├── Code
├── GUIApp.py
├── SortTracker.py
├── classify_track_count.py
├── extras
│ ├── coco.data
│ ├── coco.names
│ ├── multi_classify.cfg
│ ├── multi_classify.data
│ ├── multi_classify.names
│ └── yolov4.cfg
├── media
│ └── Pics_Readme
│ │ ├── GUI.png
│ │ └── fulldemo.gif
└── requirements.txt
├── LICENSE
├── README.md
└── setup.bash
/Code/GUIApp.py:
--------------------------------------------------------------------------------
1 | from PyQt5 import QtCore, QtGui, QtWidgets
2 | import cv2
3 | from classify_track_count import *
4 | import os
5 |
6 |
7 | class Ui_MainWindow(object):
8 | def setupUi(self, MainWindow):
9 | MainWindow.setObjectName("MainWindow")
10 | MainWindow.resize(800, 600)
11 | MainWindow.setWindowIcon(QtGui.QIcon("logo.png"))
12 | self.centralwidget = QtWidgets.QWidget(MainWindow)
13 | self.centralwidget.setObjectName("centralwidget")
14 | self.gridLayoutWidget = QtWidgets.QWidget(self.centralwidget)
15 | self.gridLayoutWidget.setGeometry(QtCore.QRect(100, 120, 600, 250))
16 | self.gridLayoutWidget.setObjectName("gridLayoutWidget")
17 | self.gridLayout = QtWidgets.QGridLayout(self.gridLayoutWidget)
18 | self.gridLayout.setContentsMargins(0, 0, 0, 20)
19 | self.gridLayout.setObjectName("gridLayout")
20 | self.progress = QtWidgets.QProgressBar(self.centralwidget)
21 | self.progress.setGeometry(QtCore.QRect(300, 330, 211, 21))
22 | self.progress.setProperty("value", 0)
23 | self.progress.setObjectName("progress")
24 | self.label2 = QtWidgets.QLabel(self.gridLayoutWidget)
25 | font = QtGui.QFont()
26 | font.setPointSize(10)
27 | self.label2.setFont(font)
28 | self.label2.setObjectName("label2")
29 | self.gridLayout.addWidget(self.label2, 2, 0, 1, 1, QtCore.Qt.AlignHCenter)
30 | self.button_roi = QtWidgets.QPushButton(self.gridLayoutWidget)
31 | font = QtGui.QFont()
32 | font.setPointSize(10)
33 | self.button_roi.setFont(font)
34 | self.button_roi.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor))
35 | self.button_roi.setObjectName("button_roi")
36 | self.gridLayout.addWidget(self.button_roi, 2, 2, 1, 1)
37 | self.button_upload = QtWidgets.QPushButton(self.gridLayoutWidget)
38 | font = QtGui.QFont()
39 | font.setPointSize(10)
40 | self.button_upload.setFont(font)
41 | self.button_upload.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor))
42 | self.button_upload.setObjectName("button_upload")
43 | self.gridLayout.addWidget(self.button_upload, 0, 2, 1, 1)
44 | self.input2 = QtWidgets.QLineEdit(self.gridLayoutWidget)
45 | font = QtGui.QFont()
46 | font.setPointSize(10)
47 | self.input2.setFont(font)
48 | self.input2.setObjectName("input2")
49 | self.gridLayout.addWidget(self.input2, 2, 1, 1, 1)
50 | self.input1 = QtWidgets.QLineEdit(self.gridLayoutWidget)
51 | font = QtGui.QFont()
52 | font.setPointSize(10)
53 | self.input1.setFont(font)
54 | self.input1.setObjectName("input1")
55 | self.gridLayout.addWidget(self.input1, 0, 1, 1, 1)
56 | self.label1 = QtWidgets.QLabel(self.gridLayoutWidget)
57 | font = QtGui.QFont()
58 | font.setPointSize(10)
59 | self.label1.setFont(font)
60 | self.label1.setObjectName("label1")
61 | self.gridLayout.addWidget(self.label1, 0, 0, 1, 1)
62 | self.start = QtWidgets.QPushButton(self.gridLayoutWidget)
63 | font = QtGui.QFont()
64 | font.setPointSize(10)
65 | self.start.setFont(font)
66 | self.start.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor))
67 | self.start.setObjectName("start")
68 | self.gridLayout.addWidget(self.start, 3, 1, 1, 1)
69 | self.show_results = QtWidgets.QPushButton(self.centralwidget)
70 | self.show_results.setGeometry(QtCore.QRect(240, 450, 320, 40))
71 | font = QtGui.QFont()
72 | font.setPointSize(10)
73 | self.show_results.setFont(font)
74 | self.show_results.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor))
75 | self.show_results.setObjectName("show_results")
76 | self.show_results.hide()
77 | self.loading = QtWidgets.QLabel(self.centralwidget)
78 | self.loading.setGeometry(QtCore.QRect(290, 400, 320, 40))
79 | font.setPointSize(14)
80 | self.loading.setFont(font)
81 | self.loading.setObjectName("loading")
82 | self.loading.hide()
83 | MainWindow.setCentralWidget(self.centralwidget)
84 | self.menubar = QtWidgets.QMenuBar(MainWindow)
85 | self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 18))
86 | self.menubar.setObjectName("menubar")
87 | MainWindow.setMenuBar(self.menubar)
88 | self.statusbar = QtWidgets.QStatusBar(MainWindow)
89 | self.statusbar.setObjectName("statusbar")
90 | MainWindow.setStatusBar(self.statusbar)
91 |
92 | self.retranslateUi(MainWindow)
93 | QtCore.QMetaObject.connectSlotsByName(MainWindow)
94 |
95 | self.button_upload.clicked.connect(self.upload_video)
96 | self.button_roi.clicked.connect(self.select_roi)
97 | self.start.clicked.connect(self.run_darknet)
98 | self.show_results.clicked.connect(self.open_file)
99 |
100 | def retranslateUi(self, MainWindow):
101 | _translate = QtCore.QCoreApplication.translate
102 | MainWindow.setWindowTitle(_translate("MainWindow", "Vehicle Classifier"))
103 | self.label2.setText(_translate("MainWindow", "ROI selected: "))
104 | self.button_roi.setText(_translate("MainWindow", "Choose ROI"))
105 | self.button_upload.setText(_translate("MainWindow", "Upload video"))
106 | self.input2.setText(_translate("MainWindow", ""))
107 | self.input1.setText(_translate("MainWindow", ""))
108 | self.label1.setText(_translate("MainWindow", "File Location: "))
109 | self.start.setText(_translate("MainWindow", "START"))
110 | self.loading.setText(_translate("MainWindow", "This might take a while..."))
111 | self.show_results.setText(_translate("MainWindow", "Show Results"))
112 |
113 | def clear_field(self):
114 | self.input1.setText("")
115 | self.input2.setText("")
116 |
117 | def upload_video(self):
118 | options = QtWidgets.QFileDialog.Options()
119 | options |= QtWidgets.QFileDialog.DontUseNativeDialog
120 | fileName, _ = QtWidgets.QFileDialog.getOpenFileName(
121 | None,
122 | "Upload Video File",
123 | "",
124 | "All Files (*);;Video Files (*.mp4);;Video Files (*.avi)",
125 | options=options)
126 | if fileName:
127 | self.input1.setText(fileName)
128 | self.fileName = fileName
129 |
130 | def select_roi(self):
131 | try:
132 | # Mouse event function
133 | def click_event(event, x, y, flags, param):
134 | if event == cv2.EVENT_LBUTTONDOWN:
135 | self.points.append((x,y))
136 | if event == cv2.EVENT_LBUTTONUP:
137 | self.points.append((x,y))
138 | print(self.points)
139 | #if len(self.points)%2 == 2:
140 | self.p1 = self.points[len(self.points)-2]
141 | self.p2 = self.points[len(self.points)-1]
142 | cv2.rectangle(img, self.p1, self.p2,(0,255,0), 2 )
143 | self.input2.setText("("+str(self.p1[0])+","+str(self.p1[1])+")"+ ", "+"("+str(self.p2[0])+","+str(self.p2[1])+")")
144 | #points.clear()
145 | #print(p1 , p2)
146 | #cv2.imshow("frame", img)
147 |
148 |
149 | cap = cv2.VideoCapture(self.fileName)
150 | _, img = cap.read()
151 | cv2.putText(img, "Click and drag to select ROI", (20,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 2)
152 | cv2.putText(img, "Click 'Enter' to Proceed", (20,60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 2)
153 | cv2.imshow("frame", img)
154 | self.points = []
155 | cv2.setMouseCallback("frame", click_event)
156 | key = cv2.waitKey(0)
157 | if key == ord('q'):
158 | cv2.destroyAllWindows()
159 |
160 | except:
161 | msg = QtWidgets.QMessageBox()
162 | msg.setWindowTitle("Error")
163 | msg.setWindowIcon(QtGui.QIcon("logo.png"))
164 | msg.setText("File type is not supported")
165 | msg.setIcon(QtWidgets.QMessageBox.Warning)
166 | msg.buttonClicked.connect(self.clear_field)
167 | x = msg.exec_()
168 |
169 | def run_darknet(self):
170 | self.loading.show()
171 | self.results, self.file_loc = YOLO(self.p1 , self.p2 , self.progress , self.fileName)#str(self.input1.text()), str(self.input2.text()))
172 | if self.results:
173 | self.loading.hide()
174 | self.show_results.show()
175 | print("Results obtained!!")
176 |
177 | def open_file(self):
178 | os.startfile(self.file_loc)
179 |
180 |
181 | if __name__ == "__main__":
182 | import sys
183 | app = QtWidgets.QApplication(sys.argv)
184 | MainWindow = QtWidgets.QMainWindow()
185 | ui = Ui_MainWindow()
186 | ui.setupUi(MainWindow)
187 | MainWindow.show()
188 | sys.exit(app.exec_())
189 |
--------------------------------------------------------------------------------
/Code/SortTracker.py:
--------------------------------------------------------------------------------
1 | """
2 | SORT: A Simple, Online and Realtime Tracker
3 | Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai
4 | This program is free software: you can redistribute it and/or modify
5 | it under the terms of the GNU General Public License as published by
6 | the Free Software Foundation, either version 3 of the License, or
7 | (at your option) any later version.
8 | This program is distributed in the hope that it will be useful,
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 | GNU General Public License for more details.
12 | You should have received a copy of the GNU General Public License
13 | along with this program. If not, see .
14 | """
15 | from __future__ import print_function
16 |
17 | import os
18 | import numpy as np
19 | import matplotlib
20 | matplotlib.use('TkAgg')
21 | import matplotlib.pyplot as plt
22 | import matplotlib.patches as patches
23 | from skimage import io
24 |
25 | import glob
26 | import time
27 | import argparse
28 | from filterpy.kalman import KalmanFilter
29 |
30 | try:
31 | from numba import jit
32 | except:
33 | def jit(func):
34 | return func
35 |
36 | np.random.seed(0)
37 |
38 |
39 | def linear_assignment(cost_matrix):
40 | try:
41 | import lap
42 | _, x, y = lap.lapjv(cost_matrix, extend_cost=True)
43 | return np.array([[y[i],i] for i in x if i >= 0]) #
44 | except ImportError:
45 | from scipy.optimize import linear_sum_assignment
46 | x, y = linear_sum_assignment(cost_matrix)
47 | return np.array(list(zip(x, y)))
48 |
49 |
50 | @jit
51 | def iou(bb_test, bb_gt):
52 | # current frame(detections) , past frame (trackers)
53 | # x increases as we go to the right and y increases as we go down
54 | # iou = intersection/(rect1 + rect2 - intersection)
55 | """
56 | Computes IUO between two bboxes in the form [x1,y1,x2,y2]
57 | """
58 | xx1 = np.maximum(bb_test[0], bb_gt[0])
59 | yy1 = np.maximum(bb_test[1], bb_gt[1])
60 | xx2 = np.minimum(bb_test[2], bb_gt[2])
61 | yy2 = np.minimum(bb_test[3], bb_gt[3])
62 | w = np.maximum(0., xx2 - xx1)
63 | h = np.maximum(0., yy2 - yy1)
64 | wh = w * h
65 | o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1])
66 | + (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh)
67 | return(o)
68 |
69 |
70 | def convert_bbox_to_z(bbox):
71 | """
72 | Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
73 | [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
74 | the aspect ratio
75 | """
76 | w = bbox[2] - bbox[0]
77 | h = bbox[3] - bbox[1]
78 | x = bbox[0] + w/2.
