├── .gitignore
├── README.md
├── evaluate.py
├── generating_queries
├── generate_inference_sets.py
├── generate_test_sets.py
└── generate_training_tuples_baseline.py
├── inference.py
├── loupe.py
├── models
└── lpd_FNSF.py
├── network_architecture.png
├── prepare_data.py
├── train_lpdnet.py
└── utils
├── loading_pointclouds.py
├── tf_util.py
└── transform_nets.py
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 | *.pickle
3 | .idea
4 | log*
5 | results*
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis
2 |
3 | **[LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis](http://openaccess.thecvf.com/content_ICCV_2019/papers/Liu_LPD-Net_3D_Point_Cloud_Learning_for_Large-Scale_Place_Recognition_and_ICCV_2019_paper.pdf)** ICCV 2019, Seoul, Korea
4 |
5 | Zhe Liu1, Shunbo Zhou1, Chuanzhe Suo1, Peng Yin3, Wen Chen1, Hesheng Wang2,Haoang Li1, Yun-Hui Liu1
6 |
7 | 1The Chinese University of Hong Kong, 2Shanghai Jiao Tong University, 3Carnegie Mellon University
8 |
9 |
10 | 
11 |
12 | ## Introduction
13 | Point cloud based Place Recognition is still an open issue due to the difficulty in extracting local features from the raw 3D point cloud and generating the global descriptor,and it’s even harder in the large-scale dynamic environments. We develop a novel deep neural network, named LPD-Net (Large-scale Place Description Network), which can extract discriminative and generalizable
14 | global descriptors from the raw 3D point cloud. The arXiv version of LPD-Net can be found [here](https://arxiv.org/abs/1812.07050).
15 | ```
16 | @InProceedings{Liu_2019_ICCV,
17 | author = {Liu, Zhe and Zhou, Shunbo and Suo, Chuanzhe and Yin, Peng and Chen, Wen and Wang, Hesheng and Li, Haoang and Liu, Yun-Hui},
18 | title = {LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis},
19 | booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
20 | month = {October},
21 | year = {2019}
22 | }
23 | ```
24 | ## Benchmark Datasets
25 | The benchmark datasets introdruced in this work can be downloaded [here](https://drive.google.com/open?id=1H9Ep76l8KkUpwILY-13owsEMbVCYTmyx), which created by PointNetVLAD for point cloud based retrieval for place recognition from the open-source [Oxford RobotCar](https://robotcar-dataset.robots.ox.ac.uk/). Details can be found in [PointNetVLAD](https://arxiv.org/abs/1804.03492).
26 | * All submaps are in binary file format
27 | * Ground truth GPS coordinate of the submaps are found in the corresponding csv files for each run
28 | * Filename of the submaps are their timestamps which is consistent with the timestamps in the csv files
29 | * Use CSV files to define positive and negative point clouds
30 | * All submaps are preprocessed with the road removed and downsampled to 4096 points
31 |
32 | ### Oxford Dataset
33 | * 45 sets in total of full and partial runs
34 | * Used both full and partial runs for training but only used full runs for testing/inference
35 | * Training submaps are found in the folder "pointcloud_20m_10overlap/" and its corresponding csv file is "pointcloud_locations_20m_10overlap.csv"
36 | * Training submaps are not mutually disjoint per run
37 | * Each training submap ~20m of car trajectory and subsequent submaps are ~10m apart
38 | * Test/Inference submaps found in the folder "pointcloud_20m/" and its corresponding csv file is "pointcloud_locations_20m.csv"
39 | * Test/Inference submaps are mutually disjoint
40 |
41 |
42 | ## Project Code
43 |
44 | ### Pre-requisites
45 | * Python
46 | * CUDA
47 | * Tensorflow
48 | * Scipy
49 | * Pandas
50 | * Sklearn
51 |
52 | Code was tested using Python 3 on Tensorflow 1.4.0 with CUDA 8.0 and Tensorflow 1.12.0 with CUDA 9.0
53 |
54 | ```
55 | sudo apt-get install python3-pip python3-dev python-virtualenv
56 | virtualenv --system-site-packages -p python3 ~/tensorflow
57 | source ~/tensorflow/bin/activate
58 | easy_install -U pip
59 | pip3 install --upgrade tensorflow-gpu==1.4.0
60 | pip install scipy, pandas, sklearn
61 | pip install glog
62 | ```
63 | ### Dataset set-up
64 | Download the zip file of the benchmark datasets found [here](https://drive.google.com/open?id=1H9Ep76l8KkUpwILY-13owsEMbVCYTmyx). Extract the folder on the same directory as the project code. Thus, on that directory you must have two folders: 1) benchmark_datasets/ and 2) LPD_net/
65 |
66 | ### Data pre-processing
67 | We preprocess the benchmark datasets at first and store the features of point clouds on bin files to save the training time. The files only need to be generated once and used as input of networks. The generation of these files may take a few hours.
