├── README.md ├── Rcode ├── Coupled VAE R Code.R ├── Test ├── ml005_alpha2 ├── ml005_alpha2_d2 ├── ml01_alpha2 ├── ml025_alpha2 ├── ml025_alpha2_d2 ├── ml075_alpha2_d2 ├── ml0_alpha2 ├── ml0_alpha2_d2 ├── sigma005_alpha2 ├── sigma005_alpha2_d2 ├── sigma01_alpha2 ├── sigma025_alpha2 ├── sigma025_alpha2_d2 ├── sigma075_alpha2_d2 ├── sigma0_alpha2 └── sigma0_alpha2_d2 ├── Results ├── cluster plot_dimz=2_kappa=0.025.png ├── cluster plot_dimz=2_kappa=0.05.png ├── cluster plot_dimz=2_kappa=0.075.png ├── cluster plot_dimz=2_kappa=0.png ├── input images.png ├── input_ images.png ├── likelihood histogram_dim=2_kappa=0.025.png ├── likelihood histogram_dim=2_kappa=0.05.png ├── likelihood histogram_dim=2_kappa=0.075.png ├── likelihood histogram_dim=2_kappa=0.png ├── likelihood histogram_kappa=0.025.png ├── likelihood histogram_kappa=0.05.png ├── likelihood histogram_kappa=0.1.png ├── likelihood histogram_kappa=0.png ├── output images-kappa=0.png ├── output images_kappa=0.025.png ├── output images_kappa=0.05.png ├── output images_kappa=0.1.png ├── rose plot_dimz=2_kappa=0.025.png ├── rose plot_dimz=2_kappa=0.05.png ├── rose plot_dimz=2_kappa=0.075.png ├── rose plot_dimz=2_kappa=0.png ├── rose plot_kappa=0.025.png ├── rose plot_kappa=0.05.png ├── rose plot_kappa=0.1.png ├── rose plot_kappa=0.png ├── sigma near the metrics_kappa=0.025(magnified).png ├── sigma near the metrics_kappa=0.025.png ├── sigma near the metrics_kappa=0.1(magnified).png ├── sigma near the metrics_kappa=0.1.png ├── sigma near the metrics_kappa=0.5(magnified).png ├── sigma near the metrics_kappa=0.5.png ├── sigma near the metrics_kappa=0.png ├── visualization plot_dimz=2_kappa=0.025.png ├── visualization plot_dimz=2_kappa=0.05.png ├── visualization plot_dimz=2_kappa=0.075.png └── visualization plot_dimz=2_kappa=0.png └── VAE ├── Test.py ├── mnist_data.py ├── run_main.py └── vae.py /README.md: -------------------------------------------------------------------------------- 1 | # Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder 2 | We present a coupled Variational Auto-Encoder (VAE) method that improves the accuracy and robustness of the probabilistic inferences on represented data. The new method models the dependency between input feature vectors (images) and weighs the outliers with a higher penalty by generalizing the original loss function to the coupled entropy function, using the principles of nonlinear statistical coupling. We evaluate the performance of the coupled VAE model using the MNIST dataset. Compared with the traditional VAE algorithm, the output images generated by the coupled VAE method are clearer and less blurry. The visualization of the input images embedded in 2D latent variable space provides a deeper insight into the structure of new model with coupled loss function: the latent variable has a smaller deviation and the output values are generated by a more compact latent space. We analyze the histograms of probabilities for the input images using the generalized mean metrics, in which increased geometric mean illustrates that the average likelihood of input data is improved. Increases in the -2/3 mean, which is sensitive to outliers, indicates improved robustness. The decisiveness, measured by the arithmetic mean of the likelihoods, is unchanged and -2/3 mean shows that the new model has better robustness. 3 | 4 | ## Results 5 |
6 | 7 | ### Output images with different k values 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 23 |
Input image k = 0 k = 0.025 k = 0.05 k = 0.075
18 | 19 | 20 | 21 | 22 |
24 | 25 | ### The histograms of likelihood for the input images with various k values 26 | 27 | 28 | 29 | 30 | 31 | 32 | 35 |
k = 0 k = 0.025
33 | 34 |
36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 46 |
k = 0.05 k = 0.1
44 | 45 |
47 | 48 | ### The relationship between coupling k with the probabilities for input data 49 | | Coupling k | Arithmetic mean metric | Geometric mean metric | -2/3 mean metric | 50 | | :--------: | :-------------------------: | :-------------------: | :------------------: | 51 | | 0 | 1.31 × 10-15 | 2.4110 × -39 | 1.4010 × -79 | 52 | | 0.025 | 6.6111 × -15 | 5.9810 × -35 | 9.9110 × -81 | 53 | | 0.05 | 7.1810 × -12 | 5.8010 × -32 | 1.3110 × -73 | 54 | | 0.1 | 1.3410 × -12 | 7.0910 × -29 | 2.5710 × -71 | 55 | 56 | ### The standard deviation of latent variable samples near the three generalized mean metrics 57 | 58 | 59 | 60 | 61 | 62 | 63 | 66 |
k = 0 k = 0.025
64 | 65 |
67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 77 |
k = 0.05 k = 0.1
75 | 76 |
78 | 79 | ### The standard deviation of latent variable samples near the three generalized mean metrics (Magnified) 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 91 |
k = 0.025 k = 0.05 k = 0.1
88 | 89 | 90 |
92 | 93 | ### The rose plots of the various standard deviation values in 20 dimensions. The range of standard deviation reduces as coupling k increasing 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 107 |
k = 0 k = 0.025 k = 0.05 k = 0.1
103 | 104 | 105 | 106 |
108 | 109 | ### The histogram likelihood plots with a two-dimensional latent variable 110 | 111 | 112 | 113 | 114 | 115 | 116 | 119 |
k = 0 k = 0.025
117 | 118 |
120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 130 |
k = 0.05 k = 0.075
128 | 129 |
131 | 132 | ### The rose plots of the various standard deviation values in 2 dimensions. The range of standard deviation reduces as coupling k increasing 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 146 |
k = 0 k = 0.025 k = 0.05 k = 0.075
142 | 143 | 144 | 145 |
147 | 148 | ### The plot of the latent space of VAE trained for 200 epochs on MNIST with various k values 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 162 |
k = 0 k = 0.025 k = 0.05 k = 0.075
158 | 159 | 160 | 161 |
163 | 164 | ### The plot of visualization of learned data manifold for generative models with the axes to be the values of each dimension of latent variables 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 178 |
k = 0 k = 0.025 k = 0.05 k = 0.075
174 | 175 | 176 | 177 |
179 | 180 | ## References 181 |
182 | [1] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in International Conference on Learning Representations (ICLR), 2014, p. Arxiv: 1312.6114v10.pd.
183 | [2] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and D. M. Blei, “Deep probabilistic programming,” pp. 1–18, 2017.,
184 | [3] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio, “Generating Sentences from a Continuous Space,” Nov. 2015.
185 | [4] J. Zalger, “Application of variational autoencoders for aircraft turbomachinery design.”
186 | [5] H. Xu et al., “Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications,” in Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18, 2018, pp. 187–196.
187 | [6] K. P. Nelson and S. Umarov, “Nonlinear statistical coupling,” Phys. A Stat. Mech. its Appl., vol. 389, no. 11, pp. 2157–2163, Jun. 2010.
188 | [7] K. P. Nelson, S. R. Umarov, and M. A. Kon, “On the average uncertainty for systems with nonlinear coupling,” Phys. A Stat. Mech. its Appl., vol. 468, pp. 30–43, Feb. 2017.
189 | [8] K. P. Nelson, “Reduced Perplexity: A simplified perspective on assessing probabilistic forecasts,” Mar. 2016.
190 | [9] C. Tsallis, Introduction to nonextensive statistical mechanics: approaching a complex world. 2009.
191 | [10] O. Niemitalo, “A method for training artificial neural networks to generate missing data within a variable context,” 2010.
192 | [11] T. Huang, Z. Zeng, C. Li, and C. Leung, “Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings,” 2012.
193 | [12] A. Rajaraman and J. D. Ullman, “Mining of massive datasets,” in Mining of Massive Datasets, 2011, vol. 9781107015, pp. 1–315.
194 | [13] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial Feature Learning,” May 2016.
195 | [14] V. Dumoulin et al., “Adversarially Learned Inference,” Jun. 2016.
196 | [15] J. Pearl, “Bayesian netwcrks: A model cf self-activated memory for evidential reasoning,” 1985.
197 | [16] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. 2016.
198 | [17] J. Ebbers, J. Heymann, L. Drude, T. Glarner, R. Haeb-Umbach, and B. Raj, “Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery,” 2017.
199 | [18] N. Dilokthanakul et al., “Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders,” Nov. 2016.,
200 | [19] A. Srivastava and C. Sutton, “Autoencoding Variational Inference For Topic Models,” Mar. 2017.
201 | [20] Yanna LeCun, Corinna Cortes, and Christopher J.C. Burges, “MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.” [Online]. Available: http://yann.lecun.com/exdb/mnist/index.html. [Accessed: 18-Apr-2019].
202 | [21] D. McAlister, “The law of the geometric mean,” Proc. R. Soc. London, vol. 29, no. 196–199, pp. 367–376, 1879.
203 | [22] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. 2579–2605, p. 85, 2008.
204 | 205 | 206 | ### Code References: 207 | 208 | [1] https://github.com/tensorflow/tensorflow 209 | [2] https://github.com/hwalsuklee/tensorflow-mnist-VAE 210 | 211 | ## Acknowledgements 212 | The results has been tested with Tensorflow r1.13.1 -Gpu-version on Windows 10. 213 | -------------------------------------------------------------------------------- /Rcode/Coupled VAE R Code.R: -------------------------------------------------------------------------------- 1 | #Figure 3: The likelihood for the input images under the VAE model 2 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml0_alpha2") 3 | mean(ml.coupled2) 4 | expml.coupled2 <- exp(ml.coupled2) 5 | max(expml.coupled2) 6 | min(expml.coupled2) 7 | avg2 <- mean(expml.coupled2) 8 | logavg2 <- log10(avg2) 9 | geo2 <- exp(mean(log(expml.coupled2))) 10 | loggeo2 <- log10(geo2) 11 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 12 | logrob2 <- log10(rob2) 13 | b <- seq(-100,1,by = 1) 14 | logscale<-log10(expml.coupled2) 15 | h <- hist(logscale, breaks = b) 16 | new_counts <- log10(h$counts)+1 17 | new_counts[which(new_counts == -Inf)] <- 0 18 | h$counts <- new_counts 19 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 20 | #axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 21 | axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 22 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 23 | abline(v=logavg2,col="red", lwd = 2) 24 | abline(v=loggeo2,col="blue", lwd = 2) 25 | abline(v=logrob2,col="green", lwd = 2) 26 | legend(-65, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 27 | legend(-33, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 28 | legend(-99, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 29 | legend(-112,4.8,expression(paste(kappa," = 0")), bty = "n", cex = 1.5) 30 | 31 | #Figure 5: The histograms of likelihood for the input images with various kappa values. 32 | #(b) kappa = 0.025 33 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml025_alpha2") 34 | mean(ml.coupled2) 35 | expml.coupled2 <- exp(ml.coupled2) 36 | max(expml.coupled2) 37 | min(expml.coupled2) 38 | avg2 <- mean(expml.coupled2) 39 | logavg2 <- log10(avg2) 40 | geo2 <- exp(mean(log(expml.coupled2))) 41 | loggeo2 <- log10(geo2) 42 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 43 | logrob2 <- log10(rob2) 44 | b <- seq(-100,1,by = 1) 45 | logscale<-log10(expml.coupled2) 46 | h <- hist(logscale, breaks = b) 47 | new_counts <- log10(h$counts)+1 48 | new_counts[which(new_counts == -Inf)] <- 0 49 | h$counts <- new_counts 50 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 51 | #axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 52 | axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 53 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 54 | abline(v=logavg2,col="red", lwd = 2) 55 | abline(v=loggeo2,col="blue", lwd = 2) 56 | abline(v=logrob2,col="green", lwd = 2) 57 | legend(-55, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 58 | legend(-33, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 59 | legend(-99, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 60 | legend(-112,4.8,expression(paste(kappa," = 0.025")), bty = "n", cex = 1.5) 61 | 62 | #(c) kappa = 0.05 63 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml005_alpha2") 64 | mean(ml.coupled2) 65 | expml.coupled2 <- exp(ml.coupled2) 66 | max(expml.coupled2) 67 | min(expml.coupled2) 68 | avg2 <- mean(expml.coupled2) 69 | logavg2 <- log10(avg2) 70 | geo2 <- exp(mean(log(expml.coupled2))) 71 | loggeo2 <- log10(geo2) 72 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 73 | logrob2 <- log10(rob2) 74 | b <- seq(-100,1,by = 1) 75 | logscale<-log10(expml.coupled2) 76 | h <- hist(logscale, breaks = b) 77 | new_counts <- log10(h$counts)+1 78 | new_counts[which(new_counts == -Inf)] <- 0 79 | h$counts <- new_counts 80 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 81 | #axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 82 | axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 83 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 84 | abline(v=logavg2,col="red", lwd = 2) 85 | abline(v=loggeo2,col="blue", lwd = 2) 86 | abline(v=logrob2,col="green", lwd = 2) 87 | legend(-55, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 88 | legend(-33, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 89 | legend(-99, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 90 | legend(-112,4.8,expression(paste(kappa," = 0.05")), bty = "n", cex = 1.5) 91 | 92 | #(d) kappa = 0.1 93 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml01_alpha2") 94 | mean(ml.coupled2) 95 | expml.coupled2 <- exp(ml.coupled2) 96 | max(expml.coupled2) 97 | min(expml.coupled2) 98 | avg2 <- mean(expml.coupled2) 99 | logavg2 <- log10(avg2) 100 | geo2 <- exp(mean(log(expml.coupled2))) 101 | loggeo2 <- log10(geo2) 102 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 103 | logrob2 <- log10(rob2) 104 | b <- seq(-100,1,by = 1) 105 | logscale<-log10(expml.coupled2) 106 | h <- hist(logscale, breaks = b) 107 | new_counts <- log10(h$counts)+1 108 | new_counts[which(new_counts == -Inf)] <- 0 109 | h$counts <- new_counts 110 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 111 | #axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 112 | axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 113 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 114 | abline(v=logavg2,col="red", lwd = 2) 115 | abline(v=loggeo2,col="blue", lwd = 2) 116 | abline(v=logrob2,col="green", lwd = 2) 117 | legend(-55, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 118 | legend(-33, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 119 | legend(-99, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 120 | legend(-112,4.8,expression(paste(kappa," = 0.1")), bty = "n", cex = 1.5) 121 | 122 | #Figure 6: The rose plots of the various standard deviation values in 20 dimensions. 123 | #(a) kappa = 0 124 | sigma00 <- scan(file = "~/Desktop/Project/sigma0_alpha2") 125 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 126 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 127 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 128 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 129 | coord_polar()+ 130 | theme_bw()+ 131 | labs(x="",y="")+ 132 | theme(legend.position = "none") 133 | p 134 | 135 | #(b) kappa = 0.025 136 | sigma00 <- scan(file = "~/Desktop/Project/sigma025_alpha2") 137 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 138 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 139 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 140 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 141 | coord_polar()+ 142 | theme_bw()+ 143 | labs(x="",y="")+ 144 | theme(legend.position = "none") 145 | p 146 | 147 | #(c) kappa = 0.05 148 | sigma00 <- scan(file = "~/Desktop/Project/sigma005_alpha2") 149 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 150 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 151 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 152 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 153 | coord_polar()+ 154 | theme_bw()+ 155 | labs(x="",y="")+ 156 | theme(legend.position = "none") 157 | p 158 | 159 | #(d) kappa = 0.1 160 | sigma00 <- scan(file = "~/Desktop/Project/sigma01_alpha2") 161 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 162 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 163 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 164 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 165 | coord_polar()+ 166 | theme_bw()+ 167 | labs(x="",y="")+ 168 | theme(legend.position = "none") 169 | p 170 | 171 | #Figure 7: The standard deviation of latent variable samples near the three generalized mean metrics. 172 | #(a) kappa = 0 173 | sigma00 <- scan(file = "~/Desktop/Project/sigma0_alpha2") 174 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml0_alpha2") 175 | mean(sigma00) 176 | max(sigma00) 177 | ml_00 <- ml.coupled2 178 | mean(ml_00) 179 | expml00 <- exp(ml_00) 180 | rob00 <- (sum(expml00^(-2/3))/5000)^(-3/2) 181 | logrob00 <- log10(rob00) 182 | dif <- abs(rob00-expml00) 183 | which.min(dif) 184 | sigmarob00 <- sigma00[(4303*20+1):(4304*20)] 185 | avg00 <- mean(expml00) 186 | logavg00 <- log10(avg00) 187 | dif <- abs(avg00-expml00) 188 | which.min(dif) 189 | sigmaavg00 <- sigma00[(2401*20+1):(2402*20)] 190 | geo00 <- exp(mean(log(expml00))) 191 | loggeo00 <- log10(geo00) 192 | dif <- abs(geo00-expml00) 193 | which.min(dif) 194 | sigmageo00 <- sigma00[(2164*20+1):(2165*20)] 195 | plot(sigmaavg00,type = "b",main = expression(paste(kappa," = 0")),ylim = c(0,0.7), 196 | ylab = expression(paste(sigma," of each dimension of z")), xlab = "dimensions of z",col="red", cex.lab = 1.5,cex.axis=1.5) 197 | lines(sigmarob00,col="green",type = "b") 198 | lines(sigmageo00,col="blue",type = "b") 199 | 200 | #(b) kappa = 0.025 201 | sigma00 <- scan(file = "~/Desktop/Project/sigma025_alpha2") 202 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml025_alpha2") 203 | mean(sigma00) 204 | max(sigma00) 205 | ml_00 <- ml.coupled2 206 | mean(ml_00) 207 | expml00 <- exp(ml_00) 208 | rob00 <- (sum(expml00^(-2/3))/5000)^(-3/2) 209 | logrob00 <- log10(rob00) 210 | dif <- abs(rob00-expml00) 211 | which.min(dif) 212 | sigmarob00 <- sigma00[(891*20+1):(892*20)] 213 | avg00 <- mean(expml00) 214 | logavg00 <- log10(avg00) 215 | dif <- abs(avg00-expml00) 216 | which.min(dif) 217 | sigmaavg00 <- sigma00[(3921*20+1):(3922*20)] 218 | geo00 <- exp(mean(log(expml00))) 219 | loggeo00 <- log10(geo00) 220 | dif <- abs(geo00-expml00) 221 | which.min(dif) 222 | sigmageo00 <- sigma00[(4095*20+1):(4096*20)] 223 | plot(sigmaavg00,type = "b",main = expression(paste(kappa," = 0.025")),ylim = c(0,0.7), 224 | ylab = expression(paste(sigma," of each dimension of z")), xlab = "dimensions of z",col="red", cex.lab = 1.5,cex.axis=1.5) 225 | lines(sigmarob00,col="green",type = "b") 226 | lines(sigmageo00,col="blue",type = "b") 227 | # magnified plot 228 | plot(sigmaavg00,type = "b",col="red",ylim =c(0, 0.2),cex.axis=1.5,xlab = "", ylab = "") 229 | lines(sigmarob00,col="green",type = "b") 230 | lines(sigmageo00,col="blue",type = "b") 231 | 232 | #(c) kappa = 0.05 233 | sigma00 <- scan(file = "~/Desktop/Project/sigma005_alpha2") 234 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml005_alpha2") 235 | mean(sigma00) 236 | max(sigma00) 237 | ml_00 <- ml.coupled2 238 | mean(ml_00) 239 | expml00 <- exp(ml_00) 240 | rob00 <- (sum(expml00^(-2/3))/5000)^(-3/2) 241 | logrob00 <- log10(rob00) 242 | dif <- abs(rob00-expml00) 243 | which.min(dif) 244 | sigmarob00 <- sigma00[(895*20+1):(896*20)] 245 | avg00 <- mean(expml00) 246 | logavg00 <- log10(avg00) 247 | dif <- abs(avg00-expml00) 248 | which.min(dif) 249 | sigmaavg00 <- sigma00[(617*20+1):(618*20)] 250 | geo00 <- exp(mean(log(expml00))) 251 | loggeo00 <- log10(geo00) 252 | dif <- abs(geo00-expml00) 253 | which.min(dif) 254 | sigmageo00 <- sigma00[(4202*20+1):(4203*20)] 255 | plot(sigmaavg00,type = "b",main = expression(paste(kappa," = 0.05")),ylim = c(0,0.7), 256 | ylab = expression(paste(sigma," of each dimension of z")), xlab = "dimensions of z",col="red", cex.lab = 1.5,cex.axis=1.5) 257 | lines(sigmarob00,col="green",type = "b") 258 | lines(sigmageo00,col="blue",type = "b") 259 | # magnified plot 260 | plot(sigmaavg00,type = "b",col="red",ylim =c(0, 0.03),cex.axis=1.5,xlab = "", ylab = "") 261 | lines(sigmarob00,col="green",type = "b") 262 | lines(sigmageo00,col="blue",type = "b") 263 | 264 | #(d) kappa = 0.1 265 | sigma00 <- scan(file = "~/Desktop/Project/sigma01_alpha2") 266 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml01_alpha2") 267 | mean(sigma00) 268 | max(sigma00) 269 | ml_00 <- ml.coupled2 270 | mean(ml_00) 271 | expml00 <- exp(ml_00) 272 | rob00 <- (sum(expml00^(-2/3))/5000)^(-3/2) 273 | logrob00 <- log10(rob00) 274 | dif <- abs(rob00-expml00) 275 | which.min(dif) 276 | sigmarob00 <- sigma00[(4501*20+1):(4502*20)] 277 | avg00 <- mean(expml00) 278 | logavg00 <- log10(avg00) 279 | dif <- abs(avg00-expml00) 280 | which.min(dif) 281 | sigmaavg00 <- sigma00[(2733*20+1):(2734*20)] 282 | geo00 <- exp(mean(log(expml00))) 283 | loggeo00 <- log10(geo00) 284 | dif <- abs(geo00-expml00) 285 | which.min(dif) 286 | sigmageo00 <- sigma00[(1216*20+1):(1217*20)] 287 | plot(sigmaavg00,type = "b",main = expression(paste(kappa," = 0.01")),ylim = c(0,0.7), 288 | ylab = expression(paste(sigma," of each dimension of z")), xlab = "dimensions of z",col="red", cex.lab = 1.5,cex.axis=1.5) 289 | lines(sigmarob00,col="green",type = "b") 290 | lines(sigmageo00,col="blue",type = "b") 291 | # magnified plot 292 | plot(sigmaavg00,type = "b",col="red",ylim =c(0, 0.012),cex.axis=1.5,xlab = "", ylab = "") 293 | lines(sigmarob00,col="green",type = "b") 294 | lines(sigmageo00,col="blue",type = "b") 295 | 296 | #Figure 8: The histogram likelihood plots with a two-dimensional latent variable. 297 | #(a) kappa = 0 298 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml0_alpha2_d2") 299 | mean(ml.coupled2) 300 | expml.coupled2 <- exp(ml.coupled2) 301 | max(expml.coupled2) 302 | min(expml.coupled2) 303 | avg2 <- mean(expml.coupled2) 304 | logavg2 <- log10(avg2) 305 | geo2 <- exp(mean(log(expml.coupled2))) 306 | loggeo2 <- log10(geo2) 307 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 308 | logrob2 <- log10(rob2) 309 | b <- seq(-180,1,by = 1) 310 | logscale<-log10(expml.coupled2) 311 | h <- hist(logscale, breaks = b) 312 | new_counts <- log10(h$counts)+1 313 | new_counts[which(new_counts == -Inf)] <- 0 314 | h$counts <- new_counts 315 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 316 | axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 317 | #axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 318 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 319 | abline(v=logavg2,col="red", lwd = 2) 320 | abline(v=loggeo2,col="blue", lwd = 2) 321 | abline(v=logrob2,col="green", lwd = 2) 322 | legend(-90, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 323 | legend(-50, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 324 | legend(-180, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 325 | legend(-205,4.7,expression(paste(kappa," = 0")), bty = "n", cex = 1.5) 326 | 327 | #(b) kappa = 0.025 328 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml025_alpha2_d2") 329 | mean(ml.coupled2) 330 | expml.coupled2 <- exp(ml.coupled2) 331 | max(expml.coupled2) 332 | min(expml.coupled2) 333 | avg2 <- mean(expml.coupled2) 334 | logavg2 <- log10(avg2) 335 | geo2 <- exp(mean(log(expml.coupled2))) 336 | loggeo2 <- log10(geo2) 337 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 338 | logrob2 <- log10(rob2) 339 | b <- seq(-180,1,by = 1) 340 | logscale<-log10(expml.coupled2) 341 | h <- hist(logscale, breaks = b) 342 | new_counts <- log10(h$counts)+1 343 | new_counts[which(new_counts == -Inf)] <- 0 344 | h$counts <- new_counts 345 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 346 | axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 347 | #axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 348 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 349 | abline(v=logavg2,col="red", lwd = 2) 350 | abline(v=loggeo2,col="blue", lwd = 2) 351 | abline(v=logrob2,col="green", lwd = 2) 352 | legend(-80, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 353 | legend(-40, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 354 | legend(-180, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 355 | legend(-205,4.7,expression(paste(kappa," = 0.025")), bty = "n", cex = 1.5) 356 | 357 | #(c) kappa = 0.05 358 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml005_alpha2_d2") 359 | mean(ml.coupled2) 360 | expml.coupled2 <- exp(ml.coupled2) 361 | max(expml.coupled2) 362 | min(expml.coupled2) 363 | avg2 <- mean(expml.coupled2) 364 | logavg2 <- log10(avg2) 365 | geo2 <- exp(mean(log(expml.coupled2))) 366 | loggeo2 <- log10(geo2) 367 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 368 | logrob2 <- log10(rob2) 369 | b <- seq(-180,1,by = 1) 370 | logscale<-log10(expml.coupled2) 371 | h <- hist(logscale, breaks = b) 372 | new_counts <- log10(h$counts)+1 373 | new_counts[which(new_counts == -Inf)] <- 0 374 | h$counts <- new_counts 375 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 376 | axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 377 | #axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 378 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 379 | abline(v=logavg2,col="red", lwd = 2) 380 | abline(v=loggeo2,col="blue", lwd = 2) 381 | abline(v=logrob2,col="green", lwd = 2) 382 | legend(-70, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 383 | legend(-40, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 384 | legend(-170, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 385 | legend(-205,4.7,expression(paste(kappa," = 0.05")), bty = "n", cex = 1.5) 386 | 387 | #(d) kappa = 0.075 388 | ml.coupled2 <- scan(file = "~/Desktop/Project/ml075_alpha2_d2") 389 | mean(ml.coupled2) 390 | expml.coupled2 <- exp(ml.coupled2) 391 | max(expml.coupled2) 392 | min(expml.coupled2) 393 | avg2 <- mean(expml.coupled2) 394 | logavg2 <- log10(avg2) 395 | geo2 <- exp(mean(log(expml.coupled2))) 396 | loggeo2 <- log10(geo2) 397 | rob2 <- (sum(expml.coupled2^(-2/3))/5000)^(-3/2) 398 | logrob2 <- log10(rob2) 399 | b <- seq(-180,1,by = 1) 400 | logscale<-log10(expml.coupled2) 401 | h <- hist(logscale, breaks = b) 402 | new_counts <- log10(h$counts)+1 403 | new_counts[which(new_counts == -Inf)] <- 0 404 | h$counts <- new_counts 405 | plot(h, main = "", ylab = "Frequency in logscale ", ylim = c(0, 4), xlab = "Likelihood in logscale", xaxt="n", yaxt = "n",cex.lab=1.55) 406 | axis(1,at = c(-180, -160, -140, -120, -100, -80, -60, -40, -20, 0), labels = c(10^(-180), 10^(-160), 10^(-140), 10^(-120), 10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.5) 407 | #axis(1,at = c(-100, -80, -60, -40, -20, 0), labels = c(10^(-100), 10^(-80), 10^(-60), 10^(-40), 10^(-20), 1), cex.axis = 1.55) 408 | axis(2,at = c(0, 1, 2, 3,4), labels = c(0.1, 10, 100, 1000,10000),cex.axis = 1.55) 409 | abline(v=logavg2,col="red", lwd = 2) 410 | abline(v=loggeo2,col="blue", lwd = 2) 411 | abline(v=logrob2,col="green", lwd = 2) 412 | legend(-70, 4.5, "Accuracy", text.col = "blue",bty = "n", cex = 1.5) 413 | legend(-40, 4.5, "Decisiveness", text.col = "red", bty = "n", cex = 1.5) 414 | legend(-170, 4.5, "Robustness", text.col = "green", bty = "n", cex = 1.5) 415 | legend(-205,4.7,expression(paste(kappa," = 0.075")), bty = "n", cex = 1.5) 416 | 417 | #Figure 9: The rose plots of the various standard deviation values in 2 dimensions. 