├── StudentPerformance.csv ├── README.md ├── Iris.csv ├── Covid-Vaccine.ipynb ├── Mall_Customers.csv ├── Social_Network_Ads.csv ├── MovieRecommendation.ipynb ├── Assignment_7.ipynb ├── BostonHousing.csv ├── Assignment_9.ipynb └── Assignment_6.ipynb /StudentPerformance.csv: -------------------------------------------------------------------------------- 1 | gender,math_score,reading_score,writing_score,placement_score,club_join_year,placement_offer 2 | female,63,84,64,84,2020,2 3 | female,71,80,76,86,2018,3 4 | female,64,81,66,81,2020,2 5 | male,71,85,77,96,2018,1 6 | male,68,86,76,,2021,3 7 | female,94,86,61,100,2019,1 8 | male,75,79,66,-99,2020,1 9 | female,,,66,95,2019,3 10 | male,66,88,66,88,2020,3 11 | male,70,79,61,87,2021,2 12 | female,-99,80,65,85,2021,1 13 | male,76,84,-99,,2020,2 14 | female,74,79,79,98,2019,2 15 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Third Year Data Science And Big Data Analysis Lab Practicals 2 | 3 | ## Assignment 1 - Data Wrangling Part 1 4 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment1.ipynb) 5 | 6 | 7 | ## Assignment 2 - Data Wrangling Part 2 8 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment2.ipynb) 9 | 10 | 11 | ## Assignment 3 - Statistics Operations 12 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_3.ipynb) 13 | 14 | 15 | ## Assignment 4 - Linear Regression Model 16 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment4.ipynb) 17 | 18 | 19 | ## Assignment 5 - Logistic Regression 20 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment%205_1.ipynb) 21 | 22 | 23 | ## Assignment 6 - Naïve Bayes Classification Algorithm 24 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_6.ipynb) 25 | 26 | 27 | ## Assignment 7 - Text Analytics 28 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_7.ipynb) 29 | 30 | 31 | ## Assignment 8 - Data Visualization-I 32 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_8.ipynb) 33 | 34 | 35 | ## Assignment 9 - Data Visualization II 36 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment_9.ipynb) 37 | 38 | 39 | ## Assignment 10 - Data Visualization III 40 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Assignment%2010.ipynb) 41 | 42 | 43 | 44 | # Mini Projects: 45 | ## Project 1 - Covid Data Analytics 46 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/Covid-Vaccine.ipynb) 47 | 48 | ## Project 2 - Movie Recommendation System 49 | - [Access here](https://github.com/Shubham-Bhoite/DSBDA-Assignment/blob/main/MovieRecommendation.ipynb) 50 | -------------------------------------------------------------------------------- /Iris.csv: -------------------------------------------------------------------------------- 1 | "sepal.length","sepal.width","petal.length","petal.width","variety" 2 | 5.1,3.5,1.4,.2,"Setosa" 3 | 4.9,3,1.4,.2,"Setosa" 4 | 4.7,3.2,1.3,.2,"Setosa" 5 | 4.6,3.1,1.5,.2,"Setosa" 6 | 5,3.6,1.4,.2,"Setosa" 7 | 5.4,3.9,1.7,.4,"Setosa" 8 | 4.6,3.4,1.4,.3,"Setosa" 9 | 5,3.4,1.5,.2,"Setosa" 10 | 4.4,2.9,1.4,.2,"Setosa" 11 | 4.9,3.1,1.5,.1,"Setosa" 12 | 5.4,3.7,1.5,.2,"Setosa" 13 | 4.8,3.4,1.6,.2,"Setosa" 14 | 4.8,3,1.4,.1,"Setosa" 15 | 4.3,3,1.1,.1,"Setosa" 16 | 5.8,4,1.2,.2,"Setosa" 17 | 5.7,4.4,1.5,.4,"Setosa" 18 | 5.4,3.9,1.3,.4,"Setosa" 19 | 5.1,3.5,1.4,.3,"Setosa" 20 | 5.7,3.8,1.7,.3,"Setosa" 21 | 5.1,3.8,1.5,.3,"Setosa" 22 | 5.4,3.4,1.7,.2,"Setosa" 23 | 5.1,3.7,1.5,.4,"Setosa" 24 | 4.6,3.6,1,.2,"Setosa" 25 | 5.1,3.3,1.7,.5,"Setosa" 26 | 4.8,3.4,1.9,.2,"Setosa" 27 | 5,3,1.6,.2,"Setosa" 28 | 5,3.4,1.6,.4,"Setosa" 29 | 5.2,3.5,1.5,.2,"Setosa" 30 | 5.2,3.4,1.4,.2,"Setosa" 31 | 4.7,3.2,1.6,.2,"Setosa" 32 | 4.8,3.1,1.6,.2,"Setosa" 33 | 5.4,3.4,1.5,.4,"Setosa" 34 | 5.2,4.1,1.5,.1,"Setosa" 35 | 5.5,4.2,1.4,.2,"Setosa" 36 | 4.9,3.1,1.5,.2,"Setosa" 37 | 5,3.2,1.2,.2,"Setosa" 38 | 5.5,3.5,1.3,.2,"Setosa" 39 | 4.9,3.6,1.4,.1,"Setosa" 40 | 4.4,3,1.3,.2,"Setosa" 41 | 5.1,3.4,1.5,.2,"Setosa" 42 | 5,3.5,1.3,.3,"Setosa" 43 | 4.5,2.3,1.3,.3,"Setosa" 44 | 4.4,3.2,1.3,.2,"Setosa" 45 | 5,3.5,1.6,.6,"Setosa" 46 | 5.1,3.8,1.9,.4,"Setosa" 47 | 4.8,3,1.4,.3,"Setosa" 48 | 5.1,3.8,1.6,.2,"Setosa" 49 | 4.6,3.2,1.4,.2,"Setosa" 50 | 5.3,3.7,1.5,.2,"Setosa" 51 | 5,3.3,1.4,.2,"Setosa" 52 | 7,3.2,4.7,1.4,"Versicolor" 53 | 6.4,3.2,4.5,1.5,"Versicolor" 54 | 6.9,3.1,4.9,1.5,"Versicolor" 55 | 5.5,2.3,4,1.3,"Versicolor" 56 | 6.5,2.8,4.6,1.5,"Versicolor" 57 | 5.7,2.8,4.5,1.3,"Versicolor" 58 | 6.3,3.3,4.7,1.6,"Versicolor" 59 | 4.9,2.4,3.3,1,"Versicolor" 60 | 6.6,2.9,4.6,1.3,"Versicolor" 61 | 5.2,2.7,3.9,1.4,"Versicolor" 62 | 5,2,3.5,1,"Versicolor" 63 | 5.9,3,4.2,1.5,"Versicolor" 64 | 6,2.2,4,1,"Versicolor" 65 | 6.1,2.9,4.7,1.4,"Versicolor" 66 | 5.6,2.9,3.6,1.3,"Versicolor" 67 | 6.7,3.1,4.4,1.4,"Versicolor" 68 | 5.6,3,4.5,1.5,"Versicolor" 69 | 5.8,2.7,4.1,1,"Versicolor" 70 | 6.2,2.2,4.5,1.5,"Versicolor" 71 | 5.6,2.5,3.9,1.1,"Versicolor" 72 | 5.9,3.2,4.8,1.8,"Versicolor" 73 | 6.1,2.8,4,1.3,"Versicolor" 74 | 6.3,2.5,4.9,1.5,"Versicolor" 75 | 6.1,2.8,4.7,1.2,"Versicolor" 76 | 6.4,2.9,4.3,1.3,"Versicolor" 77 | 6.6,3,4.4,1.4,"Versicolor" 78 | 6.8,2.8,4.8,1.4,"Versicolor" 79 | 6.7,3,5,1.7,"Versicolor" 80 | 6,2.9,4.5,1.5,"Versicolor" 81 | 5.7,2.6,3.5,1,"Versicolor" 82 | 5.5,2.4,3.8,1.1,"Versicolor" 83 | 5.5,2.4,3.7,1,"Versicolor" 84 | 5.8,2.7,3.9,1.2,"Versicolor" 85 | 6,2.7,5.1,1.6,"Versicolor" 86 | 5.4,3,4.5,1.5,"Versicolor" 87 | 6,3.4,4.5,1.6,"Versicolor" 88 | 6.7,3.1,4.7,1.5,"Versicolor" 89 | 6.3,2.3,4.4,1.3,"Versicolor" 90 | 5.6,3,4.1,1.3,"Versicolor" 91 | 5.5,2.5,4,1.3,"Versicolor" 92 | 5.5,2.6,4.4,1.2,"Versicolor" 93 | 6.1,3,4.6,1.4,"Versicolor" 94 | 5.8,2.6,4,1.2,"Versicolor" 95 | 5,2.3,3.3,1,"Versicolor" 96 | 5.6,2.7,4.2,1.3,"Versicolor" 97 | 5.7,3,4.2,1.2,"Versicolor" 98 | 5.7,2.9,4.2,1.3,"Versicolor" 99 | 6.2,2.9,4.3,1.3,"Versicolor" 100 | 5.1,2.5,3,1.1,"Versicolor" 101 | 5.7,2.8,4.1,1.3,"Versicolor" 102 | 6.3,3.3,6,2.5,"Virginica" 103 | 5.8,2.7,5.1,1.9,"Virginica" 104 | 7.1,3,5.9,2.1,"Virginica" 105 | 6.3,2.9,5.6,1.8,"Virginica" 106 | 6.5,3,5.8,2.2,"Virginica" 107 | 7.6,3,6.6,2.1,"Virginica" 108 | 4.9,2.5,4.5,1.7,"Virginica" 109 | 7.3,2.9,6.3,1.8,"Virginica" 110 | 6.7,2.5,5.8,1.8,"Virginica" 111 | 7.2,3.6,6.1,2.5,"Virginica" 112 | 6.5,3.2,5.1,2,"Virginica" 113 | 6.4,2.7,5.3,1.9,"Virginica" 114 | 6.8,3,5.5,2.1,"Virginica" 115 | 5.7,2.5,5,2,"Virginica" 116 | 5.8,2.8,5.1,2.4,"Virginica" 117 | 6.4,3.2,5.3,2.3,"Virginica" 118 | 6.5,3,5.5,1.8,"Virginica" 119 | 7.7,3.8,6.7,2.2,"Virginica" 120 | 7.7,2.6,6.9,2.3,"Virginica" 121 | 6,2.2,5,1.5,"Virginica" 122 | 6.9,3.2,5.7,2.3,"Virginica" 123 | 5.6,2.8,4.9,2,"Virginica" 124 | 7.7,2.8,6.7,2,"Virginica" 125 | 6.3,2.7,4.9,1.8,"Virginica" 126 | 6.7,3.3,5.7,2.1,"Virginica" 127 | 7.2,3.2,6,1.8,"Virginica" 128 | 6.2,2.8,4.8,1.8,"Virginica" 129 | 6.1,3,4.9,1.8,"Virginica" 130 | 6.4,2.8,5.6,2.1,"Virginica" 131 | 7.2,3,5.8,1.6,"Virginica" 132 | 7.4,2.8,6.1,1.9,"Virginica" 133 | 7.9,3.8,6.4,2,"Virginica" 134 | 6.4,2.8,5.6,2.2,"Virginica" 135 | 6.3,2.8,5.1,1.5,"Virginica" 136 | 6.1,2.6,5.6,1.4,"Virginica" 137 | 7.7,3,6.1,2.3,"Virginica" 138 | 6.3,3.4,5.6,2.4,"Virginica" 139 | 6.4,3.1,5.5,1.8,"Virginica" 140 | 6,3,4.8,1.8,"Virginica" 141 | 6.9,3.1,5.4,2.1,"Virginica" 142 | 6.7,3.1,5.6,2.4,"Virginica" 143 | 6.9,3.1,5.1,2.3,"Virginica" 144 | 5.8,2.7,5.1,1.9,"Virginica" 145 | 6.8,3.2,5.9,2.3,"Virginica" 146 | 6.7,3.3,5.7,2.5,"Virginica" 147 | 6.7,3,5.2,2.3,"Virginica" 148 | 6.3,2.5,5,1.9,"Virginica" 149 | 6.5,3,5.2,2,"Virginica" 150 | 6.2,3.4,5.4,2.3,"Virginica" 151 | 5.9,3,5.1,1.8,"Virginica" -------------------------------------------------------------------------------- /Covid-Vaccine.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "### Use the covid_vaccine_statewise.csv dataset and perform following analytics on the given dataset" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 18, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "import numpy as np \n", 17 | "import pandas as pd\n", 18 | "import warnings \n", 19 | "warnings.filterwarnings(\"ignore\")\n" 20 | ] 21 | }, 22 | { 23 | "cell_type": "code", 24 | "execution_count": null, 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "df=pd.read_csv(\"https://raw.githubusercontent.com/kunalnandre/TE-Laboratory-Practicals/main/Data%20Science%20and%20Big%20Data/Mini%20Project/covid_vaccine_statewise.csv\")\n" 29 | ] 30 | }, 31 | { 32 | "cell_type": "markdown", 33 | "metadata": {}, 34 | "source": [ 35 | "### Describe the dataset" 36 | ] 37 | }, 38 | { 39 | "cell_type": "code", 40 | "execution_count": null, 41 | "metadata": {}, 42 | "outputs": [], 43 | "source": [ 44 | "df.describe()" 45 | ] 46 | }, 47 | { 48 | "cell_type": "markdown", 49 | "metadata": {}, 50 | "source": [ 51 | "### Number of persons state wise vaccinated for first dose in India" 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "execution_count": null, 57 | "metadata": {}, 58 | "outputs": [], 59 | "source": [ 60 | "print(\"Number of persons state wise vaccinated for first dose in India\")\n", 61 | "first_dose = df.groupby('State')[['First Dose Administered']].sum()\n", 62 | "first_dose" 63 | ] 64 | }, 65 | { 66 | "cell_type": "markdown", 67 | "metadata": {}, 68 | "source": [ 69 | "### Number of persons state wise vaccinated for first dose in India" 70 | ] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "execution_count": null, 75 | "metadata": {}, 76 | "outputs": [], 77 | "source": [ 78 | "print(\"Number of persons state wise vaccinated for second dose in India\")\n", 79 | "\n", 80 | "first_dose = df.groupby('State')[['Second Dose Administered']].sum()\n", 81 | "first_dose" 82 | ] 83 | }, 84 | { 85 | "cell_type": "markdown", 86 | "metadata": {}, 87 | "source": [ 88 | "### Number of Males vaccinated" 89 | ] 90 | }, 91 | { 92 | "cell_type": "code", 93 | "execution_count": null, 94 | "metadata": {}, 95 | "outputs": [], 96 | "source": [ 97 | "male = df[\"Male(Individuals Vaccinated)\"].sum()\n", 98 | "print(\"Number of Males vaccinated are\", int(male))" 99 | ] 100 | }, 101 | { 102 | "cell_type": "markdown", 103 | "metadata": {}, 104 | "source": [ 105 | "### Number of females vaccinated" 106 | ] 107 | }, 108 | { 109 | "cell_type": "code", 110 | "execution_count": null, 111 | "metadata": {}, 112 | "outputs": [], 113 | "source": [ 114 | "female = df[\"Female(Individuals Vaccinated)\"].sum()\n", 115 | "print(\"Number of females vaccinated are\", int(female))" 116 | ] 117 | }, 118 | { 119 | "cell_type": "code", 120 | "execution_count": null, 121 | "metadata": {}, 122 | "outputs": [], 123 | "source": [ 124 | "df.info()" 125 | ] 126 | }, 127 | { 128 | "cell_type": "code", 129 | "execution_count": null, 130 | "metadata": {}, 131 | "outputs": [], 132 | "source": [ 133 | "df.describe(include='object')" 134 | ] 135 | }, 136 | { 137 | "cell_type": "code", 138 | "execution_count": null, 139 | "metadata": {}, 140 | "outputs": [], 141 | "source": [ 142 | "df.shape" 143 | ] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": null, 148 | "metadata": {}, 149 | "outputs": [], 150 | "source": [ 151 | "df.head()" 152 | ] 153 | }, 154 | { 155 | "cell_type": "code", 156 | "execution_count": null, 157 | "metadata": {}, 158 | "outputs": [], 159 | "source": [ 160 | "df.tail()" 161 | ] 162 | }, 163 | { 164 | "cell_type": "code", 165 | "execution_count": null, 166 | "metadata": {}, 167 | "outputs": [], 168 | "source": [] 169 | }, 170 | { 171 | "cell_type": "code", 172 | "execution_count": null, 173 | "metadata": {}, 174 | "outputs": [], 175 | "source": [] 176 | } 177 | ], 178 | "metadata": { 179 | "kernelspec": { 180 | "display_name": "Python 3", 181 | "language": "python", 182 | "name": "python3" 183 | }, 184 | "language_info": { 185 | "codemirror_mode": { 186 | "name": "ipython", 187 | "version": 3 188 | }, 189 | "file_extension": ".py", 190 | "mimetype": "text/x-python", 191 | "name": "python", 192 | "nbconvert_exporter": "python", 193 | "pygments_lexer": "ipython3", 194 | "version": "3.6.4" 195 | } 196 | }, 197 | "nbformat": 4, 198 | "nbformat_minor": 2 199 | } 200 | -------------------------------------------------------------------------------- /Mall_Customers.csv: -------------------------------------------------------------------------------- 1 | CustomerID,Genre,Age Group,Age,Annual Income (k$),Spending Score (1-100) 2 | 1,Male,Teen,19,15,39 3 | 2,Male,Middle Age,21,15,81 4 | 3,Female,Middle Age,20,16,6 5 | 4,Female,Middle Age,23,16,77 6 | 5,Female,Middle Age,31,17,40 7 | 6,Female,Middle Age,22,17,76 8 | 7,Female,Middle Age,35,18,6 9 | 8,Female,Middle Age,23,18,94 10 | 9,Male,Elder,64,19,3 11 | 10,Female,Middle Age,30,19,72 12 | 11,Male,Elder,67,19,14 13 | 12,Female,Middle Age,35,19,99 14 | 13,Female,Elder,58,20,15 15 | 14,Female,Middle Age,24,20,77 16 | 15,Male,Middle Age,37,20,13 17 | 16,Male,Middle Age,22,20,79 18 | 17,Female,Middle Age,35,21,35 19 | 18,Male,Middle Age,20,21,66 20 | 19,Male,Elder,52,23,29 21 | 20,Female,Middle Age,35,23,98 22 | 21,Male,Middle Age,35,24,35 23 | 22,Male,Middle Age,25,24,73 24 | 23,Female,Elder,46,25,5 25 | 24,Male,Middle Age,31,25,73 26 | 25,Female,Elder,54,28,14 27 | 26,Male,Middle Age,29,28,82 28 | 27,Female,Elder,45,28,32 29 | 28,Male,Middle Age,35,28,61 30 | 29,Female,Elder,40,29,31 31 | 30,Female,Middle Age,23,29,87 32 | 31,Male,Elder,60,30,4 33 | 32,Female,Middle Age,21,30,73 34 | 33,Male,Elder,53,33,4 35 | 34,Male,Teen,18,33,92 36 | 35,Female,Elder,49,33,14 37 | 36,Female,Middle Age,21,33,81 38 | 37,Female,Elder,42,34,17 39 | 38,Female,Middle Age,30,34,73 40 | 39,Female,Middle Age,36,37,26 41 | 40,Female,Middle Age,20,37,75 42 | 41,Female,Elder,65,38,35 43 | 42,Male,Middle Age,24,38,92 44 | 43,Male,Elder,48,39,36 45 | 44,Female,Middle Age,31,39,61 46 | 45,Female,Elder,49,39,28 47 | 46,Female,Middle Age,24,39,65 48 | 47,Female,Elder,50,40,55 49 | 48,Female,Middle Age,27,40,47 50 | 49,Female,Middle Age,29,40,42 51 | 50,Female,Middle Age,31,40,42 52 | 51,Female,Elder,49,42,52 53 | 52,Male,Middle Age,33,42,60 54 | 53,Female,Middle Age,31,43,54 55 | 54,Male,Elder,59,43,60 56 | 55,Female,Elder,50,43,45 57 | 56,Male,Elder,47,43,41 58 | 57,Female,Elder,51,44,50 59 | 58,Male,Elder,69,44,46 60 | 59,Female,Middle Age,27,46,51 61 | 60,Male,Elder,53,46,46 62 | 61,Male,Elder,70,46,56 63 | 62,Male,Teen,19,46,55 64 | 63,Female,Elder,67,47,52 65 | 64,Female,Elder,54,47,59 66 | 65,Male,Elder,63,48,51 67 | 66,Male,Teen,18,48,59 68 | 67,Female,Elder,43,48,50 69 | 68,Female,Elder,68,48,48 70 | 69,Male,Teen,19,48,59 71 | 70,Female,Middle Age,32,48,47 72 | 71,Male,Elder,70,49,55 73 | 72,Female,Elder,47,49,42 74 | 73,Female,Elder,60,50,49 75 | 74,Female,Elder,60,50,56 76 | 75,Male,Elder,59,54,47 77 | 76,Male,Middle Age,26,54,54 78 | 77,Female,Elder,45,54,53 79 | 78,Male,Elder,40,54,48 80 | 79,Female,Middle Age,23,54,52 81 | 80,Female,Elder,49,54,42 82 | 81,Male,Elder,57,54,51 83 | 82,Male,Middle Age,38,54,55 84 | 83,Male,Elder,67,54,41 85 | 84,Female,Elder,46,54,44 86 | 85,Female,Middle Age,21,54,57 87 | 86,Male,Elder,48,54,46 88 | 87,Female,Elder,55,57,58 89 | 88,Female,Middle Age,22,57,55 90 | 89,Female,Middle Age,34,58,60 91 | 90,Female,Elder,50,58,46 92 | 91,Female,Elder,68,59,55 93 | 92,Male,Teen,18,59,41 94 | 93,Male,Elder,48,60,49 95 | 94,Female,Elder,40,60,40 96 | 95,Female,Middle Age,32,60,42 97 | 96,Male,Middle Age,24,60,52 98 | 97,Female,Elder,47,60,47 99 | 98,Female,Middle Age,27,60,50 100 | 99,Male,Elder,48,61,42 101 | 100,Male,Middle Age,20,61,49 102 | 101,Female,Middle Age,23,62,41 103 | 102,Female,Elder,49,62,48 104 | 103,Male,Elder,67,62,59 105 | 104,Male,Middle Age,26,62,55 106 | 105,Male,Elder,49,62,56 107 | 106,Female,Middle Age,21,62,42 108 | 107,Female,Elder,66,63,50 109 | 108,Male,Elder,54,63,46 110 | 109,Male,Elder,68,63,43 111 | 110,Male,Elder,66,63,48 112 | 111,Male,Elder,65,63,52 113 | 112,Female,Teen,19,63,54 114 | 113,Female,Middle Age,38,64,42 115 | 114,Male,Teen,19,64,46 116 | 115,Female,Teen,18,65,48 117 | 116,Female,Teen,19,65,50 118 | 117,Female,Elder,63,65,43 119 | 118,Female,Elder,49,65,59 120 | 119,Female,Elder,51,67,43 121 | 120,Female,Elder,50,67,57 122 | 121,Male,Middle Age,27,67,56 123 | 122,Female,Middle Age,38,67,40 124 | 123,Female,Elder,40,69,58 125 | 124,Male,Middle Age,39,69,91 126 | 125,Female,Middle Age,23,70,29 127 | 126,Female,Middle Age,31,70,77 128 | 127,Male,Elder,43,71,35 129 | 128,Male,Elder,40,71,95 130 | 129,Male,Elder,59,71,11 131 | 130,Male,Middle Age,38,71,75 132 | 131,Male,Elder,47,71,9 133 | 132,Male,Middle Age,39,71,75 134 | 133,Female,Middle Age,25,72,34 135 | 134,Female,Middle Age,31,72,71 136 | 135,Male,Middle Age,20,73,5 137 | 136,Female,Middle Age,29,73,88 138 | 137,Female,Elder,44,73,7 139 | 138,Male,Middle Age,32,73,73 140 | 139,Male,Teen,19,74,10 141 | 140,Female,Middle Age,35,74,72 142 | 141,Female,Elder,57,75,5 143 | 142,Male,Middle Age,32,75,93 144 | 143,Female,Middle Age,28,76,40 145 | 144,Female,Middle Age,32,76,87 146 | 145,Male,Middle Age,25,77,12 147 | 146,Male,Middle Age,28,77,97 148 | 147,Male,Elder,48,77,36 149 | 148,Female,Middle Age,32,77,74 150 | 149,Female,Middle Age,34,78,22 151 | 150,Male,Middle Age,34,78,90 152 | 151,Male,Elder,43,78,17 153 | 152,Male,Middle Age,39,78,88 154 | 153,Female,Elder,44,78,20 155 | 154,Female,Middle Age,38,78,76 156 | 155,Female,Elder,47,78,16 157 | 156,Female,Middle Age,27,78,89 158 | 157,Male,Middle Age,37,78,1 159 | 158,Female,Middle Age,30,78,78 160 | 159,Male,Middle Age,34,78,1 161 | 160,Female,Middle Age,30,78,73 162 | 161,Female,Elder,56,79,35 163 | 162,Female,Middle Age,29,79,83 164 | 163,Male,Teen,19,81,5 165 | 164,Female,Middle Age,31,81,93 166 | 165,Male,Elder,50,85,26 167 | 166,Female,Middle Age,36,85,75 168 | 167,Male,Elder,42,86,20 169 | 168,Female,Middle Age,33,86,95 170 | 169,Female,Middle Age,36,87,27 171 | 170,Male,Middle Age,32,87,63 172 | 171,Male,Elder,40,87,13 173 | 172,Male,Middle Age,28,87,75 174 | 173,Male,Middle Age,36,87,10 175 | 174,Male,Middle Age,36,87,92 176 | 175,Female,Elder,52,88,13 177 | 176,Female,Middle Age,30,88,86 178 | 177,Male,Elder,58,88,15 179 | 178,Male,Middle Age,27,88,69 180 | 179,Male,Elder,59,93,14 181 | 180,Male,Middle Age,35,93,90 182 | 181,Female,Middle Age,37,97,32 183 | 182,Female,Middle Age,32,97,86 184 | 183,Male,Elder,46,98,15 185 | 184,Female,Middle Age,29,98,88 186 | 185,Female,Elder,41,99,39 187 | 186,Male,Middle Age,30,99,97 188 | 187,Female,Elder,54,101,24 189 | 188,Male,Middle Age,28,101,68 190 | 189,Female,Elder,41,103,17 191 | 190,Female,Middle Age,36,103,85 192 | 191,Female,Middle Age,34,103,23 193 | 192,Female,Middle Age,32,103,69 194 | 193,Male,Middle Age,33,113,8 195 | 194,Female,Middle Age,38,113,91 196 | 195,Female,Elder,47,120,16 197 | 196,Female,Middle Age,35,120,79 198 | 197,Female,Elder,45,126,28 199 | 198,Male,Middle Age,32,126,74 200 | 199,Male,Middle Age,32,137,18 201 | 200,Male,Middle Age,30,137,83 202 | -------------------------------------------------------------------------------- /Social_Network_Ads.csv: -------------------------------------------------------------------------------- 1 | User ID,Gender,Age,EstimatedSalary,Purchased 2 | 15624510,Male,19,19000,0 3 | 15810944,Male,35,20000,0 4 | 15668575,Female,26,43000,0 5 | 15603246,Female,27,57000,0 6 | 15804002,Male,19,76000,0 7 | 15728773,Male,27,58000,0 8 | 15598044,Female,27,84000,0 9 | 15694829,Female,32,150000,1 10 | 15600575,Male,25,33000,0 11 | 15727311,Female,35,65000,0 12 | 15570769,Female,26,80000,0 13 | 15606274,Female,26,52000,0 14 | 15746139,Male,20,86000,0 15 | 15704987,Male,32,18000,0 16 | 15628972,Male,18,82000,0 17 | 15697686,Male,29,80000,0 18 | 15733883,Male,47,25000,1 19 | 15617482,Male,45,26000,1 20 | 15704583,Male,46,28000,1 21 | 15621083,Female,48,29000,1 22 | 15649487,Male,45,22000,1 23 | 15736760,Female,47,49000,1 24 | 15714658,Male,48,41000,1 25 | 15599081,Female,45,22000,1 26 | 15705113,Male,46,23000,1 27 | 15631159,Male,47,20000,1 28 | 15792818,Male,49,28000,1 29 | 15633531,Female,47,30000,1 30 | 15744529,Male,29,43000,0 31 | 15669656,Male,31,18000,0 32 | 15581198,Male,31,74000,0 33 | 15729054,Female,27,137000,1 34 | 15573452,Female,21,16000,0 35 | 15776733,Female,28,44000,0 36 | 15724858,Male,27,90000,0 37 | 15713144,Male,35,27000,0 38 | 15690188,Female,33,28000,0 39 | 15689425,Male,30,49000,0 40 | 15671766,Female,26,72000,0 41 | 15782806,Female,27,31000,0 42 | 15764419,Female,27,17000,0 43 | 15591915,Female,33,51000,0 44 | 15772798,Male,35,108000,0 45 | 15792008,Male,30,15000,0 46 | 15715541,Female,28,84000,0 47 | 15639277,Male,23,20000,0 48 | 15798850,Male,25,79000,0 49 | 15776348,Female,27,54000,0 50 | 15727696,Male,30,135000,1 51 | 15793813,Female,31,89000,0 52 | 15694395,Female,24,32000,0 53 | 15764195,Female,18,44000,0 54 | 15744919,Female,29,83000,0 55 | 15671655,Female,35,23000,0 56 | 15654901,Female,27,58000,0 57 | 15649136,Female,24,55000,0 58 | 15775562,Female,23,48000,0 59 | 15807481,Male,28,79000,0 60 | 15642885,Male,22,18000,0 61 | 15789109,Female,32,117000,0 62 | 15814004,Male,27,20000,0 63 | 15673619,Male,25,87000,0 64 | 15595135,Female,23,66000,0 65 | 15583681,Male,32,120000,1 66 | 15605000,Female,59,83000,0 67 | 15718071,Male,24,58000,0 68 | 15679760,Male,24,19000,0 69 | 15654574,Female,23,82000,0 70 | 15577178,Female,22,63000,0 71 | 15595324,Female,31,68000,0 72 | 15756932,Male,25,80000,0 73 | 15726358,Female,24,27000,0 74 | 15595228,Female,20,23000,0 75 | 15782530,Female,33,113000,0 76 | 15592877,Male,32,18000,0 77 | 15651983,Male,34,112000,1 78 | 15746737,Male,18,52000,0 79 | 15774179,Female,22,27000,0 80 | 15667265,Female,28,87000,0 81 | 15655123,Female,26,17000,0 82 | 15595917,Male,30,80000,0 83 | 15668385,Male,39,42000,0 84 | 15709476,Male,20,49000,0 85 | 15711218,Male,35,88000,0 86 | 15798659,Female,30,62000,0 87 | 15663939,Female,31,118000,1 88 | 15694946,Male,24,55000,0 89 | 15631912,Female,28,85000,0 90 | 15768816,Male,26,81000,0 91 | 15682268,Male,35,50000,0 92 | 15684801,Male,22,81000,0 93 | 15636428,Female,30,116000,0 94 | 15809823,Male,26,15000,0 95 | 15699284,Female,29,28000,0 96 | 15786993,Female,29,83000,0 97 | 15709441,Female,35,44000,0 98 | 15710257,Female,35,25000,0 99 | 15582492,Male,28,123000,1 100 | 15575694,Male,35,73000,0 101 | 15756820,Female,28,37000,0 102 | 15766289,Male,27,88000,0 103 | 15593014,Male,28,59000,0 104 | 15584545,Female,32,86000,0 105 | 15675949,Female,33,149000,1 106 | 15672091,Female,19,21000,0 107 | 15801658,Male,21,72000,0 108 | 15706185,Female,26,35000,0 109 | 15789863,Male,27,89000,0 110 | 15720943,Male,26,86000,0 111 | 15697997,Female,38,80000,0 112 | 15665416,Female,39,71000,0 113 | 15660200,Female,37,71000,0 114 | 15619653,Male,38,61000,0 115 | 15773447,Male,37,55000,0 116 | 15739160,Male,42,80000,0 117 | 15689237,Male,40,57000,0 118 | 15679297,Male,35,75000,0 119 | 15591433,Male,36,52000,0 120 | 15642725,Male,40,59000,0 121 | 15701962,Male,41,59000,0 122 | 15811613,Female,36,75000,0 123 | 15741049,Male,37,72000,0 124 | 15724423,Female,40,75000,0 125 | 15574305,Male,35,53000,0 126 | 15678168,Female,41,51000,0 127 | 15697020,Female,39,61000,0 128 | 15610801,Male,42,65000,0 129 | 15745232,Male,26,32000,0 130 | 15722758,Male,30,17000,0 131 | 15792102,Female,26,84000,0 132 | 15675185,Male,31,58000,0 133 | 15801247,Male,33,31000,0 134 | 15725660,Male,30,87000,0 135 | 15638963,Female,21,68000,0 136 | 15800061,Female,28,55000,0 137 | 15578006,Male,23,63000,0 138 | 15668504,Female,20,82000,0 139 | 15687491,Male,30,107000,1 140 | 15610403,Female,28,59000,0 141 | 15741094,Male,19,25000,0 142 | 15807909,Male,19,85000,0 143 | 15666141,Female,18,68000,0 144 | 15617134,Male,35,59000,0 145 | 15783029,Male,30,89000,0 146 | 15622833,Female,34,25000,0 147 | 15746422,Female,24,89000,0 148 | 15750839,Female,27,96000,1 149 | 15749130,Female,41,30000,0 150 | 15779862,Male,29,61000,0 151 | 15767871,Male,20,74000,0 152 | 15679651,Female,26,15000,0 153 | 15576219,Male,41,45000,0 154 | 15699247,Male,31,76000,0 155 | 15619087,Female,36,50000,0 156 | 15605327,Male,40,47000,0 157 | 15610140,Female,31,15000,0 158 | 15791174,Male,46,59000,0 159 | 15602373,Male,29,75000,0 160 | 15762605,Male,26,30000,0 161 | 15598840,Female,32,135000,1 162 | 15744279,Male,32,100000,1 163 | 15670619,Male,25,90000,0 164 | 15599533,Female,37,33000,0 165 | 15757837,Male,35,38000,0 166 | 15697574,Female,33,69000,0 167 | 15578738,Female,18,86000,0 168 | 15762228,Female,22,55000,0 169 | 15614827,Female,35,71000,0 170 | 15789815,Male,29,148000,1 171 | 15579781,Female,29,47000,0 172 | 15587013,Male,21,88000,0 173 | 15570932,Male,34,115000,0 174 | 15794661,Female,26,118000,0 175 | 15581654,Female,34,43000,0 176 | 15644296,Female,34,72000,0 177 | 15614420,Female,23,28000,0 178 | 15609653,Female,35,47000,0 179 | 15594577,Male,25,22000,0 180 | 15584114,Male,24,23000,0 181 | 15673367,Female,31,34000,0 182 | 15685576,Male,26,16000,0 183 | 15774727,Female,31,71000,0 184 | 15694288,Female,32,117000,1 185 | 15603319,Male,33,43000,0 186 | 15759066,Female,33,60000,0 187 | 15814816,Male,31,66000,0 188 | 15724402,Female,20,82000,0 189 | 15571059,Female,33,41000,0 190 | 15674206,Male,35,72000,0 191 | 15715160,Male,28,32000,0 192 | 15730448,Male,24,84000,0 193 | 15662067,Female,19,26000,0 194 | 15779581,Male,29,43000,0 195 | 15662901,Male,19,70000,0 196 | 15689751,Male,28,89000,0 197 | 15667742,Male,34,43000,0 198 | 15738448,Female,30,79000,0 199 | 15680243,Female,20,36000,0 200 | 15745083,Male,26,80000,0 201 | 15708228,Male,35,22000,0 202 | 15628523,Male,35,39000,0 203 | 15708196,Male,49,74000,0 204 | 15735549,Female,39,134000,1 205 | 15809347,Female,41,71000,0 206 | 15660866,Female,58,101000,1 207 | 15766609,Female,47,47000,0 208 | 15654230,Female,55,130000,1 209 | 15794566,Female,52,114000,0 210 | 