68 | ```
69 | # For pre-processing dataset to generate pointcloud with features
70 | python prepare_data.py
71 |
72 | # Parse Arguments: --k_start 20 --k_end 100 --k_step 10 --bin_core_num 10
73 | # KNN Neighbor size from 20 to 100 with interval 10, parallel process pool core numbers:10
74 | ```
75 |
76 | ### Generate pickle files
77 | We store the positive and negative point clouds to each anchor on pickle files that are used in our training and evaluation codes. The files only need to be generated once. The generation of these files may take a few minutes.
78 |
79 | ```
80 | cd generating_queries/
81 |
82 | # For training tuples in LPD-Net
83 | python generate_training_tuples_baseline.py
84 |
85 | # For network evaluation
86 | python generate_test_sets.py
87 |
88 | # For network inference
89 | python generate_inference_sets.py
90 | # Need to modify the variables (folders or index_list) to specify the folder
91 | ```
92 |
93 | ### Model Training and Evaluation
94 | To train our network, run the following command:
95 | ```
96 | python train_lpdnet.py
97 | # Parse Arguments: --model lpd_FNSF --log_dir log/ --restore
98 |
99 | # For example, Train lpd_FNSF network from scratch
100 | python train_lpdnet.py --model lpd_FNSF
101 |
102 | # Retrain lpd_FNSF network with pretrained model
103 | python train_lpdnet.py --log_dir log/ --restore
104 | ```
105 | To evaluate the model, run the following command:
106 | ```
107 | python evaluate.py --log_dir log/
108 | # The resulst.txt will be saved in results/
109 | ```
110 | To infer the model, run the following command to get global descriptors:
111 | ```
112 | python inference.py --log_dir log/
113 | # The inference_vectors.bin will be saved in LPD_net folder
114 | ```
115 |
116 | ## Pre-trained Models
117 | The pre-trained models for lpd_FNSF networks can be downloaded [here](https://drive.google.com/open?id=1H9Ep76l8KkUpwILY-13owsEMbVCYTmyx). Put it under the ```/log```folder
118 |
119 | ## License
120 | This repository is released under MIT License (see LICENSE file for details).
121 |
--------------------------------------------------------------------------------
/evaluate.py:
--------------------------------------------------------------------------------
1 | # Author: Chuanzhe Suo (suo_ivy@foxmail.com) 10/26/2018
2 | # Thanks to Mikaela Angelina Uy, modified from PointNetVLAD
3 | # Reference: LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis, ICCV 2019
4 |
5 | import argparse
6 | import os
7 | import sys
8 | import importlib
9 | import tensorflow as tf
10 | import numpy as np
11 | BASE_DIR = os.path.dirname(os.path.abspath(__file__))
12 | sys.path.append(BASE_DIR)
13 | sys.path.append(os.path.join(BASE_DIR, 'models'))
14 | sys.path.append(os.path.join(BASE_DIR, 'utils'))
15 | from loading_pointclouds import *
16 | from sklearn.neighbors import KDTree
17 |
18 | #params
19 | parser = argparse.ArgumentParser()
20 | parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 1]')
21 | parser.add_argument('--log_dir', default='log/', help='Log dir [default: log]')
22 | parser.add_argument('--positives_per_query', type=int, default=4, help='Number of potential positives in each training tuple [default: 2]')
23 | parser.add_argument('--negatives_per_query', type=int, default=10, help='Number of definite negatives in each training tuple [default: 20]')
