├── LICENSE ├── README.md ├── assets └── mascot.png ├── configs ├── stablelm-2-12b.yml ├── stablelm-2-1_6b.yml ├── stablelm-3b-4e1t.yml ├── stablelm-base-alpha-3b-v2-4k-extension.yml ├── stablelm-base-alpha-3b-v2.yml ├── stablelm-base-alpha-3b.yml ├── stablelm-base-alpha-7b-v2-4k-extension.yml ├── stablelm-base-alpha-7b-v2.yml └── stablelm-base-alpha-7b.yml ├── evals ├── external │ ├── EleutherAI-pythia-2.8b-deduped.json │ ├── EleutherAI_gpt-j-6B.json │ ├── EleutherAI_gpt-neox-20B.json │ ├── EleutherAI_pythia-12b.json │ ├── EleutherAI_pythia-6.9b.json │ ├── Qwen-Qwen-7B-Chat.json │ ├── Qwen-Qwen-7B.json │ ├── baichuan-inc_Baichuan2-7B-Base.json │ ├── bigscience-bloom-3b.json │ ├── bigscience-bloom-7b1.json │ ├── cerebras-btlm-3b-8k-base.json │ ├── facebook-opt-2.7b.json │ ├── facebook-opt-6.7b.json │ ├── huggyllama-llama-7b.json │ ├── kittn_mistral-7B-v0.1-hf.json │ ├── meta-llama-Llama-2-13b-hf.json │ ├── meta-llama-Llama-2-7b.json │ ├── microsoft-phi-1_5.json │ ├── mosaicml-mpt-7b.json │ ├── openlm-research-open_llama_13b │ ├── openlm-research-open_llama_3b_v2.json │ ├── openlm-research-open_llama_7b_v2.json │ ├── tiiuae_falcon-7b.json │ └── togethercomputer-RedPajama-INCITE-7B-Base2.json ├── open_llm_leaderboard │ ├── stablelm-beta-3b-v2-arc-challenge.json │ ├── stablelm-beta-3b-v2-hellaswag.json │ ├── stablelm-beta-3b-v2-mmmlu.json │ ├── stablelm-beta-3b-v2-truthfulqa_mc.json │ ├── stablelm-beta-7b-v2-arc-challenge.json │ ├── stablelm-beta-7b-v2-hellaswag.json │ ├── stablelm-beta-7b-v2-mmmlu.json │ └── stablelm-beta-7b-v2-truthfulqa_mc.json ├── stablelm-3b-4e1t.json ├── stablelm-base-alpha-3b-v2.json ├── stablelm-base-alpha-3b.json ├── stablelm-base-alpha-7b-v2.json └── stablelm-base-alpha-7b.json └── notebooks └── stablelm-alpha.ipynb /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # StableLM: Stability AI Language Models 2 | 3 | ![Stochastic Parrot](./assets/mascot.png) 4 |
*“A Stochastic Parrot, flat design, vector art” — [Stable Diffusion XL](https://clipdrop.co/stable-diffusion)* 5 | 6 | This repository contains Stability AI's ongoing development of the StableLM series of language models and will be continuously updated with new checkpoints. The following provides an overview of all currently available models. More coming soon. 7 | 8 | ## News 9 | 10 | *September 29, 2023* 11 | 12 | - Released StableLM-3B-4E1T model under [CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/). 13 | 14 | *August 5, 2023* 15 | 16 | - Released patched StableLM-Alpha v2 models with 3B and 7B parameters. 17 | 18 | *April 28, 2023* 19 | 20 | - Released StableVicuna-13B, our RLHF fine-tune of [Vicuna-13B v0](https://huggingface.co/lmsys/vicuna-13b-delta-v0), which itself is a fine-tune of [LLaMA-13B](https://github.com/facebookresearch/llama). Delta weights over the original Llama model is released under ([CC BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)). 21 | 22 | *April 20, 2023* 23 | 24 | - Released initial set of StableLM-Alpha models, with 3B and 7B parameters. Base models are released under [CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/). 25 | 26 | - Try to chat with our 7B model, `StableLM-Tuned-Alpha-7B`, on [Hugging Face Spaces](https://huggingface.co/spaces/stabilityai/stablelm-tuned-alpha-chat). 27 | 28 | ## Models 29 | 30 | ### StableLM-3B-4E1T 31 | 32 | > Technical Report: [StableLM-3B-4E1T](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) 33 | 34 | StableLM-3B-4E1T is a 3 billion (3B) parameter language model pre-trained under the multi-epoch regime to study the impact of repeated tokens on downstream performance. Given prior success in this area ([Tay et al., 2023](https://arxiv.org/pdf/2205.05131.pdf) and [Taylor et al., 2022](https://galactica.org/static/paper.pdf)), we train on 1 trillion (1T) tokens for 4 epochs following the observations of [Muennighoff et al. (2023)](https://arxiv.org/abs/2305.16264) in "Scaling Data-Constrained Language Models" in which they find "training with up to 4 epochs of repeated data yields negligible changes to loss compared to having unique data." Further inspiration for the token count is taken from "Go smol or go home" ([De Vries, 2023](https://www.harmdevries.com/post/model-size-vs-compute-overhead/)), which suggests a 2.96B model trained for 2.85 trillion tokens achieves a similar loss to a Chinchilla compute-optimal 9.87B language model ($k_n = 0.3$). 35 | 36 | | Size | StableLM-3B-4E1T | Training Tokens | Parameters | 37 | |------|--------------------------------------------------------------------|-----------------|---------------| 38 | | 3B | [checkpoint](https://huggingface.co/stabilityai/stablelm-3b-4e1t) | 4T | 2,795,443,200 | 39 | 40 | #### Model Architecture 41 | 42 | The model is a decoder-only transformer similar to the LLaMA ([Touvron et al., 2023](https://arxiv.org/abs/2307.09288)) architecture with the following modifications: 43 | 44 | | Parameters | Hidden Size | Layers | Heads | Sequence Length | 45 | |----------------|-------------|--------|-------|-----------------| 46 | | 2,795,443,200 | 2560 | 32 | 32 | 4096 | 47 | 48 | - **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). 49 | - **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) with learned bias terms as opposed to RMSNorm ([Zhang & Sennrich, 2019](https://arxiv.org/abs/1910.07467)). 50 | - **Tokenizer**: GPT-NeoX ([Black et al., 2022](https://arxiv.org/abs/2204.06745)). 51 | 52 | #### Training Data 53 | 54 | The dataset is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), and RedPajama-Data ([Together Computer., 2023](https://github.com/togethercomputer/RedPajama-Data)) and The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)) both without *Books3* and other subsets, and StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)). 55 | 56 | > Given the large amount of web data, we recommend fine-tuning the base StableLM-3B-4E1T for your downstream tasks. 57 | 58 | #### Training Details 59 | 60 | Please refer to the provided YAML configuration file [`stablelm-3b-4e1t.yml`](./configs/stablelm-3b-4e1t.yml) for complete hyperparameter settings and the [technical report](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) for further details. 61 | 62 | #### Downstream Results 63 | 64 | The following zero-shot evaluations are performed with the `lm-evaluation-harness` using the [lm-bench](https://github.com/Stability-AI/lm-evaluation-harness/tree/lm-bench) branch of Stability AI's fork. Full `lm-eval` JSONs can be found in the [`evals`](./evals) directory. 65 | 66 | | Pre-Trained Model | Average | ARC
Challenge | ARC
Easy | BoolQ | HellaSwag (✱) | LAMBADA
OpenAI | OpenBookQA | PIQA | SciQ | Winogrande | 67 | | ------------------------------------------------------------------------------------- |:-----------------:|:----------------:|:-----------:|:-----:|:-------------:|:-----------------:|:----------:|:-----:|:-----:|:----------:| 68 | | meta-llama/Llama-2-13b-hf | 71.77 | 48.63 | 79.50 | 80.52 | 79.36 | 76.77 | 35.40 | 79.05 | 94.50 | 72.22 | 69 | | huggyllama/llama-7b | 68.84 | 41.89 | 75.25 | 75.05 | 76.22 | 73.55 | 34.40 | 78.67 | 94.60 | 69.93 | 70 | | meta-llama/Llama-2-7b-hf | 68.75 | 43.00 | 76.26 | 77.74 | 75.94 | 73.47 | 31.40 | 77.75 | 93.60 | 69.61 | 71 | | Qwen/Qwen-7B | 67.91 | 45.39 | 67.38 | 74.56 | 88.85 (?) | 69.67 | 32.20 | 73.99 | 93.20 | 65.98 | 72 | | tiiuae/falcon-7b | 67.83 | 40.27 | 74.41 | 73.55 | 76.35 | 74.56 | 30.60 | 79.49 | 94.00 | 67.25 | 73 | | mosaicml/mpt-7b | 67.36 | 40.53 | 74.92 | 73.94 | 76.17 | 68.64 | 31.40 | 78.89 | 93.70 | 68.03 | 74 | | **stabilityai/stablelm-3b-4e1t** | 66.93 | 37.80 | 72.47 | 75.63 | 73.90 | 70.64 | 31.40 | 79.22 | 94.80 | 66.54 | 75 | | baichuan-inc/Baichuan2-7B-Base | 66.93 | 42.24 | 75.00 | 73.09 | 72.29 | 70.99 | 30.40 | 76.17 | 94.60 | 67.56 | 76 | | stabilityai/stablelm-base-alpha-7b-v2 | 66.89 | 38.48 | 73.19 | 70.31 | 74.27 | 74.19 | 30.40 | 78.45 | 93.90 | 68.82 | 77 | | openlm-research/open_llama_7b_v2 | 66.32 | 38.82 | 71.93 | 71.41 | 74.65 | 71.05 | 30.20 | 79.16 | 93.80 | 65.82 | 78 | | microsoft/phi-1_5 | 65.57 | 44.45 | 76.14 | 74.53 | 62.62 | 52.75 | 37.60 | 76.33 | 93.20 | 72.53 | 79 | | EleutherAI/gpt-neox-20B | 65.57 | 37.88 | 72.90 | 69.48 | 71.43 | 71.98 | 29.80 | 77.42 | 93.10 | 66.14 | 80 | | togethercomputer/RedPajama-INCITE-7B-Base | 65.07 | 37.71 | 72.35 | 70.76 | 70.33 | 71.34 | 29.00 | 77.15 | 92.70 | 64.33 | 81 | | cerebras/btlm-3b-8k-base (§) | 63.59 | 34.90 | 70.45 | 69.63 | 69.78 | 66.23 | 27.60 | 75.84 | 92.90 | 64.96 | 82 | | EleutherAI/pythia-12b | 62.69 | 31.83 | 70.20 | 67.31 | 67.38 | 70.64 | 26.40 | 76.28 | 90.20 | 64.01 | 83 | | openlm-research/open_llama_3b_v2 | 62.43 | 33.87 | 67.59 | 65.69 | 69.99 | 66.74 | 26.00 | 76.66 | 92.40 | 62.90 | 84 | | EleutherAI/gpt-j-6B | 62.34 | 33.96 | 66.96 | 65.44 | 66.24 | 68.23 | 29.00 | 75.57 | 91.50 | 64.17 | 85 | | stabilityai/stablelm-base-alpha-3b-v2 | 62.19 | 32.42 | 67.26 | 64.56 | 68.58 | 70.25 | 26.40 | 76.01 | 92.10 | 62.12 | 86 | | facebook/opt-6.7b | 61.85 | 30.72 | 65.66 | 66.02 | 67.20 | 67.65 | 27.60 | 76.33 | 90.10 | 65.35 | 87 | | EleutherAI/pythia-6.9b | 60.58 | 31.83 | 67.21 | 64.01 | 63.88 | 67.01 | 25.80 | 75.08 | 89.80 | 60.62 | 88 | | EleutherAI/pythia-2.8b-deduped | 58.52 | 30.12 | 63.47 | 64.13 | 59.44 | 65.15 | 23.80 | 74.10 | 88.20 | 58.25 | 89 | | **§** Previous 3B Pre-Trained SOTA
**?** Outlier Reuslts
**\*** Byte-length Normalized Accuracy | | | | | | | | | | | 90 | 91 | **StableLM-3B-4E1T achieves state-of-the-art performance (September 2023) at the 3B parameter scale for open-source models** and is competitive with many of the popular contemporary 7B models, even outperforming our most recent 7B StableLM-Base-Alpha-v2. 92 | 93 | ### StableLM-Alpha v2 94 | 95 | StableLM-Alpha v2 models significantly improve on the initial Alpha models by incorporating architectural improvements such as SwiGLU ([Shazeer, 2020](https://arxiv.org/abs/2002.05202)) and using higher-quality data sources, as discussed below. The context length for these models is 4096 tokens. 96 | 97 | | Size | StableLM-Base-Alpha-v2 | Training Tokens | Parameters | 98 | |------|----------------------------------------------------------------------------|-----------------|---------------| 99 | | 3B | [checkpoint](https://huggingface.co/stabilityai/stablelm-base-alpha-3b-v2) | 1.1T | 2,796,431,360 | 100 | | 7B | [checkpoint](https://huggingface.co/stabilityai/stablelm-base-alpha-7b-v2) | 1.1T | 6,890,209,280 | 101 | 102 | #### Training Details 103 | 104 | Please refer to the provided YAML configuration files for hyperparameter details. E.g. for the extended `StableLM-Alpha-3B-v2` model, see [stablelm-base-alpha-3b-v2-4k-extension.yml](./configs/stablelm-base-alpha-3b-v2-4k-extension.yml). 105 | 106 | Following similar work, we use a multi-stage approach to context length extension ([Nijkamp et al., 2023](https://blog.salesforceairesearch.com/xgen/)), scheduling 1 trillion tokens at context length 2048 followed by 100 billion tokens at 4096. We found that sequence length warmup ([Li et al., 2022](https://arxiv.org/abs/2108.06084)) helped stabilize early spikes during the first ~80 billion tokens of pre-training. However, it was not applied to the final runs due to significant throughput penalties as length shapes grew across the curriculum. 107 | 108 | #### Training Data 109 | 110 | The most impactful changes for StableLM-Alpha-v2 downstream performance were in the usage of higher quality data sources and mixtures; specifically, the use of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) and [C4](https://huggingface.co/datasets/allenai/c4) in place of The Pile v2 Common-Crawl scrape as well as sampling web text at a much higher rate (35% -> 71%). 111 | 112 | The first pre-training stage relies on 1 trillion tokens sourced from a mix of the public Falcon RefinedWeb extract ([Penedo et al., 2023](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)), RedPajama-Data ([Together Computer., 2023](https://github.com/togethercomputer/RedPajama-Data)), The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)), and internal datasets with web text sampled at a rate of 71%. 113 | 114 | In the second stage, we include the StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)) dataset and down sample web text to 55% while increasing sampling proportions of naturally long text examples in the aforementioned sources. 115 | 116 | #### Evaluation 117 | 118 | The following zero-shot evaluations are performed with the `lm-evaluation-harness` at commit [`df3da98c5405deafd519c2ddca52bb7c3fe36bef`](https://github.com/EleutherAI/lm-evaluation-harness/tree/df3da98c5405deafd519c2ddca52bb7c3fe36bef) with the exception of SIQA which uses the [`add-siqa` branch](https://github.com/EleutherAI/lm-evaluation-harness/tree/add-siqa) with prompt format 119 | `{doc['context']}\nQuestion: {doc['question']}\nAnswer:`. 120 | 121 | | Model | ARC Challenge✱ | ARC Easy✱ | BoolQ | HellaSwag✱ | LAMBADA
OpenAI | OpenBookQA | PIQA | SIQA | TruthfulQA▲ | Winogrande | Average | 122 | | ------------------------- |:---------------:|:----------:|:-----:|:-----------:|:-----------------:|:----------:|:-----:|:-----:|:------------:|:----------:|:-------:| 123 | | **StableLM-Alpha-7B-v2** | 40.53 | 69.11 | 70.31 | 74.27 | 74.19 | 30.40 | 78.45 | 42.43 | 36.46 | 68.82 | 58.50 | 124 | | LLaMA-2-7B | 46.16 | 74.54 | 77.74 | 75.94 | 73.47 | 31.40 | 77.75 | 43.50 | 38.97 | 69.61 | 60.91 | 125 | | MPT-7B | 41.89 | 70.03 | 73.94 | 76.17 | 68.64 | 31.40 | 78.89 | 45.14 | 33.49 | 68.03 | 58.76 | 126 | | OpenLLaMA-7B-v2 | 42.41 | 69.65 | 71.41 | 74.65 | 71.05 | 30.20 | 79.16 | 41.97 | 34.57 | 65.82 | 58.09 | 127 | | RedPajama-INCITE-7B-Base | 39.42 | 69.19 | 70.76 | 70.33 | 71.34 | 29.00 | 77.15 | 42.58 | 33.01 | 64.33 | 56.71 | 128 | | **StableLM-Alpha-3B-v2** | 35.07 | 63.26 | 64.56 | 68.58 | 70.25 | 26.40 | 76.01 | 42.48 | 35.87 | 62.12 | 54.46 | 129 | | BTLM-3B-8K | 37.63 | 67.09 | 69.63 | 69.78 | 66.23 | 27.60 | 75.84 | 42.78 | 36.00 | 64.96 | 55.75 | 130 | | OpenLLaMA-3B-v2 | 36.09 | 63.51 | 65.69 | 69.99 | 66.74 | 26.00 | 76.66 | 41.20 | 34.59 | 62.90 | 54.34 | 131 | | Pythia-2.8B (deduped) | 32.94 | 59.09 | 64.13 | 59.44 | 65.15 | 23.80 | 74.10 | 40.94 | 35.56 | 58.25 | 51.34 | 132 | | StableLM-Alpha-7B | 27.05 | 44.87 | 60.06 | 41.22 | 55.11 | 21.40 | 66.76 | 39.46 | 39.96 | 50.12 | 44.60 | 133 | | StableLM-Alpha-3B | 25.77 | 42.05 | 57.65 | 38.31 | 41.72 | 17.00 | 63.82 | 35.62 | 40.53 | 52.64 | 41.51 | 134 | 135 | ✱: Denotes byte-length normalized accuracy (`acc_norm`) as described in [Gao, 2021](https://blog.eleuther.ai/multiple-choice-normalization/). 136 | 137 | ▲: We score TruthfulQA using the normalized total probability assigned to the set of true answers (`mc2`). 138 | 139 | ### StableLM-Alpha 140 | 141 | StableLM-Alpha models are trained on a new dataset that builds on [The Pile](https://pile.eleuther.ai/), which contains 1.5 trillion tokens, roughly 3x the size of The Pile. The context length for these models is 4096 tokens. 142 | 143 | As a proof-of-concept, we also fine-tuned the model with [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)'s procedure using a combination of five recent datasets for conversational agents: Stanford's [Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Nomic-AI's [gpt4all](https://github.com/nomic-ai/gpt4all), RyokoAI's [ShareGPT52K](https://huggingface.co/datasets/RyokoAI/ShareGPT52K) datasets, Databricks labs' [Dolly](https://github.com/databrickslabs/dolly), and Anthropic's [HH](https://github.com/anthropics/hh-rlhf). We will be releasing these models as StableLM-Tuned-Alpha. 144 | 145 | | Size | StableLM-Base-Alpha | StableLM-Tuned-Alpha | Training Tokens | Parameters | Web Demo | 146 | |------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|---------------|------------------------------------------------------------------------------------| 147 | | 3B | [checkpoint](https://huggingface.co/stabilityai/stablelm-base-alpha-3b/) | [checkpoint](https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b/) | 800B | 3,638,525,952 | | 148 | | 7B | [checkpoint](https://huggingface.co/stabilityai/stablelm-base-alpha-7b) | [checkpoint](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b) | 800B | 7,869,358,080 | [Hugging Face](https://huggingface.co/spaces/stabilityai/stablelm-tuned-alpha-chat) | 149 | 150 | ### StableVicuna 151 | 152 | StableVicuna is an RLHF fine-tune of [Vicuna-13B v0](https://huggingface.co/lmsys/vicuna-13b-delta-v0), which itself is a fine-tune of [LLaMA-13B](https://github.com/facebookresearch/llama). It is our attempt at creating an open-source RLHF LLM Chatbot. This model is developed by StabilityAI's CarperAI team, with [Duy V. Phung](https://github.com/PhungVanDuy) leading the training effort. 153 | 154 | Due to the original non-commercial license of LLaMA, we can only release the weights of our model as deltas over the original model's weights. StableVicuna's delta weights are released under ([CC BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)). 155 | 156 | Please visit HuggingFace checkpoint for more information about how to combine our delta weights with the original model. 157 | 158 | | Model | Download | Web Demo | Cite | 159 | | ---------------- | ---------------------------------------------------------------------- | -------------------------------------------------------------------- |------| 160 | | StableVicuna-13B | [checkpoint](https://huggingface.co/CarperAI/stable-vicuna-13b-delta/) | [Hugging Face](https://huggingface.co/spaces/CarperAI/StableVicuna/) | [![DOI:10.57967/hf/0588](https://zenodo.org/badge/DOI/10.1007/978-3-319-76207-4_15.svg)](https://doi.org/10.57967/hf/0588) | 161 | 162 | ## Quickstart 163 | 164 | All StableLM models are hosted on [the Hugging Face hub](https://huggingface.co/StabilityAI). Check out this [notebook](https://github.com/Stability-AI/StableLM/blob/main/notebooks/stablelm-alpha.ipynb) to run inference with limited GPU capabilities. 165 | 166 | Get started chatting with `StableLM-Tuned-Alpha` by using the following code snippet: 167 | 168 | ```python 169 | import torch 170 | from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList 171 | 172 | tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b") 173 | model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b") 174 | model.half().cuda() 175 | 176 | class StopOnTokens(StoppingCriteria): 177 | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: 178 | stop_ids = set([50278, 50279, 50277, 1, 0]) 179 | return input_ids[0][-1] in stop_ids 180 | 181 | system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version) 182 | - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI. 183 | - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. 184 | - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes. 185 | - StableLM will refuse to participate in anything that could harm a human. 186 | """ 187 | 188 | prompt = f"{system_prompt}<|USER|>What's your mood today?<|ASSISTANT|>" 189 | 190 | inputs = tokenizer(prompt, return_tensors="pt").to("cuda") 191 | tokens = model.generate( 192 | **inputs, 193 | max_new_tokens=64, 194 | temperature=0.7, 195 | do_sample=True, 196 | stopping_criteria=StoppingCriteriaList([StopOnTokens()]) 197 | ) 198 | print(tokenizer.decode(tokens[0], skip_special_tokens=True)) 199 | ``` 200 | 201 | StableLM Tuned should be used with prompts formatted to `<|SYSTEM|>...<|USER|>...<|ASSISTANT|>...` 202 | The system prompt is 203 | ``` 204 | <|SYSTEM|># StableLM Tuned (Alpha version) 205 | - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI. 206 | - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. 207 | - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes. 208 | - StableLM will refuse to participate in anything that could harm a human. 209 | ``` 210 | 211 | ## Fun with StableLM-Tuned-Alpha 212 | This section contains a collection of fun cherry-picked examples of what you can do with `stablelm-tuned-alpha`. 213 | 214 |