79 | y = bbox[1] + h/2.
80 | s = w * h #scale is just area
81 | r = w / float(h)
82 | return np.array([x, y, s, r]).reshape((4, 1))
83 |
84 |
85 | def convert_x_to_bbox(x,score=None):
86 | """
87 | Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
88 | [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
89 | """
90 | w = np.sqrt(x[2] * x[3])
91 | h = x[2] / w
92 | if(score==None):
93 | return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
94 | else:
95 | return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
96 |
97 |
98 | class KalmanBoxTracker(object):
99 | """
100 | This class represents the internal state of individual tracked objects observed as bbox.
101 | """
102 | count = 0
103 | def __init__(self,bbox):
104 | """
105 | Initialises a tracker using initial bounding box.
106 | """
107 | #define constant velocity model
108 | self.kf = KalmanFilter(dim_x=7, dim_z=4)
109 | self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
110 | self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
111 |
112 | self.kf.R[2:,2:] *= 10.
113 | self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
114 | self.kf.P *= 10.
115 | self.kf.Q[-1,-1] *= 0.01
116 | self.kf.Q[4:,4:] *= 0.01
117 |
118 | self.kf.x[:4] = convert_bbox_to_z(bbox)
119 | self.time_since_update = 0
120 | self.id = KalmanBoxTracker.count
121 | KalmanBoxTracker.count += 1
122 | self.history = []
123 | self.hits = 0
124 | self.hit_streak = 0
125 | self.age = 0
126 |
127 | def update(self,bbox):
128 | """
129 | Updates the state vector with observed bbox.
130 | """
131 | self.time_since_update = 0
132 | self.history = []
133 | self.hits += 1
134 | self.hit_streak += 1
135 | self.kf.update(convert_bbox_to_z(bbox))
136 |
137 | def predict(self):
138 | """
139 | Advances the state vector and returns the predicted bounding box estimate.
140 | """
141 | if((self.kf.x[6]+self.kf.x[2])<=0):
142 | self.kf.x[6] *= 0.0
143 | self.kf.predict()
144 | self.age += 1
145 | if(self.time_since_update>0):
146 | self.hit_streak = 0
147 | self.time_since_update += 1
148 | self.history.append(convert_x_to_bbox(self.kf.x))
149 | return self.history[-1]
150 |
151 | def get_state(self):
152 | """
153 | Returns the current bounding box estimate.
154 | """
155 | return convert_x_to_bbox(self.kf.x)
156 |
157 |
158 | def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
159 | """
160 | Assigns detections to tracked object (both represented as bounding boxes)
161 | Returns 3 lists of matches, unmatched_detections and unmatched_trackers
162 | """
163 | if(len(trackers)==0):
164 | return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
165 | iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
166 |
167 | for d,det in enumerate(detections):
168 | for t,trk in enumerate(trackers):
169 | iou_matrix[d,t] = iou(det,trk)
170 |
171 | if min(iou_matrix.shape) > 0:
172 | a = (iou_matrix > iou_threshold).astype(np.int32)
173 | if a.sum(1).max() == 1 and a.sum(0).max() == 1:
174 | matched_indices = np.stack(np.where(a), axis=1)
175 | else:
176 | matched_indices = linear_assignment(-iou_matrix)
177 | else:
178 | matched_indices = np.empty(shape=(0,2))
179 |
180 | unmatched_detections = []
181 | for d, det in enumerate(detections):
182 | # for unmatched dets we use matched_indices[:,0] because matched indices store associations found as [detection , tracker]
183 | if(d not in matched_indices[:,0]):
184 | unmatched_detections.append(d)
185 | unmatched_trackers = []
186 | for t, trk in enumerate(trackers):
187 | if(t not in matched_indices[:,1]):
188 | unmatched_trackers.append(t)
189 |
190 | #filter out matched with low IOU
191 | matches = []
192 | for m in matched_indices:
193 | if(iou_matrix[m[0], m[1]]= self.min_hits or self.frame_count <= self.min_hits):
256 | ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
257 | i -= 1
258 | # remove dead tracklet
259 | if(trk.time_since_update > self.max_age):
260 | self.trackers.pop(i)
261 | if(len(ret)>0):
262 | return np.concatenate(ret)
263 | return np.empty((0,5))
264 |
265 | def parse_args():
266 | """Parse input arguments."""
267 | parser = argparse.ArgumentParser(description='SORT demo')
268 | parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
269 | parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data')
270 | parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train')
271 | args = parser.parse_args()
272 | return args
273 |
274 | if __name__ == '__main__':
275 | # all train
276 | args = parse_args()
277 | display = args.display
278 | phase = args.phase
279 | total_time = 0.0
280 | total_frames = 0
281 | colours = np.random.rand(32, 3) #used only for display
282 | if(display):
283 | if not os.path.exists('mot_benchmark'):
284 | print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
285 | exit()
286 | plt.ion()
287 | fig = plt.figure()
288 | ax1 = fig.add_subplot(111, aspect='equal')
289 |
290 | if not os.path.exists('output'):
291 | os.makedirs('output')
292 | pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt')
293 | for seq_dets_fn in glob.glob(pattern):
294 | mot_tracker = Sort() #create instance of the SORT tracker
295 | seq_dets = np.loadtxt(seq_dets_fn, delimiter=',')
296 | seq = seq_dets_fn[pattern.find('*'):].split('/')[0]
297 |
298 | with open('output/%s.txt'%(seq),'w') as out_file:
299 | print("Processing %s."%(seq))
300 | for frame in range(int(seq_dets[:,0].max())):
301 | frame += 1 #detection and frame numbers begin at 1
302 | dets = seq_dets[seq_dets[:, 0]==frame, 2:7]
303 | dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
304 | total_frames += 1
305 |
306 | if(display):
307 | fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase, seq, frame)
308 | im =io.imread(fn)
309 | ax1.imshow(im)
310 | plt.title(seq + ' Tracked Targets')
311 |
312 | start_time = time.time()
313 | trackers = mot_tracker.update(dets)
314 | cycle_time = time.time() - start_time
315 | total_time += cycle_time
316 |
317 | for d in trackers:
318 | print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
319 | if(display):
320 | d = d.astype(np.int32)
321 | ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
322 |
323 | if(display):
324 | fig.canvas.flush_events()
325 | plt.draw()
326 | ax1.cla()
327 |
328 | print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))
329 |
330 | if(display):
331 | print("Note: to get real runtime results run without the option: --display")
332 |
--------------------------------------------------------------------------------
/Code/classify_track_count.py:
--------------------------------------------------------------------------------
1 | from ctypes import *
2 | import math
3 | import random
4 | import os
5 | import cv2
6 | import numpy as np
7 | import time
8 | import darknet
9 | import csv
10 | import time
11 |
12 | # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.
13 | from SortTracker import *
14 | tracker = Sort()
15 | memory = {}
16 | counter = 0
17 | # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.
18 |
19 | #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
20 |
21 | # Return true if line segments AB and CD intersect
22 | def intersect(A,B,C,D):
23 | return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
24 |
25 | def ccw(A,B,C):
26 | return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0])
27 |
28 | #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
29 |
30 |
31 | def convertBack(x, y, w, h):
32 | xmin = int(round(x - (w / 2)))
33 | xmax = int(round(x + (w / 2)))
34 | ymin = int(round(y - (h / 2)))
35 | ymax = int(round(y + (h / 2)))
36 | return xmin, ymin, xmax, ymax
37 |
38 |
39 | def cvDrawBoxes(detections, img):
40 | for detection in detections:
41 | x, y, w, h = detection[2][0],\
42 | detection[2][1],\
43 | detection[2][2],\
44 | detection[2][3]
45 | xmin, ymin, xmax, ymax = convertBack(
46 | float(x), float(y), float(w), float(h))
47 | pt1 = (xmin, ymin)
48 | pt2 = (xmax, ymax)
49 | if (detection[1] * 100) > 90:
50 | cv2.rectangle(img, pt1, pt2, (0, 255, 0), 1)
51 | cv2.putText(img,
52 | detection[0].decode() +
53 | " [" + str(round(detection[1] * 100, 2)) + "]",
54 | (pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
55 | [0, 255, 0], 2)
56 | return img
57 |
58 | netMain = None
59 | metaMain = None
60 | altNames = None
61 |
62 | netMain1 = None
63 | metaMain1 = None
64 | altNames1 = None
65 |
66 | car_cnt = 0
67 | truck_cnt = 0
68 | motorbike_cnt = 0
69 | bus_cnt = 0
70 | entry = {}
71 | speed = 0
72 | time_last = 0
73 | last_count = 0
74 | count_inc = 0
75 | time_interval = 0
76 | twoaxel = 0
77 | threeaxel = 0
78 | fouraxel = 0
79 | fiveaxel = 0
80 | sixaxel = 0
81 | cur_frame = 0
82 |
83 | def YOLO(roipt1 , roipt2 , progressObj , filename):
84 | global metaMain, netMain, altNames , metaMain1 , netMain1 , altNames1 , car_cnt , truck_cnt , motorbike_cnt , bus_cnt , time_last , last_count , count_inc , cur_frame , time_interval , memory , counter , twoaxel, threeaxel, fouraxel, fiveaxel, sixaxel
85 | configPath = "./cfg/yolov4.cfg"
86 | weightPath = "./yolov4.weights"
87 | metaPath = "./cfg/coco.data"
88 |
89 | configPath1 = "./cfg/multi_classify.cfg"
90 | weightPath1 = "./weights/multiclassify_4000.weights"
91 | metaPath1 = "./data/multi_classify.data"
92 |
93 | if not os.path.exists(configPath):
94 | raise ValueError("Invalid config path `" +
95 | os.path.abspath(configPath)+"`")
96 | if not os.path.exists(weightPath):
97 | raise ValueError("Invalid weight path `" +
98 | os.path.abspath(weightPath)+"`")
99 | if not os.path.exists(metaPath):
100 | raise ValueError("Invalid data file path `" +
101 | os.path.abspath(metaPath)+"`")
102 | if netMain is None:
103 | netMain = darknet.load_net_custom(configPath.encode(
104 | "ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
105 | if metaMain is None:
106 | metaMain = darknet.load_meta(metaPath.encode("ascii"))
107 | if altNames is None:
108 | try:
109 | with open(metaPath) as metaFH:
110 | metaContents = metaFH.read()
111 | import re
112 | match = re.search("names *= *(.*)$", metaContents,
113 | re.IGNORECASE | re.MULTILINE)
114 | if match:
115 | result = match.group(1)
116 | else:
117 | result = None
118 | try:
119 | if os.path.exists(result):
120 | with open(result) as namesFH:
121 | namesList = namesFH.read().strip().split("\n")
122 | altNames = [x.strip() for x in namesList]
123 | except TypeError:
124 | pass
125 | except Exception:
126 | pass
127 |
128 |
129 |
130 | if not os.path.exists(configPath1):
131 | raise ValueError("Invalid config path `" +
132 | os.path.abspath(configPath1)+"`")
133 | if not os.path.exists(weightPath1):
134 | raise ValueError("Invalid weight path `" +
135 | os.path.abspath(weightPath1)+"`")
136 | if not os.path.exists(metaPath1):
137 | raise ValueError("Invalid data file path `" +
138 | os.path.abspath(metaPath1)+"`")
139 | if netMain1 is None:
140 | netMain1 = darknet.load_net_custom(configPath1.encode(
141 | "ascii"), weightPath1.encode("ascii"), 0, 1) # batch size = 1
142 | if metaMain1 is None:
143 | metaMain1 = darknet.load_meta(metaPath1.encode("ascii"))
144 | if altNames1 is None:
145 | try:
146 | with open(metaPath1) as metaFH:
147 | metaContents = metaFH.read()
148 | import re
149 | match = re.search("names *= *(.*)$", metaContents,
150 | re.IGNORECASE | re.MULTILINE)
151 | if match:
152 | result = match.group(1)
153 | else:
154 | result = None
155 | try:
156 | if os.path.exists(result):
157 | with open(result) as namesFH:
158 | namesList = namesFH.read().strip().split("\n")
159 | altNames1 = [x.strip() for x in namesList]
160 | except TypeError:
161 | pass
162 | except Exception:
163 | pass
164 |
165 |
166 | cap = cv2.VideoCapture(filename)
167 | print(cap.get(cv2.CAP_PROP_FPS))
168 | tot_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
169 | cap.set(3, 1280)
170 | cap.set(4, 720)
171 | out = cv2.VideoWriter(
172 | "axelCount_output.avi", cv2.VideoWriter_fourcc(*"MJPG"), 10.0,
173 | (darknet.network_width(netMain), darknet.network_height(netMain)))
174 | print("Starting the YOLO loop...")
