├── LICENSE
├── MemStream.png
├── README.md
├── code
├── memstream-ib.py
├── memstream-knn.py
├── memstream-pca.py
├── memstream-syn.py
└── memstream.py
└── data
├── conceptdriftdata.txt
├── syn.txt
└── synlabel.txt
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/MemStream.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Stream-AD/MemStream/59b5ba0eb5392bd1bd13822dd4023fa8236c8cc3/MemStream.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # MemStream
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 | Implementation of
11 |
12 | - [MemStream: Memory-Based Streaming Anomaly Detection](https://dl.acm.org/doi/pdf/10.1145/3485447.3512221). *Siddharth Bhatia, Arjit Jain, Shivin Srivastava, Kenji Kawaguchi, Bryan Hooi*. The Web Conference (formerly WWW), 2022.
13 |
14 | MemStream detects anomalies from a multi-aspect data stream. We output an anomaly score for each record. MemStream is a memory augmented feature extractor, allows for quick retraining, gives a theoretical bound on the memory size for effective drift handling, is robust to memory poisoning, and outperforms 11 state-of-the-art streaming anomaly detection baselines.
15 |
16 | 
17 | After an initial training of the feature extractor on a small subset of normal data, MemStream processes records in two steps: (i) It outputs anomaly scores for each record by querying the memory for K-nearest neighbours to the record encoding and calculating a discounted distance and (ii) It updates the memory, in a FIFO manner, if the anomaly score is within an update threshold β.
18 |
19 |
20 | ## Demo
21 |
22 | 1. KDDCUP99: Run `python3 memstream.py --dataset KDD --beta 1 --memlen 256`
23 | 2. NSL-KDD: Run `python3 memstream.py --dataset NSL --beta 0.1 --memlen 2048`
24 | 3. UNSW-NB 15: Run `python3 memstream.py --dataset UNSW --beta 0.1 --memlen 2048`
25 | 4. CICIDS-DoS: Run `python3 memstream.py --dataset DOS --beta 0.1 --memlen 2048`
26 | 5. SYN: Run `python3 memstream-syn.py --dataset SYN --beta 1 --memlen 16`
27 | 6. Ionosphere: Run `python3 memstream.py --dataset ionosphere --beta 0.001 --memlen 4`
28 | 7. Cardiotocography: Run `python3 memstream.py --dataset cardio --beta 1 --memlen 64`
29 | 8. Statlog Landsat Satellite: Run `python3 memstream.py --dataset statlog --beta 0.01 --memlen 32`
30 | 9. Satimage-2: Run `python3 memstream.py --dataset satimage-2 --beta 10 --memlen 256`
31 | 10. Mammography: Run `python3 memstream.py --dataset mammography --beta 0.1 --memlen 128`
32 | 11. Pima Indians Diabetes: Run `python3 memstream.py --dataset pima --beta 0.001 --memlen 64`
33 | 12. Covertype: Run `python3 memstream.py --dataset cover --beta 0.0001 --memlen 2048`
34 |
35 |
36 | ## Command line options
37 | * `--dataset`: The dataset to be used for training. Choices 'NSL', 'KDD', 'UNSW', 'DOS'. (default 'NSL')
38 | * `--beta`: The threshold beta to be used. (default: 0.1)
39 | * `--memlen`: The size of the Memory Module (default: 2048)
40 | * `--dev`: Pytorch device to be used for training like "cpu", "cuda:0" etc. (default: 'cuda:0')
41 | * `--lr`: Learning rate (default: 0.01)
42 | * `--epochs`: Number of epochs (default: 5000)
43 |
44 | ## Input file format
45 | MemStream expects the input multi-aspect record stream to be stored in a contains `,` separated file.
46 |
47 | ## Datasets
48 | Processed Datasets can be downloaded from [here](https://drive.google.com/file/d/1JNrhOr8U3Nqef1hBOqvHQPzBNWzDOFdl/view). Please unzip and place the files in the data folder of the repository.
49 |
50 | 1. [KDDCUP99](http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html)
51 | 2. [NSL-KDD](https://www.unb.ca/cic/datasets/nsl.html)
52 | 3. [UNSW-NB 15](https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/)
53 | 4. [CICIDS-DoS](https://www.unb.ca/cic/datasets/ids-2018.html)
54 | 5. Synthetic Dataset (Introduced in paper)
55 | 6. [Ionosphere](https://archive.ics.uci.edu/ml/index.php)
56 | 7. [Cardiotocography](https://archive.ics.uci.edu/ml/index.php)
57 | 8. [Statlog Landsat Satellite](https://archive.ics.uci.edu/ml/index.php)
58 | 9. [Satimage-2](http://odds.cs.stonybrook.edu)
59 | 10. [Mammography](http://odds.cs.stonybrook.edu)
60 | 11. [Pima Indians Diabetes](https://archive.ics.uci.edu/ml/index.php)
61 | 12. [Covertype](https://archive.ics.uci.edu/ml/index.php)
62 |
63 | ## Environment
64 | This code has been tested on Debian GNU/Linux 9 with a 12GB Nvidia GeForce RTX 2080 Ti GPU, CUDA Version 10.2 and PyTorch 1.5.
65 |
66 | ## Citation
67 |
68 | If you use this code for your research, please consider citing our WWW paper.
69 |
70 | ```bibtex
71 | @inproceedings{bhatia2022memstream,
72 | title={MemStream: Memory-Based Streaming Anomaly Detection},
73 | author={Siddharth Bhatia and Arjit Jain and Shivin Srivastava and Kenji Kawaguchi and Bryan Hooi},
74 | booktitle={The Web Conference (formerly WWW)},
75 | year={2022}
76 | }
77 |
78 |
--------------------------------------------------------------------------------
/code/memstream-ib.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import numpy as np
5 | import math
6 | import time
7 | import matplotlib.pyplot as plt
8 | from torch.utils.data import DataLoader
9 | from sklearn import metrics
10 | import scipy.spatial as sp
11 | from torch.autograd import Variable
12 | import argparse
13 | parser = argparse.ArgumentParser()
14 | parser.add_argument('--dataset', default='NSL')
15 | parser.add_argument('--beta', type=float, default=1e-3)
16 | parser.add_argument('--dim', type=int, default=12)
17 | parser.add_argument("--dev", help="device", default="cpu")
18 | parser.add_argument("--epochs", type=int, help="number of epochs for ib", default=5000)
19 | parser.add_argument("--lr", type=float, help="learning rate", default=1e-2)
20 | parser.add_argument("--memlen", type=int, help="size of memory", default=512)
21 | parser.add_argument("--ibbeta", type=float, help="beta value of IB", default=0.5)
22 | parser.add_argument("--seed", type=int, help="random seed", default=0)
23 | args = parser.parse_args()
24 |
25 | nfile = None
26 | lfile = None
27 | if args.dataset == 'NSL':
28 | nfile = '../data/nsl.txt'
29 | lfile = '../data/nsllabel.txt'
30 | elif args.dataset == 'KDD':
31 | nfile = '../data/kdd.txt'
32 | lfile = '../data/kddlabel.txt'
33 | elif args.dataset == 'UNSW':
34 | nfile = '../data/unsw.txt'
35 | lfile = '../data/unswlabel.txt'
36 | elif args.dataset == 'DOS':
37 | nfile = '../data/dos.txt'
38 | lfile = '../data/doslabel.txt'
39 | else:
40 | df = scipy.io.loadmat('../data/'+args.dataset+".mat")
41 | numeric = torch.FloatTensor(df['X'])
42 | labels = (df['y']).astype(float).reshape(-1)
43 |
44 |
45 | device = torch.device(args.dev)
46 |
47 | def compute_distances(x):
48 | x_norm = (x ** 2).sum(1).view(-1, 1)
49 | x_t = torch.transpose(x, 0, 1)
50 | x_t_norm = x_norm.view(1, -1)
51 | dist = x_norm + x_t_norm - 2.0 * torch.mm(x, x_t)
52 | dist = torch.clamp(dist, 0, np.inf)
53 |
54 | return dist
55 |
56 |
57 | def KDE_IXT_estimation(logvar_t, mean_t):
58 | n_batch, d = mean_t.shape
59 | var = torch.exp(logvar_t) + 1e-10 # to avoid 0's in the log
60 | normalization_constant = math.log(n_batch)
61 | dist = compute_distances(mean_t)
62 | distance_contribution = -torch.mean(torch.logsumexp(input=-0.5 * dist / var, dim=1))
63 | I_XT = normalization_constant + distance_contribution
64 |
65 | return I_XT
66 |
67 |
68 | def get_IXT(mean_t, logvar_t):
69 | IXT = KDE_IXT_estimation(logvar_t, mean_t) # in natts
70 | IXT = IXT / np.log(2) # in bits
71 | return IXT
72 |
73 |
74 | def get_ITY(logits_y, y):
75 | HY_given_T = ce(logits_y, y)
76 | ITY = (np.log(2) - HY_given_T) / np.log(2) # in bits
77 | return ITY
78 |
79 |
80 | def get_loss(IXT_upper, ITY_lower):
81 | loss = -1.0 * (ITY_lower - args.ibbeta * IXT_upper)
82 | return loss
83 |
84 | ce = torch.nn.BCEWithLogitsLoss()
85 | numeric = torch.FloatTensor(np.loadtxt(nfile, delimiter = ','))
86 | labels = np.loadtxt(lfile, delimiter=',')
87 | if args.dataset == 'KDD':
88 | labels = 1 - labels
89 | inputdim = numeric.shape[1]
90 |
91 | class AutoEncoder(nn.Module):
92 | def __init__(self):
93 | super(AutoEncoder, self).__init__()
94 | self.e1 = nn.Linear(inputdim, args.dim)
95 | self.output_layer = nn.Linear(args.dim, 1)
96 |
97 | def forward(self, x):
98 | mu = self.e1(x)
99 | intermed = mu + torch.randn_like(mu) * 1
100 | x = self.output_layer(intermed)
101 | return x, mu
102 |
103 |
104 | class MemStream(nn.Module):
105 | def __init__(self, in_dim, params):
106 | super(MemStream, self).__init__()
107 | self.params = params
108 | self.in_dim = in_dim
109 | self.out_dim = params['code_len']
110 | self.memory_len = params['memory_len']
111 | self.max_thres = torch.tensor(params['beta']).to(device)
112 | self.memory = torch.randn(self.memory_len, self.out_dim).to(device)
113 | self.mem_data = torch.randn(self.memory_len, self.in_dim).to(device)
114 | self.mem_idx = torch.from_numpy(np.arange(self.memory_len))
115 | self.memory.requires_grad = False
116 | self.mem_data.requires_grad = False
117 | self.mem_idx.requires_grad = False
118 | self.batch_size = params['memory_len']
119 | self.num_mem_update = 0
120 | self.ae = AutoEncoder().to(device)
121 | self.clock = 0
122 | self.last_update = -1
123 | self.updates = []
124 | self.optimizer = torch.optim.Adam(self.parameters(), lr=params['lr'])
125 | self.loss_fn = nn.MSELoss()
126 | self.count = 0
127 |
128 |
129 | def train_autoencoder(self, data, epochs, labels):
130 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
131 | new = (data - self.mean) / self.std
132 | new[:, self.std == 0] = 0
133 | new = Variable(new)
134 | train_y = Variable(labels).to(device)
135 | logvar_t = torch.Tensor([0]).to(device)
136 | for epoch in range(args.epochs):
137 | self.optimizer.zero_grad()
138 | train_logits_y, train_mean_t = self.ae(new) #new + 0.001*torch.randn_like(new).to(device)
139 | train_ITY = get_ITY(train_logits_y, train_y)
140 | train_IXT = get_IXT(train_mean_t, logvar_t)
141 | loss = get_loss(train_IXT, train_ITY)
142 | loss.backward()
143 | self.optimizer.step()
144 |
145 |
146 | def update_memory(self, output_loss, encoder_output, data):
147 | if output_loss <= self.max_thres:
148 | least_used_pos = torch.argmin(self.mem_idx)
149 | self.memory[least_used_pos] = encoder_output
150 | self.mem_data[least_used_pos] = data
151 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
152 | self.mem_idx[least_used_pos] = self.count
153 | self.count += 1
154 | self.num_mem_update += 1
155 | return 1
156 | return 0
157 |
158 | def initialize_memory(self, x):
159 | mean, std = model.mem_data.mean(0), model.mem_data.std(0)
160 | new = (x - mean) / std
161 | new[:, std == 0] = 0
162 | self.memory = self.ae.e1(new)
163 | self.memory.requires_grad = False
164 | self.mem_data = x
165 |
166 | def forward(self, x):
167 | new = (x - self.mean) / self.std
168 | new[:, self.std == 0] = 0
169 | encoder_output = self.ae.e1(new)
170 | loss_values = torch.norm(self.memory - encoder_output, dim=1, p=1).min()
171 | self.updates.append(self.update_memory(loss_values, encoder_output, x))
172 | return loss_values
173 |
174 |
175 | torch.manual_seed(args.seed)
176 | N = args.memlen
177 | params = {
178 | 'beta': args.beta, 'code_len': args.dim, 'memory_len': N, 'batch_size':1, 'lr':args.lr
179 | }
180 |
181 | model = MemStream(numeric[0].shape[0],params).to(device)
182 |
183 | batch_size = params['batch_size']
184 | print(args.dataset, args.beta, args.dim, args.memlen, args.lr, args.epochs)
185 | data_loader = DataLoader(numeric, batch_size=batch_size)
186 | init_data = numeric[labels == 0][:N].to(device)
187 | model.mem_data = init_data
188 | torch.set_grad_enabled(True)
189 | model.train_autoencoder(numeric[:N].to(device), epochs=args.epochs, labels=torch.Tensor(labels[:N].reshape(-1, 1)))
190 | torch.set_grad_enabled(False)
191 | model.initialize_memory(numeric[labels == 0][:N].to(device))
192 | err = []
193 | for data in data_loader:
194 | output = model(data.to(device))
195 | err.append(output)
196 | scores = np.array([i.cpu() for i in err])
197 | auc = metrics.roc_auc_score(labels, scores)
198 | print("ROC-AUC", auc)
199 |
--------------------------------------------------------------------------------
/code/memstream-knn.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import numpy as np
5 | import time
6 | import matplotlib.pyplot as plt
7 | from torch.utils.data import DataLoader
8 | from sklearn import metrics
9 | import scipy.spatial as sp
10 | from torch.autograd import Variable
11 | import argparse
12 | import scipy.io
13 |
14 | parser = argparse.ArgumentParser()
15 | parser.add_argument('--dataset', default='NSL')
16 | parser.add_argument('--beta', type=float, default=0.1)
17 | parser.add_argument("--dev", help="device", default="cuda:0")
18 | parser.add_argument("--epochs", type=int, help="number of epochs for ae", default=5000)
19 | parser.add_argument("--lr", type=float, help="learning rate", default=1e-2)
20 | parser.add_argument("--memlen", type=int, help="size of memory", default=2048)
21 | parser.add_argument("--seed", type=int, help="random seed", default=0)
22 | parser.add_argument("--gamma", type=float, help="knn coefficient", default=0)
23 | args = parser.parse_args()
24 |
25 | torch.manual_seed(args.seed)
26 | nfile = None
27 | lfile = None
28 | if args.dataset == 'NSL':
29 | nfile = '../data/nsl.txt'
30 | lfile = '../data/nsllabel.txt'
31 | elif args.dataset == 'KDD':
32 | nfile = '../data/kdd.txt'
33 | lfile = '../data/kddlabel.txt'
34 | elif args.dataset == 'UNSW':
35 | nfile = '../data/unsw.txt'
36 | lfile = '../data/unswlabel.txt'
37 | elif args.dataset == 'DOS':
38 | nfile = '../data/dos.txt'
39 | lfile = '../data/doslabel.txt'
40 | else:
41 | df = scipy.io.loadmat('../data/'+args.dataset+".mat")
42 | numeric = torch.FloatTensor(df['X'])
43 | labels = (df['y']).astype(float).reshape(-1)
44 |
45 | device = torch.device(args.dev)
46 |
47 | class MemStream(nn.Module):
48 | def __init__(self, in_dim, params):
49 | super(MemStream, self).__init__()
50 | self.params = params
51 | self.in_dim = in_dim
52 | self.out_dim = in_dim*2
53 | self.memory_len = params['memory_len']
54 | self.gamma = params['gamma']
55 | self.max_thres = torch.tensor(params['beta']).to(device)
56 | self.memory = torch.randn(self.memory_len, self.out_dim).to(device)
57 | self.mem_data = torch.randn(self.memory_len, self.in_dim).to(device)
58 | self.memory.requires_grad = False
59 | self.mem_data.requires_grad = False
60 | self.batch_size = params['memory_len']
61 | self.num_mem_update = 0
62 | self.encoder = nn.Sequential(
63 | nn.Linear(self.in_dim, self.out_dim),
64 | nn.Tanh(),
65 | ).to(device)
66 | self.decoder = nn.Sequential(
67 | nn.Linear(self.out_dim, self.in_dim)
68 | ).to(device)
69 | self.clock = 0
70 | self.last_update = -1
71 | self.optimizer = torch.optim.Adam(self.parameters(), lr=params['lr'])
72 | self.loss_fn = nn.MSELoss()
73 | self.count = 0
74 | self.K = 3
75 | self.exp = torch.Tensor([self.gamma**i for i in range(self.K)]).to(device)
76 |
77 |
78 | def train_autoencoder(self, data, epochs):
