├── GroupA-Assignment1
├── Code.ipynb
└── autodata.csv
├── GroupA-Assignment10
└── Code.ipynb
├── GroupA-Assignment2
├── Code.ipynb
├── README.md
└── tecdiv.csv
├── GroupA-Assignment3
└── Code.ipynb
├── GroupA-Assignment4
├── Code.ipynb
└── HousingData.csv
├── GroupA-Assignment5
├── Code.ipynb
└── Social_Network_Ads.csv
├── GroupA-Assignment6
└── Code.ipynb
├── GroupA-Assignment7
└── Code.ipynb
├── GroupA-Assignment8
└── Code.ipynb
├── GroupA-Assignment9
└── Code.ipynb
├── GroupC-Mini Project
├── DSBDA Mini Project.ipynb
└── covid_vaccine_statewise.csv
└── README.md
/GroupA-Assignment1/autodata.csv:
--------------------------------------------------------------------------------
1 | ,symboling,normalized-losses,make,aspiration,num-of-doors,body-style,drive-wheels,engine-location,wheel-base,length,width,height,curb-weight,engine-type,num-of-cylinders,engine-size,fuel-system,bore,stroke,compression-ratio,horsepower,peak-rpm,city-mpg,highway-mpg,price,city-L/100km,horsepower-binned,diesel,gas
2 | 0,3,122,alfa-romero,std,two,convertible,rwd,front,88.6,0.8111484863046613,0.8902777777777777,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9.0,111.0,5000.0,21,27,13495.0,11.19047619047619,Low,0,1
3 | 1,3,122,alfa-romero,std,two,convertible,rwd,front,88.6,0.8111484863046613,0.8902777777777777,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9.0,111.0,5000.0,21,27,16500.0,11.19047619047619,Low,0,1
4 | 2,1,122,alfa-romero,std,two,hatchback,rwd,front,94.5,0.8226814031715521,0.9097222222222222,52.4,2823,ohcv,six,152,mpfi,2.68,3.47,9.0,154.0,5000.0,19,26,16500.0,12.368421052631579,Medium,0,1
5 | 3,2,164,audi,std,four,sedan,fwd,front,99.8,0.8486304661220567,0.9194444444444445,54.3,2337,ohc,four,109,mpfi,3.19,3.4,10.0,102.0,5500.0,24,30,13950.0,9.791666666666666,Low,0,1
6 | 4,2,164,audi,std,four,sedan,4wd,front,99.4,0.8486304661220567,0.9222222222222223,54.3,2824,ohc,five,136,mpfi,3.19,3.4,8.0,115.0,5500.0,18,22,17450.0,13.055555555555555,Low,0,1
7 | 5,2,122,audi,std,two,sedan,fwd,front,99.8,0.8519942335415667,0.9208333333333333,53.1,2507,ohc,five,136,mpfi,3.19,3.4,8.5,110.0,5500.0,19,25,15250.0,12.368421052631579,Low,0,1
8 | 6,1,158,audi,std,four,sedan,fwd,front,105.8,0.9259971167707832,0.9916666666666667,55.7,2844,ohc,five,136,mpfi,3.19,3.4,8.5,110.0,5500.0,19,25,17710.0,12.368421052631579,Low,0,1
9 | 7,1,122,audi,std,four,wagon,fwd,front,105.8,0.9259971167707832,0.9916666666666667,55.7,2954,ohc,five,136,mpfi,3.19,3.4,8.5,110.0,5500.0,19,25,18920.0,12.368421052631579,Low,0,1
10 | 8,1,158,audi,turbo,four,sedan,fwd,front,105.8,0.9259971167707832,0.9916666666666667,55.9,3086,ohc,five,131,mpfi,3.13,3.4,8.3,140.0,5500.0,17,20,23875.0,13.823529411764707,Medium,0,1
11 | 9,2,192,bmw,std,two,sedan,rwd,front,101.2,0.849591542527631,0.8999999999999999,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101.0,5800.0,23,29,16430.0,10.217391304347826,Low,0,1
12 | 10,0,192,bmw,std,four,sedan,rwd,front,101.2,0.849591542527631,0.8999999999999999,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101.0,5800.0,23,29,16925.0,10.217391304347826,Low,0,1
13 | 11,0,188,bmw,std,two,sedan,rwd,front,101.2,0.849591542527631,0.8999999999999999,54.3,2710,ohc,six,164,mpfi,3.31,3.19,9.0,121.0,4250.0,21,28,20970.0,11.19047619047619,Medium,0,1
14 | 12,0,188,bmw,std,four,sedan,rwd,front,101.2,0.849591542527631,0.8999999999999999,54.3,2765,ohc,six,164,mpfi,3.31,3.19,9.0,121.0,4250.0,21,28,21105.0,11.19047619047619,Medium,0,1
15 | 13,1,122,bmw,std,four,sedan,rwd,front,103.5,0.9082172032676598,0.9291666666666667,55.7,3055,ohc,six,164,mpfi,3.31,3.19,9.0,121.0,4250.0,20,25,24565.0,11.75,Medium,0,1
16 | 14,0,122,bmw,std,four,sedan,rwd,front,103.5,0.9082172032676598,0.9291666666666667,55.7,3230,ohc,six,209,mpfi,3.62,3.39,8.0,182.0,5400.0,16,22,30760.0,14.6875,Medium,0,1
17 | 15,0,122,bmw,std,two,sedan,rwd,front,103.5,0.9312830370014417,0.9430555555555556,53.7,3380,ohc,six,209,mpfi,3.62,3.39,8.0,182.0,5400.0,16,22,41315.0,14.6875,Medium,0,1
18 | 16,0,122,bmw,std,four,sedan,rwd,front,110.0,0.9466602594906295,0.9847222222222223,56.3,3505,ohc,six,209,mpfi,3.62,3.39,8.0,182.0,5400.0,15,20,36880.0,15.666666666666666,Medium,0,1
19 | 17,2,121,chevrolet,std,two,hatchback,fwd,front,88.4,0.6780394041326285,0.8374999999999999,53.2,1488,l,three,61,2bbl,2.91,3.03,9.5,48.0,5100.0,47,53,5151.0,5.0,Low,0,1
20 | 18,1,98,chevrolet,std,two,hatchback,fwd,front,94.5,0.7491590581451226,0.8833333333333333,52.0,1874,ohc,four,90,2bbl,3.03,3.11,9.6,70.0,5400.0,38,43,6295.0,6.184210526315789,Low,0,1
21 | 19,0,81,chevrolet,std,four,sedan,fwd,front,94.5,0.7630946660259491,0.8833333333333333,52.0,1909,ohc,four,90,2bbl,3.03,3.11,9.6,70.0,5400.0,38,43,6575.0,6.184210526315789,Low,0,1
22 | 20,1,118,dodge,std,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.41,68.0,5500.0,37,41,5572.0,6.351351351351352,Low,0,1
23 | 21,1,118,dodge,std,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,6377.0,7.580645161290323,Low,0,1
24 | 22,1,118,dodge,turbo,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.8,2128,ohc,four,98,mpfi,3.03,3.39,7.6,102.0,5500.0,24,30,7957.0,9.791666666666666,Low,0,1
25 | 23,1,148,dodge,std,four,hatchback,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,6229.0,7.580645161290323,Low,0,1
26 | 24,1,148,dodge,std,four,sedan,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,6692.0,7.580645161290323,Low,0,1
27 | 25,1,148,dodge,std,four,sedan,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,7609.0,7.580645161290323,Low,0,1
28 | 26,1,148,dodge,turbo,four,sedan,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.6,2191,ohc,four,98,mpfi,3.03,3.39,7.6,102.0,5500.0,24,30,8558.0,9.791666666666666,Low,0,1
29 | 27,-1,110,dodge,std,four,wagon,fwd,front,103.3,0.8390197020663143,0.8972222222222221,59.8,2535,ohc,four,122,2bbl,3.34,3.46,8.5,88.0,5000.0,24,30,8921.0,9.791666666666666,Low,0,1
30 | 28,3,145,dodge,turbo,two,hatchback,fwd,front,95.9,0.8322921672272945,0.9208333333333333,50.2,2811,ohc,four,156,mfi,3.6,3.9,7.0,145.0,5000.0,19,24,12964.0,12.368421052631579,Medium,0,1
31 | 29,2,137,honda,std,two,hatchback,fwd,front,86.6,0.6948582412301778,0.8875,50.8,1713,ohc,four,92,1bbl,2.91,3.41,9.6,58.0,4800.0,49,54,6479.0,4.795918367346939,Low,0,1
32 | 30,2,137,honda,std,two,hatchback,fwd,front,86.6,0.6948582412301778,0.8875,50.8,1819,ohc,four,92,1bbl,2.91,3.41,9.2,76.0,6000.0,31,38,6855.0,7.580645161290323,Low,0,1
33 | 31,1,101,honda,std,two,hatchback,fwd,front,93.7,0.7208073041806824,0.8888888888888888,52.6,1837,ohc,four,79,1bbl,2.91,3.07,10.1,60.0,5500.0,38,42,5399.0,6.184210526315789,Low,0,1
34 | 32,1,101,honda,std,two,hatchback,fwd,front,93.7,0.7208073041806824,0.8888888888888888,52.6,1940,ohc,four,92,1bbl,2.91,3.41,9.2,76.0,6000.0,30,34,6529.0,7.833333333333333,Low,0,1
35 | 33,1,101,honda,std,two,hatchback,fwd,front,93.7,0.7208073041806824,0.8888888888888888,52.6,1956,ohc,four,92,1bbl,2.91,3.41,9.2,76.0,6000.0,30,34,7129.0,7.833333333333333,Low,0,1
36 | 34,0,110,honda,std,four,sedan,fwd,front,96.5,0.7851994233541567,0.8888888888888888,54.5,2010,ohc,four,92,1bbl,2.91,3.41,9.2,76.0,6000.0,30,34,7295.0,7.833333333333333,Low,0,1
37 | 35,0,78,honda,std,four,wagon,fwd,front,96.5,0.754925516578568,0.8875,58.3,2024,ohc,four,92,1bbl,2.92,3.41,9.2,76.0,6000.0,30,34,7295.0,7.833333333333333,Low,0,1
38 | 36,0,106,honda,std,two,hatchback,fwd,front,96.5,0.8049014896684287,0.9055555555555556,53.3,2236,ohc,four,110,1bbl,3.15,3.58,9.0,86.0,5800.0,27,33,7895.0,8.703703703703704,Low,0,1
39 | 37,0,106,honda,std,two,hatchback,fwd,front,96.5,0.8049014896684287,0.9055555555555556,53.3,2289,ohc,four,110,1bbl,3.15,3.58,9.0,86.0,5800.0,27,33,9095.0,8.703703703703704,Low,0,1
40 | 38,0,85,honda,std,four,sedan,fwd,front,96.5,0.8428640076886112,0.9055555555555556,54.1,2304,ohc,four,110,1bbl,3.15,3.58,9.0,86.0,5800.0,27,33,8845.0,8.703703703703704,Low,0,1
41 | 39,0,85,honda,std,four,sedan,fwd,front,96.5,0.8428640076886112,0.8680555555555556,54.1,2372,ohc,four,110,1bbl,3.15,3.58,9.0,86.0,5800.0,27,33,10295.0,8.703703703703704,Low,0,1
42 | 40,0,85,honda,std,four,sedan,fwd,front,96.5,0.8428640076886112,0.9055555555555556,54.1,2465,ohc,four,110,mpfi,3.15,3.58,9.0,101.0,5800.0,24,28,12945.0,9.791666666666666,Low,0,1
43 | 41,1,107,honda,std,two,sedan,fwd,front,96.5,0.8125901009130225,0.9166666666666666,51.0,2293,ohc,four,110,2bbl,3.15,3.58,9.1,100.0,5500.0,25,31,10345.0,9.4,Low,0,1
44 | 42,0,122,isuzu,std,four,sedan,rwd,front,94.3,0.8202787121576165,0.8583333333333333,53.5,2337,ohc,four,111,2bbl,3.31,3.23,8.5,78.0,4800.0,24,29,6785.0,9.791666666666666,Low,0,1
45 | 43,2,122,isuzu,std,two,hatchback,rwd,front,96.0,0.8294089380105718,0.9055555555555556,51.4,2734,ohc,four,119,spfi,3.43,3.23,9.2,90.0,5000.0,24,29,11048.0,9.791666666666666,Low,0,1
46 | 44,0,145,jaguar,std,four,sedan,rwd,front,113.0,0.9591542527630946,0.9666666666666666,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176.0,4750.0,15,19,32250.0,15.666666666666666,Medium,0,1
47 | 45,0,122,jaguar,std,four,sedan,rwd,front,113.0,0.9591542527630946,0.9666666666666666,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176.0,4750.0,15,19,35550.0,15.666666666666666,Medium,0,1
48 | 46,0,122,jaguar,std,two,sedan,rwd,front,102.0,0.921191734742912,0.9805555555555555,47.8,3950,ohcv,twelve,326,mpfi,3.54,2.76,11.5,262.0,5000.0,13,17,36000.0,18.076923076923077,High,0,1
49 | 47,1,104,mazda,std,two,hatchback,fwd,front,93.1,0.7645362806343105,0.8916666666666667,54.1,1890,ohc,four,91,2bbl,3.03,3.15,9.0,68.0,5000.0,30,31,5195.0,7.833333333333333,Low,0,1
50 | 48,1,104,mazda,std,two,hatchback,fwd,front,93.1,0.7645362806343105,0.8916666666666667,54.1,1900,ohc,four,91,2bbl,3.03,3.15,9.0,68.0,5000.0,31,38,6095.0,7.580645161290323,Low,0,1
51 | 49,1,104,mazda,std,two,hatchback,fwd,front,93.1,0.7645362806343105,0.8916666666666667,54.1,1905,ohc,four,91,2bbl,3.03,3.15,9.0,68.0,5000.0,31,38,6795.0,7.580645161290323,Low,0,1
52 | 50,1,113,mazda,std,four,sedan,fwd,front,93.1,0.8015377222489188,0.8916666666666667,54.1,1945,ohc,four,91,2bbl,3.03,3.15,9.0,68.0,5000.0,31,38,6695.0,7.580645161290323,Low,0,1
53 | 51,1,113,mazda,std,four,sedan,fwd,front,93.1,0.8015377222489188,0.8916666666666667,54.1,1950,ohc,four,91,2bbl,3.08,3.15,9.0,68.0,5000.0,31,38,7395.0,7.580645161290323,Low,0,1
54 | 52,3,150,mazda,std,two,hatchback,rwd,front,95.3,0.8121095627102355,0.9125000000000001,49.6,2380,rotor,two,70,4bbl,3.3297512437810943,,9.4,101.0,6000.0,17,23,10945.0,13.823529411764707,Low,0,1
55 | 53,3,150,mazda,std,two,hatchback,rwd,front,95.3,0.8121095627102355,0.9125000000000001,49.6,2380,rotor,two,70,4bbl,3.3297512437810943,,9.4,101.0,6000.0,17,23,11845.0,13.823529411764707,Low,0,1
56 | 54,3,150,mazda,std,two,hatchback,rwd,front,95.3,0.8121095627102355,0.9125000000000001,49.6,2385,rotor,two,70,4bbl,3.3297512437810943,,9.4,101.0,6000.0,17,23,13645.0,13.823529411764707,Low,0,1
57 | 55,3,150,mazda,std,two,hatchback,rwd,front,95.3,0.8121095627102355,0.9125000000000001,49.6,2500,rotor,two,80,mpfi,3.3297512437810943,,9.4,135.0,6000.0,16,23,15645.0,14.6875,Medium,0,1
58 | 56,1,129,mazda,std,two,hatchback,fwd,front,98.8,0.8543969245555022,0.9236111111111112,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84.0,4800.0,26,32,8845.0,9.038461538461538,Low,0,1
59 | 57,0,115,mazda,std,four,sedan,fwd,front,98.8,0.8543969245555022,0.9236111111111112,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84.0,4800.0,26,32,8495.0,9.038461538461538,Low,0,1
60 | 58,1,129,mazda,std,two,hatchback,fwd,front,98.8,0.8543969245555022,0.9236111111111112,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84.0,4800.0,26,32,10595.0,9.038461538461538,Low,0,1
61 | 59,0,115,mazda,std,four,sedan,fwd,front,98.8,0.8543969245555022,0.9236111111111112,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84.0,4800.0,26,32,10245.0,9.038461538461538,Low,0,1
62 | 60,0,122,mazda,std,four,sedan,fwd,front,98.8,0.8543969245555022,0.9236111111111112,55.5,2443,ohc,four,122,idi,3.39,3.39,22.7,64.0,4650.0,36,42,10795.0,6.527777777777778,Low,1,0
63 | 61,0,115,mazda,std,four,hatchback,fwd,front,98.8,0.8543969245555022,0.9236111111111112,55.5,2425,ohc,four,122,2bbl,3.39,3.39,8.6,84.0,4800.0,26,32,11245.0,9.038461538461538,Low,0,1
64 | 62,0,118,mazda,std,four,sedan,rwd,front,104.9,0.8409418548774628,0.9180555555555555,54.4,2670,ohc,four,140,mpfi,3.76,3.16,8.0,120.0,5000.0,19,27,18280.0,12.368421052631579,Medium,0,1
65 | 63,0,122,mazda,std,four,sedan,rwd,front,104.9,0.8409418548774628,0.9180555555555555,54.4,2700,ohc,four,134,idi,3.43,3.64,22.0,72.0,4200.0,31,39,18344.0,7.580645161290323,Low,1,0
66 | 64,-1,93,mercedes-benz,turbo,four,sedan,rwd,front,110.0,0.9173474291206152,0.9763888888888889,56.5,3515,ohc,five,183,idi,3.58,3.64,21.5,123.0,4350.0,22,25,25552.0,10.681818181818182,Medium,1,0
67 | 65,-1,93,mercedes-benz,turbo,four,wagon,rwd,front,110.0,0.9173474291206152,0.9763888888888889,58.7,3750,ohc,five,183,idi,3.58,3.64,21.5,123.0,4350.0,22,25,28248.0,10.681818181818182,Medium,1,0
68 | 66,0,93,mercedes-benz,turbo,two,hardtop,rwd,front,106.7,0.9010091302258529,0.9763888888888889,54.9,3495,ohc,five,183,idi,3.58,3.64,21.5,123.0,4350.0,22,25,28176.0,10.681818181818182,Medium,1,0
69 | 67,-1,93,mercedes-benz,turbo,four,sedan,rwd,front,115.6,0.9735703988467083,0.9958333333333333,56.3,3770,ohc,five,183,idi,3.58,3.64,21.5,123.0,4350.0,22,25,31600.0,10.681818181818182,Medium,1,0
70 | 68,-1,122,mercedes-benz,std,four,sedan,rwd,front,115.6,0.9735703988467083,0.9958333333333333,56.5,3740,ohcv,eight,234,mpfi,3.46,3.1,8.3,155.0,4750.0,16,18,34184.0,14.6875,Medium,0,1
71 | 69,3,142,mercedes-benz,std,two,convertible,rwd,front,96.6,0.8664103796251803,0.9791666666666666,50.8,3685,ohcv,eight,234,mpfi,3.46,3.1,8.3,155.0,4750.0,16,18,35056.0,14.6875,Medium,0,1
72 | 70,0,122,mercedes-benz,std,four,sedan,rwd,front,120.9,1.0,0.9958333333333333,56.7,3900,ohcv,eight,308,mpfi,3.8,3.35,8.0,184.0,4500.0,14,16,40960.0,16.785714285714285,Medium,0,1
73 | 71,1,122,mercedes-benz,std,two,hardtop,rwd,front,112.0,0.9572320999519461,1.0,55.4,3715,ohcv,eight,304,mpfi,3.8,3.35,8.0,184.0,4500.0,14,16,45400.0,16.785714285714285,Medium,0,1
74 | 72,1,122,mercury,turbo,two,hatchback,rwd,front,102.7,0.857280153772225,0.9444444444444444,54.8,2910,ohc,four,140,mpfi,3.78,3.12,8.0,175.0,5000.0,19,24,16503.0,12.368421052631579,Medium,0,1
75 | 73,2,161,mitsubishi,std,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8944444444444445,50.8,1918,ohc,four,92,2bbl,2.97,3.23,9.4,68.0,5500.0,37,41,5389.0,6.351351351351352,Low,0,1
76 | 74,2,161,mitsubishi,std,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8944444444444445,50.8,1944,ohc,four,92,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,6189.0,7.580645161290323,Low,0,1
77 | 75,2,161,mitsubishi,std,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8944444444444445,50.8,2004,ohc,four,92,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,6669.0,7.580645161290323,Low,0,1
78 | 76,1,161,mitsubishi,turbo,two,hatchback,fwd,front,93.0,0.7558865929841423,0.8861111111111111,50.8,2145,ohc,four,98,spdi,3.03,3.39,7.6,102.0,5500.0,24,30,7689.0,9.791666666666666,Low,0,1
79 | 77,3,153,mitsubishi,turbo,two,hatchback,fwd,front,96.3,0.8313310908217203,0.9083333333333334,49.4,2370,ohc,four,110,spdi,3.17,3.46,7.5,116.0,5500.0,23,30,9959.0,10.217391304347826,Low,0,1
80 | 78,3,153,mitsubishi,std,two,hatchback,fwd,front,96.3,0.8313310908217203,0.9083333333333334,49.4,2328,ohc,four,122,2bbl,3.35,3.46,8.5,88.0,5000.0,25,32,8499.0,9.4,Low,0,1
81 | 79,3,122,mitsubishi,turbo,two,hatchback,fwd,front,95.9,0.8322921672272945,0.9208333333333333,50.2,2833,ohc,four,156,spdi,3.58,3.86,7.0,145.0,5000.0,19,24,12629.0,12.368421052631579,Medium,0,1
82 | 80,3,122,mitsubishi,turbo,two,hatchback,fwd,front,95.9,0.8322921672272945,0.9208333333333333,50.2,2921,ohc,four,156,spdi,3.59,3.86,7.0,145.0,5000.0,19,24,14869.0,12.368421052631579,Medium,0,1
83 | 81,3,122,mitsubishi,turbo,two,hatchback,fwd,front,95.9,0.8322921672272945,0.9208333333333333,50.2,2926,ohc,four,156,spdi,3.59,3.86,7.0,145.0,5000.0,19,24,14489.0,12.368421052631579,Medium,0,1
84 | 82,1,125,mitsubishi,std,four,sedan,fwd,front,96.3,0.8284478616049976,0.9083333333333334,51.6,2365,ohc,four,122,2bbl,3.35,3.46,8.5,88.0,5000.0,25,32,6989.0,9.4,Low,0,1
85 | 83,1,125,mitsubishi,std,four,sedan,fwd,front,96.3,0.8284478616049976,0.9083333333333334,51.6,2405,ohc,four,122,2bbl,3.35,3.46,8.5,88.0,5000.0,25,32,8189.0,9.4,Low,0,1
86 | 84,1,125,mitsubishi,turbo,four,sedan,fwd,front,96.3,0.8284478616049976,0.9083333333333334,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116.0,5500.0,23,30,9279.0,10.217391304347826,Low,0,1
87 | 85,-1,137,mitsubishi,std,four,sedan,fwd,front,96.3,0.8284478616049976,0.9083333333333334,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116.0,5500.0,23,30,9279.0,10.217391304347826,Low,0,1
88 | 86,1,128,nissan,std,two,sedan,fwd,front,94.5,0.794329649207112,0.8861111111111111,54.5,1889,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,5499.0,7.580645161290323,Low,0,1
89 | 87,1,128,nissan,std,two,sedan,fwd,front,94.5,0.794329649207112,0.8861111111111111,54.5,2017,ohc,four,103,idi,2.99,3.47,21.9,55.0,4800.0,45,50,7099.0,5.222222222222222,Low,1,0
90 | 88,1,128,nissan,std,two,sedan,fwd,front,94.5,0.794329649207112,0.8861111111111111,54.5,1918,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,6649.0,7.580645161290323,Low,0,1
91 | 89,1,122,nissan,std,four,sedan,fwd,front,94.5,0.794329649207112,0.8861111111111111,54.5,1938,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,6849.0,7.580645161290323,Low,0,1
92 | 90,1,103,nissan,std,four,wagon,fwd,front,94.5,0.8178760211436809,0.8861111111111111,53.5,2024,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,7349.0,7.580645161290323,Low,0,1
93 | 91,1,128,nissan,std,two,sedan,fwd,front,94.5,0.794329649207112,0.8861111111111111,54.5,1951,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,7299.0,7.580645161290323,Low,0,1
94 | 92,1,128,nissan,std,two,hatchback,fwd,front,94.5,0.7957712638154734,0.8861111111111111,53.3,2028,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,7799.0,7.580645161290323,Low,0,1
95 | 93,1,122,nissan,std,four,sedan,fwd,front,94.5,0.794329649207112,0.8861111111111111,54.5,1971,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,7499.0,7.580645161290323,Low,0,1
96 | 94,1,103,nissan,std,four,wagon,fwd,front,94.5,0.8178760211436809,0.8861111111111111,53.5,2037,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,7999.0,7.580645161290323,Low,0,1
97 | 95,2,168,nissan,std,two,hardtop,fwd,front,95.1,0.7803940413262855,0.8861111111111111,53.3,2008,ohc,four,97,2bbl,3.15,3.29,9.4,69.0,5200.0,31,37,8249.0,7.580645161290323,Low,0,1
98 | 96,0,106,nissan,std,four,hatchback,fwd,front,97.2,0.8332532436328689,0.9055555555555556,54.7,2324,ohc,four,120,2bbl,3.33,3.47,8.5,97.0,5200.0,27,34,8949.0,8.703703703703704,Low,0,1
99 | 97,0,106,nissan,std,four,sedan,fwd,front,97.2,0.8332532436328689,0.9055555555555556,54.7,2302,ohc,four,120,2bbl,3.33,3.47,8.5,97.0,5200.0,27,34,9549.0,8.703703703703704,Low,0,1
100 | 98,0,128,nissan,std,four,sedan,fwd,front,100.4,0.8731379144641999,0.9236111111111112,55.1,3095,ohcv,six,181,mpfi,3.43,3.27,9.0,152.0,5200.0,17,22,13499.0,13.823529411764707,Medium,0,1