175 |
176 | # Create an image we reuse for each detect
177 | darknet_image = darknet.make_image(darknet.network_width(netMain),
178 | darknet.network_height(netMain),3)
179 |
180 | darknet_image1 = darknet.make_image(darknet.network_width(netMain),
181 | darknet.network_height(netMain),3)
182 |
183 | while True:
184 | print(cur_frame*100/tot_frames)
185 | progressObj.setProperty("value", cur_frame*100/tot_frames)
186 | prev_time = time.time()
187 | ret, frame_read = cap.read()
188 | cur_frame+=1
189 | if ret:
190 | ROI = np.copy(frame_read)
191 | ROI[: , : , :] = 0
192 | reqdRegion = np.copy(frame_read)
193 | reqdRegion[: , : , :] = 0
194 | roipi1x = roipt1[0]
195 | roipt1y = roipt1[1]
196 | roipt2x = roipt2[0]
197 | roipt2y = roipt2[1]
198 | #region = frame_read[240:790 , 400:1400]
199 | #ROI[240:790 , 400:1400] = region
200 | #cv2.rectangle(frame_read , (400 , 240) , (1400 , 790) , (173 , 50, 200) , 2)
201 | region = frame_read[roipt1y:roipt2y , roipi1x:roipt2x]
202 | ROI[roipt1y:roipt2y , roipi1x:roipt2x] = region
203 | cv2.rectangle(frame_read , roipt1 , roipt2 , (173 , 50, 200) , 2)
204 | frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB)
205 |
206 | frame_resized = cv2.resize(frame_rgb,
207 | (darknet.network_width(netMain),
208 | darknet.network_height(netMain)),
209 | interpolation=cv2.INTER_LINEAR)
210 | ROI_resized = cv2.resize(ROI,
211 | (darknet.network_width(netMain),
212 | darknet.network_height(netMain)),
213 | interpolation=cv2.INTER_LINEAR)
214 | reqdRegion_resized = cv2.resize(reqdRegion,
215 | (darknet.network_width(netMain),
216 | darknet.network_height(netMain)),
217 | interpolation=cv2.INTER_LINEAR)
218 |
219 | darknet.copy_image_from_bytes(darknet_image , ROI_resized.tobytes())
220 |
221 | detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.25)
222 | image = cvDrawBoxes(detections, frame_resized)
223 | image_clean = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
224 | image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
225 |
226 | # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.
227 | dets = []
228 | full_dets=[]
229 | if len(detections) > 0:
230 | # loop over the indexes we are keeping
231 | for i in range (0,len(detections)):
232 | if detections[i][0].decode() != 'person':
233 | #print(len(detections))
234 | (x, y) = (detections[i][2][0], detections[i][2][1])
235 | (w, h) = (detections[i][2][2] , detections[i][2][3] )
236 | dets.append([float(x-w/2), float(y-h/2), float(x+w/2), float(y+h/2), float(detections[i][1])])
237 | full_dets.append([int((float(x-w/2)+float(x+w/2))/2) , int((float(y-h/2)+float(y+h/2))/2), detections[i][0].decode()])
238 | #print(np.shape(dets))
239 | #print(full_dets)
240 |
241 | print(full_dets)
242 | print('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>')
243 | dets = np.asarray(dets)
244 | print(dets)
245 | print("##################################")
246 | tracks = tracker.update(dets)
247 | #print(tracks)
248 |
249 | boxes = []
250 | indexIDs = []
251 | c = []
252 | previous = memory.copy()
253 | memory = {}
254 |
255 | for track in tracks:
256 | # As boxes co-ordinates and indexes are appended one by one we are storing them
257 | # in a dictionary
258 | #print(track)
259 | for i , det_cent in enumerate(full_dets):
260 | euclidean_distance = math.sqrt( (det_cent[0]-(track[0]+track[2])/2)**2 + (det_cent[1]-(track[1]+track[3])/2)**2 )
261 | if euclidean_distance <= 4:
262 | boxes.append([track[0], track[1], track[2], track[3], det_cent[2]])
263 | indexIDs.append(int(track[4]))
264 | memory[indexIDs[-1]] = boxes[-1]
265 | break
266 |
267 | if len(boxes) > 0:
268 | i = int(0)
269 | for box in boxes:
270 | # extract the bounding box coordinates
271 | (x, y) = (int(box[0]), int(box[1]))
272 | (w, h) = (int(box[2]), int(box[3]))
273 | cv2.rectangle(image, (int(x), int(y)), (int(w), int(h)), (255 , 0 , 0), 2)
274 |
275 | if indexIDs[i] in previous:
276 | previous_box = previous[indexIDs[i]]
277 | (x2, y2) = (int(previous_box[0]), int(previous_box[1]))
278 | (w2, h2) = (int(previous_box[2]), int(previous_box[3]))
279 | # p0 = prevCentroid
280 | # p1 = current centroid
281 | # condition for counter to increment is if line between prev centroid and current centroid intersect then increment counter
282 | p0 = (int(x + (w-x)/2), int(y + (h-y)/2))
283 | p1 = (int(x2 + (w2-x2)/2), int(y2 + (h2-y2)/2))
284 | cv2.putText(image, str(indexIDs[i]), p0 , cv2.FONT_HERSHEY_SIMPLEX , 0.5,(0, 255, 0) , 2)
285 | cv2.line(image , p0, p1, (0 , 255 , 0), 2)
286 |
287 | countwheel=0
288 | # If diagonal intersects with line then increment counter
289 | if intersect(p0, p1, (340 , 366) , (340 , 138)):
290 | print('entered')
291 |
292 | if box[4] == 'car':
293 | car_cnt+=1
294 | if box[4] == 'truck':
295 | print("Counting axels...........")
296 | region = image_clean[y-20:h+20 , x-20:w+20]
297 | reqdRegion_resized[y-20:h+20 , x-20:w+20] = region
298 | reqdRegion_resized = cv2.cvtColor(reqdRegion_resized , cv2.COLOR_RGB2BGR)
299 | darknet.copy_image_from_bytes(darknet_image1 , reqdRegion_resized.tobytes())
300 | detections = darknet.detect_image(netMain1, metaMain1, darknet_image1, thresh=0.25)
301 | reqdRegion_resized = cv2.cvtColor(reqdRegion_resized , cv2.COLOR_BGR2RGB)
302 | reqdRegion_resized = cvDrawBoxes(detections, reqdRegion_resized)
303 | if len(detections) > 0:
304 | for j in range (0,len(detections)):
305 | if detections[j][0].decode() == 'wheel':
306 | countwheel+=1
307 | print('No of wheeles are: ' , countwheel)
308 | #cv2.imshow("img" , reqdRegion_resized)
309 | #cv2.waitKey(0)
310 | print("Done counting..........")
311 | truck_cnt+=1
312 | if countwheel == 2:
313 | twoaxel+=1
314 | if countwheel == 3:
315 | threeaxel+=1
316 | if countwheel == 4:
317 | fouraxel+=1
318 | if countwheel == 5:
319 | fiveaxel+=1
320 | if countwheel == 6:
321 | sixaxel+=1
322 | if box[4] == 'motorbike':
323 | motorbike_cnt+=1
324 | if box[4] == 'bus':
325 | bus_cnt+=1
326 | counter += 1
327 | i+=1
328 | cv2.putText(image,
329 | "Total Count = {}".format(counter),
330 | (10 , 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
331 | [0, 255, 0], 2)
332 | cv2.putText(image,
333 | "Car Count = {}".format(car_cnt),
334 | (10 , 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
335 | [0, 255, 0], 2)
336 | cv2.putText(image,
337 | "Truck Count = {}".format(truck_cnt),
338 | (10 , 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
339 | [0, 255, 0], 2)
340 | cv2.putText(image,
341 | "2-Axel Truck Count = {}".format(twoaxel),
342 | (20 , 70), cv2.FONT_HERSHEY_SIMPLEX, 0.4,
343 | [0, 255, 0], 2)
344 | cv2.putText(image,
345 | "3-Axel Truck Count = {}".format(threeaxel),
346 | (20 , 90), cv2.FONT_HERSHEY_SIMPLEX, 0.4,
347 | [0, 255, 0], 2)
348 | cv2.putText(image,
349 | "4-Axel Truck Count = {}".format(fouraxel),
350 | (20 , 110), cv2.FONT_HERSHEY_SIMPLEX, 0.4,
351 | [0, 255, 0], 2)
352 | cv2.putText(image,
353 | "5-Axel Truck Count = {}".format(fiveaxel),
354 | (20 , 130), cv2.FONT_HERSHEY_SIMPLEX, 0.4,
355 | [0, 255, 0], 2)
356 | cv2.putText(image,
357 | "6-Axel Truck Count = {}".format(sixaxel),
358 | (20 , 150), cv2.FONT_HERSHEY_SIMPLEX, 0.4,
359 | [0, 255, 0], 2)
360 | cv2.putText(image,
361 | "Motorbike Count = {}".format(motorbike_cnt),
362 | (10 , 170), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
363 | [0, 255, 0], 2)
364 | cv2.putText(image,
365 | "Bus Count = {}".format(bus_cnt),
366 | (10 , 190), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
367 | [0, 255, 0], 2)
368 | # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.