24 | parser.add_argument('--batch_num_queries', type=int, default=3, help='Batch Size during training [default: 1]')
25 | parser.add_argument('--dimension', type=int, default=256)
26 | parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
27 | parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
28 | FLAGS = parser.parse_args()
29 |
30 | #BATCH_SIZE = FLAGS.batch_size
31 | BATCH_NUM_QUERIES = FLAGS.batch_num_queries
32 | EVAL_BATCH_SIZE = 1
33 | NUM_POINTS = 4096
34 | POSITIVES_PER_QUERY= FLAGS.positives_per_query
35 | NEGATIVES_PER_QUERY= FLAGS.negatives_per_query
36 | GPU_INDEX = FLAGS.gpu
37 | DECAY_STEP = FLAGS.decay_step
38 | DECAY_RATE = FLAGS.decay_rate
39 |
40 | DATABASE_FILE= 'generating_queries/oxford_evaluation_database.pickle'
41 | QUERY_FILE= 'generating_queries/oxford_evaluation_query.pickle'
42 |
43 | LOG_DIR = FLAGS.log_dir
44 | model = LOG_DIR.split('/')[1]
45 | RESULTS_FOLDER=os.path.join("results/", model)
46 | model = model.split('-')[0]
47 | print(LOG_DIR)
48 | MODEL = importlib.import_module(model)
49 | if not os.path.exists(RESULTS_FOLDER): os.makedirs(RESULTS_FOLDER)
50 | output_file= RESULTS_FOLDER +'/results.txt'
51 | model_file= "model.ckpt"
52 |
53 | DATABASE_SETS= get_sets_dict(DATABASE_FILE)
54 | QUERY_SETS= get_sets_dict(QUERY_FILE)
55 |
56 | global DATABASE_VECTORS
57 | DATABASE_VECTORS=[]
58 |
59 | global QUERY_VECTORS
60 | QUERY_VECTORS=[]
61 |
62 | BN_INIT_DECAY = 0.5
63 | BN_DECAY_DECAY_RATE = 0.5
64 | BN_DECAY_DECAY_STEP = float(DECAY_STEP)
65 | BN_DECAY_CLIP = 0.99
66 |
67 | def get_bn_decay(batch):
68 | bn_momentum = tf.train.exponential_decay(
69 | BN_INIT_DECAY,
70 | batch*BATCH_NUM_QUERIES,
71 | BN_DECAY_DECAY_STEP,
72 | BN_DECAY_DECAY_RATE,
73 | staircase=True)
74 | bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
75 | return bn_decay
76 |
77 | def evaluate():
78 | global DATABASE_VECTORS
79 | global QUERY_VECTORS
80 |
81 | with tf.Graph().as_default():
82 | with tf.device('/gpu:'+str(GPU_INDEX)):
83 | print("In Graph")
84 | query= MODEL.placeholder_inputs(BATCH_NUM_QUERIES, 1, NUM_POINTS)
85 | positives= MODEL.placeholder_inputs(BATCH_NUM_QUERIES, POSITIVES_PER_QUERY, NUM_POINTS)
86 | negatives= MODEL.placeholder_inputs(BATCH_NUM_QUERIES, NEGATIVES_PER_QUERY, NUM_POINTS)
87 | eval_queries= MODEL.placeholder_inputs(EVAL_BATCH_SIZE, 1, NUM_POINTS)
88 |
89 | is_training_pl = tf.placeholder(tf.bool, shape=())
90 | print(is_training_pl)
91 |
92 | batch = tf.Variable(0)
93 | bn_decay = get_bn_decay(batch)
94 |
95 | with tf.variable_scope("query_triplets") as scope:
96 | vecs= tf.concat([query, positives, negatives],1)
97 | print(vecs)
98 | out_vecs= MODEL.forward(vecs, is_training_pl, bn_decay=bn_decay)
99 | q_vec, pos_vecs, neg_vecs= tf.split(out_vecs, [1,POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY],1)
100 | print(q_vec)
101 | print(pos_vecs)
102 | print(neg_vecs)
103 |
104 | saver = tf.train.Saver()
105 |
106 | # Create a session
107 | gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
108 | config = tf.ConfigProto(gpu_options=gpu_options)
109 | config.gpu_options.allow_growth = True
110 | config.allow_soft_placement = True
111 | config.log_device_placement = False
112 | sess = tf.Session(config=config)
113 |
114 |
115 | saver.restore(sess, os.path.join(LOG_DIR, model_file))
116 | print("Model restored:{}".format(os.path.join(LOG_DIR, model_file)))