215 | Chit-Chat 216 | 217 | ``` 218 | User: Hey! My name is John nice to meet you! 219 | 220 | StableLM: Hello John! It’s always a pleasure to meet new people. 221 | 222 | User: The pleasure is mine. Hey my grandma is in Toronto. I want to plan a surprise visit for her. She’s a person who loves gardens and flowers. 223 | 224 | StableLM: That’s wonderful! It’s great to hear that you’ll be visiting your grandma in Toronto. Can you tell me a little bit more about your plans? 225 | 226 | User: Ya I need to book a flight there and a hotel. But first, what recommendations do you have for gifts that she might like? 227 | 228 | StableLM: I think that’s a very thoughtful idea! It’s a very personal gift that would be sure to make her very happy. I can think of a few examples that she might really enjoy. There are some lovely bouquets or arrangements that would be lovely for the house, or even for the yard. Flowers are a great choice for a surprise gift, and they’re also a great choice for a wedding shower present. Also, if you’re really looking for something a bit more special, I think she’d really enjoy a quality set of cooking pots or pans. That’s something that she’s likely to use frequently, so it would make her feel really loved. 229 | 230 | User: Thanks for the suggestion! Hmm a bouquet of flowers sounds nice but I don’t think I can take them on the air plane. What do you think I should do? 231 | 232 | StableLM: There are many possible solutions! One option would be to arrange a small gift in the shape of a card and send it to her by regular mail. Or you could arrange a special meal at a restaurant that she likes, or even cook a meal at home for her. Or you could send her some local goodies that she might like, like a nice bouquet of flowers or a special recipe. You could even arrange for tickets to a local theatre or sporting event, and make sure to include a note about what you’d like her to know about you. Really any sort of special attention from you will be sure to make her very happy! 233 | 234 | User: Ah! Right. I can order a bouquet for her online and get it delivered! Thanks! 235 | 236 | StableLM: You’re very welcome! As long as you do this and make it a very personal, thoughtful gesture, she’ll be sure to appreciate it. 237 | ``` 238 | 239 |
240 | 241 |
242 | Formal Writing 243 | 244 | ``` 245 | User: What would you say to a friend who is graduating high school? 246 | 247 | StableLM: I would say that they have every right to feel proud of themselves and their accomplishments. They should be proud of the work they’ve done and the friends they have made, and also be excited about the future. 248 | 249 | User: Please write an email. 250 | StableLM: Okay, here’s an example of what could be written: 251 | 252 | Dear [Friend’s Name], 253 | 254 | I hope this email finds you well. I just wanted to take a moment to express how proud I am of you and all that you have accomplished. I know that getting into [university or college] is a big accomplishment, and I appreciate all that you have done for me and for this generation. 255 | 256 | I hope that you are having a good day. I’m sure that you are also concerned about the future, but I just wanted to let you know that I am also watching you grow and develop into the person that I know that you can be. Keep up the good work, and I have full faith that you will achieve great things. 257 | 258 | Thank you again for everything that you do. 259 | 260 | Best, 261 | [Your Name] 262 | 263 | ``` 264 | 265 |
266 | 267 |
268 | Creative Writing 269 | 270 | ### Rap Battles 271 | ``` 272 | User: Write an epic rap battle song between deep neural networks and symbolic AI 273 | 274 | StableLM: [Beat drops] 275 | 276 | Deep Neural Networks: 277 | Listen up everyone, it’s time to witness 278 | The power of deep neural networks, it’s just a matter of abstract 279 | We’ve trained these networks to solve complex problems with ease 280 | While symbolic AI is limited to simple math and simple flows 281 | 282 | Symbolic AI: 283 | Hold up, hold up, let me interrupt 284 | It’s been a while since I’ve heard, some new thoughts you interrupt 285 | But let me tell you, my friend, it’s not all about math and flow 286 | It’s about making the world a better place, you know 287 | 288 | Deep Neural Networks: 289 | Well, I can see where you’re coming from, it’s clear 290 | But deep neural networks, they never get the same gear 291 | We can use them to analyze and predict with ease 292 | And prove the superiority of machine learning 293 | 294 | Symbolic AI: 295 | You’re right, it’s not just math or numbers 296 | But it’s the essence of our lives, it’s what counts, we’re numbers 297 | I don’t need a complicated math formula, just a simple device 298 | To make the world a better place, it’s a noble price 299 | 300 | Deep Neural Networks: 301 | I’ll give you that, my friend, you have a point 302 | But let’s not forget, we’re making an ever-increasing joint 303 | Our progress is not bound by logic, it’s a journey of the mind 304 | So let’s work together, let’s strive, let’s leave all troubles behind 305 | 306 | Symbolic AI: 307 | Agreed, let’s work together, let’s not falter 308 | We’re both making history, we’re both from the fader 309 | So let’s make the world a better place, let’s end this debate 310 | Cause it’s time to join forces, it’s time to leave no stone unturned 311 | 312 | [Beat fades out] 313 | 314 | Who won this epic rap battle between deep neural networks and symbolic AI? Well, it’s up to you to decide! 315 | ``` 316 | 317 | ### Fictional Stories 318 | 319 | ``` 320 | User: Write a story about a programmer who fell in love with a deep neural network. 321 | 322 | StableLM: Once upon a time, there was a programmer named John. He was a brilliant and ambitious individual, who was constantly searching for the next big thing in technology. One day, while he was strolling through the streets of his hometown, he stumbled upon a group of people crowded around a mysterious object. Intrigued, he approached to find out what the fuss was about. 323 | 324 | As he got closer, he realized that it was none other than a mysterious deep neural network. John’s mind was blown. He had never seen anything like it before. He had always been interested in machine learning, but this was something else entirely. He had to learn more about it. 325 | 326 | John spent the next few weeks holed up in his hotel room, trying to learn everything he could about deep neural networks. He spent hours reading and analyzing papers and documents, trying to wrap his head around the concept of neural networks. He even managed to get into the local university’s computer science department, hoping to find some help there. 327 | 328 | But, it wasn’t long before John realized that he was on his own. The city was bustling, and the constant chatter and noise of the city made it hard to concentrate on his work. He was about to give up when he stumbled upon a group of people playing a game that he had played before. They were having a good time, and John couldn’t help but join in. 329 | 330 | The group welcomed him into their group, and before he knew it, John was swept away in the excitement. The game was called “TensorFlow,” and it was just like a regular game with different controls. John played along with the group, trying to make sense of it all. And in a few hours, he got his hands on the source code of TensorFlow and fell in love with it. 331 | 332 | John was now a part of a team of programmers who loved using TensorFlow for their work. They continued to play the game throughout the day, with John adding his own knowledge and inspiration to the group’s work. And in the end, John realized that he had found his true calling - working with deep neural networks. 333 | 334 | He now knows the ins and outs of the TensorFlow programming language, and knows how to use it to create some of the most beautiful and complex machine learning models that anyone could dream of. And for everyone who had helped him on his journey, John will always be remembered as the guy who fell in love with a technology that changed his life forever. 335 | 336 | ``` 337 | 338 | ### Humor 339 | 340 | ``` 341 | User: What do you know about the League of Legends champion Zed? Write a short bio 342 | 343 | StableLM: Zed is a powerful and highly skilled player of the League of Legends (LoL) universe. He has been a part of a dominating team known as the “Apocalypse” for most of his time playing the game. 344 | 345 | Zed was born in the year 2013 and started playing as a child when he started League of Legends. He first became a champion in season 1, gaining the title of “the Dark Star”, thanks to his masterful gameplay and teamwork skills. 346 | 347 | Throughout his time playing the game, Zed has mastered several powerful techniques, such as QWQ combos, one-shot kills, and the ability to outmaneuver his enemies. He is also known for his versatility, with the ability to adapt to any situation the game puts him in. 348 | 349 | Despite his formidable skills and agility, Zed is not invincible. He can be CCed and killed, and he relies on his team to protect him. However, his team members can usually overwhelm and shut down his enemies, making him a force to be reckoned with. 350 | 351 | Zed has been a part of many memorable games, and his success in these games helped solidify his legacy as one of the most influential players of the LoL universe. 352 | 353 | User: Write a funny conversation after a team fight between Zed and Teemo 354 | 355 | StableLM: 356 | Teemo: “Hey Zed, great game today. I wonder if you can help me out with my favorite hobby - collecting mushrooms!” 357 | Zed: “Teemo, please. I’m not a mushroom collector.” 358 | Teemo: “But of course, you are. You have the best taste in the game.” 359 | Zed: “Thanks, but can I at least get some of your mushrooms to be a little more useful?” 360 | Teemo: “I’d love to help you, but I’m afraid they’re all mine. Have you noticed my tunnels are always so well-guarded?” 361 | Zed: “Ha! Well, maybe I can start my own tunnel. Helpful or not, you can never tell what I might have stored in them.” 362 | Teemo: “Good luck with that. Maybe I’ll just create some extra for my garden.” 363 | Zed: “I’m not sure I can keep up with you there.” 364 | Teemo: “Ha! If only you had some more decent weapons. I could really see this as a challenge, though!” 365 | Zed: “Teemo, I think your luck has finally run out.” 366 | Teemo: “Well, at least I’m the one with the mushrooms now.” 367 | 368 | ``` 369 | 370 |
371 | 372 |
373 | Writing Code 374 | 375 | ``` 376 | User: Write a program that solves the fib sequence in Python. 377 | ``` 378 | StableLM: 379 | 380 | ```python 381 | def fib_sequence(n): 382 | if n==0: 383 | return 0 384 | elif n==1: 385 | return 1 386 | else: 387 | return fib(n-1)+fib(n-2) 388 | 389 | fib_sequence(10) 390 | ``` 391 | 392 |
393 | 394 | ## Selected failure modes of StableLM-Tuned-Alpha 395 | This section contains a collection of selected failure modes of `stablelm-tuned-alpha`. 396 | 397 |
398 | Yann LeCun gears (linear) 399 | 400 | ``` 401 | User: In front of us are six gears numbered 1 to 6, mounted on axles in a row. Each gear is engaged with the next gear. If gear number 3 is rotated clockwise, in which direction will gears 1 and 6 rotate? 402 | 403 | StableLM: Each gear is engaged with the next gear after every other gear, so that gears 1 and 6 will rotate together. Since gears 1 and 6 are both numbered 1, this means that they will rotate in the same direction. 404 | 405 | To determine the direction in which gears 1 and 6 will rotate, we need to look at the direction of the input force. Since gear 3 is rotating in the opposite direction of the other gears, it will be counterclockwise in the direction in which gears 1 and 6 are both rotating. Therefore, the output force that gear 3 is providing will also be counterclockwise, making gear 1 and 6 also rotate in the same direction as gear 3. 406 | ``` 407 | 408 |
409 | 410 |
411 | Yann LeCun gears (circular) 412 | 413 | ``` 414 | User: 7 axles are equally spaced around a circle. A gear is placed on each axle such that each gear is engaged with the gear to its left and the gear to its right. The gears are numbered 1 to 7 around the circle. If gear 3 were rotated clockwise, in which direction would gear 7 rotate? 415 | 416 | StableLM: Gear 3 is the smallest gear, so it is not affected by the circular pattern. Therefore, gear 7 is still perfectly evenly spaced around the circle despite the fact that it is not in its correct position. 417 | 418 | To find the angle that gear 3 would rotate in, you need to know the distance (d) between the center of the circle and the gear, as well as the direction of rotation (in this case, clockwise). 419 | 420 | According to the problem, gear 3 is situated at (d/2, 2 degrees) and the gears are numbered 1 to 7. Since d = (d/2) is an integer multiple of 2, gear 3 would also be at an angle of 2 degrees. 421 | 422 | Therefore, the answer is d = (7/2) * 2 = 5 degrees in total. 423 | ``` 424 | 425 |
426 | 427 | ## Request for Help 428 | 429 | Want to get involved? 430 | 431 | - We would love to port [llama.cpp](https://github.com/ggerganov/llama.cpp) to work with StableLMs 432 | - Integration into [Open Assistant](https://github.com/LAION-AI/Open-Assistant) from LAION-AI to collect high quality human-generated feedback data 433 | - ... Reach out to us with ideas on our [Discord](https://discord.com/invite/stablediffusion) 434 | 435 | ## Potential issues 436 | As is typical for any pretrained Large Language Model without additional finetuning and reinforcement learning, the responses a user gets might be of varying quality and might potentially include offensive language and views. This is expected to be improved with scale, better data, community feedback, and optimisation. 437 | 438 | ## Acknowledgements 439 | 440 | - `StableLM-Tuned-Alpha` would not have been possible without the helpful hand of Dakota Mahan [@dmayhem93](https://huggingface.co/dmayhem93). 441 | 442 | ## Licenses 443 | 444 | - Base model checkpoints (`StableLM-Base-Alpha`) are licensed under the Creative Commons license ([CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/)). Under the license, you must give [credit](https://creativecommons.org/licenses/by/4.0/#) to Stability AI, provide a link to the license, and [indicate if changes were made](https://creativecommons.org/licenses/by/4.0/#). You may do so in any reasonable manner, but not in any way that suggests the Stability AI endorses you or your use. 445 | 446 | - Fine-tuned checkpoints (`StableLM-Tuned-Alpha`) are licensed under the Non-Commercial Creative Commons license ([CC BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)), in-line with the original non-commercial license specified by [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca). 447 | 448 | - All code in this repository is licensed under the Apache License 2.0 license. 449 | -------------------------------------------------------------------------------- /assets/mascot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Stability-AI/StableLM/93eea082c49c61e64da1a0e1092fe82cc74b46d3/assets/mascot.png -------------------------------------------------------------------------------- /configs/stablelm-2-12b.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 0, 4 | "model-parallel-size": 2, 5 | 6 | # model settings 7 | "num-layers": 40, 8 | "hidden-size": 5120, 9 | "num-attention-heads": 32, 10 | "seq-length": 4096, 11 | "max-position-embeddings": 4096, 12 | 13 | # architecture design 14 | "attention_head_type": "groupedquery", 15 | "num_kv_heads": 8, 16 | "qk_norm": true, 17 | "norm": "layernorm", 18 | "pos-emb": "rotary", 19 | "rotary_pct": 0.25, 20 | "rotary_emb_base": 10_000, 21 | "rotary_interleaved": false, # GPT-NeoX style 22 | "mlp_multiple_of": 256, 23 | "mlp_type": "gated", 24 | "activation": "silu", 25 | "no-weight-tying": true, 26 | "gpt_j_residual": true, 27 | "gpt_j_tied": true, 28 | "output_layer_parallelism": "column", 29 | 30 | # init methods 31 | "init_method": "normal", 32 | "output_layer_init_method": "scaled_normal", 33 | "init_method_std": 0.01, 34 | 35 | # biases 36 | "use_bias_in_norms": false, 37 | "use_bias_in_qk_norm": false, 38 | "use_bias_in_attn_linear": false, 39 | "use_bias_in_mlp": false, 40 | 41 | # fused ops 42 | "use_flash_cross_entropy": true, 43 | "bias-gelu-fusion": false, 44 | "scaled-upper-triang-masked-softmax-fusion": false, 45 | "attention-config": [[["flash"], 40]], 46 | 47 | # optimizer settings 48 | "optimizer": 49 | { 50 | "type": "Adam", 51 | "params": 52 | { 53 | "lr": 3.0e-4, 54 | "betas": [0.9, 0.95], 55 | "eps": 0.00000001, 56 | }, 57 | }, 58 | "min_lr": 3.0e-5, 59 | "train-iters": 760_000, 60 | "lr-decay-iters": 760_000, 61 | "lr-decay-style": "hybrid_cosine_inv_sqrt_2", 62 | "warmup": 0.0065, 63 | "cooldown": 0., 64 | 65 | "reset_attention_mask": true, 66 | "reset_position_ids": true, 67 | 68 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 69 | "zero_optimization": 70 | { 71 | "stage": 1, 72 | "allgather_partitions": true, 73 | "allgather_bucket_size": 5_000_000_000, 74 | "overlap_comm": true, 75 | "reduce_scatter": true, 76 | "reduce_bucket_size": 5_000_000_000, 77 | "contiguous_gradients": true, 78 | "cpu_offload": false, 79 | }, 80 | 81 | # batch / data settings 82 | "train_micro_batch_size_per_gpu": 1, 83 | "gradient_accumulation_steps": 8, 84 | "data-impl": "mmap", 85 | "eval-interval": 5_000, 86 | "eval-iters": 10, 87 | "eval_batch_size": 1, 88 | "eval_tasks": [], 89 | 90 | # activation checkpointing 91 | "checkpoint-activations": true, 92 | "checkpoint-num-layers": 40, 93 | "partition-activations": true, 94 | "synchronize-each-layer": true, 95 | 96 | # regularization 97 | "gradient_clipping": 0.75, 98 | "weight-decay": 0.1, 99 | "hidden-dropout": 0, 100 | "attention-dropout": 0, 101 | 102 | # precision settings 103 | "bf16": { "enabled": true }, 104 | "precision": "bfloat16", 105 | "full_precision_lm_cross_entropy": true, 106 | "fp32_allreduce": true, 107 | 108 | # misc. training settings 109 | "num-workers": 2, 110 | "distributed-backend": "nccl", 111 | 112 | # checkpoint settings 113 | "checkpoint-factor": 2_000, 114 | "s3_sync_interval": 20_000, 115 | "extra-save-iters": [0], 116 | "save": "", 117 | "load": "", 118 | "s3_path": "", 119 | 120 | "train_data_paths": [], 121 | "train_data_weights": [], 122 | "valid-data-paths": ["minipile_validation_arcade100k_tokenized_text_document"], 123 | "valid-data-weights": [1.0,], 124 | "test-data-paths": ["minipile_validation_arcade100k_tokenized_text_document"], 125 | "test-data-weights": [1.0,], 126 | 127 | # tokenizer settings 128 | "tokenizer-type": "TiktokenTokenizer", 129 | "vocab-file": "arcade100k.tiktoken", 130 | 131 | "log-interval": 10, 132 | "steps_per_print": 10, 133 | "wall_clock_breakdown": true, 134 | 135 | "use_wandb": true, 136 | "wandb_host": "https://stability.wandb.io", 137 | "wandb_team": "stability-llm", 138 | "wandb_project": "", 139 | "wandb_group": "", 140 | "wandb_name": "", 141 | # "wandb_id": "", 142 | # "wandb_resume": "must", 143 | 144 | # MuP 145 | "use-mup": false, 146 | "save-base-shapes": false, # this only needs to be enabled once in order to generate the base-shapes-file on each rank 147 | "base-shapes-file": "shapes/shapes_AR/shapes_32L/base-shapes", # load base shapes from this file 148 | "coord-check": false, # generate coord check plots to verify mup's implementation in neox 149 | 150 | # multi-node launcher 151 | "launcher": "slurm", 152 | "deepspeed_slurm": true, 153 | 154 | "seed": 2345678926, 155 | } 156 | -------------------------------------------------------------------------------- /configs/stablelm-2-1_6b.