101 | 99,0,108,nissan,std,four,wagon,fwd,front,100.4,0.8870735223450265,0.9236111111111112,56.1,3296,ohcv,six,181,mpfi,3.43,3.27,9.0,152.0,5200.0,17,22,14399.0,13.823529411764707,Medium,0,1
102 | 100,0,108,nissan,std,four,sedan,fwd,front,100.4,0.8870735223450265,0.9236111111111112,55.1,3060,ohcv,six,181,mpfi,3.43,3.27,9.0,152.0,5200.0,19,25,13499.0,12.368421052631579,Medium,0,1
103 | 101,3,194,nissan,std,two,hatchback,rwd,front,91.3,0.8202787121576165,0.9430555555555556,49.7,3071,ohcv,six,181,mpfi,3.43,3.27,9.0,160.0,5200.0,19,25,17199.0,12.368421052631579,Medium,0,1
104 | 102,3,194,nissan,turbo,two,hatchback,rwd,front,91.3,0.8202787121576165,0.9430555555555556,49.7,3139,ohcv,six,181,mpfi,3.43,3.27,7.8,200.0,5200.0,17,23,19699.0,13.823529411764707,High,0,1
105 | 103,1,231,nissan,std,two,hatchback,rwd,front,99.2,0.857760691975012,0.9430555555555556,49.7,3139,ohcv,six,181,mpfi,3.43,3.27,9.0,160.0,5200.0,19,25,18399.0,12.368421052631579,Medium,0,1
106 | 104,0,161,peugot,std,four,sedan,rwd,front,107.9,0.897164824603556,0.9500000000000001,56.7,3020,l,four,120,mpfi,3.46,3.19,8.4,97.0,5000.0,19,24,11900.0,12.368421052631579,Low,0,1
107 | 105,0,161,peugot,turbo,four,sedan,rwd,front,107.9,0.897164824603556,0.9500000000000001,56.7,3197,l,four,152,idi,3.7,3.52,21.0,95.0,4150.0,28,33,13200.0,8.392857142857142,Low,1,0
108 | 106,0,122,peugot,std,four,wagon,rwd,front,114.2,0.9557904853435849,0.9500000000000001,58.7,3230,l,four,120,mpfi,3.46,3.19,8.4,97.0,5000.0,19,24,12440.0,12.368421052631579,Low,0,1
109 | 107,0,122,peugot,turbo,four,wagon,rwd,front,114.2,0.9557904853435849,0.9500000000000001,58.7,3430,l,four,152,idi,3.7,3.52,21.0,95.0,4150.0,25,25,13860.0,9.4,Low,1,0
110 | 108,0,161,peugot,std,four,sedan,rwd,front,107.9,0.897164824603556,0.9500000000000001,56.7,3075,l,four,120,mpfi,3.46,2.19,8.4,95.0,5000.0,19,24,15580.0,12.368421052631579,Low,0,1
111 | 109,0,161,peugot,turbo,four,sedan,rwd,front,107.9,0.897164824603556,0.9500000000000001,56.7,3252,l,four,152,idi,3.7,3.52,21.0,95.0,4150.0,28,33,16900.0,8.392857142857142,Low,1,0
112 | 110,0,122,peugot,std,four,wagon,rwd,front,114.2,0.9557904853435849,0.9500000000000001,56.7,3285,l,four,120,mpfi,3.46,2.19,8.4,95.0,5000.0,19,24,16695.0,12.368421052631579,Low,0,1
113 | 111,0,122,peugot,turbo,four,wagon,rwd,front,114.2,0.9557904853435849,0.9500000000000001,58.7,3485,l,four,152,idi,3.7,3.52,21.0,95.0,4150.0,25,25,17075.0,9.4,Low,1,0
114 | 112,0,161,peugot,std,four,sedan,rwd,front,107.9,0.897164824603556,0.9500000000000001,56.7,3075,l,four,120,mpfi,3.46,3.19,8.4,97.0,5000.0,19,24,16630.0,12.368421052631579,Low,0,1
115 | 113,0,161,peugot,turbo,four,sedan,rwd,front,107.9,0.897164824603556,0.9500000000000001,56.7,3252,l,four,152,idi,3.7,3.52,21.0,95.0,4150.0,28,33,17950.0,8.392857142857142,Low,1,0
116 | 114,0,161,peugot,turbo,four,sedan,rwd,front,108.0,0.897164824603556,0.9486111111111111,56.0,3130,l,four,134,mpfi,3.61,3.21,7.0,142.0,5600.0,18,24,18150.0,13.055555555555555,Medium,0,1
117 | 115,1,119,plymouth,std,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.8,1918,ohc,four,90,2bbl,2.97,3.23,9.4,68.0,5500.0,37,41,5572.0,6.351351351351352,Low,0,1
118 | 116,1,119,plymouth,turbo,two,hatchback,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.8,2128,ohc,four,98,spdi,3.03,3.39,7.6,102.0,5500.0,24,30,7957.0,9.791666666666666,Low,0,1
119 | 117,1,154,plymouth,std,four,hatchback,fwd,front,93.7,0.7558865929841423,0.8861111111111111,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,6229.0,7.580645161290323,Low,0,1
120 | 118,1,154,plymouth,std,four,sedan,fwd,front,93.7,0.8039404132628545,0.8861111111111111,50.8,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,6692.0,7.580645161290323,Low,0,1
121 | 119,1,154,plymouth,std,four,sedan,fwd,front,93.7,0.8039404132628545,0.8861111111111111,50.8,2191,ohc,four,98,2bbl,2.97,3.23,9.4,68.0,5500.0,31,38,7609.0,7.580645161290323,Low,0,1
122 | 120,-1,74,plymouth,std,four,wagon,fwd,front,103.3,0.8390197020663143,0.8972222222222221,59.8,2535,ohc,four,122,2bbl,3.35,3.46,8.5,88.0,5000.0,24,30,8921.0,9.791666666666666,Low,0,1
123 | 121,3,122,plymouth,turbo,two,hatchback,rwd,front,95.9,0.8322921672272945,0.9208333333333333,50.2,2818,ohc,four,156,spdi,3.59,3.86,7.0,145.0,5000.0,19,24,12764.0,12.368421052631579,Medium,0,1
124 | 122,3,186,porsche,std,two,hatchback,rwd,front,94.5,0.8116290245074483,0.9486111111111111,50.2,2778,ohc,four,151,mpfi,3.94,3.11,9.5,143.0,5500.0,19,27,22018.0,12.368421052631579,Medium,0,1
125 | 123,3,122,porsche,std,two,hardtop,rwd,rear,89.5,0.8116290245074483,0.9027777777777778,51.6,2756,ohcf,six,194,mpfi,3.74,2.9,9.5,207.0,5900.0,17,25,32528.0,13.823529411764707,High,0,1
126 | 124,3,122,porsche,std,two,hardtop,rwd,rear,89.5,0.8116290245074483,0.9027777777777778,51.6,2756,ohcf,six,194,mpfi,3.74,2.9,9.5,207.0,5900.0,17,25,34028.0,13.823529411764707,High,0,1
127 | 125,3,122,porsche,std,two,convertible,rwd,rear,89.5,0.8116290245074483,0.9027777777777778,51.6,2800,ohcf,six,194,mpfi,3.74,2.9,9.5,207.0,5900.0,17,25,37028.0,13.823529411764707,High,0,1
128 | 126,0,122,renault,std,four,wagon,fwd,front,96.1,0.8721768380586257,0.9236111111111112,55.2,2579,ohc,four,132,mpfi,3.46,3.9,8.7,,,23,31,9295.0,10.217391304347826,,0,1
129 | 127,2,122,renault,std,two,hatchback,fwd,front,96.1,0.849591542527631,0.9249999999999999,50.5,2460,ohc,four,132,mpfi,3.46,3.9,8.7,,,23,31,9895.0,10.217391304347826,,0,1
130 | 128,3,150,saab,std,two,hatchback,fwd,front,99.1,0.8966842864007688,0.9236111111111112,56.1,2658,ohc,four,121,mpfi,3.54,3.07,9.31,110.0,5250.0,21,28,11850.0,11.19047619047619,Low,0,1
131 | 129,2,104,saab,std,four,sedan,fwd,front,99.1,0.8966842864007688,0.9236111111111112,56.1,2695,ohc,four,121,mpfi,3.54,3.07,9.3,110.0,5250.0,21,28,12170.0,11.19047619047619,Low,0,1
132 | 130,3,150,saab,std,two,hatchback,fwd,front,99.1,0.8966842864007688,0.9236111111111112,56.1,2707,ohc,four,121,mpfi,2.54,2.07,9.3,110.0,5250.0,21,28,15040.0,11.19047619047619,Low,0,1
133 | 131,2,104,saab,std,four,sedan,fwd,front,99.1,0.8966842864007688,0.9236111111111112,56.1,2758,ohc,four,121,mpfi,3.54,3.07,9.3,110.0,5250.0,21,28,15510.0,11.19047619047619,Low,0,1
134 | 132,3,150,saab,turbo,two,hatchback,fwd,front,99.1,0.8966842864007688,0.9236111111111112,56.1,2808,dohc,four,121,mpfi,3.54,3.07,9.0,160.0,5500.0,19,26,18150.0,12.368421052631579,Medium,0,1
135 | 133,2,104,saab,turbo,four,sedan,fwd,front,99.1,0.8966842864007688,0.9236111111111112,56.1,2847,dohc,four,121,mpfi,3.54,3.07,9.0,160.0,5500.0,19,26,18620.0,12.368421052631579,Medium,0,1
136 | 134,2,83,subaru,std,two,hatchback,fwd,front,93.7,0.7539644401729938,0.8805555555555555,53.7,2050,ohcf,four,97,2bbl,3.62,2.36,9.0,69.0,4900.0,31,36,5118.0,7.580645161290323,Low,0,1
137 | 135,2,83,subaru,std,two,hatchback,fwd,front,93.7,0.758769822200865,0.8833333333333333,53.7,2120,ohcf,four,108,2bbl,3.62,2.64,8.7,73.0,4400.0,26,31,7053.0,9.038461538461538,Low,0,1
138 | 136,2,83,subaru,std,two,hatchback,4wd,front,93.3,0.7558865929841423,0.8861111111111111,55.7,2240,ohcf,four,108,2bbl,3.62,2.64,8.7,73.0,4400.0,26,31,7603.0,9.038461538461538,Low,0,1
139 | 137,0,102,subaru,std,four,sedan,fwd,front,97.2,0.8265257087938491,0.9083333333333334,52.5,2145,ohcf,four,108,2bbl,3.62,2.64,9.5,82.0,4800.0,32,37,7126.0,7.34375,Low,0,1
140 | 138,0,102,subaru,std,four,sedan,fwd,front,97.2,0.8265257087938491,0.9083333333333334,52.5,2190,ohcf,four,108,2bbl,3.62,2.64,9.5,82.0,4400.0,28,33,7775.0,8.392857142857142,Low,0,1
141 | 139,0,102,subaru,std,four,sedan,fwd,front,97.2,0.8265257087938491,0.9083333333333334,52.5,2340,ohcf,four,108,mpfi,3.62,2.64,9.0,94.0,5200.0,26,32,9960.0,9.038461538461538,Low,0,1
142 | 140,0,102,subaru,std,four,sedan,4wd,front,97.0,0.8265257087938491,0.9083333333333334,54.3,2385,ohcf,four,108,2bbl,3.62,2.64,9.0,82.0,4800.0,24,25,9233.0,9.791666666666666,Low,0,1
143 | 141,0,102,subaru,turbo,four,sedan,4wd,front,97.0,0.8265257087938491,0.9083333333333334,54.3,2510,ohcf,four,108,mpfi,3.62,2.64,7.7,111.0,4800.0,24,29,11259.0,9.791666666666666,Low,0,1
144 | 142,0,89,subaru,std,four,wagon,fwd,front,97.0,0.8337337818356559,0.9083333333333334,53.0,2290,ohcf,four,108,2bbl,3.62,2.64,9.0,82.0,4800.0,28,32,7463.0,8.392857142857142,Low,0,1
145 | 143,0,89,subaru,std,four,wagon,fwd,front,97.0,0.8337337818356559,0.9083333333333334,53.0,2455,ohcf,four,108,mpfi,3.62,2.64,9.0,94.0,5200.0,25,31,10198.0,9.4,Low,0,1
146 | 144,0,85,subaru,std,four,wagon,4wd,front,96.9,0.8342143200384431,0.9083333333333334,54.9,2420,ohcf,four,108,2bbl,3.62,2.64,9.0,82.0,4800.0,23,29,8013.0,10.217391304347826,Low,0,1
147 | 145,0,85,subaru,turbo,four,wagon,4wd,front,96.9,0.8342143200384431,0.9083333333333334,54.9,2650,ohcf,four,108,mpfi,3.62,2.64,7.7,111.0,4800.0,23,23,11694.0,10.217391304347826,Low,0,1
148 | 146,1,87,toyota,std,two,hatchback,fwd,front,95.7,0.762614127823162,0.8833333333333333,54.5,1985,ohc,four,92,2bbl,3.05,3.03,9.0,62.0,4800.0,35,39,5348.0,6.714285714285714,Low,0,1
149 | 147,1,87,toyota,std,two,hatchback,fwd,front,95.7,0.762614127823162,0.8833333333333333,54.5,2040,ohc,four,92,2bbl,3.05,3.03,9.0,62.0,4800.0,31,38,6338.0,7.580645161290323,Low,0,1
150 | 148,1,74,toyota,std,four,hatchback,fwd,front,95.7,0.762614127823162,0.8833333333333333,54.5,2015,ohc,four,92,2bbl,3.05,3.03,9.0,62.0,4800.0,31,38,6488.0,7.580645161290323,Low,0,1
151 | 149,0,77,toyota,std,four,wagon,fwd,front,95.7,0.8154733301297453,0.8833333333333333,59.1,2280,ohc,four,92,2bbl,3.05,3.03,9.0,62.0,4800.0,31,37,6918.0,7.580645161290323,Low,0,1
152 | 150,0,81,toyota,std,four,wagon,4wd,front,95.7,0.8154733301297453,0.8833333333333333,59.1,2290,ohc,four,92,2bbl,3.05,3.03,9.0,62.0,4800.0,27,32,7898.0,8.703703703703704,Low,0,1
153 | 151,0,91,toyota,std,four,wagon,4wd,front,95.7,0.8154733301297453,0.8833333333333333,59.1,3110,ohc,four,92,2bbl,3.05,3.03,9.0,62.0,4800.0,27,32,8778.0,8.703703703703704,Low,0,1
154 | 152,0,91,toyota,std,four,sedan,fwd,front,95.7,0.7991350312349833,0.8944444444444445,53.0,2081,ohc,four,98,2bbl,3.19,3.03,9.0,70.0,4800.0,30,37,6938.0,7.833333333333333,Low,0,1
155 | 153,0,91,toyota,std,four,hatchback,fwd,front,95.7,0.7991350312349833,0.8944444444444445,52.8,2109,ohc,four,98,2bbl,3.19,3.03,9.0,70.0,4800.0,30,37,7198.0,7.833333333333333,Low,0,1
156 | 154,0,91,toyota,std,four,sedan,fwd,front,95.7,0.7991350312349833,0.8944444444444445,53.0,2275,ohc,four,110,idi,3.27,3.35,22.5,56.0,4500.0,34,36,7898.0,6.911764705882353,Low,1,0
157 | 155,0,91,toyota,std,four,hatchback,fwd,front,95.7,0.7991350312349833,0.8944444444444445,52.8,2275,ohc,four,110,idi,3.27,3.35,22.5,56.0,4500.0,38,47,7788.0,6.184210526315789,Low,1,0
158 | 156,0,91,toyota,std,four,sedan,fwd,front,95.7,0.7991350312349833,0.8944444444444445,53.0,2094,ohc,four,98,2bbl,3.19,3.03,9.0,70.0,4800.0,38,47,7738.0,6.184210526315789,Low,0,1
159 | 157,0,91,toyota,std,four,hatchback,fwd,front,95.7,0.7991350312349833,0.8944444444444445,52.8,2122,ohc,four,98,2bbl,3.19,3.03,9.0,70.0,4800.0,28,34,8358.0,8.392857142857142,Low,0,1
160 | 158,0,91,toyota,std,four,sedan,fwd,front,95.7,0.7991350312349833,0.8944444444444445,52.8,2140,ohc,four,98,2bbl,3.19,3.03,9.0,70.0,4800.0,28,34,9258.0,8.392857142857142,Low,0,1
161 | 159,1,168,toyota,std,two,sedan,rwd,front,94.5,0.810667948101874,0.8888888888888888,52.6,2169,ohc,four,98,2bbl,3.19,3.03,9.0,70.0,4800.0,29,34,8058.0,8.10344827586207,Low,0,1
162 | 160,1,168,toyota,std,two,hatchback,rwd,front,94.5,0.810667948101874,0.8888888888888888,52.6,2204,ohc,four,98,2bbl,3.19,3.03,9.0,70.0,4800.0,29,34,8238.0,8.10344827586207,Low,0,1
163 | 161,1,168,toyota,std,two,sedan,rwd,front,94.5,0.810667948101874,0.8888888888888888,52.6,2265,dohc,four,98,mpfi,3.24,3.08,9.4,112.0,6600.0,26,29,9298.0,9.038461538461538,Low,0,1
164 | 162,1,168,toyota,std,two,hatchback,rwd,front,94.5,0.810667948101874,0.8888888888888888,52.6,2300,dohc,four,98,mpfi,3.24,3.08,9.4,112.0,6600.0,26,29,9538.0,9.038461538461538,Low,0,1
165 | 163,2,134,toyota,std,two,hardtop,rwd,front,98.4,0.8467083133109082,0.911111111111111,52.0,2540,ohc,four,146,mpfi,3.62,3.5,9.3,116.0,4800.0,24,30,8449.0,9.791666666666666,Low,0,1
166 | 164,2,134,toyota,std,two,hardtop,rwd,front,98.4,0.8467083133109082,0.911111111111111,52.0,2536,ohc,four,146,mpfi,3.62,3.5,9.3,116.0,4800.0,24,30,9639.0,9.791666666666666,Low,0,1
167 | 165,2,134,toyota,std,two,hatchback,rwd,front,98.4,0.8467083133109082,0.911111111111111,52.0,2551,ohc,four,146,mpfi,3.62,3.5,9.3,116.0,4800.0,24,30,9989.0,9.791666666666666,Low,0,1
168 | 166,2,134,toyota,std,two,hardtop,rwd,front,98.4,0.8467083133109082,0.911111111111111,52.0,2679,ohc,four,146,mpfi,3.62,3.5,9.3,116.0,4800.0,24,30,11199.0,9.791666666666666,Low,0,1
169 | 167,2,134,toyota,std,two,hatchback,rwd,front,98.4,0.8467083133109082,0.911111111111111,52.0,2714,ohc,four,146,mpfi,3.62,3.5,9.3,116.0,4800.0,24,30,11549.0,9.791666666666666,Low,0,1
170 | 168,2,134,toyota,std,two,convertible,rwd,front,98.4,0.8467083133109082,0.911111111111111,53.0,2975,ohc,four,146,mpfi,3.62,3.5,9.3,116.0,4800.0,24,30,17669.0,9.791666666666666,Low,0,1
171 | 169,-1,65,toyota,std,four,sedan,fwd,front,102.4,0.8438250840941854,0.9236111111111112,54.9,2326,ohc,four,122,mpfi,3.31,3.54,8.7,92.0,4200.0,29,34,8948.0,8.10344827586207,Low,0,1
172 | 170,-1,65,toyota,turbo,four,sedan,fwd,front,102.4,0.8438250840941854,0.9236111111111112,54.9,2480,ohc,four,110,idi,3.27,3.35,22.5,73.0,4500.0,30,33,10698.0,7.833333333333333,Low,1,0
173 | 171,-1,65,toyota,std,four,hatchback,fwd,front,102.4,0.8438250840941854,0.9236111111111112,53.9,2414,ohc,four,122,mpfi,3.31,3.54,8.7,92.0,4200.0,27,32,9988.0,8.703703703703704,Low,0,1
174 | 172,-1,65,toyota,std,four,sedan,fwd,front,102.4,0.8438250840941854,0.9236111111111112,54.9,2414,ohc,four,122,mpfi,3.31,3.54,8.7,92.0,4200.0,27,32,10898.0,8.703703703703704,Low,0,1
175 | 173,-1,65,toyota,std,four,hatchback,fwd,front,102.4,0.8438250840941854,0.9236111111111112,53.9,2458,ohc,four,122,mpfi,3.31,3.54,8.7,92.0,4200.0,27,32,11248.0,8.703703703703704,Low,0,1
176 | 174,3,197,toyota,std,two,hatchback,rwd,front,102.9,0.8817876021143681,0.9402777777777778,52.0,2976,dohc,six,171,mpfi,3.27,3.35,9.3,161.0,5200.0,20,24,16558.0,11.75,Medium,0,1
177 | 175,3,197,toyota,std,two,hatchback,rwd,front,102.9,0.8817876021143681,0.9402777777777778,52.0,3016,dohc,six,171,mpfi,3.27,3.35,9.3,161.0,5200.0,19,24,15998.0,12.368421052631579,Medium,0,1
178 | 176,-1,90,toyota,std,four,sedan,rwd,front,104.5,0.9024507448342144,0.9236111111111112,54.1,3131,dohc,six,171,mpfi,3.27,3.35,9.2,156.0,5200.0,20,24,15690.0,11.75,Medium,0,1
179 | 177,-1,122,toyota,std,four,wagon,rwd,front,104.5,0.9024507448342144,0.9236111111111112,54.1,3151,dohc,six,161,mpfi,3.27,3.35,9.2,156.0,5200.0,19,24,15750.0,12.368421052631579,Medium,0,1
180 | 178,2,122,volkswagen,std,two,sedan,fwd,front,97.3,0.8250840941854877,0.9097222222222222,55.7,2261,ohc,four,97,idi,3.01,3.4,23.0,52.0,4800.0,37,46,7775.0,6.351351351351352,Low,1,0
181 | 179,2,122,volkswagen,std,two,sedan,fwd,front,97.3,0.8250840941854877,0.9097222222222222,55.7,2209,ohc,four,109,mpfi,3.19,3.4,9.0,85.0,5250.0,27,34,7975.0,8.703703703703704,Low,0,1
182 | 180,2,94,volkswagen,std,four,sedan,fwd,front,97.3,0.8250840941854877,0.9097222222222222,55.7,2264,ohc,four,97,idi,3.01,3.4,23.0,52.0,4800.0,37,46,7995.0,6.351351351351352,Low,1,0
183 | 181,2,94,volkswagen,std,four,sedan,fwd,front,97.3,0.8250840941854877,0.9097222222222222,55.7,2212,ohc,four,109,mpfi,3.19,3.4,9.0,85.0,5250.0,27,34,8195.0,8.703703703703704,Low,0,1
184 | 182,2,94,volkswagen,std,four,sedan,fwd,front,97.3,0.8250840941854877,0.9097222222222222,55.7,2275,ohc,four,109,mpfi,3.19,3.4,9.0,85.0,5250.0,27,34,8495.0,8.703703703703704,Low,0,1
185 | 183,2,94,volkswagen,turbo,four,sedan,fwd,front,97.3,0.8250840941854877,0.9097222222222222,55.7,2319,ohc,four,97,idi,3.01,3.4,23.0,68.0,4500.0,37,42,9495.0,6.351351351351352,Low,1,0
186 | 184,2,94,volkswagen,std,four,sedan,fwd,front,97.3,0.8250840941854877,0.9097222222222222,55.7,2300,ohc,four,109,mpfi,3.19,3.4,10.0,100.0,5500.0,26,32,9995.0,9.038461538461538,Low,0,1
187 | 185,3,122,volkswagen,std,two,convertible,fwd,front,94.5,0.7654973570398848,0.8916666666666667,55.6,2254,ohc,four,109,mpfi,3.19,3.4,8.5,90.0,5500.0,24,29,11595.0,9.791666666666666,Low,0,1
188 | 186,3,256,volkswagen,std,two,hatchback,fwd,front,94.5,0.7962518020182604,0.8888888888888888,51.4,2221,ohc,four,109,mpfi,3.19,3.4,8.5,90.0,5500.0,24,29,9980.0,9.791666666666666,Low,0,1
189 | 187,0,122,volkswagen,std,four,sedan,fwd,front,100.4,0.865929841422393,0.9291666666666667,55.1,2661,ohc,five,136,mpfi,3.19,3.4,8.5,110.0,5500.0,19,24,13295.0,12.368421052631579,Low,0,1
190 | 188,0,122,volkswagen,turbo,four,sedan,fwd,front,100.4,0.865929841422393,0.9291666666666667,55.1,2579,ohc,four,97,idi,3.01,3.4,23.0,68.0,4500.0,33,38,13845.0,7.121212121212121,Low,1,0
191 | 189,0,122,volkswagen,std,four,wagon,fwd,front,100.4,0.8798654493032196,0.9291666666666667,55.1,2563,ohc,four,109,mpfi,3.19,3.4,9.0,88.0,5500.0,25,31,12290.0,9.4,Low,0,1
192 | 190,-2,103,volvo,std,four,sedan,rwd,front,104.3,0.9072561268620856,0.9333333333333333,56.2,2912,ohc,four,141,mpfi,3.78,3.15,9.5,114.0,5400.0,23,28,12940.0,10.217391304347826,Low,0,1
193 | 191,-1,74,volvo,std,four,wagon,rwd,front,104.3,0.9072561268620856,0.9333333333333333,57.5,3034,ohc,four,141,mpfi,3.78,3.15,9.5,114.0,5400.0,23,28,13415.0,10.217391304347826,Low,0,1
194 | 192,-2,103,volvo,std,four,sedan,rwd,front,104.3,0.9072561268620856,0.9333333333333333,56.2,2935,ohc,four,141,mpfi,3.78,3.15,9.5,114.0,5400.0,24,28,15985.0,9.791666666666666,Low,0,1
195 | 193,-1,74,volvo,std,four,wagon,rwd,front,104.3,0.9072561268620856,0.9333333333333333,57.5,3042,ohc,four,141,mpfi,3.78,3.15,9.5,114.0,5400.0,24,28,16515.0,9.791666666666666,Low,0,1
196 | 194,-2,103,volvo,turbo,four,sedan,rwd,front,104.3,0.9072561268620856,0.9333333333333333,56.2,3045,ohc,four,130,mpfi,3.62,3.15,7.5,162.0,5100.0,17,22,18420.0,13.823529411764707,Medium,0,1
197 | 195,-1,74,volvo,turbo,four,wagon,rwd,front,104.3,0.9072561268620856,0.9333333333333333,57.5,3157,ohc,four,130,mpfi,3.62,3.15,7.5,162.0,5100.0,17,22,18950.0,13.823529411764707,Medium,0,1
198 | 196,-1,95,volvo,std,four,sedan,rwd,front,109.1,0.9072561268620856,0.9569444444444445,55.5,2952,ohc,four,141,mpfi,3.78,3.15,9.5,114.0,5400.0,23,28,16845.0,10.217391304347826,Low,0,1
199 | 197,-1,95,volvo,turbo,four,sedan,rwd,front,109.1,0.9072561268620856,0.9555555555555555,55.5,3049,ohc,four,141,mpfi,3.78,3.15,8.7,160.0,5300.0,19,25,19045.0,12.368421052631579,Medium,0,1
200 | 198,-1,95,volvo,std,four,sedan,rwd,front,109.1,0.9072561268620856,0.9569444444444445,55.5,3012,ohcv,six,173,mpfi,3.58,2.87,8.8,134.0,5500.0,18,23,21485.0,13.055555555555555,Medium,0,1
201 | 199,-1,95,volvo,turbo,four,sedan,rwd,front,109.1,0.9072561268620856,0.9569444444444445,55.5,3217,ohc,six,145,idi,3.01,3.4,23.0,106.0,4800.0,26,27,22470.0,9.038461538461538,Low,1,0
202 | 200,-1,95,volvo,turbo,four,sedan,rwd,front,109.1,0.9072561268620856,0.9569444444444445,55.5,3062,ohc,four,141,mpfi,3.78,3.15,9.5,114.0,5400.0,19,25,22625.0,12.368421052631579,Low,0,1
203 |
--------------------------------------------------------------------------------
/GroupA-Assignment2/README.md:
--------------------------------------------------------------------------------
1 | **NOTE:**
2 |
3 | The dataset used for this practical was collected by us. You can use a diffrent dataset.