369 | cv2.line(image , (340 , 366) , (340 , 138) , (255 , 0 , 0) , 2 )
370 | #print(1/(time.time()-prev_time))
371 | out.write(image)
372 | #cv2.imshow('original' , frame_read)
373 | cv2.imshow('Demo', image)
374 | #cv2.imshow('ROI' , ROI)
375 | k = cv2.waitKey(3)
376 | if k&0xFF == ord('q'):
377 | break
378 | else:
379 | print("DONE")
380 | break
381 | cap.release()
382 | out.release()
383 |
384 | if __name__ == "__main__":
385 | YOLO()
386 |
--------------------------------------------------------------------------------
/Code/extras/coco.data:
--------------------------------------------------------------------------------
1 | classes= 80
2 | train = /home/pjreddie/data/coco/trainvalno5k.txt
3 | valid = coco_testdev
4 | #valid = data/coco_val_5k.list
5 | names = data/coco.names
6 | backup = /home/pjreddie/backup/
7 | eval=coco
8 |
9 |
--------------------------------------------------------------------------------
/Code/extras/coco.names:
--------------------------------------------------------------------------------
1 | person
2 | bicycle
3 | car
4 | motorbike
5 | aeroplane
6 | bus
7 | train
8 | truck
9 | boat
10 | traffic light
11 | fire hydrant
12 | stop sign
13 | parking meter
14 | bench
15 | bird
16 | cat
17 | dog
18 | horse
19 | sheep
20 | cow
21 | elephant
22 | bear
23 | zebra
24 | giraffe
25 | backpack
26 | umbrella
27 | handbag
28 | tie
29 | suitcase
30 | frisbee
31 | skis
32 | snowboard
33 | sports ball
34 | kite
35 | baseball bat
36 | baseball glove
37 | skateboard
38 | surfboard
39 | tennis racket
40 | bottle
41 | wine glass
42 | cup
43 | fork
44 | knife
45 | spoon
46 | bowl
47 | banana
48 | apple
49 | sandwich
50 | orange
51 | broccoli
52 | carrot
53 | hot dog
54 | pizza
55 | donut
56 | cake
57 | chair
58 | sofa
59 | pottedplant
60 | bed
61 | diningtable
62 | toilet
63 | tvmonitor
64 | laptop
65 | mouse
66 | remote
67 | keyboard
68 | cell phone
69 | microwave
70 | oven
71 | toaster
72 | sink
73 | refrigerator
74 | book
75 | clock
76 | vase
77 | scissors
78 | teddy bear
79 | hair drier
80 | toothbrush
81 |
--------------------------------------------------------------------------------
/Code/extras/multi_classify.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | #batch=64
7 | #subdivisions=16
8 | width=608
9 | height=608
10 | channels=3
11 | momentum=0.949
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 10000
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | #cutmix=1
26 | mosaic=1
27 |
28 | #:104x104 54:52x52 85:26x26 104:13x13 for 416
29 |
30 | [convolutional]
31 | batch_normalize=1
32 | filters=32
33 | size=3
34 | stride=1
35 | pad=1
36 | activation=mish
37 |
38 | # Downsample
39 |
40 | [convolutional]
41 | batch_normalize=1
42 | filters=64
43 | size=3
44 | stride=2
45 | pad=1
46 | activation=mish
47 |
48 | [convolutional]
49 | batch_normalize=1
50 | filters=64
51 | size=1
52 | stride=1
53 | pad=1
54 | activation=mish
55 |
56 | [route]
57 | layers = -2
58 |
59 | [convolutional]
60 | batch_normalize=1
61 | filters=64
62 | size=1
63 | stride=1
64 | pad=1
65 | activation=mish
66 |
67 | [convolutional]
68 | batch_normalize=1
69 | filters=32
70 | size=1
71 | stride=1
72 | pad=1
73 | activation=mish
74 |
75 | [convolutional]
76 | batch_normalize=1
77 | filters=64
78 | size=3
79 | stride=1
80 | pad=1
81 | activation=mish
82 |
83 | [shortcut]
84 | from=-3
85 | activation=linear
86 |
87 | [convolutional]
88 | batch_normalize=1
89 | filters=64
90 | size=1
91 | stride=1
92 | pad=1
93 | activation=mish
94 |
95 | [route]
96 | layers = -1,-7
97 |
98 | [convolutional]
99 | batch_normalize=1
100 | filters=64
101 | size=1
102 | stride=1
103 | pad=1
104 | activation=mish
105 |
106 | # Downsample
107 |
108 | [convolutional]
109 | batch_normalize=1
110 | filters=128
111 | size=3
112 | stride=2
113 | pad=1
114 | activation=mish
115 |
116 | [convolutional]
117 | batch_normalize=1
118 | filters=64
119 | size=1
120 | stride=1
121 | pad=1
122 | activation=mish
123 |
124 | [route]
125 | layers = -2
126 |
127 | [convolutional]
128 | batch_normalize=1
129 | filters=64
130 | size=1
131 | stride=1
132 | pad=1
133 | activation=mish
134 |
135 | [convolutional]
136 | batch_normalize=1
137 | filters=64
138 | size=1
139 | stride=1
140 | pad=1
141 | activation=mish
142 |
143 | [convolutional]
144 | batch_normalize=1
145 | filters=64
146 | size=3
147 | stride=1
148 | pad=1
149 | activation=mish
150 |
151 | [shortcut]
152 | from=-3
153 | activation=linear
154 |
155 | [convolutional]
156 | batch_normalize=1
157 | filters=64
158 | size=1
159 | stride=1
160 | pad=1
161 | activation=mish
162 |
163 | [convolutional]
164 | batch_normalize=1
165 | filters=64
166 | size=3
167 | stride=1
168 | pad=1
169 | activation=mish
170 |
171 | [shortcut]
172 | from=-3
173 | activation=linear
174 |
175 | [convolutional]
176 | batch_normalize=1
177 | filters=64
178 | size=1
179 | stride=1
180 | pad=1
181 | activation=mish
182 |
183 | [route]
184 | layers = -1,-10
185 |
186 | [convolutional]
187 | batch_normalize=1
188 | filters=128
189 | size=1
190 | stride=1
191 | pad=1
192 | activation=mish
193 |
194 | # Downsample
195 |
196 | [convolutional]
197 | batch_normalize=1
198 | filters=256
199 | size=3
200 | stride=2
201 | pad=1
202 | activation=mish
203 |
204 | [convolutional]
205 | batch_normalize=1
206 | filters=128
207 | size=1
208 | stride=1
209 | pad=1
210 | activation=mish
211 |
212 | [route]
213 | layers = -2
214 |
215 | [convolutional]
216 | batch_normalize=1
217 | filters=128
218 | size=1
219 | stride=1
220 | pad=1
221 | activation=mish
222 |
223 | [convolutional]
224 | batch_normalize=1
225 | filters=128
226 | size=1
227 | stride=1
228 | pad=1
229 | activation=mish
230 |
231 | [convolutional]
232 | batch_normalize=1
233 | filters=128
234 | size=3
235 | stride=1
236 | pad=1
237 | activation=mish
238 |
239 | [shortcut]
240 | from=-3
241 | activation=linear
242 |
243 | [convolutional]
244 | batch_normalize=1
245 | filters=128
246 | size=1
247 | stride=1
248 | pad=1
249 | activation=mish
250 |
251 | [convolutional]
252 | batch_normalize=1
253 | filters=128
254 | size=3
255 | stride=1
256 | pad=1
257 | activation=mish
258 |
259 | [shortcut]
260 | from=-3
261 | activation=linear
262 |
263 | [convolutional]
264 | batch_normalize=1
265 | filters=128
266 | size=1
267 | stride=1
268 | pad=1
269 | activation=mish
270 |
271 | [convolutional]
272 | batch_normalize=1
273 | filters=128
274 | size=3
275 | stride=1
276 | pad=1
277 | activation=mish
278 |
279 | [shortcut]
280 | from=-3
281 | activation=linear
282 |
283 | [convolutional]
284 | batch_normalize=1
285 | filters=128
286 | size=1
287 | stride=1
288 | pad=1
289 | activation=mish
290 |
291 | [convolutional]
292 | batch_normalize=1
293 | filters=128
294 | size=3
295 | stride=1
296 | pad=1
297 | activation=mish
298 |
299 | [shortcut]
300 | from=-3
301 | activation=linear
302 |
303 |
304 | [convolutional]
305 | batch_normalize=1
306 | filters=128
307 | size=1
308 | stride=1
309 | pad=1
310 | activation=mish
311 |
312 | [convolutional]
313 | batch_normalize=1
314 | filters=128
315 | size=3
316 | stride=1
317 | pad=1
318 | activation=mish
319 |
320 | [shortcut]
321 | from=-3
322 | activation=linear
323 |
324 | [convolutional]
325 | batch_normalize=1
326 | filters=128
327 | size=1
328 | stride=1
329 | pad=1
330 | activation=mish
331 |
332 | [convolutional]
333 | batch_normalize=1
334 | filters=128
335 | size=3
336 | stride=1
337 | pad=1
338 | activation=mish
339 |
340 | [shortcut]
341 | from=-3
342 | activation=linear
343 |
344 | [convolutional]
345 | batch_normalize=1
346 | filters=128
347 | size=1
348 | stride=1
349 | pad=1
350 | activation=mish
351 |
352 | [convolutional]
353 | batch_normalize=1
354 | filters=128
355 | size=3
356 | stride=1
357 | pad=1
358 | activation=mish
359 |
360 | [shortcut]
361 | from=-3
362 | activation=linear
363 |
364 | [convolutional]
365 | batch_normalize=1
366 | filters=128
367 | size=1
368 | stride=1
369 | pad=1
370 | activation=mish
371 |
372 | [convolutional]
373 | batch_normalize=1
374 | filters=128
375 | size=3
376 | stride=1
377 | pad=1
378 | activation=mish
379 |
380 | [shortcut]
381 | from=-3
382 | activation=linear
383 |
384 | [convolutional]
385 | batch_normalize=1
386 | filters=128
387 | size=1
388 | stride=1
389 | pad=1
390 | activation=mish
391 |
392 | [route]
393 | layers = -1,-28
394 |
395 | [convolutional]
396 | batch_normalize=1
397 | filters=256
398 | size=1
399 | stride=1
400 | pad=1
401 | activation=mish
402 |
403 | # Downsample
404 |
405 | [convolutional]
406 | batch_normalize=1
407 | filters=512
408 | size=3
409 | stride=2
410 | pad=1
411 | activation=mish
412 |
413 | [convolutional]
414 | batch_normalize=1
415 | filters=256
416 | size=1
417 | stride=1
418 | pad=1
419 | activation=mish
420 |
421 | [route]
422 | layers = -2
423 |
424 | [convolutional]
425 | batch_normalize=1
426 | filters=256
427 | size=1
428 | stride=1
429 | pad=1
430 | activation=mish
431 |
432 | [convolutional]
433 | batch_normalize=1
434 | filters=256
435 | size=1
436 | stride=1
437 | pad=1
438 | activation=mish
439 |
440 | [convolutional]
441 | batch_normalize=1
442 | filters=256
443 | size=3
444 | stride=1
445 | pad=1
446 | activation=mish
447 |
448 | [shortcut]
449 | from=-3
450 | activation=linear
451 |
452 |
453 | [convolutional]
454 | batch_normalize=1
455 | filters=256
456 | size=1
457 | stride=1
458 | pad=1
459 | activation=mish
460 |
461 | [convolutional]
462 | batch_normalize=1
463 | filters=256
464 | size=3
465 | stride=1
466 | pad=1
467 | activation=mish
468 |
469 | [shortcut]
470 | from=-3
471 | activation=linear
472 |
473 |
474 | [convolutional]
475 | batch_normalize=1
476 | filters=256
477 | size=1