15800890,Female,40,142000,1 211 | 15697424,Female,46,22000,0 212 | 15724536,Female,48,96000,1 213 | 15735878,Male,52,150000,1 214 | 15707596,Female,59,42000,0 215 | 15657163,Male,35,58000,0 216 | 15622478,Male,47,43000,0 217 | 15779529,Female,60,108000,1 218 | 15636023,Male,49,65000,0 219 | 15582066,Male,40,78000,0 220 | 15666675,Female,46,96000,0 221 | 15732987,Male,59,143000,1 222 | 15789432,Female,41,80000,0 223 | 15663161,Male,35,91000,1 224 | 15694879,Male,37,144000,1 225 | 15593715,Male,60,102000,1 226 | 15575002,Female,35,60000,0 227 | 15622171,Male,37,53000,0 228 | 15795224,Female,36,126000,1 229 | 15685346,Male,56,133000,1 230 | 15691808,Female,40,72000,0 231 | 15721007,Female,42,80000,1 232 | 15794253,Female,35,147000,1 233 | 15694453,Male,39,42000,0 234 | 15813113,Male,40,107000,1 235 | 15614187,Male,49,86000,1 236 | 15619407,Female,38,112000,0 237 | 15646227,Male,46,79000,1 238 | 15660541,Male,40,57000,0 239 | 15753874,Female,37,80000,0 240 | 15617877,Female,46,82000,0 241 | 15772073,Female,53,143000,1 242 | 15701537,Male,42,149000,1 243 | 15736228,Male,38,59000,0 244 | 15780572,Female,50,88000,1 245 | 15769596,Female,56,104000,1 246 | 15586996,Female,41,72000,0 247 | 15722061,Female,51,146000,1 248 | 15638003,Female,35,50000,0 249 | 15775590,Female,57,122000,1 250 | 15730688,Male,41,52000,0 251 | 15753102,Female,35,97000,1 252 | 15810075,Female,44,39000,0 253 | 15723373,Male,37,52000,0 254 | 15795298,Female,48,134000,1 255 | 15584320,Female,37,146000,1 256 | 15724161,Female,50,44000,0 257 | 15750056,Female,52,90000,1 258 | 15609637,Female,41,72000,0 259 | 15794493,Male,40,57000,0 260 | 15569641,Female,58,95000,1 261 | 15815236,Female,45,131000,1 262 | 15811177,Female,35,77000,0 263 | 15680587,Male,36,144000,1 264 | 15672821,Female,55,125000,1 265 | 15767681,Female,35,72000,0 266 | 15600379,Male,48,90000,1 267 | 15801336,Female,42,108000,1 268 | 15721592,Male,40,75000,0 269 | 15581282,Male,37,74000,0 270 | 15746203,Female,47,144000,1 271 | 15583137,Male,40,61000,0 272 | 15680752,Female,43,133000,0 273 | 15688172,Female,59,76000,1 274 | 15791373,Male,60,42000,1 275 | 15589449,Male,39,106000,1 276 | 15692819,Female,57,26000,1 277 | 15727467,Male,57,74000,1 278 | 15734312,Male,38,71000,0 279 | 15764604,Male,49,88000,1 280 | 15613014,Female,52,38000,1 281 | 15759684,Female,50,36000,1 282 | 15609669,Female,59,88000,1 283 | 15685536,Male,35,61000,0 284 | 15750447,Male,37,70000,1 285 | 15663249,Female,52,21000,1 286 | 15638646,Male,48,141000,0 287 | 15734161,Female,37,93000,1 288 | 15631070,Female,37,62000,0 289 | 15761950,Female,48,138000,1 290 | 15649668,Male,41,79000,0 291 | 15713912,Female,37,78000,1 292 | 15586757,Male,39,134000,1 293 | 15596522,Male,49,89000,1 294 | 15625395,Male,55,39000,1 295 | 15760570,Male,37,77000,0 296 | 15566689,Female,35,57000,0 297 | 15725794,Female,36,63000,0 298 | 15673539,Male,42,73000,1 299 | 15705298,Female,43,112000,1 300 | 15675791,Male,45,79000,0 301 | 15747043,Male,46,117000,1 302 | 15736397,Female,58,38000,1 303 | 15678201,Male,48,74000,1 304 | 15720745,Female,37,137000,1 305 | 15637593,Male,37,79000,1 306 | 15598070,Female,40,60000,0 307 | 15787550,Male,42,54000,0 308 | 15603942,Female,51,134000,0 309 | 15733973,Female,47,113000,1 310 | 15596761,Male,36,125000,1 311 | 15652400,Female,38,50000,0 312 | 15717893,Female,42,70000,0 313 | 15622585,Male,39,96000,1 314 | 15733964,Female,38,50000,0 315 | 15753861,Female,49,141000,1 316 | 15747097,Female,39,79000,0 317 | 15594762,Female,39,75000,1 318 | 15667417,Female,54,104000,1 319 | 15684861,Male,35,55000,0 320 | 15742204,Male,45,32000,1 321 | 15623502,Male,36,60000,0 322 | 15774872,Female,52,138000,1 323 | 15611191,Female,53,82000,1 324 | 15674331,Male,41,52000,0 325 | 15619465,Female,48,30000,1 326 | 15575247,Female,48,131000,1 327 | 15695679,Female,41,60000,0 328 | 15713463,Male,41,72000,0 329 | 15785170,Female,42,75000,0 330 | 15796351,Male,36,118000,1 331 | 15639576,Female,47,107000,1 332 | 15693264,Male,38,51000,0 333 | 15589715,Female,48,119000,1 334 | 15769902,Male,42,65000,0 335 | 15587177,Male,40,65000,0 336 | 15814553,Male,57,60000,1 337 | 15601550,Female,36,54000,0 338 | 15664907,Male,58,144000,1 339 | 15612465,Male,35,79000,0 340 | 15810800,Female,38,55000,0 341 | 15665760,Male,39,122000,1 342 | 15588080,Female,53,104000,1 343 | 15776844,Male,35,75000,0 344 | 15717560,Female,38,65000,0 345 | 15629739,Female,47,51000,1 346 | 15729908,Male,47,105000,1 347 | 15716781,Female,41,63000,0 348 | 15646936,Male,53,72000,1 349 | 15768151,Female,54,108000,1 350 | 15579212,Male,39,77000,0 351 | 15721835,Male,38,61000,0 352 | 15800515,Female,38,113000,1 353 | 15591279,Male,37,75000,0 354 | 15587419,Female,42,90000,1 355 | 15750335,Female,37,57000,0 356 | 15699619,Male,36,99000,1 357 | 15606472,Male,60,34000,1 358 | 15778368,Male,54,70000,1 359 | 15671387,Female,41,72000,0 360 | 15573926,Male,40,71000,1 361 | 15709183,Male,42,54000,0 362 | 15577514,Male,43,129000,1 363 | 15778830,Female,53,34000,1 364 | 15768072,Female,47,50000,1 365 | 15768293,Female,42,79000,0 366 | 15654456,Male,42,104000,1 367 | 15807525,Female,59,29000,1 368 | 15574372,Female,58,47000,1 369 | 15671249,Male,46,88000,1 370 | 15779744,Male,38,71000,0 371 | 15624755,Female,54,26000,1 372 | 15611430,Female,60,46000,1 373 | 15774744,Male,60,83000,1 374 | 15629885,Female,39,73000,0 375 | 15708791,Male,59,130000,1 376 | 15793890,Female,37,80000,0 377 | 15646091,Female,46,32000,1 378 | 15596984,Female,46,74000,0 379 | 15800215,Female,42,53000,0 380 | 15577806,Male,41,87000,1 381 | 15749381,Female,58,23000,1 382 | 15683758,Male,42,64000,0 383 | 15670615,Male,48,33000,1 384 | 15715622,Female,44,139000,1 385 | 15707634,Male,49,28000,1 386 | 15806901,Female,57,33000,1 387 | 15775335,Male,56,60000,1 388 | 15724150,Female,49,39000,1 389 | 15627220,Male,39,71000,0 390 | 15672330,Male,47,34000,1 391 | 15668521,Female,48,35000,1 392 | 15807837,Male,48,33000,1 393 | 15592570,Male,47,23000,1 394 | 15748589,Female,45,45000,1 395 | 15635893,Male,60,42000,1 396 | 15757632,Female,39,59000,0 397 | 15691863,Female,46,41000,1 398 | 15706071,Male,51,23000,1 399 | 15654296,Female,50,20000,1 400 | 15755018,Male,36,33000,0 401 | 15594041,Female,49,36000,1 -------------------------------------------------------------------------------- /MovieRecommendation.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "Develop a movie recommendation model using the scikit-learn library in python. " 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "from sklearn.metrics.pairwise import cosine_similarity\n", 17 | "import pandas as pd\n", 18 | "import numpy as np\n", 19 | "from sklearn.feature_extraction.text import CountVectorizer\n", 20 | "from sklearn.metrics.pairwise import cosine_similarity" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 2, 26 | "metadata": {}, 27 | "outputs": [], 28 | "source": [ 29 | "df = pd.read_csv(\"https://raw.githubusercontent.com/rashida048/Some-NLP-Projects/master/movie_dataset.csv\")" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": 3, 35 | "metadata": {}, 36 | "outputs": [ 37 | { 38 | "data": { 39 | "text/html": [ 40 | "
\n", 41 | "\n", 54 | "\n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | "
indexbudgetgenreshomepageidkeywordsoriginal_languageoriginal_titleoverviewpopularity...runtimespoken_languagesstatustaglinetitlevote_averagevote_countcastcrewdirector
00237000000Action Adventure Fantasy Science Fictionhttp://www.avatarmovie.com/19995culture clash future space war space colony so...enAvatarIn the 22nd century, a paraplegic Marine is di...150.437577...162.0[{\"iso_639_1\": \"en\", \"name\": \"English\"}, {\"iso...ReleasedEnter the World of Pandora.Avatar7.211800Sam Worthington Zoe Saldana Sigourney Weaver S...[{'name': 'Stephen E. Rivkin', 'gender': 0, 'd...James Cameron
11300000000Adventure Fantasy Actionhttp://disney.go.com/disneypictures/pirates/285ocean drug abuse exotic island east india trad...enPirates of the Caribbean: At World's EndCaptain Barbossa, long believed to be dead, ha...139.082615...169.0[{\"iso_639_1\": \"en\", \"name\": \"English\"}]ReleasedAt the end of the world, the adventure begins.Pirates of the Caribbean: At World's End6.94500Johnny Depp Orlando Bloom Keira Knightley Stel...[{'name': 'Dariusz Wolski', 'gender': 2, 'depa...Gore Verbinski
22245000000Action Adventure Crimehttp://www.sonypictures.com/movies/spectre/206647spy based on novel secret agent sequel mi6enSpectreA cryptic message from Bond’s past sends him o...107.376788...148.0[{\"iso_639_1\": \"fr\", \"name\": \"Fran\\u00e7ais\"},...ReleasedA Plan No One EscapesSpectre6.34466Daniel Craig Christoph Waltz L\\u00e9a Seydoux ...[{'name': 'Thomas Newman', 'gender': 2, 'depar...Sam Mendes
33250000000Action Crime Drama Thrillerhttp://www.thedarkknightrises.com/49026dc comics crime fighter terrorist secret ident...enThe Dark Knight RisesFollowing the death of District Attorney Harve...112.312950...165.0[{\"iso_639_1\": \"en\", \"name\": \"English\"}]ReleasedThe Legend EndsThe Dark Knight Rises7.69106Christian Bale Michael Caine Gary Oldman Anne ...[{'name': 'Hans Zimmer', 'gender': 2, 'departm...Christopher Nolan
44260000000Action Adventure Science Fictionhttp://movies.disney.com/john-carter49529based on novel mars medallion space travel pri...enJohn CarterJohn Carter is a war-weary, former military ca...43.926995...132.0[{\"iso_639_1\": \"en\", \"name\": \"English\"}]ReleasedLost in our world, found in another.John Carter6.12124Taylor Kitsch Lynn Collins Samantha Morton Wil...[{'name': 'Andrew Stanton', 'gender': 2, 'depa...Andrew Stanton
\n", 204 | "

5 rows × 24 columns

\n", 205 | "
" 206 | ], 207 | "text/plain": [ 208 | " index budget genres \\\n", 209 | "0 0 237000000 Action Adventure Fantasy Science Fiction \n", 210 | "1 1 300000000 Adventure Fantasy Action \n", 211 | "2 2 245000000 Action Adventure Crime \n", 212 | "3 3 250000000 Action Crime Drama Thriller \n", 213 | "4 4 260000000 Action Adventure Science Fiction \n", 214 | "\n", 215 | " homepage id \\\n", 216 | "0 http://www.avatarmovie.com/ 19995 \n", 217 | "1 http://disney.go.com/disneypictures/pirates/ 285 \n", 218 | "2 http://www.sonypictures.com/movies/spectre/ 206647 \n", 219 | "3 http://www.thedarkknightrises.com/ 49026 \n", 220 | "4 http://movies.disney.com/john-carter 49529 \n", 221 | "\n", 222 | " keywords original_language \\\n", 223 | "0 culture clash future space war space colony so... en \n", 224 | "1 ocean drug abuse exotic island east india trad... en \n", 225 | "2 spy based on novel secret agent sequel mi6 en \n", 226 | "3 dc comics crime fighter terrorist secret ident... en \n", 227 | "4 based on novel mars medallion space travel pri... en \n", 228 | "\n", 229 | " original_title \\\n", 230 | "0 Avatar \n", 231 | "1 Pirates of the Caribbean: At World's End \n", 232 | "2 Spectre \n", 233 | "3 The Dark Knight Rises \n", 234 | "4 John Carter \n", 235 | "\n", 236 | " overview popularity \\\n", 237 | "0 In the 22nd century, a paraplegic Marine is di... 150.437577 \n", 238 | "1 Captain Barbossa, long believed to be dead, ha... 139.082615 \n", 239 | "2 A cryptic message from Bond’s past sends him o... 107.376788 \n", 240 | "3 Following the death of District Attorney Harve... 112.312950 \n", 241 | "4 John Carter is a war-weary, former military ca... 43.926995 \n", 242 | "\n", 243 | " ... runtime \\\n", 244 | "0 ... 162.0 \n", 245 | "1 ... 169.0 \n", 246 | "2 ... 148.0 \n", 247 | "3 ... 165.0 \n", 248 | "4 ... 132.0 \n", 249 | "\n", 250 | " spoken_languages status \\\n", 251 | "0 [{\"iso_639_1\": \"en\", \"name\": \"English\"}, {\"iso... Released \n", 252 | "1 [{\"iso_639_1\": \"en\", \"name\": \"English\"}] Released \n", 253 | "2 [{\"iso_639_1\": \"fr\", \"name\": \"Fran\\u00e7ais\"},... Released \n", 254 | "3 [{\"iso_639_1\": \"en\", \"name\": \"English\"}] Released \n", 255 | "4 [{\"iso_639_1\": \"en\", \"name\": \"English\"}] Released \n", 256 | "\n", 257 | " tagline \\\n", 258 | "0 Enter the World of Pandora. \n", 259 | "1 At the end of the world, the adventure begins. \n", 260 | "2 A Plan No One Escapes \n", 261 | "3 The Legend Ends \n", 262 | "4 Lost in our world, found in another. \n", 263 | "\n", 264 | " title vote_average vote_count \\\n", 265 | "0 Avatar 7.2 11800 \n", 266 | "1 Pirates of the Caribbean: At World's End 6.9 4500 \n", 267 | "2 Spectre 6.3 4466 \n", 268 | "3 The Dark Knight Rises 7.6 9106 \n", 269 | "4 John Carter 6.1 2124 \n", 270 | "\n", 271 | " cast \\\n", 272 | "0 Sam Worthington Zoe Saldana Sigourney Weaver S... \n", 273 | "1 Johnny Depp Orlando Bloom Keira Knightley Stel... \n", 274 | "2 Daniel Craig Christoph Waltz L\\u00e9a Seydoux ... \n", 275 | "3 Christian Bale Michael Caine Gary Oldman Anne ... \n", 276 | "4 Taylor Kitsch Lynn Collins Samantha Morton Wil... \n", 277 | "\n", 278 | " crew director \n", 279 | "0 [{'name': 'Stephen E. Rivkin', 'gender': 0, 'd... James Cameron \n", 280 | "1 [{'name': 'Dariusz Wolski', 'gender': 2, 'depa... Gore Verbinski \n", 281 | "2 [{'name': 'Thomas Newman', 'gender': 2, 'depar... Sam Mendes \n", 282 | "3 [{'name': 'Hans Zimmer', 'gender': 2, 'departm... Christopher Nolan \n", 283 | "4 [{'name': 'Andrew Stanton', 'gender': 2, 'depa... Andrew Stanton \n", 284 | "\n", 285 | "[5 rows x 24 columns]" 286 | ] 287 | }, 288 | "execution_count": 3, 289 | "metadata": {}, 290 | "output_type": "execute_result" 291 | } 292 | ], 293 | "source": [ 294 | "df.head()" 295 | ] 296 | }, 297 | { 298 | "cell_type": "code", 299 | "execution_count": 4, 300 | "metadata": {}, 301 | "outputs": [], 302 | "source": [ 303 | "features = ['keywords','cast','genres','director']" 304 | ] 305 | }, 306 | { 307 | "cell_type": "code", 308 | "execution_count": 5, 309 | "metadata": {}, 310 | "outputs": [], 311 | "source": [ 312 | "def combine_features(row):\n", 313 | " return row['keywords']+\" \"+row['cast']+\" \"+row['genres']+\" \"+row['director']" 314 | ] 315 | }, 316 | { 317 | "cell_type": "code", 318 | "execution_count": 6, 319 | "metadata": {}, 320 | "outputs": [], 321 | "source": [ 322 | "for feature in features:\n", 323 | " df[feature] = df[feature].fillna('')\n", 324 | "\n", 325 | "df[\"combined_features\"] = df.apply(combine_features,axis=1)" 326 | ] 327 | }, 328 | { 329 | "cell_type": "code", 330 | "execution_count": 7, 331 | "metadata": {}, 332 | "outputs": [], 333 | "source": [ 334 | "cv = CountVectorizer() \n", 335 | "count_matrix = cv.fit_transform(df[\"combined_features\"])" 336 | ] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "execution_count": 8, 341 | "metadata": {}, 342 | "outputs": [], 343 | "source": [ 344 | "cosine_sim = cosine_similarity(count_matrix)" 345 | ] 346 | }, 347 | { 348 | "cell_type": "code", 349 | "execution_count": 9, 350 | "metadata": {}, 351 | "outputs": [], 352 | "source": [ 353 | "def get_title_from_index(index):\n", 354 | " return df[df.index == index][\"title\"].values[0]\n", 355 | "def get_index_from_title(title):\n", 356 | " return df[df.title == title][\"index\"].values[0]" 357 | ] 358 | }, 359 | { 360 | "cell_type": "code", 361 | "execution_count": 10, 362 | "metadata": {}, 363 | "outputs": [], 364 | "source": [ 365 | "movie_user_likes = \"Avatar\"\n", 366 | "movie_index = get_index_from_title(movie_user_likes)\n", 367 | "similar_movies = list(enumerate(cosine_sim[movie_index]))" 368 | ] 369 | }, 370 | { 371 | "cell_type": "code", 372 | "execution_count": 11, 373 | "metadata": {}, 374 | "outputs": [], 375 | "source": [ 376 | "sorted_similar_movies = sorted(similar_movies,key=lambda x:x[1],reverse=True)[1:]" 377 | ] 378 | }, 379 | { 380 | "cell_type": "code", 381 | "execution_count": 12, 382 | "metadata": {}, 383 | "outputs": [ 384 | { 385 | "name": "stdout", 386 | "output_type": "stream", 387 | "text": [ 388 | "Top 5 similar movies to Avatar are:\n", 389 | "\n", 390 | "Guardians of the Galaxy\n", 391 | "Aliens\n", 392 | "Star Wars: Clone Wars: Volume 1\n", 393 | "Star Trek Into Darkness\n", 394 | "Star Trek Beyond\n", 395 | "Alien\n" 396 | ] 397 | } 398 | ], 399 | "source": [ 400 | "i=0\n", 401 | "print(\"Top 5 similar movies to \"+movie_user_likes+\" are:\\n\")\n", 402 | "for element in sorted_similar_movies:\n", 403 | " print(get_title_from_index(element[0]))\n", 404 | " i=i+1\n", 405 | " if i>5:\n", 406 | " break" 407 | ] 408 | }, 409 | { 410 | "cell_type": "code", 411 | "execution_count": null, 412 | "metadata": {}, 413 | "outputs": [], 414 | "source": [] 415 | } 416 | ], 417 | "metadata": { 418 | "kernelspec": { 419 | "display_name": "Python 3", 420 | "language": "python", 421 | "name": "python3" 422 | }, 423 | "language_info": { 424 | "codemirror_mode": { 425 | "name": "ipython", 426 | "version": 3 427 | }, 428 | "file_extension": ".py", 429 | "mimetype": "text/x-python", 430 | "name": "python", 431 | "nbconvert_exporter": "python", 432 | "pygments_lexer": "ipython3", 433 | "version": "3.6.4" 434 | } 435 | }, 436 | "nbformat": 4, 437 | "nbformat_minor": 2 438 | } 439 | -------------------------------------------------------------------------------- /Assignment_7.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "723eb7a5", 7 | "metadata": {}, 8 | "outputs": [ 9 | { 10 | "name": "stderr", 11 | "output_type": "stream", 12 | "text": [ 13 | "[nltk_data] Downloading package punkt to\n", 14 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n", 15 | "[nltk_data] Package punkt is already up-to-date!\n" 16 | ] 17 | }, 18 | { 19 | "data": { 20 | "text/plain": [ 21 | "True" 22 | ] 23 | }, 24 | "execution_count": 1, 25 | "metadata": {}, 26 | "output_type": "execute_result" 27 | } 28 | ], 29 | "source": [ 30 | "import nltk\n", 31 | "nltk.download('punkt')" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 4, 37 | "id": "a8b6b982", 38 | "metadata": {}, 39 | "outputs": [ 40 | { 41 | "name": "stdout", 42 | "output_type": "stream", 43 | "text": [ 44 | "['Sachin', 'is', 'considered', 'to', 'be', 'one', 'of', 'the', 'greatest', 'cricket', 'players', '.', 'Virat', 'is', 'the', 'captain', 'of', 'the', 'Indian', 'cricket', 'team']\n", 45 | "['Sachin is considered to be one of the greatest cricket players.', 'Virat is the captain of the Indian cricket team']\n" 46 | ] 47 | } 48 | ], 49 | "source": [ 50 | "from nltk import word_tokenize, sent_tokenize\n", 51 | "sent = \"Sachin is considered to be one of the greatest cricket players. Virat is the captain of the Indian cricket team\"\n", 52 | "print(word_tokenize(sent))\n", 53 | "print(sent_tokenize(sent))" 54 | ] 55 | }, 56 | { 57 | "cell_type": "code", 58 | "execution_count": 5, 59 | "id": "308116bb", 60 | "metadata": {}, 61 | "outputs": [ 62 | { 63 | "name": "stdout", 64 | "output_type": "stream", 65 | "text": [ 66 | "['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', \"you're\", \"you've\", \"you'll\", \"you'd\", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', \"she's\", 'her', 'hers', 'herself', 'it', \"it's\", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', \"that'll\", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', \"don't\", 'should', \"should've\", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', \"aren't\", 'couldn', \"couldn't\", 'didn', \"didn't\", 'doesn', \"doesn't\", 'hadn', \"hadn't\", 'hasn', \"hasn't\", 'haven', \"haven't\", 'isn', \"isn't\", 'ma', 'mightn', \"mightn't\", 'mustn', \"mustn't\", 'needn', \"needn't\", 'shan', \"shan't\", 'shouldn', \"shouldn't\", 'wasn', \"wasn't\", 'weren', \"weren't\", 'won', \"won't\", 'wouldn', \"wouldn't\"]\n" 67 | ] 68 | }, 69 | { 70 | "name": "stderr", 71 | "output_type": "stream", 72 | "text": [ 73 | "[nltk_data] Downloading package stopwords to\n", 74 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n", 75 | "[nltk_data] Package stopwords is already up-to-date!\n" 76 | ] 77 | } 78 | ], 79 | "source": [ 80 | "from nltk.corpus import stopwords\n", 81 | "import nltk\n", 82 | "nltk.download('stopwords')\n", 83 | "stop_words = stopwords.words('english')\n", 84 | "print(stop_words)" 85 | ] 86 | }, 87 | { 88 | "cell_type": "code", 89 | "execution_count": 13, 90 | "id": "f8411fe8", 91 | "metadata": {}, 92 | "outputs": [ 93 | { 94 | "name": "stdout", 95 | "output_type": "stream", 96 | "text": [ 97 | "This is the unclean version : ['Sachin', 'is', 'considered', 'to', 'be', 'one', 'of', 'the', 'greatest', 'cricket', 'players', '.', 'Virat', 'is', 'the', 'captain', 'of', 'the', 'Indian', 'cricket', 'team']\n", 98 | "This is the cleaned version : ['Sachin', 'considered', 'one', 'greatest', 'cricket', 'players', '.', 'Virat', 'captain', 'Indian', 'cricket', 'team']\n" 99 | ] 100 | } 101 | ], 102 | "source": [ 103 | "token = word_tokenize(sent)\n", 104 | "cleaned_token = []\n", 105 | "for word in token:\n", 106 | " if word not in stop_words:\n", 107 | " cleaned_token.append(word)\n", 108 | "\n", 109 | "print(\"This is the unclean version : \",token)\n", 110 | "print(\"This is the cleaned version : \",cleaned_token)" 111 | ] 112 | }, 113 | { 114 | "cell_type": "code", 115 | "execution_count": 15, 116 | "id": "57060168", 117 | "metadata": {}, 118 | "outputs": [], 119 | "source": [ 120 | "words = [cleaned_token.lower() for cleaned_token in cleaned_token if cleaned_token.isalpha()]" 121 | ] 122 | }, 123 | { 124 | "cell_type": "code", 125 | "execution_count": 16, 126 | "id": "4a59215e", 127 | "metadata": {}, 128 | "outputs": [ 129 | { 130 | "name": "stdout", 131 | "output_type": "stream", 132 | "text": [ 133 | "['sachin', 'considered', 'one', 'greatest', 'cricket', 'players', 'virat', 'captain', 'indian', 'cricket', 'team']\n" 134 | ] 135 | } 136 | ], 137 | "source": [ 138 | "print(words)" 139 | ] 140 | }, 141 | { 142 | "cell_type": "code", 143 | "execution_count": 17, 144 | "id": "d682e8a3", 145 | "metadata": {}, 146 | "outputs": [ 147 | { 148 | "name": "stdout", 149 | "output_type": "stream", 150 | "text": [ 151 | "['sachin', 'consid', 'one', 'greatest', 'cricket', 'player', 'virat', 'captain', 'indian', 'cricket', 'team']\n" 152 | ] 153 | } 154 | ], 155 | "source": [ 156 | "from nltk.stem import PorterStemmer\n", 157 | "stemmer = PorterStemmer()\n", 158 | "port_stemmer_output = [stemmer.stem(words) for words in words]\n", 159 | "print(port_stemmer_output)\n" 160 | ] 161 | }, 162 | { 163 | "cell_type": "code", 164 | "execution_count": 18, 165 | "id": "8c31f238", 166 | "metadata": {}, 167 | "outputs": [ 168 | { 169 | "name": "stderr", 170 | "output_type": "stream", 171 | "text": [ 172 | "[nltk_data] Downloading package wordnet to\n", 173 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n", 174 | "[nltk_data] Package wordnet is already up-to-date!\n" 175 | ] 176 | }, 177 | { 178 | "name": "stdout", 179 | "output_type": "stream", 180 | "text": [ 181 | "['sachin', 'considered', 'one', 'greatest', 'cricket', 'player', 'virat', 'captain', 'indian', 'cricket', 'team']\n" 182 | ] 183 | } 184 | ], 185 | "source": [ 186 | "from nltk.stem import WordNetLemmatizer\n", 187 | "nltk.download('wordnet')\n", 188 | "lemmatizer = WordNetLemmatizer()\n", 189 | "lemmatizer_output = [lemmatizer.lemmatize(words) for words in words]\n", 190 | "print(lemmatizer_output)\n" 191 | ] 192 | }, 193 | { 194 | "cell_type": "code", 195 | "execution_count": 20, 196 | "id": "f6bede85", 197 | "metadata": {}, 198 | "outputs": [ 199 | { 200 | "name": "stdout", 201 | "output_type": "stream", 202 | "text": [ 203 | "[('Sachin', 'NNP'), ('considered', 'VBD'), ('one', 'CD'), ('greatest', 'JJS'), ('cricket', 'NN'), ('players', 'NNS'), ('.', '.'), ('Virat', 'NNP'), ('captain', 'NN'), ('Indian', 'JJ'), ('cricket', 'NN'), ('team', 'NN')]\n" 204 | ] 205 | }, 206 | { 207 | "name": "stderr", 208 | "output_type": "stream", 209 | "text": [ 210 | "[nltk_data] Downloading package averaged_perceptron_tagger to\n", 211 | "[nltk_data] C:\\Users\\pcoec\\AppData\\Roaming\\nltk_data...\n", 212 | "[nltk_data] Package averaged_perceptron_tagger is already up-to-\n", 213 | "[nltk_data] date!\n" 214 | ] 215 | } 216 | ], 217 | "source": [ 218 | "from nltk import pos_tag\n", 219 | "import nltk\n", 220 | "nltk.download('averaged_perceptron_tagger')\n", 221 | "token = word_tokenize(sent)\n", 222 | "cleaned_token = []\n", 223 | "for word in token:\n", 224 | " if word not in stop_words:\n", 225 | " cleaned_token.append(word)\n", 226 | "tagged = pos_tag(cleaned_token)\n", 227 | "print(tagged)" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": 21, 233 | "id": "2a95cc8a", 234 | "metadata": {}, 235 | "outputs": [], 236 | "source": [ 237 | "from sklearn.feature_extraction.text import TfidfVectorizer\n", 238 | "from sklearn.metrics.pairwise import cosine_similarity\n", 239 | "import pandas as pd" 240 | ] 241 | }, 242 | { 243 | "cell_type": "code", 244 | "execution_count": 22, 245 | "id": "a65a6fe4", 246 | "metadata": {}, 247 | "outputs": [], 248 | "source": [ 249 | "docs = [ \"Sachin is considered to be one of the greatest cricket players\",\n", 250 | " \"Federer is considered one of the greatest tennis players\",\n", 251 | " \"Nadal is considered one of the greatest tennis players\",\n", 252 | " \"Virat is the captain of the Indian cricket team\"]" 253 | ] 254 | }, 255 | { 256 | "cell_type": "code", 257 | "execution_count": 24, 258 | "id": "badd7e5a", 259 | "metadata": {}, 260 | "outputs": [ 261 | { 262 | "name": "stdout", 263 | "output_type": "stream", 264 | "text": [ 265 | "{'sachin': 12, 'is': 7, 'considered': 2, 'to': 16, 'be': 0, 'one': 10, 'of': 9, 'the': 15, 'greatest': 5, 'cricket': 3, 'players': 11, 'federer': 4, 'tennis': 14, 'nadal': 8, 'virat': 17, 'captain': 1, 'indian': 6, 'team': 13}\n" 266 | ] 267 | } 268 | ], 269 | "source": [ 270 | "vectorizer = TfidfVectorizer(analyzer = \"word\", norm = None , use_idf = True , smooth_idf=True)\n", 271 | "Mat = vectorizer.fit(docs)\n", 272 | "print(Mat.vocabulary_)" 273 | ] 274 | }, 275 | { 276 | "cell_type": "code", 277 | "execution_count": 25, 278 | "id": "36c09e91", 279 | "metadata": {}, 280 | "outputs": [], 281 | "source": [ 282 | "tfidfMat = vectorizer.fit_transform(docs)" 283 | ] 284 | }, 285 | { 286 | "cell_type": "code", 287 | "execution_count": 26, 288 | "id": "16a49f3a", 289 | "metadata": {}, 290 | "outputs": [ 291 | { 292 | "name": "stdout", 293 | "output_type": "stream", 294 | "text": [ 295 | " (0, 11)\t1.2231435513142097\n", 296 | " (0, 3)\t1.5108256237659907\n", 297 | " (0, 5)\t1.2231435513142097\n", 298 | " (0, 15)\t1.0\n", 299 | " (0, 9)\t1.0\n", 300 | " (0, 10)\t1.2231435513142097\n", 301 | " (0, 0)\t1.916290731874155\n", 302 | " (0, 16)\t1.916290731874155\n", 303 | " (0, 2)\t1.2231435513142097\n", 304 | " (0, 7)\t1.0\n", 305 | " (0, 12)\t1.916290731874155\n", 306 | " (1, 14)\t1.5108256237659907\n", 307 | " (1, 4)\t1.916290731874155\n", 308 | " (1, 11)\t1.2231435513142097\n", 309 | " (1, 5)\t1.2231435513142097\n", 310 | " (1, 15)\t1.0\n", 311 | " (1, 9)\t1.0\n", 312 | " (1, 10)\t1.2231435513142097\n", 313 | " (1, 2)\t1.2231435513142097\n", 314 | " (1, 7)\t1.0\n", 315 | " (2, 8)\t1.916290731874155\n", 316 | " (2, 14)\t1.5108256237659907\n", 317 | " (2, 11)\t1.2231435513142097\n", 318 | " (2, 5)\t1.2231435513142097\n", 319 | " (2, 15)\t1.0\n", 320 | " (2, 9)\t1.0\n", 321 | " (2, 10)\t1.2231435513142097\n", 322 | " (2, 2)\t1.2231435513142097\n", 323 | " (2, 7)\t1.0\n", 324 | " (3, 13)\t1.916290731874155\n", 325 | " (3, 6)\t1.916290731874155\n", 326 | " (3, 1)\t1.916290731874155\n", 327 | " (3, 17)\t1.916290731874155\n", 328 | " (3, 3)\t1.5108256237659907\n", 329 | " (3, 15)\t2.0\n", 330 | " (3, 9)\t1.0\n", 331 | " (3, 7)\t1.0\n" 332 | ] 333 | } 334 | ], 335 | "source": [ 336 | "print(tfidfMat)\n" 337 | ] 338 | }, 339 | { 340 | "cell_type": "code", 341 | "execution_count": 27, 342 | "id": "93c5dcc0", 343 | "metadata": {}, 344 | "outputs": [ 345 | { 346 | "name": "stdout", 347 | "output_type": "stream", 348 | "text": [ 349 | "['be' 'captain' 'considered' 'cricket' 'federer' 'greatest' 'indian' 'is'\n", 350 | " 'nadal' 'of' 'one' 'players' 'sachin' 'team' 'tennis' 'the' 'to' 'virat']\n" 351 | ] 352 | } 353 | ], 354 | "source": [ 355 | "features_names = vectorizer.get_feature_names_out()\n", 356 | "print(features_names)\n" 357 | ] 358 | }, 359 | { 360 | "cell_type": "code", 361 | "execution_count": 28, 362 | "id": "514ea886", 363 | "metadata": {}, 364 | "outputs": [], 365 | "source": [ 366 | "dense = tfidfMat.todense()\n", 367 | "denselist = dense.tolist()\n", 368 | "df = pd.DataFrame(denselist , columns = features_names)" 369 | ] 370 | }, 371 | { 372 | "cell_type": "code", 373 | "execution_count": 29, 374 | "id": "160bf2f9", 375 | "metadata": {}, 376 | "outputs": [ 377 | { 378 | "data": { 379 | "text/html": [ 380 | "