79 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
80 | new = (data - self.mean) / self.std
81 | new[:, self.std == 0] = 0
82 | new = Variable(new)
83 | for epoch in range(epochs):
84 | self.optimizer.zero_grad()
85 | output = self.decoder(self.encoder(new + 0.001*torch.randn_like(new).to(device)))
86 | loss = self.loss_fn(output, new)
87 | loss.backward()
88 | self.optimizer.step()
89 |
90 |
91 | def update_memory(self, output_loss, encoder_output, data):
92 | if output_loss <= self.max_thres:
93 | least_used_pos = self.count%self.memory_len
94 | self.memory[least_used_pos] = encoder_output
95 | self.mem_data[least_used_pos] = data
96 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
97 | self.count += 1
98 | return 1
99 | return 0
100 |
101 | def initialize_memory(self, x):
102 | mean, std = model.mem_data.mean(0), model.mem_data.std(0)
103 | new = (x - mean) / std
104 | new[:, std == 0] = 0
105 | self.memory = self.encoder(new)
106 | self.memory.requires_grad = False
107 | self.mem_data = x
108 |
109 | def forward(self, x):
110 | new = (x - self.mean) / self.std
111 | new[:, self.std == 0] = 0
112 | encoder_output = self.encoder(new)
113 | # loss_values = torch.norm(self.memory - encoder_output, dim=1, p=1).min()
114 | loss_values = (torch.topk(torch.norm(self.memory - encoder_output, dim=1, p=1), k=self.K, largest=False)[0]*self.exp).sum()/self.exp.sum()
115 | self.update_memory(loss_values, encoder_output, x)
116 | return loss_values
117 |
118 | if args.dataset in ['KDD', 'NSL', 'UNSW', 'DOS']:
119 | numeric = torch.FloatTensor(np.loadtxt(nfile, delimiter = ','))
120 | labels = np.loadtxt(lfile, delimiter=',')
121 |
122 | if args.dataset == 'KDD':
123 | labels = 1 - labels
124 | torch.manual_seed(args.seed)
125 | N = args.memlen
126 | params = {
127 | 'beta': args.beta, 'memory_len': N, 'batch_size':1, 'lr':args.lr, 'gamma':args.gamma
128 | }
129 |
130 | model = MemStream(numeric[0].shape[0],params).to(device)
131 |
132 | batch_size = params['batch_size']
133 | print(args.dataset, args.beta, args.gamma, args.memlen, args.lr, args.epochs)
134 | data_loader = DataLoader(numeric, batch_size=batch_size)
135 | init_data = numeric[labels == 0][:N].to(device)
136 | model.mem_data = init_data
137 | torch.set_grad_enabled(True)
138 | model.train_autoencoder(Variable(init_data).to(device), epochs=args.epochs)
139 | torch.set_grad_enabled(False)
140 | model.initialize_memory(Variable(init_data[:N]))
141 | err = []
142 | for data in data_loader:
143 | output = model(data.to(device))
144 | err.append(output)
145 | scores = np.array([i.cpu() for i in err])
146 | auc = metrics.roc_auc_score(labels, scores)
147 | print("ROC-AUC", auc)
148 |
--------------------------------------------------------------------------------
/code/memstream-pca.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import time
3 | from sklearn.decomposition import PCA
4 | import matplotlib.pyplot as plt
5 | from sklearn import metrics
6 | import scipy.spatial as sp
7 | np.seterr(divide="ignore", invalid="ignore")
8 | import argparse
9 | parser = argparse.ArgumentParser()
10 | parser.add_argument('--dataset', default='NSL')
11 | parser.add_argument('--beta', type=float, default=1e-3)
12 | parser.add_argument('--dim', type=int, default=12)
13 | parser.add_argument("--memlen", type=int, help="size of memory", default=512)
14 | args = parser.parse_args()
15 |
16 | nfile = None
17 | lfile = None
18 | if args.dataset == 'NSL':
19 | nfile = '../data/nsl.txt'
20 | lfile = '../data/nsllabel.txt'
21 | elif args.dataset == 'KDD':
22 | nfile = '../data/kdd.txt'
23 | lfile = '../data/kddlabel.txt'
24 | elif args.dataset == 'UNSW':
25 | nfile = '../data/unsw.txt'
26 | lfile = '../data/unswlabel.txt'
27 | elif args.dataset == 'DOS':
28 | nfile = '../data/dos.txt'
29 | lfile = '../data/doslabel.txt'
30 | else:
31 | df = scipy.io.loadmat('../data/'+args.dataset+".mat")
32 | numeric = torch.FloatTensor(df['X'])
33 | labels = (df['y']).astype(float).reshape(-1)
34 |
35 |
36 | class MemStream():
37 | def __init__(self, in_dim, params):
38 | super(MemStream, self).__init__()
39 | self.params = params
40 | self.in_dim = in_dim
41 | self.out_dim = params['code_len']
42 | self.memory_len = params['memory_len']
43 | self.max_thres = params['beta']
44 | self.memory = np.random.randn(self.memory_len, self.out_dim)
45 | self.mem_data = np.random.randn(self.memory_len, self.in_dim)
46 | self.mem_idx = np.arange(self.memory_len)
47 | self.batch_size = params['memory_len']
48 | self.num_mem_update = 0
49 | self.pca = PCA(n_components=args.dim)
50 | self.clock = 0
51 | self.last_update = -1
52 | self.updates = []
53 | self.count = 0
54 |
55 |
56 | def train_autoencoder(self, data):
57 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
58 | new = (data - self.mean) / self.std
59 | new[:, self.std == 0] = 0
60 | self.pca.fit(new)
61 |
62 |
63 | def update_memory(self, output_loss, encoder_output, data):
64 | if output_loss <= self.max_thres:
65 | least_used_pos = np.argmin(self.mem_idx)
66 | self.memory[least_used_pos] = encoder_output
67 | self.mem_data[least_used_pos] = data
68 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
69 | self.mem_idx[least_used_pos] = self.count
70 | self.count += 1
71 | self.num_mem_update += 1
72 | return 1
73 | return 0
74 |
75 | def initialize_memory(self, x):
76 | mean, std = model.mem_data.mean(0), model.mem_data.std(0)
77 | new = (x - mean) / std
78 | new[:, std == 0] = 0
79 | self.memory = self.pca.transform(new)
80 | self.mem_data = x
81 |
82 | def forward(self, x):
83 | new = (x - self.mean) / self.std
84 | new[:, self.std == 0] = 0
85 | encoder_output = self.pca.transform(new)
86 | loss_values = np.linalg.norm(self.memory - encoder_output, axis=1, ord=1).min()
87 | self.updates.append(self.update_memory(loss_values, encoder_output, x))
88 | return loss_values
89 |
90 |
91 | numeric = np.loadtxt(nfile, delimiter = ',')
92 | labels = np.loadtxt(lfile, delimiter=',')
93 | if args.dataset == 'KDD':
94 | labels = 1 - labels
95 | np.random.seed(0)
96 | N = args.memlen
97 | params = {
98 | 'beta': args.beta, 'code_len': args.dim, 'memory_len': N, 'batch_size':1
99 | }
100 |
101 | model = MemStream(numeric[0].shape[0],params)
102 |
103 | batch_size = params['batch_size']
104 | print(args.dataset, args.beta, args.dim, args.memlen)
105 | init_data = numeric[labels == 0][:N]
106 | model.mem_data = init_data
107 | model.train_autoencoder(init_data)
108 | model.initialize_memory(init_data[:N])
109 | err = []
110 | for i in range(numeric.shape[0]):
111 | output = model.forward(numeric[i:i+1])
112 | err.append(output)
113 | scores = np.array(err)
114 | auc = metrics.roc_auc_score(labels, scores)
115 | print("ROC-AUC", auc)
116 |
--------------------------------------------------------------------------------
/code/memstream-syn.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import numpy as np
5 | import time
6 | import matplotlib.pyplot as plt
7 | from torch.utils.data import DataLoader
8 | from sklearn import metrics
9 | import scipy.spatial as sp
10 | from torch.autograd import Variable
11 | import argparse
12 | parser = argparse.ArgumentParser()
13 | parser.add_argument('--dataset', default='SYN')
14 | parser.add_argument('--beta', type=float, default=1)
15 | parser.add_argument('--seed', type=int, default=0)
16 | parser.add_argument("--dev", help="device", default="cpu")
17 | parser.add_argument("--epochs", type=int, help="number of epochs for ae", default=5000)
18 | parser.add_argument("--lr", type=float, help="learning rate", default=1e-2)
19 | parser.add_argument("--memlen", type=int, help="size of memory", default=16)
20 | args = parser.parse_args()
21 |
22 | nfile = None
23 | lfile = None
24 | if args.dataset == 'SYN':
25 | nfile = '../data/syn.txt'
26 | lfile = '../data/synlabel.txt'
27 |
28 | device = torch.device(args.dev)
29 |
30 | class MemStream(nn.Module):
31 | def __init__(self, in_dim, params):
32 | super(MemStream, self).__init__()
33 | self.params = params
34 | self.in_dim = in_dim
35 | self.out_dim = 1
36 | self.memory_len = params['memory_len']
37 | self.max_thres = torch.tensor(params['beta']).to(device)
38 | self.memory = torch.randn(self.memory_len, self.out_dim).to(device)
39 | self.mem_data = torch.randn(self.memory_len, self.in_dim).to(device)
40 | self.mem_idx = torch.from_numpy(np.arange(self.memory_len))
41 | self.memory.requires_grad = False
42 | self.mem_data.requires_grad = False
43 | self.mem_idx.requires_grad = False
44 | self.batch_size = params['memory_len']
45 | self.num_mem_update = 0
46 | self.encoder = nn.Identity().to(device)
47 | self.decoder = nn.Identity().to(device)
48 | self.clock = 0
49 | self.last_update = -1
50 | self.updates = []
51 | self.loss_fn = nn.MSELoss()
52 | self.count = 0
53 |
54 |
55 | def train_autoencoder(self, data, epochs):
56 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
57 |
58 | def update_memory(self, output_loss, encoder_output, data):
59 | if output_loss <= self.max_thres:
60 | least_used_pos = torch.argmin(self.mem_idx)
61 | self.memory[least_used_pos] = encoder_output
62 | self.mem_data[least_used_pos] = data
63 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
64 | self.mem_idx[least_used_pos] = self.count
65 | self.count += 1
66 | self.num_mem_update += 1
67 | return 1
68 | return 0
69 |
70 | def initialize_memory(self, x):
71 | mean, std = model.mem_data.mean(0), model.mem_data.std(0)
72 | new = (x - mean) / std
73 | new[:, std == 0] = 0
74 | self.memory = self.encoder(new)
75 | self.memory.requires_grad = False
76 | self.mem_data = x
77 |
78 | def forward(self, x):
79 | new = (x - self.mean) / self.std
80 | new[:, self.std == 0] = 0
81 | encoder_output = self.encoder(new)
82 | loss_values = torch.norm(self.memory - encoder_output, dim=1, p=1).min()
83 | self.updates.append(self.update_memory(loss_values, encoder_output, x))
84 | return loss_values
85 |
86 |
87 | numeric = torch.FloatTensor(np.loadtxt(nfile, delimiter = ',')).reshape(-1, 1)
88 | labels = np.loadtxt(lfile, delimiter=',')
89 | torch.manual_seed(args.seed)
90 | N = args.memlen
91 | params = {
92 | 'beta': args.beta, 'memory_len': N, 'batch_size':1, 'lr':args.lr
93 | }
94 |
95 | model = MemStream(numeric[0].shape[0],params).to(device)
96 | model.max_thres=model.max_thres.float()
97 | batch_size = params['batch_size']
98 | print(args.dataset, args.beta, args.memlen, args.lr, args.epochs)
99 | data_loader = DataLoader(numeric, batch_size=batch_size)
100 | init_data = numeric[labels == 0][:N].to(device)
101 | model.mem_data = init_data
102 | torch.set_grad_enabled(True)
103 | model.train_autoencoder(Variable(init_data).to(device), epochs=args.epochs)
104 | torch.set_grad_enabled(False)
105 | model.initialize_memory(Variable(init_data[:N]))
106 | err = []
107 | for data in data_loader:
108 | output = model(data.to(device))
109 | err.append(output)
110 | scores = np.array([i.cpu() for i in err])
111 | auc = metrics.roc_auc_score(labels, scores)
112 | print("ROC-AUC", auc)
113 |
--------------------------------------------------------------------------------
/code/memstream.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import numpy as np
5 | import time
6 | import matplotlib.pyplot as plt
7 | from torch.utils.data import DataLoader
8 | from sklearn import metrics
9 | import scipy.spatial as sp
10 | from torch.autograd import Variable
11 | import argparse
12 | import scipy.io
13 |
14 | parser = argparse.ArgumentParser()
15 | parser.add_argument('--dataset', default='NSL')
16 | parser.add_argument('--beta', type=float, default=0.1)
17 | parser.add_argument("--dev", help="device", default="cuda:0")
18 | parser.add_argument("--epochs", type=int, help="number of epochs for ae", default=5000)
19 | parser.add_argument("--lr", type=float, help="learning rate", default=1e-2)
20 | parser.add_argument("--memlen", type=int, help="size of memory", default=2048)
21 | parser.add_argument("--seed", type=int, help="random seed", default=0)
22 | args = parser.parse_args()
23 |
24 | torch.manual_seed(args.seed)
25 | nfile = None
26 | lfile = None
27 | if args.dataset == 'NSL':
28 | nfile = '../data/nsl.txt'
29 | lfile = '../data/nsllabel.txt'
30 | elif args.dataset == 'KDD':
31 | nfile = '../data/kdd.txt'
32 | lfile = '../data/kddlabel.txt'
33 | elif args.dataset == 'UNSW':
34 | nfile = '../data/unsw.txt'
35 | lfile = '../data/unswlabel.txt'
36 | elif args.dataset == 'DOS':
37 | nfile = '../data/dos.txt'
38 | lfile = '../data/doslabel.txt'
39 | else:
40 | df = scipy.io.loadmat('../data/'+args.dataset+".mat")
41 | numeric = torch.FloatTensor(df['X'])
42 | labels = (df['y']).astype(float).reshape(-1)
43 |
44 | device = torch.device(args.dev)
45 |
46 | class MemStream(nn.Module):
47 | def __init__(self, in_dim, params):
48 | super(MemStream, self).__init__()
49 | self.params = params
50 | self.in_dim = in_dim
51 | self.out_dim = in_dim*2
52 | self.memory_len = params['memory_len']
53 | self.max_thres = torch.tensor(params['beta']).to(device)
54 | self.memory = torch.randn(self.memory_len, self.out_dim).to(device)
55 | self.mem_data = torch.randn(self.memory_len, self.in_dim).to(device)
56 | self.memory.requires_grad = False
57 | self.mem_data.requires_grad = False
58 | self.batch_size = params['memory_len']
59 | self.num_mem_update = 0
60 | self.encoder = nn.Sequential(
61 | nn.Linear(self.in_dim, self.out_dim),
62 | nn.Tanh(),
63 | ).to(device)
64 | self.decoder = nn.Sequential(
65 | nn.Linear(self.out_dim, self.in_dim)
66 | ).to(device)
67 | self.clock = 0
68 | self.last_update = -1
69 | self.optimizer = torch.optim.Adam(self.parameters(), lr=params['lr'])
70 | self.loss_fn = nn.MSELoss()
71 | self.count = 0
72 |
73 |
74 | def train_autoencoder(self, data, epochs):
75 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
76 | new = (data - self.mean) / self.std
77 | new[:, self.std == 0] = 0
78 | new = Variable(new)
79 | for epoch in range(epochs):
80 | self.optimizer.zero_grad()
81 | output = self.decoder(self.encoder(new + 0.001*torch.randn_like(new).to(device)))
82 | loss = self.loss_fn(output, new)
83 | loss.backward()
84 | self.optimizer.step()
85 |
86 |
87 | def update_memory(self, output_loss, encoder_output, data):
88 | if output_loss <= self.max_thres:
89 | least_used_pos = self.count%self.memory_len
90 | self.memory[least_used_pos] = encoder_output
91 | self.mem_data[least_used_pos] = data
92 | self.mean, self.std = self.mem_data.mean(0), self.mem_data.std(0)
93 | self.count += 1
94 | return 1
95 | return 0
96 |
97 | def initialize_memory(self, x):
98 | mean, std = model.mem_data.mean(0), model.mem_data.std(0)
99 | new = (x - mean) / std
100 | new[:, std == 0] = 0
101 | self.memory = self.encoder(new)
102 | self.memory.requires_grad = False
103 | self.mem_data = x
104 |
105 | def forward(self, x):
106 | new = (x - self.mean) / self.std
107 | new[:, self.std == 0] = 0
108 | encoder_output = self.encoder(new)
109 | loss_values = torch.norm(self.memory - encoder_output, dim=1, p=1).min()
110 | self.update_memory(loss_values, encoder_output, x)