418 | #(a) kappa = 0 419 | sigma00 <- scan(file = "~/Desktop/Project/sigma0_alpha2_d2") 420 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 421 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 422 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 423 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 424 | coord_polar()+ 425 | theme_bw()+ 426 | labs(x="",y="")+ 427 | theme(legend.position = "none") 428 | p 429 | 430 | #(b) kappa = 0.025 431 | sigma00 <- scan(file = "~/Desktop/Project/sigma025_alpha2_d2") 432 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 433 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 434 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 435 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 436 | coord_polar()+ 437 | theme_bw()+ 438 | labs(x="",y="")+ 439 | theme(legend.position = "none") 440 | p 441 | 442 | #(c) kappa = 0.05 443 | sigma00 <- scan(file = "~/Desktop/Project/sigma005_alpha2_d2") 444 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 445 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 446 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 447 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 448 | coord_polar()+ 449 | theme_bw()+ 450 | labs(x="",y="")+ 451 | theme(legend.position = "none") 452 | p 453 | 454 | #(d) kappa = 0.075 455 | sigma00 <- scan(file = "~/Desktop/Project/sigma075_alpha2_d2") 456 | h <- hist(sigma00,breaks = seq(0,1,by = 0.01)) 457 | dt <- data.frame(A = h$counts/10000, B=seq(0,0.99,by = 0.01)) 458 | p <- ggplot(dt, aes(x=B, y=A, fill=B))+ 459 | geom_bar(stat = "identity",color="black",alpha=0.7)+ 460 | coord_polar()+ 461 | theme_bw()+ 462 | labs(x="",y="")+ 463 | theme(legend.position = "none") 464 | p 465 | -------------------------------------------------------------------------------- /Rcode/Test: -------------------------------------------------------------------------------- 1 | This is an empty file 2 | -------------------------------------------------------------------------------- /Rcode/ml005_alpha2: -------------------------------------------------------------------------------- 1 | -1.029472427368164062e+02 2 | -4.817822647094726562e+01 3 | -5.662966918945312500e+01 4 | -9.198259735107421875e+01 5 | -5.111492156982421875e+01 6 | -7.139621734619140625e+01 7 | -6.269007492065429688e+01 8 | -3.216443252563476562e+01 9 | -7.097707366943359375e+01 10 | -5.824345779418945312e+01 11 | -3.519963455200195312e+01 12 | -7.410421752929687500e+01 13 | -2.484620475769042969e+01 14 | -7.761174011230468750e+01 15 | -7.815317535400390625e+01 16 | -5.695049285888671875e+01 17 | -8.003910064697265625e+01 18 | -7.024565124511718750e+01 19 | -9.295439147949218750e+01 20 | -5.392338562011718750e+01 21 | -1.266708221435546875e+02 22 | -7.747319030761718750e+01 23 | -3.731922531127929688e+01 24 | -7.460583496093750000e+01 25 | -1.189066009521484375e+02 26 | -6.400469970703125000e+01 27 | -7.121228027343750000e+01 28 | -5.848878479003906250e+01 29 | -7.518828582763671875e+01 30 | -9.361901855468750000e+01 31 | -5.054929351806640625e+01 32 | -6.826930999755859375e+01 33 | -8.597061157226562500e+01 34 | -2.704480171203613281e+01 35 | -6.995829010009765625e+01 36 | -6.421621704101562500e+01 37 | -6.754677581787109375e+01 38 | -9.110375213623046875e+01 39 | -3.088430976867675781e+01 40 | -6.475199890136718750e+01 41 | -7.819268798828125000e+01 42 | -6.605599975585937500e+01 43 | -1.241230163574218750e+02 44 | -7.883555603027343750e+01 45 | -6.701689910888671875e+01 46 | -6.489396667480468750e+01 47 | -6.523608398437500000e+01 48 | -1.127554397583007812e+02 49 | -1.007871093750000000e+02 50 | -8.540827178955078125e+01 51 | -5.827727127075195312e+01 52 | -6.562758636474609375e+01 53 | -8.933944702148437500e+01 54 | -7.019164276123046875e+01 55 | -6.688568115234375000e+01 56 | -1.162999038696289062e+02 57 | -2.821037864685058594e+01 58 | -7.429455566406250000e+01 59 | -7.915734100341796875e+01 60 | -8.159928894042968750e+01 61 | -5.407228851318359375e+01 62 | -8.587203979492187500e+01 63 | -5.908415985107421875e+01 64 | -9.747990417480468750e+01 65 | -8.722592926025390625e+01 66 | -1.201385650634765625e+02 67 | -7.169088745117187500e+01 68 | -8.705534362792968750e+01 69 | -9.130181884765625000e+01 70 | -8.225794219970703125e+01 71 | -1.178481903076171875e+02 72 | -5.755006408691406250e+01 73 | -5.519466400146484375e+01 74 | -6.944741821289062500e+01 75 | -9.860888671875000000e+01 76 | -8.428609466552734375e+01 77 | -7.153179168701171875e+01 78 | -3.049115371704101562e+01 79 | -6.552680206298828125e+01 80 | -4.849255752563476562e+01 81 | -9.676276397705078125e+01 82 | -5.930027770996093750e+01 83 | -6.983581542968750000e+01 84 | -1.029248352050781250e+02 85 | -1.053599929809570312e+02 86 | -5.080316162109375000e+01 87 | -3.512180328369140625e+01 88 | -8.600538635253906250e+01 89 | -8.040805053710937500e+01 90 | -7.653250885009765625e+01 91 | -1.017428359985351562e+02 92 | -3.347695541381835938e+01 93 | -5.624811553955078125e+01 94 | -8.918513488769531250e+01 95 | -7.966117095947265625e+01 96 | -8.559419250488281250e+01 97 | -6.922525024414062500e+01 98 | -8.420725250244140625e+01 99 | -1.165179214477539062e+02 100 | -7.604586791992187500e+01 101 | -8.520811462402343750e+01 102 | -9.296807098388671875e+01 103 | -3.997258377075195312e+01 104 | -7.654723358154296875e+01 105 | -6.977042388916015625e+01 106 | -7.600852203369140625e+01 107 | -4.813140869140625000e+01 108 | -1.235049743652343750e+02 109 | -6.545204925537109375e+01 110 | -5.842184066772460938e+01 111 | -9.049594116210937500e+01 112 | -8.435500335693359375e+01 113 | -4.039448547363281250e+01 114 | -2.793895530700683594e+01 115 | -3.116260910034179688e+01 116 | -9.747981262207031250e+01 117 | -8.955565643310546875e+01 118 | -7.077310943603515625e+01 119 | -4.865751266479492188e+01 120 | -7.684109497070312500e+01 121 | -8.973483276367187500e+01 122 | -4.561611557006835938e+01 123 | -5.491950225830078125e+01 124 | -6.250030517578125000e+01 125 | -1.268614654541015625e+02 126 | -1.128945541381835938e+02 127 | -2.853798675537109375e+01 128 | -8.251334381103515625e+01 129 | -8.045153808593750000e+01 130 | -3.512591934204101562e+01 131 | -8.759424591064453125e+01 132 | -7.507994079589843750e+01 133 | -1.067876129150390625e+02 134 | -5.970930862426757812e+01 135 | -5.216619110107421875e+01 136 | -1.100936279296875000e+02 137 | -7.264600372314453125e+01 138 | -7.179953765869140625e+01 139 | -7.454443359375000000e+01 140 | -8.702040863037109375e+01 141 | -7.752287292480468750e+01 142 | -7.766693115234375000e+01 143 | -7.698230743408203125e+01 144 | -9.792909240722656250e+01 145 | -7.888234710693359375e+01 146 | -8.495007324218750000e+01 147 | -3.503327178955078125e+01 148 | -6.792362213134765625e+01 149 | -4.030392456054687500e+01 150 | -9.124466705322265625e+01 151 | -8.362936401367187500e+01 152 | -6.747431945800781250e+01 153 | -7.948002624511718750e+01 154 | -5.894493865966796875e+01 155 | -8.150601959228515625e+01 156 | -6.538371276855468750e+01 157 | -4.926397705078125000e+01 158 | -8.735397338867187500e+01 159 | -7.299002075195312500e+01 160 | -4.965601730346679688e+01 161 | -1.529555969238281250e+02 162 | -2.963459014892578125e+01 163 | -7.436957550048828125e+01 164 | -9.300453948974609375e+01 165 | -4.606508255004882812e+01 166 | -6.317186355590820312e+01 167 | -6.478292083740234375e+01 168 | -2.780878448486328125e+01 169 | -9.832212066650390625e+01 170 | -5.143869400024414062e+01 171 | -7.298471069335937500e+01 172 | -1.030831298828125000e+02 173 | -1.140009384155273438e+02 174 | -8.155050659179687500e+01 175 | -5.306151580810546875e+01 176 | -2.885422515869140625e+01 177 | -5.268025207519531250e+01 178 | -7.442626953125000000e+01 179 | -9.299645233154296875e+01 180 | -8.598075103759765625e+01 181 | -1.129083862304687500e+02 182 | -7.425764465332031250e+01 183 | -4.724626159667968750e+01 184 | -5.993902969360351562e+01 185 | -8.093667602539062500e+01 186 | -5.227436065673828125e+01 187 | -7.411975097656250000e+01 188 | -7.723658752441406250e+01 189 | -7.596842193603515625e+01 190 | -5.681347274780273438e+01 191 | -8.500057220458984375e+01 192 | -6.813122558593750000e+01 193 | -6.031622695922851562e+01 194 | -5.564030456542968750e+01 195 | -6.741580963134765625e+01 196 | -8.418479919433593750e+01 197 | -6.873010253906250000e+01 198 | -6.270766448974609375e+01 199 | -5.553516387939453125e+01 200 | -6.586174774169921875e+01 201 | -2.469422531127929688e+01 202 | -6.135609436035156250e+01 203 | -7.894065856933593750e+01 204 | -5.204941177368164062e+01 205 | -7.741880798339843750e+01 206 | -7.772041320800781250e+01 207 | -2.983452224731445312e+01 208 | -2.935199737548828125e+01 209 | -7.129283142089843750e+01 210 | -8.700710296630859375e+01 211 | -7.367793273925781250e+01 212 | -5.321006774902343750e+01 213 | -5.499224853515625000e+01 214 | -1.029337463378906250e+02 215 | -8.837256622314453125e+01 216 | -8.919939422607421875e+01 217 | -7.430452728271484375e+01 218 | -5.925559234619140625e+01 219 | -6.205636596679687500e+01 220 | -5.093226242065429688e+01 221 | -9.634765625000000000e+01 222 | -7.805629730224609375e+01 223 | -1.371520233154296875e+02 224 | -8.459425354003906250e+01 225 | -8.887541198730468750e+01 226 | -7.348665618896484375e+01 227 | -6.246010971069335938e+01 228 | -3.494187164306640625e+01 229 | -9.176866912841796875e+01 230 | -6.872726440429687500e+01 231 | -9.576584625244140625e+01 232 | -7.026925659179687500e+01 233 | -7.211289978027343750e+01 234 | -6.718454742431640625e+01 235 | -7.064121246337890625e+01 236 | -8.517277526855468750e+01 237 | -5.740896606445312500e+01 238 | -8.120913696289062500e+01 239 | -6.519026184082031250e+01 240 | -6.608933258056640625e+01 241 | -1.115415573120117188e+02 242 | -7.242758941650390625e+01 243 | -5.313136291503906250e+01 244 | -8.381824493408203125e+01 245 | -8.818592071533203125e+01 246 | -9.507547760009765625e+01 247 | -7.157808685302734375e+01 248 | -5.858355712890625000e+01 249 | -5.672418212890625000e+01 250 | -5.502993011474609375e+01 251 | -5.096212768554687500e+01 252 | -6.905837249755859375e+01 253 | -7.245362854003906250e+01 254 | -6.755563354492187500e+01 255 | -5.225581741333007812e+01 256 | -7.217888641357421875e+01 257 | -3.327325439453125000e+01 258 | -7.238820648193359375e+01 259 | -8.761508941650390625e+01 260 | -8.342336273193359375e+01 261 | -6.458430480957031250e+01 262 | -1.069151458740234375e+02 263 | -1.027968673706054688e+02 264 | -8.176631164550781250e+01 265 | -3.155637359619140625e+01 266 | -1.035511093139648438e+02 267 | -9.944647979736328125e+01 268 | -9.440724945068359375e+01 269 | -5.172360610961914062e+01 270 | -1.024103698730468750e+02 271 | -8.353252410888671875e+01 272 | -7.319416809082031250e+01 273 | -3.570462799072265625e+01 274 | -6.552642059326171875e+01 275 | -9.558547973632812500e+01 276 | -6.710166168212890625e+01 277 | -4.806484985351562500e+01 278 | -2.745077514648437500e+01 279 | -7.283156585693359375e+01 280 | -7.580651092529296875e+01 281 | -5.160929107666015625e+01 282 | -8.055359649658203125e+01 283 | -2.994049263000488281e+01 284 | -3.188078689575195312e+01 285 | -6.177203369140625000e+01 286 | -4.782812118530273438e+01 287 | -5.591933441162109375e+01 288 | -6.756969451904296875e+01 289 | -5.849740600585937500e+01 290 | -8.449693298339843750e+01 291 | -1.419877319335937500e+02 292 | -6.960863494873046875e+01 293 | -1.014778366088867188e+02 294 | -1.374688720703125000e+02 295 | -1.144644470214843750e+02 296 | -1.037239379882812500e+02 297 | -9.831265258789062500e+01 298 | -3.225102996826171875e+01 299 | -1.173715972900390625e+02 300 | -3.330293273925781250e+01 301 | -1.265717163085937500e+02 302 | -7.331483459472656250e+01 303 | -7.189857482910156250e+01 304 | -9.176256561279296875e+01 305 | -8.828051757812500000e+01 306 | -4.668641281127929688e+01 307 | -2.735499191284179688e+01 308 | -7.715705871582031250e+01 309 | -7.358030700683593750e+01 310 | -1.142417449951171875e+02 311 | -5.420374679565429688e+01 312 | -7.815988922119140625e+01 313 | -7.993202972412109375e+01 314 | -1.323174591064453125e+02 315 | -9.437497711181640625e+01 316 | -4.923299407958984375e+01 317 | -5.848550033569335938e+01 318 | -6.485485839843750000e+01 319 | -6.437657928466796875e+01 320 | -5.459672546386718750e+01 321 | -9.288367462158203125e+01 322 | -5.322399902343750000e+01 323 | -9.276746368408203125e+01 324 | -6.252852630615234375e+01 325 | -2.825727462768554688e+01 326 | -8.416016387939453125e+01 327 | -7.176367187500000000e+01 328 | -7.632659149169921875e+01 329 | -6.326595687866210938e+01 330 | -5.454501342773437500e+01 331 | -3.177016639709472656e+01 332 | -7.236117553710937500e+01 333 | -6.934680175781250000e+01 334 | -5.166175842285156250e+01 335 | -7.588747406005859375e+01 336 | -7.119471740722656250e+01 337 | -6.824219512939453125e+01 338 | -1.038775100708007812e+02 339 | -9.139102935791015625e+01 340 | -6.012113571166992188e+01 341 | -3.317889022827148438e+01 342 | -6.117229461669921875e+01 343 | -4.765371704101562500e+01 344 | -6.749433898925781250e+01 345 | -7.962651062011718750e+01 346 | -7.837156677246093750e+01 347 | -2.865692138671875000e+01 348 | -1.058203048706054688e+02 349 | -9.835059356689453125e+01 350 | -8.971904754638671875e+01 351 | -7.140468597412109375e+01 352 | -5.084927749633789062e+01 353 | -5.050368881225585938e+01 354 | -1.052463455200195312e+02 355 | -8.936201477050781250e+01 356 | -9.066783142089843750e+01 357 | -5.667847442626953125e+01 358 | -1.416534576416015625e+02 359 | -7.302964782714843750e+01 360 | -3.601428604125976562e+01 361 | -5.296704101562500000e+01 362 | -5.031923675537109375e+01 363 | -5.988269805908203125e+01 364 | -5.654747390747070312e+01 365 | -9.846453857421875000e+01 366 | -8.667539978027343750e+01 367 | -4.486136245727539062e+01 368 | -7.216097259521484375e+01 369 | -4.908716583251953125e+01 370 | -7.155970001220703125e+01 371 | -5.486634063720703125e+01 372 | -6.497081756591796875e+01 373 | -5.077542495727539062e+01 374 | -7.946084594726562500e+01 375 | -6.087722778320312500e+01 376 | -3.721933364868164062e+01 377 | -8.174279785156250000e+01 378 | -8.709637451171875000e+01 379 | -4.574586105346679688e+01 380 | -7.747809600830078125e+01 381 | -7.842118072509765625e+01 382 | -7.678753662109375000e+01 383 | -7.227140808105468750e+01 384 | -5.915642547607421875e+01 385 | -7.777056884765625000e+01 386 | -2.944329833984375000e+01 387 | -4.956711196899414062e+01 388 | -3.204826354980468750e+01 389 | -4.578575515747070312e+01 390 | -7.439601135253906250e+01 391 | -4.743087387084960938e+01 392 | -1.279236526489257812e+02 393 | -4.765135192871093750e+01 394 | -9.213855743408203125e+01 395 | -6.832299041748046875e+01 396 | -7.303546905517578125e+01 397 | -5.491484832763671875e+01 398 | -8.057875061035156250e+01 399 | -8.381045532226562500e+01 400 | -8.887490081787109375e+01 401 | -7.967024993896484375e+01 402 | -1.069640960693359375e+02 403 | -9.614211273193359375e+01 404 | -9.308330535888671875e+01 405 | -2.904993629455566406e+01 406 | -6.089033126831054688e+01 407 | -5.041688537597656250e+01 408 | -9.313352203369140625e+01 409 | -8.282059478759765625e+01 410 | -8.014782714843750000e+01 411 | -9.265680694580078125e+01 412 | -4.624771881103515625e+01 413 | -8.006295013427734375e+01 414 | -5.565264892578125000e+01 415 | -1.391323089599609375e+02 416 | -6.368546676635742188e+01 417 | -8.472362518310546875e+01 418 | -4.115162658691406250e+01 419 | -8.826460266113281250e+01 420 | -1.096834869384765625e+02 421 | -8.337429046630859375e+01 422 | -1.115596084594726562e+02 423 | -6.668339538574218750e+01 424 | -6.690290069580078125e+01 425 | -7.287816619873046875e+01 426 | -7.349983978271484375e+01 427 | -9.179141235351562500e+01 428 | -8.019171142578125000e+01 429 | -2.765046882629394531e+01 430 | -1.069077987670898438e+02 431 | -7.853984832763671875e+01 432 | -8.516254425048828125e+01 433 | -7.627935028076171875e+01 434 | -7.448719787597656250e+01 435 | -9.237899780273437500e+01 436 | -7.631089019775390625e+01 437 | -1.007629394531250000e+02 438 | -8.383224487304687500e+01 439 | -6.053154373168945312e+01 440 | -6.647795867919921875e+01 441 | -9.715296173095703125e+01 442 | -2.928521537780761719e+01 443 | -8.028753662109375000e+01 444 | -5.264601516723632812e+01 445 | -7.935120391845703125e+01 446 | -3.502814483642578125e+01 447 | -5.755207061767578125e+01 448 | -7.699568939208984375e+01 449 | -8.153047943115234375e+01 450 | -1.141006774902343750e+02 451 | -1.155548095703125000e+02 452 | -2.705325698852539062e+01 453 | -6.902049255371093750e+01 454 | -9.320599365234375000e+01 455 | -9.655349731445312500e+01 456 | -6.712329101562500000e+01 457 | -5.268096160888671875e+01 458 | -1.221205596923828125e+02 459 | -5.374551391601562500e+01 460 | -5.660033416748046875e+01 461 | -1.036600265502929688e+02 462 | -1.137521514892578125e+02 463 | -9.095637512207031250e+01 464 | -8.263369750976562500e+01 465 | -4.801305770874023438e+01 466 | -5.049478530883789062e+01 467 | -6.700853729248046875e+01 468 | -8.720564270019531250e+01 469 | -1.015518722534179688e+02 470 | -7.892227172851562500e+01 471 | -7.755677795410156250e+01 472 | -1.030016326904296875e+02 473 | -7.074859619140625000e+01 474 | -7.664858245849609375e+01 475 | -6.391032409667968750e+01 476 | -6.690558624267578125e+01 477 | -1.437429504394531250e+02 478 | -5.704223251342773438e+01 479 | -8.044540405273437500e+01 480 | -6.889963531494140625e+01 481 | -9.463340759277343750e+01 482 | -9.391307830810546875e+01 483 | -5.301371383666992188e+01 484 | -9.020001983642578125e+01 485 | -2.460604667663574219e+01 486 | -4.206930923461914062e+01 487 | -6.531400299072265625e+01 488 | -1.243268508911132812e+02 489 | -8.514774322509765625e+01 490 | -5.163365173339843750e+01 491 | -1.155611953735351562e+02 492 | -7.233913421630859375e+01 493 | -9.618621826171875000e+01 494 | -8.181234741210937500e+01 495 | -8.485251617431640625e+01 496 | -7.041744995117187500e+01 497 | -9.423654174804687500e+01 498 | -2.487637901306152344e+01 499 | -5.453515625000000000e+01 500 | -9.605477142333984375e+01 501 | -5.740308761596679688e+01 502 | -7.341533660888671875e+01 503 | -5.060338973999023438e+01 504 | -7.913810729980468750e+01 505 | -7.138287353515625000e+01 506 | -7.160154724121093750e+01 507 | -8.095243072509765625e+01 508 | -9.893803405761718750e+01 509 | -1.124779434204101562e+02 510 | -1.024959869384765625e+02 511 | -1.015090179443359375e+02 512 | -9.152105712890625000e+01 513 | -6.936021423339843750e+01 514 | -6.121387100219726562e+01 515 | -5.820129394531250000e+01 516 | -7.950312805175781250e+01 517 | -1.129099655151367188e+02 518 | -5.911214828491210938e+01 519 | -6.915793609619140625e+01 520 | -7.776933288574218750e+01 521 | -9.338441467285156250e+01 522 | -2.751741600036621094e+01 523 | -9.585320281982421875e+01 524 | -3.870270156860351562e+01 525 | -5.615518569946289062e+01 526 | -7.313001251220703125e+01 527 | -9.177094268798828125e+01 528 | -5.238573837280273438e+01 529 | -7.232538604736328125e+01 530 | -7.757514190673828125e+01 531 | -1.397180175781250000e+02 532 | -1.054331207275390625e+02 533 | -9.218988037109375000e+01 534 | -6.279383087158203125e+01 535 | -6.263554000854492188e+01 536 | -7.540183258056640625e+01 537 | -4.818393707275390625e+01 538 | -5.033922958374023438e+01 539 | -3.297761535644531250e+01 540 | -6.569918060302734375e+01 541 | -6.611280822753906250e+01 542 | -6.052819061279296875e+01 543 | -7.698393249511718750e+01 544 | -6.346041488647460938e+01 545 | -9.522049713134765625e+01 546 | -7.872302246093750000e+01 547 | -6.512445831298828125e+01 548 | -1.135625686645507812e+02 549 | -9.375603485107421875e+01 550 | -7.789675903320312500e+01 551 | -6.688574218750000000e+01 552 | -4.751296615600585938e+01 553 | -6.440354156494140625e+01 554 | -6.708500671386718750e+01 555 | -3.086067962646484375e+01 556 | -1.171103439331054688e+02 557 | -7.708129882812500000e+01 558 | -7.719973754882812500e+01 559 | -1.250684738159179688e+02 560 | -7.395188903808593750e+01 561 | -1.069638061523437500e+02 562 | -9.788014984130859375e+01 563 | -9.307329559326171875e+01 564 | -3.746432113647460938e+01 565 | -6.207091522216796875e+01 566 | -9.042678070068359375e+01 567 | -7.458203887939453125e+01 568 | -8.325975036621093750e+01 569 | -1.082169036865234375e+02 570 | -9.579567718505859375e+01 571 | -6.141477584838867188e+01 572 | -3.531602859497070312e+01 573 | -9.919357299804687500e+01 574 | -8.836962127685546875e+01 575 | -9.435430908203125000e+01 576 | -6.580389404296875000e+01 577 | -6.494215393066406250e+01 578 | -7.255632019042968750e+01 579 | -1.048966598510742188e+02 580 | -9.381369018554687500e+01 581 | -7.249744415283203125e+01 582 | -4.663254547119140625e+01 583 | -5.869047164916992188e+01 584 | -5.280640411376953125e+01 585 | -1.047261123657226562e+02 586 | -5.784793090820312500e+01 587 | -8.204319763183593750e+01 588 | -5.813249588012695312e+01 589 | -3.909450912475585938e+01 590 | -1.007978897094726562e+02 591 | -6.883476257324218750e+01 592 | -6.059946441650390625e+01 593 | -6.336310577392578125e+01 594 | -1.273738555908203125e+02 595 | -7.261230468750000000e+01 596 | -4.964489746093750000e+01 597 | -6.373379516601562500e+01 598 | -1.017335586547851562e+02 599 | -4.563940048217773438e+01 600 | -3.285335540771484375e+01 601 | -1.296285552978515625e+02 602 | -6.266940307617187500e+01 603 | -2.781834983825683594e+01 604 | -6.247779846191406250e+01 605 | -7.813504028320312500e+01 606 | -3.215804672241210938e+01 607 | -5.800898742675781250e+01 608 | -6.381287765502929688e+01 609 | -3.299123382568359375e+01 610 | -7.078842926025390625e+01 611 | -7.095819091796875000e+01 612 | -7.183300781250000000e+01 613 | -8.942449951171875000e+01 614 | -6.886750793457031250e+01 615 | -7.018753814697265625e+01 616 | -3.029049682617187500e+01 617 | -1.019596557617187500e+02 618 | -2.564672279357910156e+01 619 | -7.538983154296875000e+01 620 | -6.844397735595703125e+01 621 | -5.701091384887695312e+01 622 | -1.366493835449218750e+02 623 | -4.520233535766601562e+01 624 | -8.040521240234375000e+01 625 | -7.955624389648437500e+01 626 | -5.659158325195312500e+01 627 | -7.772695159912109375e+01 628 | -9.255462646484375000e+01 629 | -5.684240341186523438e+01 630 | -1.272940597534179688e+02 631 | -6.302022552490234375e+01 632 | -9.696691894531250000e+01 633 | -1.032825698852539062e+02 634 | -3.406196212768554688e+01 635 | -7.267607879638671875e+01 636 | -7.253590393066406250e+01 637 | -6.303749465942382812e+01 638 | -7.605514526367187500e+01 639 | -8.548873901367187500e+01 640 | -8.320928192138671875e+01 641 | -8.111723327636718750e+01 642 | -8.580013275146484375e+01 643 | -2.871248435974121094e+01 644 | -9.676681518554687500e+01 645 | -8.172104644775390625e+01 646 | -9.105992889404296875e+01 647 | -2.719559097290039062e+01 648 | -3.471705627441406250e+01 649 | -6.299244308471679688e+01 650 | -9.879292297363281250e+01 651 | -7.136951446533203125e+01 652 | -8.722790527343750000e+01 653 | -5.403158569335937500e+01 654 | -3.577158355712890625e+01 655 | -5.810872650146484375e+01 656 | -7.799515533447265625e+01 657 | -8.634785461425781250e+01 658 | -3.676679229736328125e+01 659 | -9.867028045654296875e+01 660 | -1.413391876220703125e+02 661 | -5.603003311157226562e+01 662 | -2.965534019470214844e+01 663 | -7.045264434814453125e+01 664 | -7.177872467041015625e+01 665 | -2.871027565002441406e+01 666 | -1.003248672485351562e+02 667 | -7.575440979003906250e+01 668 | -7.274106597900390625e+01 669 | -9.053516387939453125e+01 670 | -8.398950195312500000e+01 671 | -5.886875152587890625e+01 672 | -7.097000122070312500e+01 673 | -3.430217361450195312e+01 674 | -1.274941406250000000e+02 675 | -6.896412658691406250e+01 676 | -3.903922653198242188e+01 677 | -7.528481292724609375e+01 678 | -6.076978302001953125e+01 679 | -8.210218048095703125e+01 680 | -3.547113800048828125e+01 681 | -9.041249084472656250e+01 682 | -9.033049774169921875e+01 683 | -4.503912734985351562e+01 684 | -7.669349670410156250e+01 685 | -7.692564392089843750e+01 686 | -7.538586425781250000e+01 687 | -4.636870956420898438e+01 688 | -1.216460800170898438e+02 689 | -6.522650909423828125e+01 690 | -6.430113983154296875e+01 691 | -8.735211944580078125e+01 692 | -7.738286590576171875e+01 693 | -5.129721832275390625e+01 694 | -7.945143890380859375e+01 695 | -3.034111785888671875e+01 696 | -6.864823913574218750e+01 697 | -3.016160583496093750e+01 698 | -5.580067443847656250e+01 699 | -8.023764038085937500e+01 700 | -6.550322723388671875e+01 701 | -6.204337692260742188e+01 702 | -7.097902679443359375e+01 703 | -5.678516769409179688e+01 704 | -6.128153228759765625e+01 705 | -6.741728210449218750e+01 706 | -6.326894760131835938e+01 707 | -3.029404258728027344e+01 708 | -1.116998825073242188e+02 709 | -5.656127166748046875e+01 710 | -8.043955993652343750e+01 711 | -1.174313659667968750e+02 712 | -5.417806243896484375e+01 713 | -7.947953033447265625e+01 714 | -5.899194335937500000e+01 715 | -6.099673461914062500e+01 716 | -6.341906356811523438e+01 717 | -9.686508941650390625e+01 718 | -8.102014160156250000e+01 719 | -8.229015350341796875e+01 720 | -7.125801849365234375e+01 721 | -6.745227050781250000e+01 722 | -8.968173980712890625e+01 723 | -8.528739929199218750e+01 724 | -7.774591064453125000e+01 725 | -7.376094055175781250e+01 726 | -8.916347503662109375e+01 727 | -5.912617492675781250e+01 728 | -9.095715332031250000e+01 729 | -6.115674591064453125e+01 730 | -7.388999176025390625e+01 731 | -1.105142593383789062e+02 732 | -8.517304992675781250e+01 733 | -8.118227386474609375e+01 734 | -9.351839447021484375e+01 735 | -1.483261871337890625e+02 736 | -8.448173522949218750e+01 737 | -6.990416717529296875e+01 738 | -3.325163650512695312e+01 739 | -5.599885177612304688e+01 740 | -8.006227874755859375e+01 741 | -9.017025756835937500e+01 742 | -7.842115020751953125e+01 743 | -8.688789367675781250e+01 744 | -9.261491394042968750e+01 745 | -8.122564697265625000e+01 746 | -5.716621017456054688e+01 747 | -7.959215545654296875e+01 748 | -1.206030044555664062e+02 749 | -6.358655166625976562e+01 750 | -6.031735610961914062e+01 751 | -1.037944564819335938e+02 752 | -1.289069671630859375e+02 753 | -5.961203384399414062e+01 754 | -6.682392883300781250e+01 755 | -9.605869293212890625e+01 756 | -9.414848327636718750e+01 757 | -6.916724395751953125e+01 758 | -5.456219100952148438e+01 759 | -4.421131134033203125e+01 760 | -8.957522583007812500e+01 761 | -6.995836639404296875e+01 762 | -9.454659271240234375e+01 763 | -8.672615051269531250e+01 764 | -1.099842681884765625e+02 765 | -5.496133422851562500e+01 766 | -3.832889938354492188e+01 767 | -8.279233551025390625e+01 768 | -8.089063262939453125e+01 769 | -4.745323944091796875e+01 770 | -7.560249328613281250e+01 771 | -9.236846160888671875e+01 772 | -6.127248382568359375e+01 773 | -1.055745544433593750e+02 774 | -6.185486602783203125e+01 775 | -8.755436706542968750e+01 776 | -1.004714660644531250e+02 777 | -7.004170227050781250e+01 778 | -4.714796447753906250e+01 779 | -2.684578323364257812e+01 780 | -8.735001373291015625e+01 781 | -5.552320480346679688e+01 782 | -9.690504455566406250e+01 783 | -8.446887969970703125e+01 784 | -6.815922546386718750e+01 785 | -4.922175216674804688e+01 786 | -6.042332458496093750e+01 787 | -6.255402374267578125e+01 788 | -5.920508193969726562e+01 789 | -1.258773574829101562e+02 790 | -6.360272979736328125e+01 791 | -7.379067993164062500e+01 792 | -7.196942901611328125e+01 793 | -8.044476318359375000e+01 794 | -4.173113632202148438e+01 795 | -1.356893005371093750e+02 796 | -9.323698425292968750e+01 797 | -1.097518463134765625e+02 798 | -5.860800552368164062e+01 799 | -7.223374938964843750e+01 800 | -1.030242233276367188e+02 801 | -7.526282501220703125e+01 802 | -4.441261291503906250e+01 803 | -8.301718902587890625e+01 804 | -6.035096740722656250e+01 805 | -5.606938552856445312e+01 806 | -4.641907119750976562e+01 807 | -6.851408386230468750e+01 808 | -8.586098480224609375e+01 809 | -2.470579147338867188e+01 810 | -1.046691589355468750e+02 811 | -1.006628799438476562e+02 812 | -6.357226943969726562e+01 813 | -8.695295715332031250e+01 814 | -7.906761932373046875e+01 815 | -4.923048782348632812e+01 816 | -6.267750167846679688e+01 817 | -7.308553314208984375e+01 818 | -7.242852783203125000e+01 819 | -7.905264282226562500e+01 820 | -9.432911682128906250e+01 821 | -5.382821273803710938e+01 822 | -6.189846038818359375e+01 823 | -8.932987976074218750e+01 824 | -4.526286697387695312e+01 825 | -9.239242553710937500e+01 826 | -5.706047821044921875e+01 827 | -1.058483047485351562e+02 828 | -9.435374450683593750e+01 829 | -2.917757987976074219e+01 830 | -7.746797180175781250e+01 831 | -3.563338851928710938e+01 832 | -5.217803573608398438e+01 833 | -2.559000778198242188e+01 834 | -6.113809967041015625e+01 835 | -5.743383789062500000e+01 836 | -1.037399597167968750e+02 837 | -2.643889236450195312e+01 838 | -7.459329223632812500e+01 839 | -6.616951751708984375e+01 840 | -4.842434310913085938e+01 841 | -5.380921173095703125e+01 842 | -4.464358139038085938e+01 843 | -8.034748840332031250e+01 844 | -7.335064697265625000e+01 845 | -4.677830505371093750e+01 846 | -9.949581909179687500e+01 847 | -9.994535064697265625e+01 848 | -7.654922485351562500e+01 849 | -7.690383911132812500e+01 850 | -5.466012191772460938e+01 851 | -5.986558151245117188e+01 852 | -7.310888671875000000e+01 853 | -2.398084068298339844e+01 854 | -1.182020645141601562e+02 855 | -7.685916900634765625e+01 856 | -8.613840484619140625e+01 857 | -6.067450332641601562e+01 858 | -9.840879821777343750e+01 859 | -6.915180969238281250e+01 860 | -8.500972747802734375e+01 861 | -1.062154617309570312e+02 862 | -6.683639526367187500e+01 863 | -5.026542663574218750e+01 864 | -1.143305664062500000e+02 865 | -2.890354347229003906e+01 866 | -7.738867950439453125e+01 867 | -2.662498855590820312e+01 868 | -5.546556091308593750e+01 869 | -8.671475219726562500e+01 870 | -6.210398101806640625e+01 871 | -9.934550476074218750e+01 872 | -1.102804794311523438e+02 873 | -1.411807556152343750e+02 874 | -7.167646026611328125e+01 875 | -6.291088867187500000e+01 876 | -3.317625427246093750e+01 877 | -6.358769989013671875e+01 878 | -6.704267120361328125e+01 879 | -7.706179809570312500e+01 880 | -3.405571365356445312e+01 881 | -1.026008911132812500e+02 882 | -5.189009857177734375e+01 883 | -4.985327911376953125e+01 884 | -8.785348510742187500e+01 885 | -9.114958190917968750e+01 886 | -8.349917602539062500e+01 887 | -1.030274353027343750e+02 888 | -3.144317626953125000e+01 889 | -9.360146331787109375e+01 890 | -9.504808807373046875e+01 891 | -3.066450691223144531e+01 892 | -1.345505523681640625e+02 893 | -7.395059204101562500e+01 894 | -7.216201782226562500e+01 895 | -5.945066452026367188e+01 896 | -1.679241027832031250e+02 897 | -6.162017059326171875e+01 898 | -8.491072845458984375e+01 899 | -4.959770965576171875e+01 900 | -7.637521362304687500e+01 901 | -3.133800315856933594e+01 902 | -8.108740997314453125e+01 903 | -1.197340316772460938e+02 904 | -9.351171112060546875e+01 905 | -3.526272201538085938e+01 906 | -7.708640289306640625e+01 907 | -4.578905868530273438e+01 908 | -7.379088592529296875e+01 909 | -5.087424468994140625e+01 910 | -6.584334564208984375e+01 911 | -8.483986663818359375e+01 912 | -8.172399139404296875e+01 913 | -3.527882766723632812e+01 914 | -7.157714080810546875e+01 915 | -6.752614593505859375e+01 916 | -4.938896179199218750e+01 917 | -4.777634429931640625e+01 918 | -9.694661712646484375e+01 919 | -7.833941650390625000e+01 920 | -6.521398162841796875e+01 921 | -5.590374755859375000e+01 922 | -6.947487640380859375e+01 923 | -9.188183593750000000e+01 924 | -9.706037139892578125e+01 925 | -6.538542938232421875e+01 926 | -6.135540771484375000e+01 927 | -6.196686172485351562e+01 928 | -9.976286315917968750e+01 929 | -7.108150482177734375e+01 930 | -2.784818458557128906e+01 931 | -6.777130889892578125e+01 932 | -8.189308929443359375e+01 933 | -6.584126281738281250e+01 934 | -1.094360961914062500e+02 935 | -8.384611511230468750e+01 936 | -6.303738784790039062e+01 937 | -6.575688171386718750e+01 938 | -7.473287200927734375e+01 939 | -7.105178833007812500e+01 940 | -1.031040420532226562e+02 941 | -8.070432281494140625e+01 942 | -1.033779220581054688e+02 943 | -4.925402450561523438e+01 944 | -3.244155502319335938e+01 945 | -1.146539306640625000e+02 946 | -9.041436767578125000e+01 947 | -5.696284103393554688e+01 948 | -3.355496215820312500e+01 949 | -1.017489013671875000e+02 950 | -8.641853332519531250e+01 951 | -6.784589385986328125e+01 952 | -7.265869903564453125e+01 953 | -9.285057830810546875e+01 954 | -7.811844635009765625e+01 955 | -9.458975982666015625e+01 956 | -6.529656982421875000e+01 957 | -6.914790344238281250e+01 958 | -1.241901473999023438e+02 959 | -9.419004821777343750e+01 960 | -6.945388793945312500e+01 961 | -5.747214508056640625e+01 962 | -5.366843032836914062e+01 963 | -1.293369750976562500e+02 964 | -8.822617340087890625e+01 965 | -1.049110565185546875e+02 966 | -3.798230743408203125e+01 967 | -7.326530456542968750e+01 968 | -8.598757934570312500e+01 969 | -8.297437286376953125e+01 970 | -4.035170745849609375e+01 971 | -5.839208602905273438e+01 972 | -3.027706336975097656e+01 973 | -8.464295959472656250e+01 974 | -5.766076660156250000e+01 975 | -5.877501296997070312e+01 976 | -1.049004364013671875e+02 977 | -6.556164550781250000e+01 978 | -5.218357467651367188e+01 979 | -3.629789352416992188e+01 980 | -1.014066543579101562e+02 981 | -8.125878143310546875e+01 982 | -5.135728454589843750e+01 983 | -7.674767303466796875e+01 984 | -8.608585357666015625e+01 985 | -1.051560287475585938e+02 986 | -7.562205505371093750e+01 987 | -1.023459625244140625e+02 988 | -6.026597213745117188e+01 989 | -9.508329772949218750e+01 990 | -6.395385742187500000e+01 991 | -7.291100311279296875e+01 992 | -7.310395812988281250e+01 993 | -7.869834136962890625e+01 994 | -7.120837402343750000e+01 995 | -6.781964111328125000e+01 996 | -6.132580566406250000e+01 997 | -6.558025360107421875e+01 998 | -8.606477355957031250e+01 999 | -6.321632385253906250e+01 1000 | -1.246626129150390625e+02 1001 | -1.140591888427734375e+02 1002 | -5.648180007934570312e+01 1003 | -8.105059051513671875e+01 1004 | -5.874444198608398438e+01 1005 | -6.935309600830078125e+01 1006 | -6.563008117675781250e+01 1007 | -6.964510345458984375e+01 1008 | -7.439110565185546875e+01 1009 | -8.441687011718750000e+01 1010 | -5.776948165893554688e+01 1011 | -8.199005889892578125e+01 1012 | -3.607162475585937500e+01 1013 | -7.915336608886718750e+01 1014 | -8.264689636230468750e+01 1015 | -6.591728973388671875e+01 1016 | -8.727053833007812500e+01 1017 | -7.783994293212890625e+01 1018 | -1.023129348754882812e+02 1019 | -8.316823577880859375e+01 1020 | -6.042274093627929688e+01 1021 | -5.311182022094726562e+01 1022 | -9.572518157958984375e+01 1023 | -6.522503662109375000e+01 1024 | -9.791535949707031250e+01 1025 | -6.536825561523437500e+01 1026 | -6.468069458007812500e+01 1027 | -5.021731185913085938e+01 1028 | -1.075222854614257812e+02 1029 | -7.340426635742187500e+01 1030 | -7.369149780273437500e+01 1031 | -6.821839141845703125e+01 1032 | -7.457550048828125000e+01 1033 | -3.266189575195312500e+01 1034 | -1.081898345947265625e+02 1035 | -5.414233779907226562e+01 1036 | -3.149460983276367188e+01 1037 | -1.097487106323242188e+02 1038 | -8.713468170166015625e+01 1039 | -3.431587982177734375e+01 1040 | -1.156069717407226562e+02 1041 | -8.166672515869140625e+01 1042 | -5.053781127929687500e+01 1043 | -7.414504241943359375e+01 1044 | -7.365487670898437500e+01 1045 | -4.586001968383789062e+01 1046 | -9.207698059082031250e+01 1047 | -3.229425430297851562e+01 1048 | -7.063402557373046875e+01 1049 | -1.136649322509765625e+02 1050 | -8.602590179443359375e+01 1051 | -2.803220939636230469e+01 1052 | -1.149223251342773438e+02 1053 | -1.279573059082031250e+02 1054 | -1.010227584838867188e+02 1055 | -5.980086135864257812e+01 1056 | -5.607508468627929688e+01 1057 | -4.624131011962890625e+01 1058 | -2.963714218139648438e+01 1059 | -6.547557067871093750e+01 1060 | -3.244858932495117188e+01 1061 | -6.283946609497070312e+01 1062 | -9.712430572509765625e+01 1063 | -7.579273223876953125e+01 1064 | -7.918708038330078125e+01 1065 | -6.068367004394531250e+01 1066 | -4.453846359252929688e+01 1067 | -8.845749664306640625e+01 1068 | -5.898311233520507812e+01 1069 | -8.934023284912109375e+01 1070 | -1.202527542114257812e+02 1071 | -7.182238769531250000e+01 1072 | -1.001957168579101562e+02 1073 | -5.362561416625976562e+01 1074 | -7.570311737060546875e+01 1075 | -2.897631645202636719e+01 1076 | -5.660054397583007812e+01 1077 | -9.549144744873046875e+01 1078 | -5.856457519531250000e+01 1079 | -1.188535995483398438e+02 1080 | -1.032764663696289062e+02 1081 | -6.263804244995117188e+01 1082 | -6.018824768066406250e+01 1083 | -6.517787170410156250e+01 1084 | -8.000919342041015625e+01 1085 | -2.584495353698730469e+01 1086 | -1.380509033203125000e+02 1087 | -6.442603302001953125e+01 1088 | -4.538461303710937500e+01 1089 | -7.859493255615234375e+01 1090 | -7.805562591552734375e+01 1091 | -6.690477752685546875e+01 1092 | -8.798166656494140625e+01 1093 | -9.672481536865234375e+01 1094 | -8.048439025878906250e+01 1095 | -7.601415252685546875e+01 1096 | -6.695317840576171875e+01 1097 | -8.858552551269531250e+01 1098 | -7.675137329101562500e+01 1099 | -7.836256408691406250e+01 1100 | -3.104508781433105469e+01 1101 | -3.750415802001953125e+01 1102 | -9.789432525634765625e+01 1103 | -8.832424926757812500e+01 1104 | -1.373377380371093750e+02 1105 | -7.470922851562500000e+01 1106 | -8.575118255615234375e+01 1107 | -8.154885864257812500e+01 1108 | -5.578590774536132812e+01 1109 | -7.432411956787109375e+01 1110 | -7.017189025878906250e+01 1111 | -1.139873275756835938e+02 1112 | -3.963438034057617188e+01 1113 | -8.071819305419921875e+01 1114 | -7.509197235107421875e+01 1115 | -6.809877777099609375e+01 1116 | -7.315097045898437500e+01 1117 | -7.139682006835937500e+01 1118 | -6.401351928710937500e+01 1119 | -1.109956665039062500e+02 1120 | -9.878926849365234375e+01 1121 | -5.678384399414062500e+01 1122 | -5.745870590209960938e+01 1123 | -1.146015014648437500e+02 1124 | -1.028299865722656250e+02 1125 | -7.480346679687500000e+01 1126 | -7.605979919433593750e+01 1127 | -7.778681182861328125e+01 1128 | -9.728871917724609375e+01 1129 | -6.697868347167968750e+01 1130 | -5.455566024780273438e+01 1131 | -7.352059173583984375e+01 1132 | -1.234749984741210938e+02 1133 | -8.761640167236328125e+01 1134 | -7.253056335449218750e+01 1135 | -7.218766021728515625e+01 1136 | -5.206919479370117188e+01 1137 | -3.516138839721679688e+01 1138 | -8.850072479248046875e+01 1139 | -1.108209075927734375e+02 1140 | -8.716371154785156250e+01 1141 | -7.460173797607421875e+01 1142 | -3.129277229309082031e+01 1143 | -5.828615570068359375e+01 1144 | -8.644686126708984375e+01 1145 | -6.633671569824218750e+01 1146 | -1.066990432739257812e+02 1147 | -7.723539733886718750e+01 1148 | -5.138390731811523438e+01 1149 | -9.481342315673828125e+01 1150 | -5.723611068725585938e+01 1151 | -5.335264968872070312e+01 1152 | -5.491355133056640625e+01 1153 | -2.953671455383300781e+01 1154 | -4.639513778686523438e+01 1155 | -4.372389984130859375e+01 1156 | -8.307791137695312500e+01 1157 | -7.632861328125000000e+01 1158 | -4.851451110839843750e+01 1159 | -4.411769866943359375e+01 1160 | -7.450616455078125000e+01 1161 | -9.564254760742187500e+01 1162 | -2.814109420776367188e+01 1163 | -6.567192077636718750e+01 1164 | -3.123315238952636719e+01 1165 | -7.683041381835937500e+01 1166 | -6.628988647460937500e+01 1167 | -8.502527618408203125e+01 1168 | -7.253105926513671875e+01 1169 | -1.104962005615234375e+02 1170 | -5.650737762451171875e+01 1171 | -5.439289093017578125e+01 1172 | -4.751920318603515625e+01 1173 | -6.386513900756835938e+01 1174 | -8.766899871826171875e+01 1175 | -9.910131835937500000e+01 1176 | -9.911148834228515625e+01 1177 | -6.913121795654296875e+01 1178 | -9.669509887695312500e+01 1179 | -8.274743652343750000e+01 1180 | -7.314504241943359375e+01 1181 | -6.411408996582031250e+01 1182 | -6.207651901245117188e+01 1183 | -7.031163024902343750e+01 1184 | -8.714555358886718750e+01 1185 | -5.378215026855468750e+01 1186 | -7.126753997802734375e+01 1187 | -6.512612915039062500e+01 1188 | -6.847356414794921875e+01 1189 | -9.011869812011718750e+01 1190 | -1.076065902709960938e+02 1191 | -6.387631225585937500e+01 1192 | -2.975058746337890625e+01 1193 | -8.063185882568359375e+01 1194 | -1.126679382324218750e+02 1195 | -3.075403213500976562e+01 1196 | -4.346013259887695312e+01 1197 | -6.527946472167968750e+01 1198 | -6.761073303222656250e+01 1199 | -8.024060821533203125e+01 1200 | -6.744985198974609375e+01 1201 | -6.603712463378906250e+01 1202 | -5.402798080444335938e+01 1203 | -6.055024337768554688e+01 1204 | -5.782768630981445312e+01 1205 | -9.490644836425781250e+01 1206 | -4.924550628662109375e+01 1207 | -8.942346191406250000e+01 1208 | -6.044787597656250000e+01 1209 | -1.041625900268554688e+02 1210 | -8.319010162353515625e+01 1211 | -6.880948638916015625e+01 1212 | -6.186018371582031250e+01 1213 | -6.216058731079101562e+01 1214 | -4.456677627563476562e+01 1215 | -7.843195343017578125e+01 1216 | -6.580725097656250000e+01 1217 | -8.515749359130859375e+01 1218 | -1.048330307006835938e+02 1219 | -6.560464477539062500e+01 1220 | -6.936264801025390625e+01 1221 | -6.883037567138671875e+01 1222 | -6.489341735839843750e+01 1223 | -8.484465789794921875e+01 1224 | -2.801254081726074219e+01 1225 | -6.520572662353515625e+01 1226 | -7.299294281005859375e+01 1227 | -7.147677612304687500e+01 1228 | -3.005663299560546875e+01 1229 | -3.757767486572265625e+01 1230 | -7.439323425292968750e+01 1231 | -2.720237731933593750e+01 1232 | -6.006986236572265625e+01 1233 | -8.464059448242187500e+01 1234 | -8.492279052734375000e+01 1235 | -4.150413513183593750e+01 1236 | -5.816559600830078125e+01 1237 | -4.243655014038085938e+01 1238 | -9.903116607666015625e+01 1239 | -8.708218383789062500e+01 1240 | -9.698303985595703125e+01 1241 | -4.909661483764648438e+01 1242 | -3.151131248474121094e+01 1243 | -7.601001739501953125e+01 1244 | -7.484272766113281250e+01 1245 | -7.459316253662109375e+01 1246 | -1.081314086914062500e+02 1247 | -1.026716690063476562e+02 1248 | -8.244068908691406250e+01 1249 | -8.804208374023437500e+01 1250 | -8.537149810791015625e+01 1251 | -6.026574707031250000e+01 1252 | -5.129676055908203125e+01 1253 | -7.741106414794921875e+01 1254 | -6.473545074462890625e+01 1255 | -4.316760253906250000e+01 1256 | -2.966232681274414062e+01 1257 | -8.088346099853515625e+01 1258 | -5.741854095458984375e+01 1259 | -7.797391510009765625e+01 1260 | -1.044910659790039062e+02 1261 | -4.827005386352539062e+01 1262 | -8.620319366455078125e+01 1263 | -8.690766906738281250e+01 1264 | -6.174485397338867188e+01 1265 | -1.050476837158203125e+02 1266 | -8.065199279785156250e+01 1267 | -7.117028808593750000e+01 1268 | -7.848339080810546875e+01 1269 | -5.381721115112304688e+01 1270 | -9.854565429687500000e+01 1271 | -5.801973724365234375e+01 1272 | -8.892643737792968750e+01 1273 | -9.179386138916015625e+01 1274 | -5.803641128540039062e+01 1275 | -7.427555084228515625e+01 1276 | -9.297316741943359375e+01 1277 | -7.928086090087890625e+01 1278 | -6.662965393066406250e+01 1279 | -1.040251617431640625e+02 1280 | -5.748860549926757812e+01 1281 | -7.566380310058593750e+01 1282 | -8.786360931396484375e+01 1283 | -8.622524261474609375e+01 1284 | -9.770168304443359375e+01 1285 | -5.505462265014648438e+01 1286 | -7.816969299316406250e+01 1287 | -7.143103790283203125e+01 1288 | -5.660991668701171875e+01 1289 | -7.325896453857421875e+01 1290 | -5.030924224853515625e+01 1291 | -8.694749450683593750e+01 1292 | -4.827263641357421875e+01 1293 | -8.229070281982421875e+01 1294 | -5.628582000732421875e+01 1295 | -1.352289886474609375e+02 1296 | -7.538896942138671875e+01 1297 | -3.000382995605468750e+01 1298 | -8.174032592773437500e+01 1299 | -8.345168304443359375e+01 1300 | -4.202005767822265625e+01 1301 | -8.768816375732421875e+01 1302 | -9.827462768554687500e+01 1303 | -4.712612152099609375e+01 1304 | -8.958699035644531250e+01 1305 | -7.231694030761718750e+01 1306 | -7.161668395996093750e+01 1307 | -9.145807647705078125e+01 1308 | -5.549121856689453125e+01 1309 | -6.588695526123046875e+01 1310 | -2.943524932861328125e+01 1311 | -4.678756332397460938e+01 1312 | -8.145381164550781250e+01 1313 | -8.695821380615234375e+01 1314 | -9.652596282958984375e+01 1315 | -9.185769653320312500e+01 1316 | -7.188201904296875000e+01 1317 | -7.555236816406250000e+01 1318 | -6.885376739501953125e+01 1319 | -6.498696136474609375e+01 1320 | -3.312193298339843750e+01 1321 | -1.008324813842773438e+02 1322 | -1.651142883300781250e+02 1323 | -5.003515243530273438e+01 1324 | -6.729492187500000000e+01 1325 | -5.894639968872070312e+01 1326 | -1.044742126464843750e+02 1327 | -1.521766204833984375e+02 1328 | -2.761451148986816406e+01 1329 | -7.584243011474609375e+01 1330 | -4.818852615356445312e+01 1331 | -6.916191864013671875e+01 1332 | -6.678771972656250000e+01 1333 | -5.009295654296875000e+01 1334 | -7.486553955078125000e+01 1335 | -4.894864654541015625e+01 1336 | -7.028658294677734375e+01 1337 | -7.446343994140625000e+01 1338 | -6.813871002197265625e+01 1339 | -8.383999633789062500e+01 1340 | -4.324960327148437500e+01 1341 | -6.160143661499023438e+01 1342 | -7.078604888916015625e+01 1343 | -3.861297607421875000e+01 1344 | -7.263657379150390625e+01 1345 | -7.342147064208984375e+01 1346 | -5.827575683593750000e+01 1347 | -9.246474456787109375e+01 1348 | -6.240305328369140625e+01 1349 | -6.345955657958984375e+01 1350 | -5.452850341796875000e+01 1351 | -6.487600708007812500e+01 1352 | -6.339260864257812500e+01 1353 | -3.138769721984863281e+01 1354 | -6.998654937744140625e+01 1355 | -7.902842712402343750e+01 1356 | -1.256330490112304688e+02 1357 | -9.058302307128906250e+01 1358 | -6.361540985107421875e+01 1359 | -5.430120849609375000e+01 1360 | -3.235420227050781250e+01 1361 | -8.834365844726562500e+01 1362 | -9.947596740722656250e+01 1363 | -7.812490081787109375e+01 1364 | -3.117223548889160156e+01 1365 | -8.090377044677734375e+01 1366 | -8.004460144042968750e+01 1367 | -1.164916534423828125e+02 1368 | -3.049807548522949219e+01 1369 | -3.325297546386718750e+01 1370 | -9.308694458007812500e+01 1371 | -7.969171142578125000e+01 1372 | -1.338638458251953125e+02 1373 | -8.096233367919921875e+01 1374 | -1.073362960815429688e+02 1375 | -8.375773620605468750e+01 1376 | -4.491978836059570312e+01 1377 | -7.628571319580078125e+01 1378 | -7.879612731933593750e+01 1379 | -5.398480987548828125e+01 1380 | -3.092658042907714844e+01 1381 | -8.780774688720703125e+01 1382 | -3.232416915893554688e+01 1383 | -6.742605590820312500e+01 1384 | -3.378363800048828125e+01 1385 | -4.354113388061523438e+01 1386 | -8.406630706787109375e+01 1387 | -6.715731811523437500e+01 1388 | -8.929186248779296875e+01 1389 | -5.642461776733398438e+01 1390 | -7.460884857177734375e+01 1391 | -8.725184631347656250e+01 1392 | -5.928273391723632812e+01 1393 | -4.665192794799804688e+01 1394 | -5.762637710571289062e+01 1395 | -8.747398376464843750e+01 1396 | -7.222615051269531250e+01 1397 | -8.697923278808593750e+01 1398 | -5.919379043579101562e+01 1399 | -4.592245101928710938e+01 1400 | -6.674829864501953125e+01 1401 | -2.860602378845214844e+01 1402 | -7.920692443847656250e+01 1403 | -7.791989898681640625e+01 1404 | -8.061139678955078125e+01 1405 | -8.133861541748046875e+01 1406 | -7.944785308837890625e+01 1407 | -3.196166419982910156e+01 1408 | -6.582954406738281250e+01 1409 | -3.425426483154296875e+01 1410 | -6.340695571899414062e+01 1411 | -9.230224609375000000e+01 1412 | -7.346993255615234375e+01 1413 | -7.546659088134765625e+01 1414 | -5.144154357910156250e+01 1415 | -9.594689178466796875e+01 1416 | -3.649198150634765625e+01 1417 | -3.528142547607421875e+01 1418 | -7.684495544433593750e+01 1419 | -7.213983917236328125e+01 1420 | -5.777836608886718750e+01 1421 | -7.554667663574218750e+01 1422 | -8.062921905517578125e+01 1423 | -8.247618865966796875e+01 1424 | -9.141352081298828125e+01 1425 | -9.840397644042968750e+01 1426 | -8.147315979003906250e+01 1427 | -5.049076080322265625e+01 1428 | -5.657819747924804688e+01 1429 | -9.946476745605468750e+01 1430 | -7.591897583007812500e+01 1431 | -7.673102569580078125e+01 1432 | -8.201409912109375000e+01 1433 | -8.579565429687500000e+01 1434 | -6.354656219482421875e+01 1435 | -4.660850524902343750e+01 1436 | -7.585860443115234375e+01 1437 | -6.598540496826171875e+01 1438 | -9.592472076416015625e+01 1439 | -8.996776580810546875e+01 1440 | -6.760371398925781250e+01 1441 | -5.152280044555664062e+01 1442 | -8.074396514892578125e+01 1443 | -3.542985916137695312e+01 1444 | -6.911759948730468750e+01 1445 | -7.042896270751953125e+01 1446 | -7.740129852294921875e+01 1447 | -1.297820892333984375e+02 1448 | -3.392447280883789062e+01 1449 | -8.326515197753906250e+01 1450 | -3.099486923217773438e+01 1451 | -8.581501770019531250e+01 1452 | -5.614730453491210938e+01 1453 | -1.003066253662109375e+02 1454 | -7.616456604003906250e+01 1455 | -8.423922729492187500e+01 1456 | -3.174745750427246094e+01 1457 | -3.390867233276367188e+01 1458 | -9.248203277587890625e+01 1459 | -7.582045745849609375e+01 1460 | -6.159124755859375000e+01 1461 | -9.105017852783203125e+01 1462 | -5.476086425781250000e+01 1463 | -9.290737152099609375e+01 1464 | -7.238456726074218750e+01 1465 | -1.359044494628906250e+02 1466 | -9.384893035888671875e+01 1467 | -3.468360900878906250e+01 1468 | -6.408661651611328125e+01 1469 | -7.615163421630859375e+01 1470 | -9.147847747802734375e+01 1471 | -4.508342361450195312e+01 1472 | -9.193236541748046875e+01 1473 | -6.245427322387695312e+01 1474 | -5.453940963745117188e+01 1475 | -5.474457550048828125e+01 1476 | -8.704022216796875000e+01 1477 | -1.065598144531250000e+02 1478 | -9.548190307617187500e+01 1479 | -7.653789520263671875e+01 1480 | -5.219306945800781250e+01 1481 | -4.879516220092773438e+01 1482 | -2.925948905944824219e+01 1483 | -1.091809692382812500e+02 1484 | -5.664042663574218750e+01 1485 | -8.859860992431640625e+01 1486 | -7.069054412841796875e+01 1487 | -5.951581573486328125e+01 1488 | -3.990280532836914062e+01 1489 | -1.056123352050781250e+02 1490 | -8.858913421630859375e+01 1491 | -5.910000610351562500e+01 1492 | -7.813590240478515625e+01 1493 | -9.081340026855468750e+01 1494 | -1.180000686645507812e+02 1495 | -6.871390533447265625e+01 1496 | -1.123299560546875000e+02 1497 | -1.221914749145507812e+02 1498 | -8.613558197021484375e+01 1499 | -5.111577987670898438e+01 1500 | -3.293131256103515625e+01 1501 | -6.809755706787109375e+01 1502 | -6.382276916503906250e+01 1503 | -6.059422302246093750e+01 1504 | -3.526782989501953125e+01 1505 | -4.099229049682617188e+01 1506 | -1.398531494140625000e+02 1507 | -4.702694702148437500e+01 1508 | -5.982007217407226562e+01 1509 | -6.305026245117187500e+01 1510 | -7.672404479980468750e+01 1511 | -6.251699066162109375e+01 1512 | -5.918580627441406250e+01 1513 | -3.266104507446289062e+01 1514 | -5.608071136474609375e+01 1515 | -3.443955230712890625e+01 1516 | -9.944493865966796875e+01 1517 | -5.985543060302734375e+01 1518 | -7.690135955810546875e+01 1519 | -7.217111968994140625e+01 1520 | -6.362678909301757812e+01 1521 | -7.377606201171875000e+01 1522 | -1.109010086059570312e+02 1523 | -9.120513916015625000e+01 1524 | -7.923945617675781250e+01 1525 | -1.102135314941406250e+02 1526 | -5.869838714599609375e+01 1527 | -8.038550567626953125e+01 1528 | -6.544951629638671875e+01 1529 | -8.882458496093750000e+01 1530 | -4.538523101806640625e+01 1531 | -8.146662902832031250e+01 1532 | -6.406577301025390625e+01 1533 | -6.705757904052734375e+01 1534 | -1.212539138793945312e+02 1535 | -8.439469909667968750e+01 1536 | -7.331694793701171875e+01 1537 | -6.022240829467773438e+01 1538 | -7.318872070312500000e+01 1539 | -1.078877487182617188e+02 1540 | -8.207646179199218750e+01 1541 | -2.707247543334960938e+01 1542 | -3.174151039123535156e+01 1543 | -6.981304168701171875e+01 1544 | -5.750356674194335938e+01 1545 | -5.954743576049804688e+01 1546 | -5.003883361816406250e+01 1547 | -8.672938537597656250e+01 1548 | -1.100989837646484375e+02 1549 | -7.964156341552734375e+01 1550 | -7.925716400146484375e+01 1551 | -2.812462425231933594e+01 1552 | -7.089384460449218750e+01 1553 | -6.614827728271484375e+01 1554 | -8.912231445312500000e+01 1555 | -3.805704116821289062e+01 1556 | -8.326657867431640625e+01 1557 | -5.312051010131835938e+01 1558 | -9.787652587890625000e+01 1559 | -8.987197875976562500e+01 1560 | -8.923654174804687500e+01 1561 | -5.490290451049804688e+01 1562 | -1.141834564208984375e+02 1563 | -5.483931350708007812e+01 1564 | -8.351885986328125000e+01 1565 | -1.121492309570312500e+02 1566 | -7.264730072021484375e+01 1567 | -8.887198638916015625e+01 1568 | -5.140740966796875000e+01 1569 | -6.653453826904296875e+01 1570 | -3.363151550292968750e+01 1571 | -6.707241821289062500e+01 1572 | -6.323394012451171875e+01 1573 | -6.031592941284179688e+01 1574 | -7.533821868896484375e+01 1575 | -1.249432907104492188e+02 1576 | -1.202364883422851562e+02 1577 | -6.348810577392578125e+01 1578 | -7.133596801757812500e+01 1579 | -4.280047988891601562e+01 1580 | -8.140605163574218750e+01 1581 | -1.227245712280273438e+02 1582 | -8.810070800781250000e+01 1583 | -5.888204574584960938e+01 1584 | -4.626498794555664062e+01 1585 | -8.700936889648437500e+01 1586 | -6.531552886962890625e+01 1587 | -5.806356811523437500e+01 1588 | -7.387336730957031250e+01 1589 | -8.053322601318359375e+01 1590 | -7.298127746582031250e+01 1591 | -9.268210601806640625e+01 1592 | -6.462651824951171875e+01 1593 | -7.796162414550781250e+01 1594 | -5.132680892944335938e+01 1595 | -5.034970855712890625e+01 1596 | -5.360321044921875000e+01 1597 | -1.007312850952148438e+02 1598 | -7.050612640380859375e+01 1599 | -7.511969757080078125e+01 1600 | -4.114833068847656250e+01 1601 | -5.687598419189453125e+01 1602 | -1.074761734008789062e+02 1603 | -8.440454101562500000e+01 1604 | -9.182238006591796875e+01 1605 | -6.523571777343750000e+01 1606 | -9.116981506347656250e+01 1607 | -5.819221878051757812e+01 1608 | -1.012849044799804688e+02 1609 | -1.533136444091796875e+02 1610 | -1.069564590454101562e+02 1611 | -1.165640869140625000e+02 1612 | -6.981550598144531250e+01 1613 | -6.855957794189453125e+01 1614 | -6.709513092041015625e+01 1615 | -9.805773162841796875e+01 1616 | -6.153570938110351562e+01 1617 | -6.372745895385742188e+01 1618 | -6.241730499267578125e+01 1619 | -9.698986816406250000e+01 1620 | -7.037035369873046875e+01 1621 | -8.162059020996093750e+01 1622 | -7.441490173339843750e+01 1623 | -7.182341003417968750e+01 1624 | -9.013940429687500000e+01 1625 | -7.894634246826171875e+01 1626 | -8.527384948730468750e+01 1627 | -3.569641494750976562e+01 1628 | -6.448849487304687500e+01 1629 | -6.536541748046875000e+01 1630 | -3.318041610717773438e+01 1631 | -6.404419708251953125e+01 1632 | -2.708005905151367188e+01 1633 | -7.473480224609375000e+01 1634 | -7.155591583251953125e+01 1635 | -3.910086822509765625e+01 1636 | -2.721060562133789062e+01 1637 | -5.914519119262695312e+01 1638 | -7.703190612792968750e+01 1639 | -1.003710861206054688e+02 1640 | -8.937773132324218750e+01 1641 | -4.859716415405273438e+01 1642 | -7.846417236328125000e+01 1643 | -6.877286529541015625e+01 1644 | -4.179843902587890625e+01 1645 | -6.840361785888671875e+01 1646 | -6.060173034667968750e+01 1647 | -8.460935211181640625e+01 1648 | -4.988655090332031250e+01 1649 | -7.777053070068359375e+01 1650 | -7.896272277832031250e+01 1651 | -9.136541748046875000e+01 1652 | -7.361603546142578125e+01 1653 | -5.903304290771484375e+01 1654 | -2.428288078308105469e+01 1655 | -7.477671813964843750e+01 1656 | -6.539886474609375000e+01 1657 | -2.998112106323242188e+01 1658 | -8.147052001953125000e+01 1659 | -4.381425857543945312e+01 1660 | -8.332915496826171875e+01 1661 | -1.052108001708984375e+02 1662 | -6.376448822021484375e+01 1663 | -6.249055099487304688e+01 1664 | -9.139780426025390625e+01 1665 | -7.325838470458984375e+01 1666 | -7.856340026855468750e+01 1667 | -9.076064300537109375e+01 1668 | -5.086266326904296875e+01 1669 | -1.065277099609375000e+02 1670 | -6.768483734130859375e+01 1671 | -6.998442840576171875e+01 1672 | -6.679519653320312500e+01 1673 | -7.148638916015625000e+01 1674 | -5.591959762573242188e+01 1675 | -5.984464263916015625e+01 1676 | -3.465174484252929688e+01 1677 | -6.931864166259765625e+01 1678 | -5.783944320678710938e+01 1679 | -4.396422576904296875e+01 1680 | -7.313956451416015625e+01 1681 | -2.800581169128417969e+01 1682 | -6.822445678710937500e+01 1683 | -9.902914428710937500e+01 1684 | -3.004973793029785156e+01 1685 | -3.769048309326171875e+01 1686 | -5.602679061889648438e+01 1687 | -4.930096435546875000e+01 1688 | -9.716456604003906250e+01 1689 | -6.883349609375000000e+01 1690 | -4.559350967407226562e+01 1691 | -8.768144226074218750e+01 1692 | -4.890662765502929688e+01 1693 | -7.630191040039062500e+01 1694 | -2.916165542602539062e+01 1695 | -6.835253906250000000e+01 1696 | -5.274077606201171875e+01 1697 | -8.323992919921875000e+01 1698 | -8.618737792968750000e+01 1699 | -6.273685455322265625e+01 1700 | -5.947689437866210938e+01 1701 | -8.447336578369140625e+01 1702 | -5.835484695434570312e+01 1703 | -5.516410446166992188e+01 1704 | -6.954510498046875000e+01 1705 | -6.537174224853515625e+01 1706 | -6.692775726318359375e+01 1707 | -9.835079956054687500e+01 1708 | -9.246058654785156250e+01 1709 | -7.686873626708984375e+01 1710 | -1.007221069335937500e+02 1711 | -3.775775909423828125e+01 1712 | -5.521927261352539062e+01 1713 | -8.448385620117187500e+01 1714 | -1.052606277465820312e+02 1715 | -7.350896453857421875e+01 1716 | -1.114878234863281250e+02 1717 | -8.820314788818359375e+01 1718 | -9.047998046875000000e+01 1719 | -6.705957794189453125e+01 1720 | -2.856153106689453125e+01 1721 | -4.324611663818359375e+01 1722 | -5.414543533325195312e+01 1723 | -7.769440460205078125e+01 1724 | -3.037725448608398438e+01 1725 | -8.676361083984375000e+01 1726 | -6.853543853759765625e+01 1727 | -6.598537445068359375e+01 1728 | -7.337140655517578125e+01 1729 | -7.129759216308593750e+01 1730 | -6.641954803466796875e+01 1731 | -6.754682159423828125e+01 1732 | -9.045870208740234375e+01 1733 | -8.797407531738281250e+01 1734 | -5.861948013305664062e+01 1735 | -3.515960311889648438e+01 1736 | -4.003544235229492188e+01 1737 | -4.883679580688476562e+01 1738 | -7.070909118652343750e+01 1739 | -9.123703002929687500e+01 1740 | -7.084900665283203125e+01 1741 | -3.500662994384765625e+01 1742 | -7.996657562255859375e+01 1743 | -6.049465179443359375e+01 1744 | -7.995388793945312500e+01 1745 | -4.080578231811523438e+01 1746 | -7.001100921630859375e+01 1747 | -8.879636383056640625e+01 1748 | -6.534128570556640625e+01 1749 | -5.591978454589843750e+01 1750 | -4.933970642089843750e+01 1751 | -1.183227691650390625e+02 1752 | -5.619195938110351562e+01 1753 | -1.193124923706054688e+02 1754 | -6.286680221557617188e+01 1755 | -8.658435821533203125e+01 1756 | -8.244369506835937500e+01 1757 | -6.382071685791015625e+01 1758 | -3.585650253295898438e+01 1759 | -5.176269912719726562e+01 1760 | -5.242555236816406250e+01 1761 | -6.594628906250000000e+01 1762 | -7.750529479980468750e+01 1763 | -8.114416503906250000e+01 1764 | -8.029196929931640625e+01 1765 | -7.403167724609375000e+01 1766 | -7.260231018066406250e+01 1767 | -8.432138061523437500e+01 1768 | -6.296797180175781250e+01 1769 | -8.437901306152343750e+01 1770 | -3.650064468383789062e+01 1771 | -6.863171386718750000e+01 1772 | -9.070899200439453125e+01 1773 | -8.189896392822265625e+01 1774 | -5.156656265258789062e+01 1775 | -6.378275299072265625e+01 1776 | -6.207247924804687500e+01 1777 | -7.030435180664062500e+01 1778 | -4.588790130615234375e+01 1779 | -6.137720870971679688e+01 1780 | -4.098875045776367188e+01 1781 | -1.207789306640625000e+02 1782 | -7.405487060546875000e+01 1783 | -7.026718139648437500e+01 1784 | -1.024664230346679688e+02 1785 | -5.322598648071289062e+01 1786 | -9.235683441162109375e+01 1787 | -4.025727844238281250e+01 1788 | -7.868694305419921875e+01 1789 | -1.085494003295898438e+02 1790 | -9.946871948242187500e+01 1791 | -5.672330856323242188e+01 1792 | -6.036639022827148438e+01 1793 | -5.125042343139648438e+01 1794 | -5.905551528930664062e+01 1795 | -7.031419372558593750e+01 1796 | -8.714973449707031250e+01 1797 | -2.802428054809570312e+01 1798 | -8.254350280761718750e+01 1799 | -2.792711257934570312e+01 1800 | -6.921513366699218750e+01 1801 | -7.322559356689453125e+01 1802 | -1.053311004638671875e+02 1803 | -9.850820159912109375e+01 1804 | -7.746846771240234375e+01 1805 | -3.287900161743164062e+01 1806 | -6.746091461181640625e+01 1807 | -7.059133911132812500e+01 1808 | -1.208504791259765625e+02 1809 | -3.701374816894531250e+01 1810 | -1.073456573486328125e+02 1811 | -5.485343551635742188e+01 1812 | -7.371712493896484375e+01 1813 | -7.822890472412109375e+01 1814 | -7.026228332519531250e+01 1815 | -7.376261901855468750e+01 1816 | -7.870143890380859375e+01 1817 | -5.302992248535156250e+01 1818 | -4.641925811767578125e+01 1819 | -5.642421722412109375e+01 1820 | -6.055543518066406250e+01 1821 | -8.118238830566406250e+01 1822 | -8.812256622314453125e+01 1823 | -8.294093322753906250e+01 1824 | -7.168210601806640625e+01 1825 | -3.173241806030273438e+01 1826 | -5.514012145996093750e+01 1827 | -8.172501373291015625e+01 1828 | -4.327405166625976562e+01 1829 | -8.735321807861328125e+01 1830 | -7.347329711914062500e+01 1831 | -5.978789520263671875e+01 1832 | -8.011106872558593750e+01 1833 | -6.973612213134765625e+01 1834 | -9.511484527587890625e+01 1835 | -6.786346435546875000e+01 1836 | -6.760663604736328125e+01 1837 | -2.887909507751464844e+01 1838 | -6.101858139038085938e+01 1839 | -5.349870681762695312e+01 1840 | -8.750584411621093750e+01 1841 | -7.561418151855468750e+01 1842 | -8.147476196289062500e+01 1843 | -7.708175659179687500e+01 1844 | -5.327310943603515625e+01 1845 | -6.727147674560546875e+01 1846 | -8.625186157226562500e+01 1847 | -2.787454986572265625e+01 1848 | -7.805038452148437500e+01 1849 | -7.041757202148437500e+01 1850 | -5.476249313354492188e+01 1851 | -8.519638824462890625e+01 1852 | -6.123720169067382812e+01 1853 | -4.241236114501953125e+01 1854 | -1.241399230957031250e+02 1855 | -6.274145126342773438e+01 1856 | -5.190756225585937500e+01 1857 | -8.501554107666015625e+01 1858 | -7.655223846435546875e+01 1859 | -6.247370529174804688e+01 1860 | -5.444600296020507812e+01 1861 | -8.723741912841796875e+01 1862 | -9.377558898925781250e+01 1863 | -1.080354461669921875e+02 1864 | -6.164929580688476562e+01 1865 | -6.110238647460937500e+01 1866 | -8.072350311279296875e+01 1867 | -3.593283462524414062e+01 1868 | -7.730385589599609375e+01 1869 | -7.740573883056640625e+01 1870 | -6.211766815185546875e+01 1871 | -6.159239959716796875e+01 1872 | -6.733450317382812500e+01 1873 | -6.445804595947265625e+01 1874 | -6.737854003906250000e+01 1875 | -7.028971862792968750e+01 1876 | -5.374070358276367188e+01 1877 | -6.679017639160156250e+01 1878 | -7.020095825195312500e+01 1879 | -7.476885223388671875e+01 1880 | -8.609449768066406250e+01 1881 | -4.805311965942382812e+01 1882 | -8.156672668457031250e+01 1883 | -5.864243698120117188e+01 1884 | -6.114492797851562500e+01 1885 | -5.033391952514648438e+01 1886 | -6.771848297119140625e+01 1887 | -9.632507324218750000e+01 1888 | -6.358557128906250000e+01 1889 | -3.255216979980468750e+01 1890 | -6.684977722167968750e+01 1891 | -5.125615310668945312e+01 1892 | -6.569855499267578125e+01 1893 | -7.120523834228515625e+01 1894 | -3.898793792724609375e+01 1895 | -7.224256134033203125e+01 1896 | -7.556030273437500000e+01 1897 | -5.024734497070312500e+01 1898 | -7.984306335449218750e+01 1899 | -3.119439697265625000e+01 1900 | -9.557645416259765625e+01 1901 | -8.834134674072265625e+01 1902 | -5.193334960937500000e+01 1903 | -2.806925392150878906e+01 1904 | -7.059438323974609375e+01 1905 | -1.578136901855468750e+02 1906 | -5.192037200927734375e+01 1907 | -7.951829528808593750e+01 1908 | -5.640092086791992188e+01 1909 | -3.567048263549804688e+01 1910 | -8.483757781982421875e+01 1911 | -9.771624755859375000e+01 1912 | -8.920642852783203125e+01 1913 | -5.337094497680664062e+01 1914 | -4.628450012207031250e+01 1915 | -4.666059494018554688e+01 1916 | -6.655503082275390625e+01 1917 | -6.978192901611328125e+01 1918 | -8.190046691894531250e+01 1919 | -5.242623138427734375e+01 1920 | -9.298196411132812500e+01 1921 | -7.016035461425781250e+01 1922 | -2.896707534790039062e+01 1923 | -5.388277816772460938e+01 1924 | -7.308331298828125000e+01 1925 | -6.489738464355468750e+01 1926 | -1.045837249755859375e+02 1927 | -3.647707748413085938e+01 1928 | -1.213289718627929688e+02 1929 | -5.310269546508789062e+01 1930 | -1.025461578369140625e+02 1931 | -5.353250122070312500e+01 1932 | -9.586995697021484375e+01 1933 | -5.185832214355468750e+01 1934 | -6.440062713623046875e+01 1935 | -8.609138488769531250e+01 1936 | -8.856496429443359375e+01 1937 | -2.530232238769531250e+01 1938 | -7.744108581542968750e+01 1939 | -9.931201934814453125e+01 1940 | -2.972898101806640625e+01 1941 | -6.086830520629882812e+01 1942 | -5.932185363769531250e+01 1943 | -5.530832290649414062e+01 1944 | -1.096616821289062500e+02 1945 | -7.074247741699218750e+01 1946 | -5.460297393798828125e+01 1947 | -7.508687591552734375e+01 1948 | -6.869655609130859375e+01 1949 | -5.546087265014648438e+01 1950 | -6.426753997802734375e+01 1951 | -1.067223739624023438e+02 1952 | -4.995335388183593750e+01 1953 | -7.688427734375000000e+01 1954 | -3.257127380371093750e+01 1955 | -5.927082061767578125e+01 1956 | -5.828525161743164062e+01 1957 | -8.420866394042968750e+01 1958 | -5.372108078002929688e+01 1959 | -6.217742156982421875e+01 1960 | -9.167740631103515625e+01 1961 | -7.552293395996093750e+01 1962 | -6.173190307617187500e+01 1963 | -8.816489410400390625e+01 1964 | -7.742945861816406250e+01 1965 | -4.812148284912109375e+01 1966 | -3.176980781555175781e+01 1967 | -1.204410247802734375e+02 1968 | -6.639687347412109375e+01 1969 | -1.019168319702148438e+02 1970 | -1.094816513061523438e+02 1971 | -9.532572174072265625e+01 1972 | -6.586905670166015625e+01 1973 | -7.579309844970703125e+01 1974 | -5.745103836059570312e+01 1975 | -8.933856964111328125e+01 1976 | -6.009463882446289062e+01 1977 | -7.214221191406250000e+01 1978 | -5.650308609008789062e+01 1979 | -7.660610961914062500e+01 1980 | -8.644021606445312500e+01 1981 | -8.518972778320312500e+01 1982 | -6.829440307617187500e+01 1983 | -6.968774414062500000e+01 1984 | -7.777486419677734375e+01 1985 | -3.885974884033203125e+01 1986 | -6.832389068603515625e+01 1987 | -3.770991134643554688e+01 1988 | -6.953790283203125000e+01 1989 | -3.246294403076171875e+01 1990 | -8.414351654052734375e+01 1991 | -5.928479385375976562e+01 1992 | -1.560341339111328125e+02 1993 | -7.404867553710937500e+01 1994 | -9.188861846923828125e+01 1995 | -1.003733139038085938e+02 1996 | -7.600585937500000000e+01 1997 | -5.277123260498046875e+01 1998 | -5.256961822509765625e+01 1999 | -9.338638305664062500e+01 2000 | -6.328807067871093750e+01 2001 | -1.055557403564453125e+02 2002 | -5.282519531250000000e+01 2003 | -1.107172241210937500e+02 2004 | -5.162701034545898438e+01 2005 | -6.208536911010742188e+01 2006 | -4.780203247070312500e+01 2007 | -7.109489440917968750e+01 2008 | -9.131221771240234375e+01 2009 | -8.195616912841796875e+01 2010 | -2.874214172363281250e+01 2011 | -7.978665161132812500e+01 2012 | -8.598902893066406250e+01 2013 | -6.074925613403320312e+01 2014 | -7.025833129882812500e+01 2015 | -6.600904846191406250e+01 2016 | -4.820366287231445312e+01 2017 | -2.978477859497070312e+01 2018 | -6.879411315917968750e+01 2019 | -6.502524566650390625e+01 2020 | -7.030495452880859375e+01 2021 | -6.478414154052734375e+01 2022 | -8.701215362548828125e+01 2023 | -7.167532348632812500e+01 2024 | -8.827628326416015625e+01 2025 | -5.950820922851562500e+01 2026 | -8.293608856201171875e+01 2027 | -6.037663269042968750e+01 2028 | -1.143238449096679688e+02 2029 | -4.441150283813476562e+01 2030 | -6.271085357666015625e+01 2031 | -6.683798217773437500e+01 2032 | -7.368504333496093750e+01 2033 | -6.514926147460937500e+01 2034 | -7.934275054931640625e+01 2035 | -6.800215911865234375e+01 2036 | -5.834200286865234375e+01 2037 | -4.853723526000976562e+01 2038 | -5.801182556152343750e+01 2039 | -7.555586242675781250e+01 2040 | -8.306814575195312500e+01 2041 | -6.899051666259765625e+01 2042 | -7.670137786865234375e+01 2043 | -8.627445983886718750e+01 2044 | -8.803259277343750000e+01 2045 | -6.677645111083984375e+01 2046 | -7.993232727050781250e+01 2047 | -6.913838195800781250e+01 2048 | -7.121099853515625000e+01 2049 | -4.066838073730468750e+01 2050 | -2.990005683898925781e+01 2051 | -7.240253448486328125e+01 2052 | -5.465921020507812500e+01 2053 | -8.322507476806640625e+01 2054 | -3.224765396118164062e+01 2055 | -4.980817031860351562e+01 2056 | -1.047577972412109375e+02 2057 | -5.921107101440429688e+01 2058 | -7.502989196777343750e+01 2059 | -1.123563766479492188e+02 2060 | -5.607894134521484375e+01 2061 | -7.591538238525390625e+01 2062 | -8.030068206787109375e+01 2063 | -9.053444671630859375e+01 2064 | -6.257902145385742188e+01 2065 | -8.327514648437500000e+01 2066 | -6.823922729492187500e+01 2067 | -7.679773712158203125e+01 2068 | -6.385976028442382812e+01 2069 | -8.236037445068359375e+01 2070 | -8.650771331787109375e+01 2071 | -7.907962036132812500e+01 2072 | -6.311371994018554688e+01 2073 | -2.783220863342285156e+01 2074 | -6.368643951416015625e+01 2075 | -1.022963409423828125e+02 2076 | -4.525215148925781250e+01 2077 | -1.087110671997070312e+02 2078 | -5.671381378173828125e+01 2079 | -4.967852401733398438e+01 2080 | -9.364381408691406250e+01 2081 | -3.694080734252929688e+01 2082 | -2.998376274108886719e+01 2083 | -3.291682052612304688e+01 2084 | -9.960261535644531250e+01 2085 | -8.246008300781250000e+01 2086 | -4.849200057983398438e+01 2087 | -8.212450408935546875e+01 2088 | -7.116388702392578125e+01 2089 | -7.230664825439453125e+01 2090 | -4.799288558959960938e+01 2091 | -7.752762603759765625e+01 2092 | -9.274747467041015625e+01 2093 | -1.014789428710937500e+02 2094 | -9.137699127197265625e+01 2095 | -8.736710357666015625e+01 2096 | -8.167998504638671875e+01 2097 | -6.231111145019531250e+01 2098 | -8.996305847167968750e+01 2099 | -1.024506530761718750e+02 2100 | -7.471659851074218750e+01 2101 | -6.525302886962890625e+01 2102 | -3.786177062988281250e+01 2103 | -1.180035705566406250e+02 2104 | -1.381681976318359375e+02 2105 | -5.604905319213867188e+01 2106 | -5.269432830810546875e+01 2107 | -6.094904708862304688e+01 2108 | -8.248130035400390625e+01 2109 | -5.109313964843750000e+01 2110 | -6.928261566162109375e+01 2111 | -6.452758026123046875e+01 2112 | -5.965700912475585938e+01 2113 | -6.239828491210937500e+01 2114 | -6.858412170410156250e+01 2115 | -6.029930114746093750e+01 2116 | -9.840393829345703125e+01 2117 | -9.594354248046875000e+01 2118 | -7.228543853759765625e+01 2119 | -9.958391571044921875e+01 2120 | -8.779174041748046875e+01 2121 | -6.242023468017578125e+01 2122 | -3.123178100585937500e+01 2123 | -6.337314605712890625e+01 2124 | -9.484330749511718750e+01 2125 | -6.258609390258789062e+01 2126 | -9.703279113769531250e+01 2127 | -6.231616210937500000e+01 2128 | -7.768742370605468750e+01 2129 | -6.637393188476562500e+01 2130 | -7.990496063232421875e+01 2131 | -7.339053344726562500e+01 2132 | -6.959420013427734375e+01 2133 | -5.147956466674804688e+01 2134 | -6.097363662719726562e+01 2135 | -7.947966766357421875e+01 2136 | -6.870779418945312500e+01 2137 | -5.949201202392578125e+01 2138 | -5.360913848876953125e+01 2139 | -9.238513946533203125e+01 2140 | -6.858551788330078125e+01 2141 | -5.491902542114257812e+01 2142 | -8.314148712158203125e+01 2143 | -5.256046295166015625e+01 2144 | -3.087243652343750000e+01 2145 | -7.803870391845703125e+01 2146 | -6.993701934814453125e+01 2147 | -7.258499908447265625e+01 2148 | -6.443013763427734375e+01 2149 | -6.383693313598632812e+01 2150 | -8.761489868164062500e+01 2151 | -7.847996520996093750e+01 2152 | -2.970893859863281250e+01 2153 | -5.633777999877929688e+01 2154 | -7.098793792724609375e+01 2155 | -9.426297760009765625e+01 2156 | -5.349478149414062500e+01 2157 | -5.434445571899414062e+01 2158 | -9.426875305175781250e+01 2159 | -8.632065582275390625e+01 2160 | -7.043108367919921875e+01 2161 | -6.969396209716796875e+01 2162 | -3.617022705078125000e+01 2163 | -9.501692199707031250e+01 2164 | -6.431015777587890625e+01 2165 | -7.690550994873046875e+01 2166 | -7.981705474853515625e+01 2167 | -7.028854370117187500e+01 2168 | -3.250255203247070312e+01 2169 | -5.821221923828125000e+01 2170 | -5.668231201171875000e+01 2171 | -5.857271194458007812e+01 2172 | -7.331442260742187500e+01 2173 | -8.235623931884765625e+01 2174 | -3.244257736206054688e+01 2175 | -7.924866485595703125e+01 2176 | -6.816087341308593750e+01 2177 | -8.144548797607421875e+01 2178 | -8.763672637939453125e+01 2179 | -1.122029724121093750e+02 2180 | -8.788729858398437500e+01 2181 | -8.649091339111328125e+01 2182 | -7.901673126220703125e+01 2183 | -6.906601715087890625e+01 2184 | -5.725522994995117188e+01 2185 | -1.010027542114257812e+02 2186 | -6.570406341552734375e+01 2187 | -1.084158248901367188e+02 2188 | -6.141051101684570312e+01 2189 | -1.019304809570312500e+02 2190 | -1.002864990234375000e+02 2191 | -6.476274108886718750e+01 2192 | -6.518698883056640625e+01 2193 | -5.169344329833984375e+01 2194 | -9.913594818115234375e+01 2195 | -7.019890594482421875e+01 2196 | -6.959165191650390625e+01 2197 | -9.160519409179687500e+01 2198 | -6.086931228637695312e+01 2199 | -8.316262817382812500e+01 2200 | -7.920047760009765625e+01 2201 | -1.013274002075195312e+02 2202 | -6.685942840576171875e+01 2203 | -6.086424255371093750e+01 2204 | -8.235059356689453125e+01 2205 | -8.555583953857421875e+01 2206 | -7.767913055419921875e+01 2207 | -9.219252777099609375e+01 2208 | -9.714106750488281250e+01 2209 | -6.204453277587890625e+01 2210 | -8.194243621826171875e+01 2211 | -8.039565277099609375e+01 2212 | -3.695987319946289062e+01 2213 | -1.150530242919921875e+02 2214 | -7.937209320068359375e+01 2215 | -7.164586639404296875e+01 2216 | -9.401715850830078125e+01 2217 | -9.012815093994140625e+01 2218 | -1.065182342529296875e+02 2219 | -6.372181701660156250e+01 2220 | -5.238899993896484375e+01 2221 | -4.329319763183593750e+01 2222 | -7.892671966552734375e+01 2223 | -8.957539367675781250e+01 2224 | -5.871146392822265625e+01 2225 | -6.435226440429687500e+01 2226 | -7.614944458007812500e+01 2227 | -9.185504913330078125e+01 2228 | -8.521236419677734375e+01 2229 | -6.220021057128906250e+01 2230 | -7.448827362060546875e+01 2231 | -8.991167449951171875e+01 2232 | -7.416786193847656250e+01 2233 | -5.115995407104492188e+01 2234 | -6.435541534423828125e+01 2235 | -8.476952362060546875e+01 2236 | -6.060185623168945312e+01 2237 | -7.229122924804687500e+01 2238 | -6.692172241210937500e+01 2239 | -8.393102264404296875e+01 2240 | -9.071889495849609375e+01 2241 | -4.491289138793945312e+01 2242 | -6.056975173950195312e+01 2243 | -9.353402709960937500e+01 2244 | -1.016379241943359375e+02 2245 | -9.282810211181640625e+01 2246 | -8.551321411132812500e+01 2247 | -9.688945770263671875e+01 2248 | -9.851254272460937500e+01 2249 | -1.074028778076171875e+02 2250 | -7.975537109375000000e+01 2251 | -7.433167266845703125e+01 2252 | -6.438144683837890625e+01 2253 | -1.015380554199218750e+02 2254 | -7.629166412353515625e+01 2255 | -3.175934791564941406e+01 2256 | -9.523389434814453125e+01 2257 | -7.807194519042968750e+01 2258 | -5.847767639160156250e+01 2259 | -8.387530517578125000e+01 2260 | -1.007321319580078125e+02 2261 | -5.798262786865234375e+01 2262 | -9.140057373046875000e+01 2263 | -8.230547332763671875e+01 2264 | -6.092784500122070312e+01 2265 | -8.329884338378906250e+01 2266 | -6.984362030029296875e+01 2267 | -6.883045196533203125e+01 2268 | -1.117247848510742188e+02 2269 | -8.001788330078125000e+01 2270 | -7.888358306884765625e+01 2271 | -9.523928070068359375e+01 2272 | -9.559091186523437500e+01 2273 | -7.363661956787109375e+01 2274 | -3.592572784423828125e+01 2275 | -1.590932159423828125e+02 2276 | -7.064668273925781250e+01 2277 | -8.539526367187500000e+01 2278 | -8.794292449951171875e+01 2279 | -5.056243515014648438e+01 2280 | -3.609350967407226562e+01 2281 | -6.814585113525390625e+01 2282 | -8.880339813232421875e+01 2283 | -9.266122436523437500e+01 2284 | -6.921962738037109375e+01 2285 | -1.248115921020507812e+02 2286 | -7.075862884521484375e+01 2287 | -4.583771514892578125e+01 2288 | -5.964943313598632812e+01 2289 | -6.042324066162109375e+01 2290 | -8.494313812255859375e+01 2291 | -5.302867507934570312e+01 2292 | -4.575239562988281250e+01 2293 | -7.578165435791015625e+01 2294 | -4.169457244873046875e+01 2295 | -7.820609283447265625e+01 2296 | -8.069208526611328125e+01 2297 | -7.144245147705078125e+01 2298 | -7.762014007568359375e+01 2299 | -2.467419052124023438e+01 2300 | -8.190096282958984375e+01 2301 | -6.852606201171875000e+01 2302 | -7.214055633544921875e+01 2303 | -4.852492904663085938e+01 2304 | -6.113255691528320312e+01 2305 | -7.812845611572265625e+01 2306 | -6.619575500488281250e+01 2307 | -7.041879272460937500e+01 2308 | -7.091849517822265625e+01 2309 | -5.285764694213867188e+01 2310 | -6.369061660766601562e+01 2311 | -3.158195686340332031e+01 2312 | -5.023101806640625000e+01 2313 | -8.995673370361328125e+01 2314 | -5.702877807617187500e+01 2315 | -1.003741149902343750e+02 2316 | -5.495287704467773438e+01 2317 | -5.107619476318359375e+01 2318 | -7.371549987792968750e+01 2319 | -6.322751235961914062e+01 2320 | -2.689355278015136719e+01 2321 | -6.708915710449218750e+01 2322 | -8.222793579101562500e+01 2323 | -7.661183166503906250e+01 2324 | -8.795718383789062500e+01 2325 | -5.417254257202148438e+01 2326 | -8.883386230468750000e+01 2327 | -1.374152374267578125e+02 2328 | -5.138469314575195312e+01 2329 | -5.532892990112304688e+01 2330 | -6.268817520141601562e+01 2331 | -8.229917144775390625e+01 2332 | -6.350107955932617188e+01 2333 | -9.676713562011718750e+01 2334 | -6.709164428710937500e+01 2335 | -7.610338592529296875e+01 2336 | -9.065080261230468750e+01 2337 | -1.009308090209960938e+02 2338 | -5.523689270019531250e+01 2339 | -8.998204040527343750e+01 2340 | -4.338426208496093750e+01 2341 | -6.401118469238281250e+01 2342 | -8.561208343505859375e+01 2343 | -4.200533676147460938e+01 2344 | -5.080955123901367188e+01 2345 | -9.832959747314453125e+01 2346 | -6.477610015869140625e+01 2347 | -7.996738433837890625e+01 2348 | -1.153263092041015625e+02 2349 | -7.119131469726562500e+01 2350 | -7.424350738525390625e+01 2351 | -4.498279190063476562e+01 2352 | -5.848741149902343750e+01 2353 | -5.161618041992187500e+01 2354 | -8.259199523925781250e+01 2355 | -2.871508789062500000e+01 2356 | -8.543655395507812500e+01 2357 | -6.292898178100585938e+01 2358 | -5.099246597290039062e+01 2359 | -2.946386718750000000e+01 2360 | -1.178645858764648438e+02 2361 | -7.822962951660156250e+01 2362 | -5.681981277465820312e+01 2363 | -8.378922271728515625e+01 2364 | -9.183243560791015625e+01 2365 | -6.300767898559570312e+01 2366 | -6.799155426025390625e+01 2367 | -7.824233245849609375e+01 2368 | -1.090598297119140625e+02 2369 | -7.755982208251953125e+01 2370 | -1.154703445434570312e+02 2371 | -1.115586776733398438e+02 2372 | -6.914086914062500000e+01 2373 | -9.918165588378906250e+01 2374 | -8.797386169433593750e+01 2375 | -7.460943603515625000e+01 2376 | -4.391289520263671875e+01 2377 | -6.557399749755859375e+01 2378 | -6.861769866943359375e+01 2379 | -6.232069015502929688e+01 2380 | -1.030679397583007812e+02 2381 | -9.722235107421875000e+01 2382 | -8.833761596679687500e+01 2383 | -8.362863922119140625e+01 2384 | -6.255246734619140625e+01 2385 | -9.359017181396484375e+01 2386 | -6.512734222412109375e+01 2387 | -7.601734924316406250e+01 2388 | -4.605054092407226562e+01 2389 | -5.825078964233398438e+01 2390 | -6.855750274658203125e+01 2391 | -6.639615631103515625e+01 2392 | -1.131520080566406250e+02 2393 | -7.747431945800781250e+01 2394 | -5.296095657348632812e+01 2395 | -6.955514526367187500e+01 2396 | -1.032315750122070312e+02 2397 | -7.882957458496093750e+01 2398 | -9.434724426269531250e+01 2399 | -5.836885833740234375e+01 2400 | -5.448925018310546875e+01 2401 | -8.929507446289062500e+01 2402 | -7.415334320068359375e+01 2403 | -7.244323730468750000e+01 2404 | -7.860239410400390625e+01 2405 | -8.254067993164062500e+01 2406 | -5.010157394409179688e+01 2407 | -5.614336013793945312e+01 2408 | -1.168042449951171875e+02 2409 | -6.668819427490234375e+01 2410 | -9.008198547363281250e+01 2411 | -6.601314544677734375e+01 2412 | -3.042900848388671875e+01 2413 | -7.589579010009765625e+01 2414 | -1.075068740844726562e+02 2415 | -5.815410995483398438e+01 2416 | -5.128419876098632812e+01 2417 | -8.149782562255859375e+01 2418 | -5.330701446533203125e+01 2419 | -1.231011581420898438e+02 2420 | -7.552127075195312500e+01 2421 | -1.272887039184570312e+02 2422 | -9.253660583496093750e+01 2423 | -6.555638885498046875e+01 2424 | -6.671852111816406250e+01 2425 | -6.070539474487304688e+01 2426 | -8.547060394287109375e+01 2427 | -7.143974304199218750e+01 2428 | -7.494544219970703125e+01 2429 | -8.875606536865234375e+01 2430 | -7.531961822509765625e+01 2431 | -7.560611724853515625e+01 2432 | -5.062767410278320312e+01 2433 | -6.506435394287109375e+01 2434 | -4.881582641601562500e+01 2435 | -7.841873931884765625e+01 2436 | -4.707189178466796875e+01 2437 | -7.154158782958984375e+01 2438 | -1.062011795043945312e+02 2439 | -1.158478775024414062e+02 2440 | -7.269532012939453125e+01 2441 | -4.300289154052734375e+01 2442 | -6.541485595703125000e+01 2443 | -9.120851898193359375e+01 2444 | -6.608572387695312500e+01 2445 | -5.915043640136718750e+01 2446 | -1.004189834594726562e+02 2447 | -9.374636077880859375e+01 2448 | -6.658623504638671875e+01 2449 | -7.872969055175781250e+01 2450 | -9.394652557373046875e+01 2451 | -8.009243774414062500e+01 2452 | -7.622298431396484375e+01 2453 | -9.137656402587890625e+01 2454 | -3.774068450927734375e+01 2455 | -1.075428390502929688e+02 2456 | -3.668569946289062500e+01 2457 | -8.630875396728515625e+01 2458 | -6.993383026123046875e+01 2459 | -6.873689270019531250e+01 2460 | -4.909288024902343750e+01 2461 | -9.598793029785156250e+01 2462 | -7.497946929931640625e+01 2463 | -8.139923095703125000e+01 2464 | -6.649705505371093750e+01 2465 | -5.238160705566406250e+01 2466 | -5.808717346191406250e+01 2467 | -9.122531890869140625e+01 2468 | -5.299950027465820312e+01 2469 | -1.059607772827148438e+02 2470 | -7.903031158447265625e+01 2471 | -6.304819488525390625e+01 2472 | -6.681195831298828125e+01 2473 | -9.586367797851562500e+01 2474 | -3.912433242797851562e+01 2475 | -6.713140106201171875e+01 2476 | -6.523097229003906250e+01 2477 | -3.238912963867187500e+01 2478 | -9.964606475830078125e+01 2479 | -7.638457489013671875e+01 2480 | -8.923632812500000000e+01 2481 | -5.077581024169921875e+01 2482 | -1.063763732910156250e+02 2483 | -7.428513336181640625e+01 2484 | -7.520481872558593750e+01 2485 | -7.587516784667968750e+01 2486 | -7.741967773437500000e+01 2487 | -9.526986694335937500e+01 2488 | -8.814435577392578125e+01 2489 | -5.903003311157226562e+01 2490 | -8.499404907226562500e+01 2491 | -8.727201843261718750e+01 2492 | -8.709773254394531250e+01 2493 | -5.881339263916015625e+01 2494 | -1.239393081665039062e+02 2495 | -1.020270233154296875e+02 2496 | -1.125784301757812500e+02 2497 | -5.982871246337890625e+01 2498 | -5.580822372436523438e+01 2499 | -2.939909172058105469e+01 2500 | -8.257893371582031250e+01 2501 | -7.804682922363281250e+01 2502 | -7.735157775878906250e+01 2503 | -3.572244262695312500e+01 2504 | -9.213269805908203125e+01 2505 | -3.268910217285156250e+01 2506 | -6.901609802246093750e+01 2507 | -6.389952468872070312e+01 2508 | -8.929538726806640625e+01 2509 | -7.297804260253906250e+01 2510 | -6.505139923095703125e+01 2511 | -6.935480499267578125e+01 2512 | -6.707732391357421875e+01 2513 | -8.330953979492187500e+01 2514 | -8.623736572265625000e+01 2515 | -6.371826934814453125e+01 2516 | -5.721520996093750000e+01 2517 | -9.475511932373046875e+01 2518 | -8.009224700927734375e+01 2519 | -3.118823242187500000e+01 2520 | -6.144041442871093750e+01 2521 | -5.484790420532226562e+01 2522 | -6.727862548828125000e+01 2523 | -8.097504425048828125e+01 2524 | -4.818109893798828125e+01 2525 | -1.048029098510742188e+02 2526 | -1.170436553955078125e+02 2527 | -3.287586212158203125e+01 2528 | -8.628687286376953125e+01 2529 | -8.194146728515625000e+01 2530 | -7.625886535644531250e+01 2531 | -3.015985298156738281e+01 2532 | -9.071810150146484375e+01 2533 | -5.447789764404296875e+01 2534 | -7.655366516113281250e+01 2535 | -8.487162780761718750e+01 2536 | -8.838516235351562500e+01 2537 | -1.091784439086914062e+02 2538 | -1.017386932373046875e+02 2539 | -5.479463958740234375e+01 2540 | -3.520407867431640625e+01 2541 | -9.189611816406250000e+01 2542 | -2.821904754638671875e+01 2543 | -7.328387451171875000e+01 2544 | -5.678556823730468750e+01 2545 | -1.091070632934570312e+02 2546 | -9.548366546630859375e+01 2547 | -4.916197586059570312e+01 2548 | -6.614030456542968750e+01 2549 | -5.283409881591796875e+01 2550 | -8.561262512207031250e+01 2551 | -8.256345367431640625e+01 2552 | -8.626111602783203125e+01 2553 | -5.824651718139648438e+01 2554 | -5.597776794433593750e+01 2555 | -4.248126220703125000e+01 2556 | -9.076598358154296875e+01 2557 | -7.673372650146484375e+01 2558 | -8.436875152587890625e+01 2559 | -5.989455032348632812e+01 2560 | -1.145744247436523438e+02 2561 | -8.730628204345703125e+01 2562 | -8.806435394287109375e+01 2563 | -3.082685852050781250e+01 2564 | -6.811474609375000000e+01 2565 | -1.126084976196289062e+02 2566 | -1.090448532104492188e+02 2567 | -6.521514892578125000e+01 2568 | -7.839655303955078125e+01 2569 | -7.431378173828125000e+01 2570 | -7.737404632568359375e+01 2571 | -1.268278732299804688e+02 2572 | -9.524981689453125000e+01 2573 | -1.041226348876953125e+02 2574 | -8.588498687744140625e+01 2575 | -6.891622924804687500e+01 2576 | -6.905429077148437500e+01 2577 | -7.072031402587890625e+01 2578 | -8.582254791259765625e+01 2579 | -3.291757202148437500e+01 2580 | -5.847108459472656250e+01 2581 | -4.508575820922851562e+01 2582 | -1.099214172363281250e+02 2583 | -5.933870315551757812e+01 2584 | -1.086406097412109375e+02 2585 | -8.161524200439453125e+01 2586 | -7.612014007568359375e+01 2587 | -7.435527801513671875e+01 2588 | -3.507166290283203125e+01 2589 | -9.561082458496093750e+01 2590 | -8.163581085205078125e+01 2591 | -1.109586105346679688e+02 2592 | -6.223027801513671875e+01 2593 | -9.751126861572265625e+01 2594 | -8.305747985839843750e+01 2595 | -5.751515197753906250e+01 2596 | -5.530443954467773438e+01 2597 | -7.224257659912109375e+01 2598 | -5.678674316406250000e+01 2599 | -6.514054870605468750e+01 2600 | -9.018983459472656250e+01 2601 | -5.924586105346679688e+01 2602 | -1.006473464965820312e+02 2603 | -6.613026428222656250e+01 2604 | -1.054024047851562500e+02 2605 | -4.024067687988281250e+01 2606 | -6.512259674072265625e+01 2607 | -1.143299331665039062e+02 2608 | -3.125704956054687500e+01 2609 | -5.115757369995117188e+01 2610 | -2.905825614929199219e+01 2611 | -7.585720062255859375e+01 2612 | -7.581330108642578125e+01 2613 | -5.987689208984375000e+01 2614 | -4.906969451904296875e+01 2615 | -6.145883941650390625e+01 2616 | -5.184689331054687500e+01 2617 | -3.926414489746093750e+01 2618 | -1.314200744628906250e+02 2619 | -8.906508636474609375e+01 2620 | -9.536548614501953125e+01 2621 | -6.650984191894531250e+01 2622 | -8.613415527343750000e+01 2623 | -5.713724899291992188e+01 2624 | -9.220318603515625000e+01 2625 | -8.442553710937500000e+01 2626 | -9.579164123535156250e+01 2627 | -8.086659240722656250e+01 2628 | -6.170034790039062500e+01 2629 | -7.502703094482421875e+01 2630 | -6.859846496582031250e+01 2631 | -5.281163787841796875e+01 2632 | -7.629600524902343750e+01 2633 | -7.183287811279296875e+01 2634 | -6.207936096191406250e+01 2635 | -8.689940643310546875e+01 2636 | -7.618234252929687500e+01 2637 | -8.601403045654296875e+01 2638 | -1.011304855346679688e+02 2639 | -8.363910675048828125e+01 2640 | -6.956946563720703125e+01 2641 | -5.264947128295898438e+01 2642 | -5.041892242431640625e+01 2643 | -6.132884979248046875e+01 2644 | -9.303887176513671875e+01 2645 | -5.988987350463867188e+01 2646 | -7.219885253906250000e+01 2647 | -9.740358734130859375e+01 2648 | -3.489565277099609375e+01 2649 | -7.279932403564453125e+01 2650 | -9.748599243164062500e+01 2651 | -7.195094299316406250e+01 2652 | -4.620452499389648438e+01 2653 | -7.551121520996093750e+01 2654 | -1.047086181640625000e+02 2655 | -5.992214202880859375e+01 2656 | -6.325321960449218750e+01 2657 | -6.137198638916015625e+01 2658 | -7.060205078125000000e+01 2659 | -1.000497741699218750e+02 2660 | -6.822998809814453125e+01 2661 | -8.948200225830078125e+01 2662 | -6.750048065185546875e+01 2663 | -6.654927825927734375e+01 2664 | -1.029789581298828125e+02 2665 | -9.027428436279296875e+01 2666 | -2.599941253662109375e+01 2667 | -8.155489349365234375e+01 2668 | -7.719301605224609375e+01 2669 | -8.302915191650390625e+01 2670 | -1.153766021728515625e+02 2671 | -9.390144348144531250e+01 2672 | -7.170999908447265625e+01 2673 | -6.834959411621093750e+01 2674 | -7.172354125976562500e+01 2675 | -9.351177978515625000e+01 2676 | -4.064056396484375000e+01 2677 | -3.776251220703125000e+01 2678 | -3.340555572509765625e+01 2679 | -8.783400726318359375e+01 2680 | -8.091300964355468750e+01 2681 | -3.465901947021484375e+01 2682 | -9.336592864990234375e+01 2683 | -3.435969543457031250e+01 2684 | -7.955256652832031250e+01 2685 | -4.092916870117187500e+01 2686 | -3.622997283935546875e+01 2687 | -6.640088653564453125e+01 2688 | -6.831495666503906250e+01 2689 | -8.332535552978515625e+01 2690 | -6.384964752197265625e+01 2691 | -6.580431365966796875e+01 2692 | -6.093475723266601562e+01 2693 | -6.916482543945312500e+01 2694 | -6.852710723876953125e+01 2695 | -9.824664306640625000e+01 2696 | -8.680355072021484375e+01 2697 | -8.478992462158203125e+01 2698 | -6.244244766235351562e+01 2699 | -1.092410125732421875e+02 2700 | -7.516347503662109375e+01 2701 | -8.817372894287109375e+01 2702 | -7.252953338623046875e+01 2703 | -9.036071014404296875e+01 2704 | -5.312206268310546875e+01 2705 | -8.334928894042968750e+01 2706 | -5.682719802856445312e+01 2707 | -1.394833679199218750e+02 2708 | -6.719584655761718750e+01 2709 | -2.936528968811035156e+01 2710 | -1.108368072509765625e+02 2711 | -5.753894805908203125e+01 2712 | -6.690040588378906250e+01 2713 | -2.748541450500488281e+01 2714 | -8.122422027587890625e+01 2715 | -8.375237274169921875e+01 2716 | -5.651172256469726562e+01 2717 | -8.334770965576171875e+01 2718 | -8.792138671875000000e+01 2719 | -4.324246978759765625e+01 2720 | -7.602828216552734375e+01 2721 | -7.152026367187500000e+01 2722 | -1.249233551025390625e+02 2723 | -6.869915771484375000e+01 2724 | -8.827432250976562500e+01 2725 | -3.455735397338867188e+01 2726 | -6.840325927734375000e+01 2727 | -4.606341934204101562e+01 2728 | -5.126833724975585938e+01 2729 | -5.771280288696289062e+01 2730 | -5.609458923339843750e+01 2731 | -9.103684234619140625e+01 2732 | -6.001876831054687500e+01 2733 | -9.334783172607421875e+01 2734 | -6.360843276977539062e+01 2735 | -6.722042083740234375e+01 2736 | -2.428671073913574219e+01 2737 | -5.646258544921875000e+01 2738 | -6.611218261718750000e+01 2739 | -8.351833343505859375e+01 2740 | -6.017649459838867188e+01 2741 | -7.129595184326171875e+01 2742 | -7.121533203125000000e+01 2743 | -1.210363769531250000e+02 2744 | -6.352773284912109375e+01 2745 | -1.024285049438476562e+02 2746 | -8.409687042236328125e+01 2747 | -2.870343971252441406e+01 2748 | -7.752695465087890625e+01 2749 | -8.078450012207031250e+01 2750 | -7.513464355468750000e+01 2751 | -4.928155899047851562e+01 2752 | -8.103929901123046875e+01 2753 | -9.226956939697265625e+01 2754 | -9.766197967529296875e+01 2755 | -6.923128509521484375e+01 2756 | -6.340378952026367188e+01 2757 | -6.127018737792968750e+01 2758 | -8.976694488525390625e+01 2759 | -1.069531784057617188e+02 2760 | -7.239398193359375000e+01 2761 | -2.628955459594726562e+01 2762 | -4.624191665649414062e+01 2763 | -7.670207977294921875e+01 2764 | -1.091144638061523438e+02 2765 | -6.239795303344726562e+01 2766 | -5.762164688110351562e+01 2767 | -1.025557098388671875e+02 2768 | -9.687709045410156250e+01 2769 | -6.411295318603515625e+01 2770 | -8.802849578857421875e+01 2771 | -9.438041687011718750e+01 2772 | -6.414206695556640625e+01 2773 | -6.727194976806640625e+01 2774 | -7.043594360351562500e+01 2775 | -7.443042755126953125e+01 2776 | -7.237010192871093750e+01 2777 | -3.586579132080078125e+01 2778 | -6.919699859619140625e+01 2779 | -5.542307662963867188e+01 2780 | -5.931566619873046875e+01 2781 | -8.451251220703125000e+01 2782 | -7.412946319580078125e+01 2783 | -8.236914062500000000e+01 2784 | -1.061688385009765625e+02 2785 | -9.516352081298828125e+01 2786 | -1.110476074218750000e+02 2787 | -3.314093399047851562e+01 2788 | -7.544281768798828125e+01 2789 | -7.105070495605468750e+01 2790 | -9.146982574462890625e+01 2791 | -8.268935394287109375e+01 2792 | -1.090693283081054688e+02 2793 | -1.038211288452148438e+02 2794 | -6.745835113525390625e+01 2795 | -6.770619201660156250e+01 2796 | -6.939719390869140625e+01 2797 | -2.951853561401367188e+01 2798 | -8.345979309082031250e+01 2799 | -6.458963775634765625e+01 2800 | -5.939495086669921875e+01 2801 | -3.001812362670898438e+01 2802 | -8.957558441162109375e+01 2803 | -1.147040557861328125e+02 2804 | -5.021940612792968750e+01 2805 | -7.945115661621093750e+01 2806 | -7.131312561035156250e+01 2807 | -5.682509613037109375e+01 2808 | -5.368030548095703125e+01 2809 | -8.990681457519531250e+01 2810 | -8.195439147949218750e+01 2811 | -6.296079635620117188e+01 2812 | -8.397998046875000000e+01 2813 | -6.720639038085937500e+01 2814 | -2.862144470214843750e+01 2815 | -3.286277770996093750e+01 2816 | -5.777629470825195312e+01 2817 | -7.749978637695312500e+01 2818 | -5.556744766235351562e+01 2819 | -6.381678771972656250e+01 2820 | -4.135282897949218750e+01 2821 | -6.548228454589843750e+01 2822 | -1.431644897460937500e+02 2823 | -6.787610626220703125e+01 2824 | -1.050571212768554688e+02 2825 | -6.608209228515625000e+01 2826 | -7.522513580322265625e+01 2827 | -7.828620910644531250e+01 2828 | -3.460691833496093750e+01 2829 | -1.197589645385742188e+02 2830 | -1.361341400146484375e+02 2831 | -5.789636230468750000e+01 2832 | -6.596347045898437500e+01 2833 | -5.439806747436523438e+01 2834 | -4.644291687011718750e+01 2835 | -6.503288269042968750e+01 2836 | -8.991301727294921875e+01 2837 | -6.810610198974609375e+01 2838 | -9.729195404052734375e+01 2839 | -2.434944343566894531e+01 2840 | -9.976007080078125000e+01 2841 | -6.758899688720703125e+01 2842 | -5.002827835083007812e+01 2843 | -8.490110778808593750e+01 2844 | -7.909626770019531250e+01 2845 | -6.917581939697265625e+01 2846 | -7.295291900634765625e+01 2847 | -8.183801269531250000e+01 2848 | -5.633549499511718750e+01 2849 | -8.526000213623046875e+01 2850 | -4.469862365722656250e+01 2851 | -8.227059936523437500e+01 2852 | -9.578080749511718750e+01 2853 | -8.263659667968750000e+01 2854 | -7.302561187744140625e+01 2855 | -7.532035827636718750e+01 2856 | -1.101663894653320312e+02 2857 | -8.475502014160156250e+01 2858 | -8.434366607666015625e+01 2859 | -7.013044738769531250e+01 2860 | -5.468852996826171875e+01 2861 | -7.265071105957031250e+01 2862 | -6.810036468505859375e+01 2863 | -6.617988586425781250e+01 2864 | -1.064245681762695312e+02 2865 | -3.073296165466308594e+01 2866 | -6.923144531250000000e+01 2867 | -1.153369674682617188e+02 2868 | -6.842235565185546875e+01 2869 | -3.202328109741210938e+01 2870 | -5.638720703125000000e+01 2871 | -6.601171875000000000e+01 2872 | -5.008909606933593750e+01 2873 | -6.058200454711914062e+01 2874 | -6.967101287841796875e+01 2875 | -5.910036087036132812e+01 2876 | -3.198441886901855469e+01 2877 | -8.437609863281250000e+01 2878 | -2.853690528869628906e+01 2879 | -8.971001434326171875e+01 2880 | -6.912675476074218750e+01 2881 | -3.079007911682128906e+01 2882 | -1.086433486938476562e+02 2883 | -9.202899932861328125e+01 2884 | -3.447179412841796875e+01 2885 | -5.798596954345703125e+01 2886 | -6.842033386230468750e+01 2887 | -5.354778289794921875e+01 2888 | -6.273673629760742188e+01 2889 | -7.656037902832031250e+01 2890 | -6.430534362792968750e+01 2891 | -6.730070495605468750e+01 2892 | -9.060700988769531250e+01 2893 | -3.007283401489257812e+01 2894 | -3.318283462524414062e+01 2895 | -5.380961608886718750e+01 2896 | -5.536862182617187500e+01 2897 | -8.084439086914062500e+01 2898 | -6.588421630859375000e+01 2899 | -8.422610473632812500e+01 2900 | -6.964763641357421875e+01 2901 | -9.275463867187500000e+01 2902 | -1.173762817382812500e+02 2903 | -6.169731140136718750e+01 2904 | -7.396556854248046875e+01 2905 | -6.985299682617187500e+01 2906 | -3.491595077514648438e+01 2907 | -1.026299591064453125e+02 2908 | -5.455413818359375000e+01 2909 | -4.864727783203125000e+01 2910 | -6.802095031738281250e+01 2911 | -2.883098411560058594e+01 2912 | -5.577718734741210938e+01 2913 | -5.484811401367187500e+01 2914 | -7.899319458007812500e+01 2915 | -2.753663063049316406e+01 2916 | -7.773123168945312500e+01 2917 | -7.936700439453125000e+01 2918 | -6.842610931396484375e+01 2919 | -3.172350311279296875e+01 2920 | -8.594494628906250000e+01 2921 | -3.285584259033203125e+01 2922 | -4.939123153686523438e+01 2923 | -8.540335083007812500e+01 2924 | -8.894783020019531250e+01 2925 | -7.275268554687500000e+01 2926 | -2.858536911010742188e+01 2927 | -9.007891082763671875e+01 2928 | -5.833023452758789062e+01 2929 | -5.673702621459960938e+01 2930 | -7.888591003417968750e+01 2931 | -6.136006164550781250e+01 2932 | -1.147881546020507812e+02 2933 | -6.349851989746093750e+01 2934 | -9.711968994140625000e+01 2935 | -2.431314277648925781e+01 2936 | -5.293087387084960938e+01 2937 | -9.352817535400390625e+01 2938 | -6.767755126953125000e+01 2939 | -6.892694091796875000e+01 2940 | -8.712705993652343750e+01 2941 | -5.652681732177734375e+01 2942 | -8.557646179199218750e+01 2943 | -3.123881912231445312e+01 2944 | -4.169989776611328125e+01 2945 | -5.498155975341796875e+01 2946 | -8.292528533935546875e+01 2947 | -6.607389831542968750e+01 2948 | -7.186573791503906250e+01 2949 | -7.861071777343750000e+01 2950 | -7.072413635253906250e+01 2951 | -7.124143981933593750e+01 2952 | -5.567752456665039062e+01 2953 | -8.356784057617187500e+01 2954 | -6.988220214843750000e+01 2955 | -1.167780303955078125e+02 2956 | -5.706563568115234375e+01 2957 | -9.032876586914062500e+01 2958 | -9.167356109619140625e+01 2959 | -8.957141113281250000e+01 2960 | -2.922794914245605469e+01 2961 | -6.330902481079101562e+01 2962 | -6.025918960571289062e+01 2963 | -7.564503479003906250e+01 2964 | -1.114830017089843750e+02 2965 | -1.219172897338867188e+02 2966 | -1.147669143676757812e+02 2967 | -6.971785736083984375e+01 2968 | -8.317635345458984375e+01 2969 | -7.458757781982421875e+01 2970 | -7.975076293945312500e+01 2971 | -3.576789093017578125e+01 2972 | -3.255889892578125000e+01 2973 | -7.400579833984375000e+01 2974 | -4.238552474975585938e+01 2975 | -4.054747009277343750e+01 2976 | -2.812697219848632812e+01 2977 | -1.124646301269531250e+02 2978 | -7.580975341796875000e+01 2979 | -7.198705291748046875e+01 2980 | -5.976383972167968750e+01 2981 | -7.940766143798828125e+01 2982 | -4.983848953247070312e+01 2983 | -1.002686691284179688e+02 2984 | -5.074476623535156250e+01 2985 | -3.580357742309570312e+01 2986 | -7.530609893798828125e+01 2987 | -7.390663909912109375e+01 2988 | -7.154388427734375000e+01 2989 | -7.061286926269531250e+01 2990 | -4.438118743896484375e+01 2991 | -6.615456390380859375e+01 2992 | -5.744681930541992188e+01 2993 | -8.292411041259765625e+01 2994 | -8.218529510498046875e+01 2995 | -6.386770629882812500e+01 2996 | -7.870153045654296875e+01 2997 | -1.213223114013671875e+02 2998 | -3.010665321350097656e+01 2999 | -6.586753845214843750e+01 3000 | -7.514484405517578125e+01 3001 | -7.197346496582031250e+01 3002 | -8.161354827880859375e+01 3003 | -6.910347747802734375e+01 3004 | -9.763159179687500000e+01 3005 | -5.086785507202148438e+01 3006 | -1.111892700195312500e+02 3007 | -8.920159149169921875e+01 3008 | -3.357057189941406250e+01 3009 | -6.311898422241210938e+01 3010 | -7.889954376220703125e+01 3011 | -7.512179565429687500e+01 3012 | -7.015921783447265625e+01 3013 | -7.557577514648437500e+01 3014 | -4.491490554809570312e+01 3015 | -4.731199264526367188e+01 3016 | -8.557775878906250000e+01 3017 | -1.268723373413085938e+02 3018 | -9.353304290771484375e+01 3019 | -8.016249847412109375e+01 3020 | -6.218324279785156250e+01 3021 | -7.842104339599609375e+01 3022 | -4.877541351318359375e+01 3023 | -4.718753051757812500e+01 3024 | -3.015647506713867188e+01 3025 | -6.750941467285156250e+01 3026 | -7.018701934814453125e+01 3027 | -8.496808624267578125e+01 3028 | -5.324286651611328125e+01 3029 | -6.463628387451171875e+01 3030 | -7.519129943847656250e+01 3031 | -7.802011108398437500e+01 3032 | -6.984561157226562500e+01 3033 | -7.906826782226562500e+01 3034 | -7.185699462890625000e+01 3035 | -7.312733459472656250e+01 3036 | -6.152572250366210938e+01 3037 | -3.350527191162109375e+01 3038 | -6.682023620605468750e+01 3039 | -9.093111419677734375e+01 3040 | -5.843486022949218750e+01 3041 | -1.119933547973632812e+02 3042 | -4.118441390991210938e+01 3043 | -5.874590301513671875e+01 3044 | -6.891608428955078125e+01 3045 | -5.633390045166015625e+01 3046 | -7.885997772216796875e+01 3047 | -6.809921264648437500e+01 3048 | -5.248762130737304688e+01 3049 | -9.322496032714843750e+01 3050 | -3.843980026245117188e+01 3051 | -6.484506225585937500e+01 3052 | -3.224607086181640625e+01 3053 | -1.211393966674804688e+02 3054 | -5.421445083618164062e+01 3055 | -8.994458007812500000e+01 3056 | -1.386603546142578125e+02 3057 | -2.473890304565429688e+01 3058 | -7.903022766113281250e+01 3059 | -6.730239868164062500e+01 3060 | -8.487933349609375000e+01 3061 | -8.621666717529296875e+01 3062 | -8.133676910400390625e+01 3063 | -1.014631500244140625e+02 3064 | -9.126650238037109375e+01 3065 | -6.318140792846679688e+01 3066 | -4.657136535644531250e+01 3067 | -8.908158111572265625e+01 3068 | -8.346486663818359375e+01 3069 | -6.827085113525390625e+01 3070 | -4.854248046875000000e+01 3071 | -5.834241485595703125e+01 3072 | -8.316212463378906250e+01 3073 | -8.792305755615234375e+01 3074 | -6.621163177490234375e+01 3075 | -5.122020339965820312e+01 3076 | -7.555308532714843750e+01 3077 | -4.863834762573242188e+01 3078 | -8.000775909423828125e+01 3079 | -8.483965301513671875e+01 3080 | -4.272746276855468750e+01 3081 | -8.317630004882812500e+01 3082 | -1.119450912475585938e+02 3083 | -5.543260192871093750e+01 3084 | -6.076689147949218750e+01 3085 | -6.090076065063476562e+01 3086 | -1.128301162719726562e+02 3087 | -1.009202728271484375e+02 3088 | -6.050535583496093750e+01 3089 | -6.946105194091796875e+01 3090 | -8.565968322753906250e+01 3091 | -7.610668945312500000e+01 3092 | -7.675379180908203125e+01 3093 | -8.022368621826171875e+01 3094 | -7.457630920410156250e+01 3095 | -5.270672225952148438e+01 3096 | -4.291460800170898438e+01 3097 | -7.060623931884765625e+01 3098 | -7.380902862548828125e+01 3099 | -7.476256561279296875e+01 3100 | -9.060645294189453125e+01 3101 | -1.126156311035156250e+02 3102 | -8.421250915527343750e+01 3103 | -9.308510589599609375e+01 3104 | -7.270275115966796875e+01 3105 | -6.525525665283203125e+01 3106 | -7.633196258544921875e+01 3107 | -9.569281005859375000e+01 3108 | -6.064082336425781250e+01 3109 | -7.221250152587890625e+01 3110 | -6.813670349121093750e+01 3111 | -6.437064361572265625e+01 3112 | -9.060168457031250000e+01 3113 | -5.327164459228515625e+01 3114 | -6.679000091552734375e+01 3115 | -5.351519775390625000e+01 3116 | -5.135245132446289062e+01 3117 | -1.805909881591796875e+02 3118 | -4.997605895996093750e+01 3119 | -5.835151290893554688e+01 3120 | -5.841323089599609375e+01 3121 | -9.756006622314453125e+01 3122 | -6.668598937988281250e+01 3123 | -8.102365112304687500e+01 3124 | -7.599213409423828125e+01 3125 | -5.852859497070312500e+01 3126 | -7.620149993896484375e+01 3127 | -7.889794921875000000e+01 3128 | -1.055039672851562500e+02 3129 | -6.952117156982421875e+01 3130 | -6.654706573486328125e+01 3131 | -6.132529830932617188e+01 3132 | -6.967977905273437500e+01 3133 | -7.418418884277343750e+01 3134 | -1.062579879760742188e+02 3135 | -3.876911544799804688e+01 3136 | -6.832781982421875000e+01 3137 | -6.887988281250000000e+01 3138 | -7.660576629638671875e+01 3139 | -3.270485687255859375e+01 3140 | -1.009716262817382812e+02 3141 | -6.206830596923828125e+01 3142 | -5.584109115600585938e+01 3143 | -5.416211318969726562e+01 3144 | -9.457499694824218750e+01 3145 | -5.532366561889648438e+01 3146 | -5.983920669555664062e+01 3147 | -8.076781463623046875e+01 3148 | -6.997633361816406250e+01 3149 | -5.484514999389648438e+01 3150 | -5.534667205810546875e+01 3151 | -7.536546325683593750e+01 3152 | -9.082890319824218750e+01 3153 | -7.455442810058593750e+01 3154 | -9.439223480224609375e+01 3155 | -6.857732391357421875e+01 3156 | -4.776844787597656250e+01 3157 | -6.986486816406250000e+01 3158 | -7.323139190673828125e+01 3159 | -1.099365997314453125e+02 3160 | -3.474610519409179688e+01 3161 | -9.668846130371093750e+01 3162 | -7.494098663330078125e+01 3163 | -1.135746002197265625e+02 3164 | -7.390908050537109375e+01 3165 | -8.244014739990234375e+01 3166 | -1.054999694824218750e+02 3167 | -6.124446868896484375e+01 3168 | -4.690435791015625000e+01 3169 | -2.878980827331542969e+01 3170 | -4.600350952148437500e+01 3171 | -6.807151031494140625e+01 3172 | -8.529308319091796875e+01 3173 | -2.903988265991210938e+01 3174 | -1.035528793334960938e+02 3175 | -5.337576293945312500e+01 3176 | -8.272374725341796875e+01 3177 | -3.033977127075195312e+01 3178 | -5.869706344604492188e+01 3179 | -9.725087738037109375e+01 3180 | -6.660134887695312500e+01 3181 | -4.674247360229492188e+01 3182 | -7.169095611572265625e+01 3183 | -6.961979675292968750e+01 3184 | -5.310247039794921875e+01 3185 | -4.018770217895507812e+01 3186 | -7.084344482421875000e+01 3187 | -7.246297454833984375e+01 3188 | -6.081396102905273438e+01 3189 | -3.653257369995117188e+01 3190 | -6.121504592895507812e+01 3191 | -1.239325485229492188e+02 3192 | -1.181933441162109375e+02 3193 | -8.052410125732421875e+01 3194 | -8.811562347412109375e+01 3195 | -1.173884887695312500e+02 3196 | -5.659016418457031250e+01 3197 | -8.467140197753906250e+01 3198 | -8.957257080078125000e+01 3199 | -8.767646789550781250e+01 3200 | -5.831466674804687500e+01 3201 | -6.032839965820312500e+01 3202 | -7.347952270507812500e+01 3203 | -5.888319778442382812e+01 3204 | -7.748091888427734375e+01 3205 | -5.412408828735351562e+01 3206 | -8.648571014404296875e+01 3207 | -6.375151062011718750e+01 3208 | -5.861045074462890625e+01 3209 | -7.882744598388671875e+01 3210 | -5.299891662597656250e+01 3211 | -8.051213073730468750e+01 3212 | -7.316337585449218750e+01 3213 | -4.792545318603515625e+01 3214 | -7.968536376953125000e+01 3215 | -7.981183624267578125e+01 3216 | -7.806407165527343750e+01 3217 | -8.686557006835937500e+01 3218 | -4.808614349365234375e+01 3219 | -5.792438125610351562e+01 3220 | -6.931036376953125000e+01 3221 | -9.954236602783203125e+01 3222 | -9.885820770263671875e+01 3223 | -1.042508163452148438e+02 3224 | -9.221926116943359375e+01 3225 | -6.511158752441406250e+01 3226 | -6.671041870117187500e+01 3227 | -1.002596359252929688e+02 3228 | -7.885360717773437500e+01 3229 | -8.000038909912109375e+01 3230 | -6.310549926757812500e+01 3231 | -3.418203735351562500e+01 3232 | -9.686165618896484375e+01 3233 | -9.341946411132812500e+01 3234 | -7.182742309570312500e+01 3235 | -6.747427368164062500e+01 3236 | -7.296192932128906250e+01 3237 | -7.037332153320312500e+01 3238 | -7.460166168212890625e+01 3239 | -7.911734771728515625e+01 3240 | -7.976595306396484375e+01 3241 | -8.277127075195312500e+01 3242 | -7.037754058837890625e+01 3243 | -1.133714065551757812e+02 3244 | -5.994994735717773438e+01 3245 | -8.756147766113281250e+01 3246 | -1.050859985351562500e+02 3247 | -8.557180023193359375e+01 3248 | -9.980711364746093750e+01 3249 | -6.429696655273437500e+01 3250 | -9.172333526611328125e+01 3251 | -7.415808105468750000e+01 3252 | -9.987677764892578125e+01 3253 | -5.886653900146484375e+01 3254 | -3.004558563232421875e+01 3255 | -8.617504882812500000e+01 3256 | -5.763500595092773438e+01 3257 | -1.168910446166992188e+02 3258 | -6.171168518066406250e+01 3259 | -8.951657104492187500e+01 3260 | -8.827782440185546875e+01 3261 | -7.808517456054687500e+01 3262 | -3.035296249389648438e+01 3263 | -4.447528457641601562e+01 3264 | -1.026972351074218750e+02 3265 | -8.824102783203125000e+01 3266 | -8.948612213134765625e+01 3267 | -6.882946014404296875e+01 3268 | -8.085922241210937500e+01 3269 | -6.424210357666015625e+01 3270 | -6.873120117187500000e+01 3271 | -5.251348114013671875e+01 3272 | -5.657779693603515625e+01 3273 | -6.325741577148437500e+01 3274 | -5.916805648803710938e+01 3275 | -7.410153961181640625e+01 3276 | -5.591228866577148438e+01 3277 | -6.757367706298828125e+01 3278 | -9.067311859130859375e+01 3279 | -6.741911315917968750e+01 3280 | -9.313290405273437500e+01 3281 | -9.364745330810546875e+01 3282 | -8.577698516845703125e+01 3283 | -6.722673797607421875e+01 3284 | -6.677519989013671875e+01 3285 | -6.733690643310546875e+01 3286 | -7.209311676025390625e+01 3287 | -2.582204246520996094e+01 3288 | -6.485943603515625000e+01 3289 | -7.102703094482421875e+01 3290 | -8.556685638427734375e+01 3291 | -6.697942352294921875e+01 3292 | -7.676880645751953125e+01 3293 | -9.593905639648437500e+01 3294 | -9.526493072509765625e+01 3295 | -5.302180099487304688e+01 3296 | -5.970642852783203125e+01 3297 | -9.892092132568359375e+01 3298 | -8.776815795898437500e+01 3299 | -8.310868072509765625e+01 3300 | -1.006999206542968750e+02 3301 | -7.074367523193359375e+01 3302 | -9.344026947021484375e+01 3303 | -5.765262603759765625e+01 3304 | -7.396258544921875000e+01 3305 | -2.826155853271484375e+01 3306 | -9.534068298339843750e+01 3307 | -1.125070266723632812e+02 3308 | -8.783228302001953125e+01 3309 | -8.609800720214843750e+01 3310 | -6.579756927490234375e+01 3311 | -1.088822479248046875e+02 3312 | -7.116245269775390625e+01 3313 | -2.897325325012207031e+01 3314 | -1.091426620483398438e+02 3315 | -1.054895782470703125e+02 3316 | -5.705514144897460938e+01 3317 | -9.269347381591796875e+01 3318 | -6.558638763427734375e+01 3319 | -8.222223663330078125e+01 3320 | -1.236364212036132812e+02 3321 | -6.203470611572265625e+01 3322 | -8.240101623535156250e+01 3323 | -7.878845977783203125e+01 3324 | -7.467796325683593750e+01 3325 | -7.959635925292968750e+01 3326 | -9.181901550292968750e+01 3327 | -5.808340072631835938e+01 3328 | -7.848058319091796875e+01 3329 | -8.937085723876953125e+01 3330 | -7.031699371337890625e+01 3331 | -7.050286865234375000e+01 3332 | -8.756248474121093750e+01 3333 | -4.555566787719726562e+01 3334 | -7.556419372558593750e+01 3335 | -3.111914443969726562e+01 3336 | -9.160951232910156250e+01 3337 | -3.329000091552734375e+01 3338 | -2.629243087768554688e+01 3339 | -8.172962951660156250e+01 3340 | -8.121214294433593750e+01 3341 | -9.863134765625000000e+01 3342 | -6.088868713378906250e+01 3343 | -1.026008453369140625e+02 3344 | -5.503433990478515625e+01 3345 | -7.125466156005859375e+01 3346 | -8.604053497314453125e+01 3347 | -6.349988174438476562e+01 3348 | -7.365669250488281250e+01 3349 | -8.468413543701171875e+01 3350 | -3.408301544189453125e+01 