \n",
267 | "2 Spectre 6.3 4466 \n",
268 | "3 The Dark Knight Rises 7.6 9106 \n",
269 | "4 John Carter 6.1 2124 \n",
270 | "\n",
271 | " cast \\\n",
272 | "0 Sam Worthington Zoe Saldana Sigourney Weaver S... \n",
273 | "1 Johnny Depp Orlando Bloom Keira Knightley Stel... \n",
274 | "2 Daniel Craig Christoph Waltz L\\u00e9a Seydoux ... \n",
275 | "3 Christian Bale Michael Caine Gary Oldman Anne ... \n",
276 | "4 Taylor Kitsch Lynn Collins Samantha Morton Wil... \n",
277 | "\n",
278 | " crew director \n",
279 | "0 [{'name': 'Stephen E. Rivkin', 'gender': 0, 'd... James Cameron \n",
280 | "1 [{'name': 'Dariusz Wolski', 'gender': 2, 'depa... Gore Verbinski \n",
281 | "2 [{'name': 'Thomas Newman', 'gender': 2, 'depar... Sam Mendes \n",
282 | "3 [{'name': 'Hans Zimmer', 'gender': 2, 'departm... Christopher Nolan \n",
283 | "4 [{'name': 'Andrew Stanton', 'gender': 2, 'depa... Andrew Stanton \n",
284 | "\n",
285 | "[5 rows x 24 columns]"
286 | ]
287 | },
288 | "execution_count": 3,
289 | "metadata": {},
290 | "output_type": "execute_result"
291 | }
292 | ],
293 | "source": [
294 | "df.head()"
295 | ]
296 | },
297 | {
298 | "cell_type": "code",
299 | "execution_count": 4,
300 | "metadata": {},
301 | "outputs": [],
302 | "source": [
303 | "features = ['keywords','cast','genres','director']"
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": 5,
309 | "metadata": {},
310 | "outputs": [],
311 | "source": [
312 | "def combine_features(row):\n",
313 | " return row['keywords']+\" \"+row['cast']+\" \"+row['genres']+\" \"+row['director']"
314 | ]
315 | },
316 | {
317 | "cell_type": "code",
318 | "execution_count": 6,
319 | "metadata": {},
320 | "outputs": [],
321 | "source": [
322 | "for feature in features:\n",
323 | " df[feature] = df[feature].fillna('')\n",
324 | "\n",
325 | "df[\"combined_features\"] = df.apply(combine_features,axis=1)"
326 | ]
327 | },
328 | {
329 | "cell_type": "code",
330 | "execution_count": 7,
331 | "metadata": {},
332 | "outputs": [],
333 | "source": [
334 | "cv = CountVectorizer() \n",
335 | "count_matrix = cv.fit_transform(df[\"combined_features\"])"
336 | ]
337 | },
338 | {
339 | "cell_type": "code",
340 | "execution_count": 8,
341 | "metadata": {},
342 | "outputs": [],
343 | "source": [
344 | "cosine_sim = cosine_similarity(count_matrix)"
345 | ]
346 | },
347 | {
348 | "cell_type": "code",
349 | "execution_count": 9,
350 | "metadata": {},
351 | "outputs": [],
352 | "source": [
353 | "def get_title_from_index(index):\n",
354 | " return df[df.index == index][\"title\"].values[0]\n",
355 | "def get_index_from_title(title):\n",
356 | " return df[df.title == title][\"index\"].values[0]"
357 | ]
358 | },
359 | {
360 | "cell_type": "code",
361 | "execution_count": 10,
362 | "metadata": {},
363 | "outputs": [],
364 | "source": [
365 | "movie_user_likes = \"Avatar\"\n",
366 | "movie_index = get_index_from_title(movie_user_likes)\n",
367 | "similar_movies = list(enumerate(cosine_sim[movie_index]))"
368 | ]
369 | },
370 | {
371 | "cell_type": "code",
372 | "execution_count": 11,
373 | "metadata": {},
374 | "outputs": [],
375 | "source": [
376 | "sorted_similar_movies = sorted(similar_movies,key=lambda x:x[1],reverse=True)[1:]"
377 | ]
378 | },
379 | {
380 | "cell_type": "code",
381 | "execution_count": 12,
382 | "metadata": {},
383 | "outputs": [
384 | {
385 | "name": "stdout",
386 | "output_type": "stream",
387 | "text": [
388 | "Top 5 similar movies to Avatar are:\n",
389 | "\n",
390 | "Guardians of the Galaxy\n",
391 | "Aliens\n",
392 | "Star Wars: Clone Wars: Volume 1\n",
393 | "Star Trek Into Darkness\n",
394 | "Star Trek Beyond\n",
395 | "Alien\n"
396 | ]
397 | }
398 | ],
399 | "source": [
400 | "i=0\n",
401 | "print(\"Top 5 similar movies to \"+movie_user_likes+\" are:\\n\")\n",
402 | "for element in sorted_similar_movies:\n",
403 | " print(get_title_from_index(element[0]))\n",
404 | " i=i+1\n",
405 | " if i>5:\n",
406 | " break"
407 | ]
408 | },
409 | {
410 | "cell_type": "code",
411 | "execution_count": null,
412 | "metadata": {},
413 | "outputs": [],
414 | "source": []
415 | }
416 | ],
417 | "metadata": {
418 | "kernelspec": {
419 | "display_name": "Python 3",
420 | "language": "python",
421 | "name": "python3"
422 | },
423 | "language_info": {
424 | "codemirror_mode": {
425 | "name": "ipython",
426 | "version": 3
427 | },
428 | "file_extension": ".py",
429 | "mimetype": "text/x-python",
430 | "name": "python",
431 | "nbconvert_exporter": "python",
432 | "pygments_lexer": "ipython3",
433 | "version": "3.6.4"
434 | }
435 | },
436 | "nbformat": 4,
437 | "nbformat_minor": 2
438 | }
439 |
--------------------------------------------------------------------------------
/Assignment_7.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "723eb7a5",
7 | "metadata": {},
8 | "outputs": [
9 | {
10 | "name": "stderr",
11 | "output_type": "stream",
12 | "text": [
13 | "[nltk_data] Downloading package punkt to\n",
14 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n",
15 | "[nltk_data] Package punkt is already up-to-date!\n"
16 | ]
17 | },
18 | {
19 | "data": {
20 | "text/plain": [
21 | "True"
22 | ]
23 | },
24 | "execution_count": 1,
25 | "metadata": {},
26 | "output_type": "execute_result"
27 | }
28 | ],
29 | "source": [
30 | "import nltk\n",
31 | "nltk.download('punkt')"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": 4,
37 | "id": "a8b6b982",
38 | "metadata": {},
39 | "outputs": [
40 | {
41 | "name": "stdout",
42 | "output_type": "stream",
43 | "text": [
44 | "['Sachin', 'is', 'considered', 'to', 'be', 'one', 'of', 'the', 'greatest', 'cricket', 'players', '.', 'Virat', 'is', 'the', 'captain', 'of', 'the', 'Indian', 'cricket', 'team']\n",
45 | "['Sachin is considered to be one of the greatest cricket players.', 'Virat is the captain of the Indian cricket team']\n"
46 | ]
47 | }
48 | ],
49 | "source": [
50 | "from nltk import word_tokenize, sent_tokenize\n",
51 | "sent = \"Sachin is considered to be one of the greatest cricket players. Virat is the captain of the Indian cricket team\"\n",
52 | "print(word_tokenize(sent))\n",
53 | "print(sent_tokenize(sent))"
54 | ]
55 | },
56 | {
57 | "cell_type": "code",
58 | "execution_count": 5,
59 | "id": "308116bb",
60 | "metadata": {},
61 | "outputs": [
62 | {
63 | "name": "stdout",
64 | "output_type": "stream",
65 | "text": [
66 | "['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', \"you're\", \"you've\", \"you'll\", \"you'd\", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', \"she's\", 'her', 'hers', 'herself', 'it', \"it's\", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', \"that'll\", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', \"don't\", 'should', \"should've\", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', \"aren't\", 'couldn', \"couldn't\", 'didn', \"didn't\", 'doesn', \"doesn't\", 'hadn', \"hadn't\", 'hasn', \"hasn't\", 'haven', \"haven't\", 'isn', \"isn't\", 'ma', 'mightn', \"mightn't\", 'mustn', \"mustn't\", 'needn', \"needn't\", 'shan', \"shan't\", 'shouldn', \"shouldn't\", 'wasn', \"wasn't\", 'weren', \"weren't\", 'won', \"won't\", 'wouldn', \"wouldn't\"]\n"
67 | ]
68 | },
69 | {
70 | "name": "stderr",
71 | "output_type": "stream",
72 | "text": [
73 | "[nltk_data] Downloading package stopwords to\n",
74 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n",
75 | "[nltk_data] Package stopwords is already up-to-date!\n"
76 | ]
77 | }
78 | ],
79 | "source": [
80 | "from nltk.corpus import stopwords\n",
81 | "import nltk\n",
82 | "nltk.download('stopwords')\n",
83 | "stop_words = stopwords.words('english')\n",
84 | "print(stop_words)"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": 13,
90 | "id": "f8411fe8",
91 | "metadata": {},
92 | "outputs": [
93 | {
94 | "name": "stdout",
95 | "output_type": "stream",
96 | "text": [
97 | "This is the unclean version : ['Sachin', 'is', 'considered', 'to', 'be', 'one', 'of', 'the', 'greatest', 'cricket', 'players', '.', 'Virat', 'is', 'the', 'captain', 'of', 'the', 'Indian', 'cricket', 'team']\n",
98 | "This is the cleaned version : ['Sachin', 'considered', 'one', 'greatest', 'cricket', 'players', '.', 'Virat', 'captain', 'Indian', 'cricket', 'team']\n"
99 | ]
100 | }
101 | ],
102 | "source": [
103 | "token = word_tokenize(sent)\n",
104 | "cleaned_token = []\n",
105 | "for word in token:\n",
106 | " if word not in stop_words:\n",
107 | " cleaned_token.append(word)\n",
108 | "\n",
109 | "print(\"This is the unclean version : \",token)\n",
110 | "print(\"This is the cleaned version : \",cleaned_token)"
111 | ]
112 | },
113 | {
114 | "cell_type": "code",
115 | "execution_count": 15,
116 | "id": "57060168",
117 | "metadata": {},
118 | "outputs": [],
119 | "source": [
120 | "words = [cleaned_token.lower() for cleaned_token in cleaned_token if cleaned_token.isalpha()]"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 16,
126 | "id": "4a59215e",
127 | "metadata": {},
128 | "outputs": [
129 | {
130 | "name": "stdout",
131 | "output_type": "stream",
132 | "text": [
133 | "['sachin', 'considered', 'one', 'greatest', 'cricket', 'players', 'virat', 'captain', 'indian', 'cricket', 'team']\n"
134 | ]
135 | }
136 | ],
137 | "source": [
138 | "print(words)"
139 | ]
140 | },
141 | {
142 | "cell_type": "code",
143 | "execution_count": 17,
144 | "id": "d682e8a3",
145 | "metadata": {},
146 | "outputs": [
147 | {
148 | "name": "stdout",
149 | "output_type": "stream",
150 | "text": [
151 | "['sachin', 'consid', 'one', 'greatest', 'cricket', 'player', 'virat', 'captain', 'indian', 'cricket', 'team']\n"
152 | ]
153 | }
154 | ],
155 | "source": [
156 | "from nltk.stem import PorterStemmer\n",
157 | "stemmer = PorterStemmer()\n",
158 | "port_stemmer_output = [stemmer.stem(words) for words in words]\n",
159 | "print(port_stemmer_output)\n"
160 | ]
161 | },
162 | {
163 | "cell_type": "code",
164 | "execution_count": 18,
165 | "id": "8c31f238",
166 | "metadata": {},
167 | "outputs": [
168 | {
169 | "name": "stderr",
170 | "output_type": "stream",
171 | "text": [
172 | "[nltk_data] Downloading package wordnet to\n",
173 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n",
174 | "[nltk_data] Package wordnet is already up-to-date!\n"
175 | ]
176 | },
177 | {
178 | "name": "stdout",
179 | "output_type": "stream",
180 | "text": [
181 | "['sachin', 'considered', 'one', 'greatest', 'cricket', 'player', 'virat', 'captain', 'indian', 'cricket', 'team']\n"
182 | ]
183 | }
184 | ],
185 | "source": [
186 | "from nltk.stem import WordNetLemmatizer\n",
187 | "nltk.download('wordnet')\n",
188 | "lemmatizer = WordNetLemmatizer()\n",
189 | "lemmatizer_output = [lemmatizer.lemmatize(words) for words in words]\n",
190 | "print(lemmatizer_output)\n"
191 | ]
192 | },
193 | {
194 | "cell_type": "code",
195 | "execution_count": 20,
196 | "id": "f6bede85",
197 | "metadata": {},
198 | "outputs": [
199 | {
200 | "name": "stdout",
201 | "output_type": "stream",
202 | "text": [
203 | "[('Sachin', 'NNP'), ('considered', 'VBD'), ('one', 'CD'), ('greatest', 'JJS'), ('cricket', 'NN'), ('players', 'NNS'), ('.', '.'), ('Virat', 'NNP'), ('captain', 'NN'), ('Indian', 'JJ'), ('cricket', 'NN'), ('team', 'NN')]\n"
204 | ]
205 | },
206 | {
207 | "name": "stderr",
208 | "output_type": "stream",
209 | "text": [
210 | "[nltk_data] Downloading package averaged_perceptron_tagger to\n",
211 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n",
212 | "[nltk_data] Package averaged_perceptron_tagger is already up-to-\n",
213 | "[nltk_data] date!\n"
214 | ]
215 | }
216 | ],
217 | "source": [
218 | "from nltk import pos_tag\n",
219 | "import nltk\n",
220 | "nltk.download('averaged_perceptron_tagger')\n",
221 | "token = word_tokenize(sent)\n",
222 | "cleaned_token = []\n",
223 | "for word in token:\n",
224 | " if word not in stop_words:\n",
225 | " cleaned_token.append(word)\n",
226 | "tagged = pos_tag(cleaned_token)\n",
227 | "print(tagged)"
228 | ]
229 | },
230 | {
231 | "cell_type": "code",
232 | "execution_count": 21,
233 | "id": "2a95cc8a",
234 | "metadata": {},
235 | "outputs": [],
236 | "source": [
237 | "from sklearn.feature_extraction.text import TfidfVectorizer\n",
238 | "from sklearn.metrics.pairwise import cosine_similarity\n",
239 | "import pandas as pd"
240 | ]
241 | },
242 | {
243 | "cell_type": "code",
244 | "execution_count": 22,
245 | "id": "a65a6fe4",
246 | "metadata": {},
247 | "outputs": [],
248 | "source": [
249 | "docs = [ \"Sachin is considered to be one of the greatest cricket players\",\n",
250 | " \"Federer is considered one of the greatest tennis players\",\n",
251 | " \"Nadal is considered one of the greatest tennis players\",\n",
252 | " \"Virat is the captain of the Indian cricket team\"]"
253 | ]
254 | },
255 | {
256 | "cell_type": "code",
257 | "execution_count": 24,
258 | "id": "badd7e5a",
259 | "metadata": {},
260 | "outputs": [
261 | {
262 | "name": "stdout",
263 | "output_type": "stream",
264 | "text": [
265 | "{'sachin': 12, 'is': 7, 'considered': 2, 'to': 16, 'be': 0, 'one': 10, 'of': 9, 'the': 15, 'greatest': 5, 'cricket': 3, 'players': 11, 'federer': 4, 'tennis': 14, 'nadal': 8, 'virat': 17, 'captain': 1, 'indian': 6, 'team': 13}\n"
266 | ]
267 | }
268 | ],
269 | "source": [
270 | "vectorizer = TfidfVectorizer(analyzer = \"word\", norm = None , use_idf = True , smooth_idf=True)\n",
271 | "Mat = vectorizer.fit(docs)\n",
272 | "print(Mat.vocabulary_)"
273 | ]
274 | },
275 | {
276 | "cell_type": "code",
277 | "execution_count": 25,
278 | "id": "36c09e91",
279 | "metadata": {},
280 | "outputs": [],
281 | "source": [
282 | "tfidfMat = vectorizer.fit_transform(docs)"
283 | ]
284 | },
285 | {
286 | "cell_type": "code",
287 | "execution_count": 26,
288 | "id": "16a49f3a",
289 | "metadata": {},
290 | "outputs": [
291 | {
292 | "name": "stdout",
293 | "output_type": "stream",
294 | "text": [
295 | " (0, 11)\t1.2231435513142097\n",
296 | " (0, 3)\t1.5108256237659907\n",
297 | " (0, 5)\t1.2231435513142097\n",
298 | " (0, 15)\t1.0\n",
299 | " (0, 9)\t1.0\n",
300 | " (0, 10)\t1.2231435513142097\n",
301 | " (0, 0)\t1.916290731874155\n",
302 | " (0, 16)\t1.916290731874155\n",
303 | " (0, 2)\t1.2231435513142097\n",
304 | " (0, 7)\t1.0\n",
305 | " (0, 12)\t1.916290731874155\n",
306 | " (1, 14)\t1.5108256237659907\n",
307 | " (1, 4)\t1.916290731874155\n",
308 | " (1, 11)\t1.2231435513142097\n",
309 | " (1, 5)\t1.2231435513142097\n",
310 | " (1, 15)\t1.0\n",
311 | " (1, 9)\t1.0\n",
312 | " (1, 10)\t1.2231435513142097\n",
313 | " (1, 2)\t1.2231435513142097\n",
314 | " (1, 7)\t1.0\n",
315 | " (2, 8)\t1.916290731874155\n",
316 | " (2, 14)\t1.5108256237659907\n",
317 | " (2, 11)\t1.2231435513142097\n",
318 | " (2, 5)\t1.2231435513142097\n",
319 | " (2, 15)\t1.0\n",
320 | " (2, 9)\t1.0\n",
321 | " (2, 10)\t1.2231435513142097\n",
322 | " (2, 2)\t1.2231435513142097\n",
323 | " (2, 7)\t1.0\n",
324 | " (3, 13)\t1.916290731874155\n",
325 | " (3, 6)\t1.916290731874155\n",
326 | " (3, 1)\t1.916290731874155\n",
327 | " (3, 17)\t1.916290731874155\n",
328 | " (3, 3)\t1.5108256237659907\n",
329 | " (3, 15)\t2.0\n",
330 | " (3, 9)\t1.0\n",
331 | " (3, 7)\t1.0\n"
332 | ]
333 | }
334 | ],
335 | "source": [
336 | "print(tfidfMat)\n"
337 | ]
338 | },
339 | {
340 | "cell_type": "code",
341 | "execution_count": 27,
342 | "id": "93c5dcc0",
343 | "metadata": {},
344 | "outputs": [
345 | {
346 | "name": "stdout",
347 | "output_type": "stream",
348 | "text": [
349 | "['be' 'captain' 'considered' 'cricket' 'federer' 'greatest' 'indian' 'is'\n",
350 | " 'nadal' 'of' 'one' 'players' 'sachin' 'team' 'tennis' 'the' 'to' 'virat']\n"
351 | ]
352 | }
353 | ],
354 | "source": [
355 | "features_names = vectorizer.get_feature_names_out()\n",
356 | "print(features_names)\n"
357 | ]
358 | },
359 | {
360 | "cell_type": "code",
361 | "execution_count": 28,
362 | "id": "514ea886",
363 | "metadata": {},
364 | "outputs": [],
365 | "source": [
366 | "dense = tfidfMat.todense()\n",
367 | "denselist = dense.tolist()\n",
368 | "df = pd.DataFrame(denselist , columns = features_names)"
369 | ]
370 | },
371 | {
372 | "cell_type": "code",
373 | "execution_count": 29,
374 | "id": "160bf2f9",
375 | "metadata": {},
376 | "outputs": [
377 | {
378 | "data": {
379 | "text/html": [
380 | "\n",
381 | "\n",
394 | "
\n",
395 | " \n",
396 | " \n",
397 | " | \n",
398 | " be | \n",
399 | " captain | \n",
400 | " considered | \n",
401 | " cricket | \n",
402 | " federer | \n",
403 | " greatest | \n",
404 | " indian | \n",
405 | " is | \n",
406 | " nadal | \n",
407 | " of | \n",
408 | " one | \n",
409 | " players | \n",
410 | " sachin | \n",
411 | " team | \n",
412 | " tennis | \n",
413 | " the | \n",
414 | " to | \n",
415 | " virat | \n",
416 | "
\n",
417 | " \n",
418 | " \n",
419 | " \n",
420 | " | 0 | \n",
421 | " 1.916291 | \n",
422 | " 0.000000 | \n",
423 | " 1.223144 | \n",
424 | " 1.510826 | \n",
425 | " 0.000000 | \n",
426 | " 1.223144 | \n",
427 | " 0.000000 | \n",
428 | " 1.0 | \n",
429 | " 0.000000 | \n",
430 | " 1.0 | \n",
431 | " 1.223144 | \n",
432 | " 1.223144 | \n",
433 | " 1.916291 | \n",
434 | " 0.000000 | \n",
435 | " 0.000000 | \n",
436 | " 1.0 | \n",
437 | " 1.916291 | \n",
438 | " 0.000000 | \n",
439 | "
\n",
440 | " \n",
441 | " | 1 | \n",
442 | " 0.000000 | \n",
443 | " 0.000000 | \n",
444 | " 1.223144 | \n",
445 | " 0.000000 | \n",
446 | " 1.916291 | \n",
447 | " 1.223144 | \n",
448 | " 0.000000 | \n",
449 | " 1.0 | \n",
450 | " 0.000000 | \n",
451 | " 1.0 | \n",
452 | " 1.223144 | \n",
453 | " 1.223144 | \n",
454 | " 0.000000 | \n",
455 | " 0.000000 | \n",
456 | " 1.510826 | \n",
457 | " 1.0 | \n",
458 | " 0.000000 | \n",
459 | " 0.000000 | \n",
460 | "
\n",
461 | " \n",
462 | " | 2 | \n",
463 | " 0.000000 | \n",
464 | " 0.000000 | \n",
465 | " 1.223144 | \n",
466 | " 0.000000 | \n",
467 | " 0.000000 | \n",
468 | " 1.223144 | \n",
469 | " 0.000000 | \n",
470 | " 1.0 | \n",
471 | " 1.916291 | \n",
472 | " 1.0 | \n",
473 | " 1.223144 | \n",