4 |
--------------------------------------------------------------------------------
/GroupA-Assignment2/tecdiv.csv:
--------------------------------------------------------------------------------
1 | Timestamp,Email Address,Name,Email,Roll no ,PRN No.,Mobile No.,First year: Sem 1,First year: Sem 2,Second year: Sem 1,Second year: Sem 2
2 | 1/17/2022 12:45:09,sejal.zambare19@pccoepune.org,Sejal Zambare,sejal.zambare19@gmail.com,TECOC359,72026841K,8208217782,8.4,8.6,9.8,9.9
3 | 1/17/2022 12:45:44,rushikesh.thorat19@pccoepune.org,Rushikesh Vilas Thorat,rushikesh.thorat19@pccoepune.org,TECOC347,72026776F,9021261925,8.14,8.14,9.32,9.82
4 | 1/17/2022 12:46:10,atharv.sontakke19@pccoepune.org,Atharv Sontakke,atharv123sontakke@gmail.com,TECOC340,72026742M,9009804629,6.61,6.61,9.14,9.14
5 | 1/17/2022 12:46:21,amisha.sherekar19@pccoepune.org,Amisha Sunil Sherekar,amisha.sherekar19@pccoepune.org,TECOC328,72026696D,8698227548,7.2,7.3,8.9,9.2
6 | 1/17/2022 12:46:31,saurabh.sawardekar19@pccoepune.org,Saurabh Raju Sawardekar,saurabh.sawardekar19@pccoepune.org,TECOC326,72026682D,7774072850,7.05,7.45,9.05,9.4
7 | 1/17/2022 12:48:06,priyanka.kizhekethottam19@pccoepune.org,Priyanka Sunil Kizhekethottam,priyankasunilkpsk@gmail.com,TECOC308,72026604B,8879528852,7.5,8,7.91,7.84
8 | 1/17/2022 12:48:27,janhavi.pimplikar19@pccoepune.org,Janhavi Pimplikar,jpimplikar26@gmail.com,TECOC304,72026588G,7028925097,8.27,8.5,9.68,9.14
9 | 1/17/2022 12:48:36,lalit.shirsath19@pccoepune.org,Lalit vilas shirsath,lalitshirsath1111@gmail.com,TECOC368,72026714F,7498041827,8.68,9,9.59,9.66
10 | 1/17/2022 12:48:47,shishir.singh19@pccoepune.org,Shishir Singh,shishirsingh5742@gmail.com,TECOC336,72026730H,9359146752,7.64,7.64,9.18,9.39
11 | 1/17/2022 12:49:11,vighnesh.pathrikar19@pccoepune.org,Vighnesh Pathrikar,vighnesh.pathrikar19@pccoepune.org,TECOC353,72026808H,8007669855,9.09,9.36,9.91,9.95
12 | 1/17/2022 12:49:35,vedant.nerkar19@pccoepune.org,Vedant Narendra Nerkar,vedantnerkar11@gmail.com,TECOB249,72026501M,9028008196,7.45,7.91,9.41,9.41
13 | 1/17/2022 12:51:15,twinkle.shirsath19@pccoepune.org,Twinkle Shirsath,twinkle.shirsath19@pccoepune.org,TECOC332,72026715D,9307452683,9,9.5,9.77,9.86
14 | 1/17/2022 12:51:43,akshay.siddannavar19@pccoepune.org,Akshay Ajay Siddannavar,akshay.siddannavar19@pccoepune.org,TECOC334,72026725M,9823343665,9,9.27,9.77,9.33
15 | 1/17/2022 12:51:44,avadhut.joshi19@pccoepune.org,Avadhut Joshi,avadhut.joshi19@pccoepune.org,TECOC362,72026290K,8380995879,7.59,7.95,9.05,9.66
16 | 1/17/2022 12:52:01,ritik.bazaz19@pccoepune.org,Ritik Bazaz,ritikbazazrb@gmail.com,TECOC315,72026645K,9086791952,6.36,6.59,8.5,8.59
17 | 1/17/2022 12:52:32,sumedha.zaware19@pccoepune.org,Sumedha Zaware,zawaresumedha@gmail.com,TECOC342,72072651L,8308261661,8.04,8.1,9.59,9.66
18 | 1/17/2022 12:52:38,rushikesh.markad19@pccoepune.org,Rushikesh Karbhari Markad,rushikeshmarkad0@gmail.com,TECOC366,72026443L,9623614171,8.68,8.77,9.68,9.82
19 | 1/17/2022 12:54:06,tejaswini.zalki19@pccoepune.org,Tejaswini Ashok Zalki,zalkiteju1420@gmail.com,TECOC358,72026839H,9689650164,8.71,8.91,9.86,9.84
20 | 1/17/2022 12:55:16,ashootosh.pawar18@pccoepune.org,Ashootosh pawar,ashootoshpawar14@gmail.com,TECOC370,71910603G,8459324811,6.25,6.89,6.9,7.2
21 | 1/17/2022 12:57:12,atharva.sarode19@pccoepune.org,Atharva Sachin Sarode,atharva.sarode19@pccoepune.org,TECOC321,72026673E,8805627267,8.32,9,9.55,9.48
22 | 1/17/2022 12:57:49,rizwan.sayyed19@pccoepune.org,Rizwan Sayyed,rizwan.sayyed19@pccoepune.org,TECOC316,72026646H,9307781701,9.09,9.4,9.64,9.64
23 | 1/17/2022 12:58:20,siddhesh.vharamble19@pccoepune.org,Siddhesh Vharambale,siddhesh.vharamble19@pccoepune.org,TECOC352,72026807K,9767417437,7.8,8.14,9.5,9.71
24 | 1/17/2022 12:58:44,riya.shah19@pccoepune.org,Riya Sameer Shah,riya.shah19@pccoepune.org,TECOC327,72026685J,9518597804,8.82,9.23,9.82,9.82
25 | 1/17/2022 13:03:24,tejas.podutwar19@pccoepune.org,Tejas Podutwar,tejas.podutwar19@pccoepune.org,TECOC305,72026592E,9518505174,8.68,9.42,9.86,9.82
26 | 1/17/2022 13:03:40,aditi.naiknaware19@pccoepune.org,Aditi Hanumant Naiknaware ,aditi.naiknaware@gmail.com,TECOC373 ,72026487B,8080105892,9.42,9.55,9.05,9.18
27 | 1/17/2022 14:26:54,prathamesh.pimparwar19@pccoepune.org,Prathamesh Pimparwar,prathamesh.pimparwar19@pccoepune.org,TECOC303,72026587J,7057421821,7.14,7.14,9.3,9.05
28 | 1/17/2022 14:31:50,sanskruti.raskar19@pccoepune.org,Sanskruti Hanumant Raskar ,sanskruti.raskar19@pccoepune.org,TECOC312,72026629H,8637729749,8.81,9.18,8.86,9.09
29 | 1/17/2022 15:20:24,pratik.athawale19@pccoepune.org,Pratik Athawale,pratik.athawale19@pccoepune.org,TECOC307,72026601H,7448228857,7.31,8.38,9.36,9
30 | 1/17/2022 15:33:45,mahesh.supe19@pccoepune.org,Mahesh Supe,maheshsupe714@gmail.com,TECOC343,72026752J,9921967225,7,7.66,8.6,8.91
31 | 1/17/2022 16:07:20,komal.karkhile19@pccoepune.org,Karkhile Komal Balu ,komal.karkhile19@pccoepune.org,TECOC364 ,72026335,7028948265,8.87,8.77,9.44,9.66
32 | 1/17/2022 17:12:16,nikita.gaikwad19@pccoepune.org,Nikita Sukhadev Gaikwad,nikitagaikwad281@gmail.com,TECOC367,72026507L,7507102142,8.95,9.16,9.59,9.89
33 | 1/18/2022 9:28:00,abhishek.rath19@pccoepune.org,Abhishek Rath,abhishek.rath19@pccoepune.org,TECOC313,72026631K,8459454489,9.13,9.36,9.86,9.78
34 | 1/18/2022 9:48:02,rutuja.patil20@pccoepune.org,Rutuja Shantaram Patil,rutuja.patil20@pccoepune.org,TECOC376,72164282K,9518771019,95,95,9.4,9.9
35 | 1/18/2022 10:29:57,pradnya.thakur19@pccoepune.org,Pradnya Thakur ,pradnya.thakur19@pccoepune.org,TECOC369,72026774K,7620616603,9.02,9.2,9.3,9.45
36 | 1/18/2022 10:30:10,sakshi.tendulkar19@pccoepune.org,Sakshi Tendulkar,sakshi.tendulkar19@pccoepune.org,TECOC346,72026772C,7887560141,8.8,9.16,9.5,9.9
37 | 1/18/2022 10:30:34,akash.satpute19@pccoepune.org,Akash Satpute,akashsatpute244@gmail.com,TECOC323,72026676K,7744018328,8.5,8.75,9.64,9.61
38 | 1/18/2022 10:31:08,jai.suryawanshi19@pccoepune.org,JAI SURYAWANSHI,jai.suryawanshi19@pccoepune.org,TECOC344,72026757K,09172258853,7.6,7.8,9.75,9.77
39 | 1/18/2022 10:32:08,tushar.varkhede19@pccoepune.org,Tushar Damodhar Varkhede,tusharvarkhede363@gmail.com,TECOC350,72026797J,9579224129,8.66,8.66,9.66,9.66
40 | 1/18/2022 10:33:20,rohit.sarode19@pccoepune.org,Rohit Sarde,rohitsarode2627@gmail.com,TECOC322,72026674C,9975810366,6.63,6.82,9.23,9.23
41 | 1/18/2022 10:33:36,pratik.patil20@pccoepune.org,Pratik Kumar Patil,pratik.patil20@pccoepune.org,TECOC382,72164281M,9172604237,0,0,9.86,9.91
42 | 1/18/2022 10:33:45,varunraj.tipugade20@pccoepune.org,Varunraj Vijay Tipugade,varunrajtipugade2001@gmail.com,TECOC380,72164294C,7030212587,0,0,9.59,9.59
43 | 1/18/2022 10:37:46,chinmay.singhania19@pccoepune.org,Chinmay Singhania,chinmay.singhania@gmail.com,TECOC337,72026732D,7028870131,7.54,7.86,9.23,9.45
44 | 1/18/2022 10:44:03,vishwajeet.shinde19@pccoepune.org,Vishwajeet shankar shinde,vishwajeetshinde2001@gmail.com,TECOC329,72026709K,8888547620,8.25,8.8,9,9.25
45 | 1/18/2022 10:54:01,sudeep.pawar19@pccoepune.org,Sudeep Pawar,sudeeppawar19@gmail.com,TECOC302,72026584D,7249702685,8.1,8.1,9.5,9.7
46 | 1/18/2022 11:34:25,diksha.waghchoure19@pccoepune.org,Diksha Waghchoure,diksha.waghchoure19@pccoepune.org,TECOC355,72026815L,9325717326,7.9,8.34,9.7,9.7
47 | 1/18/2022 11:39:40,pratiksha.ganjave20@pccoepune.org,Pratiksha Dattu Ganjave,pratikshaganjave.ggsp@gmail.com,TECOC379,120B20082,9284148739,0,0,8.5,9.14
48 | 1/18/2022 11:42:27,abhishek.dongare19@pccoepune.org,Abhishek Dongare,abhishekdongare2001@gmail.com,TECOC361,72026168E,8788342904,8.95,9.1,9.67,9
49 | 1/18/2022 11:48:29,rutuja.patil19@pccoepune.org,Rutuja Patil,rutupatil2000@gmail.com,TECOC318,72026655G,9327076993,7.25,7.51,8.68,8.98
50 | 1/18/2022 11:59:29,saumya.phadkar19@pccoepune.org,Saumya Phadkar,saumya.phadkar@gmail.com,TECOC324,72026678F,9881724240,7.4,8,9.5,9.1
51 | 1/19/2022 10:18:25,rutvik.nare20@pccoepune.org,Rutvik Nare,rutvik.nare20@pccoepune.org,TECOC375,72164285D,9881439608,0,0,8.3,8.5
52 | 1/19/2022 10:20:23,pratiksha.pawar19@pccoepune.org,Pratiksha Pawar,pratiksha.pawar19@pccoepune.org,TECOC301,72026579H,9660663089,8.98,9.45,9.61,9.61
53 | 1/19/2022 10:21:03,sagar.shirke19@pccoepune.org,Sagar Dattatray Shirke,sagar.shirke19@pccoepune.org,TECOC331,72026713H,9421259558,8.61,9.25,9.21,9.4
54 | 1/19/2022 10:21:28,anushka.shrirao19@pccoepune.org,Anushka,shriraoanushka@gmail.com,TECOC333,72026721J,9309523229,7,8,9,9
55 | 1/19/2022 10:21:34,mohini.shinde20@pccoepune.org,Mohini Anandrao Shinde,mohini.shinde20@pccoepune.org,TECOC378,120B20046,7360120199,8.9,9.1,9.2,9.2
56 | 1/19/2022 10:21:43,saisanjana.prodduturu19@pccoepune.org,Sai Sanjana Prodduturu,saisanjana.prodduturu19@pccoepune.org,TECOC309,72026605L,9075294894,7.13,6.6,9.04,9.45
57 | 1/19/2022 10:23:55,mrunali.yewale19@pccoepune.org,Mrunali Yewale,mrunali.yewale19@pccoepune.org,TECOC357,72026836C,8381099465,8.55,8.64,9.73,9.8
58 | 1/19/2022 10:26:31,aniket.raut19@pccoepune.org,Aniket Raut,aniket.raut19@pccoepune.org,TECOC314,72026640J,8605167820,7.27,7.83,9.55,9.13
59 | 1/19/2022 10:39:32,deepali.javriya19@pccoepune.org,Deepali Javriya ,deepali.javriya19@pccoepune.org,TECOC372 ,72026114H ,7999242308,9.54,10,9.45,9.54
60 | 1/19/2022 11:27:25,gaurav.rasal19@pccoepune.org,Gaurav Rasal,gauravvr77@gmail.com,TECOC311,72026627M,7722082807,8.59,9,9.63,9.56
61 | 1/20/2022 9:24:40,pratik.meshram20@pccoepune.org,Pratik Amrut Meshram,pratik.meshram20@pccoepune.org,TECOC381,72164278M,7666479857,0,0,9.09,9.36
62 | 1/20/2022 9:36:14,prasad.zore19@pccoepune.org,Prasad Zore,prasad.zore@outlook.com,TECOC360,72026843F,7387645749,8.31,8.27,9.45,9.77
63 | 1/20/2022 9:42:34,sudhir.varu19@pccoepune.org,SUDHIR VARU,sudhirvaru01@gmail.com,TECOC351,72026799E,9657017250,8.31,8.42,8.53,8.64
64 | 1/20/2022 10:22:05,bhagyashree.takale19@pccoepune.org,Bhagyashree Gorakh Takale,bbhagyashree002@gmail.com,TECOC345,72026760K,8805813576,8.7,8.5,8.7,8.8
65 | 1/20/2022 10:38:06,sarvesh.waghmare19@pccoepune.org,Waghmare Sarvesh Jitendra,sarvesh.waghmare19@pccoepune.org,TECOC356,72026817G,7218935035,6.9,7.07,9.05,9.2
--------------------------------------------------------------------------------
/GroupA-Assignment4/Code.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "NAME: Sumedha Zaware\n",
8 | "\n",
9 | "ROLL No.: TECOC342\n",
10 | "\n",
11 | "**Assignment-4**"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "import numpy as np\n",
21 | "import pandas as pd"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 3,
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/html": [
32 | "
\n",
33 | "\n",
46 | "
\n",
47 | " \n",
48 | " \n",
49 | " \n",
50 | " crim \n",
51 | " zn \n",
52 | " indus \n",
53 | " chas \n",
54 | " nox \n",
55 | " rm \n",
56 | " age \n",
57 | " dis \n",
58 | " rad \n",
59 | " tax \n",
60 | " ptratio \n",
61 | " b \n",
62 | " lstat \n",
63 | " medv \n",
64 | " \n",
65 | " \n",
66 | " \n",
67 | " \n",
68 | " 0 \n",
69 | " 0.00632 \n",
70 | " 18.0 \n",
71 | " 2.31 \n",
72 | " 0 \n",
73 | " 0.538 \n",
74 | " 6.575 \n",
75 | " 65.2 \n",
76 | " 4.0900 \n",
77 | " 1 \n",
78 | " 296 \n",
79 | " 15.3 \n",
80 | " 396.90 \n",
81 | " 4.98 \n",
82 | " 24.0 \n",
83 | " \n",
84 | " \n",
85 | " 1 \n",
86 | " 0.02731 \n",
87 | " 0.0 \n",
88 | " 7.07 \n",
89 | " 0 \n",
90 | " 0.469 \n",
91 | " 6.421 \n",
92 | " 78.9 \n",
93 | " 4.9671 \n",
94 | " 2 \n",
95 | " 242 \n",
96 | " 17.8 \n",
97 | " 396.90 \n",
98 | " 9.14 \n",
99 | " 21.6 \n",
100 | " \n",
101 | " \n",
102 | " 2 \n",
103 | " 0.02729 \n",
104 | " 0.0 \n",
105 | " 7.07 \n",
106 | " 0 \n",
107 | " 0.469 \n",
108 | " 7.185 \n",
109 | " 61.1 \n",
110 | " 4.9671 \n",
111 | " 2 \n",
112 | " 242 \n",
113 | " 17.8 \n",
114 | " 392.83 \n",
115 | " 4.03 \n",
116 | " 34.7 \n",
117 | " \n",
118 | " \n",
119 | " 3 \n",
120 | " 0.03237 \n",
121 | " 0.0 \n",
122 | " 2.18 \n",
123 | " 0 \n",
124 | " 0.458 \n",
125 | " 6.998 \n",
126 | " 45.8 \n",
127 | " 6.0622 \n",
128 | " 3 \n",
129 | " 222 \n",
130 | " 18.7 \n",
131 | " 394.63 \n",
132 | " 2.94 \n",
133 | " 33.4 \n",
134 | " \n",
135 | " \n",
136 | " 4 \n",
137 | " 0.06905 \n",
138 | " 0.0 \n",
139 | " 2.18 \n",
140 | " 0 \n",
141 | " 0.458 \n",
142 | " 7.147 \n",
143 | " 54.2 \n",
144 | " 6.0622 \n",
145 | " 3 \n",
146 | " 222 \n",
147 | " 18.7 \n",
148 | " 396.90 \n",
149 | " 5.33 \n",
150 | " 36.2 \n",
151 | " \n",
152 | " \n",
153 | "
\n",
154 | "
"
155 | ],
156 | "text/plain": [
157 | " crim zn indus chas nox rm age dis rad tax ptratio \\\n",
158 | "0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 \n",
159 | "1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 \n",
160 | "2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 \n",
161 | "3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 \n",
162 | "4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 \n",
163 | "\n",
164 | " b lstat medv \n",
165 | "0 396.90 4.98 24.0 \n",
166 | "1 396.90 9.14 21.6 \n",
167 | "2 392.83 4.03 34.7 \n",
168 | "3 394.63 2.94 33.4 \n",
169 | "4 396.90 5.33 36.2 "
170 | ]
171 | },
172 | "execution_count": 3,
173 | "metadata": {},
174 | "output_type": "execute_result"
175 | }
176 | ],
177 | "source": [
178 | "data = pd.read_csv(\"https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv\")\n",
179 | "data.head()"
180 | ]
181 | },
182 | {
183 | "cell_type": "code",
184 | "execution_count": 4,
185 | "metadata": {},
186 | "outputs": [
187 | {
188 | "data": {
189 | "text/html": [
190 | "\n",
191 | "\n",
204 | "
\n",
205 | " \n",
206 | " \n",
207 | " \n",
208 | " crim \n",
209 | " zn \n",
210 | " indus \n",
211 | " chas \n",
212 | " nox \n",
213 | " rm \n",
214 | " age \n",
215 | " dis \n",
216 | " rad \n",
217 | " tax \n",
218 | " ptratio \n",
219 | " b \n",
220 | " lstat \n",
221 | " medv \n",
222 | " \n",
223 | " \n",
224 | " \n",
225 | " \n",
226 | " 501 \n",
227 | " 0.06263 \n",
228 | " 0.0 \n",
229 | " 11.93 \n",
230 | " 0 \n",
231 | " 0.573 \n",
232 | " 6.593 \n",
233 | " 69.1 \n",
234 | " 2.4786 \n",
235 | " 1 \n",
236 | " 273 \n",
237 | " 21.0 \n",
238 | " 391.99 \n",
239 | " 9.67 \n",
240 | " 22.4 \n",
241 | " \n",
242 | " \n",
243 | " 502 \n",
244 | " 0.04527 \n",
245 | " 0.0 \n",
246 | " 11.93 \n",
247 | " 0 \n",
248 | " 0.573 \n",
249 | " 6.120 \n",
250 | " 76.7 \n",
251 | " 2.2875 \n",
252 | " 1 \n",
253 | " 273 \n",
254 | " 21.0 \n",
255 | " 396.90 \n",
256 | " 9.08 \n",
257 | " 20.6 \n",
258 | " \n",
259 | " \n",
260 | " 503 \n",
261 | " 0.06076 \n",
262 | " 0.0 \n",
263 | " 11.93 \n",
264 | " 0 \n",
265 | " 0.573 \n",
266 | " 6.976 \n",
267 | " 91.0 \n",
268 | " 2.1675 \n",
269 | " 1 \n",
270 | " 273 \n",
271 | " 21.0 \n",
272 | " 396.90 \n",
273 | " 5.64 \n",
274 | " 23.9 \n",
275 | " \n",
276 | " \n",
277 | " 504 \n",
278 | " 0.10959 \n",
279 | " 0.0 \n",
280 | " 11.93 \n",
281 | " 0 \n",
282 | " 0.573 \n",
283 | " 6.794 \n",
284 | " 89.3 \n",
285 | " 2.3889 \n",
286 | " 1 \n",
287 | " 273 \n",
288 | " 21.0 \n",
289 | " 393.45 \n",
290 | " 6.48 \n",
291 | " 22.0 \n",
292 | " \n",
293 | " \n",
294 | " 505 \n",
295 | " 0.04741 \n",
296 | " 0.0 \n",
297 | " 11.93 \n",
298 | " 0 \n",
299 | " 0.573 \n",
300 | " 6.030 \n",
301 | " 80.8 \n",
302 | " 2.5050 \n",
303 | " 1 \n",
304 | " 273 \n",
305 | " 21.0 \n",
306 | " 396.90 \n",
307 | " 7.88 \n",
308 | " 11.9 \n",
309 | " \n",
310 | " \n",
311 | "
\n",
312 | "
"
313 | ],
314 | "text/plain": [
315 | " crim zn indus chas nox rm age dis rad tax ptratio \\\n",
316 | "501 0.06263 0.0 11.93 0 0.573 6.593 69.1 2.4786 1 273 21.0 \n",
317 | "502 0.04527 0.0 11.93 0 0.573 6.120 76.7 2.2875 1 273 21.0 \n",
318 | "503 0.06076 0.0 11.93 0 0.573 6.976 91.0 2.1675 1 273 21.0 \n",
319 | "504 0.10959 0.0 11.93 0 0.573 6.794 89.3 2.3889 1 273 21.0 \n",
320 | "505 0.04741 0.0 11.93 0 0.573 6.030 80.8 2.5050 1 273 21.0 \n",
321 | "\n",
322 | " b lstat medv \n",
323 | "501 391.99 9.67 22.4 \n",
324 | "502 396.90 9.08 20.6 \n",
325 | "503 396.90 5.64 23.9 \n",
326 | "504 393.45 6.48 22.0 \n",
327 | "505 396.90 7.88 11.9 "
328 | ]
329 | },
330 | "execution_count": 4,
331 | "metadata": {},
332 | "output_type": "execute_result"
333 | }
334 | ],
335 | "source": [
336 | "data.tail()"
337 | ]
338 | },
339 | {
340 | "cell_type": "code",
341 | "execution_count": 5,
342 | "metadata": {},
343 | "outputs": [
344 | {
345 | "name": "stdout",
346 | "output_type": "stream",
347 | "text": [
348 | "The shape of the data is: \n"
349 | ]
350 | },
351 | {
352 | "data": {
353 | "text/plain": [
354 | "(506, 14)"
355 | ]
356 | },
357 | "execution_count": 5,
358 | "metadata": {},
359 | "output_type": "execute_result"
360 | }
361 | ],
362 | "source": [
363 | "print(\"The shape of the data is: \")\n",
364 | "data.shape"
365 | ]
366 | },
367 | {
368 | "cell_type": "markdown",
369 | "metadata": {},
370 | "source": [
371 | "Hence, we can see that there are no NULL values"
372 | ]
373 | },
374 | {
375 | "cell_type": "code",
376 | "execution_count": 6,
377 | "metadata": {},
378 | "outputs": [
379 | {
380 | "data": {
381 | "text/plain": [
382 | "crim 0\n",
383 | "zn 0\n",
384 | "indus 0\n",
385 | "chas 0\n",
386 | "nox 0\n",
387 | "rm 0\n",
388 | "age 0\n",
389 | "dis 0\n",
390 | "rad 0\n",
391 | "tax 0\n",
392 | "ptratio 0\n",
393 | "b 0\n",
394 | "lstat 0\n",
395 | "medv 0\n",
396 | "dtype: int64"
397 | ]
398 | },
399 | "execution_count": 6,
400 | "metadata": {},
401 | "output_type": "execute_result"
402 | }
403 | ],
404 | "source": [
405 | "data.isnull().sum()"
406 | ]
407 | },
408 | {
409 | "cell_type": "markdown",
410 | "metadata": {},
411 | "source": [
412 | "Define the independent and dependent variables from the dataset"
413 | ]
414 | },
415 | {
416 | "cell_type": "code",
417 | "execution_count": 7,
418 | "metadata": {},
419 | "outputs": [],
420 | "source": [
421 | "X = data.iloc[:,0:13]\n",
422 | "y = data.iloc[:,-1]"
423 | ]
424 | },
425 | {
426 | "cell_type": "markdown",
427 | "metadata": {},
428 | "source": [
429 | "Splitting data into traing and testing dataset"
430 | ]
431 | },
432 | {
433 | "cell_type": "code",
434 | "execution_count": 8,
435 | "metadata": {},
436 | "outputs": [],
437 | "source": [
438 | "from sklearn.model_selection import train_test_split\n",
439 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,random_state=42)"
440 | ]
441 | },
442 | {
443 | "cell_type": "markdown",
444 | "metadata": {},
445 | "source": [
446 | "Shapes of the training and testing dataset"
447 | ]
448 | },
449 | {
450 | "cell_type": "code",
451 | "execution_count": 9,
452 | "metadata": {},
453 | "outputs": [
454 | {
455 | "name": "stdout",
456 | "output_type": "stream",
457 | "text": [
458 | "(404, 13)\n",
459 | "(102, 13)\n",
460 | "(404,)\n",
461 | "(102,)\n"
462 | ]
463 | }
464 | ],
465 | "source": [
466 | "print(X_train.shape)\n",
467 | "print(X_test.shape)\n",
468 | "print(y_train.shape)\n",
469 | "print(y_test.shape)"
470 | ]
471 | },
472 | {
473 | "cell_type": "markdown",
474 | "metadata": {},
475 | "source": [
476 | "Importing LinearRegression() function"
477 | ]
478 | },
479 | {
480 | "cell_type": "code",
481 | "execution_count": 10,
482 | "metadata": {},
483 | "outputs": [],
484 | "source": [
485 | "from sklearn.linear_model import LinearRegression"
486 | ]
487 | },
488 | {
489 | "cell_type": "code",
490 | "execution_count": 11,
491 | "metadata": {},
492 | "outputs": [
493 | {
494 | "data": {
495 | "text/plain": [
496 | "Pipeline(steps=[('standardscaler', StandardScaler(with_mean=False)),\n",
497 | " ('linearregression', LinearRegression())])"
498 | ]
499 | },
500 | "execution_count": 11,
501 | "metadata": {},
502 | "output_type": "execute_result"
503 | }
504 | ],
505 | "source": [
506 | "from sklearn.preprocessing import StandardScaler\n",
507 | "from sklearn.pipeline import make_pipeline\n",
508 | "model = make_pipeline(StandardScaler(with_mean=False), LinearRegression())\n",
509 | "model.fit(X_train, y_train)"
510 | ]
511 | },
512 | {
513 | "cell_type": "code",
514 | "execution_count": 12,
515 | "metadata": {},
516 | "outputs": [
517 | {
518 | "data": {
519 | "text/plain": [
520 | "0.6687594935356321"
521 | ]
522 | },
523 | "execution_count": 12,
524 | "metadata": {},
525 | "output_type": "execute_result"
526 | }
527 | ],
528 | "source": [
529 | "model.score(X_test,y_test)"
530 | ]
531 | }
532 | ],
533 | "metadata": {
534 | "interpreter": {
535 | "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186"
536 | },
537 | "kernelspec": {
538 | "display_name": "Python 3.8.3 ('base')",
539 | "language": "python",
540 | "name": "python3"
541 | },
542 | "language_info": {
543 | "codemirror_mode": {
544 | "name": "ipython",
545 | "version": 3
546 | },
547 | "file_extension": ".py",
548 | "mimetype": "text/x-python",
549 | "name": "python",
550 | "nbconvert_exporter": "python",
551 | "pygments_lexer": "ipython3",
552 | "version": "3.8.3"
553 | }
554 | },
555 | "nbformat": 4,
556 | "nbformat_minor": 4
557 | }
558 |
--------------------------------------------------------------------------------
/GroupA-Assignment4/HousingData.csv:
--------------------------------------------------------------------------------
1 | CRIM,ZN,INDUS,CHAS,NOX,RM,AGE,DIS,RAD,TAX,PTRATIO,B,LSTAT,MEDV
2 | 0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
3 | 0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
4 | 0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
5 | 0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
6 | 0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,NA,36.2
7 | 0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7
8 | 0.08829,12.5,7.87,NA,0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9
9 | 0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1
10 | 0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5
11 | 0.17004,12.5,7.87,NA,0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9
12 | 0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15
13 | 0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9
14 | 0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7
15 | 0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4
16 | 0.63796,0,8.14,NA,0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2
17 | 0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9
18 | 1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1
19 | 0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5
20 | 0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2
21 | 0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2
22 | 1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6
23 | 0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6
24 | 1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2
25 | 0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5
26 | 0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6
27 | 0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9
28 | 0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6
29 | 0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8
30 | 0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4
31 | 1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21
32 | 1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7
33 | 1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5
34 | 1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2
35 | 1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1
36 | 1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5
37 | 0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,396.9,NA,18.9
38 | 0.09744,0,NA,0,0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20
39 | 0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21
40 | 0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7
41 | 0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8
42 | 0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9
43 | 0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6
44 | 0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3
45 | 0.15936,0,6.91,NA,0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7
46 | 0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2
47 | 0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3
48 | 0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20
49 | 0.22927,0,NA,0,0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6
50 | 0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4
51 | 0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4
52 | 0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7
53 | 0.04337,21,NA,0,0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5
54 | 0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25
55 | NA,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4
56 | 0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9
57 | 0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4
58 | 0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7
59 | 0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6
60 | 0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3
61 | 0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6
62 | 0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7
63 | 0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16
64 | 0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2
65 | 0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25
66 | 0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33
67 | 0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5
68 | 0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4
69 | 0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22
70 | 0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4
71 | 0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9
72 | 0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2
73 | 0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7
74 | 0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8
75 | 0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,377.17,NA,23.4
76 | 0.07896,0,12.83,0,0.437,6.273,NA,4.2515,5,398,18.7,394.92,6.78,24.1
77 | 0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4
78 | 0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20
79 | 0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8
80 | 0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2
81 | 0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,396.06,NA,20.3
82 | 0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28
83 | 0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9
84 | 0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8