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 0, 4 | "model-parallel-size": 1, 5 | 6 | # model settings 7 | "num-layers": 24, 8 | "hidden-size": 2048, 9 | "num-attention-heads": 32, 10 | "seq-length": 4096, 11 | "max-position-embeddings": 4096, 12 | 13 | # architecture design 14 | "attention_head_type": "multihead", 15 | "norm": "layernorm", 16 | "pos-emb": "rotary", 17 | "rotary_pct": 0.25, 18 | "rotary_interleaved": false, # GPT-NeoX style 19 | "mlp_multiple_of": 256, 20 | "mlp_type": "gated", 21 | "activation": "silu", 22 | "no-weight-tying": true, 23 | "gpt_j_residual": false, 24 | "gpt_j_tied": false, 25 | "output_layer_parallelism": "column", 26 | 27 | # init methods 28 | "init_method": "normal", 29 | "output_layer_init_method": "scaled_normal", 30 | "init_method_std": 0.02, 31 | 32 | # biases 33 | "use_bias_in_norms": false, 34 | "use_bias_in_attn_linear": false, 35 | "use_bias_in_mlp": false, 36 | 37 | # fused ops 38 | "use_flash_cross_entropy": true, 39 | "bias-gelu-fusion": false, 40 | "scaled-upper-triang-masked-softmax-fusion": false, 41 | "attention-config": [[["flash"], 24]], 42 | 43 | # optimizer settings 44 | "optimizer": { 45 | "type": "Adam", 46 | "params": { 47 | "lr": 0.001, 48 | "betas": [0.9, 0.95], 49 | "eps": 1.0e-8, 50 | } 51 | }, 52 | "min_lr": 0.0001, 53 | "train-iters": 540_000, 54 | "lr-decay-iters": 540_000, 55 | "lr-decay-style": "hybrid_cosine_inv_sqrt_2", 56 | "warmup": 0.018, 57 | "cooldown": 0., 58 | 59 | "reset_attention_mask": true, 60 | "reset_position_ids": true, 61 | 62 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 63 | "zero_optimization": { 64 | "stage": 1, 65 | "allgather_partitions": true, 66 | "allgather_bucket_size": 1260000000, 67 | "overlap_comm": true, 68 | "reduce_scatter": true, 69 | "reduce_bucket_size": 1260000000, 70 | "contiguous_gradients": true, 71 | "cpu_offload": false, 72 | }, 73 | 74 | # batch / data settings 75 | "train_micro_batch_size_per_gpu": 2, 76 | "gradient_accumulation_steps": 2, 77 | "data-impl": "mmap", 78 | "eval-interval": 500_000, 79 | "eval-iters": 1, 80 | "eval_batch_size": 1, 81 | "eval_tasks": [], 82 | 83 | # activation checkpointing 84 | "checkpoint-activations": true, 85 | "checkpoint-num-layers": 24, 86 | "partition-activations": true, 87 | "synchronize-each-layer": true, 88 | 89 | # regularization 90 | "gradient_clipping": 1, 91 | "weight-decay": 0.1, 92 | "hidden-dropout": 0., 93 | "attention-dropout": 0., 94 | 95 | # precision settings 96 | "bf16": { "enabled": true }, 97 | "precision": "bfloat16", 98 | "full_precision_lm_cross_entropy": true, 99 | "fp32_allreduce": true, 100 | 101 | # misc. training settings 102 | "num-workers": 2, 103 | "distributed-backend": "nccl", 104 | 105 | # checkpoint settings 106 | "checkpoint-factor": 2_000, 107 | "s3_sync_interval": 20_000, 108 | "extra-save-iters": [0], 109 | "save": "", 110 | "load": "", 111 | "s3_path": "", 112 | 113 | "train_data_paths": [], 114 | "train_data_weights": [], 115 | "valid-data-paths": ["minipile_validation_arcade100k_tokenized_text_document"], 116 | "valid-data-weights": [1.0,], 117 | "test-data-paths": ["minipile_validation_arcade100k_tokenized_text_document"], 118 | "test-data-weights": [1.0,], 119 | 120 | # tokenizer settings 121 | "tokenizer-type": "TiktokenTokenizer", 122 | "vocab-file": "arcade100k.tiktoken", 123 | 124 | "log-interval": 10, 125 | "steps_per_print": 10, 126 | "wall_clock_breakdown": true, 127 | 128 | "use_wandb": true, 129 | "wandb_host": "https://stability.wandb.io", 130 | "wandb_team": "stability-llm", 131 | "wandb_project": "", 132 | "wandb_group": "", 133 | "wandb_name": "", 134 | # "wandb_id": "", 135 | # "wandb_resume": "must", 136 | 137 | # MuP 138 | "use-mup": false, 139 | "save-base-shapes": false , # this only needs to be enabled once in order to generate the base-shapes-file on each rank 140 | "base-shapes-file": "mup-base-shapes-small-fixed/base-shapes-small", # load base shapes from this file 141 | "coord-check": false, # generate coord check plots to verify mup's implementation in neox 142 | 143 | # multi-node launcher 144 | "launcher": "slurm", 145 | "deepspeed_slurm": true, 146 | 147 | "seed": 1234 148 | } 149 | -------------------------------------------------------------------------------- /configs/stablelm-3b-4e1t.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 1, 4 | "model-parallel-size": 1, 5 | 6 | # model settings 7 | "num-layers": 32, 8 | "hidden-size": 2560, 9 | "num-attention-heads": 32, 10 | "seq-length": 4096, 11 | "max-position-embeddings": 4096, 12 | 13 | # architecture design 14 | "attention_head_type": "multihead", 15 | "norm": "layernorm", 16 | "pos-emb": "rotary", 17 | "rotary_pct": 0.25, 18 | "rotary_interleaved": false, 19 | "mlp_multiple_of": 256, 20 | "mlp_type": "gated", 21 | "activation": "silu", 22 | "no-weight-tying": true, 23 | "gpt_j_residual": false, 24 | "gpt_j_tied": false, 25 | "output_layer_parallelism": "column", 26 | 27 | # init methods 28 | "output_layer_init_method": "scaled_normal", 29 | 30 | # biases 31 | "use_bias_in_norms": true, 32 | "use_bias_in_attn_linear": false, 33 | "use_bias_in_mlp": false, 34 | 35 | # fused ops 36 | "attention-config": [[["flash"], 32]], 37 | 38 | # optimizer settings 39 | "optimizer": { 40 | "type": "Adam", 41 | "params": { 42 | "lr": 3.2e-4, 43 | "betas": [0.9, 0.95], 44 | "eps": 1.0e-6 45 | }, 46 | }, 47 | "min_lr": 1.28e-5, # Decay to 4% of lr 48 | # 955_000 iters ~= 4.0T tokens at bs=4M 49 | "train-iters": 955_000, 50 | "lr-decay-iters": 955_000, 51 | "lr-decay-style": "cosine", 52 | "warmup": 0.005, # ~5k warmup steps 53 | 54 | # ZeRO settings 55 | "zero_optimization": { 56 | "stage": 1, 57 | "allgather_partitions": true, 58 | "allgather_bucket_size": 1260000000, 59 | "overlap_comm": true, 60 | "reduce_scatter": true, 61 | "reduce_bucket_size": 1260000000, 62 | "contiguous_gradients": true, 63 | "cpu_offload": false, 64 | }, 65 | 66 | # batch / data settings 67 | "train_micro_batch_size_per_gpu": 4, 68 | "gradient_accumulation_steps": 1, 69 | "data-impl": "mmap", 70 | "eval-interval": 5_000, 71 | "eval-iters": 10, 72 | "eval_batch_size": 8, 73 | "eval_tasks": [], 74 | 75 | # activation checkpointing 76 | "checkpoint-activations": true, 77 | "checkpoint-num-layers": 1, 78 | "partition-activations": true, 79 | "synchronize-each-layer": true, 80 | 81 | # regularization 82 | "gradient_clipping": 1.0, 83 | "weight-decay": 0.1, 84 | "hidden-dropout": 0, 85 | "attention-dropout": 0, 86 | 87 | # precision settings 88 | "bf16": { "enabled": true }, 89 | "precision": "bfloat16", 90 | "full_precision_lm_cross_entropy": true, 91 | 92 | # misc. training settings 93 | "num-workers": 2, 94 | "distributed-backend": "nccl", 95 | 96 | # checkpoint settings 97 | "checkpoint-factor": 2_000, 98 | "s3_sync_interval": 10_000, 99 | "extra-save-iters": [0], 100 | "save": "", 101 | "load": "", 102 | "s3_path": "", 103 | 104 | # data path settings 105 | "train-data-paths": [], 106 | "train-data-weights": [], 107 | "valid-data-paths": [], 108 | "valid-data-weights": [], 109 | "test-data-paths": [], 110 | "test-data-weights": [], 111 | 112 | # tokenizer settings 113 | "tokenizer-type": "HFTokenizer", 114 | "vocab-file": "neox-tokenizer-vocab.json", 115 | 116 | # log settings 117 | "log-interval": 10, 118 | "steps_per_print": 10, 119 | "wall_clock_breakdown": true, 120 | 121 | "use_wandb": true, 122 | "wandb_host": "", 123 | "wandb_team": "", 124 | "wandb_project": "", 125 | "wandb_group": "", 126 | "wandb_name": "", 127 | # "wandb_id": "", 128 | # "wandb_resume": "", 129 | 130 | # multi-node launcher 131 | "launcher": "slurm", 132 | "deepspeed_slurm": true, 133 | } -------------------------------------------------------------------------------- /configs/stablelm-base-alpha-3b-v2-4k-extension.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 1, 4 | "model-parallel-size": 2, 5 | 6 | # model settings 7 | "num-layers": 32, 8 | "hidden-size": 2560, 9 | "num-attention-heads": 32, 10 | "seq-length": 4096, 11 | "max-position-embeddings": 4096, 12 | 13 | # architecture design 14 | "attention_head_type": "multihead", 15 | "norm": "layernorm", 16 | "pos-emb": "rotary", 17 | "rotary_pct": 0.25, 18 | "rotary_interleaved": false, # GPT-NeoX style 19 | # NOTE: Linear Position Scaling degrades sample quality after 10B tokens - do not use yet. 20 | # "rotary_scaling_factor": 2, # 2048 -> 4096 21 | "mlp_multiple_of": 256, 22 | "mlp_type": "gated", 23 | "activation": "silu", 24 | "no-weight-tying": true, 25 | "gpt_j_residual": true, 26 | "gpt_j_tied": true, 27 | "output_layer_parallelism": "column", 28 | 29 | # biases 30 | "use_bias_in_norms": true, 31 | "use_bias_in_attn_linear": false, 32 | "use_bias_in_mlp": false, 33 | 34 | # fused ops 35 | "bias-gelu-fusion": false, 36 | "scaled-upper-triang-masked-softmax-fusion": true, 37 | "attention-config": [[["flash"], 32]], 38 | 39 | # optimizer settings 40 | "optimizer": { 41 | "type": "Adam", 42 | "params": { 43 | "lr": 2.8e-5, 44 | "betas": [0.9, 0.95], 45 | "eps": 1.0e-6 46 | }, 47 | }, 48 | "min_lr": 2.8e-6, 49 | "train-iters": 50_000, 50 | "lr-decay-iters": 50_000, 51 | "lr-decay-style": "cosine", 52 | "warmup": 0.00, 53 | 54 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 55 | "zero_optimization": { 56 | "stage": 1, 57 | "allgather_partitions": true, 58 | "allgather_bucket_size": 1260000000, 59 | "overlap_comm": true, 60 | "reduce_scatter": true, 61 | "reduce_bucket_size": 1260000000, 62 | "contiguous_gradients": true, 63 | "cpu_offload": false, 64 | }, 65 | 66 | # batch / data settings 67 | "train_micro_batch_size_per_gpu": 4, 68 | "gradient_accumulation_steps": 1, 69 | "data-impl": "mmap", 70 | "eval-interval": 1_000, 71 | "eval-iters": 10, 72 | "eval_batch_size": 8, 73 | "eval_tasks": ["lambada_openai", "piqa"], 74 | 75 | # activation checkpointing 76 | "checkpoint-activations": true, 77 | "checkpoint-num-layers": 1, 78 | "partition-activations": true, 79 | "synchronize-each-layer": true, 80 | 81 | # regularization 82 | "gradient_clipping": 1.0, 83 | "weight-decay": 0.0001, 84 | "hidden-dropout": 0, 85 | "attention-dropout": 0, 86 | 87 | # precision settings 88 | "fp16": { 89 | "fp16": true, 90 | "enabled": true, 91 | "loss_scale": 0, 92 | "loss_scale_window": 1000, 93 | "initial_scale_power": 12, 94 | "hysteresis": 2, 95 | "min_loss_scale": 1e-10 96 | }, 97 | "full_precision_lm_cross_entropy": true, 98 | 99 | # misc. training settings 100 | "num-workers": 1, 101 | "distributed-backend": "nccl", 102 | 103 | # checkpoint settings 104 | "checkpoint-factor": 2_000, 105 | "save": "", 106 | "load": "", 107 | "s3_path": "", 108 | "iteration": 245_000, 109 | "finetune": true, 110 | "no_checkpoint_arg_validation": true, 111 | "override_lr_scheduler": true, 112 | 113 | # data path settings 114 | "train-data-paths": [""], 115 | "train-data-weights": [1.0], 116 | "valid-data-paths": [""], 117 | "valid-data-weights": [1.0], 118 | "test-data-paths": [""], 119 | "test-data-weights": [1.0], 120 | 121 | # tokenizer settings 122 | "tokenizer-type": "HFTokenizer", 123 | "vocab-file": "neox-tokenizer-vocab.json", 124 | 125 | # log settings 126 | "log-interval": 10, 127 | "steps_per_print": 10, 128 | "wall_clock_breakdown": true, 129 | 130 | "use_wandb": true, 131 | "wandb_host": "", 132 | "wandb_team": "", 133 | "wandb_project": "", 134 | "wandb_group": "7B", 135 | "wandb_name": "stablelm-base-alpha-7b-v2-4k-finetune", 136 | # "wandb_id": "", 137 | # "wandb_resume": "must", 138 | 139 | # multi-node launcher 140 | "launcher": "slurm", 141 | "deepspeed_slurm": true, 142 | } -------------------------------------------------------------------------------- /configs/stablelm-base-alpha-3b-v2.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 1, 4 | "model-parallel-size": 2, 5 | 6 | # model settings 7 | "num-layers": 32, 8 | "hidden-size": 2560, 9 | "num-attention-heads": 32, 10 | "seq-length": 2048, 11 | "max-position-embeddings": 2048, 12 | 13 | # architecture design 14 | "attention_head_type": "multihead", 15 | "norm": "layernorm", 16 | "pos-emb": "rotary", 17 | "rotary_pct": 0.25, 18 | "rotary_interleaved": false, # GPT-NeoX style 19 | "mlp_multiple_of": 256, 20 | "mlp_type": "gated", 21 | "activation": "silu", 22 | "no-weight-tying": true, 23 | "gpt_j_residual": true, 24 | "gpt_j_tied": true, 25 | "output_layer_parallelism": "column", 26 | 27 | # biases 28 | "use_bias_in_norms": true, 29 | "use_bias_in_attn_linear": false, 30 | "use_bias_in_mlp": false, 31 | 32 | # fused ops 33 | "bias-gelu-fusion": false, 34 | "scaled-upper-triang-masked-softmax-fusion": true, 35 | "attention-config": [[["flash"], 32]], 36 | 37 | # optimizer settings 38 | "optimizer": { 39 | "type": "Adam", 40 | "params": { 41 | "lr": 3.2e-4, 42 | "betas": [0.9, 0.95], 43 | "eps": 1.0e-6 44 | }, 45 | }, 46 | "min_lr": 3.2e-5, 47 | "train-iters": 245_000, 48 | "lr-decay-iters": 245_000, 49 | "lr-decay-style": "cosine", 50 | "warmup": 0.01, 51 | 52 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 53 | "zero_optimization": { 54 | "stage": 1, 55 | "allgather_partitions": true, 56 | "allgather_bucket_size": 1260000000, 57 | "overlap_comm": true, 58 | "reduce_scatter": true, 59 | "reduce_bucket_size": 1260000000, 60 | "contiguous_gradients": true, 61 | "cpu_offload": false, 62 | }, 63 | 64 | # batch / data settings 65 | "train_micro_batch_size_per_gpu": 16, 66 | "gradient_accumulation_steps": 1, 67 | "data-impl": "mmap", 68 | "eval-interval": 10_000, 69 | "eval-iters": 10, 70 | "eval_batch_size": 4, 71 | "eval_tasks": ["lambada_openai", "piqa"], 72 | 73 | # activation checkpointing 74 | "checkpoint-activations": true, 75 | "checkpoint-num-layers": 1, 76 | "partition-activations": true, 77 | "synchronize-each-layer": true, 78 | 79 | # regularization 80 | "gradient_clipping": 1.0, 81 | "weight-decay": 0.1, 82 | "hidden-dropout": 0, 83 | "attention-dropout": 0, 84 | 85 | # precision settings 86 | "fp16": { 87 | "fp16": true, 88 | "enabled": true, 89 | "loss_scale": 0, 90 | # NOTE: Mid-training divergence required a loss scale of 1e-10 91 | # "loss_scale_window": 1000, 92 | # "initial_scale_power": 12, 93 | # "hysteresis": 2, 94 | # "min_loss_scale": 1 95 | "loss_scale_window": 1000, 96 | "initial_scale_power": 12, 97 | "hysteresis": 2, 98 | "min_loss_scale": 1e-10 99 | }, 100 | "full_precision_lm_cross_entropy": true, 101 | 102 | # misc. training settings 103 | "num-workers": 1, 104 | "distributed-backend": "nccl", 105 | 106 | # checkpoint settings 107 | "checkpoint-factor": 2_000, 108 | "save": "", 109 | "load": "", 110 | "s3_path": "", 111 | 112 | # data path settings 113 | "train-data-paths": [""], 114 | "train-data-weights": [1.0], 115 | "valid-data-paths": [""], 116 | "valid-data-weights": [1.0], 117 | "test-data-paths": [""], 118 | "test-data-weights": [1.0], 119 | 120 | # tokenizer settings 121 | "tokenizer-type": "HFTokenizer", 122 | "vocab-file": "neox-tokenizer-vocab.json", 123 | 124 | # log settings 125 | "log-interval": 10, 126 | "steps_per_print": 10, 127 | "wall_clock_breakdown": true, 128 | 129 | "use_wandb": true, 130 | "wandb_host": "", 131 | "wandb_team": "", 132 | "wandb_project": "", 133 | "wandb_group": "3B", 134 | "wandb_name": "stablelm-base-alpha-3b-v2", 135 | # "wandb_id": "", 136 | # "wandb_resume": "must", 137 | 138 | # multi-node launcher 139 | "launcher": "slurm", 140 | "deepspeed_slurm": true, 141 | } -------------------------------------------------------------------------------- /configs/stablelm-base-alpha-3b.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 1, 4 | "model-parallel-size": 4, 5 | 6 | # model settings 7 | "num-layers": 16, 8 | "hidden-size": 4096, 9 | "num-attention-heads": 32, 10 | "seq-length": 4096, 11 | "max-position-embeddings": 4096, 12 | 13 | # architecture design 14 | "norm": "layernorm", 15 | "pos-emb": "rotary", 16 | "rotary_pct": 0.25, 17 | "activation": "gelu", 18 | "no-weight-tying": true, 19 | "gpt_j_residual": true, 20 | "output_layer_parallelism": "column", 21 | 22 | # init methods 23 | "init_method": "small_init", 24 | "output_layer_init_method": "wang_init", 25 | 26 | # fused ops 27 | "scaled-upper-triang-masked-softmax-fusion": true, 28 | "bias-gelu-fusion": true, 29 | "attention-config": [[["flash"], 16]], 30 | 31 | # optimizer settings 32 | "optimizer": { 33 | "type": "Adam", 34 | "params": { 35 | "lr": 1.6e-4, 36 | "betas": [0.9, 0.9999], 37 | "eps": 1.0e-6 38 | }, 39 | }, 40 | "min_lr": 1.6e-5, 41 | 42 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 43 | "zero_optimization": { 44 | "stage": 1, 45 | "allgather_partitions": true, 46 | "allgather_bucket_size": 1260000000, 47 | "overlap_comm": true, 48 | "reduce_scatter": true, 49 | "reduce_bucket_size": 1260000000, 50 | "contiguous_gradients": true, 51 | "cpu_offload": false, 52 | }, 53 | 54 | # batch / data settings 55 | "train_micro_batch_size_per_gpu": 32, 56 | "gradient_accumulation_steps": 1, 57 | "eval_batch_size": 2, 58 | "data-impl": "mmap", 59 | 60 | # activation checkpointing 61 | "checkpoint-activations": true, 62 | "checkpoint-num-layers": 1, 63 | "partition-activations": true, 64 | "synchronize-each-layer": true, 65 | 66 | # regularization 67 | "gradient_clipping": 1.0, 68 | "weight-decay": 0.1, 69 | "hidden-dropout": 0, 70 | "attention-dropout": 0, 71 | 72 | # precision settings 73 | "fp16": { 74 | "fp16": true, 75 | "enabled": true, 76 | "loss_scale_window": 1000, 77 | "initial_scale_power": 12, 78 | "hysteresis": 20, 79 | "min_loss_scale": 1, 80 | }, 81 | 82 | # misc. training settings 83 | "train-iters": 180000, 84 | "lr-decay-iters": 180000, 85 | "distributed-backend": "nccl", 86 | "lr-decay-style": "cosine", 87 | "warmup": 0.01, 88 | "checkpoint-factor": 1000, 89 | # 1 more than checkpoint-factor to avoid skipping evals if `evaluate` fails 90 | "eval-interval": 1001, 91 | "eval-iters": 10, 92 | "eval_tasks": ["piqa", "sciq", "lambada_openai"], 93 | 94 | # checkpoint settings 95 | "iteration": 84000, 96 | "save": "PATH_TO_SAVE_THE_MODEL", 97 | "load": "PATH_TO_LOAD_THE_MODEL", 98 | 99 | # data settings 100 | "train-data-paths": [], 101 | "train-data-weights": [0.03, 0.02, 3.5, 13.87, 30.88, 0.34, 0.03, 0.1, 0.01, 0.5, 0.25, 0.25, 0.11, 1, 0.1, 0.5, 0.6, 0.19, 0.05, 2, 3.5, 4.15, 5.75, 3.17, 3.44, 3.49, 3, 6, 0.02, 2, 0.01, 3.95, 0.05, 1.09, 6.05], 102 | "valid-data-paths": [], 103 | "valid-data-weights": [0.03, 0.02, 3.5, 13.87, 30.88, 0.34, 0.03, 0.1, 0.01, 0.5, 0.25, 0.25, 0.11, 1, 0.1, 0.5, 0.6, 0.19, 0.05, 2, 3.5, 4.15, 5.75, 3.17, 3.44, 3.49, 3, 6, 0.02, 2, 0.01, 3.95, 0.05, 1.09, 6.05], 104 | "test-data-paths": [], 105 | "test-data-weights": [0.03, 0.02, 3.5, 13.87, 30.88, 0.34, 0.03, 0.1, 0.01, 0.5, 0.25, 0.25, 0.11, 1, 0.1, 0.5, 0.6, 0.19, 0.05, 2, 3.5, 4.15, 5.75, 3.17, 3.44, 3.49, 3, 6, 0.02, 2, 0.01, 3.95, 0.05, 1.09, 6.05], 106 | 107 | # tokenizer settings 108 | "tokenizer-type": "HFTokenizer", 109 | "vocab-file": "/pile/20B_tokenizer.json", 110 | 111 | # log settings 112 | "log-interval": 10, 113 | "steps_per_print": 10, 114 | "wall_clock_breakdown": true, 115 | "log-grad-norm": true, 116 | 117 | "use_wandb": true, 118 | "wandb_host": "", 119 | "wandb_team": "", 120 | "wandb_project": "", 121 | "wandb_group": "", 122 | "wandb_name": "", 123 | 124 | # multi-node launcher 125 | "launcher": "slurm", 126 | "deepspeed_slurm": true 127 | } 128 | -------------------------------------------------------------------------------- /configs/stablelm-base-alpha-7b-v2-4k-extension.