3351 | -7.391925048828125000e+01 3352 | -7.503660583496093750e+01 3353 | -9.173074340820312500e+01 3354 | -4.900635910034179688e+01 3355 | -9.488198089599609375e+01 3356 | -7.526776123046875000e+01 3357 | -9.266529846191406250e+01 3358 | -6.695587921142578125e+01 3359 | -7.594043731689453125e+01 3360 | -1.268902511596679688e+02 3361 | -8.976877593994140625e+01 3362 | -6.551194000244140625e+01 3363 | -7.813746643066406250e+01 3364 | -8.618585968017578125e+01 3365 | -7.938158416748046875e+01 3366 | -6.988169097900390625e+01 3367 | -6.402388000488281250e+01 3368 | -5.070768356323242188e+01 3369 | -9.171305084228515625e+01 3370 | -4.973591995239257812e+01 3371 | -7.385108184814453125e+01 3372 | -5.626315689086914062e+01 3373 | -6.975799560546875000e+01 3374 | -8.941909027099609375e+01 3375 | -6.866969299316406250e+01 3376 | -7.786327362060546875e+01 3377 | -9.297828674316406250e+01 3378 | -5.501821517944335938e+01 3379 | -5.299903106689453125e+01 3380 | -3.335118865966796875e+01 3381 | -7.573445892333984375e+01 3382 | -5.285783386230468750e+01 3383 | -3.421922302246093750e+01 3384 | -1.126366577148437500e+02 3385 | -7.156113433837890625e+01 3386 | -6.713970947265625000e+01 3387 | -8.997631072998046875e+01 3388 | -5.707931518554687500e+01 3389 | -6.950105285644531250e+01 3390 | -6.958187866210937500e+01 3391 | -8.297315979003906250e+01 3392 | -9.129670715332031250e+01 3393 | -9.676619720458984375e+01 3394 | -7.385666656494140625e+01 3395 | -3.837730789184570312e+01 3396 | -6.159697341918945312e+01 3397 | -5.561212158203125000e+01 3398 | -6.361827850341796875e+01 3399 | -7.688166046142578125e+01 3400 | -3.717077255249023438e+01 3401 | -2.616785430908203125e+01 3402 | -8.441316986083984375e+01 3403 | -5.991592407226562500e+01 3404 | -7.864588928222656250e+01 3405 | -1.158496322631835938e+02 3406 | -4.673650360107421875e+01 3407 | -7.906203460693359375e+01 3408 | -7.659225463867187500e+01 3409 | -1.084699249267578125e+02 3410 | -5.898358535766601562e+01 3411 | -7.400443267822265625e+01 3412 | -1.108918075561523438e+02 3413 | -7.581973266601562500e+01 3414 | -9.677436065673828125e+01 3415 | -1.109496307373046875e+02 3416 | -1.032146911621093750e+02 3417 | -3.807358551025390625e+01 3418 | -7.738674163818359375e+01 3419 | -7.745936584472656250e+01 3420 | -1.003244171142578125e+02 3421 | -5.302894973754882812e+01 3422 | -1.149072341918945312e+02 3423 | -8.941555786132812500e+01 3424 | -7.046271514892578125e+01 3425 | -4.936341857910156250e+01 3426 | -9.178961181640625000e+01 3427 | -6.175492858886718750e+01 3428 | -7.479507446289062500e+01 3429 | -6.335817718505859375e+01 3430 | -7.058493041992187500e+01 3431 | -6.848026275634765625e+01 3432 | -8.454983520507812500e+01 3433 | -7.904091644287109375e+01 3434 | -5.331842803955078125e+01 3435 | -4.651185607910156250e+01 3436 | -6.578043365478515625e+01 3437 | -7.701353454589843750e+01 3438 | -7.233261108398437500e+01 3439 | -5.695257186889648438e+01 3440 | -5.547866439819335938e+01 3441 | -5.923469924926757812e+01 3442 | -6.290857315063476562e+01 3443 | -7.049302673339843750e+01 3444 | -5.739361190795898438e+01 3445 | -8.239244079589843750e+01 3446 | -7.322859191894531250e+01 3447 | -6.629081726074218750e+01 3448 | -6.424743652343750000e+01 3449 | -7.072997283935546875e+01 3450 | -2.943820381164550781e+01 3451 | -6.708706665039062500e+01 3452 | -2.973005485534667969e+01 3453 | -1.176548080444335938e+02 3454 | -6.803323364257812500e+01 3455 | -7.973859405517578125e+01 3456 | -1.061189956665039062e+02 3457 | -2.867833900451660156e+01 3458 | -5.186787033081054688e+01 3459 | -6.283358383178710938e+01 3460 | -8.297831726074218750e+01 3461 | -6.971838378906250000e+01 3462 | -8.478253173828125000e+01 3463 | -9.232102966308593750e+01 3464 | -8.865612792968750000e+01 3465 | -6.289791107177734375e+01 3466 | -6.550844573974609375e+01 3467 | -6.385913848876953125e+01 3468 | -7.881822967529296875e+01 3469 | -7.782909393310546875e+01 3470 | -8.501173400878906250e+01 3471 | -6.660365295410156250e+01 3472 | -5.300166702270507812e+01 3473 | -7.933592987060546875e+01 3474 | -5.865171051025390625e+01 3475 | -1.053784561157226562e+02 3476 | -8.215103149414062500e+01 3477 | -6.564113616943359375e+01 3478 | -5.753750228881835938e+01 3479 | -8.405567169189453125e+01 3480 | -5.478447341918945312e+01 3481 | -7.290476226806640625e+01 3482 | -5.417720413208007812e+01 3483 | -9.532438659667968750e+01 3484 | -6.471585083007812500e+01 3485 | -7.941300964355468750e+01 3486 | -7.348345947265625000e+01 3487 | -9.570018768310546875e+01 3488 | -5.360505676269531250e+01 3489 | -6.617271423339843750e+01 3490 | -2.723070144653320312e+01 3491 | -8.953224182128906250e+01 3492 | -9.537260437011718750e+01 3493 | -5.361098480224609375e+01 3494 | -3.845607376098632812e+01 3495 | -1.004235916137695312e+02 3496 | -3.898509597778320312e+01 3497 | -7.361895751953125000e+01 3498 | -6.016361999511718750e+01 3499 | -7.447711181640625000e+01 3500 | -7.402573394775390625e+01 3501 | -5.596720123291015625e+01 3502 | -7.734232330322265625e+01 3503 | -3.134531211853027344e+01 3504 | -7.801624298095703125e+01 3505 | -9.842654418945312500e+01 3506 | -7.456479644775390625e+01 3507 | -5.422100448608398438e+01 3508 | -5.407925033569335938e+01 3509 | -1.006355895996093750e+02 3510 | -1.023767623901367188e+02 3511 | -2.961183547973632812e+01 3512 | -8.075383758544921875e+01 3513 | -5.794129180908203125e+01 3514 | -8.068670654296875000e+01 3515 | -1.205153350830078125e+02 3516 | -4.908975601196289062e+01 3517 | -9.934780120849609375e+01 3518 | -4.778417205810546875e+01 3519 | -4.228651809692382812e+01 3520 | -8.821213531494140625e+01 3521 | -6.645997619628906250e+01 3522 | -3.405063247680664062e+01 3523 | -1.014189300537109375e+02 3524 | -4.389228439331054688e+01 3525 | -5.718910598754882812e+01 3526 | -7.589365386962890625e+01 3527 | -8.283854675292968750e+01 3528 | -8.882290649414062500e+01 3529 | -8.350051116943359375e+01 3530 | -7.844977569580078125e+01 3531 | -5.168004608154296875e+01 3532 | -6.422763824462890625e+01 3533 | -8.891298675537109375e+01 3534 | -2.694865608215332031e+01 3535 | -6.598120117187500000e+01 3536 | -8.798001098632812500e+01 3537 | -5.606987380981445312e+01 3538 | -6.204901885986328125e+01 3539 | -8.686946105957031250e+01 3540 | -1.257712097167968750e+02 3541 | -1.407326812744140625e+02 3542 | -6.946731567382812500e+01 3543 | -7.156633758544921875e+01 3544 | -1.154587249755859375e+02 3545 | -6.532099151611328125e+01 3546 | -6.680927276611328125e+01 3547 | -2.251076316833496094e+01 3548 | -9.126324462890625000e+01 3549 | -7.345983886718750000e+01 3550 | -8.299364471435546875e+01 3551 | -1.030655212402343750e+02 3552 | -8.529122924804687500e+01 3553 | -9.941246032714843750e+01 3554 | -7.434854125976562500e+01 3555 | -6.881663513183593750e+01 3556 | -7.896022033691406250e+01 3557 | -7.117237854003906250e+01 3558 | -7.000240325927734375e+01 3559 | -6.350170898437500000e+01 3560 | -9.751171112060546875e+01 3561 | -9.142062377929687500e+01 3562 | -4.779624938964843750e+01 3563 | -7.112536621093750000e+01 3564 | -8.222312927246093750e+01 3565 | -5.442477416992187500e+01 3566 | -6.134048843383789062e+01 3567 | -5.582061004638671875e+01 3568 | -1.049356002807617188e+02 3569 | -5.493285751342773438e+01 3570 | -6.225118637084960938e+01 3571 | -7.945803070068359375e+01 3572 | -1.095159683227539062e+02 3573 | -6.180897903442382812e+01 3574 | -6.943491363525390625e+01 3575 | -1.129233245849609375e+02 3576 | -8.003900146484375000e+01 3577 | -7.422850036621093750e+01 3578 | -6.578868103027343750e+01 3579 | -5.464162445068359375e+01 3580 | -7.640433502197265625e+01 3581 | -7.168753814697265625e+01 3582 | -6.842292022705078125e+01 3583 | -4.374504852294921875e+01 3584 | -3.061896896362304688e+01 3585 | -5.045082473754882812e+01 3586 | -2.782925987243652344e+01 3587 | -3.051660346984863281e+01 3588 | -6.453423309326171875e+01 3589 | -7.649806976318359375e+01 3590 | -6.456932830810546875e+01 3591 | -5.660062026977539062e+01 3592 | -2.946531105041503906e+01 3593 | -6.248617935180664062e+01 3594 | -1.093101577758789062e+02 3595 | -9.069168090820312500e+01 3596 | -1.046439819335937500e+02 3597 | -7.451702117919921875e+01 3598 | -6.953959655761718750e+01 3599 | -5.956311035156250000e+01 3600 | -7.040270233154296875e+01 3601 | -8.023699951171875000e+01 3602 | -6.029687881469726562e+01 3603 | -6.964729309082031250e+01 3604 | -7.980739593505859375e+01 3605 | -7.285765075683593750e+01 3606 | -5.456491088867187500e+01 3607 | -3.145018577575683594e+01 3608 | -6.419242858886718750e+01 3609 | -7.039910125732421875e+01 3610 | -7.353260040283203125e+01 3611 | -7.498612976074218750e+01 3612 | -2.418703651428222656e+01 3613 | -7.980896759033203125e+01 3614 | -8.905197143554687500e+01 3615 | -1.070120391845703125e+02 3616 | -7.189450836181640625e+01 3617 | -5.836721801757812500e+01 3618 | -6.513408660888671875e+01 3619 | -6.321005249023437500e+01 3620 | -4.236492156982421875e+01 3621 | -3.042273902893066406e+01 3622 | -6.347615432739257812e+01 3623 | -1.152759780883789062e+02 3624 | -8.934757995605468750e+01 3625 | -7.389192199707031250e+01 3626 | -3.037390327453613281e+01 3627 | -2.861415863037109375e+01 3628 | -3.988840866088867188e+01 3629 | -3.601508712768554688e+01 3630 | -7.887869262695312500e+01 3631 | -8.657149505615234375e+01 3632 | -3.678081130981445312e+01 3633 | -6.253148269653320312e+01 3634 | -3.036931800842285156e+01 3635 | -6.359968948364257812e+01 3636 | -2.786143302917480469e+01 3637 | -6.816077423095703125e+01 3638 | -5.486505889892578125e+01 3639 | -6.593822479248046875e+01 3640 | -5.136636352539062500e+01 3641 | -7.910317993164062500e+01 3642 | -8.292694854736328125e+01 3643 | -6.857851409912109375e+01 3644 | -4.949983596801757812e+01 3645 | -6.558953094482421875e+01 3646 | -7.339863586425781250e+01 3647 | -7.496234130859375000e+01 3648 | -7.917244720458984375e+01 3649 | -5.165649414062500000e+01 3650 | -7.014831542968750000e+01 3651 | -9.667945098876953125e+01 3652 | -6.861125183105468750e+01 3653 | -8.675476837158203125e+01 3654 | -7.440959167480468750e+01 3655 | -8.845005798339843750e+01 3656 | -1.160850448608398438e+02 3657 | -5.672196960449218750e+01 3658 | -7.382978057861328125e+01 3659 | -9.258215332031250000e+01 3660 | -8.071762847900390625e+01 3661 | -7.071065521240234375e+01 3662 | -3.058887100219726562e+01 3663 | -6.786674499511718750e+01 3664 | -2.704006767272949219e+01 3665 | -6.840786743164062500e+01 3666 | -5.859794616699218750e+01 3667 | -3.130112648010253906e+01 3668 | -7.169242858886718750e+01 3669 | -9.036541748046875000e+01 3670 | -5.022555923461914062e+01 3671 | -4.545541381835937500e+01 3672 | -6.595051574707031250e+01 3673 | -9.140721893310546875e+01 3674 | -6.801274108886718750e+01 3675 | -8.496662139892578125e+01 3676 | -7.995605468750000000e+01 3677 | -5.444355773925781250e+01 3678 | -1.031501312255859375e+02 3679 | -4.088008499145507812e+01 3680 | -8.995954895019531250e+01 3681 | -6.570413970947265625e+01 3682 | -7.960953521728515625e+01 3683 | -7.998224639892578125e+01 3684 | -8.638693237304687500e+01 3685 | -6.330889511108398438e+01 3686 | -7.664871215820312500e+01 3687 | -8.202369689941406250e+01 3688 | -2.674187278747558594e+01 3689 | -6.264391708374023438e+01 3690 | -7.968929290771484375e+01 3691 | -3.080498886108398438e+01 3692 | -3.067887115478515625e+01 3693 | -1.267066497802734375e+02 3694 | -2.721214485168457031e+01 3695 | -7.315104675292968750e+01 3696 | -4.257008361816406250e+01 3697 | -5.708105087280273438e+01 3698 | -9.183261108398437500e+01 3699 | -8.362583923339843750e+01 3700 | -7.034609222412109375e+01 3701 | -6.488608551025390625e+01 3702 | -4.607585144042968750e+01 3703 | -6.133165740966796875e+01 3704 | -6.980226135253906250e+01 3705 | -6.429376983642578125e+01 3706 | -1.231681823730468750e+02 3707 | -2.812057304382324219e+01 3708 | -7.446696472167968750e+01 3709 | -3.719179153442382812e+01 3710 | -5.500637435913085938e+01 3711 | -7.547901916503906250e+01 3712 | -7.744075775146484375e+01 3713 | -3.414532089233398438e+01 3714 | -3.277931594848632812e+01 3715 | -7.965134429931640625e+01 3716 | -6.668345642089843750e+01 3717 | -8.028132629394531250e+01 3718 | -5.669541931152343750e+01 3719 | -8.916605377197265625e+01 3720 | -5.014321899414062500e+01 3721 | -6.197543334960937500e+01 3722 | -6.926123046875000000e+01 3723 | -9.555172729492187500e+01 3724 | -3.131911849975585938e+01 3725 | -9.690892791748046875e+01 3726 | -6.792435455322265625e+01 3727 | -7.332627868652343750e+01 3728 | -6.640460968017578125e+01 3729 | -5.589935302734375000e+01 3730 | -8.703382873535156250e+01 3731 | -3.100977134704589844e+01 3732 | -6.244906616210937500e+01 3733 | -7.132851409912109375e+01 3734 | -6.661540985107421875e+01 3735 | -6.417004394531250000e+01 3736 | -9.229977416992187500e+01 3737 | -5.331016159057617188e+01 3738 | -7.976782226562500000e+01 3739 | -5.544214248657226562e+01 3740 | -3.769449615478515625e+01 3741 | -8.439302062988281250e+01 3742 | -7.509555053710937500e+01 3743 | -8.450085449218750000e+01 3744 | -3.201623916625976562e+01 3745 | -5.150773620605468750e+01 3746 | -9.552372741699218750e+01 3747 | -1.063633880615234375e+02 3748 | -9.332864379882812500e+01 3749 | -6.980120849609375000e+01 3750 | -6.912584686279296875e+01 3751 | -7.620392608642578125e+01 3752 | -7.314482879638671875e+01 3753 | -5.100708389282226562e+01 3754 | -8.013298797607421875e+01 3755 | -8.509947204589843750e+01 3756 | -6.699913024902343750e+01 3757 | -2.532812118530273438e+01 3758 | -8.013715362548828125e+01 3759 | -7.481314849853515625e+01 3760 | -1.007646865844726562e+02 3761 | -5.742366790771484375e+01 3762 | -6.012079620361328125e+01 3763 | -5.235667037963867188e+01 3764 | -6.703887939453125000e+01 3765 | -8.190019989013671875e+01 3766 | -6.096516418457031250e+01 3767 | -4.369319152832031250e+01 3768 | -6.085889434814453125e+01 3769 | -9.110895538330078125e+01 3770 | -6.640898895263671875e+01 3771 | -5.025465011596679688e+01 3772 | -7.441165924072265625e+01 3773 | -6.201445770263671875e+01 3774 | -7.803159332275390625e+01 3775 | -7.944222259521484375e+01 3776 | -1.097153701782226562e+02 3777 | -5.229224014282226562e+01 3778 | -8.237915802001953125e+01 3779 | -4.676617813110351562e+01 3780 | -5.372770309448242188e+01 3781 | -5.256150054931640625e+01 3782 | -5.870515060424804688e+01 3783 | -9.975305938720703125e+01 3784 | -5.750606536865234375e+01 3785 | -7.445324707031250000e+01 3786 | -7.128003692626953125e+01 3787 | -7.763085937500000000e+01 3788 | -9.728562164306640625e+01 3789 | -8.880309295654296875e+01 3790 | -8.430350494384765625e+01 3791 | -6.806362152099609375e+01 3792 | -5.424121093750000000e+01 3793 | -7.756521606445312500e+01 3794 | -7.978653717041015625e+01 3795 | -8.305281066894531250e+01 3796 | -4.076444244384765625e+01 3797 | -4.867268371582031250e+01 3798 | -6.972782135009765625e+01 3799 | -2.810696220397949219e+01 3800 | -8.348225402832031250e+01 3801 | -8.079273986816406250e+01 3802 | -4.244987869262695312e+01 3803 | -1.224361343383789062e+02 3804 | -4.649932479858398438e+01 3805 | -1.127494888305664062e+02 3806 | -9.306919860839843750e+01 3807 | -1.214478530883789062e+02 3808 | -3.485932159423828125e+01 3809 | -2.899230003356933594e+01 3810 | -7.640399932861328125e+01 3811 | -1.023078994750976562e+02 3812 | -9.491567993164062500e+01 3813 | -1.267967910766601562e+02 3814 | -5.303013992309570312e+01 3815 | -9.625729370117187500e+01 3816 | -7.795464324951171875e+01 3817 | -5.499642944335937500e+01 3818 | -8.017853546142578125e+01 3819 | -6.856459808349609375e+01 3820 | -5.447222900390625000e+01 3821 | -6.871449279785156250e+01 3822 | -8.107015228271484375e+01 3823 | -1.047235565185546875e+02 3824 | -5.948222351074218750e+01 3825 | -8.380421447753906250e+01 3826 | -6.213248443603515625e+01 3827 | -7.232139587402343750e+01 3828 | -5.186883544921875000e+01 3829 | -8.556212615966796875e+01 3830 | -6.854167938232421875e+01 3831 | -6.321657562255859375e+01 3832 | -7.985407257080078125e+01 3833 | -7.350019073486328125e+01 3834 | -1.092926177978515625e+02 3835 | -6.055844497680664062e+01 3836 | -1.024811630249023438e+02 3837 | -6.347884750366210938e+01 3838 | -8.263383483886718750e+01 3839 | -6.578681945800781250e+01 3840 | -1.074957122802734375e+02 3841 | -6.675602722167968750e+01 3842 | -9.238252258300781250e+01 3843 | -5.945233535766601562e+01 3844 | -9.028115844726562500e+01 3845 | -7.586035156250000000e+01 3846 | -5.299487686157226562e+01 3847 | -9.053314971923828125e+01 3848 | -7.587062072753906250e+01 3849 | -5.774654388427734375e+01 3850 | -4.768839645385742188e+01 3851 | -5.822940444946289062e+01 3852 | -3.584379959106445312e+01 3853 | -6.793095397949218750e+01 3854 | -7.839521789550781250e+01 3855 | -6.596102142333984375e+01 3856 | -1.135913772583007812e+02 3857 | -7.302941894531250000e+01 3858 | -7.144039916992187500e+01 3859 | -1.164844589233398438e+02 3860 | -8.953333282470703125e+01 3861 | -1.358200683593750000e+02 3862 | -7.180180358886718750e+01 3863 | -7.972185516357421875e+01 3864 | -7.795118713378906250e+01 3865 | -1.017331390380859375e+02 3866 | -3.909036254882812500e+01 3867 | -1.035507354736328125e+02 3868 | -5.540068817138671875e+01 3869 | -9.159354400634765625e+01 3870 | -9.133007812500000000e+01 3871 | -9.520436859130859375e+01 3872 | -6.757165527343750000e+01 3873 | -5.079151153564453125e+01 3874 | -4.443939208984375000e+01 3875 | -7.229895019531250000e+01 3876 | -6.777365112304687500e+01 3877 | -8.734823608398437500e+01 3878 | -6.942707061767578125e+01 3879 | -5.349518966674804688e+01 3880 | -7.917536926269531250e+01 3881 | -6.270107269287109375e+01 3882 | -9.870140075683593750e+01 3883 | -8.729449462890625000e+01 3884 | -7.259181976318359375e+01 3885 | -3.281176376342773438e+01 3886 | -9.234779357910156250e+01 3887 | -8.840981292724609375e+01 3888 | -2.968444442749023438e+01 3889 | -7.338913726806640625e+01 3890 | -5.930992507934570312e+01 3891 | -5.928238677978515625e+01 3892 | -7.878865814208984375e+01 3893 | -3.142119979858398438e+01 3894 | -5.775924301147460938e+01 3895 | -6.894631958007812500e+01 3896 | -5.032180023193359375e+01 3897 | -9.773526763916015625e+01 3898 | -8.683898162841796875e+01 3899 | -9.015407562255859375e+01 3900 | -3.982384109497070312e+01 3901 | -7.308756256103515625e+01 3902 | -3.408843994140625000e+01 3903 | -7.674212646484375000e+01 3904 | -8.353520965576171875e+01 3905 | -6.865114593505859375e+01 3906 | -8.012864685058593750e+01 3907 | -5.992652511596679688e+01 3908 | -6.299995422363281250e+01 3909 | -5.140994644165039062e+01 3910 | -8.242028045654296875e+01 3911 | -5.963942337036132812e+01 3912 | -2.537410354614257812e+01 3913 | -2.949558258056640625e+01 3914 | -7.661112976074218750e+01 3915 | -6.304088973999023438e+01 3916 | -6.693598937988281250e+01 3917 | -4.252085494995117188e+01 3918 | -6.459325408935546875e+01 3919 | -6.117455291748046875e+01 3920 | -7.451303863525390625e+01 3921 | -4.826951980590820312e+01 3922 | -1.006779251098632812e+02 3923 | -1.013940429687500000e+02 3924 | -7.592182159423828125e+01 3925 | -8.932411956787109375e+01 3926 | -9.385900878906250000e+01 3927 | -5.240681076049804688e+01 3928 | -6.576096343994140625e+01 3929 | -6.260477066040039062e+01 3930 | -3.275840377807617188e+01 3931 | -4.913605117797851562e+01 3932 | -3.737924957275390625e+01 3933 | -8.039400482177734375e+01 3934 | -4.690979766845703125e+01 3935 | -6.009619903564453125e+01 3936 | -5.694514465332031250e+01 3937 | -5.707956695556640625e+01 3938 | -8.136660766601562500e+01 3939 | -3.373251724243164062e+01 3940 | -2.949950790405273438e+01 3941 | -2.806974411010742188e+01 3942 | -6.576829528808593750e+01 3943 | -7.583590698242187500e+01 3944 | -8.288022613525390625e+01 3945 | -5.666750717163085938e+01 3946 | -6.690455627441406250e+01 3947 | -6.635414886474609375e+01 3948 | -1.030487594604492188e+02 3949 | -7.688307189941406250e+01 3950 | -1.022682113647460938e+02 3951 | -8.186793518066406250e+01 3952 | -6.041084671020507812e+01 3953 | -1.054159469604492188e+02 3954 | -7.339794158935546875e+01 3955 | -6.809906005859375000e+01 3956 | -3.025510978698730469e+01 3957 | -7.619655609130859375e+01 3958 | -4.612669754028320312e+01 3959 | -6.942661285400390625e+01 3960 | -5.708080291748046875e+01 3961 | -7.641127777099609375e+01 3962 | -8.372022247314453125e+01 3963 | -1.084669647216796875e+02 3964 | -7.321272277832031250e+01 3965 | -5.786515808105468750e+01 3966 | -2.977009391784667969e+01 3967 | -7.724792480468750000e+01 3968 | -6.128718948364257812e+01 3969 | -9.163202667236328125e+01 3970 | -6.408329772949218750e+01 3971 | -3.279129028320312500e+01 3972 | -2.966150665283203125e+01 3973 | -9.019046020507812500e+01 3974 | -9.716463470458984375e+01 3975 | -5.533423233032226562e+01 3976 | -3.254403305053710938e+01 3977 | -5.861679840087890625e+01 3978 | -5.137023162841796875e+01 3979 | -4.008435821533203125e+01 3980 | -8.529495239257812500e+01 3981 | -5.451671218872070312e+01 3982 | -7.073632049560546875e+01 3983 | -6.340470123291015625e+01 3984 | -6.171134948730468750e+01 3985 | -7.874987792968750000e+01 3986 | -8.856288146972656250e+01 3987 | -4.638396072387695312e+01 3988 | -6.052809524536132812e+01 3989 | -8.804547119140625000e+01 3990 | -8.746863555908203125e+01 3991 | -7.888097381591796875e+01 3992 | -5.669522094726562500e+01 3993 | -9.818110656738281250e+01 3994 | -8.432692718505859375e+01 3995 | -7.579391479492187500e+01 3996 | -6.314805603027343750e+01 3997 | -8.111434936523437500e+01 3998 | -7.158316802978515625e+01 3999 | -7.294676208496093750e+01 4000 | -5.981839752197265625e+01 4001 | -8.789739990234375000e+01 4002 | -5.905501556396484375e+01 4003 | -9.068718719482421875e+01 4004 | -5.119515609741210938e+01 4005 | -8.043941497802734375e+01 4006 | -8.297496795654296875e+01 4007 | -5.757151794433593750e+01 4008 | -6.488048553466796875e+01 4009 | -1.090806884765625000e+02 4010 | -6.824156951904296875e+01 4011 | -8.650833129882812500e+01 4012 | -5.292462158203125000e+01 4013 | -8.104980468750000000e+01 4014 | -6.719930267333984375e+01 4015 | -7.085996246337890625e+01 4016 | -8.266407775878906250e+01 4017 | -3.459114074707031250e+01 4018 | -3.797036743164062500e+01 4019 | -1.141014938354492188e+02 4020 | -3.305114746093750000e+01 4021 | -8.366565704345703125e+01 4022 | -6.579992675781250000e+01 4023 | -2.885496711730957031e+01 4024 | -6.181776046752929688e+01 4025 | -8.327885437011718750e+01 4026 | -7.127564239501953125e+01 4027 | -6.292795181274414062e+01 4028 | -8.557981872558593750e+01 4029 | -5.794869995117187500e+01 4030 | -7.377441406250000000e+01 4031 | -6.484104156494140625e+01 4032 | -6.475011444091796875e+01 4033 | -7.852024078369140625e+01 4034 | -9.244413757324218750e+01 4035 | -7.784245300292968750e+01 4036 | -7.197629547119140625e+01 4037 | -1.322354888916015625e+02 4038 | -7.712411499023437500e+01 4039 | -5.035969161987304688e+01 4040 | -3.471935272216796875e+01 4041 | -7.303511810302734375e+01 4042 | -5.350939559936523438e+01 4043 | -5.744456481933593750e+01 4044 | -6.831255340576171875e+01 4045 | -9.587580871582031250e+01 4046 | -7.383627319335937500e+01 4047 | -6.651778411865234375e+01 4048 | -8.216666412353515625e+01 4049 | -7.917948150634765625e+01 4050 | -7.255918884277343750e+01 4051 | -5.473863601684570312e+01 4052 | -8.036876678466796875e+01 4053 | -7.500278472900390625e+01 4054 | -7.988056945800781250e+01 4055 | -9.189240264892578125e+01 4056 | -1.150872192382812500e+02 4057 | -6.643097686767578125e+01 4058 | -7.865147399902343750e+01 4059 | -6.696591949462890625e+01 4060 | -5.439793777465820312e+01 4061 | -5.432571792602539062e+01 4062 | -5.728108215332031250e+01 4063 | -9.199279785156250000e+01 4064 | -8.443143463134765625e+01 4065 | -7.166909027099609375e+01 4066 | -5.584196853637695312e+01 4067 | -8.192510986328125000e+01 4068 | -1.110349349975585938e+02 4069 | -7.729694366455078125e+01 4070 | -8.027957916259765625e+01 4071 | -3.536673355102539062e+01 4072 | -7.136991882324218750e+01 4073 | -5.980905532836914062e+01 4074 | -6.794301605224609375e+01 4075 | -5.173471450805664062e+01 4076 | -8.779873657226562500e+01 4077 | -3.098020172119140625e+01 4078 | -7.975818634033203125e+01 4079 | -8.569741058349609375e+01 4080 | -4.879549407958984375e+01 4081 | -5.510979080200195312e+01 4082 | -1.013493499755859375e+02 4083 | -1.189540863037109375e+02 4084 | -9.354235839843750000e+01 4085 | -6.336681747436523438e+01 4086 | -7.122249603271484375e+01 4087 | -6.956535339355468750e+01 4088 | -8.872377014160156250e+01 4089 | -6.509871673583984375e+01 4090 | -9.863201904296875000e+01 4091 | -6.852963256835937500e+01 4092 | -7.889609527587890625e+01 4093 | -9.109934234619140625e+01 4094 | -3.751015853881835938e+01 4095 | -9.771054840087890625e+01 4096 | -2.896372413635253906e+01 4097 | -9.093244934082031250e+01 4098 | -7.661555480957031250e+01 4099 | -8.668222808837890625e+01 4100 | -7.320503997802734375e+01 4101 | -7.661991119384765625e+01 4102 | -6.313557434082031250e+01 4103 | -7.156925964355468750e+01 4104 | -8.488809967041015625e+01 4105 | -7.108540344238281250e+01 4106 | -7.693328857421875000e+01 4107 | -8.522554779052734375e+01 4108 | -5.735596847534179688e+01 4109 | -3.333531188964843750e+01 4110 | -9.010971069335937500e+01 4111 | -8.519695281982421875e+01 4112 | -1.041067886352539062e+02 4113 | -3.233624267578125000e+01 4114 | -8.568005371093750000e+01 4115 | -4.797239685058593750e+01 4116 | -3.974473953247070312e+01 4117 | -7.024881744384765625e+01 4118 | -7.353546142578125000e+01 4119 | -7.079904174804687500e+01 4120 | -5.508795547485351562e+01 4121 | -7.797768402099609375e+01 4122 | -6.860490417480468750e+01 4123 | -4.306454467773437500e+01 4124 | -7.453967285156250000e+01 4125 | -8.936472320556640625e+01 4126 | -3.027142524719238281e+01 4127 | -6.834763336181640625e+01 4128 | -7.235069274902343750e+01 4129 | -6.263020324707031250e+01 4130 | -5.251312637329101562e+01 4131 | -5.578459548950195312e+01 4132 | -6.515139770507812500e+01 4133 | -1.081961669921875000e+02 4134 | -6.782826232910156250e+01 4135 | -6.071513366699218750e+01 4136 | -1.010256347656250000e+02 4137 | -5.053903579711914062e+01 4138 | -9.435748291015625000e+01 4139 | -3.353312301635742188e+01 4140 | -8.761384582519531250e+01 4141 | -9.937790679931640625e+01 4142 | -7.023144531250000000e+01 4143 | -6.197755050659179688e+01 4144 | -9.478135681152343750e+01 4145 | -2.999879074096679688e+01 4146 | -5.933527755737304688e+01 4147 | -8.623030853271484375e+01 4148 | -7.962694549560546875e+01 4149 | -7.849773406982421875e+01 4150 | -8.575961303710937500e+01 4151 | -1.030916900634765625e+02 4152 | -2.905073738098144531e+01 4153 | -7.354154968261718750e+01 4154 | -5.636665344238281250e+01 4155 | -9.258042144775390625e+01 4156 | -4.869030380249023438e+01 4157 | -7.822065734863281250e+01 4158 | -7.816726684570312500e+01 4159 | -9.102893829345703125e+01 4160 | -3.032784843444824219e+01 4161 | -7.544191741943359375e+01 4162 | -7.225410461425781250e+01 4163 | -6.250071716308593750e+01 4164 | -9.324671173095703125e+01 4165 | -1.079394989013671875e+02 4166 | -4.260918426513671875e+01 4167 | -7.231417846679687500e+01 4168 | -5.281829452514648438e+01 4169 | -4.014792251586914062e+01 4170 | -6.279922866821289062e+01 4171 | -9.238277435302734375e+01 4172 | -8.762519836425781250e+01 4173 | -6.284765243530273438e+01 4174 | -1.010791168212890625e+02 4175 | -8.179872131347656250e+01 4176 | -9.634792327880859375e+01 4177 | -6.156111526489257812e+01 4178 | -6.227465438842773438e+01 4179 | -4.196523284912109375e+01 4180 | -1.015908966064453125e+02 4181 | -9.312609100341796875e+01 4182 | -6.708473968505859375e+01 4183 | -9.324816131591796875e+01 4184 | -7.532607269287109375e+01 4185 | -8.871596527099609375e+01 4186 | -7.802098846435546875e+01 4187 | -7.922449493408203125e+01 4188 | -7.323239898681640625e+01 4189 | -7.360131835937500000e+01 4190 | -2.913766098022460938e+01 4191 | -4.414372634887695312e+01 4192 | -7.209942626953125000e+01 4193 | -7.911680603027343750e+01 4194 | -6.281063461303710938e+01 4195 | -6.050337982177734375e+01 4196 | -8.189147949218750000e+01 4197 | -8.458690643310546875e+01 4198 | -4.854461669921875000e+01 4199 | -7.251084136962890625e+01 4200 | -6.642910766601562500e+01 4201 | -9.061330413818359375e+01 4202 | -5.627304840087890625e+01 4203 | -7.191819000244140625e+01 4204 | -8.732868194580078125e+01 4205 | -6.200276184082031250e+01 4206 | -6.641385650634765625e+01 4207 | -2.606060028076171875e+01 4208 | -7.923240661621093750e+01 4209 | -3.742768859863281250e+01 4210 | -8.943699645996093750e+01 4211 | -6.901230621337890625e+01 4212 | -7.154541778564453125e+01 4213 | -5.049632263183593750e+01 4214 | -7.772448730468750000e+01 4215 | -9.138620758056640625e+01 4216 | -8.371403503417968750e+01 4217 | -5.120580673217773438e+01 4218 | -6.437326812744140625e+01 4219 | -3.653876876831054688e+01 4220 | -7.279177093505859375e+01 4221 | -8.859853363037109375e+01 4222 | -3.686111068725585938e+01 4223 | -5.280498123168945312e+01 4224 | -9.519767761230468750e+01 4225 | -7.899034881591796875e+01 4226 | -1.025809707641601562e+02 4227 | -7.597131347656250000e+01 4228 | -7.908689880371093750e+01 4229 | -5.693875885009765625e+01 4230 | -1.509077911376953125e+02 4231 | -8.202040100097656250e+01 4232 | -6.498186492919921875e+01 4233 | -5.610289001464843750e+01 4234 | -1.104803466796875000e+02 4235 | -2.869461059570312500e+01 4236 | -6.053708648681640625e+01 4237 | -2.960297393798828125e+01 4238 | -7.706606292724609375e+01 4239 | -8.157122802734375000e+01 4240 | -6.112361907958984375e+01 4241 | -6.088397979736328125e+01 4242 | -6.627846527099609375e+01 4243 | -8.038978576660156250e+01 4244 | -7.823695373535156250e+01 4245 | -6.493515014648437500e+01 4246 | -9.630784606933593750e+01 4247 | -5.682219696044921875e+01 4248 | -6.260960006713867188e+01 4249 | -1.036142349243164062e+02 4250 | -5.096007156372070312e+01 4251 | -3.108822059631347656e+01 4252 | -1.175893707275390625e+02 4253 | -5.007978057861328125e+01 4254 | -9.281226348876953125e+01 4255 | -5.925437545776367188e+01 4256 | -6.687394714355468750e+01 4257 | -6.936179351806640625e+01 4258 | -8.889511108398437500e+01 4259 | -5.446452713012695312e+01 4260 | -4.236079406738281250e+01 4261 | -3.640485382080078125e+01 4262 | -9.176308441162109375e+01 4263 | -7.130720520019531250e+01 4264 | -2.631439399719238281e+01 4265 | -9.049398803710937500e+01 4266 | -8.194413757324218750e+01 4267 | -8.542314147949218750e+01 4268 | -9.068226623535156250e+01 4269 | -1.011469268798828125e+02 4270 | -7.636386108398437500e+01 4271 | -6.043026733398437500e+01 4272 | -6.890557861328125000e+01 4273 | -1.110461578369140625e+02 4274 | -4.428761291503906250e+01 4275 | -8.399489593505859375e+01 4276 | -6.284524917602539062e+01 4277 | -1.087204360961914062e+02 4278 | -5.147166824340820312e+01 4279 | -3.248007583618164062e+01 4280 | -9.343968200683593750e+01 4281 | -6.416629028320312500e+01 4282 | -6.498601531982421875e+01 4283 | -7.072373962402343750e+01 4284 | -1.046276855468750000e+02 4285 | -8.291336822509765625e+01 4286 | -6.154170227050781250e+01 4287 | -7.518937683105468750e+01 4288 | -9.017086029052734375e+01 4289 | -5.802107620239257812e+01 4290 | -6.319713973999023438e+01 4291 | -4.335300445556640625e+01 4292 | -9.156078338623046875e+01 4293 | -1.030477905273437500e+02 4294 | -6.286866760253906250e+01 4295 | -2.263157463073730469e+01 4296 | -3.225579833984375000e+01 4297 | -5.422226715087890625e+01 4298 | -6.421331024169921875e+01 4299 | -6.152608108520507812e+01 4300 | -9.191315460205078125e+01 4301 | -8.702632141113281250e+01 4302 | -7.862986755371093750e+01 4303 | -8.076235198974609375e+01 4304 | -7.440518951416015625e+01 4305 | -8.616744995117187500e+01 4306 | -6.006748580932617188e+01 4307 | -7.521961975097656250e+01 4308 | -1.112010269165039062e+02 4309 | -7.407408142089843750e+01 4310 | -8.683829498291015625e+01 4311 | -5.125632095336914062e+01 4312 | -1.017476348876953125e+02 4313 | -6.107293319702148438e+01 4314 | -2.947116470336914062e+01 4315 | -6.442243957519531250e+01 4316 | -6.177460479736328125e+01 4317 | -7.430949401855468750e+01 4318 | -9.195230865478515625e+01 4319 | -6.220032119750976562e+01 4320 | -8.459047698974609375e+01 4321 | -3.622875595092773438e+01 4322 | -8.049348449707031250e+01 4323 | -5.506887054443359375e+01 4324 | -6.838980865478515625e+01 4325 | -1.491197814941406250e+02 4326 | -9.427899169921875000e+01 4327 | -7.914870452880859375e+01 4328 | -9.983116149902343750e+01 4329 | -1.002155609130859375e+02 4330 | -5.470797348022460938e+01 4331 | -6.913193511962890625e+01 4332 | -5.903953933715820312e+01 4333 | -7.117053222656250000e+01 4334 | -2.649380874633789062e+01 4335 | -9.832502746582031250e+01 4336 | -7.038668060302734375e+01 4337 | -9.579681396484375000e+01 4338 | -9.287581634521484375e+01 4339 | -7.808582305908203125e+01 4340 | -7.805077362060546875e+01 4341 | -9.383713531494140625e+01 4342 | -8.301808929443359375e+01 4343 | -5.137600326538085938e+01 4344 | -2.973470115661621094e+01 4345 | -7.279016113281250000e+01 4346 | -9.956346893310546875e+01 4347 | -1.141652526855468750e+02 4348 | -5.587171173095703125e+01 4349 | -6.103991317749023438e+01 4350 | -6.812345123291015625e+01 4351 | -2.301508712768554688e+01 4352 | -3.211899566650390625e+01 4353 | -7.660018920898437500e+01 4354 | -7.038185882568359375e+01 4355 | -7.369438171386718750e+01 4356 | -1.290028533935546875e+02 4357 | -5.562063217163085938e+01 4358 | -6.975864410400390625e+01 4359 | -8.542560577392578125e+01 4360 | -5.157217407226562500e+01 4361 | -6.738388824462890625e+01 4362 | -6.033145523071289062e+01 4363 | -9.591674041748046875e+01 4364 | -6.281772994995117188e+01 4365 | -7.477297210693359375e+01 4366 | -6.892832946777343750e+01 4367 | -6.744027709960937500e+01 4368 | -9.253601837158203125e+01 4369 | -4.687523269653320312e+01 4370 | -8.333167266845703125e+01 4371 | -6.779458618164062500e+01 4372 | -7.365280151367187500e+01 4373 | -6.081882476806640625e+01 4374 | -6.628759002685546875e+01 4375 | -7.357117462158203125e+01 4376 | -4.945743560791015625e+01 4377 | -1.012846450805664062e+02 4378 | -6.881464385986328125e+01 4379 | -6.680607604980468750e+01 4380 | -3.903565979003906250e+01 4381 | -6.286572647094726562e+01 4382 | -4.207794189453125000e+01 4383 | -6.214804077148437500e+01 4384 | -2.700676727294921875e+01 4385 | -3.326243209838867188e+01 4386 | -9.136839294433593750e+01 4387 | -6.228984832763671875e+01 4388 | -7.034697723388671875e+01 4389 | -7.892788696289062500e+01 4390 | -8.277104187011718750e+01 4391 | -8.193885040283203125e+01 4392 | -8.011074066162109375e+01 4393 | -5.939480972290039062e+01 4394 | -7.916886901855468750e+01 4395 | -5.633965682983398438e+01 4396 | -8.813390350341796875e+01 4397 | -1.096808471679687500e+02 4398 | -8.139173889160156250e+01 4399 | -8.138611602783203125e+01 4400 | -3.265958023071289062e+01 4401 | -2.976188659667968750e+01 4402 | -7.330721282958984375e+01 4403 | -9.284686279296875000e+01 4404 | -1.004492797851562500e+02 4405 | -3.965993881225585938e+01 4406 | -1.127465820312500000e+02 4407 | -5.679090881347656250e+01 4408 | -1.049809494018554688e+02 4409 | -9.776111602783203125e+01 4410 | -2.889518165588378906e+01 4411 | -9.551493072509765625e+01 4412 | -3.467496490478515625e+01 4413 | -9.314001464843750000e+01 4414 | -7.649567413330078125e+01 4415 | -8.778293609619140625e+01 4416 | -7.380578613281250000e+01 4417 | -6.067252349853515625e+01 4418 | -2.650846099853515625e+01 4419 | -8.665769958496093750e+01 4420 | -3.527138519287109375e+01 4421 | -6.367953491210937500e+01 4422 | -6.047292327880859375e+01 4423 | -1.074619750976562500e+02 4424 | -6.449317932128906250e+01 4425 | -8.326103210449218750e+01 4426 | -1.007159805297851562e+02 4427 | -3.530616378784179688e+01 4428 | -5.081969833374023438e+01 4429 | -8.803565216064453125e+01 4430 | -7.580998992919921875e+01 4431 | -6.322284317016601562e+01 4432 | -4.323483657836914062e+01 4433 | -1.055373229980468750e+02 4434 | -2.722789192199707031e+01 4435 | -8.088963317871093750e+01 4436 | -6.964936065673828125e+01 4437 | -1.109526519775390625e+02 4438 | -3.141162490844726562e+01 4439 | -3.432104492187500000e+01 4440 | -5.843017959594726562e+01 4441 | -7.034458160400390625e+01 4442 | -7.685648345947265625e+01 4443 | -8.057408905029296875e+01 4444 | -5.192783737182617188e+01 4445 | -2.623821258544921875e+01 4446 | -5.064205169677734375e+01 4447 | -7.699555206298828125e+01 4448 | -1.148371353149414062e+02 4449 | -5.719406509399414062e+01 4450 | -1.359354858398437500e+02 4451 | -8.456408691406250000e+01 4452 | -5.808988189697265625e+01 4453 | -5.932934570312500000e+01 4454 | -5.434617996215820312e+01 4455 | -7.109260559082031250e+01 4456 | -6.402396392822265625e+01 4457 | -1.052036056518554688e+02 4458 | -4.122161102294921875e+01 4459 | -6.170619583129882812e+01 4460 | -8.453678894042968750e+01 4461 | -7.922714996337890625e+01 4462 | -6.912626647949218750e+01 4463 | -7.701618194580078125e+01 4464 | -1.098662948608398438e+02 4465 | -6.177008819580078125e+01 4466 | -6.610474395751953125e+01 4467 | -8.604547882080078125e+01 4468 | -1.098484268188476562e+02 4469 | -5.950075531005859375e+01 4470 | -4.248622131347656250e+01 4471 | -6.454986572265625000e+01 4472 | -7.515543365478515625e+01 4473 | -4.075092697143554688e+01 4474 | -2.183441543579101562e+01 4475 | -9.788018035888671875e+01 4476 | -7.710845947265625000e+01 4477 | -9.395361328125000000e+01 4478 | -7.303887176513671875e+01 4479 | -1.461186676025390625e+02 4480 | -6.619016265869140625e+01 4481 | -7.949639129638671875e+01 4482 | -6.117139434814453125e+01 4483 | -7.322775268554687500e+01 4484 | -8.749121093750000000e+01 4485 | -6.987161254882812500e+01 4486 | -1.099250183105468750e+02 4487 | -9.660049438476562500e+01 4488 | -4.067846679687500000e+01 4489 | -1.054858703613281250e+02 4490 | -1.184984207153320312e+02 4491 | -6.731916046142578125e+01 4492 | -8.046220397949218750e+01 4493 | -6.687678527832031250e+01 4494 | -1.101411514282226562e+02 4495 | -7.818115234375000000e+01 4496 | -3.331577301025390625e+01 4497 | -1.029328002929687500e+02 4498 | -6.441154479980468750e+01 4499 | -1.233945617675781250e+02 4500 | -9.524427795410156250e+01 4501 | -2.924103164672851562e+01 4502 | -6.449788665771484375e+01 4503 | -5.898031234741210938e+01 4504 | -2.851718902587890625e+01 4505 | -7.042990112304687500e+01 4506 | -8.557013702392578125e+01 4507 | -8.613201904296875000e+01 4508 | -1.143624572753906250e+02 4509 | -5.606745910644531250e+01 4510 | -1.231715087890625000e+02 4511 | -1.718408966064453125e+01 4512 | -8.043955993652343750e+01 4513 | -6.234012603759765625e+01 4514 | -6.134378814697265625e+01 4515 | -6.098278045654296875e+01 4516 | -7.308020019531250000e+01 4517 | -5.913019561767578125e+01 4518 | -3.403912353515625000e+01 4519 | -5.667495727539062500e+01 4520 | -8.128506469726562500e+01 4521 | -8.529693603515625000e+01 4522 | -8.919791412353515625e+01 4523 | -6.114353561401367188e+01 4524 | -9.934539031982421875e+01 4525 | -1.103220214843750000e+02 4526 | -6.058650588989257812e+01 4527 | -7.928617095947265625e+01 4528 | -5.855121994018554688e+01 4529 | -5.426646804809570312e+01 4530 | -6.451710510253906250e+01 4531 | -3.589063262939453125e+01 4532 | -8.073799133300781250e+01 4533 | -6.280635070800781250e+01 4534 | -6.888986206054687500e+01 4535 | -5.069036865234375000e+01 4536 | -6.595953369140625000e+01 4537 | -7.142903900146484375e+01 4538 | -6.744565582275390625e+01 4539 | -1.125287017822265625e+02 4540 | -2.987001800537109375e+01 4541 | -4.609878158569335938e+01 4542 | -9.610160064697265625e+01 4543 | -3.377837753295898438e+01 4544 | -7.409854125976562500e+01 4545 | -6.355273437500000000e+01 4546 | -8.926367187500000000e+01 4547 | -9.214324188232421875e+01 4548 | -4.574725723266601562e+01 4549 | -9.202792358398437500e+01 4550 | -1.270420074462890625e+02 4551 | -8.427486419677734375e+01 4552 | -3.284251022338867188e+01 4553 | -1.213002014160156250e+02 4554 | -9.903496551513671875e+01 4555 | -1.523042755126953125e+02 4556 | -7.338373565673828125e+01 4557 | -7.152342224121093750e+01 4558 | -5.887604522705078125e+01 4559 | -8.806549835205078125e+01 4560 | -8.967928314208984375e+01 4561 | -1.122981185913085938e+02 4562 | -5.489265823364257812e+01 4563 | -8.530262756347656250e+01 4564 | -7.894005584716796875e+01 4565 | -1.001400985717773438e+02 4566 | -1.133777999877929688e+02 4567 | -7.929025268554687500e+01 4568 | -7.808956909179687500e+01 4569 | -6.786992645263671875e+01 4570 | -7.823564910888671875e+01 4571 | -8.720915985107421875e+01 4572 | -7.922896575927734375e+01 4573 | -7.298956298828125000e+01 4574 | -4.096070480346679688e+01 4575 | -3.559220886230468750e+01 4576 | -9.581720733642578125e+01 4577 | -4.712074279785156250e+01 4578 | -1.041871795654296875e+02 4579 | -8.203423309326171875e+01 4580 | -9.973587036132812500e+01 4581 | -2.844111061096191406e+01 4582 | -4.701628875732421875e+01 4583 | -1.033948898315429688e+02 4584 | -4.794204330444335938e+01 4585 | -7.574633789062500000e+01 4586 | -7.598270416259765625e+01 4587 | -7.381693267822265625e+01 4588 | -3.908155441284179688e+01 4589 | -4.882667922973632812e+01 4590 | -3.541274261474609375e+01 4591 | -8.885609436035156250e+01 4592 | -4.404866790771484375e+01 4593 | -7.108737182617187500e+01 4594 | -1.049705810546875000e+02 4595 | -7.444380187988281250e+01 4596 | -7.690497589111328125e+01 4597 | -6.746159362792968750e+01 4598 | -1.178444519042968750e+02 4599 | -9.799057769775390625e+01 4600 | -1.057249908447265625e+02 4601 | -6.316452789306640625e+01 4602 | -7.852943420410156250e+01 4603 | -7.556691741943359375e+01 4604 | -6.705265045166015625e+01 4605 | -7.354747009277343750e+01 4606 | -7.567668914794921875e+01 4607 | -8.034416961669921875e+01 4608 | -6.638858032226562500e+01 4609 | -7.125106811523437500e+01 4610 | -6.336361694335937500e+01 4611 | -6.277897644042968750e+01 4612 | -4.947734451293945312e+01 4613 | -7.010706329345703125e+01 4614 | -7.223538970947265625e+01 4615 | -6.112442016601562500e+01 4616 | -9.367425537109375000e+01 4617 | -8.053785705566406250e+01 4618 | -6.860919189453125000e+01 4619 | -6.369598388671875000e+01 4620 | -7.829376220703125000e+01 4621 | -5.019736480712890625e+01 4622 | -1.084382400512695312e+02 4623 | -3.975490951538085938e+01 4624 | -8.116246795654296875e+01 4625 | -6.191210937500000000e+01 4626 | -6.499713134765625000e+01 4627 | -6.101015090942382812e+01 4628 | -6.103543472290039062e+01 4629 | -6.369167327880859375e+01 4630 | -9.308717346191406250e+01 4631 | -1.314427947998046875e+02 4632 | -3.840534973144531250e+01 4633 | -9.864478302001953125e+01 4634 | -1.123337631225585938e+02 4635 | -8.449610900878906250e+01 4636 | -1.015170440673828125e+02 4637 | -8.532939147949218750e+01 4638 | -2.939595413208007812e+01 4639 | -8.177153015136718750e+01 4640 | -7.559365844726562500e+01 4641 | -6.501885986328125000e+01 4642 | -8.307309722900390625e+01 4643 | -8.072026062011718750e+01 4644 | -2.771112251281738281e+01 4645 | -6.346343994140625000e+01 4646 | -6.024891281127929688e+01 4647 | -6.459961700439453125e+01 4648 | -8.042617797851562500e+01 4649 | -7.178507232666015625e+01 4650 | -9.017721557617187500e+01 4651 | -7.841441345214843750e+01 4652 | -7.249526214599609375e+01 4653 | -8.692325592041015625e+01 4654 | -8.916530609130859375e+01 4655 | -2.698391342163085938e+01 4656 | -6.027241134643554688e+01 4657 | -1.020046310424804688e+02 4658 | -9.424015808105468750e+01 4659 | -1.151952743530273438e+02 4660 | -5.917063903808593750e+01 4661 | -6.784624481201171875e+01 4662 | -6.915531921386718750e+01 4663 | -3.800016403198242188e+01 4664 | -1.153434829711914062e+02 4665 | -9.214179229736328125e+01 4666 | -8.169484710693359375e+01 4667 | -6.886508941650390625e+01 4668 | -5.880564117431640625e+01 4669 | -9.548575592041015625e+01 4670 | -8.154876708984375000e+01 4671 | -6.833600616455078125e+01 4672 | -4.555786514282226562e+01 4673 | -5.725444412231445312e+01 4674 | -7.196096038818359375e+01 4675 | -7.272499084472656250e+01 4676 | -8.267478942871093750e+01 4677 | -6.314975738525390625e+01 4678 | -7.494670867919921875e+01 4679 | -7.535033416748046875e+01 4680 | -5.320569229125976562e+01 4681 | -5.717229461669921875e+01 4682 | -7.612139129638671875e+01 4683 | -8.764260864257812500e+01 4684 | -6.799013519287109375e+01 4685 | -9.585162353515625000e+01 4686 | -5.429596710205078125e+01 4687 | -8.342440032958984375e+01 4688 | -1.264699172973632812e+02 4689 | -3.562422561645507812e+01 4690 | -9.372811889648437500e+01 4691 | -6.719047546386718750e+01 4692 | -5.573487472534179688e+01 4693 | -5.856567764282226562e+01 4694 | -8.588107299804687500e+01 4695 | -8.684210968017578125e+01 4696 | -6.070304489135742188e+01 4697 | -7.221383666992187500e+01 4698 | -5.210215377807617188e+01 4699 | -7.990134429931640625e+01 4700 | -8.963469696044921875e+01 4701 | -6.969069671630859375e+01 4702 | -6.445375061035156250e+01 4703 | -8.266246032714843750e+01 4704 | -9.904045104980468750e+01 4705 | -7.667207336425781250e+01 4706 | -7.799580383300781250e+01 4707 | -6.523406982421875000e+01 4708 | -4.209462738037109375e+01 4709 | -6.914080047607421875e+01 4710 | -7.476265716552734375e+01 4711 | -4.880945587158203125e+01 4712 | -5.557215499877929688e+01 4713 | -7.014745330810546875e+01 4714 | -3.912479019165039062e+01 4715 | -4.031218719482421875e+01 4716 | -6.264124679565429688e+01 4717 | -6.624259948730468750e+01 4718 | -2.494396400451660156e+01 4719 | -9.395576477050781250e+01 4720 | -1.178150253295898438e+02 4721 | -3.175435829162597656e+01 4722 | -8.419706726074218750e+01 4723 | -8.656706237792968750e+01 4724 | -7.601252746582031250e+01 4725 | -8.229125976562500000e+01 4726 | -5.431526565551757812e+01 4727 | -1.023352966308593750e+02 4728 | -6.132883071899414062e+01 4729 | -8.295929718017578125e+01 4730 | -6.654650115966796875e+01 4731 | -8.237208557128906250e+01 4732 | -6.829287719726562500e+01 4733 | -1.139274139404296875e+02 4734 | -6.565922546386718750e+01 4735 | -9.320534515380859375e+01 4736 | -6.923245239257812500e+01 4737 | -6.898326110839843750e+01 4738 | -6.293512344360351562e+01 4739 | -1.020416488647460938e+02 4740 | -7.521138763427734375e+01 4741 | -3.918183898925781250e+01 4742 | -6.026481246948242188e+01 4743 | -9.118884277343750000e+01 4744 | -6.378659820556640625e+01 4745 | -3.648116683959960938e+01 4746 | -8.390648651123046875e+01 4747 | -7.371155548095703125e+01 4748 | -7.077529144287109375e+01 4749 | -6.215246582031250000e+01 4750 | -6.725901794433593750e+01 4751 | -7.547120666503906250e+01 4752 | -6.936584472656250000e+01 4753 | -1.068316116333007812e+02 4754 | -1.305439300537109375e+02 4755 | -7.537663269042968750e+01 4756 | -8.197417449951171875e+01 4757 | -9.966992950439453125e+01 4758 | -7.478182983398437500e+01 4759 | -4.784053039550781250e+01 4760 | -5.914430999755859375e+01 4761 | -5.687848281860351562e+01 4762 | -3.550043487548828125e+01 4763 | -7.039735412597656250e+01 4764 | -7.150365447998046875e+01 4765 | -9.478672790527343750e+01 4766 | -1.031171569824218750e+02 4767 | -8.002574920654296875e+01 4768 | -7.932794189453125000e+01 4769 | -1.157953186035156250e+02 4770 | -9.071025085449218750e+01 4771 | -5.671682357788085938e+01 4772 | -3.158698654174804688e+01 4773 | -6.289508438110351562e+01 4774 | -8.703479766845703125e+01 4775 | -7.343104553222656250e+01 4776 | -5.701856994628906250e+01 4777 | -1.060182800292968750e+02 4778 | -1.308731231689453125e+02 4779 | -2.873428726196289062e+01 4780 | -8.852199554443359375e+01 4781 | -6.129318618774414062e+01 4782 | -1.198976287841796875e+02 4783 | -9.571431732177734375e+01 4784 | -5.497195434570312500e+01 4785 | -7.839765167236328125e+01 4786 | -4.893491744995117188e+01 4787 | -4.691964721679687500e+01 4788 | -9.217343902587890625e+01 4789 | -6.779219055175781250e+01 4790 | -5.507582473754882812e+01 4791 | -1.162039642333984375e+02 4792 | -9.536192321777343750e+01 4793 | -6.927577209472656250e+01 4794 | -1.159323806762695312e+02 4795 | -7.573952484130859375e+01 4796 | -8.331828308105468750e+01 4797 | -9.150342559814453125e+01 4798 | -5.152162170410156250e+01 4799 | -3.640469360351562500e+01 4800 | -3.162912750244140625e+01 4801 | -9.839840698242187500e+01 4802 | -2.653933906555175781e+01 4803 | -3.060703277587890625e+01 4804 | -5.956372070312500000e+01 4805 | -5.262267303466796875e+01 4806 | -7.006649017333984375e+01 4807 | -8.452578735351562500e+01 4808 | -9.692357635498046875e+01 4809 | -5.881210708618164062e+01 4810 | -5.643566513061523438e+01 4811 | -6.694532012939453125e+01 4812 | -5.319014358520507812e+01 4813 | -7.152793121337890625e+01 4814 | -5.226079940795898438e+01 4815 | -3.147660827636718750e+01 4816 | -6.733872222900390625e+01 4817 | -7.663630676269531250e+01 4818 | -1.015849227905273438e+02 4819 | -6.095214462280273438e+01 4820 | -6.989344024658203125e+01 4821 | -6.525931549072265625e+01 4822 | -5.398846054077148438e+01 4823 | -2.629256820678710938e+01 4824 | -7.532019805908203125e+01 4825 | -6.810466766357421875e+01 4826 | -1.090806274414062500e+02 4827 | -9.703348541259765625e+01 4828 | -7.918755340576171875e+01 4829 | -8.496179199218750000e+01 4830 | -6.239494705200195312e+01 4831 | -7.833007049560546875e+01 4832 | -1.462592620849609375e+02 4833 | -8.371557617187500000e+01 4834 | -8.721852111816406250e+01 4835 | -6.283170318603515625e+01 4836 | -6.531093597412109375e+01 4837 | -8.417382812500000000e+01 4838 | -1.180721740722656250e+02 4839 | -3.448327255249023438e+01 4840 | -8.106200408935546875e+01 4841 | -7.294483184814453125e+01 4842 | -5.546124267578125000e+01 4843 | -3.358245086669921875e+01 4844 | -4.691459655761718750e+01 4845 | -1.015415420532226562e+02 4846 | -3.144619369506835938e+01 4847 | -7.609285736083984375e+01 4848 | -7.056684112548828125e+01 4849 | -9.186481475830078125e+01 4850 | -7.579884338378906250e+01 4851 | -8.149919891357421875e+01 4852 | -7.865285491943359375e+01 4853 | -5.108220291137695312e+01 4854 | -9.227764892578125000e+01 4855 | -4.659681701660156250e+01 4856 | -6.480773162841796875e+01 4857 | -6.659146118164062500e+01 4858 | -6.798089599609375000e+01 4859 | -4.183933258056640625e+01 4860 | -8.063973999023437500e+01 4861 | -3.119991493225097656e+01 4862 | -4.449913024902343750e+01 4863 | -6.457661437988281250e+01 4864 | -7.317446899414062500e+01 4865 | -6.721421051025390625e+01 4866 | -7.262634277343750000e+01 4867 | -6.983833312988281250e+01 4868 | -7.357845306396484375e+01 4869 | -5.545340728759765625e+01 4870 | -8.795664215087890625e+01 4871 | -5.789220428466796875e+01 4872 | -8.257713317871093750e+01 4873 | -8.745957183837890625e+01 4874 | -1.104870681762695312e+02 4875 | -6.248974609375000000e+01 4876 | -6.895899963378906250e+01 4877 | -9.537236022949218750e+01 4878 | -1.060581665039062500e+02 4879 | -4.649725341796875000e+01 4880 | -5.607582473754882812e+01 4881 | -5.748048019409179688e+01 4882 | -4.652548980712890625e+01 4883 | -2.942761611938476562e+01 4884 | -7.844019317626953125e+01 4885 | -1.338847656250000000e+02 4886 | -7.096865081787109375e+01 4887 | -8.337878417968750000e+01 4888 | -6.404487609863281250e+01 4889 | -7.037699890136718750e+01 4890 | -5.165705108642578125e+01 4891 | -9.669387817382812500e+01 4892 | -4.265331268310546875e+01 4893 | -3.150035095214843750e+01 4894 | -6.527780151367187500e+01 4895 | -6.935449981689453125e+01 4896 | -9.747775268554687500e+01 4897 | -7.714178466796875000e+01 4898 | -1.006538619995117188e+02 4899 | -6.452194213867187500e+01 4900 | -9.624778747558593750e+01 4901 | -5.143333435058593750e+01 4902 | -7.589968109130859375e+01 4903 | -7.912780761718750000e+01 4904 | -6.071518707275390625e+01 4905 | -7.154917144775390625e+01 4906 | -6.501108551025390625e+01 4907 | -7.967417144775390625e+01 4908 | -5.070784759521484375e+01 4909 | -3.230440521240234375e+01 4910 | -6.566928863525390625e+01 4911 | -3.144798469543457031e+01 4912 | -4.813166809082031250e+01 4913 | -5.829005050659179688e+01 4914 | -1.101829910278320312e+02 4915 | -2.999805831909179688e+01 4916 | -3.469984054565429688e+01 4917 | -2.943476295471191406e+01 4918 | -9.183377838134765625e+01 4919 | -8.348554992675781250e+01 4920 | -5.208190536499023438e+01 4921 | -5.350577545166015625e+01 4922 | -9.473739624023437500e+01 4923 | -7.513778686523437500e+01 4924 | -6.234833908081054688e+01 4925 | -6.451113891601562500e+01 4926 | -1.014840545654296875e+02 4927 | -9.869407653808593750e+01 4928 | -3.455876541137695312e+01 4929 | -2.221204566955566406e+01 4930 | -7.079759216308593750e+01 4931 | -8.834487152099609375e+01 4932 | -6.692203521728515625e+01 4933 | -6.223363494873046875e+01 4934 | -3.065821647644042969e+01 4935 | -6.462066650390625000e+01 4936 | -4.457584762573242188e+01 4937 | -9.684761810302734375e+01 4938 | -5.047258758544921875e+01 4939 | -4.162945938110351562e+01 4940 | -8.020631408691406250e+01 4941 | -8.775565338134765625e+01 4942 | -6.618283081054687500e+01 4943 | -5.650755691528320312e+01 4944 | -7.633532714843750000e+01 4945 | -6.055422973632812500e+01 4946 | -3.019614410400390625e+01 4947 | -5.038676452636718750e+01 4948 | -4.476488113403320312e+01 4949 | -6.682606506347656250e+01 4950 | -5.247584152221679688e+01 4951 | -5.617464065551757812e+01 4952 | -6.563541412353515625e+01 4953 | -9.526142120361328125e+01 4954 | -3.240029144287109375e+01 4955 | -7.307287597656250000e+01 4956 | -6.291916275024414062e+01 4957 | -4.963772201538085938e+01 4958 | -7.903305816650390625e+01 4959 | -7.293119812011718750e+01 4960 | -7.505120849609375000e+01 4961 | -7.513429260253906250e+01 4962 | -7.093635559082031250e+01 4963 | -6.861206054687500000e+01 4964 | -8.828794860839843750e+01 4965 | -6.685688018798828125e+01 4966 | -6.767828369140625000e+01 4967 | -7.301183319091796875e+01 4968 | -5.438391494750976562e+01 4969 | -2.855221939086914062e+01 4970 | -1.052103576660156250e+02 4971 | -4.170088195800781250e+01 4972 | -3.999948501586914062e+01 4973 | -5.048006820678710938e+01 4974 | -7.171087646484375000e+01 4975 | -1.291787719726562500e+02 4976 | -5.413729476928710938e+01 4977 | -4.937360382080078125e+01 4978 | -5.759878921508789062e+01 4979 | -4.941566085815429688e+01 4980 | -8.719134521484375000e+01 4981 | -5.829258728027343750e+01 4982 | -1.300024108886718750e+02 4983 | -1.000305480957031250e+02 4984 | -1.021528244018554688e+02 4985 | -6.107410812377929688e+01 4986 | -7.288626861572265625e+01 4987 | -9.223648071289062500e+01 4988 | -8.662687683105468750e+01 4989 | -8.764259338378906250e+01 4990 | -6.119755172729492188e+01 4991 | -5.873606872558593750e+01 4992 | -9.674068450927734375e+01 4993 | -7.583448791503906250e+01 4994 | -8.147340393066406250e+01 4995 | -7.424622344970703125e+01 4996 | -6.395936203002929688e+01 4997 | -6.384303283691406250e+01 4998 | -2.699598693847656250e+01 4999 | -2.765171051025390625e+01 5000 | -8.338285064697265625e+01 5001 | -------------------------------------------------------------------------------- /Results/cluster plot_dimz=2_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/cluster plot_dimz=2_kappa=0.025.png -------------------------------------------------------------------------------- /Results/cluster plot_dimz=2_kappa=0.05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/cluster plot_dimz=2_kappa=0.05.png -------------------------------------------------------------------------------- /Results/cluster plot_dimz=2_kappa=0.075.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/cluster plot_dimz=2_kappa=0.075.png -------------------------------------------------------------------------------- /Results/cluster plot_dimz=2_kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/cluster plot_dimz=2_kappa=0.png -------------------------------------------------------------------------------- /Results/input images.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/input images.png -------------------------------------------------------------------------------- /Results/input_ images.