474 | " 1.223144 | \n",
475 | " 0.000000 | \n",
476 | " 0.000000 | \n",
477 | " 1.510826 | \n",
478 | " 1.0 | \n",
479 | " 0.000000 | \n",
480 | " 0.000000 | \n",
481 | "
\n",
482 | " \n",
483 | " | 3 | \n",
484 | " 0.000000 | \n",
485 | " 1.916291 | \n",
486 | " 0.000000 | \n",
487 | " 1.510826 | \n",
488 | " 0.000000 | \n",
489 | " 0.000000 | \n",
490 | " 1.916291 | \n",
491 | " 1.0 | \n",
492 | " 0.000000 | \n",
493 | " 1.0 | \n",
494 | " 0.000000 | \n",
495 | " 0.000000 | \n",
496 | " 0.000000 | \n",
497 | " 1.916291 | \n",
498 | " 0.000000 | \n",
499 | " 2.0 | \n",
500 | " 0.000000 | \n",
501 | " 1.916291 | \n",
502 | "
\n",
503 | " \n",
504 | "
\n",
505 | "
"
506 | ],
507 | "text/plain": [
508 | " be captain considered cricket federer greatest indian \\\n",
509 | "0 1.916291 0.000000 1.223144 1.510826 0.000000 1.223144 0.000000 \n",
510 | "1 0.000000 0.000000 1.223144 0.000000 1.916291 1.223144 0.000000 \n",
511 | "2 0.000000 0.000000 1.223144 0.000000 0.000000 1.223144 0.000000 \n",
512 | "3 0.000000 1.916291 0.000000 1.510826 0.000000 0.000000 1.916291 \n",
513 | "\n",
514 | " is nadal of one players sachin team tennis the \\\n",
515 | "0 1.0 0.000000 1.0 1.223144 1.223144 1.916291 0.000000 0.000000 1.0 \n",
516 | "1 1.0 0.000000 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 1.0 \n",
517 | "2 1.0 1.916291 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 1.0 \n",
518 | "3 1.0 0.000000 1.0 0.000000 0.000000 0.000000 1.916291 0.000000 2.0 \n",
519 | "\n",
520 | " to virat \n",
521 | "0 1.916291 0.000000 \n",
522 | "1 0.000000 0.000000 \n",
523 | "2 0.000000 0.000000 \n",
524 | "3 0.000000 1.916291 "
525 | ]
526 | },
527 | "execution_count": 29,
528 | "metadata": {},
529 | "output_type": "execute_result"
530 | }
531 | ],
532 | "source": [
533 | "df"
534 | ]
535 | },
536 | {
537 | "cell_type": "code",
538 | "execution_count": 30,
539 | "id": "37520ccc",
540 | "metadata": {},
541 | "outputs": [
542 | {
543 | "ename": "AttributeError",
544 | "evalue": "'TfidfVectorizer' object has no attribute 'get_feature_names'",
545 | "output_type": "error",
546 | "traceback": [
547 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
548 | "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
549 | "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_16340\\2669239957.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mfeatures_names\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvectorizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_feature_names\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
550 | "\u001b[1;31mAttributeError\u001b[0m: 'TfidfVectorizer' object has no attribute 'get_feature_names'"
551 | ]
552 | }
553 | ],
554 | "source": [
555 | "features_names = sorted(vectorizer.get_feature_names())"
556 | ]
557 | },
558 | {
559 | "cell_type": "code",
560 | "execution_count": 32,
561 | "id": "a02ac24f",
562 | "metadata": {},
563 | "outputs": [
564 | {
565 | "name": "stdout",
566 | "output_type": "stream",
567 | "text": [
568 | " be captain considered cricket federer greatest indian \\\n",
569 | "Doc 1 1.916291 0.000000 1.223144 1.510826 0.000000 1.223144 0.000000 \n",
570 | "Doc 2 0.000000 0.000000 1.223144 0.000000 1.916291 1.223144 0.000000 \n",
571 | "Doc 3 0.000000 0.000000 1.223144 0.000000 0.000000 1.223144 0.000000 \n",
572 | "Doc 4 0.000000 1.916291 0.000000 1.510826 0.000000 0.000000 1.916291 \n",
573 | "\n",
574 | " is nadal of one players sachin team tennis \\\n",
575 | "Doc 1 1.0 0.000000 1.0 1.223144 1.223144 1.916291 0.000000 0.000000 \n",
576 | "Doc 2 1.0 0.000000 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 \n",
577 | "Doc 3 1.0 1.916291 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 \n",
578 | "Doc 4 1.0 0.000000 1.0 0.000000 0.000000 0.000000 1.916291 0.000000 \n",
579 | "\n",
580 | " the to virat \n",
581 | "Doc 1 1.0 1.916291 0.000000 \n",
582 | "Doc 2 1.0 0.000000 0.000000 \n",
583 | "Doc 3 1.0 0.000000 0.000000 \n",
584 | "Doc 4 2.0 0.000000 1.916291 \n"
585 | ]
586 | }
587 | ],
588 | "source": [
589 | "docList = ['Doc 1','Doc 2','Doc 3','Doc 4']\n",
590 | "skDocsIfIdfdf = pd.DataFrame(tfidfMat.todense(),index = sorted(docList), columns=features_names)\n",
591 | "print(skDocsIfIdfdf)"
592 | ]
593 | },
594 | {
595 | "cell_type": "code",
596 | "execution_count": 33,
597 | "id": "a1ed9a3a",
598 | "metadata": {},
599 | "outputs": [],
600 | "source": [
601 | "csim = cosine_similarity(tfidfMat,tfidfMat)\n"
602 | ]
603 | },
604 | {
605 | "cell_type": "code",
606 | "execution_count": 34,
607 | "id": "9555f330",
608 | "metadata": {},
609 | "outputs": [],
610 | "source": [
611 | "csimDf = pd.DataFrame(csim,index=sorted(docList),columns=sorted(docList))\n"
612 | ]
613 | },
614 | {
615 | "cell_type": "code",
616 | "execution_count": 35,
617 | "id": "e8ea2806",
618 | "metadata": {},
619 | "outputs": [
620 | {
621 | "name": "stdout",
622 | "output_type": "stream",
623 | "text": [
624 | " Doc 1 Doc 2 Doc 3 Doc 4\n",
625 | "Doc 1 1.000000 0.492416 0.492416 0.277687\n",
626 | "Doc 2 0.492416 1.000000 0.754190 0.215926\n",
627 | "Doc 3 0.492416 0.754190 1.000000 0.215926\n",
628 | "Doc 4 0.277687 0.215926 0.215926 1.000000\n"
629 | ]
630 | }
631 | ],
632 | "source": [
633 | "print(csimDf)\n"
634 | ]
635 | }
636 | ],
637 | "metadata": {
638 | "kernelspec": {
639 | "display_name": "Python 3 (ipykernel)",
640 | "language": "python",
641 | "name": "python3"
642 | },
643 | "language_info": {
644 | "codemirror_mode": {
645 | "name": "ipython",
646 | "version": 3
647 | },
648 | "file_extension": ".py",
649 | "mimetype": "text/x-python",
650 | "name": "python",
651 | "nbconvert_exporter": "python",
652 | "pygments_lexer": "ipython3",
653 | "version": "3.9.13"
654 | }
655 | },
656 | "nbformat": 4,
657 | "nbformat_minor": 5
658 | }
659 |
--------------------------------------------------------------------------------
/BostonHousing.csv:
--------------------------------------------------------------------------------
1 | "crim","zn","indus","chas","nox","rm","age","dis","rad","tax","ptratio","b","lstat","medv"
2 | 0.00632,18,2.31,"0",0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
3 | 0.02731,0,7.07,"0",0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
4 | 0.02729,0,7.07,"0",0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
5 | 0.03237,0,2.18,"0",0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
6 | 0.06905,0,2.18,"0",0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2
7 | 0.02985,0,2.18,"0",0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7
8 | 0.08829,12.5,7.87,"0",0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9
9 | 0.14455,12.5,7.87,"0",0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1
10 | 0.21124,12.5,7.87,"0",0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5
11 | 0.17004,12.5,7.87,"0",0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9
12 | 0.22489,12.5,7.87,"0",0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15
13 | 0.11747,12.5,7.87,"0",0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9
14 | 0.09378,12.5,7.87,"0",0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7
15 | 0.62976,0,8.14,"0",0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4
16 | 0.63796,0,8.14,"0",0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2
17 | 0.62739,0,8.14,"0",0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9
18 | 1.05393,0,8.14,"0",0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1
19 | 0.7842,0,8.14,"0",0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5
20 | 0.80271,0,8.14,"0",0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2
21 | 0.7258,0,8.14,"0",0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2
22 | 1.25179,0,8.14,"0",0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6
23 | 0.85204,0,8.14,"0",0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6
24 | 1.23247,0,8.14,"0",0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2
25 | 0.98843,0,8.14,"0",0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5
26 | 0.75026,0,8.14,"0",0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6
27 | 0.84054,0,8.14,"0",0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9
28 | 0.67191,0,8.14,"0",0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6
29 | 0.95577,0,8.14,"0",0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8
30 | 0.77299,0,8.14,"0",0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4
31 | 1.00245,0,8.14,"0",0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21
32 | 1.13081,0,8.14,"0",0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7
33 | 1.35472,0,8.14,"0",0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5
34 | 1.38799,0,8.14,"0",0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2
35 | 1.15172,0,8.14,"0",0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1
36 | 1.61282,0,8.14,"0",0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5
37 | 0.06417,0,5.96,"0",0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9
38 | 0.09744,0,5.96,"0",0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20
39 | 0.08014,0,5.96,"0",0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21
40 | 0.17505,0,5.96,"0",0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7
41 | 0.02763,75,2.95,"0",0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8
42 | 0.03359,75,2.95,"0",0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9
43 | 0.12744,0,6.91,"0",0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6
44 | 0.1415,0,6.91,"0",0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3
45 | 0.15936,0,6.91,"0",0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7
46 | 0.12269,0,6.91,"0",0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2
47 | 0.17142,0,6.91,"0",0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3
48 | 0.18836,0,6.91,"0",0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20
49 | 0.22927,0,6.91,"0",0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6
50 | 0.25387,0,6.91,"0",0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4
51 | 0.21977,0,6.91,"0",0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4
52 | 0.08873,21,5.64,"0",0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7
53 | 0.04337,21,5.64,"0",0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5
54 | 0.0536,21,5.64,"0",0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25
55 | 0.04981,21,5.64,"0",0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4
56 | 0.0136,75,4,"0",0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9
57 | 0.01311,90,1.22,"0",0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4
58 | 0.02055,85,0.74,"0",0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7
59 | 0.01432,100,1.32,"0",0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6
60 | 0.15445,25,5.13,"0",0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3
61 | 0.10328,25,5.13,"0",0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6
62 | 0.14932,25,5.13,"0",0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7
63 | 0.17171,25,5.13,"0",0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16
64 | 0.11027,25,5.13,"0",0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2
65 | 0.1265,25,5.13,"0",0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25
66 | 0.01951,17.5,1.38,"0",0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33
67 | 0.03584,80,3.37,"0",0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5
68 | 0.04379,80,3.37,"0",0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4
69 | 0.05789,12.5,6.07,"0",0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22
70 | 0.13554,12.5,6.07,"0",0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4
71 | 0.12816,12.5,6.07,"0",0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9
72 | 0.08826,0,10.81,"0",0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2
73 | 0.15876,0,10.81,"0",0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7
74 | 0.09164,0,10.81,"0",0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8
75 | 0.19539,0,10.81,"0",0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4
76 | 0.07896,0,12.83,"0",0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1
77 | 0.09512,0,12.83,"0",0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4
78 | 0.10153,0,12.83,"0",0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20
79 | 0.08707,0,12.83,"0",0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8
80 | 0.05646,0,12.83,"0",0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2
81 | 0.08387,0,12.83,"0",0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3
82 | 0.04113,25,4.86,"0",0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28
83 | 0.04462,25,4.86,"0",0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9
84 | 0.03659,25,4.86,"0",0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8
85 | 0.03551,25,4.86,"0",0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9
86 | 0.05059,0,4.49,"0",0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9
87 | 0.05735,0,4.49,"0",0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6
88 | 0.05188,0,4.49,"0",0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5
89 | 0.07151,0,4.49,"0",0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2
90 | 0.0566,0,3.41,"0",0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6
91 | 0.05302,0,3.41,"0",0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7
92 | 0.04684,0,3.41,"0",0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6
93 | 0.03932,0,3.41,"0",0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22
94 | 0.04203,28,15.04,"0",0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9
95 | 0.02875,28,15.04,"0",0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25
96 | 0.04294,28,15.04,"0",0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6
97 | 0.12204,0,2.89,"0",0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4
98 | 0.11504,0,2.89,"0",0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4
99 | 0.12083,0,2.89,"0",0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7
100 | 0.08187,0,2.89,"0",0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8
101 | 0.0686,0,2.89,"0",0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2
102 | 0.14866,0,8.56,"0",0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5
103 | 0.11432,0,8.56,"0",0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5
104 | 0.22876,0,8.56,"0",0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6
105 | 0.21161,0,8.56,"0",0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3
106 | 0.1396,0,8.56,"0",0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1
107 | 0.13262,0,8.56,"0",0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5
108 | 0.1712,0,8.56,"0",0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5
109 | 0.13117,0,8.56,"0",0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4
110 | 0.12802,0,8.56,"0",0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8
111 | 0.26363,0,8.56,"0",0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4
112 | 0.10793,0,8.56,"0",0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7
113 | 0.10084,0,10.01,"0",0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8
114 | 0.12329,0,10.01,"0",0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8
115 | 0.22212,0,10.01,"0",0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7
116 | 0.14231,0,10.01,"0",0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5
117 | 0.17134,0,10.01,"0",0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3
118 | 0.13158,0,10.01,"0",0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2
119 | 0.15098,0,10.01,"0",0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2
120 | 0.13058,0,10.01,"0",0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4
121 | 0.14476,0,10.01,"0",0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3
122 | 0.06899,0,25.65,"0",0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22
123 | 0.07165,0,25.65,"0",0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3
124 | 0.09299,0,25.65,"0",0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5
125 | 0.15038,0,25.65,"0",0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3
126 | 0.09849,0,25.65,"0",0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8
127 | 0.16902,0,25.65,"0",0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4
128 | 0.38735,0,25.65,"0",0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7
129 | 0.25915,0,21.89,"0",0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2
130 | 0.32543,0,21.89,"0",0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18
131 | 0.88125,0,21.89,"0",0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3
132 | 0.34006,0,21.89,"0",0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2
133 | 1.19294,0,21.89,"0",0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6
134 | 0.59005,0,21.89,"0",0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23
135 | 0.32982,0,21.89,"0",0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4
136 | 0.97617,0,21.89,"0",0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6
137 | 0.55778,0,21.89,"0",0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1
138 | 0.32264,0,21.89,"0",0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4
139 | 0.35233,0,21.89,"0",0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1
140 | 0.2498,0,21.89,"0",0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3
141 | 0.54452,0,21.89,"0",0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8
142 | 0.2909,0,21.89,"0",0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14
143 | 1.62864,0,21.89,"0",0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4
144 | 3.32105,0,19.58,"1",0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4
145 | 4.0974,0,19.58,"0",0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6
146 | 2.77974,0,19.58,"0",0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8