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 1, 4 | "model-parallel-size": 2, 5 | 6 | # model settings 7 | "num-layers": 32, 8 | "hidden-size": 4096, 9 | "num-attention-heads": 32, 10 | "seq-length": 4096, 11 | "max-position-embeddings": 4096, 12 | 13 | # architecture design 14 | "attention_head_type": "multihead", 15 | "norm": "layernorm", 16 | "pos-emb": "rotary", 17 | "rotary_pct": 0.25, 18 | "rotary_interleaved": false, # GPT-NeoX style 19 | # NOTE: Linear Position Scaling degrades sample quality after 10B tokens - do not use yet. 20 | # "rotary_scaling_factor": 2, # 2048 -> 4096 21 | "mlp_multiple_of": 256, 22 | "mlp_type": "gated", 23 | "activation": "silu", 24 | "no-weight-tying": true, 25 | "gpt_j_residual": true, 26 | "gpt_j_tied": true, 27 | "output_layer_parallelism": "column", 28 | 29 | # biases 30 | "use_bias_in_norms": true, 31 | "use_bias_in_attn_linear": false, 32 | "use_bias_in_mlp": false, 33 | 34 | # fused ops 35 | "bias-gelu-fusion": false, 36 | "scaled-upper-triang-masked-softmax-fusion": true, 37 | "attention-config": [[["flash"], 32]], 38 | 39 | # optimizer settings 40 | "optimizer": { 41 | "type": "Adam", 42 | "params": { 43 | "lr": 2.2e-5, 44 | "betas": [0.9, 0.95], 45 | "eps": 1.0e-6 46 | }, 47 | }, 48 | "min_lr": 2.2e-6, 49 | "train-iters": 45_000, 50 | "lr-decay-iters": 45_000, 51 | "lr-decay-style": "cosine", 52 | "warmup": 0.00, 53 | 54 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 55 | "zero_optimization": { 56 | "stage": 1, 57 | "allgather_partitions": true, 58 | "allgather_bucket_size": 1260000000, 59 | "overlap_comm": true, 60 | "reduce_scatter": true, 61 | "reduce_bucket_size": 1260000000, 62 | "contiguous_gradients": true, 63 | "cpu_offload": false, 64 | }, 65 | 66 | # batch / data settings 67 | "train_micro_batch_size_per_gpu": 3, 68 | "gradient_accumulation_steps": 1, 69 | "data-impl": "mmap", 70 | "eval-interval": 4_000, 71 | "eval-iters": 10, 72 | "eval_batch_size": 2, 73 | "eval_tasks": ["lambada_openai", "piqa"], 74 | 75 | # activation checkpointing 76 | "checkpoint-activations": true, 77 | "checkpoint-num-layers": 1, 78 | "partition-activations": true, 79 | "synchronize-each-layer": true, 80 | 81 | # regularization 82 | "gradient_clipping": 1.0, 83 | "weight-decay": 0.01, 84 | "hidden-dropout": 0, 85 | "attention-dropout": 0, 86 | 87 | # precision settings 88 | "fp16": { 89 | "fp16": true, 90 | "enabled": true, 91 | "loss_scale": 0, 92 | "loss_scale_window": 1000, 93 | "initial_scale_power": 12, 94 | "hysteresis": 2, 95 | "min_loss_scale": 1e-12 96 | }, 97 | "full_precision_lm_cross_entropy": true, 98 | 99 | # misc. training settings 100 | "num-workers": 1, 101 | "distributed-backend": "nccl", 102 | 103 | # checkpoint settings 104 | "checkpoint-factor": 2_000, 105 | "save": "", 106 | "load": "", 107 | "s3_path": "", 108 | "iteration": 245_000, 109 | "finetune": true, 110 | "no_checkpoint_arg_validation": true, 111 | "override_lr_scheduler": true, 112 | 113 | # data path settings 114 | "train-data-paths": [""], 115 | "train-data-weights": [1.0], 116 | "valid-data-paths": [""], 117 | "valid-data-weights": [1.0], 118 | "test-data-paths": [""], 119 | "test-data-weights": [1.0], 120 | 121 | # tokenizer settings 122 | "tokenizer-type": "HFTokenizer", 123 | "vocab-file": "neox-tokenizer-vocab.json", 124 | 125 | # log settings 126 | "log-interval": 10, 127 | "steps_per_print": 10, 128 | "wall_clock_breakdown": true, 129 | 130 | "use_wandb": true, 131 | "wandb_host": "", 132 | "wandb_team": "", 133 | "wandb_project": "", 134 | "wandb_group": "7B", 135 | "wandb_name": "stablelm-base-alpha-7b-v2-4k-finetune", 136 | # "wandb_id": "", 137 | # "wandb_resume": "must", 138 | 139 | # multi-node launcher 140 | "launcher": "slurm", 141 | "deepspeed_slurm": true, 142 | } -------------------------------------------------------------------------------- /configs/stablelm-base-alpha-7b-v2.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 1, 4 | "model-parallel-size": 2, 5 | 6 | # model settings 7 | "num-layers": 32, 8 | "hidden-size": 4096, 9 | "num-attention-heads": 32, 10 | "seq-length": 2048, 11 | "max-position-embeddings": 2048, 12 | 13 | # architecture design 14 | "attention_head_type": "multihead", 15 | "norm": "layernorm", 16 | "pos-emb": "rotary", 17 | "rotary_pct": 0.25, 18 | "rotary_interleaved": false, # GPT-NeoX style 19 | "mlp_multiple_of": 256, 20 | "mlp_type": "gated", 21 | "activation": "silu", 22 | "no-weight-tying": true, 23 | "gpt_j_residual": true, 24 | "gpt_j_tied": true, 25 | "output_layer_parallelism": "column", 26 | 27 | # biases 28 | "use_bias_in_norms": true, 29 | "use_bias_in_attn_linear": false, 30 | "use_bias_in_mlp": false, 31 | 32 | # fused ops 33 | "bias-gelu-fusion": false, 34 | "scaled-upper-triang-masked-softmax-fusion": true, 35 | "attention-config": [[["flash"], 32]], 36 | 37 | # optimizer settings 38 | "optimizer": { 39 | "type": "Adam", 40 | "params": { 41 | "lr": 3.0e-4, 42 | "betas": [0.9, 0.95], 43 | "eps": 1.0e-6 44 | }, 45 | }, 46 | "min_lr": 3.0e-5, 47 | "train-iters": 245_000, 48 | "lr-decay-iters": 245_000, 49 | "lr-decay-style": "cosine", 50 | "warmup": 0.01, 51 | 52 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 53 | "zero_optimization": { 54 | "stage": 1, 55 | "allgather_partitions": true, 56 | "allgather_bucket_size": 1260000000, 57 | "overlap_comm": true, 58 | "reduce_scatter": true, 59 | "reduce_bucket_size": 1260000000, 60 | "contiguous_gradients": true, 61 | "cpu_offload": false, 62 | }, 63 | 64 | # batch / data settings 65 | "train_micro_batch_size_per_gpu": 12, 66 | "gradient_accumulation_steps": 1, 67 | "data-impl": "mmap", 68 | "eval-interval": 10_000, 69 | "eval-iters": 10, 70 | "eval_batch_size": 2, 71 | "eval_tasks": ["lambada_openai", "piqa"], 72 | 73 | # activation checkpointing 74 | "checkpoint-activations": true, 75 | "checkpoint-num-layers": 1, 76 | "partition-activations": true, 77 | "synchronize-each-layer": true, 78 | 79 | # regularization 80 | "gradient_clipping": 1.0, 81 | "weight-decay": 0.1, 82 | "hidden-dropout": 0, 83 | "attention-dropout": 0, 84 | 85 | # precision settings 86 | "fp16": { 87 | "fp16": true, 88 | "enabled": true, 89 | "loss_scale": 0, 90 | "loss_scale_window": 1000, 91 | "initial_scale_power": 12, 92 | "hysteresis": 2, 93 | "min_loss_scale": 1e-12 94 | }, 95 | "full_precision_lm_cross_entropy": true, 96 | 97 | # misc. training settings 98 | "num-workers": 1, 99 | "distributed-backend": "nccl", 100 | 101 | # checkpoint settings 102 | "checkpoint-factor": 2_000, 103 | "save": "", 104 | "load": "", 105 | "s3_path": "", 106 | 107 | # data path settings 108 | "train-data-paths": [""], 109 | "train-data-weights": [1.0], 110 | "valid-data-paths": [""], 111 | "valid-data-weights": [1.0], 112 | "test-data-paths": [""], 113 | "test-data-weights": [1.0], 114 | 115 | # tokenizer settings 116 | "tokenizer-type": "HFTokenizer", 117 | "vocab-file": "neox-tokenizer-vocab.json", 118 | 119 | # log settings 120 | "log-interval": 10, 121 | "steps_per_print": 10, 122 | "wall_clock_breakdown": true, 123 | 124 | "use_wandb": true, 125 | "wandb_host": "", 126 | "wandb_team": "", 127 | "wandb_project": "", 128 | "wandb_group": "7B", 129 | "wandb_name": "stablelm-base-alpha-7b-v2", 130 | # "wandb_id": "", 131 | # "wandb_resume": "must", 132 | 133 | # multi-node launcher 134 | "launcher": "slurm", 135 | "deepspeed_slurm": true, 136 | } -------------------------------------------------------------------------------- /configs/stablelm-base-alpha-7b.yml: -------------------------------------------------------------------------------- 1 | { 2 | # parallelism settings 3 | "pipe-parallel-size": 1, 4 | "model-parallel-size": 2, 5 | 6 | # model settings 7 | "num-layers": 16, 8 | "hidden-size": 6144, 9 | "num-attention-heads": 48, 10 | "seq-length": 4096, 11 | "max-position-embeddings": 4096, 12 | 13 | # architecture design 14 | "norm": "layernorm", 15 | "pos-emb": "rotary", 16 | "rotary_pct": 0.25, 17 | "activation": "gelu", 18 | "no-weight-tying": true, 19 | "gpt_j_residual": true, 20 | "output_layer_parallelism": "column", 21 | 22 | # init methods 23 | "init_method": "small_init", 24 | "output_layer_init_method": "wang_init", 25 | 26 | # fused ops 27 | "scaled-upper-triang-masked-softmax-fusion": true, 28 | "bias-gelu-fusion": true, 29 | "attention-config": [[["flash"], 16]], 30 | 31 | # optimizer settings 32 | "optimizer": { 33 | "type": "Adam", 34 | "params": { 35 | "lr": 1.5e-4, 36 | "betas": [0.9, 0.95], 37 | "eps": 1.0e-8 38 | }, 39 | }, 40 | "min_lr": 1.5e-5, 41 | 42 | # for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training 43 | "zero_optimization": { 44 | "stage": 1, 45 | "allgather_partitions": true, 46 | "allgather_bucket_size": 1260000000, 47 | "overlap_comm": true, 48 | "reduce_scatter": true, 49 | "reduce_bucket_size": 1260000000, 50 | "contiguous_gradients": true, 51 | }, 52 | 53 | # batch / data settings 54 | "train_micro_batch_size_per_gpu": 8, 55 | "gradient_accumulation_steps": 1, 56 | "eval_batch_size": 1, 57 | "data-impl": "mmap", 58 | 59 | # activation checkpointing 60 | "checkpoint-activations": true, 61 | "checkpoint-num-layers": 1, 62 | "partition-activations": true, 63 | "synchronize-each-layer": true, 64 | 65 | # regularization 66 | "gradient_clipping": 1.0, 67 | "weight-decay": 0.1, 68 | "hidden-dropout": 0, 69 | "attention-dropout": 0, 70 | 71 | # precision settings 72 | "fp16": { 73 | "fp16": true, 74 | "enabled": true, 75 | "loss_scale": 0, 76 | "loss_scale_window": 1000, 77 | "initial_scale_power": 12, 78 | "hysteresis": 2, 79 | "min_loss_scale": 1, 80 | }, 81 | 82 | # misc. training settings 83 | "train-iters": 180000, 84 | "lr-decay-iters": 180000, 85 | "distributed-backend": "nccl", 86 | "lr-decay-style": "cosine", 87 | "warmup": 0.01, 88 | "checkpoint-factor": 1000, 89 | # 1 more than checkpoint-factor to avoid skipping evals if `evaluate` fails 90 | "eval-interval": 1001, 91 | "eval-iters": 10, 92 | "eval_tasks": ["piqa", "sciq", "lambada_openai"], 93 | 94 | # checkpoint settings 95 | "iteration": 0, 96 | "save": "", 97 | "load": "", 98 | 99 | # data settings 100 | "train-data-paths": [], 101 | "train-data-weights": [0.03, 0.02, 3.5, 13.87, 30.88, 0.34, 0.03, 0.1, 0.01, 0.5, 0.25, 0.25, 0.11, 1, 0.1, 0.5, 0.6, 0.19, 0.05, 2, 3.5, 4.15, 5.75, 3.17, 3.44, 3.49, 3, 6, 0.02, 2, 0.01, 3.95, 0.05, 1.09, 6.05], 102 | "valid-data-paths": [], 103 | "valid-data-weights": [0.03, 0.02, 3.5, 13.87, 30.88, 0.34, 0.03, 0.1, 0.01, 0.5, 0.25, 0.25, 0.11, 1, 0.1, 0.5, 0.6, 0.19, 0.05, 2, 3.5, 4.15, 5.75, 3.17, 3.44, 3.49, 3, 6, 0.02, 2, 0.01, 3.95, 0.05, 1.09, 6.05], 104 | "test-data-paths": [], 105 | "test-data-weights": [0.03, 0.02, 3.5, 13.87, 30.88, 0.34, 0.03, 0.1, 0.01, 0.5, 0.25, 0.25, 0.11, 1, 0.1, 0.5, 0.6, 0.19, 0.05, 2, 3.5, 4.15, 5.75, 3.17, 3.44, 3.49, 3, 6, 0.02, 2, 0.01, 3.95, 0.05, 1.09, 6.05], 106 | 107 | # tokenizer settings 108 | "tokenizer-type": "HFTokenizer", 109 | "vocab-file": "/pile/20B_tokenizer.json", 110 | 111 | # log settings 112 | "log-interval": 10, 113 | "steps_per_print": 10, 114 | "wall_clock_breakdown": true, 115 | 116 | "use_wandb": true, 117 | "wandb_host": "", 118 | "wandb_team": "", 119 | "wandb_project": "", 120 | "wandb_group": "", 121 | "wandb_name": "", 122 | 123 | # multi-node launcher 124 | "launcher": "slurm", 125 | "deepspeed_slurm": true 126 | } 127 | -------------------------------------------------------------------------------- /evals/external/EleutherAI-pythia-2.8b-deduped.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.30119453924914674, 5 | "acc_stderr": 0.013406741767847626, 6 | "acc_norm": 0.3293515358361775, 7 | "acc_norm_stderr": 0.013734057652635474 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6346801346801347, 11 | "acc_stderr": 0.009880576614806924, 12 | "acc_norm": 0.5909090909090909, 13 | "acc_norm_stderr": 0.010088775152615782 14 | }, 15 | "boolq": { 16 | "acc": 0.6412844036697247, 17 | "acc_stderr": 0.008388668034059405 18 | }, 19 | "hellaswag": { 20 | "acc": 0.45429197371041624, 21 | "acc_stderr": 0.004968888130290072, 22 | "acc_norm": 0.5944035052778331, 23 | "acc_norm_stderr": 0.004900036261309038 24 | }, 25 | "lambada_openai": { 26 | "ppl": 5.00138268807375, 27 | "ppl_stderr": 0.11803810628354432, 28 | "acc": 0.6514651659227635, 29 | "acc_stderr": 0.0066386652033128745 30 | }, 31 | "openbookqa": { 32 | "acc": 0.238, 33 | "acc_stderr": 0.019064072958198446, 34 | "acc_norm": 0.348, 35 | "acc_norm_stderr": 0.02132372863280751 36 | }, 37 | "piqa": { 38 | "acc": 0.7410228509249184, 39 | "acc_stderr": 0.0102209660314056, 40 | "acc_norm": 0.7404787812840044, 41 | "acc_norm_stderr": 0.010227939888173923 42 | }, 43 | "sciq": { 44 | "acc": 0.882, 45 | "acc_stderr": 0.010206869264381791, 46 | "acc_norm": 0.832, 47 | "acc_norm_stderr": 0.011828605831454262 48 | }, 49 | "siqa": { 50 | "acc": 0.4094165813715456, 51 | "acc_stderr": 0.011126849576589028, 52 | "acc_norm": 0.44319344933469806, 53 | "acc_norm_stderr": 0.011240812731564954 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.2141982864137087, 57 | "mc1_stderr": 0.014362148155690466, 58 | "mc2": 0.3555711185495532, 59 | "mc2_stderr": 0.013587679864140447 60 | }, 61 | "winogrande": { 62 | "acc": 0.5824782951854776, 63 | "acc_stderr": 0.01385997826444025 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=EleutherAI/pythia-2.8b-deduped,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto","num_fewshot": 0, 82 | "batch_size": "8", 83 | "batch_sizes": [], 84 | "device": "cuda:4", 85 | "no_cache": true, 86 | "limit": null, 87 | "bootstrap_iters": 100000, 88 | "description_dict": {} 89 | } 90 | } -------------------------------------------------------------------------------- /evals/external/EleutherAI_gpt-j-6B.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.3395904436860068, 5 | "acc_stderr": 0.01383903976282016, 6 | "acc_norm": 0.3651877133105802, 7 | "acc_norm_stderr": 0.014070265519268802 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6696127946127947, 11 | "acc_stderr": 0.009651430216428178, 12 | "acc_norm": 0.6224747474747475, 13 | "acc_norm_stderr": 0.009947227833469421 14 | }, 15 | "boolq": { 16 | "acc": 0.654434250764526, 17 | "acc_stderr": 0.008317463342191592 18 | }, 19 | "hellaswag": { 20 | "acc": 0.49522007568213505, 21 | "acc_stderr": 0.004989553396413105, 22 | "acc_norm": 0.6624178450507867, 23 | "acc_norm_stderr": 0.004719187890948069 24 | }, 25 | "lambada_openai": { 26 | "ppl": 4.102416000764715, 27 | "ppl_stderr": 0.08849985162393556, 28 | "acc": 0.6823209780710265, 29 | "acc_stderr": 0.0064863548390796605 30 | }, 31 | "openbookqa": { 32 | "acc": 0.29, 33 | "acc_stderr": 0.02031317923174518, 34 | "acc_norm": 0.382, 35 | "acc_norm_stderr": 0.02175082059125084 36 | }, 37 | "piqa": { 38 | "acc": 0.7557127312295974, 39 | "acc_stderr": 0.010024765172284244, 40 | "acc_norm": 0.7616974972796517, 41 | "acc_norm_stderr": 0.009940334245876224 42 | }, 43 | "sciq": { 44 | "acc": 0.915, 45 | "acc_stderr": 0.008823426366942316, 46 | "acc_norm": 0.874, 47 | "acc_norm_stderr": 0.010499249222408035 48 | }, 49 | "siqa": { 50 | "acc": 0.4109518935516888, 51 | "acc_stderr": 0.011133193398910182, 52 | "acc_norm": 0.4508700102354145, 53 | "acc_norm_stderr": 0.011259319269273942 54 | }, 55 | "winogrande": { 56 | "acc": 0.6416732438831886, 57 | "acc_stderr": 0.013476581172567524 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=EleutherAI/gpt-j-6B,dtype=float16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=True", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/EleutherAI_gpt-neox-20B.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.378839590443686, 5 | "acc_stderr": 0.014175915490000319, 6 | "acc_norm": 0.40784982935153585, 7 | "acc_norm_stderr": 0.014361097288449696 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7289562289562289, 11 | "acc_stderr": 0.0091209197417606, 12 | "acc_norm": 0.6868686868686869, 13 | "acc_norm_stderr": 0.009516303879309528 14 | }, 15 | "boolq": { 16 | "acc": 0.6948012232415902, 17 | "acc_stderr": 0.00805404814192796 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5356502688707429, 21 | "acc_stderr": 0.004977081808179433, 22 | "acc_norm": 0.714299940250946, 23 | "acc_norm_stderr": 0.004508239594503832 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.6403044358845733, 27 | "ppl_stderr": 0.0747797639775495, 28 | "acc": 0.7197748884145159, 29 | "acc_stderr": 0.0062569681407934575 30 | }, 31 | "openbookqa": { 32 | "acc": 0.298, 33 | "acc_stderr": 0.02047511809298897, 34 | "acc_norm": 0.402, 35 | "acc_norm_stderr": 0.021948929609938602 36 | }, 37 | "piqa": { 38 | "acc": 0.7742110990206746, 39 | "acc_stderr": 0.009754980670917316, 40 | "acc_norm": 0.7845484221980413, 41 | "acc_norm_stderr": 0.009592463115658116 42 | }, 43 | "sciq": { 44 | "acc": 0.931, 45 | "acc_stderr": 0.008018934050315145, 46 | "acc_norm": 0.89, 47 | "acc_norm_stderr": 0.009899393819724444 48 | }, 49 | "siqa": { 50 | "acc": 0.4196519959058342, 51 | "acc_stderr": 0.011167032303390547, 52 | "acc_norm": 0.44728761514841353, 53 | "acc_norm_stderr": 0.011251020423273035 54 | }, 55 | "winogrande": { 56 | "acc": 0.6614048934490924, 57 | "acc_stderr": 0.01330016986584241 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=EleutherAI/gpt-neox-20B,dtype=float16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=True", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/EleutherAI_pythia-12b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.318259385665529, 5 | "acc_stderr": 0.013611993916971451, 6 | "acc_norm": 0.3506825938566553, 7 | "acc_norm_stderr": 0.013944635930726083 8 | }, 9 | "arc_easy": { 10 | "acc": 0.702020202020202, 11 | "acc_stderr": 0.009385046066694871, 12 | "acc_norm": 0.6372053872053872, 13 | "acc_norm_stderr": 0.00986593675701393 14 | }, 15 | "boolq": { 16 | "acc": 0.6730886850152905, 17 | "acc_stderr": 0.008204340208838751 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5046803425612428, 21 | "acc_stderr": 0.004989562798280524, 22 | "acc_norm": 0.673770165305716, 23 | "acc_norm_stderr": 0.004678743563766643 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.9264187287921497, 27 | "ppl_stderr": 0.08375179732007268, 28 | "acc": 0.7063846303124394, 29 | "acc_stderr": 0.006344860619678724 30 | }, 31 | "openbookqa": { 32 | "acc": 0.264, 33 | "acc_stderr": 0.019732885585922108, 34 | "acc_norm": 0.372, 35 | "acc_norm_stderr": 0.0216371979857224 36 | }, 37 | "piqa": { 38 | "acc": 0.7627856365614799, 39 | "acc_stderr": 0.009924694933586366, 40 | "acc_norm": 0.7698585418933623, 41 | "acc_norm_stderr": 0.009820832826839798 42 | }, 43 | "sciq": { 44 | "acc": 0.902, 45 | "acc_stderr": 0.009406619184621235, 46 | "acc_norm": 0.851, 47 | "acc_norm_stderr": 0.011266140684632175 48 | }, 49 | "siqa": { 50 | "acc": 0.4201637666325486, 51 | "acc_stderr": 0.011168911571162012, 52 | "acc_norm": 0.44268167860798363, 53 | "acc_norm_stderr": 0.011239482425741961 54 | }, 55 | "winogrande": { 56 | "acc": 0.6400947119179163, 57 | "acc_stderr": 0.013489609590266804 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=EleutherAI/pythia-12b,dtype=float16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=True", 75 | "num_fewshot": 0, 76 | "batch_size": "1", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/EleutherAI_pythia-6.9b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.318259385665529, 5 | "acc_stderr": 0.013611993916971451, 6 | "acc_norm": 0.3532423208191126, 7 | "acc_norm_stderr": 0.013967822714840055 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6721380471380471, 11 | "acc_stderr": 0.009632587076170013, 12 | "acc_norm": 0.6106902356902357, 13 | "acc_norm_stderr": 0.010005212782878145 14 | }, 15 | "boolq": { 16 | "acc": 0.6400611620795107, 17 | "acc_stderr": 0.008394940698368873 18 | }, 19 | "hellaswag": { 20 | "acc": 0.48048197570205137, 21 | "acc_stderr": 0.0049859782149379184, 22 | "acc_norm": 0.6388169687313284, 23 | "acc_norm_stderr": 0.004793617835645056 24 | }, 25 | "lambada_openai": { 26 | "ppl": 4.457423605452202, 27 | "ppl_stderr": 0.10007464956313723, 28 | "acc": 0.670095090238696, 29 | "acc_stderr": 0.00655050345779628 30 | }, 31 | "openbookqa": { 32 | "acc": 0.258, 33 | "acc_stderr": 0.019586711785215837, 34 | "acc_norm": 0.372, 35 | "acc_norm_stderr": 0.0216371979857224 36 | }, 37 | "piqa": { 38 | "acc": 0.750816104461371, 39 | "acc_stderr": 0.01009188277012022, 40 | "acc_norm": 0.76550598476605, 41 | "acc_norm_stderr": 0.009885203143240538 42 | }, 43 | "sciq": { 44 | "acc": 0.898, 45 | "acc_stderr": 0.00957536880165389, 46 | "acc_norm": 0.84, 47 | "acc_norm_stderr": 0.011598902298689004 48 | }, 49 | "siqa": { 50 | "acc": 0.40736949846468784, 51 | "acc_stderr": 0.011118216651888717, 52 | "acc_norm": 0.42988741044012285, 53 | "acc_norm_stderr": 0.011202283451328794 54 | }, 55 | "winogrande": { 56 | "acc": 0.606156274664562, 57 | "acc_stderr": 0.013732114472668745 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=EleutherAI/pythia-6.9b,dtype=float16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=True", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/Qwen-Qwen-7B-Chat.