├── .DS_Store ├── .gitignore ├── License.md ├── README.md ├── Snowpark_PyTorch_Image_Rec.ipynb ├── Snowpark_PyTorch_Image_Rec_Setup_Notebook.ipynb ├── Snowpark_PyTorch_Streamlit_OpenAI_Image_Rec.py ├── Snowpark_PyTorch_Streamlit_Upload_Image_Rec.py ├── assets ├── app1.png ├── app2.png └── demo_thumbnail.png ├── connection.json ├── imagenet1000_clsidx_to_labels.txt ├── mobilenetv3-large-1cd25616.pth └── mobilenetv3.py /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Snowflake-Labs/sfguide-snowpark-pytorch-streamlit-openai-image-rec/7630f6348aba9ad39b0647b78afac1935e7ddc06/.DS_Store -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | .DS_Store 2 | connection.json 3 | -------------------------------------------------------------------------------- /License.md: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Image Recognition in Snowflake using Snowpark Python, PyTorch, Streamlit and OpenAI 2 | 3 | ## Overview 4 | In this guide, you will learn how to build image recognition applications in Snowflake using Snowpark for Python, PyTorch, Streamlit and OpenAI's DALL-E 2 – "a new AI system that can create realistic images and art from a description in natural language". 5 | 6 | ## Demo 7 | 8 | [![Watch video](assets/demo_thumbnail.png)](https://youtu.be/UX6hBV5c0T0 "Watch video") 9 | 10 | ## Build and Run Applications 11 | 12 | For step-by-step guide to build and run these applications, please follow this [QuickStart Guide](https://quickstarts.snowflake.com/guide/image_recognition_snowpark_pytorch_streamlit_openai/index.html). 13 | 14 | For questions and feedback, please reach out to [Dash](https://twitter.com/iamontheinet). 15 | -------------------------------------------------------------------------------- /Snowpark_PyTorch_Image_Rec.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "attachments": {}, 5 | "cell_type": "markdown", 6 | "id": "3c443ab7-70ce-42d6-9884-2708b2651614", 7 | "metadata": {}, 8 | "source": [ 9 | "# Image Recognition in Snowflake using Snowpark Python and PyTorch\n", 10 | "\n", 11 | "_For comments and feedback, please reach out to [Dash](https://twitter.com/iamontheinet)_.\n" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": null, 17 | "id": "c9d57b21-7720-40a0-9a95-8431e0dd1e22", 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "# Snowpark\n", 22 | "from snowflake.snowpark.session import Session\n", 23 | "from snowflake.snowpark.functions import udf\n", 24 | "from snowflake.snowpark.version import VERSION\n", 25 | "\n", 26 | "# Misc\n", 27 | "import pandas as pd\n", 28 | "import json\n", 29 | "import cachetools\n", 30 | "import logging\n", 31 | "logger = logging.getLogger(\"snowflake.snowpark.session\")\n", 32 | "logger.setLevel(logging.ERROR)" 33 | ] 34 | }, 35 | { 36 | "attachments": {}, 37 | "cell_type": "markdown", 38 | "id": "fb72f258-f220-4bf8-9f77-6f0fc05df328", 39 | "metadata": {}, 40 | "source": [ 41 | "### Establish Secure Connection to Snowflake\n", 42 | "\n", 43 | "Using the Snowpark API, it’s quick and easy to establish a secure connection between Snowflake and Notebook.\n", 44 | "\n", 45 | " *Connection options: Username/Password, MFA, OAuth, Okta, SSO*" 46 | ] 47 | }, 48 | { 49 | "cell_type": "raw", 50 | "source": [ 51 | "# Create Snowflake Session object\n", 52 | "connection_parameters = json.load(open('connection.json'))\n", 53 | "session = Session.builder.configs(connection_parameters).create()\n", 54 | "session.sql_simplifier_enabled = True\n", 55 | "\n", 56 | "snowflake_environment = session.sql('select current_user(), current_role(), current_database(), current_schema(), current_version(), current_warehouse()').collect()\n", 57 | "snowpark_version = VERSION\n", 58 | "\n", 59 | "# Current Environment Details\n", 60 | "print('User : {}'.format(snowflake_environment[0][0]))\n", 61 | "print('Role : {}'.format(snowflake_environment[0][1]))\n", 62 | "print('Database : {}'.format(snowflake_environment[0][2]))\n", 63 | "print('Schema : {}'.format(snowflake_environment[0][3]))\n", 64 | "print('Warehouse : {}'.format(snowflake_environment[0][5]))\n", 65 | "print('Snowflake version : {}'.format(snowflake_environment[0][4]))\n", 66 | "print('Snowpark for Python version : {}.{}.{}'.format(snowpark_version[0],snowpark_version[1],snowpark_version[2]))" 67 | ], 68 | "metadata": { 69 | "collapsed": false 70 | } 71 | }, 72 | { 73 | "attachments": {}, 74 | "cell_type": "markdown", 75 | "id": "a802412b", 76 | "metadata": {}, 77 | "source": [ 78 | "### Upload MobileNet V3 files to Snowflake Internal stage" 79 | ] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "execution_count": null, 84 | "id": "31f8ed41", 85 | "metadata": {}, 86 | "outputs": [], 87 | "source": [ 88 | "session.file.put('imagenet1000_clsidx_to_labels.txt','@dash_files',overwrite=True,auto_compress=False)\n", 89 | "session.file.put('mobilenetv3.py','@dash_files',overwrite=True,auto_compress=False)\n", 90 | "session.file.put('mobilenetv3-large-1cd25616.pth','@dash_files',overwrite=True,auto_compress=False)" 91 | ] 92 | }, 93 | { 94 | "attachments": {}, 95 | "cell_type": "markdown", 96 | "id": "e45c42f1", 97 | "metadata": {}, 98 | "source": [ 99 | "### Snowpark Python User-Defined Function (UDF) for image recognition\n", 100 | "\n", 101 | "Now to deploy the pre-trained model for inference, let's **create and register a Snowpark Python UDF and add the model files as dependencies**. Once registered, getting new predictions is as simple as calling the function by passing in data.\n", 102 | "\n", 103 | "*NOTE: Scalar UDFs operate on a single row / set of data points and are great for online inference in real-time. And this UDF is called from [Snowpark_PyTorch_Streamlit_Upload_Image_Rec](Snowpark_PyTorch_Streamlit_Upload_Image_Rec.py) and [Snowpark_PyTorch_Streamlit_OpenAI_Image_Rec](Snowpark_PyTorch_Streamlit_OpenAI_Image_Rec.py) Streamlit apps.*\n", 104 | "\n", 105 | "TIP: For more information on Snowpark Python User-Defined Functions, refer to the [docs](https://docs.snowflake.com/en/developer-guide/snowpark/python/creating-udfs.html)." 106 | ] 107 | }, 108 | { 109 | "cell_type": "code", 110 | "execution_count": null, 111 | "id": "a5a53131", 112 | "metadata": {}, 113 | "outputs": [], 114 | "source": [ 115 | "session.clear_packages()\n", 116 | "session.clear_imports()\n", 117 | "\n", 118 | "# Add model files and test images as dependencies on the UDF\n", 119 | "session.add_import('@dash_files/imagenet1000_clsidx_to_labels.txt')\n", 120 | "session.add_import('@dash_files/mobilenetv3.py')\n", 121 | "session.add_import('@dash_files/mobilenetv3-large-1cd25616.pth')\n", 122 | "\n", 123 | "# Add Python packages from Snowflake Anaconda channel\n", 124 | "session.add_packages('snowflake-snowpark-python','torchvision','joblib','cachetools')\n", 125 | "\n", 126 | "@cachetools.cached(cache={})\n", 127 | "def load_class_mapping(filename):\n", 128 | " with open(filename, \"r\") as f:\n", 129 | " return f.read()\n", 130 | "\n", 131 | "@cachetools.cached(cache={})\n", 132 | "def load_model():\n", 133 | " import sys\n", 134 | " import torch\n", 135 | " from torchvision import models, transforms\n", 136 | " import ast\n", 137 | " from mobilenetv3 import mobilenetv3_large\n", 138 | "\n", 139 | " IMPORT_DIRECTORY_NAME = \"snowflake_import_directory\"\n", 140 | " import_dir = sys._xoptions[IMPORT_DIRECTORY_NAME]\n", 141 | "\n", 142 | " model_file = import_dir + 'mobilenetv3-large-1cd25616.pth'\n", 143 | " imgnet_class_mapping_file = import_dir + 'imagenet1000_clsidx_to_labels.txt'\n", 144 | "\n", 145 | " IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))\n", 146 | "\n", 147 | " transform = transforms.Compose([\n", 148 | " transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),\n", 149 | " transforms.CenterCrop(224),\n", 150 | " transforms.ToTensor(),\n", 151 | " transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)\n", 152 | " ])\n", 153 | "\n", 154 | " # Load the Imagenet {class: label} mapping\n", 155 | " cls_idx = load_class_mapping(imgnet_class_mapping_file)\n", 156 | " cls_idx = ast.literal_eval(cls_idx)\n", 157 | "\n", 158 | " # Load pretrained image recognition model\n", 159 | " model = mobilenetv3_large()\n", 160 | " model.load_state_dict(torch.load(model_file))\n", 161 | "\n", 162 | " # Configure pretrained model for inference\n", 163 | " model.eval().requires_grad_(False)\n", 164 | "\n", 165 | " return model, transform, cls_idx\n", 166 | "\n", 167 | "@udf(name='image_recognition_using_bytes',session=session,replace=True,is_permanent=True,stage_location='@dash_files')\n", 168 | "def image_recognition_using_bytes(image_bytes_in_str: str) -> str:\n", 169 | " from io import BytesIO\n", 170 | " import torch\n", 171 | " from PIL import Image\n", 172 | "\n", 173 | " image_bytes = bytes.fromhex(image_bytes_in_str)\n", 174 | "\n", 175 | " model, transform, cls_idx = load_model()\n", 176 | " img = Image.open(BytesIO(image_bytes)).convert('RGB')\n", 177 | " img = transform(img).unsqueeze(0)\n", 178 | "\n", 179 | " # Get model output and human text prediction\n", 180 | " logits = model(img)\n", 181 | "\n", 182 | " outp = torch.nn.functional.softmax(logits, dim=1)\n", 183 | " _, idx = torch.topk(outp, 1)\n", 184 | " idx.squeeze_()\n", 185 | " predicted_label = cls_idx[idx.item()]\n", 186 | "\n", 187 | " return f\"{predicted_label}\"" 188 | ] 189 | }, 190 | { 191 | "attachments": {}, 192 | "cell_type": "markdown", 193 | "id": "ab629365", 194 | "metadata": {}, 195 | "source": [ 196 | "*NOTE: This UDF is called from [Snowpark_PyTorch_Streamlit_Upload_Image_Rec](Snowpark_PyTorch_Streamlit_Upload_Image_Rec.py) and [Snowpark_PyTorch_Streamlit_OpenAI_Image_Rec](Snowpark_PyTorch_Streamlit_OpenAI_Image_Rec.py) Streamlit apps.