111 | return loss_values
112 |
113 | if args.dataset in ['KDD', 'NSL', 'UNSW', 'DOS']:
114 | numeric = torch.FloatTensor(np.loadtxt(nfile, delimiter = ','))
115 | labels = np.loadtxt(lfile, delimiter=',')
116 |
117 | if args.dataset == 'KDD':
118 | labels = 1 - labels
119 | torch.manual_seed(args.seed)
120 | N = args.memlen
121 | params = {
122 | 'beta': args.beta, 'memory_len': N, 'batch_size':1, 'lr':args.lr
123 | }
124 |
125 | model = MemStream(numeric[0].shape[0],params).to(device)
126 |
127 | batch_size = params['batch_size']
128 | print(args.dataset, args.beta, args.memlen, args.lr, args.epochs)
129 | data_loader = DataLoader(numeric, batch_size=batch_size)
130 | init_data = numeric[labels == 0][:N].to(device)
131 | model.mem_data = init_data
132 | torch.set_grad_enabled(True)
133 | model.train_autoencoder(Variable(init_data).to(device), epochs=args.epochs)
134 | torch.set_grad_enabled(False)
135 | model.initialize_memory(Variable(init_data[:N]))
136 | err = []
137 | for data in data_loader:
138 | output = model(data.to(device))
139 | err.append(output)
140 | scores = np.array([i.cpu() for i in err])
141 | auc = metrics.roc_auc_score(labels, scores)
142 | print("ROC-AUC", auc)
143 |
--------------------------------------------------------------------------------
/data/synlabel.txt:
--------------------------------------------------------------------------------
1 | 0
2 | 0
3 | 0
4 | 0
5 | 0
6 | 0
7 | 0
8 | 0
9 | 0
10 | 0
11 | 0
12 | 0
13 | 0
14 | 0
15 | 0
16 | 0
17 | 0
18 | 0
19 | 0
20 | 0
21 | 0
22 | 0
23 | 0
24 | 0
25 | 0
26 | 0
27 | 0
28 | 0
29 | 0
30 | 0
31 | 0
32 | 0
33 | 0
34 | 0
35 | 0
36 | 0
37 | 1
38 | 0
39 | 0
40 | 0
41 | 0
42 | 0
43 | 0
44 | 0
45 | 0
46 | 1
47 | 0
48 | 0
49 | 0
50 | 1
51 | 0
52 | 0
53 | 0
54 | 0
55 | 0
56 | 0
57 | 1
58 | 0
59 | 0
60 | 0
61 | 0
62 | 0
63 | 0
64 | 0
65 | 1
66 | 0
67 | 1
68 | 0
69 | 0
70 | 0
71 | 1
72 | 0
73 | 0
74 | 0
75 | 0
76 | 0
77 | 1
78 | 0
79 | 0
80 | 0
81 | 0
82 | 0
83 | 0
84 | 0
85 | 0
86 | 1
87 | 0
88 | 0
89 | 0
90 | 0
91 | 0
92 | 1
93 | 0
94 | 1
95 | 0
96 | 0
97 | 0
98 | 0
99 | 0
100 | 0
101 | 0
102 | 0
103 | 0
104 | 0
105 | 0
106 | 0
107 | 0
108 | 0
109 | 1
110 | 0
111 | 0
112 | 0
113 | 0
114 | 0
115 | 0
116 | 0
117 | 0
118 | 0
119 | 0
120 | 0
121 | 0
122 | 0
123 | 0
124 | 0
125 | 0
126 | 0
127 | 0
128 | 0
129 | 0
130 | 0
131 | 0
132 | 0
133 | 0
134 | 0
135 | 0
136 | 0
137 | 0
138 | 0
139 | 0
140 | 0
141 | 0
142 | 0
143 | 0
144 | 1
145 | 0
146 | 0
147 | 0
148 | 0
149 | 0
150 | 0
151 | 0
152 | 1
153 | 0
154 | 1
155 | 0
156 | 0
157 | 0
158 | 0
159 | 0
160 | 0
161 | 0
162 | 0
163 | 0
164 | 0
165 | 0
166 | 0
167 | 0
168 | 0
169 | 0
170 | 0
171 | 0
172 | 0
173 | 0
174 | 0
175 | 0
176 | 0
177 | 0
178 | 0
179 | 0
180 | 0
181 | 0
182 | 0
183 | 0
184 | 1
185 | 0
186 | 0
187 | 1
188 | 0
189 | 0
190 | 0
191 | 0
192 | 0
193 | 0
194 | 0
195 | 0
196 | 1
197 | 0
198 | 0
199 | 0
200 | 0
201 | 0
202 | 0
203 | 0
204 | 0
205 | 0
206 | 1
207 | 0
208 | 0
209 | 0
210 | 0
211 | 0
212 | 0
213 | 0
214 | 0
215 | 1
216 | 0
217 | 0
218 | 0
219 | 0
220 | 0
221 | 0
222 | 1
223 | 0
224 | 0
225 | 0
226 | 0
227 | 0
228 | 0
229 | 0
230 | 0
231 | 0
232 | 1
233 | 0
234 | 0
235 | 0
236 | 1
237 | 0
238 | 0
239 | 0
240 | 0
241 | 0
242 | 0
243 | 0
244 | 0
245 | 0
246 | 0
247 | 0
248 | 0
249 | 0
250 | 0
251 | 0
252 | 0
253 | 0
254 | 0
255 | 0
256 | 0
257 | 0
258 | 1
259 | 0
260 | 0
261 | 0
262 | 0
263 | 0
264 | 0
265 | 0
266 | 0
267 | 0
268 | 0
269 | 0
270 | 0
271 | 0
272 | 0
273 | 0
274 | 0
275 | 0
276 | 0
277 | 0
278 | 0
279 | 1
280 | 1
281 | 1
282 | 0
283 | 0
284 | 0
285 | 0
286 | 1
287 | 0
288 | 0
289 | 0
290 | 0
291 | 1
292 | 0
293 | 0
294 | 0
295 | 0
296 | 0
297 | 0
298 | 0
299 | 0
300 | 0
301 | 0
302 | 0
303 | 0
304 | 0
305 | 0
306 | 0
307 | 0
308 | 1
309 | 0
310 | 1
311 | 0
312 | 0
313 | 1
314 | 0
315 | 0
316 | 0
317 | 0
318 | 0
319 | 0
320 | 0
321 | 1
322 | 1
323 | 1
324 | 0
325 | 0
326 | 0
327 | 0
328 | 0
329 | 0
330 | 0
331 | 0
332 | 0
333 | 1
334 | 0
335 | 0
336 | 0
337 | 0
338 | 0
339 | 0
340 | 0
341 | 0
342 | 0
343 | 0
344 | 1
345 | 0
346 | 0
347 | 0
348 | 0
349 | 0
350 | 0
351 | 0
352 | 1
353 | 0
354 | 0
355 | 0
356 | 0
357 | 0
358 | 0
359 | 0
360 | 0
361 | 0
362 | 0
363 | 0
364 | 0
365 | 0
366 | 0
367 | 0
368 | 0
369 | 0
370 | 0
371 | 0
372 | 0
373 | 0
374 | 0
375 | 0
376 | 0
377 | 0
378 | 0
379 | 0
380 | 0
381 | 0
382 | 0
383 | 0
384 | 0
385 | 1
386 | 0
387 | 0
388 | 0
389 | 0
390 | 0
391 | 0
392 | 0
393 | 0
394 | 0
395 | 0
396 | 0
397 | 1
398 | 0
399 | 0
400 | 0
401 | 0
402 | 1
403 | 0
404 | 0
405 | 0
406 | 0
407 | 0
408 | 0
409 | 0
410 | 1
411 | 0
412 | 0
413 | 0
414 | 0
415 | 0
416 | 0
417 | 0
418 | 0
419 | 1
420 | 0
421 | 0
422 | 0
423 | 0
424 | 0
425 | 0
426 | 0
427 | 0
428 | 0
429 | 0
430 | 0
431 | 1
432 | 1
433 | 0
434 | 0
435 | 0
436 | 0
437 | 0
438 | 1
439 | 0
440 | 0
441 | 0
442 | 0
443 | 0
444 | 0
445 | 0
446 | 0
447 | 0
448 | 0
449 | 0
450 | 0
451 | 0
452 | 0
453 | 0
454 | 0
455 | 0
456 | 0
457 | 0
458 | 0
459 | 0
460 | 0
461 | 0
462 | 0
463 | 0
464 | 0
465 | 0
466 | 0
467 | 0
468 | 0
469 | 1
470 | 0
471 | 0
472 | 0
473 | 0
474 | 0
475 | 0
476 | 0
477 | 0
478 | 0
479 | 0
480 | 0
481 | 0
482 | 0
483 | 0
484 | 0
485 | 0
486 | 0
487 | 0
488 | 1
489 | 0
490 | 0
491 | 0
492 | 0
493 | 0
494 | 0
495 | 1
496 | 0
497 | 0
498 | 1
499 | 0
500 | 0
501 | 0
502 | 0
503 | 0
504 | 0
505 | 0
506 | 0
507 | 0
508 | 0
509 | 1
510 | 0
511 | 0
512 | 1
513 | 0
514 | 0
515 | 0
516 | 0
517 | 0
518 | 0
519 | 0
520 | 0
521 | 0
522 | 0
523 | 0
524 | 0
525 | 0
526 | 0
527 | 0
528 | 0
529 | 0
530 | 0
531 | 0
532 | 1
533 | 0
534 | 0
535 | 0
536 | 0
537 | 0
538 | 0
539 | 0
540 | 0
541 | 0
542 | 0
543 | 0
544 | 0
545 | 0
546 | 0
547 | 0
548 | 0
549 | 0
550 | 0
551 | 0
552 | 0
553 | 0
554 | 0
555 | 0
556 | 1
557 | 1
558 | 0
559 | 0
560 | 0
561 | 0
562 | 0
563 | 0
564 | 0
565 | 0
566 | 0
567 | 0
568 | 0
569 | 0
570 | 0
571 | 0
572 | 0
573 | 0
574 | 0
575 | 0
576 | 0
577 | 0
578 | 0
579 | 0
580 | 0
581 | 0
582 | 0
583 | 0
584 | 0
585 | 0
586 | 0
587 | 0
588 | 0
589 | 0
590 | 0
591 | 0
592 | 0
593 | 0
594 | 0
595 | 0
596 | 0
597 | 1
598 | 1
599 | 0
600 | 0
601 | 0
602 | 1
603 | 0
604 | 0
605 | 0
606 | 0
607 | 0
608 | 0
609 | 0
610 | 0
611 | 0
612 | 0
613 | 0
614 | 0
615 | 0
616 | 0
617 | 0
618 | 0
619 | 0
620 | 0
621 | 0
622 | 0
623 | 0
624 | 0
625 | 0
626 | 0
627 | 0
628 | 0
629 | 0
630 | 0
631 | 0
632 | 0
633 | 1
634 | 0
635 | 0
636 | 0
637 | 0
638 | 0
639 | 0
640 | 0
641 | 0
642 | 0
643 | 0
644 | 0
645 | 0
646 | 0
647 | 0
648 | 0
649 | 0
650 | 0
651 | 1
652 | 0
653 | 0
654 | 0
655 | 0
656 | 0
657 | 0
658 | 0
659 | 0
660 | 0
661 | 0
662 | 0
663 | 1
664 | 0
665 | 0
666 | 1
667 | 0
668 | 0
669 | 0
670 | 1
671 | 0
672 | 0
673 | 0
674 | 0
675 | 0
676 | 0
677 | 0
678 | 0
679 | 0
680 | 0
681 | 0
682 | 0
683 | 0
684 | 0
685 | 0
686 | 1
687 | 0
688 | 0
689 | 0
690 | 0
691 | 0
692 | 0
693 | 0
694 | 1
695 | 0
696 | 0
697 | 1
698 | 0
699 | 1
700 | 0
701 | 1
702 | 0
703 | 0
704 | 0
705 | 0
706 | 0
707 | 0
708 | 0
709 | 0
710 | 1
711 | 0
712 | 0
713 | 0
714 | 0
715 | 0
716 | 0
717 | 0
718 | 1
719 | 0
720 | 0
721 | 0
722 | 0
723 | 0
724 | 0
725 | 0
726 | 0
727 | 0
728 | 0
729 | 0
730 | 0
731 | 0
732 | 0
733 | 0
734 | 0
735 | 0
736 | 0
737 | 0
738 | 0
739 | 0
740 | 0
741 | 0
742 | 1
743 | 0
744 | 0
745 | 0
746 | 0
747 | 1
748 | 0
749 | 0
750 | 0
751 | 0
752 | 0
753 | 0
754 | 0
755 | 0
756 | 1
757 | 0
758 | 0
759 | 0
760 | 0
761 | 0
762 | 0
763 | 0
764 | 0
765 | 0
766 | 0
767 | 0
768 | 1
769 | 1
770 | 0
771 | 0
772 | 0
773 | 0
774 | 0
775 | 0
776 | 0
777 | 1
778 | 0
779 | 1
780 | 0
781 | 0
782 | 0
783 | 0
784 | 0
785 | 0
786 | 0
787 | 0
788 | 0
789 | 0
790 | 1
791 | 0
792 | 0
793 | 0
794 | 1
795 | 0
796 | 0
797 | 0
798 | 0
799 | 0
800 | 0
801 | 0
802 | 0
803 | 0
804 | 0
805 | 0
806 | 0
807 | 0
808 | 0
809 | 0
810 | 0
811 | 0
812 | 0
813 | 0
814 | 0
815 | 0
816 | 1
817 | 0
818 | 0
819 | 0
820 | 0
821 | 0
822 | 0
823 | 0
824 | 0
825 | 0
826 | 0
827 | 0
828 | 0
829 | 0
830 | 0
831 | 0
832 | 0
833 | 0
834 | 0
835 | 1
836 | 0
837 | 0
838 | 0
839 | 0
840 | 0
841 | 0
842 | 0
843 | 0
844 | 0
845 | 0
846 | 0
847 | 0
848 | 0
849 | 0
850 | 1
851 | 0
852 | 0
853 | 0
854 | 0
855 | 0
856 | 0
857 | 0
858 | 0
859 | 0
860 | 0
861 | 0
862 | 0
863 | 0
864 | 1
865 | 0
866 | 0
867 | 0
868 | 0
869 | 0
870 | 0
871 | 0
872 | 0
873 | 0
874 | 0
875 | 0
876 | 0
877 | 0
878 | 0
879 | 0
880 | 0
881 | 0
882 | 0
883 | 0
884 | 0
885 | 0
886 | 0
887 | 0
888 | 0
889 | 0
890 | 0
891 | 0
892 | 0
893 | 0
894 | 0
895 | 0
896 | 0
897 | 0
898 | 1
899 | 1
900 | 0
901 | 0
902 | 0
903 | 0
904 | 0
905 | 0
906 | 0
907 | 0
908 | 0
909 | 0
910 | 0
911 | 0
912 | 0
913 | 1
914 | 0
915 | 0
916 | 0
917 | 0
918 | 0
919 | 0
920 | 0
921 | 0
922 | 0
923 | 0
924 | 0
925 | 0
926 | 0
927 | 0
928 | 0
929 | 0
930 | 0
931 | 1
932 | 0
933 | 0
934 | 0
935 | 0
936 | 0
937 | 0
938 | 1
939 | 0
940 | 0
941 | 0
942 | 0
943 | 0
944 | 0
945 | 0
946 | 0
947 | 0
948 | 0
949 | 0
950 | 0
951 | 0
952 | 0
953 | 0
954 | 0
955 | 0
956 | 0
957 | 0
958 | 0
959 | 0
960 | 0
961 | 0
962 | 0
963 | 0
964 | 0
965 | 0
966 | 0
967 | 0
968 | 0
969 | 1
970 | 0
971 | 0
972 | 0
973 | 0
974 | 1
975 | 1
976 | 0
977 | 1
978 | 0
979 | 0
980 | 0
981 | 0
982 | 0
983 | 0
984 | 0
985 | 0
986 | 0
987 | 0
988 | 0
989 | 0
990 | 0
991 | 0
992 | 0
993 | 0
994 | 0
995 | 0
996 | 0
997 | 0
998 | 0
999 | 0
1000 | 0
1001 | 0
1002 | 0
1003 | 0
1004 | 0
1005 | 1
1006 | 0
1007 | 0
1008 | 0
1009 | 0
1010 | 0
1011 | 0
1012 | 0
1013 | 0
1014 | 0
1015 | 0
1016 | 0
1017 | 0
1018 | 0
1019 | 0
1020 | 0
1021 | 0
1022 | 0
1023 | 0
1024 | 0
1025 | 1
1026 | 0
1027 | 0
1028 | 1
1029 | 0
1030 | 0
1031 | 0
1032 | 0
1033 | 0
1034 | 1
1035 | 0
1036 | 1
1037 | 0
1038 | 0
1039 | 0
1040 | 1
1041 | 0
1042 | 0
1043 | 1
1044 | 0
1045 | 0
1046 | 1
1047 | 0
1048 | 0
1049 | 0
1050 | 0
1051 | 0
1052 | 0
1053 | 0
1054 | 0
1055 | 0
1056 | 0
1057 | 1
1058 | 0
1059 | 0
1060 | 0
1061 | 0
1062 | 0
1063 | 0
1064 | 0
1065 | 1
1066 | 0
1067 | 0
1068 | 0
1069 | 0
1070 | 0
1071 | 1
1072 | 0
1073 | 0
1074 | 0
1075 | 0
1076 | 0
1077 | 0
1078 | 0
1079 | 0
1080 | 0
1081 | 0
1082 | 0
1083 | 0
1084 | 0
1085 | 0
1086 | 0
1087 | 0
1088 | 0
1089 | 0
1090 | 0
1091 | 0
1092 | 0
1093 | 0
1094 | 0
1095 | 0
1096 | 0
1097 | 0
1098 | 0
1099 | 0
1100 | 0
1101 | 0
1102 | 0
1103 | 0
1104 | 0
1105 | 0
1106 | 1
1107 | 1
1108 | 0
1109 | 0
1110 | 0
1111 | 0
1112 | 0
1113 | 0
1114 | 0
1115 | 0
1116 | 0
1117 | 0
1118 | 0
1119 | 0
1120 | 0
1121 | 1
1122 | 0
1123 | 1
1124 | 0
1125 | 0
1126 | 0
1127 | 0
1128 | 0
1129 | 0
1130 | 0
1131 | 0
1132 | 0
1133 | 0
1134 | 0
1135 | 0
1136 | 0
1137 | 0
1138 | 0
1139 | 0
1140 | 0
1141 | 0
1142 | 0
1143 | 0
1144 | 0
1145 | 0
1146 | 0
1147 | 0
1148 | 0
1149 | 0
1150 | 0
1151 | 0
1152 | 0
1153 | 0
1154 | 0
1155 | 0
1156 | 0
1157 | 0
1158 | 0
1159 | 0
1160 | 0
1161 | 0
1162 | 0
1163 | 0
1164 | 0
1165 | 0
1166 | 0
1167 | 0
1168 | 0
1169 | 0
1170 | 0
1171 | 0
1172 | 1
1173 | 0
1174 | 0
1175 | 0
1176 | 1
1177 | 0
1178 | 0
1179 | 0
1180 | 0
1181 | 0
1182 | 0
1183 | 1
1184 | 1
1185 | 0
1186 | 0
1187 | 0
1188 | 0
1189 | 0
1190 | 1
1191 | 0
1192 | 0
1193 | 0
1194 | 0
1195 | 1
1196 | 0
1197 | 0
1198 | 0
1199 | 0
1200 | 0
1201 | 0
1202 | 0
1203 | 0
1204 | 0
1205 | 0
1206 | 1
1207 | 0
1208 | 0
1209 | 0
1210 | 0
1211 | 0
1212 | 0
1213 | 0
1214 | 0
1215 | 1
1216 | 0
1217 | 0
1218 | 0
1219 | 0
1220 | 0
1221 | 0
1222 | 0
1223 | 0
1224 | 0
1225 | 1
1226 | 0
1227 | 0
1228 | 0
1229 | 0
1230 | 0
1231 | 0
1232 | 0
1233 | 1
1234 | 0
1235 | 1
1236 | 1
1237 | 0
1238 | 0
1239 | 1
1240 | 1
1241 | 0
1242 | 0
1243 | 0
1244 | 0
1245 | 0
1246 | 0
1247 | 0
1248 | 0
1249 | 0
1250 | 0
1251 | 0
1252 | 0
1253 | 0
1254 | 0
1255 | 0
1256 | 0
1257 | 0
1258 | 0
1259 | 0
1260 | 1
1261 | 1
1262 | 0
1263 | 0
1264 | 0
1265 | 0
1266 | 0
1267 | 0
1268 | 0
1269 | 0
1270 | 0
1271 | 0
1272 | 0
1273 | 0
1274 | 0
1275 | 0
1276 | 0
1277 | 0
1278 | 1
1279 | 1
1280 | 0
1281 | 0
1282 | 0
1283 | 0
1284 | 0
1285 | 0
1286 | 0
1287 | 0
1288 | 0
1289 | 1
1290 | 0
1291 | 0
1292 | 0
1293 | 1
1294 | 0
1295 | 0
1296 | 0
1297 | 1
1298 | 0
1299 | 0
1300 | 0
1301 | 0
1302 | 1
1303 | 0
1304 | 0
1305 | 0
1306 | 0
1307 | 0
1308 | 0
1309 | 0
1310 | 0
1311 | 0
1312 | 1
1313 | 0
1314 | 0
1315 | 0
1316 | 1
1317 | 0
1318 | 0
1319 | 0
1320 | 0
1321 | 0
1322 | 0
1323 | 1
1324 | 1
1325 | 0
1326 | 0
1327 | 0
1328 | 0
1329 | 0
1330 | 0
1331 | 0
1332 | 0
1333 | 0
1334 | 0
1335 | 0
1336 | 0
1337 | 1
1338 | 0
1339 | 0
1340 | 0
1341 | 0
1342 | 0
1343 | 0
1344 | 0
1345 | 0
1346 | 0
1347 | 0
1348 | 0
1349 | 0
1350 | 0
1351 | 0
1352 | 0
1353 | 0
1354 | 0
1355 | 0
1356 | 0
1357 | 0
1358 | 0
1359 | 0
1360 | 0
1361 | 1
1362 | 0
1363 | 0
1364 | 0
1365 | 1
1366 | 0
1367 | 0
1368 | 0
1369 | 0
1370 | 0
1371 | 0
1372 | 0
1373 | 0
1374 | 0
1375 | 0
1376 | 0
1377 | 0
1378 | 0
1379 | 0
1380 | 0
1381 | 0
1382 | 0
1383 | 0
1384 | 0
1385 | 1
1386 | 1
1387 | 0
1388 | 1
1389 | 0
1390 | 0
1391 | 0
1392 | 0
1393 | 0
1394 | 1
1395 | 1
1396 | 0
1397 | 0
1398 | 0
1399 | 0
1400 | 0
1401 | 0
1402 | 0
1403 | 0
1404 | 1
1405 | 0
1406 | 0
1407 | 0
1408 | 0
1409 | 0
1410 | 0
1411 | 0
1412 | 0
1413 | 0
1414 | 0
1415 | 0
1416 | 0
1417 | 0
1418 | 0
1419 | 0
1420 | 0
1421 | 0
1422 | 0
1423 | 0
1424 | 0
1425 | 0
1426 | 0
1427 | 0
1428 | 0
1429 | 0
1430 | 0
1431 | 0
1432 | 0
1433 | 0
1434 | 0
1435 | 1
1436 | 0
1437 | 0
1438 | 0
1439 | 0
1440 | 0
1441 | 0
1442 | 0
1443 | 1
1444 | 0
1445 | 1
1446 | 0
1447 | 0
1448 | 0
1449 | 0
1450 | 0
1451 | 1
1452 | 0
1453 | 0
1454 | 0
1455 | 0
1456 | 0
1457 | 0
1458 | 0
1459 | 0
1460 | 0
1461 | 0
1462 | 0
1463 | 0
1464 | 0
1465 | 0
1466 | 0
1467 | 0
1468 | 0
1469 | 0
1470 | 0
1471 | 0
1472 | 0
1473 | 0
1474 | 0
1475 | 1
1476 | 1
1477 | 0
1478 | 0
1479 | 0
1480 | 0
1481 | 0
1482 | 0
1483 | 0
1484 | 0
1485 | 0
1486 | 0
1487 | 0
1488 | 0
1489 | 0
1490 | 0
1491 | 0
1492 | 0
1493 | 0
1494 | 0
1495 | 0
1496 | 0
1497 | 0
1498 | 0
1499 | 0
1500 | 0
1501 | 0
1502 | 0
1503 | 0
1504 | 0
1505 | 0
1506 | 1
1507 | 0
1508 | 0
1509 | 0
1510 | 0
1511 | 0
1512 | 0
1513 | 0
1514 | 0
1515 | 0
1516 | 0
1517 | 1
1518 | 0
1519 | 0
1520 | 0
1521 | 0
1522 | 0
1523 | 0
1524 | 0
1525 | 0
1526 | 0
1527 | 0
1528 | 0
1529 | 0
1530 | 0
1531 | 0
1532 | 0
1533 | 0
1534 | 0
1535 | 0
1536 | 0
1537 | 0
1538 | 0
1539 | 0
1540 | 0
1541 | 0
1542 | 0
1543 | 0
1544 | 0
1545 | 0
1546 | 0
1547 | 0
1548 | 0
1549 | 0
1550 | 0
1551 | 0
1552 | 0
1553 | 0
1554 | 0
1555 | 0
1556 | 0
1557 | 0
1558 | 0
1559 | 0
1560 | 0
1561 | 0
1562 | 1
1563 | 0
1564 | 0
1565 | 0
1566 | 0
1567 | 0
1568 | 0
1569 | 0
1570 | 0
1571 | 0
1572 | 0
1573 | 0
1574 | 0
1575 | 0
1576 | 0
1577 | 0
1578 | 1
1579 | 0
1580 | 1
1581 | 1
1582 | 0
1583 | 0
1584 | 0
1585 | 0
1586 | 0
1587 | 0
1588 | 0
1589 | 0
1590 | 0
1591 | 0
1592 | 0
1593 | 1
1594 | 0
1595 | 0
1596 | 0
1597 | 1
1598 | 1
1599 | 0
1600 | 1
1601 | 0
1602 | 1
1603 | 0
1604 | 0
1605 | 0
1606 | 0
1607 | 0
1608 | 0
1609 | 0
1610 | 0
1611 | 0
1612 | 0
1613 | 1
1614 | 0
1615 | 0
1616 | 0
1617 | 1
1618 | 0
1619 | 0
1620 | 0
1621 | 0
1622 | 0
1623 | 0
1624 | 0
1625 | 0
1626 | 0
1627 | 0
1628 | 0
1629 | 0
1630 | 0
1631 | 0
1632 | 0
1633 | 0
1634 | 0
1635 | 1
1636 | 0
1637 | 0
1638 | 0
1639 | 0
1640 | 0
1641 | 0
1642 | 0