\n", 381 | "\n", 394 | "\n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | "
becaptainconsideredcricketfederergreatestindianisnadalofoneplayerssachinteamtennisthetovirat
01.9162910.0000001.2231441.5108260.0000001.2231440.0000001.00.0000001.01.2231441.2231441.9162910.0000000.0000001.01.9162910.000000
10.0000000.0000001.2231440.0000001.9162911.2231440.0000001.00.0000001.01.2231441.2231440.0000000.0000001.5108261.00.0000000.000000
20.0000000.0000001.2231440.0000000.0000001.2231440.0000001.01.9162911.01.2231441.2231440.0000000.0000001.5108261.00.0000000.000000
30.0000001.9162910.0000001.5108260.0000000.0000001.9162911.00.0000001.00.0000000.0000000.0000001.9162910.0000002.00.0000001.916291
\n", 505 | "
" 506 | ], 507 | "text/plain": [ 508 | " be captain considered cricket federer greatest indian \\\n", 509 | "0 1.916291 0.000000 1.223144 1.510826 0.000000 1.223144 0.000000 \n", 510 | "1 0.000000 0.000000 1.223144 0.000000 1.916291 1.223144 0.000000 \n", 511 | "2 0.000000 0.000000 1.223144 0.000000 0.000000 1.223144 0.000000 \n", 512 | "3 0.000000 1.916291 0.000000 1.510826 0.000000 0.000000 1.916291 \n", 513 | "\n", 514 | " is nadal of one players sachin team tennis the \\\n", 515 | "0 1.0 0.000000 1.0 1.223144 1.223144 1.916291 0.000000 0.000000 1.0 \n", 516 | "1 1.0 0.000000 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 1.0 \n", 517 | "2 1.0 1.916291 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 1.0 \n", 518 | "3 1.0 0.000000 1.0 0.000000 0.000000 0.000000 1.916291 0.000000 2.0 \n", 519 | "\n", 520 | " to virat \n", 521 | "0 1.916291 0.000000 \n", 522 | "1 0.000000 0.000000 \n", 523 | "2 0.000000 0.000000 \n", 524 | "3 0.000000 1.916291 " 525 | ] 526 | }, 527 | "execution_count": 29, 528 | "metadata": {}, 529 | "output_type": "execute_result" 530 | } 531 | ], 532 | "source": [ 533 | "df" 534 | ] 535 | }, 536 | { 537 | "cell_type": "code", 538 | "execution_count": 30, 539 | "id": "37520ccc", 540 | "metadata": {}, 541 | "outputs": [ 542 | { 543 | "ename": "AttributeError", 544 | "evalue": "'TfidfVectorizer' object has no attribute 'get_feature_names'", 545 | "output_type": "error", 546 | "traceback": [ 547 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", 548 | "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", 549 | "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_16340\\2669239957.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mfeatures_names\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvectorizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_feature_names\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", 550 | "\u001b[1;31mAttributeError\u001b[0m: 'TfidfVectorizer' object has no attribute 'get_feature_names'" 551 | ] 552 | } 553 | ], 554 | "source": [ 555 | "features_names = sorted(vectorizer.get_feature_names())" 556 | ] 557 | }, 558 | { 559 | "cell_type": "code", 560 | "execution_count": 32, 561 | "id": "a02ac24f", 562 | "metadata": {}, 563 | "outputs": [ 564 | { 565 | "name": "stdout", 566 | "output_type": "stream", 567 | "text": [ 568 | " be captain considered cricket federer greatest indian \\\n", 569 | "Doc 1 1.916291 0.000000 1.223144 1.510826 0.000000 1.223144 0.000000 \n", 570 | "Doc 2 0.000000 0.000000 1.223144 0.000000 1.916291 1.223144 0.000000 \n", 571 | "Doc 3 0.000000 0.000000 1.223144 0.000000 0.000000 1.223144 0.000000 \n", 572 | "Doc 4 0.000000 1.916291 0.000000 1.510826 0.000000 0.000000 1.916291 \n", 573 | "\n", 574 | " is nadal of one players sachin team tennis \\\n", 575 | "Doc 1 1.0 0.000000 1.0 1.223144 1.223144 1.916291 0.000000 0.000000 \n", 576 | "Doc 2 1.0 0.000000 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 \n", 577 | "Doc 3 1.0 1.916291 1.0 1.223144 1.223144 0.000000 0.000000 1.510826 \n", 578 | "Doc 4 1.0 0.000000 1.0 0.000000 0.000000 0.000000 1.916291 0.000000 \n", 579 | "\n", 580 | " the to virat \n", 581 | "Doc 1 1.0 1.916291 0.000000 \n", 582 | "Doc 2 1.0 0.000000 0.000000 \n", 583 | "Doc 3 1.0 0.000000 0.000000 \n", 584 | "Doc 4 2.0 0.000000 1.916291 \n" 585 | ] 586 | } 587 | ], 588 | "source": [ 589 | "docList = ['Doc 1','Doc 2','Doc 3','Doc 4']\n", 590 | "skDocsIfIdfdf = pd.DataFrame(tfidfMat.todense(),index = sorted(docList), columns=features_names)\n", 591 | "print(skDocsIfIdfdf)" 592 | ] 593 | }, 594 | { 595 | "cell_type": "code", 596 | "execution_count": 33, 597 | "id": "a1ed9a3a", 598 | "metadata": {}, 599 | "outputs": [], 600 | "source": [ 601 | "csim = cosine_similarity(tfidfMat,tfidfMat)\n" 602 | ] 603 | }, 604 | { 605 | "cell_type": "code", 606 | "execution_count": 34, 607 | "id": "9555f330", 608 | "metadata": {}, 609 | "outputs": [], 610 | "source": [ 611 | "csimDf = pd.DataFrame(csim,index=sorted(docList),columns=sorted(docList))\n" 612 | ] 613 | }, 614 | { 615 | "cell_type": "code", 616 | "execution_count": 35, 617 | "id": "e8ea2806", 618 | "metadata": {}, 619 | "outputs": [ 620 | { 621 | "name": "stdout", 622 | "output_type": "stream", 623 | "text": [ 624 | " Doc 1 Doc 2 Doc 3 Doc 4\n", 625 | "Doc 1 1.000000 0.492416 0.492416 0.277687\n", 626 | "Doc 2 0.492416 1.000000 0.754190 0.215926\n", 627 | "Doc 3 0.492416 0.754190 1.000000 0.215926\n", 628 | "Doc 4 0.277687 0.215926 0.215926 1.000000\n" 629 | ] 630 | } 631 | ], 632 | "source": [ 633 | "print(csimDf)\n" 634 | ] 635 | } 636 | ], 637 | "metadata": { 638 | "kernelspec": { 639 | "display_name": "Python 3 (ipykernel)", 640 | "language": "python", 641 | "name": "python3" 642 | }, 643 | "language_info": { 644 | "codemirror_mode": { 645 | "name": "ipython", 646 | "version": 3 647 | }, 648 | "file_extension": ".py", 649 | "mimetype": "text/x-python", 650 | "name": "python", 651 | "nbconvert_exporter": "python", 652 | "pygments_lexer": "ipython3", 653 | "version": "3.9.13" 654 | } 655 | }, 656 | "nbformat": 4, 657 | "nbformat_minor": 5 658 | } 659 | -------------------------------------------------------------------------------- /BostonHousing.csv: -------------------------------------------------------------------------------- 1 | "crim","zn","indus","chas","nox","rm","age","dis","rad","tax","ptratio","b","lstat","medv" 2 | 0.00632,18,2.31,"0",0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24 3 | 0.02731,0,7.07,"0",0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6 4 | 0.02729,0,7.07,"0",0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7 5 | 0.03237,0,2.18,"0",0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4 6 | 0.06905,0,2.18,"0",0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2 7 | 0.02985,0,2.18,"0",0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7 8 | 0.08829,12.5,7.87,"0",0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9 9 | 0.14455,12.5,7.87,"0",0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1 10 | 0.21124,12.5,7.87,"0",0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5 11 | 0.17004,12.5,7.87,"0",0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9 12 | 0.22489,12.5,7.87,"0",0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15 13 | 0.11747,12.5,7.87,"0",0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9 14 | 0.09378,12.5,7.87,"0",0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7 15 | 0.62976,0,8.14,"0",0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4 16 | 0.63796,0,8.14,"0",0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2 17 | 0.62739,0,8.14,"0",0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9 18 | 1.05393,0,8.14,"0",0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1 19 | 0.7842,0,8.14,"0",0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5 20 | 0.80271,0,8.14,"0",0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2 21 | 0.7258,0,8.14,"0",0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2 22 | 1.25179,0,8.14,"0",0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6 23 | 0.85204,0,8.14,"0",0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6 24 | 1.23247,0,8.14,"0",0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2 25 | 0.98843,0,8.14,"0",0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5 26 | 0.75026,0,8.14,"0",0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6 27 | 0.84054,0,8.14,"0",0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9 28 | 0.67191,0,8.14,"0",0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6 29 | 0.95577,0,8.14,"0",0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8 30 | 0.77299,0,8.14,"0",0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4 31 | 1.00245,0,8.14,"0",0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21 32 | 1.13081,0,8.14,"0",0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7 33 | 1.35472,0,8.14,"0",0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5 34 | 1.38799,0,8.14,"0",0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2 35 | 1.15172,0,8.14,"0",0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1 36 | 1.61282,0,8.14,"0",0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5 37 | 0.06417,0,5.96,"0",0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9 38 | 0.09744,0,5.96,"0",0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20 39 | 0.08014,0,5.96,"0",0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21 40 | 0.17505,0,5.96,"0",0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7 41 | 0.02763,75,2.95,"0",0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8 42 | 0.03359,75,2.95,"0",0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9 43 | 0.12744,0,6.91,"0",0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6 44 | 0.1415,0,6.91,"0",0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3 45 | 0.15936,0,6.91,"0",0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7 46 | 0.12269,0,6.91,"0",0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2 47 | 0.17142,0,6.91,"0",0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3 48 | 0.18836,0,6.91,"0",0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20 49 | 0.22927,0,6.91,"0",0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6 50 | 0.25387,0,6.91,"0",0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4 51 | 0.21977,0,6.91,"0",0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4 52 | 0.08873,21,5.64,"0",0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7 53 | 0.04337,21,5.64,"0",0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5 54 | 0.0536,21,5.64,"0",0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25 55 | 0.04981,21,5.64,"0",0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4 56 | 0.0136,75,4,"0",0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9 57 | 0.01311,90,1.22,"0",0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4 58 | 0.02055,85,0.74,"0",0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7 59 | 0.01432,100,1.32,"0",0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6 60 | 0.15445,25,5.13,"0",0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3 61 | 0.10328,25,5.13,"0",0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6 62 | 0.14932,25,5.13,"0",0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7 63 | 0.17171,25,5.13,"0",0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16 64 | 0.11027,25,5.13,"0",0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2 65 | 0.1265,25,5.13,"0",0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25 66 | 0.01951,17.5,1.38,"0",0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33 67 | 0.03584,80,3.37,"0",0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5 68 | 0.04379,80,3.37,"0",0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4 69 | 0.05789,12.5,6.07,"0",0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22 70 | 0.13554,12.5,6.07,"0",0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4 71 | 0.12816,12.5,6.07,"0",0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9 72 | 0.08826,0,10.81,"0",0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2 73 | 0.15876,0,10.81,"0",0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7 74 | 0.09164,0,10.81,"0",0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8 75 | 0.19539,0,10.81,"0",0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4 76 | 0.07896,0,12.83,"0",0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1 77 | 0.09512,0,12.83,"0",0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4 78 | 0.10153,0,12.83,"0",0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20 79 | 0.08707,0,12.83,"0",0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8 80 | 0.05646,0,12.83,"0",0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2 81 | 0.08387,0,12.83,"0",0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3 82 | 0.04113,25,4.86,"0",0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28 83 | 0.04462,25,4.86,"0",0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9 84 | 0.03659,25,4.86,"0",0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8 85 | 0.03551,25,4.86,"0",0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9 86 | 0.05059,0,4.49,"0",0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9 87 | 0.05735,0,4.49,"0",0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6 88 | 0.05188,0,4.49,"0",0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5 89 | 0.07151,0,4.49,"0",0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2 90 | 0.0566,0,3.41,"0",0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6 91 | 0.05302,0,3.41,"0",0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7 92 | 0.04684,0,3.41,"0",0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6 93 | 0.03932,0,3.41,"0",0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22 94 | 0.04203,28,15.04,"0",0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9 95 | 0.02875,28,15.04,"0",0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25 96 | 0.04294,28,15.04,"0",0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6 97 | 0.12204,0,2.89,"0",0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4 98 | 0.11504,0,2.89,"0",0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4 99 | 0.12083,0,2.89,"0",0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7 100 | 0.08187,0,2.89,"0",0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8 101 | 0.0686,0,2.89,"0",0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2 102 | 0.14866,0,8.56,"0",0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5 103 | 0.11432,0,8.56,"0",0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5 104 | 0.22876,0,8.56,"0",0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6 105 | 0.21161,0,8.56,"0",0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3 106 | 0.1396,0,8.56,"0",0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1 107 | 0.13262,0,8.56,"0",0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5 108 | 0.1712,0,8.56,"0",0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5 109 | 0.13117,0,8.56,"0",0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4 110 | 0.12802,0,8.56,"0",0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8 111 | 0.26363,0,8.56,"0",0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4 112 | 0.10793,0,8.56,"0",0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7 113 | 0.10084,0,10.01,"0",0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8 114 | 0.12329,0,10.01,"0",0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8 115 | 0.22212,0,10.01,"0",0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7 116 | 0.14231,0,10.01,"0",0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5 117 | 0.17134,0,10.01,"0",0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3 118 | 0.13158,0,10.01,"0",0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2 119 | 0.15098,0,10.01,"0",0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2 120 | 0.13058,0,10.01,"0",0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4 121 | 0.14476,0,10.01,"0",0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3 122 | 0.06899,0,25.65,"0",0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22 123 | 0.07165,0,25.65,"0",0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3 124 | 0.09299,0,25.65,"0",0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5 125 | 0.15038,0,25.65,"0",0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3 126 | 0.09849,0,25.65,"0",0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8 127 | 0.16902,0,25.65,"0",0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4 128 | 0.38735,0,25.65,"0",0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7 129 | 0.25915,0,21.89,"0",0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2 130 | 0.32543,0,21.89,"0",0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18 131 | 0.88125,0,21.89,"0",0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3 132 | 0.34006,0,21.89,"0",0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2 133 | 1.19294,0,21.89,"0",0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6 134 | 0.59005,0,21.89,"0",0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23 135 | 0.32982,0,21.89,"0",0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4 136 | 0.97617,0,21.89,"0",0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6 137 | 0.55778,0,21.89,"0",0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1 138 | 0.32264,0,21.89,"0",0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4 139 | 0.35233,0,21.89,"0",0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1 140 | 0.2498,0,21.89,"0",0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3 141 | 0.54452,0,21.89,"0",0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8 142 | 0.2909,0,21.89,"0",0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14 143 | 1.62864,0,21.89,"0",0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4 144 | 3.32105,0,19.58,"1",0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4 145 | 4.0974,0,19.58,"0",0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6 146 | 2.77974,0,19.58,"0",0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8 147 | 2.37934,0,19.58,"0",0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8 148 | 2.15505,0,19.58,"0",0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6 149 | 2.36862,0,19.58,"0",0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6 150 | 2.33099,0,19.58,"0",0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8 151 | 2.73397,0,19.58,"0",0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4 152 | 1.6566,0,19.58,"0",0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5 153 | 1.49632,0,19.58,"0",0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6 154 | 1.12658,0,19.58,"1",0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3 155 | 2.14918,0,19.58,"0",0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4 156 | 1.41385,0,19.58,"1",0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17 157 | 3.53501,0,19.58,"1",0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6 158 | 2.44668,0,19.58,"0",0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1 159 | 1.22358,0,19.58,"0",0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3 160 | 1.34284,0,19.58,"0",0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3 161 | 1.42502,0,19.58,"0",0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3 162 | 1.27346,0,19.58,"1",0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27 163 | 1.46336,0,19.58,"0",0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50 164 | 1.83377,0,19.58,"1",0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50 165 | 1.51902,0,19.58,"1",0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50 166 | 2.24236,0,19.58,"0",0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7 167 | 2.924,0,19.58,"0",0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25 168 | 2.01019,0,19.58,"0",0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50 169 | 1.80028,0,19.58,"0",0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8 170 | 2.3004,0,19.58,"0",0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8 171 | 2.44953,0,19.58,"0",0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3 172 | 1.20742,0,19.58,"0",0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4 173 | 2.3139,0,19.58,"0",0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1 174 | 0.13914,0,4.05,"0",0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1 175 | 0.09178,0,4.05,"0",0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6 176 | 0.08447,0,4.05,"0",0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6 177 | 0.06664,0,4.05,"0",0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4 178 | 0.07022,0,4.05,"0",0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2 179 | 0.05425,0,4.05,"0",0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6 180 | 0.06642,0,4.05,"0",0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9 181 | 0.0578,0,2.46,"0",0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2 182 | 0.06588,0,2.46,"0",0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8 183 | 0.06888,0,2.46,"0",0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2 184 | 0.09103,0,2.46,"0",0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9 185 | 0.10008,0,2.46,"0",0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5 186 | 0.08308,0,2.46,"0",0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4 187 | 0.06047,0,2.46,"0",0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6 188 | 0.05602,0,2.46,"0",0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50 189 | 0.07875,45,3.44,"0",0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32 190 | 0.12579,45,3.44,"0",0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8 191 | 0.0837,45,3.44,"0",0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9 192 | 0.09068,45,3.44,"0",0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37 193 | 0.06911,45,3.44,"0",0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5 194 | 0.08664,45,3.44,"0",0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4 195 | 0.02187,60,2.93,"0",0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1 196 | 0.01439,60,2.93,"0",0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1 197 | 0.01381,80,0.46,"0",0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50 198 | 0.04011,80,1.52,"0",0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3 199 | 0.04666,80,1.52,"0",0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3 200 | 0.03768,80,1.52,"0",0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6 201 | 0.0315,95,1.47,"0",0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9 202 | 0.01778,95,1.47,"0",0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9 203 | 0.03445,82.5,2.03,"0",0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1 204 | 0.02177,82.5,2.03,"0",0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3 