*\n" 197 | ] 198 | } 199 | ], 200 | "metadata": { 201 | "kernelspec": { 202 | "display_name": "snowpark-img-rec", 203 | "language": "python", 204 | "name": "python3" 205 | }, 206 | "language_info": { 207 | "codemirror_mode": { 208 | "name": "ipython", 209 | "version": 3 210 | }, 211 | "file_extension": ".py", 212 | "mimetype": "text/x-python", 213 | "name": "python", 214 | "nbconvert_exporter": "python", 215 | "pygments_lexer": "ipython3", 216 | "version": "3.8.15 (default, Nov 24 2022, 09:04:07) \n[Clang 14.0.6 ]" 217 | }, 218 | "vscode": { 219 | "interpreter": { 220 | "hash": "80dd599ee9a854293af3fe6cea99dcbf69fd37c3a4a4fc1db31d3eee29094f56" 221 | } 222 | } 223 | }, 224 | "nbformat": 4, 225 | "nbformat_minor": 5 226 | } 227 | -------------------------------------------------------------------------------- /Snowpark_PyTorch_Image_Rec_Setup_Notebook.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "metadata": { 3 | "kernelspec": { 4 | "display_name": "snowpark-img-rec", 5 | "language": "python", 6 | "name": "python3" 7 | }, 8 | "language_info": { 9 | "codemirror_mode": { 10 | "name": "ipython", 11 | "version": 3 12 | }, 13 | "file_extension": ".py", 14 | "mimetype": "text/x-python", 15 | "name": "python", 16 | "nbconvert_exporter": "python", 17 | "pygments_lexer": "ipython3", 18 | "version": "3.8.15 (default, Nov 24 2022, 09:04:07) \n[Clang 14.0.6 ]" 19 | }, 20 | "vscode": { 21 | "interpreter": { 22 | "hash": "80dd599ee9a854293af3fe6cea99dcbf69fd37c3a4a4fc1db31d3eee29094f56" 23 | } 24 | } 25 | }, 26 | "nbformat_minor": 5, 27 | "nbformat": 4, 28 | "cells": [ 29 | { 30 | "attachments": {}, 31 | "cell_type": "markdown", 32 | "id": "3c443ab7-70ce-42d6-9884-2708b2651614", 33 | "metadata": { 34 | "name": "cell1", 35 | "collapsed": false 36 | }, 37 | "source": "# Image Recognition in Snowflake using Snowpark Python and PyTorch\n\n*NOTE: For prerequisites and step-by-step guide, please refer to the [QuickStart Guide](https://quickstarts.snowflake.com/guide/image_recognition_snowpark_pytorch_streamlit_openai/?_fsi=THrZMtDg,%20THrZMtDg#0).*\n\nBefore proceeding, make sure you have `cachetools`, `pandas`, and `snowflake-snowpark-python` packages installed. For more information on installing packages, refer to the [docs](https://docs.snowflake.com/en/user-guide/ui-snowsight/notebooks-import-packages#import-package-from-anaconda).\n" 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": null, 42 | "id": "c9d57b21-7720-40a0-9a95-8431e0dd1e22", 43 | "metadata": { 44 | "name": "cell2", 45 | "language": "python", 46 | "collapsed": false 47 | }, 48 | "outputs": [], 49 | "source": "# Snowpark\nfrom snowflake.snowpark.functions import udf\nfrom snowflake.snowpark.context import get_active_session\nfrom snowflake.snowpark.functions import col\n\n# Misc\nimport pandas as pd\nimport json\nimport cachetools\nimport logging\nlogger = logging.getLogger(\"snowflake.snowpark.session\")\nlogger.setLevel(logging.ERROR)\n\nsession = get_active_session()" 50 | }, 51 | { 52 | "cell_type": "markdown", 53 | "id": "a2c5bd28-f17d-480d-bf28-886ac9cf4b28", 54 | "metadata": { 55 | "name": "cell3", 56 | "collapsed": false 57 | }, 58 | "source": "## Setup\n\nCreate a Snowflake table and internal stage by running the following commands. The table will store the image data and the stage is for storing serialized Snowpark Python UDF code." 59 | }, 60 | { 61 | "cell_type": "code", 62 | "id": "d14e0ce2-799a-4f0a-8de0-3f033178de1e", 63 | "metadata": { 64 | "language": "sql", 65 | "name": "cell4", 66 | "collapsed": false 67 | }, 68 | "outputs": [], 69 | "source": "create table if not exists images (file_name string, image_bytes string);", 70 | "execution_count": null 71 | }, 72 | { 73 | "cell_type": "code", 74 | "id": "fef0f37c-2fa6-4e12-90fe-1b2493be7bfd", 75 | "metadata": { 76 | "language": "sql", 77 | "name": "cell6", 78 | "collapsed": false 79 | }, 80 | "outputs": [], 81 | "source": "create stage if not exists dash_files;", 82 | "execution_count": null 83 | }, 84 | { 85 | "attachments": {}, 86 | "cell_type": "markdown", 87 | "id": "2e059a5a-8c19-44c3-9e7a-a8c9427db368", 88 | "metadata": { 89 | "name": "cell5", 90 | "collapsed": false 91 | }, 92 | "source": "## PyTorch and Snowpark Python\n\nFor this particular application, we will be using [PyTorch implementation of MobileNet V3](https://github.com/d-li14/mobilenetv3.pytorch). *Note: A huge thank you to the [authors](https://github.com/d-li14/mobilenetv3.pytorch?_fsi=THrZMtDg,%20THrZMtDg&_fsi=THrZMtDg,%20THrZMtDg#citation) for the research and making the pre-trained models available under [MIT License](https://github.com/d-li14/mobilenetv3.pytorch/blob/master/LICENSE).*\n\n1) Once you have dowloaded the pre-trained model files from the repo link above, upload them onto Snowflake (internal) stage `dash_files` using [Snowsight](https://docs.snowflake.com/en/user-guide/data-load-local-file-system-stage-ui#upload-files-onto-a-named-internal-stage) so that they can be added as dependencies on the Snowpark for Python UDF for inference.\n2) Snowpark Python User-Defined Function (UDF) for image recognition\n\n To deploy the pre-trained model for inference, let's **create and register a Snowpark Python UDF and add the model files as dependencies**. Once registered, getting new predictions is as simple as calling the function by passing in data.*NOTE: Scalar UDFs operate on a single row / set of data points and are great for online inference in real-time. And this UDF is called from [Streamlit apps](https://quickstarts.snowflake.com/guide/image_recognition_snowpark_pytorch_streamlit_openai/?_fsi=THrZMtDg,%20THrZMtDg#1).*\n\n TIP: For more information on Snowpark Python User-Defined Functions, refer to the [docs](https://docs.snowflake.com/en/developer-guide/snowpark/python/creating-udfs.html).\n" 93 | }, 94 | { 95 | "cell_type": "code", 96 | "execution_count": null, 97 | "id": "ecc438df-3c19-4dc6-82ca-ba048c1b7fbf", 98 | "metadata": { 99 | "name": "cell8", 100 | "language": "python", 101 | "collapsed": false, 102 | "codeCollapsed": false 103 | }, 104 | "outputs": [], 105 | "source": [ 106 | "session.clear_packages()\n", 107 | "session.clear_imports()\n", 108 | "\n", 109 | "# Add model files and test images as dependencies on the UDF\n", 110 | "session.add_import('@dash_files/imagenet1000_clsidx_to_labels.txt')\n", 111 | "session.add_import('@dash_files/mobilenetv3.py')\n", 112 | "session.add_import('@dash_files/mobilenetv3-large-1cd25616.pth')\n", 113 | "\n", 114 | "# Add Python packages from Snowflake Anaconda channel\n", 115 | "session.add_packages('snowflake-snowpark-python','torchvision','joblib','cachetools')\n", 116 | "\n", 117 | "@cachetools.cached(cache={})\n", 118 | "def load_class_mapping(filename):\n", 119 | " with open(filename, \"r\") as f:\n", 120 | " return f.read()\n", 121 | "\n", 122 | "@cachetools.cached(cache={})\n", 123 | "def load_model():\n", 124 | " import sys\n", 125 | " import torch\n", 126 | " from torchvision import models, transforms\n", 127 | " import ast\n", 128 | " from mobilenetv3 import mobilenetv3_large\n", 129 | "\n", 130 | " IMPORT_DIRECTORY_NAME = \"snowflake_import_directory\"\n", 131 | " import_dir = sys._xoptions[IMPORT_DIRECTORY_NAME]\n", 132 | "\n", 133 | " model_file = import_dir + 'mobilenetv3-large-1cd25616.pth'\n", 134 | " imgnet_class_mapping_file = import_dir + 'imagenet1000_clsidx_to_labels.txt'\n", 135 | "\n", 136 | " IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))\n", 137 | "\n", 138 | " transform = transforms.Compose([\n", 139 | " transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),\n", 140 | " transforms.CenterCrop(224),\n", 141 | " transforms.ToTensor(),\n", 142 | " transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)\n", 143 | " ])\n", 144 | "\n", 145 | " # Load the Imagenet {class: label} mapping\n", 146 | " cls_idx = load_class_mapping(imgnet_class_mapping_file)\n", 147 | " cls_idx = ast.literal_eval(cls_idx)\n", 148 | "\n", 149 | " # Load pretrained image recognition model\n", 150 | " model = mobilenetv3_large()\n", 151 | " model.load_state_dict(torch.load(model_file))\n", 152 | "\n", 153 | " # Configure pretrained model for inference\n", 154 | " model.eval().requires_grad_(False)\n", 155 | "\n", 156 | " return model, transform, cls_idx\n", 157 | "\n", 158 | "@udf(name='image_recognition_using_bytes',session=session,replace=True,is_permanent=True,stage_location='@dash_files')\n", 159 | "def image_recognition_using_bytes(image_bytes_in_str: str) -> str:\n", 160 | " from io import BytesIO\n", 161 | " import torch\n", 162 | " from PIL import Image\n", 163 | "\n", 164 | " image_bytes = bytes.fromhex(image_bytes_in_str)\n", 165 | "\n", 166 | " model, transform, cls_idx = load_model()\n", 167 | " img = Image.open(BytesIO(image_bytes)).convert('RGB')\n", 168 | " img = transform(img).unsqueeze(0)\n", 169 | "\n", 170 | " # Get model output and human text prediction\n", 171 | " logits = model(img)\n", 172 | "\n", 173 | " outp = torch.nn.functional.softmax(logits, dim=1)\n", 174 | " _, idx = torch.topk(outp, 1)\n", 175 | " idx.squeeze_()\n", 176 | " predicted_label = cls_idx[idx.item()]\n", 177 | "\n", 178 | " return f\"{predicted_label}\"" 179 | ] 180 | }, 181 | { 182 | "attachments": {}, 183 | "cell_type": "markdown", 184 | "id": "0205c624-b089-4520-b0ac-e60e9dec906f", 185 | "metadata": { 186 | "name": "cell9", 187 | "collapsed": false 188 | }, 189 | "source": "*NOTE: To build and run Streamlit applications that will use the above UDF, continue and complete the steps outlined in the [QuickStart Guide](https://quickstarts.snowflake.com/guide/image_recognition_snowpark_pytorch_streamlit_openai/?_fsi=THrZMtDg,%20THrZMtDg#4).*" 190 | } 191 | ] 192 | } -------------------------------------------------------------------------------- /Snowpark_PyTorch_Streamlit_OpenAI_Image_Rec.py: -------------------------------------------------------------------------------- 1 | # Snowpark for Python Developer Guide: https://docs.snowflake.com/en/developer-guide/snowpark/python/index.html 2 | # Streamlit docs: https://docs.streamlit.io/ 3 | # OpenAI: https://openai.com/ 4 | 5 | import json 6 | import pandas as pd 7 | from snowflake.snowpark.session import Session 8 | import streamlit as st 9 | import base64 10 | import openai 11 | import os 12 | import uuid 13 | 14 | # Retrieve OpenAI key from environment variable 15 | openai.api_key = os.getenv("OPENAI_API_KEY") 16 | 17 | # Streamlit config 18 | st.set_page_config( 19 | page_title="Image Recognition app in Snowflake", 20 | layout='wide', 21 | menu_items={ 22 | 'Get Help': 'https://developers.snowflake.com', 23 | 'About': "The source code for this application can be accessed on GitHub https://github.com/Snowflake-Labs/sfguide-snowpark-pytorch-streamlit-openai-image-rec" 24 | } 25 | ) 26 | 27 | # Set page title, header and links to docs 28 | st.header("Image Recognition app in Snowflake using Snowpark Python, PyTorch, Streamlit and OpenAI") 29 | st.caption(f"App developed by [Dash](https://twitter.com/iamontheinet)") 30 | st.write("[Resources: [Snowpark for Python Developer Guide](https://docs.snowflake.com/en/developer-guide/snowpark/python/index.html) | [Streamlit](https://docs.streamlit.io/) | [OpenAI](https://openai.com/) | [PyTorch Implementation of MobileNet V3](https://github.com/d-li14/mobilenetv3.pytorch)]") 31 | 32 | # Function to create new or get existing Snowpark session 33 | def create_session(): 34 | if "snowpark_session" not in st.session_state: 35 | session = Session.builder.configs(json.load(open("connection.json"))).create() 36 | st.session_state['snowpark_session'] = session 37 | else: 38 | session = st.session_state['snowpark_session'] 39 | return session 40 | 41 | # Call function to create new or get existing Snowpark session to connect to Snowflake 42 | session = create_session() 43 | 44 | st.markdown("""---""") 45 | 46 | # Add text box for entering text 47 | text_input = st.text_input("Enter description of your favorite animal 👇") 48 | if text_input: 49 | with st.spinner("Generating an image and prediction both in real-time..."): 50 | 51 | # Call OpenAI API to generate an image based on user entered text 52 | response = openai.Image.create( 53 | prompt=text_input, 54 | n=1, 55 | size="512x512", 56 | response_format="b64_json" 57 | ) 58 | 59 | # Convert image base64 string into hex 60 | image_bytes = response['data'][0]['b64_json'] 61 | bytes_data_in_hex = base64.b64decode(image_bytes).hex() 62 | 63 | # Generate new image file name 64 | file_name = 'img_' + str(uuid.uuid4()) 65 | 66 | # Decode base64 image data and generate image file that can be used to display on screen 67 | decoded_data = base64.b64decode((image_bytes)) 68 | with open(file_name, 'wb') as f: 69 | f.write(decoded_data) 70 | 71 | # Write image data in Snowflake table 72 | df = pd.DataFrame({"FILE_NAME": [file_name], "IMAGE_BYTES": [bytes_data_in_hex]}) 73 | session.write_pandas(df, "IMAGES") 74 | 75 | # Call Snowpark User-Defined Function to predict image label 76 | predicted_label = session.sql(f"SELECT image_recognition_using_bytes(image_bytes) as PREDICTED_LABEL from IMAGES where FILE_NAME = '{file_name}'").to_pandas().iloc[0,0] 77 | 78 | _, col2, col3, _ = st.columns(4, gap='medium') 79 | with st.container(): 80 | with col2: 81 | # Display image generated by OpenAI 82 | st.subheader("Image Generated by OpenAI's DALL-E 2") 83 | st.image(file_name) 84 | 85 | with col3: 86 | # Display predicted label 87 | st.subheader("Predicted Label in Snowpark using PyTorch") 88 | st.code(predicted_label, language='python') 89 | 90 | # Delete locally generated image file 91 | os.remove(file_name) 92 | -------------------------------------------------------------------------------- /Snowpark_PyTorch_Streamlit_Upload_Image_Rec.py: -------------------------------------------------------------------------------- 1 | # Snowpark for Python Developer Guide: https://docs.snowflake.com/en/developer-guide/snowpark/python/index.html 2 | # Streamlit docs: https://docs.streamlit.io/ 3 | # OpenAI: https://openai.com/ 4 | 5 | import json 6 | import pandas as pd 7 | from snowflake.snowpark.session import Session 8 | from snowflake.snowpark.functions import col 9 | import streamlit as st 10 | import io 11 | from io import StringIO 12 | import base64 13 | import uuid 14 | 15 | # Streamlit config 16 | st.set_page_config( 17 | page_title="Image Recognition App in Snowflake", 18 | layout='wide', 19 | menu_items={ 20 | 'Get Help': 'https://developers.snowflake.com', 21 | 'About': "The source code for this application can be accessed on GitHub https://github.com/Snowflake-Labs/sfguide-snowpark-pytorch-streamlit-openai-image-rec" 22 | } 23 | ) 24 | 25 | # Set page title, header and links to docs 26 | st.header("Image Recognition app in Snowflake using Snowpark Python, PyTorch and Streamlit") 27 | st.caption(f"App developed by [Dash](https://twitter.com/iamontheinet)") 28 | st.write("[Resources: [Snowpark for Python Developer Guide](https://docs.snowflake.com/en/developer-guide/snowpark/python/index.html) | [Streamlit](https://docs.streamlit.io/) | [PyTorch Implementation of MobileNet V3](https://github.com/d-li14/mobilenetv3.pytorch)]") 29 | 30 | # Function to create new or get existing Snowpark session 31 | def create_session(): 32 | if "snowpark_session" not in st.session_state: 33 | session = Session.builder.configs(json.load(open("connection.json"))).create() 34 | st.session_state['snowpark_session'] = session 35 | else: 36 | session = st.session_state['snowpark_session'] 37 | return session 38 | 39 | # Call function to create new or get existing Snowpark session to connect to Snowflake 40 | session = create_session() 41 | 42 | uploaded_file = st.file_uploader("Choose an image file", accept_multiple_files=False, label_visibility='hidden') 43 | if uploaded_file is not None: 44 | 45 | with st.spinner("Uploading image and generating prediction in real-time..."): 46 | 47 | # Convert image base64 string into hex 48 | bytes_data_in_hex = uploaded_file.getvalue().hex() 49 | 50 | # Generate new image file name 51 | file_name = 'img_' + str(uuid.uuid4()) 52 | 53 | # Write image data in Snowflake table 54 | df = pd.DataFrame({"FILE_NAME": [file_name], "IMAGE_BYTES": [bytes_data_in_hex]}) 55 | session.write_pandas(df, "IMAGES") 56 | 57 | # Call Snowpark User-Defined Function to predict image label 58 | predicted_label = session.sql(f"SELECT image_recognition_using_bytes(image_bytes) as PREDICTED_LABEL from IMAGES where FILE_NAME = '{file_name}'").to_pandas().iloc[0,0] 59 | 60 | _, col2, col3, _ = st.columns(4, gap='medium') 61 | with st.container(): 62 | with col2: 63 | # Display uploaded image 64 | st.subheader("Image you uploaded") 65 | st.image(uploaded_file) 66 | 67 | with col3: 68 | # Display predicted label 69 | st.subheader("Predicted Label in Snowpark using PyTorch") 70 | st.code(predicted_label, language='python') 71 | -------------------------------------------------------------------------------- /assets/app1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Snowflake-Labs/sfguide-snowpark-pytorch-streamlit-openai-image-rec/7630f6348aba9ad39b0647b78afac1935e7ddc06/assets/app1.png -------------------------------------------------------------------------------- /assets/app2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Snowflake-Labs/sfguide-snowpark-pytorch-streamlit-openai-image-rec/7630f6348aba9ad39b0647b78afac1935e7ddc06/assets/app2.png -------------------------------------------------------------------------------- /assets/demo_thumbnail.