478 | stride=1
479 | pad=1
480 | activation=mish
481 |
482 | [convolutional]
483 | batch_normalize=1
484 | filters=256
485 | size=3
486 | stride=1
487 | pad=1
488 | activation=mish
489 |
490 | [shortcut]
491 | from=-3
492 | activation=linear
493 |
494 |
495 | [convolutional]
496 | batch_normalize=1
497 | filters=256
498 | size=1
499 | stride=1
500 | pad=1
501 | activation=mish
502 |
503 | [convolutional]
504 | batch_normalize=1
505 | filters=256
506 | size=3
507 | stride=1
508 | pad=1
509 | activation=mish
510 |
511 | [shortcut]
512 | from=-3
513 | activation=linear
514 |
515 |
516 | [convolutional]
517 | batch_normalize=1
518 | filters=256
519 | size=1
520 | stride=1
521 | pad=1
522 | activation=mish
523 |
524 | [convolutional]
525 | batch_normalize=1
526 | filters=256
527 | size=3
528 | stride=1
529 | pad=1
530 | activation=mish
531 |
532 | [shortcut]
533 | from=-3
534 | activation=linear
535 |
536 |
537 | [convolutional]
538 | batch_normalize=1
539 | filters=256
540 | size=1
541 | stride=1
542 | pad=1
543 | activation=mish
544 |
545 | [convolutional]
546 | batch_normalize=1
547 | filters=256
548 | size=3
549 | stride=1
550 | pad=1
551 | activation=mish
552 |
553 | [shortcut]
554 | from=-3
555 | activation=linear
556 |
557 |
558 | [convolutional]
559 | batch_normalize=1
560 | filters=256
561 | size=1
562 | stride=1
563 | pad=1
564 | activation=mish
565 |
566 | [convolutional]
567 | batch_normalize=1
568 | filters=256
569 | size=3
570 | stride=1
571 | pad=1
572 | activation=mish
573 |
574 | [shortcut]
575 | from=-3
576 | activation=linear
577 |
578 | [convolutional]
579 | batch_normalize=1
580 | filters=256
581 | size=1
582 | stride=1
583 | pad=1
584 | activation=mish
585 |
586 | [convolutional]
587 | batch_normalize=1
588 | filters=256
589 | size=3
590 | stride=1
591 | pad=1
592 | activation=mish
593 |
594 | [shortcut]
595 | from=-3
596 | activation=linear
597 |
598 | [convolutional]
599 | batch_normalize=1
600 | filters=256
601 | size=1
602 | stride=1
603 | pad=1
604 | activation=mish
605 |
606 | [route]
607 | layers = -1,-28
608 |
609 | [convolutional]
610 | batch_normalize=1
611 | filters=512
612 | size=1
613 | stride=1
614 | pad=1
615 | activation=mish
616 |
617 | # Downsample
618 |
619 | [convolutional]
620 | batch_normalize=1
621 | filters=1024
622 | size=3
623 | stride=2
624 | pad=1
625 | activation=mish
626 |
627 | [convolutional]
628 | batch_normalize=1
629 | filters=512
630 | size=1
631 | stride=1
632 | pad=1
633 | activation=mish
634 |
635 | [route]
636 | layers = -2
637 |
638 | [convolutional]
639 | batch_normalize=1
640 | filters=512
641 | size=1
642 | stride=1
643 | pad=1
644 | activation=mish
645 |
646 | [convolutional]
647 | batch_normalize=1
648 | filters=512
649 | size=1
650 | stride=1
651 | pad=1
652 | activation=mish
653 |
654 | [convolutional]
655 | batch_normalize=1
656 | filters=512
657 | size=3
658 | stride=1
659 | pad=1
660 | activation=mish
661 |
662 | [shortcut]
663 | from=-3
664 | activation=linear
665 |
666 | [convolutional]
667 | batch_normalize=1
668 | filters=512
669 | size=1
670 | stride=1
671 | pad=1
672 | activation=mish
673 |
674 | [convolutional]
675 | batch_normalize=1
676 | filters=512
677 | size=3
678 | stride=1
679 | pad=1
680 | activation=mish
681 |
682 | [shortcut]
683 | from=-3
684 | activation=linear
685 |
686 | [convolutional]
687 | batch_normalize=1
688 | filters=512
689 | size=1
690 | stride=1
691 | pad=1
692 | activation=mish
693 |
694 | [convolutional]
695 | batch_normalize=1
696 | filters=512
697 | size=3
698 | stride=1
699 | pad=1
700 | activation=mish
701 |
702 | [shortcut]
703 | from=-3
704 | activation=linear
705 |
706 | [convolutional]
707 | batch_normalize=1
708 | filters=512
709 | size=1
710 | stride=1
711 | pad=1
712 | activation=mish
713 |
714 | [convolutional]
715 | batch_normalize=1
716 | filters=512
717 | size=3
718 | stride=1
719 | pad=1
720 | activation=mish
721 |
722 | [shortcut]
723 | from=-3
724 | activation=linear
725 |
726 | [convolutional]
727 | batch_normalize=1
728 | filters=512
729 | size=1
730 | stride=1
731 | pad=1
732 | activation=mish
733 |
734 | [route]
735 | layers = -1,-16
736 |
737 | [convolutional]
738 | batch_normalize=1
739 | filters=1024
740 | size=1
741 | stride=1
742 | pad=1
743 | activation=mish
744 | stopbackward=800
745 |
746 | ##########################
747 |
748 | [convolutional]
749 | batch_normalize=1
750 | filters=512
751 | size=1
752 | stride=1
753 | pad=1
754 | activation=leaky
755 |
756 | [convolutional]
757 | batch_normalize=1
758 | size=3
759 | stride=1
760 | pad=1
761 | filters=1024
762 | activation=leaky
763 |
764 | [convolutional]
765 | batch_normalize=1
766 | filters=512
767 | size=1
768 | stride=1
769 | pad=1
770 | activation=leaky
771 |
772 | ### SPP ###
773 | [maxpool]
774 | stride=1
775 | size=5
776 |
777 | [route]
778 | layers=-2
779 |
780 | [maxpool]
781 | stride=1
782 | size=9
783 |
784 | [route]
785 | layers=-4
786 |
787 | [maxpool]
788 | stride=1
789 | size=13
790 |
791 | [route]
792 | layers=-1,-3,-5,-6
793 | ### End SPP ###
794 |
795 | [convolutional]
796 | batch_normalize=1
797 | filters=512
798 | size=1
799 | stride=1
800 | pad=1
801 | activation=leaky
802 |
803 | [convolutional]
804 | batch_normalize=1
805 | size=3
806 | stride=1
807 | pad=1
808 | filters=1024
809 | activation=leaky
810 |
811 | [convolutional]
812 | batch_normalize=1
813 | filters=512
814 | size=1
815 | stride=1
816 | pad=1
817 | activation=leaky
818 |
819 | [convolutional]
820 | batch_normalize=1
821 | filters=256
822 | size=1
823 | stride=1
824 | pad=1
825 | activation=leaky
826 |
827 | [upsample]
828 | stride=2
829 |
830 | [route]
831 | layers = 85
832 |
833 | [convolutional]
834 | batch_normalize=1
835 | filters=256
836 | size=1
837 | stride=1
838 | pad=1
839 | activation=leaky
840 |
841 | [route]
842 | layers = -1, -3
843 |
844 | [convolutional]
845 | batch_normalize=1
846 | filters=256
847 | size=1
848 | stride=1
849 | pad=1
850 | activation=leaky
851 |
852 | [convolutional]
853 | batch_normalize=1
854 | size=3
855 | stride=1
856 | pad=1
857 | filters=512
858 | activation=leaky
859 |
860 | [convolutional]
861 | batch_normalize=1
862 | filters=256
863 | size=1
864 | stride=1
865 | pad=1
866 | activation=leaky
867 |
868 | [convolutional]
869 | batch_normalize=1
870 | size=3
871 | stride=1
872 | pad=1
873 | filters=512
874 | activation=leaky
875 |
876 | [convolutional]
877 | batch_normalize=1
878 | filters=256
879 | size=1
880 | stride=1
881 | pad=1
882 | activation=leaky
883 |
884 | [convolutional]
885 | batch_normalize=1
886 | filters=128
887 | size=1
888 | stride=1
889 | pad=1
890 | activation=leaky
891 |
892 | [upsample]
893 | stride=2
894 |
895 | [route]
896 | layers = 54
897 |
898 | [convolutional]
899 | batch_normalize=1
900 | filters=128
901 | size=1
902 | stride=1
903 | pad=1
904 | activation=leaky
905 |
906 | [route]
907 | layers = -1, -3
908 |
909 | [convolutional]
910 | batch_normalize=1
911 | filters=128
912 | size=1
913 | stride=1
914 | pad=1
915 | activation=leaky
916 |
917 | [convolutional]
918 | batch_normalize=1
919 | size=3
920 | stride=1
921 | pad=1
922 | filters=256
923 | activation=leaky
924 |
925 | [convolutional]
926 | batch_normalize=1
927 | filters=128
928 | size=1
929 | stride=1
930 | pad=1
931 | activation=leaky
932 |
933 | [convolutional]
934 | batch_normalize=1
935 | size=3
936 | stride=1
937 | pad=1
938 | filters=256
939 | activation=leaky
940 |
941 | [convolutional]
942 | batch_normalize=1
943 | filters=128
944 | size=1
945 | stride=1
946 | pad=1
947 | activation=leaky
948 |
949 | ##########################
950 |
951 | [convolutional]
952 | batch_normalize=1
953 | size=3
954 | stride=1
955 | pad=1
956 | filters=256
957 | activation=leaky
958 |
959 | [convolutional]
960 | size=1
961 | stride=1
962 | pad=1
963 | filters=21
964 | activation=linear
965 |
966 |
967 | [yolo]
968 | mask = 0,1,2
969 | anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
970 | classes=2
971 | num=9
972 | jitter=.3
973 | ignore_thresh = .7
974 | truth_thresh = 1
975 | scale_x_y = 1.2
976 | iou_thresh=0.213
977 | cls_normalizer=1.0
978 | iou_normalizer=0.07
979 | iou_loss=ciou
980 | nms_kind=greedynms
981 | beta_nms=0.6
982 | max_delta=5
983 |
984 |
985 | [route]
986 | layers = -4
987 |
988 | [convolutional]
989 | batch_normalize=1
990 | size=3
991 | stride=2
992 | pad=1
993 | filters=256
994 | activation=leaky
995 |
996 | [route]
997 | layers = -1, -16
998 |
999 | [convolutional]
1000 | batch_normalize=1
1001 | filters=256
1002 | size=1
1003 | stride=1
1004 | pad=1
1005 | activation=leaky
1006 |
1007 | [convolutional]
1008 | batch_normalize=1
1009 | size=3
1010 | stride=1
1011 | pad=1
1012 | filters=512
1013 | activation=leaky
1014 |
1015 | [convolutional]
1016 | batch_normalize=1
1017 | filters=256
1018 | size=1
1019 | stride=1
1020 | pad=1
1021 | activation=leaky
1022 |
1023 | [convolutional]
1024 | batch_normalize=1
1025 | size=3
1026 | stride=1
1027 | pad=1
1028 | filters=512
1029 | activation=leaky
1030 |
1031 | [convolutional]
1032 | batch_normalize=1
1033 | filters=256
1034 | size=1
1035 | stride=1
1036 | pad=1
1037 | activation=leaky
1038 |
1039 | [convolutional]
1040 | batch_normalize=1
1041 | size=3
1042 | stride=1
1043 | pad=1
1044 | filters=512
1045 | activation=leaky
1046 |
1047 | [convolutional]
1048 | size=1
1049 | stride=1
1050 | pad=1
1051 | filters=21
1052 | activation=linear
1053 |
1054 |
1055 | [yolo]
1056 | mask = 3,4,5
1057 | anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1058 | classes=2
1059 | num=9
1060 | jitter=.3
1061 | ignore_thresh = .7
1062 | truth_thresh = 1
1063 | scale_x_y = 1.1
1064 | iou_thresh=0.213