117 |
118 | ops = {'query': query,
119 | 'positives': positives,
120 | 'negatives': negatives,
121 | 'is_training_pl': is_training_pl,
122 | 'eval_queries': eval_queries,
123 | 'q_vec':q_vec,
124 | 'pos_vecs': pos_vecs,
125 | 'neg_vecs': neg_vecs}
126 | recall= np.zeros(25)
127 | count=0
128 | similarity=[]
129 | one_percent_recall=[]
130 | for i in range(len(DATABASE_SETS)):
131 | DATABASE_VECTORS.append(get_latent_vectors(sess, ops, DATABASE_SETS[i]))
132 |
133 | for j in range(len(QUERY_SETS)):
134 | QUERY_VECTORS.append(get_latent_vectors(sess, ops, QUERY_SETS[j]))
135 |
136 | for m in range(len(QUERY_SETS)):
137 | for n in range(len(QUERY_SETS)):
138 | if(m==n):
139 | continue
140 | pair_recall, pair_similarity, pair_opr = get_recall(sess, ops, m, n)
141 | recall+=np.array(pair_recall)
142 | count+=1
143 | one_percent_recall.append(pair_opr)
144 | for x in pair_similarity:
145 | similarity.append(x)
146 |
147 | print()
148 | ave_recall=recall/count
149 | print('ave_recallrecall')
150 | print(ave_recall)
151 |
152 | #print('similarity:')
153 | #print(similarity)
154 | average_similarity= np.mean(similarity)
155 | print('average_similarity')
156 | print(average_similarity)
157 |
158 | ave_one_percent_recall= np.mean(one_percent_recall)
159 | print('ave_one_percent_recall')
160 | print(ave_one_percent_recall)
161 |
162 |
163 | #filename=RESULTS_FOLDER +'average_recall_oxford_netmax_sg(finetune_conv5).txt'
164 | with open(output_file, "a") as output:
165 | output.write(model)
166 | output.write("\n\n")
167 | output.write("Average Recall @N:\n")
168 | output.write(str(ave_recall))
169 | output.write("\n\n")
170 | output.write("Average Similarity:\n")
171 | output.write(str(average_similarity))
172 | output.write("\n\n")
173 | output.write("Average Top 1% Recall:\n")
174 | output.write(str(ave_one_percent_recall))
175 | output.write("\n\n")
176 |
177 |
178 | def get_latent_vectors(sess, ops, dict_to_process):
179 | is_training=False
180 | train_file_idxs = np.arange(0, len(dict_to_process.keys()))
181 | #print(len(train_file_idxs))
182 | batch_num= BATCH_NUM_QUERIES*(1+POSITIVES_PER_QUERY+NEGATIVES_PER_QUERY)
183 | q_output = []
184 | for q_index in range(len(train_file_idxs)//batch_num):
185 | file_indices=train_file_idxs[q_index*batch_num:(q_index+1)*(batch_num)]
186 | file_names=[]
187 | for index in file_indices:
188 | file_names.append(dict_to_process[index]["query"])
189 | queries=load_pc_files(file_names)
190 | # queries= np.expand_dims(queries,axis=1)
191 | q1=queries[0:BATCH_NUM_QUERIES]
192 | q1=np.expand_dims(q1,axis=1)
193 | #print(q1.shape)
194 |
195 | q2=queries[BATCH_NUM_QUERIES:BATCH_NUM_QUERIES*(POSITIVES_PER_QUERY+1)]
196 | q2=np.reshape(q2,(BATCH_NUM_QUERIES,POSITIVES_PER_QUERY,NUM_POINTS,13))
197 |
198 | q3=queries[BATCH_NUM_QUERIES*(POSITIVES_PER_QUERY+1):BATCH_NUM_QUERIES*(NEGATIVES_PER_QUERY+POSITIVES_PER_QUERY+1)]
199 | q3=np.reshape(q3,(BATCH_NUM_QUERIES,NEGATIVES_PER_QUERY,NUM_POINTS,13))
200 | feed_dict={ops['query']:q1, ops['positives']:q2, ops['negatives']:q3, ops['is_training_pl']:is_training}
201 | o1, o2, o3=sess.run([ops['q_vec'], ops['pos_vecs'], ops['neg_vecs']], feed_dict=feed_dict)
202 |
203 | o1=np.reshape(o1,(-1,o1.shape[-1]))
204 | o2=np.reshape(o2,(-1,o2.shape[-1]))
205 | o3=np.reshape(o3,(-1,o3.shape[-1]))
206 |
207 | out=np.vstack((o1,o2,o3))