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Snowflake-Labs/sfguide-snowpark-pytorch-streamlit-openai-image-rec/7630f6348aba9ad39b0647b78afac1935e7ddc06/assets/demo_thumbnail.png -------------------------------------------------------------------------------- /connection.json: -------------------------------------------------------------------------------- 1 | { 2 | "account" : "", 3 | "user" : "", 4 | "password" : "", 5 | "role" : "", 6 | "warehouse" : "", 7 | "database" : "", 8 | "schema" : "" 9 | } 10 | -------------------------------------------------------------------------------- /imagenet1000_clsidx_to_labels.txt: -------------------------------------------------------------------------------- 1 | {0: 'tench, Tinca tinca', 2 | 1: 'goldfish, Carassius auratus', 3 | 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', 4 | 3: 'tiger shark, Galeocerdo cuvieri', 5 | 4: 'hammerhead, hammerhead shark', 6 | 5: 'electric ray, crampfish, numbfish, torpedo', 7 | 6: 'stingray', 8 | 7: 'cock', 9 | 8: 'hen', 10 | 9: 'ostrich, Struthio camelus', 11 | 10: 'brambling, Fringilla montifringilla', 12 | 11: 'goldfinch, Carduelis carduelis', 13 | 12: 'house finch, linnet, Carpodacus mexicanus', 14 | 13: 'junco, snowbird', 15 | 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea', 16 | 15: 'robin, American robin, Turdus migratorius', 17 | 16: 'bulbul', 18 | 17: 'jay', 19 | 18: 'magpie', 20 | 19: 'chickadee', 21 | 20: 'water ouzel, dipper', 22 | 21: 'kite', 23 | 22: 'bald eagle, American eagle, Haliaeetus leucocephalus', 24 | 23: 'vulture', 25 | 24: 'great grey owl, great gray owl, Strix nebulosa', 26 | 25: 'European fire salamander, Salamandra salamandra', 27 | 26: 'common newt, Triturus vulgaris', 28 | 27: 'eft', 29 | 28: 'spotted salamander, Ambystoma maculatum', 30 | 29: 'axolotl, mud puppy, Ambystoma mexicanum', 31 | 30: 'bullfrog, Rana catesbeiana', 32 | 31: 'tree frog, tree-frog', 33 | 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', 34 | 33: 'loggerhead, loggerhead turtle, Caretta caretta', 35 | 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', 36 | 35: 'mud turtle', 37 | 36: 'terrapin', 38 | 37: 'box turtle, box tortoise', 39 | 38: 'banded gecko', 40 | 39: 'common iguana, iguana, Iguana iguana', 41 | 40: 'American chameleon, anole, Anolis carolinensis', 42 | 41: 'whiptail, whiptail lizard', 43 | 42: 'agama', 44 | 43: 'frilled lizard, Chlamydosaurus kingi', 45 | 44: 'alligator lizard', 46 | 45: 'Gila monster, Heloderma suspectum', 47 | 46: 'green lizard, Lacerta viridis', 48 | 47: 'African chameleon, Chamaeleo chamaeleon', 49 | 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', 50 | 49: 'African crocodile, Nile crocodile, Crocodylus niloticus', 51 | 50: 'American alligator, Alligator mississipiensis', 52 | 51: 'triceratops', 53 | 52: 'thunder snake, worm snake, Carphophis amoenus', 54 | 53: 'ringneck snake, ring-necked snake, ring snake', 55 | 54: 'hognose snake, puff adder, sand viper', 56 | 55: 'green snake, grass snake', 57 | 56: 'king snake, kingsnake', 58 | 57: 'garter snake, grass snake', 59 | 58: 'water snake', 60 | 59: 'vine snake', 61 | 60: 'night snake, Hypsiglena torquata', 62 | 61: 'boa constrictor, Constrictor constrictor', 63 | 62: 'rock python, rock snake, Python sebae', 64 | 63: 'Indian cobra, Naja naja', 65 | 64: 'green mamba', 66 | 65: 'sea snake', 67 | 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus', 68 | 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus', 69 | 68: 'sidewinder, horned rattlesnake, Crotalus cerastes', 70 | 69: 'trilobite', 71 | 70: 'harvestman, daddy longlegs, Phalangium opilio', 72 | 71: 'scorpion', 73 | 72: 'black and gold garden spider, Argiope aurantia', 74 | 73: 'barn spider, Araneus cavaticus', 75 | 74: 'garden spider, Aranea diademata', 76 | 75: 'black widow, Latrodectus mactans', 77 | 76: 'tarantula', 78 | 77: 'wolf spider, hunting spider', 79 | 78: 'tick', 80 | 79: 'centipede', 81 | 80: 'black grouse', 82 | 81: 'ptarmigan', 83 | 82: 'ruffed grouse, partridge, Bonasa umbellus', 84 | 83: 'prairie chicken, prairie grouse, prairie fowl', 85 | 84: 'peacock', 86 | 85: 'quail', 87 | 86: 'partridge', 88 | 87: 'African grey, African gray, Psittacus erithacus', 89 | 88: 'macaw', 90 | 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', 91 | 90: 'lorikeet', 92 | 91: 'coucal', 93 | 92: 'bee eater', 94 | 93: 'hornbill', 95 | 94: 'hummingbird', 96 | 95: 'jacamar', 97 | 96: 'toucan', 98 | 97: 'drake', 99 | 98: 'red-breasted merganser, Mergus serrator', 100 | 99: 'goose', 101 | 100: 'black swan, Cygnus atratus', 102 | 101: 'tusker', 103 | 102: 'echidna, spiny anteater, anteater', 104 | 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', 105 | 104: 'wallaby, brush kangaroo', 106 | 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', 107 | 106: 'wombat', 108 | 107: 'jellyfish', 109 | 108: 'sea anemone, anemone', 110 | 109: 'brain coral', 111 | 110: 'flatworm, platyhelminth', 112 | 111: 'nematode, nematode worm, roundworm', 113 | 112: 'conch', 114 | 113: 'snail', 115 | 114: 'slug', 116 | 115: 'sea slug, nudibranch', 117 | 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore', 118 | 117: 'chambered nautilus, pearly nautilus, nautilus', 119 | 118: 'Dungeness crab, Cancer magister', 120 | 119: 'rock crab, Cancer irroratus', 121 | 120: 'fiddler crab', 122 | 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', 123 | 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus', 124 | 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', 125 | 124: 'crayfish, crawfish, crawdad, crawdaddy', 126 | 125: 'hermit crab', 127 | 126: 'isopod', 128 | 127: 'white stork, Ciconia ciconia', 129 | 128: 'black stork, Ciconia nigra', 130 | 129: 'spoonbill', 131 | 130: 'flamingo', 132 | 131: 'little blue heron, Egretta caerulea', 133 | 132: 'American egret, great white heron, Egretta albus', 134 | 133: 'bittern', 135 | 134: 'crane', 136 | 135: 'limpkin, Aramus pictus', 137 | 136: 'European gallinule, Porphyrio porphyrio', 138 | 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana', 139 | 138: 'bustard', 140 | 139: 'ruddy turnstone, Arenaria interpres', 141 | 140: 'red-backed sandpiper, dunlin, Erolia alpina', 142 | 141: 'redshank, Tringa totanus', 143 | 142: 'dowitcher', 144 | 143: 'oystercatcher, oyster catcher', 145 | 144: 'pelican', 146 | 145: 'king penguin, Aptenodytes patagonica', 147 | 146: 'albatross, mollymawk', 148 | 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', 149 | 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', 150 | 149: 'dugong, Dugong dugon', 151 | 150: 'sea lion', 152 | 151: 'Chihuahua', 153 | 152: 'Japanese spaniel', 154 | 153: 'Maltese dog, Maltese terrier, Maltese', 155 | 154: 'Pekinese, Pekingese, Peke', 156 | 155: 'Shih-Tzu', 157 | 156: 'Blenheim spaniel', 158 | 157: 'papillon', 159 | 158: 'toy terrier', 160 | 159: 'Rhodesian ridgeback', 161 | 160: 'Afghan hound, Afghan', 162 | 161: 'basset, basset hound', 163 | 162: 'beagle', 164 | 163: 'bloodhound, sleuthhound', 165 | 164: 'bluetick', 166 | 165: 'black-and-tan coonhound', 167 | 166: 'Walker hound, Walker foxhound', 168 | 167: 'English foxhound', 169 | 168: 'redbone', 170 | 169: 'borzoi, Russian wolfhound', 171 | 170: 'Irish wolfhound', 172 | 171: 'Italian greyhound', 173 | 172: 'whippet', 174 | 173: 'Ibizan hound, Ibizan Podenco', 175 | 174: 'Norwegian elkhound, elkhound', 176 | 175: 'otterhound, otter hound', 177 | 176: 'Saluki, gazelle hound', 178 | 177: 'Scottish deerhound, deerhound', 179 | 178: 'Weimaraner', 180 | 179: 'Staffordshire bullterrier, Staffordshire bull terrier', 181 | 