1065 | cls_normalizer=1.0
1066 | iou_normalizer=0.07
1067 | iou_loss=ciou
1068 | nms_kind=greedynms
1069 | beta_nms=0.6
1070 | max_delta=5
1071 |
1072 |
1073 | [route]
1074 | layers = -4
1075 |
1076 | [convolutional]
1077 | batch_normalize=1
1078 | size=3
1079 | stride=2
1080 | pad=1
1081 | filters=512
1082 | activation=leaky
1083 |
1084 | [route]
1085 | layers = -1, -37
1086 |
1087 | [convolutional]
1088 | batch_normalize=1
1089 | filters=512
1090 | size=1
1091 | stride=1
1092 | pad=1
1093 | activation=leaky
1094 |
1095 | [convolutional]
1096 | batch_normalize=1
1097 | size=3
1098 | stride=1
1099 | pad=1
1100 | filters=1024
1101 | activation=leaky
1102 |
1103 | [convolutional]
1104 | batch_normalize=1
1105 | filters=512
1106 | size=1
1107 | stride=1
1108 | pad=1
1109 | activation=leaky
1110 |
1111 | [convolutional]
1112 | batch_normalize=1
1113 | size=3
1114 | stride=1
1115 | pad=1
1116 | filters=1024
1117 | activation=leaky
1118 |
1119 | [convolutional]
1120 | batch_normalize=1
1121 | filters=512
1122 | size=1
1123 | stride=1
1124 | pad=1
1125 | activation=leaky
1126 |
1127 | [convolutional]
1128 | batch_normalize=1
1129 | size=3
1130 | stride=1
1131 | pad=1
1132 | filters=1024
1133 | activation=leaky
1134 |
1135 | [convolutional]
1136 | size=1
1137 | stride=1
1138 | pad=1
1139 | filters=21
1140 | activation=linear
1141 |
1142 |
1143 | [yolo]
1144 | mask = 6,7,8
1145 | anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1146 | classes=2
1147 | num=9
1148 | jitter=.3
1149 | ignore_thresh = .7
1150 | truth_thresh = 1
1151 | random=1
1152 | scale_x_y = 1.05
1153 | iou_thresh=0.213
1154 | cls_normalizer=1.0
1155 | iou_normalizer=0.07
1156 | iou_loss=ciou
1157 | nms_kind=greedynms
1158 | beta_nms=0.6
1159 | max_delta=5
1160 |
1161 |
--------------------------------------------------------------------------------
/Code/extras/multi_classify.data:
--------------------------------------------------------------------------------
1 | classes= 2
2 | train = data/train.txt
3 | valid = data/test.txt
4 | names = /darknet/data/multi_classify.names
5 | backup = backup/
6 |
--------------------------------------------------------------------------------
/Code/extras/multi_classify.names:
--------------------------------------------------------------------------------
1 | car
2 | wheel
3 |
--------------------------------------------------------------------------------
/Code/extras/yolov4.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=8
4 | # Training
5 | #width=416 #512
6 | #height=416 #512
7 | width=608
8 | height=608
9 | channels=3
10 | momentum=0.949
11 | decay=0.0005
12 | angle=0
13 | saturation = 1.5
14 | exposure = 1.5
15 | hue=.1
16 |
17 | learning_rate=0.0013
18 | burn_in=1000
19 | max_batches = 500500
20 | policy=steps
21 | steps=400000,450000
22 | scales=.1,.1
23 |
24 | #cutmix=1
25 | mosaic=1
26 |
27 | #:104x104 54:52x52 85:26x26 104:13x13 for 416
28 |
29 | [convolutional]
30 | batch_normalize=1
31 | filters=32
32 | size=3
33 | stride=1
34 | pad=1
35 | activation=mish
36 |
37 | # Downsample
38 |
39 | [convolutional]
40 | batch_normalize=1
41 | filters=64
42 | size=3
43 | stride=2
44 | pad=1
45 | activation=mish
46 |
47 | [convolutional]
48 | batch_normalize=1
49 | filters=64
50 | size=1
51 | stride=1
52 | pad=1
53 | activation=mish
54 |
55 | [route]
56 | layers = -2
57 |
58 | [convolutional]
59 | batch_normalize=1
60 | filters=64
61 | size=1
62 | stride=1
63 | pad=1
64 | activation=mish
65 |
66 | [convolutional]
67 | batch_normalize=1
68 | filters=32
69 | size=1
70 | stride=1
71 | pad=1
72 | activation=mish
73 |
74 | [convolutional]
75 | batch_normalize=1
76 | filters=64
77 | size=3
78 | stride=1
79 | pad=1
80 | activation=mish
81 |
82 | [shortcut]
83 | from=-3
84 | activation=linear
85 |
86 | [convolutional]
87 | batch_normalize=1
88 | filters=64
89 | size=1
90 | stride=1
91 | pad=1
92 | activation=mish
93 |
94 | [route]
95 | layers = -1,-7
96 |
97 | [convolutional]
98 | batch_normalize=1
99 | filters=64
100 | size=1
101 | stride=1
102 | pad=1
103 | activation=mish
104 |
105 | # Downsample
106 |
107 | [convolutional]
108 | batch_normalize=1
109 | filters=128
110 | size=3
111 | stride=2
112 | pad=1
113 | activation=mish
114 |
115 | [convolutional]
116 | batch_normalize=1
117 | filters=64
118 | size=1
119 | stride=1
120 | pad=1
121 | activation=mish
122 |
123 | [route]
124 | layers = -2
125 |
126 | [convolutional]
127 | batch_normalize=1
128 | filters=64
129 | size=1
130 | stride=1
131 | pad=1
132 | activation=mish
133 |
134 | [convolutional]
135 | batch_normalize=1
136 | filters=64
137 | size=1
138 | stride=1
139 | pad=1
140 | activation=mish
141 |
142 | [convolutional]
143 | batch_normalize=1
144 | filters=64
145 | size=3
146 | stride=1
147 | pad=1
148 | activation=mish
149 |
150 | [shortcut]
151 | from=-3
152 | activation=linear
153 |
154 | [convolutional]
155 | batch_normalize=1
156 | filters=64
157 | size=1
158 | stride=1
159 | pad=1
160 | activation=mish
161 |
162 | [convolutional]
163 | batch_normalize=1
164 | filters=64
165 | size=3
166 | stride=1
167 | pad=1
168 | activation=mish
169 |
170 | [shortcut]
171 | from=-3
172 | activation=linear
173 |
174 | [convolutional]
175 | batch_normalize=1
176 | filters=64
177 | size=1
178 | stride=1
179 | pad=1
180 | activation=mish
181 |
182 | [route]
183 | layers = -1,-10
184 |
185 | [convolutional]
186 | batch_normalize=1
187 | filters=128
188 | size=1
189 | stride=1
190 | pad=1
191 | activation=mish
192 |
193 | # Downsample
194 |
195 | [convolutional]
196 | batch_normalize=1
197 | filters=256
198 | size=3
199 | stride=2
200 | pad=1
201 | activation=mish
202 |
203 | [convolutional]
204 | batch_normalize=1
205 | filters=128
206 | size=1
207 | stride=1
208 | pad=1
209 | activation=mish
210 |
211 | [route]
212 | layers = -2
213 |
214 | [convolutional]
215 | batch_normalize=1
216 | filters=128
217 | size=1
218 | stride=1
219 | pad=1
220 | activation=mish
221 |
222 | [convolutional]
223 | batch_normalize=1
224 | filters=128
225 | size=1
226 | stride=1
227 | pad=1
228 | activation=mish
229 |
230 | [convolutional]
231 | batch_normalize=1
232 | filters=128
233 | size=3
234 | stride=1
235 | pad=1
236 | activation=mish
237 |
238 | [shortcut]
239 | from=-3
240 | activation=linear
241 |
242 | [convolutional]
243 | batch_normalize=1
244 | filters=128
245 | size=1
246 | stride=1
247 | pad=1
248 | activation=mish
249 |
250 | [convolutional]
251 | batch_normalize=1
252 | filters=128
253 | size=3
254 | stride=1
255 | pad=1
256 | activation=mish
257 |
258 | [shortcut]
259 | from=-3
260 | activation=linear
261 |
262 | [convolutional]
263 | batch_normalize=1
264 | filters=128
265 | size=1
266 | stride=1
267 | pad=1
268 | activation=mish
269 |
270 | [convolutional]
271 | batch_normalize=1
272 | filters=128
273 | size=3
274 | stride=1
275 | pad=1
276 | activation=mish
277 |
278 | [shortcut]
279 | from=-3
280 | activation=linear
281 |
282 | [convolutional]
283 | batch_normalize=1
284 | filters=128
285 | size=1
286 | stride=1
287 | pad=1
288 | activation=mish
289 |
290 | [convolutional]
291 | batch_normalize=1
292 | filters=128
293 | size=3
294 | stride=1
295 | pad=1
296 | activation=mish
297 |
298 | [shortcut]
299 | from=-3
300 | activation=linear
301 |
302 |
303 | [convolutional]
304 | batch_normalize=1
305 | filters=128
306 | size=1
307 | stride=1
308 | pad=1
309 | activation=mish
310 |
311 | [convolutional]
312 | batch_normalize=1
313 | filters=128
314 | size=3
315 | stride=1
316 | pad=1
317 | activation=mish
318 |
319 | [shortcut]
320 | from=-3
321 | activation=linear
322 |
323 | [convolutional]
324 | batch_normalize=1
325 | filters=128
326 | size=1
327 | stride=1
328 | pad=1
329 | activation=mish
330 |
331 | [convolutional]
332 | batch_normalize=1
333 | filters=128
334 | size=3
335 | stride=1
336 | pad=1
337 | activation=mish
338 |
339 | [shortcut]
340 | from=-3
341 | activation=linear
342 |
343 | [convolutional]
344 | batch_normalize=1
345 | filters=128
346 | size=1
347 | stride=1
348 | pad=1
349 | activation=mish
350 |
351 | [convolutional]
352 | batch_normalize=1
353 | filters=128
354 | size=3
355 | stride=1
356 | pad=1
357 | activation=mish
358 |
359 | [shortcut]
360 | from=-3
361 | activation=linear
362 |
363 | [convolutional]
364 | batch_normalize=1
365 | filters=128
366 | size=1
367 | stride=1
368 | pad=1
369 | activation=mish
370 |
371 | [convolutional]
372 | batch_normalize=1
373 | filters=128
374 | size=3
375 | stride=1
376 | pad=1
377 | activation=mish
378 |
379 | [shortcut]
380 | from=-3
381 | activation=linear
382 |
383 | [convolutional]
384 | batch_normalize=1
385 | filters=128
386 | size=1
387 | stride=1
388 | pad=1
389 | activation=mish
390 |
391 | [route]
392 | layers = -1,-28
393 |
394 | [convolutional]
395 | batch_normalize=1
396 | filters=256
397 | size=1
398 | stride=1
399 | pad=1
400 | activation=mish
401 |
402 | # Downsample
403 |
404 | [convolutional]
405 | batch_normalize=1
406 | filters=512
407 | size=3
408 | stride=2
409 | pad=1
410 | activation=mish
411 |
412 | [convolutional]
413 | batch_normalize=1
414 | filters=256
415 | size=1
416 | stride=1
417 | pad=1
418 | activation=mish
419 |
420 | [route]
421 | layers = -2
422 |
423 | [convolutional]
424 | batch_normalize=1
425 | filters=256
426 | size=1
427 | stride=1
428 | pad=1
429 | activation=mish
430 |
431 | [convolutional]
432 | batch_normalize=1
433 | filters=256
434 | size=1
435 | stride=1
436 | pad=1
437 | activation=mish
438 |
439 | [convolutional]
440 | batch_normalize=1
441 | filters=256
442 | size=3
443 | stride=1
444 | pad=1
445 | activation=mish
446 |
447 | [shortcut]
448 | from=-3
449 | activation=linear
450 |
451 |
452 | [convolutional]