208 | q_output.append(out)
209 |
210 | q_output=np.array(q_output)
211 | if(len(q_output)!=0):
212 | q_output=q_output.reshape(-1,q_output.shape[-1])
213 | #print(q_output.shape)
214 |
215 | #handle edge case
216 | for q_index in range((len(train_file_idxs)//batch_num*batch_num),len(dict_to_process.keys())):
217 | index=train_file_idxs[q_index]
218 | queries=load_pc_files([dict_to_process[index]["query"]])
219 | queries= np.expand_dims(queries,axis=1)
220 | #print(query.shape)
221 | #exit()
222 | fake_queries=np.zeros((BATCH_NUM_QUERIES-1,1,NUM_POINTS,13))
223 | fake_pos=np.zeros((BATCH_NUM_QUERIES,POSITIVES_PER_QUERY,NUM_POINTS,13))
224 | fake_neg=np.zeros((BATCH_NUM_QUERIES,NEGATIVES_PER_QUERY,NUM_POINTS,13))
225 | q=np.vstack((queries,fake_queries))
226 | #print(q.shape)
227 | feed_dict={ops['query']:q, ops['positives']:fake_pos, ops['negatives']:fake_neg, ops['is_training_pl']:is_training}
228 | output=sess.run(ops['q_vec'], feed_dict=feed_dict)
229 | #print(output.shape)
230 | output=output[0]
231 | output=np.squeeze(output)
232 | if (q_output.shape[0]!=0):
233 | q_output=np.vstack((q_output,output))
234 | else:
235 | q_output=output
236 |
237 | #q_output=np.array(q_output)
238 | #q_output=q_output.reshape(-1,q_output.shape[-1])
239 | print(q_output.shape)
240 | return q_output
241 |
242 | def get_recall(sess, ops, m, n):
243 | global DATABASE_VECTORS
244 | global QUERY_VECTORS
245 |
246 | database_output= DATABASE_VECTORS[m]
247 | queries_output= QUERY_VECTORS[n]
248 |
249 | print(len(queries_output))
250 | database_nbrs = KDTree(database_output)
251 |
252 | num_neighbors=25
253 | recall=[0]*num_neighbors
254 |
255 | top1_similarity_score=[]
256 | one_percent_retrieved=0
257 | threshold=max(int(round(len(database_output)/100.0)),1)
258 |
259 | num_evaluated=0
260 | for i in range(len(queries_output)):
261 | true_neighbors= QUERY_SETS[n][i][m]
262 | if(len(true_neighbors)==0):
263 | continue
264 | num_evaluated+=1
265 | distances, indices = database_nbrs.query(np.array([queries_output[i]]),k=num_neighbors)
266 | for j in range(len(indices[0])):
267 | if indices[0][j] in true_neighbors:
268 | if(j==0):
269 | similarity= np.dot(queries_output[i],database_output[indices[0][j]])
270 | top1_similarity_score.append(similarity)
271 | recall[j]+=1
272 | break
273 |
274 | if len(list(set(indices[0][0:threshold]).intersection(set(true_neighbors))))>0:
275 | one_percent_retrieved+=1
276 |
277 | one_percent_recall=(one_percent_retrieved/float(num_evaluated))*100
278 | recall=(np.cumsum(recall)/float(num_evaluated))*100
279 | print('recall')
280 | print(recall)
281 | print('top1_simlar_score')
282 | print(np.mean(top1_similarity_score))
283 | print('one_percent_recall')
284 | print(one_percent_recall)
285 | return recall, top1_similarity_score, one_percent_recall
286 |
287 | def get_similarity(sess, ops, m, n):
288 | global DATABASE_VECTORS
289 | global QUERY_VECTORS
290 |
291 | database_output= DATABASE_VECTORS[m]
292 | queries_output= QUERY_VECTORS[n]
293 |
294 | threshold= len(queries_output)
295 | print(len(queries_output))
296 | database_nbrs = KDTree(database_output)
297 |
298 | similarity=[]
299 | for i in range(len(queries_output)):
300 | distances, indices = database_nbrs.query(np.array([queries_output[i]]),k=1)
301 | for j in range(len(indices[0])):
302 | q_sim= np.dot(q_output[i], database_output[indices[0][j]])