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', 182 | 181: 'Bedlington terrier', 183 | 182: 'Border terrier', 184 | 183: 'Kerry blue terrier', 185 | 184: 'Irish terrier', 186 | 185: 'Norfolk terrier', 187 | 186: 'Norwich terrier', 188 | 187: 'Yorkshire terrier', 189 | 188: 'wire-haired fox terrier', 190 | 189: 'Lakeland terrier', 191 | 190: 'Sealyham terrier, Sealyham', 192 | 191: 'Airedale, Airedale terrier', 193 | 192: 'cairn, cairn terrier', 194 | 193: 'Australian terrier', 195 | 194: 'Dandie Dinmont, Dandie Dinmont terrier', 196 | 195: 'Boston bull, Boston terrier', 197 | 196: 'miniature schnauzer', 198 | 197: 'giant schnauzer', 199 | 198: 'standard schnauzer', 200 | 199: 'Scotch terrier, Scottish terrier, Scottie', 201 | 200: 'Tibetan terrier, chrysanthemum dog', 202 | 201: 'silky terrier, Sydney silky', 203 | 202: 'soft-coated wheaten terrier', 204 | 203: 'West Highland white terrier', 205 | 204: 'Lhasa, Lhasa apso', 206 | 205: 'flat-coated retriever', 207 | 206: 'curly-coated retriever', 208 | 207: 'golden retriever', 209 | 208: 'Labrador retriever', 210 | 209: 'Chesapeake Bay retriever', 211 | 210: 'German short-haired pointer', 212 | 211: 'vizsla, Hungarian pointer', 213 | 212: 'English setter', 214 | 213: 'Irish setter, red setter', 215 | 214: 'Gordon setter', 216 | 215: 'Brittany spaniel', 217 | 216: 'clumber, clumber spaniel', 218 | 217: 'English springer, English springer spaniel', 219 | 218: 'Welsh springer spaniel', 220 | 219: 'cocker spaniel, English cocker spaniel, cocker', 221 | 220: 'Sussex spaniel', 222 | 221: 'Irish water spaniel', 223 | 222: 'kuvasz', 224 | 223: 'schipperke', 225 | 224: 'groenendael', 226 | 225: 'malinois', 227 | 226: 'briard', 228 | 227: 'kelpie', 229 | 228: 'komondor', 230 | 229: 'Old English sheepdog, bobtail', 231 | 230: 'Shetland sheepdog, Shetland sheep dog, Shetland', 232 | 231: 'collie', 233 | 232: 'Border collie', 234 | 233: 'Bouvier des Flandres, Bouviers des Flandres', 235 | 234: 'Rottweiler', 236 | 235: 'German shepherd, German shepherd dog, German police dog, alsatian', 237 | 236: 'Doberman, Doberman pinscher', 238 | 237: 'miniature pinscher', 239 | 238: 'Greater Swiss Mountain dog', 240 | 239: 'Bernese mountain dog', 241 | 240: 'Appenzeller', 242 | 241: 'EntleBucher', 243 | 242: 'boxer', 244 | 243: 'bull mastiff', 245 | 244: 'Tibetan mastiff', 246 | 245: 'French bulldog', 247 | 246: 'Great Dane', 248 | 247: 'Saint Bernard, St Bernard', 249 | 248: 'Eskimo dog, husky', 250 | 249: 'malamute, malemute, Alaskan malamute', 251 | 250: 'Siberian husky', 252 | 251: 'dalmatian, coach dog, carriage dog', 253 | 252: 'affenpinscher, monkey pinscher, monkey dog', 254 | 253: 'basenji', 255 | 254: 'pug, pug-dog', 256 | 255: 'Leonberg', 257 | 256: 'Newfoundland, Newfoundland dog', 258 | 257: 'Great Pyrenees', 259 | 258: 'Samoyed, Samoyede', 260 | 259: 'Pomeranian', 261 | 260: 'chow, chow chow', 262 | 261: 'keeshond', 263 | 262: 'Brabancon griffon', 264 | 263: 'Pembroke, Pembroke Welsh corgi', 265 | 264: 'Cardigan, Cardigan Welsh corgi', 266 | 265: 'toy poodle', 267 | 266: 'miniature poodle', 268 | 267: 'standard poodle', 269 | 268: 'Mexican hairless', 270 | 269: 'timber wolf, grey wolf, gray wolf, Canis lupus', 271 | 270: 'white wolf, Arctic wolf, Canis lupus tundrarum', 272 | 271: 'red wolf, maned wolf, Canis rufus, Canis niger', 273 | 272: 'coyote, prairie wolf, brush wolf, Canis latrans', 274 | 273: 'dingo, warrigal, warragal, Canis dingo', 275 | 274: 'dhole, Cuon alpinus', 276 | 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus', 277 | 276: 'hyena, hyaena', 278 | 277: 'red fox, Vulpes vulpes', 279 | 278: 'kit fox, Vulpes macrotis', 280 | 279: 'Arctic fox, white fox, Alopex lagopus', 281 | 280: 'grey fox, gray fox, Urocyon cinereoargenteus', 282 | 281: 'tabby, tabby cat', 283 | 282: 'tiger cat', 284 | 283: 'Persian cat', 285 | 284: 'Siamese cat, Siamese', 286 | 285: 'Egyptian cat', 287 | 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', 288 | 287: 'lynx, catamount', 289 | 288: 'leopard, Panthera pardus', 290 | 289: 'snow leopard, ounce, Panthera uncia', 291 | 290: 'jaguar, panther, Panthera onca, Felis onca', 292 | 291: 'lion, king of beasts, Panthera leo', 293 | 292: 'tiger, Panthera tigris', 294 | 293: 'cheetah, chetah, Acinonyx jubatus', 295 | 294: 'brown bear, bruin, Ursus arctos', 296 | 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus', 297 | 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', 298 | 297: 'sloth bear, Melursus ursinus, Ursus ursinus', 299 | 298: 'mongoose', 300 | 299: 'meerkat, mierkat', 301 | 300: 'tiger beetle', 302 | 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', 303 | 302: 'ground beetle, carabid beetle', 304 | 303: 'long-horned beetle, longicorn, longicorn beetle', 305 | 304: 'leaf beetle, chrysomelid', 306 | 305: 'dung beetle', 307 | 306: 'rhinoceros beetle', 308 | 307: 'weevil', 309 | 308: 'fly', 310 | 309: 'bee', 311 | 310: 'ant, emmet, pismire', 312 | 311: 'grasshopper, hopper', 313 | 312: 'cricket', 314 | 313: 'walking stick, walkingstick, stick insect', 315 | 314: 'cockroach, roach', 316 | 315: 'mantis, mantid', 317 | 316: 'cicada, cicala', 318 | 317: 'leafhopper', 319 | 318: 'lacewing, lacewing fly', 320 | 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", 321 | 320: 'damselfly', 322 | 321: 'admiral', 323 | 322: 'ringlet, ringlet butterfly', 324 | 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', 325 | 324: 'cabbage butterfly', 326 | 325: 'sulphur butterfly, sulfur butterfly', 327 | 326: 'lycaenid, lycaenid butterfly', 328 | 327: 'starfish, sea star', 329 | 328: 'sea urchin', 330 | 329: 'sea cucumber, holothurian', 331 | 330: 'wood rabbit, cottontail, cottontail rabbit', 332 | 331: 'hare', 333 | 332: 'Angora, Angora rabbit', 334 | 333: 'hamster', 335 | 334: 'porcupine, hedgehog', 336 | 335: 'fox squirrel, eastern fox squirrel, Sciurus niger', 337 | 336: 'marmot', 338 | 337: 'beaver', 339 | 338: 'guinea pig, Cavia cobaya', 340 | 339: 'sorrel', 341 | 340: 'zebra', 342 | 341: 'hog, pig, grunter, squealer, Sus scrofa', 343 | 342: 'wild boar, boar, Sus scrofa', 344 | 343: 'warthog', 345 | 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius', 346 | 345: 'ox', 347 | 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', 348 | 347: 'bison', 349 | 348: 'ram, tup', 350 | 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis', 351 | 350: 'ibex, Capra ibex', 352 | 351: 'hartebeest', 353 | 352: 'impala, Aepyceros melampus', 354 | 353: 'gazelle', 355 | 354: 'Arabian camel, dromedary, Camelus dromedarius', 356 | 355: 'llama', 357 | 356: 'weasel', 358 | 357: 'mink', 359 | 358: 'polecat, fitch, foulmart, foumart, Mustela putorius', 360 | 359: 'black-footed ferret, ferret, Mustela nigripes', 361 | 360: 'otter', 362 | 361: 'skunk, polecat, wood pussy', 363 | 362: 'badger', 364 | 363: 'armadillo', 365 | 364: 'three-toed sloth, ai, Bradypus tridactylus', 366 | 365: 'orangutan, orang, orangutang, Pongo pygmaeus', 367 | 366: 'gorilla, Gorilla gorilla', 368 | 367: 'chimpanzee, chimp, Pan troglodytes', 369 | 368: 'gibbon, Hylobates lar', 370 | 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus', 371 | 370: 'guenon, guenon monkey', 372 | 371: 'patas, hussar monkey, Erythrocebus patas', 373 | 372: 'baboon', 374 | 373: 'macaque', 375 | 374: 'langur', 376 | 375: 'colobus, colobus monkey', 377 | 376: 'proboscis monkey, Nasalis larvatus', 378 | 377: 'marmoset', 379 | 378: 'capuchin, ringtail, Cebus capucinus', 380 | 379: 'howler monkey, howler', 381 | 380: 'titi, titi monkey', 382 | 381: 'spider monkey, Ateles geoffroyi', 383 | 382: 'squirrel monkey, Saimiri sciureus', 384 | 383: 'Madagascar cat, ring-tailed lemur, Lemur catta', 385 | 384: 'indri, indris, Indri indri, Indri brevicaudatus', 386 | 385: 'Indian elephant, Elephas maximus', 387 | 386: 'African elephant, Loxodonta africana', 388 | 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', 389 | 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', 390 | 389: 'barracouta, snoek', 391 | 390: 'eel', 392 | 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', 393 | 392: 'rock beauty, Holocanthus tricolor', 394 | 393: 'anemone fish', 395 | 394: 'sturgeon', 396 | 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus', 397 | 396: 'lionfish', 398 | 397: 'puffer, pufferfish, blowfish, globefish', 399 | 398: 'abacus', 400 | 399: 'abaya', 401 | 400: "academic gown, academic robe, judge's robe", 402 | 401: 'accordion, piano accordion, squeeze box', 403 | 402: 'acoustic guitar', 404 | 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier', 405 | 404: 'airliner', 406 | 405: 'airship, dirigible', 407 | 406: 'altar', 408 | 407: 'ambulance', 409 | 408: 'amphibian, amphibious vehicle', 410 | 