85 | 0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9
86 | 0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9
87 | 0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6
88 | 0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5
89 | 0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,395.15,NA,22.2
90 | 0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6
91 | 0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7
92 | 0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6
93 | 0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22
94 | 0.04203,NA,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9
95 | 0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25
96 | 0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6
97 | 0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4
98 | 0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4
99 | 0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7
100 | 0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8
101 | 0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2
102 | 0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5
103 | 0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5
104 | 0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6
105 | 0.21161,0,8.56,0,0.52,6.137,NA,2.7147,5,384,20.9,394.47,13.44,19.3
106 | 0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1
107 | 0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5
108 | 0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5
109 | 0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4
110 | 0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8
111 | 0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4
112 | 0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7
113 | 0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8
114 | 0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8
115 | 0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7
116 | 0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5
117 | NA,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3
118 | 0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,393.3,NA,21.2
119 | 0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2
120 | 0.13058,NA,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4
121 | 0.14476,0,10.01,NA,0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3
122 | 0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22
123 | 0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3
124 | 0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5
125 | 0.15038,0,NA,0,0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3
126 | 0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8
127 | 0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4
128 | 0.38735,0,25.65,0,0.581,5.613,NA,1.7572,2,188,19.1,359.29,27.26,15.7
129 | 0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2
130 | 0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18
131 | 0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3
132 | 0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2
133 | 1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6
134 | 0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23
135 | 0.32982,NA,NA,0,0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4
136 | 0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6
137 | 0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1
138 | 0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4
139 | 0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1
140 | 0.2498,0,21.89,0,0.624,5.857,NA,1.6686,4,437,21.2,392.04,21.32,13.3
141 | 0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8
142 | 0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14
143 | 1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4
144 | 3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4
145 | 4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6
146 | 2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8
147 | 2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8
148 | 2.15505,NA,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6
149 | 2.36862,0,NA,0,0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6
150 | 2.33099,0,NA,0,0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8
151 | 2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4
152 | 1.6566,0,19.58,0,0.871,6.122,NA,1.618,5,403,14.7,372.8,14.1,21.5
153 | 1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6
154 | 1.12658,0,19.58,NA,0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3
155 | 2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4
156 | 1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17
157 | 3.53501,0,19.58,1,0.871,6.152,NA,1.7455,5,403,14.7,88.01,15.02,15.6
158 | 2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1
159 | 1.22358,NA,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3
160 | 1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3
161 | 1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3
162 | 1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27
163 | 1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50
164 | 1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50
165 | 1.51902,0,19.58,1,0.605,8.375,NA,2.162,5,403,14.7,388.45,3.32,50
166 | 2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7
167 | 2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25
168 | 2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50
169 | 1.80028,NA,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8
170 | 2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8
171 | 2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3
172 | 1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4
173 | 2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1
174 | 0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1
175 | 0.09178,0,NA,0,0.51,6.416,NA,2.6463,5,296,16.6,395.5,9.04,23.6
176 | 0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6
177 | 0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4
178 | 0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2
179 | 0.05425,0,NA,0,0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6
180 | 0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9
181 | 0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2
182 | 0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8
183 | 0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2
184 | 0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9
185 | NA,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5
186 | 0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4
187 | 0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6
188 | 0.05602,NA,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50
189 | 0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32
190 | 0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8
191 | 0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9
192 | 0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37
193 | NA,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5
194 | NA,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4
195 | 0.02187,60,2.93,0,0.401,6.8,NA,6.2196,1,265,15.6,393.37,5.03,31.1
196 | 0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1
197 | 0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50
198 | NA,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3
199 | 0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3
200 | 0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6
201 | 0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9
202 | 0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9
203 | 0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1
204 | 0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3
205 | 0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5
206 | 0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50
207 | 0.13642,NA,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6
208 | 0.22969,0,10.59,NA,0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4
209 | 0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,389.43,NA,22.5
210 | 0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4
211 | 0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20
212 | 0.17446,NA,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7
213 | 0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3
214 | 0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4
215 | 0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1
216 | 0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7
217 | 0.19802,0,10.59,0,0.489,6.182,NA,3.9454,4,277,18.6,393.63,9.47,25
218 | 0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3
219 | 0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7
220 | 0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5
221 | 0.11425,0,NA,1,0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23
222 | 0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7
223 | 0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7
224 | 0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5
225 | 0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1
226 | 0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8
227 | 0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50
228 | 0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,387.38,NA,37.6
229 | 0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6
230 | 0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,377.51,NA,46.7
231 | NA,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5
232 | 0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3
233 | 0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7
234 | 0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7
235 | 0.33147,0,6.2,0,0.507,8.247,NA,3.6519,8,307,17.4,378.95,3.95,48.3
236 | 0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29
237 | 0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24
238 | NA,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1
239 | 0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5
240 | 0.08244,NA,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7
241 | 0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3
242 | 0.11329,30,4.93,NA,0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22
243 | NA,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1
244 | 0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2
245 | 0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7
246 | 0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6
247 | 0.19133,22,NA,NA,0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5
248 | 0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3
249 | 0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5
250 | 0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5
251 | 0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2
252 | 0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4
253 | 0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8
254 | 0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6
255 | 0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8
256 | 0.04819,80,3.64,NA,0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9
257 | 0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9
258 | 0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44
259 | 0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50
260 | 0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36
261 | 0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1
262 | 0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8
263 | 0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1
264 | NA,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8
265 | 0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31
266 | 0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5
267 | 0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8
268 | 0.7857,NA,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7
269 | 0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50
270 | 0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5
271 | 0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7
272 | 0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1
273 | 0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,396.9,NA,25.2
274 | 0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4
275 | 0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2
276 | 0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4
277 | 0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32
278 | 0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2
279 | 0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,393.45,NA,33.1
280 | 0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1
281 | 0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1
282 | 0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4
283 | 0.03705,20,3.33,0,0.4429,6.968,NA,5.2447,5,216,14.9,392.23,4.59,35.4
284 | 0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46
285 | 0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50
286 | 0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2
287 | 0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22
288 | 0.01965,80,1.76,0,0.385,6.23,NA,9.0892,1,241,18.2,341.6,12.93,20.1
289 | 0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2
290 | NA,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3
291 | 0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8
292 | 0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5
293 | 0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3
294 | 0.03615,80,NA,0,0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9
295 | 0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9
296 | 0.08199,0,13.92,NA,0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7
297 | 0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6
298 | 0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1
299 | 0.14103,0,NA,0,0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3
300 | 0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5
301 | 0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29
302 | 0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8
303 | 0.03537,NA,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22
304 | NA,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4
305 | 0.1,NA,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1
306 | 0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1
307 | 0.05479,33,NA,0,0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4
308 | 0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4
309 | 0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2
310 | 0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8
311 | 0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3
312 | 2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1
313 | 0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1
314 | 0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4
315 | 0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6
316 | 0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8
317 | 0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2
318 | 0.31827,0,9.9,0,0.544,5.914,NA,3.9986,4,304,18.4,390.7,18.33,17.8
319 | 0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8
320 | 0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1
321 | 0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21
322 | 0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8
323 | 0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1
324 | 0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4
325 | 0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5
326 | 0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25
327 | 0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6
328 | 0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23
329 | 0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2
330 | 0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3
331 | 0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6
332 | 0.04544,NA,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8
333 | 0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1
334 | 0.03466,NA,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4
335 | 0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2
336 | 0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7
337 | 0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1
338 | 0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5
339 | 0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5
340 | 0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6
341 | 0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19
342 | 0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7
343 | 0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7
344 | 0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5
345 | 0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9
346 | 0.03049,55,NA,0,0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2
347 | 0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5
348 | 0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2
349 | 0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1
350 | 0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5
351 | 0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,389.85,NA,26.6
352 | 0.06211,NA,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,396.9,NA,22.9
353 | 0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1
354 | 0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6
355 | 0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1
356 | 0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2
357 | 0.10659,NA,1.91,0,0.413,5.936,NA,10.5857,4,334,22,376.04,5.57,20.6
358 | 8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8
359 | 3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7
360 | 5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7
361 | 4.26131,0,NA,0,0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6
362 | 4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25
363 | 3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9
364 | 3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8
365 | 4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8
366 | 3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9
367 | 4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5
368 | 3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9
369 | 13.5222,0,18.1,NA,0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1
370 | 4.89822,0,18.1,0,0.631,4.97,NA,1.3325,24,666,20.2,375.52,3.26,50
371 | NA,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50
372 | 6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50
373 | 9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50
374 | 8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50
375 | 11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8
376 | 18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8
377 | 19.6091,NA,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15
378 | 15.288,0,18.1,NA,0.671,6.649,93.3,1.3449,24,666,20.2,363.02,NA,13.9
379 | 9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3
380 | 23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1
381 | 17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2
382 | 88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4
383 | 15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9
384 | 9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3
385 | 7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,396.9,NA,12.3
386 | 20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8
387 | 16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2
388 | 24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5
389 | 22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4
390 | 14.3337,0,18.1,NA,0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2
391 | 8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5
392 | 6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1
393 | 5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2
394 | 11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7
395 | NA,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8
396 | NA,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7
397 | 8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1
398 | 5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5
399 | 7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5
400 | 38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5
401 | 9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3
402 | 25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6
403 | 14.2362,0,18.1,NA,0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2
404 | 9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1
405 | 24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3
406 | 41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5
407 | 67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5
408 | 20.7162,0,NA,0,0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9
409 | 11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,332.09,NA,27.9
410 | 7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2
411 | NA,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5
412 | 51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15
413 | 14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2
414 | 18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9
415 | 28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3
416 | 45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7
417 | 18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2
418 | 10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5
419 | 25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4
420 | 73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8
421 | 11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4
422 | 11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7
423 | 7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2
424 | 12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8
425 | 7.05042,0,18.1,0,0.614,6.103,NA,2.0218,24,666,20.2,2.52,23.29,13.4
426 | 8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7
427 | 15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3
428 | NA,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2
429 | 37.6619,NA,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9
430 | 7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11
431 | 9.33889,0,18.1,0,0.679,6.38,NA,1.9682,24,666,20.2,60.72,24.08,9.5
432 | NA,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5
433 | 10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1
434 | 6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1
435 | 5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3
436 | 13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7
437 | 11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4
438 | 14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6
439 | 15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7
440 | 13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4
441 | 9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8
442 | 22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,391.45,NA,10.5
443 | 9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,385.96,NA,17.1
444 | 5.66637,0,18.1,NA,0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4
445 | 9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4
446 | 12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8
447 | 10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8
448 | 6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9
449 | 9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6
450 | 9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1
451 | 7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13
452 | 6.71772,0,18.1,NA,0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4
453 | 5.44114,0,18.1,0,0.713,6.655,NA,2.3552,24,666,20.2,355.29,17.73,15.2
454 | 5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1
455 | 8.24809,0,NA,0,0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8
456 | 9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9
457 | 4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1
458 | 4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7
459 | 8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5
460 | 7.75223,NA,NA,0,0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9
461 | 6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20
462 | NA,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4
463 | 3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7
464 | 6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5
465 | 5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2
466 | 7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4
467 | NA,0,18.1,NA,0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9
468 | 3.77498,0,NA,0,0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19
469 | 4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1
470 | 15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1
471 | 13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1
472 | 4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9
473 | 4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6
474 | 3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2
475 | 4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,374.68,NA,29.8
476 | 8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8
477 | 6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3
478 | 4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7
479 | 15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12
480 | 10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6
481 | 14.3337,0,18.1,NA,0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4
482 | 5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23
483 | 5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7
484 | 5.73116,0,18.1,NA,0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25
485 | 2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8
486 | 2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6
487 | 3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2
488 | 5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1
489 | 4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6