303 | similarity.append(q_sim)
304 | average_similarity=np.mean(similarity)
305 | print(average_similarity)
306 | return average_similarity
307 |
308 |
309 | if __name__ == "__main__":
310 | evaluate()
311 |
--------------------------------------------------------------------------------
/generating_queries/generate_inference_sets.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 | import os
4 | import pandas as pd
5 | from sklearn.neighbors import KDTree
6 | import pickle
7 | import random
8 |
9 | #####For training and test data split#####
10 | x_width=150
11 | y_width=150
12 |
13 | #For Oxford
14 | p1=[5735712.768124,620084.402381]
15 | p2=[5735611.299219,620540.270327]
16 | p3=[5735237.358209,620543.094379]
17 | p4=[5734749.303802,619932.693364]
18 |
19 | #For University Sector
20 | p5=[363621.292362,142864.19756]
21 | p6=[364788.795462,143125.746609]
22 | p7=[363597.507711,144011.414174]
23 |
24 | #For Residential Area
25 | p8=[360895.486453,144999.915143]
26 | p9=[362357.024536,144894.825301]
27 | p10=[361368.907155,145209.663042]
28 |
29 | p_dict={"oxford":[p1,p2,p3,p4], "university":[p5,p6,p7], "residential": [p8,p9,p10], "business":[]}
30 |
31 | def check_in_test_set(northing, easting, points, x_width, y_width):
32 | in_test_set=False
33 | for point in points:
34 | if(point[0]-x_width5 and i%700 ==29):
370 | #update cached feature vectors
371 | TRAINING_LATENT_VECTORS=get_latent_vectors(sess, ops, TRAINING_QUERIES)
372 | print("Updated cached feature vectors")
373 |
374 | if(i%1000==101):
375 | save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
376 | log_string("Model saved in file: %s" % save_path)
377 |
378 |
379 | def get_feature_representation(filename, sess, ops):
380 | is_training=False
381 | queries=load_pc_files([filename])
382 | queries= np.expand_dims(queries,axis=1)
383 | if(BATCH_NUM_QUERIES-1>0):
384 | fake_queries=np.zeros((BATCH_NUM_QUERIES-1,1,NUM_POINTS,13))
385 | q=np.vstack((queries,fake_queries))
386 | else:
387 | q=queries
388 | fake_pos=np.zeros((BATCH_NUM_QUERIES,POSITIVES_PER_QUERY,NUM_POINTS,13))
389 | fake_neg=np.zeros((BATCH_NUM_QUERIES,NEGATIVES_PER_QUERY,NUM_POINTS,13))
390 | fake_other_neg=np.zeros((BATCH_NUM_QUERIES,1,NUM_POINTS,13))
391 | feed_dict={ops['query']:q, ops['positives']:fake_pos, ops['negatives']:fake_neg, ops['other_negatives']: fake_other_neg, ops['is_training_pl']:is_training}
392 | output=sess.run(ops['q_vec'], feed_dict=feed_dict)
393 | output=output[0]
394 | output=np.squeeze(output)
395 | return output
396 |
397 | def get_random_hard_negatives(query_vec, random_negs, num_to_take):
398 | global TRAINING_LATENT_VECTORS
399 |
400 | latent_vecs=[]
401 | for j in range(len(random_negs)):
402 | latent_vecs.append(TRAINING_LATENT_VECTORS[random_negs[j]])
403 |
404 | latent_vecs=np.array(latent_vecs)
405 | nbrs = KDTree(latent_vecs)
406 | distances, indices = nbrs.query(np.array([query_vec]),k=num_to_take)
407 | hard_negs=np.squeeze(np.array(random_negs)[indices[0]])
408 | hard_negs= hard_negs.tolist()
409 | return hard_negs
410 |
411 | def get_latent_vectors(sess, ops, dict_to_process):
412 | is_training=False
413 | train_file_idxs = np.arange(0, len(dict_to_process.keys()))
414 |
415 | batch_num= BATCH_NUM_QUERIES*(1+POSITIVES_PER_QUERY+NEGATIVES_PER_QUERY+1)
416 | q_output = []
417 | for q_index in range(len(train_file_idxs)//batch_num):