409: 'analog clock', 411 | 410: 'apiary, bee house', 412 | 411: 'apron', 413 | 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', 414 | 413: 'assault rifle, assault gun', 415 | 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack', 416 | 415: 'bakery, bakeshop, bakehouse', 417 | 416: 'balance beam, beam', 418 | 417: 'balloon', 419 | 418: 'ballpoint, ballpoint pen, ballpen, Biro', 420 | 419: 'Band Aid', 421 | 420: 'banjo', 422 | 421: 'bannister, banister, balustrade, balusters, handrail', 423 | 422: 'barbell', 424 | 423: 'barber chair', 425 | 424: 'barbershop', 426 | 425: 'barn', 427 | 426: 'barometer', 428 | 427: 'barrel, cask', 429 | 428: 'barrow, garden cart, lawn cart, wheelbarrow', 430 | 429: 'baseball', 431 | 430: 'basketball', 432 | 431: 'bassinet', 433 | 432: 'bassoon', 434 | 433: 'bathing cap, swimming cap', 435 | 434: 'bath towel', 436 | 435: 'bathtub, bathing tub, bath, tub', 437 | 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon', 438 | 437: 'beacon, lighthouse, beacon light, pharos', 439 | 438: 'beaker', 440 | 439: 'bearskin, busby, shako', 441 | 440: 'beer bottle', 442 | 441: 'beer glass', 443 | 442: 'bell cote, bell cot', 444 | 443: 'bib', 445 | 444: 'bicycle-built-for-two, tandem bicycle, tandem', 446 | 445: 'bikini, two-piece', 447 | 446: 'binder, ring-binder', 448 | 447: 'binoculars, field glasses, opera glasses', 449 | 448: 'birdhouse', 450 | 449: 'boathouse', 451 | 450: 'bobsled, bobsleigh, bob', 452 | 451: 'bolo tie, bolo, bola tie, bola', 453 | 452: 'bonnet, poke bonnet', 454 | 453: 'bookcase', 455 | 454: 'bookshop, bookstore, bookstall', 456 | 455: 'bottlecap', 457 | 456: 'bow', 458 | 457: 'bow tie, bow-tie, bowtie', 459 | 458: 'brass, memorial tablet, plaque', 460 | 459: 'brassiere, bra, bandeau', 461 | 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty', 462 | 461: 'breastplate, aegis, egis', 463 | 462: 'broom', 464 | 463: 'bucket, pail', 465 | 464: 'buckle', 466 | 465: 'bulletproof vest', 467 | 466: 'bullet train, bullet', 468 | 467: 'butcher shop, meat market', 469 | 468: 'cab, hack, taxi, taxicab', 470 | 469: 'caldron, cauldron', 471 | 470: 'candle, taper, wax light', 472 | 471: 'cannon', 473 | 472: 'canoe', 474 | 473: 'can opener, tin opener', 475 | 474: 'cardigan', 476 | 475: 'car mirror', 477 | 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig', 478 | 477: "carpenter's kit, tool kit", 479 | 478: 'carton', 480 | 479: 'car wheel', 481 | 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', 482 | 481: 'cassette', 483 | 482: 'cassette player', 484 | 483: 'castle', 485 | 484: 'catamaran', 486 | 485: 'CD player', 487 | 486: 'cello, violoncello', 488 | 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone', 489 | 488: 'chain', 490 | 489: 'chainlink fence', 491 | 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', 492 | 491: 'chain saw, chainsaw', 493 | 492: 'chest', 494 | 493: 'chiffonier, commode', 495 | 494: 'chime, bell, gong', 496 | 495: 'china cabinet, china closet', 497 | 496: 'Christmas stocking', 498 | 497: 'church, church building', 499 | 498: 'cinema, movie theater, movie theatre, movie house, picture palace', 500 | 499: 'cleaver, meat cleaver, chopper', 501 | 500: 'cliff dwelling', 502 | 501: 'cloak', 503 | 502: 'clog, geta, patten, sabot', 504 | 503: 'cocktail shaker', 505 | 504: 'coffee mug', 506 | 505: 'coffeepot', 507 | 506: 'coil, spiral, volute, whorl, helix', 508 | 507: 'combination lock', 509 | 508: 'computer keyboard, keypad', 510 | 509: 'confectionery, confectionary, candy store', 511 | 510: 'container ship, containership, container vessel', 512 | 511: 'convertible', 513 | 512: 'corkscrew, bottle screw', 514 | 513: 'cornet, horn, trumpet, trump', 515 | 514: 'cowboy boot', 516 | 515: 'cowboy hat, ten-gallon hat', 517 | 516: 'cradle', 518 | 517: 'crane', 519 | 518: 'crash helmet', 520 | 519: 'crate', 521 | 520: 'crib, cot', 522 | 521: 'Crock Pot', 523 | 522: 'croquet ball', 524 | 523: 'crutch', 525 | 524: 'cuirass', 526 | 525: 'dam, dike, dyke', 527 | 526: 'desk', 528 | 527: 'desktop computer', 529 | 528: 'dial telephone, dial phone', 530 | 529: 'diaper, nappy, napkin', 531 | 530: 'digital clock', 532 | 531: 'digital watch', 533 | 532: 'dining table, board', 534 | 533: 'dishrag, dishcloth', 535 | 534: 'dishwasher, dish washer, dishwashing machine', 536 | 535: 'disk brake, disc brake', 537 | 536: 'dock, dockage, docking facility', 538 | 537: 'dogsled, dog sled, dog sleigh', 539 | 538: 'dome', 540 | 539: 'doormat, welcome mat', 541 | 540: 'drilling platform, offshore rig', 542 | 541: 'drum, membranophone, tympan', 543 | 542: 'drumstick', 544 | 543: 'dumbbell', 545 | 544: 'Dutch oven', 546 | 545: 'electric fan, blower', 547 | 546: 'electric guitar', 548 | 547: 'electric locomotive', 549 | 548: 'entertainment center', 550 | 549: 'envelope', 551 | 550: 'espresso maker', 552 | 551: 'face powder', 553 | 552: 'feather boa, boa', 554 | 553: 'file, file cabinet, filing cabinet', 555 | 554: 'fireboat', 556 | 555: 'fire engine, fire truck', 557 | 556: 'fire screen, fireguard', 558 | 557: 'flagpole, flagstaff', 559 | 558: 'flute, transverse flute', 560 | 559: 'folding chair', 561 | 560: 'football helmet', 562 | 561: 'forklift', 563 | 562: 'fountain', 564 | 563: 'fountain pen', 565 | 564: 'four-poster', 566 | 565: 'freight car', 567 | 566: 'French horn, horn', 568 | 567: 'frying pan, frypan, skillet', 569 | 568: 'fur coat', 570 | 569: 'garbage truck, dustcart', 571 | 570: 'gasmask, respirator, gas helmet', 572 | 571: 'gas pump, gasoline pump, petrol pump, island dispenser', 573 | 572: 'goblet', 574 | 573: 'go-kart', 575 | 574: 'golf ball', 576 | 575: 'golfcart, golf cart', 577 | 576: 'gondola', 578 | 577: 'gong, tam-tam', 579 | 578: 'gown', 580 | 579: 'grand piano, grand', 581 | 580: 'greenhouse, nursery, glasshouse', 582 | 581: 'grille, radiator grille', 583 | 582: 'grocery store, grocery, food market, market', 584 | 583: 'guillotine', 585 | 584: 'hair slide', 586 | 585: 'hair spray', 587 | 586: 'half track', 588 | 587: 'hammer', 589 | 588: 'hamper', 590 | 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier', 591 | 590: 'hand-held computer, hand-held microcomputer', 592 | 591: 'handkerchief, hankie, hanky, hankey', 593 | 592: 'hard disc, hard disk, fixed disk', 594 | 593: 'harmonica, mouth organ, harp, mouth harp', 595 | 594: 'harp', 596 | 595: 'harvester, reaper', 597 | 596: 'hatchet', 598 | 597: 'holster', 599 | 598: 'home theater, home theatre', 600 | 599: 'honeycomb', 601 | 600: 'hook, claw', 602 | 601: 'hoopskirt, crinoline', 603 | 602: 'horizontal bar, high bar', 604 | 603: 'horse cart, horse-cart', 605 | 604: 'hourglass', 606 | 605: 'iPod', 607 | 606: 'iron, smoothing iron', 608 | 607: "jack-o'-lantern", 609 | 608: 'jean, blue jean, denim', 610 | 609: 'jeep, landrover', 611 | 610: 'jersey, T-shirt, tee shirt', 612 | 611: 'jigsaw puzzle', 613 | 612: 'jinrikisha, ricksha, rickshaw', 614 | 613: 'joystick', 615 | 614: 'kimono', 616 | 615: 'knee pad', 617 | 616: 'knot', 618 | 617: 'lab coat, laboratory coat', 619 | 618: 'ladle', 620 | 619: 'lampshade, lamp shade', 621 | 620: 'laptop, laptop computer', 622 | 621: 'lawn mower, mower', 623 | 622: 'lens cap, lens cover', 624 | 623: 'letter opener, paper knife, paperknife', 625 | 624: 'library', 626 | 625: 'lifeboat', 627 | 626: 'lighter, light, igniter, ignitor', 628 | 627: 'limousine, limo', 629 | 628: 'liner, ocean liner', 630 | 629: 'lipstick, lip rouge', 631 | 630: 'Loafer', 632 | 631: 'lotion', 633 | 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', 634 | 633: "loupe, jeweler's loupe", 635 | 634: 'lumbermill, sawmill', 636 | 635: 'magnetic compass', 637 | 636: 'mailbag, postbag', 638 | 637: 'mailbox, letter box', 639 | 638: 'maillot', 640 | 639: 'maillot, tank suit', 641 | 640: 'manhole cover', 642 | 641: 'maraca', 643 | 642: 'marimba, xylophone', 644 | 643: 'mask', 645 | 644: 'matchstick', 646 | 645: 'maypole', 647 | 646: 'maze, labyrinth', 648 | 647: 'measuring cup', 649 | 648: 'medicine chest, medicine cabinet', 650 | 649: 'megalith, megalithic structure', 651 | 650: 'microphone, mike', 652 | 651: 'microwave, microwave oven', 653 | 652: 'military uniform', 654 | 653: 'milk can', 655 | 654: 'minibus', 656 | 655: 'miniskirt, mini', 657 | 656: 'minivan', 658 | 657: 'missile', 659 | 658: 'mitten', 660 | 659: 'mixing bowl', 661 | 660: 'mobile home, manufactured home', 662 | 661: 'Model T', 663 | 662: 'modem', 664 | 663: 'monastery', 665 | 664: 'monitor', 666 | 665: 'moped', 667 | 666: 'mortar', 668 | 667: 'mortarboard', 669 | 668: 'mosque', 670 | 669: 'mosquito net', 671 | 670: 'motor scooter, scooter', 672 | 671: 'mountain bike, all-terrain bike, off-roader', 673 | 672: 'mountain tent', 674 | 673: 'mouse, computer