1643 | 1
1644 | 1
1645 | 0
1646 | 0
1647 | 0
1648 | 0
1649 | 0
1650 | 0
1651 | 0
1652 | 0
1653 | 0
1654 | 1
1655 | 0
1656 | 0
1657 | 0
1658 | 0
1659 | 0
1660 | 0
1661 | 0
1662 | 0
1663 | 0
1664 | 0
1665 | 0
1666 | 0
1667 | 0
1668 | 0
1669 | 0
1670 | 0
1671 | 0
1672 | 0
1673 | 0
1674 | 0
1675 | 0
1676 | 0
1677 | 1
1678 | 0
1679 | 0
1680 | 0
1681 | 0
1682 | 0
1683 | 0
1684 | 0
1685 | 0
1686 | 0
1687 | 0
1688 | 0
1689 | 0
1690 | 0
1691 | 0
1692 | 0
1693 | 0
1694 | 0
1695 | 0
1696 | 0
1697 | 0
1698 | 1
1699 | 0
1700 | 0
1701 | 0
1702 | 0
1703 | 0
1704 | 0
1705 | 0
1706 | 0
1707 | 1
1708 | 0
1709 | 0
1710 | 0
1711 | 0
1712 | 1
1713 | 0
1714 | 0
1715 | 0
1716 | 0
1717 | 0
1718 | 0
1719 | 0
1720 | 0
1721 | 0
1722 | 1
1723 | 1
1724 | 1
1725 | 0
1726 | 1
1727 | 0
1728 | 0
1729 | 0
1730 | 1
1731 | 0
1732 | 0
1733 | 0
1734 | 0
1735 | 0
1736 | 0
1737 | 0
1738 | 0
1739 | 0
1740 | 0
1741 | 0
1742 | 0
1743 | 0
1744 | 1
1745 | 1
1746 | 1
1747 | 0
1748 | 0
1749 | 0
1750 | 0
1751 | 1
1752 | 0
1753 | 0
1754 | 1
1755 | 0
1756 | 0
1757 | 0
1758 | 0
1759 | 0
1760 | 0
1761 | 0
1762 | 1
1763 | 0
1764 | 0
1765 | 1
1766 | 0
1767 | 0
1768 | 0
1769 | 0
1770 | 0
1771 | 0
1772 | 0
1773 | 0
1774 | 0
1775 | 0
1776 | 0
1777 | 0
1778 | 0
1779 | 0
1780 | 0
1781 | 0
1782 | 0
1783 | 0
1784 | 0
1785 | 0
1786 | 0
1787 | 0
1788 | 1
1789 | 0
1790 | 0
1791 | 0
1792 | 0
1793 | 0
1794 | 0
1795 | 0
1796 | 1
1797 | 0
1798 | 0
1799 | 0
1800 | 0
1801 | 1
1802 | 0
1803 | 0
1804 | 0
1805 | 0
1806 | 0
1807 | 0
1808 | 1
1809 | 1
1810 | 0
1811 | 0
1812 | 0
1813 | 0
1814 | 0
1815 | 0
1816 | 0
1817 | 1
1818 | 0
1819 | 0
1820 | 0
1821 | 0
1822 | 0
1823 | 0
1824 | 0
1825 | 1
1826 | 1
1827 | 0
1828 | 0
1829 | 0
1830 | 0
1831 | 0
1832 | 0
1833 | 0
1834 | 0
1835 | 0
1836 | 0
1837 | 0
1838 | 0
1839 | 0
1840 | 0
1841 | 0
1842 | 0
1843 | 0
1844 | 0
1845 | 0
1846 | 0
1847 | 0
1848 | 0
1849 | 0
1850 | 0
1851 | 0
1852 | 0
1853 | 0
1854 | 0
1855 | 0
1856 | 0
1857 | 0
1858 | 0
1859 | 0
1860 | 0
1861 | 0
1862 | 1
1863 | 0
1864 | 0
1865 | 0
1866 | 1
1867 | 0
1868 | 1
1869 | 1
1870 | 0
1871 | 0
1872 | 0
1873 | 0
1874 | 0
1875 | 0
1876 | 0
1877 | 0
1878 | 0
1879 | 1
1880 | 1
1881 | 0
1882 | 0
1883 | 0
1884 | 0
1885 | 0
1886 | 0
1887 | 0
1888 | 0
1889 | 0
1890 | 0
1891 | 0
1892 | 0
1893 | 0
1894 | 0
1895 | 0
1896 | 0
1897 | 0
1898 | 0
1899 | 0
1900 | 0
1901 | 0
1902 | 0
1903 | 0
1904 | 0
1905 | 1
1906 | 0
1907 | 0
1908 | 0
1909 | 0
1910 | 1
1911 | 0
1912 | 0
1913 | 0
1914 | 0
1915 | 0
1916 | 1
1917 | 0
1918 | 0
1919 | 1
1920 | 0
1921 | 0
1922 | 0
1923 | 0
1924 | 0
1925 | 0
1926 | 0
1927 | 0
1928 | 0
1929 | 0
1930 | 0
1931 | 0
1932 | 0
1933 | 0
1934 | 0
1935 | 0
1936 | 0
1937 | 0
1938 | 0
1939 | 1
1940 | 0
1941 | 0
1942 | 0
1943 | 0
1944 | 0
1945 | 0
1946 | 0
1947 | 0
1948 | 1
1949 | 0
1950 | 0
1951 | 0
1952 | 0
1953 | 0
1954 | 0
1955 | 0
1956 | 0
1957 | 0
1958 | 0
1959 | 0
1960 | 0
1961 | 0
1962 | 0
1963 | 0
1964 | 0
1965 | 0
1966 | 0
1967 | 0
1968 | 0
1969 | 0
1970 | 0
1971 | 0
1972 | 0
1973 | 0
1974 | 0
1975 | 0
1976 | 0
1977 | 0
1978 | 0
1979 | 0
1980 | 1
1981 | 0
1982 | 0
1983 | 0
1984 | 0
1985 | 0
1986 | 0
1987 | 0
1988 | 0
1989 | 0
1990 | 0
1991 | 0
1992 | 0
1993 | 0
1994 | 0
1995 | 0
1996 | 0
1997 | 0
1998 | 0
1999 | 0
2000 | 0
2001 | 0
2002 | 0
2003 | 0
2004 | 0
2005 | 0
2006 | 0
2007 | 0
2008 | 0
2009 | 0
2010 | 1
2011 | 0
2012 | 0
2013 | 0
2014 | 0
2015 | 0
2016 | 0
2017 | 0
2018 | 0
2019 | 0
2020 | 0
2021 | 0
2022 | 0
2023 | 0
2024 | 0
2025 | 0
2026 | 0
2027 | 0
2028 | 0
2029 | 0
2030 | 0
2031 | 0
2032 | 0
2033 | 0
2034 | 0
2035 | 0
2036 | 0
2037 | 0
2038 | 0
2039 | 0
2040 | 0
2041 | 0
2042 | 0
2043 | 1
2044 | 0
2045 | 0
2046 | 1
2047 | 0
2048 | 0
2049 | 0
2050 | 1
2051 | 0
2052 | 0
2053 | 0
2054 | 0
2055 | 0
2056 | 0
2057 | 0
2058 | 0
2059 | 0
2060 | 0
2061 | 0
2062 | 0
2063 | 0
2064 | 0
2065 | 0
2066 | 0
2067 | 0
2068 | 0
2069 | 0
2070 | 0
2071 | 0
2072 | 0
2073 | 0
2074 | 0
2075 | 0
2076 | 0
2077 | 1
2078 | 0
2079 | 0
2080 | 0
2081 | 0
2082 | 0
2083 | 0
2084 | 0
2085 | 0
2086 | 0
2087 | 1
2088 | 0
2089 | 0
2090 | 0
2091 | 0
2092 | 0
2093 | 0
2094 | 0
2095 | 0
2096 | 0
2097 | 0
2098 | 0
2099 | 0
2100 | 0
2101 | 0
2102 | 0
2103 | 0
2104 | 0
2105 | 0
2106 | 0
2107 | 0
2108 | 0
2109 | 0
2110 | 0
2111 | 0
2112 | 0
2113 | 0
2114 | 0
2115 | 1
2116 | 0
2117 | 0
2118 | 0
2119 | 0
2120 | 0
2121 | 0
2122 | 0
2123 | 0
2124 | 0
2125 | 0
2126 | 0
2127 | 0
2128 | 0
2129 | 0
2130 | 0
2131 | 0
2132 | 0
2133 | 0
2134 | 0
2135 | 1
2136 | 0
2137 | 0
2138 | 0
2139 | 1
2140 | 0
2141 | 0
2142 | 0
2143 | 1
2144 | 0
2145 | 0
2146 | 0
2147 | 0
2148 | 0
2149 | 0
2150 | 0
2151 | 0
2152 | 0
2153 | 0
2154 | 0
2155 | 0
2156 | 0
2157 | 0
2158 | 0
2159 | 0
2160 | 0
2161 | 0
2162 | 0
2163 | 0
2164 | 1
2165 | 0
2166 | 0
2167 | 0
2168 | 0
2169 | 0
2170 | 0
2171 | 0
2172 | 0
2173 | 1
2174 | 0
2175 | 0
2176 | 1
2177 | 0
2178 | 0
2179 | 1
2180 | 0
2181 | 0
2182 | 0
2183 | 0
2184 | 0
2185 | 0
2186 | 0
2187 | 0
2188 | 0
2189 | 0
2190 | 0
2191 | 0
2192 | 0
2193 | 0
2194 | 0
2195 | 0
2196 | 0
2197 | 0
2198 | 0
2199 | 0
2200 | 0
2201 | 0
2202 | 0
2203 | 1
2204 | 0
2205 | 0
2206 | 0
2207 | 1
2208 | 0
2209 | 0
2210 | 0
2211 | 0
2212 | 0
2213 | 0
2214 | 0
2215 | 0
2216 | 0
2217 | 0
2218 | 1
2219 | 0
2220 | 0
2221 | 0
2222 | 1
2223 | 1
2224 | 0
2225 | 0
2226 | 1
2227 | 0
2228 | 0
2229 | 0
2230 | 0
2231 | 0
2232 | 0
2233 | 0
2234 | 1
2235 | 0
2236 | 0
2237 | 0
2238 | 0
2239 | 0
2240 | 0
2241 | 0
2242 | 0
2243 | 0
2244 | 0
2245 | 0
2246 | 0
2247 | 0
2248 | 0
2249 | 0
2250 | 0
2251 | 1
2252 | 0
2253 | 1
2254 | 0
2255 | 0
2256 | 0
2257 | 0
2258 | 1
2259 | 0
2260 | 0
2261 | 0
2262 | 1
2263 | 0
2264 | 0
2265 | 0
2266 | 0
2267 | 0
2268 | 1
2269 | 0
2270 | 0
2271 | 0
2272 | 1
2273 | 0
2274 | 0
2275 | 0
2276 | 0
2277 | 1
2278 | 1
2279 | 0
2280 | 0
2281 | 0
2282 | 1
2283 | 0
2284 | 0
2285 | 0
2286 | 0
2287 | 0
2288 | 0
2289 | 1
2290 | 0
2291 | 0
2292 | 0
2293 | 0
2294 | 0
2295 | 0
2296 | 0
2297 | 0
2298 | 0
2299 | 0
2300 | 0
2301 | 0
2302 | 0
2303 | 0
2304 | 0
2305 | 0
2306 | 1
2307 | 0
2308 | 0
2309 | 0
2310 | 0
2311 | 1
2312 | 0
2313 | 0
2314 | 0
2315 | 0
2316 | 0
2317 | 0
2318 | 0
2319 | 0
2320 | 0
2321 | 0
2322 | 0
2323 | 0
2324 | 0
2325 | 0
2326 | 1
2327 | 0
2328 | 0
2329 | 0
2330 | 0
2331 | 1
2332 | 1
2333 | 0
2334 | 0
2335 | 0
2336 | 0
2337 | 1
2338 | 0
2339 | 0
2340 | 0
2341 | 0
2342 | 0
2343 | 0
2344 | 0
2345 | 0
2346 | 0
2347 | 0
2348 | 0
2349 | 1
2350 | 1
2351 | 0
2352 | 0
2353 | 0
2354 | 0
2355 | 0
2356 | 1
2357 | 1
2358 | 0
2359 | 1
2360 | 0
2361 | 0
2362 | 0
2363 | 0
2364 | 0
2365 | 0
2366 | 0
2367 | 0
2368 | 0
2369 | 0
2370 | 0
2371 | 0
2372 | 0
2373 | 0
2374 | 0
2375 | 0
2376 | 0
2377 | 0
2378 | 0
2379 | 0
2380 | 0
2381 | 0
2382 | 0
2383 | 1
2384 | 0
2385 | 1
2386 | 1
2387 | 0
2388 | 0
2389 | 0
2390 | 0
2391 | 0
2392 | 0
2393 | 0
2394 | 1
2395 | 0
2396 | 0
2397 | 0
2398 | 1
2399 | 0
2400 | 0
2401 | 0
2402 | 0
2403 | 1
2404 | 0
2405 | 0
2406 | 0
2407 | 0
2408 | 0
2409 | 0
2410 | 0
2411 | 0
2412 | 0
2413 | 0
2414 | 0
2415 | 0
2416 | 0
2417 | 0
2418 | 0
2419 | 0
2420 | 0
2421 | 0
2422 | 0
2423 | 0
2424 | 0
2425 | 0
2426 | 0
2427 | 0
2428 | 0
2429 | 1
2430 | 0
2431 | 0
2432 | 0
2433 | 0
2434 | 0
2435 | 0
2436 | 0
2437 | 1
2438 | 0
2439 | 0
2440 | 0
2441 | 0
2442 | 0
2443 | 0
2444 | 0
2445 | 0
2446 | 0
2447 | 0
2448 | 0
2449 | 0
2450 | 0
2451 | 0
2452 | 0
2453 | 0
2454 | 0
2455 | 0
2456 | 0
2457 | 0
2458 | 0
2459 | 0
2460 | 0
2461 | 0
2462 | 0
2463 | 0
2464 | 0
2465 | 0
2466 | 0
2467 | 0
2468 | 0
2469 | 0
2470 | 0
2471 | 1
2472 | 1
2473 | 0
2474 | 0
2475 | 0
2476 | 1
2477 | 0
2478 | 0
2479 | 0
2480 | 0
2481 | 0
2482 | 0
2483 | 0
2484 | 0
2485 | 0
2486 | 0
2487 | 0
2488 | 0
2489 | 0
2490 | 0
2491 | 1
2492 | 0
2493 | 0
2494 | 0
2495 | 0
2496 | 0
2497 | 0
2498 | 0
2499 | 0
2500 | 0
2501 | 0
2502 | 1
2503 | 0
2504 | 0
2505 | 0
2506 | 0
2507 | 0
2508 | 0
2509 | 0
2510 | 0
2511 | 1
2512 | 0
2513 | 0
2514 | 0
2515 | 1
2516 | 0
2517 | 0
2518 | 0
2519 | 0
2520 | 0
2521 | 0
2522 | 0
2523 | 0
2524 | 1
2525 | 0
2526 | 0
2527 | 0
2528 | 1
2529 | 0
2530 | 1
2531 | 0
2532 | 0
2533 | 0
2534 | 0
2535 | 0
2536 | 0
2537 | 0
2538 | 0
2539 | 0
2540 | 0
2541 | 0
2542 | 0
2543 | 0
2544 | 0
2545 | 0
2546 | 0
2547 | 0
2548 | 0
2549 | 0
2550 | 0
2551 | 0
2552 | 0
2553 | 0
2554 | 0
2555 | 0
2556 | 0
2557 | 0
2558 | 0
2559 | 0
2560 | 0
2561 | 0
2562 | 0
2563 | 0
2564 | 0
2565 | 0
2566 | 0
2567 | 0
2568 | 0
2569 | 0
2570 | 0
2571 | 0
2572 | 0
2573 | 1
2574 | 0
2575 | 0
2576 | 0
2577 | 0
2578 | 0
2579 | 0
2580 | 0
2581 | 0
2582 | 0
2583 | 0
2584 | 0
2585 | 0
2586 | 0
2587 | 0
2588 | 0
2589 | 0
2590 | 0
2591 | 0
2592 | 1
2593 | 0
2594 | 0
2595 | 0
2596 | 1
2597 | 0
2598 | 0
2599 | 0
2600 | 0
2601 | 0
2602 | 0
2603 | 0
2604 | 1
2605 | 0
2606 | 0
2607 | 0
2608 | 0
2609 | 0
2610 | 0
2611 | 1
2612 | 0
2613 | 0
2614 | 0
2615 | 1
2616 | 0
2617 | 0
2618 | 0
2619 | 0
2620 | 1
2621 | 0
2622 | 0
2623 | 0
2624 | 0
2625 | 0
2626 | 0
2627 | 0
2628 | 0
2629 | 0
2630 | 1
2631 | 0
2632 | 1
2633 | 0
2634 | 0
2635 | 0
2636 | 0
2637 | 0
2638 | 0
2639 | 1
2640 | 0
2641 | 0
2642 | 0
2643 | 0
2644 | 0
2645 | 0
2646 | 0
2647 | 0
2648 | 0
2649 | 0
2650 | 0
2651 | 1
2652 | 1
2653 | 0
2654 | 1
2655 | 0
2656 | 0
2657 | 1
2658 | 0
2659 | 0
2660 | 0
2661 | 0
2662 | 0
2663 | 0
2664 | 0
2665 | 0
2666 | 0
2667 | 1
2668 | 1
2669 | 0
2670 | 0
2671 | 0
2672 | 0
2673 | 0
2674 | 0
2675 | 0
2676 | 0
2677 | 0
2678 | 0
2679 | 0
2680 | 0
2681 | 0
2682 | 0
2683 | 0
2684 | 0
2685 | 0
2686 | 0
2687 | 0
2688 | 0
2689 | 0
2690 | 0
2691 | 0
2692 | 0
2693 | 0
2694 | 0
2695 | 0
2696 | 0
2697 | 0
2698 | 0
2699 | 0
2700 | 0
2701 | 0
2702 | 0
2703 | 0
2704 | 0
2705 | 0
2706 | 0
2707 | 0
2708 | 0
2709 | 0
2710 | 0
2711 | 0
2712 | 0
2713 | 0
2714 | 1
2715 | 0
2716 | 0
2717 | 0
2718 | 0
2719 | 0
2720 | 0
2721 | 0
2722 | 0
2723 | 1
2724 | 1
2725 | 0
2726 | 0
2727 | 1
2728 | 0
2729 | 0
2730 | 0
2731 | 1
2732 | 0
2733 | 1
2734 | 0
2735 | 0
2736 | 0
2737 | 0
2738 | 0
2739 | 0
2740 | 0
2741 | 0
2742 | 0
2743 | 0
2744 | 0
2745 | 0
2746 | 0
2747 | 0
2748 | 0
2749 | 0
2750 | 1
2751 | 0
2752 | 0
2753 | 0
2754 | 0
2755 | 0
2756 | 0
2757 | 0
2758 | 0
2759 | 0
2760 | 0
2761 | 0
2762 | 0
2763 | 0
2764 | 0
2765 | 0
2766 | 0
2767 | 0
2768 | 0
2769 | 0
2770 | 1
2771 | 0
2772 | 0
2773 | 0
2774 | 0
2775 | 0
2776 | 0
2777 | 0
2778 | 0
2779 | 0
2780 | 0
2781 | 0
2782 | 0
2783 | 0
2784 | 0
2785 | 0
2786 | 0
2787 | 0
2788 | 0
2789 | 0
2790 | 0
2791 | 0
2792 | 0
2793 | 0
2794 | 0
2795 | 0
2796 | 0
2797 | 0
2798 | 0
2799 | 0
2800 | 0
2801 | 0
2802 | 0
2803 | 1
2804 | 0
2805 | 0
2806 | 0
2807 | 0
2808 | 0
2809 | 0
2810 | 0
2811 | 0
2812 | 0
2813 | 0
2814 | 0
2815 | 0
2816 | 0
2817 | 0
2818 | 0
2819 | 0
2820 | 1
2821 | 0
2822 | 0
2823 | 0
2824 | 0
2825 | 0
2826 | 0
2827 | 0
2828 | 1
2829 | 0
2830 | 0
2831 | 0
2832 | 1
2833 | 0
2834 | 0
2835 | 0
2836 | 0
2837 | 0
2838 | 0
2839 | 0
2840 | 0
2841 | 0
2842 | 0
2843 | 0
2844 | 0
2845 | 0
2846 | 0
2847 | 0
2848 | 0
2849 | 0
2850 | 0
2851 | 0
2852 | 0
2853 | 0
2854 | 0
2855 | 0
2856 | 0
2857 | 0
2858 | 0
2859 | 0
2860 | 0
2861 | 1
2862 | 0
2863 | 0
2864 | 0
2865 | 0
2866 | 0
2867 | 0
2868 | 0
2869 | 0
2870 | 0
2871 | 0
2872 | 0
2873 | 0
2874 | 0
2875 | 0
2876 | 1
2877 | 0
2878 | 0
2879 | 0
2880 | 0
2881 | 0
2882 | 0
2883 | 0
2884 | 0
2885 | 0
2886 | 0
2887 | 0
2888 | 0
2889 | 0
2890 | 0
2891 | 0
2892 | 0
2893 | 0
2894 | 0
2895 | 0
2896 | 0
2897 | 0
2898 | 0
2899 | 0
2900 | 0
2901 | 0
2902 | 0
2903 | 0
2904 | 0
2905 | 0
2906 | 0
2907 | 1
2908 | 0
2909 | 0
2910 | 0
2911 | 0
2912 | 0
2913 | 0
2914 | 0
2915 | 0
2916 | 0
2917 | 0
2918 | 0
2919 | 0
2920 | 0
2921 | 0
2922 | 0
2923 | 0
2924 | 0
2925 | 0
2926 | 0
2927 | 0
2928 | 0
2929 | 0
2930 | 0
2931 | 0
2932 | 0
2933 | 0
2934 | 0
2935 | 0
2936 | 0
2937 | 1
2938 | 0
2939 | 0
2940 | 0
2941 | 0
2942 | 1
2943 | 0
2944 | 0
2945 | 0
2946 | 0
2947 | 0
2948 | 0
2949 | 0
2950 | 0
2951 | 0
2952 | 0
2953 | 1
2954 | 0
2955 | 1
2956 | 1
2957 | 0
2958 | 1
2959 | 0
2960 | 0
2961 | 0
2962 | 0
2963 | 0
2964 | 0
2965 | 0
2966 | 0
2967 | 0
2968 | 0
2969 | 0
2970 | 0
2971 | 0
2972 | 0
2973 | 0
2974 | 0
2975 | 0
2976 | 0
2977 | 0
2978 | 0
2979 | 0
2980 | 0
2981 | 0
2982 | 0
2983 | 1
2984 | 0
2985 | 0
2986 | 0
2987 | 0
2988 | 0
2989 | 0
2990 | 0
2991 | 0
2992 | 0
2993 | 1
2994 | 0
2995 | 0
2996 | 0
2997 | 0
2998 | 0
2999 | 0
3000 | 0
3001 | 0
3002 | 0
3003 | 0
3004 | 0
3005 | 0
3006 | 0
3007 | 0
3008 | 0
3009 | 0
3010 | 1
3011 | 0
3012 | 0
3013 | 0
3014 | 0
3015 | 0
3016 | 0
3017 | 0
3018 | 0
3019 | 0
3020 | 0
3021 | 0
3022 | 0
3023 | 0
3024 | 0
3025 | 0
3026 | 0
3027 | 0
3028 | 0
3029 | 0
3030 | 0
3031 | 0
3032 | 0
3033 | 0
3034 | 0
3035 | 0
3036 | 0
3037 | 0
3038 | 0
3039 | 1
3040 | 0
3041 | 0
3042 | 1
3043 | 0
3044 | 0
3045 | 0
3046 | 0
3047 | 0
3048 | 0
3049 | 0
3050 | 0
3051 | 0
3052 | 0
3053 | 0
3054 | 0
3055 | 0
3056 | 0
3057 | 0
3058 | 0
3059 | 0
3060 | 1
3061 | 0
3062 | 0
3063 | 0
3064 | 0
3065 | 0
3066 | 0
3067 | 0
3068 | 0
3069 | 0
3070 | 0
3071 | 0
3072 | 0
3073 | 0
3074 | 0
3075 | 0
3076 | 0
3077 | 0
3078 | 0
3079 | 0
3080 | 0
3081 | 0
3082 | 0
3083 | 0
3084 | 0
3085 | 0
3086 | 0
3087 | 0
3088 | 0
3089 | 0
3090 | 0
3091 | 0
3092 | 1
3093 | 0
3094 | 0
3095 | 0
3096 | 1
3097 | 0
3098 | 0
3099 | 0
3100 | 0
3101 | 0
3102 | 0
3103 | 0
3104 | 0
3105 | 0
3106 | 0
3107 | 0
3108 | 0
3109 | 0
3110 | 0
3111 | 0
3112 | 1
3113 | 0
3114 | 0
3115 | 0
3116 | 0
3117 | 0
3118 | 0
3119 | 0
3120 | 0
3121 | 0
3122 | 0
3123 | 0
3124 | 0
3125 | 0
3126 | 0
3127 | 0
3128 | 0
3129 | 0
3130 | 0
3131 | 0
3132 | 0
3133 | 0
3134 | 0
3135 | 0
3136 | 0
3137 | 1
3138 | 0
3139 | 0
3140 | 1
3141 | 1
3142 | 0
3143 | 1
3144 | 0
3145 | 0
3146 | 0
3147 | 0
3148 | 0
3149 | 1
3150 | 0
3151 | 0
3152 | 1
3153 | 0
3154 | 0
3155 | 0
3156 | 0
3157 | 0
3158 | 0
3159 | 0
3160 | 0
3161 | 0
3162 | 0
3163 | 1
3164 | 0
3165 | 0
3166 | 0
3167 | 0
3168 | 0
3169 | 0
3170 | 0
3171 | 0
3172 | 0
3173 | 1
3174 | 0
3175 | 0
3176 | 0
3177 | 0
3178 | 0
3179 | 0
3180 | 0
3181 | 0
3182 | 0
3183 | 0
3184 | 0
3185 | 0
3186 | 0
3187 | 0
3188 | 1
3189 | 0
3190 | 0
3191 | 0
3192 | 0
3193 | 0
3194 | 0
3195 | 0
3196 | 0
3197 | 0
3198 | 0
3199 | 0
3200 | 0
3201 | 0
3202 | 0
3203 | 0
3204 | 0
3205 | 0
3206 | 0
3207 | 0
3208 | 0
3209 | 0
3210 | 0
3211 | 0
3212 | 0
3213 | 0
3214 | 0
3215 | 0
3216 | 0
3217 | 0
3218 | 1
3219 | 0
3220 | 0
3221 | 0
3222 | 0
3223 | 1
3224 | 0
3225 | 0
3226 | 0
3227 | 0
3228 | 0
3229 | 0
3230 | 0
3231 | 0
3232 | 0
3233 | 1
3234 | 0
3235 | 0
3236 | 0
3237 | 0
3238 | 0
3239 | 0
3240 | 1
3241 | 0
3242 | 0
3243 | 0
3244 | 0
3245 | 1
3246 | 0
3247 | 0
3248 | 1
3249 | 0
3250 | 0
3251 | 0
3252 | 0
3253 | 0
3254 | 0
3255 | 0
3256 | 0
3257 | 0
3258 | 0
3259 | 0
3260 | 0
3261 | 0
3262 | 0
3263 | 0
3264 | 0
3265 | 0
3266 | 0
3267 | 0
3268 | 0
3269 | 0
3270 | 1
3271 | 0
3272 | 0
3273 | 0
3274 | 1
3275 | 0
3276 | 0
3277 | 1
3278 | 0
3279 | 0
3280 | 0
3281 | 0
3282 | 0
3283 | 0
3284 | 1
3285 | 0
3286 | 0
3287 | 0
3288 | 0
3289 | 0
3290 | 0
3291 | 1
3292 | 0
3293 | 0
3294 | 0
3295 | 0
3296 | 0
3297 | 0
3298 | 0
3299 | 0
3300 | 0
3301 | 0
3302 | 0
3303 | 0
3304 | 0
3305 | 0
3306 | 0
3307 | 0
3308 | 0
3309 | 0
3310 | 0
3311 | 0
3312 | 0
3313 | 0
3314 | 0
3315 | 0
3316 | 0