205 | 0.0351,95,2.68,"0",0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5 206 | 0.02009,95,2.68,"0",0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50 207 | 0.13642,0,10.59,"0",0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6 208 | 0.22969,0,10.59,"0",0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4 209 | 0.25199,0,10.59,"0",0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5 210 | 0.13587,0,10.59,"1",0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4 211 | 0.43571,0,10.59,"1",0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20 212 | 0.17446,0,10.59,"1",0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7 213 | 0.37578,0,10.59,"1",0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3 214 | 0.21719,0,10.59,"1",0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4 215 | 0.14052,0,10.59,"0",0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1 216 | 0.28955,0,10.59,"0",0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7 217 | 0.19802,0,10.59,"0",0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25 218 | 0.0456,0,13.89,"1",0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3 219 | 0.07013,0,13.89,"0",0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7 220 | 0.11069,0,13.89,"1",0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5 221 | 0.11425,0,13.89,"1",0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23 222 | 0.35809,0,6.2,"1",0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7 223 | 0.40771,0,6.2,"1",0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7 224 | 0.62356,0,6.2,"1",0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5 225 | 0.6147,0,6.2,"0",0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1 226 | 0.31533,0,6.2,"0",0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8 227 | 0.52693,0,6.2,"0",0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50 228 | 0.38214,0,6.2,"0",0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6 229 | 0.41238,0,6.2,"0",0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6 230 | 0.29819,0,6.2,"0",0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7 231 | 0.44178,0,6.2,"0",0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5 232 | 0.537,0,6.2,"0",0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3 233 | 0.46296,0,6.2,"0",0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7 234 | 0.57529,0,6.2,"0",0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7 235 | 0.33147,0,6.2,"0",0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3 236 | 0.44791,0,6.2,"1",0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29 237 | 0.33045,0,6.2,"0",0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24 238 | 0.52058,0,6.2,"1",0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1 239 | 0.51183,0,6.2,"0",0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5 240 | 0.08244,30,4.93,"0",0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7 241 | 0.09252,30,4.93,"0",0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3 242 | 0.11329,30,4.93,"0",0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22 243 | 0.10612,30,4.93,"0",0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1 244 | 0.1029,30,4.93,"0",0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2 245 | 0.12757,30,4.93,"0",0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7 246 | 0.20608,22,5.86,"0",0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6 247 | 0.19133,22,5.86,"0",0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5 248 | 0.33983,22,5.86,"0",0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3 249 | 0.19657,22,5.86,"0",0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5 250 | 0.16439,22,5.86,"0",0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5 251 | 0.19073,22,5.86,"0",0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2 252 | 0.1403,22,5.86,"0",0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4 253 | 0.21409,22,5.86,"0",0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8 254 | 0.08221,22,5.86,"0",0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6 255 | 0.36894,22,5.86,"0",0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8 256 | 0.04819,80,3.64,"0",0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9 257 | 0.03548,80,3.64,"0",0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9 258 | 0.01538,90,3.75,"0",0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44 259 | 0.61154,20,3.97,"0",0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50 260 | 0.66351,20,3.97,"0",0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36 261 | 0.65665,20,3.97,"0",0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1 262 | 0.54011,20,3.97,"0",0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8 263 | 0.53412,20,3.97,"0",0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1 264 | 0.52014,20,3.97,"0",0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8 265 | 0.82526,20,3.97,"0",0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31 266 | 0.55007,20,3.97,"0",0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5 267 | 0.76162,20,3.97,"0",0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8 268 | 0.7857,20,3.97,"0",0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7 269 | 0.57834,20,3.97,"0",0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50 270 | 0.5405,20,3.97,"0",0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5 271 | 0.09065,20,6.96,"1",0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7 272 | 0.29916,20,6.96,"0",0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1 273 | 0.16211,20,6.96,"0",0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2 274 | 0.1146,20,6.96,"0",0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4 275 | 0.22188,20,6.96,"1",0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2 276 | 0.05644,40,6.41,"1",0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4 277 | 0.09604,40,6.41,"0",0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32 278 | 0.10469,40,6.41,"1",0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2 279 | 0.06127,40,6.41,"1",0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1 280 | 0.07978,40,6.41,"0",0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1 281 | 0.21038,20,3.33,"0",0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1 282 | 0.03578,20,3.33,"0",0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4 283 | 0.03705,20,3.33,"0",0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4 284 | 0.06129,20,3.33,"1",0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46 285 | 0.01501,90,1.21,"1",0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50 286 | 0.00906,90,2.97,"0",0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2 287 | 0.01096,55,2.25,"0",0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22 288 | 0.01965,80,1.76,"0",0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1 289 | 0.03871,52.5,5.32,"0",0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2 290 | 0.0459,52.5,5.32,"0",0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3 291 | 0.04297,52.5,5.32,"0",0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8 292 | 0.03502,80,4.95,"0",0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5 293 | 0.07886,80,4.95,"0",0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3 294 | 0.03615,80,4.95,"0",0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9 295 | 0.08265,0,13.92,"0",0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9 296 | 0.08199,0,13.92,"0",0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7 297 | 0.12932,0,13.92,"0",0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6 298 | 0.05372,0,13.92,"0",0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1 299 | 0.14103,0,13.92,"0",0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3 300 | 0.06466,70,2.24,"0",0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5 301 | 0.05561,70,2.24,"0",0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29 302 | 0.04417,70,2.24,"0",0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8 303 | 0.03537,34,6.09,"0",0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22 304 | 0.09266,34,6.09,"0",0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4 305 | 0.1,34,6.09,"0",0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1 306 | 0.05515,33,2.18,"0",0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1 307 | 0.05479,33,2.18,"0",0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4 308 | 0.07503,33,2.18,"0",0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4 309 | 0.04932,33,2.18,"0",0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2 310 | 0.49298,0,9.9,"0",0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8 311 | 0.3494,0,9.9,"0",0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3 312 | 2.63548,0,9.9,"0",0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1 313 | 0.79041,0,9.9,"0",0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1 314 | 0.26169,0,9.9,"0",0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4 315 | 0.26938,0,9.9,"0",0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6 316 | 0.3692,0,9.9,"0",0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8 317 | 0.25356,0,9.9,"0",0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2 318 | 0.31827,0,9.9,"0",0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8 319 | 0.24522,0,9.9,"0",0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8 320 | 0.40202,0,9.9,"0",0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1 321 | 0.47547,0,9.9,"0",0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21 322 | 0.1676,0,7.38,"0",0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8 323 | 0.18159,0,7.38,"0",0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1 324 | 0.35114,0,7.38,"0",0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4 325 | 0.28392,0,7.38,"0",0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5 326 | 0.34109,0,7.38,"0",0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25 327 | 0.19186,0,7.38,"0",0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6 328 | 0.30347,0,7.38,"0",0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23 329 | 0.24103,0,7.38,"0",0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2 330 | 0.06617,0,3.24,"0",0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3 331 | 0.06724,0,3.24,"0",0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6 332 | 0.04544,0,3.24,"0",0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8 333 | 0.05023,35,6.06,"0",0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1 334 | 0.03466,35,6.06,"0",0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4 335 | 0.05083,0,5.19,"0",0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2 336 | 0.03738,0,5.19,"0",0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7 337 | 0.03961,0,5.19,"0",0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1 338 | 0.03427,0,5.19,"0",0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5 339 | 0.03041,0,5.19,"0",0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5 340 | 0.03306,0,5.19,"0",0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6 341 | 0.05497,0,5.19,"0",0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19 342 | 0.06151,0,5.19,"0",0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7 343 | 0.01301,35,1.52,"0",0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7 344 | 0.02498,0,1.89,"0",0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5 345 | 0.02543,55,3.78,"0",0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9 346 | 0.03049,55,3.78,"0",0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2 347 | 0.03113,0,4.39,"0",0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5 348 | 0.06162,0,4.39,"0",0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2 349 | 0.0187,85,4.15,"0",0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1 350 | 0.01501,80,2.01,"0",0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5 351 | 0.02899,40,1.25,"0",0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6 352 | 0.06211,40,1.25,"0",0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9 353 | 0.0795,60,1.69,"0",0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1 354 | 0.07244,60,1.69,"0",0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6 355 | 0.01709,90,2.02,"0",0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1 356 | 0.04301,80,1.91,"0",0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2 357 | 0.10659,80,1.91,"0",0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6 358 | 8.98296,0,18.1,"1",0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8 359 | 3.8497,0,18.1,"1",0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7 360 | 5.20177,0,18.1,"1",0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7 361 | 4.26131,0,18.1,"0",0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6 362 | 4.54192,0,18.1,"0",0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25 363 | 3.83684,0,18.1,"0",0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9 364 | 3.67822,0,18.1,"0",0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8 365 | 4.22239,0,18.1,"1",0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8 366 | 3.47428,0,18.1,"1",0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9 367 | 4.55587,0,18.1,"0",0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5 368 | 3.69695,0,18.1,"0",0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9 369 | 13.5222,0,18.1,"0",0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1 370 | 4.89822,0,18.1,"0",0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50 371 | 5.66998,0,18.1,"1",0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50 372 | 6.53876,0,18.1,"1",0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50 373 | 9.2323,0,18.1,"0",0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50 374 | 8.26725,0,18.1,"1",0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50 375 | 11.1081,0,18.1,"0",0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8 376 | 18.4982,0,18.1,"0",0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8 377 | 19.6091,0,18.1,"0",0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15 378 | 15.288,0,18.1,"0",0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9 379 | 9.82349,0,18.1,"0",0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3 380 | 23.6482,0,18.1,"0",0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1 381 | 17.8667,0,18.1,"0",0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2 382 | 88.9762,0,18.1,"0",0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4 383 | 15.8744,0,18.1,"0",0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9 384 | 9.18702,0,18.1,"0",0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3 385 | 7.99248,0,18.1,"0",0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3 386 | 20.0849,0,18.1,"0",0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8 387 | 16.8118,0,18.1,"0",0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2 388 | 24.3938,0,18.1,"0",0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5 389 | 22.5971,0,18.1,"0",0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4 390 | 14.3337,0,18.1,"0",0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2 391 | 8.15174,0,18.1,"0",0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5 392 | 6.96215,0,18.1,"0",0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1 393 | 5.29305,0,18.1,"0",0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2 394 | 11.5779,0,18.1,"0",0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7 395 | 8.64476,0,18.1,"0",0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8 396 | 13.3598,0,18.1,"0",0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7 397 | 8.71675,0,18.1,"0",0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1 398 | 5.87205,0,18.1,"0",0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5 399 | 7.67202,0,18.1,"0",0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5 400 | 38.3518,0,18.1,"0",0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5 401 | 9.91655,0,18.1,"0",0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3 402 | 25.0461,0,18.1,"0",0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6 403 | 14.2362,0,18.1,"0",0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2 404 | 9.59571,0,18.1,"0",0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1 405 | 24.8017,0,18.1,"0",0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3 406 | 41.5292,0,18.1,"0",0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5 407 | 67.9208,0,18.1,"0",0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5 408 | 20.7162,0,18.1,"0",0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9 409 | 11.9511,0,18.1,"0",0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9 410 | 7.40389,0,18.1,"0",0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2 411 | 14.4383,0,18.1,"0",0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5 412 | 51.1358,0,18.1,"0",0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15 413 | 14.0507,0,18.1,"0",0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2 414 | 18.811,0,18.1,"0",0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9 415 | 28.6558,0,18.1,"0",0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3 416 | 45.7461,0,18.1,"0",0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7 417 | 18.0846,0,18.1,"0",0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2 418 | 10.8342,0,18.1,"0",0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5 419 | 25.9406,0,18.1,"0",0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4 420 | 73.5341,0,18.1,"0",0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8 421 | 11.8123,0,18.1,"0",0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4 422 | 11.0874,0,18.1,"0",0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7 423 | 7.02259,0,18.1,"0",0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2 424 | 12.0482,0,18.1,"0",0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8 425 | 7.05042,0,18.1,"0",0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4 426 | 8.79212,0,18.1,"0",0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7 427 | 15.8603,0,18.1,"0",0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3 428 | 12.2472,0,18.1,"0",0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2 429 | 37.6619,0,18.1,"0",0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9 430 | 7.36711,0,18.1,"0",0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11 431 | 9.33889,0,18.1,"0",0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5 432 | 8.49213,0,18.1,"0",0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5 433 | 10.0623,0,18.1,"0",0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1 434 | 6.44405,0,18.1,"0",0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1 435 | 5.58107,0,18.1,"0",0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3 436 | 13.9134,0,18.1,"0",0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7 437 | 11.1604,0,18.1,"0",0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4 438 | 14.4208,0,18.1,"0",0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6 439 | 15.1772,0,18.1,"0",0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7 440 | 13.6781,0,18.1,"0",0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4 441 | 9.39063,0,18.1,"0",0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8 442 | 22.0511,0,18.1,"0",0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5 443 | 9.72418,0,18.1,"0",0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1 444 | 5.66637,0,18.1,"0",0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4 445 | 9.96654,0,18.1,"0",0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4 446 | 12.8023,0,18.1,"0",0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8 447 | 10.6718,0,18.1,"0",0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8 448 | 6.28807,0,18.1,"0",0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9 449 | 9.92485,0,18.1,"0",0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6 450 | 9.32909,0,18.1,"0",0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1 451 | 7.52601,0,18.1,"0",0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13 452 | 6.71772,0,18.1,"0",0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4 453 | 5.44114,0,18.1,"0",0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2 454 | 5.09017,0,18.1,"0",0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1 455 | 8.24809,0,18.1,"0",0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8 456 | 9.51363,0,18.1,"0",0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9 457 | 4.75237,0,18.1,"0",0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1 458 | 4.66883,0,18.1,"0",0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7 459 | 8.20058,0,18.1,"0",0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5 460 | 7.75223,0,18.1,"0",0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9 461 | 6.80117,0,18.1,"0",0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20 462 | 4.81213,0,18.1,"0",0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4 463 | 3.69311,0,18.1,"0",0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7 464 | 6.65492,0,18.1,"0",0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5 465 | 5.82115,0,18.1,"0",0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2 466 | 7.83932,0,18.1,"0",0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4 467 | 3.1636,0,18.1,"0",0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9 468 | 3.77498,0,18.1,"0",0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19 469 | 4.42228,0,18.1,"0",0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1 470 | 15.5757,0,18.1,"0",0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1 471 | 13.0751,0,18.1,"0",0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1 472 | 4.34879,0,18.1,"0",0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9 473 | 4.03841,0,18.1,"0",0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6 474 | 3.56868,0,18.1,"0",0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2 475 | 4.64689,0,18.1,"0",0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8 476 | 8.05579,0,18.1,"0",0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8 477 | 6.39312,0,18.1,"0",0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3 478 | 4.87141,0,18.1,"0",0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7 479 | 15.0234,0,18.1,"0",0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12 480 | 10.233,0,18.1,"0",0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6 481 | 14.3337,0,18.1,"0",0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4 482 | 5.82401,0,18.1,"0",0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23 483 | 5.70818,0,18.1,"0",0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7 484 | 5.73116,0,18.1,"0",0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25 485 | 2.81838,0,18.1,"0",0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8 486 | 2.37857,0,18.1,"0",0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6 487 | 3.67367,0,18.1,"0",0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2 488 | 5.69175,0,18.1,"0",0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1 489 | 4.83567,0,18.1,"0",0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6 490 | 0.15086,0,27.74,"0",0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2 491 | 0.18337,0,27.74,"0",0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7 492 | 0.20746,0,27.74,"0",0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1 493 | 0.10574,0,27.74,"0",0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6 494 | 0.11132,0,27.74,"0",0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1 495 | 0.17331,0,9.69,"0",0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8 496 | 0.27957,0,9.69,"0",0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5 497 | 0.17899,0,9.69,"0",0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1 498 | 0.2896,0,9.69,"0",0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7 499 | 0.26838,0,9.69,"0",0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3 500 | 0.23912,0,9.69,"0",0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2 501 | 0.17783,0,9.69,"0",0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5 502 | 0.22438,0,9.69,"0",0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8 503 | 0.06263,0,11.93,"0",0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4 504 | 0.04527,0,11.93,"0",0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6 505 | 0.06076,0,11.93,"0",0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9 506 | 0.10959,0,11.93,"0",0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22 507 | 0.04741,0,11.93,"0",0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9 508 | -------------------------------------------------------------------------------- /Assignment_9.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "55e4241b", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import seaborn as sns\n", 11 | "titanic = sns.load_dataset(\"titanic\")" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "id": "89318fdb", 18 | "metadata": {}, 19 | "outputs": [ 20 | { 21 | "data": { 22 | "text/html": [ 23 | "
\n", 24 | "\n", 37 | "\n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | "
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
111female38.01071.2833CFirstwomanFalseCCherbourgyesFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
311female35.01053.1000SFirstwomanFalseCSouthamptonyesFalse
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue
................................................