147 | 2.37934,0,19.58,"0",0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8
148 | 2.15505,0,19.58,"0",0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6
149 | 2.36862,0,19.58,"0",0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6
150 | 2.33099,0,19.58,"0",0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8
151 | 2.73397,0,19.58,"0",0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4
152 | 1.6566,0,19.58,"0",0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5
153 | 1.49632,0,19.58,"0",0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6
154 | 1.12658,0,19.58,"1",0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3
155 | 2.14918,0,19.58,"0",0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4
156 | 1.41385,0,19.58,"1",0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17
157 | 3.53501,0,19.58,"1",0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6
158 | 2.44668,0,19.58,"0",0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1
159 | 1.22358,0,19.58,"0",0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3
160 | 1.34284,0,19.58,"0",0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3
161 | 1.42502,0,19.58,"0",0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3
162 | 1.27346,0,19.58,"1",0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27
163 | 1.46336,0,19.58,"0",0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50
164 | 1.83377,0,19.58,"1",0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50
165 | 1.51902,0,19.58,"1",0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50
166 | 2.24236,0,19.58,"0",0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7
167 | 2.924,0,19.58,"0",0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25
168 | 2.01019,0,19.58,"0",0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50
169 | 1.80028,0,19.58,"0",0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8
170 | 2.3004,0,19.58,"0",0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8
171 | 2.44953,0,19.58,"0",0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3
172 | 1.20742,0,19.58,"0",0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4
173 | 2.3139,0,19.58,"0",0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1
174 | 0.13914,0,4.05,"0",0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1
175 | 0.09178,0,4.05,"0",0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6
176 | 0.08447,0,4.05,"0",0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6
177 | 0.06664,0,4.05,"0",0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4
178 | 0.07022,0,4.05,"0",0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2
179 | 0.05425,0,4.05,"0",0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6
180 | 0.06642,0,4.05,"0",0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9
181 | 0.0578,0,2.46,"0",0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2
182 | 0.06588,0,2.46,"0",0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8
183 | 0.06888,0,2.46,"0",0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2
184 | 0.09103,0,2.46,"0",0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9
185 | 0.10008,0,2.46,"0",0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5
186 | 0.08308,0,2.46,"0",0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4
187 | 0.06047,0,2.46,"0",0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6
188 | 0.05602,0,2.46,"0",0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50
189 | 0.07875,45,3.44,"0",0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32
190 | 0.12579,45,3.44,"0",0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8
191 | 0.0837,45,3.44,"0",0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9
192 | 0.09068,45,3.44,"0",0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37
193 | 0.06911,45,3.44,"0",0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5
194 | 0.08664,45,3.44,"0",0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4
195 | 0.02187,60,2.93,"0",0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1
196 | 0.01439,60,2.93,"0",0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1
197 | 0.01381,80,0.46,"0",0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50
198 | 0.04011,80,1.52,"0",0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3
199 | 0.04666,80,1.52,"0",0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3
200 | 0.03768,80,1.52,"0",0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6
201 | 0.0315,95,1.47,"0",0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9
202 | 0.01778,95,1.47,"0",0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9
203 | 0.03445,82.5,2.03,"0",0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1
204 | 0.02177,82.5,2.03,"0",0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3
205 | 0.0351,95,2.68,"0",0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5
206 | 0.02009,95,2.68,"0",0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50
207 | 0.13642,0,10.59,"0",0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6
208 | 0.22969,0,10.59,"0",0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4
209 | 0.25199,0,10.59,"0",0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5
210 | 0.13587,0,10.59,"1",0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4
211 | 0.43571,0,10.59,"1",0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20
212 | 0.17446,0,10.59,"1",0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7
213 | 0.37578,0,10.59,"1",0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3
214 | 0.21719,0,10.59,"1",0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4
215 | 0.14052,0,10.59,"0",0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1
216 | 0.28955,0,10.59,"0",0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7
217 | 0.19802,0,10.59,"0",0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25
218 | 0.0456,0,13.89,"1",0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3
219 | 0.07013,0,13.89,"0",0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7
220 | 0.11069,0,13.89,"1",0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5
221 | 0.11425,0,13.89,"1",0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23
222 | 0.35809,0,6.2,"1",0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7
223 | 0.40771,0,6.2,"1",0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7
224 | 0.62356,0,6.2,"1",0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5
225 | 0.6147,0,6.2,"0",0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1
226 | 0.31533,0,6.2,"0",0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8
227 | 0.52693,0,6.2,"0",0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50
228 | 0.38214,0,6.2,"0",0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6
229 | 0.41238,0,6.2,"0",0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6
230 | 0.29819,0,6.2,"0",0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7
231 | 0.44178,0,6.2,"0",0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5
232 | 0.537,0,6.2,"0",0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3
233 | 0.46296,0,6.2,"0",0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7
234 | 0.57529,0,6.2,"0",0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7
235 | 0.33147,0,6.2,"0",0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3
236 | 0.44791,0,6.2,"1",0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29
237 | 0.33045,0,6.2,"0",0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24
238 | 0.52058,0,6.2,"1",0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1
239 | 0.51183,0,6.2,"0",0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5
240 | 0.08244,30,4.93,"0",0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7
241 | 0.09252,30,4.93,"0",0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3
242 | 0.11329,30,4.93,"0",0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22
243 | 0.10612,30,4.93,"0",0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1
244 | 0.1029,30,4.93,"0",0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2
245 | 0.12757,30,4.93,"0",0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7
246 | 0.20608,22,5.86,"0",0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6
247 | 0.19133,22,5.86,"0",0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5
248 | 0.33983,22,5.86,"0",0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3
249 | 0.19657,22,5.86,"0",0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5
250 | 0.16439,22,5.86,"0",0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5
251 | 0.19073,22,5.86,"0",0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2
252 | 0.1403,22,5.86,"0",0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4
253 | 0.21409,22,5.86,"0",0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8
254 | 0.08221,22,5.86,"0",0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6
255 | 0.36894,22,5.86,"0",0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8
256 | 0.04819,80,3.64,"0",0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9
257 | 0.03548,80,3.64,"0",0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9
258 | 0.01538,90,3.75,"0",0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44
259 | 0.61154,20,3.97,"0",0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50
260 | 0.66351,20,3.97,"0",0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36
261 | 0.65665,20,3.97,"0",0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1
262 | 0.54011,20,3.97,"0",0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8
263 | 0.53412,20,3.97,"0",0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1
264 | 0.52014,20,3.97,"0",0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8
265 | 0.82526,20,3.97,"0",0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31
266 | 0.55007,20,3.97,"0",0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5
267 | 0.76162,20,3.97,"0",0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8
268 | 0.7857,20,3.97,"0",0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7
269 | 0.57834,20,3.97,"0",0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50
270 | 0.5405,20,3.97,"0",0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5
271 | 0.09065,20,6.96,"1",0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7
272 | 0.29916,20,6.96,"0",0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1
273 | 0.16211,20,6.96,"0",0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2
274 | 0.1146,20,6.96,"0",0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4
275 | 0.22188,20,6.96,"1",0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2
276 | 0.05644,40,6.41,"1",0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4
277 | 0.09604,40,6.41,"0",0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32
278 | 0.10469,40,6.41,"1",0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2
279 | 0.06127,40,6.41,"1",0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1
280 | 0.07978,40,6.41,"0",0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1
281 | 0.21038,20,3.33,"0",0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1
282 | 0.03578,20,3.33,"0",0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4
283 | 0.03705,20,3.33,"0",0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4
284 | 0.06129,20,3.33,"1",0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46
285 | 0.01501,90,1.21,"1",0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50
286 | 0.00906,90,2.97,"0",0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2
287 | 0.01096,55,2.25,"0",0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22
288 | 0.01965,80,1.76,"0",0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1
289 | 0.03871,52.5,5.32,"0",0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2
290 | 0.0459,52.5,5.32,"0",0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3
291 | 0.04297,52.5,5.32,"0",0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8
292 | 0.03502,80,4.95,"0",0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5
293 | 0.07886,80,4.95,"0",0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3
294 | 0.03615,80,4.95,"0",0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9
295 | 0.08265,0,13.92,"0",0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9
296 | 0.08199,0,13.92,"0",0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7
297 | 0.12932,0,13.92,"0",0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6
298 | 0.05372,0,13.92,"0",0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1
299 | 0.14103,0,13.92,"0",0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3
300 | 0.06466,70,2.24,"0",0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5
301 | 0.05561,70,2.24,"0",0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29
302 | 0.04417,70,2.24,"0",0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8
303 | 0.03537,34,6.09,"0",0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22
304 | 0.09266,34,6.09,"0",0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4
305 | 0.1,34,6.09,"0",0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1
306 | 0.05515,33,2.18,"0",0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1
307 | 0.05479,33,2.18,"0",0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4
308 | 0.07503,33,2.18,"0",0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4
309 | 0.04932,33,2.18,"0",0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2
310 | 0.49298,0,9.9,"0",0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8
311 | 0.3494,0,9.9,"0",0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3
312 | 2.63548,0,9.9,"0",0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1
313 | 0.79041,0,9.9,"0",0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1
314 | 0.26169,0,9.9,"0",0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4
315 | 0.26938,0,9.9,"0",0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6
316 | 0.3692,0,9.9,"0",0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8
317 | 0.25356,0,9.9,"0",0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2
318 | 0.31827,0,9.9,"0",0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8
319 | 0.24522,0,9.9,"0",0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8
320 | 0.40202,0,9.9,"0",0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1
321 | 0.47547,0,9.9,"0",0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21
322 | 0.1676,0,7.38,"0",0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8
323 | 0.18159,0,7.38,"0",0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1
324 | 0.35114,0,7.38,"0",0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4
325 | 0.28392,0,7.38,"0",0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5
326 | 0.34109,0,7.38,"0",0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25
327 | 0.19186,0,7.38,"0",0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6
328 | 0.30347,0,7.38,"0",0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23
329 | 0.24103,0,7.38,"0",0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2
330 | 0.06617,0,3.24,"0",0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3
331 | 0.06724,0,3.24,"0",0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6
332 | 0.04544,0,3.24,"0",0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8
333 | 0.05023,35,6.06,"0",0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1
334 | 0.03466,35,6.06,"0",0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4
335 | 0.05083,0,5.19,"0",0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2
336 | 0.03738,0,5.19,"0",0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7
337 | 0.03961,0,5.19,"0",0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1
338 | 0.03427,0,5.19,"0",0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5
339 | 0.03041,0,5.19,"0",0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5
340 | 0.03306,0,5.19,"0",0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6
341 | 0.05497,0,5.19,"0",0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19
342 | 0.06151,0,5.19,"0",0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7
343 | 0.01301,35,1.52,"0",0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7
344 | 0.02498,0,1.89,"0",0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5
345 | 0.02543,55,3.78,"0",0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9
346 | 0.03049,55,3.78,"0",0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2
347 | 0.03113,0,4.39,"0",0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5
348 | 0.06162,0,4.39,"0",0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2
349 | 0.0187,85,4.15,"0",0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1
350 | 0.01501,80,2.01,"0",0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5
351 | 0.02899,40,1.25,"0",0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6
352 | 0.06211,40,1.25,"0",0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9
353 | 0.0795,60,1.69,"0",0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1
354 | 0.07244,60,1.69,"0",0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6
355 | 0.01709,90,2.02,"0",0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1
356 | 0.04301,80,1.91,"0",0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2
357 | 0.10659,80,1.91,"0",0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6
358 | 8.98296,0,18.1,"1",0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8
359 | 3.8497,0,18.1,"1",0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7
360 | 5.20177,0,18.1,"1",0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7
361 | 4.26131,0,18.1,"0",0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6
362 | 4.54192,0,18.1,"0",0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25
363 | 3.83684,0,18.1,"0",0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9
364 | 3.67822,0,18.1,"0",0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8
365 | 4.22239,0,18.1,"1",0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8