3317 | 1
3318 | 0
3319 | 0
3320 | 0
3321 | 0
3322 | 0
3323 | 0
3324 | 0
3325 | 0
3326 | 0
3327 | 0
3328 | 0
3329 | 0
3330 | 1
3331 | 1
3332 | 0
3333 | 0
3334 | 0
3335 | 0
3336 | 0
3337 | 0
3338 | 0
3339 | 0
3340 | 0
3341 | 1
3342 | 0
3343 | 0
3344 | 0
3345 | 0
3346 | 0
3347 | 0
3348 | 0
3349 | 0
3350 | 0
3351 | 0
3352 | 0
3353 | 0
3354 | 0
3355 | 0
3356 | 0
3357 | 0
3358 | 0
3359 | 0
3360 | 0
3361 | 0
3362 | 0
3363 | 0
3364 | 0
3365 | 0
3366 | 0
3367 | 0
3368 | 0
3369 | 0
3370 | 0
3371 | 0
3372 | 1
3373 | 0
3374 | 0
3375 | 0
3376 | 0
3377 | 0
3378 | 0
3379 | 0
3380 | 0
3381 | 0
3382 | 0
3383 | 0
3384 | 0
3385 | 0
3386 | 0
3387 | 0
3388 | 0
3389 | 0
3390 | 0
3391 | 0
3392 | 0
3393 | 0
3394 | 0
3395 | 0
3396 | 0
3397 | 1
3398 | 0
3399 | 0
3400 | 0
3401 | 0
3402 | 0
3403 | 0
3404 | 0
3405 | 0
3406 | 0
3407 | 0
3408 | 0
3409 | 0
3410 | 0
3411 | 0
3412 | 0
3413 | 0
3414 | 0
3415 | 1
3416 | 0
3417 | 0
3418 | 0
3419 | 0
3420 | 0
3421 | 0
3422 | 0
3423 | 0
3424 | 0
3425 | 0
3426 | 1
3427 | 0
3428 | 0
3429 | 0
3430 | 0
3431 | 0
3432 | 0
3433 | 0
3434 | 0
3435 | 0
3436 | 0
3437 | 0
3438 | 0
3439 | 0
3440 | 0
3441 | 0
3442 | 0
3443 | 1
3444 | 0
3445 | 0
3446 | 0
3447 | 0
3448 | 0
3449 | 0
3450 | 0
3451 | 0
3452 | 0
3453 | 0
3454 | 0
3455 | 0
3456 | 0
3457 | 0
3458 | 0
3459 | 0
3460 | 0
3461 | 1
3462 | 0
3463 | 0
3464 | 0
3465 | 0
3466 | 0
3467 | 0
3468 | 0
3469 | 0
3470 | 0
3471 | 0
3472 | 0
3473 | 0
3474 | 0
3475 | 0
3476 | 0
3477 | 0
3478 | 0
3479 | 0
3480 | 0
3481 | 1
3482 | 0
3483 | 0
3484 | 0
3485 | 1
3486 | 1
3487 | 0
3488 | 0
3489 | 0
3490 | 0
3491 | 0
3492 | 0
3493 | 0
3494 | 0
3495 | 0
3496 | 0
3497 | 0
3498 | 0
3499 | 0
3500 | 0
3501 | 0
3502 | 0
3503 | 0
3504 | 0
3505 | 0
3506 | 0
3507 | 0
3508 | 0
3509 | 0
3510 | 1
3511 | 0
3512 | 0
3513 | 0
3514 | 0
3515 | 0
3516 | 0
3517 | 0
3518 | 0
3519 | 0
3520 | 1
3521 | 0
3522 | 0
3523 | 0
3524 | 0
3525 | 1
3526 | 0
3527 | 0
3528 | 0
3529 | 0
3530 | 0
3531 | 0
3532 | 0
3533 | 0
3534 | 0
3535 | 0
3536 | 0
3537 | 0
3538 | 0
3539 | 0
3540 | 0
3541 | 0
3542 | 0
3543 | 1
3544 | 0
3545 | 0
3546 | 0
3547 | 0
3548 | 0
3549 | 0
3550 | 1
3551 | 0
3552 | 0
3553 | 0
3554 | 0
3555 | 0
3556 | 1
3557 | 0
3558 | 1
3559 | 0
3560 | 0
3561 | 0
3562 | 1
3563 | 0
3564 | 0
3565 | 0
3566 | 0
3567 | 0
3568 | 0
3569 | 0
3570 | 0
3571 | 0
3572 | 1
3573 | 1
3574 | 0
3575 | 0
3576 | 1
3577 | 0
3578 | 0
3579 | 0
3580 | 0
3581 | 1
3582 | 0
3583 | 0
3584 | 0
3585 | 0
3586 | 0
3587 | 0
3588 | 0
3589 | 1
3590 | 0
3591 | 1
3592 | 1
3593 | 0
3594 | 0
3595 | 0
3596 | 0
3597 | 0
3598 | 0
3599 | 0
3600 | 0
3601 | 0
3602 | 0
3603 | 1
3604 | 0
3605 | 0
3606 | 0
3607 | 0
3608 | 0
3609 | 0
3610 | 0
3611 | 0
3612 | 0
3613 | 0
3614 | 0
3615 | 0
3616 | 0
3617 | 0
3618 | 0
3619 | 0
3620 | 1
3621 | 0
3622 | 0
3623 | 0
3624 | 1
3625 | 0
3626 | 0
3627 | 0
3628 | 0
3629 | 1
3630 | 0
3631 | 0
3632 | 0
3633 | 0
3634 | 0
3635 | 0
3636 | 0
3637 | 0
3638 | 0
3639 | 0
3640 | 0
3641 | 0
3642 | 0
3643 | 0
3644 | 1
3645 | 0
3646 | 0
3647 | 0
3648 | 0
3649 | 0
3650 | 1
3651 | 1
3652 | 0
3653 | 0
3654 | 0
3655 | 0
3656 | 0
3657 | 0
3658 | 0
3659 | 0
3660 | 0
3661 | 0
3662 | 0
3663 | 0
3664 | 0
3665 | 1
3666 | 0
3667 | 0
3668 | 0
3669 | 0
3670 | 0
3671 | 0
3672 | 0
3673 | 0
3674 | 0
3675 | 0
3676 | 0
3677 | 0
3678 | 0
3679 | 0
3680 | 0
3681 | 0
3682 | 0
3683 | 0
3684 | 0
3685 | 0
3686 | 0
3687 | 0
3688 | 1
3689 | 0
3690 | 0
3691 | 1
3692 | 0
3693 | 0
3694 | 0
3695 | 0
3696 | 0
3697 | 1
3698 | 0
3699 | 0
3700 | 0
3701 | 0
3702 | 0
3703 | 0
3704 | 0
3705 | 0
3706 | 0
3707 | 0
3708 | 0
3709 | 0
3710 | 0
3711 | 0
3712 | 0
3713 | 0
3714 | 0
3715 | 1
3716 | 0
3717 | 0
3718 | 0
3719 | 0
3720 | 0
3721 | 0
3722 | 1
3723 | 0
3724 | 0
3725 | 0
3726 | 0
3727 | 1
3728 | 0
3729 | 0
3730 | 0
3731 | 0
3732 | 0
3733 | 0
3734 | 0
3735 | 0
3736 | 0
3737 | 0
3738 | 1
3739 | 0
3740 | 0
3741 | 0
3742 | 0
3743 | 0
3744 | 1
3745 | 0
3746 | 0
3747 | 0
3748 | 0
3749 | 0
3750 | 0
3751 | 0
3752 | 0
3753 | 0
3754 | 0
3755 | 0
3756 | 0
3757 | 0
3758 | 0
3759 | 1
3760 | 0
3761 | 1
3762 | 0
3763 | 0
3764 | 0
3765 | 0
3766 | 1
3767 | 0
3768 | 0
3769 | 0
3770 | 0
3771 | 0
3772 | 0
3773 | 0
3774 | 0
3775 | 0
3776 | 0
3777 | 0
3778 | 0
3779 | 0
3780 | 0
3781 | 1
3782 | 0
3783 | 0
3784 | 0
3785 | 0
3786 | 0
3787 | 0
3788 | 0
3789 | 0
3790 | 0
3791 | 0
3792 | 0
3793 | 0
3794 | 0
3795 | 0
3796 | 0
3797 | 0
3798 | 0
3799 | 0
3800 | 0
3801 | 0
3802 | 0
3803 | 0
3804 | 0
3805 | 1
3806 | 0
3807 | 0
3808 | 0
3809 | 0
3810 | 0
3811 | 0
3812 | 0
3813 | 0
3814 | 0
3815 | 0
3816 | 0
3817 | 0
3818 | 0
3819 | 0
3820 | 0
3821 | 0
3822 | 0
3823 | 1
3824 | 0
3825 | 0
3826 | 0
3827 | 1
3828 | 1
3829 | 0
3830 | 0
3831 | 0
3832 | 0
3833 | 0
3834 | 1
3835 | 0
3836 | 0
3837 | 0
3838 | 0
3839 | 0
3840 | 0
3841 | 0
3842 | 0
3843 | 0
3844 | 0
3845 | 0
3846 | 0
3847 | 0
3848 | 0
3849 | 0
3850 | 1
3851 | 0
3852 | 0
3853 | 0
3854 | 1
3855 | 0
3856 | 1
3857 | 0
3858 | 0
3859 | 0
3860 | 0
3861 | 0
3862 | 0
3863 | 0
3864 | 0
3865 | 0
3866 | 0
3867 | 0
3868 | 0
3869 | 0
3870 | 0
3871 | 1
3872 | 0
3873 | 1
3874 | 0
3875 | 0
3876 | 0
3877 | 0
3878 | 0
3879 | 0
3880 | 0
3881 | 0
3882 | 0
3883 | 0
3884 | 1
3885 | 0
3886 | 0
3887 | 0
3888 | 0
3889 | 0
3890 | 0
3891 | 0
3892 | 0
3893 | 1
3894 | 0
3895 | 0
3896 | 1
3897 | 1
3898 | 1
3899 | 1
3900 | 0
3901 | 0
3902 | 0
3903 | 0
3904 | 0
3905 | 0
3906 | 1
3907 | 0
3908 | 0
3909 | 0
3910 | 0
3911 | 0
3912 | 0
3913 | 0
3914 | 0
3915 | 1
3916 | 0
3917 | 0
3918 | 0
3919 | 0
3920 | 0
3921 | 0
3922 | 1
3923 | 0
3924 | 1
3925 | 0
3926 | 0
3927 | 0
3928 | 0
3929 | 0
3930 | 0
3931 | 0
3932 | 0
3933 | 0
3934 | 1
3935 | 0
3936 | 0
3937 | 0
3938 | 0
3939 | 0
3940 | 0
3941 | 0
3942 | 0
3943 | 0
3944 | 0
3945 | 0
3946 | 0
3947 | 0
3948 | 0
3949 | 0
3950 | 0
3951 | 0
3952 | 0
3953 | 1
3954 | 0
3955 | 0
3956 | 0
3957 | 0
3958 | 1
3959 | 0
3960 | 0
3961 | 1
3962 | 0
3963 | 0
3964 | 0
3965 | 0
3966 | 0
3967 | 1
3968 | 0
3969 | 0
3970 | 1
3971 | 0
3972 | 0
3973 | 0
3974 | 0
3975 | 0
3976 | 0
3977 | 0
3978 | 0
3979 | 0
3980 | 0
3981 | 0
3982 | 0
3983 | 0
3984 | 0
3985 | 0
3986 | 0
3987 | 1
3988 | 0
3989 | 0
3990 | 0
3991 | 0
3992 | 0
3993 | 0
3994 | 0
3995 | 0
3996 | 0
3997 | 0
3998 | 0
3999 | 0
4000 | 0
4001 | 0
4002 | 1
4003 | 0
4004 | 0
4005 | 0
4006 | 0
4007 | 0
4008 | 0
4009 | 0
4010 | 0
4011 | 0
4012 | 0
4013 | 0
4014 | 0
4015 | 0
4016 | 0
4017 | 0
4018 | 0
4019 | 0
4020 | 0
4021 | 0
4022 | 0
4023 | 0
4024 | 0
4025 | 0
4026 | 0
4027 | 0
4028 | 0
4029 | 0
4030 | 0
4031 | 0
4032 | 0
4033 | 0
4034 | 0
4035 | 0
4036 | 0
4037 | 0
4038 | 0
4039 | 0
4040 | 0
4041 | 0
4042 | 0
4043 | 0
4044 | 0
4045 | 0
4046 | 0
4047 | 0
4048 | 0
4049 | 0
4050 | 0
4051 | 1
4052 | 0
4053 | 1
4054 | 0
4055 | 0
4056 | 0
4057 | 0
4058 | 0
4059 | 0
4060 | 0
4061 | 0
4062 | 0
4063 | 1
4064 | 0
4065 | 0
4066 | 0
4067 | 0
4068 | 0
4069 | 0
4070 | 0
4071 | 0
4072 | 0
4073 | 0
4074 | 1
4075 | 0
4076 | 0
4077 | 0
4078 | 0
4079 | 0
4080 | 0
4081 | 0
4082 | 0
4083 | 0
4084 | 0
4085 | 0
4086 | 1
4087 | 0
4088 | 0
4089 | 1
4090 | 1
4091 | 0
4092 | 1
4093 | 0
4094 | 0
4095 | 0
4096 | 1
4097 | 0
4098 | 0
4099 | 0
4100 | 0
4101 | 0
4102 | 0
4103 | 0
4104 | 0
4105 | 0
4106 | 0
4107 | 0
4108 | 0
4109 | 0
4110 | 0
4111 | 0
4112 | 1
4113 | 0
4114 | 0
4115 | 0
4116 | 0
4117 | 0
4118 | 0
4119 | 0
4120 | 0
4121 | 1
4122 | 0
4123 | 0
4124 | 0
4125 | 0
4126 | 1
4127 | 0
4128 | 0
4129 | 0
4130 | 0
4131 | 0
4132 | 0
4133 | 0
4134 | 0
4135 | 0
4136 | 0
4137 | 0
4138 | 0
4139 | 0
4140 | 0
4141 | 1
4142 | 0
4143 | 0
4144 | 0
4145 | 0
4146 | 1
4147 | 0
4148 | 0
4149 | 0
4150 | 0
4151 | 0
4152 | 0
4153 | 0
4154 | 0
4155 | 0
4156 | 0
4157 | 0
4158 | 0
4159 | 0
4160 | 0
4161 | 0
4162 | 0
4163 | 0
4164 | 0
4165 | 0
4166 | 1
4167 | 0
4168 | 1
4169 | 0
4170 | 0
4171 | 0
4172 | 0
4173 | 0
4174 | 0
4175 | 0
4176 | 1
4177 | 1
4178 | 0
4179 | 0
4180 | 0
4181 | 1
4182 | 0
4183 | 0
4184 | 0
4185 | 1
4186 | 0
4187 | 0
4188 | 0
4189 | 0
4190 | 0
4191 | 0
4192 | 0
4193 | 0
4194 | 0
4195 | 0
4196 | 0
4197 | 1
4198 | 0
4199 | 0
4200 | 0
4201 | 0
4202 | 0
4203 | 0
4204 | 0
4205 | 0
4206 | 1
4207 | 0
4208 | 1
4209 | 0
4210 | 1
4211 | 0
4212 | 0
4213 | 0
4214 | 0
4215 | 1
4216 | 0
4217 | 0
4218 | 0
4219 | 0
4220 | 0
4221 | 0
4222 | 0
4223 | 1
4224 | 0
4225 | 1
4226 | 0
4227 | 0
4228 | 0
4229 | 0
4230 | 0
4231 | 1
4232 | 0
4233 | 0
4234 | 0
4235 | 0
4236 | 0
4237 | 0
4238 | 0
4239 | 0
4240 | 0
4241 | 0
4242 | 0
4243 | 0
4244 | 0
4245 | 0
4246 | 0
4247 | 0
4248 | 0
4249 | 1
4250 | 0
4251 | 0
4252 | 0
4253 | 0
4254 | 0
4255 | 0
4256 | 0
4257 | 0
4258 | 1
4259 | 0
4260 | 1
4261 | 1
4262 | 0
4263 | 0
4264 | 0
4265 | 0
4266 | 0
4267 | 0
4268 | 0
4269 | 0
4270 | 0
4271 | 0
4272 | 0
4273 | 0
4274 | 0
4275 | 0
4276 | 1
4277 | 0
4278 | 0
4279 | 1
4280 | 0
4281 | 0
4282 | 0
4283 | 0
4284 | 0
4285 | 0
4286 | 0
4287 | 1
4288 | 0
4289 | 0
4290 | 0
4291 | 0
4292 | 1
4293 | 0
4294 | 0
4295 | 0
4296 | 0
4297 | 0
4298 | 0
4299 | 0
4300 | 0
4301 | 0
4302 | 0
4303 | 1
4304 | 0
4305 | 0
4306 | 0
4307 | 0
4308 | 0
4309 | 1
4310 | 1
4311 | 0
4312 | 0
4313 | 0
4314 | 0
4315 | 0
4316 | 0
4317 | 0
4318 | 0
4319 | 0
4320 | 1
4321 | 0
4322 | 1
4323 | 0
4324 | 0
4325 | 0
4326 | 0
4327 | 0
4328 | 0
4329 | 0
4330 | 0
4331 | 0
4332 | 0
4333 | 0
4334 | 0
4335 | 0
4336 | 0
4337 | 1
4338 | 0
4339 | 1
4340 | 0
4341 | 0
4342 | 0
4343 | 0
4344 | 0
4345 | 0
4346 | 0
4347 | 0
4348 | 0
4349 | 0
4350 | 1
4351 | 0
4352 | 1
4353 | 0
4354 | 0
4355 | 0
4356 | 0
4357 | 1
4358 | 0
4359 | 0
4360 | 0
4361 | 0
4362 | 0
4363 | 1
4364 | 0
4365 | 0
4366 | 0
4367 | 0
4368 | 0
4369 | 0
4370 | 0
4371 | 0
4372 | 0
4373 | 0
4374 | 0
4375 | 0
4376 | 0
4377 | 0
4378 | 0
4379 | 0
4380 | 0
4381 | 0
4382 | 0
4383 | 0
4384 | 0
4385 | 0
4386 | 0
4387 | 0
4388 | 0
4389 | 0
4390 | 0
4391 | 0
4392 | 0
4393 | 0
4394 | 0
4395 | 1
4396 | 1
4397 | 0
4398 | 1
4399 | 0
4400 | 0
4401 | 0
4402 | 0
4403 | 0
4404 | 1
4405 | 0
4406 | 0
4407 | 0
4408 | 0
4409 | 0
4410 | 0
4411 | 0
4412 | 0
4413 | 0
4414 | 0
4415 | 0
4416 | 0
4417 | 0
4418 | 0
4419 | 0
4420 | 0
4421 | 0
4422 | 0
4423 | 0
4424 | 0
4425 | 0
4426 | 0
4427 | 0
4428 | 1
4429 | 0
4430 | 0
4431 | 0
4432 | 1
4433 | 0
4434 | 0
4435 | 0
4436 | 0
4437 | 0
4438 | 1
4439 | 0
4440 | 0
4441 | 0
4442 | 0
4443 | 1
4444 | 0
4445 | 0
4446 | 0
4447 | 0
4448 | 0
4449 | 0
4450 | 0
4451 | 0
4452 | 0
4453 | 0
4454 | 1
4455 | 0
4456 | 1
4457 | 0
4458 | 0
4459 | 0
4460 | 0
4461 | 0
4462 | 0
4463 | 0
4464 | 0
4465 | 0
4466 | 1
4467 | 0
4468 | 0
4469 | 0
4470 | 1
4471 | 0
4472 | 0
4473 | 0
4474 | 0
4475 | 0
4476 | 0
4477 | 0
4478 | 0
4479 | 0
4480 | 1
4481 | 0
4482 | 0
4483 | 0
4484 | 0
4485 | 0
4486 | 0
4487 | 0
4488 | 0
4489 | 0
4490 | 0
4491 | 0
4492 | 0
4493 | 0
4494 | 0
4495 | 0
4496 | 0
4497 | 0
4498 | 1
4499 | 0
4500 | 0
4501 | 0
4502 | 0
4503 | 0
4504 | 0
4505 | 0
4506 | 0
4507 | 1
4508 | 1
4509 | 1
4510 | 0
4511 | 0
4512 | 0
4513 | 0
4514 | 0
4515 | 0
4516 | 1
4517 | 0
4518 | 0
4519 | 0
4520 | 0
4521 | 0
4522 | 0
4523 | 0
4524 | 1
4525 | 0
4526 | 0
4527 | 0
4528 | 0
4529 | 0
4530 | 0
4531 | 0
4532 | 0
4533 | 0
4534 | 0
4535 | 0
4536 | 0
4537 | 0
4538 | 1
4539 | 0
4540 | 0
4541 | 0
4542 | 0
4543 | 0
4544 | 0
4545 | 0
4546 | 0
4547 | 0
4548 | 0
4549 | 1
4550 | 0
4551 | 0
4552 | 0
4553 | 0
4554 | 1
4555 | 0
4556 | 0
4557 | 0
4558 | 0
4559 | 0
4560 | 0
4561 | 0
4562 | 0
4563 | 0
4564 | 0
4565 | 0
4566 | 0
4567 | 0
4568 | 0
4569 | 0
4570 | 0
4571 | 0
4572 | 0
4573 | 0
4574 | 0
4575 | 0
4576 | 0
4577 | 0
4578 | 0
4579 | 0
4580 | 0
4581 | 0
4582 | 0
4583 | 0
4584 | 0
4585 | 0
4586 | 0
4587 | 0
4588 | 0
4589 | 0
4590 | 0
4591 | 1
4592 | 0
4593 | 0
4594 | 0
4595 | 0
4596 | 0
4597 | 0
4598 | 0
4599 | 0
4600 | 0
4601 | 0
4602 | 0
4603 | 1
4604 | 0
4605 | 0
4606 | 0
4607 | 0
4608 | 0
4609 | 0
4610 | 0
4611 | 0
4612 | 0
4613 | 0
4614 | 0
4615 | 0
4616 | 0
4617 | 0
4618 | 0
4619 | 0
4620 | 0
4621 | 0
4622 | 0
4623 | 1
4624 | 0
4625 | 0
4626 | 0
4627 | 0
4628 | 0
4629 | 0
4630 | 0
4631 | 0
4632 | 0
4633 | 0
4634 | 0
4635 | 0
4636 | 0
4637 | 0
4638 | 0
4639 | 0
4640 | 0
4641 | 0
4642 | 0
4643 | 0
4644 | 0
4645 | 0
4646 | 1
4647 | 0
4648 | 0
4649 | 0
4650 | 0
4651 | 0
4652 | 0
4653 | 0
4654 | 0
4655 | 0
4656 | 0
4657 | 0
4658 | 0
4659 | 1
4660 | 0
4661 | 0
4662 | 0
4663 | 0
4664 | 1
4665 | 0
4666 | 0
4667 | 0
4668 | 0
4669 | 0
4670 | 0
4671 | 0
4672 | 0
4673 | 0
4674 | 0
4675 | 0
4676 | 0
4677 | 0
4678 | 0
4679 | 0
4680 | 0
4681 | 1
4682 | 0
4683 | 0
4684 | 0
4685 | 0
4686 | 0
4687 | 0
4688 | 0
4689 | 0
4690 | 0
4691 | 0
4692 | 0
4693 | 0
4694 | 1
4695 | 1
4696 | 0
4697 | 0
4698 | 0
4699 | 0
4700 | 0
4701 | 1
4702 | 0
4703 | 0
4704 | 1
4705 | 0
4706 | 0
4707 | 1
4708 | 0
4709 | 0
4710 | 0
4711 | 0
4712 | 0
4713 | 0
4714 | 0
4715 | 0
4716 | 1
4717 | 0
4718 | 0
4719 | 0
4720 | 0
4721 | 0
4722 | 0
4723 | 0
4724 | 0
4725 | 0
4726 | 0
4727 | 0
4728 | 0
4729 | 0
4730 | 1
4731 | 0
4732 | 0
4733 | 0
4734 | 0
4735 | 0
4736 | 0
4737 | 0
4738 | 0
4739 | 1
4740 | 0
4741 | 0
4742 | 0
4743 | 0
4744 | 0
4745 | 0
4746 | 1
4747 | 0
4748 | 1
4749 | 0
4750 | 0
4751 | 0
4752 | 0
4753 | 0
4754 | 0
4755 | 0
4756 | 0
4757 | 0
4758 | 0
4759 | 0
4760 | 0
4761 | 0
4762 | 0
4763 | 0
4764 | 0
4765 | 1
4766 | 0
4767 | 0
4768 | 0
4769 | 0
4770 | 0
4771 | 0
4772 | 0
4773 | 0
4774 | 0
4775 | 0
4776 | 0
4777 | 0
4778 | 1
4779 | 0
4780 | 0
4781 | 0
4782 | 0
4783 | 0
4784 | 0
4785 | 0
4786 | 0
4787 | 0
4788 | 0
4789 | 0
4790 | 1
4791 | 0
4792 | 0
4793 | 0
4794 | 0
4795 | 0
4796 | 1
4797 | 0
4798 | 0
4799 | 0
4800 | 0
4801 | 0
4802 | 0
4803 | 0
4804 | 0
4805 | 1
4806 | 0
4807 | 0
4808 | 0
4809 | 1
4810 | 0
4811 | 0
4812 | 0
4813 | 0
4814 | 0
4815 | 0
4816 | 0
4817 | 0
4818 | 0
4819 | 0
4820 | 0
4821 | 0
4822 | 0
4823 | 0
4824 | 0
4825 | 0
4826 | 0
4827 | 0
4828 | 1
4829 | 0
4830 | 0
4831 | 0
4832 | 0
4833 | 0
4834 | 0
4835 | 0
4836 | 0
4837 | 0
4838 | 0
4839 | 0
4840 | 0
4841 | 0
4842 | 0
4843 | 0
4844 | 0
4845 | 0
4846 | 0
4847 | 0
4848 | 1
4849 | 0
4850 | 1
4851 | 0
4852 | 0
4853 | 0
4854 | 0
4855 | 0
4856 | 0
4857 | 0
4858 | 0
4859 | 0
4860 | 0
4861 | 0
4862 | 0
4863 | 0
4864 | 0
4865 | 0
4866 | 0
4867 | 0
4868 | 0
4869 | 0
4870 | 0
4871 | 0
4872 | 0
4873 | 1
4874 | 0
4875 | 0
4876 | 0
4877 | 0
4878 | 0
4879 | 0
4880 | 1
4881 | 0
4882 | 0
4883 | 0
4884 | 0
4885 | 0
4886 | 0
4887 | 0
4888 | 0
4889 | 0
4890 | 0
4891 | 0
4892 | 0
4893 | 0
4894 | 0
4895 | 1
4896 | 0
4897 | 0
4898 | 0
4899 | 0
4900 | 0
4901 | 0
4902 | 0
4903 | 0
4904 | 0
4905 | 0
4906 | 0
4907 | 0
4908 | 0
4909 | 0
4910 | 0
4911 | 0
4912 | 0
4913 | 0
4914 | 0
4915 | 0
4916 | 0
4917 | 1
4918 | 0
4919 | 0
4920 | 0
4921 | 0
4922 | 0
4923 | 0
4924 | 0
4925 | 0
4926 | 0
4927 | 1
4928 | 1
4929 | 0
4930 | 0
4931 | 1
4932 | 0
4933 | 0
4934 | 1
4935 | 0
4936 | 0
4937 | 0
4938 | 0
4939 | 1
4940 | 0
4941 | 0
4942 | 0
4943 | 1
4944 | 0
4945 | 0
4946 | 0
4947 | 0
4948 | 0
4949 | 0
4950 | 0
4951 | 0
4952 | 0
4953 | 0
4954 | 0
4955 | 0
4956 | 0
4957 | 0
4958 | 1
4959 | 0
4960 | 1
4961 | 0
4962 | 0
4963 | 0
4964 | 0
4965 | 0
4966 | 0
4967 | 0
4968 | 0
4969 | 0
4970 | 0
4971 | 0
4972 | 0
4973 | 0
4974 | 0
4975 | 0
4976 | 0
4977 | 0
4978 | 0
4979 | 0
4980 | 0
4981 | 0
4982 | 0
4983 | 0
4984 | 0
4985 | 0
4986 | 0
4987 | 0
4988 | 0
4989 | 0