88602male27.00013.0000SSecondmanTrueNaNSouthamptonnoTrue
88711female19.00030.0000SFirstwomanFalseBSouthamptonyesTrue
88803femaleNaN1223.4500SThirdwomanFalseNaNSouthamptonnoFalse
88911male26.00030.0000CFirstmanTrueCCherbourgyesTrue
89003male32.0007.7500QThirdmanTrueNaNQueenstownnoTrue
\n", 259 | "

891 rows × 15 columns

\n", 260 | "
" 261 | ], 262 | "text/plain": [ 263 | " survived pclass sex age sibsp parch fare embarked class \\\n", 264 | "0 0 3 male 22.0 1 0 7.2500 S Third \n", 265 | "1 1 1 female 38.0 1 0 71.2833 C First \n", 266 | "2 1 3 female 26.0 0 0 7.9250 S Third \n", 267 | "3 1 1 female 35.0 1 0 53.1000 S First \n", 268 | "4 0 3 male 35.0 0 0 8.0500 S Third \n", 269 | ".. ... ... ... ... ... ... ... ... ... \n", 270 | "886 0 2 male 27.0 0 0 13.0000 S Second \n", 271 | "887 1 1 female 19.0 0 0 30.0000 S First \n", 272 | "888 0 3 female NaN 1 2 23.4500 S Third \n", 273 | "889 1 1 male 26.0 0 0 30.0000 C First \n", 274 | "890 0 3 male 32.0 0 0 7.7500 Q Third \n", 275 | "\n", 276 | " who adult_male deck embark_town alive alone \n", 277 | "0 man True NaN Southampton no False \n", 278 | "1 woman False C Cherbourg yes False \n", 279 | "2 woman False NaN Southampton yes True \n", 280 | "3 woman False C Southampton yes False \n", 281 | "4 man True NaN Southampton no True \n", 282 | ".. ... ... ... ... ... ... \n", 283 | "886 man True NaN Southampton no True \n", 284 | "887 woman False B Southampton yes True \n", 285 | "888 woman False NaN Southampton no False \n", 286 | "889 man True C Cherbourg yes True \n", 287 | "890 man True NaN Queenstown no True \n", 288 | "\n", 289 | "[891 rows x 15 columns]" 290 | ] 291 | }, 292 | "execution_count": 2, 293 | "metadata": {}, 294 | "output_type": "execute_result" 295 | } 296 | ], 297 | "source": [ 298 | "titanic\n" 299 | ] 300 | }, 301 | { 302 | "cell_type": "code", 303 | "execution_count": 3, 304 | "id": "d10760ef", 305 | "metadata": {}, 306 | "outputs": [ 307 | { 308 | "data": { 309 | "text/html": [ 310 | "
\n", 311 | "\n", 324 | "\n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | "
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
111female38.01071.2833CFirstwomanFalseCCherbourgyesFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
311female35.01053.1000SFirstwomanFalseCSouthamptonyesFalse
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue
503maleNaN008.4583QThirdmanTrueNaNQueenstownnoTrue
601male54.00051.8625SFirstmanTrueESouthamptonnoTrue
703male2.03121.0750SThirdchildFalseNaNSouthamptonnoFalse
813female27.00211.1333SThirdwomanFalseNaNSouthamptonyesFalse
912female14.01030.0708CSecondchildFalseNaNCherbourgyesFalse
\n", 528 | "
" 529 | ], 530 | "text/plain": [ 531 | " survived pclass sex age sibsp parch fare embarked class \\\n", 532 | "0 0 3 male 22.0 1 0 7.2500 S Third \n", 533 | "1 1 1 female 38.0 1 0 71.2833 C First \n", 534 | "2 1 3 female 26.0 0 0 7.9250 S Third \n", 535 | "3 1 1 female 35.0 1 0 53.1000 S First \n", 536 | "4 0 3 male 35.0 0 0 8.0500 S Third \n", 537 | "5 0 3 male NaN 0 0 8.4583 Q Third \n", 538 | "6 0 1 male 54.0 0 0 51.8625 S First \n", 539 | "7 0 3 male 2.0 3 1 21.0750 S Third \n", 540 | "8 1 3 female 27.0 0 2 11.1333 S Third \n", 541 | "9 1 2 female 14.0 1 0 30.0708 C Second \n", 542 | "\n", 543 | " who adult_male deck embark_town alive alone \n", 544 | "0 man True NaN Southampton no False \n", 545 | "1 woman False C Cherbourg yes False \n", 546 | "2 woman False NaN Southampton yes True \n", 547 | "3 woman False C Southampton yes False \n", 548 | "4 man True NaN Southampton no True \n", 549 | "5 man True NaN Queenstown no True \n", 550 | "6 man True E Southampton no True \n", 551 | "7 child False NaN Southampton no False \n", 552 | "8 woman False NaN Southampton yes False \n", 553 | "9 child False NaN Cherbourg yes False " 554 | ] 555 | }, 556 | "execution_count": 3, 557 | "metadata": {}, 558 | "output_type": "execute_result" 559 | } 560 | ], 561 | "source": [ 562 | "titanic.head(10)" 563 | ] 564 | }, 565 | { 566 | "cell_type": "code", 567 | "execution_count": 4, 568 | "id": "c279ecfd", 569 | "metadata": {}, 570 | "outputs": [ 571 | { 572 | "data": { 573 | "text/plain": [ 574 | "" 601 | ] 602 | }, 603 | "execution_count": 4, 604 | "metadata": {}, 605 | "output_type": "execute_result" 606 | } 607 | ], 608 | "source": [ 609 | "titanic.info" 610 | ] 611 | }, 612 | { 613 | "cell_type": "code", 614 | "execution_count": 5, 615 | "id": "b7d3c636", 616 | "metadata": {}, 617 | "outputs": [ 618 | { 619 | "data": { 620 | "text/html": [ 621 | "
\n", 622 | "\n", 635 | "\n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | "
survivedpclassagesibspparchfare
count891.000000891.000000714.000000891.000000891.000000891.000000
mean0.3838382.30864229.6991180.5230080.38159432.204208
std0.4865920.83607114.5264971.1027430.80605749.693429
min0.0000001.0000000.4200000.0000000.0000000.000000
25%0.0000002.00000020.1250000.0000000.0000007.910400
50%0.0000003.00000028.0000000.0000000.00000014.454200
75%1.0000003.00000038.0000001.0000000.00000031.000000
max1.0000003.00000080.0000008.0000006.000000512.329200
\n", 722 | "
" 723 | ], 724 | "text/plain": [ 725 | " survived pclass age sibsp parch fare\n", 726 | "count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000\n", 727 | "mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208\n", 728 | "std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429\n", 729 | "min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000\n", 730 | "25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400\n", 731 | "50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200\n", 732 | "75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000\n", 733 | "max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200" 734 | ] 735 | }, 736 | "execution_count": 5, 737 | "metadata": {}, 738 | "output_type": "execute_result" 739 | } 740 | ], 741 | "source": [ 742 | "titanic.describe()" 743 | ] 744 | }, 745 | { 746 | "cell_type": "code", 747 | "execution_count": 6, 748 | "id": "beedac32", 749 | "metadata": {}, 750 | "outputs": [ 751 | { 752 | "data": { 753 | "text/html": [ 754 | "
\n", 755 | "\n", 768 | "\n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | "
survivedalive
00no
11yes
21yes
31yes
40no
.........
8860no
8871yes
8880no
8891yes
8900no
\n", 834 | "

891 rows × 2 columns

\n", 835 | "
" 836 | ], 837 | "text/plain": [ 838 | " survived alive\n", 839 | "0 0 no\n", 840 | "1 1 yes\n", 841 | "2 1 yes\n", 842 | "3 1 yes\n", 843 | "4 0 no\n", 844 | ".. ... ...\n", 845 | "886 0 no\n", 846 | "887 1 yes\n", 847 | "888 0 no\n", 848 | "889 1 yes\n", 849 | "890 0 no\n", 850 | "\n", 851 | "[891 rows x 2 columns]" 852 | ] 853 | }, 854 | "execution_count": 6, 855 | "metadata": {}, 856 | "output_type": "execute_result" 857 | } 858 | ], 859 | "source": [ 860 | "titanic.loc[:,[\"survived\",\"alive\"]]" 861 | ] 862 | }, 863 | { 864 | "cell_type": "code", 865 | "execution_count": 7, 866 | "id": "14ed98a3", 867 | "metadata": {}, 868 | "outputs": [ 869 | { 870 | "data": { 871 | "text/plain": [ 872 | "" 873 | ] 874 | }, 875 | "execution_count": 7, 876 | "metadata": {}, 877 | "output_type": "execute_result" 878 | }, 879 | { 880 | "data": { 881 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsG0lEQVR4nO3df1xVdYL/8fcB8wIKVJr3SiBiof1AJ8tiIwumDVwqp5GpHHFcnZrH2tAP0ZmxjGxujkHiDIsTkxNuD6Mt1nq04+zsNCr0i7aoRMvR1O2XFjiJrI4BKVxGON8//HpHAqxQ7rmf6+v5eJzHw/s5517eR7zw9nPOPceybdsWAACAocKcDgAAAHAyKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEYb5HSAgdbV1aXPPvtM0dHRsizL6TgAAOBrsG1bra2tiouLU1jYiedeQr7MfPbZZ0pISHA6BgAA6IeGhgbFx8efcJuQLzPR0dGSjv5lxMTEOJwGAAB8HS0tLUpISPD/Hj+RkC8zxw4txcTEUGYAADDM1zlFhBOAAQCA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMIKbW1tZo+fbpqa2udjgIACBBHy8yRI0f0wAMPKCkpSZGRkRozZoyWLFmirq4u/za2bcvr9SouLk6RkZHKyMjQ9u3bHUyNYNXe3q6SkhLt27dPJSUlam9vdzoSACAAHC0zy5Yt029/+1uVlZVp586dKi4u1vLly/Xoo4/6tykuLlZJSYnKyspUV1cnj8ejzMxMtba2OpgcweiZZ57RgQMHJEkHDhxQZWWlw4kAAIHgaJl58803ddNNN+mGG27Q6NGjdfPNNysrK0ubNm2SdHRWprS0VAUFBcrJyVFKSooqKip0+PBhflGhmz179qiyslK2bUs6+m+nsrJSe/bscTgZAGCgOVpmJk+erJdeekkffPCBJOnPf/6zXn/9dV1//fWSpN27d6uxsVFZWVn+57hcLqWnp/d5ToTP51NLS0u3BaHNtm2tWLGiz/FjBQcAEJoGOfnF7733XjU3N+uCCy5QeHi4Ojs79fDDD2vGjBmSpMbGRkmS2+3u9jy3261PP/2019csKirSQw89NLDBEVTq6+tVV1fXY7yzs1N1dXWqr69XYmKiA8kAAIHg6MzMs88+q6efflqVlZV65513VFFRoV/+8peqqKjotp1lWd0e27bdY+yYRYsWqbm52b80NDQMWH4Eh1GjRunyyy9XeHh4t/Hw8HBdccUVGjVqlEPJAACB4OjMzM9+9jPdd999+v73vy9JGj9+vD799FMVFRVp9uzZ8ng8ko7O0IwcOdL/vKamph6zNce4XC65XK6BD4+gYVmW5s2bp9mzZ/c63lfxBQCEBkdnZg4fPqywsO4RwsPD/R/NTkpKksfjUXV1tX99R0eHampqlJaWFtCsCG7x8fHKzc31FxfLspSbm6tzzz3X4WQAgIHmaJmZOnWqHn74Yb3wwgv65JNPtHbtWpWUlGjatGmSjv5Cys/PV2FhodauXav33ntPc+bMUVRUlHJzc52MjiA0c+ZMDRs2TJI0fPhw/o0AwGnC0cNMjz76qBYvXqy8vDw1NTUpLi5Oc+fO1YMPPujfZuHChWpra1NeXp4OHjyo1NRUVVVVKTo62sHkCEYRERFasGCBVqxYoXnz5ikiIsLpSACAALDsEP/caktLi2JjY9Xc3KyYmBin4wAAgK/hm/z+5t5MAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmUFIqa2t1fTp01VbW+t0FABAgFBmEDLa29tVUlKiffv2qaSkRO3t7U5HAgAEAGUGIeOZZ57RgQMHJEkHDhxQZWWlw4kAAIFAmUFI2LNnjyorK2XbtiTJtm1VVlZqz549DicDAAw0ygyMZ9u2VqxY0ef4sYIDAAhNlBkYr76+XnV1ders7Ow23tnZqbq6OtXX1zuUDAAQCJQZGG/UqFG6/PLLFR4e3m08PDxcV1xxhUaNGuVQMgBAIFBmYDzLsjRv3rw+xy3LciAVACBQKDMICfHx8crNzfUXF8uylJubq3PPPdfhZACAgUaZQciYOXOmhg0bJkkaPny4cnNzHU4EAAgEygxCRkREhBYsWCC326358+crIiLC6UgAgAAY5HQA4FRKS0tTWlqa0zEAAAHEzAwAADAaZQYh5YknntC1116rJ554wukoAIAAocwgZHz++ed65pln1NXVpWeeeUaff/6505EAAAFAmUHIWLx4sbq6uiRJXV1devDBBx1OBAAIBMoMQsKmTZu0bdu2bmNbt27Vpk2bHEoEAAgUygyM19XVpSVLlvS6bsmSJf7ZGgBAaKLMwHhvv/22Wlpael3X0tKit99+O8CJAACB5GiZGT16tCzL6rHceeedkiTbtuX1ehUXF6fIyEhlZGRo+/btTkZGELriiit63GTymGM3mwQAhC5Hy0xdXZ327t3rX6qrqyVJt9xyiySpuLhYJSUlKisrU11dnTwejzIzM9Xa2upkbASZPXv2qLOzs9d1nZ2d2rNnT4ATAQACydEyc84558jj8fiXP/7xjzrvvPOUnp4u27ZVWlqqgoIC5eTkKCUlRRUVFTp8+LAqKyv7fE2fz6eWlpZuC0JbfHz8CWdm4uPjA5wIABBIQXPOTEdHh55++mnddtttsixLu3fvVmNjo7KysvzbuFwupaenq7a2ts/XKSoqUmxsrH9JSEgIRHw4aOPGjSecmdm4cWOAEwEAAiloyszvf/97ff7555ozZ44kqbGxUZLkdru7bed2u/3rerNo0SI1Nzf7l4aGhgHLjOCQmpqqmJiYXtfFxsYqNTU1wIkAAIEUNGXmiSeeUHZ2tuLi4rqNW5bV7bFt2z3GjudyuRQTE9NtQWgLCwvr8wJ5P//5zxUWFjT/zAEAAyAofsp/+umnevHFF/WjH/3IP+bxeCSpxyxMU1NTj9kaYNKkSRo/fny3sQkTJujSSy91KBEAIFCCosysXr1aI0aM0A033OAfS0pKksfj8X/CSTp6Xk1NTY3S0tKciIkg94tf/MI/CxMWFtbnhfQAAKHF8TLT1dWl1atXa/bs2Ro0aJB/3LIs5efnq7CwUGvXrtV7772nOXPmKCoqSrm5uQ4mRrA688wzNXPmTIWFhWnmzJk688wznY4EAAiAQV+9ycB68cUXVV9fr9tuu63HuoULF6qtrU15eXk6ePCgUlNTVVVVpejoaAeSwgS33367br/9dqdjAAACyLJt23Y6xEBqaWlRbGysmpubORkYAABDfJPf344fZgIAADgZlBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKM5ftE8OM+2bbW3tzsd46TZti2fzyfp6A1HT3RDUlNERESExH4AwECizEDt7e3Kzs52OgZ6sW7dOkVGRjodAwCCGoeZAACA0ZiZgSIiIrRu3TqnY5y09vZ2TZs2TZK0du1aRUREOJzo5IXCPgDAQKPMQJZlhdyhjIiIiJDbJwBA7zjMBAAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjYvmAUAI40aywYsbyZ46lBkACGHcSDZ4cSPZU4fDTAAAwGjMzABACONGssErFPYhWFBmACCEcSNZnA44zAQAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTHy8xf/vIX/eAHP9CwYcMUFRWlSy65RJs3b/avt21bXq9XcXFxioyMVEZGhrZv3+5gYgAAEEwcLTMHDx7UVVddpTPOOEPr1q3Tjh079Ktf/Upnnnmmf5vi4mKVlJSorKxMdXV18ng8yszMVGtrq3PBAQBA0HD0onnLli1TQkKCVq9e7R8bPXq0/8+2bau0tFQFBQXKycmRJFVUVMjtdquyslJz587t8Zo+n89/MzJJamlpGbgdAAAAjnN0ZuYPf/iDJk2apFtuuUUjRozQxIkTtWrVKv/63bt3q7GxUVlZWf4xl8ul9PR01dbW9vqaRUVFio2N9S8JCQkDvh8AAMA5jpaZXbt2aeXKlUpOTtaGDRt0xx136J577tFTTz0lSWpsbJQkud3ubs9zu93+dV+2aNEiNTc3+5eGhoaB3QkAAOAoRw8zdXV1adKkSSosLJQkTZw4Udu3b9fKlSv1z//8z/7tLMvq9jzbtnuMHeNyueRyuQYuNAAACCqOzsyMHDlSF110UbexCy+8UPX19ZIkj8cjST1mYZqamnrM1gAAgNOTo2Xmqquu0vvvv99t7IMPPlBiYqIkKSkpSR6PR9XV1f71HR0dqqmpUVpaWkCzAgCA4OToYab58+crLS1NhYWFuvXWW7Vx40aVl5ervLxc0tHDS/n5+SosLFRycrKSk5NVWFioqKgo5ebmOhkdAAAECUfLzOWXX661a9dq0aJFWrJkiZKSklRaWqqZM2f6t1m4cKHa2tqUl5engwcPKjU1VVVVVYqOjnYwOQAACBaOlhlJuvHGG3XjjTf2ud6yLHm9Xnm93sCFAgAAxnD8dgYAAAAngzIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0R8uM1+uVZVndFo/H419v27a8Xq/i4uIUGRmpjIwMbd++3cHEAAAg2Dg+M3PxxRdr7969/mXbtm3+dcXFxSopKVFZWZnq6urk8XiUmZmp1tZWBxMDAIBg4niZGTRokDwej38555xzJB2dlSktLVVBQYFycnKUkpKiiooKHT58WJWVlQ6nBgAAwcLxMvPhhx8qLi5OSUlJ+v73v69du3ZJknbv3q3GxkZlZWX5t3W5XEpPT1dtbW2fr+fz+dTS0tJtAQAAocvRMpOamqqnnnpKGzZs0KpVq9TY2Ki0tDQdOHBAjY2NkiS3293tOW6327+uN0VFRYqNjfUvCQkJA7oPAADAWY6WmezsbH3ve9/T+PHjdd111+mFF16QJFVUVPi3sSyr23Ns2+4xdrxFixapubnZvzQ0NAxMeAAAEBQcP8x0vCFDhmj8+PH68MMP/Z9q+vIsTFNTU4/ZmuO5XC7FxMR0WwAAQOgKqjLj8/m0c+dOjRw5UklJSfJ4PKqurvav7+joUE1NjdLS0hxMCQAAgskgJ7/4T3/6U02dOlWjRo1SU1OTli5dqpaWFs2ePVuWZSk/P1+FhYVKTk5WcnKyCgsLFRUVpdzcXCdjAwCAIOJomdmzZ49mzJih/fv365xzztE//MM/6K233lJiYqIkaeHChWpra1NeXp4OHjyo1NRUVVVVKTo62snYAAAgiDhaZtasWXPC9ZZlyev1yuv1BiYQAAAwTlCdMwMAAPBNUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGO6ky89FHH2nDhg1qa2uTJNm2fUpCAQAAfF39KjMHDhzQddddp7Fjx+r666/X3r17JUk/+tGP9JOf/OSUBgQAADiRfpWZ+fPna9CgQaqvr1dUVJR/fPr06Vq/fv0pCwcAAPBVBvXnSVVVVdqwYYPi4+O7jScnJ+vTTz89JcEAAAC+jn7NzBw6dKjbjMwx+/fvl8vlOulQAAAAX1e/ysw111yjp556yv/Ysix1dXVp+fLl+va3v33KwgEAAHyVfh1mWr58uTIyMrRp0yZ1dHRo4cKF2r59u/7617/qjTfeONUZAQAA+tSvmZmLLrpIW7du1RVXXKHMzEwdOnRIOTk5evfdd3Xeeef1K0hRUZEsy1J+fr5/zLZteb1excXFKTIyUhkZGdq+fXu/Xh8AAISmfs3MSJLH49FDDz10SkLU1dWpvLxcEyZM6DZeXFyskpISPfnkkxo7dqyWLl2qzMxMvf/++4qOjj4lXxsAAJitX2Vm69atvY5blqWIiAiNGjXqa58I/MUXX2jmzJlatWqVli5d6h+3bVulpaUqKChQTk6OJKmiokJut1uVlZWaO3duf6IDAIAQ068yc8kll8iyLEl/v+rvsceSdMYZZ2j69Ol6/PHHFRERccLXuvPOO3XDDTfouuuu61Zmdu/ercbGRmVlZfnHXC6X0tPTVVtb22eZ8fl88vl8/sctLS3ffAcBAIAx+nXOzNq1a5WcnKzy8nL9+c9/1pYtW1ReXq5x48apsrJSTzzxhF5++WU98MADJ3ydNWvWaPPmzSoqKuqxrrGxUZLkdru7jbvdbv+63hQVFSk2Nta/JCQk9GMPAQCAKfo1M/Pwww9rxYoVmjJlin9swoQJio+P1+LFi7Vx40YNGTJEP/nJT/TLX/6y19doaGjQvHnzVFVVdcLZm+NnfKSjM0FfHjveokWLtGDBAv/jlpYWCg0AACGsX2Vm27ZtSkxM7DGemJiobdu2STp6KOrYPZt6s3nzZjU1Nemyyy7zj3V2duq1115TWVmZ3n//fUlHZ2hGjhzp36apqanHbM3xXC5XQC/cZ9u22tvbA/b10Lfjvw98T4JHRETECf8DAgAnq19l5oILLtAjjzyi8vJyDR48WJL0t7/9TY888oguuOACSdJf/vKXE5aOf/zHf/QXn2N++MMf6oILLtC9996rMWPGyOPxqLq6WhMnTpQkdXR0qKamRsuWLetP7AHR3t6u7Oxsp2PgS6ZNm+Z0BPx/69atU2RkpNMxAISwfpWZ3/zmN/rOd76j+Ph4TZgwQZZlaevWrers7NQf//hHSdKuXbuUl5fX52tER0crJSWl29iQIUM0bNgw/3h+fr4KCwuVnJys5ORkFRYWKioqSrm5uf2JDQAAQlC/ykxaWpo++eQTPf300/rggw9k27Zuvvlm5ebm+q//MmvWrJMOt3DhQrW1tSkvL08HDx5UamqqqqqqgvYaM19cMkN2WL8v3YOTZdtS15Gjfw4bJHFowzFW1xEN3fIfTscAcJro92/eoUOH6pprrtHo0aPV0dEhSXrllVckSd/5znf69Zqvvvpqt8eWZcnr9crr9fY3ZkDZYYOk8DOcjnGaG+x0AEiynQ4A4LTSrzKza9cuTZs2Tdu2bZNlWT0+YdTZ2XnKAgIAAJxIv64zM2/ePCUlJWnfvn2KiorSe++9p5qaGk2aNKnH7AoAAMBA6tfMzJtvvqmXX35Z55xzjsLCwhQeHq7JkyerqKhI99xzj959991TnRMAAKBX/SoznZ2dGjp0qCRp+PDh+uyzzzRu3DglJib6rw8DAKbjOlLBg+tIBadguY5Uv8pMSkqKtm7dqjFjxig1NVXFxcUaPHiwysvLNWbMmFOdEQAcwXWkghPXkQoewXIdqX6VmQceeECHDh2SJC1dulQ33nijrr76ag0bNkzPPvvsKQ0IAABwIv0qM8ffk2nMmDHasWOH/vrXv+qss84KiukmADjVyib/Va5wPnTuFNuWOrqO/nlwGJeRcpKv09Jdr5/tdIxuTtkV3s4+O7h2DABOJVe4LVe40ylOb33fkhiBFXylvl8fzQYAAAgWlBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjOVpmVq5cqQkTJigmJkYxMTG68sortW7dOv9627bl9XoVFxenyMhIZWRkaPv27Q4mBgAAwcbRMhMfH69HHnlEmzZt0qZNm3Tttdfqpptu8heW4uJilZSUqKysTHV1dfJ4PMrMzFRra6uTsQEAQBBxtMxMnTpV119/vcaOHauxY8fq4Ycf1tChQ/XWW2/Jtm2VlpaqoKBAOTk5SklJUUVFhQ4fPqzKykonYwMAgCASNOfMdHZ2as2aNTp06JCuvPJK7d69W42NjcrKyvJv43K5lJ6ertra2j5fx+fzqaWlpdsCAABCl+NlZtu2bRo6dKhcLpfuuOMOrV27VhdddJEaGxslSW63u9v2brfbv643RUVFio2N9S8JCQkDmh8AADjL8TIzbtw4bdmyRW+99ZZ+/OMfa/bs2dqxY4d/vWVZ3ba3bbvH2PEWLVqk5uZm/9LQ0DBg2QEAgPMGOR1g8ODBOv/88yVJkyZNUl1dnVasWKF7771XktTY2KiRI0f6t29qauoxW3M8l8sll8s1sKGPY9v23x90/i1gXxcIase9F7q9RwBgADheZr7Mtm35fD4lJSXJ4/GourpaEydOlCR1dHSopqZGy5Ytczjl3/l8Pv+fo/+8xsEkQHDy+XyKiopyOgaAEOZombn//vuVnZ2thIQEtba2as2aNXr11Ve1fv16WZal/Px8FRYWKjk5WcnJySosLFRUVJRyc3OdjA0AAIKIo2Vm3759mjVrlvbu3avY2FhNmDBB69evV2ZmpiRp4cKFamtrU15eng4ePKjU1FRVVVUpOjraydjdHH9Iq/Vb35fCz3AwDRAkOv/mn6kM5GFfAKcnR8vME088ccL1lmXJ6/XK6/UGJlA/dDsZOfwMygzwJSc6YR8ATgXHP80EAABwMigzAADAaJQZAABgNMoMAAAwWtBdZwYAgsXxF/zzdToYBAgix78XguWimJQZAOjD8RfFvOv1YQ4mAYJTsFwUk8NMAADAaMzMAEAfjr/gX9nkA3KFOxgGCBK+zr/PVAbLRTEpMwDQh+Mv+OcKF2UG+JJguSgmh5kAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAw2iCnA4QSq+uIbKdDnM5sW+o6cvTPYYMky3I2z2nMOvZ9AIAAoMycQkO3/IfTEQAAOO1wmAkAABjN0ZmZoqIi/e53v9P//u//KjIyUmlpaVq2bJnGjRvn38a2bT300EMqLy/XwYMHlZqaqt/85je6+OKLHUz+dxEREVq3bp3TMSCpvb1d06ZNkyStXbtWERERDieCJL4PAAaco2WmpqZGd955py6//HIdOXJEBQUFysrK0o4dOzRkyBBJUnFxsUpKSvTkk09q7NixWrp0qTIzM/X+++8rOjrayfiSJMuyFBkZ6XQMfElERATfFwA4TThaZtavX9/t8erVqzVixAht3rxZ11xzjWzbVmlpqQoKCpSTkyNJqqiokNvtVmVlpebOndvjNX0+n3w+n/9xS0vLwO4EAABwVFCdM9Pc3CxJOvvssyVJu3fvVmNjo7KysvzbuFwupaenq7a2ttfXKCoqUmxsrH9JSEgY+OAAAMAxQVNmbNvWggULNHnyZKWkpEiSGhsbJUlut7vbtm6327/uyxYtWqTm5mb/0tDQMLDBAQCAo4Lmo9l33XWXtm7dqtdff73HOutL1wuxbbvH2DEul0sul2tAMgIAgOATFDMzd999t/7whz/olVdeUXx8vH/