mouse', 675 | 674: 'mousetrap', 676 | 675: 'moving van', 677 | 676: 'muzzle', 678 | 677: 'nail', 679 | 678: 'neck brace', 680 | 679: 'necklace', 681 | 680: 'nipple', 682 | 681: 'notebook, notebook computer', 683 | 682: 'obelisk', 684 | 683: 'oboe, hautboy, hautbois', 685 | 684: 'ocarina, sweet potato', 686 | 685: 'odometer, hodometer, mileometer, milometer', 687 | 686: 'oil filter', 688 | 687: 'organ, pipe organ', 689 | 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO', 690 | 689: 'overskirt', 691 | 690: 'oxcart', 692 | 691: 'oxygen mask', 693 | 692: 'packet', 694 | 693: 'paddle, boat paddle', 695 | 694: 'paddlewheel, paddle wheel', 696 | 695: 'padlock', 697 | 696: 'paintbrush', 698 | 697: "pajama, pyjama, pj's, jammies", 699 | 698: 'palace', 700 | 699: 'panpipe, pandean pipe, syrinx', 701 | 700: 'paper towel', 702 | 701: 'parachute, chute', 703 | 702: 'parallel bars, bars', 704 | 703: 'park bench', 705 | 704: 'parking meter', 706 | 705: 'passenger car, coach, carriage', 707 | 706: 'patio, terrace', 708 | 707: 'pay-phone, pay-station', 709 | 708: 'pedestal, plinth, footstall', 710 | 709: 'pencil box, pencil case', 711 | 710: 'pencil sharpener', 712 | 711: 'perfume, essence', 713 | 712: 'Petri dish', 714 | 713: 'photocopier', 715 | 714: 'pick, plectrum, plectron', 716 | 715: 'pickelhaube', 717 | 716: 'picket fence, paling', 718 | 717: 'pickup, pickup truck', 719 | 718: 'pier', 720 | 719: 'piggy bank, penny bank', 721 | 720: 'pill bottle', 722 | 721: 'pillow', 723 | 722: 'ping-pong ball', 724 | 723: 'pinwheel', 725 | 724: 'pirate, pirate ship', 726 | 725: 'pitcher, ewer', 727 | 726: "plane, carpenter's plane, woodworking plane", 728 | 727: 'planetarium', 729 | 728: 'plastic bag', 730 | 729: 'plate rack', 731 | 730: 'plow, plough', 732 | 731: "plunger, plumber's helper", 733 | 732: 'Polaroid camera, Polaroid Land camera', 734 | 733: 'pole', 735 | 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', 736 | 735: 'poncho', 737 | 736: 'pool table, billiard table, snooker table', 738 | 737: 'pop bottle, soda bottle', 739 | 738: 'pot, flowerpot', 740 | 739: "potter's wheel", 741 | 740: 'power drill', 742 | 741: 'prayer rug, prayer mat', 743 | 742: 'printer', 744 | 743: 'prison, prison house', 745 | 744: 'projectile, missile', 746 | 745: 'projector', 747 | 746: 'puck, hockey puck', 748 | 747: 'punching bag, punch bag, punching ball, punchball', 749 | 748: 'purse', 750 | 749: 'quill, quill pen', 751 | 750: 'quilt, comforter, comfort, puff', 752 | 751: 'racer, race car, racing car', 753 | 752: 'racket, racquet', 754 | 753: 'radiator', 755 | 754: 'radio, wireless', 756 | 755: 'radio telescope, radio reflector', 757 | 756: 'rain barrel', 758 | 757: 'recreational vehicle, RV, R.V.', 759 | 758: 'reel', 760 | 759: 'reflex camera', 761 | 760: 'refrigerator, icebox', 762 | 761: 'remote control, remote', 763 | 762: 'restaurant, eating house, eating place, eatery', 764 | 763: 'revolver, six-gun, six-shooter', 765 | 764: 'rifle', 766 | 765: 'rocking chair, rocker', 767 | 766: 'rotisserie', 768 | 767: 'rubber eraser, rubber, pencil eraser', 769 | 768: 'rugby ball', 770 | 769: 'rule, ruler', 771 | 770: 'running shoe', 772 | 771: 'safe', 773 | 772: 'safety pin', 774 | 773: 'saltshaker, salt shaker', 775 | 774: 'sandal', 776 | 775: 'sarong', 777 | 776: 'sax, saxophone', 778 | 777: 'scabbard', 779 | 778: 'scale, weighing machine', 780 | 779: 'school bus', 781 | 780: 'schooner', 782 | 781: 'scoreboard', 783 | 782: 'screen, CRT screen', 784 | 783: 'screw', 785 | 784: 'screwdriver', 786 | 785: 'seat belt, seatbelt', 787 | 786: 'sewing machine', 788 | 787: 'shield, buckler', 789 | 788: 'shoe shop, shoe-shop, shoe store', 790 | 789: 'shoji', 791 | 790: 'shopping basket', 792 | 791: 'shopping cart', 793 | 792: 'shovel', 794 | 793: 'shower cap', 795 | 794: 'shower curtain', 796 | 795: 'ski', 797 | 796: 'ski mask', 798 | 797: 'sleeping bag', 799 | 798: 'slide rule, slipstick', 800 | 799: 'sliding door', 801 | 800: 'slot, one-armed bandit', 802 | 801: 'snorkel', 803 | 802: 'snowmobile', 804 | 803: 'snowplow, snowplough', 805 | 804: 'soap dispenser', 806 | 805: 'soccer ball', 807 | 806: 'sock', 808 | 807: 'solar dish, solar collector, solar furnace', 809 | 808: 'sombrero', 810 | 809: 'soup bowl', 811 | 810: 'space bar', 812 | 811: 'space heater', 813 | 812: 'space shuttle', 814 | 813: 'spatula', 815 | 814: 'speedboat', 816 | 815: "spider web, spider's web", 817 | 816: 'spindle', 818 | 817: 'sports car, sport car', 819 | 818: 'spotlight, spot', 820 | 819: 'stage', 821 | 820: 'steam locomotive', 822 | 821: 'steel arch bridge', 823 | 822: 'steel drum', 824 | 823: 'stethoscope', 825 | 824: 'stole', 826 | 825: 'stone wall', 827 | 826: 'stopwatch, stop watch', 828 | 827: 'stove', 829 | 828: 'strainer', 830 | 829: 'streetcar, tram, tramcar, trolley, trolley car', 831 | 830: 'stretcher', 832 | 831: 'studio couch, day bed', 833 | 832: 'stupa, tope', 834 | 833: 'submarine, pigboat, sub, U-boat', 835 | 834: 'suit, suit of clothes', 836 | 835: 'sundial', 837 | 836: 'sunglass', 838 | 837: 'sunglasses, dark glasses, shades', 839 | 838: 'sunscreen, sunblock, sun blocker', 840 | 839: 'suspension bridge', 841 | 840: 'swab, swob, mop', 842 | 841: 'sweatshirt', 843 | 842: 'swimming trunks, bathing trunks', 844 | 843: 'swing', 845 | 844: 'switch, electric switch, electrical switch', 846 | 845: 'syringe', 847 | 846: 'table lamp', 848 | 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle', 849 | 848: 'tape player', 850 | 849: 'teapot', 851 | 850: 'teddy, teddy bear', 852 | 851: 'television, television system', 853 | 852: 'tennis ball', 854 | 853: 'thatch, thatched roof', 855 | 854: 'theater curtain, theatre curtain', 856 | 855: 'thimble', 857 | 856: 'thresher, thrasher, threshing machine', 858 | 857: 'throne', 859 | 858: 'tile roof', 860 | 859: 'toaster', 861 | 860: 'tobacco shop, tobacconist shop, tobacconist', 862 | 861: 'toilet seat', 863 | 862: 'torch', 864 | 863: 'totem pole', 865 | 864: 'tow truck, tow car, wrecker', 866 | 865: 'toyshop', 867 | 866: 'tractor', 868 | 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', 869 | 868: 'tray', 870 | 869: 'trench coat', 871 | 870: 'tricycle, trike, velocipede', 872 | 871: 'trimaran', 873 | 872: 'tripod', 874 | 873: 'triumphal arch', 875 | 874: 'trolleybus, trolley coach, trackless trolley', 876 | 875: 'trombone', 877 | 876: 'tub, vat', 878 | 877: 'turnstile', 879 | 878: 'typewriter keyboard', 880 | 879: 'umbrella', 881 | 880: 'unicycle, monocycle', 882 | 881: 'upright, upright piano', 883 | 882: 'vacuum, vacuum cleaner', 884 | 883: 'vase', 885 | 884: 'vault', 886 | 885: 'velvet', 887 | 886: 'vending machine', 888 | 887: 'vestment', 889 | 888: 'viaduct', 890 | 889: 'violin, fiddle', 891 | 890: 'volleyball', 892 | 891: 'waffle iron', 893 | 892: 'wall clock', 894 | 893: 'wallet, billfold, notecase, pocketbook', 895 | 894: 'wardrobe, closet, press', 896 | 895: 'warplane, military plane', 897 | 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin', 898 | 897: 'washer, automatic washer, washing machine', 899 | 898: 'water bottle', 900 | 899: 'water jug', 901 | 900: 'water tower', 902 | 901: 'whiskey jug', 903 | 902: 'whistle', 904 | 903: 'wig', 905 | 904: 'window screen', 906 | 905: 'window shade', 907 | 906: 'Windsor tie', 908 | 907: 'wine bottle', 909 | 908: 'wing', 910 | 909: 'wok', 911 | 910: 'wooden spoon', 912 | 911: 'wool, woolen, woollen', 913 | 912: 'worm fence, snake fence, snake-rail fence, Virginia fence', 914 | 913: 'wreck', 915 | 914: 'yawl', 916 | 915: 'yurt', 917 | 916: 'web site, website, internet site, site', 918 | 917: 'comic book', 919 | 918: 'crossword puzzle, crossword', 920 | 919: 'street sign', 921 | 920: 'traffic light, traffic signal, stoplight', 922 | 921: 'book jacket, dust cover, dust jacket, dust wrapper', 923 | 922: 'menu', 924 | 923: 'plate', 925 | 924: 'guacamole', 926 | 925: 'consomme', 927 | 926: 'hot pot, hotpot', 928 | 927: 'trifle', 929 | 928: 'ice cream, icecream', 930 | 929: 'ice lolly, lolly, lollipop, popsicle', 931 | 930: 'French loaf', 932 | 931: 'bagel, beigel', 933 | 932: 'pretzel', 934 | 933: 'cheeseburger', 935 | 934: 'hotdog, hot dog, red hot', 936 | 935: 'mashed potato', 937 | 936: 'head cabbage', 938 | 937: 'broccoli', 939 | 938: 'cauliflower', 940 | 939: 'zucchini, courgette', 941 | 940: 'spaghetti squash', 942 | 941: 'acorn squash', 943 | 942: 'butternut squash', 944 | 943: 'cucumber, cuke', 945 | 944: 'artichoke, globe artichoke', 946 | 945: 'bell pepper', 947 | 946: 'cardoon', 948 | 947: 'mushroom', 949 | 948: 'Granny Smith', 950 | 949: 'strawberry', 951 | 950: 'orange', 952 | 951: 'lemon', 953 | 952: 'fig', 954 | 953: 'pineapple, ananas', 955 | 954: 'banana', 956 | 955: 'jackfruit, jak, jack', 