4990 | 0
4991 | 0
4992 | 0
4993 | 0
4994 | 0
4995 | 0
4996 | 0
4997 | 0
4998 | 0
4999 | 1
5000 | 0
5001 | 0
5002 | 0
5003 | 0
5004 | 0
5005 | 0
5006 | 1
5007 | 0
5008 | 0
5009 | 0
5010 | 0
5011 | 0
5012 | 0
5013 | 0
5014 | 0
5015 | 0
5016 | 0
5017 | 0
5018 | 1
5019 | 0
5020 | 0
5021 | 0
5022 | 0
5023 | 0
5024 | 0
5025 | 0
5026 | 0
5027 | 0
5028 | 0
5029 | 0
5030 | 0
5031 | 0
5032 | 0
5033 | 0
5034 | 0
5035 | 0
5036 | 0
5037 | 0
5038 | 0
5039 | 0
5040 | 0
5041 | 0
5042 | 0
5043 | 0
5044 | 0
5045 | 0
5046 | 0
5047 | 0
5048 | 0
5049 | 0
5050 | 0
5051 | 0
5052 | 0
5053 | 0
5054 | 0
5055 | 0
5056 | 0
5057 | 1
5058 | 0
5059 | 0
5060 | 0
5061 | 0
5062 | 0
5063 | 0
5064 | 0
5065 | 0
5066 | 0
5067 | 0
5068 | 0
5069 | 0
5070 | 0
5071 | 0
5072 | 0
5073 | 0
5074 | 0
5075 | 0
5076 | 0
5077 | 0
5078 | 0
5079 | 0
5080 | 0
5081 | 0
5082 | 0
5083 | 0
5084 | 1
5085 | 0
5086 | 0
5087 | 0
5088 | 0
5089 | 1
5090 | 0
5091 | 1
5092 | 0
5093 | 0
5094 | 0
5095 | 0
5096 | 0
5097 | 0
5098 | 1
5099 | 0
5100 | 0
5101 | 0
5102 | 0
5103 | 0
5104 | 0
5105 | 0
5106 | 0
5107 | 0
5108 | 0
5109 | 0
5110 | 0
5111 | 0
5112 | 0
5113 | 0
5114 | 0
5115 | 0
5116 | 0
5117 | 0
5118 | 0
5119 | 0
5120 | 0
5121 | 0
5122 | 0
5123 | 0
5124 | 0
5125 | 0
5126 | 0
5127 | 0
5128 | 0
5129 | 0
5130 | 0
5131 | 0
5132 | 0
5133 | 0
5134 | 0
5135 | 0
5136 | 0
5137 | 0
5138 | 0
5139 | 0
5140 | 0
5141 | 1
5142 | 0
5143 | 0
5144 | 0
5145 | 0
5146 | 0
5147 | 0
5148 | 0
5149 | 0
5150 | 0
5151 | 0
5152 | 0
5153 | 0
5154 | 0
5155 | 0
5156 | 0
5157 | 0
5158 | 0
5159 | 0
5160 | 1
5161 | 0
5162 | 0
5163 | 0
5164 | 0
5165 | 0
5166 | 0
5167 | 0
5168 | 0
5169 | 0
5170 | 0
5171 | 0
5172 | 0
5173 | 0
5174 | 0
5175 | 0
5176 | 0
5177 | 0
5178 | 0
5179 | 0
5180 | 0
5181 | 0
5182 | 1
5183 | 0
5184 | 0
5185 | 0
5186 | 0
5187 | 0
5188 | 0
5189 | 0
5190 | 0
5191 | 0
5192 | 0
5193 | 0
5194 | 0
5195 | 0
5196 | 0
5197 | 0
5198 | 0
5199 | 0
5200 | 0
5201 | 0
5202 | 0
5203 | 0
5204 | 1
5205 | 0
5206 | 0
5207 | 0
5208 | 0
5209 | 0
5210 | 0
5211 | 0
5212 | 0
5213 | 0
5214 | 1
5215 | 0
5216 | 0
5217 | 0
5218 | 0
5219 | 0
5220 | 0
5221 | 0
5222 | 0
5223 | 0
5224 | 0
5225 | 0
5226 | 0
5227 | 0
5228 | 0
5229 | 0
5230 | 1
5231 | 0
5232 | 1
5233 | 1
5234 | 0
5235 | 0
5236 | 0
5237 | 0
5238 | 0
5239 | 0
5240 | 1
5241 | 0
5242 | 0
5243 | 0
5244 | 0
5245 | 0
5246 | 0
5247 | 0
5248 | 0
5249 | 0
5250 | 0
5251 | 0
5252 | 0
5253 | 0
5254 | 0
5255 | 0
5256 | 0
5257 | 0
5258 | 0
5259 | 0
5260 | 0
5261 | 0
5262 | 0
5263 | 0
5264 | 0
5265 | 0
5266 | 0
5267 | 0
5268 | 0
5269 | 0
5270 | 0
5271 | 0
5272 | 0
5273 | 0
5274 | 0
5275 | 0
5276 | 0
5277 | 0
5278 | 0
5279 | 0
5280 | 1
5281 | 1
5282 | 0
5283 | 0
5284 | 0
5285 | 0
5286 | 0
5287 | 0
5288 | 0
5289 | 0
5290 | 0
5291 | 0
5292 | 0
5293 | 0
5294 | 0
5295 | 0
5296 | 0
5297 | 0
5298 | 0
5299 | 0
5300 | 0
5301 | 1
5302 | 0
5303 | 0
5304 | 0
5305 | 0
5306 | 0
5307 | 0
5308 | 0
5309 | 0
5310 | 0
5311 | 0
5312 | 1
5313 | 0
5314 | 0
5315 | 0
5316 | 0
5317 | 0
5318 | 0
5319 | 0
5320 | 0
5321 | 0
5322 | 0
5323 | 0
5324 | 0
5325 | 0
5326 | 0
5327 | 0
5328 | 0
5329 | 0
5330 | 0
5331 | 0
5332 | 0
5333 | 0
5334 | 0
5335 | 0
5336 | 0
5337 | 0
5338 | 0
5339 | 1
5340 | 0
5341 | 0
5342 | 0
5343 | 0
5344 | 0
5345 | 0
5346 | 0
5347 | 0
5348 | 0
5349 | 0
5350 | 0
5351 | 0
5352 | 0
5353 | 0
5354 | 1
5355 | 0
5356 | 0
5357 | 0
5358 | 0
5359 | 0
5360 | 0
5361 | 0
5362 | 0
5363 | 0
5364 | 1
5365 | 0
5366 | 1
5367 | 0
5368 | 0
5369 | 0
5370 | 0
5371 | 0
5372 | 0
5373 | 0
5374 | 0
5375 | 0
5376 | 0
5377 | 0
5378 | 0
5379 | 0
5380 | 1
5381 | 0
5382 | 0
5383 | 0
5384 | 0
5385 | 0
5386 | 0
5387 | 0
5388 | 0
5389 | 0
5390 | 0
5391 | 0
5392 | 0
5393 | 0
5394 | 0
5395 | 0
5396 | 0
5397 | 0
5398 | 0
5399 | 1
5400 | 0
5401 | 0
5402 | 0
5403 | 0
5404 | 0
5405 | 0
5406 | 0
5407 | 0
5408 | 0
5409 | 0
5410 | 0
5411 | 0
5412 | 0
5413 | 0
5414 | 0
5415 | 0
5416 | 1
5417 | 0
5418 | 0
5419 | 0
5420 | 0
5421 | 0
5422 | 0
5423 | 0
5424 | 0
5425 | 0
5426 | 0
5427 | 0
5428 | 0
5429 | 0
5430 | 0
5431 | 0
5432 | 1
5433 | 0
5434 | 0
5435 | 0
5436 | 0
5437 | 0
5438 | 0
5439 | 0
5440 | 0
5441 | 0
5442 | 0
5443 | 0
5444 | 1
5445 | 0
5446 | 0
5447 | 1
5448 | 0
5449 | 1
5450 | 0
5451 | 0
5452 | 0
5453 | 0
5454 | 0
5455 | 0
5456 | 1
5457 | 0
5458 | 0
5459 | 0
5460 | 0
5461 | 0
5462 | 0
5463 | 0
5464 | 0
5465 | 0
5466 | 0
5467 | 0
5468 | 0
5469 | 0
5470 | 0
5471 | 0
5472 | 0
5473 | 0
5474 | 0
5475 | 0
5476 | 0
5477 | 0
5478 | 0
5479 | 0
5480 | 0
5481 | 0
5482 | 0
5483 | 0
5484 | 0
5485 | 0
5486 | 0
5487 | 0
5488 | 0
5489 | 0
5490 | 0
5491 | 0
5492 | 0
5493 | 0
5494 | 0
5495 | 0
5496 | 0
5497 | 0
5498 | 0
5499 | 0
5500 | 0
5501 | 0
5502 | 0
5503 | 0
5504 | 0
5505 | 1
5506 | 0
5507 | 0
5508 | 0
5509 | 0
5510 | 0
5511 | 0
5512 | 0
5513 | 0
5514 | 0
5515 | 0
5516 | 0
5517 | 0
5518 | 0
5519 | 0
5520 | 0
5521 | 0
5522 | 0
5523 | 1
5524 | 1
5525 | 0
5526 | 1
5527 | 0
5528 | 1
5529 | 0
5530 | 0
5531 | 0
5532 | 0
5533 | 0
5534 | 0
5535 | 0
5536 | 0
5537 | 0
5538 | 0
5539 | 0
5540 | 0
5541 | 0
5542 | 0
5543 | 0
5544 | 0
5545 | 0
5546 | 1
5547 | 0
5548 | 0
5549 | 1
5550 | 0
5551 | 0
5552 | 0
5553 | 0
5554 | 0
5555 | 0
5556 | 0
5557 | 0
5558 | 1
5559 | 0
5560 | 0
5561 | 0
5562 | 0
5563 | 0
5564 | 0
5565 | 1
5566 | 0
5567 | 0
5568 | 0
5569 | 1
5570 | 0
5571 | 0
5572 | 0
5573 | 0
5574 | 0
5575 | 0
5576 | 0
5577 | 0
5578 | 0
5579 | 0
5580 | 0
5581 | 0
5582 | 0
5583 | 0
5584 | 0
5585 | 0
5586 | 0
5587 | 0
5588 | 0
5589 | 0
5590 | 1
5591 | 0
5592 | 0
5593 | 1
5594 | 0
5595 | 0
5596 | 0
5597 | 0
5598 | 0
5599 | 0
5600 | 0
5601 | 0
5602 | 0
5603 | 0
5604 | 1
5605 | 0
5606 | 0
5607 | 0
5608 | 0
5609 | 0
5610 | 0
5611 | 0
5612 | 0
5613 | 0
5614 | 0
5615 | 0
5616 | 0
5617 | 0
5618 | 0
5619 | 1
5620 | 0
5621 | 0
5622 | 0
5623 | 0
5624 | 0
5625 | 0
5626 | 0
5627 | 1
5628 | 0
5629 | 0
5630 | 0
5631 | 0
5632 | 0
5633 | 0
5634 | 0
5635 | 0
5636 | 0
5637 | 1
5638 | 1
5639 | 0
5640 | 0
5641 | 0
5642 | 0
5643 | 0
5644 | 0
5645 | 0
5646 | 0
5647 | 0
5648 | 0
5649 | 0
5650 | 0
5651 | 0
5652 | 1
5653 | 0
5654 | 0
5655 | 1
5656 | 0
5657 | 0
5658 | 0
5659 | 0
5660 | 0
5661 | 1
5662 | 0
5663 | 0
5664 | 0
5665 | 0
5666 | 0
5667 | 0
5668 | 0
5669 | 0
5670 | 0
5671 | 0
5672 | 1
5673 | 0
5674 | 1
5675 | 1
5676 | 0
5677 | 1
5678 | 0
5679 | 1
5680 | 1
5681 | 0
5682 | 0
5683 | 0
5684 | 0
5685 | 0
5686 | 0
5687 | 0
5688 | 0
5689 | 0
5690 | 0
5691 | 0
5692 | 0
5693 | 0
5694 | 0
5695 | 0
5696 | 1
5697 | 0
5698 | 0
5699 | 0
5700 | 0
5701 | 0
5702 | 0
5703 | 0
5704 | 0
5705 | 0
5706 | 0
5707 | 0
5708 | 0
5709 | 0
5710 | 0
5711 | 0
5712 | 0
5713 | 0
5714 | 0
5715 | 0
5716 | 1
5717 | 0
5718 | 0
5719 | 1
5720 | 0
5721 | 0
5722 | 0
5723 | 0
5724 | 0
5725 | 0
5726 | 0
5727 | 0
5728 | 0
5729 | 0
5730 | 0
5731 | 0
5732 | 0
5733 | 0
5734 | 0
5735 | 0
5736 | 0
5737 | 0
5738 | 0
5739 | 0
5740 | 0
5741 | 0
5742 | 0
5743 | 0
5744 | 0
5745 | 1
5746 | 0
5747 | 0
5748 | 0
5749 | 0
5750 | 0
5751 | 0
5752 | 0
5753 | 0
5754 | 0
5755 | 0
5756 | 0
5757 | 1
5758 | 0
5759 | 0
5760 | 0
5761 | 0
5762 | 0
5763 | 0
5764 | 0
5765 | 0
5766 | 1
5767 | 1
5768 | 0
5769 | 0
5770 | 0
5771 | 0
5772 | 0
5773 | 0
5774 | 0
5775 | 0
5776 | 1
5777 | 0
5778 | 1
5779 | 0
5780 | 0
5781 | 0
5782 | 0
5783 | 0
5784 | 0
5785 | 0
5786 | 0
5787 | 0
5788 | 1
5789 | 0
5790 | 0
5791 | 0
5792 | 1
5793 | 0
5794 | 0
5795 | 0
5796 | 0
5797 | 0
5798 | 1
5799 | 0
5800 | 0
5801 | 1
5802 | 1
5803 | 0
5804 | 0
5805 | 0
5806 | 0
5807 | 0
5808 | 0
5809 | 0
5810 | 0
5811 | 1
5812 | 1
5813 | 0
5814 | 0
5815 | 0
5816 | 0
5817 | 0
5818 | 0
5819 | 0
5820 | 0
5821 | 0
5822 | 0
5823 | 0
5824 | 0
5825 | 0
5826 | 0
5827 | 0
5828 | 0
5829 | 0
5830 | 0
5831 | 0
5832 | 0
5833 | 0
5834 | 1
5835 | 0
5836 | 0
5837 | 0
5838 | 0
5839 | 0
5840 | 0
5841 | 0
5842 | 0
5843 | 0
5844 | 0
5845 | 0
5846 | 0
5847 | 0
5848 | 0
5849 | 0
5850 | 1
5851 | 0
5852 | 0
5853 | 0
5854 | 0
5855 | 1
5856 | 0
5857 | 0
5858 | 0
5859 | 0
5860 | 0
5861 | 0
5862 | 0
5863 | 0
5864 | 1
5865 | 0
5866 | 0
5867 | 0
5868 | 0
5869 | 1
5870 | 1
5871 | 0
5872 | 0
5873 | 1
5874 | 0
5875 | 1
5876 | 0
5877 | 0
5878 | 0
5879 | 0
5880 | 0
5881 | 0
5882 | 0
5883 | 0
5884 | 0
5885 | 1
5886 | 0
5887 | 0
5888 | 0
5889 | 0
5890 | 0
5891 | 0
5892 | 0
5893 | 0
5894 | 0
5895 | 0
5896 | 0
5897 | 0
5898 | 0
5899 | 0
5900 | 0
5901 | 0
5902 | 0
5903 | 0
5904 | 0
5905 | 0
5906 | 0
5907 | 0
5908 | 0
5909 | 0
5910 | 1
5911 | 0
5912 | 0
5913 | 0
5914 | 0
5915 | 0
5916 | 0
5917 | 0
5918 | 0
5919 | 0
5920 | 0
5921 | 0
5922 | 0
5923 | 0
5924 | 0
5925 | 0
5926 | 0
5927 | 0
5928 | 0
5929 | 0
5930 | 1
5931 | 0
5932 | 0
5933 | 0
5934 | 0
5935 | 0
5936 | 0
5937 | 0
5938 | 0
5939 | 0
5940 | 0
5941 | 0
5942 | 0
5943 | 0
5944 | 0
5945 | 0
5946 | 1
5947 | 0
5948 | 1
5949 | 1
5950 | 0
5951 | 0
5952 | 0
5953 | 0
5954 | 0
5955 | 0
5956 | 0
5957 | 0
5958 | 0
5959 | 0
5960 | 0
5961 | 0
5962 | 0
5963 | 0
5964 | 0
5965 | 0
5966 | 0
5967 | 0
5968 | 0
5969 | 0
5970 | 0
5971 | 0
5972 | 0
5973 | 0
5974 | 0
5975 | 0
5976 | 0
5977 | 0
5978 | 0
5979 | 0
5980 | 0
5981 | 0
5982 | 0
5983 | 0
5984 | 0
5985 | 0
5986 | 0
5987 | 0
5988 | 0
5989 | 1
5990 | 0
5991 | 0
5992 | 0
5993 | 0
5994 | 1
5995 | 0
5996 | 1
5997 | 0
5998 | 0
5999 | 0
6000 | 0
6001 | 0
6002 | 0
6003 | 0
6004 | 0
6005 | 0
6006 | 0
6007 | 0
6008 | 0
6009 | 0
6010 | 0
6011 | 0
6012 | 0
6013 | 0
6014 | 0
6015 | 0
6016 | 0
6017 | 0
6018 | 0
6019 | 0
6020 | 0
6021 | 1
6022 | 0
6023 | 0
6024 | 0
6025 | 0
6026 | 0
6027 | 0
6028 | 0
6029 | 0
6030 | 0
6031 | 0
6032 | 0
6033 | 0
6034 | 0
6035 | 0
6036 | 0
6037 | 0
6038 | 0
6039 | 0
6040 | 0
6041 | 0
6042 | 0
6043 | 1
6044 | 0
6045 | 0
6046 | 0
6047 | 0
6048 | 0
6049 | 0
6050 | 1
6051 | 0
6052 | 0
6053 | 0
6054 | 0
6055 | 1
6056 | 0
6057 | 0
6058 | 0
6059 | 0
6060 | 0
6061 | 0
6062 | 0
6063 | 0
6064 | 0
6065 | 0
6066 | 0
6067 | 0
6068 | 0
6069 | 1
6070 | 0
6071 | 0
6072 | 0
6073 | 0
6074 | 0
6075 | 0
6076 | 0
6077 | 0
6078 | 0
6079 | 0
6080 | 0
6081 | 0
6082 | 0
6083 | 0
6084 | 0
6085 | 0
6086 | 0
6087 | 1
6088 | 1
6089 | 0
6090 | 0
6091 | 0
6092 | 0
6093 | 0
6094 | 0
6095 | 0
6096 | 0
6097 | 0
6098 | 0
6099 | 0
6100 | 1
6101 | 0
6102 | 0
6103 | 0
6104 | 0
6105 | 0
6106 | 0
6107 | 0
6108 | 0
6109 | 1
6110 | 0
6111 | 0
6112 | 0
6113 | 0
6114 | 0
6115 | 0
6116 | 0
6117 | 0
6118 | 0
6119 | 1
6120 | 0
6121 | 0
6122 | 0
6123 | 0
6124 | 0
6125 | 1
6126 | 1
6127 | 0
6128 | 0
6129 | 0
6130 | 0
6131 | 0
6132 | 0
6133 | 0
6134 | 0
6135 | 1
6136 | 0
6137 | 0
6138 | 0
6139 | 0
6140 | 0
6141 | 0
6142 | 0
6143 | 1
6144 | 0
6145 | 0
6146 | 0
6147 | 0
6148 | 0
6149 | 1
6150 | 0
6151 | 0
6152 | 0
6153 | 0
6154 | 0
6155 | 0
6156 | 1
6157 | 0
6158 | 0
6159 | 0
6160 | 0
6161 | 0
6162 | 0
6163 | 0
6164 | 0
6165 | 0
6166 | 0
6167 | 0
6168 | 0
6169 | 0
6170 | 0
6171 | 0
6172 | 0
6173 | 0
6174 | 0
6175 | 1
6176 | 0
6177 | 0
6178 | 0
6179 | 0
6180 | 0
6181 | 0
6182 | 0
6183 | 0
6184 | 0
6185 | 0
6186 | 1
6187 | 0
6188 | 1
6189 | 0
6190 | 0
6191 | 0
6192 | 0
6193 | 0
6194 | 0
6195 | 0
6196 | 0
6197 | 1
6198 | 1
6199 | 1
6200 | 0
6201 | 0
6202 | 0
6203 | 0
6204 | 0
6205 | 0
6206 | 0
6207 | 0
6208 | 0
6209 | 0
6210 | 1
6211 | 0
6212 | 0
6213 | 0
6214 | 0
6215 | 0
6216 | 0
6217 | 0
6218 | 1
6219 | 0
6220 | 1
6221 | 0
6222 | 0
6223 | 0
6224 | 0
6225 | 0
6226 | 1
6227 | 0
6228 | 0
6229 | 1
6230 | 0
6231 | 0
6232 | 0
6233 | 0
6234 | 0
6235 | 0
6236 | 0
6237 | 0
6238 | 0
6239 | 0
6240 | 0
6241 | 0
6242 | 0
6243 | 0
6244 | 0
6245 | 0
6246 | 1
6247 | 0
6248 | 0
6249 | 1
6250 | 0
6251 | 0
6252 | 0
6253 | 0
6254 | 0
6255 | 0
6256 | 0
6257 | 0
6258 | 0
6259 | 0
6260 | 0
6261 | 0
6262 | 1
6263 | 0
6264 | 0
6265 | 0
6266 | 0
6267 | 0
6268 | 0
6269 | 0
6270 | 0
6271 | 0
6272 | 0
6273 | 0
6274 | 0
6275 | 0
6276 | 0
6277 | 0
6278 | 0
6279 | 0
6280 | 0
6281 | 1
6282 | 0
6283 | 0
6284 | 1
6285 | 1
6286 | 0
6287 | 0
6288 | 1
6289 | 0
6290 | 0
6291 | 0
6292 | 0
6293 | 0
6294 | 0
6295 | 0
6296 | 0
6297 | 0
6298 | 0
6299 | 0
6300 | 0
6301 | 0
6302 | 0
6303 | 0
6304 | 1
6305 | 1
6306 | 0
6307 | 0
6308 | 0
6309 | 0
6310 | 0
6311 | 0
6312 | 0
6313 | 0
6314 | 0
6315 | 0
6316 | 0
6317 | 1
6318 | 0
6319 | 0
6320 | 0
6321 | 0
6322 | 0
6323 | 0
6324 | 0
6325 | 0
6326 | 1
6327 | 0
6328 | 0
6329 | 0
6330 | 0
6331 | 0
6332 | 0
6333 | 1
6334 | 0
6335 | 0
6336 | 0
6337 | 0
6338 | 0
6339 | 0
6340 | 0
6341 | 1
6342 | 0
6343 | 0
6344 | 0
6345 | 0
6346 | 0
6347 | 0
6348 | 0
6349 | 0
6350 | 0
6351 | 0
6352 | 0
6353 | 0
6354 | 0
6355 | 0
6356 | 0
6357 | 0
6358 | 0
6359 | 0
6360 | 0
6361 | 0
6362 | 0
6363 | 0
6364 | 0
6365 | 0
6366 | 0
6367 | 0
6368 | 1
6369 | 0
6370 | 1
6371 | 0
6372 | 0
6373 | 0
6374 | 0
6375 | 0
6376 | 0
6377 | 0
6378 | 0
6379 | 0
6380 | 0
6381 | 0
6382 | 1
6383 | 0
6384 | 0
6385 | 0
6386 | 0
6387 | 0
6388 | 0
6389 | 0
6390 | 1
6391 | 0
6392 | 0
6393 | 0
6394 | 0
6395 | 0
6396 | 0
6397 | 0
6398 | 0
6399 | 0
6400 | 0
6401 | 0
6402 | 0
6403 | 0
6404 | 0
6405 | 0
6406 | 0
6407 | 0
6408 | 0
6409 | 0
6410 | 0
6411 | 0
6412 | 0
6413 | 0
6414 | 0
6415 | 0
6416 | 0
6417 | 0
6418 | 0
6419 | 0
6420 | 0
6421 | 0
6422 | 0
6423 | 0
6424 | 0
6425 | 0
6426 | 0
6427 | 0
6428 | 1
6429 | 0
6430 | 0
6431 | 0
6432 | 0
6433 | 1
6434 | 0
6435 | 0
6436 | 0
6437 | 0
6438 | 0
6439 | 0
6440 | 1
6441 | 0
6442 | 0
6443 | 0
6444 | 0
6445 | 0
6446 | 0
6447 | 1
6448 | 0
6449 | 0
6450 | 0
6451 | 0
6452 | 0
6453 | 0
6454 | 0
6455 | 0
6456 | 0
6457 | 0
6458 | 0
6459 | 0
6460 | 0
6461 | 0
6462 | 0
6463 | 1
6464 | 0
6465 | 0
6466 | 0
6467 | 0
6468 | 0
6469 | 1
6470 | 0
6471 | 0
6472 | 0
6473 | 0
6474 | 0
6475 | 0
6476 | 0
6477 | 0
6478 | 0
6479 | 0
6480 | 0
6481 | 0
6482 | 0
6483 | 1
6484 | 0
6485 | 0
6486 | 0
6487 | 0
6488 | 0
6489 | 0
6490 | 0
6491 | 0
6492 | 0
6493 | 0
6494 | 0
6495 | 0
6496 | 0
6497 | 0
6498 | 0
6499 | 0
6500 | 0
6501 | 0
6502 | 0
6503 | 1
6504 | 0
6505 | 0
6506 | 0
6507 | 0
6508 | 0
6509 | 0
6510 | 0
6511 | 0
6512 | 0
6513 | 1
6514 | 0
6515 | 0
6516 | 0
6517 | 0
6518 | 1
6519 | 0
6520 | 1
6521 | 0
6522 | 0
6523 | 0
6524 | 0
6525 | 0
6526 | 0
6527 | 1
6528 | 0
6529 | 0
6530 | 0
6531 | 0
6532 | 1
6533 | 0
6534 | 0
6535 | 0
6536 | 1
6537 | 0
6538 | 0
6539 | 0
6540 | 0
6541 | 0
6542 | 1
6543 | 0
6544 | 0
6545 | 0
6546 | 0
6547 | 1
6548 | 0
6549 | 0
6550 | 0
6551 | 0
6552 | 0
6553 | 0
6554 | 0
6555 | 0
6556 | 0
6557 | 0
6558 | 0
6559 | 1
6560 | 1
6561 | 0
6562 | 0
6563 | 0
6564 | 0
6565 | 0
6566 | 0
6567 | 0
6568 | 0
6569 | 0
6570 | 0
6571 | 0
6572 | 0
6573 | 0
6574 | 0
6575 | 0
6576 | 0
6577 | 0
6578 | 0
6579 | 0
6580 | 0
6581 | 0
6582 | 0
6583 | 0
6584 | 1
6585 | 0
6586 | 0
6587 | 0
6588 | 0
6589 | 0
6590 | 0
6591 | 0
6592 | 0
6593 | 0
6594 | 0
6595 | 0
6596 | 0
6597 | 0
6598 | 0
6599 | 0
6600 | 0
6601 | 0
6602 | 0
6603 | 0
6604 | 0
6605 | 0
6606 | 0
6607 | 0
6608 | 0
6609 | 0
6610 | 0
6611 | 0
6612 | 0
6613 | 0
6614 | 0
6615 | 0
6616 | 0
6617 | 0
6618 | 0
6619 | 1
6620 | 0
6621 | 0
6622 | 0
6623 | 0
6624 | 0
6625 | 0
6626 | 0
6627 | 0
6628 | 0
6629 | 0
6630 | 0
6631 | 0
6632 | 0
6633 | 0
6634 | 0
6635 | 0
6636 | 0
6637 | 0
6638 | 0
6639 | 1
6640 | 0
6641 | 0
6642 | 0
6643 | 0
6644 | 0
6645 | 0
6646 | 0
6647 | 0
6648 | 1
6649 | 0
6650 | 0
6651 | 0
6652 | 1
6653 | 0
6654 | 0
6655 | 0
6656 | 0
6657 | 0
6658 | 0
6659 | 0
6660 | 0
6661 | 0
6662 | 0
6663 | 0