c4/FIUo9ZmKamph6zNQAA4PTkaJmxbVt33XWXfve73+nll19WUlJSt/VJSUnyeDyqrq72j3V0dKimpkZpaWmBjgsAAIKQo4eZ7rzzTlVWVuq//uu/FB0d7Z+BiY2NVWRkpCzLUn5+vgoLC5WcnKzk5GQVFhYqKipKubm5TkYHAABBwtEys3LlSklSRkZGt/HVq1drzpw5kqSFCxeqra1NeXl5/ovmVVVVBcU1ZgAAgPMcLTO2/dW3ZbQsS16vV16vd+ADAUAffJ2WxK1kHWPbUkfX0T8PDuM+sk46+l4ILkHzaSYACGZ3vX620xEA9CEoPs0EAADQX8zMAEAfuJFs8OBGssEpWL4PlBkA6AM3kg1O3EgWX8ZhJgAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGM3RMvPaa69p6tSpiouLk2VZ+v3vf99tvW3b8nq9iouLU2RkpDIyMrR9+3ZnwgIAgKDkaJk5dOiQvvWtb6msrKzX9cXFxSopKVFZWZnq6urk8XiUmZmp1tbWACcFAADBapCTXzw7O1vZ2dm9rrNtW6WlpSooKFBOTo4kqaKiQm63W5WVlZo7d26vz/P5fPL5fP7HLS0tpz44AAAIGkF7zszu3bvV2NiorKws/5jL5VJ6erpqa2v7fF5RUZFiY2P9S0JCQiDiAgAAhwRtmWlsbJQkud3ubuNut9u/rjeLFi1Sc3Ozf2loaBjQnAAAwFmOHmb6OizL6vbYtu0eY8dzuVxyuVwDHQsAAASJoJ2Z8Xg8ktRjFqapqanHbA0AADh9BW2ZSUpKksfjUXV1tX+so6NDNTU1SktLczAZAAAIJo4eZvriiy/00Ucf+R/v3r1bW7Zs0dlnn61Ro0YpPz9fhYWFSk5OVnJysgoLCxUVFaXc3FwHUwMAgGDiaJnZtGmTvv3tb/sfL1iwQJI0e/ZsPfnkk1q4cKHa2tqUl5engwcPKjU1VVVVVYqOjnYqMgAACDKOlpmMjAzZtt3nesuy5PV65fV6AxcKAAAYJWjPmQEAAPg6KDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIw2yOkAAICBY9u22tvbnY5x0o7fh1DYH0mKiIiQZVlOxwgJRpSZxx57TMuXL9fevXt18cUXq7S0VFdffbXTsUIGP+yCFz/scLLa29uVnZ3tdIxTatq0aU5HOCXWrVunyMhIp2OEhKAvM88++6zy8/P12GOP6aqrrtLjjz+u7Oxs7dixQ6NGjXI6Xkjgh13w4ocdAHw1y7Zt2+kQJ5KamqpLL71UK1eu9I9deOGF+u53v6uioqKvfH5LS4tiY2PV3NysmJiYgYxqrLa2tpArM6GCMoOTFSozr7Zty+fzSZJcLldIzFgy83pi3+T3d1DPzHR0dGjz5s267777uo1nZWWptra21+f4fD7/P3jp6F8GTiwiIkLr1q1zOsZJC9UfdsDJsCwrZApxVFSU0xEQpIK6zOzfv1+dnZ1yu93dxt1utxobG3t9TlFRkR566KFAxAsZ/LADAJjMiI9mf/l/2LZt9/m/7kWLFqm5udm/NDQ0BCIiAABwSFDPzAwfPlzh4eE9ZmGampp6zNYc43K55HK5AhEPAAAEgaCemRk8eLAuu+wyVVdXdxuvrq5WWlqaQ6kAAEAwCeqZGUlasGCBZs2apUmTJunKK69UeXm56uvrdccddzgdDQAABIGgLzPTp0/XgQMHtGTJEu3du1cpKSn605/+pMTERKejAQCAIBD015k5WVxnBgAA83yT399Bfc4MAADAV6HMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYLegvmneyjl1Gp6WlxeEkAADg6zr2e/vrXA4v5MtMa2urJCkhIcHhJAAA4JtqbW1VbGzsCbcJ+SsAd3V16bPPPlN0dLQsy3I6DgZYS0uLEhIS1NDQwBWfgRDD+/v0Ytu2WltbFRcXp7CwE58VE/IzM2FhYYqPj3c6BgIsJiaGH3ZAiOL9ffr4qhmZYzgBGAAAGI0yAwAAjEaZQUhxuVz6+c9/LpfL5XQUAKcY72/0JeRPAAYAAKGNmRkAAGA0ygwAADAaZQYAABiNMoPTwpw5c/Td737X6RjAacG2bf3Lv/yLzj77bFmWpS1btjiS45NPPnH06yNwQv6ieQCAwFq/fr2efPJJvfrqqxozZoyGDx/udCSEOMoMAOCU+vjjjzVy5EilpaU5HQWnCQ4zIehkZGTo7rvvVn5+vs466yy53W6Vl5fr0KFD+uEPf6jo6Gidd955WrdunSSps7NTt99+u5KSkhQZGalx48ZpxYoVJ/watm2ruLhYY8aMUWRkpL71rW/p+eefD8TuASFtzpw5uvvuu1VfXy/LsjR69OivfL+9+uqrsixLGzZs0MSJExUZGalrr71WTU1NWrdunS688ELFxMRoxowZOnz4sP9569ev1+TJk3XmmWdq2LBhuvHGG/Xxxx+fMN+OHTt0/fXXa+jQoXK73Zo1a5b2798/YH8fCAzKDIJSRUWFhg8fro0bN+ruu+/Wj3/8Y91yyy1KS0vTO++8oylTpmjWrFk6fPiwurq6FB8fr+eee047duzQgw8+qPvvv1/PPfdcn6//wAMPaPXq1Vq5cqW2b9+u+fPn6wc/+IFqamoCuJdA6FmxYoWWLFmi+Ph47d27V3V1dV/7/eb1elVWVqba2lo1NDTo1ltvVWlpqSorK/XCCy+ourpajz76qH/7Q4cOacGCBaqrq9NLL72ksLAwTZs2TV1dXb1m27t3r9LT03XJJZdo06ZNWr9+vfbt26dbb711QP9OEAA2EGTS09PtyZMn+x8fOXLEHjJkiD1r1iz/2N69e21J9ptvvtnra+Tl5dnf+973/I9nz55t33TTTbZt2/YXX3xhR0RE2LW1td2ec/vtt9szZsw4hXsCnJ7+9V//1U5MTLRt++u931555RVbkv3iiy/61xcVFdmS7I8//tg/NnfuXHvKlCl9ft2mpiZbkr1t2zbbtm179+7dtiT73XfftW3bthcvXmxnZWV1e05DQ4MtyX7//ff7vb9wHufMIChNmDDB/+fw8HANGzZM48eP94+53W5JUlNTkyTpt7/9rf7t3/5Nn376qdra2tTR0aFLLrmk19fesWOH2tvblZmZ2W28o6NDEydOPMV7Apzevsn77fj3vdvtVlRUlMaMGdNtbOPGjf7HH3/8sRYvXqy33npL+/fv98/I1NfXKyUlpUeWzZs365VXXtHQoUN7rPv44481duzY/u0kHEeZQVA644wzuj22LKvbmGVZkqSuri4999xzmj9/vn71q1/pyiuvVHR0tJYvX663336719c+9gPvhRde0LnnntttHfd8AU6tb/J++/J7vLefA8cfQpo6daoSEhK0atUqxcXFqaurSykpKero6Ogzy9SpU7Vs2bIe60aOHPnNdgxBhTID4/3P//yP0tLSlJeX5x870UmAF110kVwul+rr65Wenh6IiMBpa6DebwcOHNDOnTv1+OOP6+qrr5Ykvf766yd8zqWXXqr//M//1OjRozVoEL/+QgnfTRjv/PPP11NPPaUNGzYoKSlJ//7v/666ujolJSX1un10dLR++tOfav78+erq6tLkyZPV0tKi2tpaDR06VLNnzw7wHgCha6Deb2eddZaGDRum8vJyjRw5UvX19brvvvtO+Jw777xTq1at0owZM/Szn/1Mw4cP10cffaQ1a9Zo1apVCg8P71cWOI8yA+Pdcccd2rJli6ZPny7LsjRjxgzl5eX5P7rdm1/84hcaMWKEioqKtGvXLp155pm69NJLdf/99wcwOXB6GIj3W1hYmNasWaN77rlHKSkpGjdunH79618rIyOjz+fExcXpjTfe0L333qspU6bI5/MpMTFR//RP/6SwMD7cazLLtm3b6RAAAAD9RRUFAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwCC0vPPP6/x48crMjJSw4YN03XXXadDhw5JklavXq0LL7xQERERuuCCC/TYY4/5n3fbbbdpwoQJ8vl8kqS//e1vuuyyyzRz5kxH9gPAwKPMAAg6e/fu1YwZM3Tbbbdp586devXVV5WTkyPbtrVq1SoVFBTo4Ycf1s6dO1VYWKjFixeroqJCkvTrX/9ahw4d0n333SdJWrx4sfbv39+t8AAILdw1G0DQeeedd3TZZZfpk08+UWJiYrd1o0aN0rJlyzRjxgz/2NKlS/WnP/1JtbW1kqQ333xT6enpuu+++1RUVKSXXnpJ11xzTUD3AUDgUGYABJ3Ozk5NmTJFGzdu1JQpU5SVlaWbb75ZR44c0YgRIxQZGamwsL9PLB85ckSxsbHat2+ff+z+++9XUVGR7r33Xj3yyCNO7AaAABnkdAAA+LLw8HBVV1ertrZWVVVVevTRR1VQUKD//u//liStWrVKqampPZ5zTFdXl9544w2Fh4frww8/DGh2AIHHOTMAgpJlWbrqqqv00EMP6d1339XgwYP1xhtv6Nxzz9WuXbt0/vnnd1uSkpL8z12+fLl27typmpoabdiwQatXr3ZwTwAMNGZmAASdt99+Wy+99JKysrI0YsQIvf322/q///s/XXjhhfJ6vbrnnnsUExOj7Oxs+Xw+bdq0SQcPHtSCBQu0ZcsWPfjgg3r++ed11VVXacWKFZo3b57S09M1ZswYp3cNwADgnBkAQWfnzp2aP3++3nnnHbW0tCgxMVF333237rrrLklSZWWlli9frh07dmjIkCEaP3688vPzlZ2drcsuu0yTJ0/W448/7n+9nJwc7du3T6+99lq3w1EAQgNlBgAAGI1zZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgtP8H1arcd3LPGTAAAAAASUVORK5CYII=\n", 882 | "text/plain": [ 883 | "
" 884 | ] 885 | }, 886 | "metadata": {}, 887 | "output_type": "display_data" 888 | } 889 | ], 890 | "source": [ 891 | "sns.boxplot(x=\"sex\",y=\"age\",data=titanic)\n" 892 | ] 893 | }, 894 | { 895 | "cell_type": "code", 896 | "execution_count": null, 897 | "id": "fa9504a6", 898 | "metadata": {}, 899 | "outputs": [], 900 | "source": [ 901 | "sns.boxplot(x=\"sex\",y=\"age\",data=titanic,hue=\"survived\")\n" 902 | ] 903 | } 904 | ], 905 | "metadata": { 906 | "kernelspec": { 907 | "display_name": "Python 3 (ipykernel)", 908 | "language": "python", 909 | "name": "python3" 910 | }, 911 | "language_info": { 912 | "codemirror_mode": { 913 | "name": "ipython", 914 | "version": 3 915 | }, 916 | "file_extension": ".py", 917 | "mimetype": "text/x-python", 918 | "name": "python", 919 | "nbconvert_exporter": "python", 920 | "pygments_lexer": "ipython3", 921 | "version": "3.9.13" 922 | } 923 | }, 924 | "nbformat": 4, 925 | "nbformat_minor": 5 926 | } 927 | -------------------------------------------------------------------------------- /Assignment_6.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "id": "c3f7d30d", 7 | "metadata": { 8 | "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", 9 | "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5", 10 | "execution": { 11 | "iopub.execute_input": "2022-03-28T06:30:15.938539Z", 12 | "iopub.status.busy": "2022-03-28T06:30:15.936733Z", 13 | "iopub.status.idle": "2022-03-28T06:30:17.132091Z", 14 | "shell.execute_reply": "2022-03-28T06:30:17.132577Z", 15 | "shell.execute_reply.started": "2022-03-28T05:42:26.685951Z" 16 | }, 17 | "papermill": { 18 | "duration": 1.224345, 19 | "end_time": "2022-03-28T06:30:17.132920", 20 | "exception": false, 21 | "start_time": "2022-03-28T06:30:15.908575", 22 | "status": "completed" 23 | }, 24 | "tags": [] 25 | }, 26 | "outputs": [], 27 | "source": [ 28 | "import numpy as np\n", 29 | "import pandas as pd\n", 30 | "from sklearn.model_selection import train_test_split\n", 31 | "from sklearn.naive_bayes import GaussianNB\n", 32 | "import matplotlib.pyplot as plt\n", 33 | "import seaborn as sns\n", 34 | "from sklearn.metrics import confusion_matrix,ConfusionMatrixDisplay,classification_report,accuracy_score, precision_score, recall_score, f1_score\n", 35 | "from sklearn.preprocessing import LabelEncoder" 36 | ] 37 | }, 38 | { 39 | "cell_type": "markdown", 40 | "id": "17e8906c", 41 | "metadata": { 42 | "papermill": { 43 | "duration": 0.02312, 44 | "end_time": "2022-03-28T06:30:17.179907", 45 | "exception": false, 46 | "start_time": "2022-03-28T06:30:17.156787", 47 | "status": "completed" 48 | }, 49 | "tags": [] 50 | }, 51 | "source": [ 52 | "* Loading the dataset" 53 | ] 54 | }, 55 | { 56 | "cell_type": "code", 57 | "execution_count": 5, 58 | "id": "176bdb3b", 59 | "metadata": { 60 | "execution": { 61 | "iopub.execute_input": "2022-03-28T06:30:17.230489Z", 62 | "iopub.status.busy": "2022-03-28T06:30:17.229515Z", 63 | "iopub.status.idle": "2022-03-28T06:30:17.260622Z", 64 | "shell.execute_reply": "2022-03-28T06:30:17.261171Z", 65 | "shell.execute_reply.started": "2022-03-28T05:42:28.173357Z" 66 | }, 67 | "papermill": { 68 | "duration": 0.058053, 69 | "end_time": "2022-03-28T06:30:17.261336", 70 | "exception": false, 71 | "start_time": "2022-03-28T06:30:17.203283", 72 | "status": "completed" 73 | }, 74 | "tags": [] 75 | }, 76 | "outputs": [ 77 | { 78 | "data": { 79 | "text/html": [ 80 | "
\n", 81 | "\n", 94 | "\n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | "
IdSepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCmSpecies
015.13.51.40.2Iris-setosa
124.93.01.40.2Iris-setosa
234.73.21.30.2Iris-setosa
344.63.11.50.2Iris-setosa
455.03.61.40.2Iris-setosa
\n", 154 | "
" 155 | ], 156 | "text/plain": [ 157 | " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species\n", 158 | "0 1 5.1 3.5 1.4 0.2 Iris-setosa\n", 159 | "1 2 4.9 3.0 1.4 0.2 Iris-setosa\n", 160 | "2 3 4.7 3.2 1.3 0.2 Iris-setosa\n", 161 | "3 4 4.6 3.1 1.5 0.2 Iris-setosa\n", 162 | "4 5 5.0 3.6 1.4 0.2 Iris-setosa" 163 | ] 164 | }, 165 | "execution_count": 5, 166 | "metadata": {}, 167 | "output_type": "execute_result" 168 | } 169 | ], 170 | "source": [ 171 | "data = pd.read_csv(\"C:/Users/coeco/Downloads/Iris (1).csv\")\n", 172 | "data.head(5)" 173 | ] 174 | }, 175 | { 176 | "cell_type": "markdown", 177 | "id": "ade4e19d", 178 | "metadata": { 179 | "papermill": { 180 | "duration": 0.023899, 181 | "end_time": "2022-03-28T06:30:17.309838", 182 | "exception": false, 183 | "start_time": "2022-03-28T06:30:17.285939", 184 | "status": "completed" 185 | }, 186 | "tags": [] 187 | }, 188 | "source": [ 189 | "* Checking Basic statistics of the dataset" 190 | ] 191 | }, 192 | { 193 | "cell_type": "code", 194 | "execution_count": 6, 195 | "id": "890e89e9", 196 | "metadata": { 197 | "execution": { 198 | "iopub.execute_input": "2022-03-28T06:30:17.362102Z", 199 | "iopub.status.busy": "2022-03-28T06:30:17.361078Z", 200 | "iopub.status.idle": "2022-03-28T06:30:17.398105Z", 201 | "shell.execute_reply": "2022-03-28T06:30:17.398606Z", 202 | "shell.execute_reply.started": "2022-03-28T05:58:28.362031Z" 203 | }, 204 | "papermill": { 205 | "duration": 0.064754, 206 | "end_time": "2022-03-28T06:30:17.398781", 207 | "exception": false, 208 | "start_time": "2022-03-28T06:30:17.334027", 209 | "status": "completed" 210 | }, 211 | "tags": [] 212 | }, 213 | "outputs": [ 214 | { 215 | "data": { 216 | "text/html": [ 217 | "
\n", 218 | "\n", 231 | "\n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | "
IdSepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCmSpecies
count150.000000150.000000150.000000150.000000150.000000150
uniqueNaNNaNNaNNaNNaN3
topNaNNaNNaNNaNNaNIris-setosa
freqNaNNaNNaNNaNNaN50
mean75.5000005.8433333.0540003.7586671.198667NaN
std43.4453680.8280660.4335941.7644200.763161NaN
min1.0000004.3000002.0000001.0000000.100000NaN
25%38.2500005.1000002.8000001.6000000.300000NaN
50%75.5000005.8000003.0000004.3500001.300000NaN
75%112.7500006.4000003.3000005.1000001.800000NaN
max150.0000007.9000004.4000006.9000002.500000NaN
\n", 345 | "
" 346 | ], 347 | "text/plain": [ 348 | " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm \\\n", 349 | "count 150.000000 150.000000 150.000000 150.000000 150.000000 \n", 350 | "unique NaN NaN NaN NaN NaN \n", 351 | "top NaN NaN NaN NaN NaN \n", 352 | "freq NaN NaN NaN NaN NaN \n", 353 | "mean 75.500000 5.843333 3.054000 3.758667 1.198667 \n", 354 | "std 43.445368 0.828066 0.433594 1.764420 0.763161 \n", 355 | "min 1.000000 4.300000 2.000000 1.000000 0.100000 \n", 356 | "25% 38.250000 5.100000 2.800000 1.600000 0.300000 \n", 357 | "50% 75.500000 5.800000 3.000000 4.350000 1.300000 \n", 358 | "75% 112.750000 6.400000 3.300000 5.100000 1.800000 \n", 359 | "max 150.000000 7.900000 4.400000 6.900000 2.500000 \n", 360 | "\n", 361 | " Species \n", 362 | "count 150 \n", 363 | "unique 3 \n", 364 | "top Iris-setosa \n", 365 | "freq 50 \n", 366 | "mean NaN \n", 367 | "std NaN \n", 368 | "min NaN \n", 369 | "25% NaN \n", 370 | "50% NaN \n", 371 | "75% NaN \n", 372 | "max NaN " 373 | ] 374 | }, 375 | "execution_count": 6, 376 | "metadata": {}, 377 | "output_type": "execute_result" 378 | } 379 | ], 380 | "source": [ 381 | "data.describe(include = 'all')" 382 | ] 383 | }, 384 | { 385 | "cell_type": "code", 386 | "execution_count": 7, 387 | "id": "daaf340e", 388 | "metadata": { 389 | "execution": { 390 | "iopub.execute_input": "2022-03-28T06:30:17.452412Z", 391 | "iopub.status.busy": "2022-03-28T06:30:17.451459Z", 392 | "iopub.status.idle": "2022-03-28T06:30:17.466852Z", 393 | "shell.execute_reply": "2022-03-28T06:30:17.467362Z", 394 | "shell.execute_reply.started": "2022-03-28T05:42:28.261673Z" 395 | }, 396 | "papermill": { 397 | "duration": 0.044028, 398 | "end_time": "2022-03-28T06:30:17.467532", 399 | "exception": false, 400 | "start_time": "2022-03-28T06:30:17.423504", 401 | "status": "completed" 402 | }, 403 | "tags": [] 404 | }, 405 | "outputs": [ 406 | { 407 | "name": "stdout", 408 | "output_type": "stream", 409 | "text": [ 410 | "\n", 411 | "RangeIndex: 150 entries, 0 to 149\n", 412 | "Data columns (total 6 columns):\n", 413 | " # Column Non-Null Count Dtype \n", 414 | "--- ------ -------------- ----- \n", 415 | " 0 Id 150 non-null int64 \n", 416 | " 1 SepalLengthCm 150 non-null float64\n", 417 | " 2 SepalWidthCm 150 non-null float64\n", 418 | " 3 PetalLengthCm 150 non-null float64\n", 419 | " 4 PetalWidthCm 150 non-null float64\n", 420 | " 5 Species 150 non-null object \n", 421 | "dtypes: float64(4), int64(1), object(1)\n", 422 | "memory usage: 7.2+ KB\n" 423 | ] 424 | } 425 | ], 426 | "source": [ 427 | "data.info()" 428 | ] 429 | }, 430 | { 431 | "cell_type": "markdown", 432 | "id": "ab3fba23", 433 | "metadata": { 434 | "papermill": { 435 | "duration": 0.024936, 436 | "end_time": "2022-03-28T06:30:17.517609", 437 | "exception": false, 438 | "start_time": "2022-03-28T06:30:17.492673", 439 | "status": "completed" 440 | }, 441 | "tags": [] 442 | }, 443 | "source": [ 444 | "* Displaying Shape of the dataset and The Types of Species to Classify" 445 | ] 446 | }, 447 | { 448 | "cell_type": "code", 449 | "execution_count": 8, 450 | "id": "540702cf", 451 | "metadata": { 452 | "execution": { 453 | "iopub.execute_input": "2022-03-28T06:30:17.572643Z", 454 | "iopub.status.busy": "2022-03-28T06:30:17.571647Z", 455 | "iopub.status.idle": "2022-03-28T06:30:17.580031Z", 456 | "shell.execute_reply": "2022-03-28T06:30:17.579499Z", 457 | "shell.execute_reply.started": "2022-03-28T05:42:28.28309Z" 458 | }, 459 | "papermill": { 460 | "duration": 0.036677, 461 | "end_time": "2022-03-28T06:30:17.580186", 462 | "exception": false, 463 | "start_time": "2022-03-28T06:30:17.543509", 464 | "status": "completed" 465 | }, 466 | "tags": [] 467 | }, 468 | "outputs": [ 469 | { 470 | "name": "stdout", 471 | "output_type": "stream", 472 | "text": [ 473 | "(150, 6)\n" 474 | ] 475 | }, 476 | { 477 | "data": { 478 | "text/plain": [ 479 | "array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)" 480 | ] 481 | }, 482 | "execution_count": 8, 483 | "metadata": {}, 484 | "output_type": "execute_result" 485 | } 486 | ], 487 | "source": [ 488 | "print(data.shape)\n", 489 | "data['Species'].unique()" 490 | ] 491 | }, 492 | { 493 | "cell_type": "markdown", 494 | "id": "dbdb4dd4", 495 | "metadata": { 496 | "papermill": { 497 | "duration": 0.027855, 498 | "end_time": "2022-03-28T06:30:17.633877", 499 | "exception": false, 500 | "start_time": "2022-03-28T06:30:17.606022", 501 | "status": "completed" 502 | }, 503 | "tags": [] 504 | }, 505 | "source": [ 506 | "* Checking for Null values" 507 | ] 508 | }, 509 | { 510 | "cell_type": "code", 511 | "execution_count": 9, 512 | "id": "f22a6c5b", 513 | "metadata": { 514 | "execution": { 515 | "iopub.execute_input": "2022-03-28T06:30:17.693626Z", 516 | "iopub.status.busy": "2022-03-28T06:30:17.692981Z", 517 | "iopub.status.idle": "2022-03-28T06:30:17.695531Z", 518 | "shell.execute_reply": "2022-03-28T06:30:17.696017Z", 519 | "shell.execute_reply.started": "2022-03-28T05:42:28.295215Z" 520 | }, 521 | "papermill": { 522 | "duration": 0.036448, 523 | "end_time": "2022-03-28T06:30:17.696187", 524 | "exception": false, 525 | "start_time": "2022-03-28T06:30:17.659739", 526 | "status": "completed" 527 | }, 528 | "tags": [] 529 | }, 530 | "outputs": [ 531 | { 532 | "data": { 533 | "text/plain": [ 534 | "Id 0\n", 535 | "SepalLengthCm 