418 | file_indices=train_file_idxs[q_index*batch_num:(q_index+1)*(batch_num)]
419 | file_names=[]
420 | for index in file_indices:
421 | file_names.append(dict_to_process[index]["query"])
422 | queries=load_pc_files(file_names)
423 |
424 | q1=queries[0:BATCH_NUM_QUERIES]
425 | q1=np.expand_dims(q1,axis=1)
426 |
427 | q2=queries[BATCH_NUM_QUERIES:BATCH_NUM_QUERIES*(POSITIVES_PER_QUERY+1)]
428 | q2=np.reshape(q2,(BATCH_NUM_QUERIES,POSITIVES_PER_QUERY,NUM_POINTS,13))
429 |
430 | q3=queries[BATCH_NUM_QUERIES*(POSITIVES_PER_QUERY+1):BATCH_NUM_QUERIES*(NEGATIVES_PER_QUERY+POSITIVES_PER_QUERY+1)]
431 | q3=np.reshape(q3,(BATCH_NUM_QUERIES,NEGATIVES_PER_QUERY,NUM_POINTS,13))
432 |
433 | q4=queries[BATCH_NUM_QUERIES*(NEGATIVES_PER_QUERY+POSITIVES_PER_QUERY+1):BATCH_NUM_QUERIES*(NEGATIVES_PER_QUERY+POSITIVES_PER_QUERY+2)]
434 | q4=np.expand_dims(q4,axis=1)
435 |
436 | feed_dict={ops['query']:q1, ops['positives']:q2, ops['negatives']:q3,ops['other_negatives']:q4, ops['is_training_pl']:is_training}
437 | o1, o2, o3, o4=sess.run([ops['q_vec'], ops['pos_vecs'], ops['neg_vecs'], ops['other_neg_vec']], feed_dict=feed_dict)
438 |
439 | o1=np.reshape(o1,(-1,o1.shape[-1]))
440 | o2=np.reshape(o2,(-1,o2.shape[-1]))
441 | o3=np.reshape(o3,(-1,o3.shape[-1]))
442 | o4=np.reshape(o4,(-1,o4.shape[-1]))
443 |
444 | out=np.vstack((o1,o2,o3,o4))
445 | q_output.append(out)
446 |
447 | q_output=np.array(q_output)
448 | if(len(q_output)!=0):
449 | q_output=q_output.reshape(-1,q_output.shape[-1])
450 |
451 | #handle edge case
452 | for q_index in range((len(train_file_idxs)//batch_num*batch_num),len(dict_to_process.keys())):
453 | index=train_file_idxs[q_index]
454 | queries=load_pc_files([dict_to_process[index]["query"]])
455 | queries= np.expand_dims(queries,axis=1)
456 |
457 | if(BATCH_NUM_QUERIES-1>0):
458 | fake_queries=np.zeros((BATCH_NUM_QUERIES-1,1,NUM_POINTS,13))
459 | q=np.vstack((queries,fake_queries))
460 | else:
461 | q=queries
462 |
463 | fake_pos=np.zeros((BATCH_NUM_QUERIES,POSITIVES_PER_QUERY,NUM_POINTS,13))
464 | fake_neg=np.zeros((BATCH_NUM_QUERIES,NEGATIVES_PER_QUERY,NUM_POINTS,13))
465 | fake_other_neg=np.zeros((BATCH_NUM_QUERIES,1,NUM_POINTS,13))
466 | feed_dict={ops['query']:q, ops['positives']:fake_pos, ops['negatives']:fake_neg, ops['other_negatives']:fake_other_neg, ops['is_training_pl']:is_training}
467 | output=sess.run(ops['q_vec'], feed_dict=feed_dict)
468 | output=output[0]
469 | output=np.squeeze(output)
470 | if (q_output.shape[0]!=0):
471 | q_output=np.vstack((q_output,output))
472 | else:
473 | q_output=output
474 |
475 | print(q_output.shape)
476 | return q_output
477 |
478 | if __name__ == "__main__":
479 | train()
480 |
--------------------------------------------------------------------------------
/utils/loading_pointclouds.py:
--------------------------------------------------------------------------------
1 | import os
2 | import pickle
3 | import numpy as np
4 | import random
5 |
6 | UTILS_DIR = os.path.dirname(os.path.abspath(__file__))
7 | DATASET_PATH=os.path.join(UTILS_DIR, '../../benchmark_datasets/')
8 | print(DATASET_PATH)
9 |
10 |
11 | def get_queries_dict(filename):
12 | #key:{'query':file,'positives':[files],'negatives:[files], 'neighbors':[keys]}
13 | with open(filename, 'rb') as handle:
14 | queries = pickle.load(handle)
15 | print("Queries Loaded.")