6664 | 1
6665 | 0
6666 | 0
6667 | 0
6668 | 0
6669 | 0
6670 | 0
6671 | 0
6672 | 0
6673 | 0
6674 | 0
6675 | 0
6676 | 0
6677 | 0
6678 | 0
6679 | 0
6680 | 0
6681 | 0
6682 | 0
6683 | 0
6684 | 0
6685 | 0
6686 | 0
6687 | 0
6688 | 1
6689 | 0
6690 | 0
6691 | 1
6692 | 0
6693 | 0
6694 | 0
6695 | 0
6696 | 0
6697 | 0
6698 | 0
6699 | 0
6700 | 0
6701 | 0
6702 | 1
6703 | 0
6704 | 0
6705 | 0
6706 | 0
6707 | 1
6708 | 0
6709 | 0
6710 | 0
6711 | 1
6712 | 1
6713 | 0
6714 | 0
6715 | 1
6716 | 0
6717 | 0
6718 | 0
6719 | 0
6720 | 0
6721 | 0
6722 | 0
6723 | 0
6724 | 1
6725 | 0
6726 | 0
6727 | 0
6728 | 0
6729 | 0
6730 | 0
6731 | 0
6732 | 0
6733 | 0
6734 | 0
6735 | 0
6736 | 0
6737 | 0
6738 | 0
6739 | 0
6740 | 0
6741 | 0
6742 | 0
6743 | 0
6744 | 0
6745 | 0
6746 | 0
6747 | 0
6748 | 0
6749 | 0
6750 | 0
6751 | 0
6752 | 0
6753 | 0
6754 | 0
6755 | 0
6756 | 0
6757 | 0
6758 | 0
6759 | 0
6760 | 0
6761 | 0
6762 | 0
6763 | 0
6764 | 0
6765 | 0
6766 | 0
6767 | 0
6768 | 0
6769 | 0
6770 | 0
6771 | 0
6772 | 1
6773 | 0
6774 | 1
6775 | 0
6776 | 0
6777 | 0
6778 | 0
6779 | 0
6780 | 0
6781 | 0
6782 | 0
6783 | 0
6784 | 0
6785 | 0
6786 | 0
6787 | 0
6788 | 0
6789 | 0
6790 | 0
6791 | 0
6792 | 0
6793 | 0
6794 | 0
6795 | 0
6796 | 0
6797 | 0
6798 | 0
6799 | 0
6800 | 1
6801 | 0
6802 | 0
6803 | 0
6804 | 0
6805 | 0
6806 | 0
6807 | 0
6808 | 0
6809 | 0
6810 | 0
6811 | 0
6812 | 1
6813 | 0
6814 | 0
6815 | 0
6816 | 0
6817 | 0
6818 | 0
6819 | 0
6820 | 0
6821 | 0
6822 | 0
6823 | 1
6824 | 0
6825 | 0
6826 | 0
6827 | 0
6828 | 0
6829 | 0
6830 | 1
6831 | 0
6832 | 0
6833 | 0
6834 | 0
6835 | 0
6836 | 0
6837 | 0
6838 | 0
6839 | 0
6840 | 0
6841 | 1
6842 | 0
6843 | 0
6844 | 0
6845 | 0
6846 | 0
6847 | 0
6848 | 0
6849 | 0
6850 | 0
6851 | 0
6852 | 0
6853 | 0
6854 | 0
6855 | 0
6856 | 0
6857 | 0
6858 | 1
6859 | 1
6860 | 0
6861 | 0
6862 | 0
6863 | 0
6864 | 1
6865 | 0
6866 | 0
6867 | 0
6868 | 0
6869 | 0
6870 | 0
6871 | 0
6872 | 0
6873 | 0
6874 | 0
6875 | 0
6876 | 0
6877 | 0
6878 | 0
6879 | 1
6880 | 0
6881 | 0
6882 | 0
6883 | 0
6884 | 0
6885 | 0
6886 | 0
6887 | 0
6888 | 0
6889 | 0
6890 | 0
6891 | 0
6892 | 0
6893 | 0
6894 | 0
6895 | 0
6896 | 0
6897 | 0
6898 | 0
6899 | 0
6900 | 0
6901 | 0
6902 | 0
6903 | 0
6904 | 0
6905 | 0
6906 | 0
6907 | 0
6908 | 0
6909 | 0
6910 | 0
6911 | 0
6912 | 0
6913 | 0
6914 | 0
6915 | 0
6916 | 0
6917 | 0
6918 | 0
6919 | 0
6920 | 0
6921 | 0
6922 | 0
6923 | 0
6924 | 0
6925 | 0
6926 | 0
6927 | 0
6928 | 0
6929 | 0
6930 | 0
6931 | 0
6932 | 0
6933 | 0
6934 | 0
6935 | 0
6936 | 0
6937 | 0
6938 | 0
6939 | 1
6940 | 0
6941 | 0
6942 | 0
6943 | 0
6944 | 0
6945 | 0
6946 | 0
6947 | 0
6948 | 0
6949 | 0
6950 | 0
6951 | 0
6952 | 0
6953 | 0
6954 | 0
6955 | 0
6956 | 0
6957 | 0
6958 | 0
6959 | 0
6960 | 0
6961 | 0
6962 | 1
6963 | 0
6964 | 0
6965 | 0
6966 | 1
6967 | 0
6968 | 0
6969 | 0
6970 | 0
6971 | 0
6972 | 0
6973 | 0
6974 | 0
6975 | 0
6976 | 0
6977 | 0
6978 | 0
6979 | 0
6980 | 0
6981 | 0
6982 | 0
6983 | 0
6984 | 1
6985 | 0
6986 | 0
6987 | 0
6988 | 0
6989 | 0
6990 | 0
6991 | 0
6992 | 0
6993 | 0
6994 | 0
6995 | 1
6996 | 1
6997 | 0
6998 | 0
6999 | 0
7000 | 0
7001 | 0
7002 | 1
7003 | 1
7004 | 0
7005 | 0
7006 | 0
7007 | 0
7008 | 0
7009 | 0
7010 | 0
7011 | 0
7012 | 0
7013 | 0
7014 | 0
7015 | 0
7016 | 0
7017 | 0
7018 | 0
7019 | 0
7020 | 0
7021 | 1
7022 | 1
7023 | 0
7024 | 0
7025 | 0
7026 | 0
7027 | 0
7028 | 0
7029 | 0
7030 | 0
7031 | 0
7032 | 0
7033 | 0
7034 | 0
7035 | 1
7036 | 0
7037 | 0
7038 | 0
7039 | 0
7040 | 0
7041 | 0
7042 | 0
7043 | 1
7044 | 1
7045 | 0
7046 | 1
7047 | 0
7048 | 0
7049 | 0
7050 | 0
7051 | 0
7052 | 0
7053 | 0
7054 | 0
7055 | 0
7056 | 0
7057 | 1
7058 | 0
7059 | 0
7060 | 0
7061 | 0
7062 | 0
7063 | 0
7064 | 0
7065 | 0
7066 | 0
7067 | 0
7068 | 0
7069 | 0
7070 | 0
7071 | 0
7072 | 0
7073 | 0
7074 | 0
7075 | 0
7076 | 0
7077 | 0
7078 | 0
7079 | 0
7080 | 0
7081 | 0
7082 | 0
7083 | 0
7084 | 0
7085 | 0
7086 | 1
7087 | 0
7088 | 1
7089 | 0
7090 | 1
7091 | 0
7092 | 0
7093 | 0
7094 | 0
7095 | 0
7096 | 1
7097 | 0
7098 | 0
7099 | 0
7100 | 0
7101 | 0
7102 | 0
7103 | 0
7104 | 1
7105 | 0
7106 | 1
7107 | 1
7108 | 0
7109 | 0
7110 | 0
7111 | 0
7112 | 1
7113 | 0
7114 | 0
7115 | 0
7116 | 0
7117 | 0
7118 | 0
7119 | 1
7120 | 0
7121 | 0
7122 | 0
7123 | 0
7124 | 0
7125 | 0
7126 | 1
7127 | 0
7128 | 0
7129 | 0
7130 | 0
7131 | 0
7132 | 0
7133 | 0
7134 | 0
7135 | 0
7136 | 0
7137 | 0
7138 | 0
7139 | 0
7140 | 0
7141 | 0
7142 | 0
7143 | 0
7144 | 0
7145 | 1
7146 | 0
7147 | 0
7148 | 0
7149 | 0
7150 | 0
7151 | 0
7152 | 0
7153 | 0
7154 | 0
7155 | 1
7156 | 0
7157 | 0
7158 | 0
7159 | 0
7160 | 0
7161 | 0
7162 | 0
7163 | 0
7164 | 0
7165 | 0
7166 | 0
7167 | 0
7168 | 0
7169 | 0
7170 | 0
7171 | 0
7172 | 0
7173 | 0
7174 | 0
7175 | 0
7176 | 0
7177 | 0
7178 | 0
7179 | 0
7180 | 0
7181 | 0
7182 | 0
7183 | 0
7184 | 0
7185 | 0
7186 | 0
7187 | 0
7188 | 0
7189 | 0
7190 | 0
7191 | 0
7192 | 1
7193 | 0
7194 | 0
7195 | 0
7196 | 0
7197 | 0
7198 | 0
7199 | 0
7200 | 0
7201 | 0
7202 | 0
7203 | 0
7204 | 0
7205 | 0
7206 | 0
7207 | 0
7208 | 0
7209 | 0
7210 | 0
7211 | 1
7212 | 0
7213 | 0
7214 | 0
7215 | 0
7216 | 0
7217 | 0
7218 | 0
7219 | 0
7220 | 0
7221 | 0
7222 | 0
7223 | 1
7224 | 0
7225 | 0
7226 | 0
7227 | 0
7228 | 0
7229 | 0
7230 | 1
7231 | 1
7232 | 0
7233 | 0
7234 | 0
7235 | 0
7236 | 0
7237 | 0
7238 | 0
7239 | 0
7240 | 0
7241 | 0
7242 | 0
7243 | 0
7244 | 0
7245 | 1
7246 | 0
7247 | 0
7248 | 0
7249 | 0
7250 | 0
7251 | 0
7252 | 1
7253 | 1
7254 | 0
7255 | 0
7256 | 0
7257 | 0
7258 | 0
7259 | 0
7260 | 0
7261 | 0
7262 | 0
7263 | 0
7264 | 0
7265 | 0
7266 | 0
7267 | 1
7268 | 0
7269 | 0
7270 | 0
7271 | 0
7272 | 0
7273 | 0
7274 | 0
7275 | 0
7276 | 0
7277 | 0
7278 | 0
7279 | 0
7280 | 0
7281 | 0
7282 | 0
7283 | 0
7284 | 1
7285 | 0
7286 | 0
7287 | 0
7288 | 0
7289 | 0
7290 | 0
7291 | 0
7292 | 0
7293 | 0
7294 | 0
7295 | 1
7296 | 0
7297 | 0
7298 | 0
7299 | 0
7300 | 0
7301 | 0
7302 | 0
7303 | 0
7304 | 0
7305 | 0
7306 | 0
7307 | 0
7308 | 0
7309 | 0
7310 | 0
7311 | 0
7312 | 0
7313 | 0
7314 | 0
7315 | 0
7316 | 0
7317 | 0
7318 | 0
7319 | 0
7320 | 0
7321 | 0
7322 | 0
7323 | 1
7324 | 0
7325 | 0
7326 | 0
7327 | 0
7328 | 0
7329 | 0
7330 | 1
7331 | 0
7332 | 0
7333 | 0
7334 | 0
7335 | 0
7336 | 0
7337 | 1
7338 | 0
7339 | 0
7340 | 0
7341 | 0
7342 | 0
7343 | 0
7344 | 1
7345 | 0
7346 | 0
7347 | 0
7348 | 0
7349 | 0
7350 | 0
7351 | 0
7352 | 0
7353 | 0
7354 | 0
7355 | 0
7356 | 0
7357 | 1
7358 | 0
7359 | 0
7360 | 1
7361 | 0
7362 | 0
7363 | 0
7364 | 0
7365 | 0
7366 | 0
7367 | 0
7368 | 0
7369 | 0
7370 | 0
7371 | 0
7372 | 0
7373 | 0
7374 | 0
7375 | 0
7376 | 0
7377 | 0
7378 | 1
7379 | 0
7380 | 0
7381 | 0
7382 | 0
7383 | 0
7384 | 1
7385 | 0
7386 | 0
7387 | 0
7388 | 0
7389 | 0
7390 | 0
7391 | 0
7392 | 0
7393 | 0
7394 | 1
7395 | 0
7396 | 0
7397 | 0
7398 | 1
7399 | 0
7400 | 0
7401 | 0
7402 | 0
7403 | 0
7404 | 0
7405 | 0
7406 | 0
7407 | 0
7408 | 0
7409 | 0
7410 | 0
7411 | 0
7412 | 0
7413 | 1
7414 | 0
7415 | 0
7416 | 0
7417 | 0
7418 | 0
7419 | 0
7420 | 0
7421 | 0
7422 | 0
7423 | 0
7424 | 0
7425 | 0
7426 | 0
7427 | 0
7428 | 0
7429 | 0
7430 | 0
7431 | 0
7432 | 0
7433 | 0
7434 | 0
7435 | 1
7436 | 0
7437 | 0
7438 | 0
7439 | 1
7440 | 0
7441 | 0
7442 | 0
7443 | 0
7444 | 1
7445 | 0
7446 | 0
7447 | 0
7448 | 0
7449 | 0
7450 | 0
7451 | 0
7452 | 0
7453 | 0
7454 | 0
7455 | 0
7456 | 0
7457 | 0
7458 | 0
7459 | 0
7460 | 0
7461 | 0
7462 | 0
7463 | 0
7464 | 0
7465 | 0
7466 | 0
7467 | 0
7468 | 0
7469 | 0
7470 | 0
7471 | 0
7472 | 0
7473 | 0
7474 | 1
7475 | 0
7476 | 1
7477 | 0
7478 | 0
7479 | 1
7480 | 0
7481 | 0
7482 | 0
7483 | 0
7484 | 1
7485 | 0
7486 | 0
7487 | 1
7488 | 1
7489 | 0
7490 | 0
7491 | 0
7492 | 0
7493 | 0
7494 | 0
7495 | 0
7496 | 1
7497 | 1
7498 | 0
7499 | 0
7500 | 0
7501 | 0
7502 | 0
7503 | 0
7504 | 1
7505 | 0
7506 | 0
7507 | 0
7508 | 0
7509 | 1
7510 | 0
7511 | 0
7512 | 0
7513 | 0
7514 | 0
7515 | 1
7516 | 0
7517 | 0
7518 | 0
7519 | 0
7520 | 0
7521 | 0
7522 | 0
7523 | 1
7524 | 0
7525 | 0
7526 | 0
7527 | 0
7528 | 0
7529 | 1
7530 | 0
7531 | 0
7532 | 0
7533 | 0
7534 | 0
7535 | 0
7536 | 0
7537 | 0
7538 | 0
7539 | 0
7540 | 0
7541 | 0
7542 | 0
7543 | 0
7544 | 0
7545 | 0
7546 | 0
7547 | 0
7548 | 0
7549 | 0
7550 | 0
7551 | 0
7552 | 0
7553 | 0
7554 | 0
7555 | 0
7556 | 0
7557 | 0
7558 | 1
7559 | 0
7560 | 0
7561 | 0
7562 | 0
7563 | 1
7564 | 0
7565 | 0
7566 | 0
7567 | 0
7568 | 0
7569 | 0
7570 | 0
7571 | 1
7572 | 0
7573 | 0
7574 | 0
7575 | 0
7576 | 0
7577 | 1
7578 | 0
7579 | 0
7580 | 0
7581 | 0
7582 | 0
7583 | 0
7584 | 0
7585 | 0
7586 | 1
7587 | 0
7588 | 0
7589 | 0
7590 | 0
7591 | 0
7592 | 0
7593 | 0
7594 | 0
7595 | 1
7596 | 0
7597 | 0
7598 | 0
7599 | 0
7600 | 0
7601 | 0
7602 | 1
7603 | 0
7604 | 0
7605 | 0
7606 | 0
7607 | 0
7608 | 0
7609 | 0
7610 | 0
7611 | 0
7612 | 0
7613 | 0
7614 | 0
7615 | 1
7616 | 0
7617 | 0
7618 | 0
7619 | 0
7620 | 0
7621 | 0
7622 | 1
7623 | 0
7624 | 0
7625 | 0
7626 | 0
7627 | 0
7628 | 0
7629 | 0
7630 | 0
7631 | 0
7632 | 1
7633 | 0
7634 | 0
7635 | 1
7636 | 0
7637 | 0
7638 | 0
7639 | 0
7640 | 0
7641 | 0
7642 | 0
7643 | 0
7644 | 0
7645 | 0
7646 | 0
7647 | 0
7648 | 0
7649 | 0
7650 | 0
7651 | 0
7652 | 0
7653 | 0
7654 | 1
7655 | 0
7656 | 0
7657 | 0
7658 | 0
7659 | 0
7660 | 1
7661 | 0
7662 | 1
7663 | 1
7664 | 0
7665 | 0
7666 | 0
7667 | 0
7668 | 0
7669 | 0
7670 | 0
7671 | 0
7672 | 0
7673 | 0
7674 | 0
7675 | 0
7676 | 0
7677 | 0
7678 | 0
7679 | 0
7680 | 0
7681 | 0
7682 | 0
7683 | 0
7684 | 1
7685 | 0
7686 | 0
7687 | 0
7688 | 0
7689 | 0
7690 | 0
7691 | 0
7692 | 0
7693 | 0
7694 | 0
7695 | 0
7696 | 0
7697 | 1
7698 | 0
7699 | 1
7700 | 0
7701 | 0
7702 | 0
7703 | 1
7704 | 0
7705 | 0
7706 | 0
7707 | 0
7708 | 0
7709 | 0
7710 | 0
7711 | 0
7712 | 0
7713 | 1
7714 | 0
7715 | 0
7716 | 0
7717 | 0
7718 | 1
7719 | 0
7720 | 0
7721 | 0
7722 | 0
7723 | 0
7724 | 0
7725 | 0
7726 | 0
7727 | 1
7728 | 0
7729 | 0
7730 | 0
7731 | 0
7732 | 0
7733 | 0
7734 | 1
7735 | 0
7736 | 0
7737 | 0
7738 | 0
7739 | 0
7740 | 0
7741 | 0
7742 | 0
7743 | 0
7744 | 0
7745 | 0
7746 | 0
7747 | 0
7748 | 1
7749 | 0
7750 | 0
7751 | 0
7752 | 0
7753 | 0
7754 | 0
7755 | 0
7756 | 0
7757 | 0
7758 | 0
7759 | 1
7760 | 0
7761 | 0
7762 | 0
7763 | 0
7764 | 0
7765 | 0
7766 | 0
7767 | 0
7768 | 0
7769 | 0
7770 | 0
7771 | 0
7772 | 0
7773 | 0
7774 | 0
7775 | 0
7776 | 0
7777 | 0
7778 | 0
7779 | 0
7780 | 0
7781 | 1
7782 | 0
7783 | 0
7784 | 1
7785 | 0
7786 | 0
7787 | 0
7788 | 0
7789 | 0
7790 | 0
7791 | 0
7792 | 0
7793 | 0
7794 | 0
7795 | 0
7796 | 0
7797 | 0
7798 | 0
7799 | 0
7800 | 0
7801 | 0
7802 | 0
7803 | 0
7804 | 0
7805 | 0
7806 | 0
7807 | 0
7808 | 0
7809 | 0
7810 | 0
7811 | 0
7812 | 0
7813 | 0
7814 | 0
7815 | 0
7816 | 0
7817 | 0
7818 | 0
7819 | 0
7820 | 0
7821 | 0
7822 | 0
7823 | 0
7824 | 1
7825 | 0
7826 | 0
7827 | 0
7828 | 0
7829 | 0
7830 | 0
7831 | 0
7832 | 0
7833 | 0
7834 | 0
7835 | 0
7836 | 0
7837 | 0
7838 | 0
7839 | 1
7840 | 0
7841 | 0
7842 | 0
7843 | 0
7844 | 1
7845 | 0
7846 | 0
7847 | 0
7848 | 0
7849 | 0
7850 | 0
7851 | 0
7852 | 0
7853 | 1
7854 | 0
7855 | 0
7856 | 0
7857 | 0
7858 | 0
7859 | 0
7860 | 0
7861 | 0
7862 | 0
7863 | 0
7864 | 0
7865 | 0
7866 | 0
7867 | 0
7868 | 0
7869 | 0
7870 | 0
7871 | 0
7872 | 0
7873 | 0
7874 | 0
7875 | 1
7876 | 0
7877 | 0
7878 | 0
7879 | 0
7880 | 0
7881 | 0
7882 | 0
7883 | 0
7884 | 1
7885 | 0
7886 | 0
7887 | 0
7888 | 0
7889 | 0
7890 | 1
7891 | 0
7892 | 0
7893 | 0
7894 | 0
7895 | 0
7896 | 0
7897 | 0
7898 | 0
7899 | 0
7900 | 1
7901 | 0
7902 | 0
7903 | 0
7904 | 0
7905 | 0
7906 | 0
7907 | 0
7908 | 0
7909 | 0
7910 | 0
7911 | 0
7912 | 0
7913 | 1
7914 | 1
7915 | 1
7916 | 0
7917 | 1
7918 | 0
7919 | 0
7920 | 0
7921 | 0
7922 | 0
7923 | 1
7924 | 0
7925 | 0
7926 | 0
7927 | 0
7928 | 0
7929 | 0
7930 | 0
7931 | 0
7932 | 0
7933 | 0
7934 | 0
7935 | 0
7936 | 0
7937 | 1
7938 | 1
7939 | 1
7940 | 0
7941 | 0
7942 | 0
7943 | 0
7944 | 0
7945 | 0
7946 | 0
7947 | 0
7948 | 0
7949 | 0
7950 | 0
7951 | 0
7952 | 0
7953 | 1
7954 | 0
7955 | 0
7956 | 1
7957 | 0
7958 | 0
7959 | 0
7960 | 0
7961 | 0
7962 | 0
7963 | 0
7964 | 0
7965 | 1
7966 | 0
7967 | 0
7968 | 0
7969 | 0
7970 | 0
7971 | 0
7972 | 0
7973 | 0
7974 | 0
7975 | 0
7976 | 0
7977 | 0
7978 | 1
7979 | 0
7980 | 0
7981 | 1
7982 | 0
7983 | 0
7984 | 0
7985 | 0
7986 | 0
7987 | 0
7988 | 0
7989 | 1
7990 | 1
7991 | 0
7992 | 0
7993 | 0
7994 | 0
7995 | 0
7996 | 1
7997 | 0
7998 | 0
7999 | 0
8000 | 0
8001 | 0
8002 | 1
8003 | 0
8004 | 0
8005 | 0
8006 | 0
8007 | 0
8008 | 0
8009 | 0
8010 | 0
8011 | 0
8012 | 0
8013 | 0
8014 | 0
8015 | 0
8016 | 0
8017 | 1
8018 | 0
8019 | 0
8020 | 0
8021 | 1
8022 | 0
8023 | 0
8024 | 0
8025 | 0
8026 | 0
8027 | 0
8028 | 0
8029 | 0
8030 | 0
8031 | 0
8032 | 0
8033 | 0
8034 | 0
8035 | 0
8036 | 0
8037 | 0
8038 | 0
8039 | 0
8040 | 0
8041 | 0
8042 | 0
8043 | 0
8044 | 0
8045 | 0
8046 | 0
8047 | 0
8048 | 0
8049 | 0
8050 | 0
8051 | 0
8052 | 0
8053 | 0
8054 | 0
8055 | 0
8056 | 0
8057 | 0
8058 | 0
8059 | 0
8060 | 0
8061 | 0
8062 | 0
8063 | 0
8064 | 0
8065 | 0
8066 | 0
8067 | 0
8068 | 0
8069 | 0
8070 | 1
8071 | 0
8072 | 0
8073 | 0
8074 | 0
8075 | 0
8076 | 1
8077 | 1
8078 | 0
8079 | 0
8080 | 1
8081 | 0
8082 | 0
8083 | 0
8084 | 0
8085 | 1
8086 | 0
8087 | 0
8088 | 0
8089 | 1
8090 | 0
8091 | 0
8092 | 0
8093 | 0
8094 | 0
8095 | 0
8096 | 0
8097 | 0
8098 | 0
8099 | 0
8100 | 0
8101 | 0
8102 | 0
8103 | 0
8104 | 0
8105 | 0
8106 | 0
8107 | 0
8108 | 0
8109 | 0
8110 | 0
8111 | 0
8112 | 0
8113 | 0
8114 | 0
8115 | 0
8116 | 0
8117 | 0
8118 | 0
8119 | 0
8120 | 0
8121 | 0
8122 | 0
8123 | 0
8124 | 0
8125 | 0
8126 | 0
8127 | 0
8128 | 0
8129 | 0
8130 | 1
8131 | 0
8132 | 0
8133 | 0
8134 | 0
8135 | 0
8136 | 0
8137 | 0
8138 | 0
8139 | 0
8140 | 0
8141 | 0
8142 | 0
8143 | 0
8144 | 1
8145 | 0
8146 | 0
8147 | 1
8148 | 0
8149 | 0
8150 | 0
8151 | 0
8152 | 0
8153 | 0
8154 | 0
8155 | 0
8156 | 0
8157 | 0
8158 | 0
8159 | 0
8160 | 0
8161 | 0
8162 | 0
8163 | 0
8164 | 0
8165 | 0
8166 | 0
8167 | 0
8168 | 1
8169 | 1
8170 | 0
8171 | 0
8172 | 0
8173 | 0
8174 | 0
8175 | 0
8176 | 0
8177 | 0
8178 | 0
8179 | 0
8180 | 0
8181 | 1
8182 | 0
8183 | 0
8184 | 0
8185 | 1
8186 | 0
8187 | 0
8188 | 0
8189 | 0
8190 | 0
8191 | 0
8192 | 1
8193 | 0
8194 | 0
8195 | 0
8196 | 0
8197 | 1
8198 | 0
8199 | 0
8200 | 0
8201 | 0
8202 | 0
8203 | 0
8204 | 0
8205 | 0
8206 | 0
8207 | 0
8208 | 0
8209 | 0
8210 | 0
8211 | 0
8212 | 0
8213 | 0
8214 | 0
8215 | 0
8216 | 0
8217 | 0
8218 | 0
8219 | 0
8220 | 0
8221 | 0
8222 | 0
8223 | 1
8224 | 0
8225 | 0
8226 | 0
8227 | 0
8228 | 1
8229 | 1
8230 | 0
8231 | 0
8232 | 1
8233 | 0
8234 | 0
8235 | 0
8236 | 0
8237 | 0
8238 | 0
8239 | 0
8240 | 0
8241 | 0
8242 | 1
8243 | 0
8244 | 0
8245 | 0
8246 | 0
8247 | 0
8248 | 0
8249 | 1
8250 | 0
8251 | 1
8252 | 0
8253 | 1
8254 | 0
8255 | 0
8256 | 1
8257 | 0
8258 | 0
8259 | 0
8260 | 0
8261 | 0
8262 | 0
8263 | 0
8264 | 0
8265 | 0
8266 | 0
8267 | 0
8268 | 0
8269 | 0
8270 | 1
8271 | 0
8272 | 0
8273 | 0
8274 | 0
8275 | 0
8276 | 0
8277 | 0
8278 | 0
8279 | 0
8280 | 0
8281 | 0
8282 | 0
8283 | 0
8284 | 0
8285 | 0
8286 | 0
8287 | 1
8288 | 0
8289 | 0
8290 | 0
8291 | 0
8292 | 0
8293 | 0
8294 | 0
8295 | 0
8296 | 0
8297 | 0
8298 | 0
8299 | 1
8300 | 0
8301 | 0
8302 | 0
8303 | 0
8304 | 0
8305 | 0
8306 | 0
8307 | 0
8308 | 0
8309 | 0
8310 | 0
8311 | 0
8312 | 0
8313 | 0
8314 | 0
8315 | 0
8316 | 0
8317 | 0
8318 | 1
8319 | 0
8320 | 0
8321 | 1
8322 | 0
8323 | 0
8324 | 0
8325 | 0
8326 | 0
8327 | 0
8328 | 0
8329 | 1
8330 | 0
8331 | 0
8332 | 0
8333 | 0
8334 | 0
8335 | 0
8336 | 0