490 | 0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2
491 | 0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7
492 | 0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1
493 | 0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6
494 | 0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1
495 | 0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8
496 | 0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5
497 | 0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1
498 | 0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7
499 | 0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3
500 | 0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2
501 | 0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5
502 | 0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8
503 | 0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,391.99,NA,22.4
504 | 0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6
505 | 0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9
506 | 0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22
507 | 0.04741,0,11.93,0,0.573,6.03,NA,2.505,1,273,21,396.9,7.88,11.9
508 |
--------------------------------------------------------------------------------
/GroupA-Assignment5/Social_Network_Ads.csv:
--------------------------------------------------------------------------------
1 | User ID,Gender,Age,EstimatedSalary,Purchased
2 | 15624510,Male,19,19000,0
3 | 15810944,Male,35,20000,0
4 | 15668575,Female,26,43000,0
5 | 15603246,Female,27,57000,0
6 | 15804002,Male,19,76000,0
7 | 15728773,Male,27,58000,0
8 | 15598044,Female,27,84000,0
9 | 15694829,Female,32,150000,1
10 | 15600575,Male,25,33000,0
11 | 15727311,Female,35,65000,0
12 | 15570769,Female,26,80000,0
13 | 15606274,Female,26,52000,0
14 | 15746139,Male,20,86000,0
15 | 15704987,Male,32,18000,0
16 | 15628972,Male,18,82000,0
17 | 15697686,Male,29,80000,0
18 | 15733883,Male,47,25000,1
19 | 15617482,Male,45,26000,1
20 | 15704583,Male,46,28000,1
21 | 15621083,Female,48,29000,1
22 | 15649487,Male,45,22000,1
23 | 15736760,Female,47,49000,1
24 | 15714658,Male,48,41000,1
25 | 15599081,Female,45,22000,1
26 | 15705113,Male,46,23000,1
27 | 15631159,Male,47,20000,1
28 | 15792818,Male,49,28000,1
29 | 15633531,Female,47,30000,1
30 | 15744529,Male,29,43000,0
31 | 15669656,Male,31,18000,0
32 | 15581198,Male,31,74000,0
33 | 15729054,Female,27,137000,1
34 | 15573452,Female,21,16000,0
35 | 15776733,Female,28,44000,0
36 | 15724858,Male,27,90000,0
37 | 15713144,Male,35,27000,0
38 | 15690188,Female,33,28000,0
39 | 15689425,Male,30,49000,0
40 | 15671766,Female,26,72000,0
41 | 15782806,Female,27,31000,0
42 | 15764419,Female,27,17000,0
43 | 15591915,Female,33,51000,0
44 | 15772798,Male,35,108000,0
45 | 15792008,Male,30,15000,0
46 | 15715541,Female,28,84000,0
47 | 15639277,Male,23,20000,0
48 | 15798850,Male,25,79000,0
49 | 15776348,Female,27,54000,0
50 | 15727696,Male,30,135000,1
51 | 15793813,Female,31,89000,0
52 | 15694395,Female,24,32000,0
53 | 15764195,Female,18,44000,0
54 | 15744919,Female,29,83000,0
55 | 15671655,Female,35,23000,0
56 | 15654901,Female,27,58000,0
57 | 15649136,Female,24,55000,0
58 | 15775562,Female,23,48000,0
59 | 15807481,Male,28,79000,0
60 | 15642885,Male,22,18000,0
61 | 15789109,Female,32,117000,0
62 | 15814004,Male,27,20000,0
63 | 15673619,Male,25,87000,0
64 | 15595135,Female,23,66000,0
65 | 15583681,Male,32,120000,1
66 | 15605000,Female,59,83000,0
67 | 15718071,Male,24,58000,0
68 | 15679760,Male,24,19000,0
69 | 15654574,Female,23,82000,0
70 | 15577178,Female,22,63000,0
71 | 15595324,Female,31,68000,0
72 | 15756932,Male,25,80000,0
73 | 15726358,Female,24,27000,0
74 | 15595228,Female,20,23000,0
75 | 15782530,Female,33,113000,0
76 | 15592877,Male,32,18000,0
77 | 15651983,Male,34,112000,1
78 | 15746737,Male,18,52000,0
79 | 15774179,Female,22,27000,0
80 | 15667265,Female,28,87000,0
81 | 15655123,Female,26,17000,0
82 | 15595917,Male,30,80000,0
83 | 15668385,Male,39,42000,0
84 | 15709476,Male,20,49000,0
85 | 15711218,Male,35,88000,0
86 | 15798659,Female,30,62000,0
87 | 15663939,Female,31,118000,1
88 | 15694946,Male,24,55000,0
89 | 15631912,Female,28,85000,0
90 | 15768816,Male,26,81000,0
91 | 15682268,Male,35,50000,0
92 | 15684801,Male,22,81000,0
93 | 15636428,Female,30,116000,0
94 | 15809823,Male,26,15000,0
95 | 15699284,Female,29,28000,0
96 | 15786993,Female,29,83000,0
97 | 15709441,Female,35,44000,0
98 | 15710257,Female,35,25000,0
99 | 15582492,Male,28,123000,1
100 | 15575694,Male,35,73000,0
101 | 15756820,Female,28,37000,0
102 | 15766289,Male,27,88000,0
103 | 15593014,Male,28,59000,0
104 | 15584545,Female,32,86000,0
105 | 15675949,Female,33,149000,1
106 | 15672091,Female,19,21000,0
107 | 15801658,Male,21,72000,0
108 | 15706185,Female,26,35000,0
109 | 15789863,Male,27,89000,0
110 | 15720943,Male,26,86000,0
111 | 15697997,Female,38,80000,0
112 | 15665416,Female,39,71000,0
113 | 15660200,Female,37,71000,0
114 | 15619653,Male,38,61000,0
115 | 15773447,Male,37,55000,0
116 | 15739160,Male,42,80000,0
117 | 15689237,Male,40,57000,0
118 | 15679297,Male,35,75000,0
119 | 15591433,Male,36,52000,0
120 | 15642725,Male,40,59000,0
121 | 15701962,Male,41,59000,0
122 | 15811613,Female,36,75000,0
123 | 15741049,Male,37,72000,0
124 | 15724423,Female,40,75000,0
125 | 15574305,Male,35,53000,0
126 | 15678168,Female,41,51000,0
127 | 15697020,Female,39,61000,0
128 | 15610801,Male,42,65000,0
129 | 15745232,Male,26,32000,0
130 | 15722758,Male,30,17000,0
131 | 15792102,Female,26,84000,0
132 | 15675185,Male,31,58000,0
133 | 15801247,Male,33,31000,0
134 | 15725660,Male,30,87000,0
135 | 15638963,Female,21,68000,0
136 | 15800061,Female,28,55000,0
137 | 15578006,Male,23,63000,0
138 | 15668504,Female,20,82000,0
139 | 15687491,Male,30,107000,1
140 | 15610403,Female,28,59000,0
141 | 15741094,Male,19,25000,0
142 | 15807909,Male,19,85000,0
143 | 15666141,Female,18,68000,0
144 | 15617134,Male,35,59000,0
145 | 15783029,Male,30,89000,0
146 | 15622833,Female,34,25000,0
147 | 15746422,Female,24,89000,0
148 | 15750839,Female,27,96000,1
149 | 15749130,Female,41,30000,0
150 | 15779862,Male,29,61000,0
151 | 15767871,Male,20,74000,0
152 | 15679651,Female,26,15000,0
153 | 15576219,Male,41,45000,0
154 | 15699247,Male,31,76000,0
155 | 15619087,Female,36,50000,0
156 | 15605327,Male,40,47000,0
157 | 15610140,Female,31,15000,0
158 | 15791174,Male,46,59000,0
159 | 15602373,Male,29,75000,0
160 | 15762605,Male,26,30000,0
161 | 15598840,Female,32,135000,1
162 | 15744279,Male,32,100000,1
163 | 15670619,Male,25,90000,0
164 | 15599533,Female,37,33000,0
165 | 15757837,Male,35,38000,0
166 | 15697574,Female,33,69000,0
167 | 15578738,Female,18,86000,0
168 | 15762228,Female,22,55000,0
169 | 15614827,Female,35,71000,0
170 | 15789815,Male,29,148000,1
171 | 15579781,Female,29,47000,0
172 | 15587013,Male,21,88000,0
173 | 15570932,Male,34,115000,0
174 | 15794661,Female,26,118000,0
175 | 15581654,Female,34,43000,0
176 | 15644296,Female,34,72000,0
177 | 15614420,Female,23,28000,0
178 | 15609653,Female,35,47000,0
179 | 15594577,Male,25,22000,0
180 | 15584114,Male,24,23000,0
181 | 15673367,Female,31,34000,0
182 | 15685576,Male,26,16000,0
183 | 15774727,Female,31,71000,0
184 | 15694288,Female,32,117000,1
185 | 15603319,Male,33,43000,0
186 | 15759066,Female,33,60000,0
187 | 15814816,Male,31,66000,0
188 | 15724402,Female,20,82000,0
189 | 15571059,Female,33,41000,0
190 | 15674206,Male,35,72000,0
191 | 15715160,Male,28,32000,0
192 | 15730448,Male,24,84000,0
193 | 15662067,Female,19,26000,0
194 | 15779581,Male,29,43000,0
195 | 15662901,Male,19,70000,0
196 | 15689751,Male,28,89000,0
197 | 15667742,Male,34,43000,0
198 | 15738448,Female,30,79000,0
199 | 15680243,Female,20,36000,0
200 | 15745083,Male,26,80000,0
201 | 15708228,Male,35,22000,0
202 | 15628523,Male,35,39000,0
203 | 15708196,Male,49,74000,0
204 | 15735549,Female,39,134000,1
205 | 15809347,Female,41,71000,0
206 | 15660866,Female,58,101000,1
207 | 15766609,Female,47,47000,0
208 | 15654230,Female,55,130000,1
209 | 15794566,Female,52,114000,0
210 | 15800890,Female,40,142000,1
211 | 15697424,Female,46,22000,0
212 | 15724536,Female,48,96000,1
213 | 15735878,Male,52,150000,1
214 | 15707596,Female,59,42000,0
215 | 15657163,Male,35,58000,0
216 | 15622478,Male,47,43000,0
217 | 15779529,Female,60,108000,1
218 | 15636023,Male,49,65000,0
219 | 15582066,Male,40,78000,0
220 | 15666675,Female,46,96000,0
221 | 15732987,Male,59,143000,1
222 | 15789432,Female,41,80000,0
223 | 15663161,Male,35,91000,1
224 | 15694879,Male,37,144000,1
225 | 15593715,Male,60,102000,1
226 | 15575002,Female,35,60000,0
227 | 15622171,Male,37,53000,0
228 | 15795224,Female,36,126000,1
229 | 15685346,Male,56,133000,1
230 | 15691808,Female,40,72000,0
231 | 15721007,Female,42,80000,1
232 | 15794253,Female,35,147000,1
233 | 15694453,Male,39,42000,0
234 | 15813113,Male,40,107000,1
235 | 15614187,Male,49,86000,1
236 | 15619407,Female,38,112000,0
237 | 15646227,Male,46,79000,1
238 | 15660541,Male,40,57000,0
239 | 15753874,Female,37,80000,0
240 | 15617877,Female,46,82000,0
241 | 15772073,Female,53,143000,1
242 | 15701537,Male,42,149000,1
243 | 15736228,Male,38,59000,0
244 | 15780572,Female,50,88000,1
245 | 15769596,Female,56,104000,1
246 | 15586996,Female,41,72000,0
247 | 15722061,Female,51,146000,1
248 | 15638003,Female,35,50000,0
249 | 15775590,Female,57,122000,1
250 | 15730688,Male,41,52000,0
251 | 15753102,Female,35,97000,1
252 | 15810075,Female,44,39000,0
253 | 15723373,Male,37,52000,0
254 | 15795298,Female,48,134000,1
255 | 15584320,Female,37,146000,1
256 | 15724161,Female,50,44000,0
257 | 15750056,Female,52,90000,1
258 | 15609637,Female,41,72000,0
259 | 15794493,Male,40,57000,0
260 | 15569641,Female,58,95000,1
261 | 15815236,Female,45,131000,1
262 | 15811177,Female,35,77000,0
263 | 15680587,Male,36,144000,1
264 | 15672821,Female,55,125000,1
265 | 15767681,Female,35,72000,0
266 | 15600379,Male,48,90000,1
267 | 15801336,Female,42,108000,1
268 | 15721592,Male,40,75000,0
269 | 15581282,Male,37,74000,0
270 | 15746203,Female,47,144000,1
271 | 15583137,Male,40,61000,0
272 | 15680752,Female,43,133000,0
273 | 15688172,Female,59,76000,1
274 | 15791373,Male,60,42000,1
275 | 15589449,Male,39,106000,1
276 | 15692819,Female,57,26000,1
277 | 15727467,Male,57,74000,1
278 | 15734312,Male,38,71000,0
279 | 15764604,Male,49,88000,1
280 | 15613014,Female,52,38000,1
281 | 15759684,Female,50,36000,1
282 | 15609669,Female,59,88000,1
283 | 15685536,Male,35,61000,0
284 | 15750447,Male,37,70000,1
285 | 15663249,Female,52,21000,1
286 | 15638646,Male,48,141000,0
287 | 15734161,Female,37,93000,1
288 | 15631070,Female,37,62000,0
289 | 15761950,Female,48,138000,1
290 | 15649668,Male,41,79000,0
291 | 15713912,Female,37,78000,1
292 | 15586757,Male,39,134000,1
293 | 15596522,Male,49,89000,1
294 | 15625395,Male,55,39000,1
295 | 15760570,Male,37,77000,0
296 | 15566689,Female,35,57000,0
297 | 15725794,Female,36,63000,0
298 | 15673539,Male,42,73000,1
299 | 15705298,Female,43,112000,1
300 | 15675791,Male,45,79000,0
301 | 15747043,Male,46,117000,1
302 | 15736397,Female,58,38000,1
303 | 15678201,Male,48,74000,1
304 | 15720745,Female,37,137000,1
305 | 15637593,Male,37,79000,1
306 | 15598070,Female,40,60000,0
307 | 15787550,Male,42,54000,0
308 | 15603942,Female,51,134000,0
309 | 15733973,Female,47,113000,1
310 | 15596761,Male,36,125000,1
311 | 15652400,Female,38,50000,0
312 | 15717893,Female,42,70000,0
313 | 15622585,Male,39,96000,1
314 | 15733964,Female,38,50000,0
315 | 15753861,Female,49,141000,1
316 | 15747097,Female,39,79000,0
317 | 15594762,Female,39,75000,1
318 | 15667417,Female,54,104000,1
319 | 15684861,Male,35,55000,0
320 | 15742204,Male,45,32000,1
321 | 15623502,Male,36,60000,0
322 | 15774872,Female,52,138000,1
323 | 15611191,Female,53,82000,1
324 | 15674331,Male,41,52000,0
325 | 15619465,Female,48,30000,1
326 | 15575247,Female,48,131000,1
327 | 15695679,Female,41,60000,0
328 | 15713463,Male,41,72000,0
329 | 15785170,Female,42,75000,0
330 | 15796351,Male,36,118000,1
331 | 15639576,Female,47,107000,1
332 | 15693264,Male,38,51000,0
333 | 15589715,Female,48,119000,1
334 | 15769902,Male,42,65000,0
335 | 15587177,Male,40,65000,0
336 | 15814553,Male,57,60000,1
337 | 15601550,Female,36,54000,0
338 | 15664907,Male,58,144000,1
339 | 15612465,Male,35,79000,0
340 | 15810800,Female,38,55000,0
341 | 15665760,Male,39,122000,1
342 | 15588080,Female,53,104000,1
343 | 15776844,Male,35,75000,0
344 | 15717560,Female,38,65000,0
345 | 15629739,Female,47,51000,1
346 | 15729908,Male,47,105000,1
347 | 15716781,Female,41,63000,0
348 | 15646936,Male,53,72000,1
349 | 15768151,Female,54,108000,1
350 | 15579212,Male,39,77000,0
351 | 15721835,Male,38,61000,0
352 | 15800515,Female,38,113000,1
353 | 15591279,Male,37,75000,0
354 | 15587419,Female,42,90000,1
355 | 15750335,Female,37,57000,0
356 | 15699619,Male,36,99000,1
357 | 15606472,Male,60,34000,1
358 | 15778368,Male,54,70000,1
359 | 15671387,Female,41,72000,0
360 | 15573926,Male,40,71000,1
361 | 15709183,Male,42,54000,0
362 | 15577514,Male,43,129000,1
363 | 15778830,Female,53,34000,1
364 | 15768072,Female,47,50000,1
365 | 15768293,Female,42,79000,0
366 | 15654456,Male,42,104000,1
367 | 15807525,Female,59,29000,1
368 | 15574372,Female,58,47000,1
369 | 15671249,Male,46,88000,1
370 | 15779744,Male,38,71000,0
371 | 15624755,Female,54,26000,1
372 | 15611430,Female,60,46000,1
373 | 15774744,Male,60,83000,1
374 | 15629885,Female,39,73000,0
375 | 15708791,Male,59,130000,1
376 | 15793890,Female,37,80000,0
377 | 15646091,Female,46,32000,1
378 | 15596984,Female,46,74000,0
379 | 15800215,Female,42,53000,0
380 | 15577806,Male,41,87000,1
381 | 15749381,Female,58,23000,1
382 | 15683758,Male,42,64000,0
383 | 15670615,Male,48,33000,1
384 | 15715622,Female,44,139000,1
385 | 15707634,Male,49,28000,1
386 | 15806901,Female,57,33000,1
387 | 15775335,Male,56,60000,1
388 | 15724150,Female,49,39000,1
389 | 15627220,Male,39,71000,0
390 | 15672330,Male,47,34000,1
391 | 15668521,Female,48,35000,1
392 | 15807837,Male,48,33000,1
393 | 15592570,Male,47,23000,1
394 | 15748589,Female,45,45000,1
395 | 15635893,Male,60,42000,1
396 | 15757632,Female,39,59000,0
397 | 15691863,Female,46,41000,1
398 | 15706071,Male,51,23000,1
399 | 15654296,Female,50,20000,1
400 | 15755018,Male,36,33000,0
401 | 15594041,Female,49,36000,1
--------------------------------------------------------------------------------
/GroupA-Assignment6/Code.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "NAME: Sumedha Zaware\n",
8 | "\n",
9 | "ROLL NO: TECOC342"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 56,
15 | "metadata": {
16 | "id": "Hsgi7fUhID20"
17 | },
18 | "outputs": [],
19 | "source": [
20 | "# Import the required libraries\n",
21 | "import pandas as pd\n",
22 | "import matplotlib.pyplot as plt"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 57,
28 | "metadata": {
29 | "colab": {
30 | "base_uri": "https://localhost:8080/",
31 | "height": 206
32 | },
33 | "id": "lJgXZa9FJvxG",
34 | "outputId": "84734b4a-d460-4587-90ea-30fd0fa697ea"
35 | },
36 | "outputs": [
37 | {
38 | "data": {
39 | "text/html": [
40 | "\n",
41 | "\n",
54 | "
\n",
55 | " \n",
56 | " \n",
57 | " \n",
58 | " sepal length \n",
59 | " sepal width \n",
60 | " petal length \n",
61 | " petal width \n",
62 | " class \n",
63 | " \n",
64 | " \n",
65 | " \n",
66 | " \n",
67 | " 0 \n",
68 | " 5.1 \n",
69 | " 3.5 \n",
70 | " 1.4 \n",
71 | " 0.2 \n",
72 | " Iris-setosa \n",
73 | " \n",
74 | " \n",
75 | " 1 \n",
76 | " 4.9 \n",
77 | " 3.0 \n",
78 | " 1.4 \n",
79 | " 0.2 \n",
80 | " Iris-setosa \n",
81 | " \n",
82 | " \n",
83 | " 2 \n",
84 | " 4.7 \n",
85 | " 3.2 \n",
86 | " 1.3 \n",
87 | " 0.2 \n",
88 | " Iris-setosa \n",
89 | " \n",
90 | " \n",
91 | " 3 \n",
92 | " 4.6 \n",
93 | " 3.1 \n",
94 | " 1.5 \n",
95 | " 0.2 \n",
96 | " Iris-setosa \n",
97 | " \n",
98 | " \n",
99 | " 4 \n",
100 | " 5.0 \n",
101 | " 3.6 \n",
102 | " 1.4 \n",
103 | " 0.2 \n",
104 | " Iris-setosa \n",
105 | " \n",
106 | " \n",
107 | "
\n",
108 | "
"
109 | ],
110 | "text/plain": [
111 | " sepal length sepal width petal length petal width class\n",
112 | "0 5.1 3.5 1.4 0.2 Iris-setosa\n",
113 | "1 4.9 3.0 1.4 0.2 Iris-setosa\n",
114 | "2 4.7 3.2 1.3 0.2 Iris-setosa\n",
115 | "3 4.6 3.1 1.5 0.2 Iris-setosa\n",
116 | "4 5.0 3.6 1.4 0.2 Iris-setosa"
117 | ]
118 | },
119 | "execution_count": 57,
120 | "metadata": {},
121 | "output_type": "execute_result"
122 | }
123 | ],
124 | "source": [
125 | "data = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/iris-data.csv\")\n",
126 | "data.head()"
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": 58,
132 | "metadata": {},
133 | "outputs": [
134 | {
135 | "data": {
136 | "text/plain": [
137 | "(150, 5)"
138 | ]
139 | },
140 | "execution_count": 58,
141 | "metadata": {},
142 | "output_type": "execute_result"
143 | }
144 | ],
145 | "source": [
146 | "data.shape"
147 | ]
148 | },
149 | {
150 | "cell_type": "code",
151 | "execution_count": 59,
152 | "metadata": {},
153 | "outputs": [
154 | {
155 | "data": {
156 | "text/html": [
157 | "\n",
158 | "\n",
171 | "
\n",
172 | " \n",
173 | " \n",
174 | " \n",
175 | " sepal length \n",
176 | " sepal width \n",
177 | " petal length \n",
178 | " petal width \n",
179 | " class \n",
180 | " \n",
181 | " \n",
182 | " \n",
183 | " \n",
184 | " 0 \n",
185 | " 5.1 \n",
186 | " 3.5 \n",
187 | " 1.4 \n",
188 | " 0.2 \n",
189 | " Iris-setosa \n",
190 | " \n",
191 | " \n",
192 | " 1 \n",
193 | " 4.9 \n",
194 | " 3.0 \n",
195 | " 1.4 \n",
196 | " 0.2 \n",
197 | " Iris-setosa \n",
198 | " \n",
199 | " \n",
200 | " 2 \n",
201 | " 4.7 \n",
202 | " 3.2 \n",
203 | " 1.3 \n",
204 | " 0.2 \n",
205 | " Iris-setosa \n",
206 | " \n",
207 | " \n",
208 | " 3 \n",
209 | " 4.6 \n",
210 | " 3.1 \n",
211 | " 1.5 \n",
212 | " 0.2 \n",
213 | " Iris-setosa \n",
214 | " \n",
215 | " \n",
216 | " 4 \n",
217 | " 5.0 \n",
218 | " 3.6 \n",
219 | " 1.4 \n",
220 | " 0.2 \n",
221 | " Iris-setosa \n",
222 | " \n",
223 | " \n",
224 | "
\n",
225 | "
"
226 | ],
227 | "text/plain": [
228 | " sepal length sepal width petal length petal width class\n",
229 | "0 5.1 3.5 1.4 0.2 Iris-setosa\n",
230 | "1 4.9 3.0 1.4 0.2 Iris-setosa\n",
231 | "2 4.7 3.2 1.3 0.2 Iris-setosa\n",
232 | "3 4.6 3.1 1.5 0.2 Iris-setosa\n",
233 | "4 5.0 3.6 1.4 0.2 Iris-setosa"
234 | ]
235 | },
236 | "execution_count": 59,
237 | "metadata": {},
238 | "output_type": "execute_result"
239 | }
240 | ],
241 | "source": [
242 | "data.head()"
243 | ]
244 | },
245 | {
246 | "cell_type": "code",
247 | "execution_count": 60,
248 | "metadata": {},
249 | "outputs": [
250 | {
251 | "data": {
252 | "text/html": [
253 | "\n",
254 | "\n",
267 | "
\n",
268 | " \n",
269 | " \n",
270 | " \n",
271 | " sepal length \n",
272 | " sepal width \n",
273 | " petal length \n",
274 | " petal width \n",
275 | " class \n",
276 | " \n",
277 | " \n",
278 | " \n",
279 | " \n",
280 | " 145 \n",
281 | " 6.7 \n",
282 | " 3.0 \n",
283 | " 5.2 \n",
284 | " 2.3 \n",
285 | " Iris-virginica \n",
286 | " \n",
287 | " \n",
288 | " 146 \n",
289 | " 6.3 \n",
290 | " 2.5 \n",
291 | " 5.0 \n",
292 | " 1.9 \n",
293 | " Iris-virginica \n",
294 | " \n",
295 | " \n",
296 | " 147 \n",
297 | " 6.5 \n",
298 | " 3.0 \n",
299 | " 5.2 \n",
300 | " 2.0 \n",
301 | " Iris-virginica \n",
302 | " \n",
303 | " \n",
304 | " 148 \n",
305 | " 6.2 \n",
306 | " 3.4 \n",
307 | " 5.4 \n",
308 | " 2.3 \n",
309 | " Iris-virginica \n",
310 | " \n",
311 | " \n",
312 | " 149 \n",
313 | " 5.9 \n",
314 | " 3.0 \n",
315 | " 5.1 \n",
316 | " 1.8 \n",
317 | " Iris-virginica \n",
318 | " \n",
319 | " \n",
320 | "
\n",
321 | "
"
322 | ],
323 | "text/plain": [
324 | " sepal length sepal width petal length petal width class\n",
325 | "145 6.7 3.0 5.2 2.3 Iris-virginica\n",
326 | "146 6.3 2.5 5.0 1.9 Iris-virginica\n",
327 | "147 6.5 3.0 5.2 2.0 Iris-virginica\n",
328 | "148 6.2 3.4 5.4 2.3 Iris-virginica\n",
329 | "149 5.9 3.0 5.1 1.8 Iris-virginica"
330 | ]
331 | },
332 | "execution_count": 60,
333 | "metadata": {},
334 | "output_type": "execute_result"
335 | }
336 | ],
337 | "source": [
338 | "data.tail()"
339 | ]
340 | },
341 | {
342 | "cell_type": "code",
343 | "execution_count": 61,
344 | "metadata": {},
345 | "outputs": [
346 | {
347 | "name": "stdout",
348 | "output_type": "stream",
349 | "text": [
350 | "\n",
351 | "RangeIndex: 150 entries, 0 to 149\n",
352 | "Data columns (total 5 columns):\n",
353 | " # Column Non-Null Count Dtype \n",
354 | "--- ------ -------------- ----- \n",
355 | " 0 sepal length 150 non-null float64\n",
356 | " 1 sepal width 150 non-null float64\n",
357 | " 2 petal length 150 non-null float64\n",
358 | " 3 petal width 150 non-null float64\n",
359 | " 4 class 150 non-null object \n",
360 | "dtypes: float64(4), object(1)\n",
361 | "memory usage: 6.0+ KB\n"
362 | ]
363 | }
364 | ],
365 | "source": [
366 | "data.info()"
367 | ]
368 | },
369 | {
370 | "cell_type": "code",
371 | "execution_count": 62,
372 | "metadata": {},
373 | "outputs": [
374 | {
375 | "data": {
376 | "text/html": [
377 | "\n",
378 | "\n",
391 | "
\n",
392 | " \n",
393 | " \n",
394 | " \n",
395 | " sepal length \n",
396 | " sepal width \n",
397 | " petal length \n",
398 | " petal width \n",
399 | " \n",
400 | " \n",
401 | " \n",
402 | " \n",
403 | " count \n",
404 | " 150.000000 \n",
405 | " 150.000000 \n",
406 | " 150.000000 \n",
407 | " 150.000000 \n",
408 | " \n",
409 | " \n",
410 | " mean \n",
411 | " 5.843333 \n",
412 | " 3.054000 \n",
413 | " 3.758667 \n",
414 | " 1.198667 \n",
415 | " \n",
416 | " \n",
417 | " std \n",
418 | " 0.828066 \n",
419 | " 0.433594 \n",
420 | " 1.764420 \n",
421 | " 0.763161 \n",
422 | " \n",
423 | " \n",
424 | " min \n",
425 | " 4.300000 \n",
426 | " 2.000000 \n",
427 | " 1.000000 \n",
428 | " 0.100000 \n",
429 | " \n",
430 | " \n",
431 | " 25% \n",
432 | " 5.100000 \n",
433 | " 2.800000 \n",
434 | " 1.600000 \n",
435 | " 0.300000 \n",
436 | " \n",
437 | " \n",
438 | " 50% \n",
439 | " 5.800000 \n",
440 | " 3.000000 \n",
441 | " 4.350000 \n",
442 | " 1.300000 \n",
443 | " \n",
444 | " \n",
445 | " 75% \n",
446 | " 6.400000 \n",
447 | " 3.300000 \n",
448 | " 5.100000 \n",
449 | " 1.800000 \n",
450 | " \n",
451 | " \n",
452 | " max \n",
453 | " 7.900000 \n",
454 | " 4.400000 \n",
455 | " 6.900000 \n",
456 | " 2.500000 \n",
457 | " \n",
458 | " \n",
459 | "
\n",
460 | "
"
461 | ],
462 | "text/plain": [
463 | " sepal length sepal width petal length petal width\n",
464 | "count 150.000000 150.000000 150.000000 150.000000\n",
465 | "mean 5.843333 3.054000 3.758667 1.198667\n",
466 | "std 0.828066 0.433594 1.764420 0.763161\n",
467 | "min 4.300000 2.000000 1.000000 0.100000\n",
468 | "25% 5.100000 2.800000 1.600000 0.300000\n",
469 | "50% 5.800000 3.000000 4.350000 1.300000\n",
470 | "75% 6.400000 3.300000 5.100000 1.800000\n",
471 | "max 7.900000 4.400000 6.900000 2.500000"
472 | ]
473 | },
474 | "execution_count": 62,
475 | "metadata": {},
476 | "output_type": "execute_result"
477 | }
478 | ],
479 | "source": [
480 | "data.describe()"
481 | ]
482 | },
483 | {
484 | "cell_type": "markdown",
485 | "metadata": {},
486 | "source": [
487 | "Let us check if there are any Null values present"
488 | ]
489 | },
490 | {
491 | "cell_type": "code",
492 | "execution_count": 63,
493 | "metadata": {
494 | "colab": {
495 | "base_uri": "https://localhost:8080/"
496 | },
497 | "id": "-BY21zZ_J40K",
498 | "outputId": "1eef2af3-bf21-40b3-99aa-f625b866b752"
499 | },
500 | "outputs": [
501 | {
502 | "data": {
503 | "text/plain": [
504 | "sepal length 0\n",
505 | "sepal width 0\n",
506 | "petal length 0\n",
507 | "petal width 0\n",
508 | "class 0\n",
509 | "dtype: int64"
510 | ]
511 | },
512 | "execution_count": 63,
513 | "metadata": {},
514 | "output_type": "execute_result"
515 | }
516 | ],
517 | "source": [
518 | "data.isnull().sum()"
519 | ]
520 | },
521 | {
522 | "cell_type": "markdown",
523 | "metadata": {},
524 | "source": [
525 | "Defining X and Y for the model"
526 | ]
527 | },
528 | {
529 | "cell_type": "code",
530 | "execution_count": 64,
531 | "metadata": {
532 | "colab": {
533 | "base_uri": "https://localhost:8080/"
534 | },
535 | "id": "WCvFKeYwKQiy",
536 | "outputId": "d67bb333-416a-4588-854e-0d18855e854c"
537 | },
538 | "outputs": [
539 | {
540 | "name": "stdout",
541 | "output_type": "stream",
542 | "text": [
543 | " sepal length sepal width petal length petal width\n",
544 | "0 5.1 3.5 1.4 0.2\n",
545 | "1 4.9 3.0 1.4 0.2\n",
546 | "2 4.7 3.2 1.3 0.2\n",
547 | "3 4.6 3.1 1.5 0.2\n",
548 | "4 5.0 3.6 1.4 0.2\n",
549 | ".. ... ... ... ...\n",
550 | "145 6.7 3.0 5.2 2.3\n",
551 | "146 6.3 2.5 5.0 1.9\n",
552 | "147 6.5 3.0 5.2 2.0\n",
553 | "148 6.2 3.4 5.4 2.3\n",
554 | "149 5.9 3.0 5.1 1.8\n",
555 | "\n",
556 | "[150 rows x 4 columns]\n",
557 | " class\n",
558 | "0 Iris-setosa\n",
559 | "1 Iris-setosa\n",
560 | "2 Iris-setosa\n",
561 | "3 Iris-setosa\n",
562 | "4 Iris-setosa\n",
563 | ".. ...\n",
564 | "145 Iris-virginica\n",
565 | "146 Iris-virginica\n",
566 | "147 Iris-virginica\n",
567 | "148 Iris-virginica\n",
568 | "149 Iris-virginica\n",
569 | "\n",
570 | "[150 rows x 1 columns]\n",
571 | "(150, 4)\n",
572 | "(150, 1)\n"
573 | ]
574 | }
575 | ],
576 | "source": [
577 | "X = data.drop(['class'], axis=1)\n",
578 | "y = data.drop(['sepal length', 'sepal width', 'petal length', 'petal width'], axis=1)\n",
579 | "print(X)\n",
580 | "print(y)\n",
581 | "print(X.shape)\n",
582 | "print(y.shape)"
583 | ]
584 | },
585 | {
586 | "cell_type": "code",
587 | "execution_count": 74,
588 | "metadata": {
589 | "colab": {
590 | "base_uri": "https://localhost:8080/"
591 | },
592 | "id": "e0TFwRlSKiYE",
593 | "outputId": "d9833105-c4ce-4231-de81-14a09fe3156a"
594 | },
595 | "outputs": [
596 | {
597 | "name": "stdout",
598 | "output_type": "stream",
599 | "text": [
600 | "(120, 4)\n",
601 | "(30, 4)\n",
602 | "(120, 1)\n",
603 | "(30, 1)\n"
604 | ]
605 | }
606 | ],
607 | "source": [
608 | "from sklearn.model_selection import train_test_split\n",
609 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True)\n",
610 | "print(X_train.shape)\n",
611 | "print(X_test.shape)\n",
612 | "print(y_train.shape)\n",
613 | "print(y_test.shape)"
614 | ]
615 | },
616 | {
617 | "cell_type": "code",
618 | "execution_count": 75,
619 | "metadata": {
620 | "colab": {
621 | "base_uri": "https://localhost:8080/"
622 | },
623 | "id": "ETse-LCALVAd",
624 | "outputId": "0615493c-0379-47c5-bcf2-cf92b598118c"
625 | },
626 | "outputs": [
627 | {
628 | "name": "stderr",