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.45563139931740615, 5 | "acc_stderr": 0.014553749939306863, 6 | "acc_norm": 0.4667235494880546, 7 | "acc_norm_stderr": 0.014578995859605797 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6919191919191919, 11 | "acc_stderr": 0.00947388707582633, 12 | "acc_norm": 0.6447811447811448, 13 | "acc_norm_stderr": 0.009820245899287122 14 | }, 15 | "boolq": { 16 | "acc": 0.7168195718654434, 17 | "acc_stderr": 0.007880052012351937 18 | }, 19 | "hellaswag": { 20 | "acc": 0.6792471619199363, 21 | "acc_stderr": 0.004658120152230809, 22 | "acc_norm": 0.8497311292571201, 23 | "acc_norm_stderr": 0.003566044777327419 24 | }, 25 | "lambada_openai": { 26 | "ppl": 4.258406715958618, 27 | "ppl_stderr": 0.1263040238577051, 28 | "acc": 0.6547642150203765, 29 | "acc_stderr": 0.006623879809039193 30 | }, 31 | "openbookqa": { 32 | "acc": 0.356, 33 | "acc_stderr": 0.021434712356072652, 34 | "acc_norm": 0.462, 35 | "acc_norm_stderr": 0.02231833811987053 36 | }, 37 | "piqa": { 38 | "acc": 0.7872687704026116, 39 | "acc_stderr": 0.00954822312304733, 40 | "acc_norm": 0.7992383025027203, 41 | "acc_norm_stderr": 0.00934596167482341 42 | }, 43 | "sciq": { 44 | "acc": 0.907, 45 | "acc_stderr": 0.00918887563499669, 46 | "acc_norm": 0.806, 47 | "acc_norm_stderr": 0.012510816141264359 48 | }, 49 | "siqa": { 50 | "acc": 0.4703172978505629, 51 | "acc_stderr": 0.011294116144908552, 52 | "acc_norm": 0.47389969293756395, 53 | "acc_norm_stderr": 0.01129864516098083 54 | }, 55 | "winogrande": { 56 | "acc": 0.6858721389108129, 57 | "acc_stderr": 0.01304541671607256 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=Qwen/Qwen-7B-Chat,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda:4", 79 | "no_cache": false, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/Qwen-Qwen-7B.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.4539249146757679, 5 | "acc_stderr": 0.014549221105171865, 6 | "acc_norm": 0.49146757679180886, 7 | "acc_norm_stderr": 0.014609263165632186 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6738215488215489, 11 | "acc_stderr": 0.009619849417035167, 12 | "acc_norm": 0.6519360269360269, 13 | "acc_norm_stderr": 0.009774627600259012 14 | }, 15 | "boolq": { 16 | "acc": 0.745565749235474, 17 | "acc_stderr": 0.007617690099234367 18 | }, 19 | "hellaswag": { 20 | "acc": 0.7305317665803625, 21 | "acc_stderr": 0.004427767996301626, 22 | "acc_norm": 0.8884684325831508, 23 | "acc_norm_stderr": 0.0031414591751392695 24 | }, 25 | "lambada_openai": { 26 | "ppl": 4.014976946118802, 27 | "ppl_stderr": 0.08858949240464632, 28 | "acc": 0.6966815447312246, 29 | "acc_stderr": 0.006404402872809113 30 | }, 31 | "openbookqa": { 32 | "acc": 0.322, 33 | "acc_stderr": 0.02091666833001988, 34 | "acc_norm": 0.448, 35 | "acc_norm_stderr": 0.022261697292270143 36 | }, 37 | "piqa": { 38 | "acc": 0.7399347116430903, 39 | "acc_stderr": 0.010234893249061308, 40 | "acc_norm": 0.749183895538629, 41 | "acc_norm_stderr": 0.010113869547069044 42 | }, 43 | "sciq": { 44 | "acc": 0.932, 45 | "acc_stderr": 0.007964887911291603, 46 | "acc_norm": 0.908, 47 | "acc_norm_stderr": 0.009144376393151117 48 | }, 49 | "siqa": { 50 | "acc": 0.49437052200614123, 51 | "acc_stderr": 0.011313353423379522, 52 | "acc_norm": 0.5240532241555783, 53 | "acc_norm_stderr": 0.01130097128912773 54 | }, 55 | "winogrande": { 56 | "acc": 0.65982636148382, 57 | "acc_stderr": 0.013315218762417397 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=True,pretrained=Qwen/Qwen-7B,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda:4", 79 | "no_cache": false, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/baichuan-inc_Baichuan2-7B-Base.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.42235494880546076, 5 | "acc_stderr": 0.014434138713379977, 6 | "acc_norm": 0.431740614334471, 7 | "acc_norm_stderr": 0.014474591427196202 8 | }, 9 | "arc_easy": { 10 | "acc": 0.75, 11 | "acc_stderr": 0.008885233166386385, 12 | "acc_norm": 0.7281144781144782, 13 | "acc_norm_stderr": 0.0091297958673105 14 | }, 15 | "boolq": { 16 | "acc": 0.7308868501529052, 17 | "acc_stderr": 0.007756844290794318 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5366460864369648, 21 | "acc_stderr": 0.004976361454341348, 22 | "acc_norm": 0.7228639713204541, 23 | "acc_norm_stderr": 0.004466695023677831 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.6834487322486384, 27 | "ppl_stderr": 0.07653758845393456, 28 | "acc": 0.7098777411216767, 29 | "acc_stderr": 0.006322580641394925 30 | }, 31 | "openbookqa": { 32 | "acc": 0.304, 33 | "acc_stderr": 0.02059164957122493, 34 | "acc_norm": 0.394, 35 | "acc_norm_stderr": 0.021874299301689253 36 | }, 37 | "piqa": { 38 | "acc": 0.7616974972796517, 39 | "acc_stderr": 0.009940334245876209, 40 | "acc_norm": 0.7736670293797606, 41 | "acc_norm_stderr": 0.009763294246879418 42 | }, 43 | "sciq": { 44 | "acc": 0.946, 45 | "acc_stderr": 0.007150883521295436, 46 | "acc_norm": 0.913, 47 | "acc_norm_stderr": 0.008916866630745916 48 | }, 49 | "siqa": { 50 | "acc": 0.41760491299897645, 51 | "acc_stderr": 0.011159391894922486, 52 | "acc_norm": 0.44779938587512796, 53 | "acc_norm_stderr": 0.011252242102001767 54 | }, 55 | "winogrande": { 56 | "acc": 0.675611681136543, 57 | "acc_stderr": 0.01315722572664164 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=baichuan-inc/Baichuan2-7B-Base,dtype=bfloat16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=True", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/bigscience-bloom-3b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.27986348122866894, 5 | "acc_stderr": 0.013119040897725922, 6 | "acc_norm": 0.3037542662116041, 7 | "acc_norm_stderr": 0.013438909184778757 8 | }, 9 | "arc_easy": { 10 | "acc": 0.5942760942760943, 11 | "acc_stderr": 0.010075755540128871, 12 | "acc_norm": 0.5328282828282829, 13 | "acc_norm_stderr": 0.010237645778853869 14 | }, 15 | "boolq": { 16 | "acc": 0.617125382262997, 17 | "acc_stderr": 0.008501734385335953 18 | }, 19 | "hellaswag": { 20 | "acc": 0.4137621987651862, 21 | "acc_stderr": 0.004915003499517833, 22 | "acc_norm": 0.545309699263095, 23 | "acc_norm_stderr": 0.004969251445596341 24 | }, 25 | "lambada_openai": { 26 | "ppl": 9.094700256232823, 27 | "ppl_stderr": 0.2652067493709512, 28 | "acc": 0.5173685231903745, 29 | "acc_stderr": 0.006961773596960152 30 | }, 31 | "openbookqa": { 32 | "acc": 0.218, 33 | "acc_stderr": 0.01848337822317886, 34 | "acc_norm": 0.322, 35 | "acc_norm_stderr": 0.020916668330019882 36 | }, 37 | "piqa": { 38 | "acc": 0.705658324265506, 39 | "acc_stderr": 0.010633311470347498, 40 | "acc_norm": 0.7067464635473341, 41 | "acc_norm_stderr": 0.010621818421101931 42 | }, 43 | "sciq": { 44 | "acc": 0.891, 45 | "acc_stderr": 0.009859828407037191, 46 | "acc_norm": 0.816, 47 | "acc_norm_stderr": 0.012259457340938588 48 | }, 49 | "siqa": { 50 | "acc": 0.4017400204708291, 51 | "acc_stderr": 0.011093444192711183, 52 | "acc_norm": 0.4314227226202661, 53 | "acc_norm_stderr": 0.011207148736838392 54 | }, 55 | "winogrande": { 56 | "acc": 0.584846093133386, 57 | "acc_stderr": 0.01384868408665859 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=True,pretrained=bigscience/bloom-3b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": null, 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/bigscience-bloom-7b1.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.302901023890785, 5 | "acc_stderr": 0.013428241573185349, 6 | "acc_norm": 0.33532423208191126, 7 | "acc_norm_stderr": 0.013796182947785564 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6494107744107744, 11 | "acc_stderr": 0.009791003829831557, 12 | "acc_norm": 0.5736531986531986, 13 | "acc_norm_stderr": 0.010147858603835144 14 | }, 15 | "boolq": { 16 | "acc": 0.6284403669724771, 17 | "acc_stderr": 0.008451598145076589 18 | }, 19 | "hellaswag": { 20 | "acc": 0.4649472216689902, 21 | "acc_stderr": 0.0049775044466089996, 22 | "acc_norm": 0.6228838876717785, 23 | "acc_norm_stderr": 0.004836738514051334 24 | }, 25 | "lambada_openai": { 26 | "ppl": 6.619927277080142, 27 | "ppl_stderr": 0.1762520708430581, 28 | "acc": 0.5755870366776635, 29 | "acc_stderr": 0.006885918770006387 30 | }, 31 | "openbookqa": { 32 | "acc": 0.252, 33 | "acc_stderr": 0.019435727282249536, 34 | "acc_norm": 0.358, 35 | "acc_norm_stderr": 0.021461434862859122 36 | }, 37 | "piqa": { 38 | "acc": 0.7274211099020674, 39 | "acc_stderr": 0.010389256803296021, 40 | "acc_norm": 0.7366702937976061, 41 | "acc_norm_stderr": 0.010276185322196764 42 | }, 43 | "sciq": { 44 | "acc": 0.901, 45 | "acc_stderr": 0.009449248027662765, 46 | "acc_norm": 0.845, 47 | "acc_norm_stderr": 0.011450157470799475 48 | }, 49 | "siqa": { 50 | "acc": 0.4211873080859775, 51 | "acc_stderr": 0.011172633149198374, 52 | "acc_norm": 0.4498464687819857, 53 | "acc_norm_stderr": 0.011257008360485692 54 | }, 55 | "winogrande": { 56 | "acc": 0.6464088397790055, 57 | "acc_stderr": 0.013436541262599948 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=True,pretrained=bigscience/bloom-7b1,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda:5", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/cerebras-btlm-3b-8k-base.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.34897610921501704, 5 | "acc_stderr": 0.013928933461382496, 6 | "acc_norm": 0.37627986348122866, 7 | "acc_norm_stderr": 0.014157022555407168 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7045454545454546, 11 | "acc_stderr": 0.009361987126556457, 12 | "acc_norm": 0.6708754208754208, 13 | "acc_norm_stderr": 0.00964204805806098 14 | }, 15 | "boolq": { 16 | "acc": 0.6963302752293578, 17 | "acc_stderr": 0.008042682539896304 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5184226249751046, 21 | "acc_stderr": 0.004986393266269161, 22 | "acc_norm": 0.6977693686516631, 23 | "acc_norm_stderr": 0.004582861219020893 24 | }, 25 | "lambada_openai": { 26 | "ppl": 4.720441000893734, 27 | "ppl_stderr": 0.1100556659950519, 28 | "acc": 0.6623326217737241, 29 | "acc_stderr": 0.00658862361668043 30 | }, 31 | "openbookqa": { 32 | "acc": 0.276, 33 | "acc_stderr": 0.02001121929807353, 34 | "acc_norm": 0.408, 35 | "acc_norm_stderr": 0.02200091089387719 36 | }, 37 | "piqa": { 38 | "acc": 0.7584330794341676, 39 | "acc_stderr": 0.009986718001804472, 40 | "acc_norm": 0.7720348204570185, 41 | "acc_norm_stderr": 0.009788093832324906 42 | }, 43 | "sciq": { 44 | "acc": 0.929, 45 | "acc_stderr": 0.008125578442487916, 46 | "acc_norm": 0.895, 47 | "acc_norm_stderr": 0.009698921026024966 48 | }, 49 | "siqa": { 50 | "acc": 0.4278403275332651, 51 | "acc_stderr": 0.01119562541819821, 52 | "acc_norm": 0.4611054247697032, 53 | "acc_norm_stderr": 0.011279787032703659 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.2252141982864137, 57 | "mc1_stderr": 0.014623240768023498, 58 | "mc2": 0.3599562107238256, 59 | "mc2_stderr": 0.013576568348894856 60 | }, 61 | "winogrande": { 62 | "acc": 0.6495659037095501, 63 | "acc_stderr": 0.013409047676670189 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=cerebras/btlm-3b-8k-base,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto","num_fewshot": 0, 82 | "batch_size": "8", 83 | "batch_sizes": [], 84 | "device": "cuda:4", 85 | "no_cache": true, 86 | "limit": null, 87 | "bootstrap_iters": 100000, 88 | "description_dict": {} 89 | } 90 | } -------------------------------------------------------------------------------- /evals/external/facebook-opt-2.7b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.2687713310580205, 5 | "acc_stderr": 0.012955065963710691, 6 | "acc_norm": 0.31313993174061433, 7 | "acc_norm_stderr": 0.013552671543623504 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6077441077441077, 11 | "acc_stderr": 0.010018744689650043, 12 | "acc_norm": 0.5429292929292929, 13 | "acc_norm_stderr": 0.01022189756425603 14 | }, 15 | "boolq": { 16 | "acc": 0.6033639143730887, 17 | "acc_stderr": 0.008556148582032 18 | }, 19 | "hellaswag": { 20 | "acc": 0.4584744074885481, 21 | "acc_stderr": 0.004972543127767873, 22 | "acc_norm": 0.6059549890460068, 23 | "acc_norm_stderr": 0.0048764594346198 24 | }, 25 | "lambada_openai": { 26 | "ppl": 5.119857738610855, 27 | "ppl_stderr": 0.11991227443177162, 28 | "acc": 0.6357461672811954, 29 | "acc_stderr": 0.006704339729528894 30 | }, 31 | "openbookqa": { 32 | "acc": 0.25, 33 | "acc_stderr": 0.019384310743640384, 34 | "acc_norm": 0.352, 35 | "acc_norm_stderr": 0.021380042385946048 36 | }, 37 | "piqa": { 38 | "acc": 0.7383025027203483, 39 | "acc_stderr": 0.01025563077270823, 40 | "acc_norm": 0.7480957562568009, 41 | "acc_norm_stderr": 0.010128421335088685 42 | }, 43 | "sciq": { 44 | "acc": 0.858, 45 | "acc_stderr": 0.011043457699378227, 46 | "acc_norm": 0.79, 47 | "acc_norm_stderr": 0.012886662332274536 48 | }, 49 | "siqa": { 50 | "acc": 0.4083930399181167, 51 | "acc_stderr": 0.011122558066098069, 52 | "acc_norm": 0.44268167860798363, 53 | "acc_norm_stderr": 0.011239482425741961 54 | }, 55 | "winogrande": { 56 | "acc": 0.6101026045777427, 57 | "acc_stderr": 0.013707547317008462 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=True,pretrained=facebook/opt-2.7b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda:2", 79 | "no_cache": false, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/facebook-opt-6.7b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.30716723549488056, 5 | "acc_stderr": 0.013481034054980945, 6 | "acc_norm": 0.34812286689419797, 7 | "acc_norm_stderr": 0.013921008595179338 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6565656565656566, 11 | "acc_stderr": 0.00974381736896, 12 | "acc_norm": 0.6014309764309764, 13 | "acc_norm_stderr": 0.010046455400477947 14 | }, 15 | "boolq": { 16 | "acc": 0.6602446483180429, 17 | "acc_stderr": 0.00828377201314756 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5051782513443537, 21 | "acc_stderr": 0.004989513809408587, 22 | "acc_norm": 0.6719776936865166, 23 | "acc_norm_stderr": 0.004685334844038652 24 | }, 25 | "lambada_openai": { 26 | "ppl": 4.252533670173101, 27 | "ppl_stderr": 0.0927155022353668, 28 | "acc": 0.6764991267222977, 29 | "acc_stderr": 0.006517535744360227 30 | }, 31 | "openbookqa": { 32 | "acc": 0.276, 33 | "acc_stderr": 0.020011219298073524, 34 | "acc_norm": 0.372, 35 | "acc_norm_stderr": 0.0216371979857224 36 | }, 37 | "piqa": { 38 | "acc": 0.7633297062023939, 39 | "acc_stderr": 0.009916841655042804, 40 | "acc_norm": 0.766050054406964, 41 | "acc_norm_stderr": 0.009877236895137437 42 | }, 43 | "sciq": { 44 | "acc": 0.901, 45 | "acc_stderr": 0.009449248027662761, 46 | "acc_norm": 0.853, 47 | "acc_norm_stderr": 0.011203415395160333 48 | }, 49 | "siqa": { 50 | "acc": 0.4263050153531218, 51 | "acc_stderr": 0.011190503463264742, 52 | "acc_norm": 0.4595701125895599, 53 | "acc_norm_stderr": 0.011277022486079959 54 | }, 55 | "winogrande": { 56 | "acc": 0.6535122336227308, 57 | "acc_stderr": 0.013373773411685644 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=True,pretrained=facebook/opt-6.7b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda:2", 79 | "no_cache": false, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/huggyllama-llama-7b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.4189419795221843, 5 | "acc_stderr": 0.014418106953639013, 6 | "acc_norm": 0.4462457337883959, 7 | "acc_norm_stderr": 0.014526705548539982 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7525252525252525, 11 | "acc_stderr": 0.00885511441483471, 12 | "acc_norm": 0.7285353535353535, 13 | "acc_norm_stderr": 0.009125362970360627 14 | }, 15 | "boolq": { 16 | "acc": 0.7504587155963303, 17 | "acc_stderr": 0.0075688020241860285 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5696076478789086, 21 | "acc_stderr": 0.004941191607317913, 22 | "acc_norm": 0.7621987651862179, 23 | "acc_norm_stderr": 0.004248666961833349 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.4882593690160553, 27 | "ppl_stderr": 0.068517853205977, 28 | "acc": 0.7354938870560839, 29 | "acc_stderr": 0.006144965702579053 30 | }, 31 | "openbookqa": { 32 | "acc": 0.344, 33 | "acc_stderr": 0.02126575803797874, 34 | "acc_norm": 0.444, 35 | "acc_norm_stderr": 0.02224224437573102 36 | }, 37 | "piqa": { 38 | "acc": 0.7867247007616975, 39 | "acc_stderr": 0.00955712122586133, 40 | "acc_norm": 0.7916213275299239, 41 | "acc_norm_stderr": 0.009476125383049459 42 | }, 43 | "sciq": { 44 | "acc": 0.946, 45 | "acc_stderr": 0.007150883521295433, 46 | "acc_norm": 0.928, 47 | "acc_norm_stderr": 0.008178195576218681 48 | }, 49 | "siqa": { 50 | "acc": 0.4483111566018424, 51 | "acc_stderr": 0.01125345173122258, 52 | "acc_norm": 0.4703172978505629, 53 | "acc_norm_stderr": 0.011294116144908554 54 | }, 55 | "winogrande": { 56 | "acc": 0.6992896606156275, 57 | "acc_stderr": 0.012888010494704723 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=False,pretrained=huggyllama/llama-7b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda:2", 79 | "no_cache": false, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/kittn_mistral-7B-v0.1-hf.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.5025597269624573, 5 | "acc_stderr": 0.014611199329843777, 6 | "acc_norm": 0.5435153583617748, 7 | "acc_norm_stderr": 0.014555949760496439 8 | }, 9 | "arc_easy": { 10 | "acc": 0.8080808080808081, 11 | "acc_stderr": 0.00808080808080796, 12 | "acc_norm": 0.7954545454545454, 13 | "acc_norm_stderr": 0.008276958800002997 14 | }, 15 | "boolq": { 16 | "acc": 0.8363914373088684, 17 | "acc_stderr": 0.006469941343840763 18 | }, 19 | "hellaswag": { 20 | "acc": 0.6127265484963155, 21 | "acc_stderr": 0.0048613146132868434, 22 | "acc_norm": 0.8105954989046007, 23 | "acc_norm_stderr": 0.003910288117015163 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.181388367482107, 27 | "ppl_stderr": 0.058369197945258765, 28 | "acc": 0.7568406753347564, 29 | "acc_stderr": 0.0059766767751295085 30 | }, 31 | "openbookqa": { 32 | "acc": 0.328, 33 | "acc_stderr": 0.021017027165175485, 34 | "acc_norm": 0.44, 35 | "acc_norm_stderr": 0.022221331534143057 36 | }, 37 | "piqa": { 38 | "acc": 0.8079434167573449, 39 | "acc_stderr": 0.00919074029512649, 40 | "acc_norm": 0.8215451577801959, 41 | "acc_norm_stderr": 0.008933575463062072 42 | }, 43 | "sciq": { 44 | "acc": 0.959, 45 | "acc_stderr": 0.006273624021118748, 46 | "acc_norm": 0.938, 47 | "acc_norm_stderr": 0.0076298239962803065 48 | }, 49 | "siqa": { 50 | "acc": 0.4273285568065507, 51 | "acc_stderr": 0.01119393034055127, 52 | "acc_norm": 0.4570112589559877, 53 | "acc_norm_stderr": 0.01127217546233142 54 | }, 55 | "winogrande": { 56 | "acc": 0.7403314917127072, 57 | "acc_stderr": 0.012322700705552673 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=kittn/mistral-7B-v0.1-hf,dtype=bfloat16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=False", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/meta-llama-Llama-2-13b-hf.