8337 | 1
8338 | 0
8339 | 0
8340 | 0
8341 | 0
8342 | 0
8343 | 0
8344 | 0
8345 | 0
8346 | 0
8347 | 0
8348 | 0
8349 | 0
8350 | 0
8351 | 0
8352 | 0
8353 | 0
8354 | 0
8355 | 0
8356 | 0
8357 | 0
8358 | 0
8359 | 0
8360 | 0
8361 | 0
8362 | 0
8363 | 0
8364 | 0
8365 | 0
8366 | 0
8367 | 0
8368 | 0
8369 | 0
8370 | 0
8371 | 0
8372 | 0
8373 | 0
8374 | 0
8375 | 0
8376 | 0
8377 | 0
8378 | 0
8379 | 0
8380 | 0
8381 | 0
8382 | 0
8383 | 0
8384 | 0
8385 | 0
8386 | 0
8387 | 0
8388 | 0
8389 | 1
8390 | 0
8391 | 0
8392 | 0
8393 | 0
8394 | 0
8395 | 0
8396 | 0
8397 | 1
8398 | 0
8399 | 1
8400 | 0
8401 | 0
8402 | 0
8403 | 0
8404 | 0
8405 | 1
8406 | 0
8407 | 0
8408 | 0
8409 | 0
8410 | 0
8411 | 0
8412 | 0
8413 | 0
8414 | 0
8415 | 0
8416 | 0
8417 | 0
8418 | 1
8419 | 0
8420 | 0
8421 | 0
8422 | 0
8423 | 0
8424 | 0
8425 | 1
8426 | 0
8427 | 0
8428 | 0
8429 | 0
8430 | 0
8431 | 0
8432 | 0
8433 | 0
8434 | 0
8435 | 1
8436 | 0
8437 | 1
8438 | 0
8439 | 0
8440 | 0
8441 | 0
8442 | 0
8443 | 0
8444 | 0
8445 | 1
8446 | 0
8447 | 0
8448 | 0
8449 | 0
8450 | 0
8451 | 0
8452 | 0
8453 | 0
8454 | 0
8455 | 1
8456 | 0
8457 | 0
8458 | 1
8459 | 0
8460 | 0
8461 | 1
8462 | 0
8463 | 0
8464 | 0
8465 | 0
8466 | 0
8467 | 0
8468 | 0
8469 | 0
8470 | 0
8471 | 0
8472 | 0
8473 | 0
8474 | 0
8475 | 1
8476 | 0
8477 | 0
8478 | 0
8479 | 0
8480 | 1
8481 | 0
8482 | 0
8483 | 0
8484 | 1
8485 | 0
8486 | 0
8487 | 1
8488 | 0
8489 | 0
8490 | 0
8491 | 0
8492 | 0
8493 | 0
8494 | 0
8495 | 0
8496 | 0
8497 | 0
8498 | 1
8499 | 0
8500 | 0
8501 | 0
8502 | 0
8503 | 0
8504 | 0
8505 | 0
8506 | 0
8507 | 0
8508 | 0
8509 | 0
8510 | 0
8511 | 0
8512 | 0
8513 | 0
8514 | 0
8515 | 0
8516 | 0
8517 | 0
8518 | 0
8519 | 0
8520 | 0
8521 | 0
8522 | 0
8523 | 0
8524 | 1
8525 | 0
8526 | 0
8527 | 0
8528 | 0
8529 | 0
8530 | 1
8531 | 0
8532 | 0
8533 | 0
8534 | 0
8535 | 0
8536 | 0
8537 | 0
8538 | 0
8539 | 0
8540 | 0
8541 | 1
8542 | 0
8543 | 1
8544 | 0
8545 | 0
8546 | 0
8547 | 0
8548 | 0
8549 | 0
8550 | 1
8551 | 0
8552 | 0
8553 | 0
8554 | 0
8555 | 0
8556 | 0
8557 | 1
8558 | 1
8559 | 0
8560 | 0
8561 | 0
8562 | 0
8563 | 0
8564 | 0
8565 | 0
8566 | 1
8567 | 0
8568 | 0
8569 | 1
8570 | 0
8571 | 0
8572 | 0
8573 | 0
8574 | 0
8575 | 1
8576 | 0
8577 | 0
8578 | 0
8579 | 0
8580 | 0
8581 | 0
8582 | 1
8583 | 0
8584 | 0
8585 | 0
8586 | 0
8587 | 0
8588 | 0
8589 | 0
8590 | 0
8591 | 0
8592 | 0
8593 | 0
8594 | 0
8595 | 0
8596 | 0
8597 | 0
8598 | 0
8599 | 0
8600 | 0
8601 | 0
8602 | 0
8603 | 0
8604 | 0
8605 | 0
8606 | 0
8607 | 0
8608 | 0
8609 | 0
8610 | 1
8611 | 0
8612 | 0
8613 | 0
8614 | 0
8615 | 0
8616 | 0
8617 | 0
8618 | 0
8619 | 0
8620 | 1
8621 | 0
8622 | 0
8623 | 1
8624 | 0
8625 | 0
8626 | 0
8627 | 0
8628 | 0
8629 | 0
8630 | 0
8631 | 1
8632 | 0
8633 | 0
8634 | 0
8635 | 0
8636 | 0
8637 | 0
8638 | 0
8639 | 0
8640 | 0
8641 | 0
8642 | 0
8643 | 0
8644 | 0
8645 | 0
8646 | 0
8647 | 0
8648 | 0
8649 | 0
8650 | 0
8651 | 1
8652 | 0
8653 | 0
8654 | 0
8655 | 0
8656 | 0
8657 | 0
8658 | 0
8659 | 0
8660 | 0
8661 | 0
8662 | 1
8663 | 0
8664 | 0
8665 | 0
8666 | 0
8667 | 0
8668 | 0
8669 | 0
8670 | 0
8671 | 0
8672 | 0
8673 | 0
8674 | 0
8675 | 0
8676 | 0
8677 | 0
8678 | 0
8679 | 0
8680 | 0
8681 | 1
8682 | 0
8683 | 0
8684 | 0
8685 | 0
8686 | 0
8687 | 0
8688 | 0
8689 | 0
8690 | 0
8691 | 0
8692 | 0
8693 | 0
8694 | 0
8695 | 0
8696 | 0
8697 | 0
8698 | 0
8699 | 0
8700 | 0
8701 | 0
8702 | 0
8703 | 1
8704 | 1
8705 | 0
8706 | 0
8707 | 0
8708 | 0
8709 | 0
8710 | 0
8711 | 1
8712 | 0
8713 | 0
8714 | 0
8715 | 0
8716 | 1
8717 | 0
8718 | 0
8719 | 0
8720 | 0
8721 | 0
8722 | 0
8723 | 0
8724 | 0
8725 | 0
8726 | 0
8727 | 0
8728 | 0
8729 | 0
8730 | 0
8731 | 0
8732 | 0
8733 | 0
8734 | 0
8735 | 0
8736 | 0
8737 | 1
8738 | 0
8739 | 0
8740 | 0
8741 | 0
8742 | 0
8743 | 0
8744 | 1
8745 | 1
8746 | 0
8747 | 0
8748 | 0
8749 | 0
8750 | 0
8751 | 0
8752 | 0
8753 | 0
8754 | 0
8755 | 0
8756 | 0
8757 | 0
8758 | 0
8759 | 0
8760 | 0
8761 | 0
8762 | 0
8763 | 0
8764 | 0
8765 | 0
8766 | 1
8767 | 0
8768 | 0
8769 | 0
8770 | 1
8771 | 0
8772 | 1
8773 | 1
8774 | 0
8775 | 0
8776 | 0
8777 | 0
8778 | 0
8779 | 1
8780 | 0
8781 | 0
8782 | 0
8783 | 0
8784 | 0
8785 | 0
8786 | 0
8787 | 0
8788 | 0
8789 | 0
8790 | 0
8791 | 0
8792 | 0
8793 | 0
8794 | 0
8795 | 0
8796 | 0
8797 | 1
8798 | 0
8799 | 0
8800 | 0
8801 | 0
8802 | 1
8803 | 0
8804 | 0
8805 | 1
8806 | 0
8807 | 0
8808 | 0
8809 | 0
8810 | 0
8811 | 0
8812 | 0
8813 | 0
8814 | 0
8815 | 0
8816 | 0
8817 | 0
8818 | 0
8819 | 0
8820 | 0
8821 | 0
8822 | 0
8823 | 0
8824 | 0
8825 | 0
8826 | 0
8827 | 0
8828 | 0
8829 | 0
8830 | 0
8831 | 0
8832 | 0
8833 | 0
8834 | 0
8835 | 0
8836 | 0
8837 | 0
8838 | 1
8839 | 0
8840 | 0
8841 | 0
8842 | 1
8843 | 1
8844 | 0
8845 | 0
8846 | 1
8847 | 0
8848 | 0
8849 | 0
8850 | 0
8851 | 0
8852 | 0
8853 | 0
8854 | 0
8855 | 0
8856 | 0
8857 | 0
8858 | 0
8859 | 0
8860 | 0
8861 | 1
8862 | 0
8863 | 0
8864 | 0
8865 | 0
8866 | 0
8867 | 0
8868 | 1
8869 | 0
8870 | 0
8871 | 0
8872 | 0
8873 | 0
8874 | 0
8875 | 1
8876 | 0
8877 | 0
8878 | 0
8879 | 0
8880 | 0
8881 | 0
8882 | 0
8883 | 0
8884 | 0
8885 | 0
8886 | 0
8887 | 0
8888 | 0
8889 | 0
8890 | 0
8891 | 0
8892 | 1
8893 | 0
8894 | 1
8895 | 0
8896 | 0
8897 | 0
8898 | 0
8899 | 1
8900 | 0
8901 | 1
8902 | 0
8903 | 0
8904 | 0
8905 | 0
8906 | 0
8907 | 0
8908 | 0
8909 | 0
8910 | 0
8911 | 0
8912 | 0
8913 | 0
8914 | 0
8915 | 0
8916 | 0
8917 | 0
8918 | 0
8919 | 0
8920 | 0
8921 | 0
8922 | 0
8923 | 0
8924 | 0
8925 | 0
8926 | 0
8927 | 1
8928 | 0
8929 | 0
8930 | 0
8931 | 0
8932 | 0
8933 | 0
8934 | 0
8935 | 0
8936 | 0
8937 | 1
8938 | 0
8939 | 0
8940 | 0
8941 | 0
8942 | 0
8943 | 0
8944 | 0
8945 | 0
8946 | 0
8947 | 0
8948 | 0
8949 | 0
8950 | 1
8951 | 0
8952 | 0
8953 | 0
8954 | 0
8955 | 0
8956 | 0
8957 | 0
8958 | 0
8959 | 0
8960 | 0
8961 | 0
8962 | 0
8963 | 1
8964 | 0
8965 | 0
8966 | 0
8967 | 0
8968 | 0
8969 | 0
8970 | 0
8971 | 0
8972 | 0
8973 | 0
8974 | 1
8975 | 0
8976 | 0
8977 | 0
8978 | 0
8979 | 0
8980 | 0
8981 | 0
8982 | 0
8983 | 0
8984 | 0
8985 | 1
8986 | 0
8987 | 0
8988 | 0
8989 | 0
8990 | 0
8991 | 0
8992 | 1
8993 | 0
8994 | 0
8995 | 1
8996 | 0
8997 | 0
8998 | 0
8999 | 0
9000 | 0
9001 | 0
9002 | 0
9003 | 0
9004 | 0
9005 | 0
9006 | 0
9007 | 0
9008 | 0
9009 | 0
9010 | 0
9011 | 0
9012 | 0
9013 | 0
9014 | 0
9015 | 0
9016 | 0
9017 | 0
9018 | 1
9019 | 0
9020 | 0
9021 | 1
9022 | 0
9023 | 0
9024 | 0
9025 | 0
9026 | 1
9027 | 0
9028 | 0
9029 | 0
9030 | 1
9031 | 0
9032 | 0
9033 | 0
9034 | 0
9035 | 0
9036 | 0
9037 | 0
9038 | 0
9039 | 0
9040 | 0
9041 | 0
9042 | 0
9043 | 0
9044 | 0
9045 | 0
9046 | 0
9047 | 0
9048 | 0
9049 | 0
9050 | 0
9051 | 0
9052 | 0
9053 | 0
9054 | 1
9055 | 0
9056 | 0
9057 | 0
9058 | 0
9059 | 1
9060 | 0
9061 | 0
9062 | 0
9063 | 0
9064 | 0
9065 | 1
9066 | 0
9067 | 0
9068 | 1
9069 | 0
9070 | 0
9071 | 0
9072 | 0
9073 | 0
9074 | 0
9075 | 0
9076 | 0
9077 | 0
9078 | 0
9079 | 0
9080 | 1
9081 | 0
9082 | 0
9083 | 0
9084 | 0
9085 | 0
9086 | 0
9087 | 0
9088 | 0
9089 | 0
9090 | 0
9091 | 0
9092 | 0
9093 | 0
9094 | 0
9095 | 0
9096 | 0
9097 | 0
9098 | 0
9099 | 0
9100 | 0
9101 | 0
9102 | 0
9103 | 0
9104 | 0
9105 | 0
9106 | 0
9107 | 0
9108 | 0
9109 | 0
9110 | 0
9111 | 0
9112 | 0
9113 | 0
9114 | 0
9115 | 0
9116 | 0
9117 | 0
9118 | 0
9119 | 0
9120 | 0
9121 | 0
9122 | 0
9123 | 0
9124 | 0
9125 | 0
9126 | 0
9127 | 0
9128 | 0
9129 | 0
9130 | 0
9131 | 0
9132 | 0
9133 | 0
9134 | 0
9135 | 0
9136 | 0
9137 | 0
9138 | 0
9139 | 0
9140 | 0
9141 | 0
9142 | 1
9143 | 0
9144 | 0
9145 | 1
9146 | 0
9147 | 0
9148 | 0
9149 | 0
9150 | 0
9151 | 0
9152 | 0
9153 | 0
9154 | 0
9155 | 0
9156 | 1
9157 | 1
9158 | 1
9159 | 0
9160 | 0
9161 | 0
9162 | 0
9163 | 0
9164 | 0
9165 | 0
9166 | 0
9167 | 1
9168 | 1
9169 | 0
9170 | 0
9171 | 0
9172 | 0
9173 | 1
9174 | 0
9175 | 1
9176 | 0
9177 | 0
9178 | 0
9179 | 0
9180 | 0
9181 | 0
9182 | 0
9183 | 0
9184 | 0
9185 | 0
9186 | 0
9187 | 1
9188 | 0
9189 | 0
9190 | 0
9191 | 0
9192 | 0
9193 | 0
9194 | 0
9195 | 0
9196 | 0
9197 | 0
9198 | 0
9199 | 0
9200 | 0
9201 | 0
9202 | 0
9203 | 0
9204 | 1
9205 | 0
9206 | 0
9207 | 0
9208 | 0
9209 | 0
9210 | 0
9211 | 0
9212 | 0
9213 | 0
9214 | 0
9215 | 0
9216 | 0
9217 | 0
9218 | 0
9219 | 0
9220 | 0
9221 | 0
9222 | 0
9223 | 0
9224 | 1
9225 | 1
9226 | 0
9227 | 0
9228 | 0
9229 | 0
9230 | 0
9231 | 0
9232 | 0
9233 | 0
9234 | 0
9235 | 0
9236 | 0
9237 | 0
9238 | 0
9239 | 0
9240 | 0
9241 | 0
9242 | 0
9243 | 0
9244 | 1
9245 | 0
9246 | 0
9247 | 0
9248 | 0
9249 | 0
9250 | 1
9251 | 0
9252 | 0
9253 | 0
9254 | 0
9255 | 1
9256 | 0
9257 | 0
9258 | 0
9259 | 0
9260 | 0
9261 | 0
9262 | 0
9263 | 0
9264 | 0
9265 | 0
9266 | 0
9267 | 0
9268 | 0
9269 | 0
9270 | 0
9271 | 0
9272 | 0
9273 | 0
9274 | 0
9275 | 0
9276 | 0
9277 | 0
9278 | 0
9279 | 0
9280 | 1
9281 | 0
9282 | 0
9283 | 0
9284 | 0
9285 | 1
9286 | 0
9287 | 0
9288 | 0
9289 | 0
9290 | 0
9291 | 0
9292 | 0
9293 | 0
9294 | 0
9295 | 0
9296 | 0
9297 | 1
9298 | 0
9299 | 0
9300 | 1
9301 | 0
9302 | 0
9303 | 0
9304 | 0
9305 | 0
9306 | 0
9307 | 0
9308 | 0
9309 | 0
9310 | 0
9311 | 1
9312 | 0
9313 | 0
9314 | 0
9315 | 0
9316 | 0
9317 | 1
9318 | 0
9319 | 1
9320 | 0
9321 | 0
9322 | 0
9323 | 0
9324 | 0
9325 | 0
9326 | 0
9327 | 0
9328 | 0
9329 | 0
9330 | 0
9331 | 0
9332 | 0
9333 | 1
9334 | 0
9335 | 1
9336 | 0
9337 | 0
9338 | 0
9339 | 0
9340 | 0
9341 | 0
9342 | 0
9343 | 0
9344 | 0
9345 | 0
9346 | 0
9347 | 0
9348 | 0
9349 | 0
9350 | 1
9351 | 0
9352 | 0
9353 | 0
9354 | 0
9355 | 0
9356 | 0
9357 | 0
9358 | 0
9359 | 0
9360 | 0
9361 | 0
9362 | 0
9363 | 0
9364 | 1
9365 | 0
9366 | 0
9367 | 0
9368 | 0
9369 | 0
9370 | 0
9371 | 0
9372 | 0
9373 | 1
9374 | 0
9375 | 0
9376 | 0
9377 | 0
9378 | 1
9379 | 0
9380 | 0
9381 | 0
9382 | 0
9383 | 0
9384 | 0
9385 | 0
9386 | 0
9387 | 0
9388 | 0
9389 | 0
9390 | 0
9391 | 0
9392 | 0
9393 | 0
9394 | 0
9395 | 0
9396 | 1
9397 | 0
9398 | 0
9399 | 0
9400 | 0
9401 | 0
9402 | 0
9403 | 0
9404 | 1
9405 | 0
9406 | 0
9407 | 0
9408 | 0
9409 | 0
9410 | 0
9411 | 0
9412 | 0
9413 | 0
9414 | 0
9415 | 0
9416 | 0
9417 | 0
9418 | 0
9419 | 0
9420 | 0
9421 | 0
9422 | 1
9423 | 0
9424 | 0
9425 | 0
9426 | 0
9427 | 0
9428 | 1
9429 | 0
9430 | 0
9431 | 0
9432 | 0
9433 | 0
9434 | 0
9435 | 0
9436 | 0
9437 | 0
9438 | 0
9439 | 0
9440 | 0
9441 | 0
9442 | 0
9443 | 0
9444 | 0
9445 | 0
9446 | 0
9447 | 0
9448 | 0
9449 | 0
9450 | 0
9451 | 0
9452 | 0
9453 | 0
9454 | 0
9455 | 0
9456 | 0
9457 | 0
9458 | 0
9459 | 0
9460 | 0
9461 | 0
9462 | 0
9463 | 0
9464 | 0
9465 | 0
9466 | 0
9467 | 0
9468 | 0
9469 | 0
9470 | 0
9471 | 0
9472 | 0
9473 | 0
9474 | 0
9475 | 1
9476 | 0
9477 | 0
9478 | 0
9479 | 1
9480 | 0
9481 | 0
9482 | 1
9483 | 0
9484 | 0
9485 | 0
9486 | 0
9487 | 0
9488 | 0
9489 | 0
9490 | 0
9491 | 0
9492 | 0
9493 | 0
9494 | 0
9495 | 0
9496 | 1
9497 | 0
9498 | 0
9499 | 0
9500 | 0
9501 | 0
9502 | 0
9503 | 0
9504 | 1
9505 | 0
9506 | 0
9507 | 0
9508 | 0
9509 | 0
9510 | 0
9511 | 1
9512 | 1
9513 | 0
9514 | 0
9515 | 0
9516 | 0
9517 | 0
9518 | 1
9519 | 0
9520 | 0
9521 | 0
9522 | 0
9523 | 0
9524 | 0
9525 | 0
9526 | 1
9527 | 0
9528 | 0
9529 | 0
9530 | 0
9531 | 0
9532 | 0
9533 | 0
9534 | 0
9535 | 0
9536 | 0
9537 | 0
9538 | 0
9539 | 0
9540 | 0
9541 | 0
9542 | 0
9543 | 0
9544 | 0
9545 | 0
9546 | 0
9547 | 0
9548 | 0
9549 | 0
9550 | 0
9551 | 0
9552 | 0
9553 | 0
9554 | 0
9555 | 0
9556 | 0
9557 | 0
9558 | 0
9559 | 0
9560 | 1
9561 | 0
9562 | 1
9563 | 0
9564 | 0
9565 | 1
9566 | 0
9567 | 0
9568 | 0
9569 | 0
9570 | 0
9571 | 0
9572 | 0
9573 | 0
9574 | 0
9575 | 0
9576 | 0
9577 | 0
9578 | 0
9579 | 0
9580 | 0
9581 | 1
9582 | 0
9583 | 0
9584 | 0
9585 | 0
9586 | 0
9587 | 1
9588 | 0
9589 | 0
9590 | 0
9591 | 0
9592 | 0
9593 | 0
9594 | 0
9595 | 0
9596 | 1
9597 | 0
9598 | 0
9599 | 0
9600 | 0
9601 | 0
9602 | 0
9603 | 0
9604 | 0
9605 | 0
9606 | 0
9607 | 0
9608 | 0
9609 | 0
9610 | 0
9611 | 0
9612 | 0
9613 | 0
9614 | 0
9615 | 0
9616 | 0
9617 | 0
9618 | 0
9619 | 0
9620 | 0
9621 | 0
9622 | 0
9623 | 0
9624 | 0
9625 | 0
9626 | 0
9627 | 0
9628 | 0
9629 | 0
9630 | 0
9631 | 0
9632 | 0
9633 | 0
9634 | 0
9635 | 0
9636 | 1
9637 | 0
9638 | 0
9639 | 0
9640 | 1
9641 | 0
9642 | 0
9643 | 0
9644 | 0
9645 | 0
9646 | 0
9647 | 0
9648 | 0
9649 | 0
9650 | 0
9651 | 0
9652 | 0
9653 | 0
9654 | 0
9655 | 0
9656 | 0
9657 | 0
9658 | 0
9659 | 0
9660 | 0
9661 | 0
9662 | 0
9663 | 0
9664 | 1
9665 | 0
9666 | 0
9667 | 0
9668 | 0
9669 | 0
9670 | 0
9671 | 0
9672 | 0
9673 | 0
9674 | 0
9675 | 1
9676 | 0
9677 | 0
9678 | 0
9679 | 0
9680 | 1
9681 | 0
9682 | 0
9683 | 0
9684 | 0
9685 | 0
9686 | 0
9687 | 0
9688 | 0
9689 | 0
9690 | 0
9691 | 1
9692 | 0
9693 | 0
9694 | 0
9695 | 0
9696 | 0
9697 | 0
9698 | 0
9699 | 0
9700 | 0
9701 | 0
9702 | 0
9703 | 0
9704 | 0
9705 | 0
9706 | 0
9707 | 0
9708 | 0
9709 | 0
9710 | 0
9711 | 0
9712 | 0
9713 | 0
9714 | 0
9715 | 0
9716 | 0
9717 | 0
9718 | 0
9719 | 0
9720 | 0
9721 | 1
9722 | 0
9723 | 0
9724 | 0
9725 | 0
9726 | 0
9727 | 0
9728 | 0
9729 | 0
9730 | 0
9731 | 0
9732 | 0
9733 | 0
9734 | 1
9735 | 0
9736 | 0
9737 | 0
9738 | 0
9739 | 0
9740 | 1
9741 | 0
9742 | 0
9743 | 1
9744 | 1
9745 | 0
9746 | 0
9747 | 0
9748 | 0
9749 | 0
9750 | 0
9751 | 0
9752 | 1
9753 | 0
9754 | 0
9755 | 0
9756 | 0
9757 | 0
9758 | 0
9759 | 0
9760 | 1
9761 | 0
9762 | 0
9763 | 0
9764 | 0
9765 | 0
9766 | 0
9767 | 0
9768 | 0
9769 | 0
9770 | 0
9771 | 0
9772 | 1
9773 | 0
9774 | 0
9775 | 0
9776 | 0
9777 | 0
9778 | 0
9779 | 0
9780 | 0
9781 | 0
9782 | 0
9783 | 0
9784 | 0
9785 | 0
9786 | 0
9787 | 0
9788 | 0
9789 | 0
9790 | 0
9791 | 0
9792 | 0
9793 | 0
9794 | 0
9795 | 0
9796 | 0
9797 | 0
9798 | 0
9799 | 0
9800 | 0
9801 | 0
9802 | 0
9803 | 0
9804 | 1
9805 | 1
9806 | 0
9807 | 0
9808 | 1
9809 | 0
9810 | 0
9811 | 0
9812 | 0
9813 | 0
9814 | 0
9815 | 0
9816 | 0
9817 | 1
9818 | 0
9819 | 0
9820 | 0
9821 | 0
9822 | 1
9823 | 0
9824 | 0
9825 | 1
9826 | 0
9827 | 0
9828 | 0
9829 | 0
9830 | 0
9831 | 1
9832 | 0
9833 | 0
9834 | 0
9835 | 0
9836 | 1
9837 | 1
9838 | 1
9839 | 0
9840 | 0
9841 | 0
9842 | 0
9843 | 0
9844 | 0
9845 | 0
9846 | 0
9847 | 0
9848 | 0
9849 | 0
9850 | 0
9851 | 0
9852 | 0
9853 | 0
9854 | 0
9855 | 0
9856 | 0
9857 | 0
9858 | 0
9859 | 0
9860 | 0
9861 | 0
9862 | 0
9863 | 0
9864 | 0
9865 | 0
9866 | 0
9867 | 0
9868 | 0
9869 | 0
9870 | 0
9871 | 0
9872 | 1
9873 | 0
9874 | 0
9875 | 0
9876 | 0
9877 | 0
9878 | 0
9879 | 0
9880 | 0
9881 | 0
9882 | 0
9883 | 0
9884 | 0
9885 | 0
9886 | 0
9887 | 0
9888 | 0
9889 | 0
9890 | 0
9891 | 0
9892 | 0
9893 | 1
9894 | 0
9895 | 0
9896 | 0
9897 | 0
9898 | 0
9899 | 0
9900 | 1
9901 | 0
9902 | 0
9903 | 0
9904 | 0
9905 | 0
9906 | 0
9907 | 0
9908 | 0
9909 | 0
9910 | 0
9911 | 0
9912 | 0
9913 | 1
9914 | 0
9915 | 0
9916 | 0
9917 | 0
9918 | 0
9919 | 0
9920 | 1
9921 | 0
9922 | 0
9923 | 0
9924 | 0
9925 | 0
9926 | 0
9927 | 0
9928 | 1
9929 | 0
9930 | 0
9931 | 0
9932 | 0
9933 | 0
9934 | 0
9935 | 0
9936 | 0
9937 | 0
9938 | 0
9939 | 0
9940 | 0
9941 | 0
9942 | 0
9943 | 0
9944 | 0
9945 | 0
9946 | 0
9947 | 0
9948 | 0
9949 | 0
9950 | 0
9951 | 0
9952 | 0
9953 | 0
9954 | 0
9955 | 0
9956 | 0
9957 | 0
9958 | 0
9959 | 0
9960 | 0
9961 | 0
9962 | 0
9963 | 0
9964 | 0
9965 | 0
9966 | 0
9967 | 0
9968 | 0
9969 | 1
9970 | 0
9971 | 0
9972 | 0
9973 | 0
9974 | 0
9975 | 0
9976 | 0
9977 | 0
9978 | 0
9979 | 0
9980 | 0
9981 | 0
9982 | 0
9983 | 0
9984 | 0
9985 | 1
9986 | 0
9987 | 0
9988 | 1
9989 | 0
9990 | 0
9991 | 0
9992 | 1
9993 | 0
9994 | 0
9995 | 0
9996 | 0
9997 | 0
9998 | 0
9999 | 0
10000 | 0
10001 |
--------------------------------------------------------------------------------