629 | "output_type": "stream",
630 | "text": [
631 | "c:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
632 | " return f(**kwargs)\n"
633 | ]
634 | },
635 | {
636 | "data": {
637 | "text/plain": [
638 | "GaussianNB()"
639 | ]
640 | },
641 | "execution_count": 75,
642 | "metadata": {},
643 | "output_type": "execute_result"
644 | }
645 | ],
646 | "source": [
647 | "from sklearn.naive_bayes import GaussianNB\n",
648 | "model = GaussianNB()\n",
649 | "model.fit(X_train, y_train)"
650 | ]
651 | },
652 | {
653 | "cell_type": "code",
654 | "execution_count": 76,
655 | "metadata": {
656 | "id": "RBvohEa0LybS"
657 | },
658 | "outputs": [
659 | {
660 | "data": {
661 | "text/plain": [
662 | "0.9666666666666667"
663 | ]
664 | },
665 | "execution_count": 76,
666 | "metadata": {},
667 | "output_type": "execute_result"
668 | }
669 | ],
670 | "source": [
671 | "y_pred = model.predict(X_test)\n",
672 | "model.score(X_test,y_test)"
673 | ]
674 | },
675 | {
676 | "cell_type": "code",
677 | "execution_count": 77,
678 | "metadata": {
679 | "id": "2XaPgSL5L6UK"
680 | },
681 | "outputs": [
682 | {
683 | "name": "stdout",
684 | "output_type": "stream",
685 | "text": [
686 | "0.9666666666666667\n"
687 | ]
688 | }
689 | ],
690 | "source": [
691 | "from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay\n",
692 | "print(accuracy_score(y_test, y_pred))"
693 | ]
694 | },
695 | {
696 | "cell_type": "code",
697 | "execution_count": 78,
698 | "metadata": {
699 | "id": "XmYcLV7uWwRj"
700 | },
701 | "outputs": [
702 | {
703 | "name": "stdout",
704 | "output_type": "stream",
705 | "text": [
706 | "Confusion matrix:\n",
707 | "[[ 8 0 0]\n",
708 | " [ 0 11 1]\n",
709 | " [ 0 0 10]]\n"
710 | ]
711 | }
712 | ],
713 | "source": [
714 | "cm = confusion_matrix(y_test, y_pred)\n",
715 | "disp = ConfusionMatrixDisplay(confusion_matrix = cm)\n",
716 | "print(\"Confusion matrix:\")\n",
717 | "print(cm)"
718 | ]
719 | },
720 | {
721 | "cell_type": "code",
722 | "execution_count": 79,
723 | "metadata": {
724 | "colab": {
725 | "base_uri": "https://localhost:8080/",
726 | "height": 283
727 | },
728 | "id": "pzs1eWydYEVU",
729 | "outputId": "1b189655-6f5b-453a-8f80-4e236e4258fa"
730 | },
731 | "outputs": [
732 | {
733 | "data": {
734 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAATIAAAEGCAYAAADmLRl+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAXqklEQVR4nO3deZQd5Xnn8e+vF61oQQsghGSaRBYBY8BRbBBj0ngJYM+xnDFOwDLxySHIOGCIJxkfOyaQ2CckJzPOJB6wEw3gZQBhthgvGIkgFEyOjbUgbEAR5ohNSApaEAiQ1Nszf9xqaElNd9Xte29V3f59zqmjqrr3vvWokB+/71vv+5YiAjOzMmvJOwAzs5FyIjOz0nMiM7PScyIzs9JzIjOz0mvLO4CBxk4dHxOOmpR3GIXVu7En7xCs5PbxGl2xXyMp4+yzJsbOXb2pvrv2F/uXR8Q5I7leGoVKZBOOmsRZN3ws7zAKa897d+QdgpXcw3H/iMvYuauXny+fm+q7rbN+NWPEF0yhUInMzIovgD768g7jAE5kZpZJEHRHuqZloziRmVlmrpGZWakFQW/BpjY6kZlZZn04kZlZiQXQ60RmZmXnGpmZlVoA3e4jM7MyC8JNSzMruYDeYuUxJzIzy6Yysr9YnMjMLCPRy4jmndecE5mZZVLp7HciM7MSq4wjcyIzs5LrK1iNzCvEmlkm/TWyNNtwJN0o6UVJjw04N03SfZJ+lfx5+HDlOJGZWSaB6KUl1ZbCt4CDV5D9AnB/RMwD7k+Oh+REZmaZ9YVSbcOJiAeBXQedXgR8O9n/NvDR4cpxH5mZZRKIrmhN+/UZktYMOF4aEUuH+c2REbEVICK2SjpiuIs4kZlZJpUBsakbczsiYkEdwwGcyMysCnUefvGfkmYltbFZwIvD/cB9ZGaWSYTojZZUW5W+D3wq2f8UcPdwP3CNzMwy66tRjUzSMqCTSl/aZuBq4G+B2yRdBDwHfHy4cpzIzCyTSmd/bVJHRFzwFh+9P0s5TmRmlknGzv6GcCIzs8x6CzZFyYnMzDLpH9lfJE5kZpZZX/VPJOvCiczMMqlMGnciM7MSC0R3+ilKDeFENoiu7+6l+4f7QNByXCvjvjgJjS1W52beFnS+wiVf2UJrS/DjZdO47doj8w6pUJr5/kQwksGudVHXaCSdI2mjpKckDbsURxH0be+l6869TLh+KhO/czj0Qc/9+/MOq1BaWoJLr3mBKxd3cHHnfM5atJu58/blHVZhNP/9EX0pt0apWyKT1ApcB5wLnABcIOmEel2vpnqB/UH0BLEv0Ixi/b9P3uaf+jpbnhnDtufG0tPdwqq7p3L62S/nHVZhNPv9Caj3FKXM6nmldwNPRcSmiOgCbqWyzlChtcxsZcz543n1vF289tFd6LAW2t49Ju+wCmX6Ud1s3/LmPdmxtZ0Zs7pzjKhYRsP9qeHCijVRzyvNBp4fcLw5OVdosaePnoe6mPjdaUz83jTYG3Qvb6ZmwchpkBZDFOyFrXlq9vsTpFtUsZHr+tezs3+wv8Uh/zklLQGWAIw/8rA6hpNOz5puWma10HJ4Jce3/fYYeh/rof3snAMrkB1b25l5dNcbxzNmdbNzW3uOERVLs9+fyuvgivWcsJ41ss3AnAHHxwBbDv5SRCyNiAURsWDs1PF1DCedliNa6H28h9gXRAQ9a7tpeVuxHjXnbeP6Cczu6OLIOftpa++jc9FufrZiSt5hFUbz3590Lx5p5Cvj6plWVwPzJHUALwDnA5+o4/VqovXEdto6x/D6RbuhFVrmtdH+kXF5h1Uofb3iui/N5ppbNtHSCituncazT/oe9Wv2+xOMopH9EdEj6TJgOdAK3BgRj9frerU09qKJjL1oYt5hFNrqlZNZvXJy3mEUVrPfn1H1gt6IuAe4p57XMLPGitDoqZGZWXOqdPYXq9/YiczMMlLhpig5kZlZJpXO/lHUR2ZmzcnL+JhZqfWP7C8SJzIzy8wvHzGzUouA7j4nMjMrsUrT0onMzEpuVI3sN7Pm4+EXZtYE3LQ0sybQyPX403AiM7NMKk8tPdfSzErMA2LNrCkUrWlZrB47Myu8/qeWtXj5iKTPSXpc0mOSlkmqaildJzIzy6wvWlJtQ5E0G7gcWBAR76CykvT51cTjpqWZZRIhemo3/KINGC+pG5jAIC8oSluImVkmGTr7Z0haM+B4aUQsBYiIFyT9L+A5YC+wIiJWVBOPE5mZZZJxZP+OiFgw2AeSDgcWAR3AbuB2SZ+MiJuyxuQ+MjPLrEad/R8Ano6I7RHRDdwFLKwmHtfIzCyTGo4jew44TdIEKk3L9wNrhv7J4JzIzCyzWowji4iHJd0BrAN6gEeApdWU5URmZplEQE+NFlaMiKuBq0dajhOZmWXmKUpmVmqea2lmTSGcyMys7Io2adyJzMwyiXAfmZmVnuj16+DMrOzcRzaE3o097HnvjrzDKKzlW9bnHULhfXjhR/IOodD0wpgRl+G3KJlZ+UWln6xInMjMLDM/tTSzUgt39ptZM3DT0sxKz08tzazUIpzIzKwJePiFmZWe+8jMrNQC0eenlmZWdgWrkDmRmVlG7uw3s6ZQsCqZE5mZZVaaGpmk/8MQeTciLq9LRGZWaAH09ZUkkVHlizLNrMkFUJYaWUR8e+CxpIkR8Vr9QzKzoivaOLJhB4NIOl3SE8CG5PhkSV+ve2RmVlyRcmuQNKPa/gE4G9gJEBGPAmfWMygzKzIRkW5rlFRPLSPieemAoHrrE46ZlULBmpZpEtnzkhYCIWkMcDlJM9PMRqGAKNhTyzRNy0uAS4HZwAvAKcmxmY1aSrk1xrA1sojYASxuQCxmVhYFa1qmeWp5nKQfSNou6UVJd0s6rhHBmVlB1eippaSpku6Q9B+SNkg6vZpw0jQtbwFuA2YBRwO3A8uquZiZNYH+AbFptuH9I3BvRBwPnEyV/e9pEpki4v9FRE+y3UThKpZm1kgR6bahSJpMZSjXDZUyoysidlcTz1BzLacluw9I+gJwK5UE9vvAj6q5mJk1ifRPLWdIGjjdcWlELE32jwO2A9+UdDKwFriimhlEQ3X2r6WSuPoj/vSAzwL4StaLmVlzUPo22Y6IWPAWn7UB7wI+GxEPS/pH4AvAX2SNZ6i5lh1ZCzOzUaB20482A5sj4uHk+A4qiSyzVCP7Jb0DOAEY138uIr5TzQXNrOxSd+QPKSK2SXpe0vyI2Ai8H3iimrKGTWSSrgY6qSSye4BzgYcAJzKz0ap2j/s+C9yczBraBPxhNYWkqZGdR+Wx6CMR8YeSjgSur+ZiZtYk+mpTTESsB96qDy21NMMv9kZEH9CTPC59kcrThqa1oPMVrv/Jf/DNf9/A7132n3mHUwhf/dwcfu+kE1ly1vw3zj34gylc3Dmfc2afzJOPjs8xuuK54s/Xc/OPlnPdTavyDqX2ajuOrCbSJLI1kqYC/5fKk8x1wM+H+5GkG5OZAI+NMMaGamkJLr3mBa5c3MHFnfM5a9Fu5s7bl3dYufud39/FX9+86YBzxx6/j6uuf4aTTvN6mwf713vmcNXn3pN3GHWjSLc1yrCJLCL+OCJ2R8Q/AR8EPhURadqx3wLOGWF8DTf/1NfZ8swYtj03lp7uFlbdPZXTz34577Byd9JprzHp8ANXb5o7bz9zfn1/ThEV2+Prp7PnlTF5h1E/BVtYcagBse8a6rOIWDdUwRHxoKRjqw8tH9OP6mb7ljf/Ae7Y2s7x73o9x4jMbDhDdfZ/dYjPAnhfLQKQtARYAjCOCbUockQ0SLO+aOuTm+Wtkc3GNIYaEHtWIwJIpissBZisabnfnh1b25l5dNcbxzNmdbNzW3uOEZkVTJBlilJDpOnsH1U2rp/A7I4ujpyzn7b2PjoX7eZnK6bkHZZZsZSlj2y06usV131pNtfcsomWVlhx6zSefXLc8D9scn/zmbfxi58exsu72lj8mydw4Z9uY9LhvXz9ytm8vLONv7jwOH7txL1cs2zT8IWNAp//q7WcdOpOJk/t4tvfu4+br5/Pih/OzTusmilN03KkJC2jMiNghqTNwNURcUO9rldLq1dOZvXKyXmHUShf/Mazg54/41w/0R3M3139m3mHUF9lS2SqvD5pMXBcRHxZ0lzgqIgYcixZRFxQoxjNrGgKlsjS9JF9HTgd6E9Me4Dr6haRmRVa2sGwjWx+pmlavici3iXpEYCIeCmZ4Glmo1XBnlqmSWTdklpJKpOSZlKzKaNmVkZF6+xP07T8GvAvwBGS/prKEj7X1DUqMyu2sg2/iIibJa2lsuiZgI9GhN80bjZaNbj/K400Ty3nAq8DPxh4LiKeq2dgZlZgZUtkVN6Y1P8SknFAB7AROLGOcZlZgalgveRpmpYnDTxOVsX49Ft83cys4TKP7I+IdZJ+qx7BmFlJlK1pKem/DzhsofIeuu11i8jMiq2Mnf3ApAH7PVT6zO6sTzhmVgplSmTJQNjDIuJ/NCgeMyuDsiQySW0R0TPUktdmNvqIcj21/DmV/rD1kr4P3A688bqciLirzrGZWRGVtI9sGrCTyhr9/ePJAnAiMxutSpTIjkieWD7GmwmsX8H+GmbWUAXLAEMlslbgMA5MYP0K9tcws0YqU9Nya0R8uWGRmFl5lCiRFWvlNDMrhijXU8v3NywKMyuXstTIImJXIwMxs/IoWh+ZX9BrZtnVcIVYSa2SHpH0w2rDcSIzs2zSJrH0tbYrgBGtOu1EZmaZiNq9Dk7SMcCHgetHElPd3jRuZs0rQx/ZDElrBhwvjYilA47/Afg8B66yk5kTmZlllz6R7YiIBYN9IOm/Ai9GxFpJnSMJx4nMzLKrzVPLM4CPSPoQlfeBTJZ0U0R8MmtB7iMzs2xS9o8N1/yMiC9GxDERcSxwPrCymiQGrpGZWTUKNo7MiczMMqv1FKWIWAWsqvb3TmQlcvbRp+QdQuFdtel7eYdQaBd/5KWalFO0kf1OZGaWTbbBrg3hRGZm2TmRmVmZ9Y/sLxInMjPLTH3FymROZGaWjfvIzKwZuGlpZuXnRGZmZecamZmVnxOZmZVayd6iZGZ2CI8jM7PmEMXKZE5kZpaZa2RmVm4eEGtmzcCd/WZWek5kZlZugTv7zaz83NlvZuXnRGZmZeYBsWZWfhFeWNHMmkCx8pgTmZll56almZVbAG5amlnpFSuPOZGZWXZuWppZ6fmppZmVm1e/MLOyqwyILVYma8k7ADMrob6U2xAkzZH0gKQNkh6XdEW14bhGZmaZ1ahG1gP8aUSskzQJWCvpvoh4ImtBTmSDWND5Cpd8ZQutLcGPl03jtmuPzDukwvE9OtT3Pz+XJx+YwsTpPXzm3g0A7N3dyh2f7eDlzWOYckwX5137NOOn9OYc6QjVqI8sIrYCW5P9PZI2ALOBzImsbk3LWlYbG6mlJbj0mhe4cnEHF3fO56xFu5k7b1/eYRWK79HgTj5vF4u/+dQB5x76p6PoWLiHyx54go6Fe/j3bzRDwq/MtUyzATMkrRmwLRmsREnHAqcCD1cTUT37yPqrjb8BnAZcKumEOl6vJuaf+jpbnhnDtufG0tPdwqq7p3L62S/nHVah+B4N7m3vfpXxUw+sbT153xRO/thOAE7+2E423jc1j9BqLyLdBjsiYsGAbenBRUk6DLgT+JOIeKWacOqWyCJia0SsS/b3AP3VxkKbflQ327eMeeN4x9Z2ZszqzjGi4vE9Su/VHW1MOqIHgElH9PDazibozUle0JtmG46kdipJ7OaIuKvakBpyV0dabWwk6dBzBXvSnDvfI6vFf3BJAm4ANkTE34+krLoPvxiu2ihpSX/7uZv99Q5nWDu2tjPz6K43jmfM6mbntvYcIyoe36P0DpvRw54XK/WFPS+2MXF6T84R1Uik3IZ2BnAh8D5J65PtQ9WEU9dElqbaGBFL+9vP7YytZzipbFw/gdkdXRw5Zz9t7X10LtrNz1ZMyTusQvE9Su/tH3iZR++cDsCjd07n7R9sjr5E9fWl2oYSEQ9FhCLinRFxSrLdU008dWta1rLa2Eh9veK6L83mmls20dIKK26dxrNPjss7rELxPRrcnZcfy7MPT+L1l9r43wvfQecVWznjkm3ccVkH62+bzuSju/j4dU/nHebIBcMOdm20evaR9VcbfylpfXLuz6vNuI20euVkVq+cnHcYheZ7dKiPfe2ZQc//wc1PDXq+rEQUbopS3RJZRDxEZVqWmTWb0ZLIzKyJOZGZWamNsj4yM2tSwz2RbDQnMjPLKNy0NLOSC5zIzKwJFKtl6URmZtmNmnFkZtbEnMjMrNQioLdYbUsnMjPLzjUyMys9JzIzK7UA/KZxMyu3gHAfmZmVWeDOfjNrAu4jM7PScyIzs3LzpHEzK7sAvIyPmZWea2RmVm6eomRmZRcQHkdmZqXnkf1mVnruIzOzUovwU0szawKukZlZuQXR25t3EAdwIjOzbLyMj5k1hYINv2jJOwAzK5cAoi9SbcORdI6kjZKekvSFamNyIjOzbCJZWDHNNgRJrcB1wLnACcAFkk6oJiQ3Lc0ssxp19r8beCoiNgFIuhVYBDyRtSBFgR6jStoOPJt3HAPMAHbkHUSB+f4Mr2j36G0RMXMkBUi6l8rfK41xwL4Bx0sjYmlSznnAORHxR8nxhcB7IuKyrDEVqkY20htca5LWRMSCvOMoKt+f4TXjPYqIc2pUlAYrvpqC3EdmZnnZDMwZcHwMsKWagpzIzCwvq4F5kjokjQHOB75fTUGFaloW0NK8Ayg435/h+R69hYjokXQZsBxoBW6MiMerKatQnf1mZtVw09LMSs+JzMxKz4lsELWaNtGsJN0o6UVJj+UdSxFJmiPpAUkbJD0u6Yq8Y2p27iM7SDJt4kngg1QeD68GLoiIzKONm5WkM4FXge9ExDvyjqdoJM0CZkXEOkmTgLXAR/1vqH5cIzvUG9MmIqIL6J82YYmIeBDYlXccRRURWyNiXbK/B9gAzM43qubmRHao2cDzA44343+EViVJxwKnAg/nG0lzcyI7VM2mTdjoJukw4E7gTyLilbzjaWZOZIeq2bQJG70ktVNJYjdHxF15x9PsnMgOVbNpEzY6SRJwA7AhIv4+73hGAyeyg0RED9A/bWIDcFu10yaalaRlwE+B+ZI2S7oo75gK5gzgQuB9ktYn24fyDqqZefiFmZWea2RmVnpOZGZWek5kZlZ6TmRmVnpOZGZWek5kJSKpN3mU/5ik2yVNGEFZ30reYoOk64d6n6CkTkkLq7jGM5IOedvOW50/6DuvZrzWX0r6s6wxWnNwIiuXvRFxSrLiRBdwycAPk5U7MouIPxpmZYZOIHMiM2sUJ7Ly+gnw60lt6QFJtwC/lNQq6X9KWi3pF5I+DZXR5pKulfSEpB8BR/QXJGmVpAXJ/jmS1kl6VNL9yaTnS4DPJbXB90qaKenO5BqrJZ2R/Ha6pBWSHpH0zww+b/UAkr4naW2ybteSgz77ahLL/ZJmJud+TdK9yW9+Iun4WtxMK7mI8FaSDXg1+bMNuBv4DJXa0mtAR/LZEuDKZH8ssAboAP4bcB+VlzwcDewGzku+twpYAMyksvJHf1nTkj//EvizAXHcAvyXZH8ulak4AF8Drkr2P0xlsv2MQf4ez/SfH3CN8cBjwPTkOIDFyf5VwLXJ/v3AvGT/PcDKwWL0Nro2v0WpXMZLWp/s/4TKfL6FwM8j4unk/O8A7+zv/wKmAPOAM4FlEdELbJG0cpDyTwMe7C8rIt5qzbEPACdUphQCMDlZQPBMKgmTiPiRpJdS/J0ul/S7yf6cJNadQB/w3eT8TcBdyWoSC4HbB1x7bIprWJNzIiuXvRFxysATyf+gXxt4CvhsRCw/6HsfYvjliJTiO1Dpkjg9IvYOEkvqOW+SOqkkxdMj4nVJq4Bxb/H1SK67++B7YOY+suazHPhMsowMkt4uaSLwIHB+0oc2CzhrkN/+FPhtSR3Jb6cl5/cAkwZ8bwWVifUk3+tPLA8Ci5Nz5wKHDxPrFOClJIkdT6VG2K8F6K9VfgJ4KCprej0t6ePJNSTp5GGuYaOAE1nzuR54AliXvBzkn6nUvP8F+BXwS+AbwL8d/MOI2E6lj+0uSY/yZtPuB8Dv9nf2A5cDC5KHCU/w5tPTvwLOlLSOShP3uWFivRdok/QL4CvAzwZ89hpwoqS1wPuALyfnFwMXJfE9jpchN7z6hZk1AdfIzKz0nMjMrPScyMys9JzIzKz0nMjMrPScyMys9JzIzKz0/j82T2wlLDBjhAAAAABJRU5ErkJggg==",
735 | "text/plain": [
736 | ""
737 | ]
738 | },
739 | "metadata": {
740 | "needs_background": "light"
741 | },
742 | "output_type": "display_data"
743 | }
744 | ],
745 | "source": [
746 | "disp.plot()\n",
747 | "plt.show()"
748 | ]
749 | },
750 | {
751 | "cell_type": "code",
752 | "execution_count": 80,
753 | "metadata": {},
754 | "outputs": [
755 | {
756 | "name": "stdout",
757 | "output_type": "stream",
758 | "text": [
759 | "TP: 8\n",
760 | "FP: 0\n",
761 | "FN: 0\n",
762 | "TN: 11\n"
763 | ]
764 | }
765 | ],
766 | "source": [
767 | "def get_confusion_matrix_values(y_true, y_pred):\n",
768 | " cm = confusion_matrix(y_true, y_pred)\n",
769 | " return(cm[0][0], cm[0][1], cm[1][0], cm[1][1])\n",
770 | "\n",
771 | "TP, FP, FN, TN = get_confusion_matrix_values(y_test, y_pred)\n",
772 | "print(\"TP: \", TP)\n",
773 | "print(\"FP: \", FP)\n",
774 | "print(\"FN: \", FN)\n",
775 | "print(\"TN: \", TN)"
776 | ]
777 | },
778 | {
779 | "cell_type": "code",
780 | "execution_count": 81,
781 | "metadata": {},
782 | "outputs": [
783 | {
784 | "name": "stdout",
785 | "output_type": "stream",
786 | "text": [
787 | "The Accuracy is 1.0\n",
788 | "The precision is 1.0\n",
789 | "The recall is 1.0\n"
790 | ]
791 | }
792 | ],
793 | "source": [
794 | "print(\"The Accuracy is \", (TP+TN)/(TP+TN+FP+FN))\n",
795 | "print(\"The precision is \", TP/(TP+FP))\n",
796 | "print(\"The recall is \", TP/(TP+FN))"
797 | ]
798 | }
799 | ],
800 | "metadata": {
801 | "colab": {
802 | "collapsed_sections": [],
803 | "name": "TECOA136_NaiveBayesClassification.ipynb",
804 | "provenance": []
805 | },
806 | "interpreter": {
807 | "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186"
808 | },
809 | "kernelspec": {
810 | "display_name": "Python 3.8.3 ('base')",
811 | "language": "python",
812 | "name": "python3"
813 | },
814 | "language_info": {
815 | "codemirror_mode": {
816 | "name": "ipython",
817 | "version": 3
818 | },
819 | "file_extension": ".py",
820 | "mimetype": "text/x-python",
821 | "name": "python",
822 | "nbconvert_exporter": "python",
823 | "pygments_lexer": "ipython3",
824 | "version": "3.8.3"
825 | }
826 | },
827 | "nbformat": 4,
828 | "nbformat_minor": 0
829 | }
830 |
--------------------------------------------------------------------------------
/GroupA-Assignment7/Code.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "id": "soAEGZmPZ0PQ"
7 | },
8 | "source": [
9 | "**NAME: Sumedha Zaware**\n",
10 | "\n",
11 | "**ROLL NO.: TECOC342**"
12 | ]
13 | },
14 | {
15 | "cell_type": "markdown",
16 | "metadata": {
17 | "id": "pN4U1FFiPH9H"
18 | },
19 | "source": [
20 | "### Tokenization"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 1,
26 | "metadata": {
27 | "colab": {
28 | "base_uri": "https://localhost:8080/"
29 | },
30 | "executionInfo": {
31 | "elapsed": 2509,
32 | "status": "ok",
33 | "timestamp": 1652528796765,
34 | "user": {
35 | "displayName": "TECOB206_ Rohit-Joshi",
36 | "userId": "15434995234180682292"
37 | },
38 | "user_tz": -330
39 | },
40 | "id": "zsw0Xt-rN97f",
41 | "outputId": "69caa78c-5634-414e-aee0-155e9c6b83d9"
42 | },
43 | "outputs": [
44 | {
45 | "name": "stderr",
46 | "output_type": "stream",
47 | "text": [
48 | "[nltk_data] Downloading package punkt to\n",
49 | "[nltk_data] C:\\Users\\RBS\\AppData\\Roaming\\nltk_data...\n",
50 | "[nltk_data] Unzipping tokenizers\\punkt.zip.\n",
51 | "[nltk_data] Downloading package wordnet to\n",
52 | "[nltk_data] C:\\Users\\RBS\\AppData\\Roaming\\nltk_data...\n",
53 | "[nltk_data] Unzipping corpora\\wordnet.zip.\n",
54 | "[nltk_data] Downloading package averaged_perceptron_tagger to\n",
55 | "[nltk_data] C:\\Users\\RBS\\AppData\\Roaming\\nltk_data...\n",
56 | "[nltk_data] Unzipping taggers\\averaged_perceptron_tagger.zip.\n",
57 | "[nltk_data] Downloading package stopwords to\n",
58 | "[nltk_data] C:\\Users\\RBS\\AppData\\Roaming\\nltk_data...\n",
59 | "[nltk_data] Unzipping corpora\\stopwords.zip.\n"
60 | ]
61 | }
62 | ],
63 | "source": [
64 | "import nltk\n",
65 | "nltk.download('punkt')\n",
66 | "nltk.download('wordnet')\n",
67 | "nltk.download('averaged_perceptron_tagger')\n",
68 | "nltk.download('stopwords')\n",
69 | "from nltk import sent_tokenize\n",
70 | "from nltk import word_tokenize\n",
71 | "from nltk.corpus import stopwords\n",
72 | "\n"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": 2,
78 | "metadata": {
79 | "executionInfo": {
80 | "elapsed": 573,
81 | "status": "ok",
82 | "timestamp": 1652528794264,
83 | "user": {
84 | "displayName": "TECOB206_ Rohit-Joshi",
85 | "userId": "15434995234180682292"
86 | },
87 | "user_tz": -330
88 | },
89 | "id": "l8wn2alROW8Y"
90 | },
91 | "outputs": [],
92 | "source": [
93 | "text='Real madrid is set to win the UCL for the season . Benzema might win Balon dor . Salah might be the runner up'"
94 | ]
95 | },
96 | {
97 | "cell_type": "code",
98 | "execution_count": 3,
99 | "metadata": {
100 | "colab": {
101 | "base_uri": "https://localhost:8080/"
102 | },
103 | "executionInfo": {
104 | "elapsed": 379,
105 | "status": "ok",
106 | "timestamp": 1652528800781,
107 | "user": {
108 | "displayName": "TECOB206_ Rohit-Joshi",
109 | "userId": "15434995234180682292"
110 | },
111 | "user_tz": -330
112 | },
113 | "id": "U60CN2r_O6bE",
114 | "outputId": "71db18ff-2f69-4a79-a28d-b28a88d66587"
115 | },
116 | "outputs": [
117 | {
118 | "name": "stdout",
119 | "output_type": "stream",
120 | "text": [
121 | "['Real madrid is set to win the UCL for the season .', 'Benzema might win Balon dor .', 'Salah might be the runner up']\n"
122 | ]
123 | }
124 | ],
125 | "source": [
126 | "tokens_sents = nltk.sent_tokenize(text)\n",
127 | "print(tokens_sents)"
128 | ]
129 | },
130 | {
131 | "cell_type": "code",
132 | "execution_count": 4,
133 | "metadata": {
134 | "colab": {
135 | "base_uri": "https://localhost:8080/"
136 | },
137 | "executionInfo": {
138 | "elapsed": 362,
139 | "status": "ok",
140 | "timestamp": 1652528804273,
141 | "user": {
142 | "displayName": "TECOB206_ Rohit-Joshi",
143 | "userId": "15434995234180682292"
144 | },
145 | "user_tz": -330
146 | },
147 | "id": "mFYUhpSoOfSW",
148 | "outputId": "c59a04eb-6f4c-4ab8-b3ec-6291e407fa9c"
149 | },
150 | "outputs": [
151 | {
152 | "name": "stdout",
153 | "output_type": "stream",
154 | "text": [
155 | "['Real', 'madrid', 'is', 'set', 'to', 'win', 'the', 'UCL', 'for', 'the', 'season', '.', 'Benzema', 'might', 'win', 'Balon', 'dor', '.', 'Salah', 'might', 'be', 'the', 'runner', 'up']\n"
156 | ]
157 | }
158 | ],
159 | "source": [
160 | "tokens_words = nltk.word_tokenize(text)\n",
161 | "print(tokens_words)"
162 | ]
163 | },
164 | {
165 | "cell_type": "code",
166 | "execution_count": 5,
167 | "metadata": {
168 | "executionInfo": {
169 | "elapsed": 523,
170 | "status": "ok",
171 | "timestamp": 1652528807310,
172 | "user": {
173 | "displayName": "TECOB206_ Rohit-Joshi",
174 | "userId": "15434995234180682292"
175 | },
176 | "user_tz": -330
177 | },
178 | "id": "GEk-hq-tP4ze"
179 | },
180 | "outputs": [],
181 | "source": [
182 | "from nltk.stem import PorterStemmer\n",
183 | "from nltk.stem.snowball import SnowballStemmer\n",
184 | "from nltk.stem import LancasterStemmer"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": 9,
190 | "metadata": {
191 | "colab": {
192 | "base_uri": "https://localhost:8080/"
193 | },
194 | "executionInfo": {
195 | "elapsed": 359,
196 | "status": "ok",
197 | "timestamp": 1652528810341,
198 | "user": {
199 | "displayName": "TECOB206_ Rohit-Joshi",
200 | "userId": "15434995234180682292"
201 | },
202 | "user_tz": -330
203 | },
204 | "id": "UsW8et7sP_m2",
205 | "outputId": "16fbff60-ddfd-4553-8240-00aaada81ffe"
206 | },
207 | "outputs": [
208 | {
209 | "name": "stdout",
210 | "output_type": "stream",
211 | "text": [
212 | "['real', 'madrid', 'is', 'set', 'to', 'win', 'the', 'ucl', 'for', 'the', 'season', '.', 'benzema', 'might', 'win', 'balon', 'dor', '.', 'salah', 'might', 'be', 'the', 'runner', 'up']\n"
213 | ]
214 | }
215 | ],
216 | "source": [
217 | "stem=[]\n",
218 | "for i in tokens_words:\n",
219 | " ps = PorterStemmer()\n",
220 | " stem_word= ps.stem(i)\n",
221 | " stem.append(stem_word)\n",
222 | "print(stem)\n",
223 | "\n"
224 | ]
225 | },
226 | {
227 | "cell_type": "markdown",
228 | "metadata": {
229 | "id": "D5f0aXoYTahY"
230 | },
231 | "source": [
232 | "### Lemmatization\n"
233 | ]
234 | },
235 | {
236 | "cell_type": "code",
237 | "execution_count": 10,
238 | "metadata": {
239 | "executionInfo": {
240 | "elapsed": 363,
241 | "status": "ok",
242 | "timestamp": 1652528813224,
243 | "user": {
244 | "displayName": "TECOB206_ Rohit-Joshi",
245 | "userId": "15434995234180682292"
246 | },
247 | "user_tz": -330
248 | },
249 | "id": "eQoEaQzVTdwI"
250 | },
251 | "outputs": [],
252 | "source": [
253 | "import nltk\n",
254 | "from nltk.stem import WordNetLemmatizer \n",
255 | "lemmatizer = WordNetLemmatizer()"
256 | ]
257 | },
258 | {
259 | "cell_type": "code",
260 | "execution_count": 11,
261 | "metadata": {
262 | "colab": {
263 | "base_uri": "https://localhost:8080/"
264 | },
265 | "executionInfo": {
266 | "elapsed": 1989,
267 | "status": "ok",
268 | "timestamp": 1652528818163,
269 | "user": {
270 | "displayName": "TECOB206_ Rohit-Joshi",
271 | "userId": "15434995234180682292"
272 | },
273 | "user_tz": -330
274 | },
275 | "id": "ufgukosbWDK_",
276 | "outputId": "95b51089-af8a-4805-875c-1e1610c6af70"
277 | },
278 | "outputs": [
279 | {
280 | "name": "stdout",
281 | "output_type": "stream",
282 | "text": [
283 | "real madrid is set to win the ucl for the season . benzema might win balon dor . salah might be the runner up\n"
284 | ]
285 | }
286 | ],
287 | "source": [
288 | "lemmatized_output = ' '.join([lemmatizer.lemmatize(w) for w in stem])\n",
289 | "print(lemmatized_output)"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": 12,
295 | "metadata": {
296 | "colab": {
297 | "base_uri": "https://localhost:8080/"
298 | },
299 | "executionInfo": {
300 | "elapsed": 351,
301 | "status": "ok",
302 | "timestamp": 1652528821783,
303 | "user": {
304 | "displayName": "TECOB206_ Rohit-Joshi",
305 | "userId": "15434995234180682292"
306 | },
307 | "user_tz": -330
308 | },
309 | "id": "pF3rYxWHUwjQ",
310 | "outputId": "7155dd41-747b-4055-e33f-a08ffc21d5d5"
311 | },
312 | "outputs": [
313 | {
314 | "name": "stdout",
315 | "output_type": "stream",
316 | "text": [
317 | "['real', 'madrid', 'is', 'set', 'to', 'win', 'the', 'ucl', 'for', 'the', 'season', '.', 'benzema', 'might', 'win', 'balon', 'dor', '.', 'salah', 'might', 'be', 'the', 'runner', 'up']\n"
318 | ]
319 | }
320 | ],
321 | "source": [
322 | "leme=[]\n",
323 | "for i in stem:\n",
324 | " lemetized_word=lemmatizer.lemmatize(i)\n",
325 | " leme.append(lemetized_word)\n",
326 | "print(leme)"
327 | ]
328 | },
329 | {
330 | "cell_type": "markdown",
331 | "metadata": {
332 | "id": "eNoaWrAmXPKI"
333 | },
334 | "source": [
335 | "### Part of Speech Tagging"
336 | ]
337 | },
338 | {
339 | "cell_type": "code",
340 | "execution_count": 13,
341 | "metadata": {
342 | "colab": {
343 | "base_uri": "https://localhost:8080/"
344 | },
345 | "executionInfo": {
346 | "elapsed": 344,
347 | "status": "ok",
348 | "timestamp": 1652528826976,
349 | "user": {
350 | "displayName": "TECOB206_ Rohit-Joshi",
351 | "userId": "15434995234180682292"
352 | },
353 | "user_tz": -330
354 | },
355 | "id": "TKAJLZkEXPXg",
356 | "outputId": "271effb6-1eb1-42e4-aa08-b95e887ce66a"
357 | },
358 | "outputs": [
359 | {
360 | "name": "stdout",
361 | "output_type": "stream",
362 | "text": [
363 | "Parts of Speech: [('real', 'JJ'), ('madrid', 'NN'), ('is', 'VBZ'), ('set', 'VBN'), ('to', 'TO'), ('win', 'VB'), ('the', 'DT'), ('ucl', 'NN'), ('for', 'IN'), ('the', 'DT'), ('season', 'NN'), ('.', '.'), ('benzema', 'NN'), ('might', 'MD'), ('win', 'VB'), ('balon', 'NN'), ('dor', 'NN'), ('.', '.'), ('salah', 'NN'), ('might', 'MD'), ('be', 'VB'), ('the', 'DT'), ('runner', 'NN'), ('up', 'RP')]\n"
364 | ]
365 | }
366 | ],
367 | "source": [
368 | "print(\"Parts of Speech: \",nltk.pos_tag(leme))\n"
369 | ]
370 | },
371 | {
372 | "cell_type": "markdown",
373 | "metadata": {
374 | "id": "KWA2VzV2goj7"
375 | },
376 | "source": [
377 | "### Stop Word"
378 | ]
379 | },
380 | {
381 | "cell_type": "code",
382 | "execution_count": 14,
383 | "metadata": {
384 | "colab": {
385 | "base_uri": "https://localhost:8080/"
386 | },
387 | "executionInfo": {
388 | "elapsed": 340,
389 | "status": "ok",
390 | "timestamp": 1652528829409,
391 | "user": {
392 | "displayName": "TECOB206_ Rohit-Joshi",
393 | "userId": "15434995234180682292"
394 | },
395 | "user_tz": -330
396 | },
397 | "id": "smr18K1jY5bk",
398 | "outputId": "acf424e1-e4c3-45c8-86ce-b282d2f1f522"
399 | },
400 | "outputs": [
401 | {
402 | "name": "stdout",
403 | "output_type": "stream",
404 | "text": [
405 | "['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', \"you're\", \"you've\", \"you'll\", \"you'd\", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', \"she's\", 'her', 'hers', 'herself', 'it', \"it's\", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', \"that'll\", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', \"don't\", 'should', \"should've\", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', \"aren't\", 'couldn', \"couldn't\", 'didn', \"didn't\", 'doesn', \"doesn't\", 'hadn', \"hadn't\", 'hasn', \"hasn't\", 'haven', \"haven't\", 'isn', \"isn't\", 'ma', 'mightn', \"mightn't\", 'mustn', \"mustn't\", 'needn', \"needn't\", 'shan', \"shan't\", 'shouldn', \"shouldn't\", 'wasn', \"wasn't\", 'weren', \"weren't\", 'won', \"won't\", 'wouldn', \"wouldn't\"]\n"
406 | ]
407 | }
408 | ],
409 | "source": [
410 | "sw_nltk = stopwords.words('english')\n",
411 | "print(sw_nltk)"
412 | ]
413 | },
414 | {
415 | "cell_type": "code",
416 | "execution_count": 15,
417 | "metadata": {
418 | "colab": {
419 | "base_uri": "https://localhost:8080/"
420 | },
421 | "executionInfo": {
422 | "elapsed": 7,
423 | "status": "ok",
424 | "timestamp": 1652528830878,
425 | "user": {
426 | "displayName": "TECOB206_ Rohit-Joshi",
427 | "userId": "15434995234180682292"
428 | },
429 | "user_tz": -330
430 | },
431 | "id": "PEdZYnCfYM-B",
432 | "outputId": "8b54050f-5c60-485b-d9f6-be641dc2cda0"
433 | },
434 | "outputs": [
435 | {
436 | "name": "stdout",
437 | "output_type": "stream",
438 | "text": [
439 | "Real madrid set win UCL season . Benzema might win Balon dor . Salah might runner\n"
440 | ]
441 | }
442 | ],
443 | "source": [
444 | "words = [word for word in text.split() if word.lower() not in sw_nltk]\n",
445 | "new_text = \" \".join(words)\n",
446 | "print(new_text)"
447 | ]
448 | }
449 | ],
450 | "metadata": {
451 | "colab": {
452 | "collapsed_sections": [],
453 | "name": "TECOB206_ASS7.ipynb",
454 | "provenance": []
455 | },
456 | "kernelspec": {
457 | "display_name": "Python 3",
458 | "language": "python",
459 | "name": "python3"
460 | },
461 | "language_info": {
462 | "codemirror_mode": {
463 | "name": "ipython",
464 | "version": 3
465 | },
466 | "file_extension": ".py",
467 | "mimetype": "text/x-python",
468 | "name": "python",
469 | "nbconvert_exporter": "python",
470 | "pygments_lexer": "ipython3",
471 | "version": "3.8.3"
472 | }
473 | },
474 | "nbformat": 4,
475 | "nbformat_minor": 1
476 | }
477 |
--------------------------------------------------------------------------------
/GroupA-Assignment9/Code.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "id": "OehSdf9lNX4I"
7 | },
8 | "source": [
9 | "NAME: Sumedha Zaware\n",
10 | "\n",
11 | "ROLL NO.: TECOC342\n",
12 | "\n",
13 | "**ASSIGNMENT-9**\n",
14 | "\n",
15 | "1. Use the inbuilt dataset 'titanic' as used in the above problem. Plot a box plot for distribution of age with respect to each gender along with the information about whether they survived or not. (Column names : 'sex' and 'age')\n",
16 | "2. Write observations on the inference from the above statistics."
17 | ]
18 | },
19 | {
20 | "cell_type": "code",
21 | "execution_count": 16,
22 | "metadata": {
23 | "id": "W8NPhhK4NGdg"
24 | },
25 | "outputs": [],
26 | "source": [
27 | "#importing required library\n",
28 | "import pandas as pd\n",
29 | "import numpy as np\n",
30 | "import seaborn as sns\n",
31 | "import matplotlib.pyplot as plt\n",
32 | "\n",
33 | "#loading dataset\n",
34 | "data = pd.read_csv('https://raw.githubusercontent.com/dphi-official/Datasets/master/titanic_data.csv')"
35 | ]
36 | },
37 | {
38 | "cell_type": "code",
39 | "execution_count": 8,
40 | "metadata": {
41 | "colab": {
42 | "base_uri": "https://localhost:8080/",
43 | "height": 595
44 | },
45 | "id": "tVIl8_j3N-QE",
46 | "outputId": "bccecc52-cab8-4c0a-eaf2-9c29d0fd0c96"
47 | },
48 | "outputs": [
49 | {
50 | "data": {
51 | "text/html": [
52 | "\n",
53 | "\n",
66 | "
\n",
67 | " \n",
68 | " \n",
69 | " \n",
70 | " PassengerId \n",
71 | " Survived \n",
72 | " Pclass \n",
73 | " Name \n",
74 | " Sex \n",
75 | " Age \n",
76 | " SibSp \n",
77 | " Parch \n",
78 | " Ticket \n",
79 | " Fare \n",
80 | " Cabin \n",
81 | " Embarked \n",
82 | " \n",
83 | " \n",
84 | " \n",
85 | " \n",
86 | " 0 \n",
87 | " 1 \n",
88 | " 0 \n",
89 | " 3 \n",
90 | " Braund, Mr. Owen Harris \n",
91 | " male \n",
92 | " 22.0 \n",
93 | " 1 \n",
94 | " 0 \n",
95 | " A/5 21171 \n",
96 | " 7.2500 \n",
97 | " NaN \n",
98 | " S \n",
99 | " \n",
100 | " \n",
101 | " 1 \n",
102 | " 2 \n",
103 | " 1 \n",
104 | " 1 \n",
105 | " Cumings, Mrs. John Bradley (Florence Briggs Th... \n",
106 | " female \n",
107 | " 38.0 \n",
108 | " 1 \n",
109 | " 0 \n",
110 | " PC 17599 \n",
111 | " 71.2833 \n",
112 | " C85 \n",
113 | " C \n",
114 | " \n",
115 | " \n",
116 | " 2 \n",
117 | " 3 \n",
118 | " 1 \n",
119 | " 3 \n",
120 | " Heikkinen, Miss. Laina \n",
121 | " female \n",
122 | " 26.0 \n",
123 | " 0 \n",
124 | " 0 \n",
125 | " STON/O2. 3101282 \n",
126 | " 7.9250 \n",
127 | " NaN \n",
128 | " S \n",
129 | " \n",
130 | " \n",
131 | " 3 \n",
132 | " 4 \n",
133 | " 1 \n",
134 | " 1 \n",
135 | " Futrelle, Mrs. Jacques Heath (Lily May Peel) \n",
136 | " female \n",
137 | " 35.0 \n",
138 | " 1 \n",
139 | " 0 \n",
140 | " 113803 \n",
141 | " 53.1000 \n",
142 | " C123 \n",
143 | " S \n",
144 | " \n",
145 | " \n",
146 | " 4 \n",
147 | " 5 \n",
148 | " 0 \n",
149 | " 3 \n",
150 | " Allen, Mr. William Henry \n",
151 | " male \n",
152 | " 35.0 \n",
153 | " 0 \n",
154 | " 0 \n",
155 | " 373450 \n",
156 | " 8.0500 \n",
157 | " NaN \n",
158 | " S \n",
159 | " \n",
160 | " \n",
161 | "
\n",
162 | "
"
163 | ],
164 | "text/plain": [
165 | " PassengerId Survived Pclass \\\n",
166 | "0 1 0 3 \n",
167 | "1 2 1 1 \n",
168 | "2 3 1 3 \n",
169 | "3 4 1 1 \n",
170 | "4 5 0 3 \n",
171 | "\n",
172 | " Name Sex Age SibSp \\\n",
173 | "0 Braund, Mr. Owen Harris male 22.0 1 \n",
174 | "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
175 | "2 Heikkinen, Miss. Laina female 26.0 0 \n",
176 | "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
177 | "4 Allen, Mr. William Henry male 35.0 0 \n",
178 | "\n",
179 | " Parch Ticket Fare Cabin Embarked \n",
180 | "0 0 A/5 21171 7.2500 NaN S \n",
181 | "1 0 PC 17599 71.2833 C85 C \n",
182 | "2 0 STON/O2. 3101282 7.9250 NaN S \n",
183 | "3 0 113803 53.1000 C123 S \n",
184 | "4 0 373450 8.0500 NaN S "
185 | ]
186 | },
187 | "execution_count": 8,
188 | "metadata": {},
189 | "output_type": "execute_result"
190 | }
191 | ],
192 | "source": [
193 | "data.head()"
194 | ]
195 | },
196 | {
197 | "cell_type": "code",
198 | "execution_count": 12,
199 | "metadata": {},
200 | "outputs": [
201 | {
202 | "data": {
203 | "text/html": [
204 | "\n",
205 | "\n",
218 | "
\n",
219 | " \n",
220 | " \n",
221 | " \n",
222 | " PassengerId \n",
223 | " Survived \n",
224 | " Pclass \n",
225 | " Age \n",
226 | " SibSp \n",
227 | " Parch \n",
228 | " Fare \n",
229 | " \n",
230 | " \n",
231 | " \n",
232 | " \n",
233 | " count \n",
234 | " 891.000000 \n",
235 | " 891.000000 \n",
236 | " 891.000000 \n",
237 | " 714.000000 \n",
238 | " 891.000000 \n",
239 | " 891.000000 \n",
240 | " 891.000000 \n",
241 | " \n",
242 | " \n",
243 | " mean \n",
244 | " 446.000000 \n",
245 | " 0.383838 \n",
246 | " 2.308642 \n",
247 | " 29.699118 \n",
248 | " 0.523008 \n",
249 | " 0.381594 \n",
250 | " 32.204208 \n",
251 | " \n",
252 | " \n",
253 | " std \n",
254 | " 257.353842 \n",
255 | " 0.486592 \n",
256 | " 0.836071 \n",
257 | " 14.526497 \n",
258 | " 1.102743 \n",
259 | " 0.806057 \n",
260 | " 49.693429 \n",
261 | " \n",
262 | " \n",
263 | " min \n",
264 | " 1.000000 \n",
265 | " 0.000000 \n",
266 | " 1.000000 \n",
267 | " 0.420000 \n",
268 | " 0.000000 \n",
269 | " 0.000000 \n",
270 | " 0.000000 \n",
271 | " \n",
272 | " \n",
273 | " 25% \n",
274 | " 223.500000 \n",
275 | " 0.000000 \n",
276 | " 2.000000 \n",
277 | " 20.125000 \n",
278 | " 0.000000 \n",
279 | " 0.000000 \n",
280 | " 7.910400 \n",
281 | " \n",
282 | " \n",
283 | " 50% \n",
284 | " 446.000000 \n",
285 | " 0.000000 \n",
286 | " 3.000000 \n",
287 | " 28.000000 \n",
288 | " 0.000000 \n",
289 | " 0.000000 \n",
290 | " 14.454200 \n",
291 | " \n",
292 | " \n",
293 | " 75% \n",
294 | " 668.500000 \n",
295 | " 1.000000 \n",
296 | " 3.000000 \n",
297 | " 38.000000 \n",
298 | " 1.000000 \n",
299 | " 0.000000 \n",
300 | " 31.000000 \n",
301 | " \n",
302 | " \n",
303 | " max \n",
304 | " 891.000000 \n",
305 | " 1.000000 \n",
306 | " 3.000000 \n",
307 | " 80.000000 \n",
308 | " 8.000000 \n",
309 | " 6.000000 \n",
310 | " 512.329200 \n",
311 | " \n",
312 | " \n",
313 | "
\n",
314 | "
"
315 | ],
316 | "text/plain": [
317 | " PassengerId Survived Pclass Age SibSp \\\n",
318 | "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n",
319 | "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n",
320 | "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n",
321 | "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n",
322 | "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n",
323 | "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n",
324 | "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n",
325 | "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n",
326 | "\n",
327 | " Parch Fare \n",
328 | "count 891.000000 891.000000 \n",
329 | "mean 0.381594 32.204208 \n",
330 | "std 0.806057 49.693429 \n",
331 | "min 0.000000 0.000000 \n",
332 | "25% 0.000000 7.910400 \n",
333 | "50% 0.000000 14.454200 \n",
334 | "75% 0.000000 31.000000 \n",
335 | "max 6.000000 512.329200 "
336 | ]
337 | },
338 | "execution_count": 12,
339 | "metadata": {},
340 | "output_type": "execute_result"
341 | }
342 | ],
343 | "source": [
344 | "data.describe()"
345 | ]
346 | },
347 | {
348 | "cell_type": "code",
349 | "execution_count": 11,
350 | "metadata": {},
351 | "outputs": [
352 | {
353 | "name": "stdout",
354 | "output_type": "stream",
355 | "text": [
356 | "\n",
357 | "RangeIndex: 891 entries, 0 to 890\n",
358 | "Data columns (total 12 columns):\n",
359 | " # Column Non-Null Count Dtype \n",
360 | "--- ------ -------------- ----- \n",
361 | " 0 PassengerId 891 non-null int64 \n",
362 | " 1 Survived 891 non-null int64 \n",
363 | " 2 Pclass 891 non-null int64 \n",
364 | " 3 Name 891 non-null object \n",
365 | " 4 Sex 891 non-null object \n",
366 | " 5 Age 714 non-null float64\n",
367 | " 6 SibSp 891 non-null int64 \n",
368 | " 7 Parch 891 non-null int64 \n",
369 | " 8 Ticket 891 non-null object \n",
370 | " 9 Fare 891 non-null float64\n",
371 | " 10 Cabin 204 non-null object \n",
372 | " 11 Embarked 889 non-null object \n",
373 | "dtypes: float64(2), int64(5), object(5)\n",
374 | "memory usage: 83.7+ KB\n"
375 | ]
376 | }
377 | ],
378 | "source": [
379 | "data.info()"
380 | ]
381 | },
382 | {
383 | "cell_type": "code",
384 | "execution_count": 9,
385 | "metadata": {
386 | "colab": {
387 | "base_uri": "https://localhost:8080/"
388 | },
389 | "id": "DSGLwMcePIXp",
390 | "outputId": "bf231c46-e573-4086-8aa5-b5167a3c5dbf"
391 | },
392 | "outputs": [
393 | {
394 | "data": {
395 | "text/plain": [
396 | "PassengerId 0\n",
397 | "Survived 0\n",
398 | "Pclass 0\n",
399 | "Name 0\n",
400 | "Sex 0\n",
401 | "Age 177\n",
402 | "SibSp 0\n",
403 | "Parch 0\n",
404 | "Ticket 0\n",
405 | "Fare 0\n",
406 | "Cabin 687\n",
407 | "Embarked 2\n",
408 | "dtype: int64"
409 | ]
410 | },
411 | "execution_count": 9,
412 | "metadata": {},
413 | "output_type": "execute_result"
414 | }
415 | ],
416 | "source": [
417 | "data.isnull().sum()"
418 | ]
419 | },
420 | {
421 | "cell_type": "markdown",
422 | "metadata": {},
423 | "source": [
424 | "Here, we can see there are Null values in the dataset. Hence, we need to replace these values by mean (in case of numerical variables) or mode (in case of categorical variables)"
425 | ]
426 | },
427 | {
428 | "cell_type": "code",
429 | "execution_count": 19,
430 | "metadata": {},
431 | "outputs": [],
432 | "source": [
433 | "data['Age'] = data['Age'].fillna(np.mean(data['Age']))\n",
434 | "data['Cabin'] = data['Cabin'].fillna(data['Cabin'].mode()[0])\n",
435 | "data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])"
436 | ]
437 | },
438 | {
439 | "cell_type": "code",
440 | "execution_count": 20,
441 | "metadata": {},
442 | "outputs": [
443 | {
444 | "data": {
445 | "text/plain": [
446 | "PassengerId 0\n",
447 | "Survived 0\n",
448 | "Pclass 0\n",
449 | "Name 0\n",
450 | "Sex 0\n",
451 | "Age 0\n",
452 | "SibSp 0\n",
453 | "Parch 0\n",
454 | "Ticket 0\n",
455 | "Fare 0\n",
456 | "Cabin 0\n",
457 | "Embarked 0\n",
458 | "dtype: int64"
459 | ]
460 | },
461 | "execution_count": 20,
462 | "metadata": {},
463 | "output_type": "execute_result"
464 | }
465 | ],
466 | "source": [
467 | "data.isnull().sum()"
468 | ]
469 | },
470 | {
471 | "cell_type": "code",
472 | "execution_count": 22,
473 | "metadata": {
474 | "colab": {
475 | "base_uri": "https://localhost:8080/",
476 | "height": 334
477 | },
478 | "id": "03XvwkW0OAcI",
479 | "outputId": "c382acb8-58ad-4eec-8aee-7e7b771248ee"
480 | },
481 | "outputs": [
482 | {
483 | "data": {
484 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAEWCAYAAABCENDvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5xVdb3/8dcHBgEBuYmCIAyZaVJKCZqhSJmXPIVimtoFOFpUXsJOp3Osc7wEmf76dc7J0E5ZlpAX1HLSPL9MDyXkaCqUUl4IDUYug9wV8cbA5/fH9zvDns3ee/Ywa2btWfN+Ph7zmP3d6/ZZa33XWp/13d+1t7k7IiIiIiLSNt3SDkBEREREJAuUWIuIiIiIJECJtYiIiIhIApRYi4iIiIgkQIm1iIiIiEgClFiLiIiIiCSgTYm1mT1sZp9LIhALfmZmW8zsiSTmWWAZK83sI/H1N8zsJwnO+zUze0d8fYuZfSvBef/QzK5Ian6tWO6XzOzluG6DO3r5rWVmz5jZpBLDE6uvsnfMbLqZPZJ2HIWYmZvZOztoWU3nokpjZieY2bISw6vjtqpqwzISW//cc28Z404ws+VxmjOTWH6SzOw3Zjatg5fZ5v3Z3pKOMY3zUNauP+2Vl5jZ1WZ2a9Lz7UgtJtbxBPhGPBG9HJPfvq1ZSJkHxfHAycAIdz+mNfPfG+7+bXdvsZKXezC4e193/3tb4yp0wLv7F919dlvn3co4egD/CZwS121TRy5/b7j7GHd/GLJxcJZiZpPMbHUL4yR6gyddg7v/wd0Payy3NQlu73rYynPvLOCGOM2v2iumchQ6R7n7R919bloxJa0SzkFp3Dhk/foD6eQlaSrnmtuo3Bbrj7t7X+D9wHjg3/c2uBJGASvdfXtrJ0zzTruS7/Lb6ECgF/BM2oFUggzvZ2kj1Y1OZRR7eU7TfpZCslgvYg+CTt1VONX94u4l/4CVwEdyyv8XuD++fhj4XHzdjZBw1wHrgXlA/zjsJcCB1+LfcXnLuBB4E9gZh38zvv954AVgM3AfcFDONA5cDCwHVhSJ/bMxnk3Av+WuC3A1cGt83Qu4NY63FXiSkFheE2N6M8Z1Q7Flx/feGV/fAvwQeAjYBiwERsVh1XHcqpw4HwY+B7w7bztszZnft3LGb2m7fDHGtgW4EbAi26cn8D1gbfz7XnzvXcD2nH32uyLT3w2sA14BFgFjcoYNBn4NvBq357eAR3KGHx63z2ZgGfDJIsv4EPCXnPL/Ak/klB8Bzsytq8BpwNvAjhj/0znbeTZQG/fLg8D+RZY7CVgN/Gtcx58T6vjlwIuxrtwFDCpVh3KWey3wRNxW9zZOF4d/AHg0Tvc0MCln2CDgZ3H/bAF+BfQB3gB2sfuYOigv/hlx/d+Ow38d3393jGcrIcGYXOLY7w/cDNQDa+I+7B6HHQL8Lq7vRuA2YEDOtAcD9wAb4jiNx870uM++G9dnBfDREjG8H/hz3F93A3fS/Fj4GPBUXJ9HgSPzzl3/DCyN2/1OoFfO8K/FdVsLXEDzY7hnjPEl4GXC8dy7WN0oEHdL22clu89FBY/DvGV9lXBerQf+sdzjLC+mucBX4+vhcX0viuV3Eo5Fa1xmfP/nhHr2BqEe/Qu7z2HT4vbZCPxbkWUWq4ct7Zui+7XAMvLPvTcC/xPrzOPAIXHYi3nr0hM4iHAO3Uw4p34+Z75XA78gHNevEs7RD8dt/Gjj+sR9cFvOPqjOmcf1wKo4bAlwQny/1DmqnGtq2fsgjv8PhOPo1RjP1TnDGuc1g1D/6on1pIz6OZ28+ta4P4rt+7xxvwnMia97EK4734nl3oTr4cCW1pfS5+Y98g9aOA9R+tw3nXAN+S9CvflW3jrt1fWHItcB4BxgSd4yvgr8qsi+ng78PS5jBfDpnPp8a4H9XpUT3zUxvjcIdW9x3ry/AtyXc6x9K75+DvhYznhVcR+9v4xr3GhCjrSNkBPckBtngfXb67yQlutRsZyoxWtus+UUG1DkAnAw4WI8u8BJ4IK4su8A+hIuqj8vtANLVIbcxOvDjTsmrtgcYFHeBnyIkHj0LjC/I+LKT4zT/yfQQOHE+guEE+S+QHfgaGC//HUstWz2PLlvy1n29Y3rVmhb5G3HZtuhQAUuZ7vcDwwARhISm9OKbPNZwB+BA4AhhIo/u1icBaa/AOjH7sr4VM6w+fFv37gvVuVsgz6x/I+EA/D9cZ3GFFhGL0KF3j+Ou45Q4fsRTrxvAIML1NWm/Zu3nV8k3Dj0juXriqzbpFhf/k9cv97AZXF7jYjv/Qi4o8w6tAZ4T1z3X7K77g0nXAhOJ1wcTo7lIXH4/xCSjoGEC8+JOfGtbuHYbao3sdyDcIx+A9iHUJe2AYcVmf5XcR37xDryBPCFOOydMdaese4sAr4Xh3UnnDz/K07bCzg+p37vIJwcuwNfivtzj5u/GGMdMDPGfhbhgtV4LLyfkHAcG+c1LdaBxov+yhjzQYRj9Tngi3HYaYSEuXGf3E7zY/h7hJP2IEJd+zVwbbG6USD2otunQF0tdRw2LmtW3AanA68DA1s6zoocr42J7acIx8KdOcPuLVS32LNxpTpuqx8TjoujgLeAd5dTD8vYNyX3a4H55597NwPHEM4XtwHzS6zLQuAHhDo6lnC+PCnnHLIDOJNwbDaeM14g3Dj1B54F/ka4oa8iJL8/y5n/ZwiJdxUhGVpHvIGg+DmqNdfUcvfBJOC9cT2OJNT9M/PmdQfhWHhv3A7l1M/pFEmsi+37vHE/TGw4AT5IqJOP5wx7upz1pfS5uXHa3GvudEqchyh97ptOOCYvjfu10PFfbN8WvP5Q4joQ12dz7r4l3CR9osBy+xBung6L5WHE62p+TPnbJcbzEjAmrld/wvXh0JxpngTOy9+3wJXAbTnj/QPwfEvrFoc/RsjPehJypm352y6vvrQlL2xc52L1qKVzcclrbtNyWhwhnIheI9xp1BFOQo3J5MPsPgksILZ+xPJhhIpblb8DiyxnOs0T65uJd66x3DfOrzpnA364xPyupPkJtQ/holwosb6AIq0iFE+sP1zgvdyTyfy82HcSbkz22Ba0LrEuZ7scnzP8LuDyItvoReD0nPKphO44uRWw6D7Lm9eAOH5/wolqBzkJGzktacC5wB/ypv8RcFWRef+BkFR9gHCXfxchMfoQsDSvrraUWP97Tvki4IEiy5wU60tuK9pzxItuLA9jdx1vqQ5dl1M+Is67O6HV8+d54/+WkEwMI9whDywSX2sT6xMIF/ZuOe/dQU7rVc77BxJOOL1z3jsf+H2RZZ0J/Dm+Po5wYd6j7hDq9ws55X1jvRlaYNyJhBsSy3nvEXYfC/9NPOnlDF/G7puPlcBncoZ9B/hhfP3TvH3yLna3tBmh5eyQnOHHsfvTqT3qRhnHR9P2KVBXSx2Hkwg3j7nni/WEY6HkcVYghkMI5/FuhBb4L7C7ZXou8E+F6hbFE+sROe89QbzgtlQPy9g3Jfdrgfnnn3t/kjPsdOIFvsB2P5hwXu6XM/xa4Jb4+mpyLto5x3JuC9d/AL/JKX+cnAaGArFuAY7KmX+pxLqca2pZ+6BAHN8D/itvfx6etz9uLqN+Ts+vbwX2R6nEurFVejChxfkbhE9o+hJas79fTp2j9Lm5cdr8xLrgeYgWzn1x2pda2L7F9m3B6w8lrgM5x8Q18fWYWI/2uNEk5DlbgU+Ql1jmx5S/XWJ8s/KmuRW4Mr4+lJD07pu/bwnnzdxht+VMV+oaN5Jwk9InZ9jt+dsuZ1hb88KW6lFL5+KyEuty+9Cc6e4D3H2Uu1/k7m8UGOcgQuLdqI5QqQ8scxkl5+furxHucobnjLOqhembhnvou13sAbyfE3b0fDNba2bfiQ/vlVJq2c2Gx9g3x5jaqpztsi7n9euEytfivOLrsmI0s+5mdp2ZvWhmrxIuWBBalocQ9n3uNsp9PQo41sy2Nv4Bnyac1ApZSKjUE+Prh4ET49/CcuLNUe62Adjg7m/mxV2TE/NzhAvzgbRch3LXv47Q+rh/nOc5edvieMKF4WBgs7tvaeU6FnMQsMrdd+XFMrzAuKNijPU5cf2IcCePmR1gZvPNbE3c/7fG9SHGXefuDUXiaNoH7v56fFloPxwErPF4Vovy69FX87bdwTSvw8X2d7PzA82PgyGEC+2SnPk+EN9vlF83mmlh+xRaz1LH4aa8bdm4Hi0dZ824+4uERpKxhJus+4G1ZnYY7X8stWb6cvZrEnEdRDi+tuW8l388FNqeL+e8fqNAuWl5ZvZVM3vOzF6J69Gf4vWgUHwtXVPLWlczO9bMfm9mG8zsFUJ3wfw48o+Hxu2919eJlsRcYjGh/jWe3x8FJlC4TpaqM8XOzcUUOw+VPPdFLV3/W1xmgfiLXQcg3Ph+ysyM0MX1Lnd/K3/mMc85l7B/683sf8zs8FbEl79etxNuKiB8yvWrnG2Vu9wXCNv842a2LzA5TtvSuh0EbPHmz9bl1rV8bc0LG5W6LrS5rifZOX0tYQM2arwTeZlwh9Cm+ZlZH8Jd7ZqccUrNt55wMm6cft84/R7cfYe7f9PdjyB8HPUxYGoLy2hpnXKX3Zfw0cRaQksYhAt3o9yEsqX5lrNdylVon60tc9pPAWcQPgLtT7gThNDat4Gw70fkjH9wzutVwMJ4s9b419fdv1RkWfmJ9UJaTqz3ps61NI9VhH54uXH3cvc1LdQhaL7+Iwl32RvjPH+eN88+7n5dHDbIzAbs5frlj7MWODjvoZSRFK47qwitNvvnxLWfu4+Jw6+N8z/S3fcjfORtOdOOTODhkXpgeLyYNMqvR9fkbbt93f2OMuedv08abSQkSGNy5tvfwwPcjVra/qW2T769PQ5bOs4KWQicDezj7mtieSqhq9FTRaZp67HU2unbsl9bYy3h+OqX817+8bDX625mJxBa6z5J+NRpAKE/eWM9aNW5nubX1Na6ndC16WB370/4xCK/PuYfD411sFT93E7OtczM8htHytl+Cwkf8b+P0NVgIaGl8BhCF6pyFD03lxlD/rxKnfsoY557s8xi1wHc/Y+ET8lOIFx7f150we6/dfeTCYnr84RuD5C3ryjckJUf94PA/mY2lpBg377nJE3uiOOcATwbk+2W1q0eGBjzmEYjKa6teWFLStX1suebZGJ9B/AVMxsdE8lvE/rvNRAuALsIfcXKdTvwj2Y21sx6xvk97u4ry5z+F8DHzOx4M9uH0Hem4Pqa2YfM7L1m1p3QP2kH4W4XwkmsNXE3Oj1n2bNj7KvcfQOhEnwmtvpeQPiIttHLwIg4XSFt3S657gD+3cyGmNn+hO4z5X5FUD/CyWcT4WD9duMAd99J6A94tZntG++Yc5PM+4F3mdlnzaxH/BtvZu8usqxHCR+DHkN4cPEZYqs3xU+8LwPVCT/Z/EPgGjMbBRC32xnxdak6BGF/HxFv8GYBv4jb6VbCXf6psT70svC1PiPcvR74DfADMxsYt9PEnPUbbGb9S8SbX3cfJ5xc/yXOaxLho+v5+RPGZT8I/IeZ7Wdm3czsEDM7MY7Sj9hFzMyGEx4EbPQE4YR5nZn1ies0oUScxTxG2IaXmFlV3Na5X8X5Y+CLsTXO4rL+IS9RKuYuYHrOPrkqZ913xXn/l5k1ttAPN7NTWxF7qe2Tb6+OwzKOs0IWApew+7h5mNBX9JE4v0L29hy4t9O3Zb+Wzd1XEc4t18Y6eiThQfrbElpEP0IivAGoMrMrgf1yhrd0jip1Td2bWDa7+5tmdgwhOct3RaxHYwjPv9yZE0ex+vk0MCZej3oRuhvkKmffN97cPevub7P7Yf4V8XpZjqLnZlqZf5Rx7itHa68/Ra8DOePMIzzY1+DuBb+D28wONLPJMeF8i3AOajyunwImmtnIeN34ektBxbr2C8KXVgwi9F8uZj5wCqG/em4CXuoaV0f4xOKbZraPmR1PuCYVk2T+U0ipul7ONRdINrH+KeEuahHhSdQ3CSfsxo9ZrgFqLXwU8IGWZubuC4ArCA961ROSz/PKDSYmXxcTdkQ9oU9Sse8gHEqoPK8SPs5YyO6NeT1wtoUfrvl+ucuPy72K0AXkaEJXh0afJ1xoNxH6Sz2aM+x3hAdE15nZxgLr1abtkudbhEq9FPgL8Kf4XjnmET4mWUN4gOePecMvIbRkN36jxh2EA5340espMe61cZzGB8H2ED8m+hPwTDzxQki66tx9fZH47o7/N5nZn8pcp5ZcT2j1edDMthHW+dg4rFQdgrANbiE+vAR8GZou7mcQ+hZuINzdf43dx+ZnCUn684S+tZfF6Z4nbNO/x2Oq0MdVNwNHxOG/ittuMvBRQqvsD4CpcV6FTCU8QPgs4fj5Bbs/mvwm4QGSVwgPWN7TOFFM0D5O6Hf3EuG4O7fIMoqK8Z5FSHa2Elp972d3PVpMOJZuiPG9QOj/WM68f0PoZ/q7ON3v8kb51/j+Hy105fhfws1duYpunwLachwWPc6KWEhIshoT60cIN8alWgavJVxstprZP5cZV65m9bClkduyX/fC+YRP29YCNYTnPEolD63xW8KN8d8I58o3af4xdUvnqKLX1L1wETArnreuJNxY5ltI2NYLgO+6+4Px/aL1093/Rmgo+F/CNzHkJ3zl7PtHCX2tG+vgs4R1Lbe1Gkqcm/cm/6D0ua8crbr+lHEdgFAX3kOJ1uo4/lcJ9Xkz4VPdi+IyHiLcLC0lfEPN/WWuy+2ET6bvLnVTF29IHiN8YntnzvstrdunCPtqMyFnmldiGUnmP4WUquvlXHOB3U/AirQrM/s/hAfUpqUdS0czs4cJD2Mk9kufXZWZPU54yO1nacdSibrycSaSZWbWm9C48n53X552PFJcp/4CcKlcZna4mR0ZP8o9htDqWJN2XNK5mNmJZjY0dgWZRviqsAfSjqtS6DgT6TK+BDyppLryZe4Xg6Ri9CN8bHIQ4S77Pwg/jCLSGocRPrbuS/gqpLPjR44S6DgTyTgzW0l42PTMlEORMqgriIiIiIhIAtQVREREREQkAeoKIpJj//339+rq6rTDEBHpVJYsWbLR3Ye0PKZItimxFslRXV3N4sWL0w5DRKRTMbNSv5gn0mWoK4iIiIiISAKUWIuIiIiIJECJtYiIiIhIApRYi4iIiIgkQIm1iGTWli1bmDVrFlu3bk07FBER6QKUWEsmmNlXzOwZM/urmd1hZr3MbJCZPWRmy+P/gWnHKR2rpqaGZcuWcc8996QdioiIdAFKrKXTM7PhwJeBce7+HqA7cB5wObDA3Q8FFsSydBFbtmxh4cKFuDuLFi1Sq7WIiLQ7JdaSFVVAbzOrAvYF1gJnAHPj8LnAmSnFJimoqanB3QHYtWuXWq1FRKTdKbGWTs/d1wDfBV4C6oFX3P1B4EB3r4/j1AMHFJrezGaY2WIzW7xhw4aOClvaWW1tLQ0NDQA0NDRQW1ubckQiIpJ1Sqyl04t9p88ARgMHAX3M7DPlTu/uN7n7OHcfN2SIfpE3KyZMmEBVVfhx2aqqKiZMmJByRCIiknVKrCULPgKscPcN7r4DuAf4IPCymQ0DiP/XpxijdLApU6ZgZgB069aNs846K+WIREQk65RYSxa8BHzAzPa1kEmdBDwH3AdMi+NMA+5NKT5JwcCBAznxxBMxMyZOnMiAAQPSDklERDKuKu0ARNrK3R83s18AfwIagD8DNwF9gbvM7EJC8n1OelFKGqZMmcLq1avVWi0iIh3CGp+aFxEYN26cL168OO0wREQ6FTNb4u7j0o5DJG3qCiIiIiIikgAl1iIiIiIiCVBiLSIiIiKSACXWIiIiIiIJUGItIiIiIpIAJdYiGbNlyxZmzZrF1q1b0w5FRESkS1FiLZIxNTU1LFu2jHvuuSftUERERLoUJdYiGbJlyxYWLlyIu7No0SK1WouIiHQgJdYiGVJTU0Pjjz7t2rVLrdYiIiIdSIm1SIbU1tbS0NAAQENDA7W1tSlHJCIi0nUosRbJkAkTJlBVVQVAVVUVEyZMSDkiERGRrkOJtUiGTJkyBTMDoFu3bpx11lkpRyQiItJ1KLEWyZCBAwdy4oknYmZMnDiRAQMGpB2SiIhIl6HEWiRjxo0bB8AxxxyTciQiIiJdixJrkYyZO3cu7s7PfvaztEMRERHpUpRYi2TIypUrqa+vB6C+vp66urqUIxIREek6lFhLp2dmh5nZUzl/r5rZZWY2yMweMrPl8f/AtGNtb3PmzGlW/v73v59SJCIiIl2PEmvp9Nx9mbuPdfexwNHA60ANcDmwwN0PBRbEcqY1tlYXK4uIiEj7UWItWXMS8KK71wFnAHPj+3OBM1OLSkRERDJPibVkzXnAHfH1ge5eDxD/H1BoAjObYWaLzWzxhg0bOihMERERyRol1pIZZrYPMBm4uzXTuftN7j7O3ccNGTKkfYLrIMOGDStZFhERkfajxFqy5KPAn9z95Vh+2cyGAcT/61OLrINceumlzcpf/vKXU4pERESk61FiLVlyPru7gQDcB0yLr6cB93Z4RB2surq6qZV62LBhjBo1KuWIREREug4l1pIJZrYvcDJwT87b1wEnm9nyOOy6NGLraJdeeim9e/dWa7WIiEgHM3dPOwaRijFu3DhfvHhx2mGIiHQqZrbE3celHYdI2tRiLZIxW7ZsYdasWWzdujXtUERERLoUJdYiGVNTU8OyZcu45557Wh5ZREREEqPEWiRDtmzZwsKFC3F3Fi1apFZrERGRDqTEWiRDampqaGhoAGDHjh1qtRYREelASqxFMqS2tpbGB5Ldndra2pQjEhER6TqUWItkyOGHH16yLCIiIu1HibVIhixbtqxkWURERNqPEmuRDHn99ddLlkWkcqxcuZILL7yQurq6tEMRkYQosRbJEDMrWRaRynHjjTfyxhtvcMMNN6QdiogkRIm1SIbk/5KqfllVpDKtXLmSNWvWALBmzRq1WotkhBJrkQwZPnx4yXJXo1+hlEp14403Niur1VokG5RYi2TIxRdf3Kx8ySWXpBRJZdCvUEqlamytLlYWkc5JibWIZJJ+hVIq2dChQ0uWRaRzUmItkiH6eHm3mpqapj7mu3btUqu1VJRRo0aVLItI56TEWiRD9PHybrW1tU0/797Q0KBfoZSKsnTp0pJlEemclFiLZIi+bm+3CRMm0L17dwC6d+/OhAkTUo5IZDfVT5FsUmItmWBmA8zsF2b2vJk9Z2bHmdkgM3vIzJbH/wPTjrO96ev2dpsyZQq7du0CwnY466yzUo5IZLcpU6Y0HZ+qnyLZocRasuJ64AF3Pxw4CngOuBxY4O6HAgtiOdN69epVstzVdOUWe6l8XfnGVySrlFhLp2dm+wETgZsB3P1td98KnAHMjaPNBc5MJ8KO06dPn2blvn37phRJ+mpqapoSazPTw4tSUWpqaujWLVyCVT9FskOJtWTBO4ANwM/M7M9m9hMz6wMc6O71APH/AYUmNrMZZrbYzBZv2LCh46JuB5s2bWpW3rhxY0qRpK+2tpadO3cCsHPnTj28KBVF9VMkm5RYSxZUAe8H/tvd3wdspxXdPtz9Jncf5+7jhgwZ0l4xdoiqqqqS5a5kwoQJTetfVVWlh8OkoujhRZFsUmItWbAaWO3uj8fyLwiJ9stmNgwg/l+fUnwdpvHr5YqVu5IpU6Y0dQXp1q2bHg6TijJlypRmLdaqnyLZoMRaOj13XwesMrPD4lsnAc8C9wHT4nvTgHtTCK9D5be4d/YW+LYYOHAgJ554ImbGxIkTGTBgQNohCeEXMWfNmtXlfwlz1apVzcqrV69OKRIRSZISa8mKS4HbzGwpMBb4NnAdcLKZLQdOjuVM0/dYNzdlyhQOO+wwtQZWkJqaGpYtW9blH9abM2dOs/L111+fUiQikqSu2wFTMsXdnwLGFRh0UkfHkqb169eXLHc1AwcO5Morr0w7DIm2bNnCwoULcXcWLVrEWWed1WU/Sdi+fXvJsoh0TmqxFsmQ/K/byy+LpKmmpqbpu5t37drVpVutdayKZJMSa5EM0cOLUslqa2ub6mRDQ0OX/oq5Sy+9tFl55syZKUUiIklSYi2SIWPHji1ZFkmTvgJxt4MPPrhZecSIESlFIiJJUh9rkQxZsWJFyXJnM2/ePOrq6vZ6+nXr1gEwdOjQNsUxatQopk6d2qZ5SHiYdOHChYC+ArHxl0HdvemXFy+44IK0wxKRNlKLtUiG6OHF5t566y3eeuuttMOQSF+BuNsjjzzS1N/c3XnkkUdSjkhEkqAWaxGpWG1tJZ49ezYAV1xxRRLhSAKmTJnC6tWru3RrNcDgwYNZs2ZNs7KIdH5KrEUypHv37k2/5tZYFqkk+grEYNOmTSXLItI5qSuISIZ88IMfbFbuyg+HiVSy448/vukHnMyM448/PuWIRCQJarEWqTBteWBvx44dzcr19fVN3SFaSw/siRTX1gdrd+zY0ayPdV1d3V4dqzpORSqLWqxFMqRHjx5N3T/69+/f9NVmIlJZco/VAQMG6FgVyQgdySIVpq2tT1deeSVr1qzh2muv7dLfuiDSnpJoJW48Vr/97W/rWBXJCLVYi2RMjx49qK6u1oVapMLpWBXJHiXWIiIiIiIJUGItIiIiIpIAJdYiIiIiIglQYi0iIh1my5YtzJo1i61bt6YdiohI4pRYSyaY2Uoz+4uZPWVmi+N7g8zsITNbHv8PTDtOka6upqaGZcuWcc8996QdiohI4pRYS5Z8yN3Huvu4WL4cWODuhwILYllEUrJlyxYWLlyIu7No0SK1WotI5iixliw7A5gbX88FzkwxFpEur6ampunXBnft2qVWaxHJHCXWkhUOPGhmS8xsRnzvQHevB4j/Dyg0oZnNMLPFZrZ4w4YNHRSuSNdTW1tLQ0MDAA0NDdTW1qYckYhIspRYS1ZMcPf3Ax8FLjazieVO6O43ufs4dx83ZMiQ9otQpIubMGFC0093V1VVMWHChJQjEhFJlhJryQR3Xxv/rwdqgGOAl81sGED8vz69CEVkypQpmBkA3bp146yzzko5IhGRZCmxlk7PzPqYWb/G18ApwF+B+4BpcbRpwL3pRCgiAAMHDuTEE0/EzJg4caJ+yltEMqcq7QBEEnAgUCmpFZEAABcOSURBVBNbwqqA2939ATN7ErjLzC4EXgLOSTFGkU5v3rx51NXVtWkea9eupVu3btTV1TF79uy9mseoUaOYOnVqm+IQEWkPSqyl03P3vwNHFXh/E3BSx0ckIsXs2LGDnj17NvW1FhHJEp3ZRESkLEm0Eje2Ul9xxRVtnpeISKVRH2sRERERkQQosRYRERERSYASaxERERGRBCixFhERERFJgBJrEREREZEEKLEWEREREUmAEmsRERERkQQosRYRERERSYASaxERERGRBCixFhERERFJgBJrEREREZEEKLGWimFmB5rZzWb2m1g+wswuTDsuERERkXIosZZKcgvwW+CgWP4bcFlq0YiIiIi0ghJrqST7u/tdwC4Ad28AdqYbkoiIiEh5lFhLJdluZoMBBzCzDwCvlDuxmXU3sz+b2f2xPMjMHjKz5fH/wPYJW0RERESJtVSWfwLuAw4xs1pgHnBpK6afCTyXU74cWODuhwILYllERESkXSixlorh7n8CTgQ+CHwBGOPuS8uZ1sxGAP8A/CTn7TOAufH1XODM5KIVERERaa4q7QBEGpnZWXlvvcvMXgH+4u7rW5j8e8C/AP1y3jvQ3esB3L3ezA5ILloRERGR5pRYSyW5EDgO+H0sTwL+SEiwZ7n7zwtNZGYfA9a7+xIzm9TahZrZDGAGwMiRI/cibBEREREl1lJZdgHvdveXIXyvNfDfwLHAIqBgYg1MACab2elAL2A/M7sVeNnMhsXW6mFAwVZvd78JuAlg3LhxnuQKiYiISNehPtZSSaobk+poPfAud98M7Cg2kbt/3d1HuHs1cB7wO3f/DOFByGlxtGnAve0TtoiIiIharKWy/CF+Vd7dsfwJYJGZ9QG27sX8rgPuir/e+BJwTjJhioiIiOxJibVUkouBs4DjY/kJYJi7bwc+VM4M3P1h4OH4ehNwUuJRioiIiBSgriBSMdzdgRcJ3T6mEJLi50pOJCIiIlIh1GItqTOzdxH6Rp8PbALuBMzdy2qlFhEREakESqylEjwP/AH4uLu/AGBmX0k3JBEREZHWUVcQqQSfANYBvzezH5vZSYClHJOIiIhIq6jFWlLn7jVATfz2jzOBrwAHmtl/AzXu/mCqAbbCvHnzqKurSzWGxuXPnj071ThGjRrF1KlTU41BRESkIymxlooRv/3jNuA2MxtE+Hq8y4FOk1jX1dXx/AvL6TGoX8sjt5MGdgLw4uZ1qcWwY/O21JYtIiKSFiXWUpHij8L8KP51Kj0G9WPwKcemHUaqNj34OOvWrUu91Vyt91KMPl0KVDdFkqXEWkTaxVtvvcWKvz3P8L49UouhR0MDAG+vfTG1GNa8VvRHQyVFdXV1Xb5+qm6KJE+JtYi0m+F9e3DpkQekHUaq5ixdn3YIUkRXr5+qmyLJ07eCiIiIiIgkQIm1iIiIiEgClFiLiIiIiCRAibWIiIiISAKUWIuIiIiIJECJtYiIiIhIApRYi4iIiIgkQIm1dHpm1svMnjCzp83sGTP7Znx/kJk9ZGbL4/+BaccqIiIi2aXEWrLgLeDD7n4UMBY4zcw+AFwOLHD3Q4EFsSwiIiLSLvTLi9LpubsDr8Vij/jnwBnApPj+XOBh4F87ODyRijFv3jzq6upSjaFx+bNnz04thlGjRqW2bBHJNiXWkglm1h1YArwTuNHdHzezA929HsDd682s4G8Xm9kMYAbAyJEj2xTHunXr2PHaNjY9+Hib5tPZ7di8jR0NO1nzln42ec1rO+i9bl3aYQAhqX3+heX0GNQvtRga2AnAi5vT2SY7Nm8DwrH6xms7unT9rKS6KZIVSqwlE9x9JzDWzAYANWb2nlZMexNwE8C4ceO8nUIUqQg9BvVj8CnHph1Garr6Ta+ItC8l1pIp7r7VzB4GTgNeNrNhsbV6GNDuTVNDhw5l+2a6dOICIXmp2vYWw3o0cOmRBT8o6DLmLF3PPkOHph0GoE9UILRYr3s7HKtv79repetnJdVNkazQw4vS6ZnZkNhSjZn1Bj4CPA/cB0yLo00D7k0nQhEREekK1GItWTAMmBv7WXcD7nL3+83sMeAuM7sQeAk4J80gRdKmT1TCpylDB6mVVkTahxJr6fTcfSnwvgLvbwJO6viIREREpCtSVxARERERkQQosRYRERERSYASaxERERGRBCixFhERERFJgBJrEREREZEEKLEWEREREUmAEmsRERERkQQosRYRERERSYB+IEYkYTs2b2PTg4+ntvyGba8DUNVv39Ri2LF5G1U99klt+SIiImlQYi2SoFGjRqUdAnXb6gAYlebPNg8ayrp162BXQ3oxiIiIdDAl1iIJmjp1atohMHv2bACuuOKK1ON4e+2LqcYgIiLSkdTHWkREREQkAUqsRUREREQSoK4gIiLSJa15bQdzlq5Pbfkb3wjPIOzfO51L8ZrXdjA6lSWLZJcSaxER6XIq4UHjHXXhQeN9DkonltFUxnYQyRIl1iIi0uXoQWMRaQ/qYy2dnpkdbGa/N7PnzOwZM5sZ3x9kZg+Z2fL4f2DasYqIiEh2KbGWLGgAvuru7wY+AFxsZkcAlwML3P1QYEEsi4iIiLQLdQWRTs/d64H6+HqbmT0HDAfOACbF0eYCDwP/mkKIXVZXfzgM9ICYiEhXosRaMsXMqoH3AY8DB8akG3evN7MDikwzA5gBMHLkyI4JtAuohIei0n44DPSAmIhIV6LEWjLDzPoCvwQuc/dXzays6dz9JuAmgHHjxnn7Rdi16OEwERHpatTHWjLBzHoQkurb3P2e+PbLZjYsDh8GpNcnQURERDJPibV0ehaapm8GnnP3/8wZdB8wLb6eBtzb0bGJiIhI16GuIJIFE4DPAn8xs6fie98ArgPuMrMLgZeAc1KKT6Ri7Ni8jU0PPp7a8hu2vQ5AVb99U1n+js3bYNDQVJYtItmnxFo6PXd/BCjWofqkjoxFpJJVwkOUddvCA6Wj0kpuBw2tiO0gItmkxFpEpA127NjB6tWrefPNN9MOpUXjx49n/PjxRYf36tWLESNG0KNHj3aLQQ+UikiWKbEWEWmD1atX069fP6qrqyn3m2gqkbuzadMmVq9ezejR+uZtEZG9oYcXRUTa4M0332Tw4MGdOqkGMDMGDx7cKVreRUQqlRJrEZE26uxJdaOsrIeISFqUWIuIiIiIJECJtYhIO7jmmmsYM2YMRx55JGPHjuXxx9v+FXf33Xcf1113XQLRQd++fROZj4iI7KaHF0VEEvbYY49x//3386c//YmePXuyceNG3n777bKmbWhooKqq8Kl58uTJTJ48OclQRUQkQWqxFhFJWH19Pfvvvz89e/YEYP/99+eggw6iurqajRs3ArB48WImTZoEwNVXX82MGTM45ZRTmDp1KsceeyzPPPNM0/wmTZrEkiVLuOWWW7jkkkt45ZVXqK6uZteuXQC8/vrrHHzwwezYsYMXX3yR0047jaOPPpoTTjiB559/HoAVK1Zw3HHHMX78eH3VnYhIO1FiLSKSsFNOOYVVq1bxrne9i4suuoiFCxe2OM2SJUu49957uf322znvvPO46667gJCkr127lqOPPrpp3P79+3PUUUc1zffXv/41p556Kj169GDGjBnMmTOHJUuW8N3vfpeLLroIgJkzZ/KlL32JJ598kqFD9cuDIiLtQYm1iEjC+vbty5IlS7jpppsYMmQI5557LrfcckvJaSZPnkzv3r0B+OQnP8ndd98NwF133cU555yzx/jnnnsud955JwDz58/n3HPP5bXXXuPRRx/lnHPOYezYsXzhC1+gvr4egNraWs4//3wAPvvZzya1qiIikkN9rEVE2kH37t2ZNGkSkyZN4r3vfS9z586lqqqqqftG/vdF9+nTp+n18OHDGTx4MEuXLuXOO+/kRz/60R7znzx5Ml//+tfZvHkzS5Ys4cMf/jDbt29nwIABPPXUUwVj0tfpiYi0L7VYi4gkbNmyZSxfvryp/NRTTzFq1Ciqq6tZsmQJAL/85S9LzuO8887jO9/5Dq+88grvfe979xjet29fjjnmGGbOnMnHPvYxunfvzn777cfo0aObWrvdnaeffhqACRMmMH/+fABuu+22RNZTRESaU2ItIpKw1157jWnTpnHEEUdw5JFH8uyzz3L11Vdz1VVXMXPmTE444QS6d+9ech5nn3028+fP55Of/GTRcc4991xuvfVWzj333Kb3brvtNm6++WaOOuooxowZw7333gvA9ddfz4033sj48eN55ZVXkllRERFpRl1BREQSdvTRR/Poo4/u8f4JJ5zA3/72tz3ev/rqq/d478ADD6ShoaHZe9OnT2f69OlN5bPPPht3bzbO6NGjeeCBB/aY3+jRo3nssceaypdffnlLqyEiIq2kFmsRERERkQQosRYRERERSYASa+n0zOynZrbezP6a894gM3vIzJbH/wPTjFFERESyT4m1ZMEtwGl5710OLHD3Q4EFsSwiIiLSbpRYS6fn7ouAzXlvnwHMja/nAmd2aFAiIiLS5Sixlqw60N3rAeL/A4qNaGYzzGyxmS3esGFDhwUoIiIi2aKv25Muz91vAm4CGDdunLcwukirzb7uWja/ujWx+Q3abwBXXP71Fsd74IEHmDlzJjt37uRzn/ucvmJPRKSdKbGWrHrZzIa5e72ZDQPWpx2QdF2bX91KtxPGJDe/PzzT4jg7d+7k4osv5qGHHmLEiBGMHz+eyZMnc8QRRyQWh4iINKeuIJJV9wHT4utpwL0pxiLS4Z544gne+c538o53vIN99tmH8847r+lXGEVEpH0osZZOz8zuAB4DDjOz1WZ2IXAdcLKZLQdOjmWRLmPNmjUcfPDBTeURI0awZs2aFCMSEck+dQWRTs/dzy8y6KQODUSkguT/1DmAmaUQiYhI16EWaxGRDBoxYgSrVq1qKq9evZqDDjooxYhERLJPLdYiFWbevHnU1dXt9fSN086ePbtNcYwaNYqpU6e2aR6SnvHjx7N8+XJWrFjB8OHDmT9/PrfffnvaYYmIZJoSa5GM6dmzZ9ohSJ5B+w0o65s8WjO/llRVVXHDDTdw6qmnsnPnTi644ALGjEnum0lERGRPSqxFKoxaibOnnO+cbg+nn346p59+eirLFhHpitTHWkREREQkAUqsRTJm6dKlfPrTn+avf/1r2qGIiIh0KUqsRTJmzpw5uDvXX3992qGIiIh0KUqsRTJk6dKlbN++HYDt27er1VpERKQDKbEWyZA5c+Y0K6vVWkREpOMosRbJkMbW6mJlERERaT/6uj2RDOnTp0+zZLpPnz4pRiON/uPbs9m2dXNi8+s3YBBf/cYVJce54IILuP/++znggAPUJahCvfHGG9TV1VFXV8eoUaPSDkdEEqDEWiRDLr30Uq677rqm8syZM1OMRhpt27qZi0b3SGx+P1jRcpI+ffp0LrnkEn0vejtp6y+kAqxcuRKAq666ikMOOWSv5qFfSBWpLOoKIiKSQRMnTmTQoEFphyFFvPHGG02v3377bd58880UoxGRpKjFWiRDCj28+OMf/zilaCRrkmilbZx+9uzZez2PSmilbevyv/a1rzUrv/3221xzzTVtmqeIpE+JtUiG6OFFqXQ9e/ZMO4SKsGbNmpJlEemclFiLZIiZ4e7NyiJJSbuVOEu6devGrl27mpVFpPPTkSyZZmanmdkyM3vBzC5PO572lptUFyqLSGXITaoLlUWkc1KLtWSWmXUHbgROBlYDT5rZfe7+bLqRtZ/hw4c3+0h5+PDhKUbTdm3t05tEf15oe5/efgMGlfVNHq2ZX0vOP/98Hn74YTZu3MiIESP45je/yYUXXphYDCIisicl1pJlxwAvuPvfAcxsPnAGkNnE+uKLL+Yb3/hGU/mSSy5JMZr0VUp/3pa+c7o93HHHHR2+TCnfAQccwPr165uVRaTzU2ItWTYcWJVTXg0cmz+Smc0AZgCMHDmyYyJrJ9XV1U2t1sOHD+/0PzqhPr2SVZdddlmzm+CvfOUrKUYjIklRH2vJskJP7u3R6djdb3L3ce4+bsiQIR0QVvu6+OKL6d27d5dvrRapZNXV1U2t1AcccECnvwkWkUCJtWTZauDgnPIIYG1KsXSY6upqbr75Zl2oO1BWHhLNynp0Fpdddhm9e/dWa7VIhqgriGTZk8ChZjYaWAOcB3wq3ZAka3r16sWmTZsYPHhwp/56Q3dn06ZN9OrVK+1QuozGm2ARyQ4l1pJZ7t5gZpcAvwW6Az9192dSDksyZsSIEaxevZoNGzakHUqb9erVixEjRqQdhohIp6XEWjLN3f8f8P/SjkOyq0ePHowePTrtMEREpAKoj7WIiIiISAKUWIuIiIiIJECJtYiIiIhIAkxfrySym5ltAPb+N7Ql3/7AxrSDEClAdTNZo9y98/8QgEgbKbEWkXZjZovdfVzacYjkU90UkfagriAiIiIiIglQYi0iIiIikgAl1iLSnm5KOwCRIlQ3RSRx6mMtIiIiIpIAtViLiIiIiCRAibWIiIiISAKUWItIhzCzSWZ2f9pxSDaY2ZfN7Dkzu62d5n+1mf1ze8xbRLKrKu0ARERE9sJFwEfdfUXagYiINFKLtYiUzcyqzex5M/uJmf3VzG4zs4+YWa2ZLTezY+Lfo2b25/j/sALz6WNmPzWzJ+N4Z6SxPtI5mdkPgXcA95nZvxWqS2Y23cx+ZWa/NrMVZnaJmf1THOePZjYojvf5OO3TZvZLM9u3wPIOMbMHzGyJmf3BzA7v2DUWkc5CibWItNY7geuBI4HDgU8BxwP/DHwDeB6Y6O7vA64Evl1gHv8G/M7dxwMfAv6vmfXpgNglA9z9i8BaQt3pQ/G69B5C/TwGuAZ4PdbLx4CpcZx73H28ux8FPAdcWGCRNwGXuvvRhHr+g/ZZMxHp7NQVRERaa4W7/wXAzJ4BFri7m9lfgGqgPzDXzA4FHOhRYB6nAJNz+rD2AkYSEhuR1ihWlwB+7+7bgG1m9grw6/j+Xwg3hgDvMbNvAQOAvsBvc2duZn2BDwJ3m1nj2z3bY0VEpPNTYi0irfVWzutdOeVdhHPKbEJCM8XMqoGHC8zDgE+4+7L2C1O6iIJ1ycyOpeW6CnALcKa7P21m04FJefPvBmx197HJhi0iWaSuICKStP7Amvh6epFxfgtcarEJ0Mze1wFxSTa1tS71A+rNrAfw6fyB7v4qsMLMzonzNzM7qo0xi0hGKbEWkaR9B7jWzGqB7kXGmU3oIrLUzP4ayyJ7o6116QrgceAhwvMBhXwauNDMngaeAfSwrYgUpJ80FxERERFJgFqsRUREREQSoMRaRERERCQBSqxFRERERBKgxFpEREREJAFKrEVEREREEqDEWkSkQpjZv5nZM2a21Myeij9yIiIinYR+eVFEpAKY2XHAx4D3u/tbZrY/sE/KYYmISCuoxVpEpDIMAza6+1sA7r7R3dea2dFmttDMlpjZb81smJn1N7NlZnYYgJndYWafTzV6ERHRD8SIiFQCM+sLPALsC/wvcCfwKLAQOMPdN5jZucCp7n6BmZ0MzAKuB6a7+2kphS4iIpG6goiIVAB3f83MjgZOAD5ESKy/BbwHeMjMIPxEfH0c/yEzOwe4ETgqlaBFRKQZtViLiFQgMzsbuBjo5e7HFRjejdCaPRo43d2XdnCIIiKSR32sRUQqgJkdZmaH5rw1FngOGBIfbMTMepjZmDj8K3H4+cBPzaxHhwYsIiJ7UIu1iEgFiN1A5gADgAbgBWAGMAL4PtCf0H3ve4SW6nuBY9x9m5n9J7DN3a9KI3YREQmUWIuIiIiIJEBdQUREREREEqDEWkREREQkAUqsRUREREQSoMRaRERERCQBSqxFRERERBKgxFpEREREJAFKrEVEREREEvD/ARM4gx+uCFyzAAAAAElFTkSuQmCC",
485 | "text/plain": [
486 | ""
487 | ]
488 | },
489 | "metadata": {
490 | "needs_background": "light"
491 | },
492 | "output_type": "display_data"
493 | }
494 | ],
495 | "source": [
496 | "sns.boxplot(data['Sex'], data[\"Age\"], data[\"Survived\"], palette = 'Set2').set_title('Plot for distribution of age with respect to each gender along with the information about whether they survived or not')\n",
497 | "plt.show()"
498 | ]
499 | },
500 | {
501 | "cell_type": "code",
502 | "execution_count": null,
503 | "metadata": {},
504 | "outputs": [],
505 | "source": []
506 | }
507 | ],
508 | "metadata": {
509 | "colab": {
510 | "name": "TECOC342_Assignment9.ipynb",
511 | "provenance": []
512 | },
513 | "interpreter": {
514 | "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186"
515 | },
516 | "kernelspec": {
517 | "display_name": "Python 3.8.3 ('base')",
518 | "language": "python",
519 | "name": "python3"
520 | },
521 | "language_info": {
522 | "codemirror_mode": {
523 | "name": "ipython",
524 | "version": 3
525 | },
526 | "file_extension": ".py",
527 | "mimetype": "text/x-python",
528 | "name": "python",
529 | "nbconvert_exporter": "python",
530 | "pygments_lexer": "ipython3",
531 | "version": "3.8.3"
532 | }
533 | },
534 | "nbformat": 4,
535 | "nbformat_minor": 0
536 | }
537 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Data-Science-and-Big-Data-Analytics-SPPU-2019-Pattern
2 | This repository contains the assignments💻 of Data Science and Big Data Analytics(DSBDA) provided by Savitribai Phule Pune University(SPPU)🎓
3 |
4 | ## Group A- Data Science
5 | **Assignment 1**
6 |
7 | Perform the following operations using Python on any open source dataset (e.g., data.csv)
8 |
9 |
1. Import all the required Python Libraries.
10 |
11 |
2. Locate an open source data from the web. Provide a clear description of the data and its source (i.e., URL of the web site).
12 |
13 | 3. Load the Dataset into pandas data frame.
14 |
15 | 4. Data Preprocessing: check for missing values in the data using pandas insult(), describe() function to get some initial statistics. Provide variable descriptions. Types of variables etc. Check the dimensions of the data frame.
16 |
17 | 5. Data Formatting and Data Normalization: Summarize the types of variables by checking the data types (i.e., character, numeric, integer, factor, and logical) of the variables in the data set. If variables are not in the correct data type, apply proper type conversions.
18 |
19 | 6. Turn categorical variables into quantitative variables in Python. In addition to the codes and outputs, explain every operation that you do in the above steps and explain everything that you do to import/read/scrape the data set.
20 |
21 | **Assignment 2**
22 |
23 | Create an “Academic performance” dataset of students and perform the following operations using Python.
24 |
1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
25 |
2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
26 |
3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.
27 |
28 | **Assignment 3**
29 |
30 |
Perform the following operations on any open source dataset
31 | 1. Provide summary statistics (mean, median, minimum, maximum, standard deviation) for a dataset with numeric variables grouped by one of the qualitative variable. For example, if your categorical variable is age groups and quantitative variable is income, then provide summary statistics of income grouped by the age groups. Create a list that contains a numeric value for each response to the categorical variable.
32 | 2. Write a Python program to display some basic statistical details of the species of ‘Iris-setosa’, ‘Iris-versicolor’ and ‘Iris-versicolor’ of iris.csv dataset.
33 |
34 | **Assignment 4**
35 |
36 | Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset. The Boston Housing dataset contains
37 | information about various houses in Boston through different parameters. There are 506 samples and 14 feature variables in this dataset. The objective is to predict the value of prices of the house using the given features.
38 |
39 | **Assignment 5**
40 |
41 | 1. Implement logistic regression using Python/R to perform classification on Social_Network_Ads.csv dataset.
42 | 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.
43 |
44 | **Assignment 6**
45 |
46 | 1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset.
47 | 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, precision, recall on the given dataset.
48 |
49 | **Assignment 7**
50 |
51 | 1. Extract Sample document and apply following document preprocessing methods: Tokenization, POS Tagging, stop words removal, Stemming and Lemmatization.
52 | 2. Create representation of document by calculating Term Frequency and Inverse Document Frequency.
53 |
54 | **Assignment 8**
55 |
56 | 1. Use the inbuilt dataset 'titanic'. The dataset contains 891 rows and contains information about the passengers who boarded the unfortunate Titanic ship. Use the Seaborn library to see if we can find any patterns in the data.
57 | 2. Write a code to check how the price of the ticket (column name: 'fare') for each passenger is distributed by plotting a histogram.
58 |
59 | **Assignment 9**
60 |
61 | 1. Use the inbuilt dataset 'titanic' as used in the above problem. Plot a box plot for distribution of age with respect to each gender along with the information about whether they survived or not. (Column names : 'sex' and 'age')
62 | 2. Write observations on the inference from the above statistics.
63 |
64 | **Assignment 10**
65 |
66 | Download the Iris flower dataset or any other dataset into a DataFrame. Scan the dataset and give the inference as:
67 | 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
68 | 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
69 | 3. Create a box plot for each feature in the dataset.
70 | 4. Compare distributions and identify outliers.
71 |
72 | ## Group B- Big Data Analytics
73 | **Assignment 1**
74 |
75 | Write a simple program in SCALA using Apache Spark framework
76 |
77 | ## Group C- Mini Projects
78 | **Covid Vaccination Analysis**
79 |
80 | Use the following covid_vaccine_statewise.csv dataset and perform following analytics on the given dataset https://www.kaggle.com/sudalairajkumar/covid19-in-india?select=covid_vaccine_statewise.csv
81 | a. Describe the dataset
82 | b. Number of persons state wise vaccinated for first dose in India
83 | c. Number of persons state wise vaccinated for second dose in India
84 | d. Number of Males vaccinated
85 | e. Number of females vaccinated
86 |
--------------------------------------------------------------------------------