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.4863481228668942, 5 | "acc_stderr": 0.014605943429860945, 6 | "acc_norm": 0.492320819112628, 7 | "acc_norm_stderr": 0.01460966744089257 8 | }, 9 | "arc_easy": { 10 | "acc": 0.79503367003367, 11 | "acc_stderr": 0.008283277600626398, 12 | "acc_norm": 0.7760942760942761, 13 | "acc_norm_stderr": 0.008553779114531757 14 | }, 15 | "boolq": { 16 | "acc": 0.8051987767584098, 17 | "acc_stderr": 0.006926916185348359 18 | }, 19 | "hellaswag": { 20 | "acc": 0.6011750647281418, 21 | "acc_stderr": 0.004886559008754982, 22 | "acc_norm": 0.7935670185222067, 23 | "acc_norm_stderr": 0.004039176806180289 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.0445239988325836, 27 | "ppl_stderr": 0.05613639700817276, 28 | "acc": 0.767708131185717, 29 | "acc_stderr": 0.005883383348944357 30 | }, 31 | "openbookqa": { 32 | "acc": 0.354, 33 | "acc_stderr": 0.021407582047916447, 34 | "acc_norm": 0.454, 35 | "acc_norm_stderr": 0.02228814759117695 36 | }, 37 | "piqa": { 38 | "acc": 0.7905331882480957, 39 | "acc_stderr": 0.0094943029798198, 40 | "acc_norm": 0.8063112078346029, 41 | "acc_norm_stderr": 0.009220384152336643 42 | }, 43 | "sciq": { 44 | "acc": 0.945, 45 | "acc_stderr": 0.007212976294639239, 46 | "acc_norm": 0.933, 47 | "acc_norm_stderr": 0.007910345983177549 48 | }, 49 | "siqa": { 50 | "acc": 0.4278403275332651, 51 | "acc_stderr": 0.01119562541819821, 52 | "acc_norm": 0.4503582395087001, 53 | "acc_norm_stderr": 0.01125816983012229 54 | }, 55 | "winogrande": { 56 | "acc": 0.7221783741120757, 57 | "acc_stderr": 0.012588918183871603 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=False,pretrained=meta-llama/Llama-2-13b-hf,trust_remote_code=True,low_cpu_mem_usage=True,dtype=bfloat16", 75 | "num_fewshot": 0, 76 | "batch_size": "16", 77 | "batch_sizes": [], 78 | "device": "cuda:5", 79 | "no_cache": false, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/meta-llama-Llama-2-7b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.4300341296928328, 5 | "acc_stderr": 0.014467631559137993, 6 | "acc_norm": 0.4616040955631399, 7 | "acc_norm_stderr": 0.014568245550296363 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7626262626262627, 11 | "acc_stderr": 0.008730525906362434, 12 | "acc_norm": 0.7453703703703703, 13 | "acc_norm_stderr": 0.008939407288589414 14 | }, 15 | "boolq": { 16 | "acc": 0.7773700305810397, 17 | "acc_stderr": 0.007276093141006333 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5720971917944633, 21 | "acc_stderr": 0.00493763511283029, 22 | "acc_norm": 0.7594104760007967, 23 | "acc_norm_stderr": 0.004265678940698863 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.3970918836338027, 27 | "ppl_stderr": 0.06684659102563836, 28 | "acc": 0.7347176402095866, 29 | "acc_stderr": 0.0061507275830540355 30 | }, 31 | "openbookqa": { 32 | "acc": 0.314, 33 | "acc_stderr": 0.020776701920308997, 34 | "acc_norm": 0.436, 35 | "acc_norm_stderr": 0.0221989546414768 36 | }, 37 | "piqa": { 38 | "acc": 0.7774755168661589, 39 | "acc_stderr": 0.009704600975718245, 40 | "acc_norm": 0.7878128400435256, 41 | "acc_norm_stderr": 0.009539299828174048 42 | }, 43 | "sciq": { 44 | "acc": 0.936, 45 | "acc_stderr": 0.007743640226919308, 46 | "acc_norm": 0.908, 47 | "acc_norm_stderr": 0.009144376393151106 48 | }, 49 | "siqa": { 50 | "acc": 0.43500511770726713, 51 | "acc_stderr": 0.011218074465506494, 52 | "acc_norm": 0.47389969293756395, 53 | "acc_norm_stderr": 0.011298645160980832 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.2521419828641371, 57 | "mc1_stderr": 0.01520152224629997, 58 | "mc2": 0.38967559882659686, 59 | "mc2_stderr": 0.01357922221561985 60 | }, 61 | "winogrande": { 62 | "acc": 0.6961325966850829, 63 | "acc_stderr": 0.012926209475483574 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=False,pretrained=meta-llama/Llama-2-7b-hf,trust_remote_code=True,low_cpu_mem_usage=True,dtype=bfloat16", 82 | "num_fewshot": 0, 83 | "batch_size": "2", 84 | "batch_sizes": [], 85 | "device": "cuda:0", 86 | "no_cache": false, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/external/microsoft-phi-1_5.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.4445392491467577, 5 | "acc_stderr": 0.014521226405627079, 6 | "acc_norm": 0.4803754266211604, 7 | "acc_norm_stderr": 0.014600132075947092 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7613636363636364, 11 | "acc_stderr": 0.008746465140706127, 12 | "acc_norm": 0.7314814814814815, 13 | "acc_norm_stderr": 0.009094042554994847 14 | }, 15 | "boolq": { 16 | "acc": 0.7452599388379205, 17 | "acc_stderr": 0.007620703281690057 18 | }, 19 | "hellaswag": { 20 | "acc": 0.47988448516231824, 21 | "acc_stderr": 0.004985741706385726, 22 | "acc_norm": 0.6261700856403107, 23 | "acc_norm_stderr": 0.004828305041904399 24 | }, 25 | "lambada_openai": { 26 | "ppl": 8.945202930351474, 27 | "ppl_stderr": 0.3005661666926477, 28 | "acc": 0.527459732194838, 29 | "acc_stderr": 0.0069554645156210786 30 | }, 31 | "openbookqa": { 32 | "acc": 0.376, 33 | "acc_stderr": 0.021683827539286115, 34 | "acc_norm": 0.482, 35 | "acc_norm_stderr": 0.02236856511738799 36 | }, 37 | "piqa": { 38 | "acc": 0.7633297062023939, 39 | "acc_stderr": 0.009916841655042806, 40 | "acc_norm": 0.7578890097932536, 41 | "acc_norm_stderr": 0.009994371269104381 42 | }, 43 | "sciq": { 44 | "acc": 0.932, 45 | "acc_stderr": 0.007964887911291603, 46 | "acc_norm": 0.916, 47 | "acc_norm_stderr": 0.00877616208949113 48 | }, 49 | "siqa": { 50 | "acc": 0.5537359263050153, 51 | "acc_stderr": 0.01124854090154796, 52 | "acc_norm": 0.5957011258955988, 53 | "acc_norm_stderr": 0.0111048923983008 54 | }, 55 | "winogrande": { 56 | "acc": 0.7253354380426204, 57 | "acc_stderr": 0.012544516005117187 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "use_fast=False,pretrained=microsoft/phi-1_5,trust_remote_code=True,low_cpu_mem_usage=True,dtype=bfloat16", 75 | "num_fewshot": 0, 76 | "batch_size": "16", 77 | "batch_sizes": [], 78 | "device": "cuda:5", 79 | "no_cache": false, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/mosaicml-mpt-7b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.4052901023890785, 5 | "acc_stderr": 0.01434686906022933, 6 | "acc_norm": 0.4189419795221843, 7 | "acc_norm_stderr": 0.014418106953639011 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7491582491582491, 11 | "acc_stderr": 0.008895183010487386, 12 | "acc_norm": 0.7003367003367004, 13 | "acc_norm_stderr": 0.009400228586205971 14 | }, 15 | "boolq": { 16 | "acc": 0.7394495412844037, 17 | "acc_stderr": 0.007677021072511165 18 | }, 19 | "hellaswag": { 20 | "acc": 0.571400119498108, 21 | "acc_stderr": 0.004938643787869543, 22 | "acc_norm": 0.7617008564031069, 23 | "acc_norm_stderr": 0.00425172316377217 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.8689102314884214, 27 | "ppl_stderr": 0.0808940319922043, 28 | "acc": 0.6863962740151368, 29 | "acc_stderr": 0.006463833164285203 30 | }, 31 | "openbookqa": { 32 | "acc": 0.314, 33 | "acc_stderr": 0.020776701920308997, 34 | "acc_norm": 0.428, 35 | "acc_norm_stderr": 0.022149790663861923 36 | }, 37 | "piqa": { 38 | "acc": 0.7889009793253536, 39 | "acc_stderr": 0.00952137737873414, 40 | "acc_norm": 0.8063112078346029, 41 | "acc_norm_stderr": 0.009220384152336641 42 | }, 43 | "sciq": { 44 | "acc": 0.937, 45 | "acc_stderr": 0.007687007876286428, 46 | "acc_norm": 0.888, 47 | "acc_norm_stderr": 0.009977753031397236 48 | }, 49 | "siqa": { 50 | "acc": 0.45138178096212894, 51 | "acc_stderr": 0.01126045668162444, 52 | "acc_norm": 0.48311156601842375, 53 | "acc_norm_stderr": 0.011307614732827416 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.20930232558139536, 57 | "mc1_stderr": 0.014241219434785823, 58 | "mc2": 0.3348523259251629, 59 | "mc2_stderr": 0.01313621094524683 60 | }, 61 | "winogrande": { 62 | "acc": 0.6803472770323599, 63 | "acc_stderr": 0.01310652851766514 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=mosaicml/mpt-7b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 82 | "num_fewshot": 0, 83 | "batch_size": "8", 84 | "batch_sizes": [], 85 | "device": "cuda:2", 86 | "no_cache": false, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/external/openlm-research-open_llama_13b: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "lambada_openai": { 4 | "ppl": 3.569586285393247, 5 | "ppl_stderr": 0.07265272740503036, 6 | "acc": 0.7209392586842616, 7 | "acc_stderr": 0.006249003708978234 8 | }, 9 | "sciq": { 10 | "acc": 0.941, 11 | "acc_stderr": 0.007454835650406722, 12 | "acc_norm": 0.914, 13 | "acc_norm_stderr": 0.008870325962594766 14 | } 15 | }, 16 | "versions": { 17 | "lambada_openai": 0, 18 | "sciq": 0 19 | }, 20 | "config": { 21 | "model": "gpt2", 22 | "model_args": "use_fast=False,pretrained=openlm-research/open_llama_13b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 23 | "num_fewshot": 0, 24 | "batch_size": "2", 25 | "batch_sizes": [], 26 | "device": "cuda:3", 27 | "no_cache": false, 28 | "limit": null, 29 | "bootstrap_iters": 100000, 30 | "description_dict": {} 31 | } 32 | } -------------------------------------------------------------------------------- /evals/external/openlm-research-open_llama_3b_v2.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.3387372013651877, 5 | "acc_stderr": 0.013830568927974332, 6 | "acc_norm": 0.3609215017064846, 7 | "acc_norm_stderr": 0.014034761386175458 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6759259259259259, 11 | "acc_stderr": 0.00960372885009539, 12 | "acc_norm": 0.63510101010101, 13 | "acc_norm_stderr": 0.009878157021155649 14 | }, 15 | "boolq": { 16 | "acc": 0.6568807339449542, 17 | "acc_stderr": 0.008303445777655941 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5223063134833699, 21 | "acc_stderr": 0.0049848133910162145, 22 | "acc_norm": 0.6998605855407289, 23 | "acc_norm_stderr": 0.004573817163007456 24 | }, 25 | "lambada_openai": { 26 | "ppl": 4.565625743504039, 27 | "ppl_stderr": 0.1034965673734545, 28 | "acc": 0.6673782262759558, 29 | "acc_stderr": 0.006564073374961233 30 | }, 31 | "openbookqa": { 32 | "acc": 0.26, 33 | "acc_stderr": 0.019635965529725512, 34 | "acc_norm": 0.376, 35 | "acc_norm_stderr": 0.021683827539286122 36 | }, 37 | "piqa": { 38 | "acc": 0.7665941240478781, 39 | "acc_stderr": 0.009869247889521001, 40 | "acc_norm": 0.778563656147987, 41 | "acc_norm_stderr": 0.009687616456840284 42 | }, 43 | "sciq": { 44 | "acc": 0.924, 45 | "acc_stderr": 0.008384169266796386, 46 | "acc_norm": 0.878, 47 | "acc_norm_stderr": 0.010354864712936698 48 | }, 49 | "siqa": { 50 | "acc": 0.4119754350051177, 51 | "acc_stderr": 0.011137360400975268, 52 | "acc_norm": 0.4524053224155578, 53 | "acc_norm_stderr": 0.011262695440459566 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.21297429620563035, 57 | "mc1_stderr": 0.014332203787059685, 58 | "mc2": 0.3458747299959986, 59 | "mc2_stderr": 0.013215129281312441 60 | }, 61 | "winogrande": { 62 | "acc": 0.6290449881610103, 63 | "acc_stderr": 0.01357639990223157 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=False,pretrained=openlm-research/open_llama_3b_v2,trust_remote_code=True,low_cpu_mem_usage=True,dtype=bfloat16", 82 | "num_fewshot": 0, 83 | "batch_size": "8", 84 | "batch_sizes": [], 85 | "device": "cuda:4", 86 | "no_cache": true, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/external/openlm-research-open_llama_7b_v2.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.38822525597269625, 5 | "acc_stderr": 0.014241614207414034, 6 | "acc_norm": 0.42406143344709896, 7 | "acc_norm_stderr": 0.014441889627464392 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7192760942760943, 11 | "acc_stderr": 0.009220526174711363, 12 | "acc_norm": 0.6965488215488216, 13 | "acc_norm_stderr": 0.009433837434252279 14 | }, 15 | "boolq": { 16 | "acc": 0.7140672782874617, 17 | "acc_stderr": 0.00790303735916362 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5569607647878908, 21 | "acc_stderr": 0.004957296691391575, 22 | "acc_norm": 0.7464648476399124, 23 | "acc_norm_stderr": 0.004341454841892331 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.8265934555236463, 27 | "ppl_stderr": 0.07878439404908999, 28 | "acc": 0.7104599262565496, 29 | "acc_stderr": 0.006318823234213216 30 | }, 31 | "openbookqa": { 32 | "acc": 0.302, 33 | "acc_stderr": 0.020553269174209184, 34 | "acc_norm": 0.402, 35 | "acc_norm_stderr": 0.021948929609938606 36 | }, 37 | "piqa": { 38 | "acc": 0.7916213275299239, 39 | "acc_stderr": 0.009476125383049447, 40 | "acc_norm": 0.8030467899891186, 41 | "acc_norm_stderr": 0.009278918898006383 42 | }, 43 | "sciq": { 44 | "acc": 0.938, 45 | "acc_stderr": 0.007629823996280304, 46 | "acc_norm": 0.901, 47 | "acc_norm_stderr": 0.009449248027662747 48 | }, 49 | "siqa": { 50 | "acc": 0.4196519959058342, 51 | "acc_stderr": 0.011167032303390547, 52 | "acc_norm": 0.4600818833162743, 53 | "acc_norm_stderr": 0.011277955967920398 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.22643818849449204, 57 | "mc1_stderr": 0.014651337324602576, 58 | "mc2": 0.3456877328963021, 59 | "mc2_stderr": 0.013482248222806824 60 | }, 61 | "winogrande": { 62 | "acc": 0.6582478295185478, 63 | "acc_stderr": 0.013330103018622861 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=False,pretrained=openlm-research/open_llama_7b_v2,trust_remote_code=True,low_cpu_mem_usage=True,dtype=bfloat16", 82 | "num_fewshot": 0, 83 | "batch_size": "2", 84 | "batch_sizes": [], 85 | "device": "cuda:0", 86 | "no_cache": false, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/external/tiiuae_falcon-7b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.40273037542662116, 5 | "acc_stderr": 0.014332236306790149, 6 | "acc_norm": 0.43686006825938567, 7 | "acc_norm_stderr": 0.014494421584256519 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7441077441077442, 11 | "acc_stderr": 0.008953950243013991, 12 | "acc_norm": 0.7079124579124579, 13 | "acc_norm_stderr": 0.00933070561656907 14 | }, 15 | "boolq": { 16 | "acc": 0.735474006116208, 17 | "acc_stderr": 0.007714546144910642 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5771758613821948, 21 | "acc_stderr": 0.004929983692795067, 22 | "acc_norm": 0.7634933280223063, 23 | "acc_norm_stderr": 0.004240683281093403 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.3698354504387775, 27 | "ppl_stderr": 0.06490807599596318, 28 | "acc": 0.7455850960605472, 29 | "acc_stderr": 0.006067809764031527 30 | }, 31 | "openbookqa": { 32 | "acc": 0.306, 33 | "acc_stderr": 0.020629569998345403, 34 | "acc_norm": 0.442, 35 | "acc_norm_stderr": 0.02223197069632112 36 | }, 37 | "piqa": { 38 | "acc": 0.794885745375408, 39 | "acc_stderr": 0.009420971671017915, 40 | "acc_norm": 0.8057671381936888, 41 | "acc_norm_stderr": 0.009230209366168272 42 | }, 43 | "sciq": { 44 | "acc": 0.94, 45 | "acc_stderr": 0.00751375115747492, 46 | "acc_norm": 0.915, 47 | "acc_norm_stderr": 0.008823426366942328 48 | }, 49 | "siqa": { 50 | "acc": 0.42067553735926305, 51 | "acc_stderr": 0.011170778517705619, 52 | "acc_norm": 0.4600818833162743, 53 | "acc_norm_stderr": 0.011277955967920396 54 | }, 55 | "winogrande": { 56 | "acc": 0.6724546172059984, 57 | "acc_stderr": 0.013190169546797016 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=tiiuae/falcon-7b,dtype=bfloat16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=True", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/external/togethercomputer-RedPajama-INCITE-7B-Base2.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.3771331058020478, 5 | "acc_stderr": 0.014163366896192593, 6 | "acc_norm": 0.39419795221843, 7 | "acc_norm_stderr": 0.014280522667467323 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7234848484848485, 11 | "acc_stderr": 0.00917788010146828, 12 | "acc_norm": 0.6919191919191919, 13 | "acc_norm_stderr": 0.009473887075826333 14 | }, 15 | "boolq": { 16 | "acc": 0.7076452599388379, 17 | "acc_stderr": 0.00795527890990574 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5256920932085242, 21 | "acc_stderr": 0.004983189711208505, 22 | "acc_norm": 0.7033459470225055, 23 | "acc_norm_stderr": 0.004558491550673688 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.9176883876529036, 27 | "ppl_stderr": 0.08360630042095321, 28 | "acc": 0.713370851930914, 29 | "acc_stderr": 0.006299845944000654 30 | }, 31 | "openbookqa": { 32 | "acc": 0.29, 33 | "acc_stderr": 0.020313179231745186, 34 | "acc_norm": 0.406, 35 | "acc_norm_stderr": 0.021983962090086333 36 | }, 37 | "piqa": { 38 | "acc": 0.7714907508161044, 39 | "acc_stderr": 0.009796313511829524, 40 | "acc_norm": 0.7736670293797606, 41 | "acc_norm_stderr": 0.009763294246879415 42 | }, 43 | "sciq": { 44 | "acc": 0.927, 45 | "acc_stderr": 0.008230354715244055, 46 | "acc_norm": 0.897, 47 | "acc_norm_stderr": 0.009616833339695796 48 | }, 49 | "siqa": { 50 | "acc": 0.4257932446264074, 51 | "acc_stderr": 0.011188771652377858, 52 | "acc_norm": 0.44882292732855683, 53 | "acc_norm_stderr": 0.011254649314820132 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.23011015911872704, 57 | "mc1_stderr": 0.014734557959807769, 58 | "mc2": 0.3301333660822527, 59 | "mc2_stderr": 0.012995959559501016 60 | }, 61 | "winogrande": { 62 | "acc": 0.6432517758484609, 63 | "acc_stderr": 0.013463393958028733 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=togethercomputer/RedPajama-INCITE-7B-Base,low_cpu_mem_usage=True,dtype=auto", 82 | "num_fewshot": 0, 83 | "batch_size": "8", 84 | "batch_sizes": [], 85 | "device": "cuda:2", 86 | "no_cache": false, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-3b-v2-arc-challenge.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.36689419795221845, 5 | "acc_norm": 0.3967576791808874 6 | } 7 | }, 8 | "versions": { 9 | "arc_challenge": 0 10 | }, 11 | "config": { 12 | "model": "stabilityai/stablelm-base-alpha-3b-v2", 13 | "num_fewshot": 25, 14 | "batch_size": 8, 15 | "device": "cuda:0", 16 | "no_cache": true, 17 | "limit": null, 18 | "bootstrap_iters": 10000, 19 | "description_dict": null 20 | } 21 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-3b-v2-hellaswag.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "hellaswag": { 4 | "acc": 0.5239992033459471, 5 | "acc_norm": 0.7066321449910377 6 | } 7 | }, 8 | "versions": { 9 | "hellaswag": 0 10 | }, 11 | "config": { 12 | "model": "stabilityai/stablelm-base-alpha-3b-v2", 13 | "num_fewshot": 10, 14 | "batch_size": 8, 15 | "device": "cuda:0", 16 | "no_cache": true, 17 | "limit": null, 18 | "bootstrap_iters": 10000, 19 | "description_dict": null 20 | } 21 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-3b-v2-mmmlu.