366 | 3.47428,0,18.1,"1",0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9
367 | 4.55587,0,18.1,"0",0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5
368 | 3.69695,0,18.1,"0",0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9
369 | 13.5222,0,18.1,"0",0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1
370 | 4.89822,0,18.1,"0",0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50
371 | 5.66998,0,18.1,"1",0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50
372 | 6.53876,0,18.1,"1",0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50
373 | 9.2323,0,18.1,"0",0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50
374 | 8.26725,0,18.1,"1",0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50
375 | 11.1081,0,18.1,"0",0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8
376 | 18.4982,0,18.1,"0",0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8
377 | 19.6091,0,18.1,"0",0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15
378 | 15.288,0,18.1,"0",0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9
379 | 9.82349,0,18.1,"0",0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3
380 | 23.6482,0,18.1,"0",0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1
381 | 17.8667,0,18.1,"0",0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2
382 | 88.9762,0,18.1,"0",0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4
383 | 15.8744,0,18.1,"0",0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9
384 | 9.18702,0,18.1,"0",0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3
385 | 7.99248,0,18.1,"0",0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3
386 | 20.0849,0,18.1,"0",0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8
387 | 16.8118,0,18.1,"0",0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2
388 | 24.3938,0,18.1,"0",0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5
389 | 22.5971,0,18.1,"0",0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4
390 | 14.3337,0,18.1,"0",0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2
391 | 8.15174,0,18.1,"0",0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5
392 | 6.96215,0,18.1,"0",0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1
393 | 5.29305,0,18.1,"0",0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2
394 | 11.5779,0,18.1,"0",0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7
395 | 8.64476,0,18.1,"0",0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8
396 | 13.3598,0,18.1,"0",0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7
397 | 8.71675,0,18.1,"0",0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1
398 | 5.87205,0,18.1,"0",0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5
399 | 7.67202,0,18.1,"0",0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5
400 | 38.3518,0,18.1,"0",0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5
401 | 9.91655,0,18.1,"0",0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3
402 | 25.0461,0,18.1,"0",0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6
403 | 14.2362,0,18.1,"0",0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2
404 | 9.59571,0,18.1,"0",0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1
405 | 24.8017,0,18.1,"0",0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3
406 | 41.5292,0,18.1,"0",0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5
407 | 67.9208,0,18.1,"0",0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5
408 | 20.7162,0,18.1,"0",0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9
409 | 11.9511,0,18.1,"0",0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9
410 | 7.40389,0,18.1,"0",0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2
411 | 14.4383,0,18.1,"0",0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5
412 | 51.1358,0,18.1,"0",0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15
413 | 14.0507,0,18.1,"0",0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2
414 | 18.811,0,18.1,"0",0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9
415 | 28.6558,0,18.1,"0",0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3
416 | 45.7461,0,18.1,"0",0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7
417 | 18.0846,0,18.1,"0",0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2
418 | 10.8342,0,18.1,"0",0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5
419 | 25.9406,0,18.1,"0",0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4
420 | 73.5341,0,18.1,"0",0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8
421 | 11.8123,0,18.1,"0",0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4
422 | 11.0874,0,18.1,"0",0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7
423 | 7.02259,0,18.1,"0",0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2
424 | 12.0482,0,18.1,"0",0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8
425 | 7.05042,0,18.1,"0",0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4
426 | 8.79212,0,18.1,"0",0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7
427 | 15.8603,0,18.1,"0",0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3
428 | 12.2472,0,18.1,"0",0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2
429 | 37.6619,0,18.1,"0",0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9
430 | 7.36711,0,18.1,"0",0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11
431 | 9.33889,0,18.1,"0",0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5
432 | 8.49213,0,18.1,"0",0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5
433 | 10.0623,0,18.1,"0",0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1
434 | 6.44405,0,18.1,"0",0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1
435 | 5.58107,0,18.1,"0",0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3
436 | 13.9134,0,18.1,"0",0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7
437 | 11.1604,0,18.1,"0",0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4
438 | 14.4208,0,18.1,"0",0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6
439 | 15.1772,0,18.1,"0",0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7
440 | 13.6781,0,18.1,"0",0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4
441 | 9.39063,0,18.1,"0",0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8
442 | 22.0511,0,18.1,"0",0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5
443 | 9.72418,0,18.1,"0",0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1
444 | 5.66637,0,18.1,"0",0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4
445 | 9.96654,0,18.1,"0",0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4
446 | 12.8023,0,18.1,"0",0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8
447 | 10.6718,0,18.1,"0",0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8
448 | 6.28807,0,18.1,"0",0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9
449 | 9.92485,0,18.1,"0",0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6
450 | 9.32909,0,18.1,"0",0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1
451 | 7.52601,0,18.1,"0",0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13
452 | 6.71772,0,18.1,"0",0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4
453 | 5.44114,0,18.1,"0",0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2
454 | 5.09017,0,18.1,"0",0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1
455 | 8.24809,0,18.1,"0",0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8
456 | 9.51363,0,18.1,"0",0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9
457 | 4.75237,0,18.1,"0",0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1
458 | 4.66883,0,18.1,"0",0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7
459 | 8.20058,0,18.1,"0",0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5
460 | 7.75223,0,18.1,"0",0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9
461 | 6.80117,0,18.1,"0",0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20
462 | 4.81213,0,18.1,"0",0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4
463 | 3.69311,0,18.1,"0",0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7
464 | 6.65492,0,18.1,"0",0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5
465 | 5.82115,0,18.1,"0",0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2
466 | 7.83932,0,18.1,"0",0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4
467 | 3.1636,0,18.1,"0",0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9
468 | 3.77498,0,18.1,"0",0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19
469 | 4.42228,0,18.1,"0",0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1
470 | 15.5757,0,18.1,"0",0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1
471 | 13.0751,0,18.1,"0",0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1
472 | 4.34879,0,18.1,"0",0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9
473 | 4.03841,0,18.1,"0",0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6
474 | 3.56868,0,18.1,"0",0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2
475 | 4.64689,0,18.1,"0",0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8
476 | 8.05579,0,18.1,"0",0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8
477 | 6.39312,0,18.1,"0",0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3
478 | 4.87141,0,18.1,"0",0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7
479 | 15.0234,0,18.1,"0",0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12
480 | 10.233,0,18.1,"0",0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6
481 | 14.3337,0,18.1,"0",0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4
482 | 5.82401,0,18.1,"0",0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23
483 | 5.70818,0,18.1,"0",0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7
484 | 5.73116,0,18.1,"0",0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25
485 | 2.81838,0,18.1,"0",0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8
486 | 2.37857,0,18.1,"0",0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6
487 | 3.67367,0,18.1,"0",0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2
488 | 5.69175,0,18.1,"0",0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1
489 | 4.83567,0,18.1,"0",0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6
490 | 0.15086,0,27.74,"0",0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2
491 | 0.18337,0,27.74,"0",0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7
492 | 0.20746,0,27.74,"0",0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1
493 | 0.10574,0,27.74,"0",0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6
494 | 0.11132,0,27.74,"0",0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1
495 | 0.17331,0,9.69,"0",0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8
496 | 0.27957,0,9.69,"0",0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5
497 | 0.17899,0,9.69,"0",0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1
498 | 0.2896,0,9.69,"0",0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7
499 | 0.26838,0,9.69,"0",0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3
500 | 0.23912,0,9.69,"0",0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2
501 | 0.17783,0,9.69,"0",0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5
502 | 0.22438,0,9.69,"0",0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8
503 | 0.06263,0,11.93,"0",0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4
504 | 0.04527,0,11.93,"0",0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6
505 | 0.06076,0,11.93,"0",0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9
506 | 0.10959,0,11.93,"0",0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22
507 | 0.04741,0,11.93,"0",0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9
508 |
--------------------------------------------------------------------------------
/Assignment_9.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "55e4241b",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import seaborn as sns\n",
11 | "titanic = sns.load_dataset(\"titanic\")"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "id": "89318fdb",
18 | "metadata": {},
19 | "outputs": [
20 | {
21 | "data": {
22 | "text/html": [
23 | "\n",
24 | "\n",
37 | "
\n",
38 | " \n",
39 | " \n",
40 | " | \n",
41 | " survived | \n",
42 | " pclass | \n",
43 | " sex | \n",
44 | " age | \n",
45 | " sibsp | \n",
46 | " parch | \n",
47 | " fare | \n",
48 | " embarked | \n",
49 | " class | \n",
50 | " who | \n",
51 | " adult_male | \n",
52 | " deck | \n",
53 | " embark_town | \n",
54 | " alive | \n",
55 | " alone | \n",
56 | "
\n",
57 | " \n",
58 | " \n",
59 | " \n",
60 | " | 0 | \n",
61 | " 0 | \n",
62 | " 3 | \n",
63 | " male | \n",
64 | " 22.0 | \n",
65 | " 1 | \n",
66 | " 0 | \n",
67 | " 7.2500 | \n",
68 | " S | \n",
69 | " Third | \n",
70 | " man | \n",
71 | " True | \n",
72 | " NaN | \n",
73 | " Southampton | \n",
74 | " no | \n",
75 | " False | \n",
76 | "
\n",
77 | " \n",
78 | " | 1 | \n",
79 | " 1 | \n",
80 | " 1 | \n",
81 | " female | \n",
82 | " 38.0 | \n",
83 | " 1 | \n",
84 | " 0 | \n",
85 | " 71.2833 | \n",
86 | " C | \n",
87 | " First | \n",
88 | " woman | \n",
89 | " False | \n",
90 | " C | \n",
91 | " Cherbourg | \n",
92 | " yes | \n",
93 | " False | \n",
94 | "
\n",
95 | " \n",
96 | " | 2 | \n",
97 | " 1 | \n",
98 | " 3 | \n",
99 | " female | \n",
100 | " 26.0 | \n",
101 | " 0 | \n",
102 | " 0 | \n",
103 | " 7.9250 | \n",
104 | " S | \n",
105 | " Third | \n",
106 | " woman | \n",
107 | " False | \n",
108 | " NaN | \n",
109 | " Southampton | \n",
110 | " yes | \n",
111 | " True | \n",
112 | "
\n",
113 | " \n",
114 | " | 3 | \n",
115 | " 1 | \n",
116 | " 1 | \n",
117 | " female | \n",
118 | " 35.0 | \n",
119 | " 1 | \n",
120 | " 0 | \n",
121 | " 53.1000 | \n",
122 | " S | \n",
123 | " First | \n",
124 | " woman | \n",
125 | " False | \n",
126 | " C | \n",
127 | " Southampton | \n",
128 | " yes | \n",
129 | " False | \n",
130 | "
\n",
131 | " \n",
132 | " | 4 | \n",
133 | " 0 | \n",
134 | " 3 | \n",
135 | " male | \n",
136 | " 35.0 | \n",
137 | " 0 | \n",
138 | " 0 | \n",
139 | " 8.0500 | \n",
140 | " S | \n",
141 | " Third | \n",
142 | " man | \n",
143 | " True | \n",
144 | " NaN | \n",
145 | " Southampton | \n",
146 | " no | \n",
147 | " True | \n",
148 | "
\n",
149 | " \n",
150 | " | ... | \n",
151 | " ... | \n",
152 | " ... | \n",
153 | " ... | \n",
154 | " ... | \n",
155 | " ... | \n",
156 | " ... | \n",
157 | " ... | \n",
158 | " ... | \n",
159 | " ... | \n",
160 | " ... | \n",
161 | " ... | \n",
162 | " ... | \n",
163 | " ... | \n",
164 | " ... | \n",
165 | " ... | \n",
166 | "
\n",
167 | " \n",
168 | " | 886 | \n",
169 | " 0 | \n",
170 | " 2 | \n",
171 | " male | \n",
172 | " 27.0 | \n",
173 | " 0 | \n",
174 | " 0 | \n",
175 | " 13.0000 | \n",
176 | " S | \n",
177 | " Second | \n",
178 | " man | \n",
179 | " True | \n",
180 | " NaN | \n",
181 | " Southampton | \n",
182 | " no | \n",
183 | " True | \n",
184 | "
\n",
185 | " \n",
186 | " | 887 | \n",
187 | " 1 | \n",
188 | " 1 | \n",
189 | " female | \n",
190 | " 19.0 | \n",
191 | " 0 | \n",
192 | " 0 | \n",
193 | " 30.0000 | \n",
194 | " S | \n",
195 | " First | \n",
196 | " woman | \n",
197 | " False | \n",
198 | " B | \n",
199 | " Southampton | \n",
200 | " yes | \n",
201 | " True | \n",
202 | "
\n",
203 | " \n",
204 | " | 888 | \n",
205 | " 0 | \n",
206 | " 3 | \n",
207 | " female | \n",
208 | " NaN | \n",
209 | " 1 | \n",
210 | " 2 | \n",
211 | " 23.4500 | \n",
212 | " S | \n",
213 | " Third | \n",
214 | " woman | \n",
215 | " False | \n",
216 | " NaN | \n",
217 | " Southampton | \n",
218 | " no | \n",
219 | " False | \n",
220 | "
\n",
221 | " \n",
222 | " | 889 | \n",
223 | " 1 | \n",
224 | " 1 | \n",
225 | " male | \n",
226 | " 26.0 | \n",
227 | " 0 | \n",
228 | " 0 | \n",
229 | " 30.0000 | \n",
230 | " C | \n",
231 | " First | \n",
232 | " man | \n",
233 | " True | \n",
234 | " C | \n",
235 | " Cherbourg | \n",
236 | " yes | \n",
237 | " True | \n",
238 | "
\n",
239 | " \n",
240 | " | 890 | \n",
241 | " 0 | \n",
242 | " 3 | \n",
243 | " male | \n",
244 | " 32.0 | \n",
245 | " 0 | \n",
246 | " 0 | \n",
247 | " 7.7500 | \n",
248 | " Q | \n",
249 | " Third | \n",
250 | " man | \n",
251 | " True | \n",
252 | " NaN | \n",
253 | " Queenstown | \n",
254 | " no | \n",
255 | " True | \n",
256 | "
\n",
257 | " \n",
258 | "
\n",
259 | "
891 rows × 15 columns
\n",
260 | "
"
261 | ],
262 | "text/plain": [
263 | " survived pclass sex age sibsp parch fare embarked class \\\n",
264 | "0 0 3 male 22.0 1 0 7.2500 S Third \n",
265 | "1 1 1 female 38.0 1 0 71.2833 C First \n",
266 | "2 1 3 female 26.0 0 0 7.9250 S Third \n",
267 | "3 1 1 female 35.0 1 0 53.1000 S First \n",
268 | "4 0 3 male 35.0 0 0 8.0500 S Third \n",
269 | ".. ... ... ... ... ... ... ... ... ... \n",
270 | "886 0 2 male 27.0 0 0 13.0000 S Second \n",
271 | "887 1 1 female 19.0 0 0 30.0000 S First \n",
272 | "888 0 3 female NaN 1 2 23.4500 S Third \n",
273 | "889 1 1 male 26.0 0 0 30.0000 C First \n",
274 | "890 0 3 male 32.0 0 0 7.7500 Q Third \n",
275 | "\n",
276 | " who adult_male deck embark_town alive alone \n",
277 | "0 man True NaN Southampton no False \n",
278 | "1 woman False C Cherbourg yes False \n",
279 | "2 woman False NaN Southampton yes True \n",
280 | "3 woman False C Southampton yes False \n",
281 | "4 man True NaN Southampton no True \n",
282 | ".. ... ... ... ... ... ... \n",
283 | "886 man True NaN Southampton no True \n",
284 | "887 woman False B Southampton yes True \n",
285 | "888 woman False NaN Southampton no False \n",
286 | "889 man True C Cherbourg yes True \n",
287 | "890 man True NaN Queenstown no True \n",
288 | "\n",
289 | "[891 rows x 15 columns]"
290 | ]
291 | },
292 | "execution_count": 2,
293 | "metadata": {},
294 | "output_type": "execute_result"
295 | }
296 | ],
297 | "source": [
298 | "titanic\n"
299 | ]
300 | },
301 | {
302 | "cell_type": "code",
303 | "execution_count": 3,
304 | "id": "d10760ef",
305 | "metadata": {},
306 | "outputs": [
307 | {
308 | "data": {
309 | "text/html": [
310 | "\n",
311 | "\n",
324 | "
\n",
325 | " \n",
326 | " \n",