0\n", 536 | "SepalWidthCm 0\n", 537 | "PetalLengthCm 0\n", 538 | "PetalWidthCm 0\n", 539 | "Species 0\n", 540 | "dtype: int64" 541 | ] 542 | }, 543 | "execution_count": 9, 544 | "metadata": {}, 545 | "output_type": "execute_result" 546 | } 547 | ], 548 | "source": [ 549 | "data.isnull().sum()" 550 | ] 551 | }, 552 | { 553 | "cell_type": "markdown", 554 | "id": "70661c2b", 555 | "metadata": { 556 | "papermill": { 557 | "duration": 0.028302, 558 | "end_time": "2022-03-28T06:30:17.750717", 559 | "exception": false, 560 | "start_time": "2022-03-28T06:30:17.722415", 561 | "status": "completed" 562 | }, 563 | "tags": [] 564 | }, 565 | "source": [ 566 | "* As we see there are no missing values so lets split our dataset into training(x) and testing(y) " 567 | ] 568 | }, 569 | { 570 | "cell_type": "code", 571 | "execution_count": 10, 572 | "id": "f4bbdd4a", 573 | "metadata": { 574 | "execution": { 575 | "iopub.execute_input": "2022-03-28T06:30:17.811527Z", 576 | "iopub.status.busy": "2022-03-28T06:30:17.810873Z", 577 | "iopub.status.idle": "2022-03-28T06:30:17.812420Z", 578 | "shell.execute_reply": "2022-03-28T06:30:17.812949Z", 579 | "shell.execute_reply.started": "2022-03-28T05:42:28.310548Z" 580 | }, 581 | "papermill": { 582 | "duration": 0.035509, 583 | "end_time": "2022-03-28T06:30:17.813126", 584 | "exception": false, 585 | "start_time": "2022-03-28T06:30:17.777617", 586 | "status": "completed" 587 | }, 588 | "tags": [] 589 | }, 590 | "outputs": [], 591 | "source": [ 592 | "x = data.iloc[:,1:5]\n", 593 | "y = data.iloc[:,5:]" 594 | ] 595 | }, 596 | { 597 | "cell_type": "markdown", 598 | "id": "59d4daa6", 599 | "metadata": { 600 | "papermill": { 601 | "duration": 0.026279, 602 | "end_time": "2022-03-28T06:30:17.866232", 603 | "exception": false, 604 | "start_time": "2022-03-28T06:30:17.839953", 605 | "status": "completed" 606 | }, 607 | "tags": [] 608 | }, 609 | "source": [ 610 | "* Encoding the Species column" 611 | ] 612 | }, 613 | { 614 | "cell_type": "code", 615 | "execution_count": 11, 616 | "id": "7e3a839d", 617 | "metadata": { 618 | "execution": { 619 | "iopub.execute_input": "2022-03-28T06:30:17.923691Z", 620 | "iopub.status.busy": "2022-03-28T06:30:17.923053Z", 621 | "iopub.status.idle": "2022-03-28T06:30:17.929861Z", 622 | "shell.execute_reply": "2022-03-28T06:30:17.930610Z", 623 | "shell.execute_reply.started": "2022-03-28T05:42:28.322242Z" 624 | }, 625 | "papermill": { 626 | "duration": 0.037381, 627 | "end_time": "2022-03-28T06:30:17.930843", 628 | "exception": false, 629 | "start_time": "2022-03-28T06:30:17.893462", 630 | "status": "completed" 631 | }, 632 | "tags": [] 633 | }, 634 | "outputs": [ 635 | { 636 | "name": "stderr", 637 | "output_type": "stream", 638 | "text": [ 639 | "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\preprocessing\\_label.py:115: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", 640 | " y = column_or_1d(y, warn=True)\n" 641 | ] 642 | } 643 | ], 644 | "source": [ 645 | "encode = LabelEncoder()\n", 646 | "y = encode.fit_transform(y)" 647 | ] 648 | }, 649 | { 650 | "cell_type": "markdown", 651 | "id": "d661ff20", 652 | "metadata": { 653 | "papermill": { 654 | "duration": 0.026649, 655 | "end_time": "2022-03-28T06:30:17.986559", 656 | "exception": false, 657 | "start_time": "2022-03-28T06:30:17.959910", 658 | "status": "completed" 659 | }, 660 | "tags": [] 661 | }, 662 | "source": [ 663 | "* Spliting training and testing dataset by 70-30 " 664 | ] 665 | }, 666 | { 667 | "cell_type": "code", 668 | "execution_count": 12, 669 | "id": "9892536e", 670 | "metadata": { 671 | "execution": { 672 | "iopub.execute_input": "2022-03-28T06:30:18.043949Z", 673 | "iopub.status.busy": "2022-03-28T06:30:18.043266Z", 674 | "iopub.status.idle": "2022-03-28T06:30:18.049681Z", 675 | "shell.execute_reply": "2022-03-28T06:30:18.049123Z", 676 | "shell.execute_reply.started": "2022-03-28T05:42:28.337921Z" 677 | }, 678 | "papermill": { 679 | "duration": 0.036124, 680 | "end_time": "2022-03-28T06:30:18.049837", 681 | "exception": false, 682 | "start_time": "2022-03-28T06:30:18.013713", 683 | "status": "completed" 684 | }, 685 | "tags": [] 686 | }, 687 | "outputs": [], 688 | "source": [ 689 | "x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3,random_state = 0)" 690 | ] 691 | }, 692 | { 693 | "cell_type": "markdown", 694 | "id": "8a21ba02", 695 | "metadata": { 696 | "papermill": { 697 | "duration": 0.026949, 698 | "end_time": "2022-03-28T06:30:18.104532", 699 | "exception": false, 700 | "start_time": "2022-03-28T06:30:18.077583", 701 | "status": "completed" 702 | }, 703 | "tags": [] 704 | }, 705 | "source": [ 706 | "### Preparing Naive Bayes Model" 707 | ] 708 | }, 709 | { 710 | "cell_type": "code", 711 | "execution_count": 13, 712 | "id": "6d7b7603", 713 | "metadata": { 714 | "execution": { 715 | "iopub.execute_input": "2022-03-28T06:30:18.169126Z", 716 | "iopub.status.busy": "2022-03-28T06:30:18.168415Z", 717 | "iopub.status.idle": "2022-03-28T06:30:18.171271Z", 718 | "shell.execute_reply": "2022-03-28T06:30:18.171740Z", 719 | "shell.execute_reply.started": "2022-03-28T05:42:28.351393Z" 720 | }, 721 | "papermill": { 722 | "duration": 0.040105, 723 | "end_time": "2022-03-28T06:30:18.171932", 724 | "exception": false, 725 | "start_time": "2022-03-28T06:30:18.131827", 726 | "status": "completed" 727 | }, 728 | "tags": [] 729 | }, 730 | "outputs": [], 731 | "source": [ 732 | "naive_bayes = GaussianNB()\n", 733 | "naive_bayes.fit(x_train,y_train)\n", 734 | "pred = naive_bayes.predict(x_test)" 735 | ] 736 | }, 737 | { 738 | "cell_type": "code", 739 | "execution_count": 14, 740 | "id": "391c07f1", 741 | "metadata": { 742 | "execution": { 743 | "iopub.execute_input": "2022-03-28T06:30:18.230215Z", 744 | "iopub.status.busy": "2022-03-28T06:30:18.229367Z", 745 | "iopub.status.idle": "2022-03-28T06:30:18.235141Z", 746 | "shell.execute_reply": "2022-03-28T06:30:18.234518Z", 747 | "shell.execute_reply.started": "2022-03-28T05:42:28.364784Z" 748 | }, 749 | "papermill": { 750 | "duration": 0.036196, 751 | "end_time": "2022-03-28T06:30:18.235288", 752 | "exception": false, 753 | "start_time": "2022-03-28T06:30:18.199092", 754 | "status": "completed" 755 | }, 756 | "tags": [] 757 | }, 758 | "outputs": [ 759 | { 760 | "data": { 761 | "text/plain": [ 762 | "array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1,\n", 763 | " 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0,\n", 764 | " 0])" 765 | ] 766 | }, 767 | "execution_count": 14, 768 | "metadata": {}, 769 | "output_type": "execute_result" 770 | } 771 | ], 772 | "source": [ 773 | "pred" 774 | ] 775 | }, 776 | { 777 | "cell_type": "code", 778 | "execution_count": 15, 779 | "id": "00aff646", 780 | "metadata": { 781 | "execution": { 782 | "iopub.execute_input": "2022-03-28T06:30:18.296215Z", 783 | "iopub.status.busy": "2022-03-28T06:30:18.295521Z", 784 | "iopub.status.idle": "2022-03-28T06:30:18.298105Z", 785 | "shell.execute_reply": "2022-03-28T06:30:18.298651Z", 786 | "shell.execute_reply.started": "2022-03-28T06:07:17.175863Z" 787 | }, 788 | "papermill": { 789 | "duration": 0.035708, 790 | "end_time": "2022-03-28T06:30:18.298839", 791 | "exception": false, 792 | "start_time": "2022-03-28T06:30:18.263131", 793 | "status": "completed" 794 | }, 795 | "tags": [] 796 | }, 797 | "outputs": [ 798 | { 799 | "data": { 800 | "text/plain": [ 801 | "array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1,\n", 802 | " 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0,\n", 803 | " 0])" 804 | ] 805 | }, 806 | "execution_count": 15, 807 | "metadata": {}, 808 | "output_type": "execute_result" 809 | } 810 | ], 811 | "source": [ 812 | "y_test" 813 | ] 814 | }, 815 | { 816 | "cell_type": "markdown", 817 | "id": "f8c4c256", 818 | "metadata": { 819 | "papermill": { 820 | "duration": 0.027345, 821 | "end_time": "2022-03-28T06:30:18.354044", 822 | "exception": false, 823 | "start_time": "2022-03-28T06:30:18.326699", 824 | "status": "completed" 825 | }, 826 | "tags": [] 827 | }, 828 | "source": [ 829 | "* Plotting Confusion Matrix " 830 | ] 831 | }, 832 | { 833 | "cell_type": "code", 834 | "execution_count": 16, 835 | "id": "487a2eca", 836 | "metadata": { 837 | "execution": { 838 | "iopub.execute_input": "2022-03-28T06:30:18.418013Z", 839 | "iopub.status.busy": "2022-03-28T06:30:18.417236Z", 840 | "iopub.status.idle": "2022-03-28T06:30:18.420675Z", 841 | "shell.execute_reply": "2022-03-28T06:30:18.421213Z", 842 | "shell.execute_reply.started": "2022-03-28T05:42:28.393178Z" 843 | }, 844 | "papermill": { 845 | "duration": 0.039345, 846 | "end_time": "2022-03-28T06:30:18.421396", 847 | "exception": false, 848 | "start_time": "2022-03-28T06:30:18.382051", 849 | "status": "completed" 850 | }, 851 | "tags": [] 852 | }, 853 | "outputs": [ 854 | { 855 | "name": "stdout", 856 | "output_type": "stream", 857 | "text": [ 858 | "[[16 0 0]\n", 859 | " [ 0 18 0]\n", 860 | " [ 0 0 11]]\n" 861 | ] 862 | } 863 | ], 864 | "source": [ 865 | "matrix = confusion_matrix(y_test,pred,labels = naive_bayes.classes_)\n", 866 | "print(matrix)\n", 867 | "\n", 868 | "tp, fn, fp, tn = confusion_matrix(y_test,pred,labels=[1,0]).reshape(-1)" 869 | ] 870 | }, 871 | { 872 | "cell_type": "code", 873 | "execution_count": 17, 874 | "id": "b4ffbe26", 875 | "metadata": { 876 | "execution": { 877 | "iopub.execute_input": "2022-03-28T06:30:18.484841Z", 878 | "iopub.status.busy": "2022-03-28T06:30:18.483746Z", 879 | "iopub.status.idle": "2022-03-28T06:30:18.751506Z", 880 | "shell.execute_reply": "2022-03-28T06:30:18.750809Z", 881 | "shell.execute_reply.started": "2022-03-28T05:52:25.81269Z" 882 | }, 883 | "papermill": { 884 | "duration": 0.302074, 885 | "end_time": "2022-03-28T06:30:18.751646", 886 | "exception": false, 887 | "start_time": "2022-03-28T06:30:18.449572", 888 | "status": "completed" 889 | }, 890 | "tags": [] 891 | }, 892 | "outputs": [ 893 | { 894 | "data": { 895 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAG2CAYAAACEWASqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0/0lEQVR4nO3de1hVZfr/8c/CwwaNjaKBUoB2UPGsaGpZ4bey0Exrpmw0s9Qm85RRZuaYVKNk0xipI6b9Rp3Ssu+YaGUWUx46WYGHSv3qWKRMSVgaCCaCrN8f5p52YLHZ573eL691Xa1nne7Nvujmfp611mOYpmkKAAAEpTB/BwAAAOqORA4AQBAjkQMAEMRI5AAABDESOQAAQYxEDgBAECORAwAQxEjkAAAEMRI5AABBjEQOAEAQI5EDAOAFW7Zs0aBBgxQXFyfDMJSdne20vbS0VBMmTND555+viIgIJSUlKSsry+XrkMgBAPCCsrIydenSRQsWLKhx+3333acNGzbohRde0J49e3Tfffdp4sSJWrt2rUvXMZg0BQAA7zIMQ2vWrNGQIUMcbR07dtTQoUM1Y8YMR1tycrIGDBigxx9/vNbnru/JQH2tqqpK33zzjSIjI2UYhr/DAQC4yDRNHTt2THFxcQoL814n8YkTJ3Ty5Em3z2OaZrV8Y7PZZLPZXD5X3759tW7dOo0aNUpxcXHatGmT9u3bp2eeecbloIJWQUGBKYmFhYWFJciXgoICr+WKH3/80VTDeh6J85xzzqnWNnPmzN+MQZK5Zs0ap7by8nLz9ttvNyWZ9evXNxs2bGj+4x//cPnzBXVFHhkZefo/hnaRGtbzbzDwuuIFK/0dAgAPKykpVXx8j//+/9wLTp48KZ08JV1+kVTfjaq/skql7+5XQUGB7Ha7o7ku1bgkzZs3T1u3btW6deuUmJioLVu2aNy4cWrZsqWuvvrqWp8nqBO5o3ujYT0SuQXY7d77RQfgXz4ZHm0QJtV3I1f8FKLdbndK5HXx448/6uGHH9aaNWs0cOBASVLnzp21Y8cOPfXUU9ZJ5AAA1JphnF7cOd5DKioqVFFRUe2+gHr16qmqqsqlc5HIAQDWYMhRVdf5eBeUlpZq//79jvX8/Hzt2LFD0dHRSkhI0JVXXqkpU6YoIiJCiYmJ2rx5s/7xj39o7ty5Ll2HRA4AgBfk5uaqX79+jvW0tDRJ0siRI7Vs2TK99NJLmjZtmoYPH64jR44oMTFRs2bN0tixY126DokcAGARbnatu1iSp6SkyPyVV7W0aNFCS5cudSOe00jkAABr8HHXuq/wilYAAIIYFTkAwBrCjNOLO8cHIBI5AMAa6FoHAACBhoocAGANAfRCGE8ikQMArIGudQAAEGioyAEA1hCiFTmJHABgDYyRAwAQxEK0ImeMHACAIEZFDgCwBrrWAQAIYnStAwCAQENFDgCwBrrWAQAIYmFyrx86QPuwAzQsAABQG1TkAABrCNGb3UjkAABrCNExcrrWAQAIYlTkAABroGsdAIAgFqJd6yRyAIB1BGYudgtj5AAABDEqcgCANdC1DgBAEAvRm93oWgcAIIhRkQMArIGudQAAghhd6wAAoLa2bNmiQYMGKS4uToZhKDs7u9o+e/bs0Q033KCoqChFRkaqd+/eOnjwoEvXIZEDAKwhzAOLC8rKytSlSxctWLCgxu1ffPGF+vbtq3bt2mnTpk3auXOnZsyYofDwcJeuQ9c6AMAafDxGnpqaqtTU1LNunz59ugYMGKAnn3zS0XbBBRe4HBYVOQAALigpKXFaysvLXT5HVVWVXn/9dbVp00bXXnutYmJi1KtXrxq7338LiRwAYA2GBxZJ8fHxioqKciwZGRkuh1JUVKTS0lI98cQTuu666/TWW2/pxhtv1E033aTNmze7dC661gEA1uChrvWCggLZ7XZHs81mc/lUVVVVkqTBgwfrvvvukyR17dpVH3zwgRYtWqQrr7yy1ucikQMArMFDj5/Z7XanRF4XzZs3V/369dW+fXun9qSkJL333nsunYuudQAAfKxhw4bq2bOn9u7d69S+b98+JSYmunQuKnIAgDUYcrNr3bXdS0tLtX//fsd6fn6+duzYoejoaCUkJGjKlCkaOnSorrjiCvXr108bNmzQq6++qk2bNrl0HRI5AMAafPxmt9zcXPXr18+xnpaWJkkaOXKkli1bphtvvFGLFi1SRkaGJk2apLZt22r16tXq27evS9chkQMA4AUpKSkyTfNX9xk1apRGjRrl1nVI5AAAa3DzpnUzQN+1TiIHAFiCYRgy3Hz87Nfra//grnUAAIIYFTkAwBLcfR+MDAVkRU4iBwBYQpibXeumYajKg/F4Cl3rAAAEMSpyAIAleKJrPRCRyAEAluDu+2ACFV3rAeryi9tr3cTp+vqpv8t8LluDu/aqtk+7ludr7YSH9cO8FSpZ8KI+nDZH8dHN/RAtvGHhurVqPeI2hQ9MVfK4e/TuZ5/5OyR4Ed+39xkyHI+g1WkJ0D8DSOQBqrEtXDsL8jVh5eIat19wbgu9N3W2/q/wa6X85U/qkj5Zj7/2sk5UVPg4UnjDqk0bNXlRlqYPG6btWYt0eadOSp0+TQeLvvV3aPACvm+4w++JfOHChWrdurXCw8OVnJysd999198hBYQNn2/TjOyVWrNta43bZ904XOs/26ap/1yuHQX5yv/uW63/LE+HjxX7OFJ4w9zVqzX6uus0JnWAkhISlXnPOMWfG6OsV1/1d2jwAr5v3zgzRu7OEoj8mshXrVqlyZMna/r06dq+fbsuv/xypaam6uDBg/4MK+AZhqGBnXto37ffaMPkmfp27jJtffjJGrvfEXxOVlQo79/71L97D6f2/snJ+mD3bj9FBW/h+/YdErkXzJ07V6NHj9aYMWOUlJSkzMxMxcfHKysry59hBbyYyChFhkfoodSbtGHXNvV/+lGt2b5Vr4ybqivadPB3eHDTdyXFOlVVpdimTZ3aY5s2VeHRI36KCt7C9w13+e2u9ZMnTyovL08PPfSQU3v//v31wQcf1HhMeXm5ysvLHeslJSVejTFQhf30Z+HaHR8rM+d019vOgnxdemE7jb3yWm3Zt8uf4cFDfvniCtM0A/ZmG7iP79v7PPGu9UDkt4r8u+++06lTpxQbG+vUHhsbq8LCwhqPycjIUFRUlGOJj4/3RagB57vSY6qorNTubwqc2vcc+o8Smp3rp6jgKc3tUaoXFqbCI87VWNEPP1Sr2hD8+L59h651L6nxr9Cz/LSmTZum4uJix1JQUFDjfqGu4lSlPvlqv9q2OM+pvU1snA58f9hPUcFTGjZooOSL2yhnW55Te862PF3avr2fooK38H3DXX7rWm/evLnq1atXrfouKiqqVqWfYbPZZLPZfBGe3zW2heuimJaO9dbnxqhLfGsdKTumgiPf6S9vrtGqux/Qln27tHHvZ7quQ3cN6tJTKX/5kx+jhqek/e53GvHkHPVo00Z92rfX4tdf18GiIo29fpC/Q4MX8H37Rqh2rfstkTds2FDJycnKycnRjTfe6GjPycnR4MGD/RVWwOjR6iJtmvJnx/rTQ0dLkpa9/47uXDpP2ds/0tjnF2nagN9p3h/GaG/hN/pd1hy9v3+Pv0KGBw1N6afvS0r02IoXdOjIEXVMbKX1f56txLP8kYvgxvftG6H6ilbDNE2/zcq2atUqjRgxQosWLVKfPn20ePFiLVmyRLt27VJiYuJvHl9SUqKoqChpRHepYT0fRAx/Mp/L9ncIADyspOSYoqLaqbi4WHa73UvXOJ0rIif2lmGre/1qllfq2PytXo21Lvz6rvWhQ4fq+++/12OPPaZDhw6pY8eOWr9+fa2SOAAArgiTe0V1IM5FLgXApCnjxo3TuHHj/B0GACDEMUYOAEAQC9Uxcr8/fgYAAOqOihwAYA1uVuRmgFbkJHIAgCW4O0bu1vi6F9G1DgBAEKMiBwBYgrs3uwVoQU4iBwBYA13rAAAg4FCRAwAsIVS71qnIAQCWYHhgccWWLVs0aNAgxcXFyTAMZWdnn3Xfu+++W4ZhKDMz08WrkMgBAPCKsrIydenSRQsWLPjV/bKzs/XRRx8pLi6uTtehax0AYAm+vtktNTVVqampv7rP119/rQkTJujNN9/UwIED6xQXiRwAYAmeGiMvKSlxarfZbLLZbC6fr6qqSiNGjNCUKVPUoUOHOsdF1zoAwBLCDPcXSYqPj1dUVJRjycjIqFM8c+bMUf369TVp0iS3PhcVOQAALigoKJDdbnes16Uaz8vL0zPPPKNt27a5/Xw6FTkAwBLOjJG7s0iS3W53WuqSyN99910VFRUpISFB9evXV/369XXgwAHdf//9atWqlUvnoiIHAFiCITfHyD0WiTRixAhdffXVTm3XXnutRowYoTvvvNOlc5HIAQDwgtLSUu3fv9+xnp+frx07dig6OloJCQlq1qyZ0/4NGjRQixYt1LZtW5euQyIHAFiCrx8/y83NVb9+/RzraWlpkqSRI0dq2bJldY7jl0jkAABL8PUrWlNSUmSaZq33/+qrr1y7wE+42Q0AgCBGRQ4AsIS6vC/9l8cHIhI5AMASmI8cAAAEHCpyAIAlhOp85CRyAIAlGGGGjDA3utbdONabSOQAAGtwc4w8UEtyxsgBAAhiVOQAAEsI1bvWSeQAAEsI1Zvd6FoHACCIUZEDACyBrnUAAIJYqD5+Rtc6AABBjIocAGAJp292c6dr3YPBeBCJHABgCaE6Rk7XOgAAQYyKHABgCaFakZPIAQCWYISdXtw5PhCRyAEAlmDIzYpcgVmRB+jfFwAAoDaoyAEAlsAYOQAAwSxEZ02hax0AgCBGRQ4AsAS61gEACGKh+vhZgIYFAABqg4ocAGAJdK0DABDEQjWR07UOAEAQI5EDACzhTEXuzuKKLVu2aNCgQYqLi5NhGMrOznZsq6io0NSpU9WpUyc1btxYcXFxuv322/XNN9+4/LlI5AAASzDCDLcXV5SVlalLly5asGBBtW3Hjx/Xtm3bNGPGDG3btk2vvPKK9u3bpxtuuMHlz8UYOQDAEnw9Rp6amqrU1NQat0VFRSknJ8epbf78+brkkkt08OBBJSQk1Po6JHIAAFxQUlLitG6z2WSz2dw+b3FxsQzDUJMmTVw6LiQSefGClbLbI/0dBrzM6H+1v0OAD5lv/cvfISDUuPmq9TOzmMbHxzs1z5w5U+np6W6cWDpx4oQeeughDRs2THa73aVjQyKRAwDwWzzVtV5QUOCUbN2txisqKnTrrbeqqqpKCxcudPl4EjkAAC6w2+0uV81nU1FRoVtuuUX5+fl655136nReEjkAwBIC7YUwZ5L4v//9b23cuFHNmjWr03lI5AAAS6jLI2S/PN4VpaWl2r9/v2M9Pz9fO3bsUHR0tOLi4vT73/9e27Zt02uvvaZTp06psLBQkhQdHa2GDRvW+jokcgAAvCA3N1f9+vVzrKelpUmSRo4cqfT0dK1bt06S1LVrV6fjNm7cqJSUlFpfh0QOALAEX3etp6SkyDTNs27/tW2uIJEDACzBkHuPnwXmlCm8ohUAgKBGRQ4AsIRAu2vdU0jkAABL8PVd675CIgcAWEKoVuSMkQMAEMSoyAEA1hCit62TyAEAlmC4OftZgPas07UOAEAwoyIHAFhCmGEozI2y2p1jvYlEDgCwBO5aBwAAAYeKHABgCXStAwAQxEjkAAAEMcPNRM4YOQAA8DgqcgCAJYTqXeskcgCAJYTJUJgb71l151hvomsdAIAgRkUOALCEMOP04s7xgYhEDgCwhFAdI6drHQCAIEZFDgCwBEu/EGbevHm1PuGkSZPqHAwAAN5i6UT+9NNP1+pkhmGQyAEA8KFaJfL8/HxvxwEAgFeFakVe55vdTp48qb1796qystKT8QAA4BWGB/4FIpcT+fHjxzV69Gg1atRIHTp00MGDByWdHht/4oknPB4gAACecKYid2cJRC4n8mnTpmnnzp3atGmTwsPDHe1XX321Vq1a5dHgAADAr3P58bPs7GytWrVKvXv3dno4vn379vriiy88GhwAAJ4SJjfHyEOla/3w4cOKiYmp1l5WVhawb70BAMBws1vd1Ry3ZcsWDRo0SHFxcTIMQ9nZ2U7bTdNUenq64uLiFBERoZSUFO3atcvlz+VyIu/Zs6def/11x/qZD7ZkyRL16dPH5QAAAAhFZWVl6tKlixYsWFDj9ieffFJz587VggUL9Mknn6hFixa65pprdOzYMZeu43LXekZGhq677jrt3r1blZWVeuaZZ7Rr1y59+OGH2rx5s6unAwDAJwzj9OLO8a5ITU1VampqjdtM01RmZqamT5+um266SZK0fPlyxcbGauXKlbr77rtrfR2XK/JLL71U77//vo4fP64LL7xQb731lmJjY/Xhhx8qOTnZ1dMBAOATnrprvaSkxGkpLy93OZb8/HwVFhaqf//+jjabzaYrr7xSH3zwgUvnqtO71jt16qTly5fX5VAAAIJafHy80/rMmTOVnp7u0jkKCwslSbGxsU7tsbGxOnDggEvnqlMiP3XqlNasWaM9e/bIMAwlJSVp8ODBql+fOVgAAIHJU292KygokN1ud7TbbLY6n/OXN9CZpunyTXUuZ97PP/9cgwcPVmFhodq2bStJ2rdvn84991ytW7dOnTp1cvWUAAB4nSG59Xa2M0fa7XanRF4XLVq0kHS6Mm/ZsqWjvaioqFqV/ltcHiMfM2aMOnTooP/85z/atm2btm3bpoKCAnXu3Fl//OMfXT0dAACW07p1a7Vo0UI5OTmOtpMnT2rz5s269NJLXTqXyxX5zp07lZubq6ZNmzramjZtqlmzZqlnz56ung4AAJ/w9aQppaWl2r9/v2M9Pz9fO3bsUHR0tBISEjR58mTNnj1bF198sS6++GLNnj1bjRo10rBhw1y6jsuJvG3btvr222/VoUMHp/aioiJddNFFrp4OAACf8HUiz83NVb9+/RzraWlpkqSRI0dq2bJlevDBB/Xjjz9q3LhxOnr0qHr16qW33npLkZGRLl2nVom8pKTE8d+zZ8/WpEmTlJ6ert69e0uStm7dqscee0xz5sxx6eIAAPiKrxN5SkqKTNM863bDMJSenu7yHe+/VKtE3qRJE6e76EzT1C233OJoOxPooEGDdOrUKbcCAgAAtVerRL5x40ZvxwEAgFcZdXhf+i+PD0S1SuRXXnmlt+MAAMCrwozTizvHB6I6v8Hl+PHjOnjwoE6ePOnU3rlzZ7eDAgAAteNyIj98+LDuvPNOvfHGGzVuZ4wcABCIwmS4Nad4yMxHPnnyZB09elRbt25VRESENmzYoOXLl+viiy/WunXrvBEjAABu8/V85L7ickX+zjvvaO3aterZs6fCwsKUmJioa665Rna7XRkZGRo4cKA34gQAADVwuSIvKytTTEyMJCk6OlqHDx+WdHpGtG3btnk2OgAAPOTMXevuLIHI5UTetm1b7d27V5LUtWtXPfvss/r666+1aNEipxe/wzsWrlur1iNuU/jAVCWPu0fvfvaZv0OCB1zeqZPWPfa4vn7xJZlv/UuDf/Gu5cbh4Zo/foIKVryo46++rt3P/T+NvX6Qn6KFN/C77X2emo880NRpjPzQoUOSTs/BumHDBiUkJGjevHmaPXu2xwPEf63atFGTF2Vp+rBh2p61SJd36qTU6dN0sOhbf4cGNzUOD9fOL7/UhAULatz+9Nhxuq5HT9025wkljRmlp195RfPHT9ANfVybXAGBid9tuMPlRD58+HDdcccdkqRu3brpq6++0ieffKKCggINHTrUpXNt2bJFgwYNUlxcnAzDUHZ2tqvhWMrc1as1+rrrNCZ1gJISEpV5zzjFnxujrFdf9XdocNOGTz7RjGVLteb992rc3qd9kpb/6y1t/nSnDnz7rZasf107v/xCPdq08XGk8AZ+t32DivwsGjVqpO7du6t58+YuH1tWVqYuXbpowVmqEPzXyYoK5f17n/p37+HU3j85WR/s3u2nqOAr733+uW7ofanimjWTJKV06aI2552vN3Nz/RwZ3MXvtu+E6hh5re5aPzNjS23MnTu31vumpqYqNTW11vtb2XclxTpVVaXYn00fK0mxTZuq8OgRP0UFX5m08G9acl+avn5xlSoqK1VVVaUxT8/V+7s+93docBO/277j60lTfKVWiXz79u21Opm3/1opLy9XeXm5Y/3ns7JZxS9/xqZpygjQlxTAcyYNuVG92yVp0CN/0oFvv9UVnTpr4cRJOnTkiN7eztMioYDfbdRVUE2akpGRoUcffdTfYfhFc3uU6oWFqfCI81/oRT/8UO0veYSW8IYNNfvOUbrx0XSt//gjSdJn+fnqeuGFeuD3N5PIgxy/274TJvfGk90ei/aSQI2rRtOmTVNxcbFjKSgo8HdIPtOwQQMlX9xGOdvynNpztuXp0vbt/RQVfKFB/fpq2KCBqswqp/ZTVVUKC9RZHFBr/G77jqXHyAOFzWaTzWbzdxh+k/a732nEk3PUo00b9WnfXotff10Hi4p4njgENA4P10Vx5znWW7doqS4XXKgjx46p4HCRNu3cqb/c9Uf9WH5SB4q+1ZWdOuv2q69R2rOL/Bg1PIXfbbgjqBK51Q1N6afvS0r02IoXdOjIEXVMbKX1f56txNhYf4cGN/Vo01abnvqrY/3psfdIkpa99abufOovunX2n5UxarRWPDRN0ZGROlD0raYv+7sWvcbjSaGA323fsPTNbt5SWlqq/fv3O9bz8/O1Y8cORUdHKyEhwY+RBa5xNwzWuBsG+zsMeNjmT3fK6H/1Wbd/e/SoRv31KR9GBF/jd9v7wuTmfOQei8Sz/JrIc3Nz1a9fP8f6mcfcRo4cqWXLlvkpKgAAgked/sB4/vnnddlllykuLk4HDhyQJGVmZmrt2rUunSclJUWmaVZbSOIAAE8zPPAvELmcyLOyspSWlqYBAwbohx9+0KlTpyRJTZo0UWZmpqfjAwDAI0J1PnKXE/n8+fO1ZMkSTZ8+XfXq1XO09+jRQ58xWw8AAD7l8hh5fn6+unXrVq3dZrOprKzMI0EBAOBpYYabN7sFZkHuekXeunVr7dixo1r7G2+8ofa8vAAAEKBCdYzc5Yp8ypQpGj9+vE6cOCHTNPXxxx/rxRdfVEZGhp577jlvxAgAgNt4jvwnd955pyorK/Xggw/q+PHjGjZsmM477zw988wzuvXWW70RIwAAOIs6PUd+11136a677tJ3332nqqoqxcTEeDouAAA8KlTHyN16IUzz5s09FQcAAF5lGO5Ntx2gPeuuJ/LWrVv/6g/iyy+/dCsgAABQey4n8smTJzutV1RUaPv27dqwYYOmTJniqbgAAPCoMBkKc+POc1ePraysVHp6ulasWKHCwkK1bNlSd9xxh/70pz8pLMxzb253OZHfe++9Nbb/7W9/U25urtsBAQDgDb4eI58zZ44WLVqk5cuXq0OHDsrNzdWdd96pqKios+bSOsXlqROlpqZq9erVnjodAABB7cMPP9TgwYM1cOBAtWrVSr///e/Vv39/jxe9Hkvk//znPxUdHe2p0wEA4FHGT+9Ld2eRpJKSEqelvLy8xuv17dtXb7/9tvbt2ydJ2rlzp9577z0NGDDAo5/L5a71bt26Od3sZpqmCgsLdfjwYS1cuNCjwQEA4CmeGiOPj493ap85c6bS09Or7T916lQVFxerXbt2qlevnk6dOqVZs2bpD3/4Q51jqInLiXzIkCFO62FhYTr33HOVkpKidu3aeSouAAACUkFBgex2u2PdZrPVuN+qVav0wgsvaOXKlerQoYN27NihyZMnKy4uTiNHjvRYPC4l8srKSrVq1UrXXnutWrRo4bEgAADwNsPNm93OdEbb7XanRH42U6ZM0UMPPeR462mnTp104MABZWRkeDSRuzRGXr9+fd1zzz1nHQ8AACBQeWqMvLaOHz9e7TGzevXqqaqqypMfy/Wu9V69emn79u1KTEz0aCAAAHiTrydNGTRokGbNmqWEhAR16NBB27dv19y5czVq1Kg6x1ATlxP5uHHjdP/99+s///mPkpOT1bhxY6ftnTt39lhwAAAEq/nz52vGjBkaN26cioqKFBcXp7vvvluPPPKIR69T60Q+atQoZWZmaujQoZKkSZMmObYZhiHTNGUYhk6dOuXRAAEA8IQwuffMtavHRkZGKjMzU5mZmW5c9bfVOpEvX75cTzzxhPLz870ZDwAAXlGXce5fHh+Iap3ITdOUJMbGAQAIIC6NkQfqXyMAAPwWX9/s5isuJfI2bdr8ZjI/cuSIWwEBAOANvp40xVdcSuSPPvqooqKivBULAABwkUuJ/NZbb1VMTIy3YgEAwGuMn/65c3wgqnUiZ3wcABDMQrVrvdaPxZ25ax0AAASOWlfknn43LAAAvsRd6wAABDHLj5EDABDMPDWNaaBx57WzAADAz6jIAQCWwBg5AABBzJCbk6YE6Bg5XesAAAQxKnIAgCX4ej5yXyGRAwAsIVTHyAP1DwwAAFALVOQAAEswDDdvdgvQipxEDgCwhFAdIw/UuAAAQC1QkQMALIGudQAAglio3rVOIgcAWILx0+LO8YGIMXIAAIIYFTkAwBIYIwcAIIidfvzMjTFyz4XiUYEaFwAAqAUqcgCAJRjG6cWd4wMRiRwAYAmGm4+fBeoYOV3rAAB4yddff63bbrtNzZo1U6NGjdS1a1fl5eV59BpU5AAASzB++ufO8a44evSoLrvsMvXr109vvPGGYmJi9MUXX6hJkyZ1jqEmJHIAgCX4eox8zpw5io+P19KlSx1trVq1qnsAZ0HXOgAAXrBu3Tr16NFDN998s2JiYtStWzctWbLE49ehIkfQMN/6l79DgA9d+8rD/g4BPlB5/KTPrhUmw83nyE8fW1JS4tRus9lks9mq7f/ll18qKytLaWlpevjhh/Xxxx9r0qRJstlsuv322+scR/W4AACwgDNvdnNnkaT4+HhFRUU5loyMjBqvV1VVpe7du2v27Nnq1q2b7r77bt11113Kysry6OeiIgcAWIKnxsgLCgpkt9sd7TVV45LUsmVLtW/f3qktKSlJq1evrnsQNSCRAwDgArvd7pTIz+ayyy7T3r17ndr27dunxMREj8ZDIgcAWIKnxshr67777tOll16q2bNn65ZbbtHHH3+sxYsXa/HixXWOoea4AACwAE+NkddWz549tWbNGr344ovq2LGjHn/8cWVmZmr48OEe/VxU5AAAeMn111+v66+/3qvXIJEDACwhTO51QwdqFzaJHABgCXXpHv/l8YEoUP/AAAAAtUBFDgCwhFCtyEnkAABLCNUx8kCNCwAA1AIVOQDAEuhaBwAgqBky3Hizm9w61ntI5AAASwgzTi/uHB+IGCMHACCIUZEDACzBcLNr3b1uee8hkQMALCHMMBTmxg1r7hzrTXStAwAQxKjIAQCWYBinF3eOD0QkcgCAJYTqGDld6wAABDEqcgCAJYTJzZvdArQiJ5EDACzBkHvvZgvMNE7XOgAAQY2KHABgCaH6HDmJHABgCcx+BgBAEGOMHAAABBwqcgCAJTBGDgBAEDvdte7Om90CE13rAAAEMSpyAIA1uDlpSqCW5CRyAIAlMGkKAAAIOFTkAABLoCIHACCYGR5Y6igjI0OGYWjy5Ml1P8lZkMgBAPCiTz75RIsXL1bnzp29cn4SOQDAEgwP/HNVaWmphg8friVLlqhp06Ze+FQkcgCARZyZNMWdxVXjx4/XwIEDdfXVV3vhE53GzW4AAEvw1KQpJSUlTu02m002m63a/i+99JLy8vKUm5vrxlV/GxU5AAAuiI+PV1RUlGPJyMiotk9BQYHuvfderVixQuHh4V6Nh4ocAGAJnnr8rKCgQHa73dFeUzWel5enoqIiJScnO9pOnTqlLVu2aMGCBSovL1e9evXqHMvPkcgBAJZQ13Hunx8vSXa73SmR1+Sqq67SZ5995tR25513ql27dpo6darHkrhEIgcAwOMiIyPVsWNHp7bGjRurWbNm1drdRSIHAFiCp252CzQkcgCAJfj7Fa2bNm1y6/iz4a51AACCGBU5AMASPHWzW6AhkQMALCFUx8jpWgcAIIhRkQMALIGudQAAgpi/71r3FhI5AMASQjWRM0YOAEAQoyIHAFiCYZxe3Dk+EJHIg8zCdWv1l//9Xx068r06JLZS5j3jdHmnTv4OC17Adx2aOjZrpZvbXK6Lm5ynZhF2pX/4vD48tMex/bK4DhrQuqcubnKeomyNdc/b8/Vl8SE/Rhw66Fr3goyMDPXs2VORkZGKiYnRkCFDtHfvXn+GFNBWbdqoyYuyNH3YMG3PWqTLO3VS6vRpOlj0rb9Dg4fxXYeu8PoN9WVxof6289Wat9droN3fH9Tfd73p48gQrPyayDdv3qzx48dr69atysnJUWVlpfr376+ysjJ/hhWw5q5erdHXXacxqQOUlJCozHvGKf7cGGW9WvP/EBC8+K5DV+63+7R8d47e/2ZXjdvfLtihFf/3jrYX7fdxZKHP8MC/QOTXrvUNGzY4rS9dulQxMTHKy8vTFVdc4aeoAtPJigrl/XufHhp6q1N7/+RkfbB7t5+igjfwXQNe4uYYeYDm8cAaIy8uLpYkRUdH17i9vLxc5eXljvWSkhKfxBUIvisp1qmqKsU2berUHtu0qQqPHvFTVPAGvmsArgiYx89M01RaWpr69u171knXMzIyFBUV5Vji4+N9HKX//fLNQqZpBmx3D9zDdw14muGBJfAETCKfMGGCPv30U7344otn3WfatGkqLi52LAUFBT6M0L+a26NULyxMhUecK7KiH36oVrkhuPFdA95x5hWt7iyBKCAS+cSJE7Vu3Tpt3LhR559//ln3s9lsstvtTotVNGzQQMkXt1HOtjyn9pxtebq0fXs/RQVv4LsG4Aq/jpGbpqmJEydqzZo12rRpk1q3bu3PcAJe2u9+pxFPzlGPNm3Up317LX79dR0sKtLY6wf5OzR4GN916Aqv11Bx5zRzrLdoHK0Lolrq2MnjOvxjsSIbROjcRk3ULDxSkhR/TnNJ0tETx3S0vNQvMYeKUJ3G1K+JfPz48Vq5cqXWrl2ryMhIFRYWSpKioqIUERHhz9AC0tCUfvq+pESPrXhBh44cUcfEVlr/59lKjI31d2jwML7r0NWm6Xn6yxV3OdbHdh4oSXrrQJ7+mrdavVsm6YEev3dsf7jXHyRJz+95Wy/sedu3wYaYUH0hjGGapum3i59lvGHp0qW64447fvP4kpISRUVFqbj4/2S3R3o4OgD+dO0rD/s7BPhA5fGTemfEiyouLvbacOmZXFHw3f/Kbm/kxnmOK775zV6NtS783rUOAADqLqCeIwcAwFsYIwcAIIiF6hh5QDx+BgAA6oaKHABgCafnI3ejIg/MgpxEDgCwBrrWAQBAwKEiBwBYguHmNKZ0rQMA4Ed0rQMAgIBDRQ4AsIjQfCUMFTkAwCLCPLDUXkZGhnr27KnIyEjFxMRoyJAh2rt3r4c+y3+RyAEAlmB44J8rNm/erPHjx2vr1q3KyclRZWWl+vfvr7KyMo9+LrrWAQDwgg0bNjitL126VDExMcrLy9MVV1zhseuQyAEAFuGZMfKSkhKnVpvNJpvN9ptHFxcXS5Kio6PdiKE6utYBABbhmTHy+Ph4RUVFOZaMjIzfvLJpmkpLS1Pfvn3VsWNHj34qKnIAAFxQUFAgu93uWK9NNT5hwgR9+umneu+99zweD4kcAGANHnq1m91ud0rkv2XixIlat26dtmzZovPPP7/u1z8LEjkAwBJ8/WY30zQ1ceJErVmzRps2bVLr1q3rfO1fQyIHAMALxo8fr5UrV2rt2rWKjIxUYWGhJCkqKkoREREeuw43uwEALMK3L4TJyspScXGxUlJS1LJlS8eyatUqD32e06jIAQAW4dtXtJqm6ca1ao+KHACAIEZFDgCwCNe7x6sfH3hI5AAASwjV+chJ5AAACwnMZOyOwOwnAAAAtUJFDgCwCMbIAQAIYr59/MxXAvPPCwAAUCtU5AAASzAUJsON+tWdY72JRA4AsAi61gEAQIChIgcAWIOH5iMPNCRyAIBFhObjZ4EZFQAAqBUqcgCAJfCudQAAglpo3rVOIgcAWARj5AAAIMBQkQMALIKudQAAglaovqI1MKMCAAC1QkUOALAIutYBAAhygZmM3UHXOgAAQYyKHABgEaH5HDmJHABgCYZhyHBjBjN3jvWmwPzzAgAA1AoVOQDAIrhrHQCAIMYYOQAAQSw0K/LA/PMCAIAQsXDhQrVu3Vrh4eFKTk7Wu+++69Hzk8gBAJZw5l3r7iyuWrVqlSZPnqzp06dr+/btuvzyy5WamqqDBw967HORyAEAFmF4YHHN3LlzNXr0aI0ZM0ZJSUnKzMxUfHy8srKyPPB5TgvqMXLTNCVJJSWlfo4EgKdVHj/p7xDgA5U/Vkj67//Pvamk5JhHji8pKXFqt9lsstls1fY/efKk8vLy9NBDDzm19+/fXx988IFbsfxcUCfyY8dO/1Dj43v4ORIAgDuOHTumqKgor5y7YcOGatGiheLje7p9rnPOOUfx8fFObTNnzlR6enq1fb/77judOnVKsbGxTu2xsbEqLCx0O5YzgjqRx8XFqaCgQJGRkQH7xh1vKCkpUXx8vAoKCmS32/0dDryI79o6rPpdm6apY8eOKS4uzmvXCA8PV35+vk6edL+XxzTNavmmpmr85365f03ncEdQJ/KwsDCdf/75/g7Db+x2u6V+4a2M79o6rPhde6sS/7nw8HCFh4d7/To/17x5c9WrV69a9V1UVFStSncHN7sBAOAFDRs2VHJysnJycpzac3JydOmll3rsOkFdkQMAEMjS0tI0YsQI9ejRQ3369NHixYt18OBBjR071mPXIJEHIZvNppkzZ/7muAyCH9+1dfBdh6ahQ4fq+++/12OPPaZDhw6pY8eOWr9+vRITEz12DcP0xT3/AADAKxgjBwAgiJHIAQAIYiRyAACCGIkcAIAgRiIPMt6eDg+BYcuWLRo0aJDi4uJkGIays7P9HRK8JCMjQz179lRkZKRiYmI0ZMgQ7d27199hIYiQyIOIL6bDQ2AoKytTly5dtGDBAn+HAi/bvHmzxo8fr61btyonJ0eVlZXq37+/ysrK/B0aggSPnwWRXr16qXv37k7T3yUlJWnIkCHKyMjwY2TwJsMwtGbNGg0ZMsTfocAHDh8+rJiYGG3evFlXXHGFv8NBEKAiDxJnpsPr37+/U7unp8MD4F/FxcWSpOjoaD9HgmBBIg8SvpoOD4D/mKaptLQ09e3bVx07dvR3OAgSvKI1yHh7OjwA/jNhwgR9+umneu+99/wdCoIIiTxI+Go6PAD+MXHiRK1bt05btmyx9PTMcB1d60HCV9PhAfAt0zQ1YcIEvfLKK3rnnXfUunVrf4eEIENFHkR8MR0eAkNpaan279/vWM/Pz9eOHTsUHR2thIQEP0YGTxs/frxWrlyptWvXKjIy0tHrFhUVpYiICD9Hh2DA42dBZuHChXryyScd0+E9/fTTPKISgjZt2qR+/fpVax85cqSWLVvm+4DgNWe7x2Xp0qW64447fBsMghKJHACAIMYYOQAAQYxEDgBAECORAwAQxEjkAAAEMRI5AABBjEQOAEAQI5EDABDESOSAm9LT09W1a1fH+h133OGXucO/+uorGYahHTt2nHWfVq1aKTMzs9bnXLZsmZo0aeJ2bIZhKDs72+3zAKiORI6QdMcdd8gwDBmGoQYNGuiCCy7QAw88oLKyMq9f+5lnnqn129dqk3wB4NfwrnWErOuuu05Lly5VRUWF3n33XY0ZM0ZlZWXKysqqtm9FRYUaNGjgketGRUV55DwAUBtU5AhZNptNLVq0UHx8vIYNG6bhw4c7unfPdIf//e9/1wUXXCCbzSbTNFVcXKw//vGPiomJkd1u1//8z/9o586dTud94oknFBsbq8jISI0ePVonTpxw2v7LrvWqqirNmTNHF110kWw2mxISEjRr1ixJcsx01a1bNxmGoZSUFMdxS5cuVVJSksLDw9WuXTstXLjQ6Toff/yxunXrpvDwcPXo0UPbt293+Wc0d+5cderUSY0bN1Z8fLzGjRun0tLSavtlZ2erTZs2Cg8P1zXXXKOCggKn7a+++qqSk5MVHh6uCy64QI8++qgqKytdjgeA60jksIyIiAhVVFQ41vfv36+XX35Zq1evdnRtDxw4UIWFhVq/fr3y8vLUvXt3XXXVVTpy5Igk6eWXX9bMmTM1a9Ys5ebmqmXLltUS7C9NmzZNc+bM0YwZM7R7926tXLnSMYf8xx9/LEn617/+pUOHDumVV16RJC1ZskTTp0/XrFmztGfPHs2ePVszZszQ8uXLJUllZWW6/vrr1bZtW+Xl5Sk9PV0PPPCAyz+TsLAwzZs3T59//rmWL1+ud955Rw8++KDTPsePH9esWbO0fPlyvf/++yopKdGtt97q2P7mm2/qtttu06RJk7R79249++yzWrZsmeOPFQBeZgIhaOTIkebgwYMd6x999JHZrFkz85ZbbjFN0zRnzpxpNmjQwCwqKnLs8/bbb5t2u908ceKE07kuvPBC89lnnzVN0zT79Oljjh071ml7r169zC5dutR47ZKSEtNms5lLliypMc78/HxTkrl9+3an9vj4eHPlypVObY8//rjZp08f0zRN89lnnzWjo6PNsrIyx/asrKwaz/VziYmJ5tNPP33W7S+//LLZrFkzx/rSpUtNSebWrVsdbXv27DElmR999JFpmqZ5+eWXm7Nnz3Y6z/PPP2+2bNnSsS7JXLNmzVmvC6DuGCNHyHrttdd0zjnnqLKyUhUVFRo8eLDmz5/v2J6YmKhzzz3XsZ6Xl6fS0lI1a9bM6Tw//vijvvjiC0nSnj17qs3/3qdPH23cuLHGGPbs2aPy8nJdddVVtY778OHDKigo0OjRo3XXXXc52isrKx3j73v27FGXLl3UqFEjpzhctXHjRs2ePVu7d+9WSUmJKisrdeLECZWVlalx48aSpPr166tHjx6OY9q1a6cmTZpoz549uuSSS5SXl6dPPvnEqQI/deqUTpw4oePHjzvFCMDzSOQIWf369VNWVpYaNGiguLi4ajeznUlUZ1RVVally5batGlTtXPV9RGsiIgIl4+pqqqSdLp7vVevXk7b6tWrJ0kyPTD78IEDBzRgwACNHTtWjz/+uKKjo/Xee+9p9OjRTkMQUs1zZp9pq6qq0qOPPqqbbrqp2j7h4eFuxwng15HIEbIaN26siy66qNb7d+/eXYWFhapfv75atWpV4z5JSUnaunWrbr/9dkfb1q1bz3rOiy++WBEREXr77bc1ZsyYatsbNmwo6XQFe0ZsbKzOO+88ffnllxo+fHiN523fvr2ef/55/fjjj44/Fn4tjprk5uaqsrJSf/3rXxUWdvp2mZdffrnafpWVlcrNzdUll1wiSdq7d69++OEHtWvXTtLpn9vevXtd+lkD8BwSOfCTq6++Wn369NGQIUM0Z84ctW3bVt98843Wr1+vIUOGqEePHrr33ns1cuRI9ejRQ3379tWKFSu0a9cuXXDBBTWeMzw8XFOnTtWDDz6ohg0b6rLLLtPhw4e1a9cujR49WjExMYqIiNCGDRt0/vnnKzw8XFFRUUpPT9ekSZNkt9uVmpqq8vJy5ebm6ujRo0pLS9OwYcM0ffp0jR49Wn/605/01Vdf6amnnnLp81544YWqrKzU/PnzNWjQIL3//vtatGhRtf0aNGigiRMnat68eWrQoIEmTJig3r17OxL7I488ouuvv17x8fG6+eabFRYWpk8//VSfffaZ/vznP7v+RQBwCXetAz8xDEPr16/XFVdcoVGjRqlNmza69dZb9dVXXznuMh86dKgeeeQRTZ06VcnJyTpw4IDuueeeXz3vjBkzdP/99+uRRx5RUlKShg4dqqKiIkmnx5/nzZunZ599VnFxcRo8eLAkacyYMXruuee0bNkyderUSVdeeaWWLVvmeFztnHPO0auvvqrdu3erW7dumj59uubMmePS5+3atavmzp2rOXPmqGPHjlqxYoUyMjKq7deoUSNNnTpVw4YNU58+fRQREaGXXnrJsf3aa6/Va6+9ppycHPXs2VO9e/fW3LlzlZiY6FI8AOrGMD0x2AYAAPyCihwAgCBGIgcAIIiRyAEACGIkcgAAghiJHACAIEYiBwAgiJHIAQAIYiRyAACCGIkcAIAgRiIHACCIkcgBAAhiJHIAAILY/weKKG913rKXBgAAAABJRU5ErkJggg==\n", 896 | "text/plain": [ 897 | "
" 898 | ] 899 | }, 900 | "metadata": {}, 901 | "output_type": "display_data" 902 | } 903 | ], 904 | "source": [ 905 | "conf_matrix = ConfusionMatrixDisplay(confusion_matrix=matrix,display_labels=naive_bayes.classes_)\n", 906 | "conf_matrix.plot(cmap=plt.cm.YlGn)\n", 907 | "plt.show()" 908 | ] 909 | }, 910 | { 911 | "cell_type": "markdown", 912 | "id": "e67b5772", 913 | "metadata": { 914 | "papermill": { 915 | "duration": 0.029507, 916 | "end_time": "2022-03-28T06:30:18.810296", 917 | "exception": false, 918 | "start_time": "2022-03-28T06:30:18.780789", 919 | "status": "completed" 920 | }, 921 | "tags": [] 922 | }, 923 | "source": [ 924 | "* Evaluating our model and calculating TN,FN,TP,FP Accuracy,Recall,Precision,ErrorRate," 925 | ] 926 | }, 927 | { 928 | "cell_type": "code", 929 | "execution_count": 18, 930 | "id": "4e802416", 931 | "metadata": { 932 | "execution": { 933 | "iopub.execute_input": "2022-03-28T06:30:18.874162Z", 934 | "iopub.status.busy": "2022-03-28T06:30:18.873093Z", 935 | "iopub.status.idle": "2022-03-28T06:30:18.881353Z", 936 | "shell.execute_reply": "2022-03-28T06:30:18.881875Z", 937 | "shell.execute_reply.started": "2022-03-28T05:49:18.507494Z" 938 | }, 939 | "papermill": { 940 | "duration": 0.042481, 941 | "end_time": "2022-03-28T06:30:18.882045", 942 | "exception": false, 943 | "start_time": "2022-03-28T06:30:18.839564", 944 | "status": "completed" 945 | }, 946 | "tags": [] 947 | }, 948 | "outputs": [ 949 | { 950 | "name": "stdout", 951 | "output_type": "stream", 952 | "text": [ 953 | " precision recall f1-score support\n", 954 | "\n", 955 | " 0 1.00 1.00 1.00 16\n", 956 | " 1 1.00 1.00 1.00 18\n", 957 | " 2 1.00 1.00 1.00 11\n", 958 | "\n", 959 | " accuracy 1.00 45\n", 960 | " macro avg 1.00 1.00 1.00 45\n", 961 | "weighted avg 1.00 1.00 1.00 45\n", 962 | "\n" 963 | ] 964 | } 965 | ], 966 | "source": [ 967 | "print(classification_report(y_test,pred))" 968 | ] 969 | }, 970 | { 971 | "cell_type": "code", 972 | "execution_count": 19, 973 | "id": "5c090c10", 974 | "metadata": { 975 | "execution": { 976 | "iopub.execute_input": "2022-03-28T06:30:18.946931Z", 977 | "iopub.status.busy": "2022-03-28T06:30:18.945950Z", 978 | "iopub.status.idle": "2022-03-28T06:30:18.955196Z", 979 | "shell.execute_reply": "2022-03-28T06:30:18.954520Z", 980 | "shell.execute_reply.started": "2022-03-28T05:49:06.971284Z" 981 | }, 982 | "papermill": { 983 | "duration": 0.042721, 984 | "end_time": "2022-03-28T06:30:18.955341", 985 | "exception": false, 986 | "start_time": "2022-03-28T06:30:18.912620", 987 | "status": "completed" 988 | }, 989 | "tags": [] 990 | }, 991 | "outputs": [ 992 | { 993 | "name": "stdout", 994 | "output_type": "stream", 995 | "text": [ 996 | "\n", 997 | "Accuracy: 1.00\n", 998 | "Error Rate: 0.0\n", 999 | "Sensitivity (Recall or True positive rate) : 1.0\n", 1000 | "Specificity (True negative rate) : 1.0\n", 1001 | "Precision (Positive predictive value) : 1.0\n", 1002 | "False Positive Rate : 0.0\n" 1003 | ] 1004 | } 1005 | ], 1006 | "source": [ 1007 | "print('\\nAccuracy: {:.2f}'.format(accuracy_score(y_test,pred)))\n", 1008 | "print('Error Rate: ',(fp+fn)/(tp+tn+fn+fp))\n", 1009 | "print('Sensitivity (Recall or True positive rate) :',tp/(tp+fn))\n", 1010 | "print('Specificity (True negative rate) :',tn/(fp+tn))\n", 1011 | "print('Precision (Positive predictive value) :',tp/(tp+fp))\n", 1012 | "print('False Positive Rate :',fp/(tn+fp))" 1013 | ] 1014 | }, 1015 | { 1016 | "cell_type": "code", 1017 | "execution_count": null, 1018 | "id": "7701a5bb", 1019 | "metadata": {}, 1020 | "outputs": [], 1021 | "source": [] 1022 | } 1023 | ], 1024 | "metadata": { 1025 | "kernelspec": { 1026 | "display_name": "Python 3 (ipykernel)", 1027 | "language": "python", 1028 | "name": "python3" 1029 | }, 1030 | "language_info": { 1031 | "codemirror_mode": { 1032 | "name": "ipython", 1033 | "version": 3 1034 | }, 1035 | "file_extension": ".py", 1036 | "mimetype": "text/x-python", 1037 | "name": "python", 1038 | "nbconvert_exporter": "python", 1039 | "pygments_lexer": "ipython3", 1040 | "version": "3.9.13" 1041 | }, 1042 | "papermill": { 1043 | "default_parameters": {}, 1044 | "duration": 13.707806, 1045 | "end_time": "2022-03-28T06:30:19.758101", 1046 | "environment_variables": {}, 1047 | "exception": null, 1048 | "input_path": "__notebook__.ipynb", 1049 | "output_path": "__notebook__.ipynb", 1050 | "parameters": {}, 1051 | "start_time": "2022-03-28T06:30:06.050295", 1052 | "version": "2.3.3" 1053 | } 1054 | }, 1055 | "nbformat": 4, 1056 | "nbformat_minor": 5 1057 | } 1058 | --------------------------------------------------------------------------------