453 | batch_normalize=1
454 | filters=256
455 | size=1
456 | stride=1
457 | pad=1
458 | activation=mish
459 |
460 | [convolutional]
461 | batch_normalize=1
462 | filters=256
463 | size=3
464 | stride=1
465 | pad=1
466 | activation=mish
467 |
468 | [shortcut]
469 | from=-3
470 | activation=linear
471 |
472 |
473 | [convolutional]
474 | batch_normalize=1
475 | filters=256
476 | size=1
477 | stride=1
478 | pad=1
479 | activation=mish
480 |
481 | [convolutional]
482 | batch_normalize=1
483 | filters=256
484 | size=3
485 | stride=1
486 | pad=1
487 | activation=mish
488 |
489 | [shortcut]
490 | from=-3
491 | activation=linear
492 |
493 |
494 | [convolutional]
495 | batch_normalize=1
496 | filters=256
497 | size=1
498 | stride=1
499 | pad=1
500 | activation=mish
501 |
502 | [convolutional]
503 | batch_normalize=1
504 | filters=256
505 | size=3
506 | stride=1
507 | pad=1
508 | activation=mish
509 |
510 | [shortcut]
511 | from=-3
512 | activation=linear
513 |
514 |
515 | [convolutional]
516 | batch_normalize=1
517 | filters=256
518 | size=1
519 | stride=1
520 | pad=1
521 | activation=mish
522 |
523 | [convolutional]
524 | batch_normalize=1
525 | filters=256
526 | size=3
527 | stride=1
528 | pad=1
529 | activation=mish
530 |
531 | [shortcut]
532 | from=-3
533 | activation=linear
534 |
535 |
536 | [convolutional]
537 | batch_normalize=1
538 | filters=256
539 | size=1
540 | stride=1
541 | pad=1
542 | activation=mish
543 |
544 | [convolutional]
545 | batch_normalize=1
546 | filters=256
547 | size=3
548 | stride=1
549 | pad=1
550 | activation=mish
551 |
552 | [shortcut]
553 | from=-3
554 | activation=linear
555 |
556 |
557 | [convolutional]
558 | batch_normalize=1
559 | filters=256
560 | size=1
561 | stride=1
562 | pad=1
563 | activation=mish
564 |
565 | [convolutional]
566 | batch_normalize=1
567 | filters=256
568 | size=3
569 | stride=1
570 | pad=1
571 | activation=mish
572 |
573 | [shortcut]
574 | from=-3
575 | activation=linear
576 |
577 | [convolutional]
578 | batch_normalize=1
579 | filters=256
580 | size=1
581 | stride=1
582 | pad=1
583 | activation=mish
584 |
585 | [convolutional]
586 | batch_normalize=1
587 | filters=256
588 | size=3
589 | stride=1
590 | pad=1
591 | activation=mish
592 |
593 | [shortcut]
594 | from=-3
595 | activation=linear
596 |
597 | [convolutional]
598 | batch_normalize=1
599 | filters=256
600 | size=1
601 | stride=1
602 | pad=1
603 | activation=mish
604 |
605 | [route]
606 | layers = -1,-28
607 |
608 | [convolutional]
609 | batch_normalize=1
610 | filters=512
611 | size=1
612 | stride=1
613 | pad=1
614 | activation=mish
615 |
616 | # Downsample
617 |
618 | [convolutional]
619 | batch_normalize=1
620 | filters=1024
621 | size=3
622 | stride=2
623 | pad=1
624 | activation=mish
625 |
626 | [convolutional]
627 | batch_normalize=1
628 | filters=512
629 | size=1
630 | stride=1
631 | pad=1
632 | activation=mish
633 |
634 | [route]
635 | layers = -2
636 |
637 | [convolutional]
638 | batch_normalize=1
639 | filters=512
640 | size=1
641 | stride=1
642 | pad=1
643 | activation=mish
644 |
645 | [convolutional]
646 | batch_normalize=1
647 | filters=512
648 | size=1
649 | stride=1
650 | pad=1
651 | activation=mish
652 |
653 | [convolutional]
654 | batch_normalize=1
655 | filters=512
656 | size=3
657 | stride=1
658 | pad=1
659 | activation=mish
660 |
661 | [shortcut]
662 | from=-3
663 | activation=linear
664 |
665 | [convolutional]
666 | batch_normalize=1
667 | filters=512
668 | size=1
669 | stride=1
670 | pad=1
671 | activation=mish
672 |
673 | [convolutional]
674 | batch_normalize=1
675 | filters=512
676 | size=3
677 | stride=1
678 | pad=1
679 | activation=mish
680 |
681 | [shortcut]
682 | from=-3
683 | activation=linear
684 |
685 | [convolutional]
686 | batch_normalize=1
687 | filters=512
688 | size=1
689 | stride=1
690 | pad=1
691 | activation=mish
692 |
693 | [convolutional]
694 | batch_normalize=1
695 | filters=512
696 | size=3
697 | stride=1
698 | pad=1
699 | activation=mish
700 |
701 | [shortcut]
702 | from=-3
703 | activation=linear
704 |
705 | [convolutional]
706 | batch_normalize=1
707 | filters=512
708 | size=1
709 | stride=1
710 | pad=1
711 | activation=mish
712 |
713 | [convolutional]
714 | batch_normalize=1
715 | filters=512
716 | size=3
717 | stride=1
718 | pad=1
719 | activation=mish
720 |
721 | [shortcut]
722 | from=-3
723 | activation=linear
724 |
725 | [convolutional]
726 | batch_normalize=1
727 | filters=512
728 | size=1
729 | stride=1
730 | pad=1
731 | activation=mish
732 |
733 | [route]
734 | layers = -1,-16
735 |
736 | [convolutional]
737 | batch_normalize=1
738 | filters=1024
739 | size=1
740 | stride=1
741 | pad=1
742 | activation=mish
743 |
744 | ##########################
745 |
746 | [convolutional]
747 | batch_normalize=1
748 | filters=512
749 | size=1
750 | stride=1
751 | pad=1
752 | activation=leaky
753 |
754 | [convolutional]
755 | batch_normalize=1
756 | size=3
757 | stride=1
758 | pad=1
759 | filters=1024
760 | activation=leaky
761 |
762 | [convolutional]
763 | batch_normalize=1
764 | filters=512
765 | size=1
766 | stride=1
767 | pad=1
768 | activation=leaky
769 |
770 | ### SPP ###
771 | [maxpool]
772 | stride=1
773 | size=5
774 |
775 | [route]
776 | layers=-2
777 |
778 | [maxpool]
779 | stride=1
780 | size=9
781 |
782 | [route]
783 | layers=-4
784 |
785 | [maxpool]
786 | stride=1
787 | size=13
788 |
789 | [route]
790 | layers=-1,-3,-5,-6
791 | ### End SPP ###
792 |
793 | [convolutional]
794 | batch_normalize=1
795 | filters=512
796 | size=1
797 | stride=1
798 | pad=1
799 | activation=leaky
800 |
801 | [convolutional]
802 | batch_normalize=1
803 | size=3
804 | stride=1
805 | pad=1
806 | filters=1024
807 | activation=leaky
808 |
809 | [convolutional]
810 | batch_normalize=1
811 | filters=512
812 | size=1
813 | stride=1
814 | pad=1
815 | activation=leaky
816 |
817 | [convolutional]
818 | batch_normalize=1
819 | filters=256
820 | size=1
821 | stride=1
822 | pad=1
823 | activation=leaky
824 |
825 | [upsample]
826 | stride=2
827 |
828 | [route]
829 | layers = 85
830 |
831 | [convolutional]
832 | batch_normalize=1
833 | filters=256
834 | size=1
835 | stride=1
836 | pad=1
837 | activation=leaky
838 |
839 | [route]
840 | layers = -1, -3
841 |
842 | [convolutional]
843 | batch_normalize=1
844 | filters=256
845 | size=1
846 | stride=1
847 | pad=1
848 | activation=leaky
849 |
850 | [convolutional]
851 | batch_normalize=1
852 | size=3
853 | stride=1
854 | pad=1
855 | filters=512
856 | activation=leaky
857 |
858 | [convolutional]
859 | batch_normalize=1
860 | filters=256
861 | size=1
862 | stride=1
863 | pad=1
864 | activation=leaky
865 |
866 | [convolutional]
867 | batch_normalize=1
868 | size=3
869 | stride=1
870 | pad=1
871 | filters=512
872 | activation=leaky
873 |
874 | [convolutional]
875 | batch_normalize=1
876 | filters=256
877 | size=1
878 | stride=1
879 | pad=1
880 | activation=leaky
881 |
882 | [convolutional]
883 | batch_normalize=1
884 | filters=128
885 | size=1
886 | stride=1
887 | pad=1
888 | activation=leaky
889 |
890 | [upsample]
891 | stride=2
892 |
893 | [route]
894 | layers = 54
895 |
896 | [convolutional]
897 | batch_normalize=1
898 | filters=128
899 | size=1
900 | stride=1
901 | pad=1
902 | activation=leaky
903 |
904 | [route]
905 | layers = -1, -3
906 |
907 | [convolutional]
908 | batch_normalize=1
909 | filters=128
910 | size=1
911 | stride=1
912 | pad=1
913 | activation=leaky
914 |
915 | [convolutional]
916 | batch_normalize=1
917 | size=3
918 | stride=1
919 | pad=1
920 | filters=256
921 | activation=leaky
922 |
923 | [convolutional]
924 | batch_normalize=1
925 | filters=128
926 | size=1
927 | stride=1
928 | pad=1
929 | activation=leaky
930 |
931 | [convolutional]
932 | batch_normalize=1
933 | size=3
934 | stride=1
935 | pad=1
936 | filters=256
937 | activation=leaky
938 |
939 | [convolutional]
940 | batch_normalize=1
941 | filters=128
942 | size=1
943 | stride=1
944 | pad=1
945 | activation=leaky
946 |
947 | ##########################
948 |
949 | [convolutional]
950 | batch_normalize=1
951 | size=3
952 | stride=1
953 | pad=1
954 | filters=256
955 | activation=leaky
956 |
957 | [convolutional]
958 | size=1
959 | stride=1
960 | pad=1
961 | filters=255
962 | activation=linear
963 |
964 |
965 | [yolo]
966 | mask = 0,1,2
967 | anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
968 | classes=80
969 | num=9
970 | jitter=.3
971 | ignore_thresh = .7
972 | truth_thresh = 1
973 | scale_x_y = 1.2
974 | iou_thresh=0.213
975 | cls_normalizer=1.0
976 | iou_normalizer=0.07
977 | iou_loss=ciou
978 | nms_kind=greedynms
979 | beta_nms=0.6
980 | max_delta=5
981 |
982 |
983 | [route]
984 | layers = -4
985 |
986 | [convolutional]
987 | batch_normalize=1
988 | size=3
989 | stride=2
990 | pad=1
991 | filters=256
992 | activation=leaky
993 |
994 | [route]
995 | layers = -1, -16
996 |
997 | [convolutional]
998 | batch_normalize=1
999 | filters=256
1000 | size=1
1001 | stride=1
1002 | pad=1
1003 | activation=leaky
1004 |
1005 | [convolutional]
1006 | batch_normalize=1
1007 | size=3
1008 | stride=1
1009 | pad=1
1010 | filters=512
1011 | activation=leaky
1012 |
1013 | [convolutional]
1014 | batch_normalize=1
1015 | filters=256
1016 | size=1
1017 | stride=1
1018 | pad=1
1019 | activation=leaky
1020 |
1021 | [convolutional]
1022 | batch_normalize=1
1023 | size=3
1024 | stride=1
1025 | pad=1
1026 | filters=512
1027 | activation=leaky
1028 |
1029 | [convolutional]
1030 | batch_normalize=1
1031 | filters=256
1032 | size=1
1033 | stride=1
1034 | pad=1
1035 | activation=leaky
1036 |
1037 | [convolutional]
1038 | batch_normalize=1
1039 | size=3
1040 | stride=1
1041 | pad=1
1042 | filters=512
1043 | activation=leaky
1044 |