327 | " | \n",
328 | " survived | \n",
329 | " pclass | \n",
330 | " sex | \n",
331 | " age | \n",
332 | " sibsp | \n",
333 | " parch | \n",
334 | " fare | \n",
335 | " embarked | \n",
336 | " class | \n",
337 | " who | \n",
338 | " adult_male | \n",
339 | " deck | \n",
340 | " embark_town | \n",
341 | " alive | \n",
342 | " alone | \n",
343 | "
\n",
344 | " \n",
345 | " \n",
346 | " \n",
347 | " | 0 | \n",
348 | " 0 | \n",
349 | " 3 | \n",
350 | " male | \n",
351 | " 22.0 | \n",
352 | " 1 | \n",
353 | " 0 | \n",
354 | " 7.2500 | \n",
355 | " S | \n",
356 | " Third | \n",
357 | " man | \n",
358 | " True | \n",
359 | " NaN | \n",
360 | " Southampton | \n",
361 | " no | \n",
362 | " False | \n",
363 | "
\n",
364 | " \n",
365 | " | 1 | \n",
366 | " 1 | \n",
367 | " 1 | \n",
368 | " female | \n",
369 | " 38.0 | \n",
370 | " 1 | \n",
371 | " 0 | \n",
372 | " 71.2833 | \n",
373 | " C | \n",
374 | " First | \n",
375 | " woman | \n",
376 | " False | \n",
377 | " C | \n",
378 | " Cherbourg | \n",
379 | " yes | \n",
380 | " False | \n",
381 | "
\n",
382 | " \n",
383 | " | 2 | \n",
384 | " 1 | \n",
385 | " 3 | \n",
386 | " female | \n",
387 | " 26.0 | \n",
388 | " 0 | \n",
389 | " 0 | \n",
390 | " 7.9250 | \n",
391 | " S | \n",
392 | " Third | \n",
393 | " woman | \n",
394 | " False | \n",
395 | " NaN | \n",
396 | " Southampton | \n",
397 | " yes | \n",
398 | " True | \n",
399 | "
\n",
400 | " \n",
401 | " | 3 | \n",
402 | " 1 | \n",
403 | " 1 | \n",
404 | " female | \n",
405 | " 35.0 | \n",
406 | " 1 | \n",
407 | " 0 | \n",
408 | " 53.1000 | \n",
409 | " S | \n",
410 | " First | \n",
411 | " woman | \n",
412 | " False | \n",
413 | " C | \n",
414 | " Southampton | \n",
415 | " yes | \n",
416 | " False | \n",
417 | "
\n",
418 | " \n",
419 | " | 4 | \n",
420 | " 0 | \n",
421 | " 3 | \n",
422 | " male | \n",
423 | " 35.0 | \n",
424 | " 0 | \n",
425 | " 0 | \n",
426 | " 8.0500 | \n",
427 | " S | \n",
428 | " Third | \n",
429 | " man | \n",
430 | " True | \n",
431 | " NaN | \n",
432 | " Southampton | \n",
433 | " no | \n",
434 | " True | \n",
435 | "
\n",
436 | " \n",
437 | " | 5 | \n",
438 | " 0 | \n",
439 | " 3 | \n",
440 | " male | \n",
441 | " NaN | \n",
442 | " 0 | \n",
443 | " 0 | \n",
444 | " 8.4583 | \n",
445 | " Q | \n",
446 | " Third | \n",
447 | " man | \n",
448 | " True | \n",
449 | " NaN | \n",
450 | " Queenstown | \n",
451 | " no | \n",
452 | " True | \n",
453 | "
\n",
454 | " \n",
455 | " | 6 | \n",
456 | " 0 | \n",
457 | " 1 | \n",
458 | " male | \n",
459 | " 54.0 | \n",
460 | " 0 | \n",
461 | " 0 | \n",
462 | " 51.8625 | \n",
463 | " S | \n",
464 | " First | \n",
465 | " man | \n",
466 | " True | \n",
467 | " E | \n",
468 | " Southampton | \n",
469 | " no | \n",
470 | " True | \n",
471 | "
\n",
472 | " \n",
473 | " | 7 | \n",
474 | " 0 | \n",
475 | " 3 | \n",
476 | " male | \n",
477 | " 2.0 | \n",
478 | " 3 | \n",
479 | " 1 | \n",
480 | " 21.0750 | \n",
481 | " S | \n",
482 | " Third | \n",
483 | " child | \n",
484 | " False | \n",
485 | " NaN | \n",
486 | " Southampton | \n",
487 | " no | \n",
488 | " False | \n",
489 | "
\n",
490 | " \n",
491 | " | 8 | \n",
492 | " 1 | \n",
493 | " 3 | \n",
494 | " female | \n",
495 | " 27.0 | \n",
496 | " 0 | \n",
497 | " 2 | \n",
498 | " 11.1333 | \n",
499 | " S | \n",
500 | " Third | \n",
501 | " woman | \n",
502 | " False | \n",
503 | " NaN | \n",
504 | " Southampton | \n",
505 | " yes | \n",
506 | " False | \n",
507 | "
\n",
508 | " \n",
509 | " | 9 | \n",
510 | " 1 | \n",
511 | " 2 | \n",
512 | " female | \n",
513 | " 14.0 | \n",
514 | " 1 | \n",
515 | " 0 | \n",
516 | " 30.0708 | \n",
517 | " C | \n",
518 | " Second | \n",
519 | " child | \n",
520 | " False | \n",
521 | " NaN | \n",
522 | " Cherbourg | \n",
523 | " yes | \n",
524 | " False | \n",
525 | "
\n",
526 | " \n",
527 | "
\n",
528 | "
"
529 | ],
530 | "text/plain": [
531 | " survived pclass sex age sibsp parch fare embarked class \\\n",
532 | "0 0 3 male 22.0 1 0 7.2500 S Third \n",
533 | "1 1 1 female 38.0 1 0 71.2833 C First \n",
534 | "2 1 3 female 26.0 0 0 7.9250 S Third \n",
535 | "3 1 1 female 35.0 1 0 53.1000 S First \n",
536 | "4 0 3 male 35.0 0 0 8.0500 S Third \n",
537 | "5 0 3 male NaN 0 0 8.4583 Q Third \n",
538 | "6 0 1 male 54.0 0 0 51.8625 S First \n",
539 | "7 0 3 male 2.0 3 1 21.0750 S Third \n",
540 | "8 1 3 female 27.0 0 2 11.1333 S Third \n",
541 | "9 1 2 female 14.0 1 0 30.0708 C Second \n",
542 | "\n",
543 | " who adult_male deck embark_town alive alone \n",
544 | "0 man True NaN Southampton no False \n",
545 | "1 woman False C Cherbourg yes False \n",
546 | "2 woman False NaN Southampton yes True \n",
547 | "3 woman False C Southampton yes False \n",
548 | "4 man True NaN Southampton no True \n",
549 | "5 man True NaN Queenstown no True \n",
550 | "6 man True E Southampton no True \n",
551 | "7 child False NaN Southampton no False \n",
552 | "8 woman False NaN Southampton yes False \n",
553 | "9 child False NaN Cherbourg yes False "
554 | ]
555 | },
556 | "execution_count": 3,
557 | "metadata": {},
558 | "output_type": "execute_result"
559 | }
560 | ],
561 | "source": [
562 | "titanic.head(10)"
563 | ]
564 | },
565 | {
566 | "cell_type": "code",
567 | "execution_count": 4,
568 | "id": "c279ecfd",
569 | "metadata": {},
570 | "outputs": [
571 | {
572 | "data": {
573 | "text/plain": [
574 | ""
601 | ]
602 | },
603 | "execution_count": 4,
604 | "metadata": {},
605 | "output_type": "execute_result"
606 | }
607 | ],
608 | "source": [
609 | "titanic.info"
610 | ]
611 | },
612 | {
613 | "cell_type": "code",
614 | "execution_count": 5,
615 | "id": "b7d3c636",
616 | "metadata": {},
617 | "outputs": [
618 | {
619 | "data": {
620 | "text/html": [
621 | "\n",
622 | "\n",
635 | "
\n",
636 | " \n",
637 | " \n",
638 | " | \n",
639 | " survived | \n",
640 | " pclass | \n",
641 | " age | \n",
642 | " sibsp | \n",
643 | " parch | \n",
644 | " fare | \n",
645 | "
\n",
646 | " \n",
647 | " \n",
648 | " \n",
649 | " | count | \n",
650 | " 891.000000 | \n",
651 | " 891.000000 | \n",
652 | " 714.000000 | \n",
653 | " 891.000000 | \n",
654 | " 891.000000 | \n",
655 | " 891.000000 | \n",
656 | "
\n",
657 | " \n",
658 | " | mean | \n",
659 | " 0.383838 | \n",
660 | " 2.308642 | \n",
661 | " 29.699118 | \n",
662 | " 0.523008 | \n",
663 | " 0.381594 | \n",
664 | " 32.204208 | \n",
665 | "
\n",
666 | " \n",
667 | " | std | \n",
668 | " 0.486592 | \n",
669 | " 0.836071 | \n",
670 | " 14.526497 | \n",
671 | " 1.102743 | \n",
672 | " 0.806057 | \n",
673 | " 49.693429 | \n",
674 | "
\n",
675 | " \n",
676 | " | min | \n",
677 | " 0.000000 | \n",
678 | " 1.000000 | \n",
679 | " 0.420000 | \n",
680 | " 0.000000 | \n",
681 | " 0.000000 | \n",
682 | " 0.000000 | \n",
683 | "
\n",
684 | " \n",
685 | " | 25% | \n",
686 | " 0.000000 | \n",
687 | " 2.000000 | \n",
688 | " 20.125000 | \n",
689 | " 0.000000 | \n",
690 | " 0.000000 | \n",
691 | " 7.910400 | \n",
692 | "
\n",
693 | " \n",
694 | " | 50% | \n",
695 | " 0.000000 | \n",
696 | " 3.000000 | \n",
697 | " 28.000000 | \n",
698 | " 0.000000 | \n",
699 | " 0.000000 | \n",
700 | " 14.454200 | \n",
701 | "
\n",
702 | " \n",
703 | " | 75% | \n",
704 | " 1.000000 | \n",
705 | " 3.000000 | \n",
706 | " 38.000000 | \n",
707 | " 1.000000 | \n",
708 | " 0.000000 | \n",
709 | " 31.000000 | \n",
710 | "
\n",
711 | " \n",
712 | " | max | \n",
713 | " 1.000000 | \n",
714 | " 3.000000 | \n",
715 | " 80.000000 | \n",
716 | " 8.000000 | \n",
717 | " 6.000000 | \n",
718 | " 512.329200 | \n",
719 | "
\n",
720 | " \n",
721 | "
\n",
722 | "
"
723 | ],
724 | "text/plain": [
725 | " survived pclass age sibsp parch fare\n",
726 | "count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000\n",
727 | "mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208\n",
728 | "std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429\n",
729 | "min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000\n",
730 | "25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400\n",
731 | "50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200\n",
732 | "75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000\n",
733 | "max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200"
734 | ]
735 | },
736 | "execution_count": 5,
737 | "metadata": {},
738 | "output_type": "execute_result"
739 | }
740 | ],
741 | "source": [
742 | "titanic.describe()"
743 | ]
744 | },
745 | {
746 | "cell_type": "code",
747 | "execution_count": 6,
748 | "id": "beedac32",
749 | "metadata": {},
750 | "outputs": [
751 | {
752 | "data": {
753 | "text/html": [
754 | "\n",
755 | "\n",
768 | "
\n",
769 | " \n",
770 | " \n",
771 | " | \n",
772 | " survived | \n",
773 | " alive | \n",
774 | "
\n",
775 | " \n",
776 | " \n",
777 | " \n",
778 | " | 0 | \n",
779 | " 0 | \n",
780 | " no | \n",
781 | "
\n",
782 | " \n",
783 | " | 1 | \n",
784 | " 1 | \n",
785 | " yes | \n",
786 | "
\n",
787 | " \n",
788 | " | 2 | \n",
789 | " 1 | \n",
790 | " yes | \n",
791 | "
\n",
792 | " \n",
793 | " | 3 | \n",
794 | " 1 | \n",
795 | " yes | \n",
796 | "
\n",
797 | " \n",
798 | " | 4 | \n",
799 | " 0 | \n",
800 | " no | \n",
801 | "
\n",
802 | " \n",
803 | " | ... | \n",
804 | " ... | \n",
805 | " ... | \n",
806 | "
\n",
807 | " \n",
808 | " | 886 | \n",
809 | " 0 | \n",
810 | " no | \n",
811 | "
\n",
812 | " \n",
813 | " | 887 | \n",
814 | " 1 | \n",
815 | " yes | \n",
816 | "
\n",
817 | " \n",
818 | " | 888 | \n",
819 | " 0 | \n",
820 | " no | \n",
821 | "
\n",
822 | " \n",
823 | " | 889 | \n",
824 | " 1 | \n",
825 | " yes | \n",
826 | "
\n",
827 | " \n",
828 | " | 890 | \n",
829 | " 0 | \n",
830 | " no | \n",
831 | "
\n",
832 | " \n",
833 | "
\n",
834 | "
891 rows × 2 columns
\n",
835 | "
"
836 | ],
837 | "text/plain": [
838 | " survived alive\n",
839 | "0 0 no\n",
840 | "1 1 yes\n",
841 | "2 1 yes\n",
842 | "3 1 yes\n",
843 | "4 0 no\n",
844 | ".. ... ...\n",
845 | "886 0 no\n",
846 | "887 1 yes\n",
847 | "888 0 no\n",
848 | "889 1 yes\n",
849 | "890 0 no\n",
850 | "\n",
851 | "[891 rows x 2 columns]"
852 | ]
853 | },
854 | "execution_count": 6,
855 | "metadata": {},
856 | "output_type": "execute_result"
857 | }
858 | ],
859 | "source": [
860 | "titanic.loc[:,[\"survived\",\"alive\"]]"
861 | ]
862 | },
863 | {
864 | "cell_type": "code",
865 | "execution_count": 7,
866 | "id": "14ed98a3",
867 | "metadata": {},
868 | "outputs": [
869 | {
870 | "data": {
871 | "text/plain": [
872 | ""
873 | ]
874 | },
875 | "execution_count": 7,
876 | "metadata": {},
877 | "output_type": "execute_result"
878 | },
879 | {
880 | "data": {
881 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsG0lEQVR4nO3df1xVdYL/8fcB8wIKVJr3SiBiof1AJ8tiIwumDVwqp5GpHHFcnZrH2tAP0ZmxjGxujkHiDIsTkxNuD6Mt1nq04+zsNCr0i7aoRMvR1O2XFjiJrI4BKVxGON8//HpHAqxQ7rmf6+v5eJzHw/s5517eR7zw9nPOPceybdsWAACAocKcDgAAAHAyKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEYb5HSAgdbV1aXPPvtM0dHRsizL6TgAAOBrsG1bra2tiouLU1jYiedeQr7MfPbZZ0pISHA6BgAA6IeGhgbFx8efcJuQLzPR0dGSjv5lxMTEOJwGAAB8HS0tLUpISPD/Hj+RkC8zxw4txcTEUGYAADDM1zlFhBOAAQCA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMIKbW1tZo+fbpqa2udjgIACBBHy8yRI0f0wAMPKCkpSZGRkRozZoyWLFmirq4u/za2bcvr9SouLk6RkZHKyMjQ9u3bHUyNYNXe3q6SkhLt27dPJSUlam9vdzoSACAAHC0zy5Yt029/+1uVlZVp586dKi4u1vLly/Xoo4/6tykuLlZJSYnKyspUV1cnj8ejzMxMtba2OpgcweiZZ57RgQMHJEkHDhxQZWWlw4kAAIHgaJl58803ddNNN+mGG27Q6NGjdfPNNysrK0ubNm2SdHRWprS0VAUFBcrJyVFKSooqKip0+PBhflGhmz179qiyslK2bUs6+m+nsrJSe/bscTgZAGCgOVpmJk+erJdeekkffPCBJOnPf/6zXn/9dV1//fWSpN27d6uxsVFZWVn+57hcLqWnp/d5ToTP51NLS0u3BaHNtm2tWLGiz/FjBQcAEJoGOfnF7733XjU3N+uCCy5QeHi4Ojs79fDDD2vGjBmSpMbGRkmS2+3u9jy3261PP/2019csKirSQw89NLDBEVTq6+tVV1fXY7yzs1N1dXWqr69XYmKiA8kAAIHg6MzMs88+q6efflqVlZV65513VFFRoV/+8peqqKjotp1lWd0e27bdY+yYRYsWqbm52b80NDQMWH4Eh1GjRunyyy9XeHh4t/Hw8HBdccUVGjVqlEPJAACB4OjMzM9+9jPdd999+v73vy9JGj9+vD799FMVFRVp9uzZ8ng8ko7O0IwcOdL/vKamph6zNce4XC65XK6BD4+gYVmW5s2bp9mzZ/c63lfxBQCEBkdnZg4fPqywsO4RwsPD/R/NTkpKksfjUXV1tX99R0eHampqlJaWFtCsCG7x8fHKzc31FxfLspSbm6tzzz3X4WQAgIHmaJmZOnWqHn74Yb3wwgv65JNPtHbtWpWUlGjatGmSjv5Cys/PV2FhodauXav33ntPc+bMUVRUlHJzc52MjiA0c+ZMDRs2TJI0fPhw/o0AwGnC0cNMjz76qBYvXqy8vDw1NTUpLi5Oc+fO1YMPPujfZuHChWpra1NeXp4OHjyo1NRUVVVVKTo62sHkCEYRERFasGCBVqxYoXnz5ikiIsLpSACAALDsEP/caktLi2JjY9Xc3KyYmBin4wAAgK/hm/z+5t5MAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmUFIqa2t1fTp01VbW+t0FABAgFBmEDLa29tVUlKiffv2qaSkRO3t7U5HAgAEAGUGIeOZZ57RgQMHJEkHDhxQZWWlw4kAAIFAmUFI2LNnjyorK2XbtiTJtm1VVlZqz549DicDAAw0ygyMZ9u2VqxY0ef4sYIDAAhNlBkYr76+XnV1ders7Ow23tnZqbq6OtXX1zuUDAAQCJQZGG/UqFG6/PLLFR4e3m08PDxcV1xxhUaNGuVQMgBAIFBmYDzLsjRv3rw+xy3LciAVACBQKDMICfHx8crNzfUXF8uylJubq3PPPdfhZACAgUaZQciYOXOmhg0bJkkaPny4cnNzHU4EAAgEygxCRkREhBYsWCC326358+crIiLC6UgAgAAY5HQA4FRKS0tTWlqa0zEAAAHEzAwAADAaZQYh5YknntC1116rJ554wukoAIAAocwgZHz++ed65pln1NXVpWeeeUaff/6505EAAAFAmUHIWLx4sbq6uiRJXV1devDBBx1OBAAIBMoMQsKmTZu0bdu2bmNbt27Vpk2bHEoEAAgUygyM19XVpSVLlvS6bsmSJf7ZGgBAaKLMwHhvv/22Wlpael3X0tKit99+O8CJAACB5GiZGT16tCzL6rHceeedkiTbtuX1ehUXF6fIyEhlZGRo+/btTkZGELriiit63GTymGM3mwQAhC5Hy0xdXZ327t3rX6qrqyVJt9xyiySpuLhYJSUlKisrU11dnTwejzIzM9Xa2upkbASZPXv2qLOzs9d1nZ2d2rNnT4ATAQACydEyc84558jj8fiXP/7xjzrvvPOUnp4u27ZVWlqqgoIC5eTkKCUlRRUVFTp8+LAqKyv7fE2fz6eWlpZuC0JbfHz8CWdm4uPjA5wIABBIQXPOTEdHh55++mnddtttsixLu3fvVmNjo7KysvzbuFwupaenq7a2ts/XKSoqUmxsrH9JSEgIRHw4aOPGjSecmdm4cWOAEwEAAiloyszvf/97ff7555ozZ44kqbGxUZLkdru7bed2u/3rerNo0SI1Nzf7l4aGhgHLjOCQmpqqmJiYXtfFxsYqNTU1wIkAAIEUNGXmiSeeUHZ2tuLi4rqNW5bV7bFt2z3GjudyuRQTE9NtQWgLCwvr8wJ5P//5zxUWFjT/zAEAAyAofsp/+umnevHFF/WjH/3IP+bxeCSpxyxMU1NTj9kaYNKkSRo/fny3sQkTJujSSy91KBEAIFCCosysXr1aI0aM0A033OAfS0pKksfj8X/CSTp6Xk1NTY3S0tKciIkg94tf/MI/CxMWFtbnhfQAAKHF8TLT1dWl1atXa/bs2Ro0aJB/3LIs5efnq7CwUGvXrtV7772nOXPmKCoqSrm5uQ4mRrA688wzNXPmTIWFhWnmzJk688wznY4EAAiAQV+9ycB68cUXVV9fr9tuu63HuoULF6qtrU15eXk6ePCgUlNTVVVVpejoaAeSwgS33367br/9dqdjAAACyLJt23Y6xEBqaWlRbGysmpubORkYAABDfJPf344fZgIAADgZlBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKM5ftE8OM+2bbW3tzsd46TZti2fzyfp6A1HT3RDUlNERESExH4AwECizEDt7e3Kzs52OgZ6sW7dOkVGRjodAwCCGoeZAACA0ZiZgSIiIrRu3TqnY5y09vZ2TZs2TZK0du1aRUREOJzo5IXCPgDAQKPMQJZlhdyhjIiIiJDbJwBA7zjMBAAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjYvmAUAI40aywYsbyZ46lBkACGHcSDZ4cSPZU4fDTAAAwGjMzABACONGssErFPYhWFBmACCEcSNZnA44zAQAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTHy8xf/vIX/eAHP9CwYcMUFRWlSy65RJs3b/avt21bXq9XcXFxioyMVEZGhrZv3+5gYgAAEEwcLTMHDx7UVVddpTPOOEPr1q3Tjh079Ktf/Upnnnmmf5vi4mKVlJSorKxMdXV18ng8yszMVGtrq3PBAQBA0HD0onnLli1TQkKCVq9e7R8bPXq0/8+2bau0tFQFBQXKycmRJFVUVMjtdquyslJz587t8Zo+n89/MzJJamlpGbgdAAAAjnN0ZuYPf/iDJk2apFtuuUUjRozQxIkTtWrVKv/63bt3q7GxUVlZWf4xl8ul9PR01dbW9vqaRUVFio2N9S8JCQkDvh8AAMA5jpaZXbt2aeXKlUpOTtaGDRt0xx136J577tFTTz0lSWpsbJQkud3ubs9zu93+dV+2aNEiNTc3+5eGhoaB3QkAAOAoRw8zdXV1adKkSSosLJQkTZw4Udu3b9fKlSv1z//8z/7tLMvq9jzbtnuMHeNyueRyuQYuNAAACCqOzsyMHDlSF110UbexCy+8UPX19ZIkj8cjST1mYZqamnrM1gAAgNOTo2Xmqquu0vvvv99t7IMPPlBiYqIkKSkpSR6PR9XV1f71HR0dqqmpUVpaWkCzAgCA4OToYab58+crLS1NhYWFuvXWW7Vx40aVl5ervLxc0tHDS/n5+SosLFRycrKSk5NVWFioqKgo5ebmOhkdAAAECUfLzOWXX661a9dq0aJFWrJkiZKSklRaWqqZM2f6t1m4cKHa2tqUl5engwcPKjU1VVVVVYqOjnYwOQAACBaOlhlJuvHGG3XjjTf2ud6yLHm9Xnm93sCFAgAAxnD8dgYAAAAngzIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0R8uM1+uVZVndFo/H419v27a8Xq/i4uIUGRmpjIwMbd++3cHEAAAg2Dg+M3PxxRdr7969/mXbtm3+dcXFxSopKVFZWZnq6urk8XiUmZmp1tZWBxMDAIBg4niZGTRokDwej38555xzJB2dlSktLVVBQYFycnKUkpKiiooKHT58WJWVlQ6nBgAAwcLxMvPhhx8qLi5OSUlJ+v73v69du3ZJknbv3q3GxkZlZWX5t3W5XEpPT1dtbW2fr+fz+dTS0tJtAQAAocvRMpOamqqnnnpKGzZs0KpVq9TY2Ki0tDQdOHBAjY2NkiS3293tOW6327+uN0VFRYqNjfUvCQkJA7oPAADAWY6WmezsbH3ve9/T+PHjdd111+mFF16QJFVUVPi3sSyr23Ns2+4xdrxFixapubnZvzQ0NAxMeAAAEBQcP8x0vCFDhmj8+PH68MMP/Z9q+vIsTFNTU4/ZmuO5XC7FxMR0WwAAQOgKqjLj8/m0c+dOjRw5UklJSfJ4PKqurvav7+joUE1NjdLS0hxMCQAAgskgJ7/4T3/6U02dOlWjRo1SU1OTli5dqpaWFs2ePVuWZSk/P1+FhYVKTk5WcnKyCgsLFRUVpdzcXCdjAwCAIOJomdmzZ49mzJih/fv365xzztE//MM/6K233lJiYqIkaeHChWpra1NeXp4OHjyo1NRUVVVVKTo62snYAAAgiDhaZtasWXPC9ZZlyev1yuv1BiYQAAAwTlCdMwMAAPBNUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGO6ky89FHH2nDhg1qa2uTJNm2fUpCAQAAfF39KjMHDhzQddddp7Fjx+r666/X3r17JUk/+tGP9JOf/OSUBgQAADiRfpWZ+fPna9CgQaqvr1dUVJR/fPr06Vq/fv0pCwcAAPBVBvXnSVVVVdqwYYPi4+O7jScnJ+vTTz89JcEAAAC+jn7NzBw6dKjbjMwx+/fvl8vlOulQAAAAX1e/ysw111yjp556yv/Ysix1dXVp+fLl+va3v33KwgEAAHyVfh1mWr58uTIyMrRp0yZ1dHRo4cKF2r59u/7617/qjTfeONUZAQAA+tSvmZmLLrpIW7du1RVXXKHMzEwdOnRIOTk5evfdd3Xeeef1K0hRUZEsy1J+fr5/zLZteb1excXFKTIyUhkZGdq+fXu/Xh8AAISmfs3MSJLH49FDDz10SkLU1dWpvLxcEyZM6DZeXFyskpISPfnkkxo7dqyWLl2qzMxMvf/++4qOjj4lXxsAAJitX2Vm69atvY5blqWIiAiNGjXqa58I/MUXX2jmzJlatWqVli5d6h+3bVulpaUqKChQTk6OJKmiokJut1uVlZWaO3duf6IDAIAQ068yc8kll8iyLEl/v+rvsceSdMYZZ2j69Ol6/PHHFRERccLXuvPOO3XDDTfouuuu61Zmdu/ercbGRmVlZfnHXC6X0tPTVVtb22eZ8fl88vl8/sctLS3ffAcBAIAx+nXOzNq1a5WcnKzy8nL9+c9/1pYtW1ReXq5x48apsrJSTzzxhF5++WU98MADJ3ydNWvWaPPmzSoqKuqxrrGxUZLkdru7jbvdbv+63hQVFSk2Nta/JCQk9GMPAQCAKfo1M/Pwww9rxYoVmjJlin9swoQJio+P1+LFi7Vx40YNGTJEP/nJT/TLX/6y19doaGjQvHnzVFVVdcLZm+NnfKSjM0FfHjveokWLtGDBAv/jlpYWCg0AACGsX2Vm27ZtSkxM7DGemJiobdu2STp6KOrYPZt6s3nzZjU1Nemyyy7zj3V2duq1115TWVmZ3n//fUlHZ2hGjhzp36apqanHbM3xXC5XQC/cZ9u22tvbA/b10Lfjvw98T4JHRETECf8DAgAnq19l5oILLtAjjzyi8vJyDR48WJL0t7/9TY888oguuOACSdJf/vKXE5aOf/zHf/QXn2N++MMf6oILLtC9996rMWPGyOPxqLq6WhMnTpQkdXR0qKamRsuWLetP7AHR3t6u7Oxsp2PgS6ZNm+Z0BPx/69atU2RkpNMxAISwfpWZ3/zmN/rOd76j+Ph4TZgwQZZlaevWrers7NQf//hHSdKuXbuUl5fX52tER0crJSWl29iQIUM0bNgw/3h+fr4KCwuVnJys5ORkFRYWKioqSrm5uf2JDQAAQlC/ykxaWpo++eQTPf300/rggw9k27Zuvvlm5ebm+q//MmvWrJMOt3DhQrW1tSkvL08HDx5UamqqqqqqgvYaM19cMkN2WL8v3YOTZdtS15Gjfw4bJHFowzFW1xEN3fIfTscAcJro92/eoUOH6pprrtHo0aPV0dEhSXrllVckSd/5znf69Zqvvvpqt8eWZcnr9crr9fY3ZkDZYYOk8DOcjnGaG+x0AEiynQ4A4LTSrzKza9cuTZs2Tdu2bZNlWT0+YdTZ2XnKAgIAAJxIv64zM2/ePCUlJWnfvn2KiorSe++9p5qaGk2aNKnH7AoAAMBA6tfMzJtvvqmXX35Z55xzjsLCwhQeHq7JkyerqKhI99xzj959991TnRMAAKBX/SoznZ2dGjp0qCRp+PDh+uyzzzRu3DglJib6rw8DAKbjOlLBg+tIBadguY5Uv8pMSkqKtm7dqjFjxig1NVXFxcUaPHiwysvLNWbMmFOdEQAcwXWkghPXkQoewXIdqX6VmQceeECHDh2SJC1dulQ33nijrr76ag0bNkzPPvvsKQ0IAABwIv0qM8ffk2nMmDHasWOH/vrXv+qss84KiukmADjVyib/Va5wPnTuFNuWOrqO/nlwGJeRcpKv09Jdr5/tdIxuTtkV3s4+O7h2DABOJVe4LVe40ylOb33fkhiBFXylvl8fzQYAAAgWlBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjOVpmVq5cqQkTJigmJkYxMTG68sortW7dOv9627bl9XoVFxenyMhIZWRkaPv27Q4mBgAAwcbRMhMfH69HHnlEmzZt0qZNm3Tttdfqpptu8heW4uJilZSUqKysTHV1dfJ4PMrMzFRra6uTsQEAQBBxtMxMnTpV119/vcaOHauxY8fq4Ycf1tChQ/XWW2/Jtm2VlpaqoKBAOTk5SklJUUVFhQ4fPqzKykonYwMAgCASNOfMdHZ2as2aNTp06JCuvPJK7d69W42NjcrKyvJv43K5lJ6ertra2j5fx+fzqaWlpdsCAABCl+NlZtu2bRo6dKhcLpfuuOMOrV27VhdddJEaGxslSW63u9v2brfbv643RUVFio2N9S8JCQkDmh8AADjL8TIzbtw4bdmyRW+99ZZ+/OMfa/bs2dqxY4d/vWVZ3ba3bbvH2PEWLVqk5uZm/9LQ0DBg2QEAgPMGOR1g8ODBOv/88yVJkyZNUl1dnVasWKF7771XktTY2KiRI0f6t29qauoxW3M8l8sll8s1sKGPY9v23x90/i1gXxcIase9F7q9RwBgADheZr7Mtm35fD4lJSXJ4/GourpaEydOlCR1dHSopqZGy5Ytczjl3/l8Pv+fo/+8xsEkQHDy+XyKiopyOgaAEOZombn//vuVnZ2thIQEtba2as2aNXr11Ve1fv16WZal/Px8FRYWKjk5WcnJySosLFRUVJRyc3OdjA0AAIKIo2Vm3759mjVrlvbu3avY2FhNmDBB69evV2ZmpiRp4cKFamtrU15eng4ePKjU1FRVVVUpOjraydjdHH9Iq/Vb35fCz3AwDRAkOv/mn6kM5GFfAKcnR8vME088ccL1lmXJ6/XK6/UGJlA/dDsZOfwMygzwJSc6YR8ATgXHP80EAABwMigzAADAaJQZAABgNMoMAAAwWtBdZwYAgsXxF/zzdToYBAgix78XguWimJQZAOjD8RfFvOv1YQ4mAYJTsFwUk8NMAADAaMzMAEAfjr/gX9nkA3KFOxgGCBK+zr/PVAbLRTEpMwDQh+Mv+OcKF2UG+JJguSgmh5kAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAw2iCnA4QSq+uIbKdDnM5sW+o6cvTPYYMky3I2z2nMOvZ9AIAAoMycQkO3/IfTEQAAOO1wmAkAABjN0ZmZoqIi/e53v9P//u//KjIyUmlpaVq2bJnGjRvn38a2bT300EMqLy/XwYMHlZqaqt/85je6+OKLHUz+dxEREVq3bp3TMSCpvb1d06ZNkyStXbtWERERDieCJL4PAAaco2WmpqZGd955py6//HIdOXJEBQUFysrK0o4dOzRkyBBJUnFxsUpKSvTkk09q7NixWrp0qTIzM/X+++8rOjrayfiSJMuyFBkZ6XQMfElERATfFwA4TThaZtavX9/t8erVqzVixAht3rxZ11xzjWzbVmlpqQoKCpSTkyNJqqiokNvtVmVlpebOndvjNX0+n3w+n/9xS0vLwO4EAABwVFCdM9Pc3CxJOvvssyVJu3fvVmNjo7KysvzbuFwupaenq7a2ttfXKCoqUmxsrH9JSEgY+OAAAMAxQVNmbNvWggULNHnyZKWkpEiSGhsbJUlut7vbtm6327/uyxYtWqTm5mb/0tDQMLDBAQCAo4Lmo9l33XWXtm7dqtdff73HOutL1wuxbbvH2DEul0sul2tAMgIAgOATFDMzd999t/7whz/olVdeUXx8vH/c4/FIUo9ZmKamph6zNQAA4PTkaJmxbVt33XWXfve73+nll19WUlJSt/VJSUnyeDyqrq72j3V0dKimpkZpaWmBjgsAAIKQo4eZ7rzzTlVWVuq//uu/FB0d7Z+BiY2NVWRkpCzLUn5+vgoLC5WcnKzk5GQVFhYqKipKubm5TkYHAABBwtEys3LlSklSRkZGt/HVq1drzpw5kqSFCxeqra1NeXl5/ovmVVVVBcU1ZgAAgPMcLTO2/dW3ZbQsS16vV16vd+ADAUAffJ2WxK1kHWPbUkfX0T8PDuM+sk46+l4ILkHzaSYACGZ3vX620xEA9CEoPs0EAADQX8zMAEAfuJFs8OBGssEpWL4PlBkA6AM3kg1O3EgWX8ZhJgAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGM3RMvPaa69p6tSpiouLk2VZ+v3vf99tvW3b8nq9iouLU2RkpDIyMrR9+3ZnwgIAgKDkaJk5dOiQvvWtb6msrKzX9cXFxSopKVFZWZnq6urk8XiUmZmp1tbWACcFAADBapCTXzw7O1vZ2dm9rrNtW6WlpSooKFBOTo4kqaKiQm63W5WVlZo7d26vz/P5fPL5fP7HLS0tpz44AAAIGkF7zszu3bvV2NiorKws/5jL5VJ6erpqa2v7fF5RUZFiY2P9S0JCQiDiAgAAhwRtmWlsbJQkud3ubuNut9u/rjeLFi1Sc3Ozf2loaBjQnAAAwFmOHmb6OizL6vbYtu0eY8dzuVxyuVwDHQsAAASJoJ2Z8Xg8ktRjFqapqanHbA0AADh9BW2ZSUpKksfjUXV1tX+so6NDNTU1SktLczAZAAAIJo4eZvriiy/00Ucf+R/v3r1bW7Zs0dlnn61Ro0YpPz9fhYWFSk5OVnJysgoLCxUVFaXc3FwHUwMAgGDiaJnZtGmTvv3tb/sfL1iwQJI0e/ZsPfnkk1q4cKHa2tqUl5engwcPKjU1VVVVVYqOjnYqMgAACDKOlpmMjAzZtt3nesuy5PV65fV6AxcKAAAYJWjPmQEAAPg6KDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIw2yOkAAICBY9u22tvbnY5x0o7fh1DYH0mKiIiQZVlOxwgJRpSZxx57TMuXL9fevXt18cUXq7S0VFdffbXTsUIGP+yCFz/scLLa29uVnZ3tdIxTatq0aU5HOCXWrVunyMhIp2OEhKAvM88++6zy8/P12GOP6aqrrtLjjz+u7Oxs7dixQ6NGjXI6Xkjgh13w4ocdAHw1y7Zt2+kQJ5KamqpLL71UK1eu9I9deOGF+u53v6uioqKvfH5LS4tiY2PV3NysmJiYgYxqrLa2tpArM6GCMoOTFSozr7Zty+fzSZJcLldIzFgy83pi3+T3d1DPzHR0dGjz5s267777uo1nZWWptra21+f4fD7/P3jp6F8GTiwiIkLr1q1zOsZJC9UfdsDJsCwrZApxVFSU0xEQpIK6zOzfv1+dnZ1yu93dxt1utxobG3t9TlFRkR566KFAxAsZ/LADAJjMiI9mf/l/2LZt9/m/7kWLFqm5udm/NDQ0BCIiAABwSFDPzAwfPlzh4eE9ZmGampp6zNYc43K55HK5AhEPAAAEgaCemRk8eLAuu+wyVVdXdxuvrq5WWlqaQ6kAAEAwCeqZGUlasGCBZs2apUmTJunKK69UeXm56uvrdccddzgdDQAABIGgLzPTp0/XgQMHtGTJEu3du1cpKSn605/+pMTERKejAQCAIBD015k5WVxnBgAA83yT399Bfc4MAADAV6HMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYLegvmneyjl1Gp6WlxeEkAADg6zr2e/vrXA4v5MtMa2urJCkhIcHhJAAA4JtqbW1VbGzsCbcJ+SsAd3V16bPPPlN0dLQsy3I6DgZYS0uLEhIS1NDQwBWfgRDD+/v0Ytu2WltbFRcXp7CwE58VE/IzM2FhYYqPj3c6BgIsJiaGH3ZAiOL9ffr4qhmZYzgBGAAAGI0yAwAAjEaZQUhxuVz6+c9/LpfL5XQUAKcY72/0JeRPAAYAAKGNmRkAAGA0ygwAADAaZQYAABiNMoPTwpw5c/Td737X6RjAacG2bf3Lv/yLzj77bFmWpS1btjiS45NPPnH06yNwQv6ieQCAwFq/fr2efPJJvfrqqxozZoyGDx/udCSEOMoMAOCU+vjjjzVy5EilpaU5HQWnCQ4zIehkZGTo7rvvVn5+vs466yy53W6Vl5fr0KFD+uEPf6jo6Gidd955WrdunSSps7NTt99+u5KSkhQZGalx48ZpxYoVJ/watm2ruLhYY8aMUWRkpL71rW/p+eefD8TuASFtzpw5uvvuu1VfXy/LsjR69OivfL+9+uqrsixLGzZs0MSJExUZGalrr71WTU1NWrdunS688ELFxMRoxowZOnz4sP9569ev1+TJk3XmmWdq2LBhuvHGG/Xxxx+fMN+OHTt0/fXXa+jQoXK73Zo1a5b2798/YH8fCAzKDIJSRUWFhg8fro0bN+ruu+/Wj3/8Y91yyy1KS0vTO++8oylTpmjWrFk6fPiwurq6FB8fr+eee047duzQgw8+qPvvv1/PPfdcn6//wAMPaPXq1Vq5cqW2b9+u+fPn6wc/+IFqamoCuJdA6FmxYoWWLFmi+Ph47d27V3V1dV/7/eb1elVWVqba2lo1NDTo1ltvVWlpqSorK/XCCy+ourpajz76qH/7Q4cOacGCBaqrq9NLL72ksLAwTZs2TV1dXb1m27t3r9LT03XJJZdo06ZNWr9+vfbt26dbb711QP9OEAA2EGTS09PtyZMn+x8fOXLEHjJkiD1r1iz/2N69e21J9ptvvtnra+Tl5dnf+973/I9nz55t33TTTbZt2/YXX3xhR0RE2LW1td2ec/vtt9szZsw4hXsCnJ7+9V//1U5MTLRt++u931555RVbkv3iiy/61xcVFdmS7I8//tg/NnfuXHvKlCl9ft2mpiZbkr1t2zbbtm179+7dtiT73XfftW3bthcvXmxnZWV1e05DQ4MtyX7//ff7vb9wHufMIChNmDDB/+fw8HANGzZM48eP94+53W5JUlNTkyTpt7/9rf7t3/5Nn376qdra2tTR0aFLLrmk19fesWOH2tvblZmZ2W28o6NDEydOPMV7Apzevsn77fj3vdvtVlRUlMaMGdNtbOPGjf7HH3/8sRYvXqy33npL+/fv98/I1NfXKyUlpUeWzZs365VXXtHQoUN7rPv44481duzY/u0kHEeZQVA644wzuj22LKvbmGVZkqSuri4999xzmj9/vn71q1/pyiuvVHR0tJYvX663336719c+9gPvhRde0LnnntttHfd8AU6tb/J++/J7vLefA8cfQpo6daoSEhK0atUqxcXFqaurSykpKero6Ogzy9SpU7Vs2bIe60aOHPnNdgxBhTID4/3P//yP0tLSlJeX5x870UmAF110kVwul+rr65Wenh6IiMBpa6DebwcOHNDOnTv1+OOP6+qrr5Ykvf766yd8zqWXXqr//M//1OjRozVoEL/+QgnfTRjv/PPP11NPPaUNGzYoKSlJ//7v/666ujolJSX1un10dLR++tOfav78+erq6tLkyZPV0tKi2tpaDR06VLNnzw7wHgCha6Deb2eddZaGDRum8vJyjRw5UvX19brvvvtO+Jw777xTq1at0owZM/Szn/1Mw4cP10cffaQ1a9Zo1apVCg8P71cWOI8yA+Pdcccd2rJli6ZPny7LsjRjxgzl5eX5P7rdm1/84hcaMWKEioqKtGvXLp155pm69NJLdf/99wcwOXB6GIj3W1hYmNasWaN77rlHKSkpGjdunH79618rIyOjz+fExcXpjTfe0L333qspU6bI5/MpMTFR//RP/6SwMD7cazLLtm3b6RAAAAD9RRUFAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwCC0vPPP6/x48crMjJSw4YN03XXXadDhw5JklavXq0LL7xQERERuuCCC/TYY4/5n3fbbbdpwoQJ8vl8kqS//e1vuuyyyzRz5kxH9gPAwKPMAAg6e/fu1YwZM3Tbbbdp586devXVV5WTkyPbtrVq1SoVFBTo4Ycf1s6dO1VYWKjFixeroqJCkvTrX/9ahw4d0n333SdJWrx4sfbv39+t8AAILdw1G0DQeeedd3TZZZfpk08+UWJiYrd1o0aN0rJlyzRjxgz/2NKlS/WnP/1JtbW1kqQ333xT6enpuu+++1RUVKSXXnpJ11xzTUD3AUDgUGYABJ3Ozk5NmTJFGzdu1JQpU5SVlaWbb75ZR44c0YgRIxQZGamwsL9PLB85ckSxsbHat2+ff+z+++9XUVGR7r33Xj3yyCNO7AaAABnkdAAA+LLw8HBVV1ertrZWVVVVevTRR1VQUKD//u//liStWrVKqampPZ5zTFdXl9544w2Fh4frww8/DGh2AIHHOTMAgpJlWbrqqqv00EMP6d1339XgwYP1xhtv6Nxzz9WuXbt0/vnnd1uSkpL8z12+fLl27typmpoabdiwQatXr3ZwTwAMNGZmAASdt99+Wy+99JKysrI0YsQIvf322/q///s/XXjhhfJ6vbrnnnsUExOj7Oxs+Xw+bdq0SQcPHtSCBQu0ZcsWPfjgg3r++ed11VVXacWKFZo3b57S09M1ZswYp3cNwADgnBkAQWfnzp2aP3++3nnnHbW0tCgxMVF333237rrrLklSZWWlli9frh07dmjIkCEaP3688vPzlZ2drcsuu0yTJ0/W448/7n+9nJwc7du3T6+99lq3w1EAQgNlBgAAGI1zZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgtP8H1arcd3LPGTAAAAAASUVORK5CYII=\n",
882 | "text/plain": [
883 | ""
884 | ]
885 | },
886 | "metadata": {},
887 | "output_type": "display_data"
888 | }
889 | ],
890 | "source": [
891 | "sns.boxplot(x=\"sex\",y=\"age\",data=titanic)\n"
892 | ]
893 | },
894 | {
895 | "cell_type": "code",
896 | "execution_count": null,
897 | "id": "fa9504a6",
898 | "metadata": {},
899 | "outputs": [],
900 | "source": [
901 | "sns.boxplot(x=\"sex\",y=\"age\",data=titanic,hue=\"survived\")\n"
902 | ]
903 | }
904 | ],
905 | "metadata": {
906 | "kernelspec": {
907 | "display_name": "Python 3 (ipykernel)",
908 | "language": "python",
909 | "name": "python3"
910 | },
911 | "language_info": {
912 | "codemirror_mode": {
913 | "name": "ipython",
914 | "version": 3
915 | },
916 | "file_extension": ".py",
917 | "mimetype": "text/x-python",
918 | "name": "python",
919 | "nbconvert_exporter": "python",
920 | "pygments_lexer": "ipython3",
921 | "version": "3.9.13"
922 | }
923 | },
924 | "nbformat": 4,
925 | "nbformat_minor": 5
926 | }
927 |
--------------------------------------------------------------------------------
/Assignment_6.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 2,
6 | "id": "c3f7d30d",
7 | "metadata": {
8 | "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
9 | "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
10 | "execution": {
11 | "iopub.execute_input": "2022-03-28T06:30:15.938539Z",
12 | "iopub.status.busy": "2022-03-28T06:30:15.936733Z",
13 | "iopub.status.idle": "2022-03-28T06:30:17.132091Z",
14 | "shell.execute_reply": "2022-03-28T06:30:17.132577Z",
15 | "shell.execute_reply.started": "2022-03-28T05:42:26.685951Z"
16 | },
17 | "papermill": {
18 | "duration": 1.224345,
19 | "end_time": "2022-03-28T06:30:17.132920",
20 | "exception": false,
21 | "start_time": "2022-03-28T06:30:15.908575",
22 | "status": "completed"
23 | },
24 | "tags": []
25 | },
26 | "outputs": [],
27 | "source": [
28 | "import numpy as np\n",
29 | "import pandas as pd\n",
30 | "from sklearn.model_selection import train_test_split\n",
31 | "from sklearn.naive_bayes import GaussianNB\n",
32 | "import matplotlib.pyplot as plt\n",
33 | "import seaborn as sns\n",
34 | "from sklearn.metrics import confusion_matrix,ConfusionMatrixDisplay,classification_report,accuracy_score, precision_score, recall_score, f1_score\n",
35 | "from sklearn.preprocessing import LabelEncoder"
36 | ]
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "id": "17e8906c",
41 | "metadata": {
42 | "papermill": {
43 | "duration": 0.02312,
44 | "end_time": "2022-03-28T06:30:17.179907",
45 | "exception": false,
46 | "start_time": "2022-03-28T06:30:17.156787",
47 | "status": "completed"
48 | },
49 | "tags": []
50 | },
51 | "source": [
52 | "* Loading the dataset"
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "execution_count": 5,
58 | "id": "176bdb3b",
59 | "metadata": {
60 | "execution": {
61 | "iopub.execute_input": "2022-03-28T06:30:17.230489Z",
62 | "iopub.status.busy": "2022-03-28T06:30:17.229515Z",
63 | "iopub.status.idle": "2022-03-28T06:30:17.260622Z",
64 | "shell.execute_reply": "2022-03-28T06:30:17.261171Z",
65 | "shell.execute_reply.started": "2022-03-28T05:42:28.173357Z"
66 | },
67 | "papermill": {
68 | "duration": 0.058053,
69 | "end_time": "2022-03-28T06:30:17.261336",
70 | "exception": false,
71 | "start_time": "2022-03-28T06:30:17.203283",
72 | "status": "completed"
73 | },
74 | "tags": []
75 | },
76 | "outputs": [
77 | {
78 | "data": {
79 | "text/html": [
80 | "\n",
81 | "\n",
94 | "
\n",
95 | " \n",
96 | " \n",
97 | " | \n",
98 | " Id | \n",
99 | " SepalLengthCm | \n",
100 | " SepalWidthCm | \n",
101 | " PetalLengthCm | \n",
102 | " PetalWidthCm | \n",
103 | " Species | \n",
104 | "
\n",
105 | " \n",
106 | " \n",
107 | " \n",
108 | " | 0 | \n",
109 | " 1 | \n",
110 | " 5.1 | \n",
111 | " 3.5 | \n",
112 | " 1.4 | \n",
113 | " 0.2 | \n",
114 | " Iris-setosa | \n",
115 | "
\n",
116 | " \n",
117 | " | 1 | \n",
118 | " 2 | \n",
119 | " 4.9 | \n",
120 | " 3.0 | \n",
121 | " 1.4 | \n",
122 | " 0.2 | \n",
123 | " Iris-setosa | \n",
124 | "
\n",
125 | " \n",
126 | " | 2 | \n",
127 | " 3 | \n",
128 | " 4.7 | \n",
129 | " 3.2 | \n",
130 | " 1.3 | \n",
131 | " 0.2 | \n",
132 | " Iris-setosa | \n",
133 | "
\n",
134 | " \n",
135 | " | 3 | \n",
136 | " 4 | \n",
137 | " 4.6 | \n",
138 | " 3.1 | \n",
139 | " 1.5 | \n",
140 | " 0.2 | \n",
141 | " Iris-setosa | \n",
142 | "
\n",
143 | " \n",
144 | " | 4 | \n",
145 | " 5 | \n",
146 | " 5.0 | \n",
147 | " 3.6 | \n",
148 | " 1.4 | \n",
149 | " 0.2 | \n",
150 | " Iris-setosa | \n",
151 | "
\n",
152 | " \n",
153 | "
\n",
154 | "
"
155 | ],
156 | "text/plain": [
157 | " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species\n",
158 | "0 1 5.1 3.5 1.4 0.2 Iris-setosa\n",
159 | "1 2 4.9 3.0 1.4 0.2 Iris-setosa\n",
160 | "2 3 4.7 3.2 1.3 0.2 Iris-setosa\n",
161 | "3 4 4.6 3.1 1.5 0.2 Iris-setosa\n",
162 | "4 5 5.0 3.6 1.4 0.2 Iris-setosa"
163 | ]
164 | },
165 | "execution_count": 5,
166 | "metadata": {},
167 | "output_type": "execute_result"
168 | }
169 | ],
170 | "source": [
171 | "data = pd.read_csv(\"C:/Users/coeco/Downloads/Iris (1).csv\")\n",
172 | "data.head(5)"
173 | ]
174 | },
175 | {
176 | "cell_type": "markdown",
177 | "id": "ade4e19d",
178 | "metadata": {
179 | "papermill": {
180 | "duration": 0.023899,
181 | "end_time": "2022-03-28T06:30:17.309838",
182 | "exception": false,
183 | "start_time": "2022-03-28T06:30:17.285939",
184 | "status": "completed"
185 | },
186 | "tags": []
187 | },
188 | "source": [
189 | "* Checking Basic statistics of the dataset"
190 | ]
191 | },
192 | {
193 | "cell_type": "code",
194 | "execution_count": 6,
195 | "id": "890e89e9",
196 | "metadata": {
197 | "execution": {
198 | "iopub.execute_input": "2022-03-28T06:30:17.362102Z",
199 | "iopub.status.busy": "2022-03-28T06:30:17.361078Z",
200 | "iopub.status.idle": "2022-03-28T06:30:17.398105Z",
201 | "shell.execute_reply": "2022-03-28T06:30:17.398606Z",
202 | "shell.execute_reply.started": "2022-03-28T05:58:28.362031Z"
203 | },
204 | "papermill": {
205 | "duration": 0.064754,
206 | "end_time": "2022-03-28T06:30:17.398781",
207 | "exception": false,
208 | "start_time": "2022-03-28T06:30:17.334027",
209 | "status": "completed"
210 | },
211 | "tags": []
212 | },
213 | "outputs": [
214 | {
215 | "data": {
216 | "text/html": [
217 | "\n",
218 | "\n",
231 | "
\n",
232 | " \n",
233 | " \n",
234 | " | \n",
235 | " Id | \n",
236 | " SepalLengthCm | \n",
237 | " SepalWidthCm | \n",
238 | " PetalLengthCm | \n",
239 | " PetalWidthCm | \n",
240 | " Species | \n",
241 | "
\n",
242 | " \n",
243 | " \n",
244 | " \n",
245 | " | count | \n",
246 | " 150.000000 | \n",
247 | " 150.000000 | \n",
248 | " 150.000000 | \n",
249 | " 150.000000 | \n",
250 | " 150.000000 | \n",
251 | " 150 | \n",
252 | "
\n",
253 | " \n",
254 | " | unique | \n",
255 | " NaN | \n",
256 | " NaN | \n",
257 | " NaN | \n",
258 | " NaN | \n",
259 | " NaN | \n",
260 | " 3 | \n",
261 | "
\n",
262 | " \n",
263 | " | top | \n",
264 | " NaN | \n",
265 | " NaN | \n",
266 | " NaN | \n",
267 | " NaN | \n",
268 | " NaN | \n",
269 | " Iris-setosa | \n",
270 | "
\n",
271 | " \n",
272 | " | freq | \n",
273 | " NaN | \n",
274 | " NaN | \n",
275 | " NaN | \n",
276 | " NaN | \n",
277 | " NaN | \n",
278 | " 50 | \n",
279 | "
\n",
280 | " \n",
281 | " | mean | \n",
282 | " 75.500000 | \n",
283 | " 5.843333 | \n",
284 | " 3.054000 | \n",
285 | " 3.758667 | \n",
286 | " 1.198667 | \n",
287 | " NaN | \n",
288 | "
\n",
289 | " \n",
290 | " | std | \n",
291 | " 43.445368 | \n",
292 | " 0.828066 | \n",
293 | " 0.433594 | \n",
294 | " 1.764420 | \n",
295 | " 0.763161 | \n",
296 | " NaN | \n",
297 | "
\n",
298 | " \n",
299 | " | min | \n",
300 | " 1.000000 | \n",
301 | " 4.300000 | \n",
302 | " 2.000000 | \n",
303 | " 1.000000 | \n",
304 | " 0.100000 | \n",
305 | " NaN | \n",
306 | "
\n",
307 | " \n",
308 | " | 25% | \n",
309 | " 38.250000 | \n",
310 | " 5.100000 | \n",
311 | " 2.800000 | \n",
312 | " 1.600000 | \n",
313 | " 0.300000 | \n",
314 | " NaN | \n",
315 | "
\n",
316 | " \n",
317 | " | 50% | \n",
318 | " 75.500000 | \n",
319 | " 5.800000 | \n",
320 | " 3.000000 | \n",
321 | " 4.350000 | \n",
322 | " 1.300000 | \n",
323 | " NaN | \n",
324 | "
\n",
325 | " \n",
326 | " | 75% | \n",
327 | " 112.750000 | \n",
328 | " 6.400000 | \n",
329 | " 3.300000 | \n",
330 | " 5.100000 | \n",
331 | " 1.800000 | \n",
332 | " NaN | \n",
333 | "
\n",
334 | " \n",
335 | " | max | \n",
336 | " 150.000000 | \n",
337 | " 7.900000 | \n",
338 | " 4.400000 | \n",
339 | " 6.900000 | \n",
340 | " 2.500000 | \n",
341 | " NaN | \n",
342 | "
\n",
343 | " \n",
344 | "
\n",
345 | "
"
346 | ],
347 | "text/plain": [
348 | " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm \\\n",
349 | "count 150.000000 150.000000 150.000000 150.000000 150.000000 \n",
350 | "unique NaN NaN NaN NaN NaN \n",
351 | "top NaN NaN NaN NaN NaN \n",
352 | "freq NaN NaN NaN NaN NaN \n",
353 | "mean 75.500000 5.843333 3.054000 3.758667 1.198667 \n",
354 | "std 43.445368 0.828066 0.433594 1.764420 0.763161 \n",
355 | "min 1.000000 4.300000 2.000000 1.000000 0.100000 \n",
356 | "25% 38.250000 5.100000 2.800000 1.600000 0.300000 \n",
357 | "50% 75.500000 5.800000 3.000000 4.350000 1.300000 \n",
358 | "75% 112.750000 6.400000 3.300000 5.100000 1.800000 \n",
359 | "max 150.000000 7.900000 4.400000 6.900000 2.500000 \n",
360 | "\n",
361 | " Species \n",
362 | "count 150 \n",
363 | "unique 3 \n",
364 | "top Iris-setosa \n",
365 | "freq 50 \n",
366 | "mean NaN \n",
367 | "std NaN \n",
368 | "min NaN \n",
369 | "25% NaN \n",
370 | "50% NaN \n",
371 | "75% NaN \n",
372 | "max NaN "
373 | ]
374 | },
375 | "execution_count": 6,
376 | "metadata": {},
377 | "output_type": "execute_result"
378 | }
379 | ],
380 | "source": [
381 | "data.describe(include = 'all')"
382 | ]
383 | },
384 | {
385 | "cell_type": "code",
386 | "execution_count": 7,
387 | "id": "daaf340e",
388 | "metadata": {
389 | "execution": {
390 | "iopub.execute_input": "2022-03-28T06:30:17.452412Z",
391 | "iopub.status.busy": "2022-03-28T06:30:17.451459Z",
392 | "iopub.status.idle": "2022-03-28T06:30:17.466852Z",
393 | "shell.execute_reply": "2022-03-28T06:30:17.467362Z",
394 | "shell.execute_reply.started": "2022-03-28T05:42:28.261673Z"
395 | },
396 | "papermill": {
397 | "duration": 0.044028,
398 | "end_time": "2022-03-28T06:30:17.467532",
399 | "exception": false,
400 | "start_time": "2022-03-28T06:30:17.423504",
401 | "status": "completed"
402 | },
403 | "tags": []
404 | },
405 | "outputs": [
406 | {
407 | "name": "stdout",
408 | "output_type": "stream",
409 | "text": [
410 | "\n",
411 | "RangeIndex: 150 entries, 0 to 149\n",
412 | "Data columns (total 6 columns):\n",
413 | " # Column Non-Null Count Dtype \n",
414 | "--- ------ -------------- ----- \n",
415 | " 0 Id 150 non-null int64 \n",
416 | " 1 SepalLengthCm 150 non-null float64\n",
417 | " 2 SepalWidthCm 150 non-null float64\n",
418 | " 3 PetalLengthCm 150 non-null float64\n",
419 | " 4 PetalWidthCm 150 non-null float64\n",
420 | " 5 Species 150 non-null object \n",