16 | return queries
17 |
18 | def get_sets_dict(filename):
19 | #[key_dataset:{key_pointcloud:{'query':file,'northing':value,'easting':value}},key_dataset:{key_pointcloud:{'query':file,'northing':value,'easting':value}}, ...}
20 | with open(filename, 'rb') as handle:
21 | trajectories = pickle.load(handle)
22 | print("Trajectories Loaded.")
23 | return trajectories
24 |
25 | def load_pc_file(filename):
26 | #returns Nx13 matrix (3 pose 10 handcraft features)
27 | pc=np.fromfile(os.path.join(DATASET_PATH,filename), dtype=np.float64)
28 |
29 | if(pc.shape[0]!= 4096*13):
30 | print("Error in pointcloud shape")
31 | print(pc.shape)
32 | print(filename)
33 | #return np.array([])
34 | return np.zeros([4096,13])
35 |
36 | pc=np.reshape(pc,(pc.shape[0]//13,13))
37 |
38 | # preprocessing data
39 | # Normalization
40 | pc[:,3:12] = ((pc-pc.min(axis=0))/(pc.max(axis=0)-pc.min(axis=0)))[:,3:12]
41 | pc[np.isnan(pc)] = 0.0
42 | pc[np.isinf(pc)] = 1.0
43 |
44 | return pc
45 |
46 | def load_pc_files(filenames):
47 | pcs=[]
48 | for filename in filenames:
49 | #print(filename)
50 | pc=load_pc_file(filename)
51 | if(pc.shape[0]!=4096):
52 | continue
53 | pcs.append(pc)
54 | pcs=np.array(pcs)
55 | return pcs
56 |
57 | def rotate_point_cloud(batch_data):
58 | """ Randomly rotate the point clouds to augument the dataset
59 | rotation is per shape based along up direction
60 | Input:
61 | BxNx3 array, original batch of point clouds
62 | Return:
63 | BxNx3 array, rotated batch of point clouds
64 | """
65 | rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
66 | for k in range(batch_data.shape[0]):
67 | #rotation_angle = np.random.uniform() * 2 * np.pi
68 | #-90 to 90
69 | rotation_angle = (np.random.uniform()*np.pi)- np.pi/2.0
70 | cosval = np.cos(rotation_angle)
71 | sinval = np.sin(rotation_angle)
72 | rotation_matrix = np.array([[cosval, -sinval, 0],
73 | [sinval, cosval, 0],
74 | [0, 0, 1]])
75 | shape_pc = batch_data[k, ...]
76 | rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
77 | return rotated_data
78 |
79 | def jitter_point_cloud(batch_data, sigma=0.005, clip=0.05):
80 | """ Randomly jitter points. jittering is per point.
81 | Input:
82 | BxNx3 array, original batch of point clouds
83 | Return:
84 | BxNx3 array, jittered batch of point clouds
85 | """
86 | B, N, C = batch_data.shape
87 | assert(clip > 0)
88 | jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)
89 | jittered_data += batch_data
90 | return jittered_data
91 |
92 | def get_query_tuple(dict_value, num_pos, num_neg, QUERY_DICT, hard_neg=[], other_neg=False):
93 | #get query tuple for dictionary entry
94 | #return list [query,positives,negatives]
95 |
96 | query=load_pc_file(dict_value["query"]) #Nx13
97 |
98 | random.shuffle(dict_value["positives"])
99 | pos_files=[]
100 |
101 | for i in range(num_pos):
102 | pos_files.append(QUERY_DICT[dict_value["positives"][i]]["query"])
103 | #positives= load_pc_files(dict_value["positives"][0:num_pos])
104 | positives=load_pc_files(pos_files)
105 |
106 | neg_files=[]
107 | neg_indices=[]
108 | if(len(hard_neg)==0):
109 | random.shuffle(dict_value["negatives"])
110 | for i in range(num_neg):
111 | neg_files.append(QUERY_DICT[dict_value["negatives"][i]]["query"])
112 | neg_indices.append(dict_value["negatives"][i])
113 |
114 | else:
115 | random.shuffle(dict_value["negatives"])
116 | for i in hard_neg:
117 | neg_files.append(QUERY_DICT[i]["query"])
118 | neg_indices.append(i)
119 | j=0
120 | while(len(neg_files)