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/input_ images.png -------------------------------------------------------------------------------- /Results/likelihood histogram_dim=2_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_dim=2_kappa=0.025.png -------------------------------------------------------------------------------- /Results/likelihood histogram_dim=2_kappa=0.05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_dim=2_kappa=0.05.png -------------------------------------------------------------------------------- /Results/likelihood histogram_dim=2_kappa=0.075.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_dim=2_kappa=0.075.png -------------------------------------------------------------------------------- /Results/likelihood histogram_dim=2_kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_dim=2_kappa=0.png -------------------------------------------------------------------------------- /Results/likelihood histogram_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_kappa=0.025.png -------------------------------------------------------------------------------- /Results/likelihood histogram_kappa=0.05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_kappa=0.05.png -------------------------------------------------------------------------------- /Results/likelihood histogram_kappa=0.1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_kappa=0.1.png -------------------------------------------------------------------------------- /Results/likelihood histogram_kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/likelihood histogram_kappa=0.png -------------------------------------------------------------------------------- /Results/output images-kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/output images-kappa=0.png -------------------------------------------------------------------------------- /Results/output images_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/output images_kappa=0.025.png -------------------------------------------------------------------------------- /Results/output images_kappa=0.05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/output images_kappa=0.05.png -------------------------------------------------------------------------------- /Results/output images_kappa=0.1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/output images_kappa=0.1.png -------------------------------------------------------------------------------- /Results/rose plot_dimz=2_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_dimz=2_kappa=0.025.png -------------------------------------------------------------------------------- /Results/rose plot_dimz=2_kappa=0.05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_dimz=2_kappa=0.05.png -------------------------------------------------------------------------------- /Results/rose plot_dimz=2_kappa=0.075.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_dimz=2_kappa=0.075.png -------------------------------------------------------------------------------- /Results/rose plot_dimz=2_kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_dimz=2_kappa=0.png -------------------------------------------------------------------------------- /Results/rose plot_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_kappa=0.025.png -------------------------------------------------------------------------------- /Results/rose plot_kappa=0.05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_kappa=0.05.png -------------------------------------------------------------------------------- /Results/rose plot_kappa=0.1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_kappa=0.1.png -------------------------------------------------------------------------------- /Results/rose plot_kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/rose plot_kappa=0.png -------------------------------------------------------------------------------- /Results/sigma near the metrics_kappa=0.025(magnified).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/sigma near the metrics_kappa=0.025(magnified).png -------------------------------------------------------------------------------- /Results/sigma near the metrics_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/sigma near the metrics_kappa=0.025.png -------------------------------------------------------------------------------- /Results/sigma near the metrics_kappa=0.1(magnified).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/sigma near the metrics_kappa=0.1(magnified).png -------------------------------------------------------------------------------- /Results/sigma near the metrics_kappa=0.1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/sigma near the metrics_kappa=0.1.png -------------------------------------------------------------------------------- /Results/sigma near the metrics_kappa=0.5(magnified).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/sigma near the metrics_kappa=0.5(magnified).png -------------------------------------------------------------------------------- /Results/sigma near the metrics_kappa=0.5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/sigma near the metrics_kappa=0.5.png -------------------------------------------------------------------------------- /Results/sigma near the metrics_kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/sigma near the metrics_kappa=0.png -------------------------------------------------------------------------------- /Results/visualization plot_dimz=2_kappa=0.025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/visualization plot_dimz=2_kappa=0.025.png -------------------------------------------------------------------------------- /Results/visualization plot_dimz=2_kappa=0.05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/visualization plot_dimz=2_kappa=0.05.png -------------------------------------------------------------------------------- /Results/visualization plot_dimz=2_kappa=0.075.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/visualization plot_dimz=2_kappa=0.075.png -------------------------------------------------------------------------------- /Results/visualization plot_dimz=2_kappa=0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Sission/Coupled-VAE-Improved-Robustness-and-Accuracy-of-a-Variational-Autoencoder/3654289ad9550137c3f498afa3b0fe4eca77181b/Results/visualization plot_dimz=2_kappa=0.png -------------------------------------------------------------------------------- /VAE/Test.py: -------------------------------------------------------------------------------- 1 | print("This is a test file") 2 | -------------------------------------------------------------------------------- /VAE/mnist_data.py: -------------------------------------------------------------------------------- 1 | from __future__ import absolute_import 2 | from __future__ import division 3 | from __future__ import print_function 4 | 5 | import gzip 6 | import os 7 | 8 | import numpy 9 | from scipy import ndimage 10 | 11 | from six.moves import urllib 12 | 13 | import tensorflow as tf 14 | 15 | SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' 16 | DATA_DIRECTORY = "data" 17 | 18 | 19 | IMAGE_SIZE = 28 20 | NUM_CHANNELS = 1 21 | PIXEL_DEPTH = 255 22 | NUM_LABELS = 10 23 | VALIDATION_SIZE = 5000 24 | 25 | # DOWNLOAD 26 | def try_download(filename): 27 | if not tf.gfile.Exists(DATA_DIRECTORY): 28 | tf.gfile.MakeDirs(DATA_DIRECTORY) 29 | filepath = os.path.join(DATA_DIRECTORY, filename) 30 | if not tf.gfile.Exists(filepath): 31 | filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) 32 | with tf.gfile.GFile(filepath) as f: 33 | size = f.size() 34 | print('Successfully downloaded', filename, size, 'bytes.') 35 | return filepath 36 | 37 | # GET IMAGES 38 | def get_data(filename, num_images, norm_shift=False, norm_scale=True): 39 | print('geting', filename) 40 | with gzip.open(filename) as bytestream: 41 | bytestream.read(16) 42 | buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS) 43 | data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32) 44 | if norm_shift: 45 | data = data - (PIXEL_DEPTH / 2.0) 46 | if norm_scale: 47 | data = data / PIXEL_DEPTH 48 | data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS) 49 | data = numpy.reshape(data, [num_images, -1]) 50 | return data 51 | 52 | # GET LABELS 53 | def get_labels(filename, num_images): 54 | """get the labels into a vector of int64 label IDs.""" 55 | print('geting', filename) 56 | with gzip.open(filename) as bytestream: 57 | bytestream.read(8) 58 | buf = bytestream.read(1 * num_images) 59 | labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64) 60 | num_labels_data = len(labels) 61 | one_hot_encoding = numpy.zeros((num_labels_data,NUM_LABELS)) 62 | one_hot_encoding[numpy.arange(num_labels_data),labels] = 1 63 | one_hot_encoding = numpy.reshape(one_hot_encoding, [-1, NUM_LABELS]) 64 | return one_hot_encoding 65 | 66 | # Augment training data 67 | def expend_training_data(images, labels): 68 | 69 | expanded_images = [] 70 | expanded_labels = [] 71 | 72 | j = 0 73 | for x, y in zip(images, labels): 74 | j = j+1 75 | if j%100==0: 76 | print ('expanding data : %03d / %03d' % (j,numpy.size(images,0))) 77 | 78 | # register original data 79 | expanded_images.append(x) 80 | expanded_labels.append(y) 81 | 82 | # get a value for the background 83 | # zero is the expected value, but median() is used to estimate background's value 84 | bg_value = numpy.median(x) 85 | image = numpy.reshape(x, (-1, 28)) 86 | 87 | for i in range(4): 88 | angle = numpy.random.randint(-15,15,1) 89 | new_img = ndimage.rotate(image,angle,reshape=False, cval=bg_value) 90 | 91 | # shift the image with random distance 92 | shift = numpy.random.randint(-2, 2, 2) 93 | new_img_ = ndimage.shift(new_img,shift, cval=bg_value) 94 | 95 | # register new training data 96 | expanded_images.append(numpy.reshape(new_img_, 784)) 97 | expanded_labels.append(y) 98 | 99 | # images and labels are concatenated for random-shuffle at each epoch 100 | # notice that pair of image and label should not be broken 101 | expanded_train_total_data = numpy.concatenate((expanded_images, expanded_labels), axis=1) 102 | numpy.random.shuffle(expanded_train_total_data) 103 | 104 | return expanded_train_total_data 105 | 106 | # MNIST DATA 107 | def prepare_MNIST_data(use_norm_shift=False, use_norm_scale=True, use_data_augmentation=False): 108 | # Get the data. 109 | train_data_filename = try_download('train-images-idx3-ubyte.gz') 110 | train_labels_filename = try_download('train-labels-idx1-ubyte.gz') 111 | test_data_filename = try_download('t10k-images-idx3-ubyte.gz') 112 | test_labels_filename = try_download('t10k-labels-idx1-ubyte.gz') 113 | 114 | # get it into numpy arrays. 115 | train_data = get_data(train_data_filename, 60000, use_norm_shift, use_norm_scale) 116 | train_labels = get_labels(train_labels_filename, 60000) 117 | test_data = get_data(test_data_filename, 10000, use_norm_shift, use_norm_scale) 118 | test_labels = get_labels(test_labels_filename, 10000) 119 | 120 | # Generate a validation set. 121 | validation_data = train_data[:VALIDATION_SIZE, :] 122 | validation_labels = train_labels[:VALIDATION_SIZE,:] 123 | train_data = train_data[VALIDATION_SIZE:, :] 124 | train_labels = train_labels[VALIDATION_SIZE:,:] 125 | 126 | # Concatenate train_data & train_labels for random shuffle 127 | if use_data_augmentation: 128 | train_total_data = expend_training_data(train_data, train_labels) 129 | else: 130 | train_total_data = numpy.concatenate((train_data, train_labels), axis=1) 131 | 132 | train_size = train_total_data.shape[0] 133 | 134 | return train_total_data, train_size, validation_data, validation_labels, test_data, test_labels 135 | -------------------------------------------------------------------------------- /VAE/run_main.py: -------------------------------------------------------------------------------- 1 | import tensorflow as tf 2 | import numpy as np 3 | import mnist_data 4 | import os 5 | import vae 6 | import plot_utils 7 | import glob 8 | import argparse 9 | 10 | IMAGE_SIZE_MNIST = 28 11 | 12 | """ 13 | parsing and configuration 14 | Referenced from https://github.com/hwalsuklee/tensorflow-mnist-VAE 15 | """ 16 | 17 | def parse_args(): 18 | desc = "Tensorflow implementation of 'Variational AutoEncoder (VAE)'" 19 | parser = argparse.ArgumentParser(description=desc) 20 | 21 | parser.add_argument('--results_path', type=str, default='results', 22 | help='File path of output images') 23 | 24 | parser.add_argument('--add_noise', type=bool, default=False, help='Boolean for adding salt & pepper noise to input image') 25 | 26 | parser.add_argument('--dim_z', type=int, default='20', help='Dimension of latent vector', required = True) 27 | 28 | parser.add_argument('--n_hidden', type=int, default=500, help='Number of hidden units in MLP') 29 | 30 | parser.add_argument('--learn_rate', type=float, default=1e-3, help='Learning rate for Adam optimizer') 31 | 32 | parser.add_argument('--num_epochs', type=int, default=20, help='The number of epochs to run') 33 | 34 | parser.add_argument('--batch_size', type=int, default=128, help='Batch size') 35 | 36 | parser.add_argument('--PRR', type=bool, default=True, 37 | help='Boolean for plot-reproduce-result') 38 | 39 | parser.add_argument('--PRR_n_img_x', type=int, default=10, 40 | help='Number of images along x-axis') 41 | 42 | parser.add_argument('--PRR_n_img_y', type=int, default=10, 43 | help='Number of images along y-axis') 44 | 45 | parser.add_argument('--PRR_resize_factor', type=float, default=1.0, 46 | help='Resize factor for each displayed image') 47 | 48 | parser.add_argument('--PMLR', type=bool, default=False, 49 | help='Boolean for plot-manifold-learning-result') 50 | 51 | parser.add_argument('--PMLR_n_img_x', type=int, default=20, 52 | help='Number of images along x-axis') 53 | 54 | parser.add_argument('--PMLR_n_img_y', type=int, default=20, 55 | help='Number of images along y-axis') 56 | 57 | parser.add_argument('--PMLR_resize_factor', type=float, default=1.0, 58 | help='Resize factor for each displayed image') 59 | 60 | parser.add_argument('--PMLR_z_range', type=float, default=2.0, 61 | help='Range for unifomly distributed latent vector') 62 | 63 | parser.add_argument('--PMLR_n_samples', type=int, default=5000, 64 | help='Number of samples in order to get distribution of labeled data') 65 | 66 | return check_args(parser.parse_args()) 67 | 68 | """checking arguments""" 69 | def check_args(args): 70 | 71 | # --results_path 72 | try: 73 | os.mkdir(args.results_path) 74 | except(FileExistsError): 75 | pass 76 | # delete all existing files 77 | files = glob.glob(args.results_path+'/*') 78 | for f in files: 79 | os.remove(f) 80 | 81 | # --add_noise 82 | try: 83 | assert args.add_noise == True or args.add_noise == False 84 | except: 85 | print('add_noise must be boolean type') 86 | return None 87 | 88 | # --dim-z 89 | try: 90 | assert args.dim_z > 0 91 | except: 92 | print('dim_z must be positive integer') 93 | return None 94 | 95 | # --n_hidden 96 | try: 97 | assert args.n_hidden >= 1 98 | except: 99 | print('number of hidden units must be larger than one') 100 | 101 | # --learn_rate 102 | try: 103 | assert args.learn_rate > 0 104 | except: 105 | print('learning rate must be positive') 106 | 107 | # --num_epochs 108 | try: 109 | assert args.num_epochs >= 1 110 | except: 111 | print('number of epochs must be larger than or equal to one') 112 | 113 | # --batch_size 114 | try: 115 | assert args.batch_size >= 1 116 | except: 117 | print('batch size must be larger than or equal to one') 118 | 119 | # --PRR 120 | try: 121 | assert args.PRR == True or args.PRR == False 122 | except: 123 | print('PRR must be boolean type') 124 | return None 125 | 126 | if args.PRR == True: 127 | # --PRR_n_img_x, --PRR_n_img_y 128 | try: 129 | assert args.PRR_n_img_x >= 1 and args.PRR_n_img_y >= 1 130 | except: 131 | print('PRR : number of images along each axis must be larger than or equal to one') 132 | 133 | # --PRR_resize_factor 134 | try: 135 | assert args.PRR_resize_factor > 0 136 | except: 137 | print('PRR : resize factor for each displayed image must be positive') 138 | 139 | # --PMLR 140 | try: 141 | assert args.PMLR == True or args.PMLR == False 142 | except: 143 | print('PMLR must be boolean type') 144 | return None 145 | 146 | if args.PMLR == True: 147 | try: 148 | assert args.dim_z == 2 149 | except: 150 | print('PMLR : dim_z must be two') 151 | 152 | # --PMLR_n_img_x, --PMLR_n_img_y 153 | try: 154 | assert args.PMLR_n_img_x >= 1 and args.PMLR_n_img_y >= 1 155 | except: 156 | print('PMLR : number of images along each axis must be larger than or equal to one') 157 | 158 | # --PMLR_resize_factor 159 | try: 160 | assert args.PMLR_resize_factor > 0 161 | except: 162 | print('PMLR : resize factor for each displayed image must be positive') 163 | 164 | # --PMLR_z_range 165 | try: 166 | assert args.PMLR_z_range > 0 167 | except: 168 | print('PMLR : range for unifomly distributed latent vector must be positive') 169 | 170 | # --PMLR_n_samples 171 | try: 172 | assert args.PMLR_n_samples > 100 173 | except: 174 | print('PMLR : Number of samples in order to get distribution of labeled data must be large enough') 175 | 176 | return args 177 | """main function""" 178 | def main(args): 179 | 180 | """ parameters """ 181 | RESULTS_DIR = args.results_path 182 | 183 | # network architecture 184 | ADD_NOISE = args.add_noise 185 | 186 | n_hidden = args.n_hidden 187 | dim_img = IMAGE_SIZE_MNIST**2 # number of pixels for a MNIST image 188 | dim_z = args.dim_z 189 | 190 | # train 191 | n_epochs = args.num_epochs 192 | batch_size = args.batch_size 193 | learn_rate = args.learn_rate 194 | 195 | # Plot 196 | PRR = args.PRR # Plot Reproduce Result 197 | PRR_n_img_x = args.PRR_n_img_x # number of images along x-axis in a canvas 198 | PRR_n_img_y = args.PRR_n_img_y # number of images along y-axis in a canvas 199 | PRR_resize_factor = args.PRR_resize_factor # resize factor for each image in a canvas 200 | 201 | PMLR = args.PMLR # Plot Manifold Learning Result 202 | PMLR_n_img_x = args.PMLR_n_img_x # number of images along x-axis in a canvas 203 | PMLR_n_img_y = args.PMLR_n_img_y # number of images along y-axis in a canvas 204 | PMLR_resize_factor = args.PMLR_resize_factor# resize factor for each image in a canvas 205 | PMLR_z_range = args.PMLR_z_range # range for random latent vector 206 | PMLR_n_samples = args.PMLR_n_samples # number of labeled samples to plot a map from input data space to the latent space 207 | 208 | """ prepare MNIST data """ 209 | 210 | train_total_data, train_size, _, _, test_data, test_labels = mnist_data.prepare_MNIST_data() 211 | n_samples = train_size 212 | 213 | """ build graph """ 214 | 215 | # input placeholders 216 | # In denoising-autoencoder, x_hat == x + noise, otherwise x_hat == x 217 | x_hat = tf.placeholder(tf.float32, shape=[None, dim_img], name='input_img') 218 | x = tf.placeholder(tf.float32, shape=[None, dim_img], name='target_img') 219 | 220 | # dropout 221 | keep_prob = tf.placeholder(tf.float32, name='keep_prob') 222 | 223 | # input for PMLR 224 | z_in = tf.placeholder(tf.float32, shape=[None, dim_z], name='latent_variable') 225 | 226 | # network architecture 227 | y, z, loss, neg_marginal_likelihood, KL_divergence, mu, sigma = vae.autoencoder(x_hat, x, dim_img, dim_z, n_hidden, keep_prob) 228 | # print(mu.shape) 229 | 230 | 231 | # optimization 232 | train_op = tf.train.AdamOptimizer(learn_rate).minimize(loss) 233 | 234 | """ training """ 235 | 236 | # Plot for reproduce performance 237 | if PRR: 238 | PRR = plot_utils.Plot_Reproduce_Performance(RESULTS_DIR, PRR_n_img_x, PRR_n_img_y, IMAGE_SIZE_MNIST, IMAGE_SIZE_MNIST, PRR_resize_factor) 239 | 240 | x_PRR = test_data[0:PRR.n_tot_imgs, :] 241 | 242 | x_PRR_img = x_PRR.reshape(PRR.n_tot_imgs, IMAGE_SIZE_MNIST, IMAGE_SIZE_MNIST) 243 | PRR.save_images(x_PRR_img, name='input.jpg') 244 | 245 | if ADD_NOISE: 246 | x_PRR = x_PRR * np.random.randint(2, size=x_PRR.shape) 247 | x_PRR += np.random.randint(2, size=x_PRR.shape) 248 | 249 | x_PRR_img = x_PRR.reshape(PRR.n_tot_imgs, IMAGE_SIZE_MNIST, IMAGE_SIZE_MNIST) 250 | PRR.save_images(x_PRR_img, name='input_noise.jpg') 251 | 252 | # Plot for manifold learning result 253 | if PMLR and dim_z == 2: 254 | 255 | PMLR = plot_utils.Plot_Manifold_Learning_Result(RESULTS_DIR, PMLR_n_img_x, PMLR_n_img_y, IMAGE_SIZE_MNIST, IMAGE_SIZE_MNIST, PMLR_resize_factor, PMLR_z_range) 256 | 257 | x_PMLR = test_data[0:PMLR_n_samples, :] 258 | id_PMLR = test_labels[0:PMLR_n_samples, :] 259 | 260 | if ADD_NOISE: 261 | x_PMLR = x_PMLR * np.random.randint(2, size=x_PMLR.shape) 262 | x_PMLR += np.random.randint(2, size=x_PMLR.shape) 263 | 264 | decoded = vae.decoder(z_in, dim_img, n_hidden) 265 | 266 | # train 267 | total_batch = int(n_samples / batch_size) 268 | min_tot_loss = 1e99 269 | 270 | with tf.Session() as sess: 271 | 272 | sess.run(tf.global_variables_initializer(), feed_dict={keep_prob : 0.9}) 273 | 274 | for epoch in range(n_epochs): 275 | 276 | # Random shuffling 277 | np.random.shuffle(train_total_data) 278 | train_data_ = train_total_data[:, :-mnist_data.NUM_LABELS] 279 | 280 | # Loop over all batches 281 | for i in range(total_batch): 282 | # Compute the offset of the current minibatch in the data. 283 | offset = (i * batch_size) % (n_samples) 284 | batch_xs_input = train_data_[offset:(offset + batch_size), :] 285 | 286 | batch_xs_target = batch_xs_input 287 | 288 | # add salt & pepper noise 289 | if ADD_NOISE: 290 | batch_xs_input = batch_xs_input * np.random.randint(2, size=batch_xs_input.shape) 291 | batch_xs_input += np.random.randint(2, size=batch_xs_input.shape) 292 | 293 | _, tot_loss, loss_likelihood, loss_divergence = sess.run( 294 | (train_op, loss, neg_marginal_likelihood, KL_divergence), 295 | feed_dict={x_hat: batch_xs_input, x: batch_xs_target, keep_prob : 0.9}) 296 | sigma1 = sess.run(sigma, feed_dict={x_hat: batch_xs_input, x: batch_xs_target, keep_prob : 0.9}) 297 | mu1 = sess.run(mu, feed_dict={x_hat: batch_xs_input, x: batch_xs_target, keep_prob: 0.9}) 298 | 299 | # print cost every epoch 300 | # print("epoch %d: L_tot %03.2f L_likelihood %03.2f L_divergence %03.2f" % (epoch, tot_loss, loss_likelihood, loss_divergence)) 301 | print("epoch %d: L_tot %03.2f L_likelihood %03.2f" % (epoch, tot_loss, loss_likelihood)) 302 | 303 | 304 | # if minimum loss is updated or final epoch, plot results 305 | if min_tot_loss > tot_loss or epoch+1 == n_epochs: 306 | min_tot_loss = tot_loss 307 | # Plot for reproduce performance 308 | if PRR: 309 | y_PRR = sess.run(y, feed_dict={x_hat: x_PRR, keep_prob : 1}) 310 | y_PRR_img = y_PRR.reshape(PRR.n_tot_imgs, IMAGE_SIZE_MNIST, IMAGE_SIZE_MNIST) 311 | PRR.save_images(y_PRR_img, name="/PRR_epoch_%02d" %(epoch) + ".jpg") 312 | 313 | # Plot for manifold learning result 314 | if PMLR and dim_z == 2: 315 | y_PMLR = sess.run(decoded, feed_dict={z_in: PMLR.z, keep_prob : 1}) 316 | y_PMLR_img = y_PMLR.reshape(PMLR.n_tot_imgs, IMAGE_SIZE_MNIST, IMAGE_SIZE_MNIST) 317 | PMLR.save_images(y_PMLR_img, name="/PMLR_epoch_%02d" % (epoch) + ".jpg") 318 | 319 | # plot distribution of labeled images 320 | z_PMLR = sess.run(z, feed_dict={x_hat: x_PMLR, keep_prob : 1}) 321 | PMLR.save_scattered_image(z_PMLR,id_PMLR, name="/PMLR_map_epoch_%02d" % (epoch) + ".jpg") 322 | # np.savetxt('marginal_divergence', loss_divergence) 323 | np.savetxt('marginal_likelihood', loss_divergence) 324 | np.savetxt('sigma', sigma1) 325 | np.savetxt('mu', mu1) 326 | 327 | if __name__ == '__main__': 328 | 329 | # parse arguments 330 | args = parse_args() 331 | if args is None: 332 | exit() 333 | 334 | # main 335 | main(args) -------------------------------------------------------------------------------- /VAE/vae.py: -------------------------------------------------------------------------------- 1 | import tensorflow as tf 2 | import math as m 3 | import tensorflow_probability as tfp 4 | tfd = tfp.distributions 5 | 6 | # Gaussian MLP as encoder 7 | def gaussian_MLP_encoder(x, n_hidden, n_output, keep_prob): 8 | with tf.variable_scope("gaussian_MLP_encoder"): 9 | # initializers 10 | w_init = tf.contrib.layers.variance_scaling_initializer() 11 | b_init = tf.constant_initializer(0.) 12 | 13 | # 1st hidden layer 14 | w0 = tf.get_variable('w0', [x.get_shape()[1], n_hidden], initializer=w_init) 15 | b0 = tf.get_variable('b0', [n_hidden], initializer=b_init) 16 | h0 = tf.matmul(x, w0) + b0 17 | h0 = tf.nn.elu(h0) 18 | h0 = tf.nn.dropout(h0, keep_prob) 19 | 20 | # 2nd hidden layer 21 | w1 = tf.get_variable('w1', [h0.get_shape()[1], n_hidden], initializer=w_init) 22 | b1 = tf.get_variable('b1', [n_hidden], initializer=b_init) 23 | h1 = tf.matmul(h0, w1) + b1 24 | h1 = tf.nn.tanh(h1) 25 | h1 = tf.nn.dropout(h1, keep_prob) 26 | 27 | # output layer 28 | wo = tf.get_variable('wo', [h1.get_shape()[1], n_output * 2], initializer=w_init) 29 | bo = tf.get_variable('bo', [n_output * 2], initializer=b_init) 30 | gaussian_params = tf.matmul(h1, wo) + bo 31 | 32 | # The mean parameter is unconstrained 33 | mean = gaussian_params[:, :n_output] 34 | # The standard deviation must be positive. Parametrize with a softplus and 35 | # add a small epsilon for numerical stability 36 | stddev = 1e-6 + tf.nn.softplus(gaussian_params[:, n_output:]) 37 | 38 | return mean, stddev 39 | 40 | # Bernoulli MLP as decoder 41 | def bernoulli_MLP_decoder(z, n_hidden, n_output, keep_prob, reuse=False): 42 | 43 | with tf.variable_scope("bernoulli_MLP_decoder", reuse=reuse): 44 | w_init = tf.contrib.layers.variance_scaling_initializer() 45 | b_init = tf.constant_initializer(0.) 46 | 47 | # 1st hidden layer 48 | w0 = tf.get_variable('w0', [z.get_shape()[1], n_hidden], initializer=w_init) 49 | b0 = tf.get_variable('b0', [n_hidden], initializer=b_init) 50 | h0 = tf.matmul(z, w0) + b0 51 | h0 = tf.nn.tanh(h0) 52 | h0 = tf.nn.dropout(h0, keep_prob) 53 | 54 | # 2nd hidden layer 55 | w1 = tf.get_variable('w1', [h0.get_shape()[1], n_hidden], initializer=w_init) 56 | b1 = tf.get_variable('b1', [n_hidden], initializer=b_init) 57 | h1 = tf.matmul(h0, w1) + b1 58 | h1 = tf.nn.elu(h1) 59 | h1 = tf.nn.dropout(h1, keep_prob) 60 | 61 | # output layer-mean 62 | wo = tf.get_variable('wo', [h1.get_shape()[1], n_output], initializer=w_init) 63 | bo = tf.get_variable('bo', [n_output], initializer=b_init) 64 | y = tf.sigmoid(tf.matmul(h1, wo) + bo) 65 | return y 66 | 67 | # Autoencoder 68 | def autoencoder(x_hat, x, dim_img, dim_z, n_hidden, keep_prob): 69 | mean, stddev = gaussian_MLP_encoder(x_hat, n_hidden, dim_z, keep_prob) 70 | z = mean + stddev * tf.random_normal(tf.shape(mean), 0, 1, dtype=tf.float32) 71 | y = bernoulli_MLP_decoder(z, n_hidden, dim_img, keep_prob) 72 | y = tf.clip_by_value(y, 1e-8, 1 - 1e-8) 73 | 74 | # loss 75 | k = - 0.025 76 | d = 20 77 | d1 = 1 + d * k + 2 * k 78 | marginal_likelihood = tf.reduce_sum(x * tf.subtract(tf.pow(y, (2 * k) / (1 + k)), 1) / (2 * k) + (1 - x) 79 | * tf.subtract(tf.pow(1 - y, (2 * k) / (1 + k)), 1) / (k * 2), 1) 80 | KL_d1 = tf.reduce_prod(tf.pow(2 * tf.constant(m.pi), k / (1 + d * k)) * tf.sqrt(d1 / (d1 - 2 * k * tf.square(stddev))) 81 | * tf.exp(tf.square(mean) * d1 * k / (1 + d * k) / (d1 - 2 * k * tf.square(stddev))), 1) 82 | KL_d2 = tf.reduce_prod(tf.pow(2 * tf.constant(m.pi) * tf.square(stddev), 83 | k / (1 + k * d)) * tf.sqrt(d1 / (1 + d * k)), 1) 84 | KL_divergence = (KL_d1 - KL_d2) / k / 2 85 | ml = marginal_likelihood 86 | marginal_likelihood = tf.reduce_mean(marginal_likelihood) 87 | KL_divergence = tf.reduce_mean(KL_divergence) 88 | ELBO = marginal_likelihood - KL_divergence 89 | loss = -ELBO 90 | 91 | return y, z, loss, -marginal_likelihood, ml, mean, stddev 92 | 93 | def decoder(z, dim_img, n_hidden): 94 | 95 | y = bernoulli_MLP_decoder(z, n_hidden, dim_img, 1.0, reuse=True) 96 | 97 | return y 98 | 99 | --------------------------------------------------------------------------------