421 | "dtypes: float64(4), int64(1), object(1)\n",
422 | "memory usage: 7.2+ KB\n"
423 | ]
424 | }
425 | ],
426 | "source": [
427 | "data.info()"
428 | ]
429 | },
430 | {
431 | "cell_type": "markdown",
432 | "id": "ab3fba23",
433 | "metadata": {
434 | "papermill": {
435 | "duration": 0.024936,
436 | "end_time": "2022-03-28T06:30:17.517609",
437 | "exception": false,
438 | "start_time": "2022-03-28T06:30:17.492673",
439 | "status": "completed"
440 | },
441 | "tags": []
442 | },
443 | "source": [
444 | "* Displaying Shape of the dataset and The Types of Species to Classify"
445 | ]
446 | },
447 | {
448 | "cell_type": "code",
449 | "execution_count": 8,
450 | "id": "540702cf",
451 | "metadata": {
452 | "execution": {
453 | "iopub.execute_input": "2022-03-28T06:30:17.572643Z",
454 | "iopub.status.busy": "2022-03-28T06:30:17.571647Z",
455 | "iopub.status.idle": "2022-03-28T06:30:17.580031Z",
456 | "shell.execute_reply": "2022-03-28T06:30:17.579499Z",
457 | "shell.execute_reply.started": "2022-03-28T05:42:28.28309Z"
458 | },
459 | "papermill": {
460 | "duration": 0.036677,
461 | "end_time": "2022-03-28T06:30:17.580186",
462 | "exception": false,
463 | "start_time": "2022-03-28T06:30:17.543509",
464 | "status": "completed"
465 | },
466 | "tags": []
467 | },
468 | "outputs": [
469 | {
470 | "name": "stdout",
471 | "output_type": "stream",
472 | "text": [
473 | "(150, 6)\n"
474 | ]
475 | },
476 | {
477 | "data": {
478 | "text/plain": [
479 | "array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)"
480 | ]
481 | },
482 | "execution_count": 8,
483 | "metadata": {},
484 | "output_type": "execute_result"
485 | }
486 | ],
487 | "source": [
488 | "print(data.shape)\n",
489 | "data['Species'].unique()"
490 | ]
491 | },
492 | {
493 | "cell_type": "markdown",
494 | "id": "dbdb4dd4",
495 | "metadata": {
496 | "papermill": {
497 | "duration": 0.027855,
498 | "end_time": "2022-03-28T06:30:17.633877",
499 | "exception": false,
500 | "start_time": "2022-03-28T06:30:17.606022",
501 | "status": "completed"
502 | },
503 | "tags": []
504 | },
505 | "source": [
506 | "* Checking for Null values"
507 | ]
508 | },
509 | {
510 | "cell_type": "code",
511 | "execution_count": 9,
512 | "id": "f22a6c5b",
513 | "metadata": {
514 | "execution": {
515 | "iopub.execute_input": "2022-03-28T06:30:17.693626Z",
516 | "iopub.status.busy": "2022-03-28T06:30:17.692981Z",
517 | "iopub.status.idle": "2022-03-28T06:30:17.695531Z",
518 | "shell.execute_reply": "2022-03-28T06:30:17.696017Z",
519 | "shell.execute_reply.started": "2022-03-28T05:42:28.295215Z"
520 | },
521 | "papermill": {
522 | "duration": 0.036448,
523 | "end_time": "2022-03-28T06:30:17.696187",
524 | "exception": false,
525 | "start_time": "2022-03-28T06:30:17.659739",
526 | "status": "completed"
527 | },
528 | "tags": []
529 | },
530 | "outputs": [
531 | {
532 | "data": {
533 | "text/plain": [
534 | "Id 0\n",
535 | "SepalLengthCm 0\n",
536 | "SepalWidthCm 0\n",
537 | "PetalLengthCm 0\n",
538 | "PetalWidthCm 0\n",
539 | "Species 0\n",
540 | "dtype: int64"
541 | ]
542 | },
543 | "execution_count": 9,
544 | "metadata": {},
545 | "output_type": "execute_result"
546 | }
547 | ],
548 | "source": [
549 | "data.isnull().sum()"
550 | ]
551 | },
552 | {
553 | "cell_type": "markdown",
554 | "id": "70661c2b",
555 | "metadata": {
556 | "papermill": {
557 | "duration": 0.028302,
558 | "end_time": "2022-03-28T06:30:17.750717",
559 | "exception": false,
560 | "start_time": "2022-03-28T06:30:17.722415",
561 | "status": "completed"
562 | },
563 | "tags": []
564 | },
565 | "source": [
566 | "* As we see there are no missing values so lets split our dataset into training(x) and testing(y) "
567 | ]
568 | },
569 | {
570 | "cell_type": "code",
571 | "execution_count": 10,
572 | "id": "f4bbdd4a",
573 | "metadata": {
574 | "execution": {
575 | "iopub.execute_input": "2022-03-28T06:30:17.811527Z",
576 | "iopub.status.busy": "2022-03-28T06:30:17.810873Z",
577 | "iopub.status.idle": "2022-03-28T06:30:17.812420Z",
578 | "shell.execute_reply": "2022-03-28T06:30:17.812949Z",
579 | "shell.execute_reply.started": "2022-03-28T05:42:28.310548Z"
580 | },
581 | "papermill": {
582 | "duration": 0.035509,
583 | "end_time": "2022-03-28T06:30:17.813126",
584 | "exception": false,
585 | "start_time": "2022-03-28T06:30:17.777617",
586 | "status": "completed"
587 | },
588 | "tags": []
589 | },
590 | "outputs": [],
591 | "source": [
592 | "x = data.iloc[:,1:5]\n",
593 | "y = data.iloc[:,5:]"
594 | ]
595 | },
596 | {
597 | "cell_type": "markdown",
598 | "id": "59d4daa6",
599 | "metadata": {
600 | "papermill": {
601 | "duration": 0.026279,
602 | "end_time": "2022-03-28T06:30:17.866232",
603 | "exception": false,
604 | "start_time": "2022-03-28T06:30:17.839953",
605 | "status": "completed"
606 | },
607 | "tags": []
608 | },
609 | "source": [
610 | "* Encoding the Species column"
611 | ]
612 | },
613 | {
614 | "cell_type": "code",
615 | "execution_count": 11,
616 | "id": "7e3a839d",
617 | "metadata": {
618 | "execution": {
619 | "iopub.execute_input": "2022-03-28T06:30:17.923691Z",
620 | "iopub.status.busy": "2022-03-28T06:30:17.923053Z",
621 | "iopub.status.idle": "2022-03-28T06:30:17.929861Z",
622 | "shell.execute_reply": "2022-03-28T06:30:17.930610Z",
623 | "shell.execute_reply.started": "2022-03-28T05:42:28.322242Z"
624 | },
625 | "papermill": {
626 | "duration": 0.037381,
627 | "end_time": "2022-03-28T06:30:17.930843",
628 | "exception": false,
629 | "start_time": "2022-03-28T06:30:17.893462",
630 | "status": "completed"
631 | },
632 | "tags": []
633 | },
634 | "outputs": [
635 | {
636 | "name": "stderr",
637 | "output_type": "stream",
638 | "text": [
639 | "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:115: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
640 | " y = column_or_1d(y, warn=True)\n"
641 | ]
642 | }
643 | ],
644 | "source": [
645 | "encode = LabelEncoder()\n",
646 | "y = encode.fit_transform(y)"
647 | ]
648 | },
649 | {
650 | "cell_type": "markdown",
651 | "id": "d661ff20",
652 | "metadata": {
653 | "papermill": {
654 | "duration": 0.026649,
655 | "end_time": "2022-03-28T06:30:17.986559",
656 | "exception": false,
657 | "start_time": "2022-03-28T06:30:17.959910",
658 | "status": "completed"
659 | },
660 | "tags": []
661 | },
662 | "source": [
663 | "* Spliting training and testing dataset by 70-30 "
664 | ]
665 | },
666 | {
667 | "cell_type": "code",
668 | "execution_count": 12,
669 | "id": "9892536e",
670 | "metadata": {
671 | "execution": {
672 | "iopub.execute_input": "2022-03-28T06:30:18.043949Z",
673 | "iopub.status.busy": "2022-03-28T06:30:18.043266Z",
674 | "iopub.status.idle": "2022-03-28T06:30:18.049681Z",
675 | "shell.execute_reply": "2022-03-28T06:30:18.049123Z",
676 | "shell.execute_reply.started": "2022-03-28T05:42:28.337921Z"
677 | },
678 | "papermill": {
679 | "duration": 0.036124,
680 | "end_time": "2022-03-28T06:30:18.049837",
681 | "exception": false,
682 | "start_time": "2022-03-28T06:30:18.013713",
683 | "status": "completed"
684 | },
685 | "tags": []
686 | },
687 | "outputs": [],
688 | "source": [
689 | "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3,random_state = 0)"
690 | ]
691 | },
692 | {
693 | "cell_type": "markdown",
694 | "id": "8a21ba02",
695 | "metadata": {
696 | "papermill": {
697 | "duration": 0.026949,
698 | "end_time": "2022-03-28T06:30:18.104532",
699 | "exception": false,
700 | "start_time": "2022-03-28T06:30:18.077583",
701 | "status": "completed"
702 | },
703 | "tags": []
704 | },
705 | "source": [
706 | "### Preparing Naive Bayes Model"
707 | ]
708 | },
709 | {
710 | "cell_type": "code",
711 | "execution_count": 13,
712 | "id": "6d7b7603",
713 | "metadata": {
714 | "execution": {
715 | "iopub.execute_input": "2022-03-28T06:30:18.169126Z",
716 | "iopub.status.busy": "2022-03-28T06:30:18.168415Z",
717 | "iopub.status.idle": "2022-03-28T06:30:18.171271Z",
718 | "shell.execute_reply": "2022-03-28T06:30:18.171740Z",
719 | "shell.execute_reply.started": "2022-03-28T05:42:28.351393Z"
720 | },
721 | "papermill": {
722 | "duration": 0.040105,
723 | "end_time": "2022-03-28T06:30:18.171932",
724 | "exception": false,
725 | "start_time": "2022-03-28T06:30:18.131827",
726 | "status": "completed"
727 | },
728 | "tags": []
729 | },
730 | "outputs": [],
731 | "source": [
732 | "naive_bayes = GaussianNB()\n",
733 | "naive_bayes.fit(x_train,y_train)\n",
734 | "pred = naive_bayes.predict(x_test)"
735 | ]
736 | },
737 | {
738 | "cell_type": "code",
739 | "execution_count": 14,
740 | "id": "391c07f1",
741 | "metadata": {
742 | "execution": {
743 | "iopub.execute_input": "2022-03-28T06:30:18.230215Z",
744 | "iopub.status.busy": "2022-03-28T06:30:18.229367Z",
745 | "iopub.status.idle": "2022-03-28T06:30:18.235141Z",
746 | "shell.execute_reply": "2022-03-28T06:30:18.234518Z",
747 | "shell.execute_reply.started": "2022-03-28T05:42:28.364784Z"
748 | },
749 | "papermill": {
750 | "duration": 0.036196,
751 | "end_time": "2022-03-28T06:30:18.235288",
752 | "exception": false,
753 | "start_time": "2022-03-28T06:30:18.199092",
754 | "status": "completed"
755 | },
756 | "tags": []
757 | },
758 | "outputs": [
759 | {
760 | "data": {
761 | "text/plain": [
762 | "array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1,\n",
763 | " 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0,\n",
764 | " 0])"
765 | ]
766 | },
767 | "execution_count": 14,
768 | "metadata": {},
769 | "output_type": "execute_result"
770 | }
771 | ],
772 | "source": [
773 | "pred"
774 | ]
775 | },
776 | {
777 | "cell_type": "code",
778 | "execution_count": 15,
779 | "id": "00aff646",
780 | "metadata": {
781 | "execution": {
782 | "iopub.execute_input": "2022-03-28T06:30:18.296215Z",
783 | "iopub.status.busy": "2022-03-28T06:30:18.295521Z",
784 | "iopub.status.idle": "2022-03-28T06:30:18.298105Z",
785 | "shell.execute_reply": "2022-03-28T06:30:18.298651Z",
786 | "shell.execute_reply.started": "2022-03-28T06:07:17.175863Z"
787 | },
788 | "papermill": {
789 | "duration": 0.035708,
790 | "end_time": "2022-03-28T06:30:18.298839",
791 | "exception": false,
792 | "start_time": "2022-03-28T06:30:18.263131",
793 | "status": "completed"
794 | },
795 | "tags": []
796 | },
797 | "outputs": [
798 | {
799 | "data": {
800 | "text/plain": [
801 | "array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1,\n",
802 | " 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0,\n",
803 | " 0])"
804 | ]
805 | },
806 | "execution_count": 15,
807 | "metadata": {},
808 | "output_type": "execute_result"
809 | }
810 | ],
811 | "source": [
812 | "y_test"
813 | ]
814 | },
815 | {
816 | "cell_type": "markdown",
817 | "id": "f8c4c256",
818 | "metadata": {
819 | "papermill": {
820 | "duration": 0.027345,
821 | "end_time": "2022-03-28T06:30:18.354044",
822 | "exception": false,
823 | "start_time": "2022-03-28T06:30:18.326699",
824 | "status": "completed"
825 | },
826 | "tags": []
827 | },
828 | "source": [
829 | "* Plotting Confusion Matrix "
830 | ]
831 | },
832 | {
833 | "cell_type": "code",
834 | "execution_count": 16,
835 | "id": "487a2eca",
836 | "metadata": {
837 | "execution": {
838 | "iopub.execute_input": "2022-03-28T06:30:18.418013Z",
839 | "iopub.status.busy": "2022-03-28T06:30:18.417236Z",
840 | "iopub.status.idle": "2022-03-28T06:30:18.420675Z",
841 | "shell.execute_reply": "2022-03-28T06:30:18.421213Z",
842 | "shell.execute_reply.started": "2022-03-28T05:42:28.393178Z"
843 | },
844 | "papermill": {
845 | "duration": 0.039345,
846 | "end_time": "2022-03-28T06:30:18.421396",
847 | "exception": false,
848 | "start_time": "2022-03-28T06:30:18.382051",
849 | "status": "completed"
850 | },
851 | "tags": []
852 | },
853 | "outputs": [
854 | {
855 | "name": "stdout",
856 | "output_type": "stream",
857 | "text": [
858 | "[[16 0 0]\n",
859 | " [ 0 18 0]\n",
860 | " [ 0 0 11]]\n"
861 | ]
862 | }
863 | ],
864 | "source": [
865 | "matrix = confusion_matrix(y_test,pred,labels = naive_bayes.classes_)\n",
866 | "print(matrix)\n",
867 | "\n",
868 | "tp, fn, fp, tn = confusion_matrix(y_test,pred,labels=[1,0]).reshape(-1)"
869 | ]
870 | },
871 | {
872 | "cell_type": "code",
873 | "execution_count": 17,
874 | "id": "b4ffbe26",
875 | "metadata": {
876 | "execution": {
877 | "iopub.execute_input": "2022-03-28T06:30:18.484841Z",
878 | "iopub.status.busy": "2022-03-28T06:30:18.483746Z",
879 | "iopub.status.idle": "2022-03-28T06:30:18.751506Z",
880 | "shell.execute_reply": "2022-03-28T06:30:18.750809Z",
881 | "shell.execute_reply.started": "2022-03-28T05:52:25.81269Z"
882 | },
883 | "papermill": {
884 | "duration": 0.302074,
885 | "end_time": "2022-03-28T06:30:18.751646",
886 | "exception": false,
887 | "start_time": "2022-03-28T06:30:18.449572",
888 | "status": "completed"
889 | },
890 | "tags": []
891 | },
892 | "outputs": [
893 | {
894 | "data": {
895 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAG2CAYAAACEWASqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0/0lEQVR4nO3de1hVZfr/8c/CwwaNjaKBUoB2UPGsaGpZ4bey0Exrpmw0s9Qm85RRZuaYVKNk0xipI6b9Rp3Ssu+YaGUWUx46WYGHSv3qWKRMSVgaCCaCrN8f5p52YLHZ573eL691Xa1nne7Nvujmfp611mOYpmkKAAAEpTB/BwAAAOqORA4AQBAjkQMAEMRI5AAABDESOQAAQYxEDgBAECORAwAQxEjkAAAEMRI5AABBjEQOAEAQI5EDAOAFW7Zs0aBBgxQXFyfDMJSdne20vbS0VBMmTND555+viIgIJSUlKSsry+XrkMgBAPCCsrIydenSRQsWLKhx+3333acNGzbohRde0J49e3Tfffdp4sSJWrt2rUvXMZg0BQAA7zIMQ2vWrNGQIUMcbR07dtTQoUM1Y8YMR1tycrIGDBigxx9/vNbnru/JQH2tqqpK33zzjSIjI2UYhr/DAQC4yDRNHTt2THFxcQoL814n8YkTJ3Ty5Em3z2OaZrV8Y7PZZLPZXD5X3759tW7dOo0aNUpxcXHatGmT9u3bp2eeecbloIJWQUGBKYmFhYWFJciXgoICr+WKH3/80VTDeh6J85xzzqnWNnPmzN+MQZK5Zs0ap7by8nLz9ttvNyWZ9evXNxs2bGj+4x//cPnzBXVFHhkZefo/hnaRGtbzbzDwuuIFK/0dAgAPKykpVXx8j//+/9wLTp48KZ08JV1+kVTfjaq/skql7+5XQUGB7Ha7o7ku1bgkzZs3T1u3btW6deuUmJioLVu2aNy4cWrZsqWuvvrqWp8nqBO5o3ujYT0SuQXY7d77RQfgXz4ZHm0QJtV3I1f8FKLdbndK5HXx448/6uGHH9aaNWs0cOBASVLnzp21Y8cOPfXUU9ZJ5AAA1JphnF7cOd5DKioqVFFRUe2+gHr16qmqqsqlc5HIAQDWYMhRVdf5eBeUlpZq//79jvX8/Hzt2LFD0dHRSkhI0JVXXqkpU6YoIiJCiYmJ2rx5s/7xj39o7ty5Ll2HRA4AgBfk5uaqX79+jvW0tDRJ0siRI7Vs2TK99NJLmjZtmoYPH64jR44oMTFRs2bN0tixY126DokcAGARbnatu1iSp6SkyPyVV7W0aNFCS5cudSOe00jkAABr8HHXuq/wilYAAIIYFTkAwBrCjNOLO8cHIBI5AMAa6FoHAACBhoocAGANAfRCGE8ikQMArIGudQAAEGioyAEA1hCiFTmJHABgDYyRAwAQxEK0ImeMHACAIEZFDgCwBrrWAQAIYnStAwCAQENFDgCwBrrWAQAIYmFyrx86QPuwAzQsAABQG1TkAABrCNGb3UjkAABrCNExcrrWAQAIYlTkAABroGsdAIAgFqJd6yRyAIB1BGYudgtj5AAABDEqcgCANdC1DgBAEAvRm93oWgcAIIhRkQMArIGudQAAghhd6wAAoLa2bNmiQYMGKS4uToZhKDs7u9o+e/bs0Q033KCoqChFRkaqd+/eOnjwoEvXIZEDAKwhzAOLC8rKytSlSxctWLCgxu1ffPGF+vbtq3bt2mnTpk3auXOnZsyYofDwcJeuQ9c6AMAafDxGnpqaqtTU1LNunz59ugYMGKAnn3zS0XbBBRe4HBYVOQAALigpKXFaysvLXT5HVVWVXn/9dbVp00bXXnutYmJi1KtXrxq7338LiRwAYA2GBxZJ8fHxioqKciwZGRkuh1JUVKTS0lI98cQTuu666/TWW2/pxhtv1E033aTNmze7dC661gEA1uChrvWCggLZ7XZHs81mc/lUVVVVkqTBgwfrvvvukyR17dpVH3zwgRYtWqQrr7yy1ucikQMArMFDj5/Z7XanRF4XzZs3V/369dW+fXun9qSkJL333nsunYuudQAAfKxhw4bq2bOn9u7d69S+b98+JSYmunQuKnIAgDUYcrNr3bXdS0tLtX//fsd6fn6+duzYoejoaCUkJGjKlCkaOnSorrjiCvXr108bNmzQq6++qk2bNrl0HRI5AMAafPxmt9zcXPXr18+xnpaWJkkaOXKkli1bphtvvFGLFi1SRkaGJk2apLZt22r16tXq27evS9chkQMA4AUpKSkyTfNX9xk1apRGjRrl1nVI5AAAa3DzpnUzQN+1TiIHAFiCYRgy3Hz87Nfra//grnUAAIIYFTkAwBLcfR+MDAVkRU4iBwBYQpibXeumYajKg/F4Cl3rAAAEMSpyAIAleKJrPRCRyAEAluDu+2ACFV3rAeryi9tr3cTp+vqpv8t8LluDu/aqtk+7ludr7YSH9cO8FSpZ8KI+nDZH8dHN/RAtvGHhurVqPeI2hQ9MVfK4e/TuZ5/5OyR4Ed+39xkyHI+g1WkJ0D8DSOQBqrEtXDsL8jVh5eIat19wbgu9N3W2/q/wa6X85U/qkj5Zj7/2sk5UVPg4UnjDqk0bNXlRlqYPG6btWYt0eadOSp0+TQeLvvV3aPACvm+4w++JfOHChWrdurXCw8OVnJysd999198hBYQNn2/TjOyVWrNta43bZ904XOs/26ap/1yuHQX5yv/uW63/LE+HjxX7OFJ4w9zVqzX6uus0JnWAkhISlXnPOMWfG6OsV1/1d2jwAr5v3zgzRu7OEoj8mshXrVqlyZMna/r06dq+fbsuv/xypaam6uDBg/4MK+AZhqGBnXto37ffaMPkmfp27jJtffjJGrvfEXxOVlQo79/71L97D6f2/snJ+mD3bj9FBW/h+/YdErkXzJ07V6NHj9aYMWOUlJSkzMxMxcfHKysry59hBbyYyChFhkfoodSbtGHXNvV/+lGt2b5Vr4ybqivadPB3eHDTdyXFOlVVpdimTZ3aY5s2VeHRI36KCt7C9w13+e2u9ZMnTyovL08PPfSQU3v//v31wQcf1HhMeXm5ysvLHeslJSVejTFQhf30Z+HaHR8rM+d019vOgnxdemE7jb3yWm3Zt8uf4cFDfvniCtM0A/ZmG7iP79v7PPGu9UDkt4r8u+++06lTpxQbG+vUHhsbq8LCwhqPycjIUFRUlGOJj4/3RagB57vSY6qorNTubwqc2vcc+o8Smp3rp6jgKc3tUaoXFqbCI87VWNEPP1Sr2hD8+L59h651L6nxr9Cz/LSmTZum4uJix1JQUFDjfqGu4lSlPvlqv9q2OM+pvU1snA58f9hPUcFTGjZooOSL2yhnW55Te862PF3avr2fooK38H3DXX7rWm/evLnq1atXrfouKiqqVqWfYbPZZLPZfBGe3zW2heuimJaO9dbnxqhLfGsdKTumgiPf6S9vrtGqux/Qln27tHHvZ7quQ3cN6tJTKX/5kx+jhqek/e53GvHkHPVo00Z92rfX4tdf18GiIo29fpC/Q4MX8H37Rqh2rfstkTds2FDJycnKycnRjTfe6GjPycnR4MGD/RVWwOjR6iJtmvJnx/rTQ0dLkpa9/47uXDpP2ds/0tjnF2nagN9p3h/GaG/hN/pd1hy9v3+Pv0KGBw1N6afvS0r02IoXdOjIEXVMbKX1f56txLP8kYvgxvftG6H6ilbDNE2/zcq2atUqjRgxQosWLVKfPn20ePFiLVmyRLt27VJiYuJvHl9SUqKoqChpRHepYT0fRAx/Mp/L9ncIADyspOSYoqLaqbi4WHa73UvXOJ0rIif2lmGre/1qllfq2PytXo21Lvz6rvWhQ4fq+++/12OPPaZDhw6pY8eOWr9+fa2SOAAArgiTe0V1IM5FLgXApCnjxo3TuHHj/B0GACDEMUYOAEAQC9Uxcr8/fgYAAOqOihwAYA1uVuRmgFbkJHIAgCW4O0bu1vi6F9G1DgBAEKMiBwBYgrs3uwVoQU4iBwBYA13rAAAg4FCRAwAsIVS71qnIAQCWYHhgccWWLVs0aNAgxcXFyTAMZWdnn3Xfu+++W4ZhKDMz08WrkMgBAPCKsrIydenSRQsWLPjV/bKzs/XRRx8pLi6uTtehax0AYAm+vtktNTVVqampv7rP119/rQkTJujNN9/UwIED6xQXiRwAYAmeGiMvKSlxarfZbLLZbC6fr6qqSiNGjNCUKVPUoUOHOsdF1zoAwBLCDPcXSYqPj1dUVJRjycjIqFM8c+bMUf369TVp0iS3PhcVOQAALigoKJDdbnes16Uaz8vL0zPPPKNt27a5/Xw6FTkAwBLOjJG7s0iS3W53WuqSyN99910VFRUpISFB9evXV/369XXgwAHdf//9atWqlUvnoiIHAFiCITfHyD0WiTRixAhdffXVTm3XXnutRowYoTvvvNOlc5HIAQDwgtLSUu3fv9+xnp+frx07dig6OloJCQlq1qyZ0/4NGjRQixYt1LZtW5euQyIHAFiCrx8/y83NVb9+/RzraWlpkqSRI0dq2bJldY7jl0jkAABL8PUrWlNSUmSaZq33/+qrr1y7wE+42Q0AgCBGRQ4AsIS6vC/9l8cHIhI5AMASmI8cAAAEHCpyAIAlhOp85CRyAIAlGGGGjDA3utbdONabSOQAAGtwc4w8UEtyxsgBAAhiVOQAAEsI1bvWSeQAAEsI1Zvd6FoHACCIUZEDACyBrnUAAIJYqD5+Rtc6AABBjIocAGAJp292c6dr3YPBeBCJHABgCaE6Rk7XOgAAQYyKHABgCaFakZPIAQCWYISdXtw5PhCRyAEAlmDIzYpcgVmRB+jfFwAAoDaoyAEAlsAYOQAAwSxEZ02hax0AgCBGRQ4AsAS61gEACGKh+vhZgIYFAABqg4ocAGAJdK0DABDEQjWR07UOAEAQI5EDACzhTEXuzuKKLVu2aNCgQYqLi5NhGMrOznZsq6io0NSpU9WpUyc1btxYcXFxuv322/XNN9+4/LlI5AAASzDCDLcXV5SVlalLly5asGBBtW3Hjx/Xtm3bNGPGDG3btk2vvPKK9u3bpxtuuMHlz8UYOQDAEnw9Rp6amqrU1NQat0VFRSknJ8epbf78+brkkkt08OBBJSQk1Po6JHIAAFxQUlLitG6z2WSz2dw+b3FxsQzDUJMmTVw6LiQSefGClbLbI/0dBrzM6H+1v0OAD5lv/cvfISDUuPmq9TOzmMbHxzs1z5w5U+np6W6cWDpx4oQeeughDRs2THa73aVjQyKRAwDwWzzVtV5QUOCUbN2txisqKnTrrbeqqqpKCxcudPl4EjkAAC6w2+0uV81nU1FRoVtuuUX5+fl655136nReEjkAwBIC7YUwZ5L4v//9b23cuFHNmjWr03lI5AAAS6jLI2S/PN4VpaWl2r9/v2M9Pz9fO3bsUHR0tOLi4vT73/9e27Zt02uvvaZTp06psLBQkhQdHa2GDRvW+jokcgAAvCA3N1f9+vVzrKelpUmSRo4cqfT0dK1bt06S1LVrV6fjNm7cqJSUlFpfh0QOALAEX3etp6SkyDTNs27/tW2uIJEDACzBkHuPnwXmlCm8ohUAgKBGRQ4AsIRAu2vdU0jkAABL8PVd675CIgcAWEKoVuSMkQMAEMSoyAEA1hCit62TyAEAlmC4OftZgPas07UOAEAwoyIHAFhCmGEozI2y2p1jvYlEDgCwBO5aBwAAAYeKHABgCXStAwAQxEjkAAAEMcPNRM4YOQAA8DgqcgCAJYTqXeskcgCAJYTJUJgb71l151hvomsdAIAgRkUOALCEMOP04s7xgYhEDgCwhFAdI6drHQCAIEZFDgCwBEu/EGbevHm1PuGkSZPqHAwAAN5i6UT+9NNP1+pkhmGQyAEA8KFaJfL8/HxvxwEAgFeFakVe55vdTp48qb1796qystKT8QAA4BWGB/4FIpcT+fHjxzV69Gg1atRIHTp00MGDByWdHht/4oknPB4gAACecKYid2cJRC4n8mnTpmnnzp3atGmTwsPDHe1XX321Vq1a5dHgAADAr3P58bPs7GytWrVKvXv3dno4vn379vriiy88GhwAAJ4SJjfHyEOla/3w4cOKiYmp1l5WVhawb70BAMBws1vd1Ry3ZcsWDRo0SHFxcTIMQ9nZ2U7bTdNUenq64uLiFBERoZSUFO3atcvlz+VyIu/Zs6def/11x/qZD7ZkyRL16dPH5QAAAAhFZWVl6tKlixYsWFDj9ieffFJz587VggUL9Mknn6hFixa65pprdOzYMZeu43LXekZGhq677jrt3r1blZWVeuaZZ7Rr1y59+OGH2rx5s6unAwDAJwzj9OLO8a5ITU1VampqjdtM01RmZqamT5+um266SZK0fPlyxcbGauXKlbr77rtrfR2XK/JLL71U77//vo4fP64LL7xQb731lmJjY/Xhhx8qOTnZ1dMBAOATnrprvaSkxGkpLy93OZb8/HwVFhaqf//+jjabzaYrr7xSH3zwgUvnqtO71jt16qTly5fX5VAAAIJafHy80/rMmTOVnp7u0jkKCwslSbGxsU7tsbGxOnDggEvnqlMiP3XqlNasWaM9e/bIMAwlJSVp8ODBql+fOVgAAIHJU292KygokN1ud7TbbLY6n/OXN9CZpunyTXUuZ97PP/9cgwcPVmFhodq2bStJ2rdvn84991ytW7dOnTp1cvWUAAB4nSG59Xa2M0fa7XanRF4XLVq0kHS6Mm/ZsqWjvaioqFqV/ltcHiMfM2aMOnTooP/85z/atm2btm3bpoKCAnXu3Fl//OMfXT0dAACW07p1a7Vo0UI5OTmOtpMnT2rz5s269NJLXTqXyxX5zp07lZubq6ZNmzramjZtqlmzZqlnz56ung4AAJ/w9aQppaWl2r9/v2M9Pz9fO3bsUHR0tBISEjR58mTNnj1bF198sS6++GLNnj1bjRo10rBhw1y6jsuJvG3btvr222/VoUMHp/aioiJddNFFrp4OAACf8HUiz83NVb9+/RzraWlpkqSRI0dq2bJlevDBB/Xjjz9q3LhxOnr0qHr16qW33npLkZGRLl2nVom8pKTE8d+zZ8/WpEmTlJ6ert69e0uStm7dqscee0xz5sxx6eIAAPiKrxN5SkqKTNM863bDMJSenu7yHe+/VKtE3qRJE6e76EzT1C233OJoOxPooEGDdOrUKbcCAgAAtVerRL5x40ZvxwEAgFcZdXhf+i+PD0S1SuRXXnmlt+MAAMCrwozTizvHB6I6v8Hl+PHjOnjwoE6ePOnU3rlzZ7eDAgAAteNyIj98+LDuvPNOvfHGGzVuZ4wcABCIwmS4Nad4yMxHPnnyZB09elRbt25VRESENmzYoOXLl+viiy/WunXrvBEjAABu8/V85L7ickX+zjvvaO3aterZs6fCwsKUmJioa665Rna7XRkZGRo4cKA34gQAADVwuSIvKytTTEyMJCk6OlqHDx+WdHpGtG3btnk2OgAAPOTMXevuLIHI5UTetm1b7d27V5LUtWtXPfvss/r666+1aNEipxe/wzsWrlur1iNuU/jAVCWPu0fvfvaZv0OCB1zeqZPWPfa4vn7xJZlv/UuDf/Gu5cbh4Zo/foIKVryo46++rt3P/T+NvX6Qn6KFN/C77X2emo880NRpjPzQoUOSTs/BumHDBiUkJGjevHmaPXu2xwPEf63atFGTF2Vp+rBh2p61SJd36qTU6dN0sOhbf4cGNzUOD9fOL7/UhAULatz+9Nhxuq5HT9025wkljRmlp195RfPHT9ANfVybXAGBid9tuMPlRD58+HDdcccdkqRu3brpq6++0ieffKKCggINHTrUpXNt2bJFgwYNUlxcnAzDUHZ2tqvhWMrc1as1+rrrNCZ1gJISEpV5zzjFnxujrFdf9XdocNOGTz7RjGVLteb992rc3qd9kpb/6y1t/nSnDnz7rZasf107v/xCPdq08XGk8AZ+t32DivwsGjVqpO7du6t58+YuH1tWVqYuXbpowVmqEPzXyYoK5f17n/p37+HU3j85WR/s3u2nqOAr733+uW7ofanimjWTJKV06aI2552vN3Nz/RwZ3MXvtu+E6hh5re5aPzNjS23MnTu31vumpqYqNTW11vtb2XclxTpVVaXYn00fK0mxTZuq8OgRP0UFX5m08G9acl+avn5xlSoqK1VVVaUxT8/V+7s+93docBO/277j60lTfKVWiXz79u21Opm3/1opLy9XeXm5Y/3ns7JZxS9/xqZpygjQlxTAcyYNuVG92yVp0CN/0oFvv9UVnTpr4cRJOnTkiN7eztMioYDfbdRVUE2akpGRoUcffdTfYfhFc3uU6oWFqfCI81/oRT/8UO0veYSW8IYNNfvOUbrx0XSt//gjSdJn+fnqeuGFeuD3N5PIgxy/274TJvfGk90ei/aSQI2rRtOmTVNxcbFjKSgo8HdIPtOwQQMlX9xGOdvynNpztuXp0vbt/RQVfKFB/fpq2KCBqswqp/ZTVVUKC9RZHFBr/G77jqXHyAOFzWaTzWbzdxh+k/a732nEk3PUo00b9WnfXotff10Hi4p4njgENA4P10Vx5znWW7doqS4XXKgjx46p4HCRNu3cqb/c9Uf9WH5SB4q+1ZWdOuv2q69R2rOL/Bg1PIXfbbgjqBK51Q1N6afvS0r02IoXdOjIEXVMbKX1f56txNhYf4cGN/Vo01abnvqrY/3psfdIkpa99abufOovunX2n5UxarRWPDRN0ZGROlD0raYv+7sWvcbjSaGA323fsPTNbt5SWlqq/fv3O9bz8/O1Y8cORUdHKyEhwY+RBa5xNwzWuBsG+zsMeNjmT3fK6H/1Wbd/e/SoRv31KR9GBF/jd9v7wuTmfOQei8Sz/JrIc3Nz1a9fP8f6mcfcRo4cqWXLlvkpKgAAgked/sB4/vnnddlllykuLk4HDhyQJGVmZmrt2rUunSclJUWmaVZbSOIAAE8zPPAvELmcyLOyspSWlqYBAwbohx9+0KlTpyRJTZo0UWZmpqfjAwDAI0J1PnKXE/n8+fO1ZMkSTZ8+XfXq1XO09+jRQ58xWw8AAD7l8hh5fn6+unXrVq3dZrOprKzMI0EBAOBpYYabN7sFZkHuekXeunVr7dixo1r7G2+8ofa8vAAAEKBCdYzc5Yp8ypQpGj9+vE6cOCHTNPXxxx/rxRdfVEZGhp577jlvxAgAgNt4jvwnd955pyorK/Xggw/q+PHjGjZsmM477zw988wzuvXWW70RIwAAOIs6PUd+11136a677tJ3332nqqoqxcTEeDouAAA8KlTHyN16IUzz5s09FQcAAF5lGO5Ntx2gPeuuJ/LWrVv/6g/iyy+/dCsgAABQey4n8smTJzutV1RUaPv27dqwYYOmTJniqbgAAPCoMBkKc+POc1ePraysVHp6ulasWKHCwkK1bNlSd9xxh/70pz8pLMxzb253OZHfe++9Nbb/7W9/U25urtsBAQDgDb4eI58zZ44WLVqk5cuXq0OHDsrNzdWdd96pqKios+bSOsXlqROlpqZq9erVnjodAABB7cMPP9TgwYM1cOBAtWrVSr///e/Vv39/jxe9Hkvk//znPxUdHe2p0wEA4FHGT+9Ld2eRpJKSEqelvLy8xuv17dtXb7/9tvbt2ydJ2rlzp9577z0NGDDAo5/L5a71bt26Od3sZpqmCgsLdfjwYS1cuNCjwQEA4CmeGiOPj493ap85c6bS09Or7T916lQVFxerXbt2qlevnk6dOqVZs2bpD3/4Q51jqInLiXzIkCFO62FhYTr33HOVkpKidu3aeSouAAACUkFBgex2u2PdZrPVuN+qVav0wgsvaOXKlerQoYN27NihyZMnKy4uTiNHjvRYPC4l8srKSrVq1UrXXnutWrRo4bEgAADwNsPNm93OdEbb7XanRH42U6ZM0UMPPeR462mnTp104MABZWRkeDSRuzRGXr9+fd1zzz1nHQ8AACBQeWqMvLaOHz9e7TGzevXqqaqqypMfy/Wu9V69emn79u1KTEz0aCAAAHiTrydNGTRokGbNmqWEhAR16NBB27dv19y5czVq1Kg6x1ATlxP5uHHjdP/99+s///mPkpOT1bhxY6ftnTt39lhwAAAEq/nz52vGjBkaN26cioqKFBcXp7vvvluPPPKIR69T60Q+atQoZWZmaujQoZKkSZMmObYZhiHTNGUYhk6dOuXRAAEA8IQwuffMtavHRkZGKjMzU5mZmW5c9bfVOpEvX75cTzzxhPLz870ZDwAAXlGXce5fHh+Iap3ITdOUJMbGAQAIIC6NkQfqXyMAAPwWX9/s5isuJfI2bdr8ZjI/cuSIWwEBAOANvp40xVdcSuSPPvqooqKivBULAABwkUuJ/NZbb1VMTIy3YgEAwGuMn/65c3wgqnUiZ3wcABDMQrVrvdaPxZ25ax0AAASOWlfknn43LAAAvsRd6wAABDHLj5EDABDMPDWNaaBx57WzAADAz6jIAQCWwBg5AABBzJCbk6YE6Bg5XesAAAQxKnIAgCX4ej5yXyGRAwAsIVTHyAP1DwwAAFALVOQAAEswDDdvdgvQipxEDgCwhFAdIw/UuAAAQC1QkQMALIGudQAAglio3rVOIgcAWILx0+LO8YGIMXIAAIIYFTkAwBIYIwcAIIidfvzMjTFyz4XiUYEaFwAAqAUqcgCAJRjG6cWd4wMRiRwAYAmGm4+fBeoYOV3rAAB4yddff63bbrtNzZo1U6NGjdS1a1fl5eV59BpU5AAASzB++ufO8a44evSoLrvsMvXr109vvPGGYmJi9MUXX6hJkyZ1jqEmJHIAgCX4eox8zpw5io+P19KlSx1trVq1qnsAZ0HXOgAAXrBu3Tr16NFDN998s2JiYtStWzctWbLE49ehIkfQMN/6l79DgA9d+8rD/g4BPlB5/KTPrhUmw83nyE8fW1JS4tRus9lks9mq7f/ll18qKytLaWlpevjhh/Xxxx9r0qRJstlsuv322+scR/W4AACwgDNvdnNnkaT4+HhFRUU5loyMjBqvV1VVpe7du2v27Nnq1q2b7r77bt11113Kysry6OeiIgcAWIKnxsgLCgpkt9sd7TVV45LUsmVLtW/f3qktKSlJq1evrnsQNSCRAwDgArvd7pTIz+ayyy7T3r17ndr27dunxMREj8ZDIgcAWIKnxshr67777tOll16q2bNn65ZbbtHHH3+sxYsXa/HixXWOoea4AACwAE+NkddWz549tWbNGr344ovq2LGjHn/8cWVmZmr48OEe/VxU5AAAeMn111+v66+/3qvXIJEDACwhTO51QwdqFzaJHABgCXXpHv/l8YEoUP/AAAAAtUBFDgCwhFCtyEnkAABLCNUx8kCNCwAA1AIVOQDAEuhaBwAgqBky3Hizm9w61ntI5AAASwgzTi/uHB+IGCMHACCIUZEDACzBcLNr3b1uee8hkQMALCHMMBTmxg1r7hzrTXStAwAQxKjIAQCWYBinF3eOD0QkcgCAJYTqGDld6wAABDEqcgCAJYTJzZvdArQiJ5EDACzBkHvvZgvMNE7XOgAAQY2KHABgCaH6HDmJHABgCcx+BgBAEGOMHAAABBwqcgCAJTBGDgBAEDvdte7Om90CE13rAAAEMSpyAIA1uDlpSqCW5CRyAIAlMGkKAAAIOFTkAABLoCIHACCYGR5Y6igjI0OGYWjy5Ml1P8lZkMgBAPCiTz75RIsXL1bnzp29cn4SOQDAEgwP/HNVaWmphg8friVLlqhp06Ze+FQkcgCARZyZNMWdxVXjx4/XwIEDdfXVV3vhE53GzW4AAEvw1KQpJSUlTu02m002m63a/i+99JLy8vKUm5vrxlV/GxU5AAAuiI+PV1RUlGPJyMiotk9BQYHuvfderVixQuHh4V6Nh4ocAGAJnnr8rKCgQHa73dFeUzWel5enoqIiJScnO9pOnTqlLVu2aMGCBSovL1e9evXqHMvPkcgBAJZQ13Hunx8vSXa73SmR1+Sqq67SZ5995tR25513ql27dpo6darHkrhEIgcAwOMiIyPVsWNHp7bGjRurWbNm1drdRSIHAFiCp252CzQkcgCAJfj7Fa2bNm1y6/iz4a51AACCGBU5AMASPHWzW6AhkQMALCFUx8jpWgcAIIhRkQMALIGudQAAgpi/71r3FhI5AMASQjWRM0YOAEAQoyIHAFiCYZxe3Dk+EJHIg8zCdWv1l//9Xx068r06JLZS5j3jdHmnTv4OC17Adx2aOjZrpZvbXK6Lm5ynZhF2pX/4vD48tMex/bK4DhrQuqcubnKeomyNdc/b8/Vl8SE/Rhw66Fr3goyMDPXs2VORkZGKiYnRkCFDtHfvXn+GFNBWbdqoyYuyNH3YMG3PWqTLO3VS6vRpOlj0rb9Dg4fxXYeu8PoN9WVxof6289Wat9droN3fH9Tfd73p48gQrPyayDdv3qzx48dr69atysnJUWVlpfr376+ysjJ/hhWw5q5erdHXXacxqQOUlJCozHvGKf7cGGW9WvP/EBC8+K5DV+63+7R8d47e/2ZXjdvfLtihFf/3jrYX7fdxZKHP8MC/QOTXrvUNGzY4rS9dulQxMTHKy8vTFVdc4aeoAtPJigrl/XufHhp6q1N7/+RkfbB7t5+igjfwXQNe4uYYeYDm8cAaIy8uLpYkRUdH17i9vLxc5eXljvWSkhKfxBUIvisp1qmqKsU2berUHtu0qQqPHvFTVPAGvmsArgiYx89M01RaWpr69u171knXMzIyFBUV5Vji4+N9HKX//fLNQqZpBmx3D9zDdw14muGBJfAETCKfMGGCPv30U7344otn3WfatGkqLi52LAUFBT6M0L+a26NULyxMhUecK7KiH36oVrkhuPFdA95x5hWt7iyBKCAS+cSJE7Vu3Tpt3LhR559//ln3s9lsstvtTotVNGzQQMkXt1HOtjyn9pxtebq0fXs/RQVv4LsG4Aq/jpGbpqmJEydqzZo12rRpk1q3bu3PcAJe2u9+pxFPzlGPNm3Up317LX79dR0sKtLY6wf5OzR4GN916Aqv11Bx5zRzrLdoHK0Lolrq2MnjOvxjsSIbROjcRk3ULDxSkhR/TnNJ0tETx3S0vNQvMYeKUJ3G1K+JfPz48Vq5cqXWrl2ryMhIFRYWSpKioqIUERHhz9AC0tCUfvq+pESPrXhBh44cUcfEVlr/59lKjI31d2jwML7r0NWm6Xn6yxV3OdbHdh4oSXrrQJ7+mrdavVsm6YEev3dsf7jXHyRJz+95Wy/sedu3wYaYUH0hjGGapum3i59lvGHp0qW64447fvP4kpISRUVFqbj4/2S3R3o4OgD+dO0rD/s7BPhA5fGTemfEiyouLvbacOmZXFHw3f/Kbm/kxnmOK775zV6NtS783rUOAADqLqCeIwcAwFsYIwcAIIiF6hh5QDx+BgAA6oaKHABgCafnI3ejIg/MgpxEDgCwBrrWAQBAwKEiBwBYguHmNKZ0rQMA4Ed0rQMAgIBDRQ4AsIjQfCUMFTkAwCLCPLDUXkZGhnr27KnIyEjFxMRoyJAh2rt3r4c+y3+RyAEAlmB44J8rNm/erPHjx2vr1q3KyclRZWWl+vfvr7KyMo9+LrrWAQDwgg0bNjitL126VDExMcrLy9MVV1zhseuQyAEAFuGZMfKSkhKnVpvNJpvN9ptHFxcXS5Kio6PdiKE6utYBABbhmTHy+Ph4RUVFOZaMjIzfvLJpmkpLS1Pfvn3VsWNHj34qKnIAAFxQUFAgu93uWK9NNT5hwgR9+umneu+99zweD4kcAGANHnq1m91ud0rkv2XixIlat26dtmzZovPPP7/u1z8LEjkAwBJ8/WY30zQ1ceJErVmzRps2bVLr1q3rfO1fQyIHAMALxo8fr5UrV2rt2rWKjIxUYWGhJCkqKkoREREeuw43uwEALMK3L4TJyspScXGxUlJS1LJlS8eyatUqD32e06jIAQAW4dtXtJqm6ca1ao+KHACAIEZFDgCwCNe7x6sfH3hI5AAASwjV+chJ5AAACwnMZOyOwOwnAAAAtUJFDgCwCMbIAQAIYr59/MxXAvPPCwAAUCtU5AAASzAUJsON+tWdY72JRA4AsAi61gEAQIChIgcAWIOH5iMPNCRyAIBFhObjZ4EZFQAAqBUqcgCAJfCudQAAglpo3rVOIgcAWARj5AAAIMBQkQMALIKudQAAglaovqI1MKMCAAC1QkUOALAIutYBAAhygZmM3UHXOgAAQYyKHABgEaH5HDmJHABgCYZhyHBjBjN3jvWmwPzzAgAA1AoVOQDAIrhrHQCAIMYYOQAAQSw0K/LA/PMCAIAQsXDhQrVu3Vrh4eFKTk7Wu+++69Hzk8gBAJZw5l3r7iyuWrVqlSZPnqzp06dr+/btuvzyy5WamqqDBw967HORyAEAFmF4YHHN3LlzNXr0aI0ZM0ZJSUnKzMxUfHy8srKyPPB5TgvqMXLTNCVJJSWlfo4EgKdVHj/p7xDgA5U/Vkj67//Pvamk5JhHji8pKXFqt9lsstls1fY/efKk8vLy9NBDDzm19+/fXx988IFbsfxcUCfyY8dO/1Dj43v4ORIAgDuOHTumqKgor5y7YcOGatGiheLje7p9rnPOOUfx8fFObTNnzlR6enq1fb/77judOnVKsbGxTu2xsbEqLCx0O5YzgjqRx8XFqaCgQJGRkQH7xh1vKCkpUXx8vAoKCmS32/0dDryI79o6rPpdm6apY8eOKS4uzmvXCA8PV35+vk6edL+XxzTNavmmpmr85365f03ncEdQJ/KwsDCdf/75/g7Db+x2u6V+4a2M79o6rPhde6sS/7nw8HCFh4d7/To/17x5c9WrV69a9V1UVFStSncHN7sBAOAFDRs2VHJysnJycpzac3JydOmll3rsOkFdkQMAEMjS0tI0YsQI9ejRQ3369NHixYt18OBBjR071mPXIJEHIZvNppkzZ/7muAyCH9+1dfBdh6ahQ4fq+++/12OPPaZDhw6pY8eOWr9+vRITEz12DcP0xT3/AADAKxgjBwAgiJHIAQAIYiRyAACCGIkcAIAgRiIPMt6eDg+BYcuWLRo0aJDi4uJkGIays7P9HRK8JCMjQz179lRkZKRiYmI0ZMgQ7d27199hIYiQyIOIL6bDQ2AoKytTly5dtGDBAn+HAi/bvHmzxo8fr61btyonJ0eVlZXq37+/ysrK/B0aggSPnwWRXr16qXv37k7T3yUlJWnIkCHKyMjwY2TwJsMwtGbNGg0ZMsTfocAHDh8+rJiYGG3evFlXXHGFv8NBEKAiDxJnpsPr37+/U7unp8MD4F/FxcWSpOjoaD9HgmBBIg8SvpoOD4D/mKaptLQ09e3bVx07dvR3OAgSvKI1yHh7OjwA/jNhwgR9+umneu+99/wdCoIIiTxI+Go6PAD+MXHiRK1bt05btmyx9PTMcB1d60HCV9PhAfAt0zQ1YcIEvfLKK3rnnXfUunVrf4eEIENFHkR8MR0eAkNpaan279/vWM/Pz9eOHTsUHR2thIQEP0YGTxs/frxWrlyptWvXKjIy0tHrFhUVpYiICD9Hh2DA42dBZuHChXryyScd0+E9/fTTPKISgjZt2qR+/fpVax85cqSWLVvm+4DgNWe7x2Xp0qW64447fBsMghKJHACAIMYYOQAAQYxEDgBAECORAwAQxEjkAAAEMRI5AABBjEQOAEAQI5EDABDESOSAm9LT09W1a1fH+h133OGXucO/+uorGYahHTt2nHWfVq1aKTMzs9bnXLZsmZo0aeJ2bIZhKDs72+3zAKiORI6QdMcdd8gwDBmGoQYNGuiCCy7QAw88oLKyMq9f+5lnnqn129dqk3wB4NfwrnWErOuuu05Lly5VRUWF3n33XY0ZM0ZlZWXKysqqtm9FRYUaNGjgketGRUV55DwAUBtU5AhZNptNLVq0UHx8vIYNG6bhw4c7unfPdIf//e9/1wUXXCCbzSbTNFVcXKw//vGPiomJkd1u1//8z/9o586dTud94oknFBsbq8jISI0ePVonTpxw2v7LrvWqqirNmTNHF110kWw2mxISEjRr1ixJcsx01a1bNxmGoZSUFMdxS5cuVVJSksLDw9WuXTstXLjQ6Toff/yxunXrpvDwcPXo0UPbt293+Wc0d+5cderUSY0bN1Z8fLzGjRun0tLSavtlZ2erTZs2Cg8P1zXXXKOCggKn7a+++qqSk5MVHh6uCy64QI8++qgqKytdjgeA60jksIyIiAhVVFQ41vfv36+XX35Zq1evdnRtDxw4UIWFhVq/fr3y8vLUvXt3XXXVVTpy5Igk6eWXX9bMmTM1a9Ys5ebmqmXLltUS7C9NmzZNc+bM0YwZM7R7926tXLnSMYf8xx9/LEn617/+pUOHDumVV16RJC1ZskTTp0/XrFmztGfPHs2ePVszZszQ8uXLJUllZWW6/vrr1bZtW+Xl5Sk9PV0PPPCAyz+TsLAwzZs3T59//rmWL1+ud955Rw8++KDTPsePH9esWbO0fPlyvf/++yopKdGtt97q2P7mm2/qtttu06RJk7R79249++yzWrZsmeOPFQBeZgIhaOTIkebgwYMd6x999JHZrFkz85ZbbjFN0zRnzpxpNmjQwCwqKnLs8/bbb5t2u908ceKE07kuvPBC89lnnzVN0zT79Oljjh071ml7r169zC5dutR47ZKSEtNms5lLliypMc78/HxTkrl9+3an9vj4eHPlypVObY8//rjZp08f0zRN89lnnzWjo6PNsrIyx/asrKwaz/VziYmJ5tNPP33W7S+//LLZrFkzx/rSpUtNSebWrVsdbXv27DElmR999JFpmqZ5+eWXm7Nnz3Y6z/PPP2+2bNnSsS7JXLNmzVmvC6DuGCNHyHrttdd0zjnnqLKyUhUVFRo8eLDmz5/v2J6YmKhzzz3XsZ6Xl6fS0lI1a9bM6Tw//vijvvjiC0nSnj17qs3/3qdPH23cuLHGGPbs2aPy8nJdddVVtY778OHDKigo0OjRo3XXXXc52isrKx3j73v27FGXLl3UqFEjpzhctXHjRs2ePVu7d+9WSUmJKisrdeLECZWVlalx48aSpPr166tHjx6OY9q1a6cmTZpoz549uuSSS5SXl6dPPvnEqQI/deqUTpw4oePHjzvFCMDzSOQIWf369VNWVpYaNGiguLi4ajeznUlUZ1RVVally5batGlTtXPV9RGsiIgIl4+pqqqSdLp7vVevXk7b6tWrJ0kyPTD78IEDBzRgwACNHTtWjz/+uKKjo/Xee+9p9OjRTkMQUs1zZp9pq6qq0qOPPqqbbrqp2j7h4eFuxwng15HIEbIaN26siy66qNb7d+/eXYWFhapfv75atWpV4z5JSUnaunWrbr/9dkfb1q1bz3rOiy++WBEREXr77bc1ZsyYatsbNmwo6XQFe0ZsbKzOO+88ffnllxo+fHiN523fvr2ef/55/fjjj44/Fn4tjprk5uaqsrJSf/3rXxUWdvp2mZdffrnafpWVlcrNzdUll1wiSdq7d69++OEHtWvXTtLpn9vevXtd+lkD8BwSOfCTq6++Wn369NGQIUM0Z84ctW3bVt98843Wr1+vIUOGqEePHrr33ns1cuRI9ejRQ3379tWKFSu0a9cuXXDBBTWeMzw8XFOnTtWDDz6ohg0b6rLLLtPhw4e1a9cujR49WjExMYqIiNCGDRt0/vnnKzw8XFFRUUpPT9ekSZNkt9uVmpqq8vJy5ebm6ujRo0pLS9OwYcM0ffp0jR49Wn/605/01Vdf6amnnnLp81544YWqrKzU/PnzNWjQIL3//vtatGhRtf0aNGigiRMnat68eWrQoIEmTJig3r17OxL7I488ouuvv17x8fG6+eabFRYWpk8//VSfffaZ/vznP7v+RQBwCXetAz8xDEPr16/XFVdcoVGjRqlNmza69dZb9dVXXznuMh86dKgeeeQRTZ06VcnJyTpw4IDuueeeXz3vjBkzdP/99+uRRx5RUlKShg4dqqKiIkmnx5/nzZunZ599VnFxcRo8eLAkacyYMXruuee0bNkyderUSVdeeaWWLVvmeFztnHPO0auvvqrdu3erW7dumj59uubMmePS5+3atavmzp2rOXPmqGPHjlqxYoUyMjKq7deoUSNNnTpVw4YNU58+fRQREaGXXnrJsf3aa6/Va6+9ppycHPXs2VO9e/fW3LlzlZiY6FI8AOrGMD0x2AYAAPyCihwAgCBGIgcAIIiRyAEACGIkcgAAghiJHACAIEYiBwAgiJHIAQAIYiRyAACCGIkcAIAgRiIHACCIkcgBAAhiJHIAAILY/weKKG913rKXBgAAAABJRU5ErkJggg==\n",
896 | "text/plain": [
897 | ""
898 | ]
899 | },
900 | "metadata": {},
901 | "output_type": "display_data"
902 | }
903 | ],
904 | "source": [
905 | "conf_matrix = ConfusionMatrixDisplay(confusion_matrix=matrix,display_labels=naive_bayes.classes_)\n",
906 | "conf_matrix.plot(cmap=plt.cm.YlGn)\n",
907 | "plt.show()"
908 | ]
909 | },
910 | {
911 | "cell_type": "markdown",
912 | "id": "e67b5772",
913 | "metadata": {
914 | "papermill": {
915 | "duration": 0.029507,
916 | "end_time": "2022-03-28T06:30:18.810296",
917 | "exception": false,
918 | "start_time": "2022-03-28T06:30:18.780789",
919 | "status": "completed"
920 | },
921 | "tags": []
922 | },
923 | "source": [
924 | "* Evaluating our model and calculating TN,FN,TP,FP Accuracy,Recall,Precision,ErrorRate,"
925 | ]
926 | },
927 | {
928 | "cell_type": "code",
929 | "execution_count": 18,
930 | "id": "4e802416",
931 | "metadata": {
932 | "execution": {
933 | "iopub.execute_input": "2022-03-28T06:30:18.874162Z",
934 | "iopub.status.busy": "2022-03-28T06:30:18.873093Z",
935 | "iopub.status.idle": "2022-03-28T06:30:18.881353Z",
936 | "shell.execute_reply": "2022-03-28T06:30:18.881875Z",
937 | "shell.execute_reply.started": "2022-03-28T05:49:18.507494Z"
938 | },
939 | "papermill": {
940 | "duration": 0.042481,
941 | "end_time": "2022-03-28T06:30:18.882045",
942 | "exception": false,
943 | "start_time": "2022-03-28T06:30:18.839564",
944 | "status": "completed"
945 | },
946 | "tags": []
947 | },
948 | "outputs": [
949 | {
950 | "name": "stdout",
951 | "output_type": "stream",
952 | "text": [
953 | " precision recall f1-score support\n",
954 | "\n",
955 | " 0 1.00 1.00 1.00 16\n",
956 | " 1 1.00 1.00 1.00 18\n",
957 | " 2 1.00 1.00 1.00 11\n",
958 | "\n",
959 | " accuracy 1.00 45\n",
960 | " macro avg 1.00 1.00 1.00 45\n",
961 | "weighted avg 1.00 1.00 1.00 45\n",
962 | "\n"
963 | ]
964 | }
965 | ],
966 | "source": [
967 | "print(classification_report(y_test,pred))"
968 | ]
969 | },
970 | {
971 | "cell_type": "code",
972 | "execution_count": 19,
973 | "id": "5c090c10",
974 | "metadata": {
975 | "execution": {
976 | "iopub.execute_input": "2022-03-28T06:30:18.946931Z",
977 | "iopub.status.busy": "2022-03-28T06:30:18.945950Z",
978 | "iopub.status.idle": "2022-03-28T06:30:18.955196Z",
979 | "shell.execute_reply": "2022-03-28T06:30:18.954520Z",
980 | "shell.execute_reply.started": "2022-03-28T05:49:06.971284Z"
981 | },
982 | "papermill": {
983 | "duration": 0.042721,
984 | "end_time": "2022-03-28T06:30:18.955341",
985 | "exception": false,
986 | "start_time": "2022-03-28T06:30:18.912620",
987 | "status": "completed"
988 | },
989 | "tags": []
990 | },
991 | "outputs": [
992 | {
993 | "name": "stdout",
994 | "output_type": "stream",
995 | "text": [
996 | "\n",
997 | "Accuracy: 1.00\n",
998 | "Error Rate: 0.0\n",
999 | "Sensitivity (Recall or True positive rate) : 1.0\n",
1000 | "Specificity (True negative rate) : 1.0\n",
1001 | "Precision (Positive predictive value) : 1.0\n",
1002 | "False Positive Rate : 0.0\n"
1003 | ]
1004 | }
1005 | ],
1006 | "source": [
1007 | "print('\\nAccuracy: {:.2f}'.format(accuracy_score(y_test,pred)))\n",
1008 | "print('Error Rate: ',(fp+fn)/(tp+tn+fn+fp))\n",
1009 | "print('Sensitivity (Recall or True positive rate) :',tp/(tp+fn))\n",
1010 | "print('Specificity (True negative rate) :',tn/(fp+tn))\n",
1011 | "print('Precision (Positive predictive value) :',tp/(tp+fp))\n",
1012 | "print('False Positive Rate :',fp/(tn+fp))"
1013 | ]
1014 | },
1015 | {
1016 | "cell_type": "code",
1017 | "execution_count": null,
1018 | "id": "7701a5bb",
1019 | "metadata": {},
1020 | "outputs": [],
1021 | "source": []
1022 | }
1023 | ],
1024 | "metadata": {
1025 | "kernelspec": {
1026 | "display_name": "Python 3 (ipykernel)",
1027 | "language": "python",
1028 | "name": "python3"
1029 | },
1030 | "language_info": {
1031 | "codemirror_mode": {
1032 | "name": "ipython",
1033 | "version": 3
1034 | },
1035 | "file_extension": ".py",
1036 | "mimetype": "text/x-python",
1037 | "name": "python",
1038 | "nbconvert_exporter": "python",
1039 | "pygments_lexer": "ipython3",
1040 | "version": "3.9.13"
1041 | },
1042 | "papermill": {
1043 | "default_parameters": {},
1044 | "duration": 13.707806,
1045 | "end_time": "2022-03-28T06:30:19.758101",
1046 | "environment_variables": {},
1047 | "exception": null,
1048 | "input_path": "__notebook__.ipynb",
1049 | "output_path": "__notebook__.ipynb",
1050 | "parameters": {},
1051 | "start_time": "2022-03-28T06:30:06.050295",
1052 | "version": "2.3.3"
1053 | }
1054 | },
1055 | "nbformat": 4,
1056 | "nbformat_minor": 5
1057 | }
1058 |
--------------------------------------------------------------------------------