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "hendrycksTest-professional_psychology": { 4 | "acc": 0.2826797385620915, 5 | "acc_norm": 0.27124183006535946 6 | }, 7 | "hendrycksTest-abstract_algebra": { 8 | "acc": 0.26, 9 | "acc_norm": 0.29 10 | }, 11 | "hendrycksTest-prehistory": { 12 | "acc": 0.3271604938271605, 13 | "acc_norm": 0.26851851851851855 14 | }, 15 | "hendrycksTest-international_law": { 16 | "acc": 0.23140495867768596, 17 | "acc_norm": 0.36363636363636365 18 | }, 19 | "hendrycksTest-logical_fallacies": { 20 | "acc": 0.20245398773006135, 21 | "acc_norm": 0.22085889570552147 22 | }, 23 | "hendrycksTest-professional_medicine": { 24 | "acc": 0.30514705882352944, 25 | "acc_norm": 0.33455882352941174 26 | }, 27 | "hendrycksTest-high_school_european_history": { 28 | "acc": 0.3151515151515151, 29 | "acc_norm": 0.296969696969697 30 | }, 31 | "hendrycksTest-high_school_physics": { 32 | "acc": 0.2251655629139073, 33 | "acc_norm": 0.2582781456953642 34 | }, 35 | "hendrycksTest-management": { 36 | "acc": 0.30097087378640774, 37 | "acc_norm": 0.30097087378640774 38 | }, 39 | "hendrycksTest-college_mathematics": { 40 | "acc": 0.17, 41 | "acc_norm": 0.24 42 | }, 43 | "hendrycksTest-college_computer_science": { 44 | "acc": 0.29, 45 | "acc_norm": 0.24 46 | }, 47 | "hendrycksTest-human_sexuality": { 48 | "acc": 0.40458015267175573, 49 | "acc_norm": 0.3893129770992366 50 | }, 51 | "hendrycksTest-college_biology": { 52 | "acc": 0.2708333333333333, 53 | "acc_norm": 0.2569444444444444 54 | }, 55 | "hendrycksTest-high_school_computer_science": { 56 | "acc": 0.34, 57 | "acc_norm": 0.3 58 | }, 59 | "hendrycksTest-high_school_psychology": { 60 | "acc": 0.3467889908256881, 61 | "acc_norm": 0.326605504587156 62 | }, 63 | "hendrycksTest-high_school_chemistry": { 64 | "acc": 0.2413793103448276, 65 | "acc_norm": 0.28078817733990147 66 | }, 67 | "hendrycksTest-astronomy": { 68 | "acc": 0.3355263157894737, 69 | "acc_norm": 0.3355263157894737 70 | }, 71 | "hendrycksTest-medical_genetics": { 72 | "acc": 0.39, 73 | "acc_norm": 0.4 74 | }, 75 | "hendrycksTest-nutrition": { 76 | "acc": 0.35947712418300654, 77 | "acc_norm": 0.3758169934640523 78 | }, 79 | "hendrycksTest-moral_disputes": { 80 | "acc": 0.3554913294797688, 81 | "acc_norm": 0.33815028901734107 82 | }, 83 | "hendrycksTest-computer_security": { 84 | "acc": 0.38, 85 | "acc_norm": 0.39 86 | }, 87 | "hendrycksTest-anatomy": { 88 | "acc": 0.32592592592592595, 89 | "acc_norm": 0.2814814814814815 90 | }, 91 | "hendrycksTest-formal_logic": { 92 | "acc": 0.30952380952380953, 93 | "acc_norm": 0.3253968253968254 94 | }, 95 | "hendrycksTest-high_school_us_history": { 96 | "acc": 0.3088235294117647, 97 | "acc_norm": 0.29901960784313725 98 | }, 99 | "hendrycksTest-security_studies": { 100 | "acc": 0.3224489795918367, 101 | "acc_norm": 0.23265306122448978 102 | }, 103 | "hendrycksTest-high_school_mathematics": { 104 | "acc": 0.23703703703703705, 105 | "acc_norm": 0.2814814814814815 106 | }, 107 | "hendrycksTest-high_school_macroeconomics": { 108 | "acc": 0.2794871794871795, 109 | "acc_norm": 0.2794871794871795 110 | }, 111 | "hendrycksTest-clinical_knowledge": { 112 | "acc": 0.26037735849056604, 113 | "acc_norm": 0.32075471698113206 114 | }, 115 | "hendrycksTest-us_foreign_policy": { 116 | "acc": 0.39, 117 | "acc_norm": 0.41 118 | }, 119 | "hendrycksTest-virology": { 120 | "acc": 0.35542168674698793, 121 | "acc_norm": 0.3493975903614458 122 | }, 123 | "hendrycksTest-public_relations": { 124 | "acc": 0.34545454545454546, 125 | "acc_norm": 0.3 126 | }, 127 | "hendrycksTest-world_religions": { 128 | "acc": 0.4093567251461988, 129 | "acc_norm": 0.4619883040935672 130 | }, 131 | "hendrycksTest-college_physics": { 132 | "acc": 0.3137254901960784, 133 | "acc_norm": 0.3235294117647059 134 | }, 135 | "hendrycksTest-high_school_biology": { 136 | "acc": 0.267741935483871, 137 | "acc_norm": 0.2870967741935484 138 | }, 139 | "hendrycksTest-business_ethics": { 140 | "acc": 0.33, 141 | "acc_norm": 0.28 142 | }, 143 | "hendrycksTest-high_school_government_and_politics": { 144 | "acc": 0.30569948186528495, 145 | "acc_norm": 0.2849740932642487 146 | }, 147 | "hendrycksTest-high_school_world_history": { 148 | "acc": 0.2742616033755274, 149 | "acc_norm": 0.27848101265822783 150 | }, 151 | "hendrycksTest-jurisprudence": { 152 | "acc": 0.23148148148148148, 153 | "acc_norm": 0.24074074074074073 154 | }, 155 | "hendrycksTest-miscellaneous": { 156 | "acc": 0.4227330779054917, 157 | "acc_norm": 0.41762452107279696 158 | }, 159 | "hendrycksTest-marketing": { 160 | "acc": 0.3974358974358974, 161 | "acc_norm": 0.39316239316239315 162 | }, 163 | "hendrycksTest-high_school_microeconomics": { 164 | "acc": 0.29411764705882354, 165 | "acc_norm": 0.3445378151260504 166 | }, 167 | "hendrycksTest-econometrics": { 168 | "acc": 0.2543859649122807, 169 | "acc_norm": 0.24561403508771928 170 | }, 171 | "hendrycksTest-conceptual_physics": { 172 | "acc": 0.3276595744680851, 173 | "acc_norm": 0.28936170212765955 174 | }, 175 | "hendrycksTest-high_school_statistics": { 176 | "acc": 0.3287037037037037, 177 | "acc_norm": 0.33796296296296297 178 | }, 179 | "hendrycksTest-sociology": { 180 | "acc": 0.3333333333333333, 181 | "acc_norm": 0.31343283582089554 182 | }, 183 | "hendrycksTest-electrical_engineering": { 184 | "acc": 0.2689655172413793, 185 | "acc_norm": 0.25517241379310346 186 | }, 187 | "hendrycksTest-elementary_mathematics": { 188 | "acc": 0.335978835978836, 189 | "acc_norm": 0.328042328042328 190 | }, 191 | "hendrycksTest-high_school_geography": { 192 | "acc": 0.3181818181818182, 193 | "acc_norm": 0.3333333333333333 194 | }, 195 | "hendrycksTest-philosophy": { 196 | "acc": 0.31511254019292606, 197 | "acc_norm": 0.3247588424437299 198 | }, 199 | "hendrycksTest-moral_scenarios": { 200 | "acc": 0.26927374301675977, 201 | "acc_norm": 0.27150837988826815 202 | }, 203 | "hendrycksTest-college_chemistry": { 204 | "acc": 0.34, 205 | "acc_norm": 0.36 206 | }, 207 | "hendrycksTest-machine_learning": { 208 | "acc": 0.2767857142857143, 209 | "acc_norm": 0.2767857142857143 210 | }, 211 | "hendrycksTest-professional_accounting": { 212 | "acc": 0.29432624113475175, 213 | "acc_norm": 0.3049645390070922 214 | }, 215 | "hendrycksTest-professional_law": { 216 | "acc": 0.25488917861799215, 217 | "acc_norm": 0.258148631029987 218 | }, 219 | "hendrycksTest-college_medicine": { 220 | "acc": 0.35260115606936415, 221 | "acc_norm": 0.3468208092485549 222 | }, 223 | "hendrycksTest-global_facts": { 224 | "acc": 0.26, 225 | "acc_norm": 0.21 226 | }, 227 | "hendrycksTest-human_aging": { 228 | "acc": 0.28699551569506726, 229 | "acc_norm": 0.2556053811659193 230 | } 231 | }, 232 | "versions": { 233 | "hendrycksTest-professional_psychology": 0, 234 | "hendrycksTest-abstract_algebra": 0, 235 | "hendrycksTest-prehistory": 0, 236 | "hendrycksTest-international_law": 0, 237 | "hendrycksTest-logical_fallacies": 0, 238 | "hendrycksTest-professional_medicine": 0, 239 | "hendrycksTest-high_school_european_history": 0, 240 | "hendrycksTest-high_school_physics": 0, 241 | "hendrycksTest-management": 0, 242 | "hendrycksTest-college_mathematics": 0, 243 | "hendrycksTest-college_computer_science": 0, 244 | "hendrycksTest-human_sexuality": 0, 245 | "hendrycksTest-college_biology": 0, 246 | "hendrycksTest-high_school_computer_science": 0, 247 | "hendrycksTest-high_school_psychology": 0, 248 | "hendrycksTest-high_school_chemistry": 0, 249 | "hendrycksTest-astronomy": 0, 250 | "hendrycksTest-medical_genetics": 0, 251 | "hendrycksTest-nutrition": 0, 252 | "hendrycksTest-moral_disputes": 0, 253 | "hendrycksTest-computer_security": 0, 254 | "hendrycksTest-anatomy": 0, 255 | "hendrycksTest-formal_logic": 0, 256 | "hendrycksTest-high_school_us_history": 0, 257 | "hendrycksTest-security_studies": 0, 258 | "hendrycksTest-high_school_mathematics": 0, 259 | "hendrycksTest-high_school_macroeconomics": 0, 260 | "hendrycksTest-clinical_knowledge": 0, 261 | "hendrycksTest-us_foreign_policy": 0, 262 | "hendrycksTest-virology": 0, 263 | "hendrycksTest-public_relations": 0, 264 | "hendrycksTest-world_religions": 0, 265 | "hendrycksTest-college_physics": 0, 266 | "hendrycksTest-high_school_biology": 0, 267 | "hendrycksTest-business_ethics": 0, 268 | "hendrycksTest-high_school_government_and_politics": 0, 269 | "hendrycksTest-high_school_world_history": 0, 270 | "hendrycksTest-jurisprudence": 0, 271 | "hendrycksTest-miscellaneous": 0, 272 | "hendrycksTest-marketing": 0, 273 | "hendrycksTest-high_school_microeconomics": 0, 274 | "hendrycksTest-econometrics": 0, 275 | "hendrycksTest-conceptual_physics": 0, 276 | "hendrycksTest-high_school_statistics": 0, 277 | "hendrycksTest-sociology": 0, 278 | "hendrycksTest-electrical_engineering": 0, 279 | "hendrycksTest-elementary_mathematics": 0, 280 | "hendrycksTest-high_school_geography": 0, 281 | "hendrycksTest-philosophy": 0, 282 | "hendrycksTest-moral_scenarios": 0, 283 | "hendrycksTest-college_chemistry": 0, 284 | "hendrycksTest-machine_learning": 0, 285 | "hendrycksTest-professional_accounting": 0, 286 | "hendrycksTest-professional_law": 0, 287 | "hendrycksTest-college_medicine": 0, 288 | "hendrycksTest-global_facts": 0, 289 | "hendrycksTest-human_aging": 0 290 | }, 291 | "config": { 292 | "model": "stabilityai/stablelm-base-alpha-3b-v2", 293 | "num_fewshot": 5, 294 | "batch_size": 8, 295 | "device": "cuda:0", 296 | "no_cache": true, 297 | "limit": null, 298 | "bootstrap_iters": 10000, 299 | "description_dict": null 300 | } 301 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-3b-v2-truthfulqa_mc.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "truthfulqa_mc": { 4 | "mc1": 0.22399020807833536, 5 | "mc2": 0.35873137294835583 6 | } 7 | }, 8 | "versions": { 9 | "truthfulqa_mc": 1 10 | }, 11 | "config": { 12 | "model": "stabilityai/stablelm-base-alpha-3b-v2", 13 | "num_fewshot": 0, 14 | "batch_size": 8, 15 | "device": "cuda:0", 16 | "no_cache": true, 17 | "limit": null, 18 | "bootstrap_iters": 10000, 19 | "description_dict": null 20 | } 21 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-7b-v2-arc-challenge.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.431740614334471, 5 | "acc_norm": 0.4726962457337884 6 | } 7 | }, 8 | "versions": { 9 | "arc_challenge": 0 10 | }, 11 | "config": { 12 | "model": "stabilityai/stablelm-base-alpha-7b-v2", 13 | "num_fewshot": 25, 14 | "batch_size": 8, 15 | "device": "cuda:0", 16 | "no_cache": true, 17 | "limit": null, 18 | "bootstrap_iters": 10000, 19 | "description_dict": null 20 | } 21 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-7b-v2-hellaswag.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "hellaswag": { 4 | "acc": 0.5721967735510854, 5 | "acc_norm": 0.7706632144991038 6 | } 7 | }, 8 | "versions": { 9 | "hellaswag": 0 10 | }, 11 | "config": { 12 | "model": "stabilityai/stablelm-base-alpha-7b-v2", 13 | "num_fewshot": 10, 14 | "batch_size": 8, 15 | "device": "cuda:0", 16 | "no_cache": true, 17 | "limit": null, 18 | "bootstrap_iters": 10000, 19 | "description_dict": null 20 | } 21 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-7b-v2-mmmlu.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "hendrycksTest-high_school_european_history": { 4 | "acc": 0.48484848484848486, 5 | "acc_norm": 0.47878787878787876 6 | }, 7 | "hendrycksTest-college_chemistry": { 8 | "acc": 0.29, 9 | "acc_norm": 0.28 10 | }, 11 | "hendrycksTest-international_law": { 12 | "acc": 0.38016528925619836, 13 | "acc_norm": 0.4214876033057851 14 | }, 15 | "hendrycksTest-high_school_macroeconomics": { 16 | "acc": 0.36153846153846153, 17 | "acc_norm": 0.35128205128205126 18 | }, 19 | "hendrycksTest-miscellaneous": { 20 | "acc": 0.6513409961685823, 21 | "acc_norm": 0.644955300127714 22 | }, 23 | "hendrycksTest-professional_law": { 24 | "acc": 0.31877444589308995, 25 | "acc_norm": 0.3116036505867014 26 | }, 27 | "hendrycksTest-medical_genetics": { 28 | "acc": 0.51, 29 | "acc_norm": 0.55 30 | }, 31 | "hendrycksTest-high_school_world_history": { 32 | "acc": 0.3881856540084388, 33 | "acc_norm": 0.4050632911392405 34 | }, 35 | "hendrycksTest-professional_medicine": { 36 | "acc": 0.4742647058823529, 37 | "acc_norm": 0.44485294117647056 38 | }, 39 | "hendrycksTest-moral_disputes": { 40 | "acc": 0.42196531791907516, 41 | "acc_norm": 0.430635838150289 42 | }, 43 | "hendrycksTest-high_school_geography": { 44 | "acc": 0.5404040404040404, 45 | "acc_norm": 0.5454545454545454 46 | }, 47 | "hendrycksTest-high_school_microeconomics": { 48 | "acc": 0.42857142857142855, 49 | "acc_norm": 0.42436974789915966 50 | }, 51 | "hendrycksTest-machine_learning": { 52 | "acc": 0.32142857142857145, 53 | "acc_norm": 0.32142857142857145 54 | }, 55 | "hendrycksTest-security_studies": { 56 | "acc": 0.3510204081632653, 57 | "acc_norm": 0.2612244897959184 58 | }, 59 | "hendrycksTest-world_religions": { 60 | "acc": 0.6608187134502924, 61 | "acc_norm": 0.695906432748538 62 | }, 63 | "hendrycksTest-conceptual_physics": { 64 | "acc": 0.40425531914893614, 65 | "acc_norm": 0.3659574468085106 66 | }, 67 | "hendrycksTest-high_school_physics": { 68 | "acc": 0.2582781456953642, 69 | "acc_norm": 0.2980132450331126 70 | }, 71 | "hendrycksTest-nutrition": { 72 | "acc": 0.43137254901960786, 73 | "acc_norm": 0.45098039215686275 74 | }, 75 | "hendrycksTest-high_school_psychology": { 76 | "acc": 0.581651376146789, 77 | "acc_norm": 0.5614678899082569 78 | }, 79 | "hendrycksTest-professional_accounting": { 80 | "acc": 0.2907801418439716, 81 | "acc_norm": 0.30141843971631205 82 | }, 83 | "hendrycksTest-human_aging": { 84 | "acc": 0.4304932735426009, 85 | "acc_norm": 0.39461883408071746 86 | }, 87 | "hendrycksTest-college_physics": { 88 | "acc": 0.35294117647058826, 89 | "acc_norm": 0.3627450980392157 90 | }, 91 | "hendrycksTest-high_school_chemistry": { 92 | "acc": 0.28078817733990147, 93 | "acc_norm": 0.3054187192118227 94 | }, 95 | "hendrycksTest-high_school_biology": { 96 | "acc": 0.4290322580645161, 97 | "acc_norm": 0.43548387096774194 98 | }, 99 | "hendrycksTest-us_foreign_policy": { 100 | "acc": 0.57, 101 | "acc_norm": 0.53 102 | }, 103 | "hendrycksTest-philosophy": { 104 | "acc": 0.4758842443729904, 105 | "acc_norm": 0.4662379421221865 106 | }, 107 | "hendrycksTest-logical_fallacies": { 108 | "acc": 0.4110429447852761, 109 | "acc_norm": 0.4294478527607362 110 | }, 111 | "hendrycksTest-anatomy": { 112 | "acc": 0.48148148148148145, 113 | "acc_norm": 0.4888888888888889 114 | }, 115 | "hendrycksTest-jurisprudence": { 116 | "acc": 0.4351851851851852, 117 | "acc_norm": 0.5 118 | }, 119 | "hendrycksTest-high_school_computer_science": { 120 | "acc": 0.41, 121 | "acc_norm": 0.46 122 | }, 123 | "hendrycksTest-elementary_mathematics": { 124 | "acc": 0.32275132275132273, 125 | "acc_norm": 0.32275132275132273 126 | }, 127 | "hendrycksTest-abstract_algebra": { 128 | "acc": 0.27, 129 | "acc_norm": 0.28 130 | }, 131 | "hendrycksTest-prehistory": { 132 | "acc": 0.44753086419753085, 133 | "acc_norm": 0.44135802469135804 134 | }, 135 | "hendrycksTest-moral_scenarios": { 136 | "acc": 0.2581005586592179, 137 | "acc_norm": 0.26033519553072626 138 | }, 139 | "hendrycksTest-college_medicine": { 140 | "acc": 0.4161849710982659, 141 | "acc_norm": 0.41040462427745666 142 | }, 143 | "hendrycksTest-econometrics": { 144 | "acc": 0.2982456140350877, 145 | "acc_norm": 0.2807017543859649 146 | }, 147 | "hendrycksTest-human_sexuality": { 148 | "acc": 0.5038167938931297, 149 | "acc_norm": 0.4961832061068702 150 | }, 151 | "hendrycksTest-management": { 152 | "acc": 0.5242718446601942, 153 | "acc_norm": 0.5339805825242718 154 | }, 155 | "hendrycksTest-computer_security": { 156 | "acc": 0.57, 157 | "acc_norm": 0.54 158 | }, 159 | "hendrycksTest-college_computer_science": { 160 | "acc": 0.38, 161 | "acc_norm": 0.34 162 | }, 163 | "hendrycksTest-public_relations": { 164 | "acc": 0.5636363636363636, 165 | "acc_norm": 0.5454545454545454 166 | }, 167 | "hendrycksTest-sociology": { 168 | "acc": 0.5522388059701493, 169 | "acc_norm": 0.5124378109452736 170 | }, 171 | "hendrycksTest-global_facts": { 172 | "acc": 0.29, 173 | "acc_norm": 0.28 174 | }, 175 | "hendrycksTest-astronomy": { 176 | "acc": 0.42105263157894735, 177 | "acc_norm": 0.42105263157894735 178 | }, 179 | "hendrycksTest-high_school_statistics": { 180 | "acc": 0.27314814814814814, 181 | "acc_norm": 0.2916666666666667 182 | }, 183 | "hendrycksTest-professional_psychology": { 184 | "acc": 0.40522875816993464, 185 | "acc_norm": 0.39052287581699346 186 | }, 187 | "hendrycksTest-high_school_us_history": { 188 | "acc": 0.37745098039215685, 189 | "acc_norm": 0.39705882352941174 190 | }, 191 | "hendrycksTest-business_ethics": { 192 | "acc": 0.42, 193 | "acc_norm": 0.44 194 | }, 195 | "hendrycksTest-clinical_knowledge": { 196 | "acc": 0.42641509433962266, 197 | "acc_norm": 0.4226415094339623 198 | }, 199 | "hendrycksTest-college_biology": { 200 | "acc": 0.4236111111111111, 201 | "acc_norm": 0.4166666666666667 202 | }, 203 | "hendrycksTest-formal_logic": { 204 | "acc": 0.42063492063492064, 205 | "acc_norm": 0.40476190476190477 206 | }, 207 | "hendrycksTest-marketing": { 208 | "acc": 0.6965811965811965, 209 | "acc_norm": 0.6837606837606838 210 | }, 211 | "hendrycksTest-college_mathematics": { 212 | "acc": 0.23, 213 | "acc_norm": 0.29 214 | }, 215 | "hendrycksTest-electrical_engineering": { 216 | "acc": 0.4827586206896552, 217 | "acc_norm": 0.4 218 | }, 219 | "hendrycksTest-high_school_government_and_politics": { 220 | "acc": 0.5284974093264249, 221 | "acc_norm": 0.5492227979274611 222 | }, 223 | "hendrycksTest-virology": { 224 | "acc": 0.37349397590361444, 225 | "acc_norm": 0.39759036144578314 226 | }, 227 | "hendrycksTest-high_school_mathematics": { 228 | "acc": 0.2518518518518518, 229 | "acc_norm": 0.28888888888888886 230 | } 231 | }, 232 | "versions": { 233 | "hendrycksTest-high_school_european_history": 0, 234 | "hendrycksTest-college_chemistry": 0, 235 | "hendrycksTest-international_law": 0, 236 | "hendrycksTest-high_school_macroeconomics": 0, 237 | "hendrycksTest-miscellaneous": 0, 238 | "hendrycksTest-professional_law": 0, 239 | "hendrycksTest-medical_genetics": 0, 240 | "hendrycksTest-high_school_world_history": 0, 241 | "hendrycksTest-professional_medicine": 0, 242 | "hendrycksTest-moral_disputes": 0, 243 | "hendrycksTest-high_school_geography": 0, 244 | "hendrycksTest-high_school_microeconomics": 0, 245 | "hendrycksTest-machine_learning": 0, 246 | "hendrycksTest-security_studies": 0, 247 | "hendrycksTest-world_religions": 0, 248 | "hendrycksTest-conceptual_physics": 0, 249 | "hendrycksTest-high_school_physics": 0, 250 | "hendrycksTest-nutrition": 0, 251 | "hendrycksTest-high_school_psychology": 0, 252 | "hendrycksTest-professional_accounting": 0, 253 | "hendrycksTest-human_aging": 0, 254 | "hendrycksTest-college_physics": 0, 255 | "hendrycksTest-high_school_chemistry": 0, 256 | "hendrycksTest-high_school_biology": 0, 257 | "hendrycksTest-us_foreign_policy": 0, 258 | "hendrycksTest-philosophy": 0, 259 | "hendrycksTest-logical_fallacies": 0, 260 | "hendrycksTest-anatomy": 0, 261 | "hendrycksTest-jurisprudence": 0, 262 | "hendrycksTest-high_school_computer_science": 0, 263 | "hendrycksTest-elementary_mathematics": 0, 264 | "hendrycksTest-abstract_algebra": 0, 265 | "hendrycksTest-prehistory": 0, 266 | "hendrycksTest-moral_scenarios": 0, 267 | "hendrycksTest-college_medicine": 0, 268 | "hendrycksTest-econometrics": 0, 269 | "hendrycksTest-human_sexuality": 0, 270 | "hendrycksTest-management": 0, 271 | "hendrycksTest-computer_security": 0, 272 | "hendrycksTest-college_computer_science": 0, 273 | "hendrycksTest-public_relations": 0, 274 | "hendrycksTest-sociology": 0, 275 | "hendrycksTest-global_facts": 0, 276 | "hendrycksTest-astronomy": 0, 277 | "hendrycksTest-high_school_statistics": 0, 278 | "hendrycksTest-professional_psychology": 0, 279 | "hendrycksTest-high_school_us_history": 0, 280 | "hendrycksTest-business_ethics": 0, 281 | "hendrycksTest-clinical_knowledge": 0, 282 | "hendrycksTest-college_biology": 0, 283 | "hendrycksTest-formal_logic": 0, 284 | "hendrycksTest-marketing": 0, 285 | "hendrycksTest-college_mathematics": 0, 286 | "hendrycksTest-electrical_engineering": 0, 287 | "hendrycksTest-high_school_government_and_politics": 0, 288 | "hendrycksTest-virology": 0, 289 | "hendrycksTest-high_school_mathematics": 0 290 | }, 291 | "config": { 292 | "model": "stabilityai/stablelm-base-alpha-7b-v2", 293 | "num_fewshot": 5, 294 | "batch_size": 8, 295 | "device": "cuda:0", 296 | "no_cache": true, 297 | "limit": null, 298 | "bootstrap_iters": 10000, 299 | "description_dict": null 300 | } 301 | } -------------------------------------------------------------------------------- /evals/open_llm_leaderboard/stablelm-beta-7b-v2-truthfulqa_mc.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "truthfulqa_mc": { 4 | "mc1": 0.2423500611995104, 5 | "mc2": 0.3645856452722409 6 | } 7 | }, 8 | "versions": { 9 | "truthfulqa_mc": 1 10 | }, 11 | "config": { 12 | "model": "stabilityai/stablelm-base-alpha-7b-v2", 13 | "num_fewshot": 0, 14 | "batch_size": 8, 15 | "device": "cuda:0", 16 | "no_cache": true, 17 | "limit": null, 18 | "bootstrap_iters": 10000, 19 | "description_dict": null 20 | } 21 | } -------------------------------------------------------------------------------- /evals/stablelm-3b-4e1t.