1045 | [convolutional]
1046 | size=1
1047 | stride=1
1048 | pad=1
1049 | filters=255
1050 | activation=linear
1051 |
1052 |
1053 | [yolo]
1054 | mask = 3,4,5
1055 | anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1056 | classes=80
1057 | num=9
1058 | jitter=.3
1059 | ignore_thresh = .7
1060 | truth_thresh = 1
1061 | scale_x_y = 1.1
1062 | iou_thresh=0.213
1063 | cls_normalizer=1.0
1064 | iou_normalizer=0.07
1065 | iou_loss=ciou
1066 | nms_kind=greedynms
1067 | beta_nms=0.6
1068 | max_delta=5
1069 |
1070 |
1071 | [route]
1072 | layers = -4
1073 |
1074 | [convolutional]
1075 | batch_normalize=1
1076 | size=3
1077 | stride=2
1078 | pad=1
1079 | filters=512
1080 | activation=leaky
1081 |
1082 | [route]
1083 | layers = -1, -37
1084 |
1085 | [convolutional]
1086 | batch_normalize=1
1087 | filters=512
1088 | size=1
1089 | stride=1
1090 | pad=1
1091 | activation=leaky
1092 |
1093 | [convolutional]
1094 | batch_normalize=1
1095 | size=3
1096 | stride=1
1097 | pad=1
1098 | filters=1024
1099 | activation=leaky
1100 |
1101 | [convolutional]
1102 | batch_normalize=1
1103 | filters=512
1104 | size=1
1105 | stride=1
1106 | pad=1
1107 | activation=leaky
1108 |
1109 | [convolutional]
1110 | batch_normalize=1
1111 | size=3
1112 | stride=1
1113 | pad=1
1114 | filters=1024
1115 | activation=leaky
1116 |
1117 | [convolutional]
1118 | batch_normalize=1
1119 | filters=512
1120 | size=1
1121 | stride=1
1122 | pad=1
1123 | activation=leaky
1124 |
1125 | [convolutional]
1126 | batch_normalize=1
1127 | size=3
1128 | stride=1
1129 | pad=1
1130 | filters=1024
1131 | activation=leaky
1132 |
1133 | [convolutional]
1134 | size=1
1135 | stride=1
1136 | pad=1
1137 | filters=255
1138 | activation=linear
1139 |
1140 |
1141 | [yolo]
1142 | mask = 6,7,8
1143 | anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1144 | classes=80
1145 | num=9
1146 | jitter=.3
1147 | ignore_thresh = .7
1148 | truth_thresh = 1
1149 | random=1
1150 | scale_x_y = 1.05
1151 | iou_thresh=0.213
1152 | cls_normalizer=1.0
1153 | iou_normalizer=0.07
1154 | iou_loss=ciou
1155 | nms_kind=greedynms
1156 | beta_nms=0.6
1157 | max_delta=5
1158 |
1159 |
--------------------------------------------------------------------------------
/Code/media/Pics_Readme/GUI.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SravanChittupalli/Advanced-Vehicle-Classifier-and-tracker/d5f53f5eb23b2bba9f23a95941faadf0c1184fab/Code/media/Pics_Readme/GUI.png
--------------------------------------------------------------------------------
/Code/media/Pics_Readme/fulldemo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/SravanChittupalli/Advanced-Vehicle-Classifier-and-tracker/d5f53f5eb23b2bba9f23a95941faadf0c1184fab/Code/media/Pics_Readme/fulldemo.gif
--------------------------------------------------------------------------------
/Code/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy==1.19.0
2 | matplotlib==3.0.3
3 | opencv-python==4.2.0.34
4 | opencv-contrib-python==4.2.0.34
5 | Cython==0.29.21
6 | pandas==1.0.5
7 | numba==0.50.1
8 | PyQt5==5.15.0
9 | PyQt5-sip==12.8.0
10 | pyqt5-tools==5.15.0.1.7
11 | scikit-image==0.17.2
12 | scipy==1.5.1
13 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Advanced-Vehicle-Classifier-And-Tracker 🚗 🚛 🚴🏽 🚍
2 | This project aims at classifying multiple classes of vehicles and in addition to that sub-classifying of trucks according to number of axels.
3 |
4 | ## Contents
5 | - [Why this project](#why-this-project)
6 | - [About the Project](#about-the-project)
7 | - [Tech Stack](#tech-stack)
8 | - [File Structure](#file-structure)
9 | - [How to run the application](#how-to-run-the-application)
10 | - [Demo](#demo)
11 | - [To-Do](#to-do)
12 | - [References](#references)
13 | - [License](#license)
14 |
15 | ## Why this project
16 | - Sub-classification of trucks is a very important task as it has many uses like toll-automation and counting number and type of vehicles accurately. Specially in India all types of trucks look the same untill you are a truck connoisseur but the wear and tear done by different trucks depends on the number of tyres. So each vehicle has to be charged differently.
17 |
18 | - You can also see that at toll gates where it is completely manual the workers can misinform the authorities about the total amount earned for that day thus leading to loss for the authority owning the road. This project can reduce such frauds.
19 |
20 | - Nowadays we find the use of RFID tags for toll automation. The problem with this is every user has to buy one but by using _ComputerVision_ no external hardware is required. Once setup you will get the data automatically 24X7.
21 |
22 | ## About the Project
23 | 
24 |
25 | The project contains a GUI application to generalise the project. It can be used at toll gates to keep an accurate track of number of vehicles and with addition of some more classes and features the project can also be used for full toll automation. The project uses Darknet YOLOv4 and SORT tracker. For now the app can only classify car , bike , bus and 5 classes of trucks.
26 |
27 | ## Tech Stack
28 | * [Python](https://www.python.org/)
29 | * [Numpy](https://numpy.org)
30 | * [SciPy](https://pypi.org/project/scipy/1.5.1/)
31 | * [OpenCV](https://opencv.org/)
32 | * [PyQt5](https://pypi.org/project/PyQt5/)
33 |
34 |
35 | ## File Structure
36 | ├── LICENSE
37 | ├── README.md
38 | ├── WORKPLAN.md # Project plan
39 | ├── Code/
40 | │ ├── GUIApp.py # GUI APP
41 | │ ├── SortTracker.py # SortImplementation
42 | │ ├── classify_track_count.py # YOLO classifier
43 | | ├── requirements.txt # All required libraries
44 | │ ├── extras
45 | │ |-- coco.data
46 | | |-- coco.names
47 | | |-- multi_classify.cfg
48 | | |-- multi_classify.data
49 | | |-- multi_classify.names
50 | │ |-- yolov4.cfg
51 | | |-- media/Pics_Readme
52 | | |-- GUI.png
53 | | |-- fulldemo.gif
54 |
55 | ## How to run the application
56 | This is the problem with darknet. I can't find a way to give the whole project as a package along with darknet. Please do the following steps extremely carefully.
57 | 1) Clone [AlexyAB's darknet](https://github.com/SravanChittupalli/darknet) github repo.
58 | 2) Run the python demo as given in the [README](https://github.com/AlexeyAB/darknet/blob/master/README.md). If you built and ran the demo successfully then continue to step 3
59 | 3) Clone this repo into the `darknet` folder
60 | 4) Next copy the 3 python files in `Code` folder into the `darknet` folder
61 | 5) Copy the `.data` and `.names` files in `Code/extras` to `darknet/data` folder.
62 | 6) Copy the `.cfg` files in `Code/extras` to `darknet/cfg` folder.
63 | 7) Download the [weight](https://drive.google.com/drive/u/0/folders/1XVWolAhNTvv-ssePnYNXk0GNMrzmwN0w) files from the [drive link](https://drive.google.com/drive/u/0/folders/1XVWolAhNTvv-ssePnYNXk0GNMrzmwN0w) and save them in `darknet` folder. There will also be a `sample_videos` folder also place it anywhere you want.
64 | 8) Open a terminal and run `pip install -r requirements.txt`. I strongly recommend the use of miniconda as is keep the system python packages seperate, thus avoiding conflict.
65 | 9) Now you are all set to run the demo. Activate your environment and run `python GUIApp.py`.
66 | 10) Select the sample video and choose the ROI as shown in the GIF below. Detection of axels requires specific angles so I recommend using the ROI as `(444,191), (1440,734)` to get the best results.
67 |
68 | Just to make your life easier i've added a [bash script]() that you can run to do everything from `step 4` to `step 6`
69 |
70 | ## Demo
71 | 
72 |
73 | ## To-Do
74 | I've tried this project using feature extraction , Hough Circle detection , Finding area and length of truck , counting each wheel individually but atlast ended up using 2 iterations of the neural network on 2 different weights one which classifies vehicles and the other that detects wheels :sweat_smile:. I understand that this is not an efficient method but I did not have enough resources to make a whole dataset by myself which includes cars, trucks , bikes , buses along with their wheels. Also I could not find many videos with trck , car facing to the side so that I can detect wheels easily. If anyone has any sugestions on solving this problem efficintly them please open an issue I will be more than happy to try and implement the suggestions or else you can even try to implement it on your own. :smile:
75 | - [x] Add script to ensure smooth running
76 | - [ ] increase # of classes
77 | - [ ] add number plate recognition
78 | - [ ] increase efficiency
79 |
80 | ## References
81 | * [AlexyAB's YOLOV4](https://github.com/AlexeyAB/darknet)
82 | * [SORT Implementation](https://github.com/abewley/sort)
83 | * [Point's side w.r.t a line](https://www.geeksforgeeks.org/direction-point-line-segment/)
84 | * Thanks to pyimagesearch. There is are no topics in CV and ImageProcessing that pyimagesearch blog doesnot cover.
85 |
86 | ## License
87 | Details can be found in [License](LICENSE).
88 |
--------------------------------------------------------------------------------
/setup.bash:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | ###########################Downloading required files###############################
4 |
5 | echo "Copying files..."
6 |
7 | cp Code/classify_track_count.py ../.
8 | cp Code/GUIApp.py ../.
9 | cp Code/SortTracker.py ../.
10 |
11 | cp Code/extras/*.cfg ../cfg
12 | cp Code/extras/*.names ../data
13 | cp Code/extras/*.data ../data
14 |
15 | #########################################################################
--------------------------------------------------------------------------------