957 | 956: 'custard apple', 958 | 957: 'pomegranate', 959 | 958: 'hay', 960 | 959: 'carbonara', 961 | 960: 'chocolate sauce, chocolate syrup', 962 | 961: 'dough', 963 | 962: 'meat loaf, meatloaf', 964 | 963: 'pizza, pizza pie', 965 | 964: 'potpie', 966 | 965: 'burrito', 967 | 966: 'red wine', 968 | 967: 'espresso', 969 | 968: 'cup', 970 | 969: 'eggnog', 971 | 970: 'alp', 972 | 971: 'bubble', 973 | 972: 'cliff, drop, drop-off', 974 | 973: 'coral reef', 975 | 974: 'geyser', 976 | 975: 'lakeside, lakeshore', 977 | 976: 'promontory, headland, head, foreland', 978 | 977: 'sandbar, sand bar', 979 | 978: 'seashore, coast, seacoast, sea-coast', 980 | 979: 'valley, vale', 981 | 980: 'volcano', 982 | 981: 'ballplayer, baseball player', 983 | 982: 'groom, bridegroom', 984 | 983: 'scuba diver', 985 | 984: 'rapeseed', 986 | 985: 'daisy', 987 | 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", 988 | 987: 'corn', 989 | 988: 'acorn', 990 | 989: 'hip, rose hip, rosehip', 991 | 990: 'buckeye, horse chestnut, conker', 992 | 991: 'coral fungus', 993 | 992: 'agaric', 994 | 993: 'gyromitra', 995 | 994: 'stinkhorn, carrion fungus', 996 | 995: 'earthstar', 997 | 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', 998 | 997: 'bolete', 999 | 998: 'ear, spike, capitulum', 1000 | 999: 'toilet tissue, toilet paper, bathroom tissue'} -------------------------------------------------------------------------------- /mobilenetv3-large-1cd25616.pth: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Snowflake-Labs/sfguide-snowpark-pytorch-streamlit-openai-image-rec/7630f6348aba9ad39b0647b78afac1935e7ddc06/mobilenetv3-large-1cd25616.pth -------------------------------------------------------------------------------- /mobilenetv3.py: -------------------------------------------------------------------------------- 1 | """ 2 | Creates a MobileNetV3 Model as defined in: 3 | Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019). 4 | Searching for MobileNetV3 5 | arXiv preprint arXiv:1905.02244. 6 | """ 7 | 8 | import torch.nn as nn 9 | import math 10 | 11 | 12 | __all__ = ['mobilenetv3_large', 'mobilenetv3_small'] 13 | 14 | 15 | def _make_divisible(v, divisor, min_value=None): 16 | """ 17 | This function is taken from the original tf repo. 18 | It ensures that all layers have a channel number that is divisible by 8 19 | It can be seen here: 20 | https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py 21 | :param v: 22 | :param divisor: 23 | :param min_value: 24 | :return: 25 | """ 26 | if min_value is None: 27 | min_value = divisor 28 | new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) 29 | # Make sure that round down does not go down by more than 10%. 30 | if new_v < 0.9 * v: 31 | new_v += divisor 32 | return new_v 33 | 34 | 35 | class h_sigmoid(nn.Module): 36 | def __init__(self, inplace=True): 37 | super(h_sigmoid, self).__init__() 38 | self.relu = nn.ReLU6(inplace=inplace) 39 | 40 | def forward(self, x): 41 | return self.relu(x + 3) / 6 42 | 43 | 44 | class h_swish(nn.Module): 45 | def __init__(self, inplace=True): 46 | super(h_swish, self).__init__() 47 | self.sigmoid = h_sigmoid(inplace=inplace) 48 | 49 | def forward(self, x): 50 | return x * self.sigmoid(x) 51 | 52 | 53 | class SELayer(nn.Module): 54 | def __init__(self, channel, reduction=4): 55 | super(SELayer, self).__init__() 56 | self.avg_pool = nn.AdaptiveAvgPool2d(1) 57 | self.fc = nn.Sequential( 58 | nn.Linear(channel, _make_divisible(channel // reduction, 8)), 59 | nn.ReLU(inplace=True), 60 | nn.Linear(_make_divisible(channel // reduction, 8), channel), 61 | h_sigmoid() 62 | ) 63 | 64 | def forward(self, x): 65 | b, c, _, _ = x.size() 66 | y = self.avg_pool(x).view(b, c) 67 | y = self.fc(y).view(b, c, 1, 1) 68 | return x * y 69 | 70 | 71 | def conv_3x3_bn(inp, oup, stride): 72 | return nn.Sequential( 73 | nn.Conv2d(inp, oup, 3, stride, 1, bias=False), 74 | nn.BatchNorm2d(oup), 75 | h_swish() 76 | ) 77 | 78 | 79 | def conv_1x1_bn(inp, oup): 80 | return nn.Sequential( 81 | nn.Conv2d(inp, oup, 1, 1, 0, bias=False), 82 | nn.BatchNorm2d(oup), 83 | h_swish() 84 | ) 85 | 86 | 87 | class InvertedResidual(nn.Module): 88 | def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs): 89 | super(InvertedResidual, self).__init__() 90 | assert stride in [1, 2] 91 | 92 | self.identity = stride == 1 and inp == oup 93 | 94 | if inp == hidden_dim: 95 | self.conv = nn.Sequential( 96 | # dw 97 | nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), 98 | nn.BatchNorm2d(hidden_dim), 99 | h_swish() if use_hs else nn.ReLU(inplace=True), 100 | # Squeeze-and-Excite 101 | SELayer(hidden_dim) if use_se else nn.Identity(), 102 | # pw-linear 103 | nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), 104 | nn.BatchNorm2d(oup), 105 | ) 106 | else: 107 | self.conv = nn.Sequential( 108 | # pw 109 | nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), 110 | nn.BatchNorm2d(hidden_dim), 111 | h_swish() if use_hs else nn.ReLU(inplace=True), 112 | # dw 113 | nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), 114 | nn.BatchNorm2d(hidden_dim), 115 | # Squeeze-and-Excite 116 | SELayer(hidden_dim) if use_se else nn.Identity(), 117 | h_swish() if use_hs else nn.ReLU(inplace=True), 118 | # pw-linear 119 | nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), 120 | nn.BatchNorm2d(oup), 121 | ) 122 | 123 | def forward(self, x): 124 | if self.identity: 125 | return x + self.conv(x) 126 | else: 127 | return self.conv(x) 128 | 129 | 130 | class MobileNetV3(nn.Module): 131 | def __init__(self, cfgs, mode, num_classes=1000, width_mult=1.): 132 | super(MobileNetV3, self).__init__() 133 | # setting of inverted residual blocks 134 | self.cfgs = cfgs 135 | assert mode in ['large', 'small'] 136 | 137 | # building first layer 138 | input_channel = _make_divisible(16 * width_mult, 8) 139 | layers = [conv_3x3_bn(3, input_channel, 2)] 140 | # building inverted residual blocks 141 | block = InvertedResidual 142 | for k, t, c, use_se, use_hs, s in self.cfgs: 143 | output_channel = _make_divisible(c * width_mult, 8) 144 | exp_size = _make_divisible(input_channel * t, 8) 145 | layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs)) 146 | input_channel = output_channel 147 | self.features = nn.Sequential(*layers) 148 | # building last several layers 149 | self.conv = conv_1x1_bn(input_channel, exp_size) 150 | self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) 151 | output_channel = {'large': 1280, 'small': 1024} 152 | output_channel = _make_divisible(output_channel[mode] * width_mult, 8) if width_mult > 1.0 else output_channel[mode] 153 | self.classifier = nn.Sequential( 154 | nn.Linear(exp_size, output_channel), 155 | h_swish(), 156 | nn.Dropout(0.2), 157 | nn.Linear(output_channel, num_classes), 158 | ) 159 | 160 | self._initialize_weights() 161 | 162 | def forward(self, x): 163 | x = self.features(x) 164 | x = self.conv(x) 165 | x = self.avgpool(x) 166 | x = x.view(x.size(0), -1) 167 | x = self.classifier(x) 168 | return x 169 | 170 | def _initialize_weights(self): 171 | for m in self.modules(): 172 | if isinstance(m, nn.Conv2d): 173 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels 174 | m.weight.data.normal_(0, math.sqrt(2. / n)) 175 | if m.bias is not None: 176 | m.bias.data.zero_() 177 | elif isinstance(m, nn.BatchNorm2d): 178 | m.weight.data.fill_(1) 179 | m.bias.data.zero_() 180 | elif isinstance(m, nn.Linear): 181 | m.weight.data.normal_(0, 0.01) 182 | m.bias.data.zero_() 183 | 184 | 185 | def mobilenetv3_large(**kwargs): 186 | """ 187 | Constructs a MobileNetV3-Large model 188 | """ 189 | cfgs = [ 190 | # k, t, c, SE, HS, s 191 | [3, 1, 16, 0, 0, 1], 192 | [3, 4, 24, 0, 0, 2], 193 | [3, 3, 24, 0, 0, 1], 194 | [5, 3, 40, 1, 0, 2], 195 | [5, 3, 40, 1, 0, 1], 196 | [5, 3, 40, 1, 0, 1], 197 | [3, 6, 80, 0, 1, 2], 198 | [3, 2.5, 80, 0, 1, 1], 199 | [3, 2.3, 80, 0, 1, 1], 200 | [3, 2.3, 80, 0, 1, 1], 201 | [3, 6, 112, 1, 1, 1], 202 | [3, 6, 112, 1, 1, 1], 203 | [5, 6, 160, 1, 1, 2], 204 | [5, 6, 160, 1, 1, 1], 205 | [5, 6, 160, 1, 1, 1] 206 | ] 207 | return MobileNetV3(cfgs, mode='large', **kwargs) 208 | 209 | 210 | def mobilenetv3_small(**kwargs): 211 | """ 212 | Constructs a MobileNetV3-Small model 213 | """ 214 | cfgs = [ 215 | # k, t, c, SE, HS, s 216 | [3, 1, 16, 1, 0, 2], 217 | [3, 4.5, 24, 0, 0, 2], 218 | [3, 3.67, 24, 0, 0, 1], 219 | [5, 4, 40, 1, 1, 2], 220 | [5, 6, 40, 1, 1, 1], 221 | [5, 6, 40, 1, 1, 1], 222 | [5, 3, 48, 1, 1, 1], 223 | [5, 3, 48, 1, 1, 1], 224 | [5, 6, 96, 1, 1, 2], 225 | [5, 6, 96, 1, 1, 1], 226 | [5, 6, 96, 1, 1, 1], 227 | ] 228 | 229 | return MobileNetV3(cfgs, mode='small', **kwargs) 230 | 231 | --------------------------------------------------------------------------------