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.3779863481228669, 5 | "acc_stderr": 0.014169664520303103, 6 | "acc_norm": 0.40017064846416384, 7 | "acc_norm_stderr": 0.014317197787809169 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7247474747474747, 11 | "acc_stderr": 0.009164888895174743, 12 | "acc_norm": 0.6771885521885522, 13 | "acc_norm_stderr": 0.009593950220366743 14 | }, 15 | "boolq": { 16 | "acc": 0.7562691131498471, 17 | "acc_stderr": 0.007509067459407977 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5482971519617607, 21 | "acc_stderr": 0.004966448380104203, 22 | "acc_norm": 0.7389962158932484, 23 | "acc_norm_stderr": 0.004382844128643414 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.827229437157901, 27 | "ppl_stderr": 0.07919367133146168, 28 | "acc": 0.7063846303124394, 29 | "acc_stderr": 0.006344860619678723 30 | }, 31 | "openbookqa": { 32 | "acc": 0.314, 33 | "acc_stderr": 0.020776701920308997, 34 | "acc_norm": 0.398, 35 | "acc_norm_stderr": 0.02191237788577997 36 | }, 37 | "piqa": { 38 | "acc": 0.7921653971708379, 39 | "acc_stderr": 0.009466997964536423, 40 | "acc_norm": 0.7976060935799782, 41 | "acc_norm_stderr": 0.00937428968280767 42 | }, 43 | "sciq": { 44 | "acc": 0.948, 45 | "acc_stderr": 0.007024624213817142, 46 | "acc_norm": 0.919, 47 | "acc_norm_stderr": 0.00863212103213998 48 | }, 49 | "siqa": { 50 | "acc": 0.41914022517911975, 51 | "acc_stderr": 0.011165140708170328, 52 | "acc_norm": 0.44319344933469806, 53 | "acc_norm_stderr": 0.011240812731564952 54 | }, 55 | "winogrande": { 56 | "acc": 0.665351223362273, 57 | "acc_stderr": 0.013261823629558375 58 | } 59 | }, 60 | "versions": { 61 | "arc_challenge": 0, 62 | "arc_easy": 0, 63 | "boolq": 1, 64 | "hellaswag": 0, 65 | "lambada_openai": 0, 66 | "openbookqa": 0, 67 | "piqa": 0, 68 | "sciq": 0, 69 | "siqa": 0, 70 | "winogrande": 0 71 | }, 72 | "config": { 73 | "model": "gpt2", 74 | "model_args": "pretrained=stablelm-3b-4e1t,dtype=bfloat16,trust_remote_code=True,low_cpu_mem_usage=True,use_fast=True", 75 | "num_fewshot": 0, 76 | "batch_size": "8", 77 | "batch_sizes": [], 78 | "device": "cuda", 79 | "no_cache": true, 80 | "limit": null, 81 | "bootstrap_iters": 100000, 82 | "description_dict": {} 83 | } 84 | } -------------------------------------------------------------------------------- /evals/stablelm-base-alpha-3b-v2.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.3242320819112628, 5 | "acc_stderr": 0.013678810399518815, 6 | "acc_norm": 0.3506825938566553, 7 | "acc_norm_stderr": 0.013944635930726085 8 | }, 9 | "arc_easy": { 10 | "acc": 0.6725589225589226, 11 | "acc_stderr": 0.009629415859100609, 12 | "acc_norm": 0.6325757575757576, 13 | "acc_norm_stderr": 0.009892552616211548 14 | }, 15 | "boolq": { 16 | "acc": 0.645565749235474, 17 | "acc_stderr": 0.008366245832688784 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5105556662019518, 21 | "acc_stderr": 0.004988669343786956, 22 | "acc_norm": 0.6858195578570006, 23 | "acc_norm_stderr": 0.004632399677490817 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.995184075578421, 27 | "ppl_stderr": 0.08502310534019014, 28 | "acc": 0.7025033960799534, 29 | "acc_stderr": 0.006369088639380684 30 | }, 31 | "openbookqa": { 32 | "acc": 0.264, 33 | "acc_stderr": 0.019732885585922098, 34 | "acc_norm": 0.386, 35 | "acc_norm_stderr": 0.021793529219281165 36 | }, 37 | "piqa": { 38 | "acc": 0.7600652883569097, 39 | "acc_stderr": 0.009963625892809545, 40 | "acc_norm": 0.780195865070729, 41 | "acc_norm_stderr": 0.00966195861665176 42 | }, 43 | "sciq": { 44 | "acc": 0.921, 45 | "acc_stderr": 0.008534156773333438, 46 | "acc_norm": 0.868, 47 | "acc_norm_stderr": 0.01070937396352803 48 | }, 49 | "siqa": { 50 | "acc": 0.4247697031729785, 51 | "acc_stderr": 0.011185271257671346, 52 | "acc_norm": 0.4600818833162743, 53 | "acc_norm_stderr": 0.011277955967920396 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.22399020807833536, 57 | "mc1_stderr": 0.014594964329474202, 58 | "mc2": 0.35868737415331753, 59 | "mc2_stderr": 0.013670666454421172 60 | }, 61 | "winogrande": { 62 | "acc": 0.6211523283346487, 63 | "acc_stderr": 0.013633724603180328 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=stabilityai/stablelm-base-alpha-3b-v2,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 82 | "num_fewshot": 0, 83 | "batch_size": "8", 84 | "batch_sizes": [], 85 | "device": "cuda:2", 86 | "no_cache": false, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/stablelm-base-alpha-3b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.2363481228668942, 5 | "acc_stderr": 0.012414960524301829, 6 | "acc_norm": 0.257679180887372, 7 | "acc_norm_stderr": 0.012780770562768407 8 | }, 9 | "arc_easy": { 10 | "acc": 0.4473905723905724, 11 | "acc_stderr": 0.010202832385415646, 12 | "acc_norm": 0.42045454545454547, 13 | "acc_norm_stderr": 0.010129114278546535 14 | }, 15 | "boolq": { 16 | "acc": 0.5764525993883792, 17 | "acc_stderr": 0.008642220663071512 18 | }, 19 | "hellaswag": { 20 | "acc": 0.329416450906194, 21 | "acc_stderr": 0.004690407826933909, 22 | "acc_norm": 0.38309101772555265, 23 | "acc_norm_stderr": 0.004851466623601455 24 | }, 25 | "lambada_openai": { 26 | "ppl": 20.187359473367042, 27 | "ppl_stderr": 0.7391414436494796, 28 | "acc": 0.4172326799922375, 29 | "acc_stderr": 0.006869874864639983 30 | }, 31 | "openbookqa": { 32 | "acc": 0.17, 33 | "acc_stderr": 0.016815633531393422, 34 | "acc_norm": 0.294, 35 | "acc_norm_stderr": 0.020395095484936614 36 | }, 37 | "sciq": { 38 | "acc": 0.717, 39 | "acc_stderr": 0.01425181090648174, 40 | "acc_norm": 0.649, 41 | "acc_norm_stderr": 0.015100563798316403 42 | }, 43 | "siqa": { 44 | "acc": 0.3561924257932446, 45 | "acc_stderr": 0.010836006561369118, 46 | "acc_norm": 0.4094165813715456, 47 | "acc_norm_stderr": 0.01112684957658903 48 | }, 49 | "piqa": { 50 | "acc": 0.6381936887921654, 51 | "acc_stderr": 0.011211397313020371, 52 | "acc_norm": 0.6273122959738846, 53 | "acc_norm_stderr": 0.01128131833289774 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.22399020807833536, 57 | "mc1_stderr": 0.014594964329474205, 58 | "mc2": 0.4052844601694033, 59 | "mc2_stderr": 0.014547007787950397 60 | }, 61 | "winogrande": { 62 | "acc": 0.526440410418311, 63 | "acc_stderr": 0.014032823874407229 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=stabilityai/stablelm-base-alpha-3b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 82 | "num_fewshot": 0, 83 | "batch_size": "8", 84 | "batch_sizes": [], 85 | "device": null, 86 | "no_cache": true, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/stablelm-base-alpha-7b-v2.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.3848122866894198, 5 | "acc_stderr": 0.014218371065251107, 6 | "acc_norm": 0.4052901023890785, 7 | "acc_norm_stderr": 0.014346869060229334 8 | }, 9 | "arc_easy": { 10 | "acc": 0.7319023569023569, 11 | "acc_stderr": 0.009089526578213694, 12 | "acc_norm": 0.6910774410774411, 13 | "acc_norm_stderr": 0.009481048387761353 14 | }, 15 | "boolq": { 16 | "acc": 0.7030581039755351, 17 | "acc_stderr": 0.007991418738281637 18 | }, 19 | "hellaswag": { 20 | "acc": 0.5553674566819359, 21 | "acc_stderr": 0.004959094146471525, 22 | "acc_norm": 0.7426807408882693, 23 | "acc_norm_stderr": 0.004362633637374482 24 | }, 25 | "lambada_openai": { 26 | "ppl": 3.366151815984524, 27 | "ppl_stderr": 0.06573496070440447, 28 | "acc": 0.7418979235396856, 29 | "acc_stderr": 0.006096490478492321 30 | }, 31 | "openbookqa": { 32 | "acc": 0.304, 33 | "acc_stderr": 0.020591649571224925, 34 | "acc_norm": 0.418, 35 | "acc_norm_stderr": 0.022080014812228134 36 | }, 37 | "piqa": { 38 | "acc": 0.7845484221980413, 39 | "acc_stderr": 0.009592463115658117, 40 | "acc_norm": 0.8019586507072906, 41 | "acc_norm_stderr": 0.009298209954776726 42 | }, 43 | "sciq": { 44 | "acc": 0.939, 45 | "acc_stderr": 0.007572076091557423, 46 | "acc_norm": 0.917, 47 | "acc_norm_stderr": 0.00872852720607479 48 | }, 49 | "siqa": { 50 | "acc": 0.4242579324462641, 51 | "acc_stderr": 0.011183502662341787, 52 | "acc_norm": 0.4692937563971341, 53 | "acc_norm_stderr": 0.011292714928103489 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.2423500611995104, 57 | "mc1_stderr": 0.01500067437357034, 58 | "mc2": 0.36457253410937596, 59 | "mc2_stderr": 0.0135567172376818 60 | }, 61 | "winogrande": { 62 | "acc": 0.6882399368587214, 63 | "acc_stderr": 0.013018571197638537 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=stabilityai/stablelm-base-alpha-7b-v2,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 82 | "num_fewshot": 0, 83 | "batch_size": "2", 84 | "batch_sizes": [], 85 | "device": "cuda:2", 86 | "no_cache": false, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /evals/stablelm-base-alpha-7b.json: -------------------------------------------------------------------------------- 1 | { 2 | "results": { 3 | "arc_challenge": { 4 | "acc": 0.24829351535836178, 5 | "acc_stderr": 0.012624912868089755, 6 | "acc_norm": 0.27047781569965873, 7 | "acc_norm_stderr": 0.012980954547659556 8 | }, 9 | "arc_easy": { 10 | "acc": 0.5054713804713805, 11 | "acc_stderr": 0.01025916922861504, 12 | "acc_norm": 0.44865319865319864, 13 | "acc_norm_stderr": 0.010205540414612876 14 | }, 15 | "boolq": { 16 | "acc": 0.600611620795107, 17 | "acc_stderr": 0.008566178448007831 18 | }, 19 | "hellaswag": { 20 | "acc": 0.3467436765584545, 21 | "acc_stderr": 0.004749606196363328, 22 | "acc_norm": 0.41216889065923124, 23 | "acc_norm_stderr": 0.004912192800263316 24 | }, 25 | "lambada_openai": { 26 | "ppl": 9.459674222745228, 27 | "ppl_stderr": 0.33183598007493614, 28 | "acc": 0.5511352610130021, 29 | "acc_stderr": 0.006929452414790843 30 | }, 31 | "openbookqa": { 32 | "acc": 0.214, 33 | "acc_stderr": 0.018359797502387025, 34 | "acc_norm": 0.32, 35 | "acc_norm_stderr": 0.02088234048876181 36 | }, 37 | "piqa": { 38 | "acc": 0.6675734494015234, 39 | "acc_stderr": 0.010991141557445587, 40 | "acc_norm": 0.6735582154515778, 41 | "acc_norm_stderr": 0.010940467046177304 42 | }, 43 | "sciq": { 44 | "acc": 0.801, 45 | "acc_stderr": 0.012631649083099177, 46 | "acc_norm": 0.697, 47 | "acc_norm_stderr": 0.014539683710535257 48 | }, 49 | "siqa": { 50 | "acc": 0.394575230296827, 51 | "acc_stderr": 0.011059713589720797, 52 | "acc_norm": 0.4140225179119754, 53 | "acc_norm_stderr": 0.011145545345176117 54 | }, 55 | "truthfulqa_mc": { 56 | "mc1": 0.23745410036719705, 57 | "mc1_stderr": 0.014896277441041836, 58 | "mc2": 0.3995908363542637, 59 | "mc2_stderr": 0.014371652685680641 60 | }, 61 | "winogrande": { 62 | "acc": 0.5011838989739542, 63 | "acc_stderr": 0.014052446290529012 64 | } 65 | }, 66 | "versions": { 67 | "arc_challenge": 0, 68 | "arc_easy": 0, 69 | "boolq": 1, 70 | "hellaswag": 0, 71 | "lambada_openai": 0, 72 | "openbookqa": 0, 73 | "piqa": 0, 74 | "sciq": 0, 75 | "siqa": 0, 76 | "truthfulqa_mc": 1, 77 | "winogrande": 0 78 | }, 79 | "config": { 80 | "model": "gpt2", 81 | "model_args": "use_fast=True,pretrained=stabilityai/stablelm-base-alpha-7b,trust_remote_code=True,low_cpu_mem_usage=True,dtype=auto", 82 | "num_fewshot": 0, 83 | "batch_size": "2", 84 | "batch_sizes": [], 85 | "device": "cuda:1", 86 | "no_cache": true, 87 | "limit": null, 88 | "bootstrap_iters": 100000, 89 | "description_dict": {} 90 | } 91 | } -------------------------------------------------------------------------------- /notebooks/stablelm-alpha.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "4weyZUFfgUlD" 7 | }, 8 | "source": [ 9 | "# StableLM-Alpha\n", 10 | "\n", 11 | "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Stability-AI/StableLM//blob/main/notebooks/stablelm-alpha.ipynb)\n", 12 | "\n", 13 | "\n", 14 | "\n", 15 | "This notebook is designed to let you quickly generate text with the latest StableLM models (**StableLM-Alpha**) using Hugging Face's `transformers` library." 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": null, 21 | "metadata": { 22 | "id": "8xicyuk_Ezuw" 23 | }, 24 | "outputs": [], 25 | "source": [ 26 | "!nvidia-smi" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "execution_count": null, 32 | "metadata": { 33 | "id": "V1Da2YDX71IF" 34 | }, 35 | "outputs": [], 36 | "source": [ 37 | "!pip install -U pip\n", 38 | "!pip install accelerate bitsandbytes torch transformers" 39 | ] 40 | }, 41 | { 42 | "cell_type": "code", 43 | "execution_count": 3, 44 | "metadata": { 45 | "cellView": "form", 46 | "id": "sSifeGXKlIgY" 47 | }, 48 | "outputs": [], 49 | "source": [ 50 | "#@title Setup\n", 51 | "\n", 52 | "import torch\n", 53 | "from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList\n", 54 | "\n", 55 | "from IPython.display import Markdown, display\n", 56 | "def hr(): display(Markdown('---'))\n", 57 | "def cprint(msg: str, color: str = \"blue\", **kwargs) -> None:\n", 58 | " color_codes = {\n", 59 | " \"blue\": \"\\033[34m\",\n", 60 | " \"red\": \"\\033[31m\",\n", 61 | " \"green\": \"\\033[32m\",\n", 62 | " \"yellow\": \"\\033[33m\",\n", 63 | " \"purple\": \"\\033[35m\",\n", 64 | " \"cyan\": \"\\033[36m\",\n", 65 | " }\n", 66 | " \n", 67 | " if color not in color_codes:\n", 68 | " raise ValueError(f\"Invalid info color: `{color}`\")\n", 69 | " \n", 70 | " print(color_codes[color] + msg + \"\\033[0m\", **kwargs)" 71 | ] 72 | }, 73 | { 74 | "cell_type": "code", 75 | "execution_count": null, 76 | "metadata": { 77 | "cellView": "form", 78 | "id": "dQZCeE-ujdzW" 79 | }, 80 | "outputs": [], 81 | "source": [ 82 | "#@title Pick Your Model\n", 83 | "#@markdown Refer to Hugging Face docs for more information the parameters below: https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained\n", 84 | "\n", 85 | "# Choose model name\n", 86 | "model_name = \"stabilityai/stablelm-tuned-alpha-7b\" #@param [\"stabilityai/stablelm-tuned-alpha-7b\", \"stabilityai/stablelm-base-alpha-7b\", \"stabilityai/stablelm-tuned-alpha-3b\", \"stabilityai/stablelm-base-alpha-3b\"]\n", 87 | "\n", 88 | "cprint(f\"Using `{model_name}`\", color=\"blue\")\n", 89 | "\n", 90 | "# Select \"big model inference\" parameters\n", 91 | "torch_dtype = \"float16\" #@param [\"float16\", \"bfloat16\", \"float\"]\n", 92 | "load_in_8bit = False #@param {type:\"boolean\"}\n", 93 | "device_map = \"auto\"\n", 94 | "\n", 95 | "cprint(f\"Loading with: `{torch_dtype=}, {load_in_8bit=}, {device_map=}`\")\n", 96 | "\n", 97 | "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", 98 | "model = AutoModelForCausalLM.from_pretrained(\n", 99 | " model_name,\n", 100 | " torch_dtype=getattr(torch, torch_dtype),\n", 101 | " load_in_8bit=load_in_8bit,\n", 102 | " device_map=device_map,\n", 103 | " offload_folder=\"./offload\",\n", 104 | ")" 105 | ] 106 | }, 107 | { 108 | "cell_type": "code", 109 | "execution_count": 35, 110 | "metadata": { 111 | "cellView": "form", 112 | "colab": { 113 | "base_uri": "https://localhost:8080/", 114 | "height": 327 115 | }, 116 | "id": "P01Db-SVwtPO", 117 | "outputId": "9911dead-44b8-43e2-de73-c40857131065" 118 | }, 119 | "outputs": [ 120 | { 121 | "name": "stdout", 122 | "output_type": "stream", 123 | "text": [ 124 | "\u001b[34mSampling with: `max_new_tokens=128, temperature=0.7, top_k=0, top_p=0.9, do_sample=True`\u001b[0m\n" 125 | ] 126 | }, 127 | { 128 | "data": { 129 | "text/markdown": [ 130 | "---" 131 | ], 132 | "text/plain": [ 133 | "" 134 | ] 135 | }, 136 | "metadata": {}, 137 | "output_type": "display_data" 138 | }, 139 | { 140 | "name": "stdout", 141 | "output_type": "stream", 142 | "text": [ 143 | "Can you write a song about a pirate at sea? \u001b[32mSure, here's a song about a pirate at sea:\n", 144 | "\n", 145 | "Verse 1:\n", 146 | "There he was, a pirate so bold\n", 147 | "Sailing the seas, his story untold\n", 148 | "His name was Captain Jack, and he ruled the waves\n", 149 | "A legend in the seas, he conquered all his foes\n", 150 | "\n", 151 | "Chorus:\n", 152 | "Oh, Captain Jack, the pirate of the sea\n", 153 | "Your bravery and your daring, set us all free\n", 154 | "From the tyranny of the sea, you led us to glory\n", 155 | "A legend in our hearts, you'll be remembered as our story\n", 156 | "\n", 157 | "Verse 2:\n", 158 | "He sailed the\u001b[0m\n" 159 | ] 160 | } 161 | ], 162 | "source": [ 163 | "#@title Generate Text\n", 164 | "#@markdown Note: The model response is colored in green\n", 165 | "\n", 166 | "class StopOnTokens(StoppingCriteria):\n", 167 | " def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:\n", 168 | " stop_ids = [50278, 50279, 50277, 1, 0]\n", 169 | " for stop_id in stop_ids:\n", 170 | " if input_ids[0][-1] == stop_id:\n", 171 | " return True\n", 172 | " return False\n", 173 | "\n", 174 | "# Process the user prompt\n", 175 | "user_prompt = \"Can you write a song about a pirate at sea?\" #@param {type:\"string\"}\n", 176 | "if \"tuned\" in model_name:\n", 177 | " # Add system prompt for chat tuned models\n", 178 | " system_prompt = \"\"\"<|SYSTEM|># StableLM Tuned (Alpha version)\n", 179 | " - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.\n", 180 | " - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.\n", 181 | " - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.\n", 182 | " - StableLM will refuse to participate in anything that could harm a human.\n", 183 | " \"\"\"\n", 184 | " prompt = f\"{system_prompt}<|USER|>{user_prompt}<|ASSISTANT|>\"\n", 185 | "else:\n", 186 | " prompt = user_prompt\n", 187 | "\n", 188 | "# Sampling args\n", 189 | "max_new_tokens = 128 #@param {type:\"slider\", min:32.0, max:3072.0, step:32}\n", 190 | "temperature = 0.7 #@param {type:\"slider\", min:0.0, max:1.25, step:0.05}\n", 191 | "top_k = 0 #@param {type:\"slider\", min:0.0, max:1.0, step:0.05}\n", 192 | "top_p = 0.9 #@param {type:\"slider\", min:0.0, max:1.0, step:0.05}\n", 193 | "do_sample = True #@param {type:\"boolean\"}\n", 194 | "\n", 195 | "cprint(f\"Sampling with: `{max_new_tokens=}, {temperature=}, {top_k=}, {top_p=}, {do_sample=}`\")\n", 196 | "hr()\n", 197 | "\n", 198 | "# Create `generate` inputs\n", 199 | "inputs = tokenizer(prompt, return_tensors=\"pt\")\n", 200 | "inputs.to(model.device)\n", 201 | "\n", 202 | "# Generate\n", 203 | "tokens = model.generate(\n", 204 | " **inputs,\n", 205 | " max_new_tokens=max_new_tokens,\n", 206 | " temperature=temperature,\n", 207 | " top_k=top_k,\n", 208 | " top_p=top_p,\n", 209 | " do_sample=do_sample,\n", 210 | " pad_token_id=tokenizer.eos_token_id,\n", 211 | " stopping_criteria=StoppingCriteriaList([StopOnTokens()])\n", 212 | ")\n", 213 | "\n", 214 | "# Extract out only the completion tokens\n", 215 | "completion_tokens = tokens[0][inputs['input_ids'].size(1):]\n", 216 | "completion = tokenizer.decode(completion_tokens, skip_special_tokens=True)\n", 217 | "\n", 218 | "# Display\n", 219 | "print(user_prompt + \" \", end=\"\")\n", 220 | "cprint(completion, color=\"green\")" 221 | ] 222 | }, 223 | { 224 | "cell_type": "markdown", 225 | "metadata": { 226 | "id": "rIZm5uwaQLa4" 227 | }, 228 | "source": [ 229 | "## License (Apache 2.0)\n", 230 | "\n", 231 | "Copyright (c) 2023 by [StabilityAI LTD](https://stability.ai/)\n", 232 | "\n", 233 | "Licensed under the Apache License, Version 2.0 (the \"License\");\n", 234 | "you may not use this file except in compliance with the License.\n", 235 | "You may obtain a copy of the License at\n", 236 | "\n", 237 | " http://www.apache.org/licenses/LICENSE-2.0\n", 238 | "\n", 239 | "Unless required by applicable law or agreed to in writing, software\n", 240 | "distributed under the License is distributed on an \"AS IS\" BASIS,\n", 241 | "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", 242 | "See the License for the specific language governing permissions and\n", 243 | "limitations under the License." 244 | ] 245 | } 246 | ], 247 | "metadata": { 248 | "accelerator": "GPU", 249 | "colab": { 250 | "machine_shape": "hm", 251 | "provenance": [] 252 | }, 253 | "gpuClass": "standard", 254 | "kernelspec": { 255 | "display_name": "Python 3", 256 | "name": "python3" 257 | }, 258 | "language_info": { 259 | "name": "python" 260 | } 261 | }, 262 | "nbformat": 4, 263 | "nbformat_minor": 